
NC programming

Programming Manual

06/2019
A5E47437142B AA

Preface

Fundamental safety
instructions 1

Fundamentals 2

Work preparation 3

Tables 4

Appendix A

SINUMERIK

SINUMERIK MC

Valid for:

Control system
SINUMERIK MC

Software
CNC software version 1.12

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this
publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

Document order number: A5E47437142B AA
Ⓟ 06/2019 Subject to change

Copyright © Siemens AG 2019.
All rights reserved

Preface

SINUMERIK documentation
The SINUMERIK documentation is organized into the following categories:

● General documentation/catalogs

● User documentation

● Manufacturer/service documentation

Additional information
You can find information on the following topics at the following address (https://
support.industry.siemens.com/cs/de/en/view/108464614):

● Ordering documentation/overview of documentation

● Additional links to download documents

● Using documentation online (find and search in manuals/information)

If you have any questions regarding the technical documentation (e.g. suggestions,
corrections), please send an e-mail to the following address
(mailto:docu.motioncontrol@siemens.com).

mySupport/Documentation
At the following address (https://support.industry.siemens.com/My/ww/en/documentation),
you can find information on how to create your own individual documentation based on
Siemens' content, and adapt it for your own machine documentation.

Training
At the following address (http://www.siemens.com/sitrain), you can find information about
SITRAIN (Siemens training on products, systems and solutions for automation and drives).

FAQs
You can find Frequently Asked Questions in the Service&Support pages under Product
Support (https://support.industry.siemens.com/cs/de/en/ps/faq).

SINUMERIK
You can find information about SINUMERIK at the following address (http://www.siemens.com/
sinumerik).

NC programming
Programming Manual, 06/2019, A5E47437142B AA 3

https://support.industry.siemens.com/cs/de/en/view/108464614
https://support.industry.siemens.com/cs/de/en/view/108464614
mailto:docu.motioncontrol@siemens.com
https://support.industry.siemens.com/My/ww/en/documentation
http://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/de/en/ps/faq
http://www.siemens.com/sinumerik
http://www.siemens.com/sinumerik

Target group
This publication is intended for:

● Programmers

● Project engineers

Benefits
With the programming manual, the target group can develop, write, test, and debug programs
and software user interfaces.

Standard scope
This Programming Manual describes the functionality of the standard scope. Extensions or
changes made by the machine tool manufacturer are documented by the machine tool
manufacturer.

Other functions not described in this documentation might be executable in the control. This
does not, however, represent an obligation to supply such functions with a new control or when
servicing.

Furthermore, for the sake of clarity, this documentation does not contain all detailed information
about all product types and cannot cover every conceivable case of installation, operation or
maintenance.

Note regarding the General Data Protection Regulation
Siemens observes standard data protection principles, in particular the principle of privacy by
design. That means that

this product does not process / store any personal data, only technical functional data (e.g. time
stamps). If a user links this data with other data (e.g. a shift schedule) or stores personal data
on the same storage medium (e.g. hard drive) and thus establishes a link to a person or
persons, then the user is responsible for ensuring compliance with the relevant data protection
regulations.

Technical Support
Country-specific telephone numbers for technical support are provided in the Internet at the
following address (https://support.industry.siemens.com/sc/ww/en/sc/2090) in the "Contact"
area.

Preface

NC programming
4 Programming Manual, 06/2019, A5E47437142B AA

https://support.industry.siemens.com/sc/ww/en/sc/2090

Information about the structure and contents of the documentation
The NC programming is described in two manuals:

1. Fundamentals
The Programming Manual "Fundamentals" is intended for use by skilled machine operators
with the appropriate expertise in drilling, milling and turning operations. Simple
programming examples are used to explain the commands and statements, which are also
defined according to DIN 66025.

2. Work preparation
The Programming Manual "Advanced" is intended for use by technicians with in-depth,
comprehensive programming knowledge. By virtue of a special programming language, the
SINUMERIK control enables the user to program complex workpiece programs (e.g. for
free-form surfaces, channel coordination, ...), and makes the programming of complicated
operations easier for technologists.

Preface

NC programming
Programming Manual, 06/2019, A5E47437142B AA 5

Preface

NC programming
6 Programming Manual, 06/2019, A5E47437142B AA

Table of contents

Preface ...3

1 Fundamental safety instructions...23

1.1 General safety instructions...23

1.2 Warranty and liability for application examples ..24

1.3 Industrial security ...25

2 Fundamentals...27

2.1 Fundamental Geometrical Principles ...27
2.1.1 Workpiece positions ...27
2.1.1.1 Reference system of position specifications ..27
2.1.1.2 Cartesian coordinates ..27
2.1.1.3 Polar coordinates ...30
2.1.1.4 Absolute dimensions ..31
2.1.1.5 Incremental dimension ...33
2.1.2 Working planes ..34
2.1.3 Zero points and reference points ...35
2.1.4 Coordinate systems ...37
2.1.4.1 Machine coordinate system (MCS) ..37
2.1.4.2 Basic coordinate system (BCS) ...39
2.1.4.3 Basic zero system (BZS)..41
2.1.4.4 Settable zero system (SZS) ...42
2.1.4.5 Workpiece coordinate system (WCS) ..43
2.1.4.6 What is the relationship between the various coordinate systems?43

2.2 Fundamental Principles of NC Programming...44
2.2.1 Name of an NC program ..44
2.2.2 Structure and contents of an NC program ...45
2.2.2.1 Blocks and block components..45
2.2.2.2 Block rules..48
2.2.2.3 Value assignments...49
2.2.2.4 Comments..49
2.2.2.5 Skipping blocks ..50

2.3 Creating an NC program ..52
2.3.1 Basic procedure ...52
2.3.2 Available characters...53
2.3.3 Program header ...54
2.3.4 Program examples ...55
2.3.4.1 Example 1: First programming steps ...55
2.3.4.2 Example 2: NC program for turning ...56
2.3.4.3 Example 3: NC program for milling ..58

2.4 Tool change ...62
2.4.1 Tool change with T command ..62
2.4.2 Tool change with M6 ..64
2.4.3 Tool change with tool management (option) ..65

NC programming
Programming Manual, 06/2019, A5E47437142B AA 7

2.4.3.1 Tool change with T command with active tool management (option)65
2.4.3.2 Tool change with M6 with active tool management (option) ..67
2.4.4 Behavior with faulty T programming...69

2.5 Tool offsets...70
2.5.1 Programmed contour and tool path..70
2.5.2 Tool length compensation ..70
2.5.3 Tool radius compensation ..71
2.5.4 Tool compensation memory...72
2.5.5 Tool types...73
2.5.5.1 Tool type number and tool groups ...73
2.5.5.2 Milling tools ..74
2.5.5.3 Drills ...76
2.5.5.4 Grinding tools ...77
2.5.5.5 Turning tools ..79
2.5.5.6 Special tools...81
2.5.6 Tool offset call (D) ..83
2.5.7 Change in the tool offset data ..85
2.5.8 Programmable tool offset (TOFFL, TOFF, TOFFR, TOFFLR):..85

2.6 Spindle motion ...91
2.6.1 Spindle speed (S), spindle direction of rotation (M3, M4, M5) ...91
2.6.2 Tool cutting speed (SVC) ...94
2.6.3 Constant cutting rate (G96/G961/G962, G97/G971/G972, G973, LIMS, SCC)100
2.6.4 Switching constant grinding wheel peripheral speed (GWPSON, GWPSOF) on/off:105
2.6.5 Programmable spindle speed limitation (G25, G26) ..106

2.7 Feed control ...107
2.7.1 Feedrate (G93, G94, G95, F, FGROUP, FL, FGREF) ...107
2.7.2 Traverse positioning axes (POS, POSA, POSP, FA, WAITP, WAITMC).............................115
2.7.3 Position-controlled spindle mode (SPCON, SPCOF)...118
2.7.4 Positioning spindles (SPOS, SPOSA, M19, M70, WAITS) ..119
2.7.5 Feedrate for positioning axes / spindles (FA, FPR, FPRAON, FPRAOF)............................124
2.7.6 Programmable feedrate override (OVR, OVRRAP, OVRA)...127
2.7.7 Programmable acceleration compensation (ACC)...128
2.7.8 Feedrate with handwheel override (FD, FDA)..130
2.7.9 Feedrate optimization for curved path sections (CFTCP, CFC, CFIN)133
2.7.10 Several feedrate values in one block (F, ST, SR, FMA, STA, SRA)136
2.7.11 Non-modal feedrate (FB) ...139
2.7.12 Tooth feedrate (G95 FZ) ..140

2.8 Geometry settings ..146
2.8.1 Settable zero offset (G54 to G57, G505 to G599, G53, G500, SUPA, G153)146
2.8.2 Settable work offset (G54 to G57, G505 to G599, G53, G500, SUPA, G153): Further

information ...147
2.8.3 Selection of the working plane (G17/G18/G19) ...148
2.8.4 Dimensions ..151
2.8.4.1 Absolute dimensions (G90, AC)...151
2.8.4.2 Incremental dimensions (G91, IC) ...154
2.8.4.3 Absolute and incremental dimensions for turning and milling (G90/G91)157
2.8.4.4 Absolute dimensions for rotary axes (DC, ACP, ACN) ..158
2.8.4.5 Metric/inch dimension system (G70/G71, G700/G710) ...160
2.8.4.6 Channel-specific diameter/radius programming (DIAMON, DIAM90, DIAMOF,

DIAMCYCOF) ..164

Table of contents

NC programming
8 Programming Manual, 06/2019, A5E47437142B AA

2.8.4.7 Axis-specific diameter/radius programming (DIAMONA, DIAM90A, DIAMOFA,
DIACYCOFA, DIAMCHANA, DIAMCHAN, DAC, DIC, RAC, RIC).......................................166

2.8.5 Position of workpiece for turning ..170

2.9 Motion commands..172
2.9.1 General information about the travel commands ...172
2.9.2 Travel commands with Cartesian coordinates (G0, G1, G2, G3, X..., Y..., Z...)...................173
2.9.3 Travel commands with polar coordinates...175
2.9.3.1 Reference point of the polar coordinates (G110, G111, G112) ...175
2.9.3.2 Travel commands with polar coordinates (G0, G1, G2, G3, AP, RP)176
2.9.4 Rapid traverse movements ..180
2.9.4.1 Activating rapid traverse (G0) ..180
2.9.4.2 Switch on/off linear interpolation for rapid traverse movements (RTLION, RTLIOF)182
2.9.4.3 Adjust relative G0 tolerance (STOLF) ..183
2.9.5 Linear interpolation (G1) ..186
2.9.6 Circular interpolation ..188
2.9.6.1 Overview ..188
2.9.6.2 Circular interpolation with center point and end point (G2/G3, X... Y... Z..., I... J... K...)189
2.9.6.3 Circular interpolation with radius and end point (G2/G3, X... Y... Z..., CR)192
2.9.6.4 Circular interpolation with opening angle and end point / center point (G2/G3, X... Y...

Z... / I... J... K..., AR)...194
2.9.6.5 Circular interpolation with polar coordinates (G2/G3, AP, RP) ..196
2.9.6.6 Circular interpolation with intermediate point and end point (CIP, X... Y... Z..., I1... J1...

K1...)...198
2.9.6.7 Circular interpolation with tangential transition (CT, X... Y... Z...) ..200
2.9.7 Helical interpolation (G2/G3, TURN)..204
2.9.8 Contour definitions ...206
2.9.8.1 Contour definition programming...206
2.9.8.2 Contour definitions: One straight line ...207
2.9.8.3 Contour definitions: Two straight lines ...209
2.9.8.4 Contour definitions: Three straight lines...212
2.9.8.5 Contour definitions: End point programming with angle...215
2.9.9 Thread cutting ..216
2.9.9.1 Thread cutting with constant lead (G33, SF)..216
2.9.9.2 Thread cutting with increasing or decreasing lead (G34, G35)..222
2.9.9.3 Programmed run-in and run-out path for G33, G34 and G35 (DITS, DITE)224
2.9.9.4 Fast retraction during thread cutting (LFON, LFOF, DILF, ALF, LFTXT, LFWP, LFPOS,

POLF, POLFMASK, POLFMLIN) ...226
2.9.9.5 Convex thread (G335, G336)...229
2.9.10 Tapping without compensating chuck ..235
2.9.10.1 Tapping without compensating chuck and retraction motion (G331, G332)235
2.9.10.2 Example: Tapping with G331 / G332 ...236
2.9.10.3 Example: Output the programmed drilling speed in the current gear stage.........................236
2.9.10.4 Example: Application of the second gear-stage data block ...237
2.9.10.5 Example: Speed is not programmed, the gearbox stage is monitored237
2.9.10.6 Example: Gearbox stage cannot be changed, gearbox stage monitoring238
2.9.10.7 Example: Programming without SPOS ..238
2.9.11 Tapping with compensating chuck ...239
2.9.11.1 Tapping with compensating check and retraction motion (G63) ..239
2.9.12 Chamfer, rounding (CHF, CHR, RND, RNDM, FRC, FRCM) ..240

2.10 Tool radius compensation ..246
2.10.1 Tool radius compensation (G40, G41, G42, OFFN) ..246

Table of contents

NC programming
Programming Manual, 06/2019, A5E47437142B AA 9

2.10.2 Approaching and leaving contour (NORM, KONT, KONTC, KONTT)255
2.10.3 Compensation at the outside corners (G450, G451, DISC)...263
2.10.4 Smooth approach and retraction..266
2.10.4.1 Approach and retraction (G140 to G143, G147, G148, G247, G248, G347, G348, G340,

G341, DISR, DISCL, DISRP, FAD, PM, PR) ...266
2.10.4.2 Approach and retraction with extended retraction strategies (G460, G461, G462)277
2.10.5 Activation/deactivation of collision detection ("bottleneck detection") (CDON, CDOF,

CDOF2)..280
2.10.6 2 1/2 D tool offset (CUT2D, CUT2DD, CUT2DF, CUT2DFD) ..282
2.10.7 Keep tool radius compensation constant (CUTCONON, CUTCONOF)...............................284
2.10.8 Tools with a relevant cutting edge position ..286

2.11 Path action ...288
2.11.1 Exact stop (G60, G9, G601, G602, G603) ...288
2.11.2 Continuous-path mode (G64, G641, G642, G643, G644, G645, ADIS, ADISPOS)290

2.12 Coordinate transformations (frames) ...300
2.12.1 Frames ...300
2.12.2 Frame instructions..302
2.12.3 Programmable work offset (TRANS, ATRANS) ...305
2.12.4 Programmable work offset (G58, G59) ..309
2.12.5 Programmable rotation (ROT, AROT, RPL)...311
2.12.6 Programmable frame rotations with solid angles (ROTS, AROTS, CROTS).......................317
2.12.7 Programmable scaling factor (SCALE, ASCALE) ..320
2.12.8 Programmable mirroring (MIRROR, AMIRROR) ...323
2.12.9 Frame generation according to tool orientation (TOFRAME, TOROT, PAROT):.................328
2.12.10 Deselect frame (G53, G153, SUPA, G500) ...330
2.12.11 Programming: Deselecting overlays axis-specifically (CORROF)331
2.12.12 Deselecting additive work offsets (DRFROF) ..334
2.12.13 Grinding-specific work offsets (GFRAME0, GFRAME1 ... GFRAME100)............................335

2.13 Auxiliary function outputs ...337
2.13.1 M functions...339

2.14 Supplementary commands ..343
2.14.1 Output messages (MSG) ...343
2.14.2 Writing string in OPI variable (WRTPR) ...344
2.14.3 Working area limitation...346
2.14.3.1 Working area limitation in BCS (G25/G26, WALIMON, WALIMOF)346
2.14.3.2 Working area limitation in WCS/SZS (WALCS0 ... WALCS10) ...349
2.14.4 Reference point approach (G74)..352
2.14.5 Approaching a fixed point (G75) ..353
2.14.6 Travel to fixed stop (FXS, FXST, FXSW)...358
2.14.7 Dwell time (G4) ..362
2.14.8 Internal preprocessing stop..364

2.15 Other information ...365
2.15.1 Axes ...365
2.15.1.1 Axes (overview)..365
2.15.1.2 Main axes/Geometry axes ...365
2.15.1.3 Special axes...366
2.15.1.4 Main spindle, master spindle..367
2.15.1.5 Machine axes ...367
2.15.1.6 Channel axes ...368
2.15.1.7 Path axes ...368

Table of contents

NC programming
10 Programming Manual, 06/2019, A5E47437142B AA

2.15.1.8 Positioning axes ...368
2.15.1.9 Synchronized axes...369
2.15.1.10 Command axes ..369
2.15.1.11 PLC axes..370
2.15.2 From travel command to machine movement..370
2.15.3 Path calculation..370
2.15.4 Addresses ..371
2.15.5 Names..373
2.15.6 Constants ...375
2.15.7 Operators and arithmetic functions ...377

3 Work preparation ..381

3.1 Flexible NC programming ..381
3.1.1 Variables ..381
3.1.1.1 System data ...382
3.1.1.2 Predefined user variables: Channel-specific arithmetic parameters (R)384
3.1.1.3 Predefined user variables: Global arithmetic parameters (RG) ...385
3.1.1.4 Definition of user variables (DEF) ..387
3.1.1.5 Redefinition of system data, user data, and NC commands (REDEF)392
3.1.1.6 Attribute: Initialization value ...396
3.1.1.7 Attribute: Limit values (LLI, ULI)...398
3.1.1.8 Attribute: Physical unit (PHU)...400
3.1.1.9 Attribute: Access rights (APR, APW, APRP, APWP, APRB, APWB)...................................402
3.1.1.10 Overview of definable and redefinable attributes ...406
3.1.1.11 Definition and initialization of array variables (DEF, SET, REP) ..407
3.1.1.12 Definition and initialization of array variables (DEF, SET, REP): Further Information412
3.1.1.13 Data types ..413
3.1.1.14 Variable minimum, maximum and range (MINVAL, MAXVAL and BOUND)414
3.1.1.15 Check availability of a variable (ISVAR)...415
3.1.1.16 Reading attribute values / data type (GETVARPHU, GETVARAP, GETVARLIM,

GETVARDIM, GETVARDFT, GETVARTYP) ...417
3.1.1.17 Possible type conversions..422
3.1.2 Indirect programming ...423
3.1.2.1 Indirectly programming addresses ...423
3.1.2.2 Indirectly programming G commands ..425
3.1.2.3 Indirectly programming position attributes (GP)...427
3.1.2.4 Indirectly programming part program lines (EXECSTRING)..429
3.1.3 Instructions...430
3.1.3.1 Arithmetic functions..430
3.1.3.2 Comparison and logic operations...432
3.1.3.3 Priority of the operations ..434
3.1.3.4 Precision correction on comparison errors (TRUNC)...435
3.1.3.5 Roundup (ROUNDUP) ...436
3.1.4 String operations ..437
3.1.4.1 Type conversion to STRING (AXSTRING) ..438
3.1.4.2 Type conversion from STRING (NUMBER, ISNUMBER, AXNAME)...................................438
3.1.4.3 Concatenation of strings (<<)...439
3.1.4.4 Conversion to lower/upper case letters (TOLOWER, TOUPPER).......................................441
3.1.4.5 Determine length of string (STRLEN) ..441
3.1.4.6 Search for character/string in the string (INDEX, RINDEX, MINDEX, MATCH)442
3.1.4.7 Selection of a substring (SUBSTR)..443
3.1.4.8 Reading and writing of individual characters..444

Table of contents

NC programming
Programming Manual, 06/2019, A5E47437142B AA 11

3.1.4.9 Formatting a string (SPRINT)...445
3.1.5 Program jumps and branches ..453
3.1.5.1 Return jump to the start of the program (GOTOS)...453
3.1.5.2 Program jumps to jump markers (GOTOB, GOTOF, GOTO, GOTOC)454
3.1.5.3 Program branch (CASE ... OF ... DEFAULT ...) ...457
3.1.6 Repeat program section (REPEAT, REPEATB, ENDLABEL, P) ...458
3.1.7 Check structures ..464
3.1.7.1 Conditional statement and branch (IF, ELSE, ENDIF)...466
3.1.7.2 Continuous program loop (LOOP, ENDLOOP)..467
3.1.7.3 Count loop (FOR ... TO ..., ENDFOR)..468
3.1.7.4 Program loop with condition at start of loop (WHILE, ENDWHILE)469
3.1.7.5 Program loop with condition at the end of the loop (REPEAT, UNTIL)................................470
3.1.7.6 Program example with nested check structures ..471
3.1.8 Cross-channel program coordination (INIT, START, WAITM, WAITMC, WAITE, SETM,

CLEARM) ...471
3.1.9 Macro technique (DEFINE ... AS) ..477

3.2 Subprogram technique...480
3.2.1 General information..480
3.2.1.1 Subprogram ...480
3.2.1.2 Subprogram names..481
3.2.1.3 Nesting of subprograms ...482
3.2.1.4 Search path..483
3.2.1.5 Formal and actual parameters ...483
3.2.1.6 Parameter transfer ...484
3.2.2 Definition of a subprogram ...486
3.2.2.1 Subprogram without parameter transfer ..486
3.2.2.2 Subprogram with call-by-value parameter transfer (PROC) ..486
3.2.2.3 Subprogram with call-by-reference parameter transfer (PROC, VAR)488
3.2.2.4 Save modal G functions (SAVE) ..490
3.2.2.5 Suppress single block execution (SBLOF, SBLON) ..491
3.2.2.6 Suppress current block display (DISPLOF, DISPLON, ACTBLOCNO)497
3.2.2.7 Identifying subprograms with preparation (PREPRO)..500
3.2.2.8 Subprogram return M17 ...500
3.2.2.9 RET subprogram return ...501
3.2.2.10 Parameterizable subprogram return jump (RET ...) ...502
3.2.2.11 Parameterizable subprogram return jump (RETB ...)...508
3.2.3 Subprogram call ...512
3.2.3.1 Subprogram call without parameter transfer ..512
3.2.3.2 Subprogram call with parameter transfer (EXTERN) ...514
3.2.3.3 Number of program repetitions (P)...516
3.2.3.4 Modal subprogram call (MCALL) ...517
3.2.3.5 Indirect subprogram call (CALL) ..519
3.2.3.6 Indirect subprogram call with specification of the calling program part (CALL BLOCK ...

TO ...) ...520
3.2.3.7 Indirect call of a program programmed in ISO language (ISOCALL)...................................521
3.2.3.8 Call subprogram with path specification and parameters (PCALL)......................................522
3.2.3.9 Extend search path for subprogram calls (CALLPATH)...523
3.2.3.10 Execute external subroutine (EXTCALL) ...524

3.3 Interrupt routine (ASUB)...528
3.3.1 Function of an interrupt routine ..528
3.3.2 Creating an interrupt routine ..529

Table of contents

NC programming
12 Programming Manual, 06/2019, A5E47437142B AA

3.3.3 Assign and start interrupt routine (SETINT, PRIO, BLSYNC)..530
3.3.4 Deactivating/reactivating the assignment of an interrupt routine (DISABLE, ENABLE).......532
3.3.5 Delete assignment of interrupt routine (CLRINT)...532
3.3.6 Fast retraction from the contour (SETINT LIFTFAST, ALF)...533
3.3.7 Traversing direction for fast retraction from the contour ...535
3.3.8 Motion sequence for interrupt routines...538

3.4 File and Program Management..540
3.4.1 Program memory ...540
3.4.1.1 Program memory in the NCK ...540
3.4.1.2 External program memory..542
3.4.1.3 Addressing program memory files ...544
3.4.1.4 Search path for subprogram call ..548
3.4.1.5 Interrogating the path and file name ..549
3.4.2 Working memory (CHANDATA, COMPLETE, INITIAL)...550

3.5 File handling...554
3.5.1 Write file (WRITE) ..554
3.5.2 Delete file (DELETE)..557
3.5.3 Read lines in the file (READ) ...558
3.5.4 Check for presence of file (ISFILE) ..560
3.5.5 Read out file information (FILEDATE, FILETIME, FILESIZE, FILESTAT, FILEINFO).........561

3.6 Protection zones ..564
3.6.1 Defining protection zones (CPROTDEF, NPROTDEF)..564
3.6.2 Activating/deactivating protection zones (CPROT, NPROT) ...567
3.6.3 Checking for protection zone violation, working area limitation and software limit

switches (CALCPOSI)..571

3.7 Special motion commands ...581
3.7.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)..581
3.7.2 Activating/deactivating NC block compression (COMPON, COMPCURV, COMPCAD,

COMPSURF, COMPOF)..582
3.7.3 Polynomial interpolation (POLY, POLYPATH, PO, PL) ...583
3.7.4 Settable path reference (SPATH, UPATH) ..588
3.7.5 Channel-specific measuring (MEAS, MEAW) ..590
3.7.6 Axis-specific measurement (MEASA, MEAWA, MEAC) (option) ...592
3.7.7 Special functions for OEM users (OMA1 ... OMA5, OEMIPO1, OEMIPO2, G810 ... G829)....601
3.7.8 Feedrate reduction with corner deceleration (FENDNORM, G62, G621)602
3.7.9 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA, IPOBRKA,

ADISPOSA)..603

3.8 Coordinate transformations (frames) ...606
3.8.1 Coordinate transformation via frame variables ..606
3.8.1.1 Predefined frame variable ($P_CHBFRAME, $P_IFRAME, $P_PFRAME,

$P_ACTFRAME) ..608
3.8.2 Value assignments to frames...611
3.8.2.1 Assigning direct values (axis value, angle, scale)..611
3.8.2.2 Reading and changing frame components (TR, FI, RT, SC, MI) ...613
3.8.2.3 Calculating with frames ..614
3.8.2.4 Definition of frame variables (DEF FRAME) ..616
3.8.3 Coarse and fine offsets (CTRANS, CFINE) ...617
3.8.4 External zero offset ($AA_ETRANS)..618
3.8.5 Set actual value with loss of the referencing status (PRESETON)619
3.8.6 Set actual value without loss of the referencing status (PRESETONS)...............................621

Table of contents

NC programming
Programming Manual, 06/2019, A5E47437142B AA 13

3.8.7 Frame calculation from three measuring points in space (MEAFRAME).............................622
3.8.8 Global frames...626
3.8.8.1 Channel-specific frames ($P_CHBFR, $P_UBFR)...627
3.8.8.2 Frames active in the channel ...627

3.9 Transformations ...632
3.9.1 General programming of transformation types...632
3.9.1.1 General programming of transformation types...632
3.9.1.2 Orientation movements for transformations ...634
3.9.1.3 Overview of orientation transformation TRAORI..637
3.9.2 Three, four and five axis transformation (TRAORI)..639
3.9.2.1 General relationships of universal tool head ..639
3.9.2.2 Three, four and five axis transformation (TRAORI)..642
3.9.2.3 Variants of orientation programming and initial setting (ORIRESET)643
3.9.2.4 Programming the tool orientation (A..., B..., C..., LEAD, TILT) ..645
3.9.2.5 Face milling (A4, B4, C4, A5, B5, C5)..651
3.9.2.6 Reference of the orientation axes (ORIWKS, ORIMKS): ...652
3.9.2.7 Programming orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY, ORIRPY2,

ORIVIRT1, ORIVIRT2)...654
3.9.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE,

ORICONCW, ORICONCCW, ORICONTO, ORICONIO) ...656
3.9.2.9 Specification of orientation for two contact points (ORICURVE, PO[XH]=, PO[YH]=,

PO[ZH]=) ..659
3.9.3 Orientation polynomials (PO[angle], PO[coordinate]) ..661
3.9.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT, ORIROTC, THETA)....663
3.9.5 Orientations relative to the path ...665
3.9.5.1 Orientation types relative to the path ...665
3.9.5.2 Rotation of the tool orientation relative to the path (ORIPATH, ORIPATHS, angle of

rotation) ..667
3.9.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)668
3.9.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=)..................................670
3.9.6 Compression of the orientation (COMPON, COMPCURV, COMPCAD, COMPSURF).......671
3.9.7 Activating/deactivating the orientation characteristic (ORISON, ORISOF)674
3.9.8 Kinematic transformation ...675
3.9.8.1 Activate face end transformation (TRANSMIT)..675
3.9.8.2 Activate cylinder surface transformation (TRACYL)...675
3.9.8.3 Oblique plunge-cutting on grinding machines (G5, G7) ...678
3.9.9 Cartesian PTP travel ..680
3.9.9.1 Activating/deactivating Cartesian PTP travel (PTP, PTPG0, PTPWOC, CP)680
3.9.9.2 Specify the position of the joints (STAT) ..681
3.9.9.3 Specify the sign of the axis angle (TU) ..685
3.9.9.4 Example 1: PTP travel of a 6-axis robot with ROBX transformation688
3.9.9.5 Example 2: PTP travel for generic 5-axis transformation...689
3.9.9.6 Example 3: PTPG0 and TRANSMIT ..690
3.9.10 Constraints when selecting a transformation ...691
3.9.11 Deselecting a transformation (TRAFOOF)...692

3.10 Kinematic chains ..694
3.10.1 Deletion of components (DELOBJ) ..694
3.10.2 Index determination by means of names (NAMETOINT)...697

3.11 Collision avoidance with kinematic chains ...698
3.11.1 Check for collision pair (COLLPAIR)..698
3.11.2 Request recalculation of the machine model of the collision avoidance (PROTA)699

Table of contents

NC programming
14 Programming Manual, 06/2019, A5E47437142B AA

3.11.3 Setting the protection zone status (PROTS) ..700
3.11.4 Determining the clearance of two protection zones (PROTD) ...700

3.12 Transformation with kinematic chains ..703
3.12.1 Activating a transformation (TRAFOON)..703
3.12.2 Modifying the orientation transformation after the machine measurement

(CORRTRAFO) ..704

3.13 Tool offsets...712
3.13.1 Offset memory..712
3.13.2 Additive offsets...714
3.13.2.1 Selecting additive offsets (DL) ...714
3.13.2.2 Specify wear and setup values ($TC_SCPxy[t,d], $TC_ECPxy[t,d])....................................716
3.13.2.3 Delete additive offsets (DELDL)...716
3.13.3 Special handling of tool offsets ..717
3.13.3.1 Mirroring of tool lengths..719
3.13.3.2 Wear sign evaluation..719
3.13.3.3 Coordinate system of the active machining operation (TOWSTD, TOWMCS, TOWWCS,

TOWBCS, TOWTCS, TOWKCS)...720
3.13.3.4 Tool length and plane change..723
3.13.4 Online tool offset ..724
3.13.4.1 Defining a polynomial function (FCTDEF)..724
3.13.4.2 Write online tool offset continuously (PUTFTOCF) ..725
3.13.4.3 Write online tool offset, discrete (PUTFTOC)...726
3.13.4.4 Activate/deactivate online tool offset (FTOCON/FTOCOF) ...727
3.13.5 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)728
3.13.6 Free assignment of D numbers, cutting edge numbers ...734
3.13.6.1 Free assignment of D numbers, cutting edge numbers (CE address)734
3.13.6.2 Free assignment of D numbers: Checking D numbers (CHKDNO)734
3.13.6.3 Free assignment of D numbers: Rename D numbers (GETDNO, SETDNO)......................734
3.13.6.4 Free assignment of D numbers: Determine T number to the specified D number

(GETACTTD) ...735
3.13.6.5 Free assignment of D numbers: Invalidate D numbers (DZERO)..736
3.13.7 Toolholder kinematics ..736
3.13.8 Tool length compensation for orientable toolholders (TCARR, TCOABS, TCOFR,

TCOFRX, TCOFRY, TCOFRZ)..742
3.13.9 Modifying the orientable tool carrier according to the machine measurement (CORRTC)....744
3.13.10 Online tool length compensation (TOFFON, TOFFOF) ...747
3.13.11 Modification of the offset data for rotatable tools ...750
3.13.11.1 Calculating orientations (ORISOLH) ..750
3.13.11.2 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK)....759
3.13.12 Working with tool environments ...766
3.13.12.1 Save tool environment (TOOLENV)...766
3.13.12.2 Delete tool environment (DELTOOLENV)..769
3.13.12.3 Read T, D and DL number (GETTENV)...770
3.13.12.4 Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)....771
3.13.12.5 Read tool lengths and/or tool length components (GETTCOR)...771
3.13.12.6 Change tool components (SETTCOR)...777
3.13.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)789

3.14 Path traversing behavior ..793
3.14.1 Feedrate characteristic (FNORM, FLIN, FCUB, FPO) ...793
3.14.2 Acceleration behavior...798
3.14.2.1 Acceleration mode (BRISK, BRISKA, SOFT, SOFTA, DRIVE, DRIVEA)798

Table of contents

NC programming
Programming Manual, 06/2019, A5E47437142B AA 15

3.14.2.2 Influence of acceleration on following axes (VELOLIMA, ACCLIMA, JERKLIMA)...............800
3.14.2.3 Activation of technology-specific dynamic values (DYNNORM, DYNPOS, DYNROUGH,

DYNSEMIFIN, DYNFINISH, DYNPREC)...801
3.14.3 Traversing with feedforward control (FFWON, FFWOF)..803
3.14.4 Programmable contour accuracy (CPRECON, CPRECOF) ..804
3.14.5 Program sequence with preprocessing memory (STOPFIFO, STARTFIFO, FIFOCTRL,

STOPRE) ..805
3.14.6 Defining a stop delay range (DELAYFSTON, DELAYFSTOF) ..808
3.14.7 Prevent program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)810
3.14.8 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH,

REPOSHA, DISR, DISPR, RMIBL, RMBBL, RMEBL, RMNBL) ...812
3.14.9 Influencing the motion control ..820
3.14.9.1 Percentage jerk correction (JERKLIM)...820
3.14.9.2 Percentage velocity correction (VELOLIM) ..821
3.14.9.3 Program example for JERKLIM and VELOLIM..823
3.14.10 Programming contour/orientation tolerance (CTOL, OTOL, ATOL).....................................823
3.14.11 Block change behavior with active coupling (CPBC) ...827

3.15 Axis functions ...829
3.15.1 Axis replacement, spindle replacement (RELEASE, GET, GETD)829
3.15.2 Transfer axis to another channel (AXTOCHAN) ..833
3.15.3 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING, MODAXVAL)834
3.15.4 Replaceable geometry axes (GEOAX) ..836
3.15.5 Wait for valid axis position (WAITENC)..841
3.15.6 Programmable parameter set changeover (SCPARA) ..842

3.16 Axis couplings ..844
3.16.1 Coupled motion (TRAILON, TRAILOF)..844
3.16.2 Curve tables (CTAB) ..848
3.16.2.1 Define curve tables (CTABDEF, CATBEND) ...848
3.16.2.2 Check for presence of curve table (CTABEXISTS)..854
3.16.2.3 Delete curve tables (CTABDEL) ..855
3.16.2.4 Locking curve tables to prevent deletion and overwriting (CTABLOCK, CTABUNLOCK)....856
3.16.2.5 Curve tables: Determine table properties (CTABID, CTABISLOCK, CTABMEMTYP,

CTABPERIOD)...857
3.16.2.6 Read curve table values (CTABTSV, CTABTEV, CTABTSP, CTABTEP, CTABSSV,

CTABSEV, CTAB, CTABINV, CTABTMIN, CTABTMAX) ..858
3.16.2.7 Curve tables: Check use of resources (CTABNO, CTABNOMEM, CTABFNO,

CTABSEGID, CTABSEG, CTABFSEG, CTABMSEG, CTABPOLID, CTABPOL,
CTABFPOL, CTABMPOL) ...863

3.16.3 Axial master value coupling (LEADON, LEADOF)...864
3.16.4 Electronic gear (EG)...870
3.16.4.1 Defining an electronic gear (EGDEF)...870
3.16.4.2 Switch-in the electronic gearbox (EGON, EGONSYN, EGONSYNE)..................................871
3.16.4.3 Switching-in the electronic gearbox (EGOFS, EGOFC)...874
3.16.4.4 Deleting the definition of an electronic gear (EGDEL) ...875
3.16.4.5 Rotational feedrate (G95) / electronic gear (FPR) ...875
3.16.5 Synchronous spindle..876
3.16.5.1 Synchronous spindle: Programming (COUPDEF, COUPDEL, COUPON, COUPONC,

COUPOF, COUPOFS, COUPRES, WAITC) ...876
3.16.6 Generic coupling (CP...) ...886
3.16.7 Tangential control...893
3.16.7.1 Defining coupling (TANG) ..893

Table of contents

NC programming
16 Programming Manual, 06/2019, A5E47437142B AA

3.16.7.2 Activating intermediate block generation (TLIFT) ..895
3.16.7.3 Activating the coupling (TANGON) ..896
3.16.7.4 Deactivating the coupling (TANGOF)...898
3.16.7.5 Deleting a coupling (TANGDEL) ..898
3.16.8 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)900

3.17 Synchronized actions ...902
3.17.1 Brief description ...902
3.17.2 Definition of a synchronized action ..903
3.17.3 Components of synchronized actions ..905
3.17.3.1 Validity, identification number (ID, IDS) ...905
3.17.3.2 Frequency (WHENEVER, FROM, WHEN, EVERY) ..906
3.17.3.3 G command (condition)..907
3.17.3.4 Condition ..908
3.17.3.5 G command (action)...908
3.17.3.6 Actions with condition fulfilled (DO)..909
3.17.3.7 Actions with condition unfulfilled (ELSE)..909
3.17.4 System variables for synchronized actions ..910
3.17.4.1 Reading and writing ...911
3.17.4.2 Operators and arithmetic functions ...911
3.17.4.3 Type conversions ...914
3.17.4.4 Marker/counter ($AC_MARKER) ...915
3.17.4.5 Parameters ($AC_PARAM)..916
3.17.4.6 R parameters ($R) ...917
3.17.4.7 Machine and setting data ($$M, $$S) ..918
3.17.4.8 Timer ($AC_TIMER)...919
3.17.4.9 FIFO variables ($AC_FIFO) ...920
3.17.4.10 Path tangent angle ($AC_TANEB)...925
3.17.4.11 Override ($A...OVR)...925
3.17.4.12 Capacity evaluation ($AN_IPO ... , $AN/AC_SYNC ... , $AN_SERVO)927
3.17.4.13 Working-area limitation ($SA_WORKAREA_ ...)...929
3.17.4.14 SW cam positions and times ($$SN_SW_CAM_ ...) ..930
3.17.4.15 Path length evaluation / machine maintenance ($AA_TRAVEL ... , $AA_JERK ...)............930
3.17.4.16 Polynomial coefficients, parameters ($AC_FCT ...) ...932
3.17.4.17 Overlaid movements ($AA_OFF) ...934
3.17.4.18 Online tool length compensation ($AA_TOFF) ..937
3.17.4.19 Current block in the interpolator ($AC_BLOCKTYPE, $AC_BLOCKTYPEINFO,

$AC_SPLITBLOCK) ...940
3.17.4.20 Initialization of array variables (SET, REP) ..943
3.17.4.21 Grinding-specific system variables ($AC_IN_KEY_G...) ..943
3.17.4.22 Status Synchronized action disabled ($AC_SYNA_STATE)..946
3.17.5 User-defined variables for synchronized actions ...947
3.17.6 Language elements for synchronized actions and technology cycles949
3.17.7 Language elements for technology cycles only ...955
3.17.8 Actions in synchronized actions ...955
3.17.8.1 Output of M, S and H auxiliary functions to the PLC..955
3.17.8.2 Reading and writing of system variables..957
3.17.8.3 Polynomial evaluation (SYNFCT) ..957
3.17.8.4 Online tool offset (FTOC) ...962
3.17.8.5 Programmed read-in disable (RDISABLE)...964
3.17.8.6 Cancel preprocessing stop (STOPREOF) ...965
3.17.8.7 Delete distance-to-go (DELDTG) ...965
3.17.8.8 Traversing axes, to position (POS) ..967

Table of contents

NC programming
Programming Manual, 06/2019, A5E47437142B AA 17

3.17.8.9 Setting the measuring system (G70, G71, G700, G710) ...971
3.17.8.10 Position in specified reference range (POSRANGE) ...972
3.17.8.11 Traversing axes, endless (MOV)..973
3.17.8.12 Axial feedrate (FA) ...974
3.17.8.13 Axis replacement (GET, RELEASE, AXTOCHAN) ..974
3.17.8.14 Traversing spindles (M, S, SPOS) ...980
3.17.8.15 Withdrawing the enable for the axis container rotation (AXCTSWEC)981
3.17.8.16 Actual value setting with loss of the referencing status (PRESETON)984
3.17.8.17 Actual value setting without loss of the referencing status (PRESETONS)989
3.17.8.18 Couplings (CP..., LEAD..., TRAIL..., CTAB...)..994
3.17.8.19 Measurement (MEAWA, MEAC)..999
3.17.8.20 Travel to fixed stop (FXS, FXST, FXSW, FOCON, FOCOF, FOC)....................................1002
3.17.8.21 Channel synchronization (SETM, CLEARM) ...1004
3.17.8.22 User-specific error reactions (SETAL) ...1004
3.17.8.23 Cancel the actual subprogram level (CANCELSUB) ...1005
3.17.9 Technology cycles..1006
3.17.9.1 General ..1006
3.17.9.2 Processing mode (ICYCON, ICYCOF) ..1008
3.17.9.3 Definitions (DEF, DEFINE)...1009
3.17.9.4 Parameter transfer ...1009
3.17.9.5 Context variable ($P_TECCYCLE) ..1010
3.17.10 Coordination via part program and synchronized action (LOCK, UNLOCK, CANCEL)1011
3.17.11 Coordination via PLC ...1011

3.18 Oscillation...1013
3.18.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC, OSE,

OSB) ..1013
3.18.2 Oscillation controlled by synchronized actions (OSCILL) ..1017

3.19 Grinding..1025
3.19.1 Activate/deactivate grinding-specific tool monitoring (TMON, TMOF)1025

3.20 Program runtime/part counter ..1026
3.20.1 Program runtime ..1026
3.20.2 Workpiece counter ...1029

3.21 Additional functions ..1031
3.21.1 Activate machine data (NEWCONF)..1031
3.21.2 Check scope of NC language present (STRINGIS) ...1032
3.21.3 Interactively call the window from the part program (MMC)...1035
3.21.4 Process DataShare - Output to an external device/file (EXTOPEN, WRITE,

EXTCLOSE):..1040
3.21.5 Alarms (SETAL) ...1044
3.21.6 Define blank (WORKPIECE)..1045
3.21.7 Switch language mode (G290, G291)..1049

3.22 User stock removal programs ..1052
3.22.1 Supporting functions for stock removal ..1052
3.22.2 Generate contour table (CONTPRON) ..1052
3.22.3 Generate coded contour table (CONTDCON) ...1058
3.22.4 Determine point of intersection between two contour elements (INTERSEC)1062
3.22.5 Execute the contour elements of a table block-by-block (EXECTAB)................................1063
3.22.6 Calculate circle data (CALCDAT)...1064
3.22.7 Deactivate contour preparation (EXECUTE)..1066

Table of contents

NC programming
18 Programming Manual, 06/2019, A5E47437142B AA

3.23 Programming cycles externally ..1067
3.23.1 Technology cycles..1067
3.23.1.1 Introduction ..1067
3.23.1.2 Technology-specific overview ..1068
3.23.1.3 HOLES1 – row position pattern..1070
3.23.1.4 HOLES2 – circle or pitch circle position pattern ...1070
3.23.1.5 POCKET3 – rectangular pocket ...1072
3.23.1.6 POCKET4 – circular pocket ...1075
3.23.1.7 SLOT1 - longitudinal slot..1077
3.23.1.8 SLOT2 - circumferential slot...1080
3.23.1.9 LONGHOLE - elongated hole ..1082
3.23.1.10 CYCLE60 – engraving..1084
3.23.1.11 CYCLE61 - Face milling...1087
3.23.1.12 CYCLE62 - contour call..1089
3.23.1.13 CYCLE63 – contour pocket milling / contour pocket residual material / contour spigot

milling / contour spigot residual material ..1089
3.23.1.14 CYCLE64 - Predrilling contour pocket ...1092
3.23.1.15 CYCLE70 - thread milling...1094
3.23.1.16 CYCLE72 - Path milling ...1095
3.23.1.17 CYCLE76 – rectangular spigot...1098
3.23.1.18 CYCLE77 – circular spigot ...1101
3.23.1.19 CYCLE78 - Drill thread milling ...1103
3.23.1.20 CYCLE79 - multi-edge ...1105
3.23.1.21 CYCLE81 - drilling, centering...1107
3.23.1.22 CYCLE82 - drilling, counterboring..1108
3.23.1.23 CYCLE83 – deep-hole drilling 1 ...1111
3.23.1.24 CYCLE84 - tapping without compensating chuck ..1114
3.23.1.25 CYCLE85 - reaming ...1117
3.23.1.26 CYCLE86 - boring ..1118
3.23.1.27 CYCLE92 - cut-off ..1119
3.23.1.28 CYCLE95 - contour cutting ..1121
3.23.1.29 CYCLE98 - thread chain ..1123
3.23.1.30 CYCLE99 - thread turning..1127
3.23.1.31 CYCLE435 - Set dresser coordinate system ...1132
3.23.1.32 CYCLE495 - form-truing...1132
3.23.1.33 CYCLE800 – swivel plane / swivel tool / align tool...1134
3.23.1.34 CYCLE801 – grid or frame position pattern ...1137
3.23.1.35 CYCLE802 - arbitrary positions..1139
3.23.1.36 CYCLE830 - deep-hole drilling 2..1141
3.23.1.37 CYCLE832 - High-Speed Settings ...1147
3.23.1.38 CYCLE840 - tapping with compensating chuck ...1150
3.23.1.39 CYCLE899 – open slot...1153
3.23.1.40 CYCLE930 - groove ...1156
3.23.1.41 CYCLE940 – undercut form E and F / undercut thread ...1158
3.23.1.42 CYCLE951 - stock removal..1161
3.23.1.43 CYCLE952 – stock removal / residual stock removal / plunge cutting / residual plunge

cutting / plunge turning / residual plunge turning ...1164
3.23.1.44 CYCLE4071 - longitudinal grinding with infeed at the reversal point1170
3.23.1.45 CYCLE4072 - longitudinal grinding with infeed at the reversal point and cancel signal1172
3.23.1.46 CYCLE4073 - longitudinal grinding with continuous infeed ...1176
3.23.1.47 CYCLE4074 - longitudinal grinding with continuous infeed and cancel signal...................1177
3.23.1.48 CYCLE4075 - surface grinding with infeed at the reversal point..1180

Table of contents

NC programming
Programming Manual, 06/2019, A5E47437142B AA 19

3.23.1.49 CYCLE4077 - surface grinding with infeed at the reversal point and cancel signal...........1183
3.23.1.50 CYCLE4078 - surface grinding with continuous infeed..1187
3.23.1.51 CYCLE4079 - surface grinding with intermittent infeed ...1189
3.23.1.52 GROUP_BEGIN - beginning of program block ..1192
3.23.1.53 GROUP_END - end of program block..1192
3.23.1.54 GROUP_ADDEND - End of trial cut addition ...1193
3.23.1.55 Supplementary conditions..1193
3.23.2 Overview of measuring cycle parameters ..1195
3.23.2.1 CYCLE973 measuring cycle parameters ...1195
3.23.2.2 CYCLE974 measuring cycle parameters ...1197
3.23.2.3 CYCLE994 measuring cycle parameters ...1200
3.23.2.4 CYCLE976 measuring cycle parameters ...1203
3.23.2.5 CYCLE978 measuring cycle parameters ...1205
3.23.2.6 CYCLE998 measuring cycle parameters ...1208
3.23.2.7 CYCLE977 measuring cycle parameters ...1211
3.23.2.8 CYCLE961 measuring cycle parameters ...1215
3.23.2.9 CYCLE979 measuring cycle parameters ...1217
3.23.2.10 CYCLE997 measuring cycle parameters ...1220
3.23.2.11 CYCLE995 measuring cycle parameters ...1223
3.23.2.12 CYCLE996 measuring cycle parameters ...1225
3.23.2.13 CYCLE9960 measuring cycle parameters ...1228
3.23.2.14 CYCLE982 measuring cycle parameters ...1230
3.23.2.15 CYCLE971 measuring cycle parameters ...1232
3.23.2.16 CYCLE150 measuring cycle parameters ...1235

4 Tables...1237

4.1 Operations..1237

4.2 Addresses ..1274
4.2.1 Address letters ...1274
4.2.2 Fixed addresses...1275
4.2.3 Settable addresses ..1279

4.3 G commands..1286
4.3.1 G commands..1286
4.3.2 G group 1: Modally valid motion commands ..1286
4.3.3 G group 2: Non-modally valid motion, dwell time...1287
4.3.4 G group 3: Programmable frame, working area limitation and pole programming.............1287
4.3.5 G group 4: FIFO ...1288
4.3.6 G group 6: Plane selection...1288
4.3.7 G group 7: Tool radius compensation ..1288
4.3.8 G group 8: Settable work offset..1289
4.3.9 G group 9: Frame suppression ..1289
4.3.10 G group 10: Exact stop - continuous-path mode..1289
4.3.11 G group 11: Exact stop, non-modal ...1290
4.3.12 G group 12: Block change criteria at exact stop (G60/G9) ..1290
4.3.13 G group 13: Workpiece measuring inch/metric ..1290
4.3.14 G group 14: Workpiece measuring absolute/incremental ..1291
4.3.15 G group 15: Feed type ...1291
4.3.16 G group 16: Feedrate override at inside and outside curvature...1292
4.3.17 G group 17: Approach and retraction response, tool offset ...1292
4.3.18 G group 18: Corner behavior, tool offset..1292
4.3.19 G group 19: Curve transition at beginning of spline ...1292

Table of contents

NC programming
20 Programming Manual, 06/2019, A5E47437142B AA

4.3.20 G group 20: Curve transition at end of spline...1293
4.3.21 G group 21: Acceleration profile...1293
4.3.22 G group 22: Tool offset type...1293
4.3.23 G group 23: Collision monitoring at inside contours...1293
4.3.24 G group 24: Precontrol...1294
4.3.25 G group 25: Tool orientation reference ..1294
4.3.26 G group 26: Repositioning mode for REPOS (modal) ...1294
4.3.27 G group 27: Tool offset for change in orientation at outside corners1294
4.3.28 G group 28: Working area limitation...1295
4.3.29 G group 29: Radius/diameter programming...1295
4.3.30 G group 30: NC block compression ...1295
4.3.31 G group 31: OEM G commands...1296
4.3.32 G group 32: OEM G commands...1296
4.3.33 G group 33: Settable fine tool offset...1296
4.3.34 G group 34: Tool orientation smoothing...1297
4.3.35 G group 37: Feedrate profile ..1297
4.3.36 G group 39: Programmable contour accuracy ...1297
4.3.37 G group 40: Tool radius compensation constant ...1297
4.3.38 G group 41: Interruptible thread cutting ...1298
4.3.39 G group 42: Tool carrier ...1298
4.3.40 G group 43: SAR approach direction ...1298
4.3.41 G group 44: SAR path segmentation ...1298
4.3.42 G group 45: Path reference for FGROUP axes ...1299
4.3.43 G group 46: Plane selection for fast retraction...1299
4.3.44 G group 47: Mode switchover for external NC code ..1299
4.3.45 G group 48: Approach and retraction response with tool radius compensation.................1299
4.3.46 G group 49: Point-to-point motion ..1300
4.3.47 G group 50: Orientation programming ...1300
4.3.48 G group 51: Interpolation type for orientation programming ..1300
4.3.49 G group 52: Frame rotation in relation to workpiece ..1301
4.3.50 G group 53: Frame rotation in relation to tool ..1301
4.3.51 G group 54: Vector rotation for polynomial programming ..1302
4.3.52 G group 55: Rapid traverse with/without linear interpolation..1302
4.3.53 G group 56: Taking into account tool wear ..1302
4.3.54 G group 57: Corner deceleration..1303
4.3.55 G group 59: Dynamic response mode for path interpolation..1303
4.3.56 G group 60: Working area limitation...1303
4.3.57 G group 61: Tool orientation smoothing...1304
4.3.58 G group 62: Repositioning mode for REPOS (non-modal) ..1304
4.3.59 G group 64: Grinding frames..1304

4.4 Predefined procedures...1306

4.5 Predefined procedures in synchronized actions ..1327

4.6 Predefined functions ..1329

A Appendix...1343

A.1 List of abbreviations ...1343

Index...1353

Table of contents

NC programming
Programming Manual, 06/2019, A5E47437142B AA 21

Table of contents

NC programming
22 Programming Manual, 06/2019, A5E47437142B AA

Fundamental safety instructions 1
1.1 General safety instructions

WARNING

Danger to life if the safety instructions and residual risks are not observed

If the safety instructions and residual risks in the associated hardware documentation are not
observed, accidents involving severe injuries or death can occur.
● Observe the safety instructions given in the hardware documentation.
● Consider the residual risks for the risk evaluation.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings

As a result of incorrect or changed parameterization, machines can malfunction, which in turn
can lead to injuries or death.
● Protect the parameterization against unauthorized access.
● Handle possible malfunctions by taking suitable measures, e.g. emergency stop or

emergency off.

NC programming
Programming Manual, 06/2019, A5E47437142B AA 23

1.2 Warranty and liability for application examples
Application examples are not binding and do not claim to be complete regarding configuration,
equipment or any eventuality which may arise. Application examples do not represent specific
customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated
correctly. Application examples do not relieve you of your responsibility for safe handling when
using, installing, operating and maintaining the equipment.

Fundamental safety instructions
1.2 Warranty and liability for application examples

NC programming
24 Programming Manual, 06/2019, A5E47437142B AA

1.3 Industrial security

Note
Industrial security

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Products and solutions from Siemens constitute one element of such a
concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the Internet if and to the extent such a connection is necessary and
only when appropriate security measures (e.g. using firewalls and/or network segmentation)
are in place.

For additional information on industrial security measures that can be implemented, please
visit:

Industrial security (https://www.siemens.com/industrialsecurity)

Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they become
available, and that only the latest product versions are used. Use of product versions that are
no longer supported, and failure to apply the latest updates may increase customer’s exposure
to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed at:

Industrial security (https://www.siemens.com/industrialsecurity)

Further information is provided on the Internet:

Industrial Security Configuration Manual (https://support.industry.siemens.com/cs/ww/en/
view/108862708)

Fundamental safety instructions
1.3 Industrial security

NC programming
Programming Manual, 06/2019, A5E47437142B AA 25

https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/ww/en/view/108862708
https://support.industry.siemens.com/cs/ww/en/view/108862708

WARNING

Unsafe operating states resulting from software manipulation

Software manipulations, e.g. viruses, Trojans, or worms, can cause unsafe operating states
in your system that may lead to death, serious injury, and property damage.
● Keep the software up to date.
● Incorporate the automation and drive components into a holistic, state-of-the-art industrial

security concept for the installation or machine.
● Make sure that you include all installed products into the holistic industrial security concept.
● Protect files stored on exchangeable storage media from malicious software by with

suitable protection measures, e.g. virus scanners.
● On completion of commissioning, check all security-related settings.
● Protect the drive against unauthorized changes by activating the "Know-how protection"

converter function.

Fundamental safety instructions
1.3 Industrial security

NC programming
26 Programming Manual, 06/2019, A5E47437142B AA

Fundamentals 2
2.1 Fundamental Geometrical Principles

2.1.1 Workpiece positions

2.1.1.1 Reference system of position specifications
In order that the machine or the control can work with the positions specified in the NC program,
these position specifications have to be made in a reference system that can be transferred to
the directions of motion of the machine axes. Cartesian (i.e. clockwise, perpendicular)
coordinate systems in accordance with DIN 66217 are used as workpiece coordinate system
for machine tools.

The workpiece zero (W) is the origin of the workpiece coordinate system.

2.1.1.2 Cartesian coordinates
The axes in the coordinate system are assigned dimensions. In this way, it is possible to clearly
describe every point in the coordinate system and therefore every workpiece position through
the direction (X, Y and Z) and three numerical values. The workpiece zero always has the
coordinates X0, Y0, and Z0.

NC programming
Programming Manual, 06/2019, A5E47437142B AA 27

Position specifications in the form of Cartesian coordinates
To simplify things, we will only consider one plane of the coordinate system in the following
example, the X/Y plane:

Points P1 to P4 have the following coordinates:

Position Coordinates
P1 X100 Y50
P2 X-50 Y100
P3 X-105 Y-115
P4 X70 Y-75

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
28 Programming Manual, 06/2019, A5E47437142B AA

Example: Workpiece positions for turning
With lathes, one plane is sufficient to describe the contour:

Points P1 to P4 have the following coordinates:

Position Coordinates
P1 X25 Z-7.5
P2 X40 Z-15
P3 X40 Z-25
P4 X60 Z-35

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
Programming Manual, 06/2019, A5E47437142B AA 29

Example: Workpiece positions for milling
For milling, the feed depth must also be described, i.e. the third coordinate (in this case Z) must
also be assigned a numerical value.

Points P1 to P3 have the following coordinates:

Position Coordinates
P1 X10 Y45 Z-5
P2 X30 Y60 Z-20
P3 X45 Y20 Z-15

2.1.1.3 Polar coordinates
Polar coordinates can be used instead of Cartesian coordinates to describe workpiece
positions. This is useful when a workpiece or part of a workpiece has been dimensioned with
radius and angle. The point from which the dimensioning starts is called the "pole".

Position specifications in the form of polar coordinates
Polar coordinates are made up of the polar radius and the polar angle.

The polar radius is the distance between the pole and the position.

The polar angle is the angle between the polar radius and the horizontal axis of the working
plane. Negative polar angles are in the clockwise direction, positive polar angles in the
counterclockwise direction.

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
30 Programming Manual, 06/2019, A5E47437142B AA

Example

Points P1 and P2 can then be described – with reference to the pole – as follows:

Position Polar coordinates
P1 RP=100 AP=30
P2 RP=60 AP=75
RP: Polar radius
AP: Polar angle

2.1.1.4 Absolute dimensions

Position specifications in absolute dimensions
With absolute dimensions, all the position specifications refer to the currently valid zero point.

Applied to tool movement this means:

the position, to which the tool is to travel.

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
Programming Manual, 06/2019, A5E47437142B AA 31

Example: Turning

In absolute dimensions, the following position specifications result for points P1 to P4:

Position Position specification in absolute dimensions
P1 X25 Z-7.5
P2 X40 Z-15
P3 X40 Z-25
P4 X60 Z-35

Example: Milling

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
32 Programming Manual, 06/2019, A5E47437142B AA

In absolute dimensions, the following position specifications result for points P1 to P3:

Position Position specification in absolute dimensions
P1 X20 Y35
P2 X50 Y60
P3 X70 Y20

2.1.1.5 Incremental dimension

Position specifications in incremental dimensions
In production drawings, the dimensions often do not refer to a zero point, but rather to another
workpiece point. So that these dimensions do not have to be converted, they can be specified
in incremental dimensions. In this method of dimensional notation, a position specification
refers to the previous point.

Applied to tool movement this means:

The incremental dimensions describe the distance the tool is to travel.

Example: Turning

In incremental dimensions, the following position specifications result for points P2 to P4:

Position Position specification in incremental dimensions The specification refers to:
P2 X15 Z-7.5 P1
P3 Z-10 P2
P4 X20 Z-10 P3

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
Programming Manual, 06/2019, A5E47437142B AA 33

Note

With DIAMOF or DIAM90 active, the set distance in incremental dimensions (G91) is
programmed as a radius dimension.

Example: Milling
The position specifications for points P1 to P3 in incremental dimensions are:

In incremental dimensions, the following position specifications result for points P1 to P3:

Position Position specification in incremental di‐
mensions

The specification refers to:

P1 X20 Y35 Zero point
P2 X30 Y20 P1
P3 X20 Y -35 P2

2.1.2 Working planes
An NC program requires information about the machining plane, because only then can the
control, for example, correct the tool correction values correctly. The specification of the
working plane is also required for certain types of circular-path programming and polar
coordinates.

The working plane is specified in the base Cartesian workpiece coordinate system with two
coordinate axes. The third coordinate axis is perpendicular to this work plane and determines
the infeed direction of the tool (e.g. for 2D machining).

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
34 Programming Manual, 06/2019, A5E47437142B AA

Working planes for turning/milling

Working planes for turning Working planes for milling

Activating a work plane
The working planes are activated defined in the NC program with the G commands G17, G18
and G19. The relationship is defined as follows:

G command Working plane Abscissa Ordinate Applicate infeed di‐
rection

G17 X/Y X Y Z
G18 Z/X Z X Y
G19 Y/Z Y Z X

2.1.3 Zero points and reference points
Various zero points and reference points are defined on an NC machine:

Zero points
M Machine zero

The machine zero defines the machine coordinate system (MCS). All other reference
points refer to the machine zero.

W Workpiece zero = program zero
The workpiece zero defines the workpiece coordinate system in relation to the machine
zero.

A Blocking point
Can be the same as the workpiece zero (only for lathes).

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
Programming Manual, 06/2019, A5E47437142B AA 35

Reference points
R Reference point

Position defined by output cam and measuring system. The distance to the machine
zero M must be known so that the axis position at this point can be set exactly to this
value.

B Starting point
Can be defined by the program. The 1st tool starts machining here.

T Toolholder reference point
Is on the toolholder. By entering the tool lengths, the control calculates the distance
between the tool tip and the toolholder reference point.

N Tool change point

Zero points and reference points for turning

Zero points for milling

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
36 Programming Manual, 06/2019, A5E47437142B AA

2.1.4 Coordinate systems

A distinction is made between the following coordinate systems:

● Machine coordinate system (MCS) (Page 37) with the machine zero M

● Basic coordinate system (BCS) (Page 39)

● Basic zero system (BZS) (Page 41)

● Settable zero system (SZS) (Page 42)

● Workpiece coordinate system (WCS) (Page 43) with the workpiece zero W

2.1.4.1 Machine coordinate system (MCS)
The machine coordinate system comprises all the physically existing machine axes.

Reference points and tool and pallet changing points (fixed machine points) are defined in the
machine coordinate system.

If programming is performed directly in the machine coordinate system (possible with some G
commands), the physical axes of the machine respond directly. Any workpiece clamping that
is present is not taken into account.

Note

If there are various machine coordinate systems (e.g. 5-axis transformation), then an internal
transformation is used to map the machine kinematics on the coordinate system in which the
programming is performed.

Three-finger rule
The orientation of the coordinate system relative to the machine depends on the machine type.
The axis directions follow the so-called "three-finger rule" of the right hand (according to DIN
66217).

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
Programming Manual, 06/2019, A5E47437142B AA 37

Seen from in front of the machine, the middle finger of the right hand points in the opposite
direction to the infeed of the main spindle. Therefore:

● the thumb points in the +X direction

● the index finger points in the +Y direction

● the middle finger points in the +Z direction

Figure 2-1 "Three-finger rule"

Rotary motions around the coordinate axes X, Y and Z are designated A, B and C. If the rotary
motion is in a clockwise direction when looking in the positive direction of the coordinate axis,
the direction of rotation is positive:

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
38 Programming Manual, 06/2019, A5E47437142B AA

Position of the coordinate system in different machine types
The position of the coordinate system resulting from the "three-finger rule" can have a different
orientation for different machine types. Here are a few examples:

2.1.4.2 Basic coordinate system (BCS)
The basic coordinate system (BCS) consists of three mutually perpendicular axes (geometry
axes) as well as other special axes, which are not interrelated geometrically.

Machine tools without kinematics transformation
BCS and MCS always coincide when the BCS can be mapped onto the MCS without
kinematics transformation (e.g. 5-axis transformation, TRANSMIT/TRACYL/TRAANG).

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
Programming Manual, 06/2019, A5E47437142B AA 39

On such machines, machine axes and geometry axes can have the same names.

Figure 2-2 MCS = BCS without kinematics transformation

Machine tools with kinematics transformation
BCS and MCS do not coincide when the BCS is mapped onto the MCS with kinematics
transformation (e.g. 5-axis transformation, TRANSMIT/TRACYL/TRAANG).

On such machines the machine axes and geometry axes must have different names.

Figure 2-3 Kinematics transformation between the MCS and BCS

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
40 Programming Manual, 06/2019, A5E47437142B AA

Machine kinematics
The workpiece is always programmed in a two- or three-dimensional, right-angled coordinate
system (WCS). However, the production of these workpieces is being programmed ever more
frequently on machine tools with rotary axes or linear axes not perpendicular to one another.
The kinematics transformation is used to represent coordinates programmed in the WCS
(rectangular) in real machine movements.

Further information
Transformations Function Manual; Kinematics Transformation

Transformations Function Manual; Multiple Transformations

2.1.4.3 Basic zero system (BZS)
The basic zero system (BZS) is derived from the basic coordinate system through the basic
offset.

Basic offset
The basic offset describes the coordinate transformation between BCS and BZS. It can be
used, for example, to define the palette zero.

The basic offset comprises:

● External work offset

● DRF offset

● Overlaid movement

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
Programming Manual, 06/2019, A5E47437142B AA 41

● Chained system frames

● Chained basic frames

Further information
Basic Functions Function Manual; Axes, Coordinate Systems, Frames

2.1.4.4 Settable zero system (SZS)

Settable zero offset
The "settable zero system" (SZS) results from the basic zero system (BZS) through the settable
zero offset.

Settable zero offsets are activated in the NC program with the G commands G54...G57 and
G505...G599 as follows:

If no programmable coordinate transformations (frames) are active, then the "settable zero
system" is the workpiece coordinate system (WCS).

Programmable coordinate transformations (frames)
Sometimes it is useful or necessary within an NC program, to move the originally selected
workpiece coordinate system (or the "settable zero system") to another position and, if
required, to rotate it, mirror it and/or scale it. This is performed using programmable coordinate
transformations (frames).

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
42 Programming Manual, 06/2019, A5E47437142B AA

See Section: "Coordinate transformations (frames)"

Note

Programmable coordinate transformations (frames) always refer to the "settable zero system".

2.1.4.5 Workpiece coordinate system (WCS)
The geometry of a workpiece is described in the workpiece coordinate system (WCS). In other
words, the data in the NC program refers to the workpiece coordinate system.

The workpiece coordinate system is always a Cartesian coordinate system and assigned to a
specific workpiece.

2.1.4.6 What is the relationship between the various coordinate systems?
The example in the following figure should help clarify the relationships between the various
coordinate systems:

① A kinematic transformation is not active, i.e. the machine coordinate system and the basic co‐
ordinate system coincide.

② The basic zero system (BZS) with the pallet zero result from the basic offset.
③ The settable work offset G54 or G55 specifies the "settable zero system" (SZS) for workpiece 1

or workpiece 2 respectively.
④ The workpiece coordinate system (WCS) results from the programmable coordinate transfor‐

mation.

Fundamentals
2.1 Fundamental Geometrical Principles

NC programming
Programming Manual, 06/2019, A5E47437142B AA 43

2.2 Fundamental Principles of NC Programming

Note

DIN 66025 is the guideline for NC programming.

2.2.1 Name of an NC program

Rules
Each NC program must be assigned a program name (identifier) when it is created. The
program name can be chosen freely providing the following rules are observed:

● Permissible characters:

– Letters: A ... Z, a ... z

– Numbers: 0 ... 9

– Underscore: _

● The first two characters should either be two letters or an underscore followed by a letter.

Note

If this condition is satisfied, then an NC program can be called as subprogram from another
program just by specifying the program name. However, if the program name starts with
digits, the subprogram call is then only possible via the CALL statement.

● Maximum length: 24 characters

Note
Uppercase/lowercase letters

The SINUMERIK NC language does not distinguish between uppercase and lowercase letters.

Note
Impermissible program names

To avoid problems with Windows applications, the following program names may not be used:
● CON, PRN, AUX, NUL
● COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9
● LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9

Further restrictions, see "Names (Page 373)".

Fundamentals
2.2 Fundamental Principles of NC Programming

NC programming
44 Programming Manual, 06/2019, A5E47437142B AA

Control-internal extensions
The program name assigned when the program is created is extended within the control with
the addition of a prefix and a suffix:

● Prefix: _N_

● Suffix:

– Main programs: _MPF

– Subprograms: _SPF

Files in punch tape format
Externally created program files that are read via the RS-232-C must be present in punch tape
format.

The following additional rules apply for the program name of a file in punch tape format:

● First character: %

● Then a four-character file extension: _xxx

Examples:

● %_N_SHAFT123_MPF

● %Flange3_MPF

Further information
For detailed information on downloading, creating and storing NC programs, see:

Turning, milling and grinding operating manual; "Manage programs" section

2.2.2 Structure and contents of an NC program

2.2.2.1 Blocks and block components

Blocks
An NC program consists of a sequence of NC blocks. Each block contains the data for
executing a step in the workpiece machining.

Block components
NC blocks consist of the following components:

● Commands (statements) according to DIN 66025

● Elements of the NC high-level language

Fundamentals
2.2 Fundamental Principles of NC Programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 45

Commands according to DIN 66025
The commands according to DIN 66025 consist of an address character and a digit or
sequence of digits representing an arithmetic value.

Address character (address)

The address character (generally a letter) defines the meaning of the command.

Examples:

Address character Meaning
G G command (preparatory function)
X Position data for the X axis
S Spindle speed

Digit sequence

The digit sequence is the value assigned to the address character. The sequence of digits can
contain a sign and decimal point. The sign always appears between the address letter and the
sequence of digits. Positive signs (+) and leading zeros (0) do not have to be specified.

Elements of the NC high-level language
As the command set according to DIN 66025 is no longer adequate for programming complex
machining sequences in modern machine tools, it has been extended by the elements of the
NC high-level language.

Fundamentals
2.2 Fundamental Principles of NC Programming

NC programming
46 Programming Manual, 06/2019, A5E47437142B AA

These include, for example:

● Commands of the NC high-level language
In contrast to the commands according to DIN 66025, the commands of the NC high-level
language consist of several address letters, e.g.

– OVR for speed override

– SPOS for spindle positioning

● Identifiers (defined names) for:

– System variables

– User-defined variables

– Subprograms

– Keywords

– Jump markers

– Macros

Note

An identifier must be unique and cannot be used for different objects.

● Comparison operators

● Logic operators

● Arithmetic functions

● Control structures

Effectiveness of commands
Commands are either modal or non-modal:

● Modal
Modal commands retain their validity with the programmed value (in all following blocks)
until:

– A new value is programmed under the same command.

– A command is programmed that revokes the effect of the previously valid command

● Non-modal
Non-modal commands only apply to the block in which they were programmed.

End of program
The last block in the execution sequence contains a special word for the end of program: M2,
M17 or M30.

Fundamentals
2.2 Fundamental Principles of NC Programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 47

2.2.2.2 Block rules

Start of block
NC blocks can be identified at the start of the block by block numbers. These consist of the
character "N" and a positive integer, e.g.
N40 ...
The order of the block numbers is arbitrary, however, block numbers in rising order are
recommended.

Note

Block numbers must be unique within a program in order to achieve an unambiguous result
when searching.

End of block
A block ends with the character LF (LINE FEED = new line).

Note

The LF character does not have to be written. It is generated automatically by the line change.

Block length
A block can contain a maximum of 512 characters (including the comment and end-of-block
character LF).

Note

Three blocks of up to 66 characters each are normally displayed in the current block display on
the screen. Comments are also displayed. Messages are displayed in a separate message
window.

Order of the statements
In order to keep the block structure as clear as possible, the statements in a block should be
arranged in the following order:
N… G… X… Y… Z… F… S… T… D… M… H…

Address Meaning
N Address of block number
G Preparatory function
X,Y,Z Positional data
F Feedrate
S Speed

Fundamentals
2.2 Fundamental Principles of NC Programming

NC programming
48 Programming Manual, 06/2019, A5E47437142B AA

T Tool
D Tool offset number
M Additional function
H Auxiliary function

Note

Certain addresses can be used repeatedly within a block, e.g.

G…, M…, H…

2.2.2.3 Value assignments
Values can be assigned to the addresses. The following rules apply:

● An "=" sign must be inserted between the address and the value if:

– The address comprises more than one letter.

– The value includes more than one constant.

The "=" sign can be omitted if the address is a single letter and the value consists of only one
constant.

● Signs are permitted.

● Separators are permitted after the address letter.

Examples:

X10 Value assignment (10) to address X, "=" not required
X1=10 Value assignment (10) to address (X) with numeric extension (1), "="

required
X=10*(5+SIN(37.5)) Value assignment by means of a numeric expression, "=" required

Note

A numeric extension must always be followed by one of the special characters "=", "(", "[", ")",
"]", ",", or an operator, in order to distinguish an address with numeric extension from an
address letter with a value.

2.2.2.4 Comments
To make an NC program easier to understand, comments can be added to the NC blocks.

A comment is at the end of a block and is separated from the program section of the NC block
by a semicolon (";").

Fundamentals
2.2 Fundamental Principles of NC Programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 49

Example 1:

Program code Comment
N10 G1 F100 X10 Y20 ; Comment to explain the NC block

Example 2:

Program code Comment
N10 ; Company G&S, order no. 12A71
N20 ; Program written by H. Smith, Dept. TV 4 on November 21,

1994
N50 ; Section no. 12, housing for submersible pump type TP23A

Note

Comments are stored and appear in the current block display when the program is running.

2.2.2.5 Skipping blocks
NC blocks which are not to be executed in every program pass (e.g. execute a trial program
run), can be skipped.

Programming
Blocks which are to be skipped are marked with an oblique "/" in front of the block number.
Several consecutive blocks can also be skipped. The statements in the skipped blocks are not
executed; the program continues with the next block which is not skipped.

Example:

Fundamentals
2.2 Fundamental Principles of NC Programming

NC programming
50 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N10 ; Is executed
/N20 … ; Skipped
N30 … ; Is executed
/N40 … ; Skipped
N70 … ; Is executed

Skip levels
Blocks can be assigned to skip levels (max. 10) which can be activated via the user interface.

Programming is performed by assigning a forward slash, followed by the number of the skip
level. Only one skip level can be specified for each block.

Example:

Program code Comment
/ ... ; Block is skipped (1st skip level)
/0 ... ; Block is skipped (1st skip level)
/1 N010... ; Block is skipped (2nd skip level)
/2 N020... ; Block is skipped (3rd skip level)
...
/7 N100... ; Block is skipped (8th skip level)
/8 N080... ; Block is skipped (9th skip level)
/9 N090... ; Block is skipped (10th skip level)

Note

The number of skip levels that can be used depends on a display machine data item.

Note

System and user variables can also be used in conditional jumps in order to control program
execution.

Fundamentals
2.2 Fundamental Principles of NC Programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 51

2.3 Creating an NC program

2.3.1 Basic procedure
The programming of the individual operation steps in the NC language generally represents
only a small proportion of the work in the development of an NC program.

Programming of the actual instructions should be preceded by the planning and preparation of
the operation steps. The more accurately you plan in advance how the NC program is to be
structured and organized, the faster and easier it will be to produce a complete program, which
is clear and free of errors. Clearly structured programs are especially advantageous when
changes have to be made later.

As every part is not identical, it does not make sense to create every program in the same way.
However, the following procedure has shown itself to be suitable in the most cases.

Procedure
1. Prepare the workpiece drawing

– Define the workpiece zero

– Draw the coordinate system

– Calculate any missing coordinates

2. Define the machining sequence

– Which tools are used when and for the machining of which contours?

– In which order will the individual elements of the workpiece be machined?

– Which individual elements are repeated (possibly also rotated) and should be stored in
a subroutine?

– Are there contour sections in other part programs or subroutines that could be used for
the current workpiece?

– Where are zero offsets, rotating, mirroring and scaling useful or necessary (frame
concept)?

Fundamentals
2.3 Creating an NC program

NC programming
52 Programming Manual, 06/2019, A5E47437142B AA

3. Create a machining plan
Define all machining operations step-by-step, e.g.

– Rapid traverse movements for positioning

– Tool change

– Define the machining plane

– Retraction for checking

– Switch spindle, coolant on/off

– Call up tool data

– Feed

– Path correction

– Approaching the contour

– Retraction from the contour

– etc.

4. Compile machining steps in the programming language

– Write each individual step as an NC block (or NC blocks).

5. Combine the individual steps into a program

2.3.2 Available characters
The following characters are available for writing NC programs:

● Uppercase characters:
A, B, C, D, E, F, G, H, I, J, K, L, M, N,(O),P, Q, R, S, T, U, V, W, X, Y, Z

● Lowercase characters:
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

● Numbers:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

● Special characters:
See the table below.

Special characters Meaning
% Program start character (used only for writing programs on an external PC)
(For bracketing parameters or expressions
) For bracketing parameters or expressions
[For bracketing addresses or indexes
] For bracketing addresses or indexes
< Less than
> Greater than
: Main block, end of label, chain operator
= Assignment, part of equation

Fundamentals
2.3 Creating an NC program

NC programming
Programming Manual, 06/2019, A5E47437142B AA 53

Special characters Meaning
/ Division, block suppression
* Multiplication
+ Addition
- Subtraction, minus sign
" Double quotation marks, identifier for character string
' Single quotation marks, identifier for special numerical values: hexadecimal,

binary
$ System variable identifiers
s_ Underscore, belonging to letters
? Reserved
! Reserved
. Decimal point
, Comma, parameter separator
; Comment start
& Format character, same effect as space character
LF End of block
Tab character Separator
Blank Separator (blank)

Note

Take care to differentiate between the letter "O" and the digit "0".

Note

No distinction is made between uppercase and lowercase characters (exception: tool call).

Note

Non-printable special characters are treated like blanks.

2.3.3 Program header
The NC blocks that are placed in front of the actual motion blocks for the machining of the
workpiece contour are called the program header.

The program header contains information/statements regarding:

● Tool change

● Tool offsets

● Spindle motion

● Feed control

● Geometry settings (zero offset, selection of the working plane)

Fundamentals
2.3 Creating an NC program

NC programming
54 Programming Manual, 06/2019, A5E47437142B AA

Program header for turning
The following example shows the typical structure of an NC program header for turning:

Program code Comment
N10 G0 G153 X200 Z500 T0 D0 ; Retract toolholder before tool turret is ro-

tated.
N20 T5 ; Swing in tool 5.
N30 D1 ; Activate cutting edge data set of the tool.
N40 G96 S300 LIMS=3000 M4 M8 ; Constant cutting rate (Vc) = 300 m/min, speed

limitation = 3000 rpm, direction of rotation
counterclockwise, cooling on.

N50 DIAMON ; X axis will be programmed in the diameter.
N60 G54 G18 G0 X82 Z0.2 ; Call zero offset and working plane, approach

starting position.
...

Program header for milling
The following example shows the typical structure of an NC program header for milling:

Program code Comment
N10 T="SF12" ; Alternative: T123
N20 M6 ; Trigger tool change.
N30 D1 ; Activate cutting edge data set of the tool.
N40 G54 G17 ; Zero offset and working plane.
N50 G0 X0 Y0 Z2 S2000 M3 M8 ; Approach to the workpiece, spindle and cool-

ant on.
...

If tool orientation / coordinate transformation is being used, any transformations still active
should be deleted at the start of the program:

Program code Comment
N10 CYCLE800() ; Resetting of the swiveled plane
N20 TRAFOOF ; Resetting of TRAORI, TRANSMIT, TRACYL, ...
...

2.3.4 Program examples

2.3.4.1 Example 1: First programming steps
Program example 1 is to be used to perform and test the first programming steps on the NC.

Fundamentals
2.3 Creating an NC program

NC programming
Programming Manual, 06/2019, A5E47437142B AA 55

Procedure
1. Create a new part program (name)

2. Edit the part program

3. Select the part program

4. Activate single block

5. Start the part program.

Further information:
Operating Manual for the present user interface

Note

In order that the program can run on the machine, the machine data must have been set
appropriately (→ machine manufacturer!).

Note

Alarms can occur during program verification. These alarms first have to be reset.

Program example 1

Program code Comment
N10 MSG ("THIS IS MY NC PROGRAM") ; Message "THIS IS MY NC PROGRAM" dis-

played in the alarm line.
N20 F200 S900 T1 D2 M3 ; Feedrate, spindle, tool, tool off-

set, spindle clockwise.
N30 G0 X100 Y100 ; Approach position in rapid traverse.
N40 G1 X150 ; Rectangle with feedrate, straight

line in X.
N50 Y120 ; Straight line in Y.
N60 X100 ; Straight line in X.
N70 Y100 ; Straight line in Y.
N80 G0 X0 Y0 ; Retraction in rapid traverse.
N100 M30 ; End of block.

2.3.4.2 Example 2: NC program for turning
Program example 2 is intended for the machining of a workpiece on a lathe. It contains radius
programming and tool radius compensation.

Note

In order that the program can run on the machine, the machine data must have been set
appropriately (→ machine manufacturer!).

Fundamentals
2.3 Creating an NC program

NC programming
56 Programming Manual, 06/2019, A5E47437142B AA

Dimension drawing of the workpiece

Figure 2-4 Top view

Program example 2

Program code Comment
N5 G0 G53 X280 Z380 D0 ; Starting point.
N10 TRANS X0 Z250 ; Zero offset
N15 LIMS=4000 ; Speed limitation (G96).
N20 G96 S250 M3 ; Select constant cutting rate.
N25 G90 T1 D1 M8 ; Select tool selection and offset.
N30 G0 G42 X-1.5 Z1 ; Set tool with tool radius compensation.
N35 G1 X0 Z0 F0.25
N40 G3 X16 Z-4 I0 K-10 ; Turn radius 10.
N45 G1 Z-12
N50 G2 X22 Z-15 CR=3 ; Turn radius 3.
N55 G1 X24
N60 G3 X30 Z-18 I0 K-3 ; Turn radius 3.
N65 G1 Z-20
N70 X35 Z-40
N75 Z-57
N80 G2 X41 Z-60 CR=3 ; Turn radius 3.

Fundamentals
2.3 Creating an NC program

NC programming
Programming Manual, 06/2019, A5E47437142B AA 57

Program code Comment
N85 G1 X46
N90 X52 Z-63
N95 G0 G40 G97 X100 Z50 M9 ; Deselect tool radius compensation and approach

tool change location.
N100 T2 D2 ; Call tool and select offset.
N105 G96 S210 M3 ; Select constant cutting rate.
N110 G0 G42 X50 Z-60 M8 ; Set tool with tool radius compensation.
N115 G1 Z-70 F0.12 ; Turn diameter 50.
N120 G2 X50 Z-80 I6.245 K-5 ; Turn radius 8.
N125 G0 G40 X100 Z50 M9 ; Retract tool and deselect tool radius compen-

sation.
N130 G0 G53 X280 Z380 D0 M5 ; Approach tool change location.
N135 M30 ; End of program.

2.3.4.3 Example 3: NC program for milling
Program example 3 is intended for the machining of a workpiece on a vertical milling machine.
It contains surface and side milling as well as drilling.

Note

In order that the program can run on the machine, the machine data must have been set
appropriately (→ machine manufacturer!).

Dimension drawing of the workpiece

Figure 2-5 Side view

Fundamentals
2.3 Creating an NC program

NC programming
58 Programming Manual, 06/2019, A5E47437142B AA

Figure 2-6 Top view

Program example 3

Program code Comment
N10 T="PF60" ; Preselection of the tool

with name PF60.
N20 M6 ; Load the tool into the spin-

dle.
N30 S2000 M3 M8 ; Speed, direction of rota-

tion, cooling on.
N40 G90 G64 G54 G17 G0 X-72 Y-72 ; Basic settings of the geome-

try and approach starting
point.

N50 G0 Z2 ; Z axis at safety clearance.
N60 G450 CFTCP ; Behavior with active G41/

G42.
N70 G1 Z-10 F3000 ; Milling tool at contact

depth with feedrate = 3000 mm/
min.

N80 G1 G41 X-40 ; Activation of the milling
tool radius compensation.

N90 G1 X-40 Y30 RND=10 F1200 ; Travel to the contour with
feedrate = 1200 mm/min.

Fundamentals
2.3 Creating an NC program

NC programming
Programming Manual, 06/2019, A5E47437142B AA 59

Program code Comment
N100 G1 X40 Y30 CHR=10
N110 G1 X40 Y-30
N120 G1 X-41 Y-30
N130 G1 G40 Y-72 F3000 ; Deselection of the milling

tool radius compensation.
N140 G0 Z200 M5 M9 ; Retraction of the milling

tool, spindle + cooling off.
N150 T="SF10" ; Preselection of the tool

with name SF10.
N160 M6 ; Load the tool into the spin-

dle.
N170 S2800 M3 M8 ; Speed, direction of rota-

tion, cooling on.
N180 G90 G64 G54 G17 G0 X0 Y0 ; Basic settings for the geom-

etry and approach starting
point.

N190 G0 Z2
N200 POCKET4(2,0,1,-5,15,0,0,0,0,0,800,1300,0,21,5,,,2,0.5) ; Call of the pocket milling

cycle.
N210 G0 Z200 M5 M9 ; Retraction of the milling

tool, spindle + cooling off.
N220 T="ZB6" ; Call center drill 6 mm.
N230 M6
N240 S5000 M3 M8
N250 G90 G60 G54 G17 X25 Y0 ; Exact stop G60 for exact po-

sitioning.
N260 G0 Z2
N270 MCALL CYCLE82(2,0,1,-2.6,,0) ; Modal call of the drilling

cycle.
N280 POSITION: ; Jump mark for repetition.
N290 HOLES2(0,0,25,0,45,6) ; Position pattern for drill-

ing.
N300 ENDLABEL: ; End identifier for repeti-

tion.
N310 MCALL ; Resetting of the modal call.
N320 G0 Z200 M5 M9
N330 T="SPB5" ; Call drill D 5 mm.
N340 M6
N350 S2600 M3 M8
N360 G90 G60 G54 G17 X25 Y0
N370 MCALL CYCLE82(2,0,1,-13.5,,0) ; Modal call of the drilling

cycle.
N380 REPEAT POSITION ; Repetition of the position

description from centering.
N390 MCALL ; Resetting of the drilling

cycle.
N400 G0 Z200 M5 M9

Fundamentals
2.3 Creating an NC program

NC programming
60 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N410 M30 ; End of program.

Fundamentals
2.3 Creating an NC program

NC programming
Programming Manual, 06/2019, A5E47437142B AA 61

2.4 Tool change

Tool change method
In circular magazines on turning machines, the tool change, that is the search for and change
of the tool, is called with the T command only.

→ Tool change with T command (Page 62)

Whereas in chain, rotary-plate and box magazines, a tool change normally takes place in two
stages:

1. The tool is sought in the magazine with the T command.

2. The tool is then loaded into the spindle with the M command.

→ Tool change with M6 (Page 64)

Note

The type of tool change mechanism is specified by the machine OEM during the
commissioning.

Programming of the working plane
The appropriate machining plane (Page 34) has to be programmed for the tool change (initial
state: G18). This ensures that the tool length compensation is assigned to the correct axis.

Activation of the tool offset
The tool change activates the tool offset values stored under a D number (Page 83).

2.4.1 Tool change with T command
There is a direct tool change when the T command is programmed.

Fundamentals
2.4 Tool change

NC programming
62 Programming Manual, 06/2019, A5E47437142B AA

Application
For turning machines with circular magazine.

Syntax

Selecting a tool
T<No>
T=<No>
T<n>=<No>

Deselecting a tool
T0
T0=<No>

Meaning

T: Address for tool selection including tool change and activation of the tool offset
<n>: Spindle number as address extension

Note:
The possibility of programming a spindle number as an address extension depends on the
configuration of the machine; → see machine manufacturer's specifications.

<No>: Number of the tool
Range of val‐
ues:

0 ... 32000

T0: Deselecting the active tool

Example

Program code Comment
N10, T1, D1 ; Loading of tool T1 and activation of the tool offset D1.
...
N70 T0 ; Deselect tool T1.
...

Fundamentals
2.4 Tool change

NC programming
Programming Manual, 06/2019, A5E47437142B AA 63

2.4.2 Tool change with M6
The tool is selected when the T command is programmed. The tool only becomes active with
M6 (including tool offset).

Application
For milling machines with chain, rotary-plate or box magazines.

① Spindle
② Gripper
③ Magazine (here: Chain magazine)
④ Change position for spindle

Syntax

Selecting a tool
T<No>
T=<No>
T<n>=<No>

Tool change
M6

Deselecting a tool
T0
T0=<No>

Meaning

T: Address for the tool selection
<n>: Spindle number as address extension

Note:
The possibility of programming a spindle number as an address extension depends on the
configuration of the machine; → see machine manufacturer's specifications.

<No>: Number of the tool
Range of val‐
ues:

0 ... 32000

Fundamentals
2.4 Tool change

NC programming
64 Programming Manual, 06/2019, A5E47437142B AA

M6: M function for the tool change (according to DIN 66025)
M6 activates the selected tool (T…) and the tool offset (D...).

T0: Deselecting the active tool

Example

Program code Comment
N10 T1 M6 ; Loading of tool T1.
N20 D1 ; Selection of tool length compensation.
N30 G1 X10 ... ; Machining with T1.
...
N70 T5 ; Preselection of tool T5.
N80 ... ; Machining with T1.
...
N100 M6 ; Loading of tool T5.
N110 D1 G1 X10 ... ; Machining with tool T5.
...

2.4.3 Tool change with tool management (option)

Tool management
The optional "Tool management" function ensures that at any given time the correct tool is in
the correct location in the machine, and that the data assigned to the tool are up to date. It also
allows fast tool changes and avoids both scrap by monitoring the tool service life and machine
downtimes by using spare tools.

Tool name
On a machine tool with active tool management, the tools must be assigned a name and
number for clear identification (e.g. "Drill", "3").

The tool can then be called with the tool name, e.g.
T="Drill"

Note

The tool name may not contain any special characters.

2.4.3.1 Tool change with T command with active tool management (option)
There is a direct tool change when the T command is programmed.

Fundamentals
2.4 Tool change

NC programming
Programming Manual, 06/2019, A5E47437142B AA 65

Application
For turning machines with circular magazine.

Syntax

Selecting a tool
T=<No>
T=<Name>
T<n>=<No>
T<n>=<Name>

Deselecting a tool
T0

Meaning

T=: Command for tool change and activating the tool offset
The following specifications are possible:
<No>: Number of the magazine location
<name>: Name of tool

Note:
The correct notation (uppercase/lowercase) must be used when pro‐
gramming a tool name.

<n>: Spindle number as address extension
Note:
The possibility of programming a spindle number as an address extension depends on the
configuration of the machine; → see machine manufacturer's specifications.

T0: Tool deselection (magazine location unoccupied)

Note

If the selected magazine location is not occupied in a tool magazine, the command acts as for
T0. The selection of the unoccupied magazine location can be used to position the empty
location.

Example
A circular magazine has locations 1 to 12 with the following tool assignment:

Location Tool Tool group Status
1 Drill, duplo no. = 1 T15 Disabled
2 Not occupied
3 Drill, duplo no. = 2 T10 Enabled
4 Drill, duplo no. = 3 T1 Active
5 ... 12 Not occupied

Fundamentals
2.4 Tool change

NC programming
66 Programming Manual, 06/2019, A5E47437142B AA

① ...
⑫

Magazine/location number

The following tool call is programmed in the NC program:
N10 T=1
The call is processed as follows:

1. Magazine location 1 is considered and the tool identifier determined.

2. The tool management recognizes that this tool is blocked and therefore cannot be used.

3. A tool search for T="drill" is initiated in accordance with the set search strategy:
"Find the active tool; or select the one with the next highest duplo number."

4. The following usable tool is then found:
"Drill", duplo no. 3 (at magazine location 4)
This completes the tool selection process and the tool change is initiated.

Note

If the "Select the first available tool from the group" search strategy is employed, the order
within the tool group being loaded has to be be defined first. In this case, group T10 is loaded,
as T15 is disabled.

When the search strategy "Take the first tool with "active" status from the group" is applied, T1
is loaded.

2.4.3.2 Tool change with M6 with active tool management (option)
The tool is selected when the T command is programmed. The tool only becomes active with
M6 (including tool offset).

Application
For milling machines with chain, rotary-plate or box magazines.

Fundamentals
2.4 Tool change

NC programming
Programming Manual, 06/2019, A5E47437142B AA 67

Syntax

Selecting a tool
T=<No>
T=<Name>
T<n>=<No>
T<n>=<Name>

Tool change
M6

Deselecting a tool
T0

Meaning

T=: Address for the tool selection
The following specifications are possible:
<No>: Number of the magazine location
<name>: Name of tool

Note:
The correct notation (uppercase/lowercase) must be used when pro‐
gramming a tool name.

<n>: Spindle number as address extension
Note:
The possibility of programming a spindle number as an address extension depends on the
configuration of the machine; → see machine manufacturer's specifications.

M6: M function for the tool change (according to DIN 66025)
M6 activates the selected tool (T…) and the tool offset (D...).

T0: Tool deselection (magazine location unoccupied)

Note

If the selected magazine location is not occupied in a tool magazine, the command acts as for
T0. The selection of the unoccupied magazine location can be used to position the empty
location.

Example

Program code Comment
N10 T=1 M6 ; Loading of the tool from magazine location 1.
N20 D1 ; Selection of tool length compensation.
N30 G1 X10 ... ; Machining with tool T=1.
...
N70 T="Drill" ; Preselection of the tool with name "Drill".
N80 ... ; Machining with tool T=1.
...

Fundamentals
2.4 Tool change

NC programming
68 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N100 M6 ; Loading of the drill.
N140 D1 G1 X10 ... ; Machining with drill.
...

2.4.4 Behavior with faulty T programming
The behavior with faulty T programming depends on the configuration of the machine:

MD22562 TOOL_CHANGE_ERROR_MODE
Bit Value Meaning
7 0 Basic setting!

With the T programming, a check is made immediately as to whether the NC recogni‐
zes the T number. If not, an alarm is triggered.

1 The programmed T number will only be checked following D selection. If the NC does
not recognize the tool number, an alarm is issued during D selection.
This response is desirable if, for example, tool programming is also intended to achieve
positioning and the tool data is not necessarily available (circular magazine).

Fundamentals
2.4 Tool change

NC programming
Programming Manual, 06/2019, A5E47437142B AA 69

2.5 Tool offsets

2.5.1 Programmed contour and tool path
Workpiece dimensions are programmed directly (e.g. according to the production drawing).
Therefore, tool data, such as milling tool diameter, cutting edge position of the turning tool
(counterclockwise/clockwise turning tool) and tool length, does not have to be taken into
consideration when creating the program.

The control corrects the travel path
When machining a workpiece, the tool paths are controlled according to the tool geometry so
that the programmed contour can be created with any tool.

So that the control can calculate the tool paths, the tool data must be entered in the tool
compensation memory of the control. Only the required tool (T...) and the required offset data
record (D...) are called via the NC program.

While the program is being processed, the control fetches the offset data it requires from the
tool offset memory, and corrects the tool path individually for different tools:

2.5.2 Tool length compensation
The tool length compensation compensates for the differences in length between the tools
used.

The tool length is the distance between the tool carrier reference point and the tool tip:

Fundamentals
2.5 Tool offsets

NC programming
70 Programming Manual, 06/2019, A5E47437142B AA

T Tool carrier reference point
P Tool tip

This length is measured and entered in the tool compensation memory of the control together
with definable wear values. From this data, the control calculates the traversing movements in
the infeed direction.

Note

The correction value of the tool length depends on the spatial orientation of the tool.

2.5.3 Tool radius compensation
The contour and tool path are not identical. The milling tool or cutting edge center point must
travel along a path corresponding to the tool radius that is equidistant from the contour (tool
center point path). To do this, while executing the program, the control shifts the programmed
tool center point path – based on the radius of the active tool (tool offset memory) – so that the
tool cutting edge traverses precisely along the programmed contour.

R Tool radius
S Cutting edge center point

The tool radius compensation is described in detail in the "Tool radius compensation
(Page 246)" Chapter.

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 71

See also
2 1/2 D tool offset (CUT2D, CUT2DD, CUT2DF, CUT2DFD) (Page 282)

2.5.4 Tool compensation memory
The following data must be available in the tool offset memory of the control system for each
tool edge:

● Tool type

● Cutting edge position

● Tool geometry variables (length, radius)

These data are entered as tool parameters (max. 25). Which parameters are required for a tool
depends on the tool type. Any tool parameters that are not required must be set to "zero"
(corresponds to the default setting of the system).

Note

Values that have been entered once in the offset memory are included in the processing at
each tool call.

Tool type
The tool type (drill, milling or turning tool) determines which geometry data are necessary and
how they are calculated.

Cutting edge position
The cutting edge position describes the position of the tool tip in relation to the cutting edge
center point. The cutting edge position together with the cutting edge radius is required for the
calculation of the tool radius compensation for turning tools (tool type 5xx) (Page 79).

Fundamentals
2.5 Tool offsets

NC programming
72 Programming Manual, 06/2019, A5E47437142B AA

Tool geometry variables (length, radius)

T Tool carrier reference point
R Tool radius
L Tool length

The tool geometry variables consist of several components (geometry, wear). The control
computes the components to a resulting size (e.g. total length 1, total radius). The relevant
overall dimension becomes operative when the offset memory is activated.

How these values are calculated in the axes is determined by the tool type and the current plane
(G17/G18/G19).

2.5.5 Tool types

2.5.5.1 Tool type number and tool groups
Each tool type is assigned a unique 3-digit number. The assignment of the tool to one of the
following technologies or tool groups is realized using the first digit (the hundreds position):

Tool type Tool group
1xy Milling tools (Page 74)
2xy Drills (Page 76)
3xy Reserved
4xy Grinding tools (Page 77)
5xy Turning tools (Page 79)
6xy Reserved
7xy Special tools (Page 81)

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 73

2.5.5.2 Milling tools
The following tool types are available in the "Milling tools" group:

100 Milling tool according to CLDATA (Cutter Location Data)
110 Ball end mill
111 Cylindrical die-sinking milling cutter
120 End milling cutter without corner rounding
121 End mill with corner rounding
130 Angle head cutter without corner rounding
131 Angle head mill with corner rounding
140 Facing tool
145 Thread cutter
150 Side mill
151 Saw
155 Bevel cutter (without corner rounding)
156 Bevel cutter with corner rounding
157 Tapered die milling tool
160 Drill and thread milling cutter

Fundamentals
2.5 Tool offsets

NC programming
74 Programming Manual, 06/2019, A5E47437142B AA

Tool parameters
The following diagrams provide an overview of which milling tool parameters are entered in the
compensation memory:

① Tool
② Tool holder
③ Tool adapter
T Adapter reference point (for inserted tool = tool carrier reference point)
T' Tool carrier reference point
L1 Geometry - length 1
L1' Adapter dimension - length 1
L1 + L1' Total length L1
R Radius

Tool parameters Meaning
$TC_DP1 Tool type 1xy
$TC_DP3 Geometry - length 1
$TC_DP6 Geometry - radius
$TC_DP21 Adapter dimension - length 1
● Wear values corresponding to the requirements.
● Other values should be set to 0.

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 75

T Tool carrier reference point
T' Tool carrier reference point
L1 Geometry - length 1
R Tool radius
L1' Base dimension - length 1
L2' Base dimension - length 2
L3' Base dimension - length 3

Tool parameters Meaning
$TC_DP1 Tool type
$TC_DP3 Geometry - length 1
$TC_DP6 Geometry - radius
$TC_DP21 Base dimension - length 1
$TC_DP22 Base dimension - length 2
$TC_DP23 Base dimension - length 3
● Wear values corresponding to the requirements.
● Other values should be set to 0.

2.5.5.3 Drills
The following tool types are available in the "Drills" group:

No. Tool type
200 Twist drill
205 Drill
210 Boring bar
220 Center drill

Fundamentals
2.5 Tool offsets

NC programming
76 Programming Manual, 06/2019, A5E47437142B AA

No. Tool type
230 Countersink
231 Counterbore
240 Tap regular thread
241 Tap fine thread
242 Tap Whitworth thread
250 Reamer

Tool parameters
The following diagram provides an overview of which drill tool parameters are entered in the
compensation memory:

T Tool carrier reference point
L1 Length 1

Tool parameters Meaning
$TC_DP1 Tool type
$TC_DP3 Geometry - length 1
● Wear values corresponding to the requirements.
● Other values should be set to 0.

2.5.5.4 Grinding tools
The following tool types are available in the "Grinding tools" group:

400 Surface grinding wheel
401 Surface grinding wheel with monitoring
402 Surface grinding wheel without monitoring without base dimension (TOOLMAN)
403 Surface grinding wheel with monitoring without base dimension for grinding wheel periph‐

eral speed GWPS
410 Facing wheel
411 Facing wheel (TOOLMAN) with monitoring
412 Facing wheel (TOOLMAN) without monitoring
413 Facing wheel with monitoring without base dimension for grinding wheel peripheral speed

GWPS
490 Dresser

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 77

Tool parameters
The following diagram provides an overview of which grinding tool parameters are entered in
the compensation memory:

T Tool carrier reference point
T' Tool holder reference point
L1 Geometry - length 1
L1' Base dimension - length 1
L2 Geometry - length 2
L2' Base dimension - length 2
R Radius
α Angle of inclined wheel

Cutting edge-specific parameters Meaning
$TC_DP1 Tool type 4xy
$TC_DP2 Cutting edge position
$TC_DP3 Geometry length 1
$TC_DP4 Geometry length 2
$TC_DP6 Radius
$TC_DP21 Base dimension length 1
$TC_DP22 Base dimension length 2
● Wear values corresponding to the requirements.
● Set other values to 0.

Tool-specific parameters Meaning
$TC_TPG1 Spindle number
$TC_TPG2 Chaining rule 1)

$TC_TPG3 Minimum wheel radius
$TC_TPG4 Minimum wheel width
$TC_TPG5 Actual wheel width

Fundamentals
2.5 Tool offsets

NC programming
78 Programming Manual, 06/2019, A5E47437142B AA

Tool-specific parameters Meaning
$TC_TPG6 Maximum speed
$TC_TPG7 Maximum circumferential velocity
$TC_TPG8 Angle of inclined wheel
$TC_TPG9 Parameter number for radius calculation
$TC_TPG_DRSPATH Directory path to the dressing program
$TC_TPG_DRSPROG Dressing program name

1) The geometry length compensations, wear and base dimension can be chained for the left and right
tool nose radius compensation. This means that the length compensations for the left cutting edge are
changed so that the values are also automatically entered for the right cutting edge, and vice versa.

2.5.5.5 Turning tools
The following tool types are available in the "Turning tools" group:

500 Roughing tool
510 Finishing tool
520 Plunge cutter
530 Parting tool
540 Threading tool
550 Button tool / forming tool (TOOLMAN)
560 Rotary drill (ECOCUT)
580 Probe with cutting edge position parameters

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 79

Tool parameters
The following diagram provides an overview of which turning tool parameters are entered in the
compensation memory:

① Cutting edge position (1 ... 9) for machining behind the turning center
P Tool tip
S Cutting edge center point
R Cutting edge radius
T Tool carrier reference point
T' Tool holder reference point
L1 Geometry - length 1
L2 Geometry - length 2
L1' Base dimension - length 1
L2' Base dimension - length 2
L3' Base dimension - length 3

Tool parameters Meaning
$TC_DP1 Tool type
$TC_DP2 Cutting edge position

Fundamentals
2.5 Tool offsets

NC programming
80 Programming Manual, 06/2019, A5E47437142B AA

Tool parameters Meaning
$TC_DP3 Geometry - length 1
$TC_DP4 Geometry - length 2
$TC_DP6 Geometry - radius (cutting edge radius)
$TC_DP21 Base dimension - length 1
$TC_DP22 Base dimension - length 2
$TC_DP23 Base dimension - length 3
● Wear values corresponding to the requirements.
● Set other values to 0.

2.5.5.6 Special tools
The following tool types are available in the "Special tools" group:

700 Slotting saw
710 3D probe
711 Edge probe
712 Mono probe
713 L probe
714 Star probe
725 Calibration tool
730 Stop
731 Spindle sleeves
732 End support

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 81

Tool parameters
The following diagram provides an overview of which tool parameters for "Slotting saw" tool
type are entered in the compensation memory:

T' Tool carrier reference point
L1 Geometry - length 1
L2 Geometry - length 2
d Diameter
b Slot width
k Projection

Tool parameters Meaning
$TC_DP1 Tool type
$TC_DP3 Geometry - length 1
$TC_DP4 Geometry - length 2
$TC_DP6 Diameter
$TC_DP7 Slot width
$TC_DP8 Projection
$TC_DP21 Base dimension length 1
$TC_DP22 Base dimension length 2
$TC_DP23 Base dimension length 3
● Wear values corresponding to the requirements.
● Other values should be set to 0.

Fundamentals
2.5 Tool offsets

NC programming
82 Programming Manual, 06/2019, A5E47437142B AA

2.5.6 Tool offset call (D)
Cutting edges 1 to 8 of a tool (with active tool management 12) can be assigned different tool
offset data blocks (e.g. different correction values for the left and right cutting edges of a
grooving tool).

The offset data (including the data for the tool length compensation) of a special cutting edge
is activated by calling the D number. When D0 is programmed, offsets for the tool have no effect.

A tool radius compensation must also be activated via G41/G42.

Note

Tool length compensations take immediate effect when the D number is programmed. If no D
number is programmed, the default setting defined by the machine data is active for a tool
change (→ see machine manufacturer's specifications).

Syntax
Activating a tool offset data block:
D<Number>
Activating the tool radius compensation:
G41 ...
G42 ...
Deactivation of the tool offsets:
D0
G40

Meaning

D: Command for activating an offset data block for the active tool
The tool length compensation is applied with the first programmed traverse of the
associated length compensation axis.
Notice:
A tool length compensation can also take effect without D programming, if the auto‐
matic activation of a tool edge has been configured for the tool change (→ see ma‐
chine manufacturer's specifications).

<Number>: The tool offset data block to be activated is specified by the <Number> parameter.
The type of D programming depends on the configuration of the machine (see para‐
graph "Type of D programming").
Range of values: 0 ... 32000

D0: Command for deactivating the offset data block for the active tool
G41: Command for activating the tool radius compensation with machining direction left of

the contour
G42: Command for activating the tool radius compensation with machining direction right

of the contour
G40: Command for deactivating the tool radius compensation

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 83

Note

The tool radius compensation is described in detail in the "Tool radius compensations" Chapter.

Type of D programming
The type of D programming is defined by machine data.

There are the following options:

● D number = cutting edge number
D numbers ranging from 1 to max. 12 are available for every tool T<Number> (without
TOOLMAN) or T="Name" (with TOOLMAN). These D numbers are assigned directly to the
tool cutting edges. An offset data block ($TC_DPx[t,d]) is assigned to each D number (=
cutting edge number).

● Free selection of D numbers
The D numbers can be freely assigned to the cutting edge numbers of a tool. A machine data
specifies the upper limit for the D numbers that may be used.

Further information
Tools Function Manual; Tool Offset
Tool Management Function Manual; Variants of D Number Assignments

Examples

Example 1: Tool change with T command (turning)

Program code Comment
N10, T1, D1 ; Load tool T1 and activate tool offset data block D1 of T1.
N11 G0 X... Z... ; The tool length compensations are applied.
N50, T4, D2 ; Load tool T4 and activate tool offset data block D2 of T4.
...
N70 G0 Z... D1 ; Activate other cutting edge D1 for tool T4.

Fundamentals
2.5 Tool offsets

NC programming
84 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Different correction values for the left and right cutting edges of a grooving tool

2.5.7 Change in the tool offset data

Effectiveness
A change in the tool offset data takes effect the next time the T or D number is programmed.

Set tool offset data to be active immediately

The following machine data can be used to specify that entered tool offset data takes effect
immediately:

MD9440 $MM_ACTIVATE_SEL_USER

WARNING

Risk of collision

If MD9440 is set, tool offsets resulting from changes in tool offset data during the part program
stop, are applied when the part program is continued.

2.5.8 Programmable tool offset (TOFFL, TOFF, TOFFR, TOFFLR):
With the TOFFx addresses, the user can modify the effective tool length and the effective tool
radius in the NC program without changing the tool offset data stored in the compensation
memory.

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 85

These programmed offsets are deleted again at the end of the program.

Syntax

Tool length offset

TOFFL=<Value>
TOFFL[1]=<Value> TOFFL[2]=<Value> TOFFL[3]=<Value>
TOFF[<GeoAx>]=<Value>

The tool length can be changed simultaneously in all three components. However, commands
of the TOFFL/TOFFL[1..3] group and commands of the TOFF[<geometry axis>] group may not
be used simultaneously in one block. Similarly TOFFL and TOFFL[1] may not be written
simultaneously in one block.

If all three tool length components are not programmed in one block, the components not
programmed remain unchanged. In this way, it is possible to build up offsets for several
components block-by-block. However, this only applies as long as the tool components have
been modified only with either TOFFL or TOFF. Changing the programming version from
TOFFL to TOFF or vice versa deletes any previously programmed tool length offsets (see
example 3).

Tool radius offset

TOFFR=<Value>

Simultaneous tool length offset and tool radius offset

TOFFLR=<Value>

Meaning

TOFFL: Correction of the effective tool length
TOFFL can be programmed with or without index:
TOFFL=... The programmed offset value is applied in the same direction as

the tool length component L1 stored in the compensation memory.
The TOFFL and TOFFL[1] instructions have an identical effect.

TOFFL[1]=...
TOFFL[2]=...
TOFFL[3]=...

The programmed offset value is effective in the same direction as
the tool length components L1, L2 and L3 stored in the offset
memory.

Note:
How these tool length compensation values are calculated in the axes is determined by
the tool type and the current working plane (G17/G18/G19).

Fundamentals
2.5 Tool offsets

NC programming
86 Programming Manual, 06/2019, A5E47437142B AA

TOFF: Correction of the tool length in the component parallel to the specified geometry axis
TOFF is applied in the direction of the tool length component which is effective with non-
rotated tool (orientable tool carrier or orientation transformation) parallel to the geometry
axis specified in the index.
Note:
A frame does not influence the assignment of the programmed values to the tool length
components. This means that the workpiece coordinate system (WCS) is not used to
assign the tool length components to the geometry axes, but rather the tool coordinate
system in the basic tool position.

<GeoAx>: Identifier of the geometry axis
TOFFR: Correction of the effective tool radius

TOFFR changes the effective tool radius with active tool radius compensation by the
programmed offset value.

TOFFLR: Correction of the effective tool length in the component L1 and the effective tool radius
Note:
For tools with corner rounding (types 111, 121, 131 and 156), TOFFLR also corrects the
corner radius.

<Value>: Offset value
Type: REAL

Examples

Example 1: Positive tool length offset
The active tool is a drill with length L1 = 100 mm.

The active plane is G17. This means that the drill points in the Z direction.

The effective drill length is to be increased by 1 mm. The following variants are available for
programming this tool length offset:

● TOFFL=1
● TOFFL[1]=1
● TOFF[Z]=1

Example 2: Negative tool length offset
The active tool is a drill with length L1 = 100 mm.

The active plane is G18. This means that the drill points in the Y direction.

The effective drill length is to be decreased by 1 mm. The following variants are available for
programming this tool length offset:

● TOFFL=-1
● TOFFL[1]=-1
● TOFF[Y]=1

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 87

Example 3: Change of programming version from TOFFL to TOFF
The active tool is a milling tool. The active plane is G17.

Program code Comment
N10 TOFFL[1]=3 TOFFL[3]=5 ; Effective offsets: L1=3, L2=0, L3=5
N20 TOFFL[2]=4 ; Effective offsets: L1=3, L2=4, L3=5
N30 TOFF[Z]=1.3 ; Effective offsets: L1=0, L2=0, L3=1.3

Example 4: Assignment of the offset values after a plane change

Program code Comment
N10 $TC_DP1[1,1]=120
N20 $TC_DP3[1,1]= 100 ; Tool length L1=100 mm.
N30 T1 D1 G17
N40 TOFF[Z]=1.0 ; Offset in Z direction (corresponds to L1 for G17).
N50 G0 X0 Y0 Z0 ; Machine axis position X0 Y0 Z101.
N60 G18 G0 X0 Y0 Z0 ; Machine axis position X0 Y100 Z1.
N70 G17
N80 TOFFL=1.0 ; Offset in L1 direction (corresponds to Z for G17).
N90 G0 X0 Y0 Z0 ; Machine axis position X0 Y0 Z101.
N100 G18 G0 X0 Y0 Z0 ; Machine axis position X0 Y101 Z0.

In this example, the offset of 1 mm in the Z axis is retained when changing to G18 in block N60;
the effective tool length in the Y axis is the unchanged tool length of 100 mm.

However, in block N100, the offset is effective in the Y axis when changing to G18 as it was
assigned to tool length L1 in the programming, and this length component is effective in the Y
axis with G18.

Example 5: Simultaneous tool length offset and tool radius offset
a, end milling cutter without corner rounding (tool type 120):

Program code Comment
...
TOFFLR=5 ; Effective offsets:

; Tool length offset (L1) = 5
; Tool radius offset = 5

...

b, end mill with corner rounding (tool type 121):

Program code Comment
...
TOFFLR=5 ; Effective offsets:

; Tool length offset (L1) = 5
; Tool radius offset = 5
; Offset corner radius = 5

...

Fundamentals
2.5 Tool offsets

NC programming
88 Programming Manual, 06/2019, A5E47437142B AA

Further information

Tool length offsets
Depending on the type of programming, programmed tool length offsets are assigned either to
the tool length components L1, L2 and L3 (TOFFL) stored in the compensation memory or to
the geometry axes (TOFF). The programmed offsets are treated accordingly for a plane
change (G17/G18/G19 ↔ G17/G18/G19):

● If the offset values are assigned to the tool length components, the directions in which the
programmed offsets apply are replaced accordingly.

● If the offset values are assigned to the geometry axes, a plane change does not affect the
assignment in relation to the coordinate axes.

The following setting data is evaluated when assigning the programmed offset values to the tool
length components:

SD42940 $SC_TOOL_LENGTH_CONST (change of tool length components on change of
planes).

SD42950 $SC_TOOL_LENGTH_TYPE (assignment of the tool length offset independent of
tool type).

If this setting data has valid values not equal to 0, then these have priority over the contents of
G group 6 (plane selection G17/G18/G19) or the tool type ($TC_DP1[<T no.>, <D no.>])
contained in the tool data. This means that this setting data affects the evaluation of the offsets
in the same way as the tool length components L1 to L3.

Tool radius offset
The TOFFR address has almost the same effect as the OFFN address (see " Tool radius
compensation (Page 246) "). There is only a difference with active peripheral curve
transformation (TRACYL) and active slot side compensation. In this case, the tool radius is
affected by OFFN with a negative sign, but by TOFFR with a positive sign.

OFFN and TOFFR can be effective simultaneously. They then generally have an additive effect
(except for slot side compensation).

Tool change
All offset values are retained during a tool change (cutting edge change). This means that they
are also effective for the new tool (new cutting edge).

System variables for reading the current offset values
The currently effective offsets can be read with the following system variables:

System variable Meaning
$P_TOFFL [<n>]
with 0 ≤ n ≤ 3

Reads the current offset value of TOFFL (for n = 0) or TOFFL[1...3] (for
n = 1, 2, 3) in the preprocessing context.

$P_TOFF [<GeoAx>] Reads the current offset value of TOFF[<GeoAx>] in the preprocessing
context.

$P_TOFFR Reads the current offset value of TOFFR in the preprocessing context.
$P_TOFFCR Reads the current offset value of the corner radius in the preprocessing

context.

Fundamentals
2.5 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 89

System variable Meaning
$AC_TOFFL[<n>]
with 0 ≤ n ≤ 3

Reads the current offset value of TOFFL (for n = 0) or TOFFL[1...3] (for
n = 1, 2, 3) in the main run context (synchronized actions).

$AC_TOFF[<GeoAx>] Reads the current offset value of TOFF[<GeoAx>] in the main run con‐
text (synchronized actions).

$AC_TOFFR Reads the current offset value of TOFFR in the main run context
(synchronized actions).

$AC_TOFFCR Reads the current offset value of the corner radius in the main run con‐
text (synchronized actions).

Note

The system variables $AC_TOFFL, $AC_TOFF, AC_TOFFR and AAC_TOFFCR trigger an
automatic preprocessing stop when reading from the preprocessing context (NC program).

Applications
The "Programmable tool offset" function is especially interesting for ball mills and milling tools
with corner radii as these are often calculated in the CAM system to the ball center instead of
the ball tip. However, the tool tip is generally measured when the tool is measured, and stored
as tool length in the compensation memory.

For the 3D tool radius compensation with a ball mill it is advantageous to correct the tool length
and radius by the same value simultaneously. The TOFFLR address is available to the user for
this purpose.

Fundamentals
2.5 Tool offsets

NC programming
90 Programming Manual, 06/2019, A5E47437142B AA

2.6 Spindle motion

2.6.1 Spindle speed (S), spindle direction of rotation (M3, M4, M5)
The spindle speed and direction of rotation values set the spindle in rotary motion and provide
the conditions for chip removal.

Figure 2-7 Spindle motion during turning

Other spindles may be available in addition to the main spindle (e.g. the counterspindle or an
actuated tool on turning machines). As a rule, the main spindle is declared the master spindle
in the machine data. This assignment can be changed using an NC command.

Syntax
S... / S<n>=...
M3 / M<n>=3
M4 / M<n>=4
M5 / M<n>=5

SETMS(<
n>)

...
SETMS

Meaning

S…: Spindle speed in rpm for the master spindle
S<n>=... : Spindle speed in rpm for spindle <n>

Fundamentals
2.6 Spindle motion

NC programming
Programming Manual, 06/2019, A5E47437142B AA 91

 Note:
The speed specified with S0=… applies to the master spindle

M3: Direction of spindle rotation clockwise for master spindle
M<n>=3: Spindle direction of rotation clockwise for spindle <n>
M4: Direction of spindle rotation counter-clockwise for master spindle
M<n>=4: Spindle direction of rotation counter-clockwise for spindle <n>
M5: Spindle stop for master spindle
M<n>=5: Spindle stop for spindle <n>
SETMS(<n>): Set spindle <n> as master spindle
SETMS: If SETMS is programmed without a spindle name, the configured master spindle

is used instead.

Note

Up to three S-values can be programmed per NC block, e.g.:

S... S2=... S3=...

Note

SETMS must be in a separate block.

Example
S1 is the master spindle, S2 is the second spindle. The part is to be machined from two sides.
To do this, it is necessary to divide the operations into steps. After the cut-off point, the
synchronizing device (S2) takes over machining of the workpiece after the cut off. To do this,
this spindle S2 is defined as the master spindle to which G95 then applies.

Program code Comment
N10 S300 M3 ; Speed and direction of rotation for drive spindle = pre-

set master spindle.
... ; Machining of the right-hand workpiece side.

Fundamentals
2.6 Spindle motion

NC programming
92 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N100 SETMS(2) ; S2 is now the master spindle.
N110 S400 G95 F… ; Speed for new master spindle.
... ; Machining of the left-hand workpiece side.
N160 SETMS ; Switching back to master spindle S1.

Further information
Interpretation of the S value for the master spindle

If function G331 or G332 is active in G group 1 (modally valid motion commands), the
programmed S-value will always be interpreted as the speed in rpm. Otherwise, the
interpretation of the S-value will depend upon G group 15 (feedrate type): If G96, G961 or G962
is active, the S-value is interpreted as a constant cutting rate in m/min; otherwise, it is
interpreted as a speed in rpm.

Changing from G96/G961/G962 to G331/G332 sets the value of the constant cutting rate to
zero; changing from G331/G332 to a function within the G group 1 other than G331/G332 sets
the speed value to zero. The corresponding S-values have to be reprogrammed if required.

Preset M commands M3, M4, M5

In a block with axis commands, functions M3, M4, M5 are activated before the axis movements
commence (basic setting on the control).

Example:

Program code Comment
N10 G1 F500 X70 Y20 S270 M3 ; The spindle ramps up to 270 rpm and the move-

ments then executed in X and Y.
N100 G0 Z150 M5 ; Spindle stop before the retraction movement

in Z.

Note

Machine data can be used to set when axis movements should be executed; either once the
spindle has powered up to the setpoint speed, or immediately after the programmed switching
operations have been traversed.

Working with multiple spindles

Five spindles (master spindle plus four additional spindles) can be available in one channel at
the same time.

One of the spindles is defined in machine data as the master spindle. Special functions such as
thread cutting, tapping, revolutional feedrate, and dwell time apply to this spindle. For the
remaining spindles (e.g. a second spindle and an actuated tool) the numbers corresponding to
the speed and the direction of rotation / spindle stop must be specified.

Example:

Program code Comment
N10 S300 M3 S2=780 M2=4 ; Master spindle: 300 rpm, CW rotation

2nd spindle: 780 rpm, CCW rotation

Fundamentals
2.6 Spindle motion

NC programming
Programming Manual, 06/2019, A5E47437142B AA 93

Programmable switchover of master spindle

The SETMS(<n>) command can be used in the NC program to define any spindle as the
master spindle. SETMS must be in a separate block.

Example:

Program code Comment
N10 SETMS (2) ; Spindle 2 is now the master spindle.

Note

The speed specified with S..., along with the functions programmed with M3, M4, M5, now
apply to the newly declared master spindle.

If SETMS is programmed without a spindle name, the master spindle programmed in the
machine data is used instead.

2.6.2 Tool cutting speed (SVC)
As an alternative to the spindle speed, the tool cutting speed, which is more commonly used in
practice, can be programmed for milling operations.

① Spindle speed
② Tool radius
③ Tool cutting speed

The control uses the radius of the active tool to calculate the effective spindle speed from the
programmed tool cutting speed:
S = (SVC * 1000) / (RT * 2π)
with: S: Spindle speed in rpm

SVC: Tool cutting speed in m/min or ft/min
RT: Radius of the active tool in mm

Fundamentals
2.6 Spindle motion

NC programming
94 Programming Manual, 06/2019, A5E47437142B AA

The tool type ($TC_DP1) of the active tool is not taken into account.

The programmed tool cutting speed is independent of path feedrate F and G function group 15
(feedrate type). The direction of rotation and the spindle start are implemented via M3 and M4,
and the spindle stop via M5.

A change to the tool radius data in the offset memory will be applied the next time a tool offset
is selected or the next time the active offset data is updated.

Changing the tool or selecting/deselecting a tool offset data set generates a recalculation of the
effective spindle speed.

Requirements
Programming of the tool cutting speed requires:

● The geometric ratios of a rotating tool (milling cutter or drilling tool)

● An active tool offset data set

Syntax

T... D... SVC[<n>]=<Value>
...
S... M3/M4

Meaning

SVC: Keyword for programming of the tool cutting speed
[<n>]: Number of spindle

This address extension specifies which spindle the programmed cutting speed
is to be applied for. In the absence of an address extension, the rate is always
applied to the master spindle.
Note:
A separate cutting speed can be preset for each spindle.
Note:
Programming SVC without an address extension requires that the master spin‐
dle has the active tool. If the master spindle changes, the user will need to select
a tool accordingly.

<Value>: Value of tool cutting speed
Unit: m/min (for G71/G710) or ft/min (for G70/G700)

T... D...: The tool radius must be established in the block with SVC. Thus, a correspond‐
ing tool including tool offset data block must either be active or selected in the
block. There is no fixed sequence for SVC and T/D selection during program‐
ming in the same block.

S... M3/M4: Programming of the spindle speed will effect deselection of the tool cutting
speed.
Note:
Switching between SVC programming and S programming is possible at any
time, even while the spindle is rotating. In each case, the value that is not active
is deleted.

Fundamentals
2.6 Spindle motion

NC programming
Programming Manual, 06/2019, A5E47437142B AA 95

Note

SVC programming is not possible if the following spindle feedrate movements are active:
● Constant cutting speed: G96/G961/G962 S... (Page 100)
● Constant grinding wheel peripheral speed: SUG (Page 105)
● Position spindle: SPOS/SPOSA/M19 (Page 119)
● ; Switch master spindle over to axis mode: M70 (Page 119)

Conversely, programming one of these functions will effect a deselection of SVC (tool cutting
speed).

Note
Maximum tool speed

System variable $TC_TP_MAX_VELO[<tool number>] can be used to preset a maximum tool
speed (spindle speed).
If no speed limit has been defined, there will be no monitoring.

Note

The tool paths of "standard tools" generated, e.g. using CAD systems which already take the
tool radius into account and only contain the deviation from the standard tool in the tool nose
radius, are not supported in conjunction with SVC programming.

Examples
The following shall apply to all examples: Tool carrier = spindle (for standard milling)

Example 1: Milling cutter 6 mm radius

Program code Comment
N10 G0 X10 T1 D1 ; Selection of milling tool with, e.g.

$TC_DP6[1,1] = 6 (tool radius = 6 mm)
N20 SVC=100 M3 ; Cutting speed = 100 m/min

⇒ Resulting spindle speed:
S = (100 m/min * 1000) / (6.0 mm * 2 * 3.14) =
2653.93 rpm

N30 G1 X50 G95 FZ=0.03 ; SVC and tooth feedrate
...

Example 2: Tool selection and SVC in the same block

Program code Comment
N10 G0 X20
N20 T1 D1 SVC=100 ; Tool and offset data set selection together with

SVC in block (no specific sequence).
N30 X30 M3 ; Spindle start with CW direction of rotation, cut-

ting speed 100 m/min

Fundamentals
2.6 Spindle motion

NC programming
96 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N40 G1 X20 F0.3 G95 ; SVC and revolutional feedrate

Example 3: Defining cutting speeds for two spindles

Program code Comment
N10 SVC[3]=100 M6 T1 D1
N20 SVC[5]=200 ; The tool radius of the active tool offset is the

same for both spindles. The effective speed is dif-
ferent for spindle 3 and spindle 5.

Example 4:
Assumptions:

Master or tool change is determined by the tool carrier:

MD20124 $MC_TOOL_MANAGEMENT_TOOL CARRIER > 1

In the event of a tool change the old tool offset is retained. A tool offset for the new tool is only
activated when D is programmed:

MD20270 $MC_CUTTING_EDGE_DEFAULT = - 2

Program code Comment
N10 $TC_MPP1[9998,1]=2 ; Magazine location is tool carrier
N11 $TC_MPP5[9998,1]=1 ; Magazine location is tool carrier 1
N12 $TC_MPP_SP[9998,1]=3 ; Tool carrier 1 is assigned to spindle 3
N20 $TC_MPP1[9998,2]=2 ; Magazine location is tool carrier
N21 $TC_MPP5[9998,2]=4 ; Magazine location is tool carrier 4
N22 $TC_MPP_SP[9998,2]=6 ; Tool carrier 4 is assigned to spindle 6
N30 $TC_TP2[2]="WZ2"
N31 $TC_DP6[2,1]=5.0 ; Radius = 5.0 mm of T2, offset D1
N40 $TC_TP2[8]="WZ8"
N41 $TC_DP6[8,1]=9.0 ; Radius = 9.0 mm of T8, offset D1
N42 $TC_DP6[8,4]=7.0 ; Radius = 7.0 mm of T8, offset D4
...
N100 SETMTH(1) ; Set master tool carrier number
N110 T="WZ2" M6 D1 ; Tool T2 is loaded and offset D1 is activated.
N120 G1 G94 F1000 M3=3 SVC=100 ; S3 = (100 m/min * 1000) / (5.0 mm * 2 * 3.14) = 3184.71 rpm
N130 SETMTH(4) ; Set master tool carrier number
N140 T="WZ8" ; Corresponds to T8="WZ8"
N150 M6 ; Corresponds to M4=6

Tool "WZ8" is in the master tool carrier, but because
MD20270=–2, the old tool offset remains active.

N160 SVC=50 ; S3 = (50 m/min * 1000) / (5.0 mm * 2 * 3.14) = 1592.36 rpm
The offset applied to tool carrier 1 is still active and as-
signed to spindle 3.

N170 D4 ; Offset D4 of the new tool "WZ8" becomes active (in tool
carrier 4).

Fundamentals
2.6 Spindle motion

NC programming
Programming Manual, 06/2019, A5E47437142B AA 97

Program code Comment
N180 SVC=300 ; S6 = (300 m/min * 1000) / (7.0 mm * 2 * 3.14) = 6824.39 rpm

Spindle 6 is assigned to tool carrier 4.

Example 5:
Assumptions:

Spindles are tool carriers at the same time:

MD20124 $MC_TOOL_MANAGEMENT_TOOL CARRIER = 0

In the event of a tool change, tool offset data set D4 is selected automatically:

MD20270 $MC_CUTTING_EDGE_DEFAULT = 4

Program code Comment
N10 $TC_MPP1[9998,1]=2 ; Magazine location is tool carrier
N11 $TC_MPP5[9998,1]=1 ; Magazine location is tool carrier 1 = spindle 1
N20 $TC_MPP1[9998,2]=2 ; Magazine location is tool carrier
N21 $TC_MPP5[9998,2]=3 ; Magazine location is tool carrier 3 = spindle 3
N30 $TC_TP2[2]="WZ2"
N31 $TC_DP6[2,1]=5.0 ; Radius = 5.0 mm of T2, offset D1
N40 $TC_TP2[8]="WZ8"
N41 $TC_DP6[8,1]=9.0 ; Radius = 9.0 mm of T8, offset D1
N42 $TC_DP6[8,4]=7.0 ; Radius = 7.0 mm of T8, offset D4
...
N100 SETMS(1) ; Spindle 1 = master spindle
N110 T="WZ2" M6 D1 ; Tool T2 is loaded and offset D1 is activated.
N120 G1 G94 F1000 M3 SVC=100 ; S1 = (100 m/min * 1000) / (5.0 mm * 2 * 3.14) = 3184.71 rpm
N200 SETMS(3) ; Spindle 3 = master spindle
N210 M4 SVC=150 ; S3 = (150 m/min * 1000) / (5.0 mm * 2 * 3.14) = 4777.07 rpm

Refers to tool offset D1 of T="WZ2", S1 continues to turn at
previous speed.

N220 T="WZ8" ; Corresponds to T8="WZ8"
N230 M4 SVC=200 ; S3 = (200 m/min * 1000) / (5.0 mm * 2 * 3.14) = 6369.43 rpm

Refers to tool offset D1 of T="WZ2".
N240 M6 ; Corresponds to M3=6

Tool "WZ8" is in the master spindle, tool offset D4 of the
new tool becomes active.

N250 SVC=50 ; S3 = (50 m/min * 1000) / (7.0 mm * 2 * 3.14) = 1137.40 rpm
Offset D4 on master spindle is active.

N260 D1 ; Offset D1 of new tool "WZ8" active.
N270 SVC[1]=300 ; S1 = (300 m/min * 1000) / (9.0 mm * 2 * 3.14) = 5307.86 rpm

S3 = (50 m/min * 1000) / (9.0 mm * 2 * 3.14) = 884.64 rpm
...

Further information
Tool radius

Fundamentals
2.6 Spindle motion

NC programming
98 Programming Manual, 06/2019, A5E47437142B AA

The following tool offset data (associated with the active tool) affect the tool radius when:

● $TC_DP6 (radius - geometry)

● $TC_DP15 (radius - wear)

● $TC_SCPx6 (offset for $TC_DP6)

● $TC_ECPx6 (offset for $TC_DP6)

The following are not taken into account:

● Online radius compensation

● Allowance on the programmed contour (OFFN)

Tool radius compensation (G41/G42)

Although tool radius compensation (G41/G42) and SVC both relate to the tool radius, they are
not functionally linked and are independent of one another.

Tapping without compensating chuck (G331, G332)

SVC programming is also possible in conjunction with G331 or G332.

Synchronized actions

SVC cannot be programmed from synchronized actions.

Reading the cutting speed and the spindle speed programming variant

The cutting speed of a spindle and the speed programming variant (spindle speed S or tool
cutting speed SVC) can be read using system variables:

● With preprocessing stop in the part program via system variables:

 $AC_SVC[<n>] Effective cutting speed when the current main run block for
spindle with number <n> was preprocessed.

$AC_S_TYPE[<n>] Effective spindle speed programming variant when the cur‐
rent main run block for spindle with number <n> was pre‐
processed.
Value: Meaning:
1 Spindle speed S in rpm
2 Tool cutting speed SVC in m/min or ft/min

● Without preprocessing stop in the part program via system variables:

 $P_SVC[<n>] Programmed cutting speed for spindle <n>
$P_S_TYPE[<n>] Programmed spindle speed programming variant for spindle

<n>
Value: Meaning:
1 Spindle speed S in rpm
2 Tool cutting speed SVC in m/min or ft/min

Fundamentals
2.6 Spindle motion

NC programming
Programming Manual, 06/2019, A5E47437142B AA 99

2.6.3 Constant cutting rate (G96/G961/G962, G97/G971/G972, G973, LIMS, SCC)
If the "Constant cutting speed" function is active, the spindle speed is modified as a function of
the respective workpiece diameter so that the cutting speed S in m/min or ft/min remains
constant at the tool edge.

This results in the following advantages:

● Uniformity and consequently improved surface quality of turned parts

● Machining with less wear on tools

Syntax

Activating/deactivating constant cutting speed for the master spindle:

G96/G961/G962 S...
...
G97/G971/G972/G973

Speed limitation for the master spindle:
LIMS=<value>
LIMS[<spindle>]=<value>

Other reference axis for G96/G961/G962:
SCC[<axis>]

Note

SCC[<axis>] can be programmed together with G96/G961/G962 or in isolation.

Fundamentals
2.6 Spindle motion

NC programming
100 Programming Manual, 06/2019, A5E47437142B AA

Meaning

G96: Revolutional feedrate (as for G95 (Page 107)) and constant cutting speed
G95 is activated automatically with G96. If G95 has not been activated previously, a new
feedrate value F... has to be specified when G96 is called.

G961: Linear feedrate (as for G94 (Page 107)) and constant cutting speed
G962: Linear feedrate or revolutional feedrate and constant cutting speed
S...: In conjunction with G96, G961 or G962, S... is not interpreted as a spindle speed but

rather as a cutting speed. The cutting speed is always applied to the master spindle.
Unit: m/min (for G71/G710) or ft/min (for G70/G700)
Range of values: 0.1 m/min to 9999 9999.9 m/min

G97: Revolutional feedrate and constant spindle speed (constant cutting speed OFF)
G971: Linear feedrate and constant spindle speed (constant cutting speed OFF)
G972: Linear feedrate or revolutional feedrate and constant spindle speed (constant cutting

speed OFF)
G973: Revolutional feedrate without spindle speed limitation and constant spindle speed (G97

without LIMS for ISO mode)
Note:
After G97 (or G971 ... G973), S... is again interpreted as a spindle speed in rpm. In the
absence of a new spindle speed being specified, the last speed set with G96 (respec‐
tively G961 or G962) is retained.

LIMS: Speed limitation for the master spindle (only applied if G96/G961/G97 active)
On machines with selectable master spindles, limitations of differing values can be
programmed for up to four spindles within one block.
<spindle>: Number of spindle
<value>: Spindle speed upper limit in rpm

SCC: If any of the G96/G961/G962 functions are active, SCC[<axis>] can be used to assign
any geometry axis as a reference axis.

Note

If G96/G961/G962 is selected for the first time, a constant cutting speed S... must be entered;
if G96/G961/G962 is selected again, the entry is optional.

Note

The speed limitation programmed with LIMS must not exceed the speed limit programmed with
G26 or defined in the setting data.

Note

The reference axis for G96/G961/G962 must be a geometry axis assigned to the channel at the
time when SCC[<axis>] is programmed. SCC[<axis>] can also be programmed when any of
the G96/G961/G962 functions are active.

Fundamentals
2.6 Spindle motion

NC programming
Programming Manual, 06/2019, A5E47437142B AA 101

Examples
Example 1: Activating the constant cutting speed with speed limitation

Program code Comment
N10 SETMS (3)
N20 G96 S100 LIMS=2500 ; Constant cutting speed = 100 m/min,

max. speed = 2500 rpm
...
N60 G96 G90 X0 Z10 F8 S100 LIMS=444 ; Max. speed = 444 rpm

Example 2: Defining speed limitation for four spindles

Speed limitations are defined for spindle 1 (master spindle) and spindles 2, 3, and 4:

Program code
N10 LIMS=300 LIMS[2]=450 LIMS[3]=800
LIMS[4]=1500

...

Example 3: Y-axis assignment for face cutting with X axis

Program code Comment
N10 G18 LIMS=3000 T1 D1 ; Speed limitation at 3000 rpm
N20 G0 X100 Z200
N30 Z100
N40 G96 S20 M3 ; Constant cutting speed = 20 m/min, is dependent

upon X axis.
N50 G0 X80
N60 G1 F1.2 X34 ; Face cutting in X at 1.2 mm/revolution.
N70 G0 G94 X100
N80 Z80
N100 T2 D1
N110 G96 S40 SCC[Y] ; Y axis is assigned to G96 and G96 is activated (can

be achieved in a single block). Constant cutting
speed = 40 m/min, is dependent upon X axis.

...
N140 Y30
N150 G01 F1.2 Y=27 ; Plunge-cutting in Y, feedrate F = 1.2 mm/revolution.
N160 G97 ; Constant cutting speed off.
N170 G0 Y100

Further information
Calculation of the spindle speed

Fundamentals
2.6 Spindle motion

NC programming
102 Programming Manual, 06/2019, A5E47437142B AA

The SZS position of the face axis (radius) is the basis for calculating the spindle speed from the
programmed cutting rate.

Note

Frames between WCS and SZS (e.g. programmable frames such as SCALE, TRANS or ROT)
are taken into account in the calculation of the spindle speed and can bring about a change in
speed (for example, if there is a change in the effective diameter in the case of SCALE).

Speed limitation LIMS

If a workpiece that varies greatly in diameter needs to be machined, it is advisable to specify a
speed limit for the spindle with LIMS (maximum spindle speed). This prevents excessively high
speeds with small diameters. LIMS is only applied if G96, G961 and G97 are active. LIMS is not
applied if G971 is selected. On loading the block into the main run, all programmed values are
transferred into the setting data.

Note

The speed limits changed with LIMS in the part program are taken into the setting data and
therefore remain saved after the end of program.

However, if the speed limits changed with LIMS are no longer to apply after the end of program,
the following definition must be inserted in the GUD block of the machine manufacturer:

REDEF $SA_SPIND_MAX_VELO_LIMS PRLOC

Deactivating the constant cutting rate (G97/G971/G972/G973)

After G97 (or G971 ... G973), S... is again interpreted as a spindle speed in rpm. In the absence
of a new spindle speed being specified, the last speed set with G96 (respectively G961 or
G962) is retained.

The G96/G961 function can also be deactivated with G94 or G95. In this case, the last speed
programmed S... is used for subsequent machining operations.

G97 can be programmed without G96 beforehand. The function then has the same effect as
G95; LIMS can also be programmed.

Using G973, the constant cutting rate can be deactivated without activating a spindle speed
limitation.

Note

The transverse axis must be defined in machine data.

Rapid traverse G0

With rapid traverse G0, there is no change in speed.

Exception:

If the contour is approached in rapid traverse and the next NC block contains a G1/G2/G3/...
path command, the speed is adjusted in the G0 approach block for the next path command.

Other reference axis for G96/G961/G962

Fundamentals
2.6 Spindle motion

NC programming
Programming Manual, 06/2019, A5E47437142B AA 103

If any of the G96/G961/G962 functions are active, SCC[<axis>] can be used to assign any
geometry axis as a reference axis. If the reference axis changes, which will in turn affect the
TCP (tool center point) reference position for the constant cutting rate, the resulting spindle
speed will be reached via the set braking or acceleration ramp.

Axis exchange of the assigned channel axis

The reference axis property for G96/G961/G962 is always assigned to a geometry axis. In the
event of an axis exchange involving the assigned channel axis, the reference axis property for
G96/G961/G962 is retained in the old channel.

A geometry axis exchange will not affect how the geometry axis is assigned to the constant
cutting rate. If the TCP reference position for G96/G961/G962 is affected by a geometry axis
exchange, the spindle will reach the new speed via a ramp.

If no new channel axis is assigned as a result of a geometry axis exchange (e.g. GEOAX(0,X)),
the spindle speed will be frozen in accordance with G97.

Examples for geometry axis exchange with assignments of the reference axis:

Program code Comment
N05 G95 F0.1
N10 GEOAX(1, X1) ; Channel axis X1 becomes the first geometry axis.
N20 SCC[X] ; First geometry axis (X) becomes the reference axis

; for G96/G961/G962.
N30 GEOAX(1, X2) ; Channel axis X2 becomes the first geometry axis.
N40 G96 M3 S20 ; Reference axis for G96 is channel axis X2.

Program code Comment
N05 G95 F0.1

N10 GEOAX(1, X1) ; Channel axis X1 becomes the first geometry axis.
N20 SCC[X1] ; X1 and implicitly the first geometry axis (X) becomes

 the reference axis for G96/G961/G962.
N30 GEOAX(1, X2) ; Channel axis X2 becomes the first geometry axis.
N40 G96 M3 S20 ; Reference axis for G96 is X2 or X, no alarm.

Program code Comment
N05 G95 F0.1
N10 GEOAX(1, X2) ; Channel axis X2 becomes the first geometry axis.
N20 SCC[X1] ; X1 is not a geometry axis, alarm.

Program code Comment
N05 G0 Z50
N10 X35 Y30
N15 SCC[X] ; Reference axis for G96/G961/G962 is X.
N20 G96 M3 S20 ; Constant cutting rate ON at 10 mm/min.
N25 G1 F1.5 X20 ; Face cutting in X at 1.5 mm/revolution.

Fundamentals
2.6 Spindle motion

NC programming
104 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N30 G0 Z51
N35 SCC[Y] ; Reference axis for G96 is Y,

 reduction of spindle speed (Y30).
N40 G1 F1.2 Y25 ; Face cutting in Y at 1.2 mm/revolution.

2.6.4 Switching constant grinding wheel peripheral speed (GWPSON, GWPSOF) on/
off:

With the predefined procedures GWPSON(...) and GWPSOF(...), the constant grinding wheel
peripheral speed (GWPS) for grinding tools (tool type: 400 to 499) is switched on and off.

Syntax

GWPSON(<TNo>)
S<n>=... :
...
GWPSOF(<TNo>)

Meaning

GWPSON(...): Switch on the constant grinding wheel peripheral speed
GWPSOF(...): Switch off the constant grinding wheel peripheral speed
<TNo>: T number

Note:
Only required if the constant grinding wheel peripheral speed is to be switch‐
ed on or off for an inactive grinding wheel rather than the active grinding
wheel that is currently in use.

S<n>=…: Grinding wheel peripheral speed in m/s or ft/s for spindle <n>
S0=... or S... : Grinding wheel peripheral speed for the master spindle

Query status
The following system variable can be used to query from the part program whether the constant
grinding wheel peripheral speed is active for a specific spindle.

$P_GWPS[<n>] ; where <n> = spindle number

Value Meaning
0 (= FALSE) GWPS is inactive.
1 (= TRUE) GWPS is active.

Fundamentals
2.6 Spindle motion

NC programming
Programming Manual, 06/2019, A5E47437142B AA 105

2.6.5 Programmable spindle speed limitation (G25, G26)
The minimum and maximum spindle speeds defined in the machine and setting data can be
modified by means of a part program command.

Programmed spindle speed limitations are possible for all spindles of the channel.

Syntax
G25 S… S1=… S2=…
G26 S… S1=… S2=…

Meaning

G25: Lower spindle speed limit
G26: Upper spindle speed limit
S... S1=… S2=… : Minimum or maximum spindle speed(s)

Note:
A maximum of three spindle speed limits can be programmed for
each block.
Range of values: 0.1 to 9999 9999.9 rpm

Note

A spindle speed limitation programmed with G25 or G26 overwrites the speed limits in the
setting data and, therefore, remains stored even after the end of the program.

However, if the speed limits changed with G25/G26 are no longer to apply after the end of
program, the following definitions must be inserted in the GUD block of the machine
manufacturer:

REDEF $SA_SPIND_MIN_VELO_G25 PRLOC

REDEF $SA_SPIND_MAX_VELO_G26 PRLOC

Example

Program code Comment
N10 G26 S1400 S2=350 S3=600 ; Upper speed limit for master spindle, spindle 2 and

spindle 3.

Fundamentals
2.6 Spindle motion

NC programming
106 Programming Manual, 06/2019, A5E47437142B AA

2.7 Feed control

2.7.1 Feedrate (G93, G94, G95, F, FGROUP, FL, FGREF)
These commands are used in the NC program to set the feedrates for all axes involved in the
machining sequence.

Syntax
G93
G94
G95
F<value>
FGROUP(<axis_1>,<axis_2>,...)
FGREF[<rotary axis>]=<reference radius>
FL[<axis>]=<value>

Meaning

G93: Path feed type: Inverse-time feedrate [rpm]
G94: Path feed type: Linear feedrate [mm/min], [inch/min] or [degrees/min]
G95: Path feed type: Revolutional feedrate [mm/revolution] or [inch/revolution]

The revolutional feedrate can be derived from a master spindle, any other spindle or a
rotary axis.

F<value> Path feedrate for all or the path axes selected with FGROUP.
FGROUP: Definition of the path axes to which the F-programmed path feed refers
FGREF: FGREF is used to program the effective radius (<reference radius>) for each of the

rotary axes specified under FGROUP
FL: Limit velocity for synchronized/path axes

The unit set with G94 applies
One FL value can be programmed per axis (channel axes, geometry axis or orientation
axis)

<axis>: Name of a channel axis, type: AXIS

Examples

Example 1: Mode of operation of FGROUP
The following example is intended to demonstrate the effect of FGROUP on the path and path
feedrate. The variable $AC_TIME contains the time of the block start in seconds. It can only be
used in synchronized actions.

Program code Comment
N100 G0 X0 A0
N110 FGROUP(X,A)
N120 G91 G1 G710 F100 ; Feedrate = 100mm/min or 100 degrees/min
N130 DO $R1=$AC_TIME

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 107

Program code Comment
N140 X10 ; Feedrate = 100 mm/min, path = 10 mm, R1

= approx. 6 s
N150 DO $R2=$AC_TIME
N160 X10 A10 ; Feedrate = 100 mm/min, path = 14.14 mm,

R2 = approx. 8 s
N170 DO $R3=$AC_TIME
N180 A10 ; Feedrate = 100 degrees/min, path = 10 de-

grees, R3 = approx. 6 s
N190 DO $R4=$AC_TIME
N200 X0.001 A10 ; Feedrate = 100 mm/min, path = 10 mm, R4

= approx. 6 s
N210 G700 F100 ; Feedrate = 2540 mm/min or 100 degrees/min
N220 DO $R5=$AC_TIME
N230 X10 ; Feedrate = 2540 mm/min, path = 254 mm, R5

= approx. 6 s
N240 DO $R6=$AC_TIME
N250 X10 A10 ; Feedrate = 2540 mm/min, path = 254.2 mm,

R6 = approx. 6 s
N260 DO $R7=$AC_TIME
N270 A10 ; Feedrate = 100 degrees/min, path = 10 de-

grees, R7 = approx. 6 s
N280 DO $R8=$AC_TIME
N290 X0.001 A10 ; Feedrate = 2540 mm/min, path = 10 mm, R8

= approx. 0.288 s
N300 FGREF[A]=360/(2*$PI) ; Set 1 degree = 1 inch via the effective

radius
N310 DO $R9=$AC_TIME
N320 X0.001 A10 ; Feedrate = 2540 mm/min, path = 254 mm, R9

= approx. 6 s
N330 M30

Example 2: Traverse synchronized axes with limit speed FL
The path velocity of the path axes is reduced if the synchronized axis Z reaches the limit
velocity.

Program code
N10 G0 X0 Y0
N20 FGROUP(X)
N30 G1 X1000 Y1000 G94 F1000 FL[Y]=500
N40 Z-50

Example 3: Helical interpolation
Path axes X and Y traverse with the programmed feedrate, the infeed axis Z is a synchronized
axis.

Fundamentals
2.7 Feed control

NC programming
108 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N10 G17 G94 G1 Z0 F500 ; Feed of the tool.
N20 X10 Y20 ; Approach the starting posi-

tion.
N25 FGROUP(X,Y) ; Axes X/Y are path axes, Z is

a synchronized axis.
N30 G2 X10 Y20 Z-15 I15 J0 F1000 FL[Z]=200 ; On the circular path, the

feedrate is 1,000 mm/min, tra-
versing in the Z direction is
synchronized.

...
N100 FL[Z]=$MA_AX_VELO_LIMIT[0,Z] ; The limit speed is deselec-

ted by reading the speed from
the MD. Read the value from
the MD.

N110 M30 ; End of program

Further information
Feedrate for path axes (F)

The path feedrate is generally composed of the individual speed components of all geometry
axes participating in the movement and refers to the center point of the cutter or the tip of the
turning tool.

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 109

The feedrate is specified under address F. Depending on the default setting in the machine
data, the units of measurement specified with the G commands are either in mm or inch.

One F value can be programmed per NC block. The feedrate unit is defined using one of the G
commands G93/G94/G95. The feedrate F acts only on path axes and remains active until a new
feedrate is programmed. Separators are permitted after the address F.

Examples:

F100 or F 100
F.5
F=2*FEED
Feedrate type (G93/G94/G95)

The G commands G93, G94 and G95 are modal. In the event of switching between G93, G94
and G95, the path feedrate value has to be reprogrammed. When machining with rotary axes,
the feedrate can also be specified in degrees/min.

Inverse-time feedrate (G93)

The inverse-time feedrate specifies the time required to execute the motion commands in a
block.

Unit: rpm

Example:

N10 G93 G01 X100 F2
Means: The programmed path is traversed in 0.5 min.

Fundamentals
2.7 Feed control

NC programming
110 Programming Manual, 06/2019, A5E47437142B AA

Note

If the path lengths vary greatly from block to block, a new F value should be specified in each
block with G93. When machining with rotary axes, the feedrate can also be specified in degrees/
min.

Feedrate for synchronized axes

The feedrate programmed under address F applies to all the path axes programmed in a block
but not to the synchronized axes. The synchronized axes are controlled such that they require
the same time for their path as the path axes, and all axes reach their end point at the same time.

Limit velocity for synchronized axes (FL)

The FL command can be used to program a limit velocity for synchronized axes. In the absence
of a programmed FL, the rapid traverse velocity applies. FL is deselected by assignment to MD
(MD36200 $MA_AX_VELO_LIMIT).

Traverse path axis as synchronized axis (FGROUP)

FGROUP is used to define whether a path axis should be traversed with path feedrate or as a
synchronized axis. In helical interpolation, for example, it is possible to define that only two
geometry axes, X and Y, are to be traversed at the programmed feedrate. The infeed axis Z is
the synchronized axis in this case.

Example: FGROUP(X,Y)
Change FGROUP

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 111

The setting made with FGROUP can be changed:

1. By reprogramming FGROUP: e.g. FGROUP(X,Y,Z)
2. By programming FGROUP without a specific axis: FGROUP()

In accordance with FGROUP(), the initial setting in the machine data applies: Geometry
axes are now once again traversed in the path axis grouping.

Note

With FGROUP, axis identifiers must be the names of channel axes.

Units of measurement for feedrate F

In addition to the geometrical settings G700 and G710, the G commands are also used to define
the measuring system for the feedrates F. In other words:

● For G700: [inch/min]

● For G710: [mm/min]

Note

G70/G71 have no effect on feedrate settings.

Unit of measurement for synchronized axes with limit speed FL

The unit set for F using G command G700/G710 is also valid for FL.

Unit for rotary and linear axes

For linear and rotary axes which are combined with FGROUP and traverse a path together, the
feedrate is interpreted in the unit of the linear axes (depending on the default with G94/G95, in
mm/min or inch/min and mm/rev or inch/rev).

The tangential velocity of the rotary axis in mm/min or inch/min is calculated according to the
following formula:

F[mm/min] = F'[degrees/min] * π * D[mm]/360[degrees]

where: F: Tangential velocity
F': Angular velocity
π: Circle constant
D: Diameter

Fundamentals
2.7 Feed control

NC programming
112 Programming Manual, 06/2019, A5E47437142B AA

Traverse rotary axes with path velocity F (FGREF)

For machining operations in which the tool or the workpiece or both are moved by a rotary axis,
the effective machining feedrate is to be interpreted as a path feed in the usual way by
reference to the F value. This requires the specification of an effective radius (reference radius)
for each of the rotary axes involved.

The unit of the reference radius depends on the G70/G71/G700/G710 setting.

All axes involved must be included in the FGROUP command to be taken into account in the
calculation of the path feedrate.

In order to ensure compatibility with the behavior with no FGREF programming, the factor 1
degree = 1 mm is activated on system power up and RESET. This corresponds to a reference
radius of FGREF= 360 mm/(2π) = 57.296 mm.

Note

This default is independent of the active basic system
(MD10240 $MN_SCALING_SYSTEM_IS_METRIC) and the currently active G70/G71/G700/
G710 setting.

Special situations:

Program code
N100 FGROUP(X,Y,Z,A)
N110 G1 G91 A10 F100
N120 G1 G91 A10 X0.0001 F100

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 113

With this type of programming, the F value programmed in N110 is evaluated as the rotary axis
feedrate in degrees/min, while the feedrate evaluation in N120 is either 100 inch/min or 100 mm/
min, dependent upon the currently active G70/G71/G700/G710 setting.

NOTICE

Feedrate difference

FGREF evaluation also works if only rotary axes are programmed in the block. The normal F
value interpretation as degree/min applies in this case only if the radius reference corresponds
to the FGREF default:
● For G71/G710: FGREF[A]=57.296
● For G70/G700: FGREF[A]=57.296/25.4

Read reference radius

The value of the reference radius of a rotary axis can be read using system variables:

● In synchronized actions or with preprocessing stop in the part program via system variable:

 $AA_FGREF[<axis>] Current main run value

● Without preprocessing stop in the part program via system variable:

 $PA_FGREF[<axis>] Programmed value

If no values are programmed, the default 360 mm/(2π) = 57.296 mm (corresponding to 1 mm
per degree) will be read in both variables.

For linear axes, the value in both variables is always 1 mm.

Read path axes affecting velocity

The axes involved in path interpolation can be read using system variables:

● In synchronized actions or with preprocessing stop in the part program via system variables:

 $AA_FGROUP[<axis>] Returns the value "1" if the specified axis affects the path
velocity in the current main run record by means of the
basic setting or through FGROUP programming. Other‐
wise, the variable returns the value "0".

 $AC_FGROUP_MASK Returns a bit key of the channel axes programmed
with FGROUP which are to affect the path velocity.

● Without preprocessing stop in the part program via system variables:

 $PA_FGROUP[<axis>] Returns the value "1" if the specified axis affects the path
velocity by means of the basic setting or through FGROUP
programming. Otherwise, the variable returns the value
"0".

 $P_FGROUP_MASK Returns a bit key of the channel axes programmed
with FGROUP which are to affect the path velocity.

Path reference factors for orientation axes with FGREF

Fundamentals
2.7 Feed control

NC programming
114 Programming Manual, 06/2019, A5E47437142B AA

With orientation axes the mode of operation of the FGREF[] factors is dependent upon whether
the change in the orientation of the tool is implemented by means of rotary axis or vector
interpolation.

In the case of rotary axis interpolation, as is the case with rotary axes, the relevant FGREF
factors of the orientation axes are calculated individually as reference radius for the axis paths.

In the case of vector interpolation, an effective FGREF factor, which is calculated as the
geometric mean value of the individual FGREF factors, is applied.

FGREF[effective] = nth root of [(FGREF[A] * FGREF[B]...)]

where: A: Axis identifier of 1st orientation axis
B: Axis identifier of 2nd orientation axis
C: Axis identifier of 3rd orientation axis
n: Number of orientation axes

Example:

Since there are two orientation axes for a standard 5-axis transformation, the effective factor is,
therefore, the root of the product of the two axial factors:

FGREF[effective] = square root of [(FGREF[A] * FGREF[B])]

Note

It is, therefore, possible to use the effective factor for orientation axes FGREF to define a
reference point on the tool to which the programmed path feedrate refers.

2.7.2 Traverse positioning axes (POS, POSA, POSP, FA, WAITP, WAITMC)
Positioning axes are traversed independently of the path axes at a separate, axis-specific
feedrate. There are no interpolation commands. The POS/POSA/POSP commands are used to
traverse the positioning axes and coordinate the motion sequences at the same time.

The following are typical examples of positioning axes:

● Pallet feed equipment

● Gauging stations

WAITP can be used to identify a position in the NC program where the program is to wait until
an axis programmed with POSA in a previous NC block reaches its end position.

WAITMC loads the next NC block immediately when the specified wait marker is received.

Syntax
POS[<axis>]=<position>
POSA[<axis>]=<position>
POSP[<axis>]=(<end position>,<partial length>,<mode>)
FA[<axis>]=<value>

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 115

WAITP(<axis>) ; Programming in a separate NC block.

WAITMC(<wait marker>)

Meaning

POS/POSA: Move positioning axis to specified position
POS and POSA have the same functionality but differ in their block change behavior:
● POS delays the enabling of the NC block until the position has been reached.
● POSA enables the NC block even if the position has not been reached.
<axis>: Name of the axis to be traversed (channel or geometry axis

identifier)
<position>: Axis position to be approached

Type: REAL
POSP: Move positioning axis to specified end position in sections

<end position>: Axis end position to be approached
<partial length>: Length of a section
<mode>: Approach mode

= 0: For the last two sections, the path remaining until
the end position is split into two residual sections
of equal size (preset).

= 1: The partial length is adjusted so that the total of all
calculated partial lengths corresponds exactly to
the path up to the end position.

Note:
POSP is used specifically to program oscillating motion.
References:
Programming Manual, Job Planning; Section "Oscillation"

FA: Feedrate for the specified positioning axis
<axis>: Name of the axis to be traversed (channel or geometry axis identifier)
<value>: Feedrate

Unit: mm/min or inch/min or degrees/min
Note:
Up to five FA values can be programmed for each NC block.

WAITP: Wait for a positioning axis to be traversed
The subsequent blocks are not processed until the specified positioning axis pro‐
grammed in a previous NC block with POSA has reached its end position (with exact
stop fine).
<axis>: Name of the axis (channel or geometry axis identifier) for which

the WAITP command is to be applied
Note:
With WAITP, an axis can be made available as an oscillating axis or for traversing
as a concurrent positioning axis (via PLC).

WAITMC:

Wait for the specified wait marker to be received
When the wait marker is received, the next NC block is loaded immediately.
<wait marker>: Number of the wait marker

Fundamentals
2.7 Feed control

NC programming
116 Programming Manual, 06/2019, A5E47437142B AA

CAUTION

Travel with POSA

If a command, which implicitly causes a preprocessing stop, is read in a following block, this
block is not executed until all other blocks which are already preprocessed and stored have
been executed. The previous block is stopped in exact stop (as G9).

Examples

Example 1: Travel with POSA and access to machine status data
The control generates an internal preprocessing stop on access to machine status data ($A...).
Machining is stopped until all preprocessed and saved blocks have been executed in full.

Program code Comment
N40 POSA[X]=100
N50 IF $AA_IM[X]==R100 GOTOF LABEL1 ; Access to machine status data.
N60 G0 Y100
N70 WAITP(X)
N80 LABEL1:
N...

Example 2: Wait for end of travel with WAITP

Pallet feed equipment
Axis U: Pallet store

Transport of workpiece pallet to working area
Axis V: Transfer line to a gauging station where spot checks are carried out to assist

the process

Program code Comment
N10 FA[U]=100 FA[V]=100 ; Axis-specific feedrate specifica-

tions for the individual position-
ing axes U and V.

N20 POSA[V]=90 POSA[U]=100 G0 X50 Y70 ; Traverse positioning and path ax-
es.

N50 WAITP(U) ; Program execution does not resume
until axis U reaches the end point
programmed in N20.

…

Further information
Travel with POSA

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 117

Block step enable or program execution is not affected by POSA. The movement to the end
position can be performed during execution of subsequent NC blocks.

Travel with POS

The next block is not executed until all axes programmed under POS reach their end positions.

Wait for end of travel with WAITP

After a WAITP, assignment of the axis to the NC program is no longer valid; this applies until the
axis is programmed again. This axis can then be operated as a positioning axis through the
PLC, or as a reciprocating axis from the NC program/PLC or HMI.

Block change in the braking ramp with IPOBRKA and WAITMC

An axis is only decelerated if the wait marker has not yet been reached or if another end-of-
block criterion is preventing the block change. After a WAITMC, the axis starts immediately if no
other end-of-block criterion is preventing the block change.

2.7.3 Position-controlled spindle mode (SPCON, SPCOF)
With the commands SPCON or SPCOF, the position-controlled mode of the spindle is explicitly
activated or deactivated.

Note

The switching on of the position control mode with SPCON requires a maximum of three position
control cycles.

Syntax
SPCON
SPCON(<n>)
SPCON(<n>,<m>,...)
SPCOF
SPCOF(<n>)
SPCOF(<n>,<m>,...)

Meaning

SPCON: Activate position-controlled mode
The specified spindle is switched over from speed control to position control.
SPCON s modal and is retained until SPCOF.

SPCOF: Deactivate position-controlled mode
The specified spindle is switched over from position control to speed control.

<n>,<m>,
etc.:

0 ... k spindle numbers
Without specification of a spindle number: Master spindle of the channel

Fundamentals
2.7 Feed control

NC programming
118 Programming Manual, 06/2019, A5E47437142B AA

Note

For a synchronous spindle with setpoint coupling, the leading spindle must not be switched to
speed-controlled mode with SPCOF.

References

Function Manual, Extended Functions; Section "S3 Synchronous Spindle"

2.7.4 Positioning spindles (SPOS, SPOSA, M19, M70, WAITS)
SPOS, SPOSA or M19 can be used to set spindles to specific angular positions, e.g. during tool
change.

SPOS, SPOSA and M19 induce a temporary switchover to position-controlled mode until the next
M3/M4/M5/M41 to M45.

Positioning in axis mode

The spindle can also be operated as a path axis, synchronized axis or positioning axis at the
address defined in the machine data. When the axis identifier is specified, the spindle is in axis
mode. M70 switches the spindle directly to axis mode.

End of positioning

The end-of-motion criterion when positioning the spindle can be programmed using FINEA,
CORSEA, IPOENDA or IPOBRKA.

The program advances to the next block if the end of motion criteria for all spindles or axes
programmed in the current block plus the block change criterion for path interpolation are
fulfilled.

Synchronization

In order to synchronize spindle movements, WAITS can be used to wait until the spindle
position is reached.

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 119

Requirements
The spindle to be positioned must be capable of operation in position-controlled mode.

Syntax
Position spindle:

SPOS=<value>/SPOS[<n>]=<value>
SPOSA=<value>/SPOSA[<n>]=<value>
M19/M<n>=19
Switch spindle over to axis mode:

M70/M<n>=70
Define end-of-motion criterion:

FINEA/FINEA[S<n>]
COARSEA/COARSEA[S<n>]
IPOENDA/IPOENDA[S<n>]
IPOBRKA/IPOBRKA(<axis>[,<instant in time>]) ; Programming in a separate NC
block.

Synchronize spindle movements:

WAITS/WAITS(<n>,<m>) ; Programming in a separate NC block.

Fundamentals
2.7 Feed control

NC programming
120 Programming Manual, 06/2019, A5E47437142B AA

Meaning

SPOS/SPOSA: Set spindle to specified angle
SPOS and SPOSA have the same functionality but differ in their block change be‐
havior:
● SPOS delays the enabling of the NC block until the position has been reached.
● SPOSA enables the NC block even if the position has not been reached.
<n>: Number of the spindle to be positioned.

If a spindle number is not specified or if the spindle number is set
to "0", SPOS or SPOSA will be applied to the master spindle.

<value>: Angular position to which the spindle is to be set.
Unit: Degrees
Type: REAL
The following options are available for programming the position
approach mode:
=AC(<value>): Absolute dimensions
 Range of values: 0 … 359,9999
=IC(<value>): Incremental dimensions
 Range of values: 0 … ±99 999,999
=DC(<value>): Approach absolute value directly
=ACN(<value>): Absolute dimension, approach in negative

direction
=ACP(<value>): Absolute dimension, approach in positive di‐

rection
=<value>: as DC(<value>)

M<n>=19: Set the master spindle (M19 or M0=19) or spindle number <n> (M<n>=19) to the
angular position preset with SD43240 $SA_M19_SPOS with the position approach
mode preset in SD43250 $SA_M19_SPOSMODE.
The NC block is not enabled until the position has been reached.

M<n>=70: Switch the master spindle (M70 or M0=70) or spindle number <n> (M<n>=70) over
to axis mode.
No defined position is approached. The NC block is enabled after the switchover
has been performed.

FINEA: Motion end when "Exact stop fine" reached
COARSEA: Motion end when "Exact stop coarse" reached
IPOENDA: End of motion on reaching "interpolator stop"
S<n>: Spindle for which the programmed end-of-motion criterion is to be effective

<n>: Spindle number
If a spindle is not specified in [S<n>] or a spindle number of "0" is specified, the
programmed end-of-motion criterion will be applied to the master spindle.

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 121

IPOBRKA: A block change is possible in the braking ramp.
<axis>: Channel axis identifier
<instant in
time>:

Instant in time of the block change with reference to the brak‐
ing ramp
Unit: Percent
Range of values: 100 (application point of the braking

ramp) to 0 (end of the braking ramp)
If a value is not assigned to the <instant in time> pa‐
rameter, the current value of the setting data is applied:
SD43600 $SA_IPOBRAKE_BLOCK_EXCHANGE
Note:
IBOBRKA with an instant in time of "0" is identical
to IPOENDA.

WAITS: Synchronization command for the specified spindle(s)

The subsequent blocks are not processed until the specified spindle(s) program‐
med in a previous NC block with SPOSA has (have) reached its (their) end posi‐
tion(s) (with exact stop fine).
WAITS after M5: Wait for the specified spindle(s) to come to a standstill.
WAITS after M3/M4: Wait for the specified spindle(s) to reach their setpoint

speed.
<n>,<m>: Numbers of the spindles to which the synchronization

command is to be applied.
If a spindle number is not specified or if the spindle
number is set to "0", WAITS will be applied to the
master spindle.

Note

Three spindle positions are possible for each NC block.

Note

With incremental dimensions IC(<value>), spindle positioning can take place over several
revolutions.

Note

If position control was activated with SPCON prior to SPOS, this remains active until SPCOF is
issued.

Note

The control detects the transition to axis mode automatically from the program sequence.
Explicit programming of M70 in the part program is, therefore, essentially no longer necessary.
However, M70 can continue to be programmed, e.g. to increase the legibility of the part
program.

Fundamentals
2.7 Feed control

NC programming
122 Programming Manual, 06/2019, A5E47437142B AA

Further information
Positioning with SPOSA

The block step enable or program execution is not affected by SPOSA. The spindle positioning
can be performed during execution of subsequent NC blocks. The program moves onto the
next block if all the functions (except for spindle) programmed in the current block have reached
their block end criterion. The spindle positioning operation may be programmed over several
blocks (see WAITS).

Note

If a command, which implicitly causes a preprocessing stop, is read in a following block,
execution of this block is delayed until all positioning spindles are stationary.

Positioning with SPOS/M19

The block step enabling condition is met when all functions programmed in the block reach their
end-of-block criterion (e.g. all auxiliary functions acknowledged by the PLC, all axes at their end
point) and the spindle reaches the programmed position.

Velocity of the movements:

The velocity and the delay response for positioning are stored in the machine data. The
configured values can be modified by programming or by synchronized actions, see:

● Feedrate for positioning axes / spindles (FA, FPR, FPRAON, FPRAOF) (Page 124)

● Programmable acceleration compensation (ACC) (Page 128)

Specification of spindle positions:

As the G90/G91 commands are not effective here, the corresponding dimensions apply
explicitly, e.g. AC, IC, DC, ACN, ACP. If no specifications are made, traversing automatically
takes place as for DC.

Synchronize spindle movements with WAITS

WAITS can be used to identify a point at which the NC program waits until one or more spindles
programmed with SPOSA in a previous NC block reach their positions.

Example:

Program code Comment
N10 SPOSA[2]=180 SPOSA[3]=0
...
N40 WAITS(2,3) ; The block waits until spindles 2 and 3 have

reached the positions specified in block N10.

WAITS can be used after M5 to wait until the spindle(s) has (have) stopped. WAITS can be used
after M3/M4 to wait until the spindle(s) has (have) reached the specified speed/direction of
rotation.

Note

If the spindle has not yet been synchronized with synchronization marks, the positive direction
of rotation is taken from the machine data (state on delivery).

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 123

Position spindle from rotation (M3/M4)

When M3 or M4 is active, the spindle comes to a standstill at the programmed value.

There is no difference between DC and AC dimensioning. In both cases, rotation continues in
the direction selected by M3/M4 until the absolute end position is reached. With ACN and ACP,
deceleration takes place if necessary, and the appropriate approach direction is taken. With
IC, the spindle rotates additionally to the specified value starting at the current spindle position.

Position a spindle from standstill (M5)

The exact programmed distance is traversed from standstill (M5).

2.7.5 Feedrate for positioning axes / spindles (FA, FPR, FPRAON, FPRAOF)
It is also possible to derive the revolutional feedrate for path and synchronized axes or for
individual positioning axes/spindles from another rotary axis or spindle.

Positioning axes such as workpiece transport systems, tool turrets and end supports are
traversed independently of path and synchronized axes. A separate feedrate is therefore
defined for each positioning axis.

A separate axial feedrate can also be programmed for spindles.

Syntax
Feedrate for positioning axis:
FA[<axis>]=…
Axis feedrate for spindle:
FA[SPI(<n>)]=…
FA[S<n>]=…
Derive revolutional feedrate for path/synchronized axes:

FPR (<rotary axis>)
FPR(SPI(<n>))

Fundamentals
2.7 Feed control

NC programming
124 Programming Manual, 06/2019, A5E47437142B AA

FPR(S<n>)
Derive rotational feedrate for positioning axes/spindles:

FPRAON(<axis>,<rotary axis>)
FPRAON(<axis>,SPI(<n>))
FPRAON(<axis>,S<n>)
FPRAON(SPI(<n>),<rotary axis>)
FPRAON(S<n>,<rotary axis>)
FPRAON(SPI(<n>),SPI(<n>))
FPRAON(S<n>,S<n>)
FPRAOF(<axis>,SPI(<n>), etc.)
FPRAOF(<axis>,S<n>, etc.)

Meaning

FA[...]=... : Feedrate for the specified positioning axis or positioning speed (axial fee‐
drate) for the specified spindle
Unit: mm/min or inch/min or degrees/min
Range of values: … 999,999.999 mm/min, degrees/min

… 39 999.9999 inch/min
FPR(...): FPR is used to identify the rotary axis (<rotary axis>) or spindle

(SPI(<n>)/S<n>) from which the revolutional feedrate for the revolutional
feedrate of the path and synchronized axes programmed under G95 is to be
derived.

FPRAON(...): Derive rotational feedrate for positioning axes and spindles
The first parameter (<axis>/SPI(<n>)/S<n>) identifies the positioning
axis/spindle to be traversed with revolutional feedrate.
The second parameter (<rotary axis>/SPI(<n>)/S<n>) identifies the
rotary axis/spindle from which the revolutional feedrate is to be derived.
Note:
The second parameter can be omitted, in which case the feedrate will be
derived from the master spindle.

FPRAOF(...): FPRAOF is used to deselect the derived revolutional feedrate for the speci‐
fied axes or spindles.

<axis>: Axis identifier (positioning or geometry axis)
SPI(<n>)/S<n>: Spindle identifier

SPI(<n>) and S<n> are identical in terms of function.
<n>: Spindle number
Note:
SPI converts spindle numbers into axis identifiers. The transfer parame‐
ter (<n>) must contain a valid spindle number.

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 125

Note

The programmed feedrate FA[...] is modal.

Up to five feedrates for positioning axes or spindles can be programmed in each NC block.

Note

The derived feedrate is calculated according to the following formula:

Derived feedrate = programmed feedrate * absolute master feedrate

Examples

Example 1: Synchronous spindle coupling
With synchronous spindle coupling, the positioning speed of the following spindle can be
programmed independently of the master spindle, e.g. for positioning operations.

Program code Comment
...
FA[S2]=100 ; Positioning speed of the following spindle (spindle 2) = 100

degrees/min
...

Example 2: Derived revolutional feedrate for path axes
Path axes X, Y must be traversed at the revolutional feedrate derived from rotary axis A:

Program code
...
N40 FPR(A)
N50 G95 X50 Y50 F500
...

Example 3: Derive revolutional feedrate for master spindle

Program code Comment
N30 FPRAON(S1,S2) ; The revolutional feedrate for the master spindle (S1)

must be derived from spindle 2.
N40 SPOS=150 ; Position master spindle.
N50 FPRAOF(S1) ; Deselect derived revolutional feedrate for the master

spindle.

Fundamentals
2.7 Feed control

NC programming
126 Programming Manual, 06/2019, A5E47437142B AA

Example 4: Derive revolutional feedrate for positioning axis

Program code Comment
N30 FPRAON(X) ; The revolutional feedrate for positioning axis X

must be derived from the master spindle.
N40 POS[X]=50 FA[X]=500 ; The positioning axis is traversing at 500 mm/revo-

lution of the master spindle.
N50 FPRAOF(X)

Further information
FA[…]

The feedrate type is always G94. When G70/G71 is active, the unit is metric/inches according
to the default setting in the machine data. G700/G710 can be used to modify the unit in the
program.

Note

If no FA is programmed, the value defined in the machine data applies.

FPR(…)

As an extension of the G95command (revolutional feedrate referring to the master spindle),
FPR allows the revolutional feedrate to be derived from any chosen spindle or rotary axis. G95
FPR(…) is valid for path and synchronized axes.

If the rotary axis/spindle specified in the FPR command is operating on position control, then
the setpoint linkage is active. Otherwise the actual-value linkage is effective.

FPRAON(…)

FPRAON is used to derive the revolutional feedrate for positioning axes and spindles from the
current feedrate of another rotary axis or spindle.

FPRAOF(…)

The revolutional feedrate can be deactivated for one or a number of axes/spindles
simultaneously with the FPRAOF command.

2.7.6 Programmable feedrate override (OVR, OVRRAP, OVRA)
The velocity of path/positioning axes and speed of spindles can be modified in the NC program.

Syntax
OVR=<value>
OVRRAP=<value>
OVRA[<axis>]=<value>
OVRA[SPI(<n>)]=<value>
OVRA[S<n>]=<value>

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 127

Meaning

OVR: Feedrate modification for path feedrate F
OVRRAP: Feedrate modification for rapid traverse velocity
OVRA: Feedrate modification for positioning feedrate FA or for spindle speed S

<axis>: Axis identifier (positioning or geometry axis)
SPI(<n>)/S<n>: Spindle identifier

SPI(<n>) and S<n> are identical in terms of function.
<n>: Spindle number
Note:
SPI converts spindle numbers into axis identifiers. The transfer parame‐
ter (<n>) must contain a valid spindle number.

<value>: Feedrate modification in percent

The value refers to or is combined with the feedrate override set on the
machine control panel.
Range of values: 0 … 200%, integral
Note:
With path and rapid traverse override, the maximum velocities set in the
machine data is not overshot.

2.7.7 Programmable acceleration compensation (ACC)
In critical program sections, it may be necessary to limit the acceleration to below the maximum
values, e.g. to prevent mechanical vibrations from occurring.

The programmable acceleration override can be used to modify the acceleration for each path
axis or spindle via a command in the NC program. The limit is effective for all types of
interpolation. The values defined in the machine data apply as 100% acceleration.

Syntax
ACC[<axis>]=<value>
ACC[SPI(<n>)]=<value>
ACC(S<n>)=<value>
Deactivate:
ACC[...]=100

Syntax

ACC: Acceleration change for the specified path axis or speed change for the
specified spindle.

<axis>: Channel axis name of path axis

Fundamentals
2.7 Feed control

NC programming
128 Programming Manual, 06/2019, A5E47437142B AA

SPI(<n>)/S<n>: Spindle identifier
SPI(<n>) and S<n> are identical in terms of function.
<n>: Spindle number
Note:
SPI converts spindle numbers into axis identifiers. The transfer parame‐
ter (<n>) must contain a valid spindle number.

<value>: Acceleration change in percent
The value refers to or is combined with the feedrate override set on the
machine control panel.
Range of values: 1 to 200%, integers

Note

With a greater acceleration rate, the values permitted by the manufacturer may be exceeded.

Example

Program code Comment
N50 ACC[X]=80 ; The axis slide in the X direction should only be trav-

ersed with 80% acceleration.
N60 ACC[SPI(1)]=50 ; Spindle 1 should only accelerate or brake with 50% of

the acceleration capacity.

Further information
Acceleration override programmed with ACC

The acceleration override programmed with ACC[...] is always taken into consideration on
output as in system variable $AA_ACC. Readout in the parts program and in synchronized
actions takes place at different times in the NC processing run.

In the part program

The value written in the part program is then only taken into consideration in system variable
$AA_ACC as written in the part program if ACC has not been changed in the meantime by a
synchronized action.

In synchronized actions

The following thus applies: The value written to a synchronized action is then only considered
in system variable $AA_ACC as written to the synchronized action if ACC has not been changed
in the meantime by a part program.

The preset acceleration can also be changed via synchronized actions (see Function Manual,
Synchronized Actions).

Example:

Program code
...
N100 EVERY $A_IN[1] DO POS[X]=50 FA[X]=2000 ACC[X]=140

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 129

The current acceleration value can be called with system variable $AA_ACC[<axis>]. Machine
data can be used to define whether the last ACC value set should apply on RESET/part program
end or whether 100% should apply.

2.7.8 Feedrate with handwheel override (FD, FDA)
The FD and FDA commands can be used to traverse axes with handwheels during execution of
the part program. The programmed settings for traversing the axes are then overlaid with the
handwheel pulses evaluated as path or velocity defaults.

Path axes
In the case of path axes, the programmed path feedrate can be overlaid. The handwheel of the
1st geometry axis of the channel is evaluated. The handwheel pulses evaluated per
interpolation cycle dependent on the direction of rotation correspond to the path velocity to be
overlaid. The path velocity limit values which can be achieved by means of handwheel override
are:

● Minimum: 0

● Maximum: Machine data limit values of the path axes involved in traversing

Note
Path feedrate

The path feedrate F and the handwheel feedrate FD cannot be programmed in the same NC
block.

Positioning axes
In the case of positioning axes, the travel path or velocity can be overlaid as an axial value. The
handwheel assigned to the axis is evaluated.

● Path override
The handwheel pulses evaluated dependent on the direction of rotation correspond to the
axis path to be traveled. Only handwheel pulses in the direction of the programmed position
are evaluated.

● Velocity override
The handwheel pulses evaluated per interpolation cycle dependent on the direction of
rotation correspond to the axial velocity to be overlaid. The path velocity limit values which
can be achieved by means of handwheel override are:

– Minimum: 0

– Maximum: Machine data limit values of the positioning axis

A detailed description of how to set handwheel parameters appears in:

Reference
/FB2/ Function Manual Extended Functions; manual traversing and manual handwheel travel
(H1)

Syntax
FD=<velocity>
FDA[<axis>]=<velocity>

Fundamentals
2.7 Feed control

NC programming
130 Programming Manual, 06/2019, A5E47437142B AA

Meaning

FD=<velocity>: Path feedrate and enabling of velocity override with
handwheel
<velocity>:
● Value = 0: Not allowed!
● Value ≠ 0: Path velocity

FDA[<axis>]=<velocity>: Axial feedrate
<velocity>:
● Value = 0: Path default with handwheel
● Value ≠ 0: Axial velocity

<axis>: Axis identifier of positioning axis

Note

FD and FDA are non-modal.

Example

Path definition: The grinding wheel oscillating
in the Z direction is traversed to the workpiece
in the X direction with the handwheel.
The operator can continue to feed manually
until the sparks are flying uniformly. Activating
"Delete distance-to-go" switches to the next
NC block and machining continues in AUTO‐
MATIC mode.

Further information
Traverse path axes with velocity override (FD=<velocity>)
The following conditions must be met for the part program block in which path velocity override
is programmed:

● Path command G1, G2 or G3 active

● Exact stop G60 active

● Linear feedrate G94 active

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 131

Feedrate override
The feedrate override only affects the programmed path velocity and not the velocity
component generated with the handwheel (exception: (except if feed override = 0).

Example:

Program code Description
N10 X… Y… F500 ; Feedrate = 500 mm/min
N20 X… Y… FD=700 ; Feedrate = 700 mm/min and velocity override

with handwheel.
; Acceleration from 500 to 700 mm/min in N20. The handwheel
can be used to vary the speed dependent on the direction of rotation between 0
and the maximum value (machine data).

Traverse positioning axes with path default (FDA[<axis>]=0)
In the NC block with programmed FDA[<axis>]=0 the feed is set to zero so that the program
cannot generate any travel movement. The programmed travel movement to the target position
is now controlled exclusively by the operator rotating the handwheel.

Example:

Program code Description
...
N20 POS[V]=90 FDA[V]=0 ; Target position = 90 mm, axial feedrate = 0 mm/min and

path override with handwheel.
; Velocity of axis V at start of block = 0 mm/min.
; Path and speed defaults are set using handwheel pulses

Direction of movement, travel velocity
The axes follow the path set by the handwheel in the direction of the sign. Forward and
backwards travel is possible dependent on the direction of rotation. The faster the handwheel
rotates, the higher the traversing speed.

Fundamentals
2.7 Feed control

NC programming
132 Programming Manual, 06/2019, A5E47437142B AA

Traversing range:
The traversing range is limited by the starting position and the programmed end point.

Traverse positioning axis with velocity override (FDA[<axis>]=<velocity>)

In NC blocks with programmed FDA[…]=…, the feedrate from the last programmed FA value is
accelerated or decelerated to the value programmed under FDA. Starting from the current
feedrate FDA, the handwheel can be turned to accelerate the programmed movement to the
target position or decelerate it to zero. The values set as parameters in the machine data serve
as the maximum velocity.

Example:

Program code Description
N10 POS[V]=… FA[V]=100 ; Axial feedrate = 100 mm/min
N20 POS[V]=100 FAD[V]=200 ; Axial target position = 100, axial feedrate = 200 mm/min

; and velocity override with handwheel.
; Acceleration from 100 to 200 mm/min in N20. The
; Handwheel can be used to vary the velocity depending on the direc-
tion of rotation
; between 0 and the maximum value (machine data).

Traversing range:
The traversing range is limited by the starting position and the programmed end point.

2.7.9 Feedrate optimization for curved path sections (CFTCP, CFC, CFIN)
With activated correction mode G41/G42, the programmed feedrate for the milling tool radius
first refers to the milling tool center path (refer to Chapter "Coordinate transformations (frames)
(Page 300)").

When you mill a circle (the same applies to polynomial and spline interpolation) the extent to
which the feedrate varies at the cutter edge is so significant under certain circumstances that
it can impair the quality of the machined part.

Example: Milling a small outside radius with a large tool. The path that the outside of the milling
tool must travel is considerably longer than the path along the contour.

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 133

Because of this, machining at the contour takes place with a very low feedrate. To prevent
adverse effects, the feedrate needs to be controlled accordingly for curved contours.

Syntax
CFTCP
CFC
CFIN

Meaning

CFTCP: Constant feedrate on the milling cutter center path
The control keeps the feedrate constant and feedrate overrides are deactivated.

CFC: Constant feedrate at the contour (tool cutting edge).
This function is preset per default.

CFIN: Constant feedrate at the tool cutting edge only at concave contours, otherwise on the
milling cutter center path.
The feedrate is reduced for inside radii.

Fundamentals
2.7 Feed control

NC programming
134 Programming Manual, 06/2019, A5E47437142B AA

Example

In this example, the contour is first produced
with CFC-corrected feedrate. During finishing,
the cutting base is also machined with CFIN.
This prevents the cutting base being damaged
at the outside radii by a feedrate that is too
high.

Program code Comment
N10 G17 G54 G64 T1 M6
N20 S3000 M3 CFC F500 G41
N30 G0 X-10
N40 Y0 Z-10 ; Feed to first cutting depth
N50 CONTOUR1 ; Subprogram call
N40 CFIN Z-25 ; Feed to second cutting depth
N50 CONTOUR1 ; Subprogram call
N60 Y120
N70 X200 M30

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 135

Further information
Constant feedrate on contour with CFC

The feedrate is reduced for inside radii and
increased for outside radii. This ensures a
constant speed at the tool edge and thus at the
contour.

2.7.10 Several feedrate values in one block (F, ST, SR, FMA, STA, SRA)
The "Multiple feedrates in one block" function can be used to activate different feedrate values
for an NC block, a dwell time or a retraction motion-synchronously, dependent on external
digital and/or analog inputs.

Syntax
Path motion
F=... F7=... F6=... F5=... F4=... F3=... F2=... ST=... SR=...
Axial motion:
FA[<Ax>]=... FMA[7,<Ax>]=... FMA[6,<Ax>]=... FMA[5,<Ax>]=...
FMA[4,<Ax>]=... FMA[3,<Ax>]=... FMA[2,<Ax>]=... STA[<Ax>]=...
SRA[<Ax>]=...

Meaning

F=... : The path feedrate is programmed under the ad‐
dress F and remains valid during the absence of
an input signal.
Effective: Modal

F2=... to F7=... : In addition to the path feedrate, up to six further
feedrates can be programmed in the block. The
numerical expansion indicates the bit number of
the input that activates the feedrate when
changed:
Effective: Non-modal

Fundamentals
2.7 Feed control

NC programming
136 Programming Manual, 06/2019, A5E47437142B AA

ST=... : Dwell time in s (for grinding technology: sparking-
out time)
Input bit: 1
Effective: Non-modal

SR=... : Retraction path
The unit for the retraction path refers to the cur‐
rent valid unit of measurement (mm or inch).
Input bit: 0
Effective: Non-modal

FA[<Ax>]=... : The axial feedrate is programmed under the ad‐
dress FA and remains valid during the absence of
an input signal.
Effective: Modal

FMA[2,<Ax>]=... to FMA[7,<Ax>]=... : In addition to the axial feedrate FA up to six fur‐
ther feedrates per axis can be programmed in the
block with FMA. The first parameter indicates the
bit number of the input and the second the axis
for which the feedrate is to apply.
Effective: Non-modal

STA[<Ax>]=...: Axial dwell time in s (for grinding technology:
sparking-out time)
Input bit: 1
Effective: Non-modal

SRA[<Ax>]=...: Axial retraction path
Input bit: 0
Effective: Non-modal

<Ax>: Axis for which the feedrate is to apply

Note
Priority of the signals

The signals are scanned in ascending order starting at input bit 0 (I0). Therefore, the retraction
motion has the highest priority and the feedrate F7 the lowest priority. Dwell time and retraction
motion end the feedrate motions that were activated with F2 to F7.

The signal with the highest priority determines the current feedrate.

Note
Delete distance-to-go

If input bit 1 is activated for the dwell time or bit 0 for the return path, the distance to go for the
path axes or the relevant single axes is deleted and the dwell time or return started.

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 137

Note
Retraction path

The unit for the retraction path refers to the current valid unit of measurement (mm or inch).

The reverse stroke is always made in the opposite direction to the current motion. SR/SRA
always programs the value for the reverse stroke. No sign is programmed.

Note
POS instead of POSA

If feedrates, dwell time or return path are programmed for an axis on account of an external
input, this axis must not be programmed as POSA axis (positioning axis over multiple blocks)
in this block.

Note
Status query

It is also possible to poll the status of an input for synchronous commands of various axes.

Note
LookAhead

Look Ahead is also active for multiple feedrates in one block. In this way, the current feedrate
can be restricted by the Look Ahead value.

Examples

Example 1: Path motion

Program code Comment
G1 X48 F1000 F7=200 F6=50 F5=25 F4=5 ST=1.5 SR=0.5 ; Path feedrate = 1000

; Additional path feedrate values:
; 200 (input bit 7)
; 50 (input bit 6)
; 25 (input bit 5)
; 5 (input bit 4)
; Dwell time 1.5 s
; Retraction 0.5 mm

Fundamentals
2.7 Feed control

NC programming
138 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Axial motion

Program code Comment
POS[A]=300 FA[A]=800 FMA[7,A]=720 FMA[6,A]=640
FMA[5,A]=560 STA[A]=1.5 SRA[A]=0.5

; Feedrate for axis A = 800
; Additional feedrate values for axis A: 720
(input bit 7)
; 640 (input bit 6)
; 560 (input bit 5)
; Axial dwell time: 1.5 s
; Axial retraction: 0.5 mm

Example 3: Multiple operations in one block

Program code Comment
N20 T1 D1 F500 G0 X100 Initial setting
N25 G1 X105 F=20 F7=5 F3=2.5 F2=0.5 ST=1.5 SR=0.5 ; Normal feedrate with F,

; roughing with F7,
; finishing with F3,
; smooth-finishing with F2,
; dwell time 1.5 s,
; retraction path 0.5 mm

...

2.7.11 Non-modal feedrate (FB)
The "Non-modal feedrate" function can be used to define a separate feedrate for a single block.
After this block, the previous modal feedrate is active again.

Syntax
FB=<value>

Meaning

FB: Feedrate for current block only
<VALUE>: The programmed value must be greater than zero.

Values are interpreted based on the active feedrate type:
● G94: feedrate in mm/min or degrees/min
● G95: feedrate in mm/rev or inch/rev
● G96: constant cutting rate

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 139

Note

If no traversing motion is programmed in the block (e.g. computation block), the FB has no
effect.

If no explicit feedrate for chamfering/rounding is programmed, then the value of FB also applies
for any chamfering/rounding contour element in this block.

Feedrate interpolations FLIN, FCUB, etc. are also possible without restriction.

Simultaneous programming of FB and FD (handwheel travel with feedrate override) or F (modal
path feedrate) is not possible.

Example

Program code Comment
N10 G0 X0 Y0 G17 F100 G94 ;Initial setting
N20 G1 X10 ; Feedrate 100 mm/min
N30 X20 FB=80 ; Feedrate 80 mm/min
N40 X30 ; Feedrate is 100 mm/min again.
...

2.7.12 Tooth feedrate (G95 FZ)

Fundamentals
2.7 Feed control

NC programming
140 Programming Manual, 06/2019, A5E47437142B AA

The control uses the $TC_DPNT (number of teeth) tool parameter associated with the active
tool offset data block to calculate the effective revolutional feedrate for each traversing block
from the programmed tooth feedrate.

F = FZ * $TC_DPNT
with: F: Revolutional feedrate in mm/rev or inch/rev

FZ: Tooth feedrate in mm/tooth or inch/tooth
$TC_DPNT: System variable tool parameter: Number of teeth/rev

The tool type ($TC_DP1) of the active tool is not taken into account.

The programmed tooth feedrate is independent of the tool change and the selection/
deselection of a tool offset data block; it is retained in modal format.

A change to the $TC_DPNT tool parameter associated with the active tool cutting edge will be
applied the next time a tool offset is selected or the next time the active offset data is updated.

Changing the tool or selecting/deselecting a tool offset data block generates a recalculation of
the effective revolutional feedrate.

Note

The tooth feedrate refers only to the path (axis-specific programming is not possible).

Syntax
G95 FZ...

Meaning

G95: Type of feedrate: Revolutional feedrate in mm/rev or inch/rev (dependent upon G700/G710)
For G95 see "Feedrate (G93, G94, G95, F, FGROUP, FL, FGREF) (Page 107)"

FZ: Tooth feedrate
Activation: with G95
Effectiveness: Modal
Unit: mm/tooth or inch/tooth (dependent upon G700/G710)

NOTICE

Tool change/Changing the master spindle

A subsequent tool change or changing the master spindle must be taken into account by the
user by means of corresponding programming, e.g. reprogramming FZ.

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 141

NOTICE

Tool operations undefined

Technological concerns such as climb milling or conventional milling, front face milling or
peripheral face milling, etc., along with the path geometry (straight line, circle, etc.), are not
taken into account automatically. Therefore, these factors have to be given consideration
when programming the tooth feedrate.

Note
Switchover between G95 F... and G95 FZ...

With switchover between G95 F... (revolution feedrate) and G95 FZ... (tooth feedrate), the
inactive feedrate value is deleted in each case.

Note
Derive feedrate with FPR

As is the case with the revolutional feedrate, FPR can also be used to derive the tooth feedrate
of any rotary axis or spindle (see "Feedrate for positioning axes / spindles (FA, FPR, FPRAON,
FPRAOF) (Page 124)").

Examples

Example 1: Milling cutter with 5 teeth ($TC_DPNT = 5)

Program code Comment
N10 G0 X100 Y50
N20 G1 G95 FZ=0.02 ; Tooth feedrate 0.02 mm/tooth
N30 T3 D1 ; Load tool and activate tool offset data block.
M40 M3 S200 ; Spindle speed 200 rpm
N50 X20 ; Milling with:

FZ = 0.02 mm/tooth
effective revolutional feedrate:
F = 0.02 mm/tooth * 5 teeth/rev = 0.1 mm/rev
or
F = 0.1 mm/rev * 200 rpm = 20 mm/min

...

Example 2: Switchover between G95 F... and G95 FZ...

Program code Comment
N10 G0 X100 Y50
N20 G1 G95 F0.1 ; Revolutional feedrate 0.1 mm/rev
N30 T1 M6
N35 M3 S100 D1
N40 X20
N50 G0 X100 M5

Fundamentals
2.7 Feed control

NC programming
142 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N60 M6 T3 D1 ; Load tool with e.g. five teeth ($TC_DPNT = 5).
N70 X22 M3 S300
N80 G1 X3 G95 FZ=0.02 ; Change G95 F… to G95 FZ…, tooth feedrate active with

0.02 mm/tooth.
...

Example 3: Derive tooth feedrate of a spindle (FBR)

Program code Comment
…
N41 FPR(S4) ; Tool in spindle 4 (not the master spindle).
N51 G95 X51 FZ=0.5 ; Tooth feedrate 0.5 mm/tooth dependent upon spindle S4.
...

Example 4: Subsequent tool change

Program code Comment
N10 G0 X50 Y5
N20 G1 G95 FZ=0.03 ; Tooth feedrate 0.03 mm/tooth
N30 M6 T11 D1 ; Load tool with e.g. seven teeth ($TC_DPNT = 7).
N30 M3 S100
N40 X30 ; Effective revolutional feedrate 0.21 mm/rev
N50 G0 X100 M5
N60 M6 T33 D1 ; Load tool with e.g. five teeth ($TC_DPNT = 5).
N70 X22 M3 S300
N80 G1 X3 ; Tooth feedrate modal 0.03 mm/tooth,

effective revolutional feedrate 0.15 mm/rev
...

Example 5: Changing the master spindle

Program code Comment
N10 SETMS (1) ; Spindle 1 is the master spindle.
N20 T3 D3 M6 ; Tool 3 is changed to spindle 1.
N30 S400 M3 ; Speed S400 of spindle 1 (and therefore T3).
N40 G95 G1 FZ0.03 ; Tooth feedrate 0.03 mm/tooth
N50 X50 ; Path motion, the effective feedrate is dependent upon:

- The tooth feedrate FZ
- The speed of spindle 1
- The number of teeth of the active tool T3

N60 G0 X60
...
N100 SETMS(2) ; Spindle 2 becomes the master spindle.
N110 T1 D1 M6 ; Tool 1 is changed to spindle 2.
N120 S500 M3 ; Speed S500 of spindle 2 (and therefore T1).

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 143

Program code Comment
N130 G95 G1 FZ0.03 X20 ; Path motion, the effective feedrate is dependent upon:

- The tooth feedrate FZ
- The speed of spindle 2
- The number of teeth of the active tool T1

Note

Following the change in the master spindle (N100), a tool actuated by spindle 2 must be
substituted (N110).

Further information
Changing between G93, G94 and G95

FZ can also be programmed when G95 is not active, although it will have no effect and is
deleted when G95 is selected. In other words, when changing between G93, G94, and G95, in
the same way as with F, the FZ value is also deleted.

Reselection of G95

Reselecting G95 when G95 is already active has no effect (unless a change between F and FZ
has been programmed).

Non-modal feedrate (FB)

When G95 FZ... (modal) is active, a non-modal feedrate FB... is interpreted as a tooth
feedrate.

SAVE mechanism

In subprograms with the SAVE attribute FZ is written to the value prior to the subprogram
starting (in the same way as F).

Multiple feedrate values in one block

The "Multiple feedrate values in one block" function is not possible with tooth feedrate.

Synchronized actions

FZ cannot be programmed from synchronized actions.

Read tooth feedrate and path feedrate type

The tooth feedrate and the path feedrate type can be read using system variables.

● With preprocessing stop in the part program via system variables:

Fundamentals
2.7 Feed control

NC programming
144 Programming Manual, 06/2019, A5E47437142B AA

 $AC_FZ Tooth feedrate effective when the current main run block was prepro‐
cessed.

$AC_F_TYPE Path feedrate type effective when the current main run block was pre‐
processed.
Value: Meaning:
0 mm/min
1 mm/rev
2 inch/min
3 inch/rev
11 mm/tooth
33 inch/tooth

● Without preprocessing stop in the part program via system variables:

 $P_FZ Programmed tooth feedrate
$P_F_TYPE Programmed path feedrate type

Value: Meaning:
0 mm/min
1 mm/rev
2 inch/min
3 inch/rev
11 mm/tooth
33 inch/tooth

Note

If G95 is not active, the $P_FZ and $AC_FZ variables will always return a value of zero.

Fundamentals
2.7 Feed control

NC programming
Programming Manual, 06/2019, A5E47437142B AA 145

2.8 Geometry settings

2.8.1 Settable zero offset (G54 to G57, G505 to G599, G53, G500, SUPA, G153)
The G54 to G57 and G505 to G599 commands activate the settable work offsets for offsetting
the workpiece coordinate system compared with the basic coordinate system set from the user
interface.

Syntax

Switching on:
G54
...
G57
G505
...
G599

Switching off or suppressing:
G500 / G53 / G153 / SUPA

Meaning

G54 to G57: Call of the 1st to 4th settable work offset (WO)
G505 to G599: Call of the 5th to 99th settable work offset
G500: Deactivation of the current settable work offset

G500=Zero frame:
(default setting; contains no off‐
set, rotation, mirroring or scaling)

Deactivation of the settable work offset
until the next call, activation of the entire
basic frame ($P_ACTBFRAME).

G500 not equal to 0: Activation of the first settable work offset
($P_UIFR[0]) and activation of the entire
basic frame ($P_ACTBFRAME) or possi‐
bly a modified basic frame is activated.

G53: G53 suppresses the settable work offset and the programmable work offset
non-modally.

G153: G153 has the same effect as G53 and also suppresses the entire basic frame.
SUPA: SUPA has the same effect as G153 and also suppresses:

● Handwheel offsets (DRF)
● Overlaid movements
● External work offset
● PRESET offset

Fundamentals
2.8 Geometry settings

NC programming
146 Programming Manual, 06/2019, A5E47437142B AA

Example
Three workpieces that are arranged on a palette according to the work offset values G54 to G56
are to be machined in succession. The machining sequence is programmed in subprogram
L47.

Program code Comment
N10 G0 G90 X10 Y10 F500 T1 ; Approach
N20 G54 S1000 M3 ; Call of the first WO, spindle clockwise
N30 L47 ; Program pass as subprogram
N40 G55 G0 Z200 ; Call of the second WO, Z via obstruction
N50 L47 ; Program pass as subprogram
N60 G56 ; Call of the third WO
N70 L47 ; Program pass as subprogram
N80 G53 X200 Y300 M30 ; Suppress work offset, end of program

2.8.2 Settable work offset (G54 to G57, G505 to G599, G53, G500, SUPA, G153):
Further information

Further information

Settable work offset
A settable work offset is in principle a set frame (Page 300). Consequently, the following
components and frame values are also available for a settable work offset:

● Offset

● Rotation

● Scaling

● Scale

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 147

① Initial position in the BCS
② Offset
③ Offset + rotation
④ Offset + scaling

The frame values for the settable work offsets are input from the user interface:

SINUMERIK Operate: "Parameters" > "Work offsets" > "Details" operating area

Parameterized number of parameterizable frames (G505 - G599)
The number of user-specific settable work offsets (G505 - G599) can be set for each specific
channel via:

MD28080 $MC_MM_NUM_USER_FRAMES = <number>

See also
Programmable work offset (G58, G59) (Page 309)

2.8.3 Selection of the working plane (G17/G18/G19)
The specification of the working plane, in which the desired contour is to be machined, also
defines the following functions:

● The plane for tool radius compensation

● The infeed direction for tool length offset depending on the tool type

● The plane for circular interpolation

Fundamentals
2.8 Geometry settings

NC programming
148 Programming Manual, 06/2019, A5E47437142B AA

Syntax
G17/G18/G19, etc.

Meaning

G17: Working plane X/Y
Infeed direction Z, plane selection 1st - 2nd geometry axis

G18: Working plane Z/X
Infeed direction Y, plane selection 3rd - 1st geometry axis

G19: Working plane Y/Z
Infeed direction X, plane selection 2nd - 3rd geometry axis

Note

In the default setting, G17 (X/Y plane) is defined for milling and G18 (Z/X plane) is defined for
turning.

When calling the tool path correction G41/G42 (see Section "Tool radius compensation
(Page 246)"), the working plane must be defined so that the control can correct the tool length
and radius.

Example
The "conventional" approach for milling is:

1. Define working plane (G17 default setting for milling).

2. Select tool type (T) and tool offset values (D).

3. Switch on path correction (G41).

4. Program traversing movements.

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 149

Program code Comment
N10 G17 T5 D8 ; Call of working plane X/Y, tool call. Tool

length offset is performed in the Z
direction.

N20 G1 G41 X10 Y30 Z-5 F500 ; Radius compensation is performed in the X/
Y plane.

N30 G2 X22.5 Y40 I50 J40 ; Circular interpolation / tool radius
compensation in the X/Y plane.

Further information
General

It is recommended that the working plane G17 to G19 be selected at the start of the program.
In the default setting, the Z/X plane is preset for turning G18.

Turning:

The control requires the specification of the working plane for the calculation of the direction of
rotation (see circular interpolation G2/G3).

Machining on inclined planes

Rotate the coordinate system with ROT (see Section "Coordinate system offset") to position the
coordinate axes on the inclined surface. The working planes rotate accordingly.

Tool length compensation on inclined planes

As a general rule, the tool length compensation always refers to the fixed, non-rotated working
plane.

Milling:

Fundamentals
2.8 Geometry settings

NC programming
150 Programming Manual, 06/2019, A5E47437142B AA

Note

The tool length components can be calculated according to the rotated working planes with the
functions for "Tool length compensation for orientable tools".

The compensation plane is selected with CUT2D, CUT2DF. For further information on this and
for the description of the available calculation methods,see Chapter "Tool radius compensation
(Page 246)".

The control provides convenient coordinate transformation functions for the spatial definition of
the working plane. Please see Chapter "Coordinate transformations (frames) (Page 300)" for
more information.

2.8.4 Dimensions

The basis of most NC programs is a workpiece drawing with specific dimensions.

These dimensions can be:

● In absolute dimensions or in incremental dimensions

● In millimeters or inches

● In radius or diameter (for turning)

Specific programming commands are available for the various dimension options so that the
data from a dimension drawing can be transferred directly (without conversion) to the NC
program.

2.8.4.1 Absolute dimensions (G90, AC)
With absolute dimensions, the position specifications always refer to the zero point of the
currently valid coordinate system, i.e. the absolute position is programmed, on which the tool
is to traverse.

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 151

Modal absolute dimensions

Modal absolute dimensions are activated with the G90 command. Generally it applies to all
axes programmed in subsequent NC blocks.

Non-modal absolute dimensions

With preset incremental dimensions (G91), the AC command can be used to set non-modal
absolute dimensions for individual axes.

Note

Non-modal absolute dimensions (AC) are also possible for spindle positioning (SPOS, SPOSA)
and interpolation parameters (I, J, K).

Syntax
G90
<axis>=AC(<value>)

Meaning

G90: Command for the activation of modal absolute dimensions
AC: Command for the activation of non-modal absolute dimensions
<axis>: Axis identifier of the axis to be traversed
<value>: Position setpoint of the axis to be traversed in absolute dimensions

Examples
Example 1: Milling

Fundamentals
2.8 Geometry settings

NC programming
152 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N10 G90 G0 X45 Y60 Z2 T1 S2000 M3 ; Absolute dimension input, in rapid tra-

verse to position XYZ, tool selection,
spindle on with clockwise direction of
rotation.

N20 G1 Z-5 F500 ; Linear interpolation, feed of the tool.
N30 G2 X20 Y35 I=AC(45) J=AC(35) ; Clockwise circular interpolation, cir-

cle end point and circle center point in
absolute dimensions.

N40 G0 Z2 ; Traverse
N50 M30 ; End of block

Note

For information on the input of the circle center point coordinates I and J, see Section "Circular
interpolation".

Example 2: Turning

Program code Comment
N5 T1 D1 S2000 M3 ; Loading of tool T1, spindle on with

clockwise direction of rotation.
N10 G0 G90 X11 Z1 ; Absolute dimension input, in rapid tra-

verse to position XZ.
N20 G1 Z-15 F0.2 ; Linear interpolation, feed of the tool.
N30 G3 X11 Z-27 I=AC(-5) K=AC(-21) ; Counter-clockwise circular interpola-

tion, circle end point and circle center
point in absolute dimensions.

N40 G1 Z-40 ; Traverse
N50 M30 ; End of block

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 153

Note

For information on the input of the circle center point coordinates I and J, see Section "Circular
interpolation".

See also
Absolute and incremental dimensions for turning and milling (G90/G91) (Page 157)

2.8.4.2 Incremental dimensions (G91, IC)
With incremental dimensions, the position specification refers to the last point approached, i.e.
the programming in incremental dimensions describes by how much the tool is to be traversed.

Modal incremental dimensions

Modal incremental dimensions are activated with the G91 command. Generally it applies to all
axes programmed in subsequent NC blocks.

Non-modal incremental dimensions

With preset absolute dimensions (G90), the IC command can be used to set non-modal
incremental dimensions for individual axes.

Note

Non-modal incremental dimensions (IC) are also possible for spindle positioning
(SPOS, SPOSA) and interpolation parameters (I, J, K).

Syntax
G91
<axis>=IC(<value>)

Meaning

G91: Command for the activation of modal incremental dimensions
IC: Command for the activation of non-modal incremental dimensions
<axis>: Axis identifier of the axis to be traversed
<value>: Position setpoint of the axis to be traversed in incremental dimensions

G91 extension
For certain applications, such as scratching, it is necessary that only the programmed distance
is traversed in incremental dimensions. The active zero offset or tool length offset is not
traversed.

This behavior can be set separately for the active zero offset and tool length offset via the
following setting data:

Fundamentals
2.8 Geometry settings

NC programming
154 Programming Manual, 06/2019, A5E47437142B AA

SD42440 $SC_FRAME_OFFSET_INCR_PROG (zero offsets in frames)

SD42442 $SC_TOOL_OFFSET_INCR_PROG (tool length offsets)

Value Meaning
0 With incremental programming (incremental dimensions) of an axis, the zero offset or the tool

length offset is not traversed.
1 With incremental programming (incremental dimensions) of an axis, the zero offset or the tool

length offset is traversed.

Examples

Example 1: Milling

Program code Comment
N10 G90 G0 X45 Y60 Z2 T1 S2000 M3 ; Absolute dimension input, in rapid tra-

verse to position XYZ, tool selection,
spindle on with clockwise direction of
rotation

N20 G1 Z-5 F500 ; Linear interpolation, feed of the tool.
N30 G2 X20 Y35 I0 J-25 ; Clockwise circular interpolation, cir-

cle end point in absolute dimensions, cir-
cle center point in incremental dimen-
sions.

N40 G0 Z2 ; Traverse
N50 M30 ; End of block

Note

For information on the input of the circle center point coordinates I and J, see Section "Circular
interpolation".

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 155

Example 2: Turning

Program code Comment
N5 T1 D1 S2000 M3 ; Loading of tool T1, spindle on with clockwise di-

rection of rotation.
N10 G0 G90 X11 Z1 ; Absolute dimension input, in rapid

traverse to position XZ.
N20 G1 Z-15 F0.2 ; Linear interpolation, feed of the tool.
N30 G3 X11 Z-27 I-8 K-6 ; Counter-clockwise circular interpolation, circle

end point in absolute dimensions, circle center point
in incremental dimensions.

N40 G1 Z-40 ; Traverse
N50 M30 ; End of block

Note

For information on the input of the circle center point coordinates I and J, see Section "Circular
interpolation".

Example 3: Incremental dimensions without traversing of the active zero offset
Settings:

● G54 contains an offset in X of 25

● SD42440 $SC_FRAME_OFFSET_INCR_PROG = 0

Program code Comment
N10 G90 G0 G54 X100
N20 G1 G91 X10 ; Incremental dimensions active, traversing in X of 10 mm

(the zero offset is not traversed).

Fundamentals
2.8 Geometry settings

NC programming
156 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N30 G90 X50 ; Absolute dimensions active, traverse to position X75 (the

zero offset is traversed).

See also
Absolute and incremental dimensions for turning and milling (G90/G91) (Page 157)

2.8.4.3 Absolute and incremental dimensions for turning and milling (G90/G91)
The two following figures illustrate the programming with absolute dimensions (G90) or
incremental dimensions (G91) using turning and milling technology examples.

Milling:

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 157

Turning:

Note

On conventional turning machines, it is usual to consider incremental traversing blocks in the
transverse axis as radius values, while diameter specifications apply for the reference
dimensions. This conversion for G90 is performed using the commands DIAMON, DIAMOF
or DIAM90.

2.8.4.4 Absolute dimensions for rotary axes (DC, ACP, ACN)
The non-modal and G90/G91-independent commands DC, ACP and ACN are available for the
positioning of rotary axes in absolute dimensions.

DC, ACP and ACN differ in the basic approach strategy:

Fundamentals
2.8 Geometry settings

NC programming
158 Programming Manual, 06/2019, A5E47437142B AA

Syntax
<rotary axis>=DC(<value>)
<rotary axis>=ACP(<value>)
<rotary axis>=ACN(<value>)

Meaning

<rotary axis>: Identifier of the rotary axis that is to be traversed (e.g. A, B or C)
DC: Command for the direct approach to the position

The rotary axis approaches the programmed position directly on the shortest
path. The rotary axis traverses a maximum range of 180°.

ACP: Command to approach the position in a positive direction
The rotary axis traverses to the programmed position in the positive direction of
axis rotation (counter-clockwise).

ACN: Command to approach the position in a negative direction
The rotary axis traverses to the programmed position in the negative direction of
axis rotation (clockwise).

<value>: Rotary axis position to be approached in absolute dimensions
Range of values: 0 - 360 degrees

Note

The positive direction of rotation (clockwise or counter-clockwise) is set in the machine data.

Note

The traversing range between 0° and 360° must be set in the machine data (modulo behavior)
for positioning with direction specification (ACP, ACN). G91 or IC must be programmed to
traverse modulo rotary axes more than 360° in a block.

Note

The commands DC, ACP and ACN can also be used for spindle positioning (SPOS, SPOSA) from
standstill.

Example: SPOS=DC(45)

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 159

Example
Milling on a rotary table

The tool is stationary, the table turns to 270° in
a clockwise direction to produce a circular
groove.

Program code Comment
N10 SPOS=0 ; Spindle in position control.
N20 G90 G0 X-20 Y0 Z2 T1 ; Absolute dimensions, feed tool T1 in rapid tra-

verse.
N30 G1 Z-5 F500 ; Lower tool during feed.
N40 C=ACP(270) ; Table turns clockwise to 270 degrees (positive),

the tool mills a circular groove.
N50 G0 Z2 M30 ; Retraction, end of program.

References
Function Manual, Extended Functions; Rotary Axes (R2)

2.8.4.5 Metric/inch dimension system (G70/G71, G700/G710)
Using the commands of G group 13 (inch/metric system of units) within a part program, you can
switch over between the metric and inch system of units.

Activation
In order that commands G700 and G710 are available, the extended system of units
functionality must be switched on (MD10260 $MN_CONVERT_SCALING_SYSTEM = 1).

Syntax
G70
G71
G700

Fundamentals
2.8 Geometry settings

NC programming
160 Programming Manual, 06/2019, A5E47437142B AA

G710

Meaning

G70: Activating the inch system of units
The inch system of units is used to read and write geometrical data in units of length.
Technological data in units of length (e.g. feedrates, tool offsets, adjustable work offsets,
machine data and system variables) is read and written using the parameterized basic sys‐
tem.
G group: 13
Initial setting: Settable via MD20150 $MC_GCODE_RESET_VALUES
Effectiveness: Modal

G71: Activating the metric system of units
The metric system of units is used to read and write geometrical data in units of length.
Technological data in units of length (e.g. feedrates, tool offsets, adjustable work offsets,
machine data and system variables) is read and written using the parameterized basic sys‐
tem.
G group: 13
Initial setting: Settable via MD20150 $MC_GCODE_RESET_VALUES
Effectiveness: Modal

G700: Activating the inch system of units
All geometrical and technological data in units of length is read and written using the inch
system of units.
G group: 13
Initial setting: Settable via MD20150 $MC_GCODE_RESET_VALUES
Effectiveness: Modal

G710: Activating the metric system of units
All geometrical and technological data in units of length is read and written using the metric
system of units.
G group: 13
Initial setting: Settable via MD20150 $MC_GCODE_RESET_VALUES
Effectiveness: Modal

NOTICE

Axis-specific data of rotary axes

Axis-specific data of rotary axes is read and written using the parameterized basic system.

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 161

Example
The basic system is metric (MD10240 $MN_SCALING_SYSTEM_IS_METRIC = 1). However,
the workpiece drawing has dimensions shown in inches. This is the reason why within the part
program, the inch system of units is selected. After the inch dimensions have been processed,
the metric system of units is again selected.

Program code Comment
N10 G0 G90 X20 Y30 Z2 S2000 M3 T1 ; X=20 mm, Y=30 mm, Z=2 mm, F=rapid traverse

mm/min
N20 G1 Z-5 F500 ; Z=-5 mm, F=500 mm/min
N30 X90 ; X=90 mm
N40 G70 X2.75 Y3.22 ; programmed system of units: inch
 ; X=2.75 inch, Y=3.22 inch, F=500 mm/min
N50 X1.18 Y3.54 ; X=1.18 inch, Y=3.54 inch, F=500 mm/min
N60 G71 X20 Y30 ; programmed system of units: Metric
 ; X=20 mm, Y=30 mm, F=500 mm/min
N70 G0 Z2 ; Z=2 mm, F=rapid traverse mm/min
N80 M30 ; end of program

Further information

Reading and writing data in the case of G70/G71 and G700/G710

Data area G70 / G71 G700 / G710
Read Write Read Write

Display, decimal places (WCS) P P P P
Display, decimal places (MCS) G G G G
Feedrates G G P P
Position data X, Y, Z P P P P

Fundamentals
2.8 Geometry settings

NC programming
162 Programming Manual, 06/2019, A5E47437142B AA

Data area G70 / G71 G700 / G710
Read Write Read Write

Interpolation parameters I, J, K P P P P
Circle radius (CR) P P P P
Polar radius (RP) P P P P
Thread pitch P P P P
Programmable FRAME P P P P
Settable FRAMES G G P P
Basic frames G G P P
External work offsets G G P P
Axial preset offset G G P P
Working area limits (G25/G26) G G P P
Protection areas P P P P
Tool offsets G G P P
Length-related machine data G G P P
Length-related setting data G G P P
Length-related system variables G G P P
GUDs G G G G
LUDs G G G G
PUDs G G G G
R parameters G G G G
Siemens cycles P P P P
Jog/handwheel increment factor G G G G
P: Writing/reading is performed in the programmed system of units.
G: Writing/reading is performed in the configured basic system

Synchronized actions

Note
Reading position data in synchronized actions

If a system of units has not been explicitly programmed in the synchronized action (condition
component and/or action component) length-related position data in the synchronized action
will always be read in the parameterized basic system.

Further information: Function Manual, Synchronized Actions

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 163

2.8.4.6 Channel-specific diameter/radius programming (DIAMON, DIAM90, DIAMOF,
DIAMCYCOF)

During turning, the dimensions for the transverse axis can be specified in the diameter (①) or
in the radius (②):

So that the dimensions from a technical drawing can be transferred directly (without
conversion) to the NC program, channel-specific diameter or radius programming is activated
using the modal commands DIAMON, DIAM90, DIAMOF, and DIAMCYCOF.

Note

The channel-specific diameter/radius programming refers to the geometry axis defined as
transverse axis via MD20100 $MC_DIAMETER_AX_DEF (→ see machine manufacturer's
specifications).

Only one transverse axis per channel can be defined via MD20100.

Syntax
DIAMON
DIAM90
DIAMOF

Meaning

DIAMON: Command for the activation of the independent channel-specific diameter program‐
ming.
The effect of DIAMON is independent of the programmed dimensions mode (absolute
dimensions G90 or incremental dimensions G91):
● For G90: Dimensions in the diameter
● For G91: Dimensions in the diameter

Fundamentals
2.8 Geometry settings

NC programming
164 Programming Manual, 06/2019, A5E47437142B AA

DIAM90: Command for the activation of the dependent channel-specific diameter program‐
ming.
The effect of DIAM90 depends on the programmed dimensions mode:
● For G90: Dimensions in the diameter
● For G91: Dimensions in the radius

DIAMOF: Command for the deactivation of the channel-specific diameter programming
Channel-specific radius programming takes effect when diameter programming is
deactivated. The effect of DIAMOF is independent of the programmed dimensions
mode:
● For G90: Dimensions in the radius
● For G91: Dimensions in the radius

DIAMCYCOF: Command for the deactivation of channel-specific diameter programming during cy‐
cle processing.
In this way, computations in the cycle can always be made in the radius. The last G
command active in this group remains active for the position indicator and the basic
block indicator.

Note

With DIAMON or DIAM90, the transverse-axis actual values will always be displayed as a
diameter. This also applies to reading of actual values in the workpiece coordinate system
with MEAS, MEAW, $P_EP[x] and $AA_IW[x].

Example

Program code Comment
N10 G0 X0 Z0 ; Approach starting point.
N20 DIAMOF ; Diameter programming off.
N30 G1 X30 S2000 M03 F0.7 ; X axis = transverse axis, radius programming

active; traverse to radius position X30.
N40 DIAMON ; The diameter programming is active for the

transverse axis.
N50 G1 X70 Z-20 ; Traverse to diameter position X70 and Z-20.
N60 Z-30
N70 DIAM90 ; Diameter programming for absolute dimensions

and radius programming for incremental dimen-
sions.

N80 G91 X10 Z-20 ; Incremental dimensions active.
N90 G90 X10 ; Absolute dimensions active.
N100 M30 ; End of program

Additional information
Diameter values (DIAMON/DIAM90)

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 165

The diameter values apply for the following data:

● Actual value display of the transverse axis in the workpiece coordinate system

● JOG mode: Increments for incremental dimensions and manual handwheel travel

● Programming of end positions:
Interpolation parameters I, J, K for G2/G3, if these have been programmed absolutely
with AC.
If I, J, K are programmed incrementally (IC), the radius is always calculated.

● Reading actual values in the workpiece coordinate system for:
MEAS, MEAW, $P_EP[X], $AA_IW[X]

2.8.4.7 Axis-specific diameter/radius programming (DIAMONA, DIAM90A, DIAMOFA,
DIACYCOFA, DIAMCHANA, DIAMCHAN, DAC, DIC, RAC, RIC)

In addition to channel-specific diameter programming, the axis-specific diameter programming
function enables the modal or non-modal dimensions and display in the diameter for one or
more axes.

Note

The axis-specific diameter programming is only possible for axes that are permitted as further
transverse axes for the axis-specific diameter programming via
MD30460 $MA_BASE_FUNCTION_MASK (→ see machine manufacturer's specifications).

Syntax
Modal axis-specific diameter programming for several transverse axes in the channel:
DIAMONA[<axis>]
DIAM90A[<axis>]
DIAMOFA[<axis>]
DIACYCOFA[<axis>]
Acceptance of the channel-specific diameter/radius programming:
DIAMCHANA[<axis>]
DIAMCHAN
Non-modal axis-specific diameter/radius programming:
<axis>=DAC(<value>)
<axis>=DIC(<value>)
<axis>=RAC(<value>)
<axis>=RIC(<value>)

Fundamentals
2.8 Geometry settings

NC programming
166 Programming Manual, 06/2019, A5E47437142B AA

Meaning

Modal axis-specific diameter programming
DIAMONA: Command for the activation of the independent axis-specific diameter programming

The effect of DIAMONA is independent of the programmed dimensions mode
(G90/G91 or AC/IC):
● For G90, AC: Dimensions in the diameter
● For G91, IC: Dimensions in the diameter

DIAM90A: Command for the activation of the dependent axis-specific diameter programming
The effect of DIAM90A depends on the programmed dimensions mode:
● For G90, AC: Dimensions in the diameter
● For G91, IC: Dimensions in the radius

DIAMOFA: Command for the deactivation of the axis-specific diameter programming
Axis-specific radius programming takes effect when diameter programming is de‐
activated. The effect of DIAMOFA is independent of the programmed dimensions
mode:
● For G90, AC: Dimensions in the radius
● For G91, IC: Dimensions in the radius

DIACYCOFA: Command for the deactivation of axis-specific diameter programming during cycle
processing.
In this way, computations in the cycle can always be made in the radius. The last
G command active in this group remains active for the position indicator and the
basic block indicator.

<axis>: Axis identifier of the axis for which the axis-specific diameter programming is to be
activated.
Permitted axis identifiers are as follows:
● Geometry/channel axis name

or
● Machine axis name
Range of values: The axis specified must be a known axis in the channel.

Other conditions:
● The axis must be permitted for the axis-specific diameter

programming via
MD30460 $MA_BASE_FUNCTION_MASK.

● Rotary axes are not permitted to serve as transverse axes.

Acceptance of the channel-specific diameter/radius programming
DIAMCHANA: With the DIAMCHANA[<axis>] command, the specified axis accepts the channel

status of the diameter/radius programming and is then assigned to the channel-
specific diameter/radius programming.

DIAMCHAN: With the DIAMCHAN command, all axes permitted for the axis-specific diameter
programming accept the channel status of the diameter/radius programming and
are then assigned to the channel-specific diameter/radius programming.

Non-modal axis-specific diameter/radius programming
The non-modal axis-specific diameter/radius programming specifies the dimension type as a diameter
or radius value in the part program and synchronized actions. The modal status of diameter/radius
programming remains unchanged.

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 167

DAC: The DAC command sets the following dimensions to non-modal for the specified
axis:
Diameter in absolute dimensions

DIC: The DIC command sets the following dimensions to non-modal for the specified
axis:
Diameter in incremental dimensions

RAC: The RAC command sets the following dimensions to non-modal for the specified
axis:
Radius in absolute dimensions

RIC: The RIC command sets the following dimensions to non-modal for the specified
axis:
Radius in incremental dimensions

Note

With DIAMONA[<axis>] or DIAM90A[<axis>], the transverse-axis actual values are
always displayed as a diameter. This also applies to reading of actual values in the workpiece
coordinate system with MEAS, MEAW, $P_EP[x] and $AA_IW[x].

Note

During the replacement of an additional transverse axis because of a GET request, the status
of the diameter/radius programming in the other channel is accepted with RELEASE[<axis>].

Examples

Example 1: Modal axis-specific diameter/radius programming
X is the transverse axis in the channel, axis-specific diameter programming is permitted for Y.

Program code Comment
N10 G0 X0 Z0 DIAMON ; Channel-specific diameter programming active for X.
N15 DIAMOF ; Channel-specific diameter programming off.
N20 DIAMONA[Y] ; Modal axis-specific diameter programming active for Y.
N25 X200 Y100 ; Radius programming active for X.
N30 DIAMCHANA[Y] ; Y accepts the status of the channel-specific diameter/

radius programming and is assigned to this.
N35 X50 Y100 ; Radius programming active for X and Y.
N40 DIAMON ; Channel-specific diameter programming on.
N45 X50 Y100 ; Diameter programming active for X and Y.

Example 2: Non-modal axis-specific diameter/radius programming
X is the transverse axis in the channel, axis-specific diameter programming is permitted for Y.

Program code Comment
N10 DIAMON ; Channel-specific diameter pro-

gramming on.

Fundamentals
2.8 Geometry settings

NC programming
168 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N15 G0 G90 X20 Y40 DIAMONA[Y] ; Modal axis-specific diameter

programming active for Y.
N20 G01 X=RIC(5) ; Dimensions effective in this

block for X: Radius in incremen-
tal dimensions.

N25 X=RAC(80) ; Dimensions effective in this
block for X: Radius in absolute
dimensions.

N30 WHEN $SAA_IM[Y]> 50 DO POS[X]=RIC(1) ; X is command axis.
Dimensions effective in this
block for X: Radius in incremen-
tal dimensions.

N40 WHEN $SAA_IM[Y]> 60 DO POS[X]=DAC(10) ; X is command axis.
Dimensions effective in this
block for X: Radius in absolute
dimensions.

N50 G4 F3

Further information
Diameter values (DIAMONA/DIAM90A)

The diameter values apply for the following data:

● Actual value display of the transverse axis in the workpiece coordinate system

● JOG mode: Increments for incremental dimensions and manual handwheel travel

● Programming of end positions:
Interpolation parameters I, J, K for G2/G3, if these have been programmed absolutely
with AC.
If I, J, K are programmed incrementally (IC), the radius is always calculated.

● Reading actual values in the workpiece coordinate system for:
MEAS, MEAW, $P_EP[X], $AA_IW[X]

Non-modal axis-specific diameter programming (DAC, DIC, RAC, RIC)

The statements DAC, DIC, RAC, RIC are permissible for any commands for which channel-
specific diameter programming is relevant:

● Axis position: X..., POS, POSA
● Oscillation: OSP1, OSP2, OSS, OSE, POSP
● Interpolation parameters: I, J, K
● Contour definition: Straight line with angle specification

● Rapid retraction: POLF[AX]
● Traversing in the tool direction: MOVT
● Smooth approach and retraction:

G140 to G143, G147, G148, G247, G248, G347, G348, G340, G341

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 169

2.8.5 Position of workpiece for turning

Axis identifiers
The two geometry axes perpendicular to one another are usually called:

Longitudinal axis = Z axis (abscissa)
Transverse axis = X axis (ordinate)

Workpiece zero
Whereas the machine zero is permanently defined, the workpiece zero can be freely selected
on the longitudinal axis. Generally the workpiece zero is on the front or rear side of the
workpiece.

Both the machine and the workpiece zero are on the turning center. The settable offset on the
X axis is therefore zero.

M Machine zero
W Workpiece zero
Z Longitudinal axis
X Transverse axis
G54 to G599
or TRANS

Call for the position of the workpiece zero

Fundamentals
2.8 Geometry settings

NC programming
170 Programming Manual, 06/2019, A5E47437142B AA

Transverse axis
Generally the dimensions for the transverse axis are diameter specifications (double path
dimension compared to other axes):

The geometry axis that is to serve as transverse axis is defined in the machine data (→ machine
manufacturer).

Fundamentals
2.8 Geometry settings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 171

2.9 Motion commands

2.9.1 General information about the travel commands

Contour elements
The programmed workpiece contour can be made up of the following contour elements:

● Straight lines

● Circular arcs

● Helical curves (through overlaying of straight lines and circular arcs)

Travel commands
The following travel commands are available for the creation of these contour elements:

● Rapid traverse motion (G0)

● Linear interpolation (G1)

● Circular interpolation clockwise (G2)

● Circular interpolation counter-clockwise (G3)

The travel commands are modal.

Target positions
A motion block contains the target positions for the axes to be traversed (path axes,
synchronized axes, positioning axes).

The target positions can be programmed in Cartesian coordinates or in polar coordinates.

Note

The axis address may only be programmed once per block.

Starting point - target point
The traversing motion is always for the last point reached to the programmed target position.
This target position is then the starting position for the next travel command.

Fundamentals
2.9 Motion commands

NC programming
172 Programming Manual, 06/2019, A5E47437142B AA

Workpiece contour

NOTICE

Tool operation undefined

Before machining, the workpiece must be positioned in such a way that the tool or workpiece
cannot be damaged.

The motion blocks produce the workpiece contour when performed in succession:

Figure 2-8 Motion blocks for turning

Figure 2-9 Motion blocks for milling

2.9.2 Travel commands with Cartesian coordinates (G0, G1, G2, G3, X..., Y..., Z...)
The position specified in the NC block with Cartesian coordinates can be approached with rapid
traverse motion G0, linear interpolation G1 or circular interpolation G2 /G3.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 173

Syntax
G0 X... Y... Z...
G1 X... Y... Z...
G2 X... Y... Z... ...
G3 X... Y... Z... ...

Meaning

G0: Command for the activation of rapid traverse motion
G1: Command for the activation of linear interpolation
G2: Command for the activation of clockwise circular interpolation
G3: Command for the activation of counter-clockwise circular interpolation
X...: Cartesian coordinate of the target position in the X direction
Y...: Cartesian coordinate of the target position in the Y direction
Z...: Cartesian coordinate of the target position in the Z direction

Note

In addition to the coordinates of the target position X..., Y..., Z..., the circular
interpolation G2 / G3 also requires further data (e.g. the circle center point coordinates; see
"Overview (Page 188)").

Example

Program code Comment
N10 G17 S400 M3 ; Selection of the working plane, spindle clockwise
N20 G0 X40 Y-6 Z2 ; Approach of the starting position specified with Cartesian

coordinates in rapid traverse
N30 G1 Z-3 F40 ; Activation of the linear interpolation, feed of the tool

Fundamentals
2.9 Motion commands

NC programming
174 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N40 X12 Y-20 ; Travel on an inclined line to an end position specified with

Cartesian coordinates
N50 G0 Z100 M30 ; Retraction in rapid traverse for tool change

2.9.3 Travel commands with polar coordinates

2.9.3.1 Reference point of the polar coordinates (G110, G111, G112)
The point from which the dimensioning starts is called the pole.

The pole can be specified in Cartesian or polar coordinates.

The reference point for the pole coordinates is clearly defined with the G110 to G112
commands. Absolute or incremental dimension inputs therefore have no effect.

Syntax
G110/G111/G112 X… Y… Z…
G110/G111/G112 AP=… RP=…

Meaning

G110 ...: With the command G110, the following pole coordinates refer to the last position
reached.

G111 ...: With the command G111, the following pole coordinates refer to the zero point of
the current workpiece coordinate system.

G112 ...: With the command G112, the following pole coordinates refer to the last valid pole.
 Note:

The commands G110...G112 must be programmed in a separate NC block.
X… Y… Z…: Specification of the pole in Cartesian coordinates
AP=… RP=…: Specification of the pole in polar coordinates

AP=…: Polar angle
Angle between the polar radius and the horizontal axis of the working
plane (e.g. X axis for G17). The positive direction of rotation runs coun‐
ter-clockwise.
Range of values: ± 0…360°

RP=…: Polar radius
The specification is always in absolute positive values in [mm] or [inch].

Note

It is possible to switch block-by-block in the NC program between polar and Cartesian
dimensions. It is possible to return directly to the Cartesian system by using Cartesian
coordinate identifiers (X..., Y..., Z...). The defined pole is moreover retained up to program end.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 175

Note

If no pole has been specified, the zero point of the current workpiece coordinate system applies.

Example

Poles 1 to 3 are defined as follows:
● Pole 1 with G111 X… Y…
● Pole 2 with G110 X… Y…
● Pole 3 with G112 X… Y…

2.9.3.2 Travel commands with polar coordinates (G0, G1, G2, G3, AP, RP)
Travel commands with polar coordinates are useful when the dimensions of a workpiece or part
of the workpiece are measured from a central point and the dimensions are specified in angles
and radii (e.g. for drilling patterns).

Fundamentals
2.9 Motion commands

NC programming
176 Programming Manual, 06/2019, A5E47437142B AA

Syntax
G0/G1/G2/G3 AP=… RP=…

Meaning

G0: Command for the activation of rapid traverse motion
G1: Command for the activation of linear interpolation
G2: Command for the activation of clockwise circular interpolation
G3: Command for the activation of counter-clockwise circular interpolation
AP: Polar angle

Angle between the polar radius and the horizontal axis of the working plane (e.g. X axis
for G17). The positive direction of rotation runs counter-clockwise.
Range of values: ± 0…360°
The angle can be specified either incremental or absolute:
AP=AC(...): Absolute dimension input
AP=IC(...): Incremental dimension input

With incremental dimension input, the last programmed angle applies
as reference.

The polar angle remains stored until a new pole is defined or the working plane is changed.
RP: Polar radius

The specification is always in absolute positive values in [mm] or [inch].
The polar radius remains stored until a new value is entered.

Note

The polar coordinates refer to the pole specified with G110 ... G112 and apply in the working
plane selected with G17 to G19.

Note

The 3rd geometry axis, which lies perpendicular to the working plane, can also be specified in
Cartesian coordinates (see the following diagram). This enables spatial parameters to be
programmed in cylindrical coordinates.

Example: G17 G0 AP… RP… Z…

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 177

Supplementary conditions
● No Cartesian coordinates such as interpolation parameters, axis addresses, etc. may be

programmed for the selected working plane in NC blocks with polar end point coordinates.

● If a pole has not been defined with G110 ... G112, then the zero point of the current
workpiece coordinate system is automatically considered as the pole:

Fundamentals
2.9 Motion commands

NC programming
178 Programming Manual, 06/2019, A5E47437142B AA

● Polar radius RP = 0
The polar radius is calculated from the distance between the starting point vector in the pole
plane and the active pole vector. The calculated polar radius is then saved as modal.
This applies irrespective of the selected pole definition (G110 ... G112). If both points have
been programmed identically, this radius = 0 and alarm 14095 is generated.

● Only polar angle AP has been programmed
If no polar radius RP has been programmed in the current block, but a polar angle AP, then
when there is a difference between the current position and pole in the workpiece
coordinates, this difference is used as polar radius and saved as modal. If the difference =
0, then the pole coordinates are specified again and the modal polar radius remains at zero.

Example
Creation of a drilling pattern

The positions of the holes are specified in po‐
lar coordinates.
Each hole is machined with the same produc‐
tion sequence:
Rough-drilling, drilling as dimensioned, ream‐
ing …
The machining sequence is stored in the sub‐
program.

Program code Comment
N10 G17 G54 ; Working plane X/Y, workpiece zero.
N20 G111 X43 Y38 ; Specification of the pole.
N30 G0 RP=30 AP=18 Z5 ; Approach starting point, specification in cy-

lindrical coordinates.
N40 L10 ; Subprogram call.
N50 G91 AP=72 ; Approach next position in rapid traverse, polar

angle in incremental dimensions, polar radius
from block N30 remains saved and does not have to
be specified.

N60 L10 ; Subprogram call.
N70 AP=IC(72) .
N80 L10 …
N90 AP=IC(72)
N100 L10 …

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 179

Program code Comment
N110 AP=IC(72)
N120 L10 …
N130 G0 X300 Y200 Z100 M30 ; Retract tool, end of program.

See also
Overview (Page 188)

2.9.4 Rapid traverse movements

2.9.4.1 Activating rapid traverse (G0)
The traversing of the path axes at rapid traversing velocity is activated with the G command G0.

Syntax
G0 X… Y… Z…
G0 RP=… AP=…

Meaning

G0: Traversing the axis with rapid traverse velocity
Effective: Modal

X... Y... Z...: Specifying the end point in Cartesian coordinates
RP=... AP=... : Specifying the end point in polar coordinates

Fundamentals
2.9 Motion commands

NC programming
180 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Milling

Program code Comment
N10 G90 S400 M3 ; Absolute dimension input, spindle clockwise
N20 G0 X30 Y20 Z2 ; Approach the starting position
N30 G1 Z-5 F1000 ; Tool infeed
N40 X80 Y65 ; Traversing along a straight line
N50 G0 Z2
N60 G0 X-20 Y100 Z100 M30 ; Retract tool, end of program

Example 2: Turning

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 181

Program code Comment
N10 G90 S400 M3 ; Absolute dimension input, spindle clockwise
N20 G0 X25 Z5 ; Approach the starting position
N30 G1 G94 Z0 F1000 ; Tool infeed
N40 G95 Z-7.5 F0.2
N50 X60 Z-35 ; Traversing along a straight line
N60 Z-50
N70 G0 X62
N80 G0 X80 Z20 M30 ; Retract tool, end of program

2.9.4.2 Switch on/off linear interpolation for rapid traverse movements (RTLION, RTLIOF)
Independently of the default setting (MD20730 $MC_G0_LINEAR_MODE), the interpolation
response for rapid traverse movements can also be set in the part program using the
commands of the G group 55.

Syntax

RTLIOF
...
RTLION

Meaning

RTLIOF: G command for switching off the linear interpolation
⇒ In the rapid traversing mode (G0), the non-linear interpolation is active. All of the
path axes reach their end points independently of one another.
Effective: Modal

RTLION: G command for switching on the linear interpolation
⇒ In the rapid traversing mode (G0), the linear interpolation is active. All of the path
axes reach their end points simultaneously.
Effective: Modal

Fundamentals
2.9 Motion commands

NC programming
182 Programming Manual, 06/2019, A5E47437142B AA

Note
Preconditions for RTLIOF

To ensure, with RTLIOF non-linear interpolation, the following conditions must be fulfilled:
● No transformation (TRAORI, TRANSMIT, etc.) active.
● G60 active (stop at the block end).
● No compressor active (COMPOF).
● No tool radius compensation active (G40).
● No contour handwheel selected.
● No nibbling active.

If one of these conditions is not met, linear interpolation is as with RTLION.

Example

Program code Comment
 ; Linear interpolation is the default:
 ; MD20730 $MC_GO_LINEAR_MODE == TRUE
...
N30 RTLIOF ; Switch off linear interpolation.
N40 G0 X0 Y10 ; G0 blocks are traversed using non-linear inter-

polation.
N50 G41 X20 Y20 ; TRC active ⇒ G0 blocks are traversed using lin-

ear interpolation.
N60 G40 X30 Y30 ; TRC not active ⇒ G0 blocks are traversed using

non-linear interpolation.
N70 RTLION ; Switch on linear interpolation.
...

Further information

Reading the current interpolation behavior
The current interpolation behavior can be read via the system variables $AA_G0MODE.

2.9.4.3 Adjust relative G0 tolerance (STOLF)
The tolerance factor for rapid traverse movements (G0 tolerance factor) configured with the
machine data MD20560 $MC_G0_TOLERANCE_FACTOR may be temporarily adjusted in the
part program. This does not change the setting in the machine data. After channel or end of
program-RESET, the configured tolerance becomes effective again.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 183

Requirements
The relative G0 tolerance is only effective if the following conditions are fulfilled:

● One of the following functions is active:

– Compressor functions COMPON, COMPCURV, COMPCAD or COMPSURF

– Smoothing function G642 or G645

– Orientation smoothing OST

– Orientation smoothing ORISON

– Smoothing for path-relevant orientation ORIPATH

● There are several (≥ 2) consecutive G0 blocks in the part program.
For a single G0 block, the G0 tolerance factor is not effective, as the "lower tolerance"
always applies (workpiece machining tolerance) at the transition from a non G0 motion to a
G0 motion (and vice versa)!

● No absolute G0 tolerances have been configured (≙ default setting):
MD20561 $MC_G0_TOLERANCE_CTOL_ABS (contour tolerance for G0 movements) = 0
MD20562 $MC_G0_TOLERANCE_OTOL_ABS (orientation tolerance for G0 movements)
= 0

Syntax
STOLF=<Value>

Meaning

STOLF: Address for programming a temporarily effective G0 tolerance factor
<Value>: G0 tolerance factor

Type: REAL
Value: > 0: The G0 tolerance factor can be greater or less than 1.0. If

the factor is equal to 1.0 (default value), then the same
tolerances are active for rapid traverse movements as for
non-rapid traverse movements. Normally, the tolerance
factor is set to > 1.0.
The programmed G0 tolerance factor remains effective
until it is overwritten by renewed STOLF programming or
deleted by channel or end of program RESET.

≤ 0: Deletion of the programmed tolerance factor
⇒ The tolerance value preset in the machine data becomes
effective again.

Example

Program code Comment
COMPCAD G645 G1 F10000 ; Compressor function COMPCAD
X... Y... Z... ; The machine and setting data apply here.
X... Y... Z...

Fundamentals
2.9 Motion commands

NC programming
184 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
X... Y... Z...
G0 X... Y... Z...
G0 X... Y... Z... ; Machine data $MC_G0_TOLERANCE_FACTOR (e.g. =3) is ef-

fective here, i.e. a smoothing tolerance of:
$MC_G0_TOLERANCE_FACTOR * $MA_COMPRESS_POS_TOL

CTOL=0.02
STOLF=4
G1 X... Y... Z... ; A contour tolerance of 0.02 mm is applied starting

from here.
X... Y... Z...
X... Y... Z...
G0 X... Y... Z...
X... Y... Z... ; From here, a G0 tolerance factor of 4 applies, i.e. a

contour tolerance of 0.08 mm.
...

Further information

Reading G0 tolerance factor
The tolerance factor for rapid traverse movements effective in the part program or in the current
IPO block can be read using system variables.

● In synchronized actions or with preprocessing stop in the part program via system variable:

 $AC_STOLF Active G0 tolerance factor
G0 tolerance factor, which was effective when processing the ac‐
tual main run block.

● Without preprocessing stop in the part program via system variable:

 $P_STOLF Programmed G0 tolerance factor

If no value with STOLF is programmed in the active part program, then these two system
variables return the value configured in the machine data.

If no rapid traverse (G0) is active in a block, then these system variables always supply a value
of 1.

If an absolute value for the contour tolerance is active with G0, then these two variables return
the factor between the contour tolerance for G0 movements and the contour tolerance for non-
G0 movements.

Reading the absolute G0 tolerances

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 185

The contour and orientation tolerance for rapid traverse movements effective in the part
program and interpolation block can be read by the system variable.

● In synchronized actions or with preprocessing stop in the part program by the system
variables:

– $AC_CTOL_G0_ABS

– $AC_OTOL_ G0_ABS

● Without preprocessing stop in the part program by the system variables:

– $P_CTOL_ G0_ABS

– $P_OTOL_ G0_ABS

2.9.5 Linear interpolation (G1)
With G1 the tool travels on paraxial, inclined or straight lines arbitrarily positioned in space.
Linear interpolation permits machining of 3D surfaces, grooves, etc.

Syntax
G1 X… Y… Z … F…
G1 AP=… RP=… F…

Meaning

G1: Linear interpolation with feedrate (linear interpolation)
X... Y... Z...: End point in Cartesian coordinates
AP=...: End point in polar coordinates, in this case polar angle

Fundamentals
2.9 Motion commands

NC programming
186 Programming Manual, 06/2019, A5E47437142B AA

RP=...: End point in polar coordinates, in this case polar radius
F...: Feedrate speed in mm/min. The tool travels at feedrate F along a straight line

from the current starting point to the programmed destination point. You can
enter the destination point in Cartesian or polar coordinates. The workpiece is
machined along this path.
Example: G1 G94 X100 Y20 Z30 A40 F100
The end point on X, Y, Z is approached at a feedrate of 100 mm/min; the rotary
axis A is traversed as a synchronized axis, ensuring that all four movements
are completed at the same time.

Note

G1 is modal.

Spindle speed S and spindle direction M3/M4 must be specified for the machining.

Axis groups, for which path feedrate F applies, can be defined with FGROUP. You will find more
information in the "Path behavior" section.

Examples

Example 1: Machining of a groove (milling)
The tool travels from the starting point to the end point in the X/Y direction. Infeed takes place
simultaneously in the Z direction.

Program code Comment
N10 G17 S400 M3 ; Selection of the working plane, spindle clockwise
N20 G0 X20 Y20 Z2 ; Approach the starting position
N30 G1 Z-2 F40 ; Tool infeed
N40 X80 Y80 Z-15 ; Travel on an inclined line
N50 G0 Z100 M30 ; Retraction for tool change

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 187

Example 2: Machining of a groove (turning)

Program code Comment
N10 G17 S400 M3 ; Selection of the working plane, spindle clockwise
N20 G0 X40 Y-6 Z2 ; Approach the starting position
N30 G1 Z-3 F40 ; Tool infeed
N40 X12 Y-20 ; Travel on an inclined line
N50 G0 Z100 M30 ; Retraction for tool change

2.9.6 Circular interpolation

2.9.6.1 Overview
Circular interpolation enables the machining of full circles or arcs.

Figure 2-10 Application example: Milling a circular way

Fundamentals
2.9 Motion commands

NC programming
188 Programming Manual, 06/2019, A5E47437142B AA

Programming options
The control system offers various options of programming circular movements. This allows the
user to implement almost any type of drawing dimension directly.

● Circular interpolation with center point and end point (G2/G3, X... Y... Z..., I... J... K...)
(Page 189)

● Circular interpolation with radius and end point (G2/G3, X... Y... Z..., CR) (Page 192)

● Circular interpolation with opening angle and end point / center point (G2/G3, X... Y... Z... /
I... J... K..., AR) (Page 194)

● Circular interpolation with polar coordinates (G2/G3, AP, RP) (Page 196)

● Circular interpolation with intermediate point and end point (CIP, X... Y... Z..., I1... J1... K1...)
(Page 198)

● Circular interpolation with tangential transition (CT, X... Y... Z...) (Page 200)

Plane for the circular interpolation
The control needs the working plane parameter (Page 148) to calculate the direction of rotation
for the circle (G2 is clockwise or G3 is counter-clockwise).

Exception:

It is also possible to create circles outside the selected working plane (not with opening angle
and helix parameters). In this case, the axis identifiers that the programmer specifies as circle
end point determine the circle plane.

2.9.6.2 Circular interpolation with center point and end point (G2/G3, X... Y... Z..., I... J... K...)
Circular interpolation version, that uses the center point and end point of a circular contour
element for the interpolation.

If the circle is programmed without an end point, the result is a full circle.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 189

Syntax
G2/G3 X… Y… Z… I… J… K…
G2/G3 X… Y… Z… I=AC(…) J=AC(…) K=(AC…)

Meaning

G2: Circular interpolation clockwise
Effective: Modal

G3: Circular interpolation counter-clockwise
Effective: Modal

X... Y... Z... : Circle end point in Cartesian coordinates.
Depending on the currently valid dimensional notation setting G90/G91
or ...=AC(...) / ...=IC(...), the circle end point coordinates are in‐
terpreted either in the absolute dimension or in the incremental dimension.

I... J... K... : Interpolation parameters to state the circle center point coordinates in the
directions X, Y, Z
Per default, the circle center point coordinates are stated in the incremental
dimension in relation to the circle starting point.
If the circle center point coordinates are stated in the absolute dimension in
relation to workpiece zero, the interpolation parameters I, J, K must be pro‐
grammed as follows:
I=AC(…) J=AC(…) K=AC(…)
Note
An interpolation parameter with value 0 can be omitted, but the associated
second parameter must always be specified.

Note

The default setting G90/G91 absolute or incremental dimensions is only valid for the circle end
point.

Fundamentals
2.9 Motion commands

NC programming
190 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Milling

Center point data using incremental dimensions
N10 G0 X67.5 Y80.211
N20 G3 X17.203 Y38.029 I–17.5 J–30.211 F500
Center point data using absolute dimensions
N10 G0 X67.5 Y80.211
N20 G3 X17.203 Y38.029 I=AC(50) J=AC(50)

Example 2: Turning

Center point data using incremental dimensions
N120 G0 X12 Z0
N125 G1 X40 Z-25 F0.2
N130 G3 X70 Z-75 I-3.335 K-29.25
N135 G1 Z-95

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 191

Center point data using absolute dimensions
N120 G0 X12 Z0
N125 G1 X40 Z-25 F0.2
N130 G3 X70 Z-75 I=AC(33.33) K=AC(-54.25)
N135 G1 Z-95

2.9.6.3 Circular interpolation with radius and end point (G2/G3, X... Y... Z..., CR)
Circular interpolation version, that uses the radius and end point of a circular contour element
for the interpolation.

Note

Full circles (traversing angle 360 °) can not be programmed with this version.

Syntax
G2/G3 X… Y… Z… CR=±...

Meaning

G2: Circular interpolation clockwise
Effective: Modal

G3: Circular interpolation counter-clockwise
Effective: Modal

X... Y... Z... : Circle end point in Cartesian coordinates.
Depending on the currently valid dimensional notation setting G90/G91
or ...=AC(...) / ...=IC(...), the end point coordinates are interpreted
either in the absolute dimension or in the incremental dimension.

CR=±... : Circle radius
The sign indicates whether the traversing angle is to be greater than or less
than 180°. A positive sign can be omitted.
CR=+... : Traversing angle ≤ 180°
CR=-... : Traversing angle > 180°
Note
There is no practical limitation on the maximum size of the programmable
radius.

Fundamentals
2.9 Motion commands

NC programming
192 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Milling

Program code
N10 G0 X67.5 Y80.511
N20 G3 X17.203 Y38.029 CR=34.913 F500
...

Example 2: Turning

Program code
...
N125 G1 X40 Z-25 F0.2
N130 G3 X70 Z-75 CR=30
N135 G1 Z-95
...

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 193

2.9.6.4 Circular interpolation with opening angle and end point / center point (G2/G3, X... Y... Z... /
I... J... K..., AR)

Circular interpolation version, that uses the opening angle and center point or end point of a
circular contour element for the interpolation.

Note

Full circles (traversing angle 360 °) can not be programmed with this version.

Syntax
G2/G3 X… Y… Z… AR=...
G2/G3 I… J… K… AR=...

Meaning

G2: Circular interpolation clockwise
Effective: Modal

G3: Circular interpolation counter-clockwise
Effective: Modal

X... Y... Z... : Circle end point in Cartesian coordinates.
Depending on the currently valid dimensional notation setting G90/G91
or ...=AC(...) / ...=IC(...), the circle end point coordinates are in‐
terpreted either in the absolute dimension or in the incremental dimension.

I... J... K... : Interpolation parameters to state the circle center point coordinates in the
directions X, Y, Z
Per default, the circle center point coordinates are stated in the incremental
dimension in relation to the circle starting point.
If the circle center point coordinates are stated in the absolute dimension in
relation to workpiece zero, the interpolation parameters I, J, K must be pro‐
grammed as follows:
I=AC(…) J=AC(…) K=AC(…)
Note
An interpolation parameter with value 0 can be omitted, but the associated
second parameter must always be specified.

AR=... : Opening angle
Range of val‐
ues:

0° ... 360°

Fundamentals
2.9 Motion commands

NC programming
194 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Milling

Program code
N10 G0 X67.5 Y80.211
N20 G3 X17.203 Y38.029 AR=140.134 F500
N20 G3 I–17.5 J–30.211 AR=140.134 F500

Example 2: Turning

Program code
N125 G1 X40 Z-25 F0.2
N130 G3 X70 Z-75 AR=135.944
N130 G3 I-3.335 K-29.25 AR=135.944
N130 G3 I=AC(33.33) K=AC(-54.25) AR=135.944

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 195

Program code
N135 G1 Z-95

2.9.6.5 Circular interpolation with polar coordinates (G2/G3, AP, RP)
Circular interpolation version, that uses the circle end point in polar coordinates for the
interpolation.

The following rule applies:

● The pole lies at the circle center.

● The polar radius corresponds to the circle radius.

Syntax
G2/G3 absolute pressure=... Recipe procedure=...

Meaning

G2: Circular interpolation clockwise
Effective: Modal

G3: Circular interpolation counter-clockwise
Effective: Modal

Absolute
pressure=...
Recipe
procedure=... :

Circle end point in polar coordinates.
Absolute
pressure=..
. :

Polar angle

Recipe
procedure=.
.. :

Polar radius (≙ circle radius)

Fundamentals
2.9 Motion commands

NC programming
196 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Milling

Program code
N10 G0 X67.5 Y80.211
N20 G111 X50 Y50
N30 G3 RP=34.913 AP=200.052 F500

Example 2: Turning

Program code
N125 G1 X40 Z-25 F0.2
N130 G111 X33.33 Z-54.25
N135 G3 RP=30 AP=142.326
N140 G1 Z-95

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 197

2.9.6.6 Circular interpolation with intermediate point and end point (CIP, X... Y... Z..., I1... J1...
K1...)

The circular interpolation version programmed with the G command CIP allows the
interpolation of arcs lying at an incline in the space.

The circular motion is described by the intermediate point and the end point of the circular
contour.

The traversing direction is determined by the order of the starting point → intermediate point →
end point.

Syntax
CIP X… Y… Z… I1=AC(…) J1=AC(…) K1=(AC…)

Meaning

CIP: Circular interpolation through intermediate point
Effective: Modal

X... Y... Z... : Circle end point in Cartesian coordinates.
Depending on the currently valid dimensional notation setting G90/G91
or ...=AC(...) / ...=IC(...), the circle end point coordinates are in‐
terpreted either in the absolute dimension or in the incremental dimension.

I1... J1... K1... : Interpolation parameters to state the circle intermediate point coordinates in
the directions X, Y, Z
Depending on the currently valid dimensional notation setting G90/G91
or ...=AC(...) / ...=IC(...), the circle intermediate point coordinates
are interpreted either in the absolute dimension or in the incremental dimen‐
sion.
Note
An interpolation parameter with value 0 can be omitted, but the associated
second parameter must always be specified.

Fundamentals
2.9 Motion commands

NC programming
198 Programming Manual, 06/2019, A5E47437142B AA

Note

The default settings G90/G91 (absolute or incremental dimensions) are only valid for the circle
intermediate point and the circle end point.

With incremental dimensions G91 or ...=IC(...) active, the circle starting point is used as
the reference for the intermediate point and the end point.

Note
Turning technology

The diameter programming of the interpolation parameter for the transverse axis is not
supported with CIP in the circular-path programming. The interpolation parameter for the
transverse axis must therefore be programmed in the radius.

Examples

Example 1: Milling
In order to machine an inclined circular groove, a circle is described by specifying the
intermediate point with three interpolation parameters, and the end point with three coordinates.

Program code Comment
N10 G0 G90 X130 Y70.70 S800 M3 ; Approach starting point.
N20 G17 G1 Z-2 F100 ; Feed of the tool.
N30 CIP X80 Y120 Z-10 I1=IC(-85.35) J1=IC(-35.35) K1=-6 ; Circle end point and inter-

mediate point.
 ; Coordinates for all three

geometry axes.
N40 M30 ; End of program

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 199

Example 2: Turning

Program code Comment
...
N125 G1 G90 X40 Z-25 F0.2
N130 CIP X70 Z-75 I1=IC(26.665) K1=IC(-29.25) ; Interpolation parameter I1 for

transverse axis must be program-
med in the radius.

; or
; N130 CIP X70 Z-75 I1=46.665 K1=-54.25
N135 G1 Z-95

2.9.6.7 Circular interpolation with tangential transition (CT, X... Y... Z...)
The circular interpolation version programmed with the G command CT allows the interpolation
of arcs that connect tangentially to the previously programmed contour element.

The circle is defined by the start and end points, and the tangent direction at the start point.

Note
Tangent direction at the start point.

The tangent direction in the starting point of a CT block is determined from the end tangent of
the programmed contour of the last block with a traversing motion.

There can be any number of blocks without traversing information between this block and the
current block.

Fundamentals
2.9 Motion commands

NC programming
200 Programming Manual, 06/2019, A5E47437142B AA

S Start point
E End point
M Center of circle
r Circle radius
t End tangents of the programmed contour of the last block with a traversing movement.

Figure 2-11 Tangentially to the straight section 1-2 connecting circular path S-E

Figure 2-12 Tangentially connecting circular paths depend on the previous contour element

Syntax
CT X… Y… Z…

Meaning

CT: Circular interpolation with tangential transition
Effective: Modal

X... Y... Z... : Circle end point in Cartesian coordinates.
Depending on the currently valid dimensional notation setting G90/G91
or ...=AC(...) / ...=IC(...), the circle end point coordinates are in‐
terpreted either in the absolute dimension or in the incremental dimension.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 201

Examples

Example 1: Milling

Program code Comment
N10 G0 Z100
N20 G17 T1 M6
N30 G0 X0 Y0 Z2 M3 S300 D1
N40 Z-5 F1000 ; Feed in tool.
N50 G41 X30 Y25 G1 F1000 ; Switch on tool radius compensation.
N60 Y35 ; Mill contour.
N70 X60 Y70
N80 CT X80 Y55 ; Circular-path programming with tangential transi-

tion.
N90 X90 Y35
N100 G1 X100
N110 Y25
N120 X30
N130 G0 G40 X0 Y0 ; Switch off tool radius compensation.
N140 Z100 ; Retract tool.
N140 M30

Example 2: Turning

Fundamentals
2.9 Motion commands

NC programming
202 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
...
N110 G1 X23.293 Z0 F10
N115 X40 Z-30 F0.2
N120 CT X58.146 Z-42 ; Circular-path programming with tangential transition.
N125 G1 X70
...

Further information
Splines

In the case of splines, the tangential direction is defined by the straight line through the last two
points. In the case of A and C splines with active ENAT or EAUTO, this direction is generally not
the same as the direction at the end point of the spline.

The transition of B splines is always tangential, the tangent direction is defined as for A or C
splines and active ETAN.

Frame change

If a frame change takes place between the block that defines the tangent and the CT block, the
tangent is also subjected to this change.

Limit case

If the extension of the start tangent runs through the end point, a straight line is produced
instead of a circle (limit case: circle with infinite radius). In this special case, TURN must either
not be programmed or the value must be TURN=0.

Note

When the values tend towards this limit case, circles with an unlimited radius are produced and
machining with TURN unequal to 0 is generally aborted with an alarm due to violation of the
software limits.

Position of the circle plane

The position of the circle plane depends on the active plane (G17-G19).

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 203

If the tangent of the previous block does not lie in the active plane, its projection into the active
plane is used.

If the start and end points do not have the same position components perpendicular to the
active plane, a helix is produced instead of a circle.

2.9.7 Helical interpolation (G2/G3, TURN)
The helical interpolation enables, for example, the production of threads or oil grooves.

With helical interpolation, two motions are superimposed and executed in parallel:

● A plane circular motion on which

● A vertical linear motion is superimposed.

Syntax
G2/G3 X… Y… Z… I… J… K… TURN=
G2/G3 X… Y… Z… I… J… K… TURN=
G2/G3 AR=… I… J… K… TURN=
G2/G3 AR=… X… Y… Z… TURN=
G2/G3 AP… RP=… TURN=

Meaning

G2: Travel on a circular path in clockwise direction
G3: Travel on a circular path in counter-clockwise direction
X Y Z : End point in Cartesian coordinates
I J K : Circle center point in Cartesian coordinates

Fundamentals
2.9 Motion commands

NC programming
204 Programming Manual, 06/2019, A5E47437142B AA

AR: Opening angle
TURN= : Number of additional circular passes in the range from 0 to 999
AP= : Polar angle
RP= : Polar radius

Note

G2 and G3 are modal.

The circular motion is performed in those axes that are defined by the specification of the
working plane.

Example

Program code Comment
N10 G17 G0 X27.5 Y32.99 Z3 ; Approach the starting posi-

tion.
N20 G1 Z-5 F50 ; Feed of the tool.
N30 G3 X20 Y5 Z-20 I=AC(20) J=AC(20) TURN=2 ; Helix with the specifica-

tions: Execute two full cir-
cles after the starting posi-
tion, then travel to end
point.

N40 M30 ; End of program

Additional information
Motion sequence

1. Approach starting point

2. Execute the full circles programmed with TURN=.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 205

3. Approach circle end position, e.g. as part rotation.

4. Execute steps 2 and 3 across the infeed depth.

The pitch, with which the helix is to be machined is calculated from the number of full circles plus
the programmed circle end position (executed across the infeed depth).

Programming the end point for helical interpolation

Please refer to circular interpolation for a detailed description of the interpolation parameters.

Programmed feedrate

For helical interpolation, it is advisable to specify a programmed feedrate override (CFC).
FGROUP can be used to specify which axes are to be traversed with a programmed feedrate.
For more information please refer to the Path behavior section.

2.9.8 Contour definitions

2.9.8.1 Contour definition programming

Function
The contour definition programming is used for the quick input of simple contours.

Programmable are contour definitions with one, two, three or more points with the transition
elements chamfer or rounding, through specification of Cartesian coordinates and/or angles
(ANG or ANG1 and ANG2).

Fundamentals
2.9 Motion commands

NC programming
206 Programming Manual, 06/2019, A5E47437142B AA

Additional arbitrary NC addresses can be used, e.g. address letters for further axes (single
axes or axis perpendicular to the machining plane), auxiliary function specifications, G
commands, velocities, etc. in the blocks that describe contour definitions.

Note
Contour calculator

The contour definitions can be programmed easily with the aid of the contour calculator. This
is a user interface tool that enables the programming and graphic display of simple and
complex workpiece contours. The contours programmed via the contour calculator are
transferred to the part program.

References:
Operating Manual

Parameterization
The identifiers for angle, radius and chamfer are defined via machine data:

MD10652 $MN_CONTOUR_DEF_ANGLE_NAME (name of the angle for contour definitions)

MD10654 $MN_RADIUS_NAME (name of the radius for contour definitions)

MD10656 $MN_CHAMFER_NAME (name of the chamfer for contour definitions)

Note

See machine manufacturer's specifications.

2.9.8.2 Contour definitions: One straight line

Note

In the following description it is assumed that:
● G18 is active (⇒ active working plane is the Z/X plane).

(However, the programming of contour definitions is also possible without restrictions with
G17 or G19.)

● The following identifiers have been defined for angle, radius and chamfer:
– ANG (angle)
– RND (radius)
– CHR (chamfer)

The end point of the straight line is defined by the following specifications:

● Angle ANG

● One Cartesian end point coordinate (X2 or Z2)

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 207

ANG: Angle of the straight line
X1, Z1: Start coordinates
X2, Z2: End point coordinates of the straight line

Syntax
X… ANG=…
Z… ANG=…

Meaning

X... : End point coordinate in the X direction
Z... : End point coordinate in the Z direction
ANG: Identifier for angle programming

The specified value (angle) refers to the abscissa of the active working plane (Z axis
with G18).

Example

Program code Comment
N10 X5 Z70 F1000 G18 ; Approach the starting position
N20 X88.8 ANG=110 ; Straight line with angle specification
N30 ...

or

Program code Comment
N10 X5 Z70 F1000 G18 ; Approach the starting position
N20 Z39.5 ANG=110 ; Straight line with angle specification
N30 ...

Fundamentals
2.9 Motion commands

NC programming
208 Programming Manual, 06/2019, A5E47437142B AA

2.9.8.3 Contour definitions: Two straight lines

Note

In the following description it is assumed that:
● G18 is active (⇒ active working plane is the Z/X plane).

(However, the programming of contour definitions is also possible without restrictions with
G17 or G19.)

● The following identifiers have been defined for angle, radius and chamfer:
– ANG (angle)
– RND (radius)
– CHR (chamfer)

The end point of the first straight line can be programmed by specifying the Cartesian
coordinates or by specifying the angle of the two straight lines. The end point of the second
straight line must always be programmed with Cartesian coordinates. The intersection of the
two straight lines can be designed as a corner, curve or chamfer.

ANG1: Angle of the first straight line
ANG2: Angle of the second straight line
X1, Z1: Start coordinates of the first straight line
X2, Z2: End point coordinates of the first straight line or

start coordinates of the second straight line
X3, Z3: End point coordinates of the second straight line

Syntax

Programming of the end point of the first straight line by specifying the angle
● Corner as transition between the straight lines:

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 209

ANG=…
X… Z… ANG=…

● Rounding as transition between the straight lines:

ANG=… RND=...
X… Z… ANG=…

● Chamfer as transition between the straight lines:

ANG=… CHR=...
X… Z… ANG=…

Programming of the end point of the first straight line by specifying the coordinates
● Corner as transition between the straight lines:

X… Z…
X… Z…

● Rounding as transition between the straight lines:

X… Z… RND=...
X… Z…

● Chamfer as transition between the straight lines:

X… Z… CHR=...
X… Z…

Fundamentals
2.9 Motion commands

NC programming
210 Programming Manual, 06/2019, A5E47437142B AA

Meaning

ANG=... : Identifier for angle programming
The specified value (angle) refers to the abscissa of the active working plane (Z
axis with G18).

RND=... : Identifier for programming a rounding
The specified value corresponds to the radius of the rounding:

CHR=... : Identifier for programming a chamfer
The specified value corresponds to the width of the chamfer in the direction of
motion:

X... : Coordinates in the X direction
Z... : Coordinates in the Z direction

Note

For further information on the programming of a chamfer or rounding, see "Chamfer, rounding
(CHF, CHR, RND, RNDM, FRC, FRCM) (Page 240)".

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 211

Example

Program code Comment
N10 X10 Z80 F1000 G18 ; Approach the starting position.
N20 ANG=148.65 CHR=5.5 ; Straight line with angle and chamfer specification.
N30 X85 Z40 ANG=100 ; Straight line with angle and end point specification.
N40 ...

2.9.8.4 Contour definitions: Three straight lines

Note

In the following description it is assumed that:
● G18 is active (⇒ active working plane is the Z/X plane).

(However, the programming of contour definitions is also possible without restrictions with
G17 or G19.)

● The following identifiers have been defined for angle, radius and chamfer:
– ANG (angle)
– RND (radius)
– CHR (chamfer)

The end point of the first straight line can be programmed by specifying the Cartesian
coordinates or by specifying the angle of the two straight lines. The end point of the second and
third straight lines must always be programmed with Cartesian coordinates. The intersection of
the straight lines can be designed as a corner, a curve, or a chamfer.

Fundamentals
2.9 Motion commands

NC programming
212 Programming Manual, 06/2019, A5E47437142B AA

ANG1: Angle of the first straight line
ANG2: Angle of the second straight line
X1, Z1: Start coordinates of the first straight line
X2, Z2: End point coordinates of the first straight line or

start coordinates of the second straight line
X3, Z3: End point coordinates of the second straight line or

start coordinates of the third straight line
X4, Z4: End point coordinates of the third straight line

Note

The programming described here for a three point contour definition can be expanded
arbitrarily for contour definitions with more than three points.

Syntax

Programming of the end point of the first straight line by specifying the angle
● Corner as transition between the straight lines:

ANG=…
X… Z… ANG=…
X… Z…

● Rounding as transition between the straight lines:

ANG=… RND=...
X… Z… ANG=… RND=...
X… Z…

● Chamfer as transition between the straight lines:

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 213

ANG=… CHR=...
X… Z… ANG=… CHR=...
X… Z…

Programming of the end point of the first straight line by specifying the coordinates
● Corner as transition between the straight lines:

X… Z…
X… Z…
X… Z…

● Rounding as transition between the straight lines:

X… Z… RND=...
X… Z… RND=...
X… Z…

● Chamfer as transition between the straight lines:

X… Z… CHR=...
X… Z… CHR=...
X… Z…

Meaning

ANG=... : Identifier for angle programming
The specified value (angle) refers to the abscissa of the active working plane (Z
axis with G18).

RND=... : Identifier for programming a rounding
The specified value corresponds to the radius of the rounding:

Fundamentals
2.9 Motion commands

NC programming
214 Programming Manual, 06/2019, A5E47437142B AA

CHR=... : Identifier for programming a chamfer
The specified value corresponds to the width of the chamfer in the direction of
motion:

X... : Coordinates in the X direction
Z... : Coordinates in the Z direction

Note

For further information on the programming of a chamfer or rounding, see " Chamfer, rounding
(CHF, CHR, RND, RNDM, FRC, FRCM) (Page 240) ".

Example

Program code Comment
N10 X10 Z100 F1000 G18 ; Approach the starting position
N20 ANG=140 CHR=7.5 ; Straight line with angle and chamfer specifica-

tion.
N30 X80 Z70 ANG=95.824 RND=10 ; Straight line to intermediate point with angle

and chamfer specification.
N40 X70 Z50 ; Straight line to end point.

2.9.8.5 Contour definitions: End point programming with angle

Function
If the address letter A appears in an NC block, either none, one or both of the axes in the active
plane may also be programmed.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 215

Number of programmed axes

● If no axis of the active plane has been programmed, then this is either the first or second
block of a contour definition consisting of two blocks.
If it is the second block of such a contour definition, then this means that the starting point
and end point in the active plane are identical. The contour definition is then at best a motion
perpendicular to the active plane.

● If exactly one axis of the active plane has been programmed, then this is either a single
straight line whose end point can be clearly defined via the angle and programmed
Cartesian coordinate or the second block of a contour definition consisting of two blocks. In
the second case, the missing coordinate is set to the same as the last (modal) position
reached.

● If two axes of the active plane have been programmed, then this is the second block of a
contour definition consisting of two blocks. If the current block has not been preceded by a
block with angle programming without programmed axes of the active plane, then this block
is not permitted.

Angle A may only be programmed for linear or spline interpolation.

2.9.9 Thread cutting

2.9.9.1 Thread cutting with constant lead (G33, SF)
Threads with constant lead can be machined with G33:

● Cylindrical thread ①
● Face thread ②
● Taper thread ③

Fundamentals
2.9 Motion commands

NC programming
216 Programming Manual, 06/2019, A5E47437142B AA

Note

Technical requirement for thread cutting with G33 is a variable-speed spindle with position
measuring system.

Multiple thread

Multiple thread (thread with offset cuts) can be machined by specifying a starting point offset.
The programming is performed in the G33 block at address SF.

Note

If no starting point offset is specified, the "starting angle for thread" defined in the setting data
is used.

Thread chain

A thread chain can be machined with several G33 blocks programmed in succession:

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 217

Note

With continuous-path mode G64, the blocks are linked by the look-ahead velocity control in
such a way that there are no velocity jumps.

Direction of rotation of the thread

The direction of rotation of the thread is determined by the direction of rotation of the spindle:

● Clockwise with M3 produces a right-hand thread

● Counter-clockwise with M4 produces a left-hand thread

Syntax
Cylinder thread:
G33 Z… K…
G33 Z… K… SF=…
Face thread:
G33 X… I…
G33 X… I… SF=…
Tapered thread:
G33 X… Z… K…
G33 X… Z… K… SF=…
G33 X… Z… I…
G33 X… Z… I… SF=…

Meaning

G33: Command for thread cutting with constant lead
X... Y... Z... : End point(s) in Cartesian coordinates
I... : Thread lead in X direction
J... : Thread lead in Y direction
K... : Thread lead in Z direction
Z: Longitudinal axis
X: Transverse axis
Z... K... : Thread length and lead for cylinder threads
X... I... : Thread diameter and thread lead for face threads
I... or K... : Thread lead for tapered threads

The specification (I... or K...) refers to the taper angle:
< 45°: The thread lead is specified with K... (thread lead in longitu‐

dinal direction).
> 45°: The thread lead is specified with I.. (thread lead in transverse

direction).
= 45°: The thread lead can be specified with I... or K....

Fundamentals
2.9 Motion commands

NC programming
218 Programming Manual, 06/2019, A5E47437142B AA

SF=... : Starting point offset (only required for multiple threads)
The starting point offset is specified as an absolute angle position.
Range of values: 0.0000 to 359.999 degrees

Examples

Example 1: Double cylinder thread with 180° starting point offset

Program code Comment
N10 G1 G54 X99 Z10 S500 F100 M3 ; Work offset, approach starting point, ac-

tivate spindle.
N20 G33 Z-100 K4 ; Cylinder thread: End point in Z.
N30 G0 X102 ; Retraction to starting position.
N40 G0 Z10
N50 G1 X99
N60 G33 Z-100 K4 SF=180 ; 2nd cut: Starting point offset 180°.
N70 G0 X110 ; Retract tool.
N80 G0 Z10
N90 M30 ; End of program

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 219

Example 2: Tapered thread with angle less than 45°

Program code Comment
N10 G1 X50 Z0 S500 F100 M3 ; Approach starting point, activate spindle.
N20 G33 X110 Z-60 K4 ; Tapered thread: End point in X and Z, specifi-

cation of thread lead with K... in Z direction
(since angle < 45°).

N30 G0 Z0 M30 ; Retraction, end of program.

Further information
Feedrate for thread cutting with G33

From the programmed spindle speed and the thread lead, the control calculates the required
feedrate with which the turning tool is traversed over the thread length in the longitudinal and/
or transverse direction. The feedrate F is not taken into account for G33, the limitation to
maximum axis velocity (rapid traverse) is monitored by the control.

Cylinder thread

Fundamentals
2.9 Motion commands

NC programming
220 Programming Manual, 06/2019, A5E47437142B AA

The cylinder thread is described by:

● Thread length

● Thread lead

The thread length is entered with one of the Cartesian coordinates X, Y or Z in absolute or
incremental dimensions (for turning machines preferably in the Z direction). Allowance must
also be made for the run-in and run-out paths, across which the feed is accelerated or
decelerated.

The thread lead is entered at addresses I, J, K (K is preferable for turning machines).

Face thread

The face thread is described by:

● Thread diameter (preferably in the X direction)

● Thread lead (preferably with I)

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 221

Tapered thread

The tapered thread is described by:

● End point in the longitudinal and transverse direction (taper contour)

● Thread lead

The taper contour is entered in Cartesian coordinates X, Y, Z in absolute or incremental
dimensions - preferentially in the X and Z direction for machining on turning machines.
Allowance must also be made for the run-in and run-out paths, across which the feed is
accelerated or decelerated.

The specification of the lead depends on the taper angle (angle between the longitudinal axis
and the outside of the taper):

2.9.9.2 Thread cutting with increasing or decreasing lead (G34, G35)
With the commands G34 and G35, the G33 functionality has been extended with the option of
programming a change in the thread lead at address F. With G34, this results in a linear
increase and with G35 to a linear decrease of the thread lead. The commands G34 and G35 can
therefore be used for the machining of self-tapping threads.

Syntax
Cylinder thread with increasing lead:
G34 Z… K… F...
Cylinder thread with decreasing lead:
G35 Z… K… F...
Face thread with increasing lead:
G34 X… I… F...
Face thread with decreasing lead:
G35 X… I… F...

Fundamentals
2.9 Motion commands

NC programming
222 Programming Manual, 06/2019, A5E47437142B AA

Taper thread with increasing lead:
G34 X… Z… K… F...
G34 X… Z… I… F...
Taper thread with decreasing lead:
G35 X… Z… K… F...
G35 X… Z… I… F...

Meaning

G34: Command for thread cutting with linear increasing lead
G35: Command for thread cutting with linear decreasing lead
X... Y... Z... : End point(s) in Cartesian coordinates
I... : Thread lead in X direction
J... : Thread lead in Y direction
K... : Thread lead in Z direction
F...: Thread lead change

If you already know the starting and final lead of a thread, you can calculate
the thread lead change to be programmed according to the following equa‐
tion:

The meanings are as follows:
ke: Thread lead (thread lead of axis target point coordinate) [mm/rev]
ka: Starting thread lead (programmed under I, J, or K) [mm/rev]
IG: Thread length [mm]

Example

Program code Comment
N1608 M3 S10 ; Spindle on.
N1609 G0 G64 Z40 X216 ; Approach starting point.
N1610 G33 Z0 K100 SF=R14 ; Thread cutting with constant lead

(100 mm/rev).
N1611 G35 Z-200 K100 F17.045455 ; Lead decrease: 17.0454 mm/rev2

Lead at end of block: 50 mm/rev.
N1612 G33 Z-240 K50 ; Traverse thread block without jerk.
N1613 G0 X218
N1614 G0 Z40
N1615 M17

References
Function Manual, Basic Functions; Feedrates (V1), Section "Linear increasing/decreasing
thread lead change with G34 and G35"

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 223

2.9.9.3 Programmed run-in and run-out path for G33, G34 and G35 (DITS, DITE)
The run-in and run-out path of the thread can be specified in the part program with the DITS
and DITE addresses.

The thread axis is accelerated or braked along the specified path.

① Run-in/run-out path, depending on the machining direction

Short run-in path
Due to the collar on the thread runin, little room is left for the tool start ramp.
This must therefore be specified shorter via DITS.

Short run-out path
Because of the shoulder at the thread run-out, there is not much room for the tool braking ramp,
introducing a risk of collision between the workpiece and the tool cutting edge. The deceleration
ramp can be specified shorter using DITE. Due to the inertia of the mechanical system,
however, a collision can still occur.

Remedy: Program a shorter thread, reduce the spindle speed.

Note

DITE acts at the end of the thread as a rounding clearance. This achieves a smooth change in
the axis motion.

Effects
The programmed run-in and run-out path only increases the rate of acceleration on the path. If
one of the two paths is set larger than the thread axis needs with active acceleration, the thread
axis is accelerated or decelerated with maximum acceleration.

Syntax
DITS=<Value> DITE=<Value>

Fundamentals
2.9 Motion commands

NC programming
224 Programming Manual, 06/2019, A5E47437142B AA

Meaning

DITS: Define thread run-in path
DITE: Define thread run-out path
<value>: Only paths, and not positions, are programmed with DITS and DITE.

The programmed run-in/run-out path is handled according to the current dimension
setting (inches, metric).

Example

Program code Comment
...
N40 G90 G0 Z100 X10 SOFT M3 S500
N50 G33 Z50 K5 SF=180 DITS=1 DITE=3 ; Start of smoothing with Z=53.
N60 G0 X20

Further information

SD42010 $SC_THREAD_RAMP_DISP
When a block containing DITS and/or DITE is inserted in the main run, the programmed run-in/
run-out path is transferred into the setting data SD42010 $SC_THREAD_RAMP_DISP:

● SD42010 $SC_THREAD_RAMP_DISP[0] = programmed value of DITS
● SD42010 $SC_THREAD_RAMP_DISP[1] = programmed value of DITE
If no run-in/run-out path is programmed before or in the first thread block, the current value of
the setting data is used.

Behavior following channel / mode group / program end reset
SD 42010 values which have been overwritten by DITS and/or DITE remain active even
following a channel / mode group / program end reset.

Behavior following warm start
In case of a warm start, the setting data is reset to the values which were active before
overwriting by DITS and/or DITE (standard behavior).

If, however, the values programmed with DITS and DITE shall also be active following a warm
restart, the setting data SD42010 $SC_THREAD_RAMP_DISP must be listed in the machine
data MD10710 $MN_PROG_SD_RESET_SAVE_TAB:

MD10710 $MN_PROG_SD_RESET_SAVE_TAB[<n>] = 42010

Behavior if the run-in and/or run-out path is very short
If the run-in and/or run-out path is very short, the acceleration of the thread axis is higher than
the configured value. This causes an acceleration overload on the axis.

Alarm 22280 "Programmed run-in path too short" is then issued for the thread run-in (with the
appropriate configuration in MD11411 $MN_ENABLE_ALARM_MASK). The alarm is purely for
information and has no effect on part program execution.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 225

2.9.9.4 Fast retraction during thread cutting (LFON, LFOF, DILF, ALF, LFTXT, LFWP, LFPOS,
POLF, POLFMASK, POLFMLIN)

The "Rapid retraction during thread cutting (G33)" function can be used to interrupt thread
cutting without causing irreparable damage in the following circumstances:

● NC stop via NC/PLC interface signal: DB21, ... DBX7.3 (NC stop)

● Alarms that implicitly trigger NC stop

● Switching of a rapid input
References
Programming Manual, Job Planning; Section "Rapid retraction from the contour"

The retraction motion can be programmed via:

● Retraction path and retraction direction (relative)

● Retraction position (absolute)

Note
NC stop signals

The following NC stop signals do not trigger a rapid retraction during thread cutting:
● DB21, ... DBX3.4 (NC stop axes plus spindles)
● DB21, ... DBX7.2 (NC stop at the block limit)
Tapping

The "Rapid retraction" function cannot be used with tapping (G331/G332).

Syntax
Enable rapid retraction, retraction motion via retraction path and retraction direction:
G33 ... LFON DILF=<value> LFTXT/LFWP ALF=<value>
Enable rapid retraction, retraction motion via retraction position:

POLF[<axis identifier>]=<value> LFPOS
POLFMASK/POLFMLIN(<axis 1 name>,<axis 2 name>, etc.)
G33 ... LFON
Disable rapid retraction during thread cutting:
LFOF

Meaning

LFON: Enable rapid retraction during thread cutting (G33)
LFOF: Disable rapid retraction during thread cutting (G33)
DILF= : Define length of retraction path

The value preset during MD configuration (MD21200 $MC_LIFTFAST_DIST) can be
modified in the part program by programming DILF.
Note:
The configured MD value is always active following NC-RESET.

Fundamentals
2.9 Motion commands

NC programming
226 Programming Manual, 06/2019, A5E47437142B AA

LFTXT
LFWP:

The retraction direction is controlled in conjunction with ALF with G
commands LFTXT and LFWP.
LFTXT: The plane in which the retraction motion is executed is calculated from

the path tangent and the tool direction (default setting).
LFWP: The plane in which the retraction motion is executed is the active working

plane.
ALF= : The direction is programmed in discrete degree increments with ALF in the plane of

the retraction motion.
With LFTXT, retraction in the tool direction is defined for ALF=1.
For LFWP, the direction in the working/machining plane has the following assignment:
● G17 (X/Y plane)

ALF=1 ; Retraction in the X direction
ALF=3 ; Retraction in the Y direction

● G18 (Z/X plane)
ALF=1 ; Retraction in the Z direction
ALF=3 ; Retraction in the X direction

● G19 (Y/Z plane)
ALF=1 ; Retraction in the Y direction

ALF=3 ; Retraction in the Z direction
References:
Programming options with ALF are also described in "Traverse direction for rapid
retraction from the contour" in the Programming Manual, Job Planning.

LFPOS: Retraction of the axis declared with POLFMASK or POLFMLIN to the absolute axis
position programmed with POLF.

POLFMASK: Release of axes (<axis 1 name>,<axis 1 name>, etc.) for independent
retraction to absolute position.

POLFMLIN: Release of axes for retraction to absolute position in linear relation
Note:
Depending on the dynamic response of all the axes involved, the linear relation can‐
not always be established before the lift position is reached.

POLF[]: Define absolute retraction position for the geometry axis or machine axis in the index
Effective: Modal
=<value>: In the case of geometry axes, the assigned value is interpreted as

a position in the workpiece coordinate system. In the case of ma‐
chine axes, it is interpreted as a position in the machine coordinate
system.
The values assigned can also be programmed as incremental di‐
mensions:
=IC<value>

<axis
identifier>:

Identifier of a geometry axis or machine axis.

Note

LFON or LFOF can always be programmed, but the evaluation is performed exclusively during
thread cutting (G33).

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 227

Note

POLF with POLFMASK/POLFMLIN are not restricted to thread cutting applications.

Examples

Example 1: Enable rapid retraction during thread cutting

Program code Comment
N55 M3 S500 G90 G18 ; Active machining plane
... ; Approach the starting position
N65 MSG ("thread cutting") ; Tool infeed
MM_THREAD:
N67 $AC_LIFTFAST=0 ; Reset before starting the thread.
N68 G0 Z5
N68 X10
N70 G33 Z30 K5 LFON DILF=10 LFWP ALF=7 ; Enable rapid retraction during

thread cutting.
Retraction path = 10 mm
Retraction plane: Z/X (because of G18)
Retraction direction: -X
(with ALF=3: Retraction direction +X)

N71 G33 Z55 X15
N72 G1 ; Deselect thread cutting.
N69 IF $AC_LIFTFAST GOTOB MM_THREAD ; If thread cutting has been interrup-

ted.
N90 MSG ("")
...
N70 M30

Example 2: Switch off rapid retraction before tapping.

Program code Comment
N55 M3 S500 G90 G0 X0 Z0
...
N87 MSG ("tapping")
N88 LFOF ; Deactivate rapid retraction before tapping.
N89 CYCLE... ; Tapping cycle with G33.
N90 MSG ("")
...
N99 M30

Fundamentals
2.9 Motion commands

NC programming
228 Programming Manual, 06/2019, A5E47437142B AA

Example 3: Rapid retraction to absolute retraction position
Path interpolation of X is suppressed in the event of a stop and a motion executed to position
POLF[X] at maximum velocity instead. The motion of the other axes continues to be determined
by the programmed contour or the thread lead and the spindle speed.

Program code Comment
N10 G0 G90 X200 Z0 S200 M3
N20 G0 G90 X170
N22 POLF[X]=210 LFPOS
N23 POLFMASK(X) ; Activate (enable) rapid retraction from axis X.
N25 G33 X100 I10 LFON
N30 X135 Z-45 K10
N40 X155 Z-128 K10
N50 X145 Z-168 K10
N55 X210 I10
N60 G0 Z0 LFOF
N70 POLFMASK() ; Disable lift for all axes.
M30

2.9.9.5 Convex thread (G335, G336)
The G commands G335 and G336 can be used to turn convex threads (= differing to the
cylindrical form). Application is the machining of extremely large components that sag in the
machine because of their self-weight. Paraxial thread would result in the thread being too small
in the middle of the component. This can be compensated with convex threads.

Figure 2-13 Turning a convex thread

Programming
The turning of a convex thread is programmed with G335 or G336:

G335: Turning of a convex thread on a circular tool path in a clockwise direction
G336: Turning of a convex thread on a circular tool path in a counter-clockwise direction

The programming is performed first as for a linear thread by specifying the axial block end
points and the pitch via parameters I, J and K (see "Thread cutting with constant lead (G33, SF)
(Page 216)").

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 229

An arc is also specified. As for G2/G3, this can be programmed via the center point, radius,
opening angle or intermediate point specification (see "Circular interpolation (Page 188)").
When programming the convex thread with center point programming, the following must be
taken into account: Since I, J and K are used for the pitch in thread cutting, the circle
parameters in the center point programming must be programmed with IR=..., JR=... and
KR=....

IR=...: Cartesian coordinate for the circle center point in the X direction
JR=...: Cartesian coordinate for the circle center point in the Y direction
KR=...: Cartesian coordinate for the circle center point in the Z direction

Note

IR, JR and KR are the default values of the interpolation parameter names for a convex thread
that can be set via machine data (MD10651 $MN_IPO_PARAM_THREAD_NAME_TAB).

Differences to the default values must be taken from the specifications of the machine
manufacturer.

Optionally, a starting point offset SF can also be specified (see "Thread cutting with constant
lead (G33, SF) (Page 216)").

Syntax
The syntax for the programming of a convex thread therefore has the following general form:
G335/G336 <axis target point coordinate(s)> <pitch> <arc> [<starting
point offset>]

Examples

Example 1: Convex thread in the clockwise direction with end and center point programming

Program code Comment
N5 G0 G18 X50 Z50 ; Approach starting point.
N10 G335 Z100 K=3.5 KR=25 IR=-20 SF=90 ; Turn convex thread in the clock-

wise direction.

Fundamentals
2.9 Motion commands

NC programming
230 Programming Manual, 06/2019, A5E47437142B AA

Figure 2-14 Convex thread in the clockwise direction with end and center point programming

Example 2: Convex thread in the counter-clockwise direction with end and center point
programming

Program code Comment
N5 G0 G18 X50 Z50 ; Approach starting point.
N10 G336 Z100 K=3.5 KR=25 IR=20 SF=90 ; Turn convex thread in the coun-

ter-clockwise direction.

Figure 2-15 Convex thread in the counter-clockwise direction with end and center point programming

Example 3: Convex thread in the clockwise direction with end point and radius programming

Program code
N5 G0 G18 X50 Z50

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 231

Program code
N10 G335 Z100 K=3.5 CR=32 SF=90

Figure 2-16 Convex thread in the clockwise direction with end point and radius programming

Example 4: Convex thread in the clockwise direction with end point and opening angle
programming

Program code
N5 G0 G18 X50 Z50
N10 G335 Z100 K=3.5 AR=102.75 SF=90

Figure 2-17 Convex thread in the clockwise direction with end point and opening angle programming

Fundamentals
2.9 Motion commands

NC programming
232 Programming Manual, 06/2019, A5E47437142B AA

Example 5: Convex thread in the clockwise direction with center point and opening angle
programming

Program code
N5 G0 G18 X50 Z50
N10 G335 K=3.5 KR=25 IR=-20 AR=102.75 SF=90

Figure 2-18 Convex thread in the clockwise direction with center point and opening angle programming

Example 6: Convex thread in the clockwise direction with end and intermediate point
programming

Program code
N5 G0 G18 X50 Z50
N10 G335 Z100 K=3.5 I1=60 K1=64

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 233

Figure 2-19 Convex thread in the clockwise direction with end and intermediate point programming

Further information

Permissible arc areas
The arc programmed at G335/G336 must be in an area in which the specified thread main axis
(I, J or K) has the main axis share on the arc over the entire arc:

Permissible areas for the Z axis (pitch programmed
with K)

Permissible areas for the X axis (pitch programmed
with I)

A change of the thread main axis as shown in the following figure is not permitted:

Figure 2-20 Convex thread: Area that is not permissible

Frames
G335 and G336 are also possible with active frames. However, you must ensure that the
permissible arc areas are maintained in the basic coordinate system (BCS).

Supplementary conditions for the circular-path programming
The supplementary conditions described for the circular-path programming with G2/G3 apply
for the circular-path programming under G335/G336 (see "Circular interpolation (Page 188)").

Fundamentals
2.9 Motion commands

NC programming
234 Programming Manual, 06/2019, A5E47437142B AA

2.9.10 Tapping without compensating chuck

2.9.10.1 Tapping without compensating chuck and retraction motion (G331, G332)
For tapping without compensating chuck, using the G331 and G332commands, the following
traversing motion is executed:

● G331: Tapping in the tapping direction up to the end of thread point

● G332: Retraction motion up to the tapping block G331 with automatic spindle direction of
rotation reversal

Syntax
G331 <axis> <thread pitch>
G331 <axis> <thread pitch> S...
G332 <axis> <thread pitch>

Meaning

G331: Tapping
The tapped hole is defined by the traversing motion of the axis (drilling depth)
and the thread pitch.
Effectiveness: Modal

G332: Retraction motion when tapping
Retraction motion must have the same pitch as when tapping (G331). The
direction of rotation of the spindle is reversed automatically.
Effectiveness: Modal

<axis>: Traversing distance/position of the geometry axis (X, Y or Z) at the end of the
thread, e.g. Z50

<Thread pitch>:

Thread pitch I (X), J (Y) or K (Z):
● Positive pitch: Right-handed thread, e.g. K1.25
● Negative pitch: Left-handed thread, e.g. K-1.25
Range of values: ±0.001 to ±2000.00 mm/revolution

S...: Spindle speed
The last active spindle speed is used if a spindle speed is not specified.

Note
Second gear-stage data block

To achieve effective adaptation of spindle speed and motor torque and be able to accelerate
faster, a second gear-stage data block for two further configurable switching thresholds
(maximum speed and minimum speed) can be preset in axis-specific machine data deviating
from the first gear step data block and also independent of these speed switching thresholds.
The specifications of the machine manufacturer must be observed.

For further information see the "Axes and Spindles" Function Manual.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 235

Examples
● Example: Tapping with G331 / G332 (Page 236)

● Example: Output the programmed drilling speed in the current gear stage (Page 236)

● Example: Application of the second gear-stage data block (Page 237)

● Example: Speed is not programmed, the gearbox stage is monitored (Page 237)

● Example: Gearbox stage cannot be changed, gearbox stage monitoring (Page 238)

● Example: Programming without SPOS (Page 238)

2.9.10.2 Example: Tapping with G331 / G332

Program code Comment
N10 SPOS[n]=0 ; Spindle: Position control mode

; Start position 0 degrees
N20 G0 X0 Y0 Z2 ; Axes: Approach starting position
N30 G331 Z-50 K-4 S200 ; Tapping in Z,

; Pitch K-4 negative =>
; Direction of spindle rotation: CCW
rotation,
; Spindle speed 200 rpm

N40 G332 Z3 K-4 ; Retraction motion in Z,
; Pitch K-4 negative (counterclock-
wise),
; autom. direction of rotation reversal
=>
; Clockwise spindle direction of rota-
tion

N50 G1 F1000 X100 Y100 Z100 S300 M3 ; Spindle in spindle operation

2.9.10.3 Example: Output the programmed drilling speed in the current gear stage

Program code Comment
N05 M40 S500 ; Programmed spindle speed: 500 rpm =>

; Gearbox stage 1 (20 to 1028 rpm)
...
N55 SPOS=0 ; Position the spindle
N60 G331 Z-10 K5 S800 ; Tapping

; Spindle speed 800 rpm => gearbox stage 1

The appropriate gear stage for the programmed spindle speed S500 with M40 is determined on
the basis of the first gear-stage data block. The programmed drilling speed S800 is output in the
current gear stage and, if necessary, is limited to the maximum speed of the gear stage. No

Fundamentals
2.9 Motion commands

NC programming
236 Programming Manual, 06/2019, A5E47437142B AA

automatic gear-stage change is possible following an SPOS operation. In order for an automatic
change in gear stage to be performed, the spindle must be in speed-control mode.

Note

If gearbox stage 2 is selected at a spindle speed of 800 rpm, then the switching thresholds for
the maximum and minimum speed must be configured in the relevant machine data of the
second gear-stage data block (see the examples below).

2.9.10.4 Example: Application of the second gear-stage data block
The switching thresholds of the second gear-stage data block for the maximum and minimum
speed are evaluated for G331/G332 and when programming an S value for the active master
spindle. Automatic M40 gear-stage change must be active. The gear stage as determined in the
manner described above is compared with the active gear stage. If they are found to be
different, then the gearbox stage is changed.

Program code Comment
N05 M40 S500 ; Programmed spindle speed: 500 rpm
...
N50 G331 S800 ; Master spindle: Gearbox stage 2 is selected
N55 SPOS=0 ; Position the spindle
N60 G331 Z-10 K5 ; Tapping

; Spindle acceleration from second gearbox stage data block 2

2.9.10.5 Example: Speed is not programmed, the gearbox stage is monitored
If no speed is programmed when using the second gearbox stage data block with G331, then
the last speed programmed will be used to produce the thread. The gear stage does not
change. However, monitoring is performed in this case to check that the last speed
programmed is within the preset speed range (defined by the maximum and minimum speed
thresholds) for the active gear stage. Otherwise, alarm 16748 is output.

Program code Comment
N05 M40 S800 ; Programmed spindle speed: 800 rpm
...
N55 SPOS=0 ; Position the spindle
N60 G331 Z-10 K5 ; Tapping

; Monitoring the spindle speed, 800 rpm
; Gearbox stage 1 is active
; Gearbox stage 2 should be active => Alarm 16748

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 237

2.9.10.6 Example: Gearbox stage cannot be changed, gearbox stage monitoring
If the spindle speed is programmed in addition to the geometry in the G331 block when using
the second gear-stage data block, if the speed is not within the preset speed range (defined by
the maximum and minimum speed thresholds) of the active gear stage, it will not be possible
to change gear stages, because the path motion of the spindle and the infeed axis (axes) would
not be retained.

As in the example above, the speed and gearbox stage are monitored in the G331 block and
alarm 16748 is signaled if necessary.

Program code Comment
N05 M40 S500 ; Programmed spindle speed: 500 rpm =>

; Gearbox stage 1
...
N55 SPOS=0 ; Position the spindle
N60 G331 Z-10 K5 S800 ; Tapping

; Gearbox stage cannot be changed,
; Monitoring the spindle speed, 800 rpm
; with gearbox stage data set 1: Gearbox stage 2
; should be active => Alarm 16748

2.9.10.7 Example: Programming without SPOS

Program code Comment
N05 M40 S500 ; Programmed spindle speed: 500 rpm =>

; Gearbox stage 1 (20 to 1028 rpm)
...
N50 G331 S800 ; Master spindle: Gearbox stage 2 is selected
N60 G331 Z-10 K5 ; Tapping

; Spindle acceleration from second gearbox stage data block 2

Thread interpolation for the spindle starts from the current position, which is determined by the
previously processed section of the part program, e.g. if the gear stage was changed.
Therefore, it might not be possible to remachine the thread.

Note

Please note that when machining with multiple spindles, the drill spindle also has to be the
master spindle. SETMS(<spindle number>) can be programmed to set the drill spindle as
the master spindle.

Fundamentals
2.9 Motion commands

NC programming
238 Programming Manual, 06/2019, A5E47437142B AA

2.9.11 Tapping with compensating chuck

2.9.11.1 Tapping with compensating check and retraction motion (G63)
For tapping with compensating chuck, using the G63 command, the following traversing motion
is executed:

● G63: Tapping in the tapping direction up to the end of thread point

● G63: Retraction motion with programmed spindle direction of rotation reversal

Note

After a G63block, the last effective interpolation type G0, G1, G2 is active.

Syntax
G63 <axis> <direction of rotation> <speed <feedrate>

Meaning

G63: Tapping with compensating chuck
Effective: Non-modal

<Axis>: Traversing distance/position of the geometry axis (X, Y or Z) at the end of the
thread, e.g. Z50

<Direction of
rotation>:

Direction of spindle rotation:
● M3: Clockwise rotation, right-hand thread
● M4: Counterclockwise rotation, left-hand thread

<Speed>: Maximum permissible spindle speed while tapping, e.g. S100
<Feedrate>: Feedrate of the tapping axis F, with F = spindle speed * thread pitch

Example
Tapping an M5 thread:

● Spindle pitch according to the standard: 0.8 mm/rev

● Spindle speed S: 200 rpm

● Feedrate F = 200 rpm * 0.8 mm/rev = 160 mm/min.

Program code Comment
N10 G1 X0 Y0 Z2 F1000 S200 M3 ; Approach starting point

; Spindle clockwise direction of rotation, 200
rpm

N20 G63 Z-50 F160 ; Tapping with compensating chuck
; Drilling depth: absolute Z=50mm
; Feedrate: 160 mm/min

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 239

Program code Comment
N30 G63 Z3 M4 ; Retraction movement: absolute Z=3mm

; Direction of rotation reversal
; Spindle with counterclockwise direction of
rotation, 200 rpm

2.9.12 Chamfer, rounding (CHF, CHR, RND, RNDM, FRC, FRCM)
Contour corners within the active working plane can be executed as roundings or chamfers.

For optimum surface quality, a separate feedrate can be programmed for chamfer/rounding. If
a feedrate is not programmed, the standard path feedrate F will be applied.

The "Modal rounding" function can be used to round multiple contour corners in the same way
one after the other.

Syntax
Chamfer the contour corner:
G... X... Z... CHR/CHF=<value> FRC/FRCM=<value>
G... X... Z...
Round the contour corner:
G... X... Z... RND=<value> FRC=<value>
G... X... Z...
Modal rounding:

G... X... Z... RNDM=<value> FRCM=<value>
...
RNDM=0

Note

The technology (feedrate, feedrate type, M commands, etc.) for chamfer/rounding is derived
from either the previous or the next block dependent on the setting of bit 0 in machine data
MD20201 $MC_CHFRND_MODE_MASK (chamfer/rounding behavior). The recommended
setting is the derivation from the previous block (bit 0 = 1).

Meaning

CHF=… : Chamfer the contour corner
<value>: Length of the chamfer (unit corresponding to G70/G71)

CHR=… : Chamfer the contour corner
<value>: Width of the chamfer in the original direction of motion (unit correspond‐

ing to G70/G71)
RND=… : Round the contour corner

<value>: Radius of the rounding (unit corresponding to G70/G71)

Fundamentals
2.9 Motion commands

NC programming
240 Programming Manual, 06/2019, A5E47437142B AA

RNDM=… : Modal rounding (rounding multiple contour corners in the same way one after the other)
<value>: Radius of the roundings (unit corresponding to G70/G71)

Modal rounding is deactivated with RNDM=0.
FRC=… : Non-modal feedrate for chamfer/rounding

<value>: Feedrate in mm/min (with active G94) or mm/rev (with active G95)
FRCM=… : Modal feedrate for chamfer/rounding

<value>: Feedrate in mm/min (with active G94) or mm/rev (with active G95)
FRCM=0 deactivates modal feedrate for chamfer/rounding and activates
the feedrate programmed under F.

Note
Chamfer/rounding too high

If the values programmed for chamfer (CHF/CHR) or rounding (RND/RNDM) are too high for
the contour elements involved, chamfer or rounding will automatically be adapted:
1. If MD11411 $MN_ENABLE_ALARM_MASK bit 4 is set, alarm 10833 "Chamfer or rounding

must be reduces" is output (cancel alarm).
2. The chamfer/rounding is reduced until it fits in the contour corner. This results in at least one

block without motion. At this block, the required motion is stopped.

Note
Chamfer/rounding not possible

No chamfer/rounding is performed if:
● No straight or circular contour is available in the plane
● A movement takes place outside the plane
● The plane is changed
● The number of blocks specified in the machine data that are not to contain any information

about traversing (e.g. only command outputs) is exceeded

Note
FRC/FRCM

FRC/FRCM has no effect if a chamfer is traversed with G0; the command can be programmed
according to the F value without error message.

FRC is only effective if a chamfer/rounding is programmed in the block or if RNDM has been
activated.

FRC overwrites the F or FRCM value in the current block.

The feedrate programmed under FRC must be greater than zero.

FRCM=0 activates the feedrate programmed under F for chamfer/rounding.

If FRCM is programmed, the FRCM value will need to be reprogrammed like F on change
G94 ↔ G95, etc. If only F is reprogrammed and if the feedrate type FRCM > 0 before the
change, an error message will be output.

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 241

Examples
Example 1: Chamfer between two straight lines

● MD20201 Bit 0 = 1 (derived from previous
block).

● G71 is active.
● The width of the chamfer in the direction of

motion (CHR) should be 2 mm and the
feedrate for chamfer 100 mm/min.

Programming can be performed in two ways:

● Programming with CHR

Program code
...
N30 G1 Z… CHR=2 FRC=100
N40 G1 X…
...

● Programming with CHF

Program code
...
N30 G1 Z… CHF=2(cosα*2) FRC=100
N40 G1 X…
...

Fundamentals
2.9 Motion commands

NC programming
242 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Rounding between two straight lines

● MD20201 Bit 0 = 1 (derived from previous
block).

● G71 is active.
● The radius of the rounding should be 2 mm

and the feedrate for rounding 50 mm/min.

Program code
...
N30 G1 Z… RND=2 FRC=50
N40 G1 X…
...

Example 3: Rounding between straight line and circle

The RND function can be used to insert a circle contour element with tangential connection
between the linear and circle contours in any combination.

● MD20201 Bit 0 = 1 (derived from previous
block).

● G71 is active.
● The radius of the rounding should be 2 mm

and the feedrate for rounding 50 mm/min.

Program code
...

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 243

Program code
N30 G1 Z… RND=2 FRC=50
N40 G3 X… Z… I… K…
...

Example 4: Modal rounding to deburr sharp workpiece edges

Program code Comment
...
N30 G1 X… Z… RNDM=2 FRCM=50 ; Activate modal rounding.

Radius of rounding: 2 mm
Feedrate for rounding: 50 mm/min

N40...
N120 RNDM=0 ; Deactivate modal rounding.
...

Example 5: Apply technology from following block or previous block

● MD20201 Bit 0 = 0: Derived from following block (default setting!)

Program code Comment
N10 G0 X0 Y0 G17 F100 G94
N20 G1 X10 CHF=2 ; Chamfer N20-N30 with F=100 mm/min
N30 Y10 CHF=4 ; Chamfer N30-N40 with FRC=200 mm/min
N40 X20 CHF=3 FRC=200 ; Chamfer N40-N60 with FRCM=50 mm/min
N50 RNDM=2 FRCM=50
N60 Y20 ; Modal rounding N60-N70 with FRCM=50 mm/min
N70 X30 ; Modal rounding N70-N80 with FRCM=50 mm/min
N80 Y30 CHF=3 FRC=100 ; Chamfer N80-N90 with FRC=100 mm/min
N90 X40 ; Modal rounding N90-N100 with F=100 mm/min (de-

selection of FRCM)
N100 Y40 FRCM=0 ; Modal rounding N100-N120 with G95 FRC=1 mm/rev
N110 S1000 M3
N120 X50 G95 F3 FRC=1
...
M02

● MD20201 Bit 0 = 1: Derived from previous block (recommended setting!)

Program code Comment
N10 G0 X0 Y0 G17 F100 G94
N20 G1 X10 CHF=2 ; Chamfer N20-N30 with F=100 mm/min
N30 Y10 CHF=4 FRC=120 ; Chamfer N30-N40 with FRC=120 mm/min
N40 X20 CHF=3 FRC=200 ; Chamfer N40-N60 with FRC=200 mm/min

Fundamentals
2.9 Motion commands

NC programming
244 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N50 RNDM=2 FRCM=50
N60 Y20 ; Modal rounding N60-N70 with FRCM=50 mm/min
N70 X30 ; Modal rounding N70-N80 with FRCM=50 mm/min
N80 Y30 CHF=3 FRC=100 ; Chamfer N80-N90 with FRC=100 mm/min
N90 X40 ; Modal rounding N90-N100 with FRCM=50 mm/min
N100 Y40 FRCM=0 ; Modal rounding N100-N120 with F=100 mm/min
N110 S1000 M3
N120 X50 CHF=4 G95 F3 FRC=1 ; Chamfer N120-N130 with G95 FRC=1 mm/rev
N130 Y50 ; Modal rounding N130-N140 with F=3 mm/rev
N140 X60
...
M02

Fundamentals
2.9 Motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 245

2.10 Tool radius compensation

2.10.1 Tool radius compensation (G40, G41, G42, OFFN)
When tool radius compensation (TRC) is active, the control automatically calculates the
equidistant tool paths for various tools.

Syntax

G0/G1 X... Y… Z... G41/G42 [OFFN=<value>]
...
G40 X... Y… Z...

Meaning

G41: Activate TRC with machining direction left of the contour.
G42: Activate TRC with machining direction right of the contour.
OFFN=<value>: Allowance on the programmed contour (normal contour offset) (optional),

e.g. to generate equidistant paths for rough finishing.
G40: Deactivate TRC.

Fundamentals
2.10 Tool radius compensation

NC programming
246 Programming Manual, 06/2019, A5E47437142B AA

Note

In the NC block with G40/G41/G42, G0 or G1 has to be active and at least one axis has to be
specified on the selected working plane.

If only one axis is specified on activation, the last position on the second axis is added
automatically and traversed with both axes.

The two axes must be active as geometry axes in the channel. This can be achieved by means
of GEOAX programming.

Examples

Example 1: Milling

Program code Comment
N10 G0 X50 T1 D1

; Only tool length compensation is activated. X50 is
approached without compensation.

N20 G1 G41 Y50 F200

; Radius compensation is activated, point X50/Y50 is
approached with compensation.

N30 Y100

…

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 247

Example 2: "Conventional" procedure using milling as an example
"Conventional" procedure:

1. Tool call.

2. Change tool.

3. Activate working plane and tool radius compensation.

Program code Comment
N10 G0 Z100 ; Retraction for tool change.
N20 G17 T1 M6 ; Tool change
N30 G0 X0 Y0 Z1 M3 S300 D1 ; Call tool offset values, select length compensation.
N40 Z-7 F500 ; Feed in tool.
N50 G41 X20 Y20 ; Activate tool radius compensation, tool machines to

the left of the contour.
N60 Y40 ; Mill contour.
N70 X40 Y70
N80 X80 Y50
N90 Y20
N100 X20
N110 G40 G0 Z100 M30 ; Retract tool, end of program.

Fundamentals
2.10 Tool radius compensation

NC programming
248 Programming Manual, 06/2019, A5E47437142B AA

Example 3: Turning

Program code Comment
…
N20 T1 D1 ; Only tool length compensation is activated.
N30 G0 X100 Z20 ; X100 Z20 is approached without compensation.
N40 G42 X20 Z1 ; Radius compensation is activated, point X20/Z1 is

approached with compensation.
N50 G1 Z-20 F0.2
…

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 249

Example 4: Turning

Program code Comment
N5 G0 G53 X280 Z380 D0 ; Starting point.
N10 TRANS X0 Z250 ; Work offset.
N15 LIMS=4000 ; Speed limitation (G96).
N20 G96 S250 M3 ; Select constant feedrate
N25 G90 T1 D1 M8 ; Select tool selection and offset.
N30 G0 G42 X-1.5 Z1 ; Set tool with tool radius compensation.
N35 G1 X0 Z0 F0.25
N40 G3 X16 Z-4 I0 K-10 ; Turn radius 10.
N45 G1 Z-12
N50 G2 X22 Z-15 CR=3 ; Turn radius 3.
N55 G1 X24
N60 G3 X30 Z-18 I0 K-3 ; Turn radius 3.
N65 G1 Z-20
N70 X35 Z-40
N75 Z-57
N80 G2 X41 Z-60 CR=3 ; Turn radius 3.
N85 G1 X46
N90 X52 Z-63
N95 G0 G40 G97 X100 Z50 M9 ; Deselect tool radius compensation and

approach tool change location.

Fundamentals
2.10 Tool radius compensation

NC programming
250 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N100 T2 D2 ; Call tool and select offset.
N105 G96 S210 M3 ; Select constant cutting rate.
N110 G0 G42 X50 Z-60 M8 ; Set tool with tool radius compensation.
N115 G1 Z-70 F0.12 ; Turn diameter 50.
N120 G2 X50 Z-80 I6.245 K-5 ; Turn radius 8.
N125 G0 G40 X100 Z50 M9 ; Retract tool and deselect tool radius

compensation.
N130 G0 G53 X280 Z380 D0 M5 ; Approach tool change location.
N135 M30 ; End of program.

Further information
The control requires the following information in order to calculate the tool paths:

● Tool no. (T...), cutting edge no. (D...)

● Machining direction (G41/G42)

● Working plane (G17/G18/G19)

Tool no. (T...), cutting edge no. (D...)
The distance between tool path and workpiece contour is calculated from the milling cutter radii
or cutting edge radii and the specifications of the cutting edge position.

Machining direction (G41/G42)
From this information, the control detects the direction in which the tool path is to be displaced.

Note

A negative correction value has the same significance as a change of offset side (G41 ↔ G42).

Working plane (G17/G18/G19)

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 251

From this information, the control detects the plane and therefore the axis directions in which
it is corrected.

Example: Milling tool

Program code Comment
...
N10 G17 G41 … ; The tool radius compensation is performed in the X/Y

plane, the tool length compensation is performed in the Z
direction.

...

Note

On 2-axis machines, tool radius compensation is only possible in "real" planes, usually
with G18.

Tool length compensation
The wear parameter assigned to the diameter axis on tool selection can be defined as the
diameter value using an MD. This assignment is not automatically altered when the plane is
subsequently changed. To do this, the tool must be selected again after the plane change.

Turning:

Fundamentals
2.10 Tool radius compensation

NC programming
252 Programming Manual, 06/2019, A5E47437142B AA

NORM and KONT can be used to define the tool path on activation and deactivation of
compensation mode (see "Approaching and leaving contour (NORM, KONT, KONTC, KONTT)
(Page 255)").

Point of intersection
The intersection point is selected in the setting data:

SD42496 $SC_CUTCOM_CLSD_CONT (behavior of tool radius compensation with closed
contour)

Value Meaning
FALSE If two intersections appear on the inside when offsetting an (almost) closed contour,

which consists of two successive circle blocks or one circle block and one linear block,
the intersection positioned closer to the end of block on the first partial contour is se‐
lected in accordance with the standard procedure.
A contour is deemed to be (almost) closed if the distance between the starting point of
the first block and the end point of the second block is less than 10% of the effective
compensation radius, but not more than 1000 path increments (corresponds to 1 mm
with 3 decimal places).

TRUE In the same situation as described above, the intersection positioned on the first partial
contour closer to the block start is selected.

Change in compensation direction (G41 ↔ G42)
A change in compensation direction (G41 ↔ G42) can be programmed without an intermediate
G40.

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 253

Change in the working plane

The working plane (G17/G18/G19) cannot be changed if G41/G42 is active.

Change of tool offset data block (D…)

The tool offset data block can be changed in compensation mode.

A changed tool radius already becomes active as from the block containing the new D number.

Note

The radius change or compensation movement is performed across the entire block and only
reaches the new equidistance at the programmed end point.

In the case of linear movements, the tool travels along an inclined path between the starting
point and the end point:

Circular interpolation produces spiral movements.

Fundamentals
2.10 Tool radius compensation

NC programming
254 Programming Manual, 06/2019, A5E47437142B AA

Changing the tool radius
The change can be made, e.g. using system variables. The sequence is the same as when
changing the tool offset data block (D…).

Note

The modified values only take effect the next time T or D is programmed. The change does not
apply until the next block.

Compensation mode

Compensation mode may only be interrupted by a certain number of consecutive blocks or M
functions which do not contain traversing commands or positional data in the compensation
plane.

Note

The number of consecutive blocks or M commands can be set in a machine data (see machine
manufacturer's specifications).

Note

A block with a path distance of zero also counts as an interruption!

2.10.2 Approaching and leaving contour (NORM, KONT, KONTC, KONTT)
Requirement

The KONTC and KONTT commands will only be available if the "Polynomial interpolation" option
has been enabled in the control.

Function

If tool radius compensation is active (G41/G42), the NORM, KONT, KONTC or KONTT command
can be used to adapt the tool's approach and retract paths to the required contour profile or
blank form.

KONTC or KONTT ensure observance of the continuity conditions in all three axes. It is,
therefore, permissible to program a path component perpendicular to the offset plane
simultaneously.

Syntax

G41/G42 NORM/KONT/KONTC/KONTT X... Y... Z...
...
G40 X... Y... Z...

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 255

Meaning

NORM: Activate direct approach/retraction to/from a straight line.
The tool is oriented perpendicular to the contour point.

KONT: Activate approach/retraction with travel around the starting/end point according to the
programmed corner behavior G450 or G451.

KONTC: Activate approach/retraction with constant curvature.
KONTT: Activate approach/retraction with constant tangent.

Note

Only G1 blocks are permissible as original approach/retraction blocks for KONTC and KONTT.
The control replaces these with polynomials for the appropriate approach/retract path.

Supplementary conditions
KONTT and KONTC are not available in 3D variants of tool radius compensation
(CUT3DC, CUT3DCC, CUT3DF). If they are programmed, the control switches internally to NORM
without an error message.

Example
KONTC

The full circle is approached beginning at the circle center point. The direction and curvature
radius at the block end point of the approach block are identical to the values of the next circle.
Infeed takes place in the Z direction in both approach/retraction blocks simultaneously. The
figure below shows the perpendicular projection of the tool path.

Figure 2-21 Perpendicular projection

Fundamentals
2.10 Tool radius compensation

NC programming
256 Programming Manual, 06/2019, A5E47437142B AA

The associated NC program segment is as follows:

Program code Comment
$TC_DP1[1,1]=121 ; Milling tool
$TC_DP6[1,1]=10 ; Radius 10 mm
N10 G1 X0 Y0 Z60 G64 T1 D1 F10000
N20 G41 KONTC X70 Y0 Z0 ; Approach
N30 G2 I-70 ; Full circle
N40 G40 G1 X0 Y0 Z60 ; Retract
N50 M30

At the same time as the curvature is being adapted to the circular path of the full circle,
traversing is performed from Z60 to the plane of the circle Z0:

Figure 2-22 3D representation.

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 257

Further information
Approach/retraction with NORM

1. Approach:
If NORM is activated, the tool will move directly to the compensated start position along a
straight line (irrespective of the preset approach angle programmed for the travel
movement) and is positioned perpendicular to the path tangent at the starting point.

2. Retraction:
The tool is perpendicular to the last compensated path end point and then moves
(irrespective of the preset approach angle programmed for the travel movement) directly in
a straight line to the next uncompensated position, e.g. to the tool change point.

Modifying approach/retract angles introduces a collision risk:

Fundamentals
2.10 Tool radius compensation

NC programming
258 Programming Manual, 06/2019, A5E47437142B AA

NOTICE

Risk of collision

Modified approach/retract angles must be taken into account during programming in order
that potential collisions can be avoided.

Approach/retraction with KONT

Prior to the approach, the tool can be located in front of or behind the contour. The path tangent
at the starting point serves as a separation line:

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 259

Accordingly, two scenarios need to be distinguished where approach/retraction with KONT is
concerned:

1. The tool is located in front of the contour.
→ The approach/retract strategy is the same as with NORM.

2. The tool is located behind the contour.

Fundamentals
2.10 Tool radius compensation

NC programming
260 Programming Manual, 06/2019, A5E47437142B AA

– Approach:
The tool travels around the starting point either along a circular path or over the
intersection of the equidistant paths depending on the programmed corner behavior
(G450/G451).
The commands G450/G451 apply to the transition from the current block to the next
block:

In both cases (G450/G451), the following approach path is generated:

A straight line is drawn from the uncompensated approach point. This line is a tangent
to a circle with circle radius = tool radius. The center point of the circle is on the starting
point.

– Retraction:
The same applies to retraction as to approach, but in the reverse order.

Approach/retraction with KONTC

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 261

The contour point is approached/exited with constant curvature. There is no jump in
acceleration at the contour point. The path from the start point to the contour point is
interpolated as a polynomial.

Approach/retraction with KONTT

The contour point is approached/exited with constant tangent. A jump in the acceleration can
occur at the contour point. The path from the start point to the contour point is interpolated as
a polynomial.

Difference between KONTC and KONTT

The figure below shows the differences in approach/retraction behavior between KONTT and
KONTC. A circle with a radius of 20 mm about the center point at X0 Y-40 is compensated with
a tool with an external radius of 20 mm. The tool center point therefore moves along a circular
path with radius 40 mm. The end point of the approach blocks is at X40 Y30. The transition
between the circular block and the retraction block is at the zero point. Due to the extended
continuity of curvature associated with KONTC, the retraction block first executes a movement
with a negative Y component. This will often be undesired. This response does not occur with
the KONTT retraction block. However, with this block, an acceleration step change occurs at the
block transition.

If the KONTT or KONTC block is the approach block rather than the retraction block, the contour
is exactly the same, but it is machined in the opposite direction.

Fundamentals
2.10 Tool radius compensation

NC programming
262 Programming Manual, 06/2019, A5E47437142B AA

2.10.3 Compensation at the outside corners (G450, G451, DISC)
With tool radius compensation activated (G41/G42), command G450 or G451 can be used to
define the course of the compensated tool path when traveling around outside corners:

With G450, the tool center point travels
around the workpiece corner across an
arc with tool radius.

 With G451, the tool center point approaches
the point of intersection of the two equidis‐
tants, which are located at a distance equiva‐
lent to the tool radius from the programmed
contour. G451 applies only to circles and
straight lines.

Note

G450/G451 is also used to define the approach path with KONT active and approach point
behind the contour (see "Approaching and leaving contour (NORM, KONT, KONTC, KONTT)
(Page 255)").

The DISC command can be used to distort the transition circles with G450, thereby producing
sharper contour corners.

Syntax
G450 [DISC=<value>]
G451

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 263

Meaning

G450: G450 is used to travel around workpiece corners on a circular path.
DISC: Flexible programming of the circular path with G450 (optional)

<value>: Type: INT
Range of values: 0, 1, 2, ... 100
Meaning: 0 Transition circle

100 Intersection of the equidistant paths (the‐
oretical value)

G451: G451 is used to approach the intersection point of the two equidistant paths in the case of
workpiece corners. The tool backs off from the workpiece corner.

Note

DISC only applies with call of G450, but can be programmed in a previous block without G450.
Both commands are modal.

Example
In the following example, a transition radius is programmed for all outside corners
(corresponding to the programming of the corner behavior in block N30). This prevents the tool
stopping and backing off at the change of direction.

Program code Comment
N10 G17 T1 G0 X35 Y0 Z0 F500 ; Starting conditions.
N20 G1 Z-5 ; Feed in tool.
N30 G41 KONT G450 X10 Y10 ; Activate TRC with KONT approach/retract mode

and corner behavior G450.
N40 Y60 ; Mill the contour.
N50 X50 Y30
N60 X10 Y10

Fundamentals
2.10 Tool radius compensation

NC programming
264 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N80 G40 X-20 Y50 ; Deactivate compensation mode, retraction on

transition circle.
N90 G0 Y100
N100 X200 M30

Further information
G450/G451

At intermediate point P*, the control executes operations such as infeed movements or
switching functions. These operations are programmed in blocks inserted between the two
blocks forming the corner.

With G450 the transition circle belongs to the next travel command with respect to the data.

DISC

When DISC values greater than 0 are specified, intermediate circles are shown with a
magnified height – the result is transition ellipses or parabolas or hyperbolas:

An upper limit can be defined in machine data – generally DISC=50.

Traversing behavior

When G450 is activated and with acute contour angles and high DISC values, the tool is lifted
off the contour at the corners. In the case of contour angles equal to or greater than 120°, there
is uniform travel around the contour:

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 265

When G451 is activated and with acute contour angles, superfluous non-cutting tool paths can
result from lift-off movements. A parameter can be used in the machine data to define automatic
switchover to transition circle in such cases.

2.10.4 Smooth approach and retraction

2.10.4.1 Approach and retraction (G140 to G143, G147, G148, G247, G248, G347, G348, G340,
G341, DISR, DISCL, DISRP, FAD, PM, PR)

The SAR (Smooth Approach and Retraction) function is used to achieve a tangential approach
to the start point of a contour, regardless of the position of the start point.

This function is used preferably in conjunction with the tool radius compensation.

Fundamentals
2.10 Tool radius compensation

NC programming
266 Programming Manual, 06/2019, A5E47437142B AA

When the function is activated, the control calculates the intermediate points in such a way that
the transition to the following block (or the transition from previous block during retraction) is
performed in accordance with the specified parameters.

The approach movement consists of a maximum of four sub-movements. The starting point of
the movement is called P0, the end point P4 in the following. Up to three intermediate points P1,
P2 and P3 can be between these points. Points P0, P3 and P4 are always defined. Intermediate
points P1 and P2 can be omitted, according to the parameters defined and the geometrical
conditions. On retraction, the points are traversed in the reverse direction, i.e. starting at P4 and
ending at P0.

Syntax

Smooth approach:
● With a straight line:

G147 G340/G341 ... DISR=..., DISCL=..., DISRP=... FAD=...
● With a quadrant/semicircle:

G247/G347 G340/G341 G140/G141/G142/G143 ... DISR=... DISCL=...
DISRP=... FAD=...

Smooth retraction:
● With a straight line:

G148 G340/G341 ... DISR=..., DISCL=..., DISRP=... FAD=...
● With a quadrant/semicircle:

G248/G348 G340/G341 G140/G141/G142/G143 ... DISR=... DISCL=...
DISRP=... FAD=...

Meaning

G147: Approach with a straight line
G148: Retraction with a straight line
G247: Approach with a quadrant
G248: Retraction with a quadrant
G347: Approach with a semicircle
G348: Retraction with a semicircle
G340: Approach and retraction in space (default setting)
G341: Approach and retraction in the plane
G140: Approach and retraction direction dependent on the current compensation side

(default setting)
G141: Approach from the left or retraction to the left
G142: Approach from the right or retraction to the right
G143: Approach and retraction direction dependent on the relative position of the start

or end point to the tangent direction

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 267

DISR=...: 1. For approach and retraction with straight lines (G147/G148):
Distance of the cutter edge from the starting point of the contour

2. For approach and retraction with circles (G247, G347/G248, G348):
Radius of the tool center point path

Notice:
For REPOS with a semicircle, DISR is the circle diameter

DISCL=...: Distance of the end point for the fast infeed motion from the machining plane
DISCL=AC(...) Specification of the absolute position of the end point for the fast
infeed motion

DISCL=AC(...): Specification of the absolute position of the end point for the fast infeed motion
DISRP: Distance of point P1 (retraction plane) from the machining plane
DISRP=AC(...): Specification of the absolute position of point P1
FAD=...: Speed of the slow feed movement

The programmed value acts in accordance with the active feedrate type (G
group 15).

FAD=PM(...): The programmed value is interpreted as linear feedrate (like G94) irrespective of
the active feedrate type.

FAD=PR(...): The programmed value is interpreted as revolutional feedrate (like G95) irre‐
spective of the active feedrate type.

Example

● Smooth approach (block N20 activated)

● Approach with quadrant (G247)

● Approach direction not programmed, G140 applies, i.e. TRC is active (G41)

● Contour offset OFFN=5 (N10)

Fundamentals
2.10 Tool radius compensation

NC programming
268 Programming Manual, 06/2019, A5E47437142B AA

● Current tool radius=10, and so the effective compensation radius for TRC=15, the radius of
the SAR contour =25, with the result that the radius of the tool center path is equal to
DISR=10

● The end point of the circle is obtained from N30, since only the Z position is programmed in
N20

● Infeed movement

– From Z20 to Z7 (DISCL=AC(7)) with rapid traverse.

– Then to Z0 with FAD=200.

– Approach circle in X-Y-plane and following blocks with F1500 (for this velocity to take
effect in the following blocks, the active G0 in N30 must be overwritten with G1, otherwise
the contour would be machined further with G0).

● Smooth retraction (block N60 activated)

● Retraction with quadrant (G248) and helix (G340)

● FAD not programmed, since irrelevant for G340

● Z=2 in the starting point; Z=8 in the end point, since DISCL=6

● When DISR=5, the radius of the SAR contour=20, the radius of the tool center point path=5

Retraction movements from Z8 to Z20 and the movement parallel to the X-Y plane to X70 Y0.

Program code Comment
$TC_DP1[1,1]=120 ;Tool definition T1/D1
$TC_DP6[1,1]=10 ; Radius
N10 G0 X0 Y0 Z20 G64 D1 T1 OFFN=5 ; (P0 app)
N20 G41 G247 G341 Z0 DISCL=AC(7) DISR=10 F1500 FAD=200 ; Approach (P3 app)
N30 G1 X30 Y-10 ; (P4 app)
N40 X40 Z2
N50 X50 ; (P4 ret)
N60 G248 G340 X70 Y0 Z20 DISCL=6 DISR=5 G40 F10000 ; Retraction (P3 ret)
N70 X80 Y0 ; (P0 ret)
N80 M30

Further information

Selecting the approach and retraction contour
The approach and retraction contour are selected with the appropriate G command from the
2nd G group:

G147: Approach with a straight line
G247: Approach with a quadrant
G347: Approach with a semicircle
G148: Retraction with a straight line
G248: Retraction with a quadrant
G348: Retraction with a semicircle

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 269

Figure 2-23 Approach movements with simultaneous activation of the tool radius compensation

Selecting the approach and retraction direction
Use the tool radius compensation (G140, default setting) to determine the approach and
retraction direction with positive tool radius:

● G41 active → approach from left

● G42 active → approach from right

G141, G142 and G143 provide further approach options.

The G codes are only significant when the approach contour is a quadrant or a semicircle.

Fundamentals
2.10 Tool radius compensation

NC programming
270 Programming Manual, 06/2019, A5E47437142B AA

Motion steps between start point and end point (G340 and G341).
In all cases, the movements are made up of one or more straight lines and, depending on the
G command for determining the approach contour, an additional straight line or a quadrant or
semicircle. The two variants of the path segmentation are shown in the following figure:

G340: Approach with a straight line from point P0 to point P1. This straight line is parallel to the
machining plane, if parameter DISRP has not been programmed.
Infeed perpendicular to the machining plane from point P1 to point P3 to the safety clearance
to the machining plane defined by the DISCL parameter.
Approach end point P4 with the curve determined by the G command of the second group
(straight line, circle, helix). If G247 or G347 is active (quadrant or semicircle) and start point
P3 is outside the machining plane defined by the end point P4, a helix is inserted instead of
a circle. Point P2 is not defined or coincides with P3.
The circle plane or the helix axis is determined by the plane, which is active in the SAR block
(G17/G18/G19), i.e. the projection of the start tangent is used by the following block, instead
of the tangent itself, to define the circle.
The movement from point P0 to point P3 takes place along two straight lines at the velocity
valid before the SAR block.

G341: Approach with a straight line from point P0 to point P1. This straight line is parallel to the
machining plane, if parameter DISRP has not been programmed.
Infeed perpendicular to the machining plane from point P1 up to the safety clearance to the
machining plane defined by the DISCL parameter in point P2.
Infeed perpendicular to the machining plane from point P2 to point P3. Approach end point
with the curve determined by the G command of the second group. P3 and P4 are located
within the machining plane, with the result that a circle is always inserted instead of a helix
with G247 or G347.

In all cases that include the position of the active plane G17/G18/G19 (circular plane, helical
axis, infeed motion perpendicular to the active plane), any active rotating frame is taken into
account.

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 271

Length of the approach straight line or radius for approach circles (DISR)
● Approach/retract with straight lines

DISR specifies the distance of the cutter edge from the starting point of the contour, i.e. the
length of the straight line when TRC is active is the sum of the tool radius and the
programmed value of DISR. The tool radius is only taken into account when it is positive.
The resulting straight line length must be positive, i.e. negative values for DISR are allowed
provided that the absolute value of DISR is less than the tool radius.

● Approach/retract with circles
DISR specifies the radius of the tool center point path. If TRC is activated, a circle is
produced with a radius that results in the tool center point path with the programmed radius.

Distance of point P2 from the machining plane (DISCL)
If the position of point P2 is to be specified by an absolute reference on the axis perpendicular
to the circle plane, the value must be programmed in the form DISCL=AC(...).

The following applies for DISCL=0:

● With G340: The whole of the approach motion now only consists of two blocks (P1, P2 and P3
are combined). The approach contour is formed by P1 to P4.

● With G341: The whole approach contour consists of three blocks (P2 and P3 are combined).
If P0 and P4 are on the same plane, only two blocks result (infeed movement from P1 to P3 is
omitted).

● The point defined by DISCL is monitored to ensure that it is located between P1 and P3, i.e.
the sign must be identical for the component perpendicular to the machining plane in all
motions that possess such a component.

● On detection of a reversal of direction, a tolerance defined by the machine data MD20204
$MC_SAR_CLEARANCE_TOLERANCE is permitted.

Distance of point P1 (retraction plane) from the machining plane (DISRP)
If the position of point P1 is to be specified by an absolute reference on the axis perpendicular
to the machining plane, the value must be programmed in the form DISRP=AC(...).

If this parameter is not programmed, point P1 has the same distance to the machining plane as
point P0, i.e. the approach straight line P0 → P1 is parallel to the machining plane.

The system checks that the point defined by DISRP lies between P0 and P2, i.e. in all
movements that have a component perpendicular to the machining plane (e.g. infeed
movements, approach movements from P3 to P4), this component must have the same leading
sign. It is not permitted to change direction. An alarm is output if this condition is violated.

On detection of a reversal of direction, a tolerance defined by the machine data MD20204
$MC_SAR_CLEARANCE_TOLERANCE is permitted. However, if P1 is outside the range
defined by P0 and P2, but the deviation is less than or equal to this tolerance, it is assumed that
P1 is in the plane defined by P0 or P2.

Programming of the end point
The end point is generally programmed with X... Y... Z...

The programming of the contour end point when approaching differs greatly from that for
retraction. Both cases are therefore treated separately here.

Fundamentals
2.10 Tool radius compensation

NC programming
272 Programming Manual, 06/2019, A5E47437142B AA

Programming of end point P4 for approach

End point P4 can be programmed in the actual SAR block. Alternatively, P4 can be determined
by the end point of the next traversing block. More blocks can be inserted between an SAR
block and the next traversing block without moving the geometry axes.

Example:

Program code Comment
$TC_DP1[1,1]=120 ;Milling tool T1/D1
$TC_DP6[1,1]=7 ;Tool with 7 mm radius
N10 G90 G0 X0 Y0 Z30 D1 T1
N20 X10
N30 G41 G147 DISCL=3 DISR=13 Z=0 F1000
N40 G1 X40 Y-10
N50 G1 X50
...

N30/N40 can be replaced by:
N30 G41 G147 DISCL=3 DISR=13 X40 Y-10 Z0 F1000
or
N30 G41 G147 DISCL=3 DISR=13 F1000
N40 G1 X40 Y-10 Z0

Programming of end point P0 for retraction

For retraction, the end point of the SAR contour cannot be programmed in a following block, i.e.
the end position is always taken from the SAR block, irrespective of how many axes have been

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 273

programmed. When determining the end point, a distinction is made between the following
three cases:

1. No geometry axis is programmed in the SAR block. In this case, the contour ends at point P1
(if DISRP has been programmed), at point P2 (if DISCL, but not DISRP has been
programmed) or point P3 (if neither DICLS nor DISRP has been programmed).
The position in the axes, which describe the machining plane, is determined by the
retraction contour (end point of the straight line or arc). The axis component perpendicular
to this is defined by DISCL or DISPR. If in this case both DISCL=0 and DISRP=0, the motion
is completely in the plane, i.e. points P0 to P3 coincide.

2. Only the axis perpendicular to the machining plane is programmed in the SAR block. In this
case, the contour ends at point P0. If DISRP has been programmed (i.e. points P0 and P1 do
not coincide), the straight line P1 → P0 is perpendicular to the machining plane. The positions
of the two other axes are determined in the same way as in 1.

3. At least one axis of the machining plane is programmed. The second axis of the machining
plane can be determined modally from its last position in the preceding block.

The position of the axis perpendicular to the machining plane is generated as described in 1.
or 2., depending on whether this axis is programmed or not. The position generated in this way
defines the end point P0. If the SAR retraction block is also used to deactivate the tool radius
compensation, in the first two cases, an additional path component is inserted in the machining
plane from P1 to P0 so that no movement is produced when the tool radius compensation is
deactivated at the end of the retraction contour, i.e. this point defines the tool center point and
not a position on a contour to be corrected. In case 3, no special measures are required for
deselection of the tool radius compensation, because the programmed point P0 already directly
defines the position of the tool center point at the end of the complete contour.

The behavior in cases 1 and 2, i.e. when an end point is not explicitly programmed in the
machining plane with simultaneous deselection of the tool radius compensation, is shown in the
following figure:

Fundamentals
2.10 Tool radius compensation

NC programming
274 Programming Manual, 06/2019, A5E47437142B AA

Approach and retraction velocities
● Velocity of the previous block (G0)

All motions from P0 up to P2 are executed at this velocity, i.e. the motion parallel to the
machining plane and the part of the infeed motion up to the safety clearance.

● Programming with FAD
Specification of the feedrate for

– G341: Infeed movement perpendicular to the machining plane from P2 to P3

– G340: From point P2 or P3 to P4.
If FAD is not programmed, this part of the contour is traversed at the speed which is
active modally from the preceding block, in the event that no F command defining the
speed is programmed in the SAR block.

● Programmed feedrate F
This feedrate value is effective as of P3 or P2 if FAD is not programmed. If no F word is
programmed in the SAR block, the speed of the previous block is active.

Example:

Program code Comment
$TC_DP1[1,1]=120 ;Milling tool T1/D1
$TC_DP6[1,1]=7 ;Tool with 7 mm radius
N10 G90 G0 X0 Y0 Z20 D1 T1
N20 G41 G341 G247 DISCL=AC(5) DISR=13 FAD 500 X40 Y-10 Z=0 F200
N30 X50
N40 X60
...

During retraction, the roles of the modally active feedrate from the previous block and the
programmed feedrate value in the SAR block are reversed, i.e. the actual retraction contour is
traversed with the old feedrate and a new speed programmed with the F word applies from P2
up to P0.

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 275

Fundamentals
2.10 Tool radius compensation

NC programming
276 Programming Manual, 06/2019, A5E47437142B AA

Reading positions
Points P3 and P4 can be read in the WCS as a system variable during approach.

● $P_APR: reading P

● 3 (initial point)

● $P_AEP: reading P

● 4 (contour starting point)

● $P_APDV: read whether $P_APR and $P_AEP contain valid data

2.10.4.2 Approach and retraction with extended retraction strategies (G460, G461, G462)
In certain special geometrical situations, special extended approach and retraction strategies,
compared with the previous implementation with activated collision detection for the approach
and retraction block, are required in order to activate or deactivate tool radius compensation.
A collision detection can result, for example, in a section of the contour not being completely
machined, see following figure:

Figure 2-24 Retraction behavior with G460

Syntax
G460
G461
G462

Meaning

G460: As previously (activation of the collision detection for the approach and retraction block).
G461: Insertion of a circle in the TRC block, if it is not possible to have an intersection whose center

point is in the end point of the uncorrected block, and whose radius is the same as the tool
radius.
Up to the intersection, machining is performed with an auxiliary circle around the contour end
point (i.e. up to the end of the contour).

G462: Insertion of a circle in the TRC block, if it is not possible to have an intersection; the block is
extended by its end tangent (default setting).
Machining is performed up to the extension of the last contour element (i.e. until shortly
before the end of the contour).

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 277

Note

The approach behavior is symmetrical to the retraction behavior.

The approach/retraction behavior is determined by the state of the G command in the approach/
retraction block. The approach behavior can therefore be set independently of the retraction
behavior.

Examples

Example 1: Retraction behavior with G460
The following example describes only the situation for deactivation of tool radius
compensation: The behavior for approach is exactly the same.

Program code Comment
G42 D1 T1 ; Tool radius 20 mm
...
G1 X110 Y0
N10 X0
N20 Y10
N30 G40 X50 Y50

Example 2: Approach with G461

Program code Comment
N10 $TC_DP1[1,1]=120 ; Milling tool type
N20 $TC_DP6[1,1]=10 ;Tool radius
N30 X0 Y0 F10000 T1 D1
N40 Y20
N50 G42 X50 Y5 G461
N60 Y0 F600
N70 X30
N80 X20 Y-5
N90 X0 Y0 G40
N100 M30

Further information
G461

If no intersection is possible between the last TRC block and a preceding block, the offset curve
of this block is extended with a circle whose center point lies at the end point of the uncorrected
block and whose radius is equal to the tool radius.

The control attempts to cut this circle with one of the preceding blocks.

Fundamentals
2.10 Tool radius compensation

NC programming
278 Programming Manual, 06/2019, A5E47437142B AA

Figure 2-25 Retraction behavior with G461

Collision monitoring CDON, CDOF

If CDOF is active (see section Collision monitoring, CDON, CDOF), the search is aborted when
an intersection is found, i.e., the system does not check whether further intersections with
previous blocks exist.

If CDON is active, the search continues for further intersections after the first intersection is
found.

An intersection point, which is found in this way, is the new end point of a preceding block and
the start point of the deactivation block. The inserted circle is used exclusively to calculate the
intersection and does not produce a traversing movement.

Note

If no intersection is found, alarm 10751 (collision danger) is output.

G462

If no intersection is possible between the last TRC block and a preceding block, a straight line
is inserted, on retraction with G462 (initial setting), at the end point of the last block with tool
radius compensation (the block is extended by its end tangent).

The search for the intersection is then identical to the procedure for G461.

Retraction behavior with G462 (see example)

With G462, the corner generated by N10 and N20 in the example program is not machined to
the full extent actually possible with the tool used. However, this behavior may be necessary if
the part contour (as distinct from the programmed contour), to the left of N20 in the example,
is not permitted to be violated even with y values greater than 10 mm.

Corner behavior with KONT

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 279

If KONT is active (travel round contour at start or end point), the behavior differs according to
whether the end point is in front of or behind the contour.

● End point in front of contour
If the end point is in front of the contour, the retraction behavior is the same as with NORM.
This property does not change even if the last contour block for G451 is extended with a
straight line or a circle. Additional circumnavigation strategies to avoid a contour violation in
the vicinity of the contour end point are therefore not required.

● End point behind contour
If the end point is behind the contour, a circle or straight line is always inserted depending
on G450/G451. In this case, G460-462 has no effect. If the last traversing block in this
situation has no intersection with a preceding block, an intersection with the inserted contour
element or with the straight line of the end point of the bypass circle to the programmed
endpoint can result.
If the inserted contour element is a circle (G450), and this forms an interface with the
preceding block, this is equal to the interface that would occur with NORM and G461. In
general, however, a remaining section of the circle still has to be traversed. For the linear
part of the retraction block, no further calculation of intersection is required.
In the second case, if no interface of the inserted contour element with the preceding blocks
is found, the intersection between the retraction straight line and a preceding block is
traversed.
Therefore, a behavior that deviates from G460 can only occur with active G461 or G462
either if NORM is active or the behavior with KONT is geometrically identical to that with
NORM.

2.10.5 Activation/deactivation of collision detection ("bottleneck detection") (CDON,
CDOF, CDOF2)

The collision detection ("bottleneck detection") with active TRC is activated or deactivated in
the NC program with the commands of G group 23.

Syntax

G41/G42 CDON
...
CDOF/CDOF2

Fundamentals
2.10 Tool radius compensation

NC programming
280 Programming Manual, 06/2019, A5E47437142B AA

Meaning

CDON: Activating collision detection ("bottleneck detection")
CDON performs a check over an adjustable (MD20240) number of blocks as to whether
the tool paths of non-adjacent blocks intersect. This look-ahead function allows possible
collisions to be detected in advance and permits the control to actively avoid them.

CDOF: Deactivating collision detection ("bottleneck detection")
With CDOF, a search is made in the previous traversing block (at inside corners) for a
common intersection for the current block; if necessary the search is extended to even
earlier blocks. If an intersection is found, no further blocks are examined. With outside
corners, an intersection is always found between two consecutive blocks.
Note:
CDOF can be used to avoid the faulty detection of bottlenecks which may occur due to a
lack of information in the NC program, for example.

CDOF2: Deactivating collision detection for 3D circumferential milling
The tool offset direction is determined from adjacent block parts with CDOF2. CDOF2 is
only effective for 3D circumferential milling and has the same meaning as CDOF for all
other types of machining (e.g. 3D face milling).

Effect of collision detection using an example
The NC program describes the center point path of a standard tool. The contour for a tool that
is actually used results in undersize, which is shown unrealistically large to demonstrate the
geometric relationships in the following figure.

The control also only has an overview of three blocks in the example:

MD20240 $MC_CUTCOM_MAXNUM_CHECK_BLOCKS = 3

Since an intersection exists only between the offset curves of the two blocks N10 and N40, the
two blocks N20 and N30 would have to be omitted. In the example, the control does not know
in block N40 if N10 has to be completely processed. Only a single block can therefore be
omitted.

With active CDOF2, the compensation motion shown in the figure is executed and not stopped.
In this situation, an active CDOF or CDON would result in an alarm.

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 281

2.10.6 2 1/2 D tool offset (CUT2D, CUT2DD, CUT2DF, CUT2DFD)
The 2½ D tool radius compensation should be used if, when machining inclined surfaces,
the workpiece is to be rotated, and not the tool alignment. This function is activated using
commands CUT2D, CUT2DD, CUT2DF oder CUT2DFD.

Tool length offset
The tool length compensation is always taken into account referred to the machining plane that
is not rotated and is fixed in space.

2½ D tool radius compensation for contour tools
2½ D tool radius compensation for contour tools is activated, if, together with CUT2D, CUT2DD,
CUT2DF or CUT2DFD, one of the two commands G41 (tool radius compensation left of the
contour) or G42 (tool radius compensation right of the contour) is programmed. It is used for
automatic cutting-edge selection in the case of non-axially symmetrical tools that can be used
for piece-by-piece machining of individual contour segments.

Note

If 2½ D tool radius compensation is not activated, a contour tool behaves like a standard tool,
which only has the first cutting edge.

2½ tool radius compensation referred to a differential tool
2½ D tool radius compensation, referred to a differential tool, is activated using theCUT2DD or
CUT2DFD commands. It should be applied if the programmed contour refers to the center point
path of a differential tool, and a tool other than a differential tool is used for machining. When
calculating the 2½ D tool radius compensation, only the wear of the radius of the active tool
($TC_DP_15) and the possibly programmed tool offsetOFFN (Page 246) and TOFFR
(Page 85) are taken into account. The basic radius ($TC_DP6) of the active tool is not taken into
account.

Syntax
CUT2D
CUT2DD
CUT2DF
CUT2DFD

Meaning

CUT2D: Activating the 2½ D radius compensation
CUT2DD: Activating the 2½ D radius compensation referred to a differential tool
CUT2DF: Activating 2½ D radius compensation, tool radius compensation relative to the current

frame and/or inclined plane
CUT2DFD: Activating 2½ D radius compensation, tool radius compensation relative to the current

frame and/or inclined plane

Fundamentals
2.10 Tool radius compensation

NC programming
282 Programming Manual, 06/2019, A5E47437142B AA

Further information

Contour tools
● Enabling

Tool radius compensation for contour tools is enabled on a channel-specific basis using:
MD28290 $MC_MM_SHAPED_TOOLS_ENABLE

● Tool type
Contour tool types are defined on a channel-specific basis using:
MD20370 $MC_SHAPED_TOOL_TYPE_NO

● Cutting edge
A number of cutting edges (D numbers) can be assigned to each contour tool in any
sequence. The maximum number of cutting edges per tool is parameterized using:
MD18106 $MN_MM_MAX_CUTTING_EDGE_PERTOOL
The first cutting edge of a contour tool is the cutting edge, which is selected when activating
the tool. If, e.g. in a program, using the commands T3 D5, the fifth cutting edge (D5) of the
third tool (T3) is activated, then D5 and the following cutting edges define with one part, or
altogether, the contour tool. The cutting edges located before D5 are ignored.

2½ D tool radius compensation without rotating the correction plane (CUT2D, CUT2DD)
If a frame that contains a rotation is programmed, then for CUT2D or CUT2DD, the plane in which
the tool radius compensation (correction plane) takes place is not rotated at the same time. The
tool radius compensation is taken into account, referred to the non rotated machining plane
(G17, G18, G19). The tool length compensation acts relative to the correction plane.

For machining inclined surfaces, the tool offsets must be appropriately defined or calculated
based on the functions for "Tool length compensation for tools that can be orientated".

2½ D tool radius compensation with rotation of the compensation plane (CUT2DF, CUT2DFD)
If a frame is programmed that contains a rotation, then for CUT2DF or CUT2DFD, the plane in
which the tool radius compensation takes place (correction plane) is also rotated. The tool
radius compensation is taken into account, referred to the rotated machining plane (G17, G18,
G19). However, the tool length compensation still acts relative to the non-rotated machining
plane.

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 283

Requirement: At the machine, the tool orientation must be able to be adjusted perpendicular to
the rotated machining plane, and set for machining.

Note

The tool length compensation continues to be active relative to the non-rotated working plane.

For further information see the "Tools" Function Manual.

2.10.7 Keep tool radius compensation constant (CUTCONON, CUTCONOF)
The "Keep tool radius compensation constant" function is used to suppress tool radius
compensation for a number of blocks, whereby a difference between the programmed and the
actual tool center path traveled set up by tool radius compensation in the previous blocks is
retained as the compensation. It can be an advantage to use this method when several
traversing blocks are required during line milling in the reversal points, but the contours
produced by the tool radius compensation (follow strategies) are not wanted. It can be used
independently of the type of tool radius compensation (21/2D, 3D face milling, 3D
circumferential milling).

Syntax
CUTCONON
CUTCONOF

Fundamentals
2.10 Tool radius compensation

NC programming
284 Programming Manual, 06/2019, A5E47437142B AA

Meaning

CUTCONON: Command to activate the "Keep tool radius compensation constant" function
CUTCONOF: Command to deactivate the "Keep tool radius compensation constant" function

Example

Program code Comment
N10 ; Definition of tool d1.
N20 $TC_DP1[1,1] = 110 ; Type
N30 $TC_DP6[1,1]= 10. ; Radius
N40
N50 X0 Y0 Z0 G1 G17 T1 D1 F10000
N60
N70 X20 G42 NORM
N80 X30
N90 Y20
N100 X10 CUTCONON ; Activation of the compensation sup-

pression.
N110 Y30 KONT ; If required, insert bypass circle

when deactivating the compensation
suppression.

N120 X-10 CUTCONOF
N130 Y20 NORM ; No bypass circle when deactivating

the TRC.

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 285

Program code Comment
N140 X0 Y0 G40
N150 M30

Further information
Tool radius compensation is normally active before the compensation suppression and is still
active when the compensation suppression is deactivated again. In the last traversing block
before CUTCONON, the offset point in the block end point is approached. All following blocks in
which offset suppression is active are traversed without offset. However, they are offset by the
vector from the end point of the last offset block to its offset point. These blocks can have any
type of interpolation (linear, circular, polynomial).

The deactivation block of the compensation suppression, i.e. the block that contains
CUTCONOF, is compensated normally. It starts in the offset point of the starting point. One linear
block is inserted between the end point of the previous block, i.e. the last programmed
traversing block with active CUTCONON, and this point.

Circular blocks, for which the circle plane is perpendicular to the compensation plane (vertical
circles), are treated as though they had CUTCONON programmed. This implicit activation of the
offset suppression is automatically canceled in the first traversing block that contains a
traversing motion in the offset plane and is not such a circle. Vertical circle in this sense can only
occur during circumferential milling.

2.10.8 Tools with a relevant cutting edge position
In the case of tools with a relevant tool point direction (turning and grinding tools - tool types
400-599; see Section "Sign evaluation wear"), a change from G40 to G41/G42 or vice-versa is
treated as a tool change. If a transformation is active (e.g., TRANSMIT), this leads to a
preprocessing stop (decoding stop) and hence possibly to deviations from the intended part
contour.

This original functionality changes with regard to:

1. Preprocessing stop on TRANSMIT

2. Calculation of intersection points at approach and retraction with KONT

3. Tool change with active tool radius compensation

4. Tool radius compensation with variable tool orientation at transformation

Fundamentals
2.10 Tool radius compensation

NC programming
286 Programming Manual, 06/2019, A5E47437142B AA

Further information
The original functionality has been modified as follows:

● A change from G40 to G41/G42 and vice-versa is no longer treated as a tool change.
Therefore, a preprocessing stop no longer occurs with TRANSMIT.

● The straight line between the tool edge center points at the block start and block end is used
to calculate intersection points with the approach and retraction block. The difference
between the tool edge reference point and the tool edge center point is superimposed on
this movement.
On approach and retraction with KONT (tool circumnavigates the contour point, see above
subsection "Contour approach and retraction"), superimposition takes place in the linear
part block of the approach or retraction motion. The geometric conditions are therefore
identical for tools with and without a relevant tool point direction. Deviations from the
previous behavior occur only in relatively rare cases where the approach or retraction block
does not intersect with an adjacent traversing block, see the following figure:

● In circle blocks and in motion blocks containing rational polynomials with a denominator
degree > 4, it is not permitted to change a tool with active tool radius compensation in cases
where the distance between the tool edge center point and the tool edge reference point
changes. With other types of interpolation, it is now possible to change when a
transformation is active (e.g., TRANSMIT).

● For tool radius compensation with variable tool orientation, the transformation from the tool
edge reference point to the tool edge center point can no longer be performed by means of
a simple zero offset. Tools with a relevant tool point direction are therefore not permitted for
3D peripheral milling (an alarm is output).

Note

The subject is irrelevant with respect to face milling as only defined tool types without
relevant tool point direction are permitted for this operation anyway. (A tool with a type,
which has not been explicitly approved, is treated as a ball end mill with the specified radius.
A tool point direction parameter is ignored).

Fundamentals
2.10 Tool radius compensation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 287

2.11 Path action

2.11.1 Exact stop (G60, G9, G601, G602, G603)
In exact stop traversing mode, all path axes and special axes involved in the traversing motion
that are not traversed modally, are decelerated at the end of each block until they come to a
standstill.

Exact stop is used when sharp outside corners have to be machined or inside corners finished
to exact dimensions.

The exact stop specifies how exactly the corner point has to be approached and when the
transition is made to the next block:

● "Exact stop fine"
The block change is performed as soon as the axis-specific tolerance limits for "Exact stop
fine" are reached for all axes involved in the traversing motion.
"Exact stop fine" is set via: MD36010 $MA_STOP_LIMIT_FINE[<Axis>]

● "Exact stop coarse"
The block change is performed as soon as the axis-specific tolerance limits for "Exact stop
coarse" are reached for all axes involved in the traversing motion.
"Exact stop coarse" is set via: MD36000 $MA_STOP_LIMIT_COARSE[<Axis>]

● "Interpolator end"
The block change is performed as soon as the control has calculated a set velocity of zero
for all axes involved in the traversing motion. The actual position or the following error of the
axes involved are not taken into account

Syntax
G60 ...
G9 ...
G601/G602/G603, etc.

Meaning

G60: Command for activation of the modal exact stop
G9: Command for activation of the non-modal exact stop
G601: Command for activation of the exact stop criterion "Exact stop fine"
G602: Command for activation of the exact stop criterion "Exact stop coarse"
G603: Command for activation of the exact stop criterion "Interpolator end"

Note

The commands for activating the exact stop criteria (G601/G602/G603) are only effective if G60
or G9 is active.

Fundamentals
2.11 Path action

NC programming
288 Programming Manual, 06/2019, A5E47437142B AA

Example

Program code Comment
N5 G602 ; Criterion "Exact stop coarse" selected.
N10 G0 G60 Z... ; Exact stop modal active.
N20 X... Z... ; G60 continues to act.
...
N50 G1 G601 ; Criterion "Exact stop fine" selected.
N80 G64 Z... ; Switchover to continuous-path mode.
...
N100 G0 G9 ; Exact stop acts only in this block.
N110 ... ; Continuous-path mode active again.

Further information
G60, G9

G9 generates the exact stop in the current block, G60 in the current block and in all following
blocks.

Continuous-path-mode commands G64 or G641 - G645 are used to deactivate G60.

G601, G602

The movement is decelerated and stopped briefly at the corner point.

Note

Do not set the limits for the exact stop criteria any tighter than necessary. The tighter the limits,
the longer it takes to position and approach the target position.

G603

The block change is initiated when the control has calculated a set velocity of zero for the axes
involved. At this point, the actual value lags behind by a proportionate factor depending on the

Fundamentals
2.11 Path action

NC programming
Programming Manual, 06/2019, A5E47437142B AA 289

dynamic response of the axes and the path velocity. The workpiece corners can now be
rounded.

Configured exact stop criterion

For G0 and the other commands of the 1st G group, for specific channels it can be set that
contrary to the programmed exact stop criterion a preset criterion should be used automatically
(see machine manufacturer's specifications).

References

Function Manual, Basic Functions, Continuouspath Mode, Exact Stop, Look Ahead (B1)

2.11.2 Continuous-path mode (G64, G641, G642, G643, G644, G645, ADIS, ADISPOS)
In continuous-path mode, the path velocity at the end of the block (for the block change) is not
decelerated to a level which would permit the fulfillment of an exact stop criterion. The objective
of this mode is, in fact, to avoid rapid deceleration of the path axes at the block-change point so
that the axis velocity remains as constant as possible when the program moves to the next
block. To achieve this objective, the "Look-head" function is also activated when continuous-
path mode is selected.

Continuous-path mode with smoothing facilitates the tangential shaping and/or smoothing of
angular block transitions caused by local changes in the programmed contour.

Continuous path mode:

● Rounds the contour

● Reduces machining times by eliminating braking and acceleration processes that are
required to fulfill the exact-stop criterion

● Improves cutting conditions because of the more constant velocity

Fundamentals
2.11 Path action

NC programming
290 Programming Manual, 06/2019, A5E47437142B AA

Continuous-path mode is suitable if:

● A contour needs to be traversed as quickly as possible (e.g. with rapid traverse)

● The exact contour may deviate from the programmed contour within a specific tolerance for
the purpose of obtaining a continuous contour

Continuous-path mode is not suitable if:

● A contour needs to be traversed precisely

● An absolutely constant velocity is required

Note

Continuous-path mode is interrupted by blocks which trigger a preprocessing stop implicitly,
e.g. due to:
● Access to specific machine status data ($A...)
● Auxiliary function outputs

Syntax
G64 ...
G641 ADIS=…
G641 ADISPOS=…
G642 ...
G643 ...
G644 ...
G645 ...

Meaning

G64: Continuous-path mode with reduced velocity as per the overload factor
G641: Continuous-path mode with smoothing as per distance criterion
ADIS=... : Distance criterion with G641 for path functions G1, G2, G3, etc.
ADISPOS=... : Distance criterion with G641 for rapid traverse G0
 The distance criterion (= rounding clearance) ADIS or ADISPOS describes the

maximum distance the rounding block may cover before the end of the block, or
the distance after the end of block within which the rounding block must be
terminated respectively.
Note:
If ADIS/ADISPOS is not programmed, a value of "zero" applies and the travers‐
ing behavior therefore corresponds to G64. The rounding clearance is automat‐
ically reduced (by up to 36%) for short traversing distances.

Fundamentals
2.11 Path action

NC programming
Programming Manual, 06/2019, A5E47437142B AA 291

G642: Continuous-path mode with smoothing within the defined tolerances
In this mode, under normal circumstances smoothing takes place within the
maximum permissible path deviation. However, instead of these axis-specific
tolerances, observation of the maximum contour deviation (contour tolerance) or
the maximum angular deviation of the tool orientation (orientation tolerance) can
be configured.
Note:
Expansion to include contour and orientation tolerance is only supported on
systems featuring the "Polynomial interpolation" option.

G643: Continuous-path mode with smoothing within the defined tolerances (block-in‐
ternal)
G643 differs from G642 in that is not used to generate a separate rounding block;
instead, axis-specific block-internal rounding movements are inserted. The
rounding clearance can be different for each axis.

G644: Continuous-path mode with smoothing with maximum possible dynamic re‐
sponse
Note:
G644 is not available with an active kinematic transformation. The system
switches internally to G642.

G645: Continuous-path mode with smoothing and tangential block transitions within
the defined tolerances
G645 has the same effect on corners as G642. With G645, rounding blocks are
also only generated on tangential block transitions if the curvature of the original
contour exhibits a jump in at least one axis.

Note

Rounding cannot be used as a substitute for smoothing (RND). The user should not make any
assumptions with respect to the appearance of the contour within the rounding area. The type
of rounding can depend on dynamic conditions, e.g. on the tool path velocity. Rounding on the
contour is therefore only practical with small ADIS values. RND must be used if a defined
contour is to be traversed at the corner.

Note

If a rounding movement initiated by G641, G642, G643, G644 or G645 is interrupted, the
starting or end point of the original traversing block (as appropriate for REPOS mode) will be
used for subsequent repositioning (REPOS), rather than the interruption point.

Fundamentals
2.11 Path action

NC programming
292 Programming Manual, 06/2019, A5E47437142B AA

Example

The two outside corners on the groove are to be approached exactly. Otherwise machining
should be performed in continuous-path mode.

Program code Comment
N05DIAMOF ; Radius as dimension
N10 G17 T1 G41 G0 X10 Y10 Z2 S300 M3 ; Approach starting position, acti-

vate spindle, path compensation.
N20 G1 Z-7 F8000 ; Feed in tool.
N30 G641 ADIS=0.5 ; Contour transitions are smoothed.
N40 Y40
N50 X60 Y70 G60 G601 ; Approach position exactly with ex-

act stop fine.
N60 Y50
N70 X80
N80 Y70
N90 G641 ADIS=0.5 X100 Y40 ; Contour transitions are smoothed.
N100 X80 Y10
N110 X10
N120 G40 G0 X-20 ; Deactivate path compensation
N130 Z10 M30 ; Retract tool, end of program.

Further information

Continuous-path mode G64
In continuous-path mode, the tool travels across tangential contour transitions with as constant
a path velocity as possible (no deceleration at block boundaries). LookAhead deceleration is
applied before corners and blocks with exact stop.

Fundamentals
2.11 Path action

NC programming
Programming Manual, 06/2019, A5E47437142B AA 293

Corners are also traversed at a constant velocity. In order to minimize the contour error, the
velocity is reduced according to an acceleration limit and an overload factor.

Note

The extent of smoothing the contour transitions depends on the feedrate and the overload
factor. The overload factor can be set in MD32310 $MA_MAX_ACCEL_OVL_FACTOR.

Setting MD20490 $MC_IGNORE_OVL_FACTOR_FOR_ADIS means that block transitions will
always be rounded irrespective of the set overload factor.

The following points should be noted in order to prevent an undesired stop in path motion (relief
cutting):

● Auxiliary functions, which are enabled after the end of the motion or before the next motion,
interrupt the continuous path mode (exception: fast auxiliary functions).

● Positioning axes always traverse according to the exact stop principle, positioning window
fine (as for G601). If an NC block has to wait for positioning axes, continuous-path mode is
interrupted on the path axes.

However, intermediate blocks containing only comments, calculation blocks or subprogram
calls do not affect continuous-path mode.

Note

If FGROUP does not contain all the path axes, there is often a step change in the velocity at block
transitions for those axes excluded from FGROUP; the control limits this change in velocity to
the permissible values set in MD32300 $MA_MAX_AX_ACCEL and MD32310
$MA_MAX_ACCEL_OVL_FACTOR. This braking operation can be avoided through the
application of a rounding function, which "smoothes" the specific positional interrelationship
between the path axes.

Fundamentals
2.11 Path action

NC programming
294 Programming Manual, 06/2019, A5E47437142B AA

LookAhead predictive velocity control
In continuous-path mode, the control automatically determines the velocity control for several
NC blocks in advance. This enables acceleration and deceleration across multiple blocks with
almost tangential transitions.

Look Ahead is particularly suitable for the machining of motion sequences comprising short
traverse paths with high path feedrates.

The number of NC blocks included in the Look Ahead calculation can be defined in machine
data.

Continuous-path mode with smoothing as per distance criterion (G641)
With G641, the control inserts transition elements at contour transitions. The rounding
clearance ADIS (or ADISPOS for G0) specifies the maximum extent to which the corners can be
rounded. Within this rounding clearance, the control is free to ignore the path construct and
replace it with a dynamically optimized distance.

Disadvantage: Only one ADIS value is available for all axes.

The effect of G641 is similar to RNDM; however, it is not restricted to the axes of the working
plane.

Like G64, G641 works with LookAhead predictive velocity control. Corner rounding blocks with
a high degree of curvature are approached at reduced velocity.

Example:

Program code Comment
N10 G641 ADIS=0.5 G1 X... Y... ; The rounding block must begin no more than

0.5 mm before the programmed end of the block
and must finish 0.5 mm after the end of the
block. This setting remains modal.

Fundamentals
2.11 Path action

NC programming
Programming Manual, 06/2019, A5E47437142B AA 295

Note

Smoothing cannot and should not replace the functions for defined smoothing (RND, RNDM,
ASPLINE, BSPLINE, CSPLINE).

Smoothing with axial precision with G642
With G642, smoothing does not take place within a defined ADIS range, but the axial tolerances
defined with MD33100 $MA_COMPRESS_POS_TOL are complied with. The rounding
clearance is determined based on the shortest rounding clearance of all axes. This value is
taken into account when generating a rounding block.

Block-internal smoothing with G643
The maximum deviations from the precise contour in the case of smoothing with G643 are
defined for each axis using machine data MD33100 $MA_COMPRESS_POS_TOL.

G643 is not used to generate a separate rounding block, but axis-specific block-internal
rounding motions are inserted. In the case of G643, the rounding clearance of each axis can be
different.

Smoothing with contour and orientation tolerance with G642/G643
MD20480 $MC_SMOOTHING_MODE can be used to configure rounding with G642 and G643
so that instead of the axis-specific tolerances, a contour tolerance and an orientation tolerance
can be applied.

The contour tolerance and orientation tolerance are set in the channel-specific setting data:

SD42465 $SC_SMOOTH_CONTUR_TOL (maximum contour deviation)

SD42466 $SC_SMOOTH_ORI_TOL (maximum angular deviation of the tool orientation)

Fundamentals
2.11 Path action

NC programming
296 Programming Manual, 06/2019, A5E47437142B AA

The setting data can be programmed in the NC program; this means that it can be specified
differently for each block transition. Very different specifications for the contour tolerance and
the tolerance of the tool orientation can only take effect with G643.

Note

Expansion to include contour and orientation tolerance is only supported on systems featuring
the "Polynomial interpolation" option.

Note

An orientation transformation must be active for smoothing within the orientation tolerance.

Corner rounding with greatest possible dynamic response in G644
Smoothing with maximum possible dynamic response is configured in the thousands place with
MD20480 $MC_SMOOTHING_MODE.

Value Meaning
0 Specification of maximum axial deviations with:

MD33100 $MA_COMPRESS_POS_TOL
1 Specification of maximum rounding clearance by programming:

ADIS=... or ADISPOS=...
2 Specification of the maximum possible frequencies of each axis occurring in the rounding area

with:
MD32440 $MA_LOOKAH_FREQUENCY
The rounding area is defined such that no frequencies in excess of the specified maximum can
occur while the rounding motion is in progress.

3 When rounding with G644, neither the tolerance nor the rounding distance are monitored.
Each axis traverses around a corner with the maximum possible dynamic response.
With SOFT, both the maximum acceleration and the maximum jerk of each axis is maintained.
With the BRISK command, the jerk is not limited; instead, each axis travels at the maximum
possible acceleration.

Smoothing of tangential block transitions with G645
With G645, the smoothing motion is defined so that the acceleration of all axes involved
remains smooth (no jumps) and the parameterized maximum deviations from the original
contour (MD33120 $MA_PATH_TRANS_POS_TOL) are not exceeded.

In the case of angular non-tangential block transitions, the smoothing behavior is the same as
with G642.

Fundamentals
2.11 Path action

NC programming
Programming Manual, 06/2019, A5E47437142B AA 297

No intermediate rounding blocks
An intermediate rounding block is not inserted in the following cases:

● The axis stops between the two blocks.
This occurs when:

– The following block contains an auxiliary function output before the motion.

– The following block does not contain a path motion.

– An axis is traversed for the first time as a path axis for the following block when it was
previously a positioning axis.

– An axis is traversed for the first time as a positioning axis for the following block when it
was previously a path axis.

– The previous block traverses geometry axes and the following block does not.

– The following block traverses geometry axes and the previous block does not.

– Before tapping, the following block uses G33 as preparatory function and the previous
block does not.

– A change is made between BRISK and SOFT.

– Axes involved in the transformation are not completely assigned to the path motion (e.g.
for oscillation, positioning axes).

● The rounding block would slow down the part program execution.
This occurs:

– Between very short blocks.
Since each block requires at least one interpolator clock cycle, the added intermediate
block would double the machining time.

– If a block transition G64 (continuous-path mode without smoothing) can be traversed
without a reduction in velocity.
Rounding would increase the machining time. This means that the value of the permitted
overload factor (MD32310 $MA_MAX_ACCEL_OVL_FACTOR) affects whether a block
transition is rounded or not. The overload factor is only taken into account for corner
rounding with G641/G642. The overload factor has no effect in the case of smoothing
with G643 (this behavior can also be set for G641 and G642 by setting MD20490
$MC_IGNORE_OVL_FACTOR_FOR_ADIS to TRUE).

Fundamentals
2.11 Path action

NC programming
298 Programming Manual, 06/2019, A5E47437142B AA

● Rounding is not parameterized.
This occurs when:

– For G641 in G0 blocks ADISPOS = 0 (default!)

– For G641 in non-G0 blocks ADIS = 0 (default!)

– For G641 on transition from G0 and non-G0 or non-G0 and G0 respectively, the smaller
value from ADISPOS and ADIS applies.

– For G642/G643, all axis-specific tolerances are zero.

● The block does not contain traversing motion (zero block).
This occurs when:

– Synchronized actions are active.
Normally, the Interpreter eliminates zero blocks. However, if synchronous actions are
active, this zero block is included and also executed. In so doing, an exact stop is initiated
corresponding to the active programming. This allows the synchronous action to also
switch.

– Zero blocks are generated by program jumps.

Continuous-path mode in rapid traverse G0
One of the specified functions G60/G9 or G64, or G641 - G645, also has to be specified for rapid
traverse motion. Otherwise, the default in the machine data is used.

References

For further information about the continuous-path mode see:
Function Manual, Basic Functions; Continuous-Path Mode, Exact Stop, LookAhead (B1).

Fundamentals
2.11 Path action

NC programming
Programming Manual, 06/2019, A5E47437142B AA 299

2.12 Coordinate transformations (frames)

2.12.1 Frames

Frame
The frame is a self-contained arithmetic rule that transforms one Cartesian coordinate system
into another Cartesian coordinate system.

Basic frame (basic offset)
The basic frame describes coordinate transformation from the basic coordinate system (BCS)
to the basic zero system (BZS) and has the same effect as settable frames.

See Basic coordinate system (BCS) (Page 39).

Settable frames
Settable frames are the configurable zero offsets which can be called from within any NC
program with the G54 to G57 and G505 to G599 commands. The offset values are predefined
by the user and stored in the zero offset memory on the controller . They are used to define the
settable zero system (SZS).

See:

● Settable zero system (SZS) (Page 42)

● Settable zero offset (G54 to G57, G505 to G599, G53, G500, SUPA, G153) (Page 146)

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
300 Programming Manual, 06/2019, A5E47437142B AA

Programmable frames
Sometimes it is useful or necessary within an NC program, to move the originally selected
workpiece coordinate system (or the "settable zero system") to another position and, if
required, to rotate it, mirror it and/or scale it. This can be achieved using programmable frames.

See Frame instructions (Page 302).

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 301

2.12.2 Frame instructions

Function
The statements for programmable frames apply in the current NC program. They function as
either additive or substitute elements:

● Substitute statement
Deletes all previously programmed frame statements. The reference is provided by the last
settable zero offset called (G54 to G57, G505 to G599).

● Additive statement
Appended to existing frames. The reference is provided by the currently set workpiece zero
or the last workpiece zero programmed with a frame statement.

Application example
1. Move the zero point of the workpiece coordinate system (WCS).

2. Rotate the workpiece coordinate system (WCS) to orientate a plane parallel to the desired
work plane.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
302 Programming Manual, 06/2019, A5E47437142B AA

Syntax

Substituting statements Additive statements
TRANS X… Y… Z… ATRANS X… Y… Z…
ROT X… Y… Z… AROT X… Y… Z…
ROT RPL=… AROT RPL=…
ROTS/CROTS X... Y... AROTS X... Y...
SCALE X… Y… Z… ASCALE X… Y… Z…
MIRROR X0/Y0/Z0 AMIRROR X0/Y0/Z0

Meaning

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 303

TRANS/ATRANS: Workpiece coordinate system offset in the direction of the specified ge‐
ometry axis or axes

ROT/AROT: Workpiece coordinate system rotation:
● By linking individual rotations around the specified geometry axis or

axes
or

● Around the angle RPL=... in the current working plane
(G17/G18/G19)

Direction of rotation:

Rotation sequence: With RPY notation: Z, Y', X''
With Euler angle: Z, X', Z''

Range of values: The angles of rotation are only defined unam‐
biguously in the following ranges:
With RPY notation: -180 ≤ x ≤ 180

-90 < y < 90
-180 ≤ z ≤ 180

With Euler angle: 0 ≤ x < 180
-180 ≤ y ≤ 180
-180 ≤ z ≤ 180

ROTS/AROTS: Workpiece coordinate system rotation by means of the specification of
solid angles
The orientation of a plane in space is defined unambiguously by speci‐
fying two solid angles. Therefore, up to two solid angles may be pro‐
grammed:
ROTS/AROTS X... Y... / Z... X... / Y... Z...

CROTS: CROTS works in the same way as ROTS but refers to the valid frame in
the database.

SCALE/ASCALE: Scaling in the direction of the specified geometry axis or axes to in‐
crease/reduce the size of a contour

MIRROR/AMIRROR:

Workpiece coordinate system mirroring by means of mirroring (direction
change) the specified geometry axis
Value: Freely selectable (in this case: "0")

Supplementary conditions
● Frame statements must be programmed in a separate NC block.

● Frame statements can be used individually or combined as required.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
304 Programming Manual, 06/2019, A5E47437142B AA

● Frame statements are executed in the programmed sequence.

● Additive statements are frequently used in subprograms. The basic statements defined in
the main program are not lost after the end of the subprogram if the subprogram has been
programmed with the SAVE attribute.

2.12.3 Programmable work offset (TRANS, ATRANS)
The TRANS command moves the WCS absolutely based on the SZS created with a settable
work offset (G54 ... G57, G505 ... G599).

The ATRANS command moves additively the WCS created with TRANS.

Milling: Turning:

Syntax
TRANS X… Y… Z…
ATRANS X… Y… Z…

Meaning

TRANS: Absolute offset of the WCS with reference to the workpiece zero (SZS) set with
a settable work offset (G54 ... G57, G505 ... G599).
Alone in the block: yes

ATRANS: Additive zero offset of the WCS with reference to the parameterized workpiece
zero set with TRANS
Alone in the block: yes

X... Y... Z... : Offset values in the direction of the specified geometry axes

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 305

Examples

Example 1: Milling

With this workpiece, the shapes
shown recur in a program.
The machining sequence for this
shape is stored in a subprogram.
Zero offset is used to set the work‐
piece zeros required in each case
and then call the subprogram.

Program code Comment
N10 G1 G54 ; Working plane X/Y, workpiece zero
N20 G0 X0 Y0 Z2 ; Approach starting point
N30 TRANS X10 Y10 ; Absolute offset
N40 L10 ; Subprogram call
N50 TRANS X50 Y10 ; Absolute offset
N60 L10 ; Subprogram call
N70 M30 ; End of program

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
306 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Turning

Program code Comment
...
N10 TRANS X0 Z150 ; Absolute offset
N15 L20 ; Subprogram call
N20 TRANS X0 Z140 (or ATRANS Z-10) ; Absolute offset
N25 L20 ; Subprogram call
N30 TRANS X0 Z130 (or ATRANS Z-10) ; Absolute offset
N35 L20 ; Subprogram call
...

Further information
TRANS X... Y... Z...

Translation through the offset values programmed in the specified axis directions (path,
synchronized axes and positioning axes). The reference is provided by the last settable work
offset called (G54 to G57, G505 to G599).

NOTICE

No original frame

The TRANS command resets all frame components of the previously activated programmable
frame.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 307

Note

ATRANS can be used to program an offset to be added to existing frames.

ATRANS X... Y... Z...

Translation through the offset values programmed in the specified axis directions. The currently
set or last programmed zero point is used as the reference.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
308 Programming Manual, 06/2019, A5E47437142B AA

2.12.4 Programmable work offset (G58, G59)
The G58 and G59 functions can be used to substitute translation components of
the programmable work offset (TRANS/ATRANS) (Page 305) with specific axes:

● G58: Absolute translation component (coarse offset)

● G59: Additive translation component (fine offset)

Requirements
The G58 and G59 functions can only be used if fine offset has been configured
(MD24000 $MC_FRAME_ADD_COMPONENTS = 1).

Syntax
G58 <axis_1><value_1> ... <axis_3><value_3>
G59 <axis_1><value_1> ... <axis_3><value_3>

Meaning

G58: G58 replaces the absolute translation component of the programmable work offset
for the specified axis, but the programmed additive offset remains valid. The ref‐
erence is provided by the last settable work offset called (G54 ... G57, G505 ...
G599).
Alone in the block: yes

G59: G59 replaces the additive translation component of the programmable work offset
for the specified axis, but the programmed absolute offset remains valid.
Alone in the block: yes

<axis_n>: Geometry axis in channel
<value_n>: Offset values in the direction of the specified geometry axis

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 309

Example

Program code Comment
...
N50 TRANS X10 Y10 Z10 ; Absolute translation component X10 Y10 Z10
N60 ATRANS X5 Y5 ; Additive translation component X5 Y5

→ total offset: X15 Y15 Z10
N70 G58 X20 ; Absolute translation component X20

→ total offset X25 Y15 Z10
N80 G59 X10 Y10 ; Additive translation component X10 Y10

→ total offset X30 Y20 Z10
...

Further information
The absolute translation component (coarse offset) is modified by the following statements:

● TRANS
● G58
● CTRANS
● CFINE
● $P_PFRAME[X,TR]
The additive translation component (fine offset) is modified by the following statements:

● ATRANS
● G59
● CTRANS
● CFINE
● $P_PFRAME[X,FI]

Examples

Command Coarse offset VC Fine offset VF

TRANS X10 VC = 10 unchanged
G58 X10 VC = 10 unchanged
$P_PFRAME[X,TR]=10 VC = 10 unchanged
ATRANS X10 unchanged VF = VF + 10
G59 X10 unchanged VF = 10
$P_PFRAME[X,FI]=10 unchanged VF = 10
CTRANS(X,10) VC = 10 VF = 0
CTRANS() VC = 0 VF = 0
CFINE(X,10) VC = 0 VF = 10

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
310 Programming Manual, 06/2019, A5E47437142B AA

2.12.5 Programmable rotation (ROT, AROT, RPL)
The workpiece coordinate system can be rotated in space with the ROT/AROT statements. The
statements refer exclusively to the programmable frame $P_PFRAME.

Syntax
ROT <1st GeoAx><angle> <2nd GeoAx><angle> <3rd GeoAx><angle>
ROT RPL=<angle>
AROT <1st GeoAx><angle> <2nd GeoAx><angle> <3rd GeoAx><angle>
AROT RPL=<angle>

Note
Euler angle

The rotations of the workpiece coordinate system are performed via Euler angles. A detailed
description can be found in:

References
Function Manual, Basic Functions; Section "Axes, coordinate systems, frames (K2)" >
"Frames" > "Frame components" > "Rotation ..."

Meaning

ROT: Absolute rotation
Reference
frame:

Programmable frame $P_PFRAME

Reference point: Zero point of the current workpiece coordinate system set
with G54 ... G57, G505 ... G599

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 311

AROT: Additive rotation
Reference
frame:

Programmable frame $P_PFRAME

Reference point: Zero point of the current workpiece coordinate system set
with G54 ... G57, G505 ... G599

<nth GeoAx>: Identifier of the nth geometry axis around which rotation is to be performed with the
specified angle.
The value 0° is implicitly set as angle of rotation for a geometry axis that has not
been programmed.

RPL: Rotation around the geometry axis perpendicular to the active plane (G17, G18,
G19) by the specified angle
Reference
frame:

Programmable frame $P_PFRAME

Reference point: Zero point of the current workpiece coordinate system set
with G54 ... G57, G505 ... G599

<Angle> Angle specification in degrees.
Range of values: -360° ≤ angle ≤ 360°

Examples

Example 1: Rotation in the G17 plane

With this workpiece, the shapes
shown recur in a program. In addition
to the zero offset, rotations have to
be performed, as the shapes are not
arranged paraxially.

Program code Comment
N10 G17 G54 ; Working plane X/Y, workpiece zero
N20 TRANS X20 Y10 ; Absolute offset
N30 L10 ; Subprogram call
N40 TRANS X55 Y35 ; Absolute offset
N50 AROT RPL=45 ; Additive rotation around the Z axis perpendicular;

to the G17 plane through 45°
N60 L10 ; Subprogram call

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
312 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N70 TRANS X20 Y40 ; Absolute offset

(resets all previous offsets)
N80 AROT RPL=60 ; Additive rotation around the Z axis perpendicular

; to the G17 plane through 60°
N90 L10 ; Subprogram call
N100 G0 X100 Y100 ; Retraction
N110 M30 ; End of program

Example 2: Spatial rotation around the Y axis

In this example, paraxial and inclined
workpiece surfaces are to be ma‐
chined in a clamping.
Condition:
The tool must be aligned perpendic‐
ular to the inclined surface in the ro‐
tated Z direction.

Program code Comment
N10 G17 G54 ; Working plane X/Y, workpiece zero
N20 TRANS X10 Y10 ; Absolute offset
N30 L10 ; Subprogram call
N40 ATRANS X35 ; Additive offset
N50 AROT Y30 ; Additive rotation around the Y axis
N60 ATRANS X5 ; Additive offset
N70 L10 ; Subprogram call
N80 G0 X300 Y100 M30 ; Retraction, end of program

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 313

Example 3: Multi-face machining

In this example, identical shapes are ma‐
chined in two workpiece surfaces perpendicu‐
lar to one another via subprograms. In the new
coordinate system on the right-hand work‐
piece surface, infeed direction, working plane
and the zero point have been set up as on the
top surface. Therefore, the conditions required
for the subprogram execution still apply: Work‐
ing plane G17, coordinate plane X/Y, infeed
direction Z.

Program code Comment
N10 G17 G54 ; Working plane X/Y, workpiece zero
N20 L10 ; Subprogram call
N30 TRANS X100 Z-100 ; Absolute offset of the WCS

N40 AROT Y90 ; Additive rotation of the WCS around Y through 90°

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
314 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N50 AROT Z90 ; Additive rotation of the WCS around Z through 90°

N60 L10 ; Subprogram call
N70 G0 X300 Y100 M30 ; Retraction, end of program

Further information

Rotation in the active plane
When programming using RPL=…, the WCS is rotated around the axis perpendicular to the
active plane.

Figure 2-26 Rotation around the Y axis or in the G18 plane

WARNING

Plane change

If a plane change (G17, G18, G19) is programmed after a rotation, the current angles of
rotation of the respective axes are retained and are also effective in the new plane. It is
therefore strongly recommended that the current angles of rotation be reset to 0 before a plane
change:
● N100 ROT X0 Y0 Z0 ; explicit angle programming
● N100 ROT ; implicit angle programming

Absolute rotation with ROT X... Y... Z...
The WCS is rotated around the specified axes to the programmed angles of rotation.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 315

① Angle of rotation
Figure 2-27 Absolute rotation around the Z axis

Additive rotation with AROT X... Y... Z...
The WCS is rotated further around the specified axes through the programmed angles of
rotation.

① Angle of rotation
Figure 2-28 Absolute and additive rotation around the Z axis

Rotation of the working plane
During a rotation using ROT/AROT, the working plane (G17, G18, G19) also rotates.

Example: Working plane G17
The WCS is positioned on the top surface of the workpiece. Using offset and rotation, the
coordinate system is moved to one of the side faces. Working plane G17 also rotates. In this
way, traversing motions can still be programmed in the G17 plane via X and Y and infeeds via
Z.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
316 Programming Manual, 06/2019, A5E47437142B AA

Requirement:
The tool must be perpendicular to the working plane and the positive direction of the infeed axis
points in the direction of the tool base.
Specifying CUT2DF activates the tool radius compensation in the rotated plane.

2.12.6 Programmable frame rotations with solid angles (ROTS, AROTS, CROTS)
Rotations of the workpiece coordinate system can be specified in solid angles with the ROTS,
AROTS and CROTS statements. Solid angles are the angles formed by the intersections of the
plane rotated in space with the main planes of the not yet rotated WCS.

Note
Geometry axis identifiers

The following definition is made as an example for the further description:
● 1st geometry axis: X
● 2nd geometry axis: Y
● 3rd geometry axis: Z

As shown in the following figure, the programming of ROTS Xα Yβ results in an alignment of
the G17 plane of the WCS parallel to the displayed inclined plane. The position of the zero point
of the WCS remains unchanged.

The orientation of the rotated WCS is defined so that the first rotated axis lies in the plane
formed by this and the 3rd axis of the original coordinate system. In the example: X' is in the
original X/Z plane.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 317

① Inclined plane
α, β, γ Solid angle

A Alignment of the G17 plane parallel to the inclined plane:
● 1st rotation

Rotation of x around y through angle α ⇒
x'-axis parallel to the inclined plane

● 2nd rotation
Rotation of y' around x' through β ⇒
y'-axis parallel to the inclined plane
⇒ z'-axis parallel to the inclined plane
⇒ G17 parallel to the inclined plane

B Alignment of the G18 plane parallel to the inclined plane:
● 1st rotation

Rotation of z around x through the angle γ ⇒
z'-axis parallel to the inclined plane

● 2nd rotation
Rotation of x' around z' through angle α ⇒
x'-axis parallel to the inclined plane
⇒ y'-axis parallel to the inclined plane
⇒ G18 parallel to the inclined plane

C Alignment of the G19 plane parallel to the inclined plane:
● 1st rotation

Rotation of y around z through the angle β ⇒
y'-axis parallel to the inclined plane

● 2nd rotation
Rotation of z' around y' through angle γ ⇒
z'-axis parallel to the inclined plane
⇒ x'-axis parallel to the inclined plane
⇒ G19 parallel to the inclined plane

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
318 Programming Manual, 06/2019, A5E47437142B AA

Syntax

Requirements
The position of a plane in space is clearly defined by two solid angles. The plane would be "over-
defined" by the specification of a third solid angle. It is therefore not permitted.

If only one solid angle is programmed, the rotation of the WCS is identical to ROT, AROT (see
Section "Programmable rotation (ROT, AROT, RPL) (Page 311)").

Through the two programmed axes, a plane is specified according to the plane definitions for
G17, G18, G19. This defines the sequence of the coordinate axes (1st axis / 2nd axis of the
plane) or the sequence of the rotations through the solid angles:

Plane 1st axis 2nd axis
G17 X Y
G18 Z X
G19 Y Z

Alignment of the G17 plane ⇒ solid angle for X and Y
● 1st rotation: X around Y through the angle α

● 2nd rotation: Y around X' through the angle β

● Orientation: X' is in the original Z/X plane.
ROTS X<α> Y<β>
AROTS X<α> Y<β>
CROTS X<α> Y<β>

Alignment of the G18 plane ⇒ solid angle for Z and X
● 1st rotation: Z around X through the angle γ

● 2nd rotation: X around Z' through the angle α

● Orientation: Z' is in the original Y/Z plane
ROTS Z<γ> X<α>
AROTS Z<γ> X<α>
CROTS Z<γ> X<α>

Alignment of the G19 plane ⇒ solid angle for Y and Z
● 1st rotation: Y around Z through the angle β

● 2nd rotation: Z around Y' through the angle γ

● Orientation: Y' is in the original X/Z plane.
ROTS Y<β> Z<γ>
AROTS Y<β> Z<γ>
CROTS Y<β> Z<γ>

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 319

Meaning

ROTS: Absolute frame rotations with solid angles,
reference frame: Programmable frame $P_PFRAME

AROTS: Additive frame rotations with solid angles,
reference frame: Programmable frame $P_PFRAME

CROTS: Absolute frame rotations with solid angles,
reference frame: Programmed frame $P_ ...

X, Y, Z: Geometry axis identifiers (see note above: Geometry axis identifiers)
Α, β, γ: Solid angle in relation to the appropriate geometry axis:

● α → X
● β → Y
● γ → Z

2.12.7 Programmable scaling factor (SCALE, ASCALE)
SCALE/ASCALE can be used to program up or down scale factors for all path, synchronized,
and positioning axes in the direction of the axes specified in each case. This makes it possible,
therefore, to take geometrically similar shapes or different shrinkage allowances into account
in the programming.

Syntax
SCALE X… Y… Z…
ASCALE X… Y… Z…

Note

Each frame operation is programmed in a separate NC block.

Meaning

SCALE: Scale up/down absolute in relation to the currently valid coordinate system set with
G54 to G57, G505 to G599.

ASCALE: Scale up/down additive in relation to the currently valid set or programmed coor‐
dinate system.

X… Y… Z…: Scale factors in the direction of the specified geometry axes.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
320 Programming Manual, 06/2019, A5E47437142B AA

Example

The pocket occurs twice on this workpiece, but
with different sizes and rotated in relation to
one another. The machining sequence is stor‐
ed in the subprogram.
The required workpiece zeroes are set with
zero offset and rotation, the contour is scaled
down with scaling and the subprogram is then
called again.

Program code Comment
N10 G17 G54 ; Working plane X/Y, workpiece zero
N20 TRANS X15 Y15 ; Absolute offset
N30 L10 ; Machine large pocket
N40 TRANS X40 Y20 ; Absolute offset
N50 AROT RPL=35 ; Rotation in the plane through 35°
N60 ASCALE X0.7 Y0.7 ; Scaling factor for the small pocket
N70 L10 ; Machine small pocket
N80G0 X300 Y100 M30 ; Retraction, end of program

Further information
SCALE X... Y... Z...

You can specify an individual scale factor for each axis, by which the shape is to be reduced or
enlarged. The scale refers to the workpiece coordinate system set with G54 to G57, G505 to
G599.

NOTICE

No original frame

The SCALE command resets all frame components of the previously activated programmable
frame.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 321

ASCALE X... Y... Z...

The ASCALE command is used to program scale changes to be added to existing frames. In this
case, the last valid scale factor is multiplied by the new one.

The currently set or last programmed coordinate system is used as the reference for the scale
change.

Scaling and offset

Note

If an offset is programmed with ATRANS after SCALE, the offset values will also be scaled.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
322 Programming Manual, 06/2019, A5E47437142B AA

Different scale factors

NOTICE

Risk of collision

Please take great care when using different scale factors! Circular interpolations can, for
example, only be scaled using identical factors.

Note

However, different scale factors can be used specifically to program distorted circles.

2.12.8 Programmable mirroring (MIRROR, AMIRROR)
MIRROR/AMIRROR can be used to mirror workpiece shapes on coordinate axes. All traversing
movements programmed after the mirror call (e.g. in the subprogram) are executed with
mirroring.

Syntax
MIRROR X... Y... Z...
AMIRROR X... Y... Z...

Note

Each frame operation is programmed in a separate NC block.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 323

Meaning

MIRROR: Mirror absolute in relation to the currently valid coordinate system set with
G54 to G57, G505 to G599.

AMIRROR: Additive mirror image with reference to the currently valid set or program‐
med coordinate system.

X... Y... Z... : Geometry axis whose direction is to be changed. The value specified here
can be chosen freely, e.g. X0 Y0 Z0.

Examples

Example 1: Milling

The contour shown here is programmed once
as a subprogram. The three other contours
are generated using mirroring. The workpiece
zero is located at the center of the contours.

Program code Comment
N10 G17 G54 ; Working plane X/Y, workpiece zero
N20 L10 ; Machine first contour at top right
N30 MIRROR X0 ; Mirror X axis (the direction is changed in X)
N40 L10 ; Machine second contour at top left
N50 AMIRROR Y0 ; Mirror Y axis (the direction is changed in Y)
N60 L10 ; Machine third contour at bottom left
N70 MIRROR Y0 ; MIRROR resets previous frames. Mirror Y axis (the di-

rection is changed in Y)
N80 L10 ; Machine fourth contour at bottom right
N90 MIRROR ;Deactivate mirroring
N100 G0 X300 Y100 M30 ; Retraction, end of program

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
324 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Turning

The actual machining is stored as a subpro‐
gram and execution at the respective spindle
is implemented by means of mirroring and off‐
sets.

Program code Comment
N10 TRANS X0 Z140 ; Zero offset to W
... ; Machining of the first side with spindle 1
N30 TRANS X0 Z600 ; Zero offset to spindle 2
N40 AMIRROR Z0 ; Mirroring of the Z axis
N50 ATRANS Z120 ; Zero offset to W1
... ; Machining of the second side with spindle 2

Further information
MIRROR X... Y... Z...

The mirror is programmed by means of an axial change of direction in the selected working
plane.

Example: Working plane G17 X/Y

The mirror (on the Y axis) requires a direction change in X and, accordingly, is programmed with
MIRROR X0. The contour is then mirrored on the opposite side of the mirror axis Y.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 325

Mirroring is implemented in relation to the currently valid coordinate system set with G54 to
G57, G505 to G599.

NOTICE

No original frame

The MIRROR command resets all frame components of the previously activated
programmable frame.

AMIRROR X... Y... Z...

A mirror image, which is to be added to an existing transformation, is programmed with
AMIRROR. The currently set or last programmed coordinate system is used as the reference.

Deactivate mirroring

For all axes: MIRROR (without axis parameter)

All frame components of the previously programmed frame are reset.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
326 Programming Manual, 06/2019, A5E47437142B AA

Tool radius compensation

Note

The mirror command causes the control to automatically change the path compensation
commands (G41/G42 or G42/G41) according to the new machining direction.

The same applies to the direction of circle rotation (G2/G3 or G3/G2).

Note

If you program an additive rotation with AROT after MIRROR, you may have to work with
reversed directions of rotation (positive/negative or negative/positive). Mirrors on the geometry
axes are converted automatically by the control into rotations and, where appropriate, mirrors
on the mirror axis specified in the machine data. This also applies to settable zero offsets.

Mirror axis

The axis to be mirrored can be set in machine data:

MD10610 $MN_MIRROR_REF_AX = <value>

Value Meaning
0 Mirroring is performed around the programmed axis (negation of values).
1 The reference axis is the X axis.
2 The reference axis is the Y axis.
3 The reference axis is the Z axis.

Interpreting the programmed values

Machine data is used to specify how the programmed values are to be interpreted:

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 327

MD10612 $MN_MIRROR_TOGGLE = <value>

Value Meaning
0 Programmed axis values are not evaluated.
1 Programmed axis values are evaluated:

● For programmed axis values ≠ 0, the axis is mirrored if it has not yet been mirrored.
● For a programmed axis value = 0, mirroring is deactivated.

2.12.9 Frame generation according to tool orientation (TOFRAME, TOROT, PAROT):
TOFRAME generates a rectangular frame whose Z axis coincides with the current tool
orientation. This means that the user can retract the tool in the Z direction without risk of
collision (e.g. after a tool break in a 5-axis program).

The position of the X and Y axes is determined by the setting in machine data MD21110
$MC_X_AXES_IN_OLD_X_Z_PLANE (coordinate system with automatic frame definition).
The new coordinate system is either left as generated from the machine kinematics or is turned
around the new Z axis additionally so that the new X axis lies in the old Z/X plane (see machine
manufacturer's specifications).

The resulting frame describing the orientation is written in the system variable for the
programmable frame ($P_PFRAME).

TOROT only overwrites the rotation component in the programmed frame. All other components
remain unchanged.

TOFRAME and TOROT are designed for milling operations in which G17 (working plane X/Y) is
typically active. In the case of turning operations or generally when G18 or G19 is active,
however, frames are needed where the X or Y axis matches the orientation of the tool. These
frames are programmed with the TOFRAMEX/TOROTX or TOFRAMEY/TOROTY statements.

PAROT aligns the workpiece coordinate system on the workpiece.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
328 Programming Manual, 06/2019, A5E47437142B AA

Syntax

TOFRAME/TOFRAMEZ/TOFRAMEY/TOFRAMEX
...
TOROTOF

TOROT/TOROTZ/TOROTY/TOROTX
...
TOROTOF

PAROT
...
PAROTOF

Meaning

TOFRAME: Align Z axis of the WCS by rotating the frame parallel to the tool orientation
TOFRAMEZ: As TOFRAME
TOFRAMEY: Align Y axis of the WCS by rotating the frame parallel to the tool orientation
TOFRAMEX: Align X axis of the WCS by rotating the frame parallel to the tool orientation
TOROT: Align Z axis of the WCS by rotating the frame parallel to the tool orientation

The rotation defined with TOROT is the same as that defined with TOFRAME.
TOROTZ: As TOROT
TOROTY: Align Y axis of the WCS by rotating the frame parallel to the tool orientation
TOROTX: Align X axis of the WCS by rotating the frame parallel to the tool orientation
TOROTOF: Deactivate orientation parallel to tool orientation
PAROT: Rotate frame to align workpiece coordinate system on workpiece

Translations, scaling and mirroring in the active frame remain valid
PAROTOF: The workpiece-specific frame rotation activated with PAROT is deactivated

with PAROTOF.

Note

The TOROT statement ensures consistent programming with active orientable toolholders for
each kinematic type.

Just as in the situation for rotatable toolholders, PAROT can be used to activate a rotation of the
work table. This defines a frame which changes the position of the workpiece coordinate
system in such a way that no compensatory movement is performed on the machine. Language
command PAROT is not rejected if no toolholder with orientation capability is active.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 329

Example

Program code Comment
N100 G0 G53 X100 Z100 D0
N120 TOFRAME
N140 G91 Z20 ; TOFRAME is included in the calculation, all program-

med geometry axis movements
refer to the new coordinate system.

N160 X50
...

Further information
Assigning axis direction

If one of the TOFRAMEX, TOFRAMEY, TOROTX, TOROTY statements is programmed instead of
TOFRAME/TOFRAMEZ or TOROT/TOROTZ, the axis direction statements listed in this table will
apply:

Statement Tool direction (appli‐
cate)

Secondary axis
(abscissa)

Secondary axis
(ordinate)

TOFRAME/TOFRAMEZ /
TOROT/TOROTZ

Z X Y

TOFRAMEY/TOROTY Y Z X
TOFRAMEX/TOROTX X Y Z

Separate system frame for TOFRAME or TOROT

The frames resulting from TOFRAME or TOROT can be written in a separate system frame
$P_TOOLFRAME. For this purpose, bit 3 must be enabled in machine data
MD28082 $MC_MM_SYSTEM_FRAME_MASK. The programmable frame remains
unchanged. Differences occur when the programmable frame is processed further elsewhere.

References
For further information about machines with orientable toolholder, see:

● Programming Manual, Job Planning; Chapter: "Tool orientation"

● Function Manual, Basic Functions; Tool Offset (W1),
Chapter: "Toolholder with orientation capability"

2.12.10 Deselect frame (G53, G153, SUPA, G500)
When executing certain processes, such as approaching the tool change point, various frame
components have to be defined and suppressed at different times.

Settable frames can either be deactivated modally or suppressed non-modally.

Programmable frames can be suppressed or deleted non-modally.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
330 Programming Manual, 06/2019, A5E47437142B AA

Syntax
G53
G153
SUPA
G500
TRANS
ROT
SCALE
MIRROR

Meaning

G53: Non-modal suppression of all programmable and settable
frames

G153: G153 has the same effect as G53 and also suppresses the
entire basic frame ($P_ACTBFRAME).

SUPA: SUPA has the same effect as G153 and also suppresses:
● Handwheel offsets (DRF)
● Overlaid movements
● External zero offset
● PRESET offset

G500: Modal deactivation of all settable frames (G54 to G57,
G505 to G599) if G500 does not contain a value.

TRANS ROT SCALE MIRROR: Without axis details, a deletion of the programmable frames
acts.

2.12.11 Programming: Deselecting overlays axis-specifically (CORROF)
The following axis-specific overlays (overrides) are deleted with the CORROF procedure:

● Additive work offsets (DRF offsets) set via handwheel traversal

● Position offsets programmed via the $AA_OFF system variable

A preprocessing stop is initiated through the deletion of an overlay (override) value and the
position component of the deselected overlaid movement is transferred to the position in the
basic coordinate system. Whereby, no axis is traversed.

The position value that can be read via the $AA_IM system variable (current MCS setpoint of
the axis) does not change in the machine coordinate system.

The position value that can be read via the $AA_IW system variable (current WCS setpoint of
the axis) changes in the workpiece coordinate system because it now contains the deselected
component of the overlaid movement.

Note

CORROF can be programmed in an NC program.

CORROF must not be programmed in a synchronized action.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 331

Syntax
CORROF(<Axis>,"<String>"[,<Axis>,"<String>"])

Meaning

CORROF: Procedure for the deselection of the following offsets and overlays of an axis:
● DRF offset
● Position offsets ($AA_OFF)
Effective‐
ness:

Modal

<Axis>: Axis identifier (channel, geometry or machine axis identifier)
Data type: AXIS

<String>: Character string for the definition of the overlay type
Data type: BOOL
Value Meaning
DRF DRF offset
AA_OFF Position offset ($AA_OFF)

Examples

Example 1: Axis-specific deselection of a DRF offset (1)
A DRF offset is generated in the X axis by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
N10 CORROF(X,"DRF") ; CORROF has the same effect as DRFOF here.
...

Example 2: Axis-specific deselection of a DRF offset (2)
A DRF offset is generated in the X and Y axes by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
; Only the DRF offset of the X axis is deselected; the DRF offset of the Y axis is
retained.
; With DRFOF, both offsets would have been deselected.
N10 CORROF(X,"DRF")
...

Example 3: Axis-specific deselection of a $AA_OFF position offset

Program code Comment
; A position offset == 10 is interpolated for the X axis.
N10 WHEN TRUE DO $AA_OFF[X]=10 G4 F5

...

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
332 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
; The position offset of the X axis is deselected: $AA_OFF[X]=0
; The X axis is not traversed.
; The position offset is added to the current position of the X axis.
N80 CORROF(X,"AA_OFF")
...

Example 4: Axis-specific deselection of a DRF offset and a $AA_OFF position offset (1)
A DRF offset is generated in the X axis by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
; A position offset of 10 is interpolated for the X axis.
N10 WHEN TRUE DO $AA_OFF[X]=10 G4 F5
...
; Only the DRF offset and the position offset of the X axis are deselected.
; The DRF offset of the Y axis is retained.
N70 CORROF(X,"DRF",X,"AA_OFF")
...

Example 5: Axis-specific deselection of a DRF offset and a $AA_OFF position offset (2)
A DRF offset is generated in the X and Y axes by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
; A position offset == 10 is interpolated for the X axis.
N10 WHEN TRUE DO $AA_OFF[X]=10 G4 F5
...
; The DRF offset of the Y axis and the position offset of the X axis are deselected.
; The DRF offset of the X axis is retained.
N70 CORROF(Y,"DRF",X,"AA_OFF")
...

Further information

$AA_OFF_VAL
Once the position offset has been deselected by means of $AA_OFF, system variable
$AA_OFF_VAL (integrated distance of axis overlay) for the corresponding axis will equal zero.

$AA_OFF in JOG mode
Also in JOG mode, if $AA_OFF changes, the position offset will be interpolated as an overlaid
movement if this function has been enabled via machine data MD 36750
$MA_AA_OFF_MODE.

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 333

$AA_OFF in synchronized action
If a synchronized action which immediately resets $AA_OFF
(DO $AA_OFF[<axis>]=<value>) is active when the position offset is deselected using the
CORROF(<axis>,"AA_OFF"), then $AA_OFF will be deselected and not reset, and alarm
21660 will be displayed. However, if the synchronized action becomes active later, e.g. in the
block after CORROF, $AA_OFF will remain set and a position offset will be interpolated.

Automatic channel axis exchange
If an axis that is active in another channel has been programmed for a CORROF, it will be fetched
into the channel with an axis exchange (requirement: MD30552 $MA_AUTO_GET_TYPE > 0)
and the position offset and/or the DRF offset deselected.

2.12.12 Deselecting additive work offsets (DRFROF)
The additive work offsets (DRF offsets) set via handwheel traversal are deselected via
the DRFOF procedure.

A preprocessing stop is initiated through the deselection and the position component of the
deselected DRF offset is transferred to the position in the basic coordinate system whereby no
axis is traversed. The value of the $AA_IM system variable (current MCS setpoint of an axis)
does not change; the value of the $AA_IW system variable (current WCS setpoint of an axis)
changes because it now contains the deselected component from the overlaid movement.

Syntax
DRFOF

Meaning

DRFOF: Procedure for deselection of the DRF offsets for all active axes in the channel
Effective‐
ness:

Modal

Examples

Example 1: Axis-specific deselection of a DRF offset (1)
A DRF offset is generated in the X axis by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
N10 CORROF(X,"DRF") ; CORROF has the same effect as DRFOF here.
...

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
334 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Axis-specific deselection of a DRF offset (2)
A DRF offset is generated in the X and Y axes by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
N10 CORROF(X,"DRF") ; Only the DRF offset of the X axis is deselected; the DRF

offset of the Y axis is retained (in the case of DRFOF both
offsets would have been deselected).

...

Example 3: Axis-specific deselection of a DRF offset and a $AA_OFF position offset (1)
A DRF offset is generated in the X axis by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
N10 WHEN TRUE DO $AA_OFF[X]=10 G4 F5 ; A position offset == 10 is interpo-

lated for the X axis.
...
N70 CORROF(X,"DRF",X,"AA_OFF") ; Only the DRF offset and the posi-

tion offset of the X axis are dese-
lected; the DRF offset of the Y axis
is retained.

...

Example 4: Axis-specific deselection of a DRF offset and a $AA_OFF position offset (2)
A DRF offset is generated in the X and Y axes by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
N10 WHEN TRUE DO $AA_OFF[X]=10 G4 F5 ; A position offset == 10 is interpo-

lated for the X axis.
...
N70 CORROF(Y,"DRF",X,"AA_OFF") ; The DRF offset of the Y axis and

the position offset of the X axis are
deselected; the DRF offset of the X
axis is retained.

...

2.12.13 Grinding-specific work offsets (GFRAME0, GFRAME1 ... GFRAME100)

Command for activating a grinding frame in the channel
The programming of the GFRAME<n> command makes the associated grinding frame of the
$P_GFR[<n>] data management active in the channel. This sets the active $P_GFRAME
grinding frame identical to the $P_GFR[<n>] grinding frame of the data management:

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 335

GFRAME<n> ⇒ $P_GFRAME = $P_GFR[<n>]

Command Grinding frame activated in the channel
GFRAME0 $P_GFR[0] (null frame)
GFRAME1 $P_GFR[1]
... ...
GFRAME100 $P_GFR[100]

Syntax
GFRAME<n>

Meaning

GFRAME<n>: Activation of the grinding frame <n> of the data management
G group: 64
Basic position: MD20150 $MC_GCODE_RESET_VALUES[63]
Effectiveness: Modal

<n>: Number of the grinding frame
Range of values: 0, 1, 2, ... 100

Fundamentals
2.12 Coordinate transformations (frames)

NC programming
336 Programming Manual, 06/2019, A5E47437142B AA

2.13 Auxiliary function outputs

Function
The auxiliary function output sends information to the PLC indicating when the NC program
needs the PLC to perform specific switching operations on the machine tool. The auxiliary
functions are output, together with their parameters, to the PLC interface. The transferred
values and signals must be processed by the PLC user program.

Auxiliary functions
The following auxiliary functions can be transferred to the PLC:

Auxiliary Function Address
Tool selection T
Tool offset D, DL
Feedrate F/FA
Spindle speed S
M functions M
H functions H

For each function group or single function, machine data is used to define whether the output
is triggered before, with or after the traversing motion.

The PLC can be programmed to acknowledge auxiliary function outputs in various ways.

Properties
Important properties of the auxiliary function are shown in the following overview table:

Function Address extension Value Explanations Maximum
number per
block

Meaning Range Range Type Meaning

M - 0
(implicit)

0 ... 99 INT Function The address extension is 0
for the range between 0 and
99.
Mandatory without address
extension:
M0, M1, M2, M17, M30

5

Spindle no. 1 - 12 1 ... 99 INT Function M3, M4, M5, M19, M70 with
address extension spindle
no. (e.g. M2=5; spindle stop
for spindle 2).
Without spindle number, the
function applies for the mas‐
ter spindle.

Any 0 - 99 100 ...
2147483647

INT Function User M function*

Fundamentals
2.13 Auxiliary function outputs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 337

Function Address extension Value Explanations Maximum
number per
block

Meaning Range Range Type Meaning

S Spindle no. 1 - 12 0 ... ± 1.8*10308 REAL Speed Without spindle number, the
function applies for the mas‐
ter spindle.

3

H Any 0 - 99 0 ...
± 2147483647
± 1.8*10308

INT
REAL

Any Functions have no effect in
the NC; only to be implemen‐
ted on the PLC.*

3

T Spindle no.
(for active
tool man‐
agement)

1 - 12 0 - 32000
(or tool names
with active tool
management)

INT Tool selec‐
tion

Tool names are not passed
to the PLC interface.

1

D - - 0 - 12 INT Tool offset
selection

D0: Deselection
Default setting: D1

1

DL Location-
dependent
offset

1 - 6 0 ... ± 1.8*10308 REAL Tool fine
offset selec‐
tion

Refers to previously selec‐
ted D number.

1

F - - 0.001 -
999 999.999

REAL Path fee‐
drate

 6

FA Axis No. 1 - 31 0.001 -
999 999.999

REAL Axial fee‐
drate

* The meaning of the functions is defined by the machine manufacturer (see machine manufacturer's specifications).

Further information

Number of function outputs per NC block
Up to 10 function outputs can be programmed in one NC block. Auxiliary functions can also be
output from the action component of synchronized actions.

References:
Function Manual, Synchronized Actions

Grouping
The functions described can be grouped together. Group assignment is predefined for some
M commands. The acknowledgment behavior can be defined by the grouping.

High-speed function outputs (QU)
Functions, which have not been programmed as high-speed outputs, can be defined as high-
speed outputs for individual outputs with the keyword QU. Program execution continues without
waiting for the acknowledgment of the miscellaneous function (the program waits for the
transport acknowledgment). This helps avoid unnecessary hold points and interruptions to
traversing movements.

Note

The appropriate machine data must be set for the "High-speed function outputs" function
(→ machine manufacturer).

Fundamentals
2.13 Auxiliary function outputs

NC programming
338 Programming Manual, 06/2019, A5E47437142B AA

Function outputs for travel commands
The transfer of information as well as waiting for the appropriate response takes time and
therefore influences the traversing movements.

High-speed acknowledgment without block change delay
Block change behavior can be influenced by machine data. When the "without block change
delay" setting is selected, the system response with respect to high-speed auxiliary functions
is as follows:

Auxiliary function output Response
Before the movement The block transition between blocks with high-speed auxiliary functions

occurs without interruption and without a reduction in velocity. The auxiliary
function output takes place in the first interpolator clock cycle of the block.
The following block is executed with no acknowledgment delay.

During the movement The block transition between blocks with high-speed auxiliary functions
occurs without interruption and without a reduction in velocity. The auxiliary
function output takes place during the block. The following block is execu‐
ted with no acknowledgment delay.

After the movement The movement stops at the end of the block. The auxiliary function output
takes place at the end of the block. The following block is executed with no
acknowledgment delay.

CAUTION

Function outputs in continuous-path mode

Function outputs before the traversing movements interrupt the continuous-path mode
(G64/G641) and generate an exact stop for the previous block.

Function outputs after the traversing movements interrupt the continuous-path mode
(G64/G641) and generate an exact stop for the current block.

Important: A wait for an outstanding acknowledgment signal from the PLC can also interrupt
the continuous-path mode, e.g. for M command sequences in blocks with extremely short path
lengths.

2.13.1 M functions
The M functions initiate switching operations, such as "Coolant ON/OFF" and other functions
on the machine.

Syntax
M<value>
M[<address extension>] = <value>

Fundamentals
2.13 Auxiliary function outputs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 339

Meaning

M: Address for the programming of the M functions.
<address extension>: The extended address notation applies for some M functions (e.g.

specification of the spindle number for spindle functions).
<value>: Assignment is made to a certain machine function through the value

assignment (M function number).
Type: INT
Range of values: 0 ... 2147483647 (max. INT value)

Predefined M functions
Certain important M functions for program execution are supplied as standard with the control:

M function Meaning
M0* Programmed stop
M1* Optional stop
M2* End of program, main program (as M30)
M3 Spindle clockwise
M4 Spindle counter-clockwise
M5 Spindle stop
M6 Tool change (default setting)
M17* End of subprogram
M19 Spindle positioning
M30* End of program, main program (as M2)
M40 Automatic gear change
M41 Gear stage 1
M42 Gear stage 2
M43 Gear stage 3
M44 Gear stage 4
M45 Gear stage 5
M70 Spindle is switched to axis mode

Note

Extended address notation cannot be used for the functions marked with *.

The functions M0, M1, M2, M17 and M30 are always triggered after the traversing movement.

Fundamentals
2.13 Auxiliary function outputs

NC programming
340 Programming Manual, 06/2019, A5E47437142B AA

M functions defined by the machine manufacturer
All free M function numbers can be used by the machine manufacturer, e.g. for switching
functions to control the clamping devices or for the activation/deactivation of further machine
functions.

Note

The functions assigned to the free M function numbers are machine-specific. A certain M
function can therefore have a different functionality on another machine.

Refer to the machine manufacturer's specifications for the M functions available on a machine
and their functions.

Examples

Example 1: Maximum number of M functions in the block

Program code Comment
N10 S...
N20 X... M3 ; M function in the block with axis movement,

; spindle accelerates prior to X axis movement.
N180 M789 M1767 M100 M102
M376

; Maximum of five M functions in the block.

Example 2: M function as high-speed output

Program code Comment
N10 H=QU(735) ; Fast output for H735.
N10 G1 F300 X10 Y20 G64
N20 X8 Y90 M=QU(7) ; Fast output for M7.

M7 has been programmed as fast output so that the continuous-path mode (G64) is not
interrupted.

Note

Only use this function in special cases as, for example, the chronological alignment is changed
in combination with other function outputs.

Further information about the predefined M commands

Programmed stop: M0
The machining is stopped in the NC block with M0. You can now remove chips, remeasure, etc.

Fundamentals
2.13 Auxiliary function outputs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 341

Programmed stop 1 - optional stop: M1
M1 can be set via:

● HMI / dialog box "Program Control"
or

● NC/PLC interface

The program execution of the NC is stopped by the programmed blocks.

Programmed stop 2 - an auxiliary function associated with M1 with stop in the program
execution
Programmed stop 2 can be set via the HMI / dialog box "Program Control" and allows the
technological sequences to be interrupted at any time at the end of the part to be machined. In
this way, the operator can interrupt the production, e.g. to remove chip flows.

End of program: M2, M17, M30
A program is ended with M2, M17 or M30. If the main program is called from another program
(as subprogram), M2/M30 has the same effect as M17 and vice versa, i.e. M17 has the same
effect in the main program as M2/M30.

Spindle functions: M3, M4, M5, M19, M70
The extended address notation with specification of the spindle number applies for all spindles.

Example:

Program code Comment
M2=3 ; Clockwise spindle rotation for the second spindle

If an address extension has not been programmed, the function applies for the master spindle.

Fundamentals
2.13 Auxiliary function outputs

NC programming
342 Programming Manual, 06/2019, A5E47437142B AA

2.14 Supplementary commands

2.14.1 Output messages (MSG)
Using the MSG() statement, any character string from the part program can be output as
message to the operator.

Syntax

MSG("<Message text>"[,<Execution>])
...
MSG ()

Meaning

MSG: Predefined subprogram call for output of a message
<message text>: Any character string to be displayed as message

Type: STRING
Maximum length: 124 characters; the display takes up two lines (2*62

characters)
By using the link operator "<<", variables can also be output in the message
text.

<Execution>: Parameter to define the time when the message is written (optional)
Type: INT
Value: 0 (basic set‐

ting)
To write the message, a dedicated main run
block is not generated. This is realized in the next
NC block that can be executed. Active continu‐
ous-path mode is not interrupted.

 1 To write the message, a dedicated main run
block is generated. Active continuous-path mode
is interrupted.

MSG(): The actual message can be deleted by programming MSG() without message
text. If not deleted, the display remains until the next message is present.

Examples

Example 1: Output/delete message

Program code Comment
N10 G91 G64 F100 ; Continuous path mode
N20 X1 Y1
N... X... Y...
N20 MSG ("Machining part 1") ; The message is first output with

N30.
; continuous-path mode is retained.

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 343

Program code Comment
N30 X... Y...
N... X... Y...
N400 X1 Y1
N410 MSG ("Machining part 2",1) ; The message is output with N410.

; continuous-path mode is interrup-
ted.

N420 X1 Y1
N... X... Y...
N900 MSG () ; Delete message.

Example 2: Message text with variable

Program code Comment
N10 R12=$AA_IW [X] ; Actual position of the X axis in

R12.
N20 MSG ("Check position of X axis"<<R12<<) ; Output message with variable R12.
...
N90 MSG () ; Clear message from N20.

2.14.2 Writing string in OPI variable (WRTPR)
Using the WRTPR() function, it is possible to write any character string from the part program
into the OPI variable progProtText.

Syntax
WRTPR(<String>[,<ExecTime>])

Meaning

WRTPR: Function call for outputting a character string.
<String>:

Any character string, which is written to the OPI variable progProtText.
Type: STRING
Maximum length: 128 characters

Fundamentals
2.14 Supplementary commands

NC programming
344 Programming Manual, 06/2019, A5E47437142B AA

<ExecTime>:

Optional parameters to define the instant in time when the string is written.
Type: INT
Range of values: 0, 1

0 (default) No dedicated main run block is not gen‐
erated to write the character string. This
is realized in the next NC block that can
be executed. Active continuous-path
mode is not interrupted.

1 A dedicated main run block is generated
to write the character string. Active con‐
tinuous-path mode is interrupted.

Examples

Program code Comment
N10 G91 G64 F100 ; continuous path mode
N20 X1 Y1
N30 WRTPR("N30") ; The character string "N30" is first written to N40.

; Continuous-path mode is kept.
N40 X1 Y1
N50 WRTPR("N50",1) ; The character string "N50" is written to N50.

; Continuous-path mode is interrupted.
N60 X1 Y1

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 345

2.14.3 Working area limitation

2.14.3.1 Working area limitation in BCS (G25/G26, WALIMON, WALIMOF)
G25/G26 limits the working area (working field, working space) in which the tool can traverse.
The areas outside the working area limitations defined with G25/G26 are inhibited for any tool
motion.

The coordinates for the individual axes apply in the basic coordinate system:

The working area limitation for all validated axes must be programmed with the WALIMON
command. The WALIMOF command deactivates the working area limitation. WALIMON is the
default setting. Therefore, it only has to be programmed if the working area limitation has been
disabled beforehand.

Fundamentals
2.14 Supplementary commands

NC programming
346 Programming Manual, 06/2019, A5E47437142B AA

Syntax

G25 X…Y…Z…
G26 X…Y…Z…
WALIMON
...
WALIMOF

Meaning

G25: Lower working area limitation
Assignment of values in channel axes in the basic coordinate system

G26: Upper working area limitation
Assignment of values in channel axes in the basic coordinate system

X… Y… Z…: Lower or upper working area limits for individual channel axes
The limits specified refer to the basic coordinate system.

WALIMON: Switch working area limitation on for all axes
WALIMOF: Switch working area limitation off for all axes

In addition to programming values using G25/G26, values can also be entered using axis-
specific setting data:

SD43420 $SA_WORKAREA_LIMIT_PLUS (Working area limitation plus)

SD43430 $SA_WORKAREA_LIMIT_MINUS (Working area limitation minus)

Activating and deactivating the working area limitation, parameterized using SD43420 and
SD43430, are carried out for a specific direction using the axis-specific setting data that
becomes immediately effective:

SD43400 $SA_WORKAREA_PLUS_ENABLE (Working area limitation active in the positive
direction)

SD43410 $SA_WORKAREA_MINUS_ENABLE (Working area limitation active in the negative
direction)

Using the direction-specific activation/deactivation, it is possible to limit the working range for
an axis in just one direction.

Note

The programmed working area limitation, programmed with G25/G26, has priority and
overwrites the values entered in SD43420 and SD43430.

Note

G25/G26 can also be used to program limits for spindle speeds at the address S. For more
information see " Programmable spindle speed limitation (G25, G26) (Page 106) ".

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 347

Example

Using the working area
limitation G25/26, the working area of a
lathe is limited so that the surrounding
devices and equipment - such as revolv‐
er, measuring station, etc. are protected
against damage.
Default setting: WALIMON

Program code Comment
N10 G0 G90 F0.5 T1
N20 G25 X-80 Z30 ; Define the lower limit for the individual coordinate

axes
N30 G26 X80 Z330 ;Define the upper limit
N40 L22 ;Cutting program
N50 G0 G90 Z102 T2 ;To tool change location
N60 X0
N70 WALIMOF ;Deactivate working area limitation
N80 G1 Z-2 F0.5 ;Drill
N90 G0 Z200 ;Back
N100 WALIMON ; Switch on working area limitation
N110 X70 M30 ; End of program

Further information

Reference point at the tool
When tool length offset is active, the tip of the tool is monitored as reference point, otherwise
it is the toolholder reference point.

Consideration of the tool radius must be activated separately. This is done using channel-
specific machine data:

MD21020 $MC_WORKAREA_WITH_TOOL_RADIUS

Fundamentals
2.14 Supplementary commands

NC programming
348 Programming Manual, 06/2019, A5E47437142B AA

If the tool reference point lies outside the working area defined by the working area limitation or
if this area is left, the program sequence is stopped.

Note

If transformations are active, the tool data taken into consideration (tool length and tool radius)
can deviate from the described behavior.

References:
Function Manual, Basic Functions; Axis Monitoring, Protection Zones (A3),
Section: "Monitoring the working area limitation"

Programmable working area limitation, G25/G26

An upper (G26) and a lower (G25) working area limitation can be defined for each axis. These
values are effective immediately and remain effective for the corresponding MD setting (→
MD10710 $MN_PROG_SD_RESET_SAVE_TAB) after RESET and after being powered-up
again.

Note

The CALCPOSI subprogram is described in the Job Planning Programming Manual Using this
subprogram before any traversing motion is made, it can be checked as to whether the
predicted path is moved through taking into account the working area limits and/or the
protection zones.

2.14.3.2 Working area limitation in WCS/SZS (WALCS0 ... WALCS10)
The "working area limitation in WCS/SZS" enables a flexible workpiece-specific limitation of the
traversing range of the channel axes in the workpiece coordinate system (WCS) or settable
zero system (SZS). It is intended mainly for use in conventional lathes.

Requirement
The channel axes must be homed.

Working area limitation group
In order that the axis-specific working area limits do not have to be rewritten for all channel axes
when switching axis assignments, e.g. when switching transformations or the active frame on/
off, working area limitation groups are available.

A working area limitation group comprises the following data:

● Working area limits for all channel axes

● Reference system of the working area limitation

Syntax

...

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 349

$P_WORKAREA_CS_COORD_SYSTEM[<WALimNo>]=<Value>
$P_WORKAREA_CS_PLUS_ENABLE[<WALimNo>,<Ax>]=<Value>
$P_WORKAREA_CS_LIMIT_PLUS[<WALimNo>,<Ax>]=<Value>
$P_WORKAREA_CS_MINUS_ENABLE[<WALimNo>,<Ax>]=<Value>
$P_WORKAREA_CS_LIMIT_MINUS[<WALimNo>,<Ax>]=<Value>
...
WALCS<n>
...
WALCS0

Meaning

$P_WORKAREA_CS_COORD_SYSTEM[<WALimNo>]=<Value>
The coordinate system to which the working area limitation group refers
<WALimNo>: Working area limitation group

Type: INT
Range of values: 0 (group 1) ... 9 (group 10)

<Value>: Value of the type INT
1 Workpiece coordinate system (WCS)
3 Settable zero system (SZS)

$$P_WORKAREA_CS_PLUS_ENABLE[<WALimNo>,<Ax>]=<Value>
Enable the working area limitation in the positive axis direction for the specified channel axis
<WALimNo>: Working area limitation group

Type: INT
Range of values: 0 (group 1) ... 9 (group 10)

<Ax>: Channel axis name
<Value>: Value of the type BOOL

0 (FALSE) No release
1 (TRUE) Release

$P_WORKAREA_CS_MINUS_ENABLE[<WALimNo>,<Ax>]=<Value>
Enable the working area limitation in the negative axis direction for the specified channel axis
<WALimNo>: Working area limitation group

Type: INT
Range of values: 0 (group 1) ... 9 (group 10)

<Ax>: Channel axis name
<Value>: Value of the type BOOL

0 (FALSE) This has not been released
1 (TRUE) Enable

Fundamentals
2.14 Supplementary commands

NC programming
350 Programming Manual, 06/2019, A5E47437142B AA

$P_WORKAREA_CS_LIMIT_PLUS[<WALimNo>,<Ax>]=<Value>
Working area limitation in the positive direction of the specified channel axis
<WALimNo>: Working area limitation group

Type: INT
Range of values: 0 (group 1) ... 9 (group 10)

<Ax>: Channel axis name
<Value>: Value of the type REAL

$P_WORKAREA_CS_LIMIT_MINUS[<WALimNo>,<Ax>]=<Value>
Working area limitation in the negative direction of the specified channel axis
<WALimNo>: Working area limitation group

Type: INT
Range of val‐
ues:

0 (group 1) ... 9 (group 10)

<Ax>: Channel axis name
<Value>: Value of the type REAL

WALCS<n>: Activation of the working area limitations of a working area limitation group
<n>: Number of the working area limitation group

Range of val‐
ues:

1 ... 10

WALCS0: Deactivation of the working area limits active in the channel

Note

The actual available number of working area limitation groups depends on the configuration (→
see details of the machine manufacturer).

Example
Three axes are defined in the channel: X, Y and Z

A working area limitation group No. 2 is to be defined and then activated in which the axes are
to be limited in the WCS according to the following specifications:

● X axis in the plus direction: 10 mm

● X axis in the minus direction: No limitation

● Y axis in the plus direction: 34 mm

● Y axis in the minus direction: -25 mm

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 351

● Z axis in the plus direction: No limitation

● Z axis in the minus direction: -600 mm

Program code Comment
...
N51 $P_WORKAREA_CS_COORD_SYSTEM[1]=1 ; The working area limitation of

working area limitation group 2
applies in the WCS.

N60 $P_WORKAREA_CS_PLUS_ENABLE[1,X]=TRUE
N61 $P_WORKAREA_CS_LIMIT_PLUS[1,X]=10
N62 $P_WORKAREA_CS_MINUS_ENABLE[1,X]=FALSE
N70 $P_WORKAREA_CS_PLUS_ENABLE[1,Y]=TRUE
N73 $P_WORKAREA_CS_LIMIT_PLUS[1,Y]=34
N72 $P_WORKAREA_CS_MINUS_ENABLE[1,Y]=TRUE
N73 $P_WORKAREA_CS_LIMIT_MINUS[1,Y]=–25
N80 $P_WORKAREA_CS_PLUS_ENABLE[1,Z]=FALSE
N82 $P_WORKAREA_CS_MINUS_ENABLE[1,Z]=TRUE
N83 $P_WORKAREA_CS_LIMIT_PLUS[1,Z]=–600
...
N90 WALCS2 ; Activate working area limita-

tion group 2.
...

Further information
Effectivity

The working area limitation with WALCS1 - WALCS10 acts independently of the working area
limitation with WALIMON. If both functions are active, that limit becomes effective which the axis
motion first reaches.

Reference point at the tool

Taking into account the tool data (tool length and tool radius) and therefore the reference point
at the tool when monitoring the working area limitation corresponds to the behavior for the
working area limitation with WALIMON.

2.14.4 Reference point approach (G74)
When the machine has been powered up (where incremental position measuring systems are
used), all of the axis slides must approach their reference mark. Only then can traversing
movements be programmed.

The reference point can be approached in the NC program with G74.

Syntax
G74 X1=0 Y1=0 Z1=0 A1=0 … ; Programmed in a separate NC block

Fundamentals
2.14 Supplementary commands

NC programming
352 Programming Manual, 06/2019, A5E47437142B AA

Meaning

G74: G command call reference point approach
X1=0 Y1=0 Z1=0 … : The specified machine axis address X1, Y1, Z1 … for linear axes is

approached as the reference point.
A1=0 B1=0 C1=0 … : The specified machine axis address A1, B1, C1 … for rotary axes is

approached as the reference point.

Note

A transformation must not be programmed for an axis which is to approach the reference point
with G74.

The transformation is deactivated with command TRAFOOF.

Example
When the measuring system is changed, the reference point is approached and the workpiece
zero point is set up.

Program code Comment
N10 SPOS=0 ;Spindle in position control
N20 G74 X1=0 Y1=0 Z1=0 C1=0 ;Reference point approach for linear axes and

rotary axes
N30 G54 ; Zero offset
N40 L47 ;Cutting program
N50 M30 ; End of program

2.14.5 Approaching a fixed point (G75)
The non-modal command G75 can be used to move axes individually and independently of one
another to fixed points in the machine space, e.g. to tool change points, loading points, pallet
change points, etc.

The fixed points are positions in the machine coordinate system which are stored in the
machine data (MD30600 $MA_FIX_POINT_POS[n]). A maximum of four fixed points can be
defined for each axis.

The fixed points can be approached from every NC program irrespective of the current tool or
workpiece positions. An internal preprocessing stop is executed prior to moving the axes.

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 353

Requirements
The following requirements must be satisfied to approach fixed points with G75:

● The fixed-point coordinates must have been calculated exactly and written to machine data.

● The fixed points must be located within the valid traversing range (→ note the software limit
switch limits!)

● The axes to be traversed must be referenced.

● No tool radius compensation must be active.

● A kinematic transformation may not be active.

● None of the axes to be traversed must be involved in active transformation.

● None of the axes to be traversed must be a following axis in an active coupling.

● None of the axes to be traversed must be an axis in a gantry grouping.

● Compile cycles must not activate motion components.

Syntax
G75 <axis name><axis position> ... FP=<n>

Meaning

G75: Fixed point approach
<axis name>: Name of the machine axis to be traversed to the fixed point

All axis identifiers are permitted.
<axis position>: The position value has no significance. A value of "0" is, therefore, usually

specified.

Fundamentals
2.14 Supplementary commands

NC programming
354 Programming Manual, 06/2019, A5E47437142B AA

FP=: Fixed point that is to be approached
<n>: Fixed point number

Range of values: 1, 2, 3, 4
Note:
In the absence of FP=<n> or a fixed point number, or if FP=0 has been
programmed, this is interpreted as FP=1 and fixed point 1 is approached.

Note

Multiple axes can be programmed in one G75 block. The axes are then traversed
simultaneously to the specified fixed point.

Note

The value of the address FP must not be greater than the number of fixed points specified for
each programmed axis (MD30610 $MA_NUM_FIX_POINT_POS).

Example
For a tool change, axes X (= AX1) and Z (= AX3) need to move to the fixed machine axis
position 1 where X = 151.6 and Z = -17.3.

Machine data:

● MD30600 $MA_FIX_POINT_POS[AX1,0] = 151.6

● MD30600 $MA_FIX_POINT[AX3,0] = 17.3

NC program:

Program code Comment
…
N100 G55 ; Activate settable zero offset.
N110 X10 Y30 Z40 ; Approach positions in the WCS.
N120 G75 X0 Z0 FP=1 M0 ; The X axis moves to 151.6

; and the Z axis moves to 17.3 (in the MCS).
; Each axis travels at its maximum velocity.
; No additional movements are permitted to be active in
this block.
; A stop is inserted here so that after reaching
; the end positions,
; no additional motion takes place.

N130 X10 Y30 Z40 ; The position of N110 is approached again.
; The zero offset is reactivated.

…

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 355

Note

If the "Tool management with magazines" function is active, the auxiliary function T… or M...
(typically M6) will not be sufficient to trigger a block change inhibit at the end of G75 motion.

Reason: If "Tool management with magazines" is active, auxiliary functions for tool change are
not output to the PLC.

Further information

G75
The axes are traversed as machine axes in rapid traverse. The motion is mapped internally
using the "SUPA" (suppress all frames) and "G0 RTLIOF" (rapid traverse motion with single-
axis interpolation) functions.

If the conditions for "RTLIOF" (single-axis interpolation) are not met, the fixed point is
approached as a path.

When the fixed point is reached, the axes come to a standstill within the "Exact stop fine"
tolerance window.

Parameterizable dynamic response for G75
The required dynamic response mode can be set via the following machine data for positioning
movements to fixed-point positions (G75):

MD18960 $MN_POS_DYN_MODE (type of positioning axis dynamic response)

References
Function Manual, Basic Functions, Chapter "Acceleration (B2)" > "Functions" > "Jerk limiting
for single axis interpolation (SOFTA) (axis-specific)"

Additional axis movements
The following additional axis movements are taken into account at the instant in time at which
the G75 block is interpolated:

● External zero offset

● DRF

● Synchronization offset ($AA_OFF)

After this, the additional axis movements are not permitted to change until the end of traversing
is reached by the G75 block.

Additional movements following interpretation of the G75 block will offset the approach to the
fixed point accordingly.

The following additional movements are not taken into account, irrespective of the point at
which interpolation takes place, and will offset the target position accordingly:

● Online tool offset

● Additional movements from compile cycles in the BCS and machine coordinate system

Fundamentals
2.14 Supplementary commands

NC programming
356 Programming Manual, 06/2019, A5E47437142B AA

Active frames
All active frames are ignored. Traversing is performed in the machine coordinate system.

Working area limitation in the workpiece coordinate system/SZS
Coordinate-system-specific working area limitation (WALCS0 ... WALCS10) is not effective in the
block with G75. The destination point is monitored as the starting point of the following block.

Axis/Spindle movements with POSA/SPOSA
If programmed axes/spindles were previously traversed with POSA or SPOSA, these
movements will be completed first before the fixed point is approached.

Spindle functions in the G75 block
If the spindle is excluded from "fixed-point approach", then additional spindle functions (e.g.
positioning with SPOS/SPOSA) can be programmed in the G75.

Modulo axes
In the case of modulo axes, the fixed point is approached along the shortest distance.

References
For further information about "Fixed-point approach", see:

Function Manual Extended Functions; manual traversing and manual handwheel travel (H1),
Chapter: "Fixed-point approach in JOG"

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 357

2.14.6 Travel to fixed stop (FXS, FXST, FXSW)

Function
The "Travel to fixed stop" function can be used to establish defined forces for clamping
workpieces, such as those required for tailstocks, quills and grippers. The function can also be
used for the approach of mechanical reference points.

With sufficiently reduced torque, it is also possible to perform simple measurement operations
without connecting a probe. The "travel to fixed stop" function can be implemented for axes as
well as for spindles with axis-traversing capability.

Syntax
FXS[<axis>]=…
FXST[<axis>]=…
FXSW[<axis>]=…
FXS[<axis>]=… FXST[<axis>]=…
FXS[<axis>]=… FXST[<axis>]=… FXSW[<axis>]=…

Meaning

FXS: Command for activation and deactivation of the "Travel to fixed stop" function
FXS[<axis>]=1: Activate function
FXS=[<axis>]=0: Deactivate function

FXST: Optional command for setting the clamping torque
Specified as % of the maximum drive torque

FXSW: Optional command for setting the window width for the fixed stop monitoring
Specified in mm, inches or degrees

<axis>: Machine axis name
Machine axes (X1, Y1, Z1, etc.) are programmed

Fundamentals
2.14 Supplementary commands

NC programming
358 Programming Manual, 06/2019, A5E47437142B AA

Note

The commands FXS, FXST and FXSW are modal.

The programming of FXST and FXSW is optional: If no parameter is specified, the last
programmed value or the value set in the relevant machine data applies.

Activate travel to fixed stop: FXS[<axis>] = 1
The movement to the destination point can be described as a path or positioning axis
movement. With positioning axes, the function can be performed across block boundaries.

Travel to fixed stop can be performed simultaneously for several axes and parallel to the
movement of other axes. The fixed stop must be located between the start and end positions.

NOTICE

Risk of collision

It is not permissible to program a new position for an axis if the "Travel to fixed stop" function
has already been activated for an axis/spindle.

Spindles must be switched to position-controlled mode before the function is selected.

Example:

Program code Comment
X250 Y100 F100 FXS[X1]=1 FXST[X1]=12.3 FXSW[X1]=2 ; Axis X1 travels with feedrate

F100 (specification optional)
to target position X=250 mm.
The clamping torque is 12.3% of
the maximum drive torque, moni-
toring is performed in a 2 mm
wide window.

...

Deactivate travel to fixed stop: FXS[<axis>] = 0
Deselection of the function triggers a preprocessing stop.

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 359

The block with FXS[<axis>]=0 may and should contain traversing movements.

NOTICE

Risk of collision

The traversing movement to the retraction position must move away from the fixed stop,
otherwise damage to the stop or to the machine may result.

The block change takes place when the retraction position has been reached. If no retraction
position is specified, the block change takes place immediately after the torque limit has been
deactivated.

Example:

Program code Comment
X200 Y400 G01 G94 F2000 FXS[X1]=0 ; Axis X1 is retracted from the fixed

stop to position X = 200 mm. All other
parameters are optional.

...

Clamping torque (FXST) and monitoring window (FXSW)
Any programmed torque limiting FXST is effective from the block start, i.e. the fixed stop is also
approached at a reduced torque. FXST and FXSW can be programmed and changed in the part
program at any time. The changes take effect before traversing movements in the same block.

NOTICE

Risk of collision

Programming of a new fixed stop monitoring window causes a change not only in the window
width, but also in the reference point for the center of the window if the axis has moved prior
to reprogramming. The actual position of the machine axis when the window is changed is the
new window center point.

The window must be selected such that only a breakaway from the fixed stop causes the fixed
stop monitoring to respond.

Further information

Rise ramp
A rate of rise ramp for the new torque limit can be defined in MD to prevent any abrupt changes
to the torque limit setting (e.g. insertion of a quill).

Alarm suppression
The fixed stop alarm can be suppressed for applications by the part program by masking the
alarm in a machine data item and activating the new MD setting with NEW_CONF.

Fundamentals
2.14 Supplementary commands

NC programming
360 Programming Manual, 06/2019, A5E47437142B AA

Activation
The commands for travel to fixed stop can be called from synchronized actions or technology
cycles. They can be activated without initiation of a motion, the torque is limited
instantaneously. As soon as the axis is moved via a setpoint, the limit stop monitor is activated.

Activation from synchronized actions
Example:

If the expected event ($R1) occurs and travel to fixed stop is not yet running, FXS should be
activated for axis Y. The torque must correspond to 10% of the rated torque value. The width
of the monitoring window is set to the default.

Program code
N10 IDS=1 WHENEVER (($R1=1) AND ($AA_FXS[Y]==0)) DO $R1=0 FXS[Y]=1
FXST[Y]=10

The normal part program must ensure that $R1 is set at the desired point in time.

Deactivation from synchronized actions
Example:

If an anticipated event ($R3) has occurred and the status "Limit stop contacted" (system
variable $AA_FXS) is reached, then FXS must be deselected.

Program code
IDS=4 WHENEVER (($R3==1) AND ($AA_FXS[Y]==1)) DO FXS[Y]=0
FA[Y]=1000 POS[Y]=0

Fixed stop reached
When the fixed stop has been reached:

● The distance-to-go is deleted and the set position is tracked.

● The drive torque increases up to the programmed limit value FXSW, and then remains
constant.

● Fixed stop monitoring is activated within the specified window width.

Supplementary conditions
● Measurement with delete distance-to-go

"Measurement with delete distance-to-go" (MEAS command) and "Travel to fixed stop"
cannot be programmed at the same time in one block.
Exception: One function acts on a path axis and the other on a positioning axis or both act
on positioning axes.

● Contour monitoring
Contour monitoring is not performed while "Travel to fixed stop" is active.

● Positioning axes
For "Travel to fixed stop" with positioning axes, the block change is performed irrespective
of the fixed stop movement.

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 361

● Travel to fixed stop is not possible:

– With gantry axes

– For competing positioning axes that are controlled exclusively from the PLC (FXS must
be selected from the NC program).

● If the torque limit is reduced too far, the axis will not be able to follow the specified setpoint;
the position controller then goes to the limit and the contour deviation increases. In this
operating state, an increase in the torque limit may result in sudden, jerky movements. To
ensure that the axis can follow the setpoint, check the contour deviation to make sure it is
not greater than the deviation with an unlimited torque.

2.14.7 Dwell time (G4)
With the command G4, a time (dwell time) is programmed in a block that expires as soon as the
block is executed in the main run. The block change to the following block is performed as soon
as the time has completely expired.

Note

G4 interrupts continuous-path mode.

Syntax
G4 F<Time>
G4 S<NumSpi>
G4 S<n> = <NumSpi>

Meaning

G4: Activate dwell time
Alone in the
block:

Yes

F<Time>: The dwell time <Time> in seconds is specified at address F.
S<NumSpi>: The dwell time is programmed at address S in spindle revolutions <NumSpi> with

reference to the current main spindle.
S<n>=NumSpi>: The dwell time is programmed at address S in spindle revolutions <NumSpi> with

reference to the spindle addressed with the address extension <n>.

Note

The addresses F and S used for the time specified in the dwell block G4 do not influence the
feedrates F... and the spindle speeds S... of the program.

Fundamentals
2.14 Supplementary commands

NC programming
362 Programming Manual, 06/2019, A5E47437142B AA

Supplementary conditions

Synchronized actions
Two synchronized actions are programmed in one program in such a way that the following
block with the dwell time becomes the action block in which the synchronized actions are
performed. One synchronized action is a modal synchronized action. The other synchronized
action is a non-modal synchronized action. If the non-modal synchronized action is intended to
influence the model synchronized action, e.g. release it for execution with UNLOCK, at least
two interpolation cycles e.g. G4 F<interpolator_cycle * 2> must be provided as the
effective dwell time.

The effective dwell time depends on the setting in the machine data MD10280
$MN_PROG_FUNCTION_MASK, Bit 4 = <value>

Value Meaning
0 The effective dwell time is equal to the programmed dwell time
1 The effective dwell time is equal to the programmed dwell time rounded to the next largest

multiple of the interpolator cycle (MD10071 $MN_IPO_CYCLE_TIME)

Program example:

● MD10071 $MN_IPO_CYCLE_TIME == 8 ms

● MD10280 $MN_PROG_FUNCTION_MASK, Bit 4 = 1

Program code Comment
N10 WHEN TRUE DO LOCK(1) ; Non-modal SynAct: LOCK of the

; modal SynAct. ID=1
N20 G4 F2 ; Action block for SynAct from N10
N30 WHEN TRUE DO UNLOCK(1) ; Non-modal SynAct: UNLOCK

; of the modal SynAct. ID=1
N40 ID=1 WHENEVER TRUE DO $R0=1 RDISABLE ; Modal SynAct ID=1

; R parameter R0=1
; Set the read-in disable

N50 G4 F0.012 ; Action block for SynAct from N40 and N50
; See paragraph "Description" below

N60 G4 F10

Description

The desired behavior is that the modal synchronized action from N30 cancels the active lock
(LOCK) of the modal synchronized action with ID=1 from N40, causing the R parameter to be
written in N50 and the read-in disable to become active. This behavior is only achieved if the
active dwell time is at least two interpolation cycles long.

The active dwell time results from the programmed dwell time, the interpolation cycle, and the
setting in MD10280 $MN_PROG_FUNCTION_MASK, Bit 4. To ensure that the active dwell
time is at least two interpolation cycles long, the following dwell time must be programmed:

● Bit 4 == 0: Programmed dwell time ≥ 2 * interpolator cycle

● Bit 4 == 1: Programmed dwell time ≥ 1.5 * interpolator cycle

Fundamentals
2.14 Supplementary commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 363

If the active dwell time is shorter than two interpolation cycles, writing the R parameter and read-
in disable will not be executed until block N60.

Example

Program code Comment
N10 G1 F200 Z-5 S300 M3 ;Feed F; spindle speed S
N20 G4 F3 ; Dwell time: 3 s
N30 X40 Y10
N40 G4 S30 ; Dwelling 30 revolutions of the spindle (at S=300

rpm and 100% speed override, corresponds to: t = 0.1
min).

N50 X... ; The feedrate and spindle speed programmed in N10
continue to apply.

2.14.8 Internal preprocessing stop

Function
The control generates an internal preprocessing stop on access to machine status data ($A...).
The following block is not executed until all preprocessed and saved blocks have been
executed in full. The previous block is stopped in exact stop (as G9).

Example

Program code Comments
...
N40 POSA[X]=100
N50 IF $AA_IM[X]==R100 GOTOF MARKE1 ; Access to machine status data ($A...),

the control generates an internal pre-
processing stop.

N60 G0 Y100
N70 WAITP(X)
N80 LABEL1:
...

Fundamentals
2.14 Supplementary commands

NC programming
364 Programming Manual, 06/2019, A5E47437142B AA

2.15 Other information

2.15.1 Axes

2.15.1.1 Axes (overview)

Axis types
A distinction is made between the following types of axis types when programming:

● Main axes / geometry axes

● Special axes

● Main spindle, master spindle

● Machine axes

● Channel axes

● Path axes

● Positioning axes

● Synchronized axes

● Command axes

● PLC axes / competing positioning axes

2.15.1.2 Main axes/Geometry axes
The main axes define a right-angled, right-handed coordinate system. Tool movements are
programmed in this coordinate system.

In NC technology, the main axes are called geometry axes. This term is also used in this
Programming Guide.

Fundamentals
2.15 Other information

NC programming
Programming Manual, 06/2019, A5E47437142B AA 365

Replaceable geometry axes

The "Replaceable geometry axes" function (see Function Manual, Job Planning) can be used
to alter the geometry axes grouping configured using machine data from the part program. Here
any geometry axis can be replaced by a channel axis defined as a synchronous special axis.

Axis identifier

The name/identifier of a geometry axis can be defined using the following machine data:

MD20060 $MC_AXCONF_GEOAX_NAME_TAB (name of the geometry axis in the channel)

Standard identifier for turning machines:

1. Geometry axis: X

2. Geometry axis: Z

Standard identifier for milling machines:

1. Geometry axis: X

2. Geometry axis: Y

3. Geometry axis: Z

Further information

A maximum of three geometry axes are used for programming frames and the workpiece
geometry (contour).

The identifiers for geometry and channel axes may be the same, provided a reference is
possible.

Geometry and channel axis names must be the same in all channels. This means that a
program can be executed in any channel.

2.15.1.3 Special axes
In contrast to the geometry axes, no geometrical relationship is defined between the special
axes.

Fundamentals
2.15 Other information

NC programming
366 Programming Manual, 06/2019, A5E47437142B AA

Typical special axes are:

● Tool revolver axes

● Swivel table axes

● Swivel head axes

● Loader axes

Axis identifier
On a turning machine with circular magazine, for example:

● Revolver position U

● Tailstock V

Programming example

Program code Comment
N10 G1 X100 Y20 Z30 A40 F300 ; Path axis movements
N20 POS[U]=10POS[X]=20 FA[U]=200 FA[X]=350 ; Positioning axis movements.
N30 G1 X500 Y80 POS[U]=150FA[U]=300 F550 ; Path and positioning axis.
N40 G74 X1=0 Z1=0 ; Approach reference point.

2.15.1.4 Main spindle, master spindle
The machine kinematics determine, which spindle is the main spindle. This spindle is usually
declared as the master spindle in the machine data.

This assignment can be changed with the SETMS(<spindle number>) program command.
SETMS can be used without specifying a spindle number to switch back to the master spindle
defined in the machine data.

Special functions such as thread cutting are supported by the master spindle.

Spindle identifier

S or S0

2.15.1.5 Machine axes
Machine axes are the axes physically existing on a machine.

The programmed motion of a path or additional axis can act on several machine axes due to
transformation (TRANSMIT, TRACYL or TRAORI) active in the channel.

Machine axes are only directly addressed in the program in special circumstances (e.g. for
reference point or fixed point approach).

Axis identifier
The name/identifier of a machine axis can be defined using the following NC-specific machine
data:

MD10000 $MN_AXCONF_MACHAX_NAME_TAB (machine axis name)

Default setting: X1, Y1, Z1, A1, B1, C1, U1, V1

Fundamentals
2.15 Other information

NC programming
Programming Manual, 06/2019, A5E47437142B AA 367

Further, machine axes have fixed axis identifiers, which can always be used, independent of
the names set in the machine data:

AX1, AX2, …, AX<n>

2.15.1.6 Channel axes
All geometry, special and machine axes, which are assigned to a channel, are called channel
axes.

Axis identifier
The channel-specific name/identifier of a geometry and special axis can be defined using the
following machine data:

MD20080 $MC_AXCONF_CHANAX_NAME_TAB (channel axis name)

Default setting: X, Y, Z, A, B, C, U, V

The assignment regarding on which machine axis a geometry or special axis is emulated in the
channel, is defined in the following machine data:

MD20070 $MC_AXCONF_MACHAX_USED (machine axes used)

2.15.1.7 Path axes
Path axes define the path and therefore the movement of the tool in space.

The programmed feed is active for this path. The axes involved in this path reach their position
at the same time. As a rule, these are the geometry axes.

However, default settings define, which axes are the path axes, and therefore determine the
velocity.

Path axes can be specified in the NC program with FGROUP.

For more information about FGROUP, see "Feedrate (G93, G94, G95, F, FGROUP, FL, FGREF)
(Page 107)".

2.15.1.8 Positioning axes
Positioning axes are interpolated separately; in other words, each positioning axis has its own
axis interpolator and its own feedrate. Positioning axes do not interpolate with the path axes.

Positioning axes are traversed by the NC program or the PLC. If an axis is to be traversed
simultaneously by the NC program and the PLC, an error message appears.

Typical positioning axes are:

● Loaders for moving workpieces to the machine

● Loaders for moving workpieces away from the machine

● Tool magazine/turret

Fundamentals
2.15 Other information

NC programming
368 Programming Manual, 06/2019, A5E47437142B AA

Types
A distinction is made between positioning axes with synchronization at the block end or over
several blocks.

POS axes
Block change occurs at the end of the block when all the path and positioning axes
programmed in this block have reached their programmed end point.

POSA axes
The movement of these positioning axes can extend over several blocks.

POSP axes
The movement of these positioning axes for approaching the end position takes place in
sections.

Note

Positioning axes become synchronized axes if they are traversed without the special POS/
POSA identifier.

Continuous-path mode (G64) for path axes is only possible if the positioning axes (POS) reach
their final position before the path axes.

Path axes programmed with POS/POSA are removed from the path axis grouping for the
duration of this block.

For more information about POS, POSA, and POSP, see "Traverse positioning axes (POS,
POSA, POSP, FA, WAITP, WAITMC) (Page 115)".

2.15.1.9 Synchronized axes
Synchronized axes traverse synchronously to the path from the start position to the
programmed end position.

The feedrate programmed in F applies to all the path axes programmed in the block, but does
not apply to synchronized axes. Synchronized axes take the same time as the path axes to
traverse.

A synchronized axis can be a rotary axis, which is traversed synchronously to the path
interpolation.

2.15.1.10 Command axes
Command axes are started from synchronized actions in response to an event (command).
They can be positioned, started, and stopped fully asynchronous to the parts program. An axis
cannot be moved from the part program and from synchronized actions simultaneously.

Command axes are interpolated separately; in other words, each command axis has its own
axis interpolator and its own feedrate.

References:
Function Manual, Synchronized Actions

Fundamentals
2.15 Other information

NC programming
Programming Manual, 06/2019, A5E47437142B AA 369

2.15.1.11 PLC axes
PLC axes are traversed by the PLC via special function blocks in the basic program; their
movements can be asynchronous to all other axes. Traversing movements take place
independently of path and synchronized movements.

2.15.2 From travel command to machine movement
The relationship between the programmed axis movements (travel commands) and the
resulting machine movements is illustrated in the following figure:

2.15.3 Path calculation
The path calculation determines the distance to be traversed in a block, taking into account all
offsets and compensations.

In general:

Path =
setpoint - actual value + zero offset (ZO) + tool offset (TO)

Fundamentals
2.15 Other information

NC programming
370 Programming Manual, 06/2019, A5E47437142B AA

If a new zero offset and a new tool offset are programmed in a new program block, the following
applies:

● With absolute dimensioning:
Path = (absolute dimension P2 - absolute dimension P1) + (WO P2 - WO P1) +
(TO P2 - TO P1).

● With incremental dimensioning:
Path = incremental dimension + (WO P2 - WO P1) +
(TO P2 - TO P1).

2.15.4 Addresses

Fixed addresses
These addresses are permanently set, that is the address characters cannot be changed.

Fundamentals
2.15 Other information

NC programming
Programming Manual, 06/2019, A5E47437142B AA 371

A list can be found in Table "Fixed addresses (Page 1275)".

Settable addresses
The machine manufacturer may assign another name to these addresses via machine data.

Note

Settable addresses must be unique within the control, i.e. the same address name must not be
used for different address types (axis values and end points, tool orientation, interpolation
parameters, etc.).

A list can be found in Table "Settable addresses (Page 1279)".

Modal/non-modal addresses
Modal addresses remain valid with the programmed value (in all subsequent blocks) until a new
value is programmed at the same address.

Non-modal addresses only apply in the block, in which they were programmed.

Example:

Program code Comment
N10 G01 F500 X10
N20 X10 ; Feedrate F from N10 remains active until a new feedrate

is entered.

Addresses with axial extension
In addresses with axial extension, an axis name is inserted in square brackets after the
address. The axis name assigns the axis.

Example:

Program code Comment
FA[U]=400 ; Axis-specific feedrate for U axis.

See also Table "Fixed addresses (Page 1275)".

Extended address notation
Extended address notation enables a larger number of axes and spindles to be organized in a
system.

An extended address consists of a numeric extension and an arithmetic expression assigned
with an "=" character. The numeric extension has one or two digits and is always positive.

The extended address notation is only permitted for the following direct addresses:

Address Meaning
X, Y, Z, … Axis addresses

Fundamentals
2.15 Other information

NC programming
372 Programming Manual, 06/2019, A5E47437142B AA

I, J, K Interpolation parameters
S Spindle speed
SPOS, SPOSA Spindle position
M Special functions
H Auxiliary functions
T Tool number
F Feedrate

Examples:

Program code Comment
X7 ; No "=" required, 7 is a value, but the "=" character can also be

used here
X4=20 ; Axis X4; "=" is required
CR=7.3 ; Two letters; "=" are required
S1=470 ; Speed for 1st spindle: 470 rpm
M3=5 ; Spindle stop for 3rd spindle

The numeric extension can be replaced by a variable for addresses M, H, S and for SPOS and
SPOSA. The variable identifier is enclosed in square brackets.

Examples:

Program code Comment
S[SPINU]=470 ; Speed for the spindle whose number is stored in the SPINU vari-

able.
M[SPINU]=3 ; Clockwise rotation for the spindle whose number is stored in the

SPINU variable.
T[SPINU]=7 ; Selection of the tool for the spindle whose number is stored in

the SPINU variable.

2.15.5 Names
The commands according to DIN 66025 are supplemented with named objects, etc. by the NC
high-level language.

Examples of named objects:

● System variables

● User-defined variables

● Axes/spindles

● Subprograms

● Keywords

● Jump markers

● Macros

Fundamentals
2.15 Other information

NC programming
Programming Manual, 06/2019, A5E47437142B AA 373

Note

Identifiers must be unique. It is not permissible to use the same identifier for different objects.

Naming rules
A name can be chosen freely providing the following rules are observed:

● Permissible characters:

– Letters: A ... Z, a ... z

– Numbers: 0 ... 9

– Underscore: _

● The first two characters should be letters or underscores.

● Maximum length:

– Program names (Page 44): 24 characters

– Axis names: 8 characters

– Variable names: 31 characters

Note

Reserved keywords must not be used as identifiers.

Cycles
To prevent name conflicts, we recommend that the following specification for the assignment
of names for user cycles is observed:

Character string Reserved for names for
● CYCLE
● CUST_
● GROUP_
● _
● S_
● E_
● F_

SIEMENS cycles

● CCS_ SIEMENS compile cycles
● CC_ User compile cycles

User cycles
We recommend that the names of user cycles begin with U_.

Fundamentals
2.15 Other information

NC programming
374 Programming Manual, 06/2019, A5E47437142B AA

Variables
A detailed description of the name assignment for variables appears in:

Programming Manual Job Planning

● System variables
"Flexible NC programming" > "Variables" > "System variable" section

● User variables
"Flexible NC programming" > "Variables" > "Definition of user variables (DEF)" section

2.15.6 Constants

Constant (general)
A constant is a data element whose value does not change during the execution of a program,
e.g. a value assignment to an address.

Decimal constant
The numeric value of a decimal constant is displayed in the decimal system.

INTEGER constant
An INTEGER constant is an integer value, i.e. a sequence of digits without decimal point, with
or without sign.

Examples:

X10 Assignment of the value +10 to address X
X-35 Assignment of the value -35 to address X
X0 Assignment of the value 0 to address X

Note:
X0 cannot be replaced by X.

REAL constant
A REAL constant is a sequence of digits with decimal point, with or without sign and with or
without exponent.

Examples:

X10.25 Assignment of the value +10.25 to address X
X-10.25 Assignment of the value -10.25 to address X
X0.25 Assignment of the value +0.25 to address X
X.25 Assignment of the value +0.25 to address X without leading "0"
X=-.1EX-3 Assignment of the value -0.1*10-3 to address X

Fundamentals
2.15 Other information

NC programming
Programming Manual, 06/2019, A5E47437142B AA 375

Note

If, in an address, which permits decimal point input, more decimal places are specified than
actually provided for the address, then they are rounded to fit the number of places provided.

Hexadecimal constant
Constants can also be interpreted as hexadecimal format, i.e. based on 16. The letters A to F
are hexadecimal digits with the decimal values 10 to 15.

Hexadecimal constants are enclosed in single quotation marks and start with the letter "H",
followed by the value in hexadecimal notation. Separators are permitted between the letters
and digits.

Example:

Program code Comment
$MC_TOOL_MANAGEMENT_MASK='H7F' ; By assigning the hexadecimal constant,

bits 0 to 7 are set in the machine data.

Note

The maximum number of characters is limited by the value range of the integer data type.

Binary constant
Constants can also be interpreted in binary format. In this case, only the digits "0" and "1" are
used.

Binary constants are enclosed in single quotation marks and start with the letter "B", followed
by the binary value. Separators are permitted between the digits.

Example:

Program code Comment
$MN_AUXFU_GROUP_SPEC='B10000001' ; By assigning the binary constant, bit 0

and bit 7 are set in the machine data.

Note

The maximum number of characters is limited by the value range of the integer data type.

Fundamentals
2.15 Other information

NC programming
376 Programming Manual, 06/2019, A5E47437142B AA

2.15.7 Operators and arithmetic functions

Operators

Arithmetic operators
System variables of the REAL and INT type can be linked by the following operators:

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ ● Division in synchronized actions: INT / INT ⇒ INT

● Division in synchronized actions with REAL result by using the function ITOR():
ITOR(INT) / ITOR(INT) ⇒ REAL

● Division in NC programs: INT / INT ⇒ REAL
DIV Integer division: INT / INT ⇒ INT
MOD Modulo division (only for type INT) supplies remainder of an INT division

Example: 3 MOD 4 = 3

Note

Only variables of the same type may be linked by these operations.

Relational operators

Operator Meaning
== Equal to
> Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Boolean operators

Operator Meaning
NOT NOT
AND AND
OR OR
XOR Exclusive OR

Fundamentals
2.15 Other information

NC programming
Programming Manual, 06/2019, A5E47437142B AA 377

Bit logic operators

Operator Meaning
B_OR Bit-by-bit OR
B_AND Bit-by-bit AND
B_XOR Bit-by-bit exclusive OR
B_NOT Bit-by-bit negation

Priority of the operators
The operators have the following priorities for execution in the synchronized action (highest
priority: 1):

Prio. Operators Meaning
1 NOT, B_NOT Negation, bit-by-bit negation
2 *, /, DIV, MOD Multiplication, division
3 +, - Addition, subtraction
4 B_AND Bit-by-bit AND
5 B_XOR Bit-by-bit exclusive OR
6 B_OR Bit-by-bit OR
7 AND AND
8 XOR Exclusive OR
9 OR OR
10 << Concatenation of strings, result type STRING
11 ==, <>, <, >, >=, <= Relational operators

Note

It is strongly recommended that the individual operators are clearly prioritized by setting
parentheses "(…)" when several operators are used in an expression.

Example of a condition with an expression with several operators:

Program code
... WHEN ($AA_IM[X] > VALUE) AND ($AA_IM[Y] > VALUE1) DO ...

Arithmetic functions

Operator Meaning
SIN() Sine
COS() Cosine
TAN() Tangent
ASIN() Arc sine
ACOS() Arc cosine
ATAN2() Arc tangent 2
SQRT() Square root

Fundamentals
2.15 Other information

NC programming
378 Programming Manual, 06/2019, A5E47437142B AA

Operator Meaning
ABS() Absolute value
POT() 2nd power (square)
TRUNC() Integer component

The accuracy for comparison commands can be set using TRUNC
ROUND() Round to an integer
LN() Natural logarithm
EXP() Exponential function

A detailed description of the functions can be found in:
References
Programming Manual, Job Planning; Section "Flexible NC programming" ff.

Indexing
The index of a system variable of type "Array of …" can in turn be a system variable. The index
is also evaluated in the main run in the interpolator clock cycle.

Example

Program code
... WHEN … DO $AC_PARAM[$AC_MARKER[1]]=3

Restrictions
● It is not permissible to nest indices with further system variables.

● The index must not be formed via preprocessing variables. The following example is
therefore not permitted since $P_EP is a preprocessing variable:
$AC_PARAM[1] = $P_EP[$AC_MARKER[0]]

Fundamentals
2.15 Other information

NC programming
Programming Manual, 06/2019, A5E47437142B AA 379

Fundamentals
2.15 Other information

NC programming
380 Programming Manual, 06/2019, A5E47437142B AA

Work preparation 3
3.1 Flexible NC programming

3.1.1 Variables

The use of variables from the system data and user data areas, especially in conjunction with
arithmetic functions and check structures, enables highly flexible NC programs and cycles to
be written.

WARNING

Material damage and personal injuries caused by changed variables

When using variables in the NC program it must be taken into account that machine operators
or unauthorized persons with corresponding access rights can change the variables and thus
affect the program run. This can result in material damage and personal injuries.
● In order to avoid negative effects on the program run caused by changed variables,

appropriate data checks ("input validation") are to be provided in the NC program.

● System data
The system data contains the variables predefined in the system. These variables have a
defined meaning. They are primarily used by the system software. The user can read and
write these variables in NC programs and cycles. Example: Machine data, setting data,
system variables.
Although the meaning of a system data item is fixed, the user can modify its properties within
certain limits by redefinition.
See "Redefinition of system data, user data, and NC commands (REDEF) (Page 392)"

● User data
The user data contains those variables defined by the user with meanings defined
exclusively by the user. They are not evaluated by the system.
The user data is divided into:

– Predefined user variables
Predefined user variables are variables that have already been defined in the system
and whose number is parameterized in the machine data. The user can change the
properties of these variables.
See "Redefinition of system data, user data, and NC commands (REDEF) (Page 392)".

– User-defined variables
User-defined variables are variables that are defined by the user and are not created by
the system until runtime. Their number, data type, visibility, and all other properties are
defined exclusively by the user.
See "Definition of user variables (DEF) (Page 387)"

NC programming
Programming Manual, 06/2019, A5E47437142B AA 381

3.1.1.1 System data
The system data contain the variables that are predefined in the system and enable access to
the current parameter settings of the control, as well as to machine, control, and process states,
in NC programs and cycles.

Preprocessing variables
Preprocessing variables are system data that are read and written during preprocessing, in
other words, at the instant at which the block containing the variable is interpreted.
Preprocessing variables do not trigger preprocessing stops.

Main run variables
Main run variables are system data that are read and written during the main run, in other
words, at the instant at which the block containing the variable is executed. The following are
main run variables:

● Variables that can be programmed in synchronized actions (read/write)

● Variables that can be programmed in the NC program and trigger preprocessing stops (read/
write)

● Variables that can be programmed in the NC program and whose value is calculated during
preprocessing but not written until the main run (main run synchronized: write only)

Prefix system
To distinguish system data from other data, their names are usually preceded by a prefix
comprising the $ sign followed by one or two letters and an underscore.

$ + 1. Letter Meaning: Data type
Preprocessing data (system data that are read/written during preprocessing)
$M Machine data 1)

$S Setting data, protection areas 1)

$T Tool management data
$P Programmed values
$C Cycle variables of ISO envelope cycles
$O Option data
R R-parameters (arithmetic parameters) 2)

Main run data (system data that are read/written during the main run)
$$M Machine data 1)

$$S Setting data 1)

$A Current main run data
$V Position controller data

Work preparation
3.1 Flexible NC programming

NC programming
382 Programming Manual, 06/2019, A5E47437142B AA

$ + 1. Letter Meaning: Data type
$R R-parameters (arithmetic parameters) 2)

1) Whether machine and setting data is treated as preprocessing or main run variables depends on
whether they are written with one or two $ characters. The notation is freely selectable for the specific
application.
2) When an R-parameter is used in the part program/cycle as a preprocessing variable, the prefix is
omitted, e.g. R10. When it is used in a synchronized action as a main run variable, a $ sign is written as
a prefix, e.g. $R10.

2nd letter Meaning: Visibility
N NC global variable (NC)
C Channel-specific variable (Channel)
A Axis-specific variable (Axis)

Supplementary conditions

Exceptions in the prefix system
The following system of variables deviate from the prefix system specified above:

● $TC_...: Here, the 2nd letter C does not refer to channel-specific system variables but to
toolholder-specific system variables (TC= tool carrier).

● $P_ ...: Channel-specific system variables

Use of machine and setting data in synchronized actions
When machine and setting data is used in synchronized actions, the prefix can be used to
define whether the machine or setting data will be read/written synchronous to the
preprocessing run or the main run.

If the data remains unchanged during machining, it can be read synchronous to the
preprocessing run. For this purpose, the machine or setting data prefix is written with a $ sign:

ID=1 WHENEVER $AA_IM[z] < $SA_OSCILL_REVERSE_POS2[Z]–6 DO $AA_OVR[X]=0

If the data changes during machining, it must be read/written synchronous to the main run. For
this purpose, the machine or setting data prefix is written with two $ signs:

ID=1 WHENEVER $AA_IM[z] < $$SA_OSCILL_REVERSE_POS2[Z]–6 DO $AA_OVR[X]=0

Note
Writing machine and setting data

When writing an item of machine or setting data, it is important to ensure that the access level
which is active when the part program/cycle is executed permits write access and that the data
is set to take "IMMEDIATE" effect.

References
A complete overview of all system variables appears in:

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 383

List Manual, System Variables

See also
Variables (Page 381)

3.1.1.2 Predefined user variables: Channel-specific arithmetic parameters (R)
Channel-specific arithmetic parameters or R parameters are predefined user variables with the
designation R, defined as an array of the REAL data type. For historical reasons, notation both
with array index, e.g. R[10], and without array index, e.g. R10, is permitted for R parameters.

When using synchronized actions, the $ sign must be included as a prefix, e.g. $R10.

Syntax
When used as a preprocessing variable:
R<n>
R[<expression>]
When used as a main run variable:
$R<n>
$R[<expression>]

Meaning

R: Identifier when used as a preprocessing variable, e.g. in the part program
$R: Identifier when used as a main run variable, e.g. in synchronized actions
 Type: REAL

Range of values:

For a non-exponential notation:
± (0.000 0001 ... 9999 9999)
Note:
A maximum of 8 decimal places are permitted
For an exponential notation:
± (1*10-300 ... 1*10+300)
Note:
● Notation: <Mantissa>EX<Exponent> e.g. 8.2EX-3
● A maximum of 10 characters are permitted including sign

and decimal point.

Work preparation
3.1 Flexible NC programming

NC programming
384 Programming Manual, 06/2019, A5E47437142B AA

<n>: Number of the R parameter
Type: INT
Range of values: 0 - MAX_INDEX

Note
MAX_INDEX is calculated from the parameterized number of R-
parameters:
MAX_INDEX = (MD28050 $MN_MM_NUM_R_PARAM) - 1

<expression>: Array index
Any expression can be used as an array index, as long as the result of the expres‐
sion can be converted to the INT data type (INT, REAL, BOOL, CHAR).

Example
Assignments to R-parameters and use of R-parameters in mathematical functions:

Program code Comment
R0=3.5678 ; Assignment in preprocessing
R[1]=-37.3 ; Assignment in preprocessing
R3=-7 ; Assignment in preprocessing
$R4=-0.1EX-5 ; Assignment in the main program run: R4 = -0.1 * 10^-5
$R[6]=1.874EX8 ; Assignment in the main program run: R6 = 1.874 * 10^8
R7=SIN(25.3) ; Assignment in preprocessing

R[R2]=R10 ; Indirect addressing using R-parameter
R[(R1+R2)*R3]=5 ; Indirect addressing using math. expression

X=(R1+R2) ; Traverse axis X to the position resulting from the sum of

R1 and R2
Z=SQRT(R1*R1+R2*R2) ; Traverse axis Z to the square root position (R1^2 + R2^2)

See also
Variables (Page 381)

3.1.1.3 Predefined user variables: Global arithmetic parameters (RG)

Function
In addition to the channel-specific R parameters, the user has access to global R parameters.
They exist once within the control unit and can be read and written from all channels.

Global R parameters are used, for example, to transfer information from one channel to the
next. Another example concerns global settings that should be evaluated for all channels, such
as the overhang of the raw part from the spindle.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 385

The global R parameters are read and written from the user interface or in the NC program
during the preprocessing. Synchronous actions and technology cycles cannot be used.

Note

No synchronization between the channels when reading and writing global R parameters.

Because the reading and writing is performed during the preprocessing, the point in time when
a written value from one channel becomes active in another channel is not defined.

Example:

In channel 1, a loop runs with a global R parameter as loop counter. Channel 2 writes a value
to this global R parameter; this causes a loop abort in channel 1. All loops that can be
interpreted in the preprocessing in channel 1 are however still executed. The number of loops
is not defined and depends on the channel loading, etc.

The user must implement a synchronization between the channels as application, e.g. with
WAIT flags!

Syntax

Writing in the NC program
RG[<n>]=<value>
RG[<expression>]=<value>

Reading in the NC program
R...=RG[<n>]
R...=RG[<expression>]

Meaning

RG : Default name of the NC address for global R parameters
Note:
The name of the NC address can be set via MD15800 $MN_R_PAR‐
AM_NCK_NAME

<n>: Number of the global R parameter
Type: INT
Range of values: 0 ... MAX_INDEX

Note
MAX_INDEX is calculated from the parameterized number
of global R parameters:
MAX_INDEX = (MD18156 $MN_MM_NUM_R_PAR‐
AM_NCK) - 1

<expression>: Any expression can be used as an array index, as long as the result of the
expression can be converted to the INT data type (INT, REAL, BOOL, CHAR).

Work preparation
3.1 Flexible NC programming

NC programming
386 Programming Manual, 06/2019, A5E47437142B AA

<value>: Value of the global R parameter
Type: REAL
Range of values: For a non-exponential notation:

± (0.000 0001 ... 9999 9999)
Note:
A maximum of eight decimal places are permitted
For an exponential notation:
± (1*10-300 ... 1*10+300)
Note:
● Notation: <mantissa>EX<exponent> e.g. 8.2EX-3
● A maximum of ten characters are permitted including

sign and decimal point.

3.1.1.4 Definition of user variables (DEF)
With the DEF command, you can define user-specific variables, or user variables (user data),
and assign values to them.

According to the range of validity (in other words, the range in which the variable is visible) there
are the following categories of user variable:

● Local user variables (LUD)
Local user variables (LUD) are variables defined in an NC program that is not the main
program at the time of execution. They are created when the NC program is called, and
deleted with an end of program reset – or the next time that the control system powers up.
Local user variables can only be accessed within the NC program in which they are defined.

● Program-global user variables (PUD)
Program-global user variables (PUD) are user variables defined in an NC program used as
the main program. They are created when the NC program is called, and deleted with an end
of program reset – or the next time that the control system powers up. It is possible to access
PUD in the main program and in all subprograms of the main program.

Note
Availability of program-global user variables (PUD)

Program-global user variables (PUD) defined in the main program are only available in
subprograms if the following machine data is set:

MD11120 $MN_LUD_EXTENDED_SCOPE = 1

If MD11120 = 0 the program-global user variables defined in the main program will only be
available in the main program.

● Global user variables (GUD)
Global user variables (GUD) are NC or channel-global variables which are defined in a data
block (SGUD, MGUD, UGUD, GUD4 to GUD9) and are kept even after an end of program
reset or the next time that the control system powers up. GUD can be accessed in all NC
programs.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 387

User variables must be defined before they can be used (read/write). The following rules must
be observed in this context:

● GUDs must be defined in a definition file, e.g. _N_DEF_DIR/_N_UGUD_DEF.

● PUDs and LUDs must be defined in the definition section of the NC program.

● The data must be defined in a dedicated block.

● Only one data type may be used for each data definition.

● Several variables of the same data type can be defined for each data definition.

Syntax

LUD and PUD
DEF <type> <phys_unit> <limit values> <name>[<value_1>, <value_2>,
<value_3>]=<init_value>

GUD
DEF <range> <pp_stop> <access_rights> <data class> <type>
<phys_unit> <limit values> <name>[<value_1>, <value_2>,
<value_3>]=<init_value>

Meaning

DEF: Command for defining GUD, PUD, LUD user variables
<range>: Range of validity, only relevant for GUD:

NC: NC-global user variable
CHAN: Channel-global user variable

<PP_stop>: Preprocessing stop, only relevant for GUD (optional)
SYNR: Preprocessing stop when reading
SYNW: Preprocessing stop when writing
SYNRW: Preprocessing stop when reading/writing

<access rights>: Protection level for reading/writing GUD via NC program or OPI (optional)
APRP <protection level>: Read: NC program
APWP <protection level>: Write: NC program
APRB <protection level>: Read: OPI
APWB <protection level>: Write: OPI
<protection level>: Range of values: 0 ... 7
See "Attribute: Access rights (APR, APW, APRP, APWP, APRB, APWB)
(Page 402)"

<data class>: Data class assignment (only SINUMERIK 828D)
DCM: Data class M (= Manufacturer)
DCI: Data class I (= Individual)
DCU: Data class U (= User)

Work preparation
3.1 Flexible NC programming

NC programming
388 Programming Manual, 06/2019, A5E47437142B AA

<type>: Data type:
INT: Integer with sign
REAL: Real number (LONG REAL to IEEE)
BOOL: Truth value TRUE (1)/FALSE (0)
CHAR: ASCII character
STRING[<MaxLength>]: Character string of a defined length
AXIS: Axis/spindle identifier
FRAME: Geometric data for a static coordinate trans‐

formation
See "Data types (Page 413)"

<phys_unit>: Physical unit (optional)
PHU <unit>: Physical unit
See "Attribute: Physical unit (PHU) (Page 400)"

<limit values>: Lower/upper limit value (optional)
LLI <limit val‐
ue>:

Lower limit value (lower limit)

ULI <limit val‐
ue>:

Upper limit value (upper limit)

See "Attribute: Limit values (LLI, ULI) (Page 398)"
<name>: Name of variable

Note
● Maximum 31 characters
● The first two characters must be a letter and/or an underscore.
● The $ sign is reserved for system variables and must not be used.

[<value_1>,
 <value_2>,
 <value_3>]:

Specification of array sizes for 1- to max. 3-dimensional array variables
(optional)
For the Initialization of array variables, see "Definition and initialization of
array variables (DEF, SET, REP) (Page 407)"

<init_value>: Initialization value (optional)
See "Attribute: Initialization value (Page 396)"
For the Initialization of array variables, see "Definition and initialization of
array variables (DEF, SET, REP) (Page 407)"

Examples

Example 1: Definition of user variables in the data block for machine manufacturers

Program code Comment
%_N_MGUD_DEF ; GUD block: Machine manufacturer
$PATH=/_N_DEF_DIR
DEF CHAN REAL PHU 24 LLI 0 ULI 10 STROM_1, STROM_2
;Description
;Definition of two GUD items: STROM_1, STROM_2
;Range of validity: Throughout the channel
;Data type: REAL

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 389

Program code Comment
PP stop: Not programmed => default value = no PP stop
; phys. unit: 24 = [A]
;Limit values: Low = 0.0, high = 10.0
;Access rights: Not programmed => default value = 7 = key-operated switch position 0
;Initialization value: Not programmed => default value = 0.0

DEF NCK REAL PHU 13 LLI 10 APWP 3 APRP 3 APWB 0 APRB 2 ZEIT_1=12, ZEIT_2=45
;Description
;Definition of two GUD items: ZEIT_1, ZEIT_2
;Range of validity: Throughout NC
;Data type: REAL
PP stop: Not programmed => default value = no PP stop
; phys. unit: 13 = [s]
;Limit values: low = 10.0, high = not programmed => upper definition range limit
;Access rights:
; NC program: Write/read = 3 = end user
;OPI: Write = 0 = Siemens, read = 3 = end user
;Initialization value: ZEIT_1 = 12.0, ZEIT_2 = 45.0

DEF NCK APWP 3 APRP 3 APWB 0 APRB 3 STRING[5] GUD5_NAME = "COUNTER"
;Description
;Definition of one GUD item: GUD5_NAME
;Range of validity: Throughout NC
;Data type: STRING, max. 5 characters
PP stop: Not programmed => default value = no PP stop
; phys. unit: Not programmed => default value = 0 = no phys. unit
;Limit values: Not programmed => definition range limits: Low = 0, high = 255
;Access rights:
; NC program: Write/read = 3 = end user
;OPI: Write = 0 = Siemens, read = 3 = end user
;Initialization value: "COUNTER"
M30

Example 2: Global program and local user variables (PUD/LUD)

Program code Comment
PROC MAIN ; Main program
DEF INT VAR1 ;PUD definition
...
SUB2 ;Subprogram call
...
M30

Work preparation
3.1 Flexible NC programming

NC programming
390 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
PROC SUB2 ;Subprogram SUB2
DEF INT VAR2 ;LUD DEFINITION
...
IF (VAR1==1) ;Read PUD
 VAR1=VAR1+1 ;Read & write PUD
 VAR2=1 ;Write LUD
ENDIF
SUB3 ;Subprogram call
...
M17

Program code Comment
PROC SUB3 ;Subprogram SUB3
...
IF (VAR1==1) ;Read PUD
 VAR1=VAR1+1 ;Read & write PUD
 VAR2=1 ;Error: LUD from SUB2 not known
ENDIF
...
M17

Example 3: Definition and use of user variables of data type AXIS

Program code Comment
DEF AXIS ABSCISSA ; 1st Geometry axis
DEF AXIS SPINDLE ;Spindle
...
IF ISAXIS(1) == FALSE GOTOF CONTINUE
 ABSCISSA = $P_AXN1
CONTINUE:
...
SPINDLE=(S1) ; 1st spindle
OVRA[SPINDLE]=80 ;Spindle override = 80%
SPINDLE=(S3) ; 3rd spindle

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 391

Supplementary conditions

Global user variables (GUD)
In the context of the definition of global user variables (GUD), the following machine data has
to be taken into account:

No. Identifier: $MN_ Meaning
11140 GUD_AREA_ SAVE_TAB Additional save for GUD blocks
18118 1) MM_NUM_GUD_MODULES Number of GUD files in the active file system
18120 1) MM_NUM_GUD_NAMES_NCK Number of global GUD names
18130 1) MM_NUM_GUD_NAMES_CHAN Number of channel-specific GUD names
18150 1) MM_GUD_VALUES_MEM Memory location for global GUD values
18660 1) MM_NUM_SYNACT_GUD_REAL Number of configurable GUD of the REAL data

type
18661 1) MM_NUM_SYNACT_GUD_INT Number of configurable GUD of the INT data

type
18662 1) MM_NUM_SYNACT_GUD_BOOL Number of configurable GUD of the BOOL data

type
18663 1) MM_NUM_SYNACT_GUD_AXIS Number of configurable GUD of the AXIS data

type
18664 1) MM_NUM_SYNACT_GUD_CHAR Number of configurable GUD of the CHAR data

type
18665 1) MM_NUM_SYNACT_GUD_STRING Number of configurable GUD of the STRING da‐

ta type
1) For SINUMERIK 828D, MD can only be read!

Cross-channel use of an NC-global user variable of the AXIS data type
An NC-global user variable of the AXIS data type initialized during definition in the data block
with an axis identifier can then only be used in other NC channels if the axis has the same
channel axis number in these channels.

If this is not the case, the variable has to be loaded at the beginning of the NC program or, as
in the following example, the AXNAME(...) function (see "Axis functions (AXNAME, AX, SPI,
AXTOSPI, ISAXIS, AXSTRING, MODAXVAL) (Page 834)") has to be used.

Program code Comment
DEF NCK STRING[5] ACHSE="X" ;Definition in the data block
...
N100 AX[AXNAME(ACHSE)]=111 G00 ; Use in the NC program

3.1.1.5 Redefinition of system data, user data, and NC commands (REDEF)
The REDEF command changes the attributes of system data, user data, and NC commands. A
fundamental condition of redefinition is that it has to post-date the corresponding definition.

Multiple attributes cannot be changed simultaneously during redefinition. A separate REDEF
command must be programmed for each attribute to be changed.

If several concurrent attribute changes are programmed, the last change is always active.

Work preparation
3.1 Flexible NC programming

NC programming
392 Programming Manual, 06/2019, A5E47437142B AA

Resetting attribute values
The attributes for access rights and initialization time change with REDEF can be reset to their
default values by reprogramming REDEF, followed by the name of the variable or the NC
language command:

● Access rights: Protection level 7

● Initialization time: No initialization or retention of the current value

Redefinable attributes
See "Overview of definable and redefinable attributes (Page 406)".

Local user variables (PUD/LUD)
Redefinitions are not permitted for local user variables (PUD/LUD).

Syntax
REDEF <name> <PP_stop>
REDEF <name> <phys_unit>
REDEF <name> <limit_values>
REDEF <name> <access_rights>
REDEF <name> <init_time>
REDEF <name> <init_time> <init_value>
REDEF <name> <data class>
REDEF <name>

Meaning

REDEF: Command for redefinition of a certain attribute or to reset the
"Access rights" and/or "Initialization time" attributes of system
variables, user variables and NC language commands

<name>: Name of an already defined variable or an NC language com‐
mand

<PP stop>: Preprocessing stop
SYNR: Preprocessing stop when reading
SYNW: Preprocessing stop when writing
SYNRW: Preprocessing stop when reading/writing

<phys_unit>: Physical unit
PHU <unit>: Physical unit
See "Attribute: Physical unit (PHU) (Page 400)".
Note
Cannot be redefined for:
● System variables
● Global user data (GUD) of the data types: BOOL, AXIS,

STRING, FRAME

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 393

<limit values>: Lower/upper limit
LLI <limit value>: Lower limit value (lower limit)
ULI <limit value>: Upper limit value (upper limit)
See "Attribute: Limit values (LLI, ULI) (Page 398)".
Note
Cannot be redefined for:
● System variables
● Global user data (GUD) of the data types: BOOL, AXIS,

STRING, FRAME
<access rights>: Access rights for reading/writing via part program or OPI

APX <protection level>: Execute: NC language ele‐
ment

APRP <protection level>: Read: Part program
APWP <protection level>: Write: Part program
APRB <protection level>: Read: OPI
APWB <protection level>: Write: OPI
<protection level>: Range of values: 0 ... 7
See "Attribute: Access rights (APR, APW, APRP, APWP,
APRB, APWB) (Page 402)".

<init_time>: Point in time at which the variable is reinitialized
INIPO: Power On
INIRE: End of main program, NC reset or Power On
INICF: NEWCONF or main program end, NC reset

or Power On
PRLOC: End of main program, NC reset following lo‐

cal change or Power On
See "Attribute: Initialization value (Page 396)".

<init_value>: Initialization value
When redefining the initialization value, an initialization time
always has to be specified also (see <init_time>).
See "Attribute: Initialization value (Page 396)".
For the Initialization of array variables, see "Definition and ini‐
tialization of array variables (DEF, SET, REP) (Page 407)".
Note
Cannot be redefined for system variables, except setting data.

<data class>: Data class assignment (only SINUMERIK 828D)
DCM: Data class M (= Manufacturer)
DCI: Data class I (= Individual)
DCU: Data class U (= User)

Example

Redefinitions of system variable $TC_DPCx in the data block for machine manufacturers

Program code
%_N_MGUD_DEF ; GUD block: Machine manufacturer

Work preparation
3.1 Flexible NC programming

NC programming
394 Programming Manual, 06/2019, A5E47437142B AA

Program code
N100 REDEF $TC_DPC1 APWB 2 APWP 3
N200 REDEF $TC_DPC2 PHU 21
N300 REDEF $TC_DPC3 LLI 0 ULI 200
N400 REDEF $TC_DPC4 INIPO (100, 101, 102, 103)
N800 REDEF $TC_DPC1
N900 REDEF $TC_DPC4
M30

regard‐
ing
N100:

Write access: OPI = protection level 2, part program = protection level 3

regard‐
ing
N200:

Physical unit [%]

regard‐
ing
N300:

Lower limit value = 0, upper limit value = 200

regard‐
ing
N400:

The array variable is initialized with the four values at POWER ON.

regard‐
ing
N800 /
N900

Reset of the "Access rights" and/or "Initialization time" attribute values

Note
Use of ACCESS files

If ACCESS files are used, the redefinition of access rights has to be relocated from
_N_MGUD_DEF to _N_MACCESS_DEF.

Supplementary conditions

Granularity
A redefinition is always applied to the entire variable which is uniquely identified by its name.
Array variables do not, for example, support the assignment of different attributes to individual
array elements.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 395

3.1.1.6 Attribute: Initialization value

Definition (DEF) of user variables
During definition, an initialization value can be preassigned for the following user variables:

● Global user variables (GUD)

● Program-global user variables (PUD)

● Local user variables (LUD)

Redefinition (REDEF) of system and user variables
During redefinition, an initialization value can be preassigned for the following variables:

● System data

– Setting data

● User data

– R parameters

– Synchronized action variables ($AC_MARKER, $AC_PARAM, $AC_TIMER)

– Synchronized action GUD (SYG_xy[], where x=R, I, B, A, C, S and y=S, M, U, 4 to 9)

– EPS parameters

– Tool data OEM

– Magazine data OEM

– Global user variables (GUD)

Reinitialization time
During redefinition, the point in time can be specified at which the variable should be
reinitialized, i.e. reset to the initialization value.

● INIPO (POWER ON)
The variable is reinitialized at Power On.

● INIRE (reset)
The variable is reinitialized on NC reset, mode group reset, at the end of the part program
(M02/M30) or at Power On.

● INICF (NEWCONF)
For the function "Set machine data active", the variable is reinitialized via HMI, part program
command NEWCONF or NC reset, mode group reset, part program end (M02 / M30) or a
Power On.

● PRLOC (program-local change)
The variable is only reinitialized on an NC reset, mode group reset or at the end of the part
program (M02/M30) if it has changed during the current part program.
The PRLOC attribute may only be changed in conjunction with programmable setting data
(see the table below).

Work preparation
3.1 Flexible NC programming

NC programming
396 Programming Manual, 06/2019, A5E47437142B AA

Table 3-1 Programmable setting data

Number Identifier G command 1)

42000 $SC_THREAD_START_ANGLE SF
42010 $SC_THREAD_RAMP_DISP DITS/DITE
42400 $SA_PUNCH_DWELLTIME PDELAYON
42800 $SA_SPIND_ASSIGN_TAB SETMS
43210 $SA_SPIND_MIN_VELO_G25 G25
43220 $SA_SPIND_MAX_VELO_G26 G26
43230 $SA_SPIND_MAX_VELO_LIMS LIMS
43300 $SA_ASSIGN_FEED_PER_REV_SOURCE FPRAON
43420 $SA_WORKAREA_LIMIT_PLUS G26
43430 $SA_WORKAREA_LIMIT_MINUS G25
43510 $SA_FIXED_STOP_TORQUE FXST
43520 $SA_FIXED_STOP_WINDOW FXSW
43700 $SA_OSCILL_REVERSE_POS1 OSP1
43710 $SA_OSCILL_REVERSE_POS2 OSP2
43720 $SA_OSCILL_DWELL_TIME1 OST1
43730 $SA_OSCILL_DWELL_TIME2 OST2
43740 $SA_OSCILL_VELO FA
43750 $SA_OSCILL_NUM_SPARK_CYCLES OSNSC
43760 $SA_OSCILL_END_POS OSE
43770 $SA_OSCILL_CTRL_MASK OSCTRL
43780 $SA_OSCILL_IS_ACTIVE OS
43790 $SA_OSCILL_START_POS OSB

1) This G command addresses the setting data.

Supplementary conditions

Initialization value: Global user variables (GUD)
● Only INIPO (Power On) can be defined as the initialization time for global user variables

(GUD) with the NC range of validity.

● In addition to INIPO (Power On), INIRE (reset) or INICF (NEWCONF) can be defined as
the initialization time for global user variables (GUD) with the CHAN range of validity.

● In the case of global user variables (GUD) with the CHAN range of validity and INIRE (reset)
or INICF (NEWCONF) initialization time, for an NC reset, mode group reset and "Activate
machine data", the variables are only reinitialized in the channels in which the named events
were triggered.

Initialization value: FRAME data type
It is not permitted to specify an initialization value for variables of the FRAME data type.
Variables of the FRAME data type are initialized implicitly and always with the default frame.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 397

Initialization value: CHAR data type
For variables of the CHAR data type, instead of the ASCII code (0...255), the corresponding
ASCII character can be programmed in quotation marks, e.g. "A".

Initialization value: Data type STRING
In the case of variables of the STRING data type, the character string must be enclosed in
quotation marks, e.g. ...= "MACHINE_1"

Initialization value: AXIS data type
In the case of variables of the AXIS data type, for an extended address notation, the axis
identifier must be enclosed in brackets, e.g. ...=(X3).

Initialization value: System variable
For system variables, redefinition cannot be used to define user-specific initialization values.
The initialization values for the system variables are specified by the system and cannot be
changed. However, redefinition can be used to change the point in time (INIRE, INICF) at
which the system variable is reinitialized.

Implicit initialization value: AXIS data type
For variables of the AXIS data type the following implicit initialization value is used:

● System data: "First geometry axis"

● Synchronized action GUD (designation: SYG_A*), PUD, LUD:
axis designation from the machine data: MD20082
$MC_AXCONF_CHANAX_DEFAULT_NAME

Implicit initialization value: Tool and magazine data
Initialization values for tool and magazine data can be defined using the following machine
data: MD17520 $MN_TOOL_DEFAULT_DATA_MASK

Note
Synchronization

The synchronization of events triggering the reinitialization of a global variable when this
variable is read in a different location is the sole responsibility of the user / machine
manufacturer.

See also
Variables (Page 381)

3.1.1.7 Attribute: Limit values (LLI, ULI)
An upper and a lower limit of the definition range can only be defined for the following data types:

● INT

● REAL

● CHAR

Work preparation
3.1 Flexible NC programming

NC programming
398 Programming Manual, 06/2019, A5E47437142B AA

Definition (DEF) of user variables: Limit values and implicit initialization values
If no explicit initialization value is defined when defining a user variable of one of the above data
types, the variable is set to the data type's implicit initialization value.

● INT: 0

● REAL: 0.0

● CHAR: 0

If the implicit initialization value is outside the definition range specified by the programmed limit
values, the variable is initialized with the limit value which is closest to the implicit initialization
value:

● Implicit initialization value < lower limit value (LLI) ⇒
 initialization value = lower limit value

● Implicit initialization value > upper limit value (ULI) ⇒
 initialization value = upper limit value

Examples:

Program code Comment
DEF REAL GUD1 ; Lower limit value = definition range limit

; Upper limit value = definition range limit
; No initialization value programmed
; => Implicit initialization value = 0.0

DEF REAL LLI 5.0 GUD2 ; Lower limit value = 5.0
; Upper limit value = definition range limit
; => Initialization value = 5.0

DEF REAL ULI –5 GUD3 ; Lower limit value = definition range limit
; Upper limit value = -5.0
; => Initialization value = -5.0

Redefinition (REDEF) of user variables: Limit values and current actual values
If the limit values of a user variable are redefined, they change to the extent that the current
actual value is outside the new definition range, an alarm will be issued and the limit values will
be rejected.

Note
Redefinition (REDEF) of user variables

If the limit values of a user variable are redefined, care must be taken to ensure that the
following values are changed consistently:
● Limit values
● Actual value
● Initialization value on redefinition and automatic reinitialization on the basis of INIPO, INIRE

or INICF

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 399

See also
Variables (Page 381)

3.1.1.8 Attribute: Physical unit (PHU)
A physical unit can only be specified for variables of the following data types:

● INT

● REAL

Programmable physical units (PHU)
The physical unit is specified as fixed point number: PHU <unit>
The following physical units can be programmed:

<unit> Meaning Physical unit
0 Not a physical unit -
1 Linear or angular position 1)2) [mm], [inch], [degree]
2 Linear position 2) [mm], [inch]
3 Angular position [degree]
4 Linear or angular velocity 1)2) [mm/min], [inch/min], [rpm]
5 Linear velocity 2) [mm/min]
6 Angular velocity [rpm]
7 Linear or angular acceleration 1)2) [m/s2], [inch/s2], [rev/s2]
8 Linear acceleration 2) [m/s2], [inch/s2]
9 Angular acceleration [rev/s2]
10 Linear or angular jerk 1)2) [m/s3], [inch/s3], [rev/s3]
11 Linear jerk 2) [m/s3], [inch/s3]
12 Angular jerk [rev/s3]
13 Time [s]
14 Position controller gain [16.667/s]
15 Revolutional feedrate 2) [mm/rev], [inch/rev]
16 Temperature compensation 1)2) [mm], [inch]
18 Force [N]
19 Mass [kg]
20 Moment of inertia 3) [kgm2]
21 Percent [%]
22 Frequency [Hz]
23 Voltage [V]
24 Current [A]
25 Temperature [°C]
26 Angle [degree]
27 KV [1000/min]
28 Linear or angular position 3) [mm], [inch], [degree]

Work preparation
3.1 Flexible NC programming

NC programming
400 Programming Manual, 06/2019, A5E47437142B AA

<unit> Meaning Physical unit
29 Cutting rate 2) [m/min], [feet/min]
30 Peripheral speed 2) [m/s], [feet/s]
31 Resistance [ohm]
32 Inductance [mH]
33 Torque 3) [Nm]
34 Torque constant 3) [Nm/A]
35 Current controller gain [V/A]
36 Speed controller gain 3) [Nm/(rad*s)]
37 Speed [rpm]
42 Power [kW]
43 Current, low [μA]
46 Torque, low 3) [μNm]
48 Per mil -
49 - [Hz/s]
65 Flow rate [l/min]
66 Pressure [bar]
67 Volume 3) [cm3]
68 Controlled-system gain 3) [mm/(V*min)]
69 Force controller controlled-system gain [N/V]
155 Thread lead 3) [mm/rev], [inch/rev]
156 Change in thread lead 3) [mm/rev / rev], [inch/rev / rev]

1) The physical unit depends on the axis type: Linear or rotary axis
2) System of units changeover
G70/G71(inch/metric)
After changing over the basic system (MD10240 $MN_SCALING_SYSTEM_IS_METRIC) with G70/
G71, for read/write operations to system and user variables involving a length, then the values are not
converted (actual value, default value and limit values)
G700/G710(inch/metric)
After changing over the basic system (MD10240 $MN_SCALING_SYSTEM_IS_METRIC) with G700/
G710, for read/write operations to system and user variables involving a length, then the values are
converted (actual value, default value and limit values)
3) The variable is not converted to the NC's current measuring system (inch/metric) automatically.
Conversion is the sole responsibility of the user/machine manufacturer.

Note
Level overflow due to format conversion

The internal storage format for all user variables (GUD/PUD/LUD) with physical units of length
is metric. Excessive use of these types of variable in the NCK's main run, e.g. in synchronized
actions, can lead to a CPU time overflow at interpolation level when the measuring system is
switched over, generating alarm 4240.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 401

Note
Compatibility of units

When using variables (assignment, comparison, calculation, etc.) the compatibility of the units
involved is not checked. Should conversion be required, this is the sole responsibility of the
user / machine manufacturer.

See also
Variables (Page 381)

3.1.1.9 Attribute: Access rights (APR, APW, APRP, APWP, APRB, APWB)

Designation
The designation of the access attribute AP... comprises:

1. A: Access

2. P: Protection

3. R / W: Read / Write

4. P / O: Program / BTSS (OPI)

Access rights / access levels
The following access levels, which have to be specified during programming, correspond to the
access rights:

Access right Protection level
System password 0
Machine manufacturer password 1
Service password 2
End user password 3
Key-operated switch position 3 4
Key-operated switch position 2 5
Key-operated switch position 1 6
Key-operated switch position 0 7

Definition (DEF) of user data
Access rights (APR.../APW...) can be defined for the following data:

● Global user data (GUD)

Work preparation
3.1 Flexible NC programming

NC programming
402 Programming Manual, 06/2019, A5E47437142B AA

Redefinition (REDEF) of system and user data
Access rights (APR.../APW...) can be redefined for the following data:

● System data

– Machine data

Note
Redefinition of reading rights of machine data

The protection level for reading machine data can only be set with the keyword APR in
common for part program and OPI.

The keywords APRP and APRB are not supported by the redefinition of the reading rights,
and lead to the message of interrupt 12490 "Access right APRP/APRB <protection
level> was not set".

– Setting data

– System variable

– Process data

– Magazine data

– Tool data

● User data

– R parameters

– Synchronized action variables ($AC_MARKER, $AC_PARAM, $AC_TIMER)

– Synchronized action GUD (SYG_xy[], where x=R, I, B, A, C, S and y=S, M, U, 4 to 9)

– EPS parameters

– Tool data OEM

– Magazine data OEM

– Global user variables (GUD)

Note

During redefinition the access right can be freely assigned to a variable between the
lowest protection level 7 and the dedicated protection level, e.g. 1 (machine
manufacturer).

Redefinition (REDEF) of NC language commands
The access or execution right (APX) can be redefined for the following NC language commands:

● G commands / preparatory functions
References
Programming Manual, Fundamentals, Section: G commands / preparatory functions

● Predefined functions
References
Programming Manual, Fundamentals, Section: Predefined functions

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 403

● Predefined subprogram calls
References
Programming Manual, Fundamentals, Section: Predefined subprogram calls

● DO operation with synchronized actions

● Cycles program identifier
The cycle must be saved in a cycle directory and must contain a PROC operation.

Access rights in relation to NC programs and cycles (APRP, APWP)
The various access rights facilitate the following with regard to access from an NC program or
cycle:

● APRP 0/APWP 0
– During NC program processing the system password has to be set.

– The cycle has to be stored in the _N_CST_DIR directory (system).

– The execution right must be set to system for the _N_CST_DIR directory in MD11160
$MN_ACCESS_EXEC_CST.

● APRP 1/APWP 1 or APRP 2/APWP 2
– During NC program processing the machine manufacturer or service password has to be

set.

– The cycle has to be stored in the _N_CMA_DIR (machine manufacturer) or _N_CST_DIR
directory.

– The execution rights must be set to at least machine manufacturer for the _N_CMA_DIR
or _N_CST_DIR directories in machine data MD11161 $MN_ACCESS_EXEC_CMA or
MD11160 $MN_ACCESS_EXEC_CST respectively.

● APRP 3/APWP 3
– During NC program execution, the end-user password must be set.

– The cycle has to be stored in the _N_CUS_DIR (user), _N_CMA_DIR or _N_CST_DIR
directory.

– The execution rights must be set to at least end user for the _N_CUS_DIR, _N_CMA_DIR
or _N_CST_DIR directories in machine data MD11162 $MN_ACCESS_EXEC_CUS,
MD11161 $MN_ACCESS_EXEC_CMA or MD11160 $MN_ACCESS_EXEC_CST
respectively.

● APRP 4...7/APWP 4...7
– During NC program processing the key-operated switch must be set to 3 ... 0.

– The cycle has to be stored in directory _N_CUS_DIR, _N_CMA_DIR or in directory
_N_CST_DIR.

– The execution rights must be set to at least the corresponding key-operated switch
position for the _N_CUS_DIR, _N_CMA_DIR or _N_CST_DIR directories in machine
data MD11162 $MN_ACCESS_EXEC_CUS, MD11161 $MN_ACCESS_EXEC_CMA or
MD11160 $MN_ACCESS_EXEC_CST respectively.

Work preparation
3.1 Flexible NC programming

NC programming
404 Programming Manual, 06/2019, A5E47437142B AA

Access rights in relation to OPI (APRB, APWB)
The access rights (APRB, APWB) restrict access to system and user variables via the OPI
equally for all system components (HMI, PLC, external computers, EPS services, etc.).

Note
Local HMI access rights

When changing access rights to system data, care must be taken to ensure that such changes
are consistent with the access rights defined using HMI mechanisms.

APR/APW access attributes
For compatibility reasons, attributes APR and APW are implicitly mapped to the attributes APRP /
APRB and APWP / APWB:

● APR x ⇒ APRP x APRB x
● APW y ⇒ APWP y APWB y

Access rights using ACCESS files
When using ACCESS files to assign access rights, access rights for system data, user data,
and NC language commands must only be redefined in ACCESS files. Global user data (GUD)
is an exception. For this data, access rights still have to be redefined in the corresponding
definition files *_DEF.

For continuous access protection, the machine data for the execution rights and the access
protection for the corresponding directories have to be modified consistently.

In principle, the procedure is as follows:

1. Creation of the necessary definition files:

– _N_DEF_DIR/_N_SACCESS_DEF

– _N_DEF_DIR/_N_MACCESS_DEF

– _N_DEF_DIR/_N_UACCESS_DEF

2. Setting of the write right for the definition files to the value required for redefinition:

– MD11170 $MN_ACCESS_WRITE_SACCESS = <protection level>

– MD11171 $MN_ACCESS_WRITE_MACCESS = <protection level>

– MD11172 $MN_ACCESS_WRITE_UACCESS = <protection level>

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 405

3. For access to protected elements from cycles, the execution and write rights for cycle
directories _N_CST_DIR, _N_CMA_DIR, and _N_CST_DIR have to be modified.
Execution rights

– MD11160 $MN_ACCESS_EXEC_CST = <protection level>

– MD11161 $MN_ACCESS_EXEC_CMA = <protection level>

– MD11162 $MN_ACCESS_EXEC_CUS = <protection level>

Write rights

– MD11165 $MN_ACCESS_WRITE_CST = <protection level>

– MD11166 $MN_ACCESS_WRITE_CMA = <protection level>

– MD11167 MN_ACCESS_WRITE_CUS = <protection level>

The execution right has to be set to at least the same protection level as the highest
protection level of the element used.
The write right must be set to at least the same protection level as the execution right.

4. The write rights of the local HMI cycle directories must be set to the same protection level
as the local NC cycle directories.
References
Operating Manual

Subprogram calls in ACCESS files
To structure access protection further, subprograms (SPF or MPF identifier) can be called in
ACCESS files. The subprograms inherit the execution rights of the calling ACCESS file.

Note

Only access rights can be redefined in the ACCESS files. All other attributes have to continue
to be programmed/redefined in the corresponding definition files.

See also
Variables (Page 381)

3.1.1.10 Overview of definable and redefinable attributes
The following tables show which attributes can be defined (DEF) and/or redefined (REDEF) for
which data types.

System data

Data type Init. value Limit values Physical unit Access rights Data class
(only 828D)

Machine data --- --- --- REDEF REDEF
Setting data REDEF --- --- REDEF ---
FRAME data --- --- --- REDEF ---
Process data --- --- --- REDEF ---

Work preparation
3.1 Flexible NC programming

NC programming
406 Programming Manual, 06/2019, A5E47437142B AA

Data type Init. value Limit values Physical unit Access rights Data class
(only 828D)

Leadscrew error comp. (EEC) --- --- --- REDEF ---
Sag compensation (CEC) --- --- --- REDEF ---
Quadrant error compensation (QEC) --- --- --- REDEF ---
Magazine data --- --- --- REDEF ---
Tool data --- --- --- REDEF ---
Protection areas --- --- --- REDEF ---
Toolholder, with orientation capability --- --- --- REDEF ---
Kinematic chains --- --- --- REDEF ---
3D protection areas --- --- --- REDEF ---
Working area limitation --- --- --- REDEF ---

User data

Data type Init. value Limit values Physical unit Access rights Data class
R-parameters REDEF REDEF REDEF REDEF ---
Synchronized action variable
($AC_...)

REDEF REDEF REDEF REDEF ---

Synchronized action GUD (SYG_...) REDEF REDEF REDEF REDEF ---
EPS parameters REDEF REDEF REDEF REDEF ---
Tool data OEM REDEF REDEF REDEF REDEF ---
Magazine data OEM REDEF REDEF REDEF REDEF ---
Global user variables (GUD) DEF/REDEF DEF DEF DEF/REDEF DEF/REDEF
Local user variables (PUD/LUD) DEF DEF DEF --- ---

See also
Variables (Page 381)

3.1.1.11 Definition and initialization of array variables (DEF, SET, REP)
A user variable can be defined as a 1- up to a maximum of a 3-dimensional array.

● 1-dimensional: DEF <data type> <variable name>[<n>]
● 2-dimensional: DEF <data type> <variable name>[<n>,<m>]
● 3-dimensional: DEF <data type> <variable name>[<n>,<m>,<o>]

Note

STRING data type user variables can be defined as up to a maximum of 2-dimensional
arrays.

Data types
User variables can be defined as arrays for the following data types: BOOL, CHAR, INT, REAL,
STRING, AXIS, FRAME

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 407

Assignment of values to array elements
Values can be assigned to array elements at the following points in time:

● During array definition (initialization values)

● During program execution

Values can be assigned by means of:

● Explicit specification of an array element

● Explicit specification of an array element as a starting element and specification of a value
list (SET)

● Explicit specification of an array element as a starting element and specification of a value
and the frequency at which it is repeated (REP)

Note

FRAME data type user variables cannot be assigned initialization values.

Syntax (DEF)
DEF <data type> <variable name>[<n>,<m>,<o>]
DEF STRING[<string length>] <variable name>[<n>,<m>]

Syntax (DEF...=SET...)
Using a value list:

● During definition:
DEF <data type> <variable
name>[<n>,<m>,<o>]=SET(<value1>,<value2>, etc.)
Equivalent to:
DEF <data type> <variable name>[<n>,<m>,<o>]=(<value1>,<value2>,
etc.)
Note

SET does not have to be specified for initialization via a value list.

● During value assignment:
<variable name>[<n>,<m>,<o>]=SET(<VALUE1>,<value2>, etc.)

Work preparation
3.1 Flexible NC programming

NC programming
408 Programming Manual, 06/2019, A5E47437142B AA

Syntax (DEF...=REP...)
Using a value with repetition

● During definition:
DEF <data type> <variable name>[<n>,<m>,<o>]=REP(<value>)
DEF <data type> <variable name>[<n>,<m>,<o>]=REP(<value>,
<number_array_elements>)

● During value assignment:
<variable name>[<n>,<m>,<o>]=REP(<value>)
DEF <data type> <variable
name>[<n>,<m>,<o>]=REP(<value>,<number_array_elements>)

Meaning

DEF: Command to define variables
<data type>: Data type of variables

Range of values:
● for system variables:

BOOL, CHAR, INT, REAL, STRING, AXIS
● for GUD or LUD variables:

BOOL, CHAR, INT, REAL, STRING, AXIS, FRAME
<string length>: Maximum number of characters for a STRING data type
<variable name>: Variable name.
[<n>,<m>,<o>]: Array sizes or array indices
<n>: Array size or array index for 1st dimension

Type: INT (for system variables, also AXIS)
Range of values: Max. array size: 65535

Array index: 0 ≤ n ≤ 65534
<m>: Array size or array index for 2nd dimension

Type: INT (for system variables, also AXIS)
Range of values: Max. array size: 65535

Array index: 0 ≤ m ≤ 65534
<o>: Array size or array index for 3rd dimension

Type: INT (for system variables, also AXIS)
Range of values: Max. array size: 65535

Array index: 0 ≤ o ≤ 65534
SET: Value assignment using specified value list
(<value1>,<value2>, etc.): Value list
REP: Value assignment using specified <value>

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 409

<value>: Value, which the array elements should be written when in‐
itializing with REP.

<number_array_elements>: Number of array elements to be written with the
specified <value>. The following apply to the remaining ar‐
ray elements, dependent on the point in time:
● Initialization when defining the array:

→ Zero is written to the remaining array elements.
● Assignment during program execution:

→ The actual values of the array elements remain
unchanged.

If the parameter is not programmed, all array elements are
written with <value>.
If the parameter equals zero, the following apply dependent
on the point in time:
● Initialization when defining the array:

→ All elements are pre-assigned zero
● Assignment during program execution:

→ The actual values of the array elements remain
unchanged.

Array index
The implicit sequence of the array elements, e.g. in the case of value assignment using SET or
REP, is right to left due to iteration of the array index.

Example: Initialization of a 3-dimensional array with 24 array elements:

DEF INT FELD[2,3,4] = REP(1,24)
 FELD[0,0,0] = 1 1. array element
 FELD[0,0,1] = 1 2. array element
 FELD[0,0,2] = 1 3. array element
 FELD[0,0,3] = 1 4. array element
 ...
 FELD[0,1,0] = 1 5. array element
 FELD[0,1,1] = 1 6. array element
 ...
 FELD[0,2,3] = 1 12. array element
 FELD[1,0,0] = 1 13. array element
 FELD[1,0,1] = 1 14. array element
 ...
 FELD[1,2,3] = 1 24. array element

corresponding to:

FOR n=0 TO 1
 FOR m=0 TO 2
 FOR o=0 TO 3

Work preparation
3.1 Flexible NC programming

NC programming
410 Programming Manual, 06/2019, A5E47437142B AA

 FELD[n,m,o] = 1
 ENDFOR
 ENDFOR
ENDFOR

Example: Initializing complete variable arrays
For the actual assignment, refer to the diagram.

Program code
N10 DEF REAL FELD1[10,3]=SET(0,0,0,10,11,12,20,20,20,30,30,30,40,40,40,)
N20 ARRAY1[0,0] = REP(100)
N30 ARRAY1[5,0] = REP(-100)
N40 FELD1[0,0]=SET(0,1,2,-10,-11,-12,-20,-20,-20,-30, , , ,-40,-40,-50,-60,-70)
N50 FELD1[8,1]=SET(8.1,8.2,9.0,9.1,9.2)

See also
Definition and initialization of array variables (DEF, SET, REP): Further Information (Page 412)

Variables (Page 381)

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 411

3.1.1.12 Definition and initialization of array variables (DEF, SET, REP): Further Information

Further information (SET)

initialization during definition
● Starting with the 1st array element, as many array elements are assigned with the values

from the value list as there are elements programmed in the value list.

● A value of 0 is assigned to array elements without explicitly declared values in the value list
(gaps in the value list).

● For variables of the AXIS data type, gaps in the value list are not permitted.

● If the value list contains more values than there are array elements defined, an alarm will be
displayed.

Value assignment in program execution
In the case of value assignment in program execution, the rules described above for definition
apply. The following options are also supported:

● Expressions are also permitted as elements in the value list.

● Value assignment starts with the programmed array index. Values can be assigned
selectively to subarrays.

Example:

Program code Comments
DEF INT ARRAY[5,5] ; Array definition
ARRAY[0,0]=SET(1,2,3,4,5) ; Value assignment to the first 5 array ele-

ments [0,0] - [0,4]
FELD[0,0]=SET(1,2, , ,5) ; Value assignment with gap to the first 5 array

elements [0,0] - [0,4], array elements[0,2] and
[0,3] = 0

ARRAY[2,3]=SET(VARIABLE,4*5.6) ; Value assignment with variable and expression
starting at array index [2,3]:
[2,3] = VARIABLE
[2,4] = 4 * 5.6 = 22.4

Further information (REP)

initialization during definition
● All or the optionally specified number of array elements are initialized with the specified

value (constant).

● Variables of the FRAME data type cannot be initialized.

Example:

Program code Comments
DEF REAL varName[10]=REP(3.5,4) ; Initialize array definition and array ele-

ments [0] to [3] with value 3.5.

Work preparation
3.1 Flexible NC programming

NC programming
412 Programming Manual, 06/2019, A5E47437142B AA

Value assignment in program execution
In the case of value assignment in program execution, the rules described above for definition
apply. The following options are also supported:

● Expressions are also permitted as elements in the value list.

● Value assignment starts with the programmed array index. Values can be assigned
selectively to subarrays.

Examples:

Program code Comments
DEF REAL varName[10] ; Array definition
varName[5]=REP(4.5,3) ; Array elements [5] to [7] = 4.5
R10=REP(2.4,3) ; R-parameters R10 to R12 = 2.4
DEF FRAME FRM[10] ; Array definition
FRM[5] = REP(CTRANS (X,5)) ; Array elements [5] to [9] = CTRANS(X,5)

See also
Definition and initialization of array variables (DEF, SET, REP) (Page 407)

3.1.1.13 Data types
The following data types are available in the NC:

Data type Meaning Value Range
INT Integer with sign -2147483648 ... +2147483647
REAL Real number (LONG REAL to IEEE) ±(∼2,2*10-308 … ∼1,8*10+308)
BOOL Truth value TRUE (1) and FALSE (0) 1, 0
CHAR ASCII character ASCII code 0 to 255
STRING Character string of a defined length Maximum of 200 characters (no special

characters)
AXIS Axis/spindle identifier Channel axis identifier
FRAME Geometric parameters for static coordinate

transformation (translation, rotation, scal‐
ing, mirroring)

Implicit data type conversions
The following data type conversions are possible and are performed implicitly during
assignments and parameter transfers:

from ↓/ to → REAL INT BOOL
REAL x o &
INT x x &

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 413

from ↓/ to → REAL INT BOOL
BOOL x x x
x : Possible without restrictions
o: Data loss possible due to the range of values being overshot ⇒ alarm;
 rounding: decimal place value ≥ 0.5 ⇒ round up, decimal place value < 0.5 ⇒ round down
&: value ≠ 0 ⇒ TRUE, value== 0 ⇒ FALSE

See also
Variables (Page 381)

3.1.1.14 Variable minimum, maximum and range (MINVAL, MAXVAL and BOUND)
The MINVAL and MAXVAL commands compare the values of two variables. The smaller value
(in the case of MINVAL) or the larger value (in the case of MAXVAL) respectively is delivered as
a result.

The BOUND command tests whether the value of a test variable falls within a defined range of
values.

Syntax
<smaller value>=MINVAL(<variable1>,<variable2>)
<larger value>=MAXVAL(<variable1>,<variable2>)
<return value>=<BOUND>(<minimum>,<maximum>,<test variable>)

Meaning

MINVAL: Obtains the smaller value of two variables
(<variable1>, <variable2>)

<smaller value>: Result variable for the MINVAL command
Set to the smaller variable value.

MAXVAL: Obtains the larger value of two variables (<variable1>, <variable2>)
<larger value>: Result variable for the MAXVAL command

Set to the larger variable value.
BOUND: Tests whether a variable (<test variable) is within a defined range of

values.
<minimum>: Variable which defines the minimum value of the range of values.
<maximum>: Variable which defines the maximum value of the range of values.
<return value>: Result variable for the BOUND command

If the value of the test variable is within the defined range of values, the
result variable is set to the value of the test variable.
If the value of the test variable is greater than the maximum value, the
result variable is set to the maximum value of the definition range.
If the value of the test variable is less than the minimum value, the result
variable is set to the minimum value of the definition range.

Work preparation
3.1 Flexible NC programming

NC programming
414 Programming Manual, 06/2019, A5E47437142B AA

Note

MINVAL, MAXVAL, and BOUND can also be programmed in synchronized actions.

Note
Behavior if values are equal

If the values are equal, MINVAL/MAXVAL are set to this equal value. In the case of BOUND the
value of the variable to be tested is returned again.

Example

Program code Comment
DEF REAL rVar1=10.5, rVar2=33.7, rVar3, rVar4, rVar5, rValMin, rValMax, rRetVar
rValMin=MINVAL(rVar1,rVar2) ; rValMin is set to value 10.5.
rValMax=MAXVAL(rVar1,rVar2) ; rValMax is set to value 33.7.
rVar3=19.7
rRetVar=BOUND(rVar1,rVar2,rVar3) ; rVar3 is within the limits, rRetVar is set to 19.7.
rVar3=1.8
rRetVar=BOUND(rVar1,rVar2,rVar3) ; rVar3 is below the minimum limit, rRetVar is set to

10.5.
rVar3=45.2
rRetVar=BOUND(rVar1,rVar2,rVar3) ; rVar3 is above the maximum limit, rRetVar is set to

33.7.

3.1.1.15 Check availability of a variable (ISVAR)
The predefined ISVAR function can be used to check whether a system/user variable (e.g.
machine data, setting data, system variable, general variables such as GUD) is known in the
NC.

Variable
The variables to be queried have the following structure:

Dimensionless variable: <Variable>
One-dimensional variable without array index: <Variable>[]
One-dimensional variable with array index n: <Variable>[<n>]
Two-dimensional variable without array index: <Variable>[,]
Two-dimensional variable with array indices n
and m:

<Variable>[<n>,<m>]

Syntax
<Result>=ISVAR(<Variable>[<n>,<m>])

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 415

Meaning

<result>: Return value
Data type: BOOL
Range of values: 1 Variable available

0 Variable unknown
ISVAR: Checks whether the specified system/user variable is known in the NC.
<Variable>: Name of the system/user variable

Data type: STRING
<n>: Array index of the first dimension (optional)

Data type: INT
<m>: Array index of the second dimension (optional)

Data type: INT

The following checks are made in accordance with the transfer parameter:

● Is the name known?

● Is the variable an array?

● Is it a one- or two-dimensional array?

● Is the respective array index in the permissible range?

Only if all checks are positive, TRUE (1) is returned.

If a check is negative or a syntax error has occurred, FALSE (0) is returned.

Examples

Program code Comment
DEF INT VAR1
DEF BOOL IS_VAR=FALSE
N10 IS_VAR=ISVAR("VAR1") ; IS_VAR is in this case TRUE.

 Program code Comment
DEF REAL VARARRAY[10,10]
DEF BOOL IS_VAR=FALSE
N10 IS_VAR=ISVAR("VARARRAY[,]") ; IS_VAR is in this case TRUE, is a two-di-

mensional array.
N20 IS_VAR=ISVAR("VARARRAY") ; IS_VAR is TRUE, variable exists.
N30 IS_VAR=ISVAR("VARARRAY[8,11]") ; IS_VAR is FALSE, array index is not per-

mitted.
N40 IS_VAR=ISVAR("VARARRAY[8,8") ; IS_VAR is FALSE, "]" missing (syntax er-

ror).
N50 IS_VAR=ISVAR("VARARRAY[,8]") ; IS_VAR is TRUE, array index is permitted.
N60 IS_VAR=ISVAR("VARARRAY[8,]") ; IS_VAR is TRUE, array index is permitted.

Work preparation
3.1 Flexible NC programming

NC programming
416 Programming Manual, 06/2019, A5E47437142B AA

 Program code Comment
DEF BOOL IS_VAR=FALSE
N100 IS_VAR=ISVAR("$MC_GCODE_RESET_VALUES[1]" ; Transfer parameter is a machine

data item, IS_VAR is TRUE.

 Program code Comment
DEF BOOL IS_VAR=FALSE
N10 IS_VAR=ISVAR("$P_EP") ; IS_VAR is in this case TRUE.
N20 IS_VAR=ISVAR("$P_EP[X]") ; IS_VAR is in this case TRUE.

3.1.1.16 Reading attribute values / data type (GETVARPHU, GETVARAP, GETVARLIM,
GETVARDIM, GETVARDFT, GETVARTYP)

The attribute values of system/user variables can be read with the predefined GETVARPHU,
GETVARAP, GETVARLIM and GETVARDFT functions, the data type of a system/user
variable with GETVARTYP.

Read physical unit

Syntax:
<Result>=GETVARPHU(<name>)

Meaning:

<result>: Numeric value of the physical unit
Data type: INT
Range of values: See Table in "Attribute: Physical unit (PHU) (Page 400)"

In case of fault
- 2 The specified <name> has not been assigned to a sys‐

tem parameter or a user variable.
GETVARPHU: Reading of the physical unit of a system/user variable
<name>: Name of the system/user variables

Data type: STRING

Example:
The NC contains the following GUD variables:

DEF CHAN REAL PHU 42 LLI 0 ULI 10000 electric

Program code Comment
DEF INT result=0
result=GETVARPHU("elec-
tric")

; Determine the physical unit of the GUD variables.

IF (result < 0) GOTOF error

The value 42 is returned as result. This corresponds to the physical unit [kW].

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 417

Note

GETVARPHU can be used, for example, to check whether both variables have the expected
physical units in a variable assignment a = b.

Read access right

Syntax:
<Result>=GETVARAP(<name>,<access>)

Meaning:

<result>: Protection level for the specified <access>
Data type: INT
Range of val‐
ues:

0 ... 7 See "Attribute: Access rights (APR, APW, APRP, APWP,
APRB, APWB) (Page 402)".

In case of fault
- 1 Cannot be written (only relevant for <Access> "WP" and

"WB")
- 2 The specified <name> has not been assigned to a system

parameter or a user variable.
- 3 Incorrect value for <access>

GETVARAP: Reading of the access right to a system/user variable
<name>: Name of the system/user variables

Data type: STRING
<access>: Type of access

Data type: STRING
Range of val‐
ues:

"RP" Read via part program
"WP" Write via part program
"RB" Read via OPI
"WB" Write via OPI

Example:

Program code Comment
DEF INT result=0
result=GETVAR-
AP("$TC_MAP8","WB")

; Determine the access protection for the system pa-
rameter "magazine position" with regard to writing via
OPI.

IF (result < 0) GOTOF error

The value 7 is returned as result. This corresponds to the key switch position 0 (= no access
protection).

Work preparation
3.1 Flexible NC programming

NC programming
418 Programming Manual, 06/2019, A5E47437142B AA

Note

GETVARAP can be used, for example, to implement a checking program that checks the
access rights expected by the application.

Read limit values

Syntax:
<Status>=GETVARLIM(<name>,<limit value>,<result>)

Meaning:

<Status>: Function status
Data type: INT
Range of val‐
ues:

1 OK
-1 No limit value defined

(for variables of type AXIS, STRING, FRAME)
-2 The specified <name> has not been assigned to a system

parameter or a user variable.
-3 Incorrect value for <limit value>

GETVARLIM: Reading of the lower/upper limit value of a system/user variable
<name>: Name of the system/user variables

Data type: STRING
<limit
value>:

specifies which limit value should be read out
Data type: CHAR
Range of val‐
ues:

"L"
:

= lower limit value

"U"
:

= upper limit value

<result>: Return of the limit value
Data type: VAR REAL

Example:

Program code Comment
DEF INT state=0
DEF REAL result=0
state=GETVARLIM("$MA_MAX_AX_VE-
LO","L",result)

Determine the lower limit value for MD32000
$MA_MAX_AX_VELO.

IF (result < 0) GOTOF error

Read attributes / data type

Syntax:
<Result>=GETVARDIM(<Name>, Index)

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 419

Meaning:

<Result>: Dimension / number of array <Index>
Data type: INT

GETVARDIM: Reading of the lower/upper limit value of a system/user variable
<Name>: Reading the number of elements of the array

Data type: STRING
<Index>: Number of the array, max. 3.

Data type: INT

Example:

Program code Comment
N5 DEF REAL myReal[5,4]
N10 R1 = GETVATDIM("myReal",1)
N15 R2 = GETVATDIM("myReal",2)

R1 = 5
R2 = 4

Read default value

Syntax:
<Status>=GETVARDFT(<name>,<result>[,<index_1>,<index_2>,<index_3>])

Meaning:

<Status>: Function status
Data type: INT
Range of val‐
ues:

1 OK
-1 No default value available

(e.g. because <result> has the wrong type for <name>)
-2 The specified <name> has not been assigned to a system

parameter or a user variable.
-3 Incorrect value for <index_1>, dimension less than one (=

no array = scalar)
-4 Incorrect value for <index_2>
-5 Incorrect value for <index_3>

GETVARDFT: Reading of the default value of a system/user variable
<name>: Name of the system/user variables

Data type: STRING
<result>: Return of the default value

Data type: VAR REAL
(when reading the default value of variables of the types INT, RE‐
AL, BOOL, AXIS)
VAR STRING
(when reading the default value of variables of the types STRING
and CHAR)
VAR FRAME
(when reading the default value of variables of the type FRAME)

Work preparation
3.1 Flexible NC programming

NC programming
420 Programming Manual, 06/2019, A5E47437142B AA

<index_1>: Index to the first dimension (optional)
Data type: INT
Not programmed means = 0

<index_2>: Index to the second dimension (optional)
Data type: INT
Not programmed means = 0

<index_3>: Index to the third dimension (optional)
Data type: INT
Not programmed means = 0

Example:

Program code Comment
DEF INT state=0
DEF REAL resultR=0 ; Variable to accept the default values

of the types INT, REAL, BOOL, AXIS.
DEF FRAME resultF=0 ; Variable to accept the default values

of the type FRAME

IF (GETVARTYP("$MA_MAX_AX_VELO") <> 4)
GOTOF error

state=GETVARDFT("$MA_MAX_AX_VELO",
resultR, AXTOINT(X))

; Determine the default value of the
"X" axis.

IF (result < 0) GOTOF error

IF (GETVARTYP("$TC_TP8") <> 3) GOTOF error
state=GETVARDFT("$TC_TP8", resultR)

IF (GETVARTYP("$P_UBFR") <> 7) GOTOF error
state=GETVARDFT("$P_UBFR", resultF)

Read data type

Syntax:
<Result>=GETVARTYP(<name>)

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 421

Meaning:

<result>: Data type of the specified system/user variables
Data type: INT
Range of val‐
ues:

1 = BOOL
2 = CHAR
3 = INT
4 = REAL
5 = STRING
6 = AXIS
7 = FRAME
In case of fault
< 0 The specified <name> has not been assigned to a system

parameter or a user variable.
GETVARTYP: Reading of the data type of a system/user variable
<name>: Name of the system/user variables

Data type: STRING

Example:

Program code Comment
DEF INT result=0
DEF STRING name="R"
result=GETVARTYP(name) ; Determine the type of the R parameter.
IF (result < 0) GOTOF error

The value 4 is returned as result. This corresponds to the REAL data type.

3.1.1.17 Possible type conversions
The constant numeric value, the variable, or the expression assigned to a variable must be
compatible with the variable type. If this is the case, the type is automatically converted when
the value is assigned.

Possible type conversions

to REAL INT BOOL CHAR STRING AXIS FRAME
from
REAL yes Yes* Yes1) Yes* – – –
INT yes yes Yes1) Yes2) – – –
BOOL yes yes yes yes yes – –
CHAR yes yes Yes1) yes yes – –
STRING – – Yes4) Yes3) yes – –
AXIS – – – – – yes –
FRAME – – – – – – yes

Work preparation
3.1 Flexible NC programming

NC programming
422 Programming Manual, 06/2019, A5E47437142B AA

Explanation

* At type conversion from REAL to INT, fractional values that are >=0.5 are rounded up,
others are rounded down (cf. ROUND function).

1) Value <> 0 is equivalent to TRUE; value == 0 is equivalent to FALSE
2) If the value is in the permissible range
3) If only 1 character
4) String length 0 = >FALSE, otherwise TRUE

Note

If conversion produces a value greater than the target range, an error message is output.

If mixed types occur in an expression, type conversion is automatic. Type conversions are also
possible in synchronous actions, see Chapter "Motion-synchronous actions, implicit type
conversion".

3.1.2 Indirect programming

3.1.2.1 Indirectly programming addresses
When indirectly programming addresses, the extended address (<index>) is replaced by a
variable with a suitable type.

Note

It is not possible to indirectly program addresses for:
● N (block number)
● L (subprogram)
● Settable addresses

(e.g. X[1] instead of X1 is not permissible)

Syntax
<ADDRESS>[<Index>]

Meaning

<ADDRESS>[...]: Fixed address with extension (index)
<index>: Variable, e.g. for spindle number, axis,

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 423

Examples

Example 1: Indirectly programming a spindle number
Direct programming:

Program code Comment
S1=300 ; Speed in rpm for the spindle number 1.

Indirect programming:

Program code Comment
DEF INT SPINU=1 ; Defining variables, type INT and value assignment.
S[SPINU]=300 ; Speed 300 rpm for the spindle, whose number is saved in

the SPINU variable (in this example 1, the spindle with the
number 1).

Example 2: Indirectly programming an axis
Direct programming:

Program code Comment
FA[U]=300 ; Feedrate 300 for axis "U".

Indirect programming:

Program code Comment
DEF AXIS AXVAR2=U ; Defining a variable, type AXIS and value assignment.
FA[AXVAR2]=300 ; Feedrate of 300 for the axis whose address name is saved

in the variables with the name AXVAR2.

Example 3: Indirectly programming an axis
Direct programming:

Program code Comment
$AA_MM[X] ; Read probe measured value (MCS) of axis "X".

Indirect programming:

Program code Comment
DEF AXIS AXVAR3=X ; Defining a variable, type AXIS and value assignment.
$AA_MM[AXVAR3] ; Read probe measured value (MCS) whose name is saved in

the variables AXVAR3.

Example 4: Indirectly programming an axis
Direct programming:

Program code
X1=100 X2=200

Work preparation
3.1 Flexible NC programming

NC programming
424 Programming Manual, 06/2019, A5E47437142B AA

Indirect programming:

Program code Comment
DEF AXIS AXVAR1 AXVAR2 ; Defining two type AXIS variables.
AXVAR1=(X1) AXVAR2=(X2) ; Assigning the axis names.
AX[AXVAR1]=100 AX[AXVAR2]=200 ; Traversing the axes whose address names are

saved in the variables with the names AXVAR1
and AXVAR2

Example 5: Indirectly programming an axis
Direct programming:

Program code
G2 X100 I20

Indirect programming:

Program code Comment
DEF AXIS AXVAR1=X ; Defining a variable, type AXIS and value assignment.
G2 X100 IP[AXVAR1]=20 ; Indirect programming the center point data for the axis,

whose address name is saved in the variable with the name
AXVAR1.

Example 6: Indirectly programming array elements
Direct programming:

Program code Comment
DEF INT ARRAY1[4,5] ; Defining array 1

Indirect programming:

Program code Comment
DEFINE DIM1 AS 4 ; For array dimensions, array sizes must be specified as

fixed values.
DEFINE DIM2 AS 5
DEF INT ARRAY[DIM1,DIM2]
ARRAY[DIM1-1,DIM2-1]=5

Example 7: Indirect subprogram call

Program code Comment
CALL "L" << R10 ; Call the program, whose number is located in R10 (string

cascading).

3.1.2.2 Indirectly programming G commands
Indirect programming of G commands permits cycles to be effectively programmed.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 425

Syntax
G[<group>]=<number>

Meaning

G[...]: G command with extension (index)
<group>: Index parameter: G group

Type: INT
<number>: Variable for the G command number

Type: INT or REAL

Note

Generally, only G commands that do not determine the syntax can be indirectly programmed.

Only G group 1 is possible from the G commands that determine the syntax.
The syntax-determining G commands of G groups 2, 3 and 4 are not possible.

Note

Arithmetic functions are not permitted in the indirect G command programming. If it is
necessary to calculate the G command number, this must be done in a separate part program
line before the indirect G command programming.

Examples

Example 1: Adjustable work offset (G group 8)

Program code Comment
N1010 DEF INT INT_VAR
N1020 INT_VAR=2
...
N1090 G[8]=INT_VAR G1 X0 Y0 ;G54
N1100 INT_VAR=INT_VAR+1 ; G command calculation
N1110 G[8]=INT_VAR G1 X0 Y0 ;G55

Example 2: Level selection (G group 6)

Program code Comment
N2010 R10=$P_GG[6] ; Read active G command of G group 6
...
N2090 G[6]=R10

References
For information on the G groups, see:
Programming Manual, Fundamentals; Section "G groups"

Work preparation
3.1 Flexible NC programming

NC programming
426 Programming Manual, 06/2019, A5E47437142B AA

3.1.2.3 Indirectly programming position attributes (GP)
Position attributes, e.g. the incremental or absolute programming of the axis position, can be
indirectly programmed as variables in conjunction with the key word GP.

Application
The indirect programming of position attributes is used in replacement cycles, as in this case,
the following advantage exists over programming position attributes as keyword (e.g. IC,
AC, ...):

As a result of the indirect programming as variable, no CASE statement is required, which would
otherwise branch for all possible position attributes.

Syntax
<POSITIONING COMMAND>[<axis/spindle>]=
GP(<position>,<position attribute)
<axis/spindle>=BP(<position>,<position attribute)

Meaning

<POSITIONING COMMAND>[]: The following positioning commands can be programmed to‐
gether with the key word GP:
POS, POSA,SPOS, SPOSA
Also possible:
● All axis and spindle identifiers present in the channel:

<axis/spindle>
● Variable axis/spindle identifier AX

<axis/spindle>: Axis/spindle that is to be positioned
GP(): Key word for positioning
<position>: Parameter 1

Axis/spindle position as constant or variable
<position attribute>: Parameter 2

Position attribute (e.g. position approach mode as a variable
(e.g. $P_SUB_SPOSMODE) or as key word (IC, AC, ...)

The values supplied from the variables have the following significance:

Value Meaning Permissible for:
0 No change to the position attribute
1 AC POS, POSA,SPOS, SPOSA,AX, axis address
2 IC POS, POSA,SPOS, SPOSA,AX, axis address
3 DC POS, POSA,SPOS, SPOSA,AX, axis address
4 ACP POS, POSA,SPOS, SPOSA,AX, axis address
5 ACN POS, POSA,SPOS, SPOSA,AX, axis address
6 OC -
7 PC -

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 427

Value Meaning Permissible for:
8 DAC POS, POSA,AX, axis address
9 DIC POS, POSA,AX, axis address
10 RAC POS, POSA,AX, axis address
11 RIC POS, POSA,AX, axis address
12 CAC POS, POSA
13 CIC POS, POSA
14 CDC POS, POSA
15 CACP POS, POSA
16 CACN POS, POSA

Example
For an active synchronous spindle coupling between the leading spindle S1 and the following
spindle S2, the following replacement cycle to position the spindle is called using the SPOS
command in the main program.

Positioning is realized using the statement in N2230:
SPOS[1]=GP($P_SUB_SPOSIT,$P_SUB_SPOSMODE)
SPOS[2]=GP($P_SUB_SPOSIT,$P_SUB_SPOSMODE)
The position to be approached is read from the system variable $P_SUB_SPOSIT; the position
approach mode is read from the system variable $P_SUB_SPOSMODE.

Program code Comment
N1000 PROC LANG_SUB DISPLOF SBLOF
...
N2100 IF($P_SUB_AXFCT==2)
N2110 ; Replacement of the SPOS / SPOSA / M19

command for an active synchronous spindle
coupling

N2185 DELAYFSTON ; Start of stop delay area
N2190 COUPOF(S2,S1) ; Deactivate synchronous spindle coupling
N2200 ; Position leading and following spindles
N2210 IF($P_SUB_SPOS==TRUE) OR
($P_SUB_SPOSA==TRUE)

N2220 ; Positioning the spindle with SPOS:
N2230 SPOS[1]=GP($P_SUB_SPOSIT,
$P_SUB_SPOSMODE)

 SPOS[2]=GP($P_SUB_SPOSIT,
$P_SUB_SPOSMODE)

N2250 ELSE
N2260 ; Positioning the spindle using M19:
N2270 M1=19 M2=19 ; Position leading and following spindles
N2280 ENDIF
N2285 DELAYFSTOF ; End of stop delay area
N2290 COUPON(S2,S1) ; Activate synchronous spindle coupling
N2410 ELSE

Work preparation
3.1 Flexible NC programming

NC programming
428 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N2420 ; Query on further replacements
...
N3300 ENDIF
...
N9999 RET

Supplementary conditions
● The indirect programming of position attributes is not possible in synchronized actions.

References
Function Manual Basic Functions; BAG, Channel, Program Operation, Reset Response (K1),
Section: Replacement of NC functions by subprograms

3.1.2.4 Indirectly programming part program lines (EXECSTRING)
Using the part program command EXECSTRING, it is possible to execute a previously
generated string variable as part program line.

Syntax
EXECSTRING is programmed in a separate part program line:
EXECSTRING (<string_variable>)

Meaning

EXECSTRING: Command to execute a string variable as part program line
<string variable>: Type STRING variable, that includes the actual part program line to be

executed

Note

With EXECSTRING, all part program constructions that can be programmed in the program
section of a part program, with the exception of control structures (Page 464), can be extracted.
This means that PROC and DEF statements are excluded as well as the general use in INI and
DEF files.

Example

Program code Comment
N100 DEF STRING[100] MY_BLOCK ; Definition of string variables to accept the part

program line to be executed.
N110 DEF STRING[10] MFCT1="M7"
...

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 429

Program code Comment
N200 EXECSTRING(MFCT1 <<
"M4711")

; Execute part program line "M7 M4711".

...
N300 R10=1
N310 MY_BLOCK="M3"
N320 IF(R10)
N330 MY_BLOCK = MY_BLOCK <<
MFCT1

N340 ENDIF
N350 EXECSTRING(MY_BLOCK) ; Execute part program line "M3 M7".

3.1.3 Instructions

3.1.3.1 Arithmetic functions

Operator / arithmetic function Meaning
+ Addition
- Subtraction
* Multiplication
/ 1) Division 1)

DIV 1) Integer number division 1)

MOD 1) Modulo division (supplies the remainder of the integer number divi‐
sion) 1)

: Chain operator for FRAME variables
SIN() Sine
COS() Cosine
TAN() Tangent
ASIN() Arc sine
ACOS() Arc cosine
ATAN2(,) 1) Arc tangent2 1)

SQRT() Square root
ABS() Absolute value
POT() 2nd power (square)
TRUNC() Integer component

The accuracy for comparison commands can be set using TRUNC
(see "Precision correction on comparison errors (TRUNC)
(Page 435)")

ROUND() Round to integer
LN() Natural logarithm
EXP() Exponential function

Work preparation
3.1 Flexible NC programming

NC programming
430 Programming Manual, 06/2019, A5E47437142B AA

MINVAL () Lower value of two variables
(see "Variable minimum, maximum and range (MINVAL, MAXVAL
and BOUND) (Page 414)")

MAXVAL () Larger value of two variables
(see "Variable minimum, maximum and range (MINVAL, MAXVAL
and BOUND) (Page 414)")

BOUND () Variable value within the defined value range
(see "Variable minimum, maximum and range (MINVAL, MAXVAL
and BOUND) (Page 414)")

CTRANS() Offset
CROT () Rotation
CSCALE() Change of scale
CMIRROR() Mirroring
1) See the paragraph, "Examples"

Programming
The usual mathematical notation is used for arithmetic functions. Priorities for execution are
indicated by parentheses. Angles are specified for trigonometry functions and their inverse
functions (right angle = 90°).

Examples

Division: /
(type REAL) = type INT or type REAL) / (type INT or type REAL);

Example: 3 / 4 = 0.75

Integer number division: DIV
(type INT) = (type INT or REAL) / (type INT or REAL);

Example: 7 DIV 4.1 = 1

Modulo division (supplies the remainder of the integer number division): MOD
(type REAL) = (type INT or REAL) MOD (type INT or REAL);

Example: 7 MOD 4.1 = 2.9

Arc tangent 2: ATAN2
The arithmetic function ATAN2 calculates the angle of the total vector from two mutually
perpendicular vectors.

The result is in one of four quadrants (-180° < 0 < +180°).

The angular reference is always based on the 2nd value in the positive direction.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 431

Programming examples

Program code Comment
R1=R1+1 ; New R1 = old R1 + 1
R1=R2+R3 R4=R5-R6 R7=R8*R9
R10=R11/R12 R13=SIN(25.3)
R14=R1*R2+R3 ; Multiplication or division takes precedence

over addition or subtraction.
R14=(R1+R2)*R3 ; Expressions and parentheses are calculated

first.
R15=SQRT(POT(R1)+POT(R2)) ; Inner parentheses are resolved first:

R15 = square root of ((R1^2 + R2^2))
RESFRAME=FRAME1:FRAME2
FRAME3=CTRANS(…):CROT(…)

; FRAME logic operation with chain operator
Value assignment at a FRAME component

3.1.3.2 Comparison and logic operations
Comparison operations can be used, for example, to formulate a jump condition. Complex
expressions can also be compared.

The comparison operations are applicable to variables of type CHAR, INT, REAL and BOOL.
The code value is compared with the CHAR type.
For types STRING, AXIS and FRAME, the following are possible: == and <>, which can be used
for STRING type operations, even in synchronous actions.

The result of comparison operations is always of BOOL type.

Logic operators are used to link truth values.

The logical operations can only be applied to type BOOL variables. However, they can also be
applied to the CHAR, INT and REAL data types via internal type conversion.

Work preparation
3.1 Flexible NC programming

NC programming
432 Programming Manual, 06/2019, A5E47437142B AA

For the logic (Boolean) operations, the following applies to the BOOL, CHAR, INT and REAL
data types:

● 0 corresponds to: FALSE

● Not equal to 0 means: TRUE

Bit-by-bit logic operators

Logic operations can also be applied to single bits of types CHAR and INT. Type conversion is
automatic.

Programming

Relational operator Meaning
== Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Logic operator Meaning
AND AND
OR OR
NOT Negation
XOR Exclusive OR

Bit-by-bit logic operator Meaning
B_AND Bit-by-bit AND
B_OR Bit-by-bit OR
B_NOT Bit-by-bit negation
B_XOR Bit-by-bit exclusive OR

Note

In arithmetic expressions, the execution order of all the operators can be specified by
parentheses, in order to override the normal priority rules.

Note

Spaces must be left between BOOLEAN operands and operators.

Note

The operator B_NOT only refers to one operand. This is located after the operator.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 433

Examples

Example 1: Comparison operators
IF R10>=100 GOTOF DEST
or
R11=R10>=100
IF R11 GOTOF DEST
The result of the R10>=100 comparison is first buffered in R11.

Example 2: Logic operators
IF (R10<50) AND ($AA_IM[X]>=17.5) GOTOF DESTINATION
or
IF NOT R10 GOTOB START
NOT only refers to one operand.

Example 3: Bit-by-bit logic operators
IF $MC_RESET_MODE_MASK B_AND 'B10000' GOTOF ACT_PLANE

3.1.3.3 Priority of the operations
Each operator is assigned a priority. When an expression is evaluated, the operators with the
highest priority are always applied first. Where operators have the same priority, the evaluation
is from left to right.

In arithmetic expressions, the execution order of all the operators can be specified by
parentheses, in order to override the normal priority rules.

Order of operators

From the highest to lowest priority

1. NOT, B_NOT Negation, bit-by-bit negation
2. *, /, DIV, MOD Multiplication, division
3. +, – Addition, subtraction
4. B_AND Bit-by-bit AND
5. B_XOR Bit-by-bit exclusive OR
6. B_OR Bit-by-bit OR
7. AND AND
8. XOR Exclusive OR
9. OR OR
10. << Concatenation of strings, result type STRING
11. ==, <>, >, <, >=, <= Comparison operators

Note

The concatenation operator ":" for Frames must not be used in the same expression as other
operators. A priority level is therefore not required for this operator.

Work preparation
3.1 Flexible NC programming

NC programming
434 Programming Manual, 06/2019, A5E47437142B AA

Example: IF statement
If (otto==10) and (anna==20) gotof end

3.1.3.4 Precision correction on comparison errors (TRUNC)
The TRUNC command truncates the operand multiplied by a precision factor.

Settable precision for comparison commands
Program data of type REAL is displayed internally with 64 bits in IEEE format. This display
format can cause decimal numbers to be displayed imprecisely and lead to unexpected results
when compared with the ideally calculated values.

Relative equality
To prevent the imprecision caused by the display format from interfering with program flow, the
comparison commands do not check for absolute equality, but rather for relative equality.

Syntax

Precision correction on comparison errors
TRUNC (R1*1000)

Meaning

TRUNC: Truncate decimal places

Relative quality of 10-12 taken into account for
● Equality: (==)

● Inequality: (<>)

● Greater than or equal to: (>=)

● Less than or equal to: (<=)

● Greater/less than: (><) with absolute equality

● Greater than: (>)

● Less than: (<)

Compatibility
For compatibility reasons, the check for relative quality for (>) and (<) can be deactivated by
setting machine data MD10280 $MN_ PROG_FUNCTION_MASK Bit0 = 1.

Note

Comparisons with data of type REAL are subject to a certain imprecision for the above reasons.
If deviations are unacceptable, use INTEGER calculation by multiplying the operands by a
precision factor and then truncating with TRUNC.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 435

Synchronized actions
The response described for the comparison commands also applies to synchronized actions.

Examples

Example 1: Precision considerations

Program code Comments
N40 R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values
N41 IF ABS(R2-R1) > R3 GOTOF ERROR ; Jump would have been executed up

until now
N42 M30 ; End of program
N43 ERROR: SETAL(66000)
R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values
R11=TRUNC(R1*1000) R12=TRUNC(R2*1000)

R13=TRUNC(R3*1000)

; Accuracy correction

IF ABS(R12-R11) > R13 GOTOF ERROR ; Jump is no longer executed
M30 ; End of program
ERROR: SETAL(66000)

Example 2: Calculate and evaluate the quotient of both operands

Program code Comments
R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values
IF ABS((R2-R1)/R3)-1) > 10EX-5 GOTOF ERROR ; Jump is not executed
M30 ; End of program
ERROR: SETAL(66000)

3.1.3.5 Roundup (ROUNDUP)
Input values, type REAL (fractions with decimal point) can be rounded up to the next higher
integer number using the ROUNDUP" function.

Syntax
ROUNDUP(<value>)

Meaning

ROUNDUP: Command to roundup an input value
<value>: Input value, type REAL

Note

Input value, type INTEGER (an integer number) is returned unchanged.

Work preparation
3.1 Flexible NC programming

NC programming
436 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Various input values and their rounding up results

Example Rounding up result
ROUNDUP(3.1) 4.0
ROUNDUP(3.6) 4.0
ROUNDUP(-3.1) -3.0
ROUNDUP(-3.6) -3.0
ROUNDUP(3.0) 3.0
ROUNDUP(3) 3.0

Example 2: ROUNDUP in the NC program

Program code
N10 X=ROUNDUP(3.5) Y=ROUNDUP(R2+2)
N15 R2=ROUNDUP($AA_IM[Y])
N20 WHEN X=100 DO Y=ROUNDUP($AA_IM[X])
...

3.1.4 String operations

Sting operations
In addition to the classic operations "assign" and "comparison" the following string operations
are possible:

● Type conversion to STRING (AXSTRING) (Page 438)

● Type conversion from STRING (NUMBER, ISNUMBER, AXNAME) (Page 438)

● Concatenation of strings (<<) (Page 439)

● Conversion to lower/upper case letters (TOLOWER, TOUPPER) (Page 441)

● Determine length of string (STRLEN) (Page 441)

● Search for character/string in the string (INDEX, RINDEX, MINDEX, MATCH) (Page 442)

● Selection of a substring (SUBSTR) (Page 443)

● Reading and writing of individual characters (Page 444)

● Formatting a string (SPRINT) (Page 445)

Special significance of the 0 character
Internally, the 0 character is interpreted as the end identifier of a string. If a character is replaced
with the 0 character, the string is truncated.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 437

Example:

Program code Comment
DEF STRING[20] STRG="axis . stationary"
STRG[6]="X"
MSG(STRG) ; Supplies the message "axis X sta-

tionary".
STRG[6]=0
MSG(STRG) ; Supplies the message "axis".

3.1.4.1 Type conversion to STRING (AXSTRING)
The function "type conversion to STRING" allows variables of different types to be used as a
component of a message (MSG).

When using the << operator this is realized implicitly for data types INT, REAL, CHAR and
BOOL (see " Concatenation of strings (<<) (Page 439) ").

An INT value is converted to normal readable format. REAL values convert with up to 10
decimal places.

Type AXIS variables can be converted to STRING using the AXSTRING command.

Syntax
<STRING_RES> = << <any_type>
<STRING_RES> = AXSTRING(<axis identifier>)

Meaning

<STRING_RES>: Variable for the result of the type conversion
Type: STRING

<any_type>: Variable types INT, REAL, CHAR, STRING and BOOL
AXSTRING: The AXSTRING command supplies the specified axis identifier as

string.
<axis identifier>: Variable for axis identifier

Type: AXIS

Note

FRAME variables cannot be converted.

3.1.4.2 Type conversion from STRING (NUMBER, ISNUMBER, AXNAME)
A conversion is made from STRING to REAL using the NUMBER command. The ability to be
converted can be checked using the ISNUMBER command.

A string is converted into the axis data type using the AXNAME command.

Work preparation
3.1 Flexible NC programming

NC programming
438 Programming Manual, 06/2019, A5E47437142B AA

Syntax
<REAL_RES>=NUMBER("<string>")
<BOOL_RES>=ISNUMBER("<string>")
<AXIS_RES>=AXNAME("<string>")

Meaning

NUMBER: The NUMBER command returns the number represented by the <string> as RE‐
AL value.

<string>: Type STRING variable to be converted
<REAL_RES>: Variable for the result of the type conversion with NUMBER

Type: REAL
ISNUMBER: The ISNUMBER command checks whether the <string> can be converted into a

valid number.
<BOOL_RES>: Variable for the result of the interrogation with ISNUMBER

Type: BOOL
Value: TRUE ISNUMBER supplies the value TRUE, if the <string>

represents a valid REAL number in compliance with
the language rules.

FALSE If ISNUMBER supplies the value FALSE, when call‐
ing NUMBER with the same <string>, an alarm is
initiated.

AXNAME: The AXNAME command converts the specified <string> into an axis identifier.
Note:
If the <string> cannot be assigned a configured axis identifier, an alarm is initi‐
ated.

<AXIS_RES>: Variable for the result of the type conversion with AXNAME
Type: AXIS

Example

Program code Comment
DEF BOOL BOOL_RES
DEF REAL REAL_RES
DEF AXIS AXIS_RES
REAL_RES == 1234.9876Ex-7 ; BOOL_RES == TRUE
BOOL_RES=ISNUMBER("1234XYZ") ; BOOL_RES == FALSE
REAL_RES=NUMBER("1234.9876Ex-7") ; REAL_RES == 1234.9876Ex-7
AXIS_RES=AXNAME("X") ; AXIS_RES == X

3.1.4.3 Concatenation of strings (<<)
The function "concatenation strings" allows a string to be configured from individual
components.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 439

The concatenation is realized using the operator "<<". This operator has STRING as the target
type for all combinations of basic types CHAR, BOOL, INT, REAL, and STRING. Any
conversion that may be required is carried out according to existing rules.

Syntax
<any_type> << <any_type>

Meaning

<any_type>: Variable, type CHAR, BOOL, INT, REAL or STRING
<< : Operator to chain variables (<any_type>) to configure a character string (type

STRING).
This operator is also available alone as a so-called "unary" variant. This can be used
for explicit type converter to STRING (not for FRAME and AXIS):
<< <any_type>

For example, such a message or a command can be configured from text lists and parameters
can be inserted (for example a block name):
MSG(STRG_TAB[LOAD_IDX]<<BLOCK_NAME)

Note

The intermediate results of string concatenation must not exceed the maximum string length.

Note

The FRAME and AXIS types cannot be used together with the operator "<<".

Examples

Example 1: Concatenation of strings

Program code Comment
DEF INT IDX=2
DEF REAL VALUE=9.654
DEF STRING[20] STRG="INDEX:2"
IF STRG=="Index:"<<IDX GOTOF NO_MSG
MSG("Index:"<<IDX<<"/value:"<<VALUE) ; Display:

"Index:2/value:9.654"
NO_MSG:

Example 2: Explicit type conversion with <<

Program code Comment
DEF REAL VALUE=3.5
<<VALUE ; The specified REAL type variable is converted into a

STRING type.

Work preparation
3.1 Flexible NC programming

NC programming
440 Programming Manual, 06/2019, A5E47437142B AA

3.1.4.4 Conversion to lower/upper case letters (TOLOWER, TOUPPER)
The "conversion to lowercase/uppercase letters" function allows all of the letters of a string to
be converted into a standard representation.

Syntax
<STRING_RES>=TOUPPER("<string>")
<STRING_RES>=TOLOWER("<string>")

Meaning

TOUPPER: Using the TOUPPER command, all of the letters in a character string are con‐
verted into uppercase letters.

TOLOWER: Using the TOLOWER command, all of the letters in a character string are con‐
verted into lowercase letters.

<string>: Character string that is to be converted
Type: STRING

<STRING_RES>: Variable for the result of the conversion
Type: STRING

Example
Because user inputs can be initiated on the user interface, they can be given standard
capitalization (uppercase or lowercase):

Program code
DEF STRING [29] STRG
...
IF "LEARN.CNC"==TOUPPER(STRG) GOTOF LOAD_LEARN

3.1.4.5 Determine length of string (STRLEN)
The STRLEN command determines the length of a character string.

Syntax
<INT_RES>=STRLEN("<STRING>")

Meaning

STRLEN: The STRLEN command determines the length of the specified character string.
The number of characters that are not the 0 character, counting from the beginning
of the string is returned.

<string>: Character string whose length is to be determined
Type: STRING

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 441

<INT_RES>: Variable for the result of the determination
Type: INT

Example
In conjunction with the single character access, this function allows the end of a character string
to be determined:

Program code
IF (STRLEN(BLOCK_NAME)>10) GOTOF ERROR

3.1.4.6 Search for character/string in the string (INDEX, RINDEX, MINDEX, MATCH)
This functionality searches for single characters or a string within a string. The function results
specify where the character/string is positioned in the string that has been searched.

Syntax
INT_RES=INDEX(STRING,CHAR) ; Result type: INT

INT_RES=RINDEX(STRING,CHAR) ; Result type: INT

INT_RES=MINDEX(STRING,STRING) ; Result type: INT

INT_RES=MINDEX(STRING,STRING) ; Result type: INT

Semantics
Search functions: It supplies the position in the string (first parameter) where the search has
been successful. If the character/string cannot be found, then the value -1 is returned. The first
character has position 0.

Meaning

INDEX: Searches for the character specified as second parameter (from the beginning) in the
first parameter.

RINDEX: Searches for the character specified as second parameter (from the end) in the first
parameter.

MINDEX: Corresponds to the INDEX function, except for the case that a list of characters is
transferred (as string) in which the index of the first found character is returned.

MATCH: Searches for a string in a string.

This allows strings to be broken up according to certain criteria, for example, at positions with
blanks or path separators ("/").

Work preparation
3.1 Flexible NC programming

NC programming
442 Programming Manual, 06/2019, A5E47437142B AA

Example

Breaking up an input into path and block names

Program code Comment
DEF INT PFADIDX, PROGIDX
DEF STRING[26] INPUT
DEF INT LISTIDX
INPUT = "/_N_MPF_DIR/_N_EXECUTE_MPF"
LISTIDX = MINDEX (INPUT, "M,N,O,P")
+ 1

; The value returned in LISTIDX is 3; because
"N" is the first character in the parameter IN-
PUT from the selection list starting from the
beginning.

PFADIDX = INDEX (INPUT, "/") +1 ; Therefore the following applies: PFADIDX = 1
PROGIDX = RINDEX (INPUT, "/") +1 ; Therefore the following applies: PROGIDX = 12
 ; The SUBSTR function introduced in the next

section can be used to break-up
variable INPUT into the components "path" and
"module":

VARIABLE = SUBSTR (INPUT,
PFADIDX, PROGIDX-PFADIDX-1)

; Then returns "_N_MPF_DIR"

VARIABLE = SUBSTR (INPUT, PROGIDX) ; Then returns "_N_EXECUTE_MPF"

3.1.4.7 Selection of a substring (SUBSTR)
Arbitrary parts within a string can be read with the SUBSTRING function.

Syntax
<STRING_RES>=SUBSTR(<string>,<index>,<length>)
<STRING_RES>=SUBSTR(<string>,<index>)

Meaning

SUBSTR: This function returns a substring from <string>, starting with <index> with the speci‐
fied <length>.
If the parameter <length> is not specified, the function returns a substring starting with
<index> until the end of the string.

<index>: Start position of the substring within the string. If the start position is after the end of
the string, an empty string (" ") is returned. First character of the string: Index = 0
Range of values: 0 ... (string length - 1)

<length>: Length of the substring. If too long a length is specified, only the substring up to the
end of the string is returned.
Range of values: 1 ... (string length - 1)

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 443

Example

Program code Comment
DEF STRING[29] RES
; 1
; 0123456789012345678
RES = SUBSTR("QUITTUNG: 10 to 99", 10, 2)

; RES == "10"

RES = SUBSTR("QUITTUNG: 10 to 99", 10) ; RES == "10 to 99"

3.1.4.8 Reading and writing of individual characters
Individual characters can be read and written within a string.

The following supplementary conditions must be observed:

● Only possible with user-defined variables, not with system variables

● Individual characters of a string are only transferred "call by value" for subprogram calls

Syntax
<Character>=<string>[<index>]
<Character>=<string_array>[<array_index>,<index>]
<String>[<index>]=<character>
<String_array>[<array_index>,<index>]=<character>

Meaning

<string>: Any string
<character>: Variable of type CHAR
<index>: Position of the character within the string.

First character of the string: Index = 0
Range of values: 0 ... (string length - 1)

Examples

Example 1: Variable message

Program code Comment
; 0123456789
DEF STRING [50] MESSAGE = "Axis n has reached position"
MESSAGE [6] = "X"
MSG (MESSAGE) ; "Axis X has reached position"

Example 2: Evaluating a system variable

Program code Comment
DEF STRING[50] STRG ; Buffer for system variable
...

Work preparation
3.1 Flexible NC programming

NC programming
444 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
STRG = $P_MMCA ; Load system variable
IF STRG[0] == "E" GOTO ... ; Evaluating the system variable

Example 3: Parameter transfer "call by value" and "call by reference"

Program code Comment
; 0123456
DEF STRING[50] STRG = "Axis X"

DEF CHAR CHR
...
EXTERN UP_VAL(ACHSE) ; Definition of subprogram with "call

by value" parameters
EXTERN UP_REF(VAR ACHSE) ; Definition of subprogram with "call

by reference" parameters
...
UP_VAL(STRG[6]) ; Parameter transfer "by value"
...
CHR = STRG[6] ; Buffer
UP_REF(CHR) ; Parameter transfer "by reference"

3.1.4.9 Formatting a string (SPRINT)
Using the pre-defined SPRINT function, character strings can be formatted and e.g. prepared
for output on external devices (also see "Process DataShare - Output to an external device/file
(EXTOPEN, WRITE, EXTCLOSE): (Page 1040)").

Syntax
"<Result_string>"=SPRINT("<Format_string>",<value_1>,<value_2>,...,
<value_n>)

Meaning

SPRINT: Identifier for a pre-defined function that supplies a val‐
ue, type STRING.

"<Format_String>": Character string that contains fixed and variable ele‐
ments. The variable elements are defined using the
format control character % and a subsequent format
description.

< value_1>,< value_2>,…,< value_n>: Value in the form of a constant or NC variables, which
is inserted at the location where the nth format control
character % is located, corresponding to the format
description in the <format_string>.

"<result_string>": Formatted character string (maximum 400 bytes)

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 445

Format descriptions available

%B: Conversion into the "TRUE" string, if the value to be converted:
● Is not equal to 0.
● Is not an empty string (for string values).
Conversion into the "FALSE" string, if the value to be converted:
● Is equal to 0.
● Is an empty string.
Example:
N10 DEF BOOL BOOL_VAR=1
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF BOOL_VAR:%B", BOOL_VAR)
Result: The character string "CONTENT OF BOOL_VAR:TRUE" is written to the
RESULT string variable.

%C: Conversion into an ASCII character.
Example:
N10 DEF CHAR CHAR_VAR="X"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF CHAR_VAR:%C",CHAR_VAR)
Result: The character string "CONTENT OF CHAR_VAR:X is written to the string
variable RESULT.

%D: Conversion into a string with an integer value (INTEGER).
Example:
N10 DEF INT INT_VAR=123
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF INT_VAR:%D",INT_VAR)
Result: The character string "CONTENT OF INT_VAR:123" is written to the string
variable RESULT.

%<m>D: Conversion into a string with an integer value (INTEGER). The string has a minimum
length of <m> characters. The missing locations are filled with spaces, left-justified.
Example:
N10 DEF INT INT_VAR=-123
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF INT_VAR:%6D",INT_VAR)
Result: The character string "CONTENT OF INT_VAR:xx-123" is written to string
variable RESULT ("x" in the example represents spaces).

%F: Conversion into a string with a decimal number with 6 decimal places. Where rele‐
vant, the decimal places are rounded-off or filled with 0.
Example:
N10 DEF REAL REAL_VAR=-1.2341234EX+03
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%F",REAL_VAR)
Result: The string variable RESULT is written with the character string "CONTENT
OF REAL_VAR: -1234.123400".

Work preparation
3.1 Flexible NC programming

NC programming
446 Programming Manual, 06/2019, A5E47437142B AA

%<m>F: Conversion into a string with a decimal number with 6 decimal places and a total
length of at least <m> characters. Where relevant, the decimal places are rounded-off
or filled with 0. Missing characters are filled up to the total length <m> using spaces,
left-justified.
Example:
N10 DEF REAL REAL_VAR=-1.23412345678EX+03
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%15F",REAL_VAR)
Result: The string variable RESULT is written with the character string "CONTENT
OF REAL_VAR: xxx-1234.123457" (where "x" is a placeholder for space).

%.<n>F: Conversion into a string with a decimal number with <n> decimal places. Where
relevant, the decimal places are rounded-off or filled with 0.
Example:
N10 DEF REAL REAL_VAR=-1.2345678EX+03
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%.3F",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:-1234.568" is written to the
string variable RESULT.

%<m>.<n>F: Conversion into a string with a decimal number with <n> decimal places and a total
length of at least <m> characters. Where relevant, the decimal places are rounded-off
or filled with 0. Missing characters are filled up to the total length <m> using spaces,
left-justified.
Example:
N10 DEF REAL REAL_VAR=-1.2341234567890EX+03
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%10.2F",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xx-1234.12" is written to the
string variable RESULT ("x" in the example represents spaces).

%E: Conversion into a string with a decimal number in the exponential representation. The
mantissa is saved, normalized with one pre-decimal place and 6 decimal places.
Where relevant, the decimal places are rounded-off or filled with 0. The exponent
starts with the keyword "EX". It is followed by the sign ("+" or "-") and a two or three-
digit number.
Example:
N10 DEF REAL REAL_VAR=-1234.567890
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%E",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:-1.234568EX+03" is written
to the string variable RESULT.

%<m>E: Conversion into a string with a decimal number in the exponential representation and
a total length of at least <m> characters. The missing characters are filled with
spaces, left-justified. The mantissa is saved, normalized with one pre-decimal place
and 6 decimal places. Where relevant, the decimal places are rounded-off or filled
with 0. The exponent starts with the keyword "EX". It is followed by the sign ("+" or "-")
and a two or three-digit number.
Example:
N10 DEF REAL REAL_VAR=-1234.5
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%20E",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xxxxxx-1.234500EX+03" is
written to the string variable RESULT ("x" in the example represents spaces).

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 447

%.<n>E: Conversion into a string with a decimal number in the exponential representation. The
mantissa is saved, normalized with one pre-decimal place and <n> decimal places.
Where relevant, the decimal places are rounded-off or filled with 0. The exponent
starts with the keyword "EX". It is followed by the sign ("+" or "-") and a two or three-
digit number.
Example:
N10 DEF REAL REAL_VAR=-1234.5678
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%.2E",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:-1.23EX+03" is written to
the string variable RESULT.

%<m>.<n>E: Conversion into a string with a decimal number in the exponential representation and
a total length of at least <m> characters. The missing characters are filled with
spaces, left-justified. The mantissa is saved, normalized with one pre-decimal place
and <n> decimal places. Where relevant, the decimal places are rounded-off or filled
with 0. The exponent starts with the keyword "EX". It is followed by the sign ("+" or "-")
and a two or three-digit number.
Example:
N10 DEF REAL REAL_VAR=-1234.5678
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%12.2E", REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xx-1.23EX+03" is written to
the string variable RESULT ("x" in the example represents spaces).

%G: Conversion into a string with a decimal number – depending on the value range – in
a decimal or exponential representation: If the absolute value to be represented is
less than 1.0EX-04 or greater than/equal to 1.0EX+06, then the exponential notation
is selected, otherwise the decimal notation. A maximum of six significant places are
displayed or if required, rounded-off.
Example with decimal notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX-04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:0.000123457" is written to
the string variable RESULT.
Example with exponential notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX+06
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:1.23457EX+06" is written to
the string variable RESULT.

Work preparation
3.1 Flexible NC programming

NC programming
448 Programming Manual, 06/2019, A5E47437142B AA

%<m>G: Conversion into a string with a decimal number – depending on the value range – in
a decimal or exponential notation (like %G). The string has a total length of at least
<m> characters. The missing characters are filled with spaces, left-justified.
Example with decimal notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX-04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%15G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xxxx0.000123457" is writ‐
ten to the string variable RESULT ("x" in the example represents spaces).
Example with exponential notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX+06
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%15G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xxx1.23457EX+06" is writ‐
ten to the string variable RESULT ("x" in the example represents spaces).

%.<n>G: Conversion into a string with a decimal number – depending on the value range – in
a decimal or exponential representation. A maximum of <n> significant places are
displayed or if required, rounded-off. If the absolute value to be represented is less
than 1.0EX-04 or greater than/equal to 1.0EX(+<n>), then the exponential notation is
selected, otherwise the decimal notation.
Example with decimal notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX-04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%.3G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:0.000123" is written to the
string variable RESULT.
Example with exponential notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX+03
N20 DEF STRING[80] RESULT
N30 RESULT = SPRINT("CONTENT OF REAL_VAR:%.3G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:1.23EX+03" is written to the
string variable RESULT.

%<m>.<n>G: Conversion into a string with a decimal number – depending on the value range – in
a decimal or exponential notation (like %.<n>G). The string has a total length of at
least <m> characters. The missing characters are filled with spaces, left-justified.
Example with decimal notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX-04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%12.4G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xxx0.0001235" is written to
the string variable RESULT ("x" in the example represents spaces).
Example with exponential notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX+04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%12.4G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xx1.235EX+06" is written to
the string variable RESULT ("x" in the example represents spaces).

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 449

%.<n>P: Converting a REAL value into an INTEGER value taking into account <n> decimal
places. The INTEGER value is output as a 32-bit binary number. If the value to be
converted cannot be represented with 32 bits, then processing is interrupted with an
alarm.
As a byte sequence generated using the format statement %.<n>P can also contain
binary zeroes, then the total string that is generated in this way no longer corresponds
to the conventions of the NC data type STRING. As a consequence, it can neither be
saved in a variable, type STRING, nor be further processed using the string com‐
mands of the NC language. The only possible use is to transfer the parameter to
the WRITE command with output at an appropriate external device (see the following
example).
As soon as the <Format_String> contains a format description, type %P then the
complete string, with the exception of the binary number generated with %.<n>P, is
output corresponding to the MD10750 $MN_SPRINT_FORMAT_P_CODE in the AS‐
CII character code, ISO (DIN6024) or EIA (RS244). If a character that cannot be
converted is programmed, then processing is interrupted with an alarm.
Example:
N10 DEF REAL REAL_VAR=123.45
N20 DEF INT ERROR
N30 DEF STRING[20] EXT_DEVICE="/ext/dev/1"
...
N100 EXTOPEN(ERROR,EXT_DEVICE)
N110 IF ERROR <> 0
... ; error handling
N200 WRITE(ERROR,EXT_DEVICE,SPRINT("INTEGER BINARY
CODED:%.3P",REAL_VAR)
N210 IF ERROR <> 0
… ; error handling
Result: The string "INTEGER BINARY CODED: 'H0001E23A'" is transferred to the
output device /ext/dev/1. The hexadecimal value 0x0001E23A corresponds to the
decimal value 123450.

Work preparation
3.1 Flexible NC programming

NC programming
450 Programming Manual, 06/2019, A5E47437142B AA

%<m>.<n>P: Conversion of a REAL value corresponding to the setting in machine data
MD10751 $MN_SPRINT_FORMAT_P_DECIMAL into a string with:
● An integer of <m> + <n> places or
● A decimal number with a maximum of <m> pre-decimal places and precisely <n>

decimal places.
Just the same as for the format description %.<n>P, the complete string is saved in
the character code defined by MD10750 $MN_SPRINT_FORMAT_P_CODE.
Conversion for MD10751 = 0:
The REAL value is converted into a string with an integer number of <m> + <n>
places. If required, decimal places are rounded-off to <n> places or filled with 0. The
missing pre-decimal places are filled with spaces. The minus sign is attached, left-
justified; a space is entered instead of the plus sign.
Example:
N10 DEF REAL REAL_VAR=-123.45
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("PUNCHED TAPE FORMAT:%5.3P",REAL_VAR)
Result: The character string "PUNCHED TAPE FORMAT:-xx123450" is written to the
string variable RESULT ("x" in the example represents spaces).
Conversion for MD10751 = 1:
The REAL value is converted into a string with a decimal number with a maximum of
<m> pre-decimal places and precisely <n> decimal places. Where necessary, the
pre-decimal places are cut-off and the decimal places are rounded-off or filled with 0.
If <n> is equal to 0, then the decimal point is also omitted.
Example:
N10 DEF REAL REAL_VAR1=-123.45
N20 DEF REAL REAL_VAR2=123.45
N30 DEF STRING[80] RESULT
N40 RESULT=SPRINT("PUNCHED TAPE FORMAT:%5.3P VAR2:%2.0P",
REAL_VAR1,REAL_VAR2)
Result: The character string "PUNCHED TAPE FORMAT:-123.450 VAR2:23" is writ‐
ten to the string variable RESULT.

%S: Inserting a string.
Example:
N10 DEF STRING[16] STRING_VAR="ABCDEFG"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF STRING_VAR:%S",STRING_VAR)
Result: The character string "CONTENT OF STRING_VAR:ABCDEFG" is written to
the string variable RESULT.

%<m>S: Inserting a string with a minimum of <m> characters. The missing places are filled
with spaces.
Example:
N10 DEF STRING[16] STRING_VAR="ABCDEFG"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF STRING_VAR:%10S",STRING_VAR)
Result: The character string "CONTENT OF STRING_VAR:xxxABCDEFG" is written
to the string variable RESULT ("x" in the example represents spaces).

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 451

%.<n>S: Inserting <n> characters of a string (starting with the first character).
Example:
N10 DEF STRING[16] STRING_VAR="ABCDEFG"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF STRING_VAR:%.3S",STRING_VAR)
Result: The character string "CONTENT OF STRING_VAR:ABC" is written to the
string variable RESULT.

%<m>.<n>S: Inserting <n> characters of a string (starting with the first character). The total length
of the generated string has at least <m> characters. The missing places are filled with
spaces.
Example:
N10 DEF STRING[16] STRING_VAR="ABCDEFG"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF STRING_VAR:%10.5S", STRING_VAR)
Result: The character string "CONTENT OF STRING_VAR:xxxxxABCDE" is written
to the string variable RESULT ("x" in the example represents spaces).

%X: Converting an INTEGER value into a string with the hexadecimal notation.
Example:
N10 DEF INT INT_VAR='HA5B8’
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("INTEGER HEXADECIMAL:%X",INT_VAR)
Result: The character string "INTEGER HEXADECIMAL:A5B8" is written to the string
variable RESULT.

Note

A property of the NC language, where a distinction is not made between uppercase and
lowercase letters for identifiers and keywords, also applies to the format descriptions. As a
consequence, you can program using either lowercase or uppercase letters without any
functional difference.

Combination options
The following table provides information as to which NC data types can be combined with which
format description. The rules regarding implicit data type conversion apply (see "Data types
(Page 413)").

 NC data types
BOOL CHAR INT REAL STRING AXIS FRAME

%B + + + + + - -
%C - + - - + - -
%D + + + + - - -
%F - - + + - - -
%E - - + + - - -
%G - - + + - - -
%S - + - - + - -
%X + + + - - - -
%P - - + + - - -

Work preparation
3.1 Flexible NC programming

NC programming
452 Programming Manual, 06/2019, A5E47437142B AA

Note

The table indicates that the NC data types AXIS and FRAME cannot be directly used in the
SPRINT function. However it is possible:
● To convert the AXIS data type into a string using the AXSTRING function – which can then

be processed with SPRINT.
● To read the individual values of the FRAME data type per frame component access. As a

consequence, a REAL data type is obtained, which can be processed with SPRINT.

3.1.5 Program jumps and branches

3.1.5.1 Return jump to the start of the program (GOTOS)
The GOTOS command can be used to jump back to the beginning of a main or subprogram in
order to repeat the program.

Machine data can be used to set that for every return jump is made to the program start:

● The program runtime is set to "0".

● Workpiece counting is incremented by the value "1".

Syntax
GOTOS

Meaning

GOTOS: Jump statement where the destination is the beginning of the program.
The execution is controlled via the NC/PLC interface signal:
DB21, to DBX384.0 (control program branching)
Value: Meaning:
0 No return jump to the beginning of the program. Program execution is re‐

sumed with the next part program block after GOTOS.
1 Return jump to the beginning of the program. The part program is repeated.

Supplementary conditions
● GOTOS internally initiates a STOPRE (pre-processing stop).

● For a subprogram with data definitions (LUD variables) with the GOTOS, a jump is made to
the first program block after the definition section, i.e. data definitions are not executed
again. This is the reason that the defined variables retain the value reached in the GOTOS
block and are not reset to the standard values programmed in the definition section.

● The GOTOS command is not available in synchronized actions and technology cycles.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 453

Example

Program code Comment
N10 ... ; Start of the program.
...
N90 GOTOS ; Jump to beginning of the program.
...

3.1.5.2 Program jumps to jump markers (GOTOB, GOTOF, GOTO, GOTOC)
Jump labels can be set in a program, which can be jumped to from another location within the
same program using the commands GOTOF, GOTOB, GOTO, or GOTOC. Program execution is
resumed with the statement that immediately follows the jump label. This means that branches
can be realized within the program.

In addition to jump labels, main and sub-block numbers are possible as jump designation.

If a jump condition (IF ...) is formulated before the jump statement, the program jump is only
executed if the jump condition is fulfilled.

Syntax
GOTOB <jump destination>
IF <jump condition> == TRUE GOTOB <jump destination>

GOTOF <jump destination>
IF <jump condition> == TRUE GOTOF <jump destination>

GOTO <jump destination>
IF <jump condition> == TRUE GOTO <jump destination>

GOTOC <jump destination>
IF <jump condition> == TRUE GOTOC <jump destination>

Meaning

GOTOB: Jump statement with jump destination toward the beginning of the program.
GOTOF: Jump statement with jump destination toward the end of the program.
GOTO: Jump statement with jump destination search. The search is first made in the

direction of the end of the program, then in the direction of the beginning of the
program.

GOTOC: Same effect as for GOTO with the difference that Alarm 14080 "Jump designa‐
tion not found" is suppressed.
This means that program execution is not interrupted in the case that the jump
destination search is unsuccessful – but is continued with the program line fol‐
lowing the GOTOC command.

Work preparation
3.1 Flexible NC programming

NC programming
454 Programming Manual, 06/2019, A5E47437142B AA

<jump
destination>:

Jump destination parameter
Possible data include:
<jump label>: Jump destination is the jump label set in the program

with a user-defined name:<jump label>:
<block number>: Jump destination is main block or sub-block number

(e.g.: 200, N300)
STRING type variable: Variable jump destination. The variable stands for a

jump label or a block number.
IF: Keyword to formulate the jump condition.

The jump condition permits all comparison and logical operations (result: TRUE
or FALSE). The program jump is executed if the result of this operation is TRUE.

Note
Jump labels

Jump labels are always located at the beginning of a block. If a program number exists, the
jump label is located immediately after the block number.

The following rules apply when naming jump labels:
● Number of characters:

– Minimum 2
– Maximum 32

● Permissible characters are:
– Letters
– Numbers
– Underscores

● The first two characters must be letters or underscores.
● The name of the jump label is followed by a colon (":").

Supplementary conditions
● The jump destination can only be a block with jump label or block number that is

located within the program.

● A jump statement without jump condition must be programmed in a separate block. This
restriction does not apply to jump statements with jump conditions. In this case, several
jump statements can be formulated in a block.

● For programs with jump statements without jump conditions, the end of the program M2/M30
does not necessarily be at the end of the program.

Examples

Example 1: Jumps to jump labels

Program code Comment
N10 …

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 455

Program code Comment
N20 GOTOF Label_1 ; Jump toward end of program to

; jump label "Label_1".
N30 …
N40 Label_0: R1=R2+R3 ; Jump label "Label_0" set.
N50 …
N60 Label_1: ; Jump label "Label_1" set.
N70 …
N80 GOTOB Label_0 ; Jump toward beginning of program

; to the jump label "Label_0."
N90 …

Example 2: Indirect jump to the block number

Program code Comment
IF <condition> == TRUE
 R10=100 ; Assign jump destination
ELSE
 R10=110 ; Assign jump destination
ENDIF
; Jump toward end of program to the block whose block number is located in R10
N10 GOTOF "N"<<R10
...
N90 ...
N100 ... ; Jump destination
N110 ...
...

Example 3: Jump to variable jump destination

Program code Comment
DEF STRING[20] DESTINATION
IF <condition> == TRUE
 DESTINATION = "Label1" ; Assign jump destination
ELSE
 DESTINATION = “Label2" ; Assign jump destination
ENDIF
; Jump toward end of program to the variable jump destination "Content of DESTINA-
TION."
GOTOF DESTINATION
Label1: T="Drill1" ; Jump destination 1
...
Label2: T="Drill2" ; Jump destination 2
...

Work preparation
3.1 Flexible NC programming

NC programming
456 Programming Manual, 06/2019, A5E47437142B AA

Example 4: Jump with jump condition

Program code Comment
N40 R1=30 R2=60 R3=10 R4=11 R5=50 R6=20 ; Assignment of the initial values
N41 LA1: G0 X=R2*COS(R1)+R5 Y=R2*SIN(R1)+R6 ; Jump label LA1
N42 R1=R1+R3 R4=R4-1
; IF jump condition == TRUE
; THEN jump toward beginning of program to the jump label LA1
N43 IF R4>0 GOTOB LA1
N44 M30 ; End of program

3.1.5.3 Program branch (CASE ... OF ... DEFAULT ...)
The CASE function provides the possibility of checking the actual value (type: INT) of a variable
or an arithmetic function and, depending on the result, to jump to different positions in the
program.

Syntax
CASE(<expression>) OF <constant_1> GOTOF <jump target_1>
<constant_2> GOTOF <jump target_2> ... DEFAULT GOTOF <jump target_n>

Meaning

CASE: Jump statement
<expression>: Variable or arithmetic function
OF: Keyword to formulate conditional program branches.
<constant_1>: First specified constant value for the variable or arithmetic function

Type: INT
<constant_2>: Second specified constant value for the variable or arithmetic function

Type: INT
DEFAULT: For the cases where the variable or arithmetic function does not assume

any of the specified constant values, the DEFAULT statement can be used
to determine the jump target.
Note:
If the DEFAULT statement is not programmed, then in these cases, the
block following the CASE statement is the jump target.

GOTOF: Jump statement with jump target towards the end of the program.
Instead of GOTOF all other GOTO commands can be programmed (refer to
the subject "Program jumps to jump markers").

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 457

<jump target_1>: A branch is made to this jump target if the value of the variable or arithmetic
function corresponds to the first specific constant.
The jump target can be specified as follows:
<jump marker>: Jump target is the jump marker (label) set in the

program with a user-defined name: <jump
marker>:

<block number>: Jump target is main block or sub-block number
(e.g.: 200, N300)

STRING type varia‐
ble:

Variable jump target. The variable stands for a jump
marker or a block number.

<jump target_2>: A branch is made to this jump target if the value of the variable or arithmetic
function corresponds to the second specified constant.

<jump target_n>: A branch is made to this jump target if the value of the variable does not
assume the specified constant value.

Example

Program code
...
N20 DEF INT VAR1 VAR2 VAR3
N30 CASE(VAR1+VAR2-VAR3) OF 7 GOTOF Label_1 9 GOTOF La-
bel_2 DEFAULT GOTOF Label_3

N40 Label_1: G0 X1 Y1
N50 Label_2: G0 X2 Y2
N60 Label_3: G0 X3 Y3
...

The CASE statement from N30 defines the following program branch possibilities:

1. If the value of the arithmetic function VAR1+VAR2-VAR3 = 7, then jump to the block with the
jump marker definition "Label_1" (→ N40).

2. If the value of the arithmetic function VAR1+VAR2-VAR3 = 9, then jump to the block with the
jump marker definition "Label_2" (→ N50).

3. If the value of the arithmetic function VAR1+VAR2-VAR3 is neither 7 nor 9, then jump to the
block with the jump marker definition "Label_3" (→ N60).

3.1.6 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)
Program section repetition allows you to repeat existing program sections within a program in
any order.

Work preparation
3.1 Flexible NC programming

NC programming
458 Programming Manual, 06/2019, A5E47437142B AA

The program lines or program sections to be repeated are identified by jump markers (labels).

Note
Jump markers (labels)

Jump markers are always located at the beginning of a block. If a program number exists, the
jump marker is located immediately after the block number.

The following rules apply when naming jump markers:
● Number of characters:

– Minimum 2
– Maximum 32

● Permissible characters are:
– Letters
– Numbers
– Underscores

● The first two characters must be letters or underscores.
● The name of the jump marker is followed by a colon (":").

Syntax

1. Repeat individual program line:

<jump marker>: ...
...
REPEATB <jump marker> P=<n>
...

2. Repeat program section between jump marker and REPEAT statement:

<jump marker>: ...
...
REPEAT <jump marker> P=<n>
...

3. Repeat section between two jump markers:

<start jump marker>: ...
...
<end jump marker>: ...
...
REPEAT <start jump marker> <end jump marker> P=<n>
...

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 459

Note

It is not possible to nest the REPEAT statement with the two jump markers in parentheses. If
the <start jump marker> appears before the REPEAT statement and the <end jump
marker> is not reached before the REPEAT statement, the section between the <start
jump marker> and the REPEAT statement will be repeated.

4. Repeat section between jump marker and ENDLABEL:

<jump marker>: ...
...
ENDLABEL: ...
...
REPEAT <jump marker> P=<n>
...

Note

It is not possible to nest the REPEAT statement with the <jump marker> and the ENDLABEL in
parentheses. If the <jump marker> appears before the REPEAT statement and
the ENDLABEL is not reached before the REPEAT statement, the section between the <jump
marker> and the REPEAT statement will be repeated.

Meaning

REPEATB: Command for repeating a program line
REPEAT: Command for repeating a program section
<jump marker>: The <jump marker> identifies:

● The program line to be repeated (in the case of REPEATB)
or

● The start of the program section to be repeated (in the case of REPEAT)
The program line identified by the <jump marker> can appear before or after
the REPEAT/REPEATB statement. The search initially commences toward the
start of the program. If the jump marker is not found in this direction, the search
continues working toward the end of the program.
Exception:
If the program section between the jump marker and the REPEAT statement
needs to be repeated (see 2. under Syntax), the program line identified by
the <jump marker> has to appear before the REPEAT statement, since in
this case the search runs only toward the beginning of the program.
If the line with the <jump marker> contains further operations, these are
executed again on each repetition.

ENDLABEL: Keyword marking the end of a program section to be repeated.
If the line with the ENDLABEL contains further operations, these are executed
again on each repetition.
ENDLABEL can be used more than once in the program.

Work preparation
3.1 Flexible NC programming

NC programming
460 Programming Manual, 06/2019, A5E47437142B AA

P: Address for specifying the number of repetitions
<n>: Number of program section repetitions

Type: INT
The program section to be repeated is repeated <n> times. After the last
repetition, the program is resumed at the line following the REPEAT/REPEATB
line.
Note:
In the absence of a number being specified for P=<n>, the program section is
repeated just once.

Examples

Example 1: Repeat individual program line

Program code Comment
N10 POSITION1: X10 Y20
N20 POSITION2: CYCLE(0,,9,8) ;Position cycle
N30 ...
N40 REPEATB POSITION1 P=5 ; Execute BLOCK N10 five times.
N50 REPEATB POSITION2 ; Execute block N20 once.
N60 ...
N70 M30

Example 2: Repeat program section between jump marker and REPEAT statement:

Program code Comment
N5 R10=15
N10 Begin: R10=R10+1 ;Width
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10
N50 X=-R10
N60 Y=-R10
N70 Z=10+R10
N80 REPEAT BEGIN P=4 ; Execute section from N10 to N70 four times.
N90 Z10
N100 M30

Example 3: Repeat section between two jump markers

Program code Comment
N5 R10=15
N10 Begin: R10=R10+1 ;Width
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10
N50 X=-R10

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 461

Program code Comment
N60 Y=-R10
N70 END: Z=10
N80 Z10
N90 CYCLE(10,20,30)
N100 REPEAT BEGIN END P=3 ; Execute section from N10 to N70 three times.
N110 Z10
N120 M30

Example 4: Repeat section between jump marker and ENDLABEL

Program code Comment
N10 G1 F300 Z-10
N20 BEGIN1:
N30 X10
N40 Y10
N50 BEGIN2:
N60 X20
N70 Y30
N80 ENDLABEL: Z10
N90 X0 Y0 Z0
N100 Z-10
N110 BEGIN3: X20
N120 Y30
N130 REPEAT BEGIN3 P=3 ; Execute section from N110 to N120 three times.
N140 REPEAT BEGIN2 P=2 ; Execute section from N50 to N80 twice.
N150 M100
N160 REPEAT BEGIN1 P=2 ; Execute section from N20 to N80 twice.
N170 Z10
N180 X0 Y0
N190 M30

Example 5: Milling, machine drill position with different technologies

Program code Comment
N10 CENTER DRILL() ; Load centering drill.
N20 POS_1: ;Drilling positions 1
N30 X1 Y1
N40 X2
N50 Y2
N60 X3 Y3
N70 ENDLABEL:
N80 POS_2: ;Drilling positions 2
N90 X10 Y5
N100 X9 Y-5
N110 X3 Y3

Work preparation
3.1 Flexible NC programming

NC programming
462 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N120 ENDLABEL:
N130 DRILL() ; Change drill and drilling cycle.
N140 THREAD(6) ; Load tap M6 and threading cycle.
N150 REPEAT POS_1 ; Repeat program section once from POS_1 up to ENDLABEL.
N160 DRILL() ; Change drill and drilling cycle.
N170 THREAD(8) ; Load tap M8 and threading cycle.
N180 REPEAT POS_2 ; Repeat program section once from POS_2 up to ENDLABEL.
N190 M30

Further information
● Program section repetitions can be nested. Each call uses a subprogram level.

● If M17 or RET is programmed during processing of a program section repetition, the
repetition is canceled. The program is resumed at the block following the REPEAT line.

● In the actual program display, the program section repetition is displayed as a separate
subprogram level.

● If the level is canceled during the program section repetition, the program resumes at the
point after the program section repetition call.
Example:

Program code Comments
N5 R10=15
N10 BEGIN: R10=R10+1 ;Width
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10 ; Interrupt level
N50 X=-R10
N60 Y=-R10
N70 END: Z10
N80 Z10
N90 CYCLE(10,20,30)
N100 REPEAT BEGIN END P=3
N120 Z10 ; Resume program execution.
N130 M30

● Check structures and program section repetitions can be used in combination. There should
be no overlap between the two, however. A program section repetition should appear within
a check structure branch or a check structure should appear within a program section
repetition.

● If jumps and program section repetitions are mixed, the blocks are executed purely
sequentially. For example, if a jump is performed from a program section repetition,
processing continues until the programmed end of the program section is found.
Example:

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 463

Program code
N10 G1 F300 Z-10
N20 BEGIN1:
N30 X=10
N40 Y=10
N50 GOTOF BEGIN2
N60 ENDLABEL:
N70 BEGIN2:
N80 X20
N90 Y30
N100 ENDLABEL: Z10
N110 X0 Y0 Z0
N120 Z-10
N130 REPEAT BEGIN1 P=2
N140 Z10
N150 X0 Y0
N160 M30

Note

The REPEAT statement should appear after the traversing block.

3.1.7 Check structures

The control processes the NC blocks as standard in the programmed sequence.

This sequence can be variable by programming alternative program blocks and program loops.
These check structures are programmed using the key words IF, ELSE, ENDIF, LOOP, FOR,
WHILE and REPEAT.

NOTICE

Programming error

Check structures may only be inserted in the statement section of a program. Definitions in the
program header may not be executed conditionally or repeatedly.

It is not permissible to superimpose macros on keywords for check structures or on jump
targets. No such check is made when the macro is defined.

Effectiveness
The check structure cannot be used program-wide.

Work preparation
3.1 Flexible NC programming

NC programming
464 Programming Manual, 06/2019, A5E47437142B AA

Nesting depth
A nesting depth of up to 16 check structures can be set up on each subprogram level.

Runtime response
In interpreter mode (active as standard), it is possible to shorten program processing times
more effectively by using program branches than can be obtained with check structures.

There is no difference between program branches and check structures in precompiled cycles.

Current block display for program loops
If only selected blocks are executed within a program loop, the last main run block before the
program loop is shown in the current block display.

So that the processed selected blocks are also visible in the current block display, e.g. for
diagnostic purposes, the decoding single block SBL2 must be activated.

References
Function Manual, Basic Functions, Section: Mode group, channel, program operation, reset
response (K1) > Single block > Decoding single block SBL2 with implicit preprocessing stop

Grinding without main run block
If, within a program loop, no main run block has been programmed, then the loop is pre-
processed until the loop condition is satisfied.

As a consequence, a high level of utilization can occur and this can have a negative impact on
the display.

The STOPRE command or a dwell time G04 of 0 seconds can be inserted in the loop as
countermeasure.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 465

Supplementary conditions
● Blocks with check structure elements cannot be suppressed.

● Jumper markers (labels) are not permitted in blocks with check structure elements.

● Check structures are processed interpretively. When a loop end is detected, a search is
made for the loop beginning, allowing for the check structures found in the process. For this
reason, the block structure of a program is not checked completely in interpreter mode.

● It is not generally advisable to use a mixture of check structures and program branches.

● A check can be made to ensure that check structures are nested correctly when cycles are
preprocessed.

3.1.7.1 Conditional statement and branch (IF, ELSE, ENDIF)

Conditional statement: IF - program block - ENDIF
With a conditional statement, the program block between IF and ENDIF is only executed when
the condition is satisfied.

Branch: IF - program block_1 - ELSE - program block_2 - ENDIF
With a branch, one of two program blocks is always executed.

If the condition is satisfied, program block_1 between IF and ELSE is executed.

If the condition is not satisfied, program block_2 between ELSE and ENDIF is executed.

Note
ELSE in synchronized actions

The keyword ELSE can also be programmed in synchronized actions. Thus a synchronized
action can be expanded by actions that are to be executed if the condition is not fulfilled.

Syntax

Conditional statement

IF <condition>
 Program block ; Execution with: <Condition> == TRUE
ENDIF

Branch

IF <condition>
 Program block_1 ; Execution with: <Condition> == TRUE
ELSE
 Program block_2 ; Execution with: <Condition> == FALSE
ENDIF

Work preparation
3.1 Flexible NC programming

NC programming
466 Programming Manual, 06/2019, A5E47437142B AA

Meaning

IF: Introduces the conditional statement or branch.
ELSE: Introduces the alternative program block.
ENDIF: Marks the end of the conditional statement or branch.
<condition>: Logical expression that is evaluated as TRUE or FALSE.

Example: Tool change subprogram

Program code Comment
PROC L6 Tool change routine
N500 DEF INT TNR_AKTUELL Variable for active T number
N510 DEF INT TNR_VORWAHL Variable for preselected T number
 Determine current tool
N520 STOPRE
N530 IF $P_ISTEST In the program test mode ...
N540 TNR_AKTUELL = $P_TOOLNO ... the "current" tool is read

from the program context.
N550 ELSE Otherwise ...
N560 TNR_AKTUELL = $TC_MPP6[9998,1] ... the tool of the spindle is

read-out.
N570 ENDIF
N580 GETSELT(TNR_VORWAHL) Read the T number of the pre-se-

lected tool in the spindle.
N590 IF TNR_AKTUELL <> TNR_VORWAHL If the pre-selected tool is

still not the current tool,
then ...

N600 G0 G40 G60 G90 SUPA X450 Y300 Z300 D0 ... Approach tool change posi-
tion ...

N610 M206 ... and perform a tool change.
N620 ENDIF
N630 M17

3.1.7.2 Continuous program loop (LOOP, ENDLOOP)
Endless loops are used in endless programs. At the end of the loop, there is always a branch
back to the beginning.

Syntax

LOOP
...
ENDLOOP

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 467

Meaning

LOOP: Initiates the endless loop.
ENDLOOP: Marks the end of the loop and results in a return jump to the beginning of the loop.

Example

Program code
...
LOOP
MSG ("no tool cutting edge active")
M0
STOPRE
ENDLOOP
...

3.1.7.3 Count loop (FOR ... TO ..., ENDFOR)
The count loop is used if an operation must be repeated with a fixed number of runs.

Syntax

FOR <variable> = <initial value> TO <end value>
...
ENDFOR

Meaning

FOR: Initiates the count loop.
ENDFOR: Marks the end of the loop and results in a return jump to the beginning of the loop,

as long as the end value of the count has still not been reached.
<variable>: Count variable, which is incremented from the initial to the end value and is

increased by the value "1" at each run.
Type INT or REAL

Note:
The REAL type is used if R parameters are programmed for a count
loop, for example. If the count variable is of the REAL type, its value is
rounded to an integer.

<initial value>: Initial value of the count
Condition: The start value must be lower than the end value.

<full-scale
value>:

End value of the count

Work preparation
3.1 Flexible NC programming

NC programming
468 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: INTEGER variable or R parameter as count variable
INTEGER variable as count variable:

Program code Comment
DEF INT iVARIABLE1
R10=R12-R20*R1 R11=6
FOR iVARIABLE1 = R10 TO R11 ; Count variable = INTEGER variable
 R20=R21*R22+R33
ENDFOR
M30

R parameter as count variable:

Program code Comment
R11=6
FOR R10=R12-R20*R1 TO R11 ; Count variable = R parameter (real variable)
 R20=R21*R22+R33
ENDFOR
M30

Example 2: Production of a fixed quantity of parts

Program code Comment
DEF INT WKPCCOUNT ; Defines type INT variable with the name

"WKPCCOUNT".
FOR WKPCCOUNT = 0 TO 100 ; Initiates the count loop. The "WKPCCOUNT" vari-

able increments from the initial value "0" to the
end value "100".

G01 …
ENDFOR ; End of count loop
M30

3.1.7.4 Program loop with condition at start of loop (WHILE, ENDWHILE)
For a WHILE loop, the condition is at the beginning of the loop. The WHILE loop is executed as
long as the condition is fulfilled.

Syntax

WHILE <condition>
...
ENDWHILE

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 469

Meaning

WHILE: Initiates the program loop.
ENDWHILE: Marks the end of the loop and results in a return jump to the beginning of the loop.
<condition>: The condition must be fulfilled so that the WHILE loop is executed.

Example

Program code Comment
...
WHILE $AA_IW[DRILL_AXIS] > -10 ; Call the WHILE loop under the following

condition: The actual WCS setpoint for the
drilling axis must be greater than -10.

G1 G91 F250 AX[DRILL_AXIS] = -1
ENDWHILE
...

3.1.7.5 Program loop with condition at the end of the loop (REPEAT, UNTIL)
For a REPEAT loop, the condition is at the end of the loop. The REPEAT loop is executed once
and repeated continuously until the condition is fulfilled.

Syntax

REPEAT
...
UNTIL <significance>

Meaning

REPEAT: Initiates the program loop.
UNTIL: Marks the end of the loop and results in a return jump to the beginning of the loop.
<condition>: The condition that must be fulfilled so that the REPEAT loop is no longer exe‐

cuted.

Example

Program code Comment
...
REPEAT ; Call the REPEAT loop.
...
UNTIL ... ; Check whether the condition is fulfilled.
...

Work preparation
3.1 Flexible NC programming

NC programming
470 Programming Manual, 06/2019, A5E47437142B AA

3.1.7.6 Program example with nested check structures

Program code Comment
LOOP
IF NOT $P_SEARCH ; IF no block search
 G1 G90 X0 Z10 F1000
 WHILE $AA_IM[X] <= 100 ; WHILE (setpoint X axis <= 100)
 G1 G91 X10 F500 ; Drilling pattern
 Z–5 F100
 Z5
 ENDWHILE
 ELSE ; ELSE block search
 MSG("No drilling during block search")
 ENDIF ; ENDIF
 $A_OUT[1] = 1 ; Next drilling plate
 G4 F2
ENDLOOP
M30

3.1.8 Cross-channel program coordination (INIT, START, WAITM, WAITMC, WAITE,
SETM, CLEARM)

In principle, a channel of the NC can execute the program started in it independently of other
channels in its mode group. If, however, several programs in several channels of the mode
group are involved in machining a workpiece, the program sequences in the various channels
must be coordinated with the following coordination commands.

Requirement
All the channels involved in the program coordination must belong to the same mode group:

MD10010 $MC_ASSIGN_CHAN_TO_MODE_GROUP[<Channel>] = <Mode group number>

Channel name instead of channel number
Instead of the channel numbers, the channel names entered in MD20000
$MC_CHAN_NAME[<Channel index>] can be used as parameters of the predefined
procedures for the program coordination. The use of the channel names in the NC programs
first has to be enabled:

MD10280 $MN_PROG_FUNCTION_MASK, bit 1 = TRUE

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 471

Note
Minimum distance between commands

At least two traversing block distances must be maintained between the commands INIT,
START, WAITE, WAITM, SETM, CLEARM and the command WAITMC. WAITMC is an executable
block, but is moved into the previous block for optimization, and then deleted as a block. SETM
for example is not an executable block, and is moved into the next block so that if there were
a distance of one block between two commands, both commands would be in the middle block.
As only one block is possible, optimization is not performed with a one block distance
for WAITMC.

This stops the program, and processing is briefly interrupted.

Syntax
INIT(<ChanNo>, <Prog>, <AckMode>)
START(<ChanNo>, <ChanNo>, ...)
WAITM(<MarkNo>, <ChanNo>, <ChanNo>, ...)
WAITE(<ChanNo>, <ChanNo>, ...)
WAITMC(<MarkNo>, <ChanNo>, <ChanNo>, ...)
SETM(<MarkNo>, <MarkNo>, ...)
CLEARM(<MarkNo>, <MarkNo>, ...)

Meaning

INIT(): Predefined procedure for selecting the NC program that is to be executed in the speci‐
fied channel

START(): Predefined procedure for starting the selected program in the respective channel
WAITM(): Predefined procedure to wait for a wait marker to be reached in the specified channels

The specified wait marker is set by WAITM in the same channel. The previous block is
terminated with exact stop. The wait marker is deleted after synchronization.
A maximum of 10 markers can be set simultaneously in each channel.

WAITE(): Predefined procedure to wait for the end of program in one or more other channels
WAITMC(): 1) Predefined procedure to wait for a wait marker to be reached in the specified channels

In contrast to WAITM, the braking of the axes to exact stop is only initiated if the other
channels have not yet reached the wait marker.

SETM(): 1) Predefined procedure to set one or more wait markers for the channel coordination
The processing in own channel is not affected by this.
SETM remains valid after a channel reset and NC start.

CLEARM(): 1) Predefined procedure to delete one or more wait markers for the channel coordination
The processing in own channel is not affected by this.
CLEARM() deletes all wait markers in the channel.
CLEARM(0) only deletes wait marker "0".
CLEARM remains valid after a channel reset and NC start.

Work preparation
3.1 Flexible NC programming

NC programming
472 Programming Manual, 06/2019, A5E47437142B AA

<ChanNo>: Channel number
The number of the own channel does not have to be specified.
Type: INT

<Prog>: Absolute or relative path specification (optional) + program name
Type: STRING
For the path specification, see:
Further information
Programming Manual Advanced, "File and Program Administration" Chapter > "Pro‐
gram memory" > "Addressing the files of the program memory"

<AckMode>:

Acknowledgment mode (optional)
Type: CHAR
Val‐
ues:

"N" Without acknowledgment
Program execution is continued after the command has been sent. The
sender is not informed if the command cannot be executed successfully.

"S" Synchronous acknowledgment
The program execution is stopped until the receiving component has
acknowledged the command. If the acknowledgment is positive, the
next command is executed. If the acknowledgment is negative, an error
message is output.

<MarkNo>: Number of the wait marker
Note
In a multi-channel system, a maximum of 100 wait markers are available (wait markers
0 ... 99).
Only wait marker 0 is available in a single-channel system.

1) For user-specific communication and/or coordination of channels, wait markers can be deployed
using SETM/CLEARM – and also without using the conditional wait command WAITMC. The wait markers
retain their values, even after a channel reset and NC start.

Examples

START using channel names from MD20000
● Parameter assignment

MD10280 $MN_PROG_FUNCTION_MASK, bit 1 = TRUE
$MC_CHAN_NAME[0] = "MACHINING"; Name of channel 1
$MC_CHAN_NAME[1] = "INFEED"; Name of channel 2

● Programming

Program code Comment
START(MACHINING) ; Start of channel 1
START(INFEED) ; Start of channel 2

START using local "channel names" and user variables

Program code Comment
DEF INT MACHINE = 1 ; Definition of user variable for channel 1
DEF INT LOADER = 2 ; Definition of user variable for channel 2
...

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 473

Program code Comment
START(MACHINE) ; Start of channel 1
START(LOADER) ; Start of channel 2

START using local "channel names", user variables and parameterized channel names

Program code Comment
DEF INT chanNo1 ; Definition of user variable for channel 1
DEF INT chanNo2 ; Definition of user variable for channel 2
chanNo1 = CHAN_1 ; Assignment of parameterized channel name channel 1
chanNo2 = CHAN_2 ; Assignment of parameterized channel name channel 2
...
START(ChanNo1) ; Start of channel 1
START(ChanNo2) ; Start of channel 2

INIT command with absolute path specification
Selection of program /_N_MPF_DIR/_N_ABSPAN1_MPF in channel 2.

Program code
INIT(2,"/_N_WCS_DIR/_N_SHAFT1_WPD/_N_CUT1_MPF")

INIT command with program name
Selection of the program with the name "MYPROG". The control searches for the program
using the search path.

Program code
INIT(2,"MYPROG")

Work preparation
3.1 Flexible NC programming

NC programming
474 Programming Manual, 06/2019, A5E47437142B AA

Program coordination with WAITM
● Channel 1: The program /_N_MPF_DIR/_N_MPF100_MPF has already been selected and

started.

Program code Comment
 ; Program MPF100
N10 INIT(2,"MPF200","N") ; Selection of program MPF200, channel 2
N11 START(2) ; Start of channel 2
...
N80 WAITM(1,1,2) ; Wait for WAIT marker 1 in channels 1 and

2
N81 ... ; Channel 1, N81 and channel 2, N71 are

; started synchronously
...
N180 WAITM(2,1,2) ; Wait for WAIT marker 2 in channels 1 and

2
N181 ... ; Channel 1, N181 and channel 2, N271 are

; started synchronously
...
N200 WAITE(2) ; Wait for end of program in channel 2
N201 ... ; N201 is not started until the end of

program
; MPF200 started in channel 2

N201 M30 ; End of program channel 1

● Channel 2: In channel 1, the program MPF200_MPF is selected and started for channel 2
using blocks N10 and N20.

Program code Comment
;$PATH=/_N_MPF_DIR ; Program MPF200
...
N70 WAITM(1,1,2) Wait for WAIT marker 1 in channels 1 and 2
N71 ... ; Channel 1, N81 and channel 2, N71 are

; started synchronously
...
N270 WAITM(2,1,2) Wait for WAIT marker 2 in channels 1 and 2
N271 ... ; Channel 1, N181 and channel 2, N271 are

; started synchronously
...
N400 M30 End of program channel 2

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 475

Supplementary conditions

Non-synchronous start of execution of following blocks after WAIT markers
In the case of channel coordination using WAIT markers, execution of the following blocks may
start non-synchronously. This behavior occurs if an action is triggered in one of the channels to
be synchronized immediately before reaching the common WAIT marker; the consequence of
which is implicit repositioning (REPOSA) in this delete distance-to-go.

Assumption: Current axis assignment in channels 1 and 2

● Channel 1: Axes X1 and U

● Channel 2: Axis X2

Table 3-2 Time sequence in channels 1 and 2

Channel 1 Channel 2 Description
... ... Arbitrary processing in channels 1 and 2

N100
WAITM(20,1,2)

Channel 1: reaches the WAIT marker and waits for
synchronization with channel 2

Start of the GETD(U)
processing:
● Axis interchange
● Delete distance-to-

go
● REPOSA
End

N200 GETD(U) Channel 2: Requests axis U from channel 1
Channel 1: Processing of GET(U) in the background

N210
WAITM(20,1,2)

Channel 2: reaches the WAIT marker. ⇒ This com‐
pletes the synchronization of channels 1 and 2

N220 G0 X2=100 Channel 2: Start of processing of N220

N110 G0 X1=100 Channel 1: Staggered start of processing of N110

Work preparation
3.1 Flexible NC programming

NC programming
476 Programming Manual, 06/2019, A5E47437142B AA

See also
Addressing program memory files (Page 544)

3.1.9 Macro technique (DEFINE ... AS)

NOTICE

Macro technology increases the complexity of the programming

Macros can significantly alter the control's programming language. Macro technology may
only be used with great care.

A macro is a sequence of individual statements which have together been assigned a name of
their own. When a macro is called during a program run, the statements programmed under the
program name are executed one after the other.

According to the range of validity (in other words, the range in which the macro definition is
active), there are the following macro categories:

● Local macros
Local macros are macros that are defined at the beginning of an NC program, which at the
time of execution is not the main program. They are created when the NC program is called,
and deleted with an end of program reset – or the next time that the control system powers
up. Local macros can only be accessed within the NC program in which they are defined.

● Program-global macros
Program-global macros are macros that are defined at the beginning of an NC program,
which is used as a main program. They are created when the NC program is called, and
deleted with an end of program reset – or the next time that the control system powers up.
Program-global macros can be accessed in the main program and in all subprograms.

Note
Availability of program-global macros

Program-global macros defined in the main program are only available in subprograms if the
following machine data is set:

MD11120 $MN_LUD_EXTENDED_SCOPE = 1

If MD11120 = 0, the program-global macros defined in the main program will only be
available in the main program.

● Global macros
Global macros are NC or channel-global macros, which are defined in a definition file
(macro file) – and are retained even after an end of program reset or the next time that the
control system powers up. Global macros can be called in any main program or subprogram
and executed.

Note

In order to use the macros of an external macro file in the NC program, the macro file must
be downloaded to the NC.

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 477

Macros must be defined before they can be used. The following rules must be observed in this
context:

● Any identifier, G, M, H functions and L subprogram names can be defined in a macro.

● The macro can be defined at the beginning of the program or in a dedicated definition file
(macro file).

● Local and program-global macros are defined at the beginning of the program.

● Global macros must be defined in a macro file, e.g._N_DEF_DIR/_N_UMAC_DEF.

● G command macros can only be defined as global macros.

● H and L functions can be programmed with 2 digits.

● M and G commands can be programmed with 3 digits.

Note

Keywords and reserved names may not be overwritten with macros. This also applies to all
jump destinations within a GOTO command, and to the keywords in program loops, such as
FOR, WHILE, LOOP, REPEAT.

Syntax
Macro definition:
DEFINE <Macro_name> AS <Operation_1> <Operation_2> ...
Call in the NC program:
<Macro_name>

Meaning

DEFINE ... AS: Keyword combination to define a macro
<Macro_name>: Macro name

Only identifiers are permissible as macro names.
The macro is called from the NC program by the macro name.

<Operation_1>: First programming instruction in the macro
<Operation_2>: Second programming instruction in the macro

Examples

Example 1: Macro definition at the beginning of the program

Program code Comment
DEFINE LINE AS G1 G94 F300 ; Macro definition
...
N70 LINE X10 Y20 ; Macro call
...

Work preparation
3.1 Flexible NC programming

NC programming
478 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Macro definitions in a macro file

Program code Comment
DEFINE M6 AS L6 ; A subprogram is called at tool change to handle

the necessary data transfer. The actual tool change
M function is output in the subprogram (e.g. M106).

DEFINE G81 AS DRILL(81) ; Emulation of the DIN-G command.
DEFINE G33 AS M333 G333 ; During thread cutting, synchronization is reques-

ted with the PLC. The original G command G33 was
renamed to G333 by machine data so that the program-
ming remains identical for the user.

Example 3: External macro file
After reading the external macro file into the control, the macro file must be downloaded into the
NC. Only then can macros be used in the NC program.

Program code Comment
%_N_UMAC_DEF
;$PATH=/_N_DEF_DIR ; Customer-specific macros
DEFINE PI AS 3.14
DEFINE TC1 AS M3 S1000
DEFINE M13 AS M3 M7 ; Spindle clockwise, coolant on
DEFINE M14 AS M4 M7 ; Spindle counter-clockwise, coolant on
DEFINE M15 AS M5 M9 ; Spindle stop, coolant off
DEFINE M6 AS L6 ; Call tool change program
DEFINE G80 AS MCALL ; Deselect drilling cycle
M30

Work preparation
3.1 Flexible NC programming

NC programming
Programming Manual, 06/2019, A5E47437142B AA 479

3.2 Subprogram technique

3.2.1 General information

3.2.1.1 Subprogram
The term "subprogram" has its origins during the time when part programs were split strictly into
main and subprograms. Main programs were the part programs selected for processing on the
control and then launched. Subprograms were the part programs called from within the main
program.

This strict division no longer exists with today's SINUMERIK NC language. In principle, each
part program can be selected as a main program and launched or called from another part
program as a subprogram.

Accordingly, the subprogram can then be used to refer to a part program called from within
another part program.

Application
As in all high-level programming languages, in the NC language, subprograms swaps out
program sections used more than once to independent, self-contained programs.

Subprograms offer the following advantages:

● Increase the transparency and readability of programs

● Increase quality by reusing tested program parts

● Offer the possibility of creating specific machining libraries

● Save memory space

Work preparation
3.2 Subprogram technique

NC programming
480 Programming Manual, 06/2019, A5E47437142B AA

3.2.1.2 Subprogram names

Naming rules
The subprogram name can be chosen freely providing the following rules are observed:

● Permissible characters:

– Letters: A ... Z, a ... z

– Numbers: 0 ... 9

– Underscore: _

● The first two characters should either be two letters or an underscore followed by a letter.

Note

If this condition is satisfied, then an NC program can be called as subprogram from another
program just by specifying the program name. However, if the program name starts with
digits, the subprogram call is then only possible via the CALL statement.

● Maximum length: 24 characters

Note
Uppercase/lowercase letters

The SINUMERIK NC language does not distinguish between uppercase and lowercase letters.

Note
Impermissible program names

To avoid problems with Windows applications, the following program names may not be used:
● CON, PRN, AUX, NUL
● COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9
● LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9

Control-internal extensions
The program name assigned when the subprogram is created is expanded within the control
with the addition of a prefix and a suffix:

● Prefix: _N_
● Postfix: _SPF

Using the program name
When using the program name, e.g. in the context of a subprogram call, all combinations of
prefix, program name, and suffix are possible.

Example:

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 481

The subprogram with the program name SUB_PROG can be started using the following
identifiers:

1. SUB_PROG
2. _N_SUB_PROG
3. SUB_PROG_SPF
4. _N_SUB_PROG_SPF

Main programs and subprograms with the same name
If a main program (.MPF) and a subprogram (.SPF) exist with the same program name, the
appropriate file extension for the unique identification must be specified when the program
name in the NC program is used. Otherwise the program found first in the search path with the
specified name is used.

3.2.1.3 Nesting of subprograms
A main program can call subprograms which in turn call more subprograms. As such, the
sequences of the programs are nested within each other. Each program runs on a dedicated
program level.

Nesting depth
The NC language currently provides 16 program levels. The main program always runs at the
uppermost program level, 0. A subprogram always runs at the next lowest program level
following the call. Program level 1 is, therefore, the first subprogram level.

Division of program levels:

● Program level 0: Main program level

● Program level 1 to 15: Subprogram level 1 to 15

...

...

Work preparation
3.2 Subprogram technique

NC programming
482 Programming Manual, 06/2019, A5E47437142B AA

Interrupt routines (ASUB)
If a subprogram is called in the context of an interrupt routine, this will not be executed at the
program level currently active in the channel (n) but at the next lowest program level (n+1). So
that this remains possible even at the lowest program level, 2 additional program levels (16 and
17) are available in conjunction with interrupt routines.

If more than 2 program levels are required, this has to be taken into account explicitly in the
structuring of the part program executed in the channel. In other words, only a maximum of as
many program levels may be used in order to leave sufficient program levels available for
interrupt processing.

If interrupt processing needs 4 program levels for example, the part program must be structured
so that it uses a maximum of up to program level 13. In the event of an interrupt, the 4 program
levels it requires (14 to 17) will be available to it.

Siemens cycles
Siemens cycles need 3 program levels. Therefore, a Siemens cycle must be called at the latest
in:

● Part program processing: program level 12

● interrupt routine: program level 14

3.2.1.4 Search path
When a subprogram without path details is called, the control system searches the available
program memory using a predefined search sequence (see "Search path for subprogram call
(Page 548)").

3.2.1.5 Formal and actual parameters
Formal and actual parameters occur in conjunction with the definition and calling of
subprograms with parameter transfer.

Formal parameter
When a subprogram is defined, the parameters to be transferred to it (known as the formal
parameters) have to be defined with type and parameter name.

The formal parameters define, therefore, the interface of the subprogram.

Example:

Program code Comment
PROC CONTOUR (REAL X, REAL Y) ; Formal parameters: X and Y, both REAL type
N20 X1=X Y1=Y ; Traversing of axis X1 to position X and axis

Y1 to position Y
...
N100 RET

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 483

Actual parameters
When a subprogram is called, absolute values or variables (known as actual parameters) have
to be transferred to it.

As such, the actual parameters assign up-to-date values to the interface of the subprogram
when the latter is called.

Example:

Program code Comment
N10 DEF REAL WIDTH ; Variable definition
N20 WIDTH=20.0 ; Variable assignment
N30 CONTOUR(5.5, WIDTH) ; Subprogram call with actual parameters: 5.5

and WIDTH
...
N100 M30

3.2.1.6 Parameter transfer

Definition of a subprogram with parameter transfer
A subprogram with parameter transfer is defined using the PROC keyword and a complete list
of all the parameters expected by the subprogram.

Incomplete parameter transfer
When the subprogram is called, not all the parameters defined in the subprogram interface
have to be transferred explicitly. If a parameter is omitted, the default value "0" is transferred for
it.

So that the parameter sequence can be uniquely identified, however, the commas used as
parameter separators always have to be included. The last parameter is an exception. If it is
omitted from the call, the last comma can also be left out.

Example:

Subprogram:

Program code Comment
PROC SUB_PROG (REAL X, REAL Y, REAL Z) ; Formal parameters: X, Y, and Z
...
N100 RET

Main program:

Program code Comment
PROC MAIN_PROG
...

Work preparation
3.2 Subprogram technique

NC programming
484 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N30 SUB_PROG(1.0,2.0,3.0) ; Subprogram call with complete parameter transfer:

X=1.0, Y=2.0, Z=3.0
…
N100 M30

Examples for the subprogram call in N30 with incomplete parameter transfer:

N30 SUB_PROG(,2.0,3.0) ; X=0.0, Y=2.0, Z=3.0
N30 SUB_PROG(1.0, ,3.0) ; X=1.0, Y=0.0, Z=3.0
N30 SUB_PROG(1.0,2.0) ; X=1.0, Y=2.0, Z=0.0
N30 SUB_PROG(, ,3.0) ; X=0.0, Y=0.0, Z=3.0
N30 SUB_PROG(, ,) ; X=0.0, Y=0.0, Z=0.0

NOTICE

Call-by-reference parameter transfer

Parameters transferred using call-by-reference must not be left out of the subprogram call.

NOTICE

AXIS data type

AXIS data type parameters must not be left out of the subprogram call.

Checking the transfer parameters
System variable $P_SUBPAR [n] where n = 1, 2, etc., can be used to check whether a
parameter has been transferred explicitly or left out in the subprogram. The index n refers to the
sequence of the formal parameters. Index n = 1 refers to the first formal parameter, index n = 2
to the second formal parameter, and so on.

The following program excerpt shows an example of how a check can be performed based on
the first formal parameter:

Programming Comment
PROC SUB_PROG (REAL X, REAL Y, REAL Z) ; Formal parameters: X, Y, and Z
N20 IF $P_SUBPAR[1]==TRUE ; Check of the first formal parameter

X.
... ; These actions are taken if the formal

parameter X has been transferred ex-
plicitly.

N40 ELSE
... ; These actions are taken if the formal

parameter X has not been transferred.
N60 ENDIF
... ; General actions
N100 RET

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 485

3.2.2 Definition of a subprogram

3.2.2.1 Subprogram without parameter transfer
When defining subprograms without parameter transfer, the definition line at the beginning of
the program can be omitted.

Syntax

[PROC <program name>]
...

Meaning

PROC: Definition operation at the beginning of a program
<program name>: Name of the program

Example
Example 1: Subprogram with PROC operation

Program code Comment
PROC SUB_PROG ; Definition line
N10 G01 G90 G64 F1000
N20 X10 Y20
...
N100 RET ; Subprogram return

Example 2: Subprogram without PROC operation

Program code Comment
N10 G01 G90 G64 F1000
N20 X10 Y20
...
N100 RET ; Subprogram return

See also
Subprogram call without parameter transfer (Page 512)

3.2.2.2 Subprogram with call-by-value parameter transfer (PROC)
A subprogram with call-by-value parameter transfer is defined using the PROC keyword
followed by the name of the program and a complete list of all the parameters with their type and
name. The definition operation must appear in the first program line.

Work preparation
3.2 Subprogram technique

NC programming
486 Programming Manual, 06/2019, A5E47437142B AA

Call-by-value
The calling program transfers only the value of a variable to the subprogram on a call-by-value
parameter transfer. Thus the subprogram is not given direct access to the variable. In this way,
only the value visible in the subprogram is modified when the parameter value is changed. The
value of the variables defined in the calling program remains unchanged. As a consequence,
the call-by-value parameter transfer does not affect the calling program.

Syntax
PROC <program name> (<parameter type> <parameter
name>=<init_value>, ...)

Note

Up to 127 parameters can be transferred.

Meaning

PROC: Definition operation at the beginning of a program
<program name>: Name of the program
<parameter type>: Data type of the parameter (e.g. REAL, INT, BOOL)
<parameter name>: Name of the parameter
<init_value>: Optional value for the initialization of the parameter (optional)

If no parameter is specified when calling the subprogram, the param‐
eter is assigned the initialization value.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 487

Examples

Example 1
Definition of a subprogram SUB_PROG with three parameters of type REAL with default
values:

Program code
PROC SUB_PROG(REAL LENGTH=10.0, REAL WIDTH=20.0, REAL HIGHT=30.0)

Example 2
Various call versions

Program code
PROC MAIN_PROG
 REAL PAR_1 = 100
 REAL PAR_2 = 200
 REAL PAR_3 = 300
 ; Call variants
 SUB_PROG
 SUB_PROG(PAR_1, PAR_2, PAR_3)
 SUB_PROG(PAR_1)
 SUB_PROG(PAR_1, , PAR_3)
 SUB_PROG(, , PAR_3)
N100 RET

See also
Subprogram call with parameter transfer (EXTERN) (Page 514)

3.2.2.3 Subprogram with call-by-reference parameter transfer (PROC, VAR)
A subprogram with call-by-reference parameter transfer is defined using the PROC keyword
followed by the name of the program and a complete list of all the parameters with the VAR
keyword, type, and name. The definition operation must appear in the first program line. As
parameters, references to arrays can also be transferred.

Call-by-reference
The calling program transfers not the value of a variable to the subprogram on a call-by-
reference parameter transfer, but a reference (pointer) to the variable. This gives the
subprogram direct access to the variable. In this way, not only the value visible in the
subprogram is modified when a parameter value is changed, but also the value of the variables
defined in the calling program. Call-by-reference parameter transfer therefore affects the
calling program, even after the subprogram has ended.

Work preparation
3.2 Subprogram technique

NC programming
488 Programming Manual, 06/2019, A5E47437142B AA

Note

The call-by-reference parameter transfer is then only necessary if the transferred variable was
defined locally in the calling program (LUD). Channel-global or NC-global variables do not have
to be transferred, since these cannot be accessed directly from within the subprogram.

Syntax
PROC <program name> (VAR <parameter type> <parameter name>, etc.)
PROC <program name> (VAR <array type> <array name>, [<m>,<n>,<o>],
etc.)

Note

Up to 127 parameters can be transferred.

Meaning

PROC: Definition operation at the beginning of a program
VAR: Keyword for parameter transfer via reference
<program name>: Name of the program
<parameter type>: Data type of the parameter (e.g. REAL, INT, BOOL)
<parameter name>: Name of the parameter
<array type>: Data type of the array elements (e.g. REAL, INT, BOOL)
<array name>: Name of the array

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 489

[<m>,<n>,<o>]: Array size
Currently, up to 3-dimensional arrays are possible:
<m>: Array size for 1st dimension
<n>: Array size for 2nd dimension
<o>: Array size for 3rd dimension

Note
● The program name specified after the PROC keyword must match the program name

assigned on the user interface.
● With arrays of an undefined array length, subprograms can process arrays of variable length

as formal parameter. When defining a two-dimensional array as a formal parameter, for
example, the length of the 1st dimension is not specified. However, the comma must be
written.
Example: PROC <program name> (VAR REAL ARRAY[,5])

Example
Definition of a subprogram with two parameters as reference to REAL type:

Program code
; Parameter 1: Reference to type: REAL, name: LENGTH
; Parameter 2: Reference to type: REAL, name: WIDTH
PROC SUB_PROG(VAR REAL LENGTH, VAR REAL WIDTH)

See also
Subprogram call with parameter transfer (EXTERN) (Page 514)

3.2.2.4 Save modal G functions (SAVE)
The SAVE attribute means that before the subprogram call, active modal G commands are
saved and are reactivated after the end of the subprogram.

NOTICE

Interrupt continuous-path mode

If, for active continuous-path mode, a subprogram is called with the SAVE attribute, the
continuous-path mode is interrupted at the end of the subprogram (return jump).

Syntax
PROC <subprogram name> SAVE

Work preparation
3.2 Subprogram technique

NC programming
490 Programming Manual, 06/2019, A5E47437142B AA

Meaning

SAVE: Saves the modal G commands before the subprogram call and restores after the end of
the subprogram.

Example
In the CONTOUR subroutine, the modal G command G91 incremental dimension applies. The
modal G command G90 is effective in the main program (absolute dimension). G90 is again
effective in the main program after the end of the subprogram due to the subprogram definition
with SAVE.

Subprogram definition:

Program code Comment
PROC CONTOUR (REAL VALUE1) SAVE ; Subprogram definition with the SAVE parame-

ter
N10 G91 ... ; Modal G command G91: Incremental dimension
N100 M17 ; End of subprogram

Main program:

Program code Comment
N10 G0 X... Y... G90 ; Modal G command G90: Absolute dimensions
N20 ...
...
N50 CONTOUR (12.4) ;Subprogram call
N60 X... Y... ; Modal G command G90 reactivated using SAVE

Supplementary conditions

Frames
The behavior of frames regarding subprograms with the SAVE attribute depends on the frame
time and can be set using machine data.

References
Function Manual, Basic Functions; Axes, Coordinate Systems, Frames (K2),
Section: "Subprogram return with SAVE"

3.2.2.5 Suppress single block execution (SBLOF, SBLON)
Single-block suppression for the complete program

Programs designated with SBLOF are completely executed just like a block when single-block
execution is active, i.e. single-block execution is suppressed for the complete program.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 491

SBLOF is in the PROC line and is valid up to the end of the subprogram or until it is interrupted.
At the return command, the decision is made whether to stop at the end of the subprogram:

Return jump with M17: Stop at the end of the subprogram
Return jump with RET: No stop at end of subprogram

Single-block suppression within the program

SBLOF alone must remain in the block. Single block is deactivated after this block until:

● The next SBLON
or

● The end of the active subprogram level

Syntax
Single-block suppression for the complete program:
PROC ... SBLOF
Single-block suppression within the program:

SBLOF
...
SBLON

Meaning

PROC: First operation in a program
SBLOF: Command to deactivate single-block execution

SBLOF can be written in a PROC block or alone in the block.
SBLON: Command to activate single-block execution

SBLON must be in a separate block.

Work preparation
3.2 Subprogram technique

NC programming
492 Programming Manual, 06/2019, A5E47437142B AA

Supplementary conditions
● Single-block suppression and block display

The current block display can be suppressed in cycles/subprograms using DISPLOF.
If DISPLOF is programmed together withSBLOF, then the cycle/subprogram call continues
to be displayed on single-block stops within the cycle/subprogram.

● Single-block suppression in the system ASUB or user ASUB
If the single-block stop in the system or user ASUB is suppressed using the settings in
machine data MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (bit0 = 1 or bit1 = 1), then
the single-block stop can be reactivated by programming SBLON in the ASUB.
If the single-block stop in the user ASUB is suppressed using the setting in machine data
MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP, then the single-block stop cannot be
reactivated by programming SBLON in the ASUB.

● Special features of single-block suppression for various single-block execution types
When single-block execution SBL2 is active (stop after each part program block) there is no
execution stop in the SBLON block if bit 12 is set to "1" in the
MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (prevent single-block stop).
When single-block execution SBL3 is active (stop after every part program block - also in the
cycle), the SBLOF command is suppressed.

Examples

Example 1: Single-block suppression within a program

Program code Comment
N10 G1 X100 F1000
N20 SBLOF ; Deactivate single block.
N30 Y20
N40 M100
N50 R10=90
N60 SBLON ; Reactivate single block.
N70 M110
N80 ...

The area between N20 and N60 is executed as one step in single-block mode.

Example 2: A cycle is to act like a command for a user
Main program:

Program code
N10 G1 X10 G90 F200
N20 X-4 Y6
N30 CYCLE1
N40 G1 X0
N50 M30

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 493

Cycle CYCLE1:

Program code Comment
N100 PROC CYCLE1 DISPLOF SBLOF ; Suppress single block
N110 R10=3*SIN(R20)+5
N120 IF (R11 <= 0)
N130 SETAL(61000)
N140 ENDIF
N150 G1 G91 Z=R10 F=R11
N160 M17

CYCLE1 is processed for active single-block execution, i.e. the Start key must be pressed once
to process CYCLE1.

Example 3: An ASUB, which is started by the PLC in order to activate a modified zero offset and
tool offsets, is to be executed invisibly.

Program code
N100 PROC ZO SBLOF DISPLOF
N110 CASE $P_UIFRNUM OF 0 GOTOF _G500
 1 GOTOF _G54
 2 GOTOF _G55
 3 GOTOF _G56
 4 GOTOF _G57
 DEFAULT GOTOF END
N120 _G54: G54 D=$P_TOOL T=$P_TOOLNO
N130 RET
N140 _G54: G55 D=$P_TOOL T=$P_TOOLNO
N150 RET
N160 _G56: G56 D=$P_TOOL T=$P_TOOLNO
N170 RET
N180 _G57: G57 D=$P_TOOL T=$P_TOOLNO
N190 RET
N200 END: D=$P_TOOL T=$P_TOOLNO
N210 RET

Example 4: Is not stopped with MD10702 Bit 12 = 1
Initial situation:

● Single-block execution is active.

● MD10702 $MN_IGNORE_SINGLEBLOCK_MASK Bit12 = 1

Work preparation
3.2 Subprogram technique

NC programming
494 Programming Manual, 06/2019, A5E47437142B AA

Main program:

Program code Comment
N10 G0 X0 ; Stop in this part program line.
N20 X10 ; Stop in this part program line.
N30 CYCLE ; Traversing block generated by the cycle.
N50 G90 X20 ; Stop in this part program line.
M30

Cycle CYCLE:

Program code Comment
PROC CYCLE SBLOF ; Suppress single-block stop.
N100 R0 = 1
N110 SBLON ; Execution is not stopped in the part program line due to

the fact that MD10702 bit12=1.
N120 X1 ; Execution is stopped in this part program line.
N140 SBLOF
N150 R0 = 2
RET

Example 5: Single-block suppression for program nesting
Initial situation:

Single-block execution is active.

Program nesting:

Program code Comment
N10 X0 F1000 ; Execution is stopped in this block.
N20 UP1(0)
 PROC UP1(INT _NR) SBLOF ; Suppress single-block stop.
 N100 X10
 N110 UP2(0)
 PROC UP2(INT _NR)
 N200 X20
 N210 SBLON ; Activate single-block stop.
 N220 X22 ; Execution is stopped in this block.
 N230 UP3(0)
 PROC UP3(INT _NR)
 N300 SBLOF ; Suppress single-block stop.
 N305 X30
 N310 SBLON ; Activate single-block stop.
 N320 X32 ; Execution is stopped in this block.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 495

Program code Comment
 N330 SBLOF ; Suppress single-block stop.
 N340 X34
 N350 M17 ; SBLOF is active.
 N240 X24 ; Execution is stopped in this block.

SBLON is active.
 N250 M17 ; Execution is stopped in this block.

SBLON is active.
 N120 X12
 N130 M17 ; Execution is stopped in this return

jump block. SBLOF of the PROC statement
is active.

N30 X0 ; Execution is stopped in this block.
N40 M30 ; Execution is stopped in this block.

Further information

Single-block disable for unsynchronized subprograms
In order to execute an ASUB in the single block in one step, a PROC statement must be
programmed in the ASUB with SBLOF. This also applies to the function "Editable system
ASUB" (MD11610 $MN_ASUP_EDITABLE).

Example of an editable system ASUB:

Program code Comment
N10 PROC ASUP1 SBLOF DISPLOF
N20 IF $AC_ASUP==’H200’
N30 RET ; No REPOS for mode change.
N40 ELSE
N50 REPOSA ; REPOS in all other cases.
N60 ENDIF

Program control in single-block mode
With the single-block execution function, the user can execute a part program block-by-block.
The following setting types exist:

● SB1: Machining stops after every machine function block (except for cycles).

● SB2: Machining stops after every block, i.e. also for data blocks (except for cycles)

● SB3: Machining stops after every machine function block (also in cycles).

Single-block suppression for program nesting
If SBLOF was programmed in the PROC statement in a subprogram, then execution is stopped
at the subprogram return jump with M17. That prevents the next block in the calling program
from already running. If SBLOF, without SBLOF is programmed in the PROC statement in a
subprogram, single-block suppression is activated, execution is only stopped after the next
machine function block of the calling program. If that is not wanted, SBLON must be
programmed in the subprogram before the return (M17). Execution does not stop for a return
jump to a higher-level program with RET.

Work preparation
3.2 Subprogram technique

NC programming
496 Programming Manual, 06/2019, A5E47437142B AA

3.2.2.6 Suppress current block display (DISPLOF, DISPLON, ACTBLOCNO)
The current program block is displayed as standard in the block display. The display of the
current block can be suppressed in cycles and subprograms using the DISPLOF command.
Instead of the current block, the call of the cycle or the subprogram is displayed. The DISPLON
command revokes suppression of the block display.

DISPLOF and DISPLON are programmed in the program line with the PROC operation and are
effective for the entire subprogram and implicitly for all subprograms called from it which do not
contain a DISPLON or DISPLOF command. This is true for all ASUBs.

Syntax
PROC … DISPLOF
PROC … DISPLOF ACTBLOCNO
PROC … DISPLON

Meaning

DISPLOF: Command to suppress the current block display.
Location: At the end of the program line with the PROC operation
Effective: Up to the return jump from the subprogram or end of program.
Note:
If further subprograms are called from the subprogram using the DISPLOF com‐
mand, then the current block display is also suppressed in these subprograms
unless DISPLON is explicitly programmed in them.

DISPLON: Command for revoking suppression of the display of the current block
Location: At the end of the program line with the PROC operation
Effective: Up to the return jump from the subprogram or end of program.
Note:
If further subprograms are called from the subprogram using the DISPLON com‐
mand, then the current block will also be displayed in these subprograms
unless DISPLOF is explicitly programmed in them.

ACTBLOCNO: DISPLOF together with the ACTBLOCNO attribute means that in the case of an
alarm, the number of the actual block is output in which the alarm occurred. This
also applies if only DISPLOF is programmed in a lower program level.
On the other hand, for DISPLOF without ACTBLOCNO, the block number of the cycle
or subprogram call from the last program level not designated with DISPLOF is
displayed.

Examples

Example 1: Suppress current block display in the cycle

Program code Comment
PROC CYCLE (AXIS TOMOV, REAL POSITION)
SAVE DISPLOF

; Suppress current block display Instead,
the cycle call should be displayed, e.g.:
CYCLE(X,100.0)

DEF REAL DIFF ;Cycle contents
G01 ...

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 497

Program code Comment
...
RET ; Subprogram return jump. The block follow-

ing the cycle call is displayed in the block
display.

Example 2: Block display for alarm output
Subprogram SUBPROG1 (with ACTBLOCNO):

Program code Comment
PROC SUBPROG1 DISPLOF ACTBLOC-
NO

N8000 R10 = R33 + R44
...
N9040 R10 = 66 X100 ; Trigger alarm 12080
...
N10000 M17

Subprogram SUBPROG2 (without ACTBLOCNO):

Program code Comment
PROC SUBPROG2 DISPLOF
N5000 R10 = R33 + R44
...
N6040 R10 = 66 X100 ; Trigger alarm 12080
...
N7000 M17

Main program:

Program code Comment
N1000 G0 X0 Y0 Z0
N1010 ...
...
N2050 SUBPROG1 ; Alarm output = "12080 channel K1 block N9040 syntax

error for text R10="
N2060 ...
N2350 SUBPROG2 ; Alarm output = "12080 channel K1 block N2350 syntax

error for text R10="
...
N3000 M30

Work preparation
3.2 Subprogram technique

NC programming
498 Programming Manual, 06/2019, A5E47437142B AA

Example 3: Revoke suppression of the current block display
Subprogram SUB1 with suppression:

Program code Comment
PROC SUB1 DISPLOF ; Suppress current block display in SUB1 subprogram.

Instead, the block is to be displayed with the SUB1
call.

...
N300 SUB2 ; Call subprogram SUB2.
...
N500 M17

Subprogram SUB2 without suppression:

Program code Comment
PROC SUB2 DISPLON ; Revoke suppression of the current block display in

subprogram SUB2.
...
N200 M17 ; Return to subprogram SUB1. Suppression of the cur-

rent block display is restored in SUB1.

Example 4: Display response for different DISPLON/DISPLOF combinations

① The part program lines from program level 0 are displayed in the current block display.
② The part program lines from program level 3 are displayed in the current block display.
③ The part program lines from program level 3 are displayed in the current block display.
④ The part program lines from program level 7/8 are displayed in the current block display.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 499

3.2.2.7 Identifying subprograms with preparation (PREPRO)
All files can be identified with the PREPRO keyword at the end of the PROC operation line during
power up.

Note

This type of program preparation depends on the relevant set machine data. Please follow the
manufacturer's instructions.

References:
Function Manual, Special Functions, Preprocessing (V2)

Syntax
PROC … PREPRO

Meaning

PREPRO: Keyword for identifying all files (of the NC programs stored in the cycle directories)
prepared during power up

Read subprogram with preparation and subprogram call
The cycle directories are processed in the same order both for subprograms preprocessed with
parameters during power up and during subprogram call.

1. _N_CUS_DIR user cycles

2. _N_CMA_DIR manufacturer cycles

3. _N_CST_DIR standard cycles

In the case of NC programs sharing the same name but having different characteristics, the first
PROC operation found is activated and the other PROC operation is overlooked without an alarm
message.

3.2.2.8 Subprogram return M17
The return command M17 (or the part program end command M30) appears at the end of a
subprogram. It prompts the return to the calling program at the part program block following the
subprogram call.

Note

M17 and M30 are treated as equivalents in the NC language.

Syntax

PROC <program name>

Work preparation
3.2 Subprogram technique

NC programming
500 Programming Manual, 06/2019, A5E47437142B AA

...
M17/M30

Supplementary conditions
Effect of the subprogram return on continuous-path mode

If M17 (or M30) appears on its own in the part program block, active continuous-path mode in
the channel will be interrupted.

To avoid continuous-path mode being interrupted, M17 (or M30) has to be included in the last
traversing block. Furthermore, the following machine data must be set to "0":

MD20800 $MC_SPF_END_TO_VDI = 0 (no M30/M17 output to the NC/PLC interface)

Example
1. Subprogram with M17 in a separate block

Program code Comment
N10 G64 F2000 G91 X10 Y10
N20 X10 Z10
N30 M17 ; Return jump with interruption of continuous-path

mode.

2. Subprogram with M17 in the last traversing block

Program code Comment
N10 G64 F2000 G91 X10 Y10
N20 X10 Z10 M17 ; Return jump without interruption of continuous-

path mode.

3.2.2.9 RET subprogram return
The RET command can also be used in the subprogram as a substitute for the M17 return jump
command. RET must be programmed in a separate part program block. Like M17, RET prompts
the return to the calling program at the part program block following the subprogram call.

Note

Parameters can be programmed to change the return jump behavior of RET (see
"Parameterizable subprogram return jump (RET ...) (Page 502)").

Application
The RET operation should then be used if a G64 continuous-path mode (G641 to G645) is not
to be interrupted by the return jump.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 501

Requirement
The RET command can only be used in subprograms, which were not defined with the SAVE
attribute.

Syntax

PROC <program name>
...
RET

Example
Main program:

Program code Comment
PROC MAIN_PROGRAM ; Start of the program
...
N50 SUB_PROG ; Subprogram call: SUB_PROG
N60 ...
...
N100 M30 ; End of program

Subprogram:

Program code Comment
PROC SUB_PROG
...
N100 RET ; Return jump to block N60 in the main program.

3.2.2.10 Parameterizable subprogram return jump (RET ...)
Generally, a return jump is made from a subprogram into the calling program using the RET
command. Processing is then continued with the program line following the subprogram call.
The following options are available if program processing is to be continued at another location:

● Resume program execution after calling the stock removal cycles in the ISO dialect mode
(after describing the contour).

● Return to main program from any subprogram level (even after ASUB) for error handling.

● Return jump across several program levels for special applications in compile cycles and in
the ISO dialect mode.

To achieve this, the RET command should be programmed with additional parameters.

Search direction
When specifying parameter <target block>, a return jump is first made to the block after the
calling block. A search is then made for the target in the direction of the end of the program into

Work preparation
3.2 Subprogram technique

NC programming
502 Programming Manual, 06/2019, A5E47437142B AA

which a return jump was made. A search is made toward the start of the program if the search
was not successful.

Syntax
RET("<target block>")
RET("<target block>",<block after target block>)
RET("<target block>",<block after target block> <number of return
jump levels>)
RET("<target block>", ,<number of return jump levels>)
RET("<target block>",<block after target block>,<number of return
jump levels>,
<return jump to the beginning of the program>)
RET(, ,<number of return jump levels>,<return jump to the beginning
of the program>)

Meaning

RET: End of subprogram
<target block>: Declares as jump target the block where program execution

should be resumed.
If parameter <number of return jump levels> is not programmed,
then the jump target is in the program from which the current sub‐
program was called.
Possible data include:
<block number> Number of the target block.

The search for the block number is made in
the program to which a return jump is made -
initially toward the end of the program.

<jump marker> Jump marker, which must be available in the
program into which a return jump is made.
The search for the jump marker is made in the
program to which a return jump is made - ini‐
tially toward the end of the program.

<character
string>

Character string that must be available in the
program into which a return jump is made
(e.g. program or variable name).
The search for the character string is made in
the program to which a return jump is made -
initially toward the end of the program.
The following rules apply when programming
the character string:
● Blank at the end (contrary to the jump

marker, which is identified by ":" at the
end).

● Before the character string only one block
number and/or a jump marker may be
set, no program commands.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 503

<block after target
block>:

The parameter specifies as to whether program processing
should be continued in the block specified under parameter <tar‐
get block> or in the following block.
Type: INT
Value: 0 The return jump is made to the block specified

in parameter <target block>.
> 0 The return jump is made to the next block

specified in parameter <target block>.
<number of
return jump levels>:

The parameter specifies the number of program levels that should
be jumped through (return jumps) to search there for the target
block and continue processing the program.
Type: INT
Value: 1 The program is resumed at the "current pro‐

gram level -1" (just like RET without parame‐
ter).

2 The program is resumed at the "current pro‐
gram level -2", i.e. one level is skipped.

3 The program is resumed at the "current pro‐
gram level -3", i.e. two levels are skipped.

...
Range of
values:

1 ... 15

<return jump to the
beginning of the program>:

The parameter specifies, for a return jump into the main program,
whether the program should be continued at the start of the pro‐
gram in the active ISO dialect mode.
Type: BOOL
Value: 1 If the return jump is made into the main pro‐

gram and an ISO dialect mode is active there,
then the program branches to the beginning of
the program.

Note

For a subprogram return jump with a character string to specify the target block search, initially,
a search is always made for a jump marker in the calling program.

If a jump target is to be uniquely defined using a character string, it is not permissible that the
character string matches the name of a jump marker, as otherwise the subprogram return jump
would always be made to the jump marker and not to the character string (refer to example 2).

Supplementary conditions
When making a return jump through several program levels, the SAVE statements of the
individual program levels are evaluated.

Work preparation
3.2 Subprogram technique

NC programming
504 Programming Manual, 06/2019, A5E47437142B AA

If, for a return jump over several program levels, a modal subprogram is active and if in one of
the skipped programs the deselection command MCALL is programmed for the modal
subprogram, then the modal subprogram remains active.

NOTICE

Programming error

For a return jump across several program levels, it is the user's responsibility to ensure that
processing is continued with the necessary modal settings. This can be achieved, e.g. by
programming an appropriate main block.

Examples

Example 1: Resuming in the main program after ASUB execution

Programming Comment
N10010 CALL "UP1" ; Program level 0 (main program)
 N11000 PROC UP1 ; Program level 1
 N11010 CALL "UP2"
 N12000 PROC UP2 ; Program level 2
 ...
 N19000 PROC ASUP ; Program level 3 (ASUB execution)
 ...
 N19100 RET("N10900", ,$P_STACK) ; Subprogram return jump into the main program

; $P_STACK: actual program level
N10900 ; Target block in the main program
N10910 MCALL ; Deactivate the modal subprogram call
N10920 G0 G60 G40 M5 ; Initialize additional modal settings

Example 2: Character string (string>) to specify the target block search
Main program:

Program code Comment
PROC MAIN_PROGRAM
N1000 DEF INT iVar1=1, iVar2=4
N1010 ...
N1200 subProg1 ; Calls subprogram "subProg1"
N1210 M2 S1000 X10 F1000
N1220
N1400 subProg2 ; Calls subprogram "subProg2"
N1410 M3 S500 Y20
N1420 ..
N1500 lab1: iVar1=R10*44
N1510 F500 X5

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 505

Program code Comment
N1520 ...
N1550 subprog1: G1 X30 ; "subProg1" is defined here as jump marker.
N1560 ...
N1600 subProg3 ; Calls subprogram "subProg3"
N1610 ...
N1900 M30

Subprogram subProg1:

Program code Comment
PROC subProg1
N2000 R10=R20+100
N2010 ...
N2200 RET("subProg2") ; Return jump into the main program at block

N1400

Subprogram subProg2:

Program code Comment
PROC subProg2
N2000 R10=R20+100
N2010 ...
N2200 RET("iVar1") ; Return jump into the main program at block

N1500

Subprogram subProg3:

Program code Comment
PROC subProg3
N2000 R10=R20+100
N2010 ...
N2200 RET("subProg1") ; Return jump into the main program at block

N1550

Additional information
The following diagrams show the different effects of return jump parameters

Work preparation
3.2 Subprogram technique

NC programming
506 Programming Manual, 06/2019, A5E47437142B AA

1. <target block> = "N200", <block after target block> = 0

After the RET command, program execution is continued with block N200 in the main program.

2. <target block> = "N200", <block after target block> = 1

After the RET command, program execution is continued with the block (N210) that follows
block N200 in the main program.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 507

3. <target block> = "N220", <number of return jump levels> = 2

After the RET command, two program levels are jumped through and program execution is
continued with block N220.

3.2.2.11 Parameterizable subprogram return jump (RETB ...)
Generally, a return jump is made from a subprogram into the calling program using the RETB
command. Processing is then continued with the program line following the subprogram call.
The following options are available if program processing is to be continued at another location:

● Resume program execution after calling the stock removal cycles in the ISO dialect mode
(after describing the contour).

● Return to main program from any subprogram level (even after ASUB) for error handling.

● Return jump across several program levels for special applications in compile cycles and in
the ISO dialect mode.

To achieve this, the RETB command should be programmed with additional parameters.

Search direction
When specifying parameter <target block>, a return jump is first made to the block after the
calling block. A search is then made for the target in the direction of the beginning of the
program into which a return jump is made. A search is made toward the end of the program if
the search was not successful.

Syntax
RETB("<target block>")
RETB("<target block>",<block after target block>)
RETB("<target block>",<block after target block> <number of return
jump levels>)
RETB("<target block>", ,<number of return jump levels>)

Work preparation
3.2 Subprogram technique

NC programming
508 Programming Manual, 06/2019, A5E47437142B AA

RETB("<target block>",<block after target block>,<number of return
jump levels>,
<return jump to the beginning of the program>)
RETB(, ,<number of return jump levels>,<return jump to the beginning
of the program>)

Meaning

RETB: End of subprogram
<target block>: Declares as jump target the block where program execution

should be resumed.
If parameter <number of return jump levels> is not programmed,
then the jump target is in the program from which the current sub‐
program was called.
Possible data include:
<block number> Number of the target block.

The search for the block number is realized in
the program to which a return jump was made
initially in the direction toward the beginning
of the program.

<jump marker> Jump marker, which must be available in the
program into which a return jump is made.
The search for the jump marker is realized in
the program to which a return jump was made
initially in the direction toward the beginning
of the program.

<character
string>

Character string that must be available in the
program into which a return jump is made
(e.g. program or variable name).
The search for the character string is realized
in the program to which a return jump was
made initially in the direction toward the be‐
ginning of the program.
The following rules apply when programming
the character string:
● Blank at the end (contrary to the jump

marker, which is identified by ":" at the
end).

● Before the character string only one block
number and/or a jump marker may be
set, no program commands.

<block after target
block>:

The parameter specifies as to whether program processing
should be continued in the block specified under parameter <tar‐
get block> or in the following block.
Type: INT
Value: 0 The return jump is made to the block specified

in parameter <target block>.
> 0 The return jump is made to the next block

specified in parameter <target block>.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 509

<number of
return jump levels>:

The parameter specifies the number of program levels that should
be jumped through (return jumps) to search there for the target
block and continue processing the program.
Type: INT
Value: 1 The program is resumed at the "current pro‐

gram level -1" (just like RET without parame‐
ter).

2 The program is resumed at the "current pro‐
gram level -2", i.e. one level is skipped.

3 The program is resumed at the "current pro‐
gram level -3", i.e. two levels are skipped.

...
Range of
values:

1 ... 15

<return jump to the
beginning of the program>:

The parameter specifies, for a return jump into the main program,
whether the program should be continued at the start of the pro‐
gram in the active ISO dialect mode.
Type: BOOL
Value: 1 If the return jump is made into the main pro‐

gram and an ISO dialect mode is active there,
then the program branches to the beginning of
the program.

Note

For a subprogram return jump with a character string to specify the target block search, initially,
a search is always made for a jump marker in the calling program.

If a jump target is to be uniquely defined using a character string, it is not permissible that the
character string matches the name of a jump marker, as otherwise the subprogram return jump
would always be made to the jump marker and not to the character string (refer to example 2).

Supplementary conditions
When making a return jump through several program levels, the SAVE statements of the
individual program levels are evaluated.

If, for a return jump over several program levels, a modal subprogram is active and if in one of
the skipped programs the deselection command MCALL is programmed for the modal
subprogram, then the modal subprogram remains active.

NOTICE

Programming error

For a return jump across several program levels, it is the user's responsibility to ensure that
processing is continued with the necessary modal settings. This can be achieved, e.g. by
programming an appropriate main block.

Work preparation
3.2 Subprogram technique

NC programming
510 Programming Manual, 06/2019, A5E47437142B AA

Example

Program code Comment
EXAMPLE.MPF
 …
 N3000 START_CYC(parm1, param2, …)
 N3010 TECH_CYC1(param1, param2, …)
 N3020 TECH_CYC2(param1, param2, …)
 N3030 TECH_CYC3(param1, param2, …)
 N3040 END_CYC(param1, param2, …)
 N3040 END_CYC(param1, param2, …)
 N3050 …
 N4500 START_CYC(param11, param12, …)
 N4510 …
 N4590 END_CYC(param11, param12, ..)
 N5000 …
 …
N6000 M30

Program code Comment
PROC END_CYC(…) ; Call in the main program, line N3040
 N10000 …
 N15000 if status == 1
 N15010 RETB(“START_CYC”) ; Return jump to the calling program EXAMPLE.MPF

; Search for character string "START_CYC"
; Search direction: backward in the program start
direction
; Program processing is continued with line N3000

 N15020 endif
 N15030 if status == 0
 N15040 RET ; Return jump to the calling program EXAMPLE.MPF

; Program processing is continued with line N3050
 N15050 endif
 N16000 RET(“START_CYC”) ; Return jump to the calling program EXAMPLE.MPF

; Search for character string "START_CYC"
; Search direction: forward in the program end di-
rection
; Program processing is continued with line N4500

N17060 RETB ; Return jump to the calling program EXAMPLE.MPF
; Program processing is continued with line N3050
; RETB without parameter is identical to RET

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 511

3.2.3 Subprogram call

3.2.3.1 Subprogram call without parameter transfer
A subprogram is called either with address L and subprogram number or by specifying the
program name.

A main program can also be called as a subprogram. The end of program M2 or M30 set in the
main program is evaluated as M17 in this case (end of program with return to the calling
program).

Note

Accordingly, a subprogram can also be started as a main program.

Search strategy of the control:

Are there any *_MPF?

Are there any *_SPF?

This means, if the name of the subprogram to be called is identical to the name of the main
program, the main program that issued the call is called again. This is generally an undesirable
effect and must be avoided by assigning unique names to subprograms and main programs.

Note

Subprograms not requiring parameter transfer can also be called from an initialization file.

Syntax
L<number>/<program name>

Note

The subprogram call must always be programmed in a separate NC block.

Meaning

L: Address for the subprogram call
<number>: Name of the subprogram

Type: INT
Value: Maximum 7 decimal places

Notice:
Leading zeros are significant in names (⇒ L123, L0123 and
L00123 are three different subprograms).

<program name>: Name of the subprogram (or main program)

Work preparation
3.2 Subprogram technique

NC programming
512 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Subprogram call without parameter transfer

Example 2: Calling a main program as a subprogram

See also
Subprogram without parameter transfer (Page 486)

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 513

3.2.3.2 Subprogram call with parameter transfer (EXTERN)
For a subprogram call with parameter transfer, variables or values can be transferred directly
(but not VAR parameters).

Subprograms with parameter transfer must be declared with EXTERNAL in the main program
before they are called in the main program (e.g. at the beginning of the program). The name of
the subprogram and the variable types are thereby specified in the sequence in which they are
transferred.

NOTICE

Risk of confusion

Both the variable types and the sequence of the transfer must match the definitions declared
under PROC in the subprogram. The parameter names can be different in the main program
and the subprogram.

Syntax

EXTERNAL <program name>(<type_Par1>,<type_Par2>,<type_Par3>)
...
<program name>(<value_Par1>,<value_Par2>,<value_Par3>)

Note

The subprogram call must always be programmed in a separate NC block.

Meaning

<program name>: Name of subprogram
EXTERNAL: Keyword to declare a subprogram with pa‐

rameter transfer.
Note:
You only have to specify EXTERNAL if the
subprogram is in the workpiece or in the
global subprogram directory. Cycles do not
have to be declared as EXTERNAL.

<type_par1>,<type_par2>,<type_par3>: Variable types of the parameters to be trans‐
ferred in the sequence of the transfer

<value_par1>,<value_par2>,<value_par3>: Variable values for the parameters to be
transferred

Work preparation
3.2 Subprogram technique

NC programming
514 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Subprogram call preceded by declaration

Program code Comment
N10 EXTERNAL BORDERS(REAL,REAL,REAL) ; Specify the subprogram.
...
N40 BORDER(15.3,20.2,5) ; Call the subprogram with parameter

transfer.

Example 2: Subprogram call without declaration

Program code Comment
N10 DEF REAL LENGTH, WIDTH, DEPTH
N20 …
N30 LENGTH=15.3 WIDTH=20.2 DEPTH=5
N40 BORDER(LENGTH,WIDTH,DEPTH) ; or: N40 BORDER(15.3,20.2,5)

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 515

See also
Subprogram with call-by-value parameter transfer (PROC) (Page 486)

Subprogram with call-by-reference parameter transfer (PROC, VAR) (Page 488)

3.2.3.3 Number of program repetitions (P)
If a subprogram is to be executed several times in succession, the desired number of program
repetitions can be entered at address P in the block with the subprogram call.

CAUTION

Subprogram call with program repetition and parameter transfer

Parameters are transferred only when the program is called, i.e., on the first run. The
parameters remain unchanged for the remaining repetitions. If you want to change the
parameters during program repetitions, you must make the appropriate provision in the
subprogram.

Syntax
<program name> P<value>

Meaning

<program name>: Subprogram call
P: Address to program program repetitions

Work preparation
3.2 Subprogram technique

NC programming
516 Programming Manual, 06/2019, A5E47437142B AA

<value>: Number of program repetitions
Type: INT
Range of values: 1 … 9999

(unsigned)

Example

Program code Comment
...
N40 FRAME P3 ; The BORDER subprogram is to be executed three times one after

the other.
...

3.2.3.4 Modal subprogram call (MCALL)
The specified subprogram is not immediately called as a result of the modal subprogram
call MCALL(<program name>). Instead, the call is performed as of this time in the part
program after each traversing block with path motion. Also across program levels.

Note

When a program is being executed only the last modal subprogram call MCALL(<program
name>) is effective (this is always the case). The current modal subprogram call replaces the
one that has been active up until then.

If parameters are transferred to the subprogram, the parameters are only transferred with
call MCALL(<program name>(Par1, Par2, ...)).

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 517

NOTICE

Modal subprogram calls without path motion

In the following situations the modal subprogram is also called without programming path
motion:
● Programming addresses S or F if G0 or G1 is active.
● If G0 or G1 were programmed alone in the block or with additional G commands.

Syntax

MCALL <program name>
...
MCALL

Meaning

MCALL <program
name>:

Activate the "Modal subprogram call" function

<program name>: Name of subprogram

MCALL: The "Modal subprogram call" function is deactivated with MCALL without
specification of a program name.

Supplementary conditions

ASUB
If the part program processing is interrupted by an ASUB (see Chapter "Interrupt routine
(ASUB) (Page 528)"), then no modal subprogram calls are executed in this ASUB.

If an ASUB is started in the "Reset" channel state, then it behaves just like a normal part
program with regard to the modal subprogram calls.

Tool change cycle
If the "Modal subprogram call" function is deselected during the tool change cycle, note that the
tool change cycle is called implicitly, even after a block search, via the search ASUB, or
manually via overstore. In this situation, the "Modal subprogram call" function must not be
deselected because otherwise the search result is falsified. It is therefore recommended that
the deselection of the "Modal subprogram call" function in the tool change cycle is programmed
as follows:

Program code Comment
...
 IF $AC_ASUP == 0 ; Call is not performed via search ASUB or overstore.
 MCALL ; Deactivate the "Modal subprogram call" function.
 ENDIF

Work preparation
3.2 Subprogram technique

NC programming
518 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
...

Examples

Example 1

Program code Comment
N10 G0 X0 Y0
N20 MCALL L70 ; Activate the modal subprogram call for L70.
N30 X10 Y10 ; X10 Y10 is approached, and then L70 is called.
N40 X20 Y20 ; X20 Y20 is approached, and then L70 is called.
...
N100 MCALL ; Deactivate the "Modal subprogram call" function.
N110 X0 Y0 ; X0 Y0 is approached, L70 is not called.

Example 2

Program code
N10 G0 X0 Y0
N20 MCALL L70
N30 L80

In this example, the following NC blocks with programmed path axes are in subprogram L80.
L70 is called by L80.

3.2.3.5 Indirect subprogram call (CALL)
Depending on the prevailing conditions at a particular point in the program, different
subprograms can be called. The name of the subprogram is stored in a variable of the STRING
type. The subprogram call is realized with CALL and the variable name.

Note

The indirect subprogram call is only possible for subprograms without parameter transfer. For
a direct subprogram call, save the name in a STRING constant.

Syntax
CALL <program name>

Meaning

CALL: Command for the indirect subprogram call.
<program name>: Name of the subprogram (variable or constant)
 Type: STRING

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 519

Example

Direct call with STRING constant:

Program code Comment
…
CALL "/_N_WKS_DIR/_N_SUBPROG_WPD/_N_PART1_SPF" ; Direct call to subprogram

PART1 with CALL.
…

Indirect call via variable:

Program code Comment
…
DEF STRING[100] PROGNAME : Define variable.
PROGNAME="/_N_WKS_DIR/_N_SUBPROG_WPD/_N_PART1_SPF" ; Assign subprogram PART1 to

the PROGNAME variable.
CALL PROGNAME ; Indirect call to subprogram

PART1 via CALL and the PROG-
NAME variable.

…

3.2.3.6 Indirect subprogram call with specification of the calling program part (CALL BLOCK ...
TO ...)

CALL and the keyword combination BLOCK ... TO is used to call a subprogram indirectly and
execute the program section designated by the start and end labels.

Syntax
CALL <program name> BLOCK <start label> TO <end label>
CALL BLOCK <start label> TO <end label>

Meaning

CALL: Command for the indirect subprogram call.
<program name>:

Name of the subprogram (variable or constant) that contains the pro‐
gram section to be executed (specification optional).
Type: STRING
Note:
If a <program name> has not been programmed, the program section
designated by <start label> and <end label> is searched for in
the current program and executed.

BLOCK ... TO ... : Keyword combination for indirect program section execution
<start label>: Variable that refers to the start of the program section to be executed.

Type: STRING

Work preparation
3.2 Subprogram technique

NC programming
520 Programming Manual, 06/2019, A5E47437142B AA

<end label>: Variable that refers to the end of the program section to be executed.
Type: STRING

Example

Main program:

Program code Comment
...
DEF STRING[20] STARTLABEL, ENDLABEL ; Variable definition for the start and

end labels.
STARTLABEL="LABEL_1"
ENDLABEL="LABEL_2"
...
CALL "CONTUR_1" BLOCK STARTLABEL TO ENDLA-
BEL

; Indirect subprogram call and identifi-
er associated with the calling program
section.

...

Subprogram:

Program code Comment
PROC CONTUR_1 ...
LABEL_1 ; Start label: Start of program section execution.
N1000 G1 ...
...
LABEL_2 ; End label: End of program section execution.
...

3.2.3.7 Indirect call of a program programmed in ISO language (ISOCALL)
A program programmed in an ISO language can be called using the indirect program
call ISOCALL. The ISO mode set in the machine data is then activated. The original execution
mode becomes effective again at the end of the program. If no ISO mode is set in the machine
data, the subprogram is called in Siemens mode.

For further information about the ISO mode, see
References:
ISO Dialects Functional Description

Syntax
ISOCALL <program_name>

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 521

Meaning

ISOCALL: Keyword for an indirect subprogram call with which the ISO mode set in
the machine data is activated.

<program name>: Name of the program programmed in an ISO language (variable or con‐
stant, type STRING)

Example: Calling a contour with cycle programming from ISO mode

Program code Comment
0122_SPF ; Contour description in ISO mode
N1010 G1 X10 Z20
N1020 X30 R5
N1030 Z50 C10
N1040 X50
N1050 M99
N0010 DEF STRING[5] PROGNAME = “0122“ ; Siemens part program (cycle)
...
N2000 R11 = $AA_IW[X]
N2010 ISOCALL PROGNAME
N2020 R10 = R10+1 ; Execute program 0122.spf in ISO mode
...
N2400 M30

3.2.3.8 Call subprogram with path specification and parameters (PCALL)
With PCALL, you can call subprograms with the absolute path and parameter transfer.

Syntax
PCALL <path/program name>(<parameter 1>,…,<parameter n>)

Meaning

PCALL: Keyword for subprogram call with absolute path name
<path/program name>: Absolute path data including subprogram names.

Rules regarding path data, see "Addressing program memory
files (Page 544)".
If no absolute path name is specified, PCALL behaves like a
standard subprogram call with a program identifier.
The program name is specified without prefix and without file
identifier. If the program name is to be programmed with prefix
and file identifier, then it must be explicitly declared with prefix and
file identifier using the EXTERN command.

<parameter 1>, ...: Actual parameters in accordance with the PROC operation of the
subprogram.

Work preparation
3.2 Subprogram technique

NC programming
522 Programming Manual, 06/2019, A5E47437142B AA

Example

Program code
PCALL/_N_WKS_DIR/_N_SHAFT_WPD/SHAFT(parameter1,parameter2,…)

3.2.3.9 Extend search path for subprogram calls (CALLPATH)
The search path for subprogram calls can be extended using the CALLPATH command. This
means that also subprograms can be called from a non-selected workpiece directory without
having to specify the complete, absolute path name of the subprogram.

Another application option is possible in the EES mode "EES without GDIR", if another
directory is used on an external program memory to save global subroutines. In this case, using
CALLPATH the search path can be extended by this subprogram directory.

The search path extension is made before the entry for user cycles (_N_CUS_DIR).

The search path extension is deselected again as a result of the following events:

● CALLPATH with blanks

● CALLPATH without parameter

● End of part program

● Reset

Syntax
CALLPATH("<path name>")

Meaning

CALLPATH: Keyword for the programmable search path exten‐
sion.
Is programmed in a separate part program line.

<path name>: Constant or variable, STRING type.
Contains the absolute path name of the directory
by which the search path should be extended.
Rules regarding path data, see "Addressing pro‐
gram memory files (Page 544)".

Example
The search path should be extended by a certain workpiece directory:

Program code
...
CALLPATH ("/_N_WKS_DIR/_N_MYWPD_WPD")
...

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 523

This means that the following search path is set (position 5. is new):

1. Actual directory/name
2. Actual directory/name_SPF
3. Actual directory/name_MPF
4. //NC:/_N_SPF_DIR / name_SPF
5. /_N_WKS_DIR/_N_MYWPD_WPD/name_SPF

6. /N_CUS_DIR/name_SPF
7. /_N_CMA_DIR/name_SPF
8. /_N_CST_DIR/name_SPF

Supplementary conditions
● CALLPATH checks whether the programmed path name actually exists. In the case of an

error, part program execution is interrupted with correction block alarm 14009.

● CALLPATH can also be programmed in INI files. It is only effective for the time it takes to
process the INI file (WPD-INI file or initialization program for NC active data, e.g. frames in
the 1st channel _N_CH1_UFR_INI). The search path is again reset.

3.2.3.10 Execute external subroutine (EXTCALL)
A part program can be loaded from an external memory and executed with the EXTCALL
command.

The following are available as external memory:

● Local drive

● Network drive

● USB drive

Note

Only the USB interfaces on the operator panel front or the TCU can be used as an interface
for processing an external program on a USB drive.

NOTICE

Tool/workpiece damage when using a USB flash drive

It is recommended that a USB flash drive is not used to execute an external subprogram.
A communication interruption to the USB flash drive while executing the subprogram as a
result of contact problems, drop out, interruption through a knock or accidental unplugging
stops the machining immediately. The tool and/or workpiece could be damaged.

Default setting of the external program path
The path for the external program directory can be preset with the setting data:

SD42700 $SC_EXT_PROG_PATH

Work preparation
3.2 Subprogram technique

NC programming
524 Programming Manual, 06/2019, A5E47437142B AA

Together with the program path and identifier specified with the EXTCALL call, this forms the
entire path for the subprogram to be called.

Note

If the program path is specified only via the EXTCALL call, then SD42700 must be empty.

Note
Parameters

When an external program is called, no parameters can be transferred to it.

Syntax
EXTCALL("<Path/><Program name>")

Meaning

EXTCALL: Command for calling an external subprogram.
"<Path/><Program name>": Constant/variable of type STRING

<Path/>: Absolute or relative path specifica‐
tion (optional)

<Program name>: The program name is specified with‐
out prefix "_N_".
The file extensions ("MPF", "SPF")
can be attached to program names
using the "_" or "." character (option‐
al).
Example:
"SHAFT"
"SHAFT_SPF"
"SHAFT.SPF"

Path specification: Short designations
The following short designations can be used to specify the path:

● Local drive: "LOCAL_DRIVE:"

● CF card: "CF_CARD:"

● USB drive (operator panel front): "USB:"

Alternatively, the abbreviations "CF_CARD:" and "LOCAL_DRIVE:" can be used.

Example

Execute from local drive
The "MAIN.MPF" main program is stored in the NC memory and is selected for execution.

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 525

Subprogram "SP_1"
The external subprogram "SP_1.SPF" or "SP_1.MPF" is on the local drive in the directory "/
user/sinumerik/data/prog/WKS.DIR/WST1.WPD".

The path for the external program directory is set with:

SD42700 $SC_EXT_PROG_PATH = LOCAL_DRIVE:WKS.DIR/WST1.WPD

Note

Specification of the path for calling the external subprogram:
● Without the default setting: "LOCAL_DRIVE:WKS.DIR/WST1.WPD/SP_1"
● With the default setting: "SP_1"

Subprogram "SP_2"
The external subprogram "SP_2.SPF " or "SP_2.MPF " is in the WKS.DIR/WST1.WPD
directory of the USB drive. The default setting of the path to the external program directory is
used for the path of subprogram "SP_1" and is also not rewritten in the main program.
Therefore, the complete path has to be specified when subprogram "SP_2" is called.

Main program "MAIN"

Program code
N010 PROC MAIN
N020 ...
N030 EXTCALL("SP_1")
N030 EXTCALL("USB:WKS.DIR/WST1.WPD/SP_2")
N050 ...
N060 M30

Further information

EXTCALL call with absolute path name
If the subprogram exists under the specified path, it is executed with the EXTCALL call. If the
subprogram does not exist under the specified path, the program execution is aborted with the
EXTCALL call.

Work preparation
3.2 Subprogram technique

NC programming
526 Programming Manual, 06/2019, A5E47437142B AA

EXTCALL call with relative path name / without path name
In the event of an EXTCALL call with a relative path name or without a path name, the available
program memories are searched as follows:

1. If a path name is preset in SD42700 $SC_EXT_PROG_PATH, the data specified in
the EXTCALL call (program name or with relative path name) is searched for first, starting
from this path. The absolute path is obtained from linking the following characters:

– Default path specification in SD42700 $SC_EXT_PROG_PATH

– Separator "/"

– Path specification and subprogram name in the EXTCALL command

2. If the subprogram was not found under 1., the directories of the user memory are searched.

The search ends when the subprogram is found for the first time. If the subprogram is not found,
the program execution is aborted with the EXTCALL call.

Adjustable reload memory (FIFO buffer)
A reload memory is required for the execution of an external subprogram. The size of the reload
memory is preset with 30 kB and can only be changed by the machine manufacturer (using
MD18360 MM_EXT_PROG_BUFFER_SIZE).

Note
Subprograms with jump commands

For external subprograms that contain jump commands (GOTOF, GOTOB, CASE, FOR, LOOP,
WHILE, REPEAT, IF, ELSE, ENDIF etc.) the jump destinations must lie within the post loading
memory.

Note
ShopMill/ShopTurn programs

The contour descriptions added at the file end mean the ShopMill and ShopTurn programs
must be stored completely in the read-only memory.

A separate reload memory is required for external subprograms executed in parallel.

Reset / end of program / POWER ON
Reset and POWER ON cause external subprogram calls to be interrupted and the associated
load memory to be deleted.

A program selected for "Execution from external source" remains selected for "Execution from
external source" after a reset / end of program. The behavior does not differ from internally
selected programs, assuming that the external program memory is still available.

References
Further information on "Execution from external source" can be found in:

Function Manual, Basic Functions, Mode Group, Channel, Program Operation, Reset Behavior
(K1)

Work preparation
3.2 Subprogram technique

NC programming
Programming Manual, 06/2019, A5E47437142B AA 527

3.3 Interrupt routine (ASUB)

3.3.1 Function of an interrupt routine

Note

The terms "asynchronous subprogram (ASUB)" and "interrupt routine" are used
interchangeably in the description below to refer to the same functionality.

A typical example should clarify the function of an interrupt routine:

The tool breaks during machining. This triggers a signal that stops the current machining
process and simultaneously starts a subprogram – the so-called interrupt routine. The interrupt
routine contains all the statements which are to be executed in this case.

When the interrupt routine execution has finished and the machine is ready to continue
operation, the control jumps back to the main program and continues machining at the point of
interruption – depending on the REPOS command (see " Repositioning at contour
(Page 812) ").

CAUTION

Risk of collision

If a REPOS command has not been programmed in the subprogram, then the control goes to
the end point of the block that follows the interrupted block.

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
528 Programming Manual, 06/2019, A5E47437142B AA

References
Function Manual, Basic Functions; Mode Group, Channel, Program Operation, Reset
Response (K1), Section: "Asynchronous subprograms (ASUBs), interrupt routines"

3.3.2 Creating an interrupt routine

Create interrupt routine as subprogram
The interrupt routine is identified as a subprogram in the definition.

Example:

Program code Comment
PROC LIFT_Z ; Program name "ABHEB_Z"
N10 ... ; The NC blocks then follow:
...
N50 M17 ; Finally, end the program and return to the main program.

Saving modal G commands (SAVE)
The interrupt routine can be designated by defining with SAVE.

The SAVE attribute means that the active modal G commands are saved before calling the
interrupt routine and are reactivated after the end of the interrupt routine (see " Subprograms
with SAVE mechanism (SAVE) (Page 490) ").

This means that it is possible to resume processing at the interruption point after the interrupt
routine has been completed.

Example:

Program code
PROC LIFT_Z SAVE
N10 ...
...
N50 M17

Assign additional interrupt routines (SETINT)
SETINT statements can be programmed within the interrupt routine (see "Assign and start
interrupt routine (SETINT)" (Page 530)) therefore activating additional interrupt routines. They
are triggered via the input.

References
You will find more information on how to create subprograms in Section "Subprograms,
Macros".

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 529

3.3.3 Assign and start interrupt routine (SETINT, PRIO, BLSYNC)
The control has several fast inputs (inputs 1 ... 8), which initiate an interrupt (1 ... 8). Each
interrupt can be assigned a priority and an interrupt routine using the SETINT command. If the
interrupt is initiated by setting the fast input, then processing in the channel is interrupted and
the interrupt routine started.

Interrupt priority
If, in a part program, several inputs are assigned interrupts, then the interrupts must be
assigned different priorities.

An interrupt can be assigned a priority value from 1 ... 128. Priority value 1 corresponds to the
highest priority and 128 the lowest.

Syntax
SETINT(<n>) <NAME>
SETINT(<n>) PRIO=<value> <NAME>
SETINT(<n>) PRIO=<value> <NAME> BLSYNC
SETINT(<n>) PRIO=<value> <NAME> LIFTFAST

Meaning

SETINT(<n>): Input <n> is assigned the interrupt routine <Name>. The assigned interrupt routine
is started as soon as input <n> == 1 is detected.
Note:
If an already programmed input <n> is assigned another interrupt routine, then the
previous assignment is no longer effective.

<n>: Input number
Type: INT
Range of values: 1 ... 8

PRIO= : Priority of the interrupt
(optional)

<value>: Priority value
(optional)
Type: INT
Range of values: 1 ... 128 (1 ⇒ highest priority)

<NAME>: Name of the interrupt routine (subprogram)
BLSYNC: BLSYNC ensures that after initiating the interrupt, the system first waits until the

actual block has been completed. Only then is the interrupt routine executed.
(optional)

LIFTFAST: LIFTFAST ensures that after initiating the interrupt, initially a fast retraction is
realized (see Chapter "Fast retraction from the contour (SETINT LIFTFAST, ALF)
(Page 533)"). Only then is the interrupt routine executed.
(optional)

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
530 Programming Manual, 06/2019, A5E47437142B AA

Supplementary conditions

Interrupt rules
1. For every interrupt that cannot be immediately executed, or is presently already being

processed, an additional interrupt request is saved. All other interrupt requests for this
interrupt are lost.

2. If an interrupt is currently being processed and an additional interrupt with higher priority
initiated, then this interrupts the lower-priority interrupt. The lower priority interrupt is
continued after the higher priority interrupt has been completed. If, while the higher priority
interrupt is being processed, additional requests are received for the lower-priority interrupt,
then one request is saved. All others are lost.

3. If an interrupt is currently being processed and an additional interrupt with higher priority
initiated, then this interrupts the lower-priority interrupt. The higher priority interrupt is
processed. If a higher priority interrupt is initiated, the actual interrupt is interrupted and the
higher priority interrupt processed. A maximum of six active interrupt levels are possible.
One interrupt level presently being processed and five waiting interrupt levels. For each
active interrupt level, a maximum of one additional interrupt request is saved. All other
interrupt requests are lost. Interrupt requests are also lost if these are requested for
additional interrupt levels (interrupt level ≥ 7).

Examples

Example 1: Assign interrupt routines and define the priority

Program code Comment
...
N20 SETINT(3) PRIO=1 ABHEB_Z ; IF input 3 == 1 THEN start interrupt routine

"ABHEB_Z"
N30 SETINT(2) PRIO=2 ABHEB_X ; IF input 2 == 1 THEN start interrupt routine

"ABHEB_X".
...

The interrupt routines are executed in the sequence of the priority values if the inputs become
available simultaneously (are energized simultaneously): First "ABHEB_Z", then "ABHEB_X".

Example 2: Newly assign an interrupt routine

Program code Comment
...
N20 SETINT(3) PRIO=2 ABHEB_Z ; IF input 3 == 1 THEN start interrupt routine

"ABHEB_Z"
...
N80 SETINT(3) PRIO=1 ABHEB_X ; IF input 3 == 1 THEN start interrupt routine

"ABHEB_X"
...

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 531

3.3.4 Deactivating/reactivating the assignment of an interrupt routine (DISABLE,
ENABLE)

A SETINT statement can be deactivated with DISABLE and reactivated with ENABLE without
losing the input → interrupt routine assignment.

Syntax
DISABLE(<n>)
ENABLE(<n>)

Meaning

DISABLE(<n>): Command: Deactivating the interrupt routine assignment of input <n>
ENABLE(<n>): Command: Reactivating the interrupt routine assignment of input <n>
<n>: Parameter: Number of the interrupt signal

Type: INT
Range of values: 1 ... 32

Example

Program code Comment
N20 SETINT(3) PRIO=1 ABHEB_Z ; If input 3 switches, then interrupt

; routine "ABHEB_Z" should start.
...
N90 DISABLE(3) ; The SETINT statement from N20 is deactivated.
...
N130 ENABLE(3) ; The SETINT statement from N20 is reactivated.
...

3.3.5 Delete assignment of interrupt routine (CLRINT)
An interrupt signal assignment defined with SETINT for an NC program (ASUP) can be deleted
with CLRINT.

Syntax
CLRINT(<n>)

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
532 Programming Manual, 06/2019, A5E47437142B AA

Meaning

CLRINT(<n>): Command: Delete assignment of the interrupt signal <n> to the NC program
(ASUP) defined with SETINT <n>

<n>: Parameter: Number of the interrupt signal
Type: INT
Range of values: 1 ... 32

Example

Program code Comment
N20 SETINT(3) PRIO=2 ABHEB_Z
...
N50 CLRINT(3) ; The assignment between input "3" and inter-

rupt routine "ABHEB_Z" is deleted.

3.3.6 Fast retraction from the contour (SETINT LIFTFAST, ALF)
For a SETINT statement with LIFTFAST, when the input is switched, the tool is moved away
from the workpiece contour using fast retraction.

The further sequence is then dependent on whether the SETINT statement includes an
interrupt routine in addition to LIFTFAST:

With interrupt routine: After the fast retraction, the interrupt routine is executed.
Without interrupt routine: Machining is stopped after fast retraction and an alarm is output.

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 533

Syntax
SETINT(<n>) PRIO=1 LIFTFAST
SETINT(<n>) PRIO=1 <NAME> LIFTFAST

Meaning

SETINT(<n>): Command: Assign input <n> to an interrupt routine. The assigned interrupt routine
starts when input <n> switches.

<n>: Parameter: Input number
Type: INT
Range of values: 1 ... 8

PRIO= : Defining the priority
<value>: Priority value

Range of values: 1 ... 128
Priority 1 corresponds to the highest priority.

<NAME>: Name of the subprogram (interrupt routine) that is to be executed.
LIFTFAST: Command: Fast retraction from the contour
ALF=… : Command: Programmable traverse direction (in motion block)

Regarding the possibilities of programming with ALF, refer to the subject "Travers‐
ing direction for fast retraction from the contour (Page 535)".

Supplementary conditions
Behavior for active frame with mirroring

When determining the retraction direction, a check is performed to see whether a frame with
mirror is active. In this case, for the retraction direction, right and left are interchanged referred
to the tangential direction. The direction components in tool direction are not mirrored. This
behavior is activated with the MD setting:

MD21202 $MC_LIFTFAST_WITH_MIRROR = TRUE

Example
A broken tool should be automatically replaced by a daughter tool. Machining is then continued
with the new tool.

Main program:

Main program Comment
N10 SETINT(1) PRIO=1 W_WECHS LIFTFAST ; When input 1 is switched, the

tool is immediately retracted from
the contour with fast retraction
(code no. 7 for tool radius compen-
sation G41). Then interrupt rou-
tine "W_WECHS" is executed.

N20 G0 Z100 G17 T1 ALF=7 D1
N30 G0 X-5 Y-22 Z2 M3 S300
N40 Z-7

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
534 Programming Manual, 06/2019, A5E47437142B AA

Main program Comment
N50 G41 G1 X16 Y16 F200
N60 Y35
N70 X53 Y65
N90 X71.5 Y16
N100 X16
N110 G40 G0 Z100 M30

Subprogram:

Subprogram Comment
PROC W_CHANGE SAVE ; Subprogram where the actual operat-

ing state is saved
N10 G0 Z100 M5 ;Tool changing position, spindle stop
N20 T11 M6 D1 G41 ;Change tool
N30 REPOSL RMBBL M3 ; Reposition at the contour and return

jump into the main program (this is
programmed in a block)

3.3.7 Traversing direction for fast retraction from the contour

Retraction movement
The following G commands define the retraction movement plane:

● LFTXT
The retraction movement plane is defined by the path tangent and the tool direction (default
setting).

● LFWP
The plane of the retraction movement is the active working plane selected with G
commands G17, G18 or G19. The direction of the retraction movement is not dependent on
the path tangent. This allows a fast retraction to be programmed parallel to the axis.

● LFPOS
Retraction of the axis declared using POLFMASK/POLFMLIN to the absolute axis position
programmed with POLF.
ALF has no influence on the retraction direction for several axes and for several axes in a
linear system.
References:
Programming Manual, Fundamentals, Section: "Rapid retraction during thread cutting"

Programmable traversing direction (ALF=…)
The direction is programmed in discrete steps of 45 degrees with ALF in the plane of the
retraction movement.

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 535

The possible traversing directions are stored in special code numbers on the control and can
be called up using these numbers.

Example:

Program code
N10 SETINT(2) PRIO=1 ABHEB_Z LIFTFAST
ALF=7

With G41 activated (machining direction to the left of the contour) the tool vertically moves away
from the contour.

Reference plane for defining the traversing direction for LFTXT
At the point of application of the tool to the programmed contour, the tool is clamped at a plane
which is used as a reference for specifying the retraction movement with the corresponding
code number.

The reference plane is derived from the longitudinal tool axis (infeed direction) and a vector
positioned perpendicular to this axis and perpendicular to the tangent at the point of application
of the tool.

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
536 Programming Manual, 06/2019, A5E47437142B AA

Code numbers with traversing direction for LFTXT
Starting from the reference plane, you will find the code numbers with traversing directions in
the following diagram.

The retraction in the tool direction is defined for ALF=1.

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 537

The "fast retraction" function is deactivated with ALF=0.

CAUTION

Risk of collision

When the tool radius compensation is activated, then:
● For G41 codes 2, 3, 4
● For G42 codes 6, 7, 8

should not be used, as in these cases, the tool would move to the contour and would collide
with the workpiece.

Code numbers with traversing directions for LFWP
With LFWP, the direction in the working plane is derived from the following assignment:

● G17: X/Y plane
ALF=1: Retraction in the X direction
ALF=3: Retraction in the Y direction

● G18: Z/X plane
ALF=1: Retraction in the Z direction
ALF=3: Retraction in the X direction

● G19: Y/Z plane
ALF=1: Retraction in the Y direction
ALF=3: Retraction in the Z direction

3.3.8 Motion sequence for interrupt routines

Interrupt routine without LIFTFAST
Axis motion is braked along the path down to standstill (zero speed). The interrupt routine then
starts.

The standstill position is saved as interrupt position and is approached at the end of the
interrupt routine for REPOS with RMIBL.

Interrupt routine with LIFTFAST
Axis motion is braked along the path. The LIFTFAST motion is simultaneously executed as
superimposed motion. If the path motion and LIFTFAST motion have come to a standstill (zero
speed), the interrupt routine is started.

The position on the contour is saved as interrupt position where the LIFTFAST motion is
started and therefore the path was left.

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
538 Programming Manual, 06/2019, A5E47437142B AA

The interrupt routine with LIFTFAST and ALF=0 behaves in precisely the same way as the
interrupt routine without LIFTFAST.

Note

The absolute value through which the geometry axes move when quickly retracting from the
contour can be set using machine data.

Work preparation
3.3 Interrupt routine (ASUB)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 539

3.4 File and Program Management

3.4.1 Program memory

3.4.1.1 Program memory in the NCK
Files and programs (e.g. main programs and subprograms, macro definitions) are saved in the
non-volatile program memory (→ passive file system).

References:
Function Manual, Extended Functions; Memory Configuration (S7)

A number of file types are also stored here temporarily; these can be transferred to the work
memory as required (e.g. for initialization purposes when machining a specific workpiece).

Work preparation
3.4 File and Program Management

NC programming
540 Programming Manual, 06/2019, A5E47437142B AA

Standard directories
The following standard directories are available:

Directory Content
_N_DEF_DIR Data modules and macro modules
_N_CST_DIR Standard cycles
_N_CMA_DIR Manufacturer cycles
_N_CUS_DIR User cycles
_N_WKS_DIR Workpieces
_N_SPF_DIR Global subprograms
_N_MPF_DIR Main programs
_N_COM_DIR Comments

File types
The following file types can be stored in the main memory:

File type Description
<name>_MPF Main program
<name>_SPF Subprogram
<name>_TEA Machine data
<name>_SEA Setting data
<name>_TOA Tool offsets
<name>_UFR Zero offsets/frames
<name>_INI Initialization files
<name>_GUD Global user data
<name>_RPA R-parameters
<name>_COM Comment
<name>_DEF Definitions for global user data and macros

Workpiece main directory (_N_WKS_DIR)
The workpiece main directory exists in the standard setup of the program memory under the
name _N_WKS_DIR. The workpiece main directory contains all the workpiece directories for
the workpieces that you have programmed.

Workpiece directories (..._WPD)
A workpiece directory contains all files required for machining a workpiece. These can be main
programs, subprograms, any initialization programs and comment files.

The first time a part program is started, initialization programs are executed once, depending
on the selected program (in accordance with machine data MD11280 $MN_WPD_INI_MODE).

Work preparation
3.4 File and Program Management

NC programming
Programming Manual, 06/2019, A5E47437142B AA 541

Example:
The workpiece directory _N_SHAFT_WPD, created for SHAFT workpiece contains the
following files:

File Description
_N_SHAFT_MPF Main program
_N_PART2_MPF Main program
_N_PART1_SPF Subprogram
_N_PART2_SPF Subprogram
_N_SHAFT_INI General initialization program for the data of the workpiece
_N_SHAFT_SEA Setting data initialization program
_N_PART2_INI General initialization program for the data for the Part 2 program
_N_PART2_UFR Initialization program for the frame data for the Part 2 program
_N_SHAFT_COM Comment file

Data can also be stored in the workpiece directory which is not directly required by the NC for
the machining. In addition to ASCII files, this can be binary files, such as images in JPG format
or descriptions in PDF format. In order that these can be interpreted as binary files by the NC,
the file extensions must be known in the NC (setting during commissioning via MD17000 $MN_
EXTENSIONS_OF_BIN_FILES; the following file extensions are preset in the basic setting:
JPG, GIF, PNG, BMP, PDF, ICO, HTM).

Select workpiece for machining
A workpiece directory can be selected for execution in a channel. If a main program with
the same name or only a single main program (_MPF) is stored in this directory, this is
automatically selected for execution.

References:
Operating Manual

3.4.1.2 External program memory
In addition to the passive file system in the NC, external program memories can also be
available at the machine (e.g. on the local drive or on a network drive).

Using the functions "Execute from external" or "EES (Execution from External Storage)" part
programs can be directly executed from external program memories.

Reference:
Function Manual Basic Functions; K1: Mode Group, Channel, Program Operation, Reset
Response

Global part program memory (GDIR)
When declaring the drives, one of the drives can be designated the global part program
memory (GDIR).

References:
Operating Manual: section: "Manage programs" > "Setting up drives"

Work preparation
3.4 File and Program Management

NC programming
542 Programming Manual, 06/2019, A5E47437142B AA

The system automatically creates the MPF.DIR, SPF.DIR and WKS.DIR directories on the
drive. These three directories form the GDIR.

The GDIR only plays a role for the EES function. Depending on the drive configuration, the
GDIR replaces or extends the NC part program memory. The creation of a GDIR is, however,
not essential for EES operation.

The directories and files of the GDIR can be addressed in the part program in the same way as
in the passive file system. This permits a compatible transfer of an NC program with path details
from the passive file system to the GDIR. The directory SPF.DIR of the GDIR is contained in the
search path for subprograms.

Program organization
The program organization on external program memories is shown in the following diagram:

Case-insensitive file systems

Note

To avoid problems with case-sensitivity for the file addressing (see "Addressing program
memory files (Page 544)"), case-insensitive file systems should be used as external program
memory.

Work preparation
3.4 File and Program Management

NC programming
Programming Manual, 06/2019, A5E47437142B AA 543

3.4.1.3 Addressing program memory files
A file in the program memory, which is addressed with a file handling command (e.g. WRITE,
DELETE, READ, ISFILE, FILEDATE, FILETIME, FILESIZE, FILESTAT, FILEINFO), is
referenced with an absolute path plus file names or only with the file names. In the second case,
the path of the selected program is used as file path.

Addressing in the NC/EES notation

Addressing files of the passive file system
Files of the passive file system are generally addressed in the NC notation (directory and file
names begin with the domain identifier "_N_", "_" is the separator for the file identifier) without
specifying the drive name. An addressing in EES notation (without domain identification "_N_",
separator for the directory/file extension is ".") is, however, also permitted.

Example:

● NC notation: "/_N_SPF_DIR/_N_SUB1_SPF"

● EES notation: "/SPF.DIR/SUB1.SPF"

Note

The addressing schemes for files of the passive file system in EES notation are converted
internally into NC notation in accordance with the following rules:
● Directory and file names are extended with the domain identification "_N_".
● If the fourth-last character in the directory or file name is a period ("."), it will be converted into

an underscore ("_").

The passive file system can also be explicitly addressed using the predefined drive names "//
NC:".

Work preparation
3.4 File and Program Management

NC programming
544 Programming Manual, 06/2019, A5E47437142B AA

Example:

● NC notation: "//NC:/_N_SPF_DIR/_N_SUB1_SPF"

● EES notation: "//NC:/SPF.DIR/SUB1.SPF"

Addressing files of an external program memory
Files of an external program memory not recorded as GDIR must be addressed in EES
notation. The drive name (e.g. "//DEV1:") must be specified at the start of the addressing path.
All symbolic device names configured in /user/sinumerik/hmi/cfg/logdrive.ini are permissible.

Example:

● EES notation: "//DEV1:/MyProgDir/pp1.xxx"

● NC notation: Not permissible

Addressing files of the global part program memory (GDIR)
When addressing files of the GDIR, in addition to specifying the path in the EES notation, it is
also permissible to specify the path in the NC notation.

Example:

● EES notation: "//DEV2:/MPF.DIR/PROG11.MPF"

● NC notation: "/_N_MPF_DIR/_N_PROG11_MPF"

Note

The addressing schemes for files of the GDIR in NC notation are converted internally into EES
notation in accordance with the following rules:
● The domain identification "_N_" in directory and file names is removed.
● If the fourth-last character in the directory or file name is an underscore ("_"), it will be

converted into a period (".").

Rules for the path specification
A complete path specification consists of drive name, directory path and file name.

Drive name
The following rules govern the specification of the drive name:

● All symbolic device names configured in /user/sinumerik/hmi/cfg/logdrive.ini are
permissible.

● The character "//" is at the beginning, followed by at least one letter or one digit.

● The following characters can be any combination of letters, digits, "_" and spaces.

● The name is ended with a letter or a digit, followed by a ":".

● Other special characters are not permitted.

Work preparation
3.4 File and Program Management

NC programming
Programming Manual, 06/2019, A5E47437142B AA 545

Note

The drive name "//NC:" is predefined for the passive file system.

Examples:

● External program memory:

– //Drive1:

– //Drive_1:

– //Drive 1:

– //A B:

– //1 B C 2:

Directory path
The following rules govern the specification of the directory path:

● A "/" is located at the start and end of the directory path and as separator for the individual
path sections.

Note

A double slash ("//") within the directory path is not permitted!

● Directory names:

– Directory names must begin with a letter or a digit. Only for addressing in the NC notation
do directory names begin with the domain identification "_N_".

– The following characters can be any combination of letters, digits and "_".

Note

Spaces in directory names are also permitted for external program memories. This is not
true, however, when the external program memory is created as global part program
memory (GDIR).

– Other special characters are not permitted.

● Directory extensions:

– Directory extensions must consist of three letters/digits.

– They are separated with "_" (NC notation) or "." (EES notation) from the directory name.

Note

The passive file system has only the directory extensions _DIR and _WPD.

Work preparation
3.4 File and Program Management

NC programming
546 Programming Manual, 06/2019, A5E47437142B AA

Examples:

● Passive file system or GDIR:

– NC notation: _N_WKS_DIR/_N_MYNCPROGS_WPD/...

– EES notation: WKS.DIR/MYPROGS.WPD/...

● External program memory:

– /abc

– /ab_c.def

– /ab c1.def

– /a b c .d11

– /abc.def/ghi.klm

File name
The following rules apply to the file names:

● Only for addressing in NC notation do file names begin with the domain identification "_N_".

● The next two characters should be either two letters or an underscore followed by a letter.

Note

If this condition is satisfied, then an NC program can be called as subprogram from another
program just by specifying the program name. However, if the program name starts with
digits, the subprogram call is then only possible via the CALL statement.

● The following characters can be any combination of letters, digits and "_".

● File extension:

– The file extension must consist of three letters/digits.

Note

Permitted file extensions in the passive file system, see "Program memory in the NCK
(Page 540)".

– They are separated with "_" (NC notation) or "." (EES notation) from the file names.

Examples:

● Passive file system or GDIR:

– NC notation: _N_SUB1_SPF

– EES notation: SUB1.SPF

● External program memory:

– Part 1

– _Part1

– Part_1.spf

– Part1.mpf

Work preparation
3.4 File and Program Management

NC programming
Programming Manual, 06/2019, A5E47437142B AA 547

DIN subprogram name
The following rules apply to DIN subprogram names:

● The first character must be the letter "L".

● The following characters are digits (at least one).

● File extension:

– The file extension must consist of three letters.

– They are separated with "_" (NC notation) or "." (EES notation) from the file names.

Examples:

● L123

● L1_SPF (NC notation) or L1.SPF (EES notation)

Maximum path length
Maximum 128 bytes are available for specifying the drive name and the directory path; the
maximum length of the file name is 31 bytes. The maximum length of the complete path is
159 bytes.

3.4.1.4 Search path for subprogram call
For subprogram calls without path data, the absolute path is determined by processing a fixed
search path.

A search is then made in the program memory in the following sequence:

 Directory Description
1 current directory / name The current directory is the directory in which the

program is selected.
This can be:
● A workpiece directory or the standard

directory _N_MPF_DIR in the NC part
program memory or global part program
memory

or
● Any directory of an external program memory

2 current directory / name_SPF
3 current directory / name_MPF

4 a //NC:/_N_SPF_DIR / name_SPF Subprogram directory in the NC part program
memory

b //DEV2:/_N_SPF_DIR / name_SPF 1) Subprogram directory in the global part program
memory
Note:
This search step is not executed if a global part
program memory has not been created, or the
program is selected in the NC part program
memory.

5 Search path extension programmed with CALLPATH (see "Extend search path for subprogram
calls (CALLPATH) (Page 523)").
Note:
This search step is not executed if CALLPATH has not been programmed.

Work preparation
3.4 File and Program Management

NC programming
548 Programming Manual, 06/2019, A5E47437142B AA

 Directory Description
6 /_N_CUS_DIR / name_SPF User cycle directory
7 /_N_CMA_DIR / name_SPF Manufacturer cycle directory
8 /_N_CST_DIR / name_SPF Standard cycle directory

1) //DEV2:" For example represents the drive on which the global part program memory has been
created.

The following rules apply for the search:

● The search path is run through for each individual subprogram call, this means that it is
irrelevant where the higher-level program is located.

● Depending on the directory, different file types are taken into account.

● A search is made in a directory, and not in lower-level, i.e. nested directories.

3.4.1.5 Interrogating the path and file name
The following system variables, which can be read in the part program, are available to
interrogate the path and file name of an NC program:

System variable Type Meaning
$P_STACK INT Supplies the program level in which the current NC program is

executed.
$P_PATH[<n>] STRING Supplies the path of the NC program, which is processed at the

program level selected using field index <n>.
Examples:
$P_PATH[0] supplies the path for the main program, e.g. "/
_N_WKS_DIR/_N_WELLE_WPD/".
$P_PATH[$P_STACK - 1] supplies the path of the calling pro‐
gram.
If the path refers to an NC program, which is saved in the pas‐
sive file system of the NC or in the global part program memory
(GDIR), then the path is supplied in the NC notation.
If the path refers to an NC program, which is executed by an
external program memory other than the global part program
memory then $P_PATH supplies the path in the EES notation.

$P_PROG[<n>] STRING Supplies the name of the NC program, which is processed at
the program level selected using field index <n>.
If the NC program is saved in the passive file system of the NC
or in the global part program memory, then the program name
is supplied in the NC notation.
If the NC program is executed by an external drive other than
the global part program memory, then $P_PROG supplies the
name in the EES notation.

$P_PROGPATH STRING Supplies the path of the NC program that is presently being
processed.
Calling $P_PROGPATH is identical to $P_PATH[$P_STACK].

Work preparation
3.4 File and Program Management

NC programming
Programming Manual, 06/2019, A5E47437142B AA 549

System variable Type Meaning
$P_IS_EES_PATH[<n>] BOOL Interrogates whether the path supplied by $P_PATH[<n>] or

the program name supplied by $P_PROG[<n>] corresponds to
the NC notation or the EES notation.
= FALSE $P_PATH[<n>] and $P_PROG[<n>] supply a NC

notation. This means that each identifier has the
prefix "_N_". The separator for the file identifier is
"_".
Examples:
● Path in the NC notation: "/_N_WKS_DIR/

_N_MYWPD_WPD/"
● Program name in the NC

notation:"_N_MYPROG_MPF"
A path in the NC notation can refer to the passive
file system in the NC as well as also the global part
program memory.

= TRUE $P_PATH[<n>] and $P_PROG[<n>] supply an
EES notation. This means that the identifiers do
not have the "_N_" prefix. The separator for the file
identifier is ".".
Examples:
● Path in the EES notation: "//DEV1:/WKS.DIR/

MYWPD.WPD/"
● Program name in the EES notation:

"MYPROG.MPF"

<n>: Index <n> defines the program level, from which the path information should be read (value range:
0 ... 17)

Note

In the EES mode, outside the global part program memory (GDIR), system variables
$P_PROG, $P_PATH and $P_PROGPATH path names in the EES notation. For the EES
mode, user programs that evaluate and process these path names must be extended so that
they can also process pathnames in the EES notation.

3.4.2 Working memory (CHANDATA, COMPLETE, INITIAL)

Function
The working memory contains the current system and user data with which the control is
operated (active file system), e.g.:

● Active machine data

● Tool offset data

● Zero offsets

● ...

Work preparation
3.4 File and Program Management

NC programming
550 Programming Manual, 06/2019, A5E47437142B AA

Initialization programs
These are programs with which the working memory data is initialized. The following file types
can be used for this:

File type Description
name_TEA Machine data
name_SEA Setting data
name_TOA Tool offsets
name_UFR Zero offsets/frames
name_INI Initialization files
name_GUD Global user data
name_RPA R-parameters

Data areas
The data can be organized in different areas in which they are to apply. For example, a control
can have several channels or, as is commonly the case, several axes at its disposal.

There are:

Identifier Data areas
NC NC-specific data
CH<n> Channel-specific data (<n> specifies the channel name)
AX<n> Axis-specific data (<n> specifies the number of the machine axis)
TO Tool data
COMPLETE All data

Create initialization program at an external PC
The data area identifier and the data type identifier can be used to determine the areas which
are to be treated as a unit when the data is saved:

_N_AX5_TEA_INI Machine data for axis 5
_N_CH2_UFR_INI Frames of channel 2
_N_COMPLETE_TEA_INI All machine data

When the control is started up initially, a set of data is automatically loaded to ensure proper
operation of the control.

Procedure for multi-channel controls (CHANDATA)
CHANDATA(<channel number>) for several channels is only permissible in the file
_N_INITIAL_INI. This is the commissioning file with which all data of the control is initialized.

Program code Comment
%_N_INITIAL_INI
CHANDATA(1)

Work preparation
3.4 File and Program Management

NC programming
Programming Manual, 06/2019, A5E47437142B AA 551

Program code Comment
 ; Machine axis assignment, channel 1:
$MC_AXCONF_MACHAX_USED[0]=1
$MC_AXCONF_MACHAX_USED[1]=2
$MC_AXCONF_MACHAX_USED[2]=3
CHANDATA(2)
 ; Machine axis assignment, channel 2:
$MC_AXCONF_MACHAX_USED[0]=4
$MC_AXCONF_MACHAX_USED[1]=5
CHANDATA(1)
 ; Axial machine data:
 ; Exact stop window coarse:
$MA_STOP_LIMIT_COARSE[AX1]=0.2 ; Axis 1
$MA_STOP_LIMIT_COARSE[AX2]=0.2 ; Axis 2
 ; Exact stop window fine:
$MA_STOP_LIMIT_FINE[AX1]=0.01 ; Axis 1
$MA_STOP_LIMIT_FINE[AX1]=0.01 ; Axis 2

NOTICE

CHANDATA statement

In the part program, the CHANDATA statement may only be set for that channel in which the NC
program is executed. This means the statement can be used to protect NC programs so that
they are not executed in the wrong channel.

Program processing is aborted if an error occurs.

Note

INI files in job lists do not contain any CHANDATA statements.

Save initialization program (COMPLETE, INITIAL)
The files of the working memory can be saved on an external PC and then read in again from
there.

● The files are saved with COMPLETE.

● INITIAL is used to create an INI file (_N_INITIAL_INI) over all areas.

Work preparation
3.4 File and Program Management

NC programming
552 Programming Manual, 06/2019, A5E47437142B AA

Read-in initialization program

NOTICE

Data loss

If the file is read-in with the name "INITIAL_INI", then all data that is not supplied in the file is
initialized using standard data. Only machine data is an exception. This means that setting
data, tool data, ZO, GUD values, ... are supplied with standard data (normally "ZERO").

For example, the file COMPLETE_TEA_INI is suitable for reading-in individual machine data.
The control only expects machine data in this file. This is the reason that the other data areas
remain unaffected in this case.

Loading initialization programs
The INI programs can also be selected and called as part programs if they only use data of one
channel. This means that it is also possible to initialize program-controlled data.

Work preparation
3.4 File and Program Management

NC programming
Programming Manual, 06/2019, A5E47437142B AA 553

3.5 File handling

3.5.1 Write file (WRITE)
The WRITE command writes sets/data from the NC program at the end of a file (log file) in the
passive file system or to external program memory. This can also be the program that is
presently being executed.

Note

If no such file exists in the program memory, one will be created and can be written to using
the WRITE command.

Requirement
The currently set protection level must be equal to or greater than the WRITE right of the file.
If this is not the case, access is denied with an error message (return value of error variable =
13).

Syntax

DEF INT <error>
...
WRITE(<error>,"<file name>"/"<ExtG>","<set/data>")

Meaning

WRITE: Command for appending a block or data to the end of the specified file.
<error>: Parameter 1: Variable for returning the error value

Type: INT
Value: 0 No error

1 Path not permitted
2 Path not found
3 File not found
4 Incorrect file type
10 File is full
11 The file is in use
12 No resources available
13 No access rights
14 Missing or unsuccessful EXTOPEN for the output device
15 Error when writing to an external device
16 Invalid external path has been programmed

Work preparation
3.5 File handling

NC programming
554 Programming Manual, 06/2019, A5E47437142B AA

<file name>: Parameter 2: The name of the file in which the specified block or specified data is
to be added.
Type: STRING
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selected
program).
Rules regarding path data, see "Addressing program memory files (Page 544)".

<ExtG>: If the data is to be output to an external device/file using the "Process DataShare"
function, then the symbolic identifiers for the external device/file to be opened must
be specified instead of the file name.
Type: STRING
For further information, see "Process DataShare - Output to an external device/file
(EXTOPEN, WRITE, EXTCLOSE): (Page 1040)".
Note:
The identifier must be identical to the identifier specified in the EXTOPEN command.

<block/data>: Parameter 3: The block or data to be added to the specified file.
Type: STRING

Note

When writing to the passive file system or to an external program memory, the WRITE
command implicitly inserts an "LF" character (LINE FEED = new line) at the end of the output
string.

This behavior does not apply for output to an external device/file using the "Process
DataShare" function. If an "LF" is also to be output, then this must be explicitly specified in the
output string.

→ also refer to example 3: Implicit/explicit "LF"!

Supplementary conditions
● Maximum file size (→ machine manufacturer)

The maximum possible file size of log files in the passive file system is set with the machine
data:
MD11420 $MN_LEN_PROTOCOL_FILE
The maximum file length is applicable for all files created using the WRITE command in the
passive file system. If it is exceeded, an error message is output and the block or data is not
saved. If there is sufficient free memory, a new file can be created.

Examples

Example 1: WRITE command into the passive file system without absolute path data

Program code Comment
N10 DEF INT ERROR ; Definition of error variables.
N20 WRITE(ERROR,"PROT","LOG FROM 7.2.97") ; Write the text "LOG FROM 7.2.97"

to file _N_PROT_MPF.
N30 IF ERROR ;Error evaluation.

Work preparation
3.5 File handling

NC programming
Programming Manual, 06/2019, A5E47437142B AA 555

Program code Comment
N40 MSG ("Error with WRITE command:" <<ERROR)
N50 M0
N60 ENDIF
...

Example 2: WRITE command into the passive file system with absolute path data

Program code
...
WRITE(ERROR,"/_N_WKS_DIR/_N_PROT_WPD/_N_PROT_MPF","LOG FROM 7.2.97")
...

Example 3: Implicit/explicit "LF"
a) Write to the passive file system with implicitly generated "LF"

Program code
...
N110 DEF INT ERROR
N120 WRITE(ERROR,"/_N_MPF_DIR/_N_MYPROTFILE_MPF","MY_STRING")
N130 WRITE(ERROR,"/_N_MPF_DIR/_N_MYPROTFILE_MPF","MY_STRING")
N140 M30

Output result:

MY_STRING

MY_STRING

b) Write to an external file without implicitly generated "LF"

Program code
...
N200 DEF STRING[30] DEV_1
N210 DEF INT ERROR
N220 DEV_1="LOCAL_DRIVE/myprotfile.mpf"
N230 EXTOPEN(ERROR,DEV_1)
N240 WRITE(ERROR,DEV_1,"MY_STRING")
N250 WRITE(ERROR,DEV_1,"MY_STRING")
N260 EXTCLOSE(ERROR,DEV_1)
N270 M30

Output result:

MY_STRINGMY_STRING

Work preparation
3.5 File handling

NC programming
556 Programming Manual, 06/2019, A5E47437142B AA

c) Write to an external file with explicitly generated "LF"

The following must be programmed in order to achieve the same result as under a:

Program code
...
N200 DEF STRING[30] DEV_1
N210 DEF INT ERROR
N220 DEV_1="LOCAL_DRIVE/myprotfile.mpf"
N230 EXTOPEN(ERROR,DEV_1)
N240 WRITE(ERROR,DEV_1,"MY_STRING'H0A'")
N250 WRITE(ERROR,DEV_1,"MY_STRING'H0A'")
N260 EXTCLOSE(ERROR,DEV_1)
N270 M30

Output result:

MY_STRING

MY_STRING

3.5.2 Delete file (DELETE)
The DELETE command deletes all files, irrespective of whether these were created using
the WRITE command or not. Files that were created using a higher access authorization can
also be deleted with DELETE.

Syntax
DEF INT <error>
DELETE(<error>,"<file name>")

Meaning

DELETE: Command for deleting the specified file.
<error>: Variable for returning the error value.

Type. INT
Value: 0 No error

1 Path not allowed
2 Path not found
3 File not found
4 Incorrect file type
11 The file is in use
12 No resources available
20 Other error

Work preparation
3.5 File handling

NC programming
Programming Manual, 06/2019, A5E47437142B AA 557

<file name>: Name of the file to be deleted
Type: STRING
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selected
program).
Rules regarding path data, see "Addressing program memory files (Page 544)".

Example

Program code Comment
N10 DEF INT ERROR ; Definition of error variables.
N15 STOPRE ; Preprocessing stop.
N20 DELETE(ERROR,"/_N_SPF_DIR/_N_TEST1_SPF") ; Deletes file TEST1 in the sub-

program directory.
N30 IF ERROR ; Error evaluation.
N40 MSG("error for DELETE command:" <<ERROR)
N50 M0
N60 ENDIF

3.5.3 Read lines in the file (READ)
The READ command reads one or several lines in the specified file and stores the information
read in a STRING type array. In this array, each read line occupies an array element.

Requirement
The currently set protection level must be equal to or greater than the READ right of the file. If
this is not the case, access is denied with an error message (return value of error variable = 13).

Syntax
DEF INT <error>
DEF STRING[<string length>] <result>[<n>,<m>]
READ(<error>,"<file name>",<start line>,<number of lines>,<result>)

Work preparation
3.5 File handling

NC programming
558 Programming Manual, 06/2019, A5E47437142B AA

Meaning

READ: Command for reading lines from the specified file and storing these lines in a
variable array.

<error>: Variable for returning the error value (call-by-reference parameter)
Type. INT
Value: 0 No error

1 Path not allowed
2 Path not found
3 File not found
4 Incorrect file type
11 The file is in use
13 Insufficient access rights
21 Line does not exist (<start line> or <number of

lines> parameter exceeds the number of lines in the
specified file).

22 Field length of the result variable (<result>) is too
small.

23 Line range too large (<number of lines> parameter
selected so large that the read would go beyond the end
of the file).

<file name>: Name of the file to be read (call-by-value parameter)
Type: STRING
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selec‐
ted program).
Rules regarding path data, see "Addressing program memory files
(Page 544)".

<start line>: Start line of the file section to be read (call-by-value parameter)
Type: INT
Value: 0 Reads the number of lines specified with

the <number of lines> parameter before the
end of the file.

1 to n Number of the first line to be read.
<number of
lines>:

Number of lines to be read (call-by-value parameter)
Type: INT

<result>: Result variable (call-by-reference parameter)
Variable array in which the read text is stored.
Type: STRING (max. length: 255)
If fewer lines are specified in the <number of lines> parameter than the
array size [<n>,<m>] of the result variable, the remaining array elements will
not be modified.
Termination of a line by means of the control characters "LF" (Line Feed) or
"CR LF" (Carriage Return Line Feed) is not stored in the result variable.
Read lines are cropped if the line is longer than the defined string length. An
error message is not output.

Work preparation
3.5 File handling

NC programming
Programming Manual, 06/2019, A5E47437142B AA 559

Note

Binary files cannot be read in. The "incorrect data type" error is output (return value of the error
variable = 4). The following types of file are not readable: _BIN, _EXE, _OBJ, _LIB, _BOT,
_TRC, _ACC, _CYC, _NCK.

Example

Program code Comment
N10 DEF INT ERROR ; Definition of error variables.
N20 DEF STRING[255] RESULT[5] ; Definition of result variables.
N30 READ(ERROR,"/_N_CST_DIR/_N_TEST-
FILE_MPF",1,5,RESULT)

;File name with domain and file iden-
tifier
and path name.

N40 IF ERROR <>0 ;Error evaluation.
N50 MSG("ERROR"<<ERROR<<"ON READ COMMAND")
N60 M0
N70 ENDIF
...

3.5.4 Check for presence of file (ISFILE)
The ISFILEcommand checks whether a file exists in the program memory.

Syntax
<Result>=ISFILE("<File name>")

Meaning

ISFILE: Command to check the availability of a file
<file name>: Name of the file whose availability is to be checked.

Type: STRING
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selected
program).
Rules regarding path data, see "Addressing program memory files (Page 544)".

<result>: Result variable to which the result of the check is assigned.
Type. BOOL
Value: TRUE File exists

FALSE File does not exist

Work preparation
3.5 File handling

NC programming
560 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1

Program code Comment
N10 DEF BOOL RESULT ; Definition of result variables.
N20 RESULT=ISFILE("TESTFILE")
N30 IF(RESULT==FALSE)
N40 MSG("FILE DOES NOT EXIST")
N50 M0
N60 ENDIF
...

Example 2

Program code Comment
N10 DEF BOOL RESULT ; Definition of result variables.
N20 RESULT=ISFILE("TESTFILE")
N30 IF(NOT ISFILE("TESTFILE"))
N40 MSG("FILE DOES NOT EXIST")
N50 M0
N60 ENDIF
...

3.5.5 Read out file information (FILEDATE, FILETIME, FILESIZE, FILESTAT,
FILEINFO)

The FILEDATE, FILETIME, FILESIZE, FILESTAT, and FILEINFO commands read out
specific file information such as date/time of the last write access, current file size, file status or
all of this information.

Requirement
The currently set protection level must be equal to or greater than the show right of the
superordinate directory. If this is not the case, access is denied with an error message (return
value of error variable = 13).

Syntax
FILE....(<Error>,"<File name>",<Result>)

Meaning

FILEDATE: Returns the date of the last write access to a file
FILETIME: Returns the time of the last write access to a file
FILESIZE: Returns the current size of a file

Work preparation
3.5 File handling

NC programming
Programming Manual, 06/2019, A5E47437142B AA 561

FILESTAT: Returns a file with regard to the following rights for the status:
● Read (r: read)
● Write (w: write)
● Execute (x: execute)
● Show (s: show)
● Delete (d: delete)
Note:
These protection levels are specific properties of the passive file system. When
accessing an external program memory, FILESTAT therefore supplies default
access rights (77777).

FILEINFO: For a file, supplies the sum of the information, which can be read out
via FILEDATE, FILETIME, FILESIZE and FILESTAT

<Error>: Variable for returning the error value (call-by-reference parameter)
Type. VAR INT
Value: 0 No error

1 Path not allowed
2 Path not found
3 File not found
4 Incorrect file type
13 Insufficient access rights
22 String length of the result variable (<result>) is too small.

<file name>: Name of the file from which the file information is to be read out
Type: CHAR[160]
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selected
program).
Rules regarding path data, see "Addressing program memory files (Page 544)".

<result>: Result variable (Call-By-Reference parameter)
Variable in which the requested file information is stored.
Type: VAR CHAR[8]

at FILEDATE

Format: "dd.mm.yy"
VAR CHAR[8] at FILETIME

Format: "hh.mm.ss"
VAR INT at FILESIZE

The file size is output in bytes.
VAR CHAR[5] at FILESTAT

Format: "rwxsd"
(r: read, w: write, x: execute, s: show,
d: delete)

VAR CHAR[32] at FILEINFO
Format: "rwxsd nnnnnnnn dd.mm.yy
hh:mm:ss"

Work preparation
3.5 File handling

NC programming
562 Programming Manual, 06/2019, A5E47437142B AA

Example

Program code Comment
N10 DEF INT ERROR ; Definition of error varia-

bles.
N20 STRING[32] RESULT ; Definition of result varia-

bles.
N30 FILEINFO(ERROR,"/_N_MPF_DIR/_N_TESTFILE_MPF",RE-
SULT)

; File name with domain, file
ID and path data.

N40 IF ERROR <> 0 ; Error evaluation
N50 MSG("ERROR"<<ERROR<<"FOR FILE INFORMATION COM-
MAND")

N60 M0
N70 ENDIF
...

In the result variables RESULT, the example could supply the following result:

"77777 12345678 26.05.00 13:51:30"

Work preparation
3.5 File handling

NC programming
Programming Manual, 06/2019, A5E47437142B AA 563

3.6 Protection zones

3.6.1 Defining protection zones (CPROTDEF, NPROTDEF)
Protection zones, which protect machine elements against collisions, are defined in the part
program in blocks. These contain the following elements:

1. Definition of the machining plane
Before the actual protection zone definition, the machining plane must be selected, to which
the contour description of the protection zone refers.

2. Start of the definition
Depending on the particular NC command, either a channel-specific or machine-specific
protection zone is created.

3. Contour description of the protection zone
The contour of a protection zone is defined with traversing motion. These are not executed
and have no connection to previous or subsequent geometry descriptions. They only define
the protection zone.

4. End of definition

Syntax

DEF INT <Var>
G17/G18/G19
CPROTDEF/NPROTDEF(<n>,<t>,<AppLim>,<AppPlus>,<AppMinus>)
G0/G1/... X/Y/Z...
...
EXECUTE(<Var>)

Meaning

DEF INT <Var>: Definition of a local help variable, of the INTEGER data type
<Var>: Name of the Help variable
G17/G18/G19: Machining plane

Note:
It is not permissible to change the machining plane before the
end of the definition. Programming the applicate is not permitted
between start and end of the definition.

CPROTDEF(): Predefined procedure to define a channel-specific protection
zone

NPROTDEF(): Predefined procedure to define a machine-specific protection
zone

<n>: Number of defined protection zone
Data type: INT

Work preparation
3.6 Protection zones

NC programming
564 Programming Manual, 06/2019, A5E47437142B AA

<t>: Type of protection zone
Data type: BOOL
Value: TRUE Tool-related protection zone

FALSE Workpiece-related protection zone
<AppLim>: Type of limitation in the third dimension

Data type: INT
Value: 0 No limitation

1 Limit in plus direction
2 Limit in minus direction
3 Limit in positive and negative direction

<AppPlus>: Value of the limit in the positive direction in the 3rd dimension
Data type: REAL

<AppMinus>: Value of the limit in the negative direction in the 3rd dimension
Data type: REAL

G0/G1/... X/Y/Z... ... : The contour of a protection zone is specified with up to 11 tra‐
versing movements in the selected machining plane. The first
traversing movement is the movement to the contour. The last
point in the contour description must always coincide with the
first point of the contour description.
The valid protection zone is the zone left of the contour:
● Internal protection zone

The contour of an internal protection zone must described in
the counterclockwise direction.

● External protection zones (permitted only for workpiece-
related protection zones)
The contour for an external protection zone must be
described in the clockwise direction.

The following contour elements are permissible:
● G0, G1 for straight contour elements
● G2 for circle segments in the clockwise direction

Permissible only for workpiece-related protection zones.
Not permissible for tool-related protection zones because
they must be convex.

● G3 for circular segments in the counter-clockwise direction
Note:
A protection zone cannot be described by a complete circle. A
complete circle must be divided into two semicircles.
Note:
The sequence G2 → G3 or G3 → G2 is not permissible! A short G1
block must be inserted between the two circular blocks.

EXECUTE(<Var>): Predefined procedure that marks the end of the definition
A switch is made back to normal program processing
with EXECUTE.

Example
See example under "Activating/deactivating protection zones (CPROT, NPROT) (Page 567)".

Work preparation
3.6 Protection zones

NC programming
Programming Manual, 06/2019, A5E47437142B AA 565

Additional information

Machine-specific protection zones
A machine-specific protection zone or its contour is defined using the geometry axis, i.e.
referenced to the basic coordinate system (BCS) of a channel. In order that correct protection-
zone monitoring can take place in all channels in which the machine-specific protection zone
is active, the basic coordinate system (BCS) of all of the channels involved must be identical:

● position of the coordinate origin referred to the machine zero

● Orientation of the coordinate axes

Reference point for contour description
● Tool-related protection zones

Coordinates for tool-related protection zones must be specified as absolute values referred
to the tool holder reference point F.

● Workpiece-related protection zones
Coordinates for workpiece-related protection zones must be specified as absolute values
referred to the zero point of the basic coordinate system (BCS).

Protection zones symmetrical around the center of rotation
For protection zones symmetrical around the axis or rotation (e.g. spindle chuck), you must
describe the complete contour and not only the contour up to the center of rotation.

Tool-related protection zones
Tool-related protection zones must always be convex. If a concave protected zone is desired,
this should be subdivided into several convex protection zones.

① Convex protection zones
② Concave protection zones (not permissible!)
F Toolholder reference point

Work preparation
3.6 Protection zones

NC programming
566 Programming Manual, 06/2019, A5E47437142B AA

General conditions
During the definition of a protection zone, the following functions must not be active or used:

● Tool radius compensation (cutter radius compensation, tool nose radius compensation)

● Transformation

● Reference point approach (G74)

● Fixed point approach (G75)

● Dwell time (G4)

● Block search stop (STOPRE)

● End of program (M17, M30)

● M functions: M0, M1, M2

3.6.2 Activating/deactivating protection zones (CPROT, NPROT)
Protection zones previously defined in the part program can be activated at any time – or can
be preactivated for subsequent activation by the PLC user program. Active protection zones
can be deactivated at any time.

When activating or preactivating, it is also possible to relatively shift the reference point of the
protection zone.

Note

A protection zone is only taken into account after the referencing of all geometry axes of the
channel in which it has been activated.

Note
Monitoring protection zones

If a tool-related protection area is not active, the tool path is checked against the workpiece-
related protection zones.

If no workpiece-oriented protection zone is active, then there is no protection zone monitoring.

Syntax
CPROT(<n>,<Status>,<XMov>,<YMov>,<ZMov>)
NPROT(<n>,<Status>,<XMov>,<YMov>,<ZMov>)

Meaning

CPROT: Predefined procedure to activate a channel-specific protection
zone

NPROT: Predefined procedure to activate a machine-specific protection
zone

Work preparation
3.6 Protection zones

NC programming
Programming Manual, 06/2019, A5E47437142B AA 567

<n>: Number of the protection zone
Data type: INT

<Status>: The channel-specific activation status is set using this parameter
Data type: INT
Value: 0 Deactivate protection zone

1 Preactivate protection zone
2 Activate protection zone
3 Preactivate protection zone with conditional

stop
<XMov>,<YMov>,<ZMov>: Additive offset values in the X/Y/Z direction

The offset can take place in 1, 2, or 3 dimensions. The offset values
refer to:
● The machine zero for a workpiece-related protection zone
● The tool carrier reference point F for a tool-specific protection

zone
Data type: REAL

Example
Possible collision of a milling cutter with the measuring probe is to be monitored on a milling
machine. The position of the measuring probe is to be defined by an offset when the function
is activated.

The following protection zones are defined for this:

● A machine-specific and a workpiece-related protection zone for both the measuring probe
holder (n-PZ1) and the measuring probe itself (n-PZ2).

● A channel-specific and a tool-related protection zone for the milling cutter holder (c-PZ1),
the cutter shank (c-PZ2) and the milling cutter itself (c-PZ3).

The orientation of all protection zones is in the Z direction.

The position of the reference point of the measuring probe on activation of the function must be
X = -120, Y = 60 and Z = 80.

Work preparation
3.6 Protection zones

NC programming
568 Programming Manual, 06/2019, A5E47437142B AA

① Name for the protection zone of the probe
F Toolholder reference point

Program code Comment
DEF INT PROTZONE ; Definition of a Help variable
G17 ; machining plane XY

; defining protection zones:
NPROTDEF(1,FALSE,3,10,–10) ; protection zone n–PZ1
G01 X0 Y–10
X40
Y10
X0
Y-10
EXECUTE(PROTZONE)
NPROTDEF(2,FALSE,3,5,–5) ; protection zone n–PZ2
G01 X40 Y–5
X70
Y5
X40
Y-5
EXECUTE(PROTZONE)
CPROTDEF(1,TRUE,3,0,–100) ; protection zone c–PZ1
G01 X–20 Y–20
X20
Y20
X-20
Y-20
EXECUTE(PROTZONE)

Work preparation
3.6 Protection zones

NC programming
Programming Manual, 06/2019, A5E47437142B AA 569

Program code Comment
CPROTDEF(2,TRUE,3,–100,–150) ; protection zone c–PZ2
G01 X0 Y–10
G03 X0 Y10 J10
X0 Y–10 J–10
EXECUTE(PROTZONE)
CPROTDEF(3,TRUE,3,–150,–170) ; protection zone c–PZ3
G01 X0 Y–27.5
G03 X0 Y27.5 J27.5
X0 Y27.5 J–27.5
EXECUTE(PROTZONE)

; activating protection zones:
NPROT(1,2,–120,60,80) ; activate protection zone n–PZ1 with offset
NPROT(2.2,–120,60,80) ; activate protection zone n–PZ2 with offset
CPROT(1,2,0,0,0) ; activate protection zone c–PZ1
CPROT(2,2,0,0,0) ; activate protection zone c–PZ2
CPROT(3,2,0,0,0) ; activate protection zone c–PZ3

Further information

Activation status after the control powers up
A protection zone can already be active after the control system powers up and the axes have
been referenced. This is the case if, for the protection zone, the following system variable is set
to TRUE:

● $SN_PA_ACTIV_IMMED[<n>] (for machine-specific protection zone) or

● $SC_PA_ACTIV_IMMED[<n>] (for channel-specific protection zone)
Index "<n>" corresponds to the number of the protection zone: 0 = 1. Protection zone

The protection zone is activated with status = 2 – and without offset.

Multiple activation of a protection zone
A machine-specific protection zone can be active simultaneously in several channels (e.g.
protection zone of a tailstock where there are two opposite sides). The protection zones are
only monitored if all geometry axes have been referenced.

A protection zone cannot be activated simultaneously with different offsets in a single channel.

Protection zone monitoring for active tool radius compensation
For active tool radius compensation, a functioning protection zone monitoring is only possible
if the plane of the tool radius compensation is identical to the plane of the protection zone
definitions.

Work preparation
3.6 Protection zones

NC programming
570 Programming Manual, 06/2019, A5E47437142B AA

3.6.3 Checking for protection zone violation, working area limitation and software limit
switches (CALCPOSI)

Function
In the workpiece coordinate system (WCS), the CALCPOSI function checks whether, starting
from the starting position, the geometry axes can be traversed a specified distance without
violating active limits. For the case that the distance cannot be fully traversed because of limits,
a positive, decimal-coded status value and the maximum possible traversing distance are
returned.

Definition
INT CALCPOSI(VAR REAL[3] <Start>, VAR REAL[3] <Dist>, VAR REAL[5]
<Limit>, VAR REAL[3] <MaxDist>, BOOL <MeasSys>, INT <TestLim>)

Syntax
<Status> = CALCPOSI(VAR <Start>, VAR <Dist>, VAR <Limit>, VAR
<MaxDist>, <MeasSys>, <TestLim>)

Meaning

CALCPOSI(...): Predefined function for testing limit violations regarding the geometry axes
Preprocessing
stop:

No

Alone in the block: Yes

Work preparation
3.6 Protection zones

NC programming
Programming Manual, 06/2019, A5E47437142B AA 571

<status>:
(Part 1)

Function return value. Negative values indicate error states.
Data type: INT
Value range: -8 ≤ x ≤ 100000
Value: 0 The distance can be traversed completely.

-1 At least one component is negative in <Limit>.
-2 Error in a transformation calculation.

Example: The traversing distance passes through a singu‐
larity so that the axis positions cannot be defined.

-3 The specified traversing distance <Dist> and the maximum
possible traversing distance <MaxDist> are linearly depend‐
ent.
Note
Can only occur in conjunction with <TestLim>, bit 4 == 1.

-4 The projection of the traversing direction contained in <Dist>
on to the limitation surface is the zero vector, or the traversing
direction is perpendicular to the violated limitation surface.
Note
Can only occur in conjunction with <TestLim>, bit 5 == 1.

-5 In <TestLim>, bit 4 == 1 AND bit 5 == 1
-6 At least one machine axis that has to be considered for

checking the traversing limits has not been referenced.
-7 Collision avoidance function: Invalid definition of the kine‐

matic chain or the protection zones.
-8 Collision avoidance function: This command cannot be exe‐

cuted because of insufficient memory.
<status>:

(Part 2)
Units digit

Note
If several limits are violated simultaneously, the limit with the greatest restriction on
the specified traversing distance is signaled.
Value: 1 Software limit switches are limiting the traversing distance

2 Working area limits are limiting the traversing distance
3 Protection zones are limiting the traversing distance
4 Collision avoidance function: Protection zones are limiting

the traversing path
Tens digit

Value: 1x The initial value violates the limit
2x The specified straight line violates the limit.

This value is returned even if the end point does not violate
any limit itself, but the path from the starting point to the end
point would cause a limit value to be violated (e.g. by passing
through a protection zone, curved software limit switches in
the WCS for non-linear transformations, e.g. transmit).

Work preparation
3.6 Protection zones

NC programming
572 Programming Manual, 06/2019, A5E47437142B AA

<status>:
(Part 3)

Hundreds digit
Value: 1xx AND units digit == 1 or 2:

The positive limit value has been violated.
AND units digit == 3 1):
An NC-specific protection zone has been violated.

2xx AND units digit == 1 or 2:
The negative limit value has been violated.
AND units digit == 3 1):
A channel-specific protection zone is violated.

<status>:
(Part 4)

Thousands digit
Value: 1xxx AND units digit == 1 or 2:

Factor with which the axis number is multiplied that violates
the limit. Numbering of the axes begins with 1.
Reference:
● Software limit switches: Machine axes
● Working area limitation: Geometry axes
AND units digit == 3 1):
Factor with which the number of the violated protection zone
is multiplied.

<status>:
(Part 5)

Hundred thousands digit
Value: 0xxxxx Hundred thousands digit == 0: <Dist> remains unchanged

1xxxxx A direction vector is returned in <Dist>, which defines the
further motion direction on the limitation surface.
Can only occur with the following supplementary conditions:
● Software limit switch or working area limit violated (not in

the starting point)
● A transformation is not active
● <TestID>, bit 4 or bit 5 == 1

<Start>: Reference to a vector with the start positions:
● <Start> [0]: 1st geometry axis
● <Start> [1]: 2nd geometry axis
● <Start> [2]: 3rd geometry axis
Parameter type: Input
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

Work preparation
3.6 Protection zones

NC programming
Programming Manual, 06/2019, A5E47437142B AA 573

<Dist>: Reference to a vector.
Input: Incremental traversing distance
● <Dist> [0]: 1st geometry axis
● <Dist> [1]: 2nd geometry axis
● <Dist> [2]: 3rd geometry axis
Output (only for set hundred thousands digit in <Status>):
 <Dist> contains a unit vector v as output value which defines the further tra‐

versing direction in the WCS.
Case 1: Formation of vector v for <TestID>, bit 4 == 1
The input vectors <Dist> and <MaxDist> span the motion plane. This plane is
cut by the violated limitation surface. The intersecting line of the two planes
defines the direction of vector v.The orientation (sign) is selected so that the
angle between the input vector <MaxDist> and v is not greater than 90 de‐
grees.
Case 2: Formation of vector v for <TestID>, bit 5 == 1
Vector v is the unit vector in the projection direction of the traversing vector
contained in <Dist> on the limitation surface. If the projection of the traversing
vector on the limitation surface is the zero vector, an error is returned.

Parameter type: Input/output
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

<Limit>: Reference to an array of length 5.
● <Limit> [0 - 2]: Minimum clearance of the geometry axes to the limits:

– <Limit> [0]: 1st geometry axis
– <Limit> [1]: 2nd geometry axis
– <Limit> [2]: 3rd geometry axis
The minimum clearances are observed with:
– Working area limitation: No restrictions
– Software limit switches: If no transformation is active, or a transformation is

active in which a clear assignment of the geometry axes to the linear
machine axes is possible, e.g. 5-axis transformations.

● <Limit> [3]: Contains the minimum clearance for linear machine axes which, for
example, cannot be assigned a geometry axis because of a non-linear
transformation. This value is also used as limit value for the monitoring of the
conventional protection zones and the collision avoidance protection zones.

● <Limit> [4]: Contains the minimum clearance for rotary machine axes which, for
example, cannot be assigned a geometry axis because of a non-linear
transformation.
Note
This value is only active for the monitoring of the software limit switches for
special transformations.

Parameter type: Input
Data type: VAR REAL [5]
Value range: -max. REAL value ≤ x[n] ≤ +max. REAL value

Work preparation
3.6 Protection zones

NC programming
574 Programming Manual, 06/2019, A5E47437142B AA

<MaxDist>: Reference to a vector with the incremental traversing distance in which the speci‐
fied minimum clearance of an axis limit is not violated by any of the relevant ma‐
chine axes:
● <Dist> [0]: 1st geometry axis
● <Dist> [1]: 2nd geometry axis
● <Dist> [2]: 3rd geometry axis
If the traversing distance is not restricted, the contents of this return parameter are
the same as the contents of <Dist>.
For <TestID>, bit 4 == 1: <Dist> and <MaxDist>
<MaxDist> and <Dist> must contain vectors as input values that span a motion
plane. The two vectors must be mutually linearly independent. The absolute value
of <MaxDist> is arbitrary. For the calculation of the motion direction, see the de‐
scription for <Dist>.
Parameter type: Output
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

<MeasSys>: Measuring system (inch/metric) for position and distance specifications (optional)
Data type: BOOL
Value: FALSE

(De‐
fault)

System of units corresponding to the currently active G com‐
mand from the G group 13 (G70, G71, G700, G710).
Note
If G70 is active and the basic system is metric (or G71 is
active and the basic system is inch), the system variables
$AA_IW and $AA_MW are provided in the basic system and,
if used, must be converted for CALCPOSI.

TRUE System of units according to the set basic system:
MD52806 $MN_ISO_SCALING_SYSTEM

<TestLim>: Bit-coded selection of the limits to be monitored (optional)
Data type: INT
Default value: Bits 0, 1, 2, 3, 6, 7 == 1 (207)
Bit Decimal Meaning
0 1 Software limit switch
1 2 Working area limitation
2 4 Activated conventional protection zones
3 8 Preactivated conventional protection zones
4 16 With violated software limit switches or working area limits in

<Dist>, return the traversing direction as in Case 1 (see
above).

5 32 With violated software limit switches or working area limits in
<Dist>, return the traversing direction as in Case 2 (see
above).

6 64 Activated collision avoidance protection zones
7 128 Preactivated collision avoidance protection zones
8 256 Pairs of activated and preactivated collision avoidance pro‐

tection zones
1) If several protection zones are violated, the protection zone with the greatest restriction on the speci‐
fied traversing distance is returned.

Work preparation
3.6 Protection zones

NC programming
Programming Manual, 06/2019, A5E47437142B AA 575

Example

Limitations

In the example, the active software limit switches and working area limits in the X-Y plane and
the following three protection zones are displayed:

● C2: Tool-related, channel-specific protection zone, active, circular, radius = 2 mm

● C4: Workpiece-related, channel-specific protection zone, preactivated, square, side length
= 10 mm

● N3: Machine-specific protection zone, active, rectangular, side length = 10 mm x 15 mm

NC program
The protection zones and working area limits are defined first in the NC program. The
CALCPOSI() function is then called with different parameter assignments.

Program code
N10 DEF REAL _START[3]
N20 DEF REAL _DIST[3]
N30 DEF REAL _LIMIT[5]
N40 DEF REAL _MAXDIST[3]
N50 DEF INT _PA
N60 DEF INT _STATUS

Work preparation
3.6 Protection zones

NC programming
576 Programming Manual, 06/2019, A5E47437142B AA

Program code
: toolrelated protection zone C2
N70 CPROTDEF(2, TRUE, 0)
N80 G17 G1 X-2 Y0
N90 G3 I2 X2
N100 I-2 X-2
N110 EXECUTE(_PA)
; workpiece-related protection zone C4
N120 CPROTDEF(4, FALSE, 0)
N130 G17 G1 X0 Y15
N140 X10
N150 Y25
N160 X0
N170 Y15
N180 EXECUTE(_PA)
; machine-specific protection zone N3
N190 NPROTDEF(3, FALSE, 0)
N200 G17 G1 X10 Y5
N210 X25
N220 Y15
N230 X10
N240 Y5
N250 EXECUTE(_PA)
; activate or preactivate protection zones
N260 CPROT(2, 2, 0, 0, 0)
N270 CPROT(4, 1, 0, 0, 0)
N280 NPROT(3, 2, 0, 0, 0)
; define working area limits
N290 G25 XX=-10 YY=-10
N300 G26 XX=20 YY=21
N310 _START[0] = 0.
N320 _START[1] = 0.
N330 _START[2] = 0.
N340 _DIST[0] = 35.
N350 _DIST[1] = 20.
N360 _DIST[2] = 0.
N370 _LIMIT[0] = 0.
N380 _LIMIT[1] = 0.
N390 _LIMIT[2] = 0.
N400 _LIMIT[3] = 0.
N410 _LIMIT[4] = 0.
N420 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST)
N430 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,3)
N440 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,1)
N450 _START[0] = 5.
N460 _START[1] = 17.
N470 _START[2] = 0.
N480 _DIST[0] = 0.
N490 _DIST[1] =-27.
N500 _DIST[2] = 0.
N510 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,14)
N520 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,, 6)
N530 _LIMIT[1] = 2.

Work preparation
3.6 Protection zones

NC programming
Programming Manual, 06/2019, A5E47437142B AA 577

Program code
N540 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,, 6)
N550 _START[0] = 27.
N560 _START[1] = 17.1
N570 _START[2] = 0.
N580 _DIST[0] =-27.
N590 _DIST[1] = 0.
N600 _DIST[2] = 0.
N610 _LIMIT[3] = 2.
N620 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,12)
N630 _START[0] = 0.
N640 _START[1] = 0.
N650 _START[2] = 0.
N660 _DIST[0] = 0.
N670 _DIST[1] = 30.
N680 _DIST[2] = 0.
N690 TRANS X10
N700 AROT Z45
N710 _STATUS = CALCPOSI(_START,_DIST, _LIMIT, _MAXDIST)
; delete frames from N690 and N700 again
N720 TRANS
N730 _START[0] = 0.
N740 _START[1] = 10.
N750 _START[2] = 0.
; vectors_DIST and _MAXDIST define the motion plane
N760 _DIST[0] = 30.
N770 _DIST[1] = 30.
N780 _DIST[2] = 0.
N790 _MAXDIST[0] = 1.
N800 _MAXDIST[1] = 0.
N810 _MAXDIST[2] = 1.
N820 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,17)
N830 M30

Results of CALCPOSI()

N... <status> <MaxDist>[0] ≙ X <MaxDist>[1] ≙ Y Remarks
420 3123 8.040 4.594 N3 is violated.
430 1122 20.000 11.429 No protection zone monitoring,

working area limitation is violated.
440 1121 30.000 17.143 Only software limit monitoring is still active.
510 4213 0.000 0.000 Starting point violates C4
520 0000 0.000 -27.000 Preactivated C4 is not monitored. The

specified distance can be traversed com‐
pletely.

540 2222 0.000 -25.000 Because _LIMIT[1] = 2, the traversing dis‐
tance is restricted by the working area limi‐
tation.

Work preparation
3.6 Protection zones

NC programming
578 Programming Manual, 06/2019, A5E47437142B AA

N... <status> <MaxDist>[0] ≙ X <MaxDist>[1] ≙ Y Remarks
620 4223 -13.000 0.000 Clearance to C4 is a total of 4 mm due to C2

and _LIMIT[3]. Clearance C2 → N3 of 0.1
mm does not result in limitation of the tra‐
versing distance.

710 1221 0.000 21.213 Frame with translation and rotation active.
The permissible traversing distance in
_DIST applies in the shifted and rotated
WCS.

820 102121 18.000 18.000 The software limit switch of the Y axis is
violated. The calculation of a further tra‐
versing direction is requested with <_TES‐
TLIM> = 17. This direction is in _DIST
(0.707, 0.0, 0.707). It is valid because the
hundred thousands digit is set in <_STA‐
TUS>.

Additional information

"Referenced" axis status
All machine axes considered by CALCPOSI() must be homed.

Circle-related distance specifications
All circle-related distance specifications are always interpreted as radius specifications. This
must be taken into account particularly for transverse axes with activated diameter
programming (DIAMON/DIAM90).

Traversing distance reduction
If the specified traversing distance of an axis is limited, the traversing distance of the other axes
is also reduced proportionally in the <MaxDist> return value. The resulting end point is
therefore still on the specified path.

Rotary axes
Rotary axes are only monitored when they are not modulo rotary axes.

It is permissible that no software limit switches, working area limits or protection zones are
defined for one or more of the relevant axes.

Software limit switch and working area limitation status
Software limit switches and working area limits are only taken into account if they are active
during the execution of CALCPOSI(). The status can be influenced, for example, via:

● Machine data: MD21020 $MC_WORKAREA_WITH_TOOL_RADIUS

● Setting data: $AC_WORKAREA_CS_...

● NC/PLC interface signals DB31, ... DBX12.2 / 3

● Commands: WALIMON / WALIMOF

Work preparation
3.6 Protection zones

NC programming
Programming Manual, 06/2019, A5E47437142B AA 579

Software limit switches and transformations
With CALCPOSI(), the positions of the machine axes (MCS) cannot always be uniquely
determined from the positions of the geometry axes (WCS) during various kinematic
transformations (e.g. TRANSMIT) because of ambiguities at certain positions of the traversing
distance. In normal traversing operation, the uniqueness generally results from the history and
the condition that a continuous motion in the WCS must correspond to a continuous motion in
the MCS. Therefore, when monitoring the software limit switches, the machine position at the
time when CALCPOSI() is executed is used to resolve the ambiguity in such cases.

Note
Preprocessing stop

When using CALCPOSI() in conjunction with transformations, it is the sole responsibility of the
user to program a preprocessing stop (STOPRE) with the preprocessing before CALCPOSI()
for the synchronization of the machine axis positions.

Protection zone clearance and conventional protection zones
With conventional protection zones, there is no guarantee that the safety clearance set in
parameter <Limit>[3] is maintained for all protection zones during a traversing movement
on the specified path. It is only guaranteed that no protection zone will be violated when the end
point returned in <Dist> is extended by the safety clearance in the traversing direction.
However, the straight line can pass very close to a protection zone.

Protection zone clearance and collision avoidance protection zones
With collision avoidance protection zones, there is a guarantee that the safety clearance set in
parameter <Limit>[3] is maintained for all protection zones during a traversing movement
on the specified traversing path.

The safety clearance specified in parameter <Limit>[3] only takes effect when the following
applies:

<Limit>[3] > (MD10619 $MN_COLLISION_TOLERANCE)

If bit 4 is set in parameter <TestLim> (calculation of the ongoing traversing direction), then the
direction vector received in <DIST> is only valid when the hundred thousands digit is set in the
function return value (<status>). If a direction such as this cannot be determined, either
because protection zones were violated, or because a transformation is active, then the input
value in <DIST> remains unchanged. An additional error message is not output.

Work preparation
3.6 Protection zones

NC programming
580 Programming Manual, 06/2019, A5E47437142B AA

3.7 Special motion commands

3.7.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)
You can traverse linear and rotary axes via position numbers to fixed axis positions saved in
machine data tables using the following commands. This type of programming is called
"approach coded positions".

Syntax
CAC(<n>)
CIC(<n>)
CACP(<n>)
CACN(<n>)

Meaning

CAC(<n>): Approach coded position from position number n
CIC(<n>): Starting from the actual position number, approach the coded position n position

locations before (+n) or back (–n)
CDC(<n>): Approach the position from position number n along the shortest path

(only for rotary axes)
CACP(<n>): Approach coded position from position number n in the positive direction

(only for rotary axes)
CACN(<n>): Approach coded position from position number n in the negative direction

(only for rotary axes)
<n>: Position number within the machine data table

Range of values: 0, 1, … (max. number of table locations - 1)

Example: Approach coded positions of a positioning axis

Programming code Comment
N10 FA[B]=300 ; Feedrate for positioning axis B
N20 POS[B]=CAC(10) ; Approach coded position from position number 10
N30 POS[B]=CIC(-4) ; Approach coded position from "current position num-

ber" - 4

References
● Function Manual Expanded Functions; Indexing Axes (T1)

● Function Manual, Synchronized Actions

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 581

3.7.2 Activating/deactivating NC block compression (COMPON, COMPCURV,
COMPCAD, COMPSURF, COMPOF)

The functions to compress linear blocks (and dependent on the parameterization, also circular
and/or rapid traverse blocks) are activated/deactivated using G commands of G group 30. The
commands are modal.

Syntax

COMPON / COMPCURV / COMPCAD / COMPSURF
...
COMPOF

Meaning

COMPON: Activating the compressor function COMPON
COMPCURV: Activating the compressor function COMPCURV
COMPCAD: Activating the compressor function COMPCAD
COMPSURF: Activating the compressor function COMPSURF
COMPOF : Deactivating the currently active compressor function

Note

The rounding function G642 and jerk limitation SOFT further improve the surface quality. These
commands must be written at the beginning of the program.

Example: COMPCAD

Program code Comment
N10 G00 X30 Y6 Z40
N20 G1 F10000 G642 ; Activation: Rounding function G642
N30 SOFT ; Activation: Jerk limitation SOFT
N40 COMPCAD ; Activation: Compressor function COMPCAD
N50 STOPFIFO
N24050 Z32.499 ; 1st traversing block
N24051 X41.365 Z32.500 ; 2nd traversing block
...
N99999 X... Z... ; last traversing block
COMPOF ; compressor function off.
...

Work preparation
3.7 Special motion commands

NC programming
582 Programming Manual, 06/2019, A5E47437142B AA

3.7.3 Polynomial interpolation (POLY, POLYPATH, PO, PL)
It actually involves a polynomial interpolation (POLY) and not a spline interpolation type. Its
main purpose is to act as an interface for programming externally generated spline curves
where the spline sections can be programmed directly.

This mode of interpolation relieves the NC of the task of calculating polynomial coefficients. It
can be optimally applied in cases where the coefficients are supplied directly by a CAD system
or post processor.

Syntax
3rd degree polynomial:
POLY PO[X]=(xe,a2,a3) PO[Y]=(ye,b2,b3) PO[Z]=(ze,c2,c3) PL=n
5th degree polynomial and new polynomial syntax:
POLY X=PO(xe,a2,a3,a4,a5) Y=PO(ye,b2,b3,b4,b5) Z=PO(ze,c2,c3,c4,c5)
PL=n
POLYPATH("AXES","VECT")

Note

The sum of the polynomial coefficients and axes programmed in an NC block must not exceed
the maximum permitted number of axes per block.

Meaning

POLY : Activation of polynomial interpolation with a block
containing POLY.

POLYPATH : Polynomial interpolation can be selected for both
AXIS or VECT axis groups

PO[axis identifier/variable] : End points and polynomial coefficients
X, Y, Z: Axis identifier
xe, ye, ze : Specification of end position for the particular axis;

value range as for path dimension
a2, a3, a4, a5 : The coefficients a2, a3, a4, and a5 are written with

their value; value range as for path dimension. The
last coefficient in each case can be omitted if it
equals zero.

PL : Length of the parameter interval where polynomials
are defined (definition range of the function f(p)).
The interval always starts at 0, p can assume val‐
ues from 0 to PL.
Theoretical value range for PL:
0.0001 … 99 999.9999
Note:
The PL value applies to the block in which it is lo‐
cated. If no PL is programmed, then PL=1 is ap‐
plied.

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 583

Activating/deactivating polynomial interpolation
The polynomial interpolation is activated in the part program using the POLX G command.

The POLY G command together with G0, G1, G2, G3, ASPLINE, BSPLINE and CSPLINE
belong to the 1st group.

Axes, which are only programmed with name and end point (e.g. X10), are linearly moved. If all
axes of an NC block are programmed in this way, the control behaves the same as for G1.

The polynomial interpolation is implicitly deactivated again by programming another command
of the 1st G group G0, G1).

Polynomial coefficient
The PO value (PO[]=) or ...=PO(...) specifies all polynomial coefficients for an axis.
Several values are specified, separated by commas corresponding the degree of the
polynomial. Different degrees of polynomials are possible for various axes within one block.

POLYPATH subprogram
Using POLYPATH(...), the polynomial interpolation can be selectively released for certain axis
groups:

 Only path axes and supplementary axes: POLYPATH("AXES")
 Only orientation axes:

(when moving with orientation transformation)
POLYPATH("VECT")

The axes that are not released are linearly moved.

Polynomial interpolation is enabled as standard for both axis groups.

Polynomial interpolation is deactivated for all axes by programming without the POLYPATH()
parameter.

Example

Program code Comment
N10 G1 X… Y… Z… F600
N11 POLY PO[X]=(1,2.5,0.7) PO[Y]=(0.3,1,3.2)
PL=1.5

; Polynomial interpolation on

N12 PO[X]=(0,2.5,1.7) PO[Y]=(2.3,1.7) PL=3
...
N20 M8 H126 …
N25 X70 PO[Y]=(9.3,1,7.67) PL=5 ; Mixed data for the axes
N27 PO[X]=(10,2.5) PO[Y]=(2.3) ; No PL programmed; PL=1 applies
N30 G1 X… Y… Z. ; Polynomial interpolation off
…

Work preparation
3.7 Special motion commands

NC programming
584 Programming Manual, 06/2019, A5E47437142B AA

Example: New polynomial syntax

Polynomial syntax that is still valid New polynomial syntax
PO[axis identifier]=(.. , ..) Axis identifier=PO(.. , ..)
PO[PHI]=(.. , ..) PHI=PO(.. , ..)
PO[PSI]=(.. , ..) PSI=PO(.. , ..)
PO[THT]=(.. , ..) THT=PO(.. , ..)
PO[]=(.. , ..) PO(.. , ..)
PO[variable]=IC(.. , ..) variable=PO IC(.. , ..)

Example: Curve in the X/Y plane.
Programming

Program code
N9 X0 Y0 G90 F100
N10 POLY PO[Y]=(2) PO[X]=(4,0.25) PL=4

Shape of the curves X(p) and Y(p)

Shape of the curve in the XY plane

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 585

Description
The equation to express the polynomial function is generally as follows:

 f(p)= a0 + a1p + a2p2 + . . . + anpn

 with: ai: constant coefficients (i = 0, 1, ..., n)
p: Parameter

In the control, polynomials up to a maximum of the 5th degree can be programmed:

 f(p)= a0 + a1p + a2p2 + a3p3 + a4p4 + a5p5

By assigning concrete values to these coefficients, it is possible to generate various curve
shapes such as line, parabola and power functions.

A straight line is generated with a2 = a3 = a4 = a5 = 0:

 f(p) = a0 + a1p

The following still applies:

 a0: Axis position at the end of the preceding block
 p = PL
 a1 = (xE - a0 - a2*p2 - a3*p3)/p

It is possible to program polynomials without the polynomial interpolation having been activated
using the G command POLY. In this case, the programmed polynomials are not interpolated,
but instead, all of the programmed end points of the axis are linearly approached (G1). The
programmed polynomials are only moved as such after explicitly activating polynomial
interpolation in the part program (POLY).

Work preparation
3.7 Special motion commands

NC programming
586 Programming Manual, 06/2019, A5E47437142B AA

Special feature: Denominator polynomial
Command PO[]=(…) can be used to program a common denominator polynomial for the
geometry axes (without specifying an axis name), i.e. the motion of the geometry axes is then
interpolated as the quotient of two polynomials.

With this programming option, it is possible to represent shapes such as conics (circle, ellipse,
parabola, hyperbola) exactly.

Example:

Program code Comment
POLY G90 X10 Y0 F100 ; Geometry axes traverse linearly to po-

sition X10 Y0.
PO[X]=(0,–10) PO[Y]=(10) PO[]=(2,1) ; Geometry axes traverse along the quad-

rant to X0 Y10.

The constant coefficient (a0) of the denominator polynomial is always assumed to be 1. The
programmed end point is independent of G90 / G91.

X(p) and Y(p) are calculated as follows from the programmed values:

 X(p) = (10 - 10 * p2) / (1 + p2)
 Y(p) = 20 * p / (1 + p2)
 with 0 ≤ p ≤ 1

As a result of the programmed start points, end points, coefficient a2 and PL=1, the intermediate
results are as follows:

 Numerator (X) = 10 + 0 * p - 10 * p2

 Numerator
(Y) =

0 + 20 * p + 0 * p2

 Denominator = 1 + p2

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 587

If polynomial interpolation is active and a denominator polynomial is programmed with zeros
within the interval [0,PL], this is rejected and an alarm is output. Denominator polynomials
have no effect on the motion of special axes.

Note

Tool radius compensation can be activated with G41, G42 in conjunction with polynomial
interpolation and can be applied in the same way as in linear or circular interpolation modes.

3.7.4 Settable path reference (SPATH, UPATH)
For polynomial interpolation (POLY, ASPLINE, BSPLINE, CSPLINE, COMPON, COMPCURV), the
positions of the path axes i are specified as polynomials pi(U). The curve parameter U moves
from 0 to 1 within an NC block.

FGROUP selects the axes (FGROUP axes) to which the path feedrate F applies. An interpolation
with constant speed on the path S of the FGROUP axes means during the polynomial
interpolation normally a non-constant change of the curve parameter U. Consequently, two
possibilities are available for selecting the axes not contained in FGROUP on how they should
follow the FGROUP axes:

● Synchronous to path S (SPATH)

● Synchronous to curve parameter U (UPATH)

Syntax
SPATH
UPATH

Meaning

SPATH: The axes not contained in FGROUP are traversed with reference to path S
UPATH: The axes not contained in FGROUP are traversed with reference to curve parameter U

Note

UPATH and SPATH also define the interrelationship of the F word polynomial (FPOLY, FCUB,
FLIN) with path motion.

Supplementary conditions
SPATH and UPATH have no meaning for:

● Linear interpolation (G1)

● Circuit interpolation (G2, G3)

● Thread blocks (G33, G34, G35, G33x, G63)

● All path axes are contained in FGROUP

Work preparation
3.7 Special motion commands

NC programming
588 Programming Manual, 06/2019, A5E47437142B AA

Example
The following example shows the difference between both types of motion control.

Program code
N10 FGROUP(X,Y,Z)
N15 G1 X0 A0 F1000 SPATH ; SPATH
N20 POLY PO[X]=(10,10) A10

Program code
N10 FGROUP(X,Y,Z)
N15 G1 X0 A0 F1000 UPATH ; UPATH
N20 POLY PO[X]=(10,10) A10

In both program sections, the path S of the FGROUP axes in N20 is dependent on the square
of curve parameter U. Therefore, different position arise for synchronized axis A along path X,
according to whether SPATH or UPATH is active.

Further information

Control behavior for reset and machine/option data
The G command, defined with MD20150 $MC_GCODE_RESET_VALUES[44], is effective
after a reset (45th. G group).

The initial state for the type of smoothing is defined with
MD20150 $MC_GCODE_RESET_VALUES[9] (10th G group).

The axis-specific machine data MD33100 $MA_COMPRESS_POS_TOL[<n>] has an
extended significance: It contains the tolerances for the compressor function and for smoothing
with G642.

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 589

3.7.5 Channel-specific measuring (MEAS, MEAW)
In the case of channel-specific measuring, the measuring process for an NC channel is always
activated from the part program running in the relevant channel. One trigger event (positive or
negative edge of the probe) and one measuring mode with deletion of distance-to-go (MEAS)
or without deletion of distance-to-go (MEAW) are programmed in a measuring block. All the
axes programmed in the measuring block then take part in the measuring process.

As soon as a measuring block becomes active, the probe is moved to the workpiece. On the
probe's switching edge, the positions for all axes programmed in the measuring block are
measured and written to the appropriate memory cell for each axis.

The results of measurements can be read in the part program or with synchronized actions in
both the machine and the workpiece coordinate systems.

Syntax
MEAS=<TE> G... X... Y... Z...
MEAW=<TE> G... X... Y... Z...

Meaning

MEAS: Measurement with delete distance-to-go
Effectiveness: Non-modal

MEAW: Measurement without delete distance-to-go
Effectiveness: Non-modal
Application: For measuring tasks in which the programmed position is to

be approached in every case.

Work preparation
3.7 Special motion commands

NC programming
590 Programming Manual, 06/2019, A5E47437142B AA

<TE>: Trigger event to initiate measurement
Type: INT
Range of val‐
ues:

-2, -1, 1, 2

Value: (+)1 Positive edge of probe 1 (on measuring input 1)
-1 Negative edge of probe 1 (on measuring input 1)

(+)2 Positive edge of probe 2 (on measuring input 2)
-2 Negative edge of probe 2 (on measuring input 2)

Note:
There is a maximum of 2 probes (dependent on configuration level).

G...: Type of interpolation, e.g. G0, G1, G2 or G3
X... Y... Z...: End points in Cartesian coordinates

Note

MEAS and MEAW are non-modal, and programmed together with motion operations. The
feedrate and interpolation type (G0, G1, etc.) as well as the number of axes must be adapted
for the respective measuring task.

Example

Program code Comment
...
N10 MEAS=1 G1 F1000 X100 Y730 Z40 ; Measuring block with probe at first

measuring input and linear interpola-
tion. A preprocessing stop is automati-
cally generated.

...

Further information

Query status
If an evaluation is required in the program, whether a probe has been deflected or has switched,
the status can be queried through the following system variables:

System variable Meaning Data type Value
$A_PROBE[<n>] Probe state

INT 0 Probe not deflected.

1 Probe deflected.
$AC_MEA[<n>] Switching status of the probe

$AC_MEA[<n>] is automati‐
cally reset at the beginning of
a measurement.

INT 0 Probe has not switch‐
ed

1 Probe has switched.

<n> = number of the probe

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 591

Reading measured values
For channel-specific measuring, the positions of all traversing path and positioning axes of the
block are acquired (maximum number of axes depends on the control configuration). For
MEAS, the motion is braked in a defined fashion after the probe has been triggered.

Note

If a geometry axis is programmed in a measuring block, the measured values are stored for all
current geometry axes.

If an axis participating in a transformation is programmed in a measuring block, the measured
values are stored for all axes participating in this transformation.

Reading measurement results
The measured values of the axes acquired by probes can be read through the following system
variables in the part program and in synchronized actions.

System variable Meaning
$AA_MM[<Axis>] Probe measured value in the machine coordinate system
$AA_MW[<Axis>] Probe measured value in the workpiece coordinate system

3.7.6 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)
With axis-specific measuring, activation can take place in the part program or in synchronized
actions. If two measuring systems are available for the axis, both can be used for the
measurement.

The following measuring methods are available:

● Measurement with delete distance-to-go (MEASA)

● Measurement without delete distance-to-go (MEAWA)

● Continuous measurement without delete distance-to-go (MEAC)

With MEASA or MEAWA for the programmed axis, up to four measured values are acquired for
each measurement and are then saved in system variables in accordance with the trigger
event.

With continuous measurement with MEAC, the measurement results are stored in FIFO
variables.

Syntax
MEASA[<Axis>]=(<Mode>,<TE1>,...,<TE4>)
MEAWA[<Axis>]=(<Mode>,<TE1>,...,<TE4>)
MEAC[<Axis>]=(<Mode>,<MeasMem>,<TE1>,...,<TE4>)

Work preparation
3.7 Special motion commands

NC programming
592 Programming Manual, 06/2019, A5E47437142B AA

Note

MEASA and MEAWA are non-modal; and can be programmed together in one block. If, on the
contrary, MEASA/MEAWA are programmed with MEAS/MEAW in one block, there is an error
message.

Meaning

MEASA: Axis-specific measurement with deletion of distance-to-go
Effectiveness: Non-modal

MEAWA: Axes-specific measurement without delete distance-to-go
Effectiveness: Non-modal

MEAC: Axis-specific, continuous measurement without delete distance-to-go
Effectiveness: Non-modal

<Axis>: Name of channel axis used for measurement
<Mode>: Two-digit (xx) number indicating the operating mode (measuring mode and meas‐

uring system)
Units decade: Measuring mode
Specifies whether the trigger events are to be activated in chronological or pro‐
grammed order.
x0 Cancel measuring job.
x1 Up to 4 different trigger events can be activated simultaneously.
x2 Up to 4 trigger events that can be activated successively.
x3 Up to 4 different trigger events can be activated in succession, but there is

no monitoring of trigger event 1 at the start (alarms 21700/21703 are sup‐
pressed).
Note:
MEAC does not support this mode.

Tens decade: Measuring system
Specifies the measuring system with which measuring is to be performed.
0x (or no specification) Active measuring system
1x Measuring system 1
2x Measuring system 2
3x Both measuring systems

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 593

<TE>: Trigger event to initiate measurement
Type: INT
Range of val‐
ues:

-2, -1, 1, 2

(+)1 Positive edge of probe 1
-1 Negative edge of probe 1

(+)2 Positive edge of probe 2
-2 Negative edge of probe 2

Note:
If the measuring process is performed with two measuring systems, a maximum of
two trigger events can be programmed (positive or negative edge). The measured
values of both measuring systems are acquired for both the trigger events.

<MeasMem>: Number of FIFO (circular buffer)

Examples

Example 1: Axis-specific measurement with delete distance-to-go in mode 1 (evaluation in
chronological sequence)
a) Measuring with one measuring system

Program code Comment
...
N100 MEASA[X]=(1,1,-1) G01 X100 F100 ; Measuring in mode 1 with active measur-

ing system. Wait for measuring signal
with positive/negative edge from probe 1
for travel path to X=100.

N110 IF $AC_MEA[1]==FALSE GOTOF END ; Check that the measurement was success-
ful.

N120 R10=$AA_MM1[X] ; Save measured value acquired at the
first programmed trigger event (positive
edge).

N130 R11=$AA_MM2[X] ; Save measured value acquired at the sec-
ond programmed trigger event (negative
edge).

N140 END:

b) Measuring with two measuring systems

Program code Comment
...
N200 MEASA[X]=(31,1,-1) G01 X100 F100 ; Measuring in mode 1 with both measuring

systems. Wait for measuring signal with
positive/negative edge from probe 1 for
travel path to X=100.

N210 IF $AC_MEA[1]==FALSE GOTOF END ; Check that the measurement was success-
ful.

N220 R10=$AA_MM1[X] ; Save measured value of measuring system
1 at positive edge.

Work preparation
3.7 Special motion commands

NC programming
594 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N230 R11=$AA_MM2[X] ; Save measured value of measuring system

2 at positive edge.
N240 R12=$AA_MM3[X] ; Save measured value of measuring system

1 at negative edge.
N250 R13=$AA_MM4[X] ; Save measured value of measuring system

2 at negative edge.
N260 END:

Example 2: Axis-specific measurement with delete distance-to-go in mode 2 (evaluation in
programmed sequence)

Program code Comment
...
N100 MEASA[X]=(2,1,-1,2,-2) G01 X100 F100 ; Measuring in mode 2 with active measur-

ing system. Wait for measuring signal in
the sequence positive edge probe 1, nega-
tive edge probe 1, positive edge probe 2,
negative edge probe 2 while traversing
path to X=100.

N110 IF $AC_MEA[1]==FALSE GOTOF PROBE2 ; Check that the measurement with probe 1
is successful.

N120 R10=$AA_MM1[X] ; Save measured value acquired at the
first programmed trigger event (positive
edge of probe 1).

N130 R11=$AA_MM2[X] ; Save measured value acquired at the sec-
ond programmed trigger event (positive
edge of probe 1).

N140, PROBE2:
N150 IF $AC_MEA[2]==FALSE GOTOF END ; Check that the measurement with probe 2

is successful.
N160 R12=$AA_MM3[X] ; Save measured value acquired at the

third programmed trigger event (positive
edge of probe 2).

N170 R13=$AA_MM4[X] ; Save measured value acquired at the
fourth programmed trigger event (positive
edge of probe 2).

N180 END:

Example 3: Axis-specific, continuous measurement in mode 1 (evaluation in chronological
sequence)
a) Measurement of up to 100 measured values

Program code Comment
...
N110 DEF REAL MEASVALUE[100]
N120 DEF INT loop=0

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 595

Program code Comment
N130 MEAC[X]=(1,1,-1) G01 X1000 F100 ; Measuring in mode 1 with active measur-

ing system, save measured values under
$AC_FIFO1, wait for measuring system with
negative edge from probe 1 on the travel
path to X=1000.

N135 STOPRE
N140 MEAC[X]=(0) ; Terminate measurement when axis posi-

tion is reached.
N150 R1=$AC_FIFO1[4] ; Save number of accumulated measured val-

ues in parameter R1.
N160 FOR loop=0 TO R1-1
N170 MEASURED VALUE[loop]=$AC_FIFO1[0] ; Read-out measured values from $AC_FIFO1

and save.
N180 ENDFOR

b) Measurement with delete distance-to-go after 10 measured values

Program code Comment
...
N10 WHEN $AC_FIFO1[4]>=10 DO MEAC[x]=(0) DELDTG(x) ; Delete distance-to-go.
N20 MEAC[x]=(1,1,1,-1) G01 X100 F500
N30 MEAC [X]=(0)
N40 R1 = $AC_FIFO1[4] ; Number of measured values.
...

c) Measurement of a positive/negative tooth flank with 2 probes

Program code Comment
...
N110 DEF REAL MEASVALUE[16]
N120 DEF INT loop=0
N130 MEAC[X]=(1,1,-1,2) G01 X100 F100 ; Measurement in mode 1 with active meas-

uring system, save measured values under
$AC_FIFO1, wait for measuring signal in
the sequence negative edge of probe 1,
positive edge of probe 2 while traversing
the travel path to X=100.

N140 STOPRE ; Preprocessing stop.
N150 MEAC[X]=(0) ; Terminate measurement when axis posi-

tion is reached.
N160 R1=$AC_FIFO1[4] ; Save number of accumulated measured val-

ues in parameter R1.
N170 FOR loop=0 TO R1-1
N180 MEASURED VALUE[loop]=$AC_FIFO1[0] ; Read-out measured values from $AC_FIFO1

and save.
N190 ENDFOR

Work preparation
3.7 Special motion commands

NC programming
596 Programming Manual, 06/2019, A5E47437142B AA

Further information

Measuring job
A measuring job can be programmed in the part program or from a synchronized action. Please
note that only one measuring job can be active at any given time for each axis.

Note

The feed must be adjusted to suit the particular measuring task

In the case of MEASA and MEAWA, the correctness of results can be only guaranteed for
feedrates at which no more than one trigger event of the same type and no more than 4 trigger
events of different types occur in each position control cycle.

In the case of continuous measurement with MEAC, the ratio between interpolator cycle and
the position control cycle must not exceed 1:8.

Trigger event
A trigger event comprises the number of the probe and the trigger criterion (positive or negative
edge) of the measuring signal.

Up to 4 trigger events of the addressed probe can be processed for each measurement; in other
words, up to two probes each with two measuring signal edges. The processing sequence and
the maximum number of trigger events depend on the selected mode.

If the measuring operation is performed with two measuring systems, a maximum of two trigger
events can be programmed (positive or negative edge). The measured values of both probes
are acquired for both of the trigger events.

Note

With the use of PROFIBUS telegram 391 (default setting for PROFIBUS communication) only
one measured value is possible for each trigger event and position control cycle.

For MEAC, the number of measured values per trigger event can be increased by using
PROFIBUS telegram 395 to a total of 8 measured values for a positive edge and 8 measured
values for a negative edge for each trigger event and position control cycle:

● One probe: 8 measured values for a positive and 8 for a negative edge

● Two probes: 4 measured values for a positive and 4 for a negative edge for each probe

This means that higher feed rates or higher speeds can be reached by using PROFIBUS
telegram 395.

Operating mode
The first digit (tens decade) of the operating mode selects the required measuring system. If
only one measuring system is installed, but a second is programmed, the installed system is
automatically selected.

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 597

The second digit (units decade) selects the desired measuring mode. The measuring process
is thus adapted to the options supported by the relevant control:

● Mode 1
Trigger events are evaluated in the chronological sequence in which they occur. When this
mode is selected, only one trigger event can be programmed for six-axis modules. If more
than one trigger event is specified, the mode selection is switched automatically to mode 2
(without message).

● Mode 2
Trigger events are evaluated in the programmed sequence.

● Mode 3
Trigger events are evaluated in the programmed sequence but there is no monitoring of
trigger event 1 at the start.

Measurement with and without delete distance-to-go
When command MEASA is programmed, the distance-to-go is not deleted until all required
measured values have been acquired.

MEAWA is used for special measuring tasks in which a programmed position always has to be
approached.

Note

MEASA cannot be programmed in synchronized actions. As an alternative, MEAWA plus
delete distance-to-go can be programmed as a synchronized action.

If the measuring job with MEAWA is started from synchronized actions, the measured values
will only be available in the machine coordinate system.

Geometry axes/transformations
If axial measurement is to be started for a geometry axis, the same measuring job must be
programmed explicitly for all remaining geometry axes. The same applies to axes involved in
a transformation.

Examples:
N10 MEASA[Z]=(1,1) MEASA[Y]=(1,1) MEASA[X]=(1,1) G0 Z100
or
N10 MEASA[Z]=(1,1) POS[Z]=100

Query status
If an evaluation is required in the program, whether a probe has been deflected or has switched,
the status can be queried through the following system variables:

System variable Meaning Data type Value
$A_PROBE[<n>] Probe state

INT 0 Probe not deflected.

1 Probe deflected.

Work preparation
3.7 Special motion commands

NC programming
598 Programming Manual, 06/2019, A5E47437142B AA

System variable Meaning Data type Value
$AC_MEA[<n>] Switching status of the probe

$AC_MEA[<n>] is automati‐
cally reset at the beginning of
a measurement.

INT 0 Probe has not switch‐
ed

1 Probe has switched
(all trigger events pro‐
grammed in the
measuring block
have taken place).

<n> = number of the probe

Note

If measurement is started from synchronized actions, $AC_MEA is no longer updated. In this
case, the NC/PLC interface signal DB31, … DBX62.3 or the equivalent variable
$AA_MEAACT[<Axis>] must be queried.

$AA_MEAACT==1: Measurement active

$AA_MEAACT==0: Measurement not active

Probe limitation
In the NC program or synchronized action, the probe limiting status can be read using system
variable $A_PROBE_LIMITED when using PROFIBUS telegram 395:

$A_PROBE_LIMITED[<n>] == 0: Probe limitation inactive/reset

$A_PROBE_LIMITED[<n>] == 1: Probe limitation active

<n> = probe number

Measurement results for MEASA / MEAWA
The values measured by probes can be read through the following system variables in the part
program and in synchronized actions.

System variable Meaning
$AA_MM1[<Axis>]
...
$AA_MM4[<Axis>]

Probe measured value for trigger event 1 in the machine coordinate system
...
Probe measured value for trigger event 4 in the machine coordinate system

$AA_MW1[<Axis>]
...
$AA_MW4[<Axis>]

Probe measured value for trigger event 1 in the workpiece coordinate system
...
Probe measured value for trigger event 4 in the workpiece coordinate system

<Axis> = measuring axis

If a measuring job is executed by two measuring systems, each of the two possible trigger
events is acquired from both measuring systems. The assignment of system variables is then
as follows:

$AA_MM1[<Axis>] or $AA_MW1[<Axis>] Measured value from measuring sys‐
tem 1 on trigger event 1

$AA_MM2[<Axis>] or $AA_MW2[<Axis>] Measured value from measuring sys‐
tem 2 on trigger event 1

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 599

$AA_MM3[<Axis>] or $AA_MW3[<Axis>] Measured value from measuring sys‐
tem 1 on trigger event 2

$AA_MM4[<Axis>] or $AA_MW4[<Axis>] Measured value from measuring sys‐
tem 2 on trigger event 2

Continuous measurement (MEAC)
The measured values for MEAC are available in the machine coordinate system and stored in
the programmed FIFO[<n>] memory (circular buffer). If two probes are configured for the
measurement, the measured values of the second probe are stored separately in the FIFO[<n>
+1] memory configured specifically for this purpose (defined in machine data).

The FIFO memory is a circular buffer in which measured values are written to $AC_FIFO
variables according to the circular principle.

Note

FIFO contents can be read only once from the circular buffer. If this measured data is to be used
several times, it must be buffered in the user data.

If the number of measured values for the FIFO memory exceeds the maximum value defined
in machine data, the measurement is automatically terminated.

An endless measuring process can be implemented by reading out measured values cyclically.
In this case, data must be read out at least with the same frequency as new measured values
are input.

Further information

Synchronized Actions Function Manual; Detailed Description" > "Parameters ($AC_FIFO)

Protection against programming errors
The following programming errors are detected and indicated as errors:

● MEASA/MEAWA programmed with MEAS/MEAW in the same block
Example:
N01 MEAS=1 MEASA[X]=(1,1) G01 F100 POS[X]=100

● MEASA/MEAWA with number of parameters <2 or >5
Example:
N01 MEAWA[X]=(1) G01 F100 POS[X]=100

● MEASA/MEAWA with trigger event not equal to 1/ -1/ 2/ -2
Example:
N01 MEASA[B]=(1,1,3) B100

● MEASA/MEAWA with invalid mode
Example:
N01 MEAWA[B]=(4,1) B100

● MEASA/MEAWA with trigger event programmed twice
Example:
N01 MEASA[B]=(1,1,-1,2,-1) B100

Work preparation
3.7 Special motion commands

NC programming
600 Programming Manual, 06/2019, A5E47437142B AA

● MEASA/MEAWA and missing geometry axis
Example:
N01 MEASA[X]=(1,1) MEASA[Y]=(1,1) G01 X50 Y50 Z50 F100; GEO axis X/
Y/Z

● Inconsistent measuring job with geometry axes
Example:
N01 MEASA[X]=(1,1) MEASA[Y]=(1,1) MEASA[Z]=(1,1,2) G01 X50 Y50 Z50
F100

3.7.7 Special functions for OEM users (OMA1 ... OMA5, OEMIPO1, OEMIPO2, G810 ...
G829)

OEM addresses
The meaning of OEM addresses is determined by the OEM user. Their functionality is
incorporated by means of compile cycles. Five OEM addresses are reserved (OMA1 ... OMA5).
The address identifiers are settable. OEM addresses can be programmed in any block.

Reserved G command calls
The following G command calls are reserved for OEM users:

● OEMIPO1, OEMIPO2 (from G group 1)

● G810 ... G819 (G group 31)

● G820 ... G829 (G group 32)

Their functionality is incorporated by means of compile cycles.

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 601

Functions and subprograms
OEM users can also set up predefined functions and subprograms with parameter transfer.

Note
Workpiece simulation

Up to SW 4.4, no compile cycles were supported, as of SW 4.4, only selected compile cycles
(CC) are supported for the workpiece simulation.

Language commands in the part program of compile cycles that are not supported
(OMA1 ... OMA5, OEMIPO1/2, G810 ... G829, own procedures and functions) - therefore result
in an alarm message and cancellation of the simulation without any individual handling.

Solution: Individually handle the missing CC-specific language elements in the part program
($P_SIM query).
Example:

N1 G01 X200 F500
IF (1==$P_SIM)
N5 X300 ;not active for CC simulation
ELSE
N5 X300 OMA1=10
ENDIF

3.7.8 Feedrate reduction with corner deceleration (FENDNORM, G62, G621)
With automatic corner deceleration the feed rate is reduced according to a bell-shaped curve
before reaching the corner. It is also possible to parameterize the extent of the tool behavior
relevant to machining via setting data. These are:

● Start and end of feed rate reduction

● Override with which the feed rate is reduced

● Detection of a relevant corner

Relevant corners are those whose inside angle is less than the corner parameterized in the
setting data.

Default value FENDNORM deactivates the function of the automatic corner override.

References:
/FBFA/ "Function Description ISO Dialects"

Syntax
FENDNORM
G62 G41
G621

Work preparation
3.7 Special motion commands

NC programming
602 Programming Manual, 06/2019, A5E47437142B AA

Meaning

FENDNORM: Automatic corner deceleration OFF
G62: Corner deceleration at inside corners when tool radius offset is active
G621: Corner deceleration at all corners when tool radius offset is active

G62 only applies to inside corners with

● active tool radius offset G41, G42 and

● active continuous-path mode G64, G641
The corner is approached at a reduced feed rate resulting from:

F * (override for feed rate reduction) * feed rate override

The maximum possible feed rate reduction is attained at the precise point where the tool is to
change directions at the corner, with reference to the center path.

G621 applies analogously with G62 at each corner of the axes defined by FGROUP.

3.7.9 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA, IPOBRKA,
ADISPOSA)

Similar to the block change criterion for path interpolation (G601, G602, and G603) it is also
possible to program the end-of-motion criterion for single-axis interpolation in a part program or
in synchronized actions for command/PLC axes.

The end-of-motion criterion set will affect how quickly or slowly part program blocks and
technology cycle blocks with single-axis movements are completed. The same applies for PLC
via FC15/16/18.

Syntax
FINEA[<axis>]
COARSEA[<axis>]
IPOENDA[<axis>]
IPOBRKA(<axis>[,<instant in time>])
ADISPOSA[<axis>]=(<mode>,<window size>)

Meaning

FINEA: End-of-motion criterion: "Exact stop fine"
 Effective: Modal
COARSEA: End-of-motion criterion: "Exact stop coarse"
 Effective: Modal
IPOENDA: End-of-motion criterion: "Interpolator stop"
 Effective: Modal
IPOBRKA: Block change criterion: Braking ramp
 Effective: Modal

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 603

ADISPOSA: Tolerance window for end-of-motion criterion
Effective: Modal

<axis>: Channel axis name (X, Y,)
<instant in time>: Time of the block change, referred to the braking ramp as a %:

● 100% = start of the braking ramp
● 0% = end of the braking ramp, the same significance as IPOENDA
Type: REAL

<mode>: Reference of the tolerance window
Range of values: 0 Tolerance window not active

1 Tolerance window with respect to set posi‐
tion

2 Tolerance window with respect to actual po‐
sition

Type: INT
<window size>: Size of the tolerance window

Type: REAL

Examples

Example 1: End-of-motion criterion: "Interpolator stop"

Program code
; traverse positioning axis X to 100, velocity 200 m/
min, acceleration 90%,
; end-of-motion criterion: Interpolator stop

N110 G01 POS[X]=100 FA[X]=200 ACC[X]=90 IPOENDA[X]

; Synchronized action:
; ALWAYS IF: Input 1 is set
; THEN traverse positioning axis X to 50, velocity 200 m/
min, acceleration 140%,
; end-of-motion criterion: Interpolator stop

N120 EVERY $A_IN[1] DO POS[X]=50 FA[X]=200 ACC[X]=140
IPOENDA[X]

Example 2: Block change criterion: "Braking ramp"

Program code Comment
 ; Default setting is effective
N40 POS[X]=100 ; Positioning motion from X to position 100.

Block change criterion: Exact stop fine
N20 IPOBRKA(X,100) ; Block change criterion: "Braking ramp",

100% = start of the braking ramp
N30 POS[X]=200 ; The block is changed as soon as the X axis starts to brake

Work preparation
3.7 Special motion commands

NC programming
604 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N40 POS[X]=250 ; X axis no longer brakes at position 200, but rather contin-

ues to traverse to position 250.
As soon as the axis starts to brake, the block changes.

N50 POS[X]=0 ; Axis X brakes and returns to position 0.
The block change takes place at position 0 and "exact stop
fine"

N60 X10 F100 ; Axis X traverses as path axis to position 10

Further information

System variable for end-of-motion criterion
The effective end-of-motion criterion can be read using the system variable $AA_MOTEND.

References: /LIS2sl/ List Manual, Book 2

Block-change criterion: "Braking ramp" (IPOBRKA)
If, when activating the block change criterion "brake ramp", a value is programmed for the
optional block change instant in time, then this becomes effective for the next positioning
motion and is written into the setting data synchronized to the main run. If no value is specified
for the block change instant in time, then the actual value of the setting data is effective.

SD43600 $SA_IPOBRAKE_BLOCK_EXCHANGE

IPOBRKA is deactivated for the corresponding access when an axis end-of-motion criterion
(FINEA, COARSEA , IPOENDA) is next programmed for the axis.

Additional block-change criterion: "Tolerance window" (ADISPOSA)
Using ADISPOSA, a tolerance window around the end of block (either as actual or setpoint
position) can be defined as additional block change criterion. Then, two conditions must be
fulfilled for the block change:

● Block-change criterion: "Braking ramp"

● Block-change criterion: "Tolerance window"

References
For further information about the block change criterion for positioning axes, see:

● Function Manual, Extended Functions; Positioning Axes (P2)

● Programming Manual, Fundamentals; Chapter "Feedrate control".

Work preparation
3.7 Special motion commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 605

3.8 Coordinate transformations (frames)

3.8.1 Coordinate transformation via frame variables

In addition to the commands such as ROT, AROT and SCALE described in the Fundamentals
Programming Manual, "Coordinate transformations (frames)" section, the workpiece
coordinate system (WCS) can also be transformed by the frame variables $P_...FR (data
storage frames) and $P_...FRAME (active frames).

The following diagram provides an overview of structuring frame variables:

● Data management frames

● Active frames

● Active total frame: Chain of all active frames

● NCU global frames

● Channel-specific frames

Work preparation
3.8 Coordinate transformations (frames)

NC programming
606 Programming Manual, 06/2019, A5E47437142B AA

Figure 3-1 Overview of the frame variables

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 607

3.8.1.1 Predefined frame variable ($P_CHBFRAME, $P_IFRAME, $P_PFRAME,
$P_ACTFRAME)

Active: channel-specific base frames $P_CHBFRAME[<n>] ($P_BFRAME)

Note

The current base frame $P_BFRAME and the data storage base frame $P_UBFR are retained
for compatibility reasons.
● $P_BFRAME ≙ $P_CHBFRAME[0]
● $P_UBFR ≙ $P_CHBFR[0].

The frame variables $P_CHBFRAME[<n>] define the reference between the basic coordinate
system (BCS) and the basic origin system (BOS).

If the current channel-specific base frame $P_CHBFRAME[<n>] should be active immediately
in the NC program, the following possibilities are available.

● Commands:

– G500 (deactivate all settable frames, the base frames remain active)

– G54 to G599 (settable zero offsets)

● Assignment of a channel-specific base frames of the data storage to a current channel-
specific base frame:
$P_CHBFRAME[<n>] = $P_CHBFR[<m>]

Active: Channel-specific settable frame $P_IFRAME
The frame variable $P_IFRAME defines the reference between the basic origin system (BOS)
and the settable zero system (SZS).

● $P_IFRAME corresponds to $P_UIFR[$P_IFRNUM]
● After G54 is programmed, for example, $P_IFRAME contains the translation, rotation,

scaling and mirroring defined by G54.

Work preparation
3.8 Coordinate transformations (frames)

NC programming
608 Programming Manual, 06/2019, A5E47437142B AA

Active: Channel-specific programmable frame $P_PFRAME
The $P_PFRAME frame variable defines the reference between the settable zero system
(SZS) and the workpiece coordinate system (WCS).

$P_PFRAME contains the resulting frame, that results

● From the programming of TRANS/ATRANS, ROT/AROT, SCALE/ASCALE, MIRROR/
AMIRROR or

● From the assignment of CTRANS, CROT, CMIRROR, CSCALE to the programmed FRAME

Active: Total frame $P_ACTFRAME
The total frame active in the channel results from the chaining of all frames acting in the
channel.

$P_ACTFRAME = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
$P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
$P_ACTBFRAME : $P_IFRAME : $P_GFRAME :
$P_TOOLFRAME : $P_WPFRAME : $P_TRAFRAME :
$P_PFRAME : $P_ISO4FRAME : $P_CYCFRAME

$P_ACTFRAME describes the currently valid workpiece coordinate system.

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 609

Figure 3-2 Frame variable $P_ACTFRAME

If one of the following frames $P_BFRAME / $P_CHBFRAME[<n>], $P_IFRAME or $P_PFRAME
is changed, the current total frame $P_ACTFRAME is recalculated.

Basic frame and settable frame are effective after Reset if MD 20110 RESET_MODE_MASK
is set as follows:

Bit0=1, bit14=1 --> $P_UBFR (basic frame) acts

Bit0=1, bit5=1 --> $P_UIFR [$P_UIFRNUM](settable frame) acts

Work preparation
3.8 Coordinate transformations (frames)

NC programming
610 Programming Manual, 06/2019, A5E47437142B AA

Data storage: channel-specific base frames $P_CHBFR[<n>]
The frame variables $P_CHBFR[<n>] read/write the base frames in the data storage. The data
storage frame is not immediately active in the channel when written. The written frame is
activated with:

● Channel reset and MD20110 $MC_RESET_MODE_MASK, Bit0 == 1 and Bit14 == 1

● Command G500, G54 ... G57, G505 ... G599 (activation/deactivation of base frames with
subsequent recalculation of the current total frames)

Data storage: Channel-specific settable frames $P_UIFR[<n>]
The frame variables $P_UIFR[<n>] read/write the settable base frames in the data storage. The
frame is not immediately active in the channel when written. The written frame in the channel
is calculated with:

● G500 command (deactivate all settable frames or zero offsets)

● G54 ... G57, G505 ... G599 command (activate a settable frame or zero offset)

Active settable frame Data storage frame (corresponds to command)
$P_IFRAME = $P_UIFR[0] G500

$P_UIFR[1] G54
$P_UIFR[2] G55
$P_UIFR[3] G56
$P_UIFR[4] G57
$P_UIFR[5] G505
$P_UIFR[6] G506

... ...
$P_UIFR[99] G599

3.8.2 Value assignments to frames

3.8.2.1 Assigning direct values (axis value, angle, scale)
You can directly assign values to frames or frame variables in the NC program.

Syntax

Syntax
$P_PFRAME = CTRANS(X, <offset value>, Y, <offset value>, Z, <offset
value>, ...)
$P_PFRAME = ROT(X, <angle>, Y, <angle>, Z, <angle>, ...)
$P_UIFR[..] = CROT(X, <angle>, Y, <angle>, Z, <angle>, ...
$P_PFRAME = CSCALE(X, <scale>, Y, <scale>, Z, <scale>, ...)

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 611

$P_PFRAME = CMIRROR(X, Y, Z)
The syntax for $P_CHBFRAME[<n>] is identical to $P_PFRAME.

Meaning

CTRANS: Translation of specified axes
CROT: Rotation around specified axes
CSCALE: Scale change on specified axes
CMIRROR: Direction reversal on specified axis
X, Y, Z: Offset value in the direction of the specified geometry axis
<offset value>: Offset value
<angle>: The angle with the rotation
<scale>: Scale value

Examples

Value assignments to frame components of the current programmable frame
Value assignment to the translation, rotation and mirror frame components of the current
programmable frame:

$P_PFRAME = CTRANS(X,10,Y,20,Z,5) : CROT(Z,45) : CMIRROR(Y)

Writing the rotation components of a frame
Assignment of values to all three axes of the rotation component of the settable data storage
frame $P_UIFR with CROT :

$P_UIFR[5] = CROT(X, 0, Y, 0, Z, 0)

Work preparation
3.8 Coordinate transformations (frames)

NC programming
612 Programming Manual, 06/2019, A5E47437142B AA

Alternatively, the direct assignment of the individual values to the associated axis of the rotation
component of the data storage frame:

$P_UIFR[5, Y, RT]=0
$P_UIFR[5, X, RT]=0
$P_UIFR[5, Z, RT]=0

Description
The chaining operator : combines several operations on a frame with each other. The
operations are processed successively from left to right.

Example
Chained operations on $P_PFRAME with offset, rotation and scaling:

$P_PFRAME = CTRANS(...) : CROT(...) : CSCALE...

3.8.2.2 Reading and changing frame components (TR, FI, RT, SC, MI)
This feature allows you to access individual data of a frame, e.g. a specific offset value or angle
of rotation. You can modify these values or assign them to another variable.

Syntax

R10=$P_UIFR[$P_UIFNUM,X,RT] Assign the angle of rotation RT around the X axis
from the currently valid settable zero offset
$P_UIFRNUM to the variable R10.

R12=$P_UIFR[25,Z,TR] Assign the offset value TR in Z from the data set of
set frame no. 25 to the variable R12.

R15=$P_PFRAME[Y,TR] Assign the offset value TR in Y of the current pro‐
grammable frame to the variable R15.

$P_PFRAME[X,TR] = 25 Modify the offset value TR in X of the current pro‐
grammable frame. X25 applies immediately.

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 613

Meaning

$P_UIFRNUM: This command automatically establishes the reference
to the currently valid settable zero offset.

P_UIFR[n,…,…] : Specify the frame number n to access the settable
frame no. n.

 Specify the component to be read or modified:
TR: TR Translation
FI: FI Translation Fine
RT: RT Rotation
SC: SC Scale scale modification
MI: MI Mirroring
X, Y, Z: The corresponding axis X, Y, Z is also specified (see

examples).

Value range for RT rotation

Rotation around 1st geometry axis: -180° to +180°
Rotation around 2nd geometry axis: -90° to +90°
Rotation around 3rd geometry axis: -180° to +180°

Description

Calling frame
By specifying the system variable $P_UIFRNUM you can access the current zero offset set with
$P_UIFR or G54, G55, ...
($P_UIFRNUM contains the number of the currently set frame).

All other stored settable $P_UIFR frames are called up by specifying the appropriate number
$P_UIFR[n].

For predefined frame variables and user-defined frames, specify the name, e.g. $P_IFRAME.

Calling data
The axis name and the frame component of the value you want to access or modify are written
in square brackets, e.g. [X, RT] or [Z, MI].

3.8.2.3 Calculating with frames
A frame can be assigned to another frame or frames can be chained to each other in the NC
program.

Frame chainings are suitable for the description of several workpieces, arranged on a pallet,
which are to be machined in the same process.

Work preparation
3.8 Coordinate transformations (frames)

NC programming
614 Programming Manual, 06/2019, A5E47437142B AA

The frame components can only contain intermediate values for the description of pallet tasks.
These are chained to generate various workpiece zeroes.

Examples

Assignments

Program code Comment
DEF FRAME SETTING_1 ; Definition of a local frame variable
SETTING_1 = CTRANS(X,10) ; Assignment of the function result to the frame

variable
$P_PFRAME = SETTING_1 ; Assignment of the frame variable to the current

frame
DEF FRAME SETTING_4 ; Definition of a local frame variable
SETTING_4 = $P_PFRAME ; Buffer the current frame in the frame variable
...
$P_PFRAME = SETTING_4 ; Fetch the current frame from the frame variable

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 615

Chainings
The operator : chains frames with each other in the programmed sequence. The frame
components, such as offsets and rotations, are executed successively additive.

Program code Comment
$P_IFRAME = $P_UIFR[15] :
$P_UIFR[16]

; Assignment of the result frame from the chaining
of the
; two settable data storage frames on the active
; settable total frame.
; Application example:
; $P_UIFR[15]: Offset
; $P_UIFR[16]: Rotation

$P_UIFR[3] = $P_UIFR[4] :
$P_UIFR[5]

; Assignment of the result frame from the chaining
of the
; two settable data storage frames on a
; different settable data storage frame

3.8.2.4 Definition of frame variables (DEF FRAME)
In addition to the predefined frame variables, user frame variables can also be defined. The
user-defined frame variables are user variables of type FRAME. The name of the frame can be
assigned freely in accordance with the rules for user variables.

The CTRANS, CROT, CSCALE and CMIRROR functions assign values to user-defined frame
variables.

Syntax
DEF FRAME <name>

Meaning

DEF FRAME: Define user variable of the type FRAME.
<name>: Name of the frame variable

Example
Definition of a "PALETTE" frame variable and the assignment of offset and rotation values:

Program code Comment
DEF FRAME PALETTE ; Define PALETTE frame variable
PALETTE = CTRANS(...) : CROT(...) ; Assignment of the result frame of the chaining

for
; offset and rotation on the PALETTE frame variable

Work preparation
3.8 Coordinate transformations (frames)

NC programming
616 Programming Manual, 06/2019, A5E47437142B AA

3.8.3 Coarse and fine offsets (CTRANS, CFINE)

Fine offset
A fine offset CFINE(...) can be applied to the following frames:

● Settable frames: $P_UIFR or $P_IFRAME

● Basic frames: $P_NCBFR[<n>], $P_CHBFR[<n>], $P_CHBFRAMES[<n>] or
$P_ACTBFRAME

● Programmable frame: $P_PFRAME

The fine offset of a frame is programmed with the CFINE(...) command.

Coarse offset
A coarse offset CTRANS(...) can be applied to all frames.

Total offset
The total offset results from the addition of the coarse and the fine offset.

Machine data

Enable of the fine offset
The fine offset is enabled with the machine data:

MD18600 $MN_MM_FRAME_FINE_TRANS = 1

Syntax

Fine offset
● Complete frame

– <frame> = CFINE(<K_1>,<value>)
– <frame> = CFINE(<K_1>,<value>, <K_2>, <value>)
– <frame> = CFINE(<K_1>,<value>, <K_2>, <value>, <K_3>, <value>)

● Frame component

– <frame>[<n>, <K_1>, FI] = <value>

Coarse offset
● Complete frame

– <frame> = CTRANS(<K_1>,<value>)
– <frame> = CTRANS(<K_1>,<value>, <K_2,<value>)
– <frame> = CTRANS(<K_1>,<value>, <K_2,<value>, <K_3,<value>)

● Frame component

– <frame>[<n>,<K_1>,TR] = <value>

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 617

In particular for the programmable frame $P_PFRAME:

● TRANS <K_1> <value>
● TRANS <K_1> <value> <K_2> <value>
● TRANS <K_1> <value> <K_2> <value> <K_3> <value>

Meaning

<Frame>: Frame, e.g. settable frame of the data storage $P_UIFR[<n>]
CFINE: Fine offset, additive offset.
CTRANS: Coarse offset, absolute offset.
TRANS: Only programmable frame: Coarse offset, absolute offset.
<K_n>: Coordinate axes X, Y, Z
<value>: Offset value

3.8.4 External zero offset ($AA_ETRANS)
The external zero offset is a linear offset between the base coordinate system (BCS) and the
basic origin system (BOS).

The external zero offset with $AA_ETRANS acts in two ways depending on the machine data
parameterization:

1. After activation by the NC/PLC interface signal, the system variable $AA_ETRANS acts
directly as offset value

2. After activation by the NC/PLC interface signal, the value of the system variable
$AA_ETRANS is transferred to the active system frames $P:EXTFRAME and the data
storage frame $P_EXTFR. The active total frame $P_ACTFRAME is then recalculated.

Machine data
In conjunction with the system variable $AA_ETRANS, a differentiation is made between two
procedures selected with the following machine data:

Work preparation
3.8 Coordinate transformations (frames)

NC programming
618 Programming Manual, 06/2019, A5E47437142B AA

MD28082 $MC_MM_SYSTEM_FRAME_MASK,Bit1 = <value>

<value> Meaning
0 Function: $AA_ETRANS[<axis>] written directly by PLC, HMI or NC program.

Enable for retraction of the zero offset for $AA_ETRANS[<axis>] in the next possible tra‐
versing block: DB31, ... DBX3.0

1 Function: Activation of the active system frame $P:EXTFRAME and the data storage frame
$P_EXTFR
Enable for retraction of the zero offset for $AA_ETRANS[<axis>] by: DB31, ... DBX3.0. The
following is performed in the channel:
● Stop all traversal movements in the channel (other than command and PLC axes)
● Preprocessing stop with subsequent reorganization (STOPRE)
● Coarse offset of active frame $P_EXTFRAME[<axis>] = $AA_ETRANS[<axis>]
● Coarse offset of data storage frame $P_EXTFR[<axis>] = $AA_ETRANS[<axis>]
● Recalculation of the active total frame $P_ACTFRAME
● Retraction of the offset in the programmed axes.
● Continuation of the interrupted traversing motion or of the NC program

Programming
● Syntax

$AA_ETRANS[<axis>] = <value>
● Meaning

$AA_ETRANS: System variable for buffering the external zero offset
<axis>: Channel axis
<value>: Offset value

NC/PLC interface signal
DB31, ... DBX3.0 = 0 → 1 ⇒ $P_EXTFRAME[<axis>] = $P_EXTFR[<axis>] =
$AA_ETRANS[<axis>]

3.8.5 Set actual value with loss of the referencing status (PRESETON)
The PRESETON() procedure sets for one or more axes a new actual value in the machine
coordinate system (MCS). This corresponds to a zero offset of the MCS of the axis. This does
not cause the axis to be traversed.

PRESETON initiates a preprocessing stop with synchronization. The actual position is assigned
to the axis only at standstill.

If the axis for PRESETON is not assigned to the channel, the further procedure depends on the
axis-specific configuring of the axis replacement behavior:

MD30552 $MA_AUTO_GET_TYPE

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 619

Referencing status
By setting a new actual value in the machine coordinate system, the referencing status of the
machine axis is reset:

DB31, ... DBX60.4/.5 = 0 (referenced / synchronized measuring system 1/2)

For this reason it is recommended that PRESETON only be used for axes that do not require a
reference point.

To restore the original machine coordinate system, the measuring system of the machine axis
must be referenced again, e.g. through active referencing from the part program (G74).

CAUTION

Loss of the referencing status

The setting of a new actual value in the machine coordinate system with PRESETON resets the
referencing status of the machine axis to "not referenced / synchronized".

Programming

Syntax
PRESETON(<axis_1>, <value_1> [, <axis_2>, <value_2>, ... <axis_8>,
<value_8>])

Meaning

PRESETON: Set actual value with loss of the referencing status
Preprocessing
stop:

yes

Alone in the block: yes
<axis_x>: Machine axis name

Type: AXIS
Range of values: Machine axis names defined in the channel

<value_x>: New actual value of the machine axis in the machine coordinate system (MCS)
The input is made in the currently valid measuring system (inch/metric)
An active diameter programming (DIAMON) is considered
Type: REAL

References

PRESETONS in NC programs
A detailed description of PRESETON in NC programs is contained in:

Function Manual Basic Functions, Chapter "K2: Axes, coordinate systems, frames" >
"Coordinate systems" > "Machine coordinate system (MCS)" > "Set actual value with loss of the
referencing status (PRESETON)"

Work preparation
3.8 Coordinate transformations (frames)

NC programming
620 Programming Manual, 06/2019, A5E47437142B AA

PRESETONS in synchronous actions
A detailed description of PRESETON in synchronous actions is contained in:

Function Manual, Synchronized Actions; Section: "Detailed description" > "Actions in
synchronous actions" > "Set actual value with loss of the referencing status (PRESETON)"

3.8.6 Set actual value without loss of the referencing status (PRESETONS)
The PRESETONS() procedure sets for one or more axes a new actual value in the machine
coordinate system (MCS). This corresponds to a zero offset of the MCS of the axis. This does
not cause the axis to be traversed.

PRESETONS initiates a preprocessing stop with synchronization. The actual position is
assigned to the axis only at standstill.

If the axis for PRESETONS is not assigned to the channel, the further procedure depends on the
axis-specific configuring of the axis replacement behavior:

MD30552 $MA_AUTO_GET_TYPE

Referencing status
The setting of a new actual value in the machine coordinate system (MCS) with PRESETONS
does not change the referencing status of the machine axis.

Requirements
● Encoder type

PRESETONS is possible only for the following encoder types of the active measuring system:

– MD30240 $MA_ENC_TYPE[<measuring system>] = 0 (simulated encoder)

– MD30240 $MA_ENC_TYPE[<measuring system>] = 1 (raw signal encoder)

● Referencing mode
PRESETONS is possible only for the following referencing modes of the active measuring
system:

– MD34200 $MA_ENC_REFP_MODE[<measuring system>] = 0 (no reference point
approach possible)

– MD34200 $MA_ENC_REFP_MODE[<measuring system>] = 1 (referencing for
incremental, rotary or linear measuring systems: Zero pulse on the encoder track)

Programming

Syntax
PRESETONS(<axis_1>, <value_1> [, <axis_2>, <value_2>, ... <axis_8>,
<value_8>])

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 621

Meaning

PRESETONS: Set actual value without loss of the referencing status
Preprocessing
stop:

yes

Alone in the block: yes
<axis_x>: Machine axis name

Type: AXIS
Range of values: Machine axis names defined in the channel

<value_x>: New current actual value of the machine axis in the machine coordinate system
(MCS)
The input is made in the active measuring system (inch/metric)
An active diameter programming (DIAMON) is considered
Type: REAL

References

PRESETONS in NC programs
A detailed description of PRESETONS in NC programs is contained in:

Function Manual Basic Functions, Chapter "K2: Axes, coordinate systems, frames" >
"Coordinate systems" > "Machine coordinate system (MCS)" > "Set actual value without loss
of the referencing status (PRESETONS)"

PRESETONS in synchronous actions
A detailed description of PRESETONS in synchronous actions is contained in:

Function Manual, Synchronized Actions; Section: "Detailed description" > "Actions in
synchronous actions" > "Set actual value without loss of the referencing status (PRESETONS)"

3.8.7 Frame calculation from three measuring points in space (MEAFRAME)
The MEAFRAME function is used to support measuring cycles. It calculates the frame from
three ideal points and the corresponding measured points.

When a workpiece is positioned for machining, its position relative to the Cartesian machine
coordinate system is generally both offset and rotated in relation to its ideal position. For exact
machining or measuring either a costly physical adjustment of the part is required or the
motions defined in the part program must be changed.

A frame can be defined by sampling three points in space whose ideal positions are known. A
touch-trigger probe or optical sensor is used for sampling that touches special holes precisely
fixed on the supporting plate or probe balls.

Syntax
MEAFRAME(<ideal points>,<measuring points>,<quality>)

Work preparation
3.8 Coordinate transformations (frames)

NC programming
622 Programming Manual, 06/2019, A5E47437142B AA

Meaning

MEAFRAME: Function call
<ideal points>: 2-dim. REAL array containing the three coordinates of the ideal points
<measuring points>: 2-dim. REAL array containing the three coordinates of the measured points
<quality>:

Variable with which information on the quality of the FRAME calculation is
returned
Type: VAR REAL
Value:

-1 The ideal points are almost on a straight line: The
frame could not be calculated. The returned
FRAME variable contains a neutral frame.

-2 The measuring points are almost on a straight line:
The frame could not be calculated. The returned
FRAME variable contains a neutral frame.

-4 The calculation of the rotation matrix failed for a
different reason.

≥ 0.0 Sum of distortions (distances between the points),
that are required to transform the measured triangle
into a triangle that is congruent to the ideal triangle.

Note
Quality of the measurement

In order to map the measured coordinates onto the ideal coordinates using a rotation and a
translation, the triangle formed by the measured points must be congruent to the ideal triangle.
This is achieved by means of a compensation algorithm that minimizes the sum of squared
deviations needed to reshape the measured triangle into the ideal triangle.

Since the effective distortion can be used to judge the quality of the measurement, MEAFRAME
returns it as an additional variable.

Note

The frame created by MEAFRAME can be transformed by the ADDFRAME function into
another frame in the frame chain (see example "Chaining with ADDFRAME").

Examples

Example 1:
Part program 1:

Program code
...
DEF FRAME CORR_FRAME

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 623

Setting measuring points:

Program code Comment
DEF REAL IDEAL_POINT[3,3]=
SET(10.0,0.0,0.0,0.0,10.0,0.0,0.0,0.0,10.0)
DEF REAL MEAS_POINT[3,3]=
SET(10.1,0.2,-0.2,-0.2,10.2,0.1,-0.2,0.2,9.8)

; For test.

DEF REAL FIT_QUALITY=0
DEF REAL ROT_FRAME_LIMIT=5 ; Permits max. five degree rota-

tion of the part position.
DEF REAL FIT_QUALITY_LIMIT=3 ; Permits max. three mm offset be-

tween the
ideal and the measured triangle.

DEF REAL SHOW_MCS_POS1[3]
DEF REAL SHOW_MCS_POS2[3]
DEF REAL SHOW_MCS_POS3[3]

Program code Comment
N100 G01 G90 F5000
N110 X0 Y0 Z0
N200 CORR_FRAME=MEAFRAME(IDEAL_POINT,MEAS_POINT,FIT_QUALITY)
N230 IF FIT_QUALITY < 0
SETAL(65000)
GOTOF NO_FRAME
ENDIF

N240 IF FIT_QUALITY > FIT_QUALITY_LIMIT
SETAL(65010)
GOTOF NO_FRAME
ENDIF

N250 IF CORR_FRAME[X,RT] > ROT_FRAME_LIMIT ; Limiting the 1st RPY angle.
SETAL(65020)
GOTOF NO_FRAME
ENDIF

N260 IF CORR_FRAME[Y,RT] > ROT_FRAME_LIMIT ; Limiting the 2nd RPY angle.
SETAL(65021)
GOTOF NO_FRAME
ENDIF

N270 IF CORR_FRAME[Z,RT] > ROT_FRAME_LIMIT ; Limiting the 3rd RPY angle.
SETAL(65022)
GOTOF NO_FRAME
ENDIF

N300 $P_IFRAME=CORR_FRAME ; Activate sample frame with setta-
ble frame.

 ; Check frame by positioning the
geometry axes to the ideal point.

Work preparation
3.8 Coordinate transformations (frames)

NC programming
624 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N400 X=IDEAL_POINT[0,0] Y=IDEAL_POINT[0,1]
Z=IDEAL_POINT[0,2]

N410 SHOW_MCS_POS1[0]=$AA_IM[X]
N420 SHOW_MCS_POS1[1]=$AA_IM[Y]
N430 SHOW_MCS_POS1[2]=$AA_IM[Z]
N500 X=IDEAL_POINT[1,0] Y=IDEAL_POINT[1,1] Z=IDEAL_POINT[1,2]
N510 SHOW_MCS_POS2[0]=$AA_IM[X]
N520 SHOW_MCS_POS2[1]=$AA_IM[Y]
N530 SHOW_MCS_POS2[2]=$AA_IM[Z]
N600 X=IDEAL_POINT[2,0] Y=IDEAL_POINT[2,1] Z=IDEAL_POINT[2,2]
N610 SHOW_MCS_POS3[0]=$AA_IM[X]
N620 SHOW_MCS_POS3[1]=$AA_IM[Y]
N630 SHOW_MCS_POS3[2]=$AA_IM[Z]
N700 G500 ; Deactivate settable frame as

with zero frame (no value entered,
pre-assigned).

No_FRAME ; Deactivate settable frame, as
pre-assigned with zero frame (no
value entered).

M0
M30

Example 2: Chaining of frames
Chaining of MEAFRAME for offsets

The MEAFRAME function returns an offset frame. If this offset frame is chained to the settable
frame $P_UIFR[1] that was active during the call of the function (e.g. G54), a settable frame is
provided for further conversions for the traversing or machining.

Chaining with ADDFRAME

If you want this offset frame in the frame chain to apply at a different position or if other frames
are active before the settable frame, the ADDFRAME function can be used for chaining into one
of the channel basic frames or a system frame.

The following must not be active in the frames:

● Mirroring with MIRROR

● Scaling with SCALE

The input parameters for the setpoints and actual values are the workpiece coordinates. These
coordinates must always be specified metrically or in inches (G71/G70) and radius-related
(DIAMOF) in the basic system of the control.

References:
For further information on ADDFRAME, see:
Function Manual, Basic Functions; K2: Axis Types, Coordinate Systems, Frames

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 625

3.8.8 Global frames

There is only one set of global frames for all channels on each control. Global frames can be
read and written from all channels. The global frames are activated in the respective channel.

Channel axes and machine axes with offsets can be scaled and mirrored by means of global
frames.

Geometrical relationships and frame chains
With global frames there is no geometrical relationship between the axes. It is therefore not
possible to perform rotations or program geometry axis identifiers.

Rotations cannot be used on global frames. The programming of a rotation is denied with alarm
18310 "Channel %1 Block %2 Frame: rotation not allowed".

It is possible to chain global frames and channel-specific frames. The resulting frame contains
all frame components including the rotations for all axes. The assignment of a frame with
rotation components to a global frame is denied with alarm "Frame: rotation not allowed".

Global frames

Global basic frames $P_NCBFR[n]
Up to eight global basic frames can be configured:

Channel-specific basic frames can also be available.

Global frames can be read and written from all channels of a control. When writing global
frames, the user must ensure channel coordination. This can be implemented, for example,
through wait markers (WAITMC).

Note
Machine manufacturer

The number of global basic frames is configured via the machine data.

References:
Function Manual, Basic Functions; Axes, Coordinate Systems, Frames (K2)

Settable frames ($P_UIFR[n])
All settable frames G500, G54...G599 can be configured either globally or channel-specifically.

Note
Machine manufacturer

All settable frames can be reconfigured as global frames with the aid of machine data
MD18601 $MN_MM_NUM_GLOBAL_USER_FRAMES.

Channel axis identifiers and machine axis identifiers can be used as axis identifiers in frame
program commands. Programming the geometry identifiers is rejected with an alarm.

Work preparation
3.8 Coordinate transformations (frames)

NC programming
626 Programming Manual, 06/2019, A5E47437142B AA

3.8.8.1 Channel-specific frames ($P_CHBFR, $P_UBFR)
Settable frames or basic frames can be read and written via the part program and via the OPI
by the operator and by the PLC.

The fine offset can also be used for global frames. Global frames are suppressed in the same
way as channel-specific frames, via G53, G153, SUPA and G500.

Machine manufacturer

The number of basic frames can be configured in the channel via the machine data MD28081
$MC_MM_NUM_BASE_FRAMES. The standard configuration is designed for at least one
basic frame per channel. A maximum of eight basic frames are supported per channel. In
addition to the eight basic frames, there can also be eight NCU global basic frames in the
channel.

Channel-specific frames

$P_CHBFR[n]
System variable $P_CHBFR[n] can be used to read and write the basic frames. When a basic
frame is written, the chained total basic frame is not activated until the execution of a G500,
G54 ... G599 statement. The variable is used primarily for storing write operations to the basic
frame on HMI or PLC. These frame variables are saved by the data backup.

First basic frame in the channel
The basic frame with array index 0 is not activated simultaneously when writing to the
predefined $P_UBFR variable, but rather activation only takes place on execution of a G500,
G54 ... G599 statement. The variable can also be read and written in the program.

$P_UBFR
$P_UBFR is identical to $P_CHBFR[0]. One basic frame always exists in the channel by
default, so that the system variable is compatible with older versions. If there is no channel-
specific basic frame, an alarm is issued at read/write: "Frame: statement not permissible".

3.8.8.2 Frames active in the channel
Frames active in the channel are entered from the part program via the relevant system
variables of these frames. This also includes system frames. The current system frame can be
read and written in the part program via these system variables.

Frames currently active in the channel
Overview

Current system frames For:
$P_PARTFRAME TCARR and PAROT
$P_SETFRAME Preset actual value memory and scratch‐

ing
$P_EXTFRAME External work offset
$P_NCBFRAME[n] Current global basic frames

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 627

$P_CHBFRAME[n] Current channel basic frames
$P_BFRAME Current 1. Basic frame in the channel
$P_ACTBFRAME Complete basic frame
$P_CHBFRMASK and $P_NCBFRMASK Complete basic frame
$P_IFRAME Current settable frame
Current system frames For:
$P_TOOLFRAME TOROT and TOFRAME
$P_WPFRAME Workpiece reference points
$P_TRAFRAME Transformations
$P_PFRAME Current programmable frame
Current system frame For:
$P_CYCFRAME Cycles
P_ACTFRAME Current total frame
FRAME chaining Current frame is made up of the com‐

plete basic frame

$P_NCBFRAME [n] current global basic frames
System variable $P_NCBFRAME[n] can be used to read and write the current global basic
frame field elements. The resulting total basic frame is calculated by means of the write process
in the channel.

The modified frame is activated only in the channel in which the frame was programmed. If the
frame is to be modified for all channels of a control, $P_NCBFR[n] and $P_NCBFRAME[n] must
be written simultaneously. The other channels must then activate the frame, e.g. with G54.
Whenever a basic frame is written, the complete basic frame is calculated again.

$P_CHBFRAME[n] Current channel basic frames
System variable $P_CHBFRAME[n] can be used to read and write the current channel basic
frame field elements. The resulting complete basic frame is calculated by means of the write
process in the channel. Whenever a basic frame is written, the complete basic frame is
calculated again.

$P_BFRAME current 1st Basic frame in the channel
The predefined frame variable $P_BFRAME can be used to read and write the current basic
frame with the array index 0, which is valid in the channel, in the part program. The written basic
frame is immediately included in the calculation.

$P_BFRAME is identical to $P_CHBFRAME[0]. The system variable always has a valid default
value. If there is no channel-specific basic frame, an alarm is issued at read/write: "Frame:
statement not permissible".

$P_ACTBFRAME Complete basic frame
The $P_ACTFRAME variable determines the chained complete basic frame. The variable is
read-only.

$P_ACTFRAME corresponds to:

$P_NCBFRAME[0] : ... : $P_NCBFRAME[n] : $P_CHBFRAME[0] : ... : $P_CHBFRAME[n].

Work preparation
3.8 Coordinate transformations (frames)

NC programming
628 Programming Manual, 06/2019, A5E47437142B AA

$P_CHBFRMASK and $P_NCBFRMASK Complete basic frame
The user can select which basic frames are to be included in the calculation of the "Complete"
basic frame via the system variables $P_CHBFRMASK and $P_NCBFRMASK. The variables
can only be programmed in the program and read via the OPI. The value of the variable is
interpreted as a bit mask and specifies which basic frame field element of $P_ACTFRAME is
to be included in the calculation.

$P_CHBFRMASK can be used to specify which channel-specific basic frames and
$P_NCBFRMASK can be used to specify which global basic frames are to be included in the
calculation.

The complete basic frame and the complete frame are recalculated with the programming of
the variables. After a reset and in the basic setting, the values of $P_CHBFRMASK and
$P_NCBFRMASK are as follows:

$P_CHBFRMASK = $MC_CHBFRAME_RESET_MASK

$P_NCBFRMASK = $MC_CHBFRAME_RESET_MASK

Example:

$P_NCBFRMASK = 'H81' ;$P_NCBFRAME[0] : $P_NCBFRAME[7]

$P_CHBFRMASK = 'H11' ;$P_CHBFRAME[0] : $P_CHBFRAME[4]

$P_IFRAME Current settable frame
The predefined frame variable $P_IFRAME can be used to read and write the current settable
frame, which is valid in the channel, in the part program. The written settable frame is
immediately included in the calculation.

In the case of global settable frames, the modified frame acts only in the channel in which the
frame was programmed. If the frame is to be modified for all channels of a control, $P_UIFR[n]
and $P_IFRAME must be written simultaneously. The other channels must then activate the
corresponding frame, e.g. with G54.

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 629

$P_PFRAME Current programmable frame
$P_PFRAME is the programmable frame that results from the programming of TRANS/
ATRANS, G58/G59, ROT/AROT, SCALE/ASCALE, MIRROR/AMIRROR or from the
assignment of CTRANS, CROT, CMIRROR, CSCALE to the programmable frame.

Current, programmable frame variable that establishes the reference between the settable
zero system (SZS) and the workpiece coordinate system (WCS).

P_ACTFRAME Current complete frame
The resulting current complete frame $P_ACTFRAME is now a chain of all basic frames, the
current settable frame and the programmable frame. The current frame is always updated
whenever a frame component is changed.

$P_ACTFRAME corresponds to:

$P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME : $P_ACTBFRAME : $P_IFRAME :

$P_TOOLFRAME : $P_WPFRAME : $P_TRAFRAME : $P_PFRAME : $P_CYCFRAME

Work preparation
3.8 Coordinate transformations (frames)

NC programming
630 Programming Manual, 06/2019, A5E47437142B AA

Frame chaining
The current frame is composed of the complete basic frame, the settable frame, the system
frame and the programmable frame in accordance with the current complete frame specified
above.

Work preparation
3.8 Coordinate transformations (frames)

NC programming
Programming Manual, 06/2019, A5E47437142B AA 631

3.9 Transformations

3.9.1 General programming of transformation types

3.9.1.1 General programming of transformation types

General function
You can choose to program transformation types with suitable parameters in order to adapt the
controller to various machine kinematics. These parameters can be used to declare both the
orientation of the tool in space and the orientation movements of the rotary axes accordingly for
the selected transformation.

In three-, four-, and five-axis transformations, the programmed positional data always relates
to the tip of the tool, which is tracked orthogonally to the machined surface in space. The
Cartesian coordinates are converted from the basic coordinate system to the machine
coordinate system and relate to the geometry axes. These describe the operating point. Virtual
rotary axes describe the orientations of the tool in space and are programmed with TRAORI.

In the case of kinematic transformation, positions can be programmed in the Cartesian
coordinate system. The control transforms the traversing movements of the Cartesian
coordinate system programmed with TRANSMIT and TRACYL to the traversing movements of
the real machine axes.

Programming
Three, four and five axis transformations (TRAORI)

The orientation transformation declared is activated with the TRAORI command and the three
possible parameters for transformation number, orientation vector and rotary axis offsets.

TRAORI(transformation number, orientation vector, rotary axis
offsets)
Kinematic transformations

TRANSMIT(transformation number) declared transformations are examples of
kinematic transformation.

TRACYL(working diameter, transformation number)
Deactivate active transformation

TRAFOOF can be used to deactivate the currently active transformation.

Orientation transformation
Three, four and five axis transformations (TRAORI)

For the optimum machining of surfaces configured in space in the working area of the machine,
machine tools require other axes in addition to the three linear axes X, Y and Z. The additional

Work preparation
3.9 Transformations

NC programming
632 Programming Manual, 06/2019, A5E47437142B AA

axes describe the orientation in space and are called orientation axes in subsequent sections.
They are available as rotary axes on four types of machine with varying kinematics.

1. Two-axis swivel head, e.g. cardanic tool head with one rotary axis parallel to a linear axis on
a fixed tool table.

2. Two-axis rotary table, e.g. fixed swivel head with tool table, which can rotate about two axes.

3. Single-axis swivel head and single-axis rotary table, e.g. one rotatable swivel head with
rotated tool for tool table, which can rotate about one axis.

4. Two-axis swivel head and single-axis rotary table, e.g. on tool table, which can rotate about
one axis, and one rotatable swivel head with tool, which can rotate about itself.

3- and 4-axis transformations are special types of 5-axis transformation and are programmed
in the same way as 5-axis transformations.

The functional scope of "generic 3-/4-/5-/6-axis transformation" is suitable both for
transformations for orthogonal rotary axes and transformations for the universal milling head
and, like all other orientation transformations, can also be activated for these four machine
types with TRAORI. In generic 5-/6-axis transformation, tool orientation has an additional third
degree of freedom, whereby the tool can be rotated about its own axis relative to the tool
direction so that it can be directed as required in space.

Further information

Transformations Function Manual; Multiple Transformations

Initial tool orientation setting regardless of kinematics
ORIRESET

If an orientation transformation is active using TRAORI, then ORIRESET can be used to specify
the initial settings of up to 3 orientation axes with the optional parameters A, B, C. The order in
which the programmed parameters are assigned to the round axes depends on the orientation
axis order defined by the transformation. Programming ORIRESET(A, B, C) results in the
orientation axes moving in linear and synchronous motion from their current position to the
specified initial setting position.

Kinematic transformations
TRANSMIT and TRACYL

For milling on turning machines, either

1. Face machining in the turning clamp with TRANSMIT or

2. Machining of grooves with any path on cylindrical bodies with TRACYL

can be programmed for the transformation declared.

Cartesian PTP travel

Kinematic transformation also includes the so-called "Cartesian PTP travel" for which up to 8
different articulated joint positions STAT= can be programmed. Although the positions are
programmed in a Cartesian coordinate system, the movement of the machine occurs in the
machine coordinates.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 633

Further information
Transformations Function Manual; Kinematics Transformation

Chained transformations
Two transformations can be switched one after the other. For the second transformation
chained here, the motion parts for the axes are taken from the first transformation.

The first transformation can be:

● Orientation transformation TRAORI

● Polar transformation TRANSMIT

● Cylinder transformation TRACYL

3.9.1.2 Orientation movements for transformations

Travel movements and orientation movements
The traversing movements of the programmed orientations are determined primarily by the
type of machine. For three-, four-, and five-axis type transformations with TRAORI, the rotary
axes or pivoting linear axes describe the orientation movements of the tool.

Changes in the position of the rotary axes involved in the orientation transformation will induce
compensating movements on the remaining machine axes. The position of the tool tip remains
unchanged.

Orientation movements of the tool can be programmed using the rotary axis identifiers A…,
B…, C… of the virtual axes as appropriate for the application either by entering Euler or RPY
angles or directional or surface normal vectors, normalized vectors for the rotary axis of a taper
or for intermediate orientation on the peripheral surface of a taper.

In the case of the kinematics transformation with TRANSMIT and TRACYL, the control maps
the programmed Cartesian coordinate system traversing movements to the traversing
movements of the real machine axes.

Work preparation
3.9 Transformations

NC programming
634 Programming Manual, 06/2019, A5E47437142B AA

Machine kinematics for three, four and five axis transformation (TRAORI)
Either the tool or the tool table can be rotatable with up to two rotary axes. A combination of
swivel head and rotary table (single-axis in each case) is also possible.

Machine type Programming of orientation
Three-axis transformation ma‐
chine types 1 and 2

Programming of tool orientation only in the plane, which is perpendic‐
ular to the rotary axis. There are
two translatory axes (linear axes) and
one axis of rotation (rotary axis).

Four-axis transformation ma‐
chine types 1 and 2

Programming of tool orientation only in the plane, which is perpendic‐
ular to the rotary axis. There are
three translatory axes (linear axes) and
one axis of rotation (rotary axis).

Five-axis transformation ma‐
chine types 3
Single-axis swivel head and
single-axis rotary table

Programming of orientation transformation. Kinematics with
three linear axes and two orthogonal rotary axes.
The rotary axes are parallel to two of the three linear axes. The first
rotary axis is moved by two Cartesian linear axes. It rotates the third
linear axis with the tool. The second rotary axis rotates the workpiece.

Generic 5/6-axis transformations

Machine type Programming of orientation transformation
Generic five/six-axis transfor‐
mation machine types 4
Two-axis swivel head with tool
which rotates around itself and
single-axis rotary table

Programming of orientation transformation. Kinematics with
three linear axes and three orthogonal rotary axes.
The rotary axes are parallel to two of the three linear axes. The first
rotary axis is moved by two Cartesian linear axes. It rotates the third
linear axis with the tool. The second rotary axis rotates the workpiece.
The basic tool orientation can also be programmed with additional ro‐
tation of the tool around itself with the THETA rotary angle.

When calling "generic three-, four-, and five/six-axis transformation", the basic orientation of the
tool can also be transferred. The restrictions in respect of the directions of the rotary axes no
longer apply. If the rotary axes are not exactly vertical to one another or existing rotary axes are

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 635

not exactly parallel with the linear axes, "generic five-/six-axis transformation" can provide
better results in respect of tool orientation.

Kinematics transformations TRANSMIT and TRACYL
For milling on turning machines or an axis that can be set for inclined infeed during grinding, the
following axis arrangements apply by default in accordance with the transformation declared:

TRANSMIT Activation of polar transformation
Face machining in the turning
clamp

A rotary axis
An infeed axis vertical to the axis of rotation
A longitudinal axis parallel to the axis of rotation

TRACYL Activation of the cylinder surface transformation
Machining of grooves with any
path on cylindrical bodies

A rotary axis
An infeed axis vertical to the axis of rotation
A longitudinal axis parallel to the axis of rotation

Cartesian PTP travel
The machine moves in machine coordinates and is programmed with:

TRAORI Activation of transformation
PTP point-to-point traversing Approach position in Cartesian coordinate system (MCS)
CP Path motion of Cartesian axes in the BCS
STAT Position of the articulated joints is dependent on the transformation
TU The angle at which the axes traverse on the shortest path

PTP transversal with generic 5/6-axis transformation

The machine is moved using machine coordinates and the tool orientation, where the
movements can be programmed both using round axis positions and using Euler and/or RPY
angle vectors irrespective of the kinematics or the direction vectors.

Round axis interpolation, vector interpolation with large circle interpolation or interpolation of
the orientation vector on a peripheral surface of a taper are possible in such cases.

Example: Three- to five-axis transformation on a universal milling head
The machine tool has at least five axes:

● Three translatory axes for movements in straight lines, which move the operating point to
any position in the working area.

● Two rotary swivel axes arranged at a configurable angle (usually 45 degrees) allow the tool
to swivel to positions in space that are limited to a half sphere in a 45-degree configuration.

Work preparation
3.9 Transformations

NC programming
636 Programming Manual, 06/2019, A5E47437142B AA

3.9.1.3 Overview of orientation transformation TRAORI

Programming types available in conjunction with TRAORI

Machine type Programming with active transformation TRAORI
Machine types 1, 2, or 3 two-
axis swivel head or two-axis
rotary table or a combination
of single-axis swivel head and
single-axis rotary table.

The axis sequence of the orientation axes and the orientation direction
of the tool can either be configured on a
machine-specific basis using machine data
depending on the machine kinematics or on a
workpiece-specific basis with programmable orientation
independently of the machine kinematics.
The directions of rotation of the orientation axes in the reference sys‐
tem are programmed with:
- ORIMKS reference system = machine coordinate system
- ORIWKS reference system = workpiece coordinate system
The default setting is ORIWKS.
Programming of orientation axes with:
A, B, C of the machine axis position direct
A2, B2, C2 angle programming virtual axes with
- ORIEULER via Euler angle (standard)
- ORIRPY via RPY angle
- ORIVIRT1 via virtual orientation axes 1st definition
- ORIVIRT2 via virtual orientation axes 2nd definition
with differentiation between the interpolation type:
linear interpolation
- ORIAXES of orientation axes or machine axes
large radius circle interpolation (interpolation of the orientation vector)
- ORIVECT from orientation axes
Programming orientation axes by specifying
A3, B3, C3 of the vector components (direction/surface normal)
Programming the resulting tool orientation
A4, B4, C4 of the vector surface normal at the beginning of the block
A5, B5, C5 of the vector perpendicular to the surface at the end of the
block
LEAD leading angle for tool orientation
TILT tilt angle for the tool orientation

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 637

Machine type Programming with active transformation TRAORI
 Interpolation of the orientation vector on a taper peripheral surface

Orientation changes to a taper peripheral surface anywhere in space
using
interpolation:
- ORIPLANE in the plane (large radius circle interpolation)
- ORICONCW on a taper peripheral surface in the clockwise direction
- ORICONCCW on a taper peripheral surface in the counter-clockwise
direction
A6, B6, C6 director vector (axis of rotation of the taper)
-OICONIO interpolation on a taper peripheral surface with:
A7, B7, C7 intermediate vectors (initial and ultimate orientation) or
- ORICONTO on the peripheral surface of a taper, tangential transition
Changes in orientation in relation to a path with
- ORICURVE specification of the movement of two contact points using
PO[XH]=(xe, x2, x3, x4, x5) orientation polynomials up to the fifth de‐
gree
PO[YH]=(ye, y2, y3, y4, y5) orientation polynomials up to the fifth de‐
gree
PO[ZH]=(ze, z2, z3, z4, z5) orientation polynomials up to the fifth de‐
gree
- ORIPATHS smoothing of orientation characteristic with
A8, B8, C8 reorientation phase of tool corresponding to: direction and
path length of tool during retraction movement

Machine types 1 and 3

Other machine types with ad‐
ditional tool rotation around it‐
self require a 3rd rotary axis

Orientation transformation,
e.g. generic 6-axis transforma‐
tion. Rotations of orientation
vector.

Programming of rotations for tool orientation with
LEAD angle, angle relative to surface normal vector
PO[PHI] programming of a polynomial up to the fifth degree
TILT angle rotation about path tangent (Z direction)
PO[PSI] programming of a polynomial up to the fifth degree
THETA angle of rotation (rotation about tool direction in Z)
THETA= value reached at end of block
THETA=AC(...) absolute non-modal switching to dimensions
THETA=IC(...) non-modal switching to chain dimensions
THETA=Θe interpolate programmed angle G90/G91
PO[THT]=(..) programming of a polynomial up to the fifth degree
programming of the rotation vector
- ORIROTA rotation, absolute
- ORIROTR relative rotation vector
- ORIROTT tangential rotation vector

Orientation relative to the path
for orientation changes rela‐
tive to the path or rotation of
the rotary vector tangentially
to the path

Changes in orientation relative to the path with
- ORIPATH tool orientation relative to the path
- ORIPATHS also in the event of a blip in the orientation characteristic
programming of rotation vector
- ORIROTC tangential rotation vector, rotation to path tangent

Work preparation
3.9 Transformations

NC programming
638 Programming Manual, 06/2019, A5E47437142B AA

3.9.2 Three, four and five axis transformation (TRAORI)

3.9.2.1 General relationships of universal tool head
To obtain optimum cutting conditions when machining surfaces with a three-dimensional curve,
it must be possible to vary the setting angle of the tool.

The machine design to achieve this is stored in the axis data.

5-axis transformation

Cardanic tool head
Three linear axes (X, Y, Z) and two orientation axes (C, A) define the setting angle and the
operating point of the tool here. One of the two orientation axes is created as an inclined axis,
in our example A' - in many cases, placed at 45°.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 639

In the examples shown here, you can see the arrangements as illustrated by the CA machine
kinematics with the Cardanic tool head!

Machine manufacturer

The axis sequence of the orientation axes and the orientation direction of the tool can be set up
using the machine data as appropriate for the machine kinematics.

In this example, A' lies below the angle φ to the X axis.

Work preparation
3.9 Transformations

NC programming
640 Programming Manual, 06/2019, A5E47437142B AA

The following possible relations are generally valid:

A' lies below the angle φ to the X axis
B' lies below the angle φ to the Y axis
C' lies below the angle φ to the Z axis

Angle φ can be configured in the range 0° to +89° using machine data.

With swiveling linear axis
This is an arrangement with a moving workpiece and a moving tool. The kinematics consists of
three linear axes (X, Y, Z) and two orthogonally arranged rotary axes. The first rotary axis is
moved, for example, over a compound slide of two linear axes, the tool standing parallel to the
third linear axis. The second rotary axis turns the workpiece. The third linear axis (swivel axis)
lies in the compound slide plane.

The axis sequence of the rotary axes and the orientation direction of the tool can be set up using
the machine data as appropriate for the machine kinematics.

There are the following possible relationships:

Axes: Axis sequences:
1. rotary axis A A B B C C
2. rotary axis B C A C A B
Swiveled linear axis Z Y Z X Y X

For more detailed information about configurable axis sequences for the orientation direction
of the tool, see

References: /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformations (F2),
Section Universal milling head, "Parameterization".

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 641

3.9.2.2 Three, four and five axis transformation (TRAORI)
The user can configure two or three translatory axes and one rotary axis. The transformations
assume that the rotary axis is orthogonal on the orientation plane.

Orientation of the tool is possible only in the plane perpendicular to the rotary axis. The
transformation supports machine types with movable tool and movable workpiece.

Three- and four-axis transformations are configured and programmed in the same way as five-
axis transformations.

Reference:
Function Manual, Special Functions; Multi-Axis Transformations (F2)

Syntax
TRAORI(<n>)
TRAORI(<n>,<X>,<Y>,<Z>,<A>,)
TRAFOOF

Meaning

TRAORI: Activates the first specified orientation transformation
TRAORI(<n>): Activates the orientation transformation specified by n
<n>: Number of the transformation

Value: 1 or 2
Example:
TRAORI(1) activates orientation transformation 1

<X>,<Y>,<Z>: Component of orientation vector to which tool points
<A>,: Programmable offset for the rotary axes
TRAFOOF: Deactivate transformation

Tool orientation
Depending on the orientation direction selected for the tool, the active working plane (G17,
G18, G19) must be set in the NC program in such a way that tool length offset works in the
direction of tool orientation.

Note

When the transformation is enabled, the positional data (X, Y, Z) always relates to the tip of the
tool. Changing the positions of the rotary axes involved in the transformation causes
compensating motion of the remaining machine axes - which means that the position of the tool
tip remains unchanged.

Orientation transformation always points from the tool tip to the tool adapter.

Offset for orientation axes
When orientation transformation is activated an additional offset can be programmed directly
for the orientation axes.

Work preparation
3.9 Transformations

NC programming
642 Programming Manual, 06/2019, A5E47437142B AA

Parameters can be omitted if the correct sequence is used in programming.

Example:

TRAORI(, , , ,A,B) ; If only a single offset is to be entered

As an alternative to direct programming, the additional offset for orientation axes can also be
transferred automatically from the zero offset currently active. Transfer is configured in the
machine data.

Examples

TRAORI(1,0,0,1) ; The basic orientation of the tool is in the Z direction
TRAORI(1,0,1,0) ; The basic orientation of the tool is in the Z direction
TRAORI(1,0,1,1) ; The basic orientation of the tool is in the Y/Z direction

(corresponds to the position -45°)

3.9.2.3 Variants of orientation programming and initial setting (ORIRESET)

Orientation programming of tool orientation with TRAORI
In conjunction with a programmable TRAORI orientation transformation, in addition to the linear
axes X, Y, Z, the rotary axis identifiers A.., B..., C... can also be used to program axis positions
or virtual axes with angles or vector components. Various types of interpolation are possible for
orientation and machine axes. Regardless of which PO[angle] orientation polynomials and
PO[axis] axis polynomials are currently active, a number of different types of polynomial can be
programmed. These include G1, G2, G3, CIP or POLY.

Changes in tool orientation can even be programmed using orientation vectors in some cases.
In such cases, the ultimate orientation of each block can be set either by means of direct
programming of the vector or by programming the rotary axis positions.

Variants of orientation programming for three- to five-axis transformation
The following versions of orientation programming are mutually exclusive.

A, B, C Direct entry of rotary axis positions.
A2, B2, C2 Angle programming of virtual axes via Euler angles or RPY angles
A3, B3, C3 Vector component designation
LEAD, TILT Specification of lead and tilt angles with reference to path and surface
A4, B4, C4
A5, B5, C5

Surface normal vectors at the start of the block and at the end of the
block

A6, B6, C6
A7, B7, C7

Interpolation of the orientation vector on a taper surface transformation.

A8, B8, C8 Redirection of the tool, direction and path length of the retraction move‐
ment

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 643

Approach initial setting of the tool orientation (ORIRESET)
Through ORIRESET(...), the orientation axes of the relevant machine kinematics are
traversed linearly and synchronously from their current positions to the programmed initial state
positions. If a basic position is not programmed for an axis, the position from the associated
machine data $MC_TRAFO5_ROT_AX_OFFSET_1/2 is used.

Active frames of rotary axes are ignored.

Examples of machine kinematics CA (channel axis names C, A)

Commands Description
ORIRESET(90, 45) Axis C: 90°

Axis A: 45°
ORIRESET(, 30) Axis C: $MC_TRAFO5_ROT_AX_OFFSET_1/2[0]

Axis A: 30°
ORIRESET() Axis C: $MC_TRAFO5_ROT_AX_OFFSET_1/2[0]

Axis A: $MC_TRAFO5_ROT_AX_OFFSET_1/2[1]

Examples of machine kinematics CAC (channel axis names C, A, B)

Commands Description
ORIRESET(90, 45, 90) Axis C: 90°

Axis A: 45°
Axis B: 90°

ORIRESET() Axis C: $MC_TRAFO5_ROT_AX_OFFSET_1/2[0]
Axis A: $MC_TRAFO5_ROT_AX_OFFSET_1/2[1]
Axis B: $MC_TRAFO5_ROT_AX_OFFSET_1/2[2]

Note

Travel to the initial state of the tool orientation with ORIRESET...) may only take place with
active orientation transformation TRAORI...).

Programming LEAD, TILT and THETA rotations

Lead angle LEAD and tilt angle TILT.
In respect of three- to five-axis transformation, tool orientation rotations are programmed with
the LEAD and TILT angles.

Angle of rotation THETA
For a transformation with third rotary axis, the rotation of the tool about itself can be
programmed with the THETA rotary angle both for orientation with vector components as well
as for programming the angles LEAD, TILT.

Work preparation
3.9 Transformations

NC programming
644 Programming Manual, 06/2019, A5E47437142B AA

3.9.2.4 Programming the tool orientation (A..., B..., C..., LEAD, TILT)
The following options are available when programming tool orientation:

1. Direct programming the motion of rotary axes. The change of orientation always occurs in
the basic or machine coordinate system. The orientation axes are traversed as
synchronized axes.

2. Programming in Euler or RPY angles in accordance with angle definition using A2, B2,
C2

3. Programming the direction vector using A3, B3, C3 The direction vector points from the
tool tip toward the tool adapter.

4. Programming the surface normal vector at the start of the block with A4, B4, C4 and at the
end of the block with A5, B5, C5 (face milling).

5. Programming using lead angle LEAD and tilt angle TILT
6. Programming the rotary axis of taper as normalized vector using A6, B6, C6 or of

intermediate orientation on the peripheral surface of a taper using A7, B7, C7,
see "Orientation programming along the peripheral surface of a taper (ORIPLANE,
ORICONxx)".

7. Programming the reorientation, direction and path length of tool during retraction movement
using A8, B8, C8,
see "Smoothing the orientation characteristic (ORIPATHS A8=, B8=, C8=)"

Note

In all cases, orientation programming is only permissible if an orientation transformation is
active.

Advantage: These programs can be transferred to any machine kinematics.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 645

Definition of tool orientation via G command

Note
Machine manufacturer

Machine data can be used to switch between Euler or RPY angles. If the machine data is set
accordingly, changeovers are possible both depending on the active G command of group 50
and irrespective of this. The following setting options can be selected:
1. If both machine data for defining the orientation axes and defining the orientation angle are

set to zero via G command:
The angles programmed using A2, B2, C2 are dependent on machine data The angle
definition of orientation programming is either interpreted as Euler or RPY angles.

2. If the machine data for defining the orientation axes is set to one via G command, the
changeover is
dependent on the active G command of group 50:
The angles programmed using A2, B2, C2 are interpreted in accordance with the active
G commands ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2, ORIAXPOS
and ORIPY2 . The values programmed with the orientation axes are also interpreted as
orientation angles in accordance with the active G command of group 50.

3. If the machine data for defining the orientation angle is set to one via G command and the
machine data for defining the orientation axes is set to zero via G command, the changeover
is
not dependent on the active G command of group 50:
The angles programmed using A2, B2, C2 are interpreted in accordance with one of the
active G commands ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2 ORIAXPOS
and ORIPY2. The values programmed with the orientation axes are always interpreted as
round axis positions irrespective of the active G command of group 50.

Syntax

Rotary axis positions
G1 X<Value> Y<Value> Z<Value> A<Value> B<Value> C<Value>

Euler angles
G1 X<Value> Y<Value> Z<Value> A2<Value> B2<Value> C2<Value>

Direction vector
G1 X<Value> Y<Value> Z<Value> A3<Value> B3<Value> C3<Value>

Surface normal vector at block start
G1 X<Value> Y<Value> Z<Value> A4<Value> B4<Value> C4<Value>

Surface normal vector at the end of the block
G1 X<Value> Y<Value> Z<Value> A5<Value> B5<Value> C5<Value>

Lead angle
LEAD=<Value>

Work preparation
3.9 Transformations

NC programming
646 Programming Manual, 06/2019, A5E47437142B AA

Tilt angle
TILT=<Value>

Meaning

G1: Linear interpolation
X, Y, Z: Linear axis positions
A, B, C: Rotary axis positions
A2=, B2=, C2=: Angle programming (Euler or RPY angle)
A3=, B3=, C3=: Directional vectors in the X, Y and Z coordinates of the WCS.
A4=, B4=, C4=: Surface normal vectors at the start of the block in the X, Y and Z coordinates

of the WCS.
A5=, B5=, C5=: Surface normal vectors at the end of the block in the X, Y and Z coordinates

of the WCS.
LEAD= : Leading angle 1)

TILT= : Tilt angle 1)

1) The interpretation of the angle indications depend on the setting in MD21094 $MC_ORIPATH_MODE

Further information
5-axis programs are usually generated by CAD/CAM systems and not entered at the control.
So the following explanations are directed mainly at programmers of postprocessors.

The following commands are available for orientation programming:

Command Meaning
ORIEULER: Euler angle with rotation sequence ZX'Z''
ORIRPY: RPY angle with rotation sequence XY'Z''
ORIRPY2: RPY angle with rotation sequence ZY'X''
ORIVIRT1: Virtual orientation axes with freely definable rotation sequence via:

MD21120 $MC_ORIAX_TURN_TAB_1
ORIVIRT2: Virtual orientation axes with freely definable rotation sequence via:

MD21130 $MC_ORIAX_TURN_TAB_2
ORIAXPOS: Virtual orientation axes with rotary axis positions

Note

The machine manufacturer can use machine data to define various variants. Please refer to the
machine manufacturer's instructions.

Programming in Euler angles ORIEULER, rotation sequence Z X' Z''
The values programmed during ORIEULER orientation programming with A2, B2, C2 are
interpreted as Euler angles (in degrees).

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 647

The new orientation vector results from the following three rotations of the original orientation
vector

1. with the rotary axis A2 about the coordinate axis Z

2. with the rotary axis B2 about the new coordinate axis X'

3. with the rotary axis C2 about the coordinate axis Z"

In this case the value of C2 (rotation around the new Z axis) is meaningless and does not have
to be programmed.

Programming in RPY angles ORIRPY, rotation sequence X Y' Z''
The values programmed during ORIEULER orientation programming with A2, B2, C2 are
interpreted as RPY angles (in degrees) with the rotation sequence X Y' Z''.

Note

In contrast to programming with ORIEULER, with ORIRPY all three values here have an effect
on the orientation vector.

The new orientation vector results from the following three rotations of the original orientation
vector

1. with the rotary axis A2 about the coordinate axis X

2. with the rotary axis B2 about the new coordinate axis Y'

3. with the rotary axis C2 about the coordinate axis Z"

Programming the directional vector
The components of the direction vector are programmed with A3, B3, C3. The vector points
towards the tool adapter; the length of the vector is of no significance.

Vector components that have not been programmed are set equal to zero.

Work preparation
3.9 Transformations

NC programming
648 Programming Manual, 06/2019, A5E47437142B AA

X, Y, Z Coordinate axes of the WCS
A3, B3,
C3

Components of the directional vector

O Orientation vector
Figure 3-3 Programming the directional vector

Programming the tool orientation with LEAD and TILT
The resultant tool orientation is determined from:

● Path tangent

● Surface normal vector
At the start of the block A4, B4, C4 and at the end of the block A5, B5, C5

● Lead angle LEAD
Angle in the plane defined by the path tangent and surface normal vector

● Tilt angle TILT at end of block
Angle in the plane, perpendicular to the path tangent relative to the surface normal vector

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 649

T Path tangent
S Perpendicular to path tangent
N Surface normal
B Path
TCP Tool Center Point
O Orientation vector

Figure 3-4 Programming of LEAD TILT

Note
Behavior at inside corners with 3D tool offset

If the block is shortened at an inside corner, the programmed tool orientation is still taken over
at the end of the block.

Work preparation
3.9 Transformations

NC programming
650 Programming Manual, 06/2019, A5E47437142B AA

3.9.2.5 Face milling (A4, B4, C4, A5, B5, C5)
Face milling is used to machine curved surfaces of any kind.

For this type of 3D milling, you will require the line-by-line description of the 3D paths on the
workpiece surface.

The tool shape and dimensions are taken into account in the calculations, which are normally
performed in CAM. The fully calculated NC blocks are then read into the control via
postprocessors.

Programming the path curvature

Surface description
The path curvature is described by surface normal vectors with the following components:

A4, B4, C4 Start vector at block start

A5, B5, C5 End vector at block end

If a block only contains the start vector, the surface normal vector will remain constant
throughout the block. If a block only contains the end vector, interpolation will run from the end
value of the previous block via large-circle interpolation to the programmed end value.

If the start and end vectors are programmed, interpolation runs between the two directions, also
via large-circle interpolation. This allows continuously smooth paths to be created.

Regardless of the active G17 to G19 level, in the initial setting, surface normal vectors point in
the Z direction.

The length of a vector is meaningless.

Vector components that have not been programmed are set to zero.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 651

When ORIWKS is active (see "Reference of the orientation axes (ORIWKS, ORIMKS):
(Page 652)"), the surface normal vectors refer to the active frame and are also rotated with
frame rotation.

Machine manufacturer
The surface normal vector must be perpendicular to the path tangent, within a limit value set via
machine data, otherwise an alarm will be output.

3.9.2.6 Reference of the orientation axes (ORIWKS, ORIMKS):
For orientation programming in the workpiece coordinate system using

● Euler or RPY angle or

● Orientation vector

the course of the rotary motion can be set using ORIMKS/ORIWKS.

Note
Machine manufacturer

The type of interpolation for the orientation is specified with machine data:

MD21104 $MC_ORI_IPO_WITH_G_CODE

= FALSE: The reference is provided by the G commands ORIWKS und ORIMKS.

= TRUE: The reference are the G commands of the 51th group (ORIAXES, ORIVECT,
ORIPLANE, ...)

Syntax
ORIMKS=...
ORIWKS=...

Meaning

ORIMKS: Rotation in the machine coordinate system
ORIWKS: Rotation in the workpiece coordinate system

Note

ORIWKS is the basic setting. In the case of a 5-axis program, if it is not immediately obvious on
which machine it is to run, ORIWKS must always be selected. Which movements the machine
actually executes depend on the machine kinematics.

ORIMKS can be used to program actual machine movements (to avoid collisions with devices
or similar, for example).

Work preparation
3.9 Transformations

NC programming
652 Programming Manual, 06/2019, A5E47437142B AA

Further information
With ORIMKS, the movement executed by the tool depends on the machine kinematics. In the
case of a change in orientation of a tool tip at a fixed point in space, linear interpolation takes
place between the rotary axis positions.

With ORIWKS, the movement executed by the tool does not depend on the machine kinematics.
With an orientation change with a fixed tool tip, the tool moves in the plane set up by the start
and end vectors.

Singular positions

Note
ORIWKS

Orientation movements in the singular setting area of the 5-axis machine require vast
movements of the machine axes. (For example, with a rotary swivel head with C as the rotary
axis and A as the swivel axis, all positions with A = 0 are singular.)

Machine manufacturer
To avoid overloading the machine axes, the velocity control vastly reduces the tool path velocity
near the singular positions.

With machine data

$MC_TRAFO5_NON_POLE_LIMIT
$MC_TRAFO5_POLE_LIMIT
the transformation can be parameterized in such a way that orientation movements close to the
pole are put through the pole and rapid machining is possible.

Singular positions are handled only with the MD $MC_TRAFO5_POLE_LIMIT.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 653

References:
/FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformation (F2),
"Singular Points and How to Deal with Them" section.

3.9.2.7 Programming orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY, ORIRPY2,
ORIVIRT1, ORIVIRT2)

The "Orientation axes" function describes the orientation of the tool in space and is achieved
by programming the offset for the rotary axes. An additional, third degree of freedom can be
achieved by also rotating the tool about itself. In this case, the tool is oriented in space via a third
rotary axis for which 6-axis transformation is required. The rotation of the tool about itself is
defined using the THETA angle of rotation in accordance with the type of interpolation of the
rotation vectors (see "Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT,
ORIROTC, THETA) (Page 663)").

Axis identifiers A2, B2 and C2 are used to program the orientation axes.

Syntax

N... ORIAXES/ORIVECT ; Linear or large-circle interpolation
N... G1 X Y Z A B C

N... ORIPLANE ; Orientation interpolation of the plane

N... ORIEULER/ORIRPY/ORIRPY2 : Orientation angle Euler/RPY angle
N... G1 X Y Z A2= B2= C2= ; Angle programming of virtual axes

N... ORIVIRT1/ORIVIRT2 ; Virtual orientation axes def. 1/2
N... G1 X Y Z A3= B3= C3= ; Direction vector programming

Note

Other rotary axis offsets of the orientation axes can be programmed for orientation changes
along the peripheral surface of a taper in space, see "Orientation programming along the
peripheral surface of a taper (ORIPLANE, ORICONCW, ORICONCCW, ORICONTO,
ORICONIO) (Page 656)".

Meaning

ORIAXES: Linear interpolation of machine or orientation axes
ORIVECT: Large-circle interpolation (identical to ORIPLANE)
ORIMKS:
ORIWKS:

Rotation in the machine coordinate system
Rotation in the workpiece coordinate system
For a description, see "Reference of the orientation axes (ORIWKS,
ORIMKS): (Page 652)".

A= B= C=: Programming the machine axis position
ORIEULER: Orientation programming via Euler angle

Work preparation
3.9 Transformations

NC programming
654 Programming Manual, 06/2019, A5E47437142B AA

ORIRPY: Orientation programming via RPY angle
The rotation sequence is XYZ and:
● A2 is the angle of rotation around X
● B2 is the angle of rotation around Y
● C2 is the angle of rotation around Z

ORIRPY2: Orientation programming via RPY angle
The rotation sequence is ZYX and:
● A2 is the angle of rotation around Z
● B2 is the angle of rotation around Y
● C2 is the angle of rotation around X

A2= B2= C2=: Angle programming of virtual axes
ORIVIRT1/ORIVIRT2: Orientation programming using virtual orientation axes

Definition 1:
Definition according to MD21120 $MC_ORIAX_TURN_TAB_1
Definition 2:
Definition according to MD21130 $MC_ORIAX_TURN_TAB_2

A3= B3= C3=: Direction vector programming of direction axis

Further information

Machine manufacturer
MD21102 $MC_ORI_DEF_WITH_G_CODE specifies how the programmed angles A2, B2, C2
are defined:

The definition is according to MD21100 $MC_ORIENTATION_IS_EULER (standard) or the
definition is according to G group 50 (ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2).

MD21104 $MC_ORI_IPO_WITH_G_CODE defines which interpolation mode type is active:
ORIWKS/ORIMKS or ORIAXES/ORIVECT.

JOG mode
Interpolation for orientation angles in this mode of operation is always linear. During continuous
and incremental traversal via the traversing keys, only one orientation axis can be traversed.
Orientation axes can be traversed simultaneously using the handwheels.

When orientation axes are traversed manually, the channel-specific feedrate override switch or
the rapid traverse override switch in rapid traverse override is applied.

A separate velocity setting is possible with the following machine data:

MD21160 $MC_JOG_VELO_RAPID_GEO

MD21165 $MC_JOG_VELO_GEO

MD21150 $MC_JOG_VELO_RAPID_ORI

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 655

MD21155 $MC_JOG_VELO_ORI

Note
SINUMERIK 840D sl with "handling transformation package"

Using the "Cartesian manual traverse" function, the translation of geometry axes in JOG mode
can be set separately from one another in the reference systems MCS, WCS and TCS.

References:
Function Manual Extended Functions; Kinematic Transformation (M1)

3.9.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE,
ORICONCW, ORICONCCW, ORICONTO, ORICONIO)

With extended orientation it is possible to execute a change in orientation along the peripheral
surface of a taper in space. The orientation vector is interpolated on the peripheral surface of
a taper using the ORICONxx modal command. The end orientation can be programmed with
ORIPLANE for interpolation on a plane. The start orientation is usually defined by the previous
blocks.

Work preparation
3.9 Transformations

NC programming
656 Programming Manual, 06/2019, A5E47437142B AA

Programming
The end orientation is either defined by specifying the angle programming in the Euler or RPY
angle using A2, B2, C2 or by programming the rotary axis positions using A, B, C. Further
programming details are needed for orientation axes along the peripheral surface of a taper:

● Rotary axis of taper as a vector with A6, B6, C6
● Opening angle PSI with identifier NUT
● Intermediate orientation outside of the taper with A7, B7, C7

Note

Programming direction vector A6, B6, C6 for the rotary axis of the taper

The programming of an end orientation is not absolutely necessary. If no end orientation is
specified, a full outside taper with 360 degrees is interpolated.

Programming the opening angle of the taper with NUT=angle

An end orientation must be specified.

A complete outside taper with 360 degrees cannot be interpolated in this way.

Programming the intermediate orientation A7, B7, C7 on the outside of the taper

An end orientation must be specified. The change in orientation and the direction of rotation
is defined uniquely by the three vectors Start orientation, End orientation and Intermediate
orientation. All three vectors must be different. If the programmed intermediate orientation
is parallel to the start or end orientation, a linear large-circle interpolation of the orientation
is executed in the plane that is defined by the start and end vector.

Extended orientation interpolation on the peripheral surface of a taper
N... ORICONCW or ORICONCCW
N... A6= B6= C6= A3= B3= C3=
or
N... ORICONTO
N... G1 X Y Z A6= B6= C6=
or
N... ORICONIO
N... G1 X Y Z A7= B7= C7=
N... PO[PHI]=(a2, a3, a4, a5)
N... PO[PSI]=(b2, b3, b4, b5)

Interpolation on the outside of a taper with
direction vector in the clockwise/counter-
clockwise direction of the taper and end
orientation or
tangential transition and
specification of end orientation
or
specification of end orientation and
intermediate orientation on the outside of
the taper with
polynomials for angle of rotation and
polynomials for opening angle

Parameters

ORIPLANE: Interpolation in the plane (large-circle interpolation)
ORICONCW: Interpolation on the peripheral surface of a taper in the clockwise di‐

rection
ORICONCCW: Interpolation on the peripheral surface of a taper in the counter-clock‐

wise direction

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 657

ORICONTO: Interpolation on the peripheral surface of a taper with tangential tran‐
sition

A6= B6= C6=: Programming of a rotary axis of the taper (normalized vector)
NUT=angle: Opening angle of taper in degrees
NUT=+179: Traverse angle less than or equal to 180 degrees
NUT=-181: Traverse angle greater than or equal to 180 degrees
ORICONIO: Interpolation on the peripheral surface of a taper
A7= B7= C7=: Intermediate orientation (programming as normalized vector)
PHI: Angle of rotation of the orientation about the direction axis of the taper
PSI: Opening angle of the taper
Possible polynomials
PO[PHI]=(a2, a3, a4, a5)
PO[PSI]=(b2, b3, b4, b5)

Apart from the different angles, polynomials can also be programmed
up to the
5th degree

Example: Different changes to orientation

Program code Comment
…
N10 G1 X0 Y0 F5000
N20 TRAORI(1) ; Orientation transformation ON
N30 ORIVECT ; Interpolate tool orientation as a vec-

tor.
… ; Tool orientation in the plane.
N40 ORIPLANE ; Select large-circle interpolation.
N50 A3=0 B3=0 C3=1
N60 A3=0 B3=1 C3=1 ; Orientation in the Y/Z plane is rota-

ted through 45 degrees, orientation (0,1/
√2,1/√2) is reached at the end of the
block.

…
N70 ORICONCW ; Orientation programming on the outside

of the taper:
N80 A6=0 B6=0 C6=1 A3=0 B3=0 C3=1 The orientation vector is interpolated

on the outside of a taper with the direc-
tion (0,0,1) up to the orientation (1/
√2,0,1/√2) in the clockwise sense, the
angle of rotation is 270 degrees.

N90 A6=0 B6=0 C6=1 ; The tool orientation goes through a
full revolution on the outside of the
same taper.

Further information
If changes of orientation along the peripheral surface of a taper anywhere in space are to be
described, the vector about which the tool orientation is to be rotated must be known. The start
and end orientation must also be specified. The start orientation results from the previous block
and the end orientation has to be programmed or defined via other conditions.

Work preparation
3.9 Transformations

NC programming
658 Programming Manual, 06/2019, A5E47437142B AA

Programming in the ORIPLANE plane corresponds to ORIVECT
The programming of large-radius circular interpolation together with angle polynomials
corresponds to the linear and polynomial interpolation of contours. The tool orientation is
interpolated in a plane that is defined by the start and end orientation. If additional polynomials
are programmed, the orientation vector can also be tilted out of the plane.

Programming of circles in a plane G2/G3, CIP and CT
The extended orientation corresponds to the interpolation of circles in a plane. For the
corresponding programming options for circles with centers or radii such as G2/G3, circle via
intermediate point CIP and tangential circles CT, see

References: Programming Manual Fundamentals, "Programming motion commands".

Orientation programming
Interpolation of the orientation vector on the peripheral surface of a taper ORICONxx

Four different types of interpolation from G group 51 can be selected for interpolating
orientations on the peripheral surface of a taper:

1. Interpolation on the outside of a taper in the clockwise direction ORICONCW with
specification of end orientation and taper direction, or opening angle. The direction vector
is programmed with identifiers A6, B6, C6 and the opening angle of the taper with
identifier NUT= value range in interval 0 degrees to 180 degrees.

2. Interpolation on the outside of a taper in the counterclockwise direction ORICONCCW with
specification of end orientation and taper direction, or opening angle. The direction vector
is programmed with identifiers A6, B6, C6 and the opening angle of the taper with
identifier NUT= value range in interval 0 degrees to 180 degrees.

3. Interpolation on the outside of a taper ORICONIO with specification of end orientation and
an intermediate orientation, which is programmed with identifiers A7, B7, C7.

4. Interpolation on the outside of a taper ORICONTO with tangential transition and specification
of end orientation. The direction vector is programmed with identifiers A6, B6, C6.

3.9.2.9 Specification of orientation for two contact points (ORICURVE, PO[XH]=, PO[YH]=,
PO[ZH]=)

Programming the change in orientation using the second curve in space ORICURVE
Another way to program changes in orientation, besides using the tool tip along a curve in
space, is to program the motion of a second contact point of the tool using ORICURVE. In this
way, changes in tool orientation can be defined uniquely, as when programming the tool vector
itself.

Machine manufacturer
Please refer to the machine manufacturer's notes on axis identifiers that can be set via machine
data for programming the 2nd orientation path of the tool.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 659

Programming
This type of interpolation can be used to program points (using G1) or polynomials
(using POLY) for the two curves in space. Circles and involutes are not permitted. A BSPLINE
spline interpolation and the "Combine short spline blocks" function can also be activated.

References:
Function Manual, Basic Functions; Continuous-Path Mode, Exact Stop, Look Ahead (B1),
Section: Combine short spline blocks

The other spline types, ASPLINE and CSPLINE, and compressor activation using COMPON,
COMPCURV or COMPCAD are not permitted.

The motion of the two contact points of the tool can be predefined up to the 5th degree when
programming the orientation polynomials for coordinates.

Extended orientation interpolation with additional curve in space and polynomials for coordi‐
nates
N... ORICURVE
N... PO[XH]=(xe, x2, x3, x4, x5)
N... PO[YH]=(ye, y2, y3, y4, y5)
N... PO[ZH]=(ze, z2, z3, z4, z5)

Specification of the motion of the second
contact point of the tool and additional pol‐
ynomials of the coordinates in question

Parameters

ORICURVE Interpolation of the orientation specifying a movement
between two contact points of the tool.

XH YH ZH Identifiers of the coordinates of the second contact
point of the tool of the additional contour as a curve in
space

Possible polynomials
PO[XH]=(xe, x2, x3, x4,
x5) PO[YH]=(ye, y2, y3,
y4, y5) PO[ZH]=(ze, z2,
z3, z4, z5)

Apart from using the appropriate end points, the curves
in space can also be programmed using polynomials.

xe, ye, ze End points of the curve in space
xi, yi, zi Coefficients of the polynomials up to the 5th degree

Work preparation
3.9 Transformations

NC programming
660 Programming Manual, 06/2019, A5E47437142B AA

Note
Identifiers XH YH ZH for programming a 2nd orientation path

The identifiers must be selected such that no conflict arises with the other identifiers or linear
axes

X Y Z axes

and rotary axes such as

A2 B2 C2 Euler angle or RPY angle

A3 B3 C3 direction vectors

A4 B4 C4 or A5 B5 C5 surface normal vectors

A6 B6 C6 rotation vectors or A7 B7 C7 intermediate point coordinates

or other interpolation parameters.

3.9.3 Orientation polynomials (PO[angle], PO[coordinate])
Irrespective of the polynomial interpolation from G group 1 that is currently active, two different
types of orientation polynomial can be programmed up to the 5th degree for a three-axis to five-
axis transformation.

1. Polynomials for angles: lead angle LEAD, tilt angle TILT
in relation to the plane that is defined by the start and end orientation.

2. Polynomials for coordinates: XH, YH, ZH of the second curve in space for the tool
orientation of a reference point on the tool.

With a 6-axis transformation, the rotation of rotation vector THT can be programmed with
polynomials up to the 5th degree for rotations of the tool itself, in addition to the tool orientation.

Syntax
Type 1 orientation polynomials for angles

N… PO[PHI]=(a2, a3, a4, a5)
N… PO[PSI]=(b2, b3, b4, b5)

3-axis to 5-axis transformation

Type 2 orientation polynomials for coordinates

N… PO[XH]=(xe, x2, x3, x4, x5)
N… PO[YH]=(ye, y2, y3, y4, y5)
N… PO[ZH]=(ze, z2, z3, z4, z5)

Identifiers for the coordinates of the second
orientation path for tool orientation

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 661

In both cases, with 6-axis transformations, a polynomial can also be programmed for the
rotation using

N… PO[THT]=(c2, c3, c4, c5)
or
N… PO[THT]=(d2, d3, d4, d5)

Interpolation of the rotation relative to the
path

Interpolation absolute, relative and tangen‐
tial to the change of orientation

of the orientation vector. This is possible if the transformation supports a rotation vector with an
offset that can be programmed and interpolated using the THETA angle of rotation.

Meaning

PO[PHI] Angle in the plane between start and end orientation
PO[PSI] Angle describing the tilt of the orientation from the plane between start and end orien‐

tation
PO[THT] Angle of rotation created by rotating the rotation vector of one of the G commands of

group 54 that is programmed using THETA
PHI Lead angle LEAD
PSI Tilt angle TILT
THETA Rotation about the tool direction in Z
PO[XH] X coordinate of the reference point on the tool
PO[YH] Y coordinate of the reference point on the tool
PO[ZH] Z coordinate of the reference point on the tool

Further information
Orientation polynomials cannot be programmed:

● If ASPLINE, BSPLINE, CSPLINE spline interpolations are active.
Type 1 polynomials for orientation angles are possible for every type of interpolation except
spline interpolation, that is, linear interpolation with rapid traverse G00 or with feedrate G01
 with polynomial interpolation using POLY and
circular/involute interpolation G02, G03, CIP, CT, INVCW and INCCCW
.
However, type 2 polynomials for orientation coordinates are only possible if
linear interpolation with rapid traverse G00 or with feedrate G01 or
 polynomial interpolation with POLY is active.

● If the orientation is interpolated using ORIAXES axis interpolation. In this case, polynomials
can be programmed directly with PO[A] and PO[B] for orientation axes A and B.

Type 1 orientation polynomials with ORIVECT, ORIPLANE and ORICONxx
Only type 1 orientation polynomials are possible for large-radius circular interpolation and
interpolation outside of the taper with ORIVECT, ORIPLANE and ORICONxx.

Work preparation
3.9 Transformations

NC programming
662 Programming Manual, 06/2019, A5E47437142B AA

Type 2 orientation polynomials with ORICURVE
If interpolation with the additional curve in space ORICURVE is active, the Cartesian
components of the orientation vector are interpolated and only type 2 orientation polynomials
are possible.

3.9.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT, ORIROTC,
THETA)

If you also want to be able to change the orientation of the tools on machine types with movable
tools, program each block with end orientation. Depending on the machine kinematics you can
either program the orientation direction of the orientation axes or the direction of rotation of
orientation vector THETA. Different interpolation types can be programmed for these rotation
vectors:

● ORIROTA: Angle of rotation to an absolute direction of rotation.

● ORIROTR: Angle of rotation relative to the plane between the start and end orientation.

● ORIROTT: Angle of rotation relative to the change in the orientation vector.

● ORIROTC: Tangential angle of rotation to the path tangent.

Syntax
Only if interpolation type ORIROTA is active can the angle of rotation or rotation vector be
programmed in all four modes as follows:

1. Directly as rotary axis positions A, B, C
2. Euler angles (in degrees) with A2, B2, C2
3. RPY angles (in degrees) with A2, B2, C2
4. Direction vector via A3, B3, C3 (angle of rotation using THETA=<value>)

If ORIOTR or ORIOTT is active, the angle of rotation can only be programmed directly with
THETA.

A rotation can also be programmed in a separate block without an orientation change taking
place. In this case, ORIROTR and ORIROTT are irrelevant. In this case, the angle of rotation
is always interpreted with reference to the absolute direction (ORIROTA).

N... ORIROTA
N... ORIROTR
N... ORIROTT
N... ORIROTC

Define the interpolation of the rotation vector

N... A3= B3= C3= THETA=<value> Define the rotation of the orientation vector
N... PO[THT]=(d2, d3, d4, d5) Interpolate angle of rotation with a 5th order poly‐

nomial

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 663

Meaning

ORIROTA: Angle of rotation to an absolute direction of rotation
ORIROTR: Angle of rotation relative to the plane between the start and end orientation
ORIROTT: Angle of rotation as a tangential rotation vector to the change of orientation
ORIROTC: Angle of rotation as a tangential rotation vector to the path tangent
THETA: Rotation of the orientation vector
THETA=<value>: Angle of rotation in degrees reached by the end of the block
THETA=Θe: Angle of rotation with end angle Θe of rotation vector
THETA=AC(…): Non-modal switchover to absolute dimensions
THETA=AC(…): Non-modal switchover to incremental dimensions
Θe: End angle of rotational vector both absolute with G90 and relative with G91

(incremental dimensioning) is active
PO[THT]=(....): Polynomial for angle of rotation

Example: Rotations of the orientations

Program code Comment
N10 TRAORI ; Activate orientation transformation
N20 G1 X0 Y0 Z0 F5000 ; Tool orientation
N30 A3=0 B3=0 C3=1 THETA=0 ; In Z direction with angle of rotation 0
N40 A3=1 B3=0 C3=0 THETA=90 ;In X direction and rotation about 90 degrees
N50 A3=0 B3=1 C3=0 PO[THT]=(180,90) ;Orientation
N60 A3=0 B3=1 C3=0 THETA=IC(-90) ;In Y direction and rotation about 180 degrees
N70 ORIROTT ;Remains constant and rotation to 90 degrees
N80 A3=1 B3=0 C3=0 THETA=30 ;Angle of rotation relative to change of ori-

entation
 ;Rotation vector in angle 30 degrees to X/Y

plane

When interpolating block N40, the angle of rotation from initial value of 0 degrees to final value
of 90 degrees is interpolated linearly. In block N50, the angle of rotation changes from 90
degrees to 180 degrees, according to parabola θ(u) = +90u2. In N60, a rotation can also be
executed without a change in orientation taking place.

With N80, the tool orientation is rotated from the Y direction toward the X direction. The change
in orientation takes place in the X/Y plane and the rotation vector describes an angle of 30
degrees to this plane.

Further information

ORIROTA
The angle of rotation THETA is interpolated with reference to an absolute direction in space. The
basic direction of rotation is defined in the machine data.

Work preparation
3.9 Transformations

NC programming
664 Programming Manual, 06/2019, A5E47437142B AA

ORIROTR
The angle of rotation THETA is interpreted relative to the plane defined by the start and end
orientation.

ORIROTT
The angle of rotation THETA is interpreted relative to the change in orientation. For THETA=0
the rotation vector is interpolated tangentially to the change in orientation and only differs from
ORIROTR if at least one polynomial has been programmed for "tilt angle PSI" for the orientation.
The result is a change in orientation that is not executed in the plane. An additional angle of
rotation THETA can then be used to interpolate the rotation vector such that it always produces
a specific value referred to the change in orientation.

ORIROTC
The rotation vector is interpolated relative to the path tangent with an offset that can be
programmed using the THETA angle. A polynomial PO[THT]=(c2, c3, c4, c5) up to the
5th degree can also be programmed for the offset angle.

3.9.5 Orientations relative to the path

3.9.5.1 Orientation types relative to the path
By using this expanded function, relative orientation is not only achieved at the end of the block,
but across the entire trajectory. The orientation achieved in the previous block is transferred to
the programmed end orientation using large-circle interpolation. There are basically two ways
of programming the desired orientation relative to the path:

1. Like the tool rotation, the tool orientation is interpolated relative to the path using ORIPATH,
ORPATHTS.

2. The orientation vector is programmed and interpolated in the usual manner. The rotation of
the orientation vector is initiated relative to the path tangent using ORIROTC.

Syntax
The type of interpolation of the orientation and the rotation of the tool is programmed using:

N... ORIPATH Orientation relative to the path
N... ORIPATHS Orientation relative to the path with smoothing of orientation

characteristic
N... ORIROTC Interpolation of the rotation vector relative to the path

An orientation blip caused by a corner on the trajectory can be smoothed using ORIPATHS. The
direction and path length of the retracting movement is programmed via the vector using the
components A8=X, B8=Y C8=Z.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 665

ORIPATH/ORIPATHS can be used to program various references to the path tangent via the
three angles

● LEAD= Specification of lead angle relative to the path and surface

● TILT= Specification of tilt angle relative to the path and surface

● THETA= Angle of rotation

for the entire trajectory. Polynomials up to the 5th degree can be programmed in addition to the
THETA angle of rotation using PO[THT]=(...).

Note
Machine manufacturer

Please refer to the machine manufacturer's instructions. Other settings can be made for
orientations relative to the path via configurable machine and setting data. For more detailed
information, please refer to

References:
/FB3/ Function Manual, Special Functions; 3 to 5-Axis Transformation (F2),
Section "Orientation"

Meaning
Various settings can be made for the interpolation of angles LEAD and TILT via machine data:

● The tool-orientation reference programmed using LEAD and TILT is retained for the entire
block.

● Lead angle LEAD: rotation about the direction vertical to the tangent and normal
vector TILT: rotation of the orientation about the normal vector.

● Lead angle LEAD: rotation about the direction vertical to the tangent and normal vector Tilt
angle TILT: rotation of the orientation in the direction of the path tangent.

● Angle of rotation THETA: rotation of the tool about itself with an additional third rotary axis
acting as an orientation axis in 6-axis transformation.

Note
Orientation relative to the path not permitted in conjunction with OSC, OSS, OSSE, OSD
and OST

Orientation interpolation relative to the path, that is ORIPATH or ORIPATHS and ORIOTC,
cannot be programmed in conjunction with orientation characteristic smoothing with a G
command from group 34. OSOF has to be active for this.

Work preparation
3.9 Transformations

NC programming
666 Programming Manual, 06/2019, A5E47437142B AA

3.9.5.2 Rotation of the tool orientation relative to the path (ORIPATH, ORIPATHS, angle of
rotation)

With a 6-axis transformation, the tool can be rotated about itself with a third rotary axis to
orientate the tool as desired in space. With a rotation of the tool orientation relative to the path
using ORIPATH or ORIPATHS, the additional rotation can be programmed via the THETA
angle of rotation. Alternatively, the LEAD and TILT angles can be programmed using a vector,
which is located in the plane vertical to the tool direction.

Machine manufacturer
Please refer to the machine manufacturer's instructions. The interpolation of the LEAD and
TILT angles can be set differently using machine data.

Syntax

Rotation of tool orientation and tool
The type of tool orientation relative to the path is activated using ORIPATH or ORIPATHS.

N... ORIPATH Activate type of orientation relative to the path
N... ORIPATHS Activate type of orientation relative to the path with

smoothing of the orientation characteristic
Activating the three angles that can be rotated:
N... LEAD= Angle for the programmed orientation relative to the

surface normal vector
N... TILT= Angle for the programmed orientation in the plane,

vertical to the path tangent relative to the surface
normal vector

N... THETA= Angle of rotation relative to the change of orienta‐
tion in the tool direction of the third rotary axis

The values of the angles at the end of block are programmed using LEAD=value,
TILT=value or THETA=value. In addition to the constant angles, polynomials can be
programmed for all three angles up to the 5th degree.

N... PO[PHI]=(a2, a3, a4, a5)
N... PO[PSI]=(b2, b3, b4, b5)
N... PO[THT]=(d2, d3, d4, d5)

Polynomial for the leading angle LEAD
Polynomial for the tilt angle TILT
Polynomial for the angle of rotation THE‐
TA

The higher polynomial coefficients, which are zero, can be omitted when programming.
Example: PO[PHI]=a2 results in a parabola for the LEAD angle.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 667

Meaning

Tool orientation relative to the path

ORIPATH: Tool orientation in relation to path
ORIPATHS
:

Tool orientation in relation to path, blips in the orientation characteristic are smoothed

LEAD: Angle relative to the surface normal vector in the plane that is defined by the path tangent
and the surface normal vector

TILT: Rotation of orientation in the Z direction or rotation about the path tangent
THETA: Rotation about the tool direction toward Z
PO[PHI]: Orientation polynomial for the LEAD angle
PO[PSI]: Orientation polynomial for the TILT angle
PO[THT]: Orientation polynomial for the THETA angle of rotation

Note
Angle of rotation THETA

A 6-axis transformation is required to rotate a tool with a third rotary axis that acts as an
orientation axis about itself.

3.9.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)

Interpolation with rotation vectors
The rotation vector of the tool rotation, programmed with ORIROTC, relative to the path tangent
can also be interpolated with an offset that can be programmed using the THETA angle of
rotation. A polynomial can, therefore, be programmed up to the 5th degree for the offset angle
using PO[THT].

Syntax

N... ORIROTC Initiate the rotation of the tool rel‐
ative to the path tangent

N... A3= B3= C3= THETA=value Define the rotation of the orienta‐
tion vector

N... A3= B3= C3= PO[THT]=(c2, c3, c4, c5) Interpolate offset angle with poly‐
nomial up to 5th degree

A rotation can also be programmed in a separate block without an orientation change taking
place.

Work preparation
3.9 Transformations

NC programming
668 Programming Manual, 06/2019, A5E47437142B AA

Meaning

Interpolation of the rotation of tool relative to the path in 6-axis transformation

ORIROTC: Initiate tangential rotation vector relative to path tangent
THETA=value: Angle of rotation in degrees reached by the end of the block
THETA=θe: Angle of rotation with end angle Θe of rotation vector
THETA=AC(…): Non-modal switchover to absolute dimensions
THETA=IC(…): Non-modal switchover to incremental dimensions
PO[THT]=(c2, c3, c4, c5): Interpolate offset angle with polynomial of 5th degree

Note
Interpolation of the rotation vector ORIROTC

Initiating rotation of the tool relative to the path tangent in the opposite direction to the tool
orientation, is only possible with a 6-axis transformation.
With active ORIROTC

Rotation vector ORIROTA cannot be programmed. If programming is undertaken, ALARM
14128 "Absolute programming of tool rotation with active ORIROTC" is output.

Orientation direction of the tool for 3-axis to 5-axis transformation
The orientation direction of the tool can be programmed via Euler angles, RPY angles or
direction vectors as with 3-axis to 5-axis transformations. Orientation changes of the tool in
space can also be achieved by programming the large-circle interpolation ORIVECT, linear
interpolation of the orientation axes ORIAXES, all interpolations on the peripheral surface of a
taper ORICONxx, and interpolation in addition to the curve in space with two contact points of
the tool ORICURVE.

G....: Details of the rotary axis motion
X, Y, Z: Details of the linear axes
ORIAXES: Linear interpolation of machine or orientation axes
ORIVECT: Large-circle interpolation (identical to ORIPLANE)
ORIMKS:
ORIWKS:

Rotation in the machine coordinate system
Rotation in the workpiece coordinate system
Description, see the Rotations of the tool orientation section

A= B= C=: Programming the machine axis position
ORIEULER: Orientation programming via Euler angle
ORIRPY: Orientation programming via RPY angle
A2= B2= C2=: Angle programming of virtual axes
ORIVIRT1:
ORIVIRT2:

Orientation programming using virtual orientation axes
(definition 1), definition according to MD $MC_ORIAX_TURN_TAB_1
(definition 2), definition according to MD $MC_ORIAX_TURN_TAB_2

A3= B3= C3=: Direction vector programming of direction axis
ORIPLANE: Interpolation in the plane (large-circle interpolation)

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 669

ORICONCW: Interpolation on the peripheral surface of a taper in the clockwise direc‐
tion

ORICONCCW: Interpolation on the peripheral surface of a taper in the counter-clock‐
wise direction

ORICONTO: Interpolation on the peripheral surface of a taper with tangential transition
A6= B6= C6=: Programming of a rotary axis of the taper (normalized vector)
NUT=angle Opening angle of taper in degrees
NUT=+179 Traverse angle less than or equal to 180 degrees
NUT=-181 Traverse angle greater than or equal to 180 degrees
ORICONIO: Interpolation on the peripheral surface of a taper
A7= B7= C7=: Intermediate orientation (programming as normalized vector)
ORICURVE
XH YH ZH, e.g. with
polynomials
PO[XH]=(xe, x2, x3,
x4, x5)

Interpolation of the orientation specifying a movement between two con‐
tact points of the tool. In addition to the end points, additional curve
polynomials can also be programmed.

Note

If the tool orientation with active ORIAXES is interpolated via the orientation axes, the angle of
rotation is only initiated relative to the path at the end of block.

3.9.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=)
Changes of orientation that take place with constant acceleration on the contour can cause
unwanted interruptions to the path motions, particularly at the corner of a contour. The resulting
blip in the orientation characteristic can be smoothed by inserting a separate intermediate
block. If ORIPATHS is active during reorientation, the change in orientation occurs at a
constant acceleration. The tool can be retracted in this phase.

Machine manufacturer
Please refer to the machine manufacturer's notes on any predefined machine and setting data
used to activate this function.

Machine data can be used to set how the retracting vector is interpreted:

1. In the TCS, the Z coordinate is defined by the tool direction.

2. In the WCS, the Z coordinate is defined by the active plane.

For further explanations about the "Orientation relative to the path" function , see
References:
Function Manual, Special Functions; Multi-axis Transformations (F2)

Syntax
Further programming details are needed at the corner of the contour for constant tool
orientations relative to the path as a whole. The direction and path length of this motion is
programmed via the vector using the components A8=X, B8=Y C8=Z.

Work preparation
3.9 Transformations

NC programming
670 Programming Manual, 06/2019, A5E47437142B AA

N... ORIPATHS A8=X B8=Y C8=Z

Meaning

ORIPATHS: Tool orientation relative to the path; blip in orientation characteristic is smoothed
A8= B8= C8=: Vector components for direction and path length
X, Y, Z: Retracting movement in tool direction

Note
Programming direction vectors A8, B8, C8

If the length of this vector is exactly zero, no retracting movement is executed.
ORIPATHS

Tool orientation relative to the path is activated using ORIPATHS. The orientation is otherwise
transferred from the start orientation to the end orientation by means of linear large-circle
interpolation.

3.9.6 Compression of the orientation (COMPON, COMPCURV, COMPCAD,
COMPSURF)

NC programs, in which orientation transformation (TRAORI) is active and tool orientations are
programmed (no matter what type), can be compressed if kept within specified limits.

Programming

Tool orientation
If orientation transformation (TRAORI) is active, for 5-axis machines, tool orientation can be
programmed in the following way (independent of the kinematics):

● Programming of the direction vectors via:
A3=<...> B3=<...> C3=<...>

● Programming of the Eulerangles or RPY-angles via:
A2=<...> B2=<...> C2=<...>

Rotation of the tool
For 6-axis machines you can program the tool rotation in addition to the tool orientation.

The angle of rotation is programmed with:

THETA=<...>

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 671

See " Rotation of tool orientation (Page 663) ".

Note

NC blocks, in which a rotation is also programmed, can only be compressed if the angle of
rotation changes linearly. This means that it is not permissible that a polynomial with
PO[THT]=(...) is programmed for the angle of rotation.

General structure of an NC block that can be compressed
The general structure of an NC block that can be compressed can therefore look like this:

N... X=<...> Y=<...> Z=<...> A3=<...> B3=<...> C3=<...> THETA=<...> F=<...>
or

N... X=<...> Y=<...> Z=<...> A2=<...> B2=<...> C2=<...> THETA=<...> F=<...>

Note

The position values can be entered directly (e.g. X90) or indirectly via parameter settings (e.g.
X=R1*(R2+R3)).

Programming tool orientation using rotary axis positions
Tool orientation can be also specified using rotary axis positions, e.g. with the following
structure:

N... X=<...> Y=<...> Z=<...> A=<...> B=<...> C=<...> THETA=<...> F=<...>
In this case, compression is executed in two different ways, dependent on whether large radius
circular interpolation is executed. If no large radius circular interpolation takes place, then the
compressed change in orientation is represented in the usual way by axial polynomials for the
rotary axes.

Contour accuracy
Depending on the selected compression mode (MD20482 $MC_COMPRESSOR_MODE)
either the configured axis-specific tolerances (MD33100 $MA_COMPRESS_POS_TOL) or the
following channel-specific tolerances – set using setting data – are effective for the geometry
axes and orientation axes for compression:

SD42475 $SC_COMPRESS_CONTUR_TOL (maximum contour deviation)

SD42476 $SC_COMPRESS_ORI_TOL (maximum angular deviation for tool orientation)

SD42477 $SC_COMPRESS_ORI_ROT_TOL (maximum angular deviation for the angle of
rotation of the tool) (only available on 6-axis machines)

References:
Function Manual Basic Functions; 3 to 5-Axis Transformation (F2),
Section: "Compression of the orientation"

Activation/deactivation
Compressor functions are activated by modal G commands COMPON, COMPCURV, COMPCAD or
COMPSURF.

Work preparation
3.9 Transformations

NC programming
672 Programming Manual, 06/2019, A5E47437142B AA

COMPOF terminates the compressor function.

See " NC block compression (COMPON, COMPCURV, COMPCAD) (Page 582) ".

Note

Orientation motion is only compressed when large radius circular interpolation is active (i.e. tool
orientation is changed in the plane which is determined by start and end orientation).

Large radius circular interpolation is executed under the following conditions:
● MD21104 $MC_ORI_IPO_WITH_G_CODE = 0,

ORIWKS is active and
the orientation is programmed as a vector (with A3, B3, C3 or A2, B2, C2).

● MD21104 $MC_ORI_IPO_WITH_G_CODE = 1 and
ORIVECT or ORIPLANE is active.
The tool orientation can be programmed either as a direction vector or with rotary axis
positions. No large radius circle interpolation is performed, if one of the G
commands ORICONxx or ORICURVE is active, or if polynomials for orientation angle
(PO[PHI] and PO[PSI]) are programmed.

Example
In the example program below, a circle approached by a polygon definition is compressed. The
tool orientation moves on the outside of the taper at the same time. Although the programmed
orientation changes are executed one after the other, but in an unsteady way, the compressor
function generates a smooth motion of the orientation.

Programming Comment
DEF INT NUMBER=60
DEF REAL RADIUS=20
DEF INT COUNTER
DEF REAL ANGLE
N10 G1 X0 Y0 F5000 G64

$SC_COMPRESS_CONTUR_TOL=0.05 ; Maximum deviation of the contour = 0.05 mm
$SC_COMPRESS_ORI_TOL=5 ; Maximum deviation of the orientation

= 5 degrees

TRAORI
COMPCURV ; The movement describes a circle generated

from polygons. The orientation moves on a
taper around the Z axis with an opening an-
gle of 45 degrees.

N100 X0 Y0 A3=0 B3=-1 C3=1
N110 FOR COUNTER=0 TO NUMBER
N120 ANGLE=360*COUNTER/NUMBER
N130 X=RADIUS*cos(angle) Y=RADIUS*sin(angle)
A3=sin(angle) B3=-cos(angle) C3=1
N140 ENDFOR

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 673

3.9.7 Activating/deactivating the orientation characteristic (ORISON, ORISOF)
The "Smoothing of the orientation characteristic" is activated/deactivated in the part program
using the commands of G group 61. The commands are modal.

Preconditions
● System with 5/6-axis transformation.

● Compressor function COMPCAD is active.

Syntax

ORISON
...
ORISOF

Meaning

ORISON: Activating the orientation characteristic smoothing
ORISOF: Deactivating the orientation characteristic smoothing

Example

Program code Comment
...
TRAORI() ; Activation of orientation transformation.
COMPCAD ; Activating the COMPCAD compressor function.
ORISON ; Activating orientation smoothing.
$SC_ORISON_TOL=1.0 ; Maximum angular deviation of the tool orientation

= 1.0 degrees.
G91
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
...
ORISOF ; Deactivation of orientation smoothing.
...

Work preparation
3.9 Transformations

NC programming
674 Programming Manual, 06/2019, A5E47437142B AA

The orientation is pivoted through 90 degrees on the XZ plane from -45 to +45 degrees. Due
to the smoothing of the orientation characteristic the orientation is no longer able to reach the
maximum angle values of -45 or +45 degrees.

3.9.8 Kinematic transformation

3.9.8.1 Activate face end transformation (TRANSMIT)
The front face transformation (TRANSMIT) is activated in the part program or synchronized
action using the TRANSMIT statement.

Syntax
TRANSMIT
TRANSMIT(<n>)

Meaning

TRANSMIT: Activate TRANSMIT with the first TRANSMIT data set
TRANSMIT(n): Activate TRANSMIT with the nth TRANSMIT data set

Note

A TRANSMIT transformation active in the channel is activated with:
● Deactivate transformation: TRAFOOF
● Activation of another transformation: E.g. TRACYL, TRAANG, TRAORI

3.9.8.2 Activate cylinder surface transformation (TRACYL)
The cylinder surface transformation (TRACYL) is activated in the part program or synchronized
action using the TRACYL statement.

Syntax
TRACYL(<d>)
TRACYL(<d>,<n>)

TRACYL(<d>,<n>,<k>)

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 675

Meaning

TRACYL(<d>): Activate TRACYL with the first TRACYL data set and working diameter
<d>

TRACYL (<d>,<n>): Activate TRACYL with the <n>th TRACYL data set and working diameter
<d>

<d>: Reference or working diameter
The value must be greater than 1.

<n>: TRACYL data set number (optional)
Range of values: 1, 2

<k>: The parameter <k> is only relevant for transformation type 514
k = 0: without groove side correction
k = 1: with groove side correction
If the parameter is not specified, then the parameterized basic position
applies:
$MC_TRACYL_DEFAULT_MODE_<n>
With <n> = TRACYL data set number

Note

A TRACYL transformation active in the channel is switched-off with:
● Deactivate transformation: TRAFOOF
● Activation of another transformation: E.g. TRAANG, TRANSMIT, TRAORI

Example

Program code Comment
...
N40 TRACYL(40.) ; Activate TRACYL with the first TRACYL data set

and working diameter 40 mm.
...

Further information

Program structure
A part program for milling a groove with TRACYL transformation 513 (TRACYL with groove
side offset) generally comprises the following steps:

1. Select tool.

2. Select TRACYL.

3. Select suitable coordinate offset (frame).

4. Positioning.

5. Program OFFN.

6. Select TRC.

Work preparation
3.9 Transformations

NC programming
676 Programming Manual, 06/2019, A5E47437142B AA

7. Approach block (position TRC and approach groove side).

8. Groove center line contour.

9. Deselect TRC.

10.Retraction block (retract TRC and move away from groove side).

11.Positioning.

12.TRAFOOF.

13.Reselect original coordinate shift (frame).

Contour offset (OFFN)
In order to mill grooves using TRACYL transformation 513, the center line of the groove and half
of the groove width via the OFFN address are programmed in the part program.

To avoid damage to the groove side, OFFN acts only when the tool radius compensation is
active.

It is possible to change OFFN within a part program. This allows the groove center line to be
offset from the center:

① OFFN
② Programmed path

Note

OFFN should be at least as large as the tool radius to avoid damage occurring to the opposite
side of the groove wall.

Note

OFFN acts differently with TRACYL than it does without TRACYL. Since, even without
TRACYL, OFFN is included when TRC is active, OFFN should be reset to zero after TRAFOOF.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 677

NOTICE

Effect of OFFN depends on the transformation type

For TRACYL transformation 513 (TRACYL with groove side offset), half the groove width is
programmed for OFFN.

For TRACYL transformation 512 (TRACYL with groove side offset), the value of OFFN acts as
an allowance for the TRC.

Tool radius compensation (TRC)
For TRACYL transformation 513, the TRC is not taken into account relative to the groove side,
but to the programmed center of the groove. In order that the tool travels to the left of the groove
side, statement G42 must be programmed instead of G41 or the value of OFFN specified with
a negative sign.

Tool diameter
With TRACYL and a tool whose diameter is less than the groove width, the same groove side
geometry is not generated as with a tool whose diameter is the same as the groove width. To
improve the precision, it is recommended that the tool diameter is selected to be only slightly
less than the groove width.

Axis utilization

Note

The following axes cannot be used as a positioning axis or a reciprocating axis:
● The geometry axis in the peripheral direction of the cylinder peripheral surface (Y axis).
● The additional linear axis for groove side compensation (Z axis).

3.9.8.3 Oblique plunge-cutting on grinding machines (G5, G7)
The G commands G7 and G5 are used to simplify programming of oblique plunge-cutting on
grinding machines with "inclined axis (TRAANG)", so that when plunge cutting, only the inclined
axis is traversed.

Only the required end position of the plunge-cutting motion has to be programmed in X and Z.
For G7, starting from the actual position of the X axis, the NC calculates and approaches the
programmed end position and angle α of the inclined axis.

The starting position is calculated from the point where the two straight lines intersect:

● Straight line parallel to the Z axis, at a distance from the actual position of the X axis

● Straight line parallel to the inclined axis through the programmed end position

With the subsequent G5, the inclined axis is traversed to the programmed end position.

Syntax

G7 <Endpos_X> <Endpos_Z>

Work preparation
3.9 Transformations

NC programming
678 Programming Manual, 06/2019, A5E47437142B AA

G5 <Endpos_X>

Meaning

G7: Calculate the starting position for the oblique plunge-cutting and approach.
G5: Traverse the inclined axis to the programmed end position
<Endpos_X>: X axis end position
<Endpos_Z>: End position of the Z axis

Example

① Grinding wheel
② Workpiece
③ Parallel to the inclined axis through the programmed end position
④ Starting position
⑤ Plunge-cutting: Starting position
⑥ Plunge-cutting: End position
⑦ Parallel to the Z axis, at a distance from the actual position of the X axis
X Geometry axis
Z Geometry axis
ZM Machine axis
UM Machine axis

Figure 3-5 Programming an inclined axis

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 679

Program code Comment
N... G18 ; Select XZ plane.
N40 TRAANG (45.0) ; Activate TRAANG transformation, angle = 45°
N50 G7 X40 Z70 F4000 ; Calculate the starting position and approach
N60 G5 X40 F100 ; Traverse inclined axis to the end position.
N70 ...

3.9.9 Cartesian PTP travel

3.9.9.1 Activating/deactivating Cartesian PTP travel (PTP, PTPG0, PTPWOC, CP)
The Cartesian point-to-point or PTP travel is activated/deactivated in the NC program using G
group 49 commands.

The commands are modal. The default setting is travel with Cartesian path motion (CP).

Contrary to CP, for active PTP travel, only the Cartesian target point is transformed, and the
machine axes are traversed in synchronism.

In order that the Cartesian target point can be uniquely converted into machine axis values, in
addition to position and angular data, information is also necessary that identifies the axis
positions. This data is retrieved from the adjustable addresses STAT (Page 681) andTU
(Page 685).

Precondition
Transformation TRAORI, TRANSMIT, RCTRA or ROBX is active.

Syntax

PTP / PTPG0 / PTPWOC
...
CP

Meaning

PTP: Activating point-to-point motion PTP
The programmed Cartesian position in G0 and G1 blocks is approached with synchro‐
nous axis motion.

PTPG0: Activating point-to-point motion PTPG0
Only in G0 blocks is the programmed Cartesian position approached with synchronous
axis motion. In G1 blocks, a switchover is made to CP path motion.

Work preparation
3.9 Transformations

NC programming
680 Programming Manual, 06/2019, A5E47437142B AA

PTPWOC: Activate point-to-point movement PTPWOC (only possible if orientation transformation
is active)
Just the same as PTP, however, without any compensatory motion, which is caused by
motion of rotary axes and orientation axes.

CP: Deactivating point-to-point motion and activating path motion CP
Cartesian path motion is executed with CP.

Note
PTPWOC

It does not make any sense to use PTPWOC in combination with a RCTRA or ROBX
transformation!

Examples
See:

● Example 1: PTP travel of a 6-axis robot with ROBX transformation (Page 688)

● Example 2: PTP travel for generic 5-axis transformation (Page 689)

● Example 3: PTPG0 and TRANSMIT (Page 690)

3.9.9.2 Specify the position of the joints (STAT)
Position data with Cartesian coordinates and specification of the tool orientation are not
sufficient to uniquely identify the machine position, as several joint positions are possible for the
same tool orientation. Depending on the kinematics involved, there can be as many as 8
different joint positions. These different joint positions are transformation-specific.

In an order to avoid any ambiguity, the joint positions are specified under the STAT address.

Note

The control takes into account programmed STAT values only for PTP motions. They are
ignored with CP motions because a change of position is not normally possible while traversing
with an active transformation. When traversing with active CP, the position for the target point
is taken from the starting point.

Syntax
STAT=<Value>

Meaning

STAT: Adjustable address to specify joint positions
<Value>: Binary or decimal value

Contains one bit for each possible position. The significance of the bits is defined by the
particular transformation.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 681

The use of STAT is to be illustrated by the example of a 6-axis articulated robot with milling
spindle. The kinematic transformation is to be realized using the ROBX robot transformation
(precondition: Compile cycle "RMCC/ROBX Transformation Extended Robotics" is loaded and
active).

Axes A1, A2 and A3 are the main axes of the articulated robot. The axes A4, A5 and A6, which
are also designated as head or hand/wrist axes, are positioned in the working area with the
main axes. The additional motion options of the hand/wrist axes enable the milling spindle to be
orientated in space as required for the particular machining task. Various articulated joint
positions are possible to achieve the same tool orientation.

Work preparation
3.9 Transformations

NC programming
682 Programming Manual, 06/2019, A5E47437142B AA

The articulated joint positions required for machining are selected by programming bit 0 ... 2 of
the adjustable STAT address:

Bit 0 Position of the intersection points of the hand/wrist axes (A4, A5, A6)
= 0 Basic range (shoulder right)

The robot is in the basic range if the X value
of the intersection point of the hand/wrist ax‐
es is positive in relation to to the A1 coordi‐
nate system.

Example: The intersection point of
the hand/wrist axes lies in the basic
range

= 1 Overhead range (shoulder left)
The robot is in the overhead range if the X
value of the intersection point of the hand/
wrist axes is negative in relation to the A1
coordinate system.

Bit 1 Position of axis 3
The angle at which the value of bit 1 changes depends on the particular robot type. The
following applies to robots whose axes 3 and 4 intersect:
= 0 A3 <0° (elbow down)
= 1 A3 ≥0° (elbow up)
Note:
For robots with an offset between axes 3 and 4, the
angle at which the value of bit 1 changes depends on
the magnitude of this offset.

Offset between A3 and A4
Bit 2 Position of axis 5

= 0 A5 ≥0° (no handflip)
= 1 A5 <0° (handflip)

Program example:

Program code Comment
...
N14 T="T8MILLD20" D1 ; $TC_DP3[1,1]=132.95

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 683

Program code Comment
N16 ORIMKS
N17 G1 PTP X1665.67 Y0 Z1377.405 A=0 B=0 C=0 STAT=... F2000 ; The STAT value defines

the articulated joint
positions (see below)

...

STAT=1 ('B001') → Shoulder left
→ Elbow down
→ No handflip

STAT=2 ('B010') → Shoulder right
→ Elbow up
→ No handflip

STAT=5 ('B101') → Shoulder left
→ Elbow down
→ Handflip

Work preparation
3.9 Transformations

NC programming
684 Programming Manual, 06/2019, A5E47437142B AA

STAT=6 ('B110') → Shoulder right
→ Elbow up
→ Handflip

TRANSMIT
For TRANSMIT, the STAT address is used to initiate the equivocality regarding the pole.

The following applies if the rotary axis must rotate through 180º or the contour for CP would go
through the pole:

Bit 0 Only relevant for $MC_TRANSMIT_POLE_SIDE_FIX_1/2 = 1 or 2:
= 0 Rotary axis traverses through +180º or rotates clockwise.
= 1 Rotary axis rotates through -180º or rotates counterclockwise.

Bit 1 Only relevant for $MC_TRANSMIT_POLE_SIDE_FIX_1/2 = 0:
= 0 The axis traverses through the pole. The rotary axis does not rotate.
= 1 The axis rotates around the pole. Bit 0 of STAT is relevant.

3.9.9.3 Specify the sign of the axis angle (TU)
In order that rotary axes can also approach axis angles exceeding +180° or less than -180°
without requiring a special traversing strategy (e.g. intermediate point), the sign of the axis
angle must be specified under the adjustable address TU.

Note

The control only takes into account programmed TU values for PTP motion. CP motion is
ignored.

Syntax
TU=<Value>

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 685

Meaning

TU: Adjustable address to specify axis angle signs
<Value>: Binary or decimal value

For each axis that is involved in the transformation, there is a bit that indicates the sign
of the axis angle (θ), and therefore the traversing direction.
Bit = 0 Axis angle sign: + Axis angular range: 0° ≤ θ < 360°

= 1 Axis angle sign: - Axis angular range: - 360° < θ < 0°

Example: 6-axis articulated robot

Bit Meaning Value Axis angle
sign

Axis angle

Bit 0 1) Sign for the axis angle of A1 = 0 + ≥ 0°
= 1 - < 0°

Bit 1 1) Sign for the axis angle of A2 = 0 + ≥ 0°
= 1 - < 0°

Bit 2 1) Sign for the axis angle of A3 = 0 + ≥ 0°
= 1 - < 0°

Bit 3 1) Sign for the axis angle of A4 = 0 + ≥ 0°
= 1 - < 0°

Bit 4 1) Sign for the axis angle of A5 = 0 + ≥ 0°
= 1 - < 0°

Work preparation
3.9 Transformations

NC programming
686 Programming Manual, 06/2019, A5E47437142B AA

Bit Meaning Value Axis angle
sign

Axis angle

Bit 5 1) Sign for the axis angle of A6 = 0 + ≥ 0°
= 1 - < 0°

1) The actual TU bit numbers obtained from the channel axis numbers of the robot axes! In the example,
robot axes (A1 to A6) are the first six axes in the channel; as a consequence, TU bits 0 ... 5 are used.
For another channel axis assignment of the robot axes, the TU bit numbers of the robot axes would
correspondingly change (e.g.: robot axes are the 3rd to 8th channel axis, i.e. TU bits 2 ... 7 are used
for the robot axes).

TU=19 (corresponds to TU='B010011) would therefore signify:

Bit Value Axis angle
0 = 1 ① θA1 < 0°
1 = 1 ① θA2 < 0°
2 = 0 ① θA3 ≥ 0°
3 = 0 ① θA4 ≥ 0°
4 = 1 ① θA5 < 0°
5 = 0 ① θA6 ≥ 0°

Note

In the case of axes with a traversing range > ±360°, the axis always moves along the shortest
path because the axis position cannot be specified uniquely by the TU information.

If no TU is programmed for a position, then depending on MD30455
$MA_MISC_FUNCTION_MASK, the shorter or longer path is traversed (see Chapter "Taking
into account the software limits for PTP travel" in the Extended Functions Function Manual).

TRANSMIT
For PTP travel with TRANSMIT active, the address of TU has no meaning!

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 687

Example
The rotary axis position shown in the following diagram can be approached in the negative or
positive direction. The angular position is programmed under address A1. The traversing
direction is only absolutely clear when TU is specified.

3.9.9.4 Example 1: PTP travel of a 6-axis robot with ROBX transformation
In the following application example, Cartesian PTP travel and the associated NC commands
are shown in the form of an example.

Figure 3-6 6-axis articulated robot with milling spindle

N1 G90
N2 T=“T8MILLD20“ D1 M6
N3 TRAORI
;$P_UIFR[1]=CTRANS(X,1500,Y,0,Z,400):CROT(X,0,Y,0,Z,-90)
N4 G54
N5 M3 S20000
N6 ORIWKS
N7 ORIVIRT1
N8 CYCLE832(0.01,_FINISH,1)
;HOME
N9 TRAFOOF
N10 G0 RA1=0.0000 RA2=-90.0000 RA3=90.0000 A=0.0000 B=90.0000 C=0.0000
N11 TRAORI

Work preparation
3.9 Transformations

NC programming
688 Programming Manual, 06/2019, A5E47437142B AA

N12 G54
N13 G0 PTP X1369.2426 Y956.7528 Z502.5517 A=135.5761 B=-33.2223
C=161.1435 STAT='B010' TU='B001011'
N14 G0 X1355.1242 Y1014.9394 Z424.9695 A=135.8491 B=-33.1439
C=160.9941 STAT='B010' TU='B001011'
N15 G1 CP X1354.8361 Y1016.1269 Z423.3862 A=136.0635 B=-33.0819 C=160.8770
F1000
N16 G1 X1336.4283 Y1016.1269 Z426.6311 A=136.0484 B=-32.2151 C=160.9643
F2000
N17 G1 X1317.9831 Y1016.1269 Z429.6730 A=136.0175 B=-31.3394 C=161.0655
;HOME
N18 TRAFOOF
N19 G0 RA1=0.0000 RA2=-90.0000 RA3=90.0000 A=0.0000 B=90.0000 C=0.0000
N20 M30

3.9.9.5 Example 2: PTP travel for generic 5-axis transformation
Assumption: Right-angled CA kinematics used as basis.

Program code Comment
TRAORI ;Transformation CA kinematics ON
PTP ; Activate PTP traversal
N10 A3=0 B3=0 C3=1 ; rotary axis positions C=0 A=0
N20 A3=1 B3=0 C3=1 ; rotary axis positions C=90 A=45
N30 A3=1 B3=0 C3=0 ; rotary axis positions C=90 A=90
N40 A3=1 B3=0 C3=1 STAT=1 ; rotary axis positions C=270 A=–45

Select clear approach position of rotary axis position:

In block N40, the rotary axes – as a result of the programming of STAT=1 – travel the longer
distance from their start point (C=90, A=90) to the end point (C=270, A=–45). On the other
hand, with STAT=0, the rotary axes would travel along the shortest path to the end point (C=90,
A=45).

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 689

3.9.9.6 Example 3: PTPG0 and TRANSMIT

Traversing around the pole with PTPG0 and TRANSMIT

PTP

CP

Program code Comment
N001 G0 X30 Z0 F10000 T1 D1 G90 ;Initial setting absolute dimension
N002 SPOS=0
N003 TRANSMIT ;TRANSMIT transformation
N010 PTPG0 ; for each G0 block, automatically PTP –

and then CP again.
N020 G0 X30 Y20
N030 X-30 Y-20
N120 G1 X30 Y20
N110 X30 Y0
M30

Work preparation
3.9 Transformations

NC programming
690 Programming Manual, 06/2019, A5E47437142B AA

Traversing from the pole with PTPG0 and TRANSMIT

N070 X20 Y2

10

10

20

20-10-20-30

-10

-20

-30

N060 X0 Y0

N050 X10 Y0

PTP

CP 30

30

Programming Comment
N001 G0 X90 Z0 F10000 T1 D1 G90 ;Initial setting
N002 SPOS=0
N003 TRANSMIT ;TRANSMIT transformation
N010 PTPG0 ; for each G0 block, automatically PTP –

and then CP again.
N020 G0 X90 Y60
N030 X-90 Y-60
N040 X-30 Y-20
N050 X10 Y0
N060 X0 Y0
N070 X-20 Y2
N170 G1 X0 Y0
N160 X10 Y0
N150 X-30 Y-20
M30

3.9.10 Constraints when selecting a transformation

Function
Transformations can be selected via a part program or MDA. Please note:

● No intermediate movement block is inserted (chamfer/radii).

● Spline block sequences must be excluded; if not, a message is displayed.

● Fine tool compensation must be deselected (FTOCOF); if not a message is displayed.

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 691

● Tool radius compensation must be deselected (G40); if not a message is displayed.

● An activated tool length offset is included in the transformation by the control.

● The control deselects the current frame active before the transformation.

● The control deselects an active operating range limit for axes affected by the transformation
(corresponds to WALIMOF).

● Protection zone monitoring is deselected.

● Continuous path control and rounding are interrupted.

● All the axes specified in the machine data must be synchronized relative to a block.

● Axes that are exchanged are exchanged back; if not, a message is displayed.

● A message is output for dependent axes.

Tool change
Tools may only be changed when the tool radius compensation function is deselected.

A change in tool length offset and tool radius compensation selection/deselection must not be
programmed in the same block.

Frame change
All statements, which refer exclusively to the base coordinate system, are permissible
(FRAME, tool radius compensation). However, a frame change with G91 (incremental
dimension) – unlike with an inactive transformation – is not handled separately. The increment
to be traveled is evaluated in the workpiece coordinate system of the new frame – regardless
of which frame was effective in the previous block.

Exceptions
Axes affected by the transformation cannot be used

● as a preset axis (alarm),

● for approaching a checkpoint (alarm),

● for referencing (alarm).

3.9.11 Deselecting a transformation (TRAFOOF)
The predefined TRAFOOF procedure deactivates all active transformations and frames.

Note

For deselecting the transformation, the same secondary conditions (Page 691) apply as for
selecting.

Frames required after this must be activated by renewed programming.

Work preparation
3.9 Transformations

NC programming
692 Programming Manual, 06/2019, A5E47437142B AA

Syntax

...
TRAFOOF

Meaning

TRAFOOF: Deactivating all active transformations/frames

Work preparation
3.9 Transformations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 693

3.10 Kinematic chains

3.10.1 Deletion of components (DELOBJ)
The DELOBJ() function "deletes" components by resetting the assigned system variables to
their default values:

● Elements from kinematic chains

● Protection areas, protection area elements and collision pairs

● Transformation data

Syntax
[<RetVal>=] DELOBJ(<CompType>[,,,<NoAlarm>)])
[<RetVal>=] DELOBJ(<CompType>,<Index1>[,,<NoAlarm>])
[<RetVal>=] DELOBJ(<CompType>[,<Index1>][,<Index2>][,<NoAlarm>])

Work preparation
3.10 Kinematic chains

NC programming
694 Programming Manual, 06/2019, A5E47437142B AA

Meaning

DELOBJ: Deletion of elements from kinematic chains, protection areas, protection area ele‐
ments, collision pairs and transformation data

<CompType>: Component type to be deleted
Data type: STRING
Value: "KIN_CHAIN_ELEM"
Meaning: System variables of all kinematic elements: $NK_...
Value: "KIN_CHAIN_SWITCH"
Meaning: System variable $NK_SWITCH[<i>]
Value: "KIN_CHAIN_ALL"
Meaning: All kinematic elements and switches.
Is the same as the successive call of DELOBJ with "KIN_CHAIN_ELEM" and
"KIN_CHAIN_SWITCH"
Value: "PROT_AREA"
Meaning: System variables of the protection areas:
● $NP_PROT_NAME
● $NP_CHAIN_NAME
● $NP_CHAIN_ELEM
● $NP_1ST_PROT
Value: "PROT_AREA_ELEM"
Meaning: System variables of the protection area elements of machine protection
areas and/or automatic tool protection areas:
● $NP_NAME
● $NP_NEXT
● $NP_NEXTP
● $NP_COLOR
● $NP_D_LEVEL
● $NP_USAGE
● $NP_TYPE
● $NP_FILENAME
● $NP_PARA
● $NP_OFF
● $NP_DIR
● $NP_ANG
Value: "PROT_AREA_COLL_PAIRS"
Meaning: System variables of the collision pairs:
● $NP_COLL_PAIR
● $NP_SAFETY_DIST
Value: "PROT_AREA_ALL"
Meaning: All protection areas, protection area elements and collision pairs (system
variable $NP_...)
Is the same as the successive call of DELOBJ with "PROT_AREA,"
"PROT_AREA_ELEM," and "PROT_AREA_COLL_PAIRS"
Value: "TRAFO_DATA"
Meaning: System variables of all transformations $NT_...

Work preparation
3.10 Kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 695

<Index1>: Index of the first component to be deleted (optional)
Data type: INT
Default value: -1
Range of val‐
ues:

-1 ≤ x ≤ (maximum number of configured components -1)

Value Meaning
0, 1, 2, Index of the component to be deleted.

-1 All components of the specified type are deleted. <Index2> is not
evaluated.

<Index2>: Index of the last components to be deleted (optional)
If <Index2> is not programmed, only the system variables of the component refer‐
enced in <Index1> are deleted.
Data type: INT
Default value: Only the system variables of the component referenced in <In‐

dex1> are deleted.
Range of val‐
ues:

<Index1> < x ≤ (max. number of configured components -1)

<NoAlarm>: Alarm suppression (optional)
Data type: BOOL
Default value: FALSE

Value Meaning
FALSE In the event of an error (<RetVal> < 0), program processing is

stopped and an alarm displayed.
TRUE In the event of an error, the program processing is not stopped and

no alarm displayed.
Application: User-specific reaction corresponding to the return
value

<RetVal>: Function return value
Data type: INT
Range of val‐
ues:

0, -1, -2, ... -7

Value Meaning
0 No error occurred.
-1 Call of the function without parameters. At least parameter

<CompType> must be specified.
-2 <CompType> identifies an unknown component
-3 <Index1> is less than -1
-4 <Index1> is greater than the configured number of components
-5 <Index1> has a value not equal to -1 when deleting a compo‐

nent group
-6 <Index2> is less than <Index1>
-7 <Index2> is greater than the configured number of components

Work preparation
3.10 Kinematic chains

NC programming
696 Programming Manual, 06/2019, A5E47437142B AA

3.10.2 Index determination by means of names (NAMETOINT)
User-specific names are entered in the system variable arrays of type STRING. Based on the
identifier of the system variables and the name, the NAMETOINT() function determines the
index value belonging to the name under which it is stored in the system variable array.

Syntax
<RetVal> = NAMETOINT(<SysVar>,<Name>[,<NoAlarm>])

Meaning

NAMETOINT: Determining the system variable index
<SysVar>: Name of the system variable array of typeSTRING

Data type: STRING
Range of val‐
ues:

Name of all NC system variable arrays of type STRING

<Name>: Character string or name for which the system variable index is to be determined.
Data type: STRING

<NoAlarm>: Alarm suppression (optional)
Data type: BOOL
Default value: FALSE

Value Meaning
TRUE In the event of an error, the program processing is not stopped and

no alarm displayed.
Application: User-specific reaction corresponding to the return
value

FALSE In the event of an error (<RetVal> < 0), program processing is
stopped and an alarm displayed.

<RetVal>: System variable index or error message

Data type: INT
Range of val‐
ues:

 -1 ≤ x ≤ (max. number of configured components -1)

Value Meaning
≥ 0 The sought name has been found under the specified system

variable index.
-1 The sought name has not been found or an error has occurred.

Example

Program code Comment
DEF INT INDEX
$NP_PROT_NAME[27]="Cover"
...
INDEX = NAMETOINT("$NP_PROT_NAME","Cover") ; INDEX == 27

Work preparation
3.10 Kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 697

3.11 Collision avoidance with kinematic chains

Note
Protection areas

The protection areas specified in the following chapters refer to the "Geometric machine
modeling" function.

References:
Monitoring and Compensation Function Manual, Chapter "Geometric Machine Modeling"

3.11.1 Check for collision pair (COLLPAIR)
The COLLPAIR() function determines whether two protection areas form a collision pair.

Syntax
[<RetVal> =] COLLPAIR(<Name_1>,<Name_2>[,<NoAlarm>)])

Meaning

COLLPAIR: Check whether part of a collision pair
<RetVal>: Function return value

Data type: INT
Value:

≥ 0 The two protection zones form a collision pair.
Return value == collision pair index m (see
$NP_COLL_PAIR)

-1 Either two strings have not been specified or at least
one of the two is the zero string.

-2 The protection zone specified in the first parameter has
not been found.

-3 The protection zone specified in the second parameter
has not been found.

-4 Neither of the two specified protection zones has been
found.

-5 Both specified protection zones have been found, but
not together in a collision pair.

<Name_1>: Name of the first protection zone
Data type: STRING
Range of val‐
ues:

Parameterized protection zone names

<Name_2>: Name of the second protection area
Data type: STRING
Range of val‐
ues:

Parameterized protection zone names

Work preparation
3.11 Collision avoidance with kinematic chains

NC programming
698 Programming Manual, 06/2019, A5E47437142B AA

<NoAlarm>: Alarm suppression (optional)
Data type: BOOL
Value: FALSE (Default)

In the event of an error (<RetVal> < 0), the
program processing is stopped and an alarm
displayed.

TRUE In the event of an error, the program process‐
ing is not stopped and no alarm displayed.
Application: User-specific reaction corre‐
sponding to the return value

3.11.2 Request recalculation of the machine model of the collision avoidance (PROTA)
If system variables of the kinematic chain $NK_..., the geometric machine modeling or the
collision avoidance $NP_... are written in the part program, the PROTA procedure must
subsequently be called so that the change becomes effective in the NC-internal machine model
of the collision avoidance.

Syntax
PROTA[(<Par>)]

Meaning

PROTA: Request recalculation of the machine model of the collision avoidance
● Triggers a preprocessing stop.
● Must be alone in the block.

<Par>: Parameter (optional)
Data type: STRING
Value: --- No parameters.

The machine model is recalculated. The states of the pro‐
tection areas are retained.

"R" The machine model is recalculated. The protection areas
are set to their initialization status corresponding to
$NP_INIT_STAT.

Supplementary conditions

Simulation
The PROTA procedure must not be used in part programs in conjunction with the simulation
(simNC).

Example: Avoiding the PROTA call while the simulation is active.

Program code Comment
...
IF $P_SIM == FALSE ; IF simulation not active

Work preparation
3.11 Collision avoidance with kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 699

Program code Comment
 PROTA THEN recalculate collision model
ENDIF ; ENDIF
...

See also
Setting the protection zone status (PROTS) (Page 700)

3.11.3 Setting the protection zone status (PROTS)
The PROTS() procedure sets the state of protection areas to the specified value.

Syntax
PROTS(<State>[,<Name_1>,...,<Name_n>])

Meaning

PROTS: Sets the state of protection areas
● Must be alone in the block.

<State>: Status to which the specified protection zones are to be set
Data type: CHAR
Value: "A"or "a" Status: Active

"I"or "i" Status: Inactive
"P"or "p" Status: Preactivated or PLC-controlled 1)

"R"or "r" Status: NC-internal value of the initialization
status 2)

<Name_1> ...
<Name_n>:

Name of one or more protection areas that are to be set to the specified status
(optional)
If no name is specified, the specified status is set for all defined protection zones.
Data type: STRING
Range of values: Parameterized protection zone names
Note
The maximum number of protection areas that can be specified as parameters
depends only on the maximum possible number of characters per program line.

1) The activation/deactivation is performed via: DB10.DBX234.0 - DBX241.7
2) The status is set to the NC-internal value of the initialization status, i.e. to the value that the system
variable $NP_INIT_STAT had at the time of the last PROTA() (Page 699) call.

3.11.4 Determining the clearance of two protection zones (PROTD)
The PROTD() function calculates the clearance of two protection areas.

Work preparation
3.11 Collision avoidance with kinematic chains

NC programming
700 Programming Manual, 06/2019, A5E47437142B AA

Function properties:

● The clearance calculation is performed independent of the protection area status (activated,
deactivated, preactivated).

● To calculate the clearance of two protection areas, only protection area elements are used,
which are marked with $NP_USAGE = "C" or "A". Protection area elements of the protection
area, which are marked with $NP_USAGE = "V", are not taken into consideration.

● Protection areas, where all protection area elements of the protection area are marked with
$NP_USAGE = "V", cannot be used for the clearance calculation.

● The clearance calculation is performed with the positions valid at the end of the previous
block.

● Overlays that are included in the main run calculation (e.g. DRF offset or external zero
offset) are included in the clearance calculation with the values valid at the
function interpretation time.

Note
Synchronization

When using the PROTD() function, it is the sole responsibility of the user to synchronize the
main run and preprocessing, if required, with the STOPRE preprocessing stop.

Collision
If there is a collision between the specified protection areas, the function returns a clearance of
0.0. There is a collision if both the protection areas touch or intersect each other.

The safety clearance for the collision check (MD10622 $MN_COLLISION_SAFETY_DIST) is
not taken into account in the clearance calculation.

Syntax
[<RetVal> =] PROTD([<Name_1>],[<Name_2>],VAR <Vector>[,<System>])

Meaning

PROTD: Calculates the clearance of the two specified protection areas.
● Must be alone in the block.

<RetVal>: Function return value: Absolute clearance value of the two protection areas or 0.0
with collision (see above: Collision paragraph)
Data type: REAL
Range of values: 0.0 ≤ x ≤ +max. REAL value

<Name_1>,
<Name_2>:

Names of the two protection areas whose clearance is to be calculated (optional)
Data type: STRING
Range of values: Parameterized protection area names
Default value: "" (empty string)

If no protection areas have been specified, the function calcu‐
lates the current smallest clearance from all the activated and
preactivated protection areas in the collision model.

Work preparation
3.11 Collision avoidance with kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 701

<Vector>: Return value: 3-dimensional clearance vector from protection area <Name_2> to
protection area <Name_1> with:
● <Vector>[0]: X coordinate in the world coordinate system
● <Vector>[1]: Y coordinate in the world coordinate system
● <Vector>[2]: Z coordinate in the world coordinate system
For collision: <Vector> == zero vector
Data type: VAR REAL [3]
Range of values: <Vector> [n]: 0.0 ≤ x ≤ ±max. REAL value

<System>: Measuring system (inch/metric) for clearance and clearance vector (optional)
Data type: BOOL
Value: FALSE (Default) Measuring system corresponding to the cur‐

rently active G command from G group 13
(G70, G71, G700, G710).

TRUE Measuring system corresponding to the set
basic system:
MD52806 $MN_ISO_SCALING_SYSTEM

Work preparation
3.11 Collision avoidance with kinematic chains

NC programming
702 Programming Manual, 06/2019, A5E47437142B AA

3.12 Transformation with kinematic chains

3.12.1 Activating a transformation (TRAFOON)
A transformation defined with kinematic chains is activated with the predefined TRAFOON
procedure. The call must be alone in a block.

Note

Alternatively, a transformation defined with kinematic chains can also be activated via
conventional NC commands, such as TRAORI or TRANSMIT. For this purpose, an appropriate
value, not equal to zero, must be entered in the $NT_TRAFO_INDEX system variable.

For further information on $NT_TRAFO_INDEX see "System Variables List Manual".

Syntax
TRAFOON(<Trafoname>,<Diameter>,<k>)

Meaning

TRAFOON: Procedure for activating a transformation defined with kinematic chains
<Trafoname>: Name of the transformation data set

Data type: STRING
Range of val‐
ues:

All names of transformation data sets defined via $NK_NAME

Note:
The name of the transformation data set must be unique. It must only occur once
in $NT_NAME.

<Diameter>: Reference or working diameter (TRACYL only)
Data type: REAL
The value must be > 1.

<k>: Defines the use of the groove side offset (TRACYL only).
Data type: BOOL
Value:

FALSE Without groove side offset
TRUE With groove side offset

Corresponds to the TRACYL transformation type 514 (groove side offset can be
programmed). If <k> is not specified, the parameterized setting of bit 10 in
$NT_CNTRL[<n>] applies.

Example

Program code Comment
TRAFOON["Trans_1"] Activates the transformation with the name Trans_1.

Work preparation
3.12 Transformation with kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 703

3.12.2 Modifying the orientation transformation after the machine measurement
(CORRTRAFO)

For machines with orientation transformations that were defined by means of kinematic chains,
the user can use the predefined CORRTRAFO function in order to modify the offset vectors or
the direction vectors of the orientation axes in the kinematic model of the machine after a
machine measurement.

Note

The correction values written with the CORRTRAFO function are not immediately effective in
the transformation. The correction values do not become effective until after a transformation
deselection, NEWCONF and transformation selection.

Syntax
<Corr_Status> = CORRTRAFO(<Corr_Vect>, <Corr_Index>, <Corr_Mode>,
[<No_Alarm>])

Work preparation
3.12 Transformation with kinematic chains

NC programming
704 Programming Manual, 06/2019, A5E47437142B AA

Meaning

CORRTRAFO: Function call

Work preparation
3.12 Transformation with kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 705

<Corr_Status>: Function return value
Data type: INT
Values: 0 The function was executed without an error.

1 No transformation is active.
2 The currently active transformation is not an orientation trans‐

formation.
3 The active orientation transformation was not defined with kin‐

ematic chains.
10 The <Corr_Index> call parameter is negative.
11 The <Corr_Mode> call parameter is negative.
12 Invalid reference to a section of a subchain (units position

of <Corr_Index>). The value must not be greater than the
number of orientation axes in the subchain.

13 Invalid reference to the orientation axis of a subchain (units
position of <Corr_Index>). The value must be less than the
number of orientation axes in the subchain.

14 Invalid reference to a subchain (tens position
of <Corr_Index>). Only the values 0 and 1 are permissible
(reference to part or tool chain). This error number occurs if the
subchain to which <Corr_Index> refers does not exist.

15 There is no correction element in the section referred to with
the <Corr_Index> parameter ($NT_CORR_ELEM_P or
$NT_CORR_ELEM_T).

20 Invalid correction mode (units position of <Corr_Mode>). Only
the values 0 and 1 are permissible.

21 Invalid correction mode (tens and/or hundreds position
of <Corr_Mode>). Only the units position can be not equal to
zero when writing an axis direction.

30 The hundreds position of <Corr_Mode> is invalid. Only the
values 0 and 1 are permissible.

31 The thousands position of <Corr_Mode> is invalid. Only the
values 0 and 1 are permissible.

40 The direction vector that is to be taken as axis direction is the
zero vector. This error can only happen if the thousands posi‐
tion of <Corr_Mode> is equal to 0. If the thousands position of
this parameter is equal to 1 (monitoring of the maximum cor‐
rection deactivated), the zero vector can also be written.

41 For the correction of an offset vector, the difference to the cur‐
rent value in at least one coordinate is greater than the maxi‐
mum value specified by the setting data SD41610
$SN_CORR_TRAFO_LIN_MAX. The <Corr_Vect> parame‐
ter will be overwritten by an error vector. This also applies when
the processing is aborted with alarm (see <No_Alarm> pa‐
rameter).
In the components whose correction value has exceeded the
permissible limit, the error vector has the difference, with the
correct sign, between the determined correction value and the
limit.
The content of the components that have not exceeded their
limit is zero.

Work preparation
3.12 Transformation with kinematic chains

NC programming
706 Programming Manual, 06/2019, A5E47437142B AA

42 For the correction of a direction vector, the angular displace‐
ment compared to the current direction is greater than the
maximum value specified by the setting data SD41611
$SN_CORR_TRAFO_DIR_MAX.

43 The attempt to write a system variable was rejected because of
missing write rights.

<Corr_Vect>: Correction vector
The content of the correction vector is defined by the following parameters
<Corr_Index> and <Corr_Mode>.
If <Corr_Status> = 41, the content of the vector is overwritten (see above).
Data type: REAL

<Corr_Index>: Section whose correction element is to be modified /
index of the orientation axis whose direction vector is to be modified
Data type: INT
The <Corr_Index> parameter is decimal coded (units to tens position):
Units
position:

Contains the index of the section or the orientation axis in the sub‐
chain.

Tens
position:

Refers to the subchain.
0x Workpiece chain
1x Tool chain

Work preparation
3.12 Transformation with kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 707

<Corr_Mode>: Correction mode
Data type: INT
The <Corr_Index> parameter is decimal coded (units to thousands position):
Units
position:

Specifies which element is to be corrected.
xxx0 Correction of a linear offset vector
xxx1 Correction of the direction vector of an orientation axis

Tens
position:

Specifies how the correction element to which the content
of <Corr_Index> refers, is to be modified.

xx0x The correction vector is written immediately to the correc‐
tion element.
This variant can be used to immediately write the correction
element without the index <n> of the relevant system data
($NK_OFF_DIR[<n>, ...]) having to be known.

xx1x As 0, but with the difference that the transferred correction
value is interpreted in world coordinates.
A difference between variants 0 and 1 can always occur
when the kinematic chain in the initial state (positions of all
orientation axes equal to 0) contains other rotations.

xx2x As 1, but with the difference that the correction value refers
to the entire section, i.e. a value is entered in the correction
element so that the entire section reaches the length de‐
fined by the correction value.

Note:
The values 1 and 2 are not permissible when writing the direction
vector of an orientation axis.

Hundreds
position:

Specifies how the content of the <Corr_Vect> parameter is to be
interpreted.

x0xx The transferred correction vector <Corr_Vect> contains
the entire new length of the correction element or the sec‐
tion to which the <Corr_Index> in conjunction with the
tens position of <Corr_Mode> refers (absolute correction).

x1xx The transferred correction vector <Corr_Vect> only con‐
tains the difference compared to the current length of the
correction element or the section to which
the <Corr_Index> in conjunction with the tens position
of <Corr_Mode> refers (incremental correction).

Note:
For the correction of the direction vector of an orientation axis, the
content of the hundreds position must be 0.

Thou‐
sands
position:

Specifies whether the correction is to be limited by the following
maximum value:
● SD41610 $SN_CORR_TRAFO_LIN_MAX

or
● SD41611 $SN_CORR_TRAFO_DIR_MAX

0xxx Monitoring of the maximum correction is active.
1xxx Monitoring of the maximum correction is not active.

Work preparation
3.12 Transformation with kinematic chains

NC programming
708 Programming Manual, 06/2019, A5E47437142B AA

<No_Alarm>: Behavior in the event of an error (return value > 0) (optional)
Data type: BOOL
Value: FALSE

(default)
In the event of an error, the program processing is stop‐
ped and alarm 14103 is displayed.

TRUE In the event of an error, the program processing is not
stopped and no alarm is displayed.
Application: User-specific reaction corresponding to the
return value

Note

In the event of an error when the function is called, either an alarm is output or an error number
returned (see <No_Alarm> parameter), so that the user can respond in a suitable way to the
error state. The cause of the error is described in more detail through an alarm parameter. An
error number returned instead of an alarm is identical to the alarm parameter.

Further information on CORRTRAFO
The kinematic structure of a machine with orientation transformation is described by one or two
kinematic chains (subchains), starting from the zero point of the world coordinate system. One
of the two chains, the tool chain, ends at the reference point of the tool, the other chain,
the workpiece chain ends in the zero point of the basic coordinate system.

The CORRTRAFO function writes lever arm lengths and axis directions on machines with an
orientation transformation in special correction elements. A kinematic chain is described, for
example, with elements of the type OFFSET, which are defined via $ NK_TYPE.

CORRTRAFO works with sections
The two subchains can each be divided into a maximum of four sections:

● Section 1 begins at the starting point of the chain and ends at the first orientation axis.

● Section 2 is the section between orientation axis 1 and orientation axis 2.

● Section 3 is the section between orientation axis 2 and orientation axis 3.

● Section 4 is the section between orientation axis 3 and the end of the tool or workpiece chain.

Each section may contain constant chain elements of the type OFFSET or ROT_CONST.

The following figure shows an orientation transformation with 2 orientation axes.

Work preparation
3.12 Transformation with kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 709

Figure 3-7 CORRTRAFO example

The sections are clearly defined: If you run through the kinematic subchain from the starting
point to the end point, the first section has the index 0, the next the index 1, and so on. The index
of the last section is then always equal to the number of orientation axes.

Correction elements
A reference can be made to a constant kinematic chain element (chain element of the type
$NK_TYPE[<n>] = "OFFSET") in each section with the $NT_CORR_ELEM_T[<n>, 0 ... 3] or
$NT_CORR_ELEM_P[<n>, 0 ... 3] system variables. The correction values that were
determined during the machine measurement are written to these elements with the
CORRTRAFO function.

Example with transformation index = 1:
● $NT_CORR_ELEM_T[1,0] = "C_AXIS_OFFSET"; Offset of the C axis (orientation axis 1) in

section 1 is defined as correction element.

● $NT_CORR_ELEM_T[1,1] = "B_AXIS_OFFSET"; Offset of the B axis (orientation axis 2) in
section 2 is defined as correction element.

● $NT_CORR_ELEM_T[1,2] = "BASE_TOOL_OFFSET"; Offset of the B axis from the tool
reference point in section 3 is defined as correction element.

The sequence of the references in $NT_CORR_ELEM_T/P[<n>, 0 ... 3] must correspond to the
sections described above, i.e. only one chain element can be in $NT_CORR_ELEM_T/P [<n>,
0] which is before the first orientation axis, etc.

The CORRTRAFO function writes the values determined by measuring the machine into the
correction elements defined in this way. The modification of the correction values is defined in
CORRTRAFO via the <Corr_Mode> parameter.

Closing a chain
If bit 7 or bit 8 are set in the $NT_CNTRL[<n>] system variable, additional constant chain
elements that establish a connection from the end point of the chain to the machine zero point
are automatically inserted internally at the end of the workpiece chain (bit 7) or before the
starting point of the tool chain (bit 8) ("close chain").

These automatically inserted elements cannot be written externally, only read (see the
$AC_TRAFO_CORR_ELEM_P/T system variables).

Work preparation
3.12 Transformation with kinematic chains

NC programming
710 Programming Manual, 06/2019, A5E47437142B AA

Point to close the tool chain
If the $NT_CLOSE_CHAIN_T system variable is not empty, the tool chain is not closed at the
end point of the chain, but rather at the end point of the designated chain element. Other chain
elements that are behind this point result in a corresponding work offset when the
transformation is activated.

Index of an orientation axis
In addition to the constants offsets between the orientation axes, the direction vectors of the
orientation axes can also be written with the CORRTRAFO function. The index of an orientation
axis is the index that results when the kinematic subchain is run through from the origin to the
end, where the count starts at zero. The index of an orientation axis is therefore always the
same as the index of the preceding section.

The index of an orientation axis can also be determined with the $AC_TRAFO_ORIAX_LOC
system variable.

Maximum permissible change of a chain element
The maximum permissible change of a chain element can be limited by the two setting data
SD41610 $SN_CORR_TRAFO_LIN_MAX for offset vectors and SD41611
$SN_CORR_TRAFO_DIR_MAX for direction vectors of the orientation axes. SD41610
$SN_CORR_TRAFO_LIN_MAX specifies the maximum amount by which each individual
vector component can be changed with regard to its reference value. SD41611
$SN_CORR_TRAFO_DIR_MAX specifies the maximum angle by which the direction of the
axis vector can be changed with regard to its reference value. The reference value is always the
corresponding value that is active in the transformation that is active when CORRTRAFO is
called. This means that the changed content of the kinematic data may have no effect on the
method of operation of the CORRTRAFO function after the activation of the transformation.

Work preparation
3.12 Transformation with kinematic chains

NC programming
Programming Manual, 06/2019, A5E47437142B AA 711

3.13 Tool offsets

3.13.1 Offset memory

Structure of the offset memory
Every data field can be called with a T and D number, and contains not only the geometric
specifications for the tool but also further entries, such as the tool type.

User cutting edge data
User cutting edge data can be configured via machine data. Please refer to the machine
manufacturer's instructions.

Tool parameters

Note
Individual values in the offset memory

The individual values of the offset memory P1 to P25 can be read and written by the program
via system variables. All other parameters are reserved.

The tool parameters $TC_DP6 to $TC_DP8, $TC_DP10 and $TC_DP11 as well as $TC_DP15
to $TC_DP17, $TC_DP19 and $TC_DP20 have another meaning depending on tool type.

Tool parameter number (DP) Meaning of system variables Remark
$TC_DP1 Tool type For overview see list
$TC_DP2 Cutting edge position Only for turning tools
Geometry Length compensation
$TC_DP3 Length 1 Allocation to
$TC_DP4 Length 2 Type and level
$TC_DP5 Length 3
Geometry Radius
$TC_DP6 1)

$TC_DP6 2)
Radius 1 / length 1
diameter d

Milling/turning/grinding tool
Slotting saw

$TC_DP7 1)

$TC_DP7 2)
Length 2 / corner radius, tapered milling tool
Slot width b corner radius

Milling tools
Slotting saw

$TC_DP8 1)

$TC_DP8 2)
Rounding radius 1 for milling tools
projecting length k

Milling tools
Slotting saw

$TC_DP9 1) 3) Rounding radius 2 Reserved
$TC_DP10 1) Angle 1 face end of tool Tapered milling tools
$TC_DP11 1) Angle 2 tool longitudinal axis Tapered milling tools
Wear Length and radius compensation
$TC_DP12 Length 1
$TC_DP13 Length 2

Work preparation
3.13 Tool offsets

NC programming
712 Programming Manual, 06/2019, A5E47437142B AA

Tool parameter number (DP) Meaning of system variables Remark
$TC_DP14 Length 3
$TC_DP15 1)

$TC_DP15 2)
Radius 1 / length 1
diameter d

Milling/turning/grinding tool
Slotting saw

$TC_DP16 1)

$TC_DP16 3)
Length 2 / corner radius, tapered milling tool, slot width
b corner radius

Milling tools
Slotting saw

$TC_DP17 1)

$TC_DP17 2)
Rounding radius 1 for milling tools
projecting length k

Milling / 3D face milling
Slotting saw

$TC_DP18 1) 3) Rounding radius 2 Reserved
$TC_DP191) Angle 1 face end of tool Tapered milling tools
$TC_DP201) Angle 2 tool longitudinal axis Tapered milling tools
Tool base dimension/ adapt‐
er

Length offsets

$TC_DP21 Length 1
$TC_DP22 Length 2
$TC_DP23 Length 3
Technology
$TC_DP24 Clearance angle Only for turning tools
$TC_DP25 Reserved

1) Also applies with milling tools for 3D face milling
2) For slotting saw tool type
3) Reserved (is not used by SINUMERIK 840D sl)

Remarks
Several entry components are available for geometric variables (e.g. length 1 or radius). These
are added together to produce a value (e.g. total length 1, total radius), which is then used for
the calculations.

Offset values not required must be assigned the value zero.

Tool parameters $TC-DP1 to $TC-DP23 with contour tools

Note

The tool parameters not listed in the table, such as $TC_DP7, are not evaluated, i.e. their
content is meaningless.

Tool parameter number
(DP)

Meaning Cutting Dn Remark

$TC_DP1 Tool type 400 to 599
$TC_DP2 Cutting edge position
Geometry Length compensation
$TC_DP3 Length 1
$TC_DP4 Length 2

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 713

Tool parameter number
(DP)

Meaning Cutting Dn Remark

$TC_DP5 Length 3
Geometry Radius
$TC_DP6 Radius
Geometry Limit angle
$TC_DP10 Minimum limit angle
$TC_DP11 Maximum limit angle
Wear Length and radius compensation
$TC_DP12 Wear length 1
$TC_DP13 Wear length 2
$TC_DP14 Wear length 3
$TC_DP15 Wear radius
Wear Limit angle
$TC_DP19 Wear min. limit angle
$TC_DP20 Wear max. limit angle
Tool base dimension/
adapter

Length offsets

$TC_DP21 Length 1
$TC_DP22 Length 2
$TC_DP23 Length 3

Basic value and wear value
The resultant values are each a total of the basic value and wear value (e.g. $TC_DP6 +
$TC_DP15 for the radius). The basic measurement ($TC_DP21 – $TC_DP23) is also added to
the tool length of the first cutting edge. All the other parameters, which may also impact on
effective tool length for a standard tool, also affect this tool length (adapter, orientational
toolholder, setting data).

Limit angles 1 and 2
Limit angles 1 and 2 each relate to the vector of the cutting edge center point to the cutting edge
reference point and are counted clockwise.

3.13.2 Additive offsets

3.13.2.1 Selecting additive offsets (DL)
Additive offsets can be considered as process offsets that can be programmed in the
machining. They refer to the geometrical data of a cutting edge and are therefore a component
of tool cutting data.

Data of an additive offset is addressed using a DL number (DL: Locationdependent; offsets
regarding the location of use) and entered via the user interface.

Work preparation
3.13 Tool offsets

NC programming
714 Programming Manual, 06/2019, A5E47437142B AA

Application
Dimension errors caused be the location of use can be compensated using additive offsets.

Syntax
DL=<number>

Meaning

DL: Command to activate an additive offset
<number>: The additive tool offset data to be activated is specified using the <number> param‐

eter

Note

The machine data is used to define the number of additive offsets and also activate them
(→ carefully observe the machine OEM's data!).

Example
The same cutting edge is used for two bearing seats:

Program code Comment
N110 T7 D7 ; The revolver is positioned to location 7. D7 and DL=1

are activated and moved through in the next block.
N120 G0 X10 Z1
N130 G1 Z-6
N140 G0 DL=2 Z-14 ; DL=2 is activated in addition to D7 and is moved through

in the next block.
N150 G1 Z-21
N160 G0 X200 Z200 ; Approach tool change point.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 715

Program code Comment
...

3.13.2.2 Specify wear and setup values ($TC_SCPxy[t,d], $TC_ECPxy[t,d])
Wear and setting-up values can be read and written to using system variables. The logic is
based on the logic of the corresponding system variables for tools and tool noses.

System variables

$TC_SCPxy[<t>,<d>]: Wear values that are assigned to the particular geometry parameters
via xy, whereby x corresponds to the number of the wear value and y
establishes the reference to the geometry parameter.

$TC_ECPxy[<t>,<d>]: Setting-up values that are assigned to the particular geometry param‐
eter via xy, whereby x corresponds to the number of the setting-up
value and y establishes the reference to the geometry parameter.

<t>: T number of the tool
<d>: D number of the tool cutting edge

Note

The defined wear and setup values are added to the geometry parameters and the other offset
parameters (D numbers).

Example
The wear value of length 1 is set to the value of 1.0 for the cutting edge <d> of tool <t>.

Parameter: $TC_DP3 (length 1, with turning tools)

Wear values: $TC_SCP13 to $TC_SCP63

Setup values: $TC_ECP13 to $TC_ECP63

$TC_SCP43 [<t>,<d>] = 1.0

3.13.2.3 Delete additive offsets (DELDL)
The DELDL command deletes the additive offsets for the cutting edge of a tool (to release
memory space). Both the defined wear values and the setup values are deleted.

Syntax
DELDL[<t>,<d>]
DELDL[<t>]
DELDL
<Status>=DELDL[<t>,<d>]

Work preparation
3.13 Tool offsets

NC programming
716 Programming Manual, 06/2019, A5E47437142B AA

Meaning

DELDL: Command to delete additive offsets
<t>: T number of the tool
<d>: D number of the tool cutting edge
DELDL[<t>,<d>]: All additive offsets of the cutting edges <d> of the tool <t> are deleted.
DELDL[<t>]: All additive offsets of all cutting edges of tool <t> are deleted.
DELDL: All additive offsets of all cutting edges of all tools of the TO unit are deleted (for

the channel in which the command is programmed).
<Status>: Delete status

Value: Meaning:
0 Deletion was successfully completed.
- Offsets have not been deleted (if the parameter settings specify ex‐

actly one tool edge), or not deleted completely (if the parameter
settings specify several cutting edges).

Note

Wear and setting-up values of active tools cannot be deleted (essentially the same as the
delete behavior of D or tool data).

3.13.3 Special handling of tool offsets

The evaluation of the sign for tool length and wear can be controlled using setting data
SD42900 to SD42960.

The same applies to the behavior of the wear components when mirroring geometry axes or
changing the machining plane, and also to temperature compensation in tool direction.

Wear values:
If reference is made to wear values in the following, then this should be understood as the sum
of the actual wear values ($TC_DP12 to $TC_DP20) and the sum offsets with the wear values
($SCPX3 to $SCPX11) and setting-up values ($ECPX3 to $ECPX11).

For more information about summed offsets, refer to:
References:
Function Manual, Tool Management

Setting data

SD42900 $SC_MIRROR_TOOL_LENGTH Mirroring of tool-length components and compo‐
nents of the tool base dimension.

SD42910 $SC_MIRROR_TOOL_WEAR Mirroring of wear values of the tool-length compo‐
nents.

SD42920 $SC_WEAR_SIGN_CUTPOS Evaluating the sign of the wear components as a
function of the cutting edge position.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 717

SD42930 $SC_WEAR_SIGN Inverts the sign of wear dimensions.
SD42935 $SC_WEAR_TRANSFORM Transformation of wear values.
SD42940 $SC_TOOL_LENGTH_CONST Assignment of tool length components to geome‐

try axes.
SD42950 $SC_TOOL_LENGTH_TYPE Assignment of the tool length components inde‐

pendent of tool type.
SD42960 $SC_TOOL_TEMP_COMP Temperature compensation value in tool direction.

Also operative when tool orientation is program‐
med.

References
Function Manual Basic Functions; Tool Offset (W1)

Further information

Activation of modified setting data
When the setting data described above is modified, the tool components are not reevaluated
until the next time a tool edge is selected. If a tool is already active and the data of this tool is
to be reevaluated, the tool must be selected again.

The same applies in the event that the resulting tool length is modified due to a change in the
mirroring status of an axis. The tool must be selected again after the mirror command, in order
to activate the modified tool-length components.

Orientable toolholders and new setting data
Setting data SD42900 to SD42940 has no effect on the components of an active toolholder with
orientation capability. However, the calculation with an orientable toolholder always allows for
a tool with its total resulting length (tool length + wear + tool base dimension). All modifications
initiated by the setting data are included in the calculation of the resulting total length, i.e.
vectors of the orientable toolholder are independent of the machining plane.

Note

When orientable toolholders are used, it is frequently practical to define all tools for a non-
mirrored basic system, even those which are only used for mirrored machining. When
machining with mirrored axes, the toolholder is then rotated such that the actual position of the
tool is described correctly. All tool-length components then automatically act in the correct
direction, dispensing with the need for control of individual component evaluation via setting
data, depending on the mirroring status of individual axes.

Further application options
The use of orientable toolholder functionality can also be useful if there is no physical option of
turning tools on the machine, even though tools with different orientations are permanently
installed. Tool dimensioning can then be performed uniformly in a basic orientation, where the
dimensions relevant for machining are calculated according to the rotations of a virtual
toolholder.

Work preparation
3.13 Tool offsets

NC programming
718 Programming Manual, 06/2019, A5E47437142B AA

3.13.3.1 Mirroring of tool lengths
When setting data SD42900 $SC_MIRROR_TOOL_LENGTH and
SD42910 $SC_MIRROR_TOOL_WEAR are not set to zero, then you can mirror the tool length
components and components of the basis dimensions with wear values and their associated
axes.

SD42900 $SC_MIRROR_TOOL_LENGTH
Setting data not equal to zero:

The tool length components ($TC_DP3, $TC_DP4 and $TC_DP5) and the components of the
basis dimensions ($TC_DP21, $TC_DP22 and $TC_DP23) are mirrored against their
associated axes, also mirrored – by inverting the sign.

The wear values are not mirrored. If these are also be be mirrored, then setting data
SD42910 $SC_MIRROR_TOOL_WEAR must be set.

SD42910 $SC_MIRROR_TOOL_WEAR
Setting data not equal to zero:

The wear values of the tool length components - whose associated axes are mirrored - are also
mirrored by inverting the sign.

3.13.3.2 Wear sign evaluation
When setting data SD42920 $SC_WEAR_SIGN_CUTPOS and SD42930 $SC_WEAR_SIGN
are set not equal to zero, then you can invert the sign evaluation of the wear components.

SD42920 $SC_WEAR_SIGN_CUTPOS
Setting data not equal to zero:

For tools with the relevant cutting edge position (turning and grinding tools, tool types 400), then
the sign evaluation of the wear components in the machining plane depends on the cutting
edge position. This setting data is of no significance for tool types without relevant cutting edge
position.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 719

In the following table, the dimensions, whose sign is inverted using SD42920 (not equal to
zero), are designed using an X:

Cutting edge position Length 1 Length 2
1
2 X
3 X X
4 X
5
6
7 X
8 X
9

Note

The sign evaluation using SD42920 and SD42910 are independent of one another. If, for
example, the sign of a dimension is changed using both setting data, then the resulting sign
remains unchanged.

SD42930 $SC_WEAR_SIGN
Setting data not equal to zero:

Inverts the sign of all wear dimensions. This affects both the tool length and other variables
such as tool radius, rounding radius, etc.

If a positive wear dimension is entered, the tool becomes "shorter" and "thinner", refer to
Chapter "tool offset, special handling", activating changed setting data".

3.13.3.3 Coordinate system of the active machining operation (TOWSTD, TOWMCS, TOWWCS,
TOWBCS, TOWTCS, TOWKCS)

Depending on the kinematics of the machine or the availability of an orientable tool carrier, the
wear values measured in one of these coordinate systems are converted or transformed to a
suitable coordinate system.

Coordinate systems of active machining operation
The following coordinate systems produce tool length offsets which the tool length wear
component incorporates in an active tool via the corresponding G command of Group 56:

● Machine coordinate system (MCS)

● Basic coordinate system (BCS)

● Workpiece coordinate system (WCS)

● Tool coordinate system (TCS)

● Tool coordinate system of kinematic transformation (KCS)

Work preparation
3.13 Tool offsets

NC programming
720 Programming Manual, 06/2019, A5E47437142B AA

Syntax
TOWSTD
TOWMCS
TOWWCS
TOWBCS
TOWTCS
TOWKCS

Meaning

TOWSTD: Initial setting value for offsets in tool length wear value
TOWMCS: Offsets in tool length in MCS
TOWWCS: Offsets in tool length in WCS
TOWBCS: Offsets in tool length in BCS
TOWTCS: Offsets in tool length at tool carrier reference point (orientable tool carrier)
TOWKCS: Compensations of tool length for tool head (kinematic transformation)

Further information

Distinguishing features
The most important distinguishing features are shown in the following table:

G command Wear value Active orientable tool carrier
TOWSTD: Initial value, tool length Wear values are subject to rotation.
TOWMCS: Wear value in MCS. TOWMCS is iden‐

tical to TOWSTD if a tool carrier that
can be orientated is not active.

It only rotates the vector of the resul‐
tant tool length without taking into
account the wear.

TOWWCS: The wear value is converted to the
MCS in the WCS.

The tool vector is calculated as
for TOWMCS without taking into ac‐
count the wear.

TOWBCS: The wear value is converted to the
MCS in the BCS.

The tool vector is calculated as
for TOWMCS without taking into ac‐
count the wear.

TOWTCS: The wear value is converted to the
MCS in the workpiece coordinate sys‐
tem.

The tool vector is calculated as
for TOWMCS without taking into ac‐
count the wear.

TOWWCS, TOWBCS, TOWTCS: The wear vector is added to the tool vector.

Linear transformation
The tool length can be defined meaningfully in the MCS only if the MCS is generated by linear
transformation from the BCS.

Non-linear transformation
For example, if with TRANSMIT a non-linear transformation is active, then when specifying the
MCS as requested coordinate system, BCS is automatically used.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 721

No kinematic transformation and no orientable tool carrier
If neither a kinematic transformation nor an orientable tool carrier is active, then all the other
four coordinate systems (except for the WCS) are combined. It is then only the WCS, which is
different to the other systems. Since only tool lengths need to be evaluated, translations
between the coordinate systems are irrelevant.

References:
For more information on tool compensation, see:
Function Manual Basic Functions; Tool Offset (W1)

Inclusion of wear values in calculation
The setting data SD42935 $SC_WEAR_TRANSFORM defines which of the three wear
components:

● Wear

● Total offsets fine

● Total offsets coarse

should be subject to a rotation using adapter transformation or a tool carrier that can be
orientated if one of the following G commands is active:

● TOWSTD
Basic position. For corrections in the tool length.

● TOWMCS
Wear values in the machine coordinate system (MCS).

● TOWWCS
Wear values in the workpiece coordinate system (WCS).

● TOWBCS
Wear values in the basic coordinate system (BCS).

● TOWTCS
Wear values in the tool coordinate system at the tool carrier fixture (T tool carrier reference).

● TOWKCS
Wear values in the coordinate system of the tool head for kinematic transformation.

Note

Evaluation of individual wear components (assignment to geometry axes, sign evaluation)
is influenced by the following factors:
● Active plane
● Adapter transformation
● Setting data:

– SD42910 $SC_MIRROR_TOOL_WEAR
– SD42920 $SC_WEAR_SIGN_CUTPOS
– SD42930 $SC_WEAR_SIGN
– SD42940 $SC_TOOL_LENGTH_CONST
– SD42950 $SC_TOOL_LENGTH_TYPE

Work preparation
3.13 Tool offsets

NC programming
722 Programming Manual, 06/2019, A5E47437142B AA

3.13.3.4 Tool length and plane change
When setting data SD42940 $SC_TOOL_LENGTH_CONST is set not equal to zero, then you
can assign the tool length components – such as lengths, wear and basic dimension – to the
geometry axes for turning and grinding tools when changing the plane.

SD42940 $SC_TOOL_LENGTH_CONST
Setting data not equal to zero:

The assignment of tool length components (length, wear and tool base dimension) to geometry
axes does not change when the machining plane is changed (G17 - G19).

The following table shows the assignment of tool length components to geometry axes for
turning and grinding tools (tool types 400 to 599):

Content Length 1 Length 2 Length 3
17 Y X Z
*) X Z Y
19 Z Y X
-17 X Y Z
-18 Z X Y
-19 Y Z X

*) Each value not equal to 0, which is not equal to one of the six listed values, is evaluated as value 18.

The following table shows the assignment of tool length components to geometry axes for all
other tools (tool types < 400 or > 599):

Operating plane Length 1 Length 2 Length 3
*) Z Y X
18 Y X Z
19 X Z Y
-17 Z X Y
-18 Y Z X
-19 X Y Z

*) Each value not equal to 0, which is not equal to one of the six listed values, is evaluated as value 17.

Note

For representation in tables, it is assumed that geometry axes up to 3 are designated with X,
Y, Z. The axis order and not the axis identifier determines the assignment between a
compensation and an axis.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 723

3.13.4 Online tool offset

3.13.4.1 Defining a polynomial function (FCTDEF)
Certain dressing strategies (e.g. dressing roller) are characterized by the fact that the grinding
wheel radius is continuously (linearly) reduced as the dressing roller is fed in. This strategy
requires a linear function between infeed of the dressing roller and writing the wear value of
each length. The linear function is defined using the predefined procedure FCTDEF(...) for up
to third order polynomial functions.

Straight line equation
y = f(x) = a0 + a1*x1

a1: Gradient of the straight line, with a1= Δx / Δy

a0: Shift of the straight line along the X axis with a0 = -a1 * XV

Syntax
FCTDEF(<Func>,<LLimit>,<ULimit>,<a0>,<a1>,<a2>,<a3>)

Meaning

FCTDEF(...): Defining a polynomial function for PUTFTOCF(...):
y = f(x) = a0 + a1*x + a2*x2 + a3*x3

<Func>: Function number
Data type: INT
Range of values: 1, 2, 3

<LLimit>: Lower limit value
Data type: REAL

<ULimit>: Upper limit value
Data type: REAL

<a0>,<a1>,<a2>,<a3>: Coefficients of polynomial function
Data type: REAL

Work preparation
3.13 Tool offsets

NC programming
724 Programming Manual, 06/2019, A5E47437142B AA

Example

Definitions
● Function number: 1

● Lower and upper limit value: -100, 100

● Gradient of the characteristic: a1 = 1

● The operating point should be located at the center of the characteristic. Based on the
setpoint position of axis XA in the WCS at the instant that the function is defined in the NC
program, the characteristic must be shifted in the negative Y direction: a0 = -a1 * XAD = -1 *
$AA_IW

● a2 = a3 = 0

Characteristic

UL Upper limit value
LL Lower limit value
XAD Setpoint of axis XA at the time that the function is defined in the NC program

Programming

Program code Comment
FCTDEF(1,-100,100,-$AA_IW[XA],1) ; Function definition

3.13.4.2 Write online tool offset continuously (PUTFTOCF)
Using the predefined procedure PUTFTOCF(...), an online tool offset is executed based on a
polynomial function previously defined with FCTDEF(...) (Page 724).

Note

The online tool offset can also be realized using a synchronized action.

For further information, see Function Manual Synchronized Actions.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 725

Syntax
PUTFTOCF(<Func>,<RefVal>,<ToolPar>,<Chan>,<Sp>)

Meaning

PUTFTOCF(...): Write online tool offset, continuously block-by-block using the polynomial function
defined with FCTDEF(...)

<Func>: Function number, defined in the function definition with FCTDEF(...)
Data type: INT
Range of val‐
ues:

1, 2, 3

<RefVal>: Reference value, from which the offset is to be derived (e.g. setpoint of an axis).
Data type: VAR REAL

<ToolPar>: Number of the wear parameter (length 1, 2 or 3) in which the offset value is to be
included.
Data type: INT

<Chan>: Number of the channel in which the online tool offset is to take effect.
Note:
Only required if the offset is not to take effect in the active channel.
Data type: INT

<Sp>: Number of the spindle for which the online tool offset is to take effect.
Note:
Only required if the offset is to be applied to a non-active grinding wheel rather than
the active tool that is currently in use.
Data type: INT

3.13.4.3 Write online tool offset, discrete (PUTFTOC)

Function
Using the predefined procedurePUTFTOC(...), an online tool offset is executed based on a
fixed offset value.

Syntax
PUTFTOC(<CorrVal>,<ToolPar>,<Chan>,<Sp>)

Meaning

PUTFTOC(...): Write online tool offset
<CorrVal>: Offset value, which is added to the wear parameter.

Data type: REAL
<ToolPar>: Number of the wear parameter (length 1, 2 or 3) in which the offset value is to be

included.
Data type: INT

Work preparation
3.13 Tool offsets

NC programming
726 Programming Manual, 06/2019, A5E47437142B AA

<Chan>: Number of the channel in which the online tool offset is to take effect.
Note:
Only required if the offset is not to take effect in the active channel.
Data type: INT

<Sp>: Number of the spindle for which the online tool offset is to take effect.
Note:
Only required if the offset is to be applied to a non-active grinding wheel rather than
the active tool that is currently in use.
Data type: INT

3.13.4.4 Activate/deactivate online tool offset (FTOCON/FTOCOF)
The online tool offset is activated or deactivated using the G commands FTOCON and
FTOCOF.

Syntax

FTOCON
...
FTOCOF

Meaning

FTOCON: Activate online tool offset
The command must be programmed in the channel in which the online tool offset
is to be activated.

FTOCOF: Deactivate online tool offset
The command must be programmed in the channel in which the online tool offset
is to be deactivated.
Note:
On FTOCOF, the axis does not move further out for the tool offset. However, the
value calculated with PUTFTOC/PUTFTOCF remains in the cutting-specific offset
data.
To finally deactivate the online tool offset, the tool (T...) must again be selected/
deselected after FTOCOF.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 727

3.13.5 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)
The term tool orientation describes the geometric alignment of the tool in space. The tool
orientation on a 5-axis machine tool can be set by means of program commands.

Orientation rounding movements activated with OSD and OST are formed differently depending
on the type of interpolation for tool orientation.

If vector interpolation is active, the smoothed orientation characteristic is also interpolated
using vector interpolation. On the other hand, if rotary axis interpolation is active, the orientation
is smoothed directly using rotary axis movements.

Programming

Programming a orientation change:
A change in tool orientation can be programmed by:

● Direct programming of rotary axes A, B, C (rotary axis interpolation)

● Euler or RPY angle

● Direction vector (vector interpolation by specifying A3 or B3 or C3)

● LEAD/TILT (face milling)

The reference coordinate system is either the machine coordinate system (ORIMKS) or the
current workpiece coordinate system (ORIWKS).

Work preparation
3.13 Tool offsets

NC programming
728 Programming Manual, 06/2019, A5E47437142B AA

Programming tool orientation:

ORIC: Orientation and path movement in parallel
ORID: Orientation and path movement consecutively
OSOF: No orientation smoothing
OSC: Orientation constantly
OSS: Orientation smoothing only at beginning of block
OSSE: Orientation smoothing at beginning and end of block
ORIS: Velocity of the orientation change with orientation smoothing activated in degrees per

mm (valid for OSS and OSSE)
OSD: Smoothing of orientation by specifying smoothing distance with setting data:

SD42674 $SC_ORI_SMOOTH_DIST
OST: Smoothing of orientation by specifying angular tolerance in degrees for vector interpo‐

lation with setting data:
SD42676 $SC_ORI_SMOOTH_TOL
With rotary axis interpolation, the specified tolerance is assumed to be the maximum
variance of the orientation axes.

Note

All commands for smoothing the tool orientation (OSOF, OSC, OSS, OSSE, OSD, and OST) are
summarized in G group 34. They are modal; in other words, only one of these commands can
ever be effective at the same time.

Examples

Example 1: ORIC
If two or more blocks with orientation changes are programmed between the traversing blocks
N10 and N20 (e.g. A2=... B2=... C2=...) programmed and ORIC is active, then the

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 729

inserted circle block is distributed among these intermediate blocks according to the absolute
changes in angle.

Program code Comment
ORIC
N8 A2=… B2=… C2=…
N10 X… Y… Z…
N12 C2=… B2=…
N14 C2=… B2=…

; The circle block inserted at the external corner is
distributed between N12 and N14, corresponding to the
change in orientation. The circular motion and the
orientation change are executed in parallel.

N20 X =…Y=… Z=… G1 F200

Example 2: ORID
If ORID is active, then all blocks between the two traversing blocks are executed at the end of
the first traversing block. The circle block with constant orientation is executed immediately
before the second traversing block.

Work preparation
3.13 Tool offsets

NC programming
730 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
ORID
N8 A2=… B2=… C2=…
N10 X… Y… Z…
N12 A2=… B2=… C2=… ; The N12 and N14 blocks are executed at the end of N10.

The circle block is then executed with the actual orien-
tation.

N14 M20 ; Help functions, etc.
N20 X… Y… Z…

Note

The method which is used to change orientation at an outer contour is determined using the
program command that is active in the first traversing block of an outer corner.

Without change in orientation: If the orientation is not changed at the block boundary, the cross-
section of the tool is a circle, which touches both of the contours.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 731

Example 3: Change in orientation at an inside corner

Program code
ORIC
N10 X …Y… Z… G1 F500
N12 X …Y… Z… A2=… B2=… C2=…
N15 X …Y… Z… A2=… B2=… C2=…

Further information

Behavior at outer corners
A circle block with the radius of the cutter is always inserted at an outside corner.

The ORIC and ORID program commands are used to determine whether changes in orientation
programmed between block N1 and N2 are executed before the inserted circle block is
processed or at the same time.

Work preparation
3.13 Tool offsets

NC programming
732 Programming Manual, 06/2019, A5E47437142B AA

If an orientation change is required at outside corners, this can be performed either at the same
time as interpolation or separately together with the path movement.

When ORID is programmed, the inserted blocks are executed first without path motion. The
circle block generating the corner is inserted immediately before the second of the two
traversing blocks.

If several orientation blocks are inserted at an external corner and ORIC is selected, the circular
motion is distributed among the individual inserted blocks according to the absolute values of
the orientation changes.

Smoothing orientation with OSD or OST
When blending with G642, the maximum variance for the contour axes and orientation axes
cannot vary greatly. The smaller tolerance of the two determines the type of smoothing motion
and/or angular tolerance to smooth the orientation characteristic relatively strongly without
having to accept higher contour deviations.

OSD and OST can be activated to "generously" smooth very slight deviations from the
orientation characteristics with a specified smoothing distance and angular tolerance without
serious contour deviations.

Note

Unlike the process of rounding the contour (and orientation characteristics) with G642, when
rounding the orientation with OSD and/or OST, a separate block is not formed, instead the
rounding movement is added directly to the programmed original blocks.

With OSD and/or OST, block transitions cannot be rounded if there is a change in the type of
interpolation for tool orientation (vector → rotary axis, rotary axis → vector). These block
transitions can if necessary be rounded with the standard rounding functions G641, G642
and G643.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 733

3.13.6 Free assignment of D numbers, cutting edge numbers

3.13.6.1 Free assignment of D numbers, cutting edge numbers (CE address)

D number
The D numbers can be used as offset numbers. The number of the cutting edge can also be
addressed via the CE address. The cutting edge number can be written by the system variable
$TC_DPCE.

Default setting: Compensation no. == cutting edge no.

Machine data are used to define the maximum number of D numbers (cutting edge numbers)
and the maximum number of cutting edges per tool (→ machine manufacturer). The following
commands are only practical if the maximum cutting edge number (MD18105) was specified to
be greater than the number of cutting edges per tool (MD18106). Observe the machine
manufacturer’s specifications.

References
Function Manual Basic Functions; Tool Offset (W1)

3.13.6.2 Free assignment of D numbers: Checking D numbers (CHKDNO)
Using the CKKDNO command, you can check whether the existing D numbers were uniquely
assigned. The D numbers of all tools defined within a TO unit may not occur more than once.
No allowance is made for replacement tools.

Syntax
state=CHKDNO(Tno1,Tno2,Dno)

Meaning

state: =TRUE: The D numbers are assigned uniquely to the checked
areas.

= FALSE: There was a D number collision or the parameters are
invalid. Tno1, Tno2 and Dno return the parameters
that caused the collision. These data can now be eval‐
uated in the part program.

CHKDNO(Tno1,Tno2): All D numbers of the part specified are checked.
CHKDNO(Tno1): All D numbers of Tno1 are checked against all other tools.
CHKDNO: All D numbers of all tools are checked against all other tools.

3.13.6.3 Free assignment of D numbers: Rename D numbers (GETDNO, SETDNO)
You must assign unique D numbers. Two different cutting edges of a tool must not have the
same D number.

Work preparation
3.13 Tool offsets

NC programming
734 Programming Manual, 06/2019, A5E47437142B AA

GETDNO
This command returns the D number of a particular cutting edge (ce) of a tool with tool number
t. If no D number exists for the entered parameters, d=0 will be set. If the D number is invalid,
a value greater than 32000 is returned.

SETDNO
This command assigns the value d of the D number to a cutting edge (ce) of tool t. The result
of this statement is returned via state (TRUE or FALSE). If there is no data block for the
specified parameter, the value FALSE is returned. Syntax errors generate an alarm. The D
number cannot be set explicitly to 0.

Syntax
d = GETDNO (t,ce)
state = SETDNO (t,ce,d)

Meaning

d: D number of the tool edge
t: T number of the tool
ce: Cutting edge number (CE number) of the tool
state: Indicates whether the command could be executed (TRUE or FALSE).

Example for renaming a D number

Programming Comment
$TC_DP2[1.2]=120
$TC_DP3[1,2] = 5.5
$TC_DPCE[1,2] = 3 ; Cutting edge number CE
...
N10 def int DNoOld, DNoNew = 17
N20 DNoOld = GETDNO(1,3)
N30 SETDNO(1,3,DNoNew)

The new D value 17 is then assigned to cutting edge CE=3. Now the data for the cutting edge
is addressed via D number 17; both via the system variables and in the programming with the
NC address.

3.13.6.4 Free assignment of D numbers: Determine T number to the specified D number
(GETACTTD)

The pre-defined function GETACTTD determines the T number associated with an absolute D
number. There is no check for uniqueness. If several D numbers within a TO unit are the same,
the T number of the first tool found in the search is returned.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 735

Syntax
<Status>=GETACTTD(<TNo>,<DNo>)

Meaning

GETACTTD(): Function call
<DNo>: D number for which the T number shall be searched.

Data type: INT
<TNo>: T number found

Data type: VAR INT
<status>: Result

Data type: INT
Value: 0 The T number was found. <Tno> contains the value of the T

number.
-1 No T number exists for the specified D number; <Tno>=0.
-2 The D number is not absolute. <TNo> receives the value of

the first tool found that contains the D number with the value
<Dno>.

-5 The function was not able to be executed for another reason.

3.13.6.5 Free assignment of D numbers: Invalidate D numbers (DZERO)
The DZERO command is used for support during retooling. Compensation data sets tagged with
this command are no longer verified by the CHKDNO command. These data sets can be
accessed again by setting the D number once more with SETDNO.

Syntax
DZERO

Meaning

DZERO: Marks all D numbers of the TO unit as invalid.

3.13.7 Toolholder kinematics

Requirements
A toolholder can only orientate a tool in all possible directions in space if

● Two rotary axes V1 and V2 are present.

● The rotary axes are mutually orthogonal.

● The tool longitudinal axis is perpendicular to the second rotary axis V2.

Work preparation
3.13 Tool offsets

NC programming
736 Programming Manual, 06/2019, A5E47437142B AA

In addition, the following requirement is applicable to machines for which all possible
orientations have to be settable:

● The tool longitudinal axis must be perpendicular to the first rotary axis V1.

Function
The toolholder kinematics with a maximum of two rotary axes v1 or v2 are defined using the 17
system variables $TC_CARR1[m] to $TC_CARR17[m]. The description of the toolholder
consists of:

● The vectoral distance from the first rotary axis of the toolholder I1, the vectoral distance
from the first rotary axis to the second rotary axis I2, the vectoral distance from the second
rotary axis to the reference point of the tool I3.

● The direction vectors of both rotary axes V1, V2.

● The angles of rotation α1, α2 around the two axes. The rotation angles are counted in
viewing direction of the rotary axis vectors, positive, in clockwise direction of rotation.

For machines with resolved kinematics (both the tool and the part can rotate), the system
variables have been extended with the entries $TC_CARR18[m] to $TC_CARR23[m].

Parameters

Function of the system variables for orientable toolholders
Designation x component y component z component
l1 offset vector $TC_CARR1[m] $TC_CARR2[m] $TC_CARR3[m]
l2 offset vector $TC_CARR4[m] $TC_CARR5[m] $TC_CARR6[m]
v1 rotary axis $TC_CARR7[m] $TC_CARR8[m] $TC_CARR9[m]
v2 rotary axis $TC_CARR10[m] $TC_CARR11[m] $TC_CARR12[m]

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 737

Function of the system variables for orientable toolholders
α1 angle of rota‐
tion
α2 angle of rota‐
tion

$TC_CARR13[m]
$TC_CARR14[m]

l3 offset vector $TC_CARR15[m] $TC_CARR16[m] $TC_CARR17[m]

Extensions of the system variables for orientable toolholders
Designation x component y component z component
l4 offset vector $TC_CARR18[m] $TC_CARR19[m] $TC_CARR20[m]
Axis identifier Ro‐
tary axis v1
Rotary axis v2

Axis identifier of the rotary axes v1 and v2 (initialized with zero)
$TC_CARR21[m]
$TC_CARR22[m]

Kinematic type
Tool
Part
Mixed mode

$TC_CARR23[m]
Kinematics type T -> Kinematics type P -> Kinematics type M
Only the tool can rotate
(default).

Only the part can rotate Part and tool can rotate

Offset of the
Rotary axis v1
Rotary axis v2

Angle in degrees of the rotary axes v1 and v2 on assuming the initial setting
$TC_CARR24[m]
$TC_CARR25[m]

Angle offset of
the rotary axis v1
Rotary axis v2

Offset of the Hirth tooth system in degrees for rotary axes v1 and v2
$TC_CARR26[m]
$TC_CARR27[m]

Angle increment
v1 rotary axis
v2 rotary axis

Offset of the Hirth tooth system in degrees for rotary axes v1 and v2
$TC_CARR28[m]
$TC_CARR29[m]

Min. position Ro‐
tary axis v1
Rotary axis v2

Software limit for the minimum position of the rotary axes v1 and v2
$TC_CARR30[m]
$TC_CARR31[m]

Max. position Ro‐
tary axis v1
Rotary axis v2

Software limits for the maximum position of the rotary axes v1 and v2
$TC_CARR32[m]
$TC_CARR33[m]

Toolholder name A toolholder can be given a name instead of a number. $TC_CARR34[m]
User:
Axis name 1
Axis name 2
Identifier
Position

Intended use in user measuring cycles $TC_CARR35[m]
$TC_CARR36[m]
$TC_CARR37[m]
$TC_CARR38[m] $TC_CARR39[m] $TC_CARR40[m]

Fine
offset

Parameters that can be added to the values
 in the basic parameters.

l1 offset vector $TC_CARR41[m] $TC_CARR42[m] $TC_CARR43[m]
l2 offset vector $TC_CARR44[m] $TC_CARR45[m] $TC_CARR46[m]
l3 offset vector $TC_CARR55[m] $TC_CARR56[m] $TC_CARR57[m]
l4 offset vector $TC_CARR58[m] $TC_CARR59[m] $TC_CARR60[m]
v1 rotary axis $TC_CARR64[m]
v2 rotary axis $TC_CARR65[m]

Work preparation
3.13 Tool offsets

NC programming
738 Programming Manual, 06/2019, A5E47437142B AA

Note
Explanations of parameters

"m" specifies the number of the toolholder to be programmed.

$TC_CARR47 to $TC_CARR54 and $TC_CARR61 to $TC_CARR63 are not defined and
produce an alarm if read or write access is attempted.

The start/end points of the distance vectors on the axes can be freely selected. The rotation
angles α1, α2 around the two axes are defined in the initial state of the toolholder by 0°. In this
way, the kinematics of a toolholder can be programmed for any number of possibilities.

Toolholders with only one or no rotary axis at all can be described by setting the direction
vectors of one or both rotary axes to zero.
With a toolholder without rotary axis the distance vectors act as additional tool offsets whose
components cannot be affected by a change of machining plane (G17 to G19).

Parameter extensions

Parameters of the rotary axes
The system variables have been extended by the entries $TC_CARR24[m] to
$TC_CARR33[m] and described as follows:

Offset of rotary axes
v1, v2

Changing the position of the rotary axis v1 or v2 for the initial setting of the ori‐
ented toolholder.

The angle offset/
angle increment of
the rotary axes v1, v2

The offset or the angle increment of the Hirth tooth system of the rotary axes v1
and v2. Programmed or calculated angle is rounded up to the next value that
results from phi = s + n * d when n is an integer.

The minimum and
maximum position of
the rotary axes v1, v2

The minimum and maximum position of the rotary axis limit angle (software limit)
of the rotary axes v1 and v2.

Parameters for the user
$TC_CARR34 to $TC_CARR40 contain parameters that are freely available to users and up to
SW 6.4 were as standard, not further evaluated within the NCK or had no significance.

Fine offset parameters
$TC_CARR41 to $TC_CARR65 include fine offset parameters that can be added to the values
in the basis parameters. The fine offset value assigned to a basic parameter is obtained when
the value 40 is added to the parameter number.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 739

Example
The toolholder used in the following example can be fully described by a rotation around the Y
axis.

Program code Comment
N10 $TC_CARR8[1]=1 ; Definition of the Y component of

the first rotary axis of toolholder
1.

N20 $TC_DP1[1,1] = 120 ; Definition of a shaft miller.
N30 $TC_DP3[1,1]=20 ; Definition of a shaft miller, 20

mm long.
N40 $TC_DP6[1,1]=5 ; Definition of a shaft miller with

5 mm radius.
N50 ROT Y37 ; Frame definition with 37° rota-

tion around the Y axis.
N60 X0 Y0 Z0 F10000 ; Approach start position.
N70 G42 CUT2DF TCOFR TCARR=1 T1 D1 X10 Set radius compensation, tool

length compensation in rotated
frame, select toolholder 1, tool 1.

N80 X40 ; Perform machining under a rota-
tion of 37°.

N90 Y40
N100 X0
N110 Y0
N120 M30

Work preparation
3.13 Tool offsets

NC programming
740 Programming Manual, 06/2019, A5E47437142B AA

Further information

Resolved kinematics
For machines with resolved kinematics (both the tool as well as the workpiece can be rotated),
the system variables have been expanded by the entries $TC_CARR18[m] up to
$TC_CARR23[m] and are described as follows:

The rotatable tool table consisting of:

● The vectorial clearance of the second rotary axis V2 to the reference point of a tool table that
can be rotated I4 of the third rotary axis.

The rotary axes consisting of:

● The two channel identifiers for the reference of the rotary axes V1and V2, whose position is,
when required, accessed to determine the orientation of the toolholder that can be
orientated.

The type of kinematics with one of the values T, P or M:

● Kinematics type T: Only tool can rotate.

● Kinematics type P: Only part can rotate.

● Kinematics type M: Tool and part can rotate.

Clearing the toolholder data
Data of all toolholder data sets can be deleted using $TC_CARR1[0]=0.

The kinematic type $TC_CARR23[T]=T must be assigned with one of the three permissible
uppercase or lowercase letters (T,P,M) and for this reason, should not be deleted.

Changing the toolholder data
Each of the described values can be modified by assigning a new value in the part program.
Any character other than T, P or M results in an alarm when an attempt is made to activate the
toolholder that can be orientated.

Reading the toolholder data
Each of the described values can be read by assigning it to a variable in the part program.

Fine offsets
An illegal fine offset value is only detected if a toolholder that can be orientated is activated,
which contains such a value and at the same time setting data
SD42974 $SC_TOCARR_FINE_CORRECTION = TRUE.

The maximum permissible fine offset is limited to a permissible value in the machine data.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 741

3.13.8 Tool length compensation for orientable toolholders (TCARR, TCOABS, TCOFR,
TCOFRX, TCOFRY, TCOFRZ)

When the spatial orientation of the tool changes, its tool length components also change.

After a reset, e.g. through manual setting or change of the toolholder with a fixed spatial
orientation, the tool length components also have to be determined again. This is performed
using the TCOABS and TCOFR path commands.

For a toolholder of an active frame that can be orientated, when selecting the tool with TCOFRZ,
TCOFRY and TCOFRX, it is possible to define the direction in which the tool should point.

Syntax
TCARR=[<m>]
TCOABS
TCOFR
TCOFRZ
TCOFRY
TCOFRX

Meaning

TCARR=[<m>]: Request toolholder with the number "m"
TCOABS: Determine tool length components from the orientation of the current toolholder
TCOFR: Determine tool length components from the orientation of the active frame
TCOFRZ: Orientable toolholder from active frame with a tool pointing in the Z direction
TCOFRY: Orientable toolholder from active frame with a tool pointing in the Y direction
TCOFRX: Orientable toolholder from active frame with a tool pointing in the X direction

Work preparation
3.13 Tool offsets

NC programming
742 Programming Manual, 06/2019, A5E47437142B AA

Further information

Determine tool length offset from the orientation of the toolholder (TCOABS)
TCOABS calculates the tool length offset from the current orientation angles of the toolholder;
saved in the system variables $TC_CARR13 and $TC_CARR14.

For a definition of toolholder kinematics with system variables, see "Toolholder kinematics
(Page 736)".

In order to make a new calculation of the tool length offset when frames are changed, the tool
has to be selected again.

Tool direction from active frame
The toolholder with orientation capability is set so that the tool points in the following directions:

● With TCOFR or TCOFRZ in the Z direction

● With TCOFRY in the Y direction

● With TCOFRX in the X direction

The tool length offset is re-calculated when changing over between TCOFR and TCOABS.

Request toolholder (TCARR)
With TCARR, the toolholder number m is requested with its geometry data (compensation
memory).

With m=0, the active toolholder is deselected.

The geometry data of the toolholder only becomes active after a tool is called. The selected tool
remains active after a toolholder change has taken place.

The current geometry data for the toolholder can also be defined in the part program via the
corresponding system variables.

Recalculation of tool length offset (TCOABS) for a frame change
In order to make a new calculation of the tool length offset when frames are changed, the tool
has to be selected again.

Note

The tool orientation must be manually adapted to the active frame.

When the tool length offset is calculated, the angle of rotation of the toolholder is calculated in
an intermediate step. With toolholders with two rotary axes, there are generally two sets of
rotation angles, which can be used to adapt the tool orientation to the active frame; therefore,

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 743

the rotation angle values stored in the system variables must at least correspond approximately
to the mechanically set rotation angles.

Note
Tool orientation

It is not possible for the control to check whether the rotation angles calculated by means of the
frame orientation are settable on the machine.

If the rotary axes of the toolholder are arranged such that the tool orientation calculated by
means of the frame orientation cannot be reached, then an alarm is output.

The combination of tool precision compensation and the functions for tool length offset on
movable toolholders is not permissible. If both functions are called simultaneously, an error
message is issued.

The TOFRAME function allows a frame to be defined on the basis of the direction of orientation
of the selected toolholder. For more information please refer to chapter "Frames".

When orientation transformation is active (3, 4 or 5-axis transformation), it is possible to select
a toolholder with an orientation deviating from the zero position without causing output of an
alarm.

Transfer parameter from standard and measuring cycles
For the transfer parameter of standard and measuring cycles, the following defined value
ranges apply.

For angular value, the value range is defined as follows:

● Rotation around 1st geometry axis: -180 degrees to +180 degrees

● Rotation around 2nd geometry axis: -90 degrees to +90 degrees

● Rotation around 3rd geometry axis: -180 degrees to +180 degrees

Refer to Chapter Frames, "Programmable rotation (ROT, AROT, RPL)".

Note

When transferring angular values to a standard or measuring cycle, the following should be
carefully observed:

Values less than the calculation resolution of the NC should be rounded-off to zero!

The calculation resolution of the NC for angular positions is defined in the machine data:

MD10210 $MN_INT_INCR_PER_DEG

3.13.9 Modifying the orientable tool carrier according to the machine measurement
(CORRTC)

Measured kinematic chain elements of a tool carrier can be written to special correction
elements with the CORRTC function.

Work preparation
3.13 Tool offsets

NC programming
744 Programming Manual, 06/2019, A5E47437142B AA

Note

The correction values written with the CORRTC function are not immediately effective in the
transformation. The correction values do not become effective until after a transformation
deselection, NEWCONF and transformation selection.

Syntax
<_Corr_Status> = CORRTC(<_Corr_Vect>, <_Corr_Index>, <_Corr_Mode>,
[<_No_Alarm>])

Meaning

CORRTC: Function call
<_Corr_Status>: Function return value

Data type: INT
Values: 0 The function was executed without an error.

1 No tool carrier is active.
2 The active tool carrier was not defined with kinematic chains.

10 The <_Corr_Index> call parameter is negative.
11 The <_Corr_Mode> call parameter is negative.
12 Invalid reference to a section of a subchain (_CORR_INDEX).
13 No correction element has been defined in the section referred to by the

_CORR_INDEX parameter ($TC_CARR_CORR_ELEM).
20 The hundreds position of <_CORR_MODE> is invalid. Only the values 0 and

1 are permissible.
21 The thousands position of <_CORR_MODE> is invalid. Only the values 0

and 1 are permissible.
30 For the correction of an offset vector, the deviation from the current value in

at least one coordinate is greater than the maximum value specified by the
setting data SD41612 $SN_CORR_TRAFO_LIN_MAX.

31 The attempt to write a system variable was rejected because of missing write
rights.

<_Corr_Vect>: Correction vector
The content of the correction vector is defined by the following parameters <_Corr_Index>
and <_Corr_Mode>.
If <_Corr_Status> = 30, the content of the vector is overwritten (see above).
Data type: REAL

<_Corr_Index>: Designates the section for which the direction vector of the correction element is to be corrected.
Data type: INT

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 745

<_Corr_Mode>: Correction mode
Data type: INT
The <Corr_Index> parameter is decimal coded (units to thousands position):
Units
position:

Reserved

Tens
position:

Specifies how the correction element to which the content of <_Corr_Index>
refers, is to be modified.

xx0x The correction vector is written immediately to the correction element.
This variant can be used to immediately write the correction element
without the index <n> of the relevant system data
($NK_OFF_DIR[<n>, ...]) having to be known.

xx1x As 0, but with the difference that the transferred correction value is in‐
terpreted in world coordinates.
A difference between variants 0 and 1 can always occur when the kine‐
matic chain in the initial state (positions of all rotary axes equal to 0)
contains other rotations.

xx2x As 1, but with the difference that the correction value refers to the entire
section, i.e. a value is entered in the correction element so that the entire
section reaches the length defined by the correction value.

Hundreds
position:

Specifies how the content of the <_Corr_Vect> parameter is to be interpreted.
x0xx The transferred correction vector <_Corr_Vect> contains the entire

new length of the correction element or the section to which
the <_Corr_Index> in conjunction with the tens position
of <_Corr_Mode> refers (absolute correction).

x1xx The transferred correction vector <_Corr_Vect> only contains the dif‐
ference compared to the current length of the correction element or the
section to which the <_Corr_Index> in conjunction with the tens posi‐
tion of <_Corr_Mode> refers (incremental correction).

Thousands
position:

Determines whether or not the maximum permissible correction is to be limited by
the setting data $SN_ CORR_TOCARR_LIN_MAX.

0xxx Threshold value monitoring is active.
1xxx The threshold value monitoring is suppressed.

<_No_Alarm>: Behavior in the event of an error (return value > 0) (optional)
Data type: BOOL
Value: FALSE (de‐

fault)
In the event of an error, the program execution is stopped and an
alarm displayed.

TRUE In the event of an error, the program processing is not stopped and
no alarm is displayed.
Application: User-specific reaction corresponding to the return value

Further information about CORRTC
The kinematic structure of a tool carrier is described by one (type T and type P) or two (type M)
kinematic chains (subchains), which start from the associated reference point, machine zero or
tool carrier reference point). One of the two chains, the tool chain, ends at the reference point
of the tool, the other chain, the workpiece chain ends in the zero point of the basic coordinate
system.

Work preparation
3.13 Tool offsets

NC programming
746 Programming Manual, 06/2019, A5E47437142B AA

The CORRTC function writes lever arm lengths and axis directions on machines with an
orientation transformation in special correction elements. A kinematic chain is described, for
example, with elements of the type OFFSET, which are defined via $ NK_TYPE.

CORRTC works with sections
The two subchains can each be divided into a maximum of four sections:

● Section 1 begins at the starting point of the chain and ends at the first orientation axis.

● Section 2 is the section between orientation axis 1 and orientation axis 2.

● Section 3 is the section between orientation axis 2 and the end of the chain.

The following figure shows an orientable tool carrier with 2 rotary axes.

Figure 3-8 CORRTC example

The sections are clearly defined: If the kinematic subchain is executed from its starting point to
its end point, then the first section has the index 1, next has index 2, and so on.

Correction elements
A reference can be made to a constant kinematic chain element (chain element of the type
$NK_TYPE[<n>] = "OFFSET") in each of these sections with the $TC_CARR_CORR_ELEM [,
0 ... 3] system variables. The correction values determined during the machine measurement
are written to the so designated elements with the CORRTC function.

The sequence of references in $TC_CARR_CORR_ELEM[m, 0 ... 3] must correspond to the
sections described above, that is there can only be one chain element in
$TC_CARR_CORR_ELEM[m, 0] which belongs to the offset vector l1, etc.

The reference value is always the corresponding value effective in the tool carrier active when
CORRTC is called. After selection of the tool carrier, changed contents of the stored kinematic
data have no effect on the method of operation of the CORRTC function.

3.13.10 Online tool length compensation (TOFFON, TOFFOF)
Use the system variable $AA_TOFF[<n>] to overlay the effective tool lengths in accordance
with the three tool directions three-dimensionally in real time.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 747

The three geometry axis identifiers are used as index <n>. Thus, the number of active direction
offsets is determined by the geometry axes that are active at the same time.

All offsets can be active at the same time.

The online tool length offset function can be used for:

● Orientation transformation TRAORI

● Orientable toolholder TCARR

Note

Online tool length offset is an option, which must be enabled in advance. This function is
only practical in conjunction with an active orientation transformation or an active orientable
toolholder.

Syntax

TRAORI
TOFFON(<compensation direction>[,<offset value>])
WHEN TRUE DO $AA_TOFF[<compensation direction>] ; In synchronized actions.
...
TOFFOF(<compensation direction>)

Meaning

TOFFON: Activate online tool length offset
<compensation
direction>:

Tool direction (X, Y, Z), in which the online tool length
offset should be active.

<offset value>: When activating, an offset value can be specified for
the relevant direction of compensation and this is im‐
mediately recovered.

TOFFOF: Reset online tool length offset
The compensation values in the specified compensation direction are reset and a pre-
processing stop is initiated.

Examples

Example 1: Selecting the tool length compensation

Program code Comment
MD21190 $MC_TOFF_MODE = 1
MD21194 $MC_TOFF_VELO[0] =1000
MD21196 $MC_TOFF_VELO[1] =1000
MD21194 $MC_TOFF_VELO[2] =1000
MD21196 $MC_TOFF_ACCEL[0] =1
MD21196 $MC_TOFF_ACCEL[1] =1
MD21196 $MC_TOFF_ACCEL[2] =1

; Absolute values are approached.

Work preparation
3.13 Tool offsets

NC programming
748 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N5 DEF REAL XOFFSET
N10 TRAORI(1) ; Transformation on.
N20 TOFFON(Z) ; Activation of online tool length

compensation for the Z tool direc-
tion.

N30 WHEN TRUE DO $AA_TOFF[Z]=10 G4 F5 ; A TLC of 10 is interpolated for the
Z tool direction.

...
N100 XOFFSET=$AA_TOFF_VAL[X] ; Assigns actual compensation in the

X direction.
N120 TOFFON(X,-XOFFSET) G4 F5 ; For the X tool direction, the TLC

is reduced back to 0.

Example 2: Deselect the tool length offset

Program code Comment
N10 TRAORI(1) ; Transformation on.
N20 TOFFON(X) ; Activation of online tool length

compensation for the X tool direc-
tion.

N30 WHEN TRUE DO $AA_TOFF[X]=10 G4 F5 ; A TLC of 10 is interpolated for the
X tool direction.

...
N80 TOFFOF(X) ; Position offset of the X tool di-

rection is deleted:
...$AA_TOFF[X]=0
No axis is moved.
The position offset is added to the
actual position in the Work corre-
sponding to the
actual orientation.

Further information

Block preparation
During block preparation in preprocessing, the current tool length offset active in the main run
is also taken into consideration. To allow extensive use to be made of the maximum permissible
axis velocity, it is necessary to stop block preparation with a STOPRE preprocessing stop while
a tool offset is established.

The tool offset is always known at the time of run-in when the tool length offsets are not changed
after program start or if more blocks have been processed after changing the tool length offsets
than the IPO buffer can accommodate between run-in and main run.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 749

Variable $AA_TOFF_PREP_DIFF
The dimension for the difference between the currently active compensation in the interpolator
and the compensation that was active at the time of block preparation can be polled in the
variable $AA_TOFF_PREP_DIFF[<n>].

Adjusting machine data and setting data
The following system data is available for online tool length offset:

● MD20610 $MC_ADD_MOVE_ACCEL_RESERVE (acceleration margin for overlaid motion)

● MD21190 $MC_TOFF_MODE
Content of system variable $AA_TOFF[<n>] is moved through as absolute value or is
integrated up.

● MD21194 $MC_TOFF_VELO (velocity of the online tool length offset)

● MD21196 $MC_TOFF_ACCEL (acceleration of the online tool length offset)

● Setting data for presetting limit values
:
SD42970 $SC_TOFF_LIMIT (upper limit of the tool length offset value)

Reference:
Function Manual, Special Functions; F2: Multi-axis transformations

3.13.11 Modification of the offset data for rotatable tools

3.13.11.1 Calculating orientations (ORISOLH)
The predefined ORISOLH function helps the user to set the rotary axis positions of a machine
so that a turning tool can be brought into a defined, kinematic-independent position relative to
the workpiece. Prerequisite is that a 6-axis transformation is active that has been
parameterized with kinematic chains.

Two basic functions are available:

● Tool alignment
The β and γ angles are specified. The function calculates the angles of the three orientation
axes required for this.

● Direct tool alignment
The angles of the second and third orientation axes are specified. The function calculates
the associated β and γ angles as well as that of the missing first orientation axis.

Work preparation
3.13 Tool offsets

NC programming
750 Programming Manual, 06/2019, A5E47437142B AA

Note
Order of the orientation axes

If you run through the kinematic chain that describes the structure of the machine, from the
workpiece to the tool, then the following specifications apply for the order of the three
orientation axes of a 6-axis transformation:
● The orientation axis that is closest to the workpiece is the first orientation axis.
● The orientation axis that is closest to the tool is the third orientation axis.

Generally, the first orientation axis is a spindle and the corresponding rotation is therefore
implemented in these cases through a rotating frame.

Syntax
<RetVal> = ORISOLH(<Cntrl>,<W1>,<W2>)

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 751

Meaning

ORISOLH: Function call
<RetVal>: Function return value

Data type: INT
Range of val‐
ues:

0, -2, -3, ..., -17

Values: 0 Function has ended without an error.
-2 No valid transformation (6-axis orientation transformation) is

active.
-3 The first parameter (<Cntrl>) is negative.
-4 The unit position of the first parameter (<Cntrl>) is invalid.

Only the values 0 and 1 are permissible.
-5 The tens position of the first parameter (<Cntrl>) is invalid.

Only the values 0 to 3 are permissible.
-6 The hundreds position of the first parameter (<Cntrl>) is in‐

valid.
Only the values 0 and 1 are permissible.

-7 The thousands position of the first parameter (<Cntrl>) is in‐
valid.
Only the values 0 to 3 are permissible.

-8 Angle γ is too large for the "Direct tool alignment" function.
-9 At least one of the specified axis positions violates an axis

limit for the "Direct tool alignment" function.
-10 No tool is active.
-11 The requested orientation cannot be set.
-12 The adaptation of the free axis angle for the Hirth joint is not

possible for the first or only solution.
-13 The adaptation of the free axis angle for the Hirth joint is not

possible for the second solution.
-14 The adaptation of the free axis angle for the Hirth joint is not

possible for either of the two solutions.
-15 The first orientation axis is parameterized as Hirth axis.
-16 The second as well as the third rotary axis has been para‐

meterized as Hirth axis. Only one of the two axes can be the
Hirth axis.

-17 At least one of the specified axis positions is not compatible
with the associated Hirth joint for the "Swivel directly" func‐
tion.

Work preparation
3.13 Tool offsets

NC programming
752 Programming Manual, 06/2019, A5E47437142B AA

<Cntrl>: Controls the behavior of the function
Data type: INT
The <Cntrl> parameter is decimal coded (unit to thousands position):
Unit position: The unit position controls the response to errors.

xxx0 In the event of an error (return value < 0), alarm 14106 is
output and program processing is aborted.
Note:
The alarm is also output irrespective of the value of the unit
position when the <Cntrl> parameter is negative.

xxx1 In the event of an error (return value < 0) no alarm is output.
The user can react suitably in the program.

Tens position: Controls the behavior when an orientation axis with Hirth joint is
present.
Note:
This parameter is only evaluated for the "Tool alignment" function (i.e.
when the hundreds position has the value "0").

xx0x The axis position is rounded off to the nearest position.
xx1x The axis positions are rounded off so that the difference of

the β angle to its programmed value is minimal.
xx2x The axis positions are rounded off so that the β angle is equal

to the highest possible value which is less than the program‐
med value (β is rounded down).

xx3x The axis positions are rounded off so that the β angle is equal
to the lowest possible value which is greater than the pro‐
grammed value (β is rounded up).

Hundreds posi‐
tion:

Specifies which function is to be executed or the significance of the
two following parameters <W1> and <W2>.

x0xx "Tool alignment" function
Parameters <W1> and <W2> have the following meaning:
● <W1> = β
● <W2> = γ
The associated angles of the orientation axes are calculated.

x1xx "Direct tool alignment" function
<W1> is the position specification for the second orientation
axis, <W2> is the position specification for the third orienta‐
tion axis of a 6-axis transformation. The position of the first
orientation axis and the β and γ angles are defined which are
compatible with the two position specifications.
If no error occurs, two solutions are always output in the
$P_ORI_POS[<n>, <m>] system variables. The first index
<n> (0 or 1) refers to the solution and the second index <m>
(0 ... 2) to the orientation axis:
● $P_ORI_POS[0/1, 0]: Position of the first orientation axis
● $P_ORI_POS[0/1, 1]: Angle β
● $P_ORI_POS[0/1, 2]: Angle γ
A check is made as to whether the position specifications
<W1> and <W2> are compatible with any Hirth joints or active
software limits. If this is not the case, a corresponding error
number is returned (see <RetVal> parameter).

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 753

If the angles <W1> and <W2> are selected arbitrarily, the
cutting edge of the tool is generally not in the machining
plane. The angle γ through which the cutting edge is rotated
out of the machining plane, must not be greater than the limit
value which is defined by the setting data SD42999 $SC_OR‐
ISOLH_INCLINE_TOL.

Thousands po‐
sition:

Specifies which positions of the solutions may be modified when the
hundreds position has the value "0", i.e. for the "Tool alignment"
function.

0xxx The calculated axis positions should be as close as possible
to the current machine axis positions.

1xxx The calculated axis positions for modulo axes should be as
close as possible to the middle of the modulo range, for other
axes as close as possible to 0. For non-modulo axes, this
means that the axis positions are reduced to the range
-180° … +180°.

2xxx The calculated axis positions should be reduced to the range
-180° … +180° irrespective of the axis type.

<W1>: First angle
The meaning results from the hundreds position of the <Cntrl> paramter.
Data type: REAL

<W1>: Second angle
The meaning results from the hundreds position of the <Cntrl> paramter.
Data type: REAL

Note

Parameters that have not been programmed have the default value "0".

Work preparation
3.13 Tool offsets

NC programming
754 Programming Manual, 06/2019, A5E47437142B AA

Further information
The number of solutions found together with further status information when executing the
ORISOLH function, can be read via the following system variables:

System variable Meaning
$P_ORI_POS
[<n>, <m>]

Returns the angles of the orientation axes that result from the orientation program‐
ming.
<n>: Index of the solution

Range of values: 0, 1
<m>: Index of the orientation axis

Range of values: 0 ... 2
The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

When the ORISOLH function is called in the "Direct tool alignment" mode, the
$P_ORI_POS[0/1, 1] and P_ORI_POS[0/1, 2] variables contain the values of the two
angles β and γ belonging to the two solutions.
The first solution entered in $P_ORI_POS[<n>, <m>], i.e. with the index <n> = 0, is
always the solution that is selected by the control when the requested orientation is
approached directly. The second index <m> refers to the orientation axis, i.e. on
$NT_ROT_AX_NAME.
The axis positions entered in $P_ORI_POS[<n>, <m>] take into account the offsets
entered in $NK_OFF and $NK_OFF_FINE, i.e. these axis angles can be used in the
following blocks to set the required orientation without any further modification.
If a rotary axis is a Hirth axis, the solution positions are rounded off to the nearest
position of rest of the Hirth joint. For Hirth jointed rotary axes, you can read the
differences between the axis positions for the exact solutions and those of the sol‐
utions adapted to the Hirth incrementing in the $P_ORI_DIFF system variable.

$P_ORI_DIFF
[<n>, <m>]

Returns the difference between the exact positions of the orientation axes and those
provided in $P_ORI_POS that result from the orientation programming.
<n>: Index of the solution

Range of values: 0, 1
<m>: Index of the orientation axis

Range of values: 0 ... 2
The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

The content can only be not equal to zero when the positions are incremented (Hirth
joint), i.e. when the system data $NT_HIRTH_INCR of the relevant axis is not equal
to zero and when this axis is a manual rotary axis.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 755

System variable Meaning
$P_ORI_SOL If for an orientation transformation with more than one orientation axis, the axis

angles are calculated that should result in a specified orientation, there is generally
more than one solution. The $P_ORI_SOL system variables contain the number of
valid solutions together with additional status information.
The content of $P_ORI_SOL is coded as follows:
Values < 0 General error states

-1 No solutions have been calculated yet for the active transfor‐
mation (missing call of ORISOLH).

-2 A transformation is not active, or the active transformation is
not an orientation transformation (6-axis transformation) that
can provide positions for a specified orientation programming.

-4 The desired orientation cannot be set with the present kine‐
matics.

-5 No solution was found when the ORISOLH function was called
in the "Direct tool alignment" mode.

-6 Angle γ is too large when the ORISOLH function was called in
the "Direct tool alignment" mode.

-7 An angle was specified when the ORISOLH function was
called in the "Direct tool alignment" mode that cannot be set
because of the Hirth joint.

-8 The first orientation axis (frame axis) must not be parameter‐
ized as Hirth axis.

-9 The second as well as the third rotary axis has been parame‐
terized as Hirth axis. Only one of the two axes can be the Hirth
axis.

-10 No adaptation of the solution(s) to the Hirth joint has been
found.

Values > 0
Unit position

Number of mathematically possible solutions without consideration
of axis limits and any error conditions.

0 There is no solution, i.e. the requested orientation cannot be
set.
There can be three different causes for this case:
● In principle, the requested orientation cannot be achieved

because of the machine kinematics (orientation axes not
arranged at right angles) even with an arbitrary traversing
range of the orientation axes. In this case, the tens and
hundreds positions of $P_ORI_SOL are both zero, the
$P_ORI_STAT status variables assigned to the orientation
axis have the value "-4".

● The calculated solutions cannot be achieved because they
would violate the axis limits. The positions of the
orientation axes that would result without the axis limits,
can be read in $P_ORI_POS.

● Axis positions were specified when the ORISOLH function
was called in the "Direct tool alignment" mode which would
result in either the orientation vector or the orientation
normal vector of the tool being aligned parallel to the first
orientation axis, whose position is to be calculated. The
position of this axis is not defined in these cases.

Work preparation
3.13 Tool offsets

NC programming
756 Programming Manual, 06/2019, A5E47437142B AA

System variable Meaning
1 There is a solution.

There can be three different causes for this case:
● Based on the specified orientation and the machine

kinematics, there is only one solution (from the
mathematical point of view, two coinciding solutions) even
without consideration of the axis limits. This case occurs at
the edge of the orientation range for kinematics that are not
at right angles. $P_ORI_POS contains both (identical)
solutions.

● There is only one solution because a second solution is
invalid due to the violated axis limits. The valid solution is
always the first solution in $P_ORI_POS. The second
solution which would result when the axis limits are not
taken into account, can also be read in $P_ORI_POS.

● This is the normal case when the ORISOLH function is
called in the "Direct tool alignment" mode. For the specified
axis positions of two orientation axes, there is generally
only one valid position for the missing orientation axis to be
calculated.

2 There are two solutions.
8 There are an infinite number of solutions, i.e. the position of an

orientation axis (the polar axis) is arbitrary. However, from the
two possible positions of the other axes, one is excludes be‐
cause of the violated axis limits.

9 There are an infinite number of solutions, i.e. the position of an
orientation axis (the polar axis) is indefinite. The indefinite axis
can be determined from the hundreds position or from the
$P_ORI_STAT system variable.

Values > 0
Tens posi‐
tion

Bit-coded display for violated axis limits. The precise cause of the
error can be determined from the $P_ORI_STAT system variable.
Bit 0 (value 10): For at least one solution, at least one axis limit of

the first orientation axis is violated.
Bit 1 (value 20): For at least one solution, at least one axis limit of

the second orientation axis is violated.
Bit 2 (value 40): For at least one solution, at least one axis limit of

the third orientation axis is violated.
Values > 0
Hundreds
position

Bit-coded display for non-defined axis positions (can only occur when
there is an infinite number of solutions, i.e. when the unit position is
equal to "9").
Bit 0 (value 100): The position of the first orientation axis is not de‐

fined.
Bit 1 (value 200): The position of the second orientation axis is not

defined.
Bit 2 (value 400): The position of the third orientation axis is not

defined.
The designations first, second and third orientation axis refer to the definition of the
axes in $NT_ROT_AX_NAME.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 757

System variable Meaning
$P_ORI_STAT
[<n>]

Returns the status for each of the maximum three orientation axes after ORISOLH
has been called.
<n>: Index of the orientation axis

(correspnds to the index of the relevant orientation axis in
$NT_ROT_AX_NAME)
Range of values: 0 ... 2

The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

The content of $P_ORI_STAT is coded as follows:
Values < 0 General error states

-1 The status is not defined (missing call of ORISOLH).
-2 A transformation is not active, or the active transformation is

not an orientation transformation (6-axis transformation) that
can provide positions for a specified orientation programming.

-3 The axis is not included in the active transformation.
-4 The position of the axis cannot be calculated because the re‐

quested orientation cannot be achieved with the present kin‐
ematics even with an arbitrary assumed traversing range of
the axis.

-5 Axis positions were specified when the ORISOLH function
was called in the "Direct tool alignment" mode which would
result in either the orientation vector or the orientation normal
vector of the tool being aligned parallel to the first orientation
axis, whose position is to be calculated. The position of this
axis is not defined in these cases.

-6 Angle γ is too large when the ORISOLH function was called in
the "Direct tool alignment" mode.

-7 An angle was specified when the ORISOLH function was
called in the "Direct tool alignment" mode that cannot be set
because of the Hirth joint.

-8 The first orientation axis (frame axis) must not be parameter‐
ized as Hirth axis.

-9 The second as well as the third rotary axis has been parame‐
terized as Hirth axis. Only one of the two axes can be the Hirth
axis.

-10 No adaptation of the solution(s) to the Hirth joint has been
found.

Values > 0
Unit position

Bit-coded display for violated axis limits of the first solution.
Bit 0 (value 1): The first solution violates the lower axis limit.
Bit 1 (value 2): The first solution violates the upper axis limit.

Values > 0
Tens posi‐
tion

Bit-coded display for violated axis limits of the second solution.
Bit 0 (value 10): The second solution violates the lower axis limit.
Bit 1 (value 20): The second solution violates the upper axis limit.

Values > 0
Hundreds
position

Display of a non-defined axis position.
Bit 0 (value 100): The position of the orientation axis is not defined,

i.e. the requested orientation is achieved with
each arbitrary setting of the rotary axis (polar po‐

Work preparation
3.13 Tool offsets

NC programming
758 Programming Manual, 06/2019, A5E47437142B AA

System variable Meaning
sition). This information is also contained in the
$P_ORI_SOL system variable.

Of the error numbers that indicate a violation of the axis limits, several can occur
simultaneously. When an axis limit is violated, an attempt is made to reach a position
within the permissible axis limits by adding or subtracting multiples of 360°. If this is
not possible, it is not clearly defined whether the lower or the upper axis limit has
been violated.
If there is no solution for the requested orientation ($P_ORI_SOL = 0), the status of
the orientation axes in the transformation is "0".

Note
$NT_ROT_AX_NAME

This system variable refers to a maximum of three axes used for setting the orientation. It
contains the names of the chain elements ($NK_NAME) that define the machine axes (rotary
axes) that must perform the orientation movements resulting from a kinematic transformation.
The order in which the maximum three rotary axes are contained in this system variable is
irrelevant for the machine kinematics because this is derived from the structure of the kinematic
chains. However, as it defines the order in which other variables access the rotary axes, the
order of the orientation axes in $NT_ROT_AX_NAME must match the kinematic description.

Note
Status information

The status information that shows, for example, that an orientation cannot be achieved or can
only be achieved when relevant axis limits are violated, does not trigger an NC alarm. It is the
responsibility of the user to react suitably to the specified conditions.

3.13.11.2 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK)
The modification of the offset data for rotatable tools is activated in the NC program via the
CUTMOD (in combination with orientable tool carriers) or CUTMODK language command (for
orientation transformations that were defined by means of kinematic chains).

Note

As the orientable tool carriers and orientation transformations that were defined by means of
kinematic chains cannot be active at the same time, there are no conflicts between the two
variants.

Syntax
CUTMOD = <Value>

or

CUTMODK = <Command>

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 759

Meaning

CUTMOD: Function call in combination with orientable tool carriers
<Value>: Assigned value

Data type: INT
Value: 0 The function is deactivated.

The values supplied from system variables $P_AD... are the same
as the corresponding tool parameters.

> 0 The function is activated if an orientable tool carrier with the speci‐
fied number is active, i.e. the activation is linked to a specific ori‐
entable tool carrier.
The values supplied from system variables $P_AD... may be modi‐
fied with respect to the corresponding tool parameters depending
on the active rotation.
The deactivation of the designated orientable tool carrier tempo‐
rarily deactivates the function; the activation of another orientable
tool carrier permanently deactivates it. This is the reason why in
the first case, the function is re-activated when again selecting the
same orientable tool carrier; in the second case, a new selection is
required - even if at a subsequent time, the orientable tool carrier
is re-activated with the specified number.
The function is not influenced by a reset.

-1 The function is always activated if an orientable tool carrier is ac‐
tive.
When changing the tool carrier or when de-selecting it and a sub‐
sequent new selection, CUTMOD does not have to be set again.

-2 The function is always activated if an orientable tool carrier is ac‐
tive whose number is the same as the currently active orientable
tool carrier.
If an orientable tool carrier is not active, then this has the same
significance as CUTMOD=0.
If an orientable tool carrier is active, then this has the same signif‐
icance as when directly specifying the actual tool carrier number.

< -2 Values less than 2 are ignored, i.e. this case is treated as if CUT‐
MOD was not programmed.
Note:
This value range should not be used as it is reserved for possible
subsequent expansions.

CUTMODK: Function call in combination with orientation transformations that have been defined by
means of kinematic chains

Work preparation
3.13 Tool offsets

NC programming
760 Programming Manual, 06/2019, A5E47437142B AA

<Command>: Assigned Command
Data type: STRING
Value: "NEW" The states of an active transformation defined with kinematic

chains relevant for the "Modification of the offset data", the
name of the transformation and the current contour frame
are saved.
Note:
This command is only permissible when a suitable transfor‐
mation (TRAORI_DYN, TRAORI_STAT or TRAANG_K) is
active.

"OFF" Switches the active "Modification of the offset data" off. The
data previously stored with "NEW" is retained.
Note:
This command is also permissible when CUTMODK is not
active. It then remains without effect. Any data set present for
the "Modification of the offset data" is retained.

"ON" With this command, the "Modification of the offset data" is re-
activated with a data set previously stored with the "NEW"
command.
If a transformation with the name of the stored data set is
active when this command is executed, the "Modification of
the offset data" takes effect immediately. Otherwise, the ac‐
tivation is delayed until an active transformation is activated.

"CLEAR" As with the "OFF" command, switches the "Modification of
the offset data" off and also deletes the stored data set.
Note:
This command is also permissible when CUTMODK is not
active.

Note
SD42984 $SC_CUTDIRMOD

The CUTMOD or CUTMODK command replaces the function that can be activated using the
setting data SD42984 $SC_CUTDIRMOD. However, this function remains available
unchanged. However, as it doesn't make sense to use both functions in parallel, it can only be
activated if CUTMOD is equal to zero and CUTMODK is the zero string.

Further information

Reading modified offset data
The modified offset data is provided in the following system variables and OPI variables:

Meaning System variable OPI variable
Cutting edge position $P_AD[2] cuttEdgeParam2
Holder angle $P_AD[10] cuttEdgeParam10
Cut direction $P_AD[11] cuttEdgeParam11
Clearance angle $P_AD[24] cuttEdgeParam24

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 761

The data is always modified with respect to the corresponding tool parameters
($TC_DP2[..., ...] etc.) when the "Modification of the offset data for rotatable tools" function was
activated with the CUTMOD or CUTMODK command and the tool was rotated by an orientable tool
carrier or a suitable orientation transformation.

Further function-relevant system variables

System variable Meaning
$P_CUTMOD_ANG /
$AC_CUTMOD_ANG

Returns the angle through which a tool was rotated in the active machining
plane and the modified cutting edge data available for the CUTMOD and
CUTMODK functions.

$P_CUTMOD /
$AC_CUTMOD

Reads the currently valid value that was last programmed with the CUTMOD
command (number of the tool carrier for which the modification of the offset
data should be activated).
If the last programmed value was CUTMOD = -2 (activation with the currently
active orientable tool carrier), then the value "-2" is not returned in the system
variable, but rather the number of the orientable tool carrier active at the time
of programming.

$P_CUTMODK /
$AC_CUTMODK

Reads the name of the transformation under which the currently valid data set
for the "Modification of the offset data" was created.

$P_CUT_INV /
$AC_CUT_INV

Supplies the value TRUE if the tool is rotated so that the spindle direction of
rotation must be inverted. To do this, the following four conditions must be
fulfilled in the block to which the read operations refer:
1. If a turning or grinding tool is active

(tool types 400 to 599 and / or SD42950 $SC_TOOL_LENGTH_TYPE = 2).
2. The modification of the offset data was activated with the CUTMOD

or CUTMODK command.
3. An orientable tool carrier or an orientation transformation defined with

kinematic chains is active, which was selected with the CUTMOD or
CUTMODK command.

4. The tool is rotated by the orientable tool carrier or the kinematic orientation
transformation so that the resulting normal of the tool cutting edge is
rotated with respect to the initial position by more than 90° (typically 180°).

If at least one of the specified four conditions is not fulfilled, the variable returns
the value FALSE. For tools whose cutting edge position is not defined, the
value of the variable is always FALSE.

Work preparation
3.13 Tool offsets

NC programming
762 Programming Manual, 06/2019, A5E47437142B AA

System variable Meaning
$P_CUTMOD_ERR Error state after the last call of the CUTMOD function

The CUTMOD function can also be called implicitly for a tool change. At a
reset, the variable is reset to zero. It is reset at every tool change and, if
required, rewritten.
The variable is bit-coded. The bits have the following meanings:
Bit 0: No valid cut direction is defined for the active tool.
Bit 1: The cutting edge angle (clearance angle and holder angle) of the

active tool are both zero.
Bit 2: The clearance angle of the active tool has an impermissible value (<

0° or > 180°).
Bit 3: The holder angle of the active tool has an impermissible value (< 0° or

> 90°).
Bit 4: The plate angle of the active tool has an impermissible value (< 0° or

> 90°).
Bit 5: The cutting edge position - holder angle combination of the active tool

is not permitted (the holder angle must be ≤ 90° for cutting edge po‐
sition 1 to 4; for cutting edge positions 5 to 8 it must be ≥ 90°).

Bit 6: Illegal rotation of the active tool.
The tool was rotated out of the active machining plane by ± 90° (with
a tolerance of about 1°). The cutting edge position is therefore no
longer defined in the machining plane.

Bit 7: The cutting plate is not in the machining plane and the angle between
the cutting plate and the machining plane exceeds the upper limit
specified with the setting data SD42998 $SC_CUT‐
MOD_PLANE_TOL.

Bit 8: The cutting plate is not in the machining plane. Angle α is greater than
1°. Angle α is the angle of rotation around the coordinate axis which is
perpendicular to the axis of rotation of angle β as well as to the axis of
rotation of angle γ (the X axis for G18).

$P_...: Preprocessing variables
$AC_...: Main run variables

All main run variables can be read in synchronized actions. A read access operation from the
preprocessing generates a preprocessing stop.

Plane change
To determine the modified cutting edge position, cutting direction and holder or clearance
angle, the evaluation of the cutting edge in the active plane (G17 - G19) is decisive.

However, if setting data SD42940 $SC_TOOL_LENGTH_CONST (change of the tool length
component when selecting the plane) has a valid non-zero value (plus or minus 17, 18 or 19),
its contents define the plane in which the relevant quantities are evaluated.

This priority rule of the setting data over the G code can be deactivated by setting bit 18 of the
machine data $MC_TOOL_PARAMETER_DEF_MASK. This means that when this bit is set,
the plane defined with the G command of group 6 is still valid.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 763

Effectiveness of the modified cutting data
The modified cutting edge position and the modified cutting edge reference point are
immediately effective when programming, even for a tool that is already active. A tool does not
have to be re-selected for this purpose.

Example
For a tool with cutting edge position 3 and an orientable tool carrier that can rotate the tool
around the B axis, the cutting edge position shall be modified after a tool rotation with the aid
of the CUTMOD command.

S: Cutting edge center point
P: Cutting edge reference point
SL: Cutting edge position

Program code Comment
N10 $TC_DP1[1,1]=500
N20 $TC_DP2[1,1]=3 ;Cutting edge position
N30 $TC_DP3[1,1]=12
N40 $TC_DP4[1,1]=1
N50 $TC_DP6[1,1]=6
N60 $TC_DP10[1,1]=110 ; Holder angle
N70 $TC_DP11[1,1]=3 ; Cut direction
N80 $TC_DP24[1,1]=25 ; Clearance angle

N90 $TC_CARR7[2]=0 $TC_CARR8[2]=1 $TC_CARR9[2]=0 ; B axis

Work preparation
3.13 Tool offsets

NC programming
764 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N100 $TC_CARR10[2]=0 $TC_CARR11[2]=0
$TC_CARR12[2]=1

; C axis

N110 $TC_CARR13[2]=0
N120 $TC_CARR14[2]=0
N130 $TC_CARR21[2]=X
N140 $TC_CARR22[2]=X
N150 $TC_CARR23[2]="M"

N160 TCOABS CUTMOD=0
N170 G18 T1 D1 TCARR=2 ; X Y Z
N180 X0 Y0 Z0 F10000 ; 12.000 0.000 1.000

N190 $TC_CARR13[2]=30
N200 TCARR=2
N210 X0 Y0 Z0 ; 10.892 0.000 -5.134
N220 G42 Z–10 ; 8.696 0.000 –17.330
N230 Z–20 ; 8.696 0.000 –21.330
N240 X10 ; 12.696 0.000 –21.330
N250 G40 X20 Z0 ; 30.892 0.000 –5.134

N260 CUTMOD=2 X0 Y0 Z0 ; 8.696 0.000 –7.330
N270 G42 Z–10 ; 8.696 0.000 –17.330
N280 Z–20 ; 8.696 0.000 –21.330
N290 X10 ; 12.696 0.000 –21.330
N300 G40 X20 Z0 ; 28.696 0.000 –7.330

N310 M30

The numerical values in the comments specify the end of block positions in the machine coordinates
(MCS) in the sequence X → Y → Z.

Explanations
In block N180, initially the tool is selected for CUTMOD=0 and non-rotated tool holders that can
be orientated. As all offset vectors of the tool holder that can be orientated are 0, the position
that corresponds to the tool lengths specified in $TC_DP3[1,1] and $TC_DP4[1,1] is
approached.

The tool holder that can be orientated with a rotation of 30° around the B axis is activated in
block N200. As the cutting edge position is not modified due to CUTMOD=0, the old cutting edge
reference point is decisive just as before. This is the reason why in block N210 the position is
approached, which keeps the old tool nose reference point at the zero (i.e. the vector (1, 12) is
rotated through 30° in the Z/X plane).

In block N260, contrary to block N200, CUTMOD=2 is effective. As a result of the tool holder
rotation that can be orientated, the modified cutting edge position becomes 8. Deviating axis
positions also result from this.

The tool radius compensation (TRC) is activated in blocks N220 and/or N270. The different
cutting edge position in both program sections has no effect on the end positions of the blocks

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 765

in which the TRC is active; the corresponding positions are therefore identical. The different
cutting edge positions only become effective again in the deselect blocks N260 and/or N300.

3.13.12 Working with tool environments

Overview of functions
● Save tool environment (TOOLENV) (Page 766)

● Delete tool environment (DELTOOLENV) (Page 769)

● Read T, D and DL number (GETTENV) (Page 770)

● Read tool lengths and/or tool length components (GETTCOR) (Page 771)

● Change tool components (SETTCOR) (Page 777)

System variables overview
● Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)

(Page 771)

3.13.12.1 Save tool environment (TOOLENV)
The TOOLENV function is used to save any current states needed for the evaluation of tool
data stored in the memory.

The individual data are as follows:

● The active G command of group:

– 6 (G17, G18, G19)

– 56 (TOWSTD, TOWMCS, TOWWCS, TOWBCS, TOWTCS, TOWKCS)

● The active transverse axis

● Machine data:

– MD18112 $MN_MM_KIND_OF_SUMCORR (properties of the summed offsets in the TO
area)

– MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

Work preparation
3.13 Tool offsets

NC programming
766 Programming Manual, 06/2019, A5E47437142B AA

● Setting data:

– SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

– SD42910 $SC_MIRROR_TOOL_WEAR (sign change tool wear when mirroring)

– SD42920 $SC_WEAR_SIGN_CUTPOS (sign of the tool wear with cutting edge systems)

– SD42930 $SC_WEAR_SIGN (sign of wear)

– SD42935 $SC_WEAR_TRANSFORM (transformations for tool components)

– SD42940 $SC_LENGTH_CONST (change of the tool length components for a plane
change)

– SD42942 $SC_TOOL_LENGTH_CONST_T (change of tool length components for
turning tools at change of plane)

– SD42950 $SC_TOOL_LENGTH_TYPE (allocation of the tool length components
independent of tool type)

– SD42954 $SC_TOOL_ORI_CONST_M (change of tool orientation components for
milling tools at change of plane)

– SD42956 $SC_TOOL_ORI_CONST_T (change of tool orientation components for
turning tools at change of plane)

● The orientation component of the current complete frame (rotation and mirroring, no work
offsets or scaling)

● The orientation component and the resulting length of the active toolholder with orientation
capability

● The orientation component and the resulting length of an active transformation

In addition to the data describing the environment of the tool, the T number, D number and DL
number of the active tool are also stored, so that the tool can be accessed later in the same
environment as the TOOLENV call, without having to name the tool again.

Syntax
<Status> = TOOLENV(<name>)

Meaning

TOOLENV(...): Predefined function to save a tool environment
Alone in the
block:

Yes

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 767

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 No more free memory locations for tool environments available.
-3 Null string illegal as name of a tool environment.
-4 No parameter (<name>) specified.

Parameters
1 <name>: Name, under which the current data set should be saved.

If a data set of the same name already exists, then it is overwritten. In this case,
the status is "0".
Data type: STRING

Additional information

Base dimension/adapter dimension – tool length compensation
When the tool magazine management is active (only available with the "Tool management"
option!), the value of the following machine data defines whether the adapter length or the tool
base dimension (cutting edge-specific parameters $TC_DP21, $TC_DP22 and $TC_DP23) is
incorporated in the calculation of the tool length:

MD18104 $MN_MM_NUM_TOOL_ADAPTER (tool adapter in TO area).

Since a change to this machine data only takes effect after the control system has powered up,
it is not saved in the tool environment.

Resulting length of toolholders with orientation capability and transformations:

Note

Both toolholders with orientation capability and transformations can use system variables or
machine data, which act as additional tool length components, and which can be subjected
partially or completely to the rotations performed. The resulting additional tool length
components must also be saved when TOOLENV is called, because they represent part of the
environment, in which the tool is used.

Adapter transformation
The adapter transformation is a property of the tool adapter and thus of the complete tool. It is,
therefore, not part of a tool environment, which can be applied to another tool.

By saving the complete data necessary to determine the overall tool length, it is possible to
calculate the effective length of the tool at a later point in time, even if the tool is no longer active
or if the conditions of the environment (e.g. G codes or setting data) have changed. Similarly,
the effective length of a different tool can be calculated assuming that it would be used under
the same conditions as the tool, for which the status was saved.

Work preparation
3.13 Tool offsets

NC programming
768 Programming Manual, 06/2019, A5E47437142B AA

Maximum number of data sets for tool environments
Machine data MD18116 $MN_MM_NUM_TOOL_ENV is used to define the maximum number
of data sets that can be saved to describe the tool environments. The data are in the TOA area.
They are kept even when the control system is switched off.

Data cannot be backed up. This means that this data cannot be transferred between the
different control systems.

3.13.12.2 Delete tool environment (DELTOOLENV)
The DELTOOLENV function is used to delete the data sets that are used to describe tool
environments. Deletion means that the set of data stored under a particular name can no longer
be accessed (an access attempt triggers an alarm).

Note

Data sets can only be deleted using the DELTOOLENV function, by an INITIAL.INI download
or by a cold start (NC power up with default machine data). There are no additional automatic
deletion operations.

Syntax
<Status> = DELTOOLENV(<name>)
<Status> = DELTOOLENV()

Meaning

DELTOOLENV(...): Predefined function to delete a tool environment
Alone in the
block:

Yes

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the specified name does not exist.
Parameters
1 <name>: Name of data set to be deleted

Data type: STRING

DELTOOLENV(): DELTOOLENV() deletes data sets describing tool environments without spec‐

ifying a name

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 769

3.13.12.3 Read T, D and DL number (GETTENV)
The GETTENV function is used to read the T, D and DL numbers stored in a tool environment.

Syntax
<Status> = GETTENV(<name>, <TDDL>)

Meaning

GETTENV(...): Predefined function to read T, D and DL numbers in a data set to describe a tool
environment
Alone in the
block:

Yes

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the specified name does not exist.
Parameters
1 <name>: Name of the data set from which the T, D and DL numbers are to be read

Data type: STRING
2 <TDDL>: The field of this result parameter contains the T, D and DL numbers of the tool,

whose tool environment is saved in the specified data set:
● <TDDL> [0]: T number
● <TDDL> [1]: D number
● <TDDL> [2]: DL number
Data type: INT[3]

GETTENV(,<TDDL>),
GETTENV("",<TDDL>):

When calling function GETTENV, it is permissible to omit the first pa‐
rameter – or to transfer the null string as first parameter. In these two
special cases, in <TDDL>, the T, D and DL numbers of theactive tool are
returned.

Work preparation
3.13 Tool offsets

NC programming
770 Programming Manual, 06/2019, A5E47437142B AA

3.13.12.4 Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)
Information regarding the saved tool environments can be read using the following system
variables:

$P_TOOLENVN: Supplies the number of data sets (which have still not been deleted) – defined
using TOOLENV – to describe tool environments
Syntax: <n> = $P_TOOLENVN
Meaning: <n>: Number of defined data sets

Data type: INT
Value range: 0 ... MD18116

$MN_MM_NUM_TOOL_ENV
This system variable can be accessed even if no tool environments are possible
(MD18116 = 0). In this case, the return value is "0".

$P_TOOLENV: Supplies the name of the <i>th data set to describe a tool environment
Syntax: <Name> = $P_TOOLENV[<i>]
Meaning: <name>: Name of the data set with number <i>

Data type: STRING
<i>: Number of the data set

Data type: INT
Value range: 1 ... $P_TOOLENVN

The assignment of numbers to data sets is not fixed, but can be changed as a result
of deleting or creating data sets. The data sets are numbered internally.
If <i> refers to a data set that has not been defined, then the null string is returned.
If index <i> is not valid, i.e. <i> is less than 1 or higher than that the maximum
number of data sets for tool environments (MD18116 $MN_MM_NUM_TOO‐
LENV), then the following alarm is output:
Alarm 17020 "inadmissible array index 1"

3.13.12.5 Read tool lengths and/or tool length components (GETTCOR)
The GETTCOR function is used to read out tool lengths or tool length components.

The parameters can be used to specify which components are considered and the conditions
under which the tool is used.

Syntax
<Status> = GETTCOR(<Len>[, <Comp>, <Stat>, <T>, <D>, <DL>])

Meaning

GETTCOR(...): Predefined function to read tool lengths or to read tool length components
Alone in the
block:

Yes

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 771

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value:

0 Function OK
-1 No memory reserved for tool environments:

MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the name specified under <Stat> does
not exist.

-3 Invalid string in parameter <Comp>.
Causes of this error can be invalid characters or characters pro‐
grammed twice.

-4 Invalid T number
-5 Invalid D number
-6 Invalid DL number
-7 Attempt to access a non-existent memory module.
-8 Attempt to access a non-existent option (programmable tool

orientation, tool management).
-9 The <Comp> string contains a colon (identifier for the specifi‐

cation of a coordinate system), but it is not followed by a valid
character denoting the coordinate system.

Parameters
1 <Len>: Result vector

Data type: REAL[11]
The vector components are arranged in the following order:
● <Len> [0]: Tool type
● <Len> [1]: Cutting edge position
● <Len> [2]: Abscissa
● <Len> [3]: Ordinate
● <Len> [4]: Applicate
● <Len> [5]: Tool radius
The coordinate system defined in <Comp> and <Stat> is used as the reference
coordinate system for the length components. If a coordinate system is not defined
in <Comp>, then tool lengths are displayed in the machine coordinate system.
The assignment of the abscissa, ordinate and applicate to the geometry axes
depends on the active plane used in the tool environment. This means, for G17, the
abscissa is parallel to X, with G18 it is parallel to Z, etc.
Components <Len>[6] to <Len>[10] contain the additional parameters, which can
be used to specify the geometry description of a tool (e.g. $TC_DP7 to $TC_DP11
for the geometry and the corresponding components for wear or sum and setup
offsets).
These 5 additional elements and the tool radius are only defined for components
E, G, S, and W. Their evaluation does not depend on <Stat>. The corresponding
values in <Len>[6] to <Len>[10] can thus only be not equal to zero if at least one
of the four specified components is involved in the tool length calculation. The
remaining components do not influence the result. The dimensions refer to the
control's basic system (inch or metric).

Work preparation
3.13 Tool offsets

NC programming
772 Programming Manual, 06/2019, A5E47437142B AA

2 <Comp>: Tool length components (optional)
Data type: STRING
The character string consists of two substrings, which are separated from one
another by a colon.
General form: "<SubStr_1> [: <SubStr_2]"
<SubStr_1>: The first substring designates the tool length components to be

taken into account when calculating the tool length.
The order of the characters in the substrings, and their notation
(upper or lower case), is arbitrary. Any number of blanks or
white spaces can be inserted between the characters.
Note:
It is not permissible that the characters in the substring are pro‐
grammed twice.
Charac‐
ters:

-

Minus symbol (only allowed as first character)
The complete tool length is calculated, minus
the components specified in the next string.

C Adapter or tool base dimension (whichever of
the two alternative components is active for the
tool in use)

E Setup offsets
G Geometry
K Kinematic transformation (is only evaluated for

generic 3, 4 and 5-axis transformation)
S Summed offsets
T Toolholder with orientation capability
W Wear

If the first substring is empty (except for white spaces), the com‐
plete tool length is calculated allowing for all components. This
applies even if the <Comp> parameter is not specified.

<Substr_2>: The optional second substring identifies the coordinate system,
in which the tool length is to be output.
The second substring only comprises one single relevant char‐
acter.
Charac‐
ters:

A Adjustable coordinate system (ACS)
B Basic coordinate system (BCS)
K Tool coordinate system of kinematic transfor‐

mation (KCS)
M Machine coordinate system (MCS)
T Tool coordinate system (TCS)
W Workpiece coordinate system (WCS)

If no coordinate system is specified, the evaluation is performed
in the MCS (machine coordinate system). If any rotations are to
be taken into account, they are specified in the tool environment
defined in <Stat>.

3 <_Stat>: Name of the data set for describing a tool environment (optional)
Data type: STRING
If the value of this parameter is the null string (""), or is not specified, then the
current status is used. The current tool is used if a tool is not specified.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 773

4 <T>: Internal T number of the tool (optional).
Data type: INT
If this parameter is not specified or if its value is "0", then the tool stored in <Stat>
is used.
If the value of this parameter is "-1", then the T number of the active tool is used.
It is also possible to explicitly specify the number of the active tool.
Note:
If <Stat> is not specified, the actual status is used as the tool environment. Since
<T> = 0 refers to the T number saved in the tool environment, the active tool is used
in this environment, i.e. parameters <T> = 0 and <T> = -1 have the same meaning
in this special case.

5 <D>: Cutting edge of the tool (optional).
Data type: INT
If this parameter is not specified, or if its value is "0", then the D number used is
based on the source of the T number. If the T number from the tool environment is
used, then the D number of the tool environment is also read, otherwise the D
number of the currently active tool is read.

6 <DL>: Number of the offset dependent on the location (optional).
Data type: INT
If this parameter is not specified, then the DL number used is based on the source
of the T number. If the T number from the tool environment is used, then the D
number of the tool environment is also read, otherwise the D number of the cur‐
rently active tool is read.

Examples

GETTCOR(_LEN) Calculates the tool length of the currently active
tool in the machine coordinate system allowing for
all components.

GETTCOR(_LEN,"CGW:W") Calculates the tool length for the active tool, con‐
sisting of the adapter or tool base dimension, ge‐
ometry and wear. Further components, such as
toolholder with orientation capability or kinematic
transformation, are not considered. Output in the
workpiece coordinate system.

GETTCOR (_LEN,"-K:B") Calculates the complete tool length of the active
tool without allowing for the length components of
a possibly active kinematic transformation. Output
in the basic coordinate system.

GETTCOR (_LEN,":M","Testenv1",,3) Calculates the complete tool length in the machine
coordinate system for the tool stored in the tool
environment named "Testenv1". However, the cal‐
culation is performed for cutting edge number D3,
regardless of the cutting edge number stored.

Work preparation
3.13 Tool offsets

NC programming
774 Programming Manual, 06/2019, A5E47437142B AA

Additional information

Adapter transformation/toolholder with orientation capability/kinematic transformation
Any rotations and component exchanges initiated by the adapter transformation, toolholder
with orientation capability and kinematic transformation, are part of the tool environment. They
are thus always performed, even if the corresponding length component is not supposed to be
included. If this is undesirable, tool environments must be defined, in which the corresponding
transformations are not active. In many cases (i.e. any time a transformation or toolholder with
orientation capability is not used on a machine), the data sets stored for the tool environments
automatically fulfill these conditions, with the result that the user does not need to make special
provision.

Turning and grinding tools: Calculating the tool length depending on MD20360
$MC_TOOL_PARAMETER_DEF_MASK
The following machine data defines how the wear and tool length are to be evaluated if a
diameter axis is used for turning and grinding tools.

MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

Bit Value
0

For turning and grinding tools, the wear parameter of the transverse axis is taken into account
as the diameter value:
= 0 (default) No
= 1 Yes

1 For turning and grinding tools, the tool length component of the transverse axis is taken into
account as the diameter value:
= 0 (default) No
= 1 Yes

If the bits involved are set, the associated entry is weighted with a factor of 0.5. This weighting
is reflected in the tool length returned by GETTCOR.

Example:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK = 3

MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function) = "X"

X is diameter axis (standard turning machine configuration)

Program code Comment
N30 $TC_DP1[1,1]=500
N40 $TC_DP2[1,1]=2
N50 $TC_DP3[1,1]=3.0 ; geometry L1
N60 $TC_DP4[1,1]=4.0
N70 $TC_DP5[1,1]=5.0
N80 $TC_DP12[1,1]=12.0 ; wear L1
N90 $TC_DP13[1,1]=13.0
N100 $TC_DP14[1,1]=14.0
N110 T1 D1 G18
N120 R1=GETTCOR(_LEN,"GW")
N130 R3=_LEN[2] ; 17.0 (= 4.0 + 13.0)

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 775

Program code Comment
N140 R4=_LEN[3] ; 7.5 (= 0.5 * 3.0 + 0.5 * 12.0)
N150 R5=_LEN[4] ; 19.0 (= 5.0 + 14.0)
N160 M30

Length components of the kinematic transformation and toolholder with orientation capability
If a toolholder with orientation capability is taken account of during the tool length calculation,
the following vectors are included in that calculation:

Type Vectors
M l1 and l2
T l1, l2 and l3
P The tool length is not influenced by the toolholder with orientation capability.

In generic 5-axis transformation, the following machine data are included in the tool length
calculation for transformer types 24 and 56:

Transforma‐
tion type

Machine data

24 MD24550/24650 $MC_TRAFO5_BASE_TOOL_1/2
MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2
MD24558/24658 $MC_TRAFO5_PART_OFFSET_1/2

56 MD24550/24650 $MC_TRAFO5_BASE_TOOL_1/2
MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2

Transformation type 56 (moving tool and moving workpiece) corresponds to type M for
toolholders with orientation capability.

For this 5-axis transformation, in the previous software releases, vector MD24560/24660
$MC_TRAFO5_JOINT_OFFSET_1/2 (vector of kinematic offset of the 1st/2nd 5-axis
transformation in the channel) corresponds to the sum of the two vectors l1 and l3 for a type M
tool carrier with orientation capability.

Only the sum is relevant for the transformation in both cases. The way, in which the two
individual components are composed, is insignificant. However, when calculating the tool
length, it is relevant which component is assigned to the tool and which is assigned to the tool
table. This is the reason that machine data MD24558/24658
$MC_TRAFO5_JOINT_OFFSET_PART_1/2 (vector kinematic offset in table) was introduced.
It corresponds to vector l3. Machine data:MD24560/24660
$MC_TRAFO5_JOINT_OFFSET_1/2 no longer corresponds to the sum of l1 and l3, but only to
vector l1. If machine data MD24558/24658 $MC_TRAFO5_JOINT_OFFSET_PART_1/2 is
equal to zero, the behavior is the same as before.

Compatibility
The GETTCOR function is used in conjunction with the TOOLENV and SETTCOR functions to
replace parts of the functionality, which were previously implemented externally in the
measuring cycles.

Only some of the parameters, which actually determine the effective tool length, were
implemented in the measuring cycles. The functions mentioned above can be configured to
reproduce the behavior of the measuring cycles in relation to the tool length calculation.

Work preparation
3.13 Tool offsets

NC programming
776 Programming Manual, 06/2019, A5E47437142B AA

3.13.12.6 Change tool components (SETTCOR)
The SETTCOR function is used to change tool components taking into account all general
conditions that can be involved when evaluating the individual components.

Note

Regarding the terminology: If in the following, in conjunction with the tool length, tool
components are involved, then the components considered from a vectorial perspective are
meant, which make up the complete tool length (e.g. geometry or wear). Such a component
comprises three individual values (L1, L2, L3), which are called coordinate values in the
following.

The tool component "geometry" therefore comprises three coordinate values $TC_DP3 to
$TC_DP5.

Syntax
<Status> = SETTCOR(<CorVal>, <Comp>, [<CorComp>, <CorMode>, <GeoAx>,
<Stat>, <T>, <D>, <DL>])

Meaning

SETTCOR(...): Predefined function to change tool components
Alone in the
block:

Yes

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 777

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the name specified under <Stat> does
not exist.

-3 Invalid string in parameter <Comp>.
Causes of this error can be invalid characters or characters pro‐
grammed twice.

-4 Invalid T number.
-5 Invalid D number.
-6 Invalid DL number.
-7 Attempt to access a non-existent memory module.
-8 Attempt to access a non-existent option (programmable tool

orientation, tool management).
-9 Illegal numerical value for parameter <CorComp>.

-10 Illegal numerical value for parameter <CorMode>.
-11 The contents of parameters <Comp> and <CorComp> are con‐

tradictory.
-12 The contents of parameters <Comp> and <CorMode> are con‐

tradictory.
-13 The content of the <GeoAx parameter does not designate a

geometry axis.
-14 Write attempt to a non-existent setup offset.

Parameters
1 <CorVal>: Correction vector

In the workpiece coordinate system (WCS) defined by <Stat>, the following as‐
signment applies:
● <CorVal> [0]: Abscissa
● <CorVal> [1]: Ordinate
● <CorVal> [2]: Applicate
If only one tool component is to be corrected (i.e. no vectorial correction, see
parameter <CorMode>), the correction value is always in <CorVal>[0], independ‐
ent of the axis on which it acts. The contents of the other two components are then
not evaluated.
If <CorVal> or a component of <CorVal> refers to the transverse axis, then the data
is evaluated as radius dimension. This means that a tool is, for example, "longer"
by the specified dimension; this correspondingly results in a change to the work‐
piece diameter that is twice as large.
The dimensions refer to the basic system (inch or metric) of the control system.
Data type: REAL[3]

Work preparation
3.13 Tool offsets

NC programming
778 Programming Manual, 06/2019, A5E47437142B AA

2 <Comp>: Tool component(s)
Data type: STRING
The character string consists of two substrings, which are separated from one
another by a colon.
General form: "<SubStr_1> [: <SubStr_2]"
<SubStr_1>: The first substring must always be available, and can either

comprise one or two characters. The first or only character for
the 1st component (Val1) and the second character for the 2nd
component (Val2), which are processed according to the sub‐
sequent parameters <CorComp> and <CorMode>.
Charac‐
ters:

C Adapter or tool base dimension (whichever
of the two alternative components is active
for the tool in use)

E Setup offsets
G Geometry
S Sum offsets
W Wear

<Substr_2>: The second substring is optional. Alternatively, it can comprise
(individual) letters "W" or "T".
Charac‐
ters:

W If the second substring is empty or contains
the letter "W", then the offset values are
taken into account as if they had been
measured in the workpiececoordinate sys‐
tem (WCS).

T If the second substring contains the letter
"T", then the offset values are taken into
account as if they had been measured in
the toolcoordinate system (Tool Coordinate
System, TCS).

The notation of the characters in the string (upper or lower case) is arbitrary. Any
number of spaces or tabs (white spaces) can be inserted.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 779

3 <CorComp>: Specifies the component(s) of the tool data sets that are to be described (optional).
Data type: INT
Value: 0 Offset value <CorVal>[0] refers to the geometry axis transferred

in parameter <GeoAx> in the workpiece coordinate system – or
in the tool coordinate system (also see a description of param‐
eter <Comp>). This means that the offset value must be calcu‐
lated in the designated tool components so that, taking account
all the parameters that can influence the tool length calculation,
a change of the total tool length by the specified value in the
specified axis direction is obtained.
This change should be achieved by correcting the component
specified in <Comp> and the symbolic algorithm specified in
<CorMode> (see the following parameters). The resulting cor‐
rection can therefore have an effect on all three axis compo‐
nents.

1 Like "0", however, vectorial. The content of vector <CorVal>
refers to abscissa, ordinate and applicate in the workpiece co‐
ordinate system or tool coordinate system (see the description
of parameter <Comp>).
Subsequent parameter <GeoAx> is not evaluated.

2 Vectorial offset, i.e. L1, L2 and L3 can change simultaneously.
In contrast to the versions from "0 and "1", the offset values
contained in <CorVal> refer to the coordinates of Val1 compo‐
nents (see following parameter <CorMode>) of the tool.
Any possible inclination of an existing tool compared with the
workpiece coordinate system has no influence on the offset.

3 - 5 Correction of tool lengths L1 to L3 ($TC_DP3 to $TC_DP5) or
the corresponding values for wear, setting up or additive offsets.
The offset value is contained in <CorVal>[0]. It is measured in
the coordinates of the Val1 component (see following parameter
<CorMode>) of the tool. Any possible inclination of an existing
tool compared with the workpiece coordinate system has no
influence on the offset.

6 Correction of the tool radius ($TC_DP6) or the corresponding
values for wear, setting up or additive offsets. Bits 10 and 11
(evaluation of the diameter and/or diameter wear data, either
specified as a radius or diameter) in machine data
MD20360 $MC_TOOL_PARAMETER_DEF_MASK are taken
into account.

7
– 11

Correction of $TC_DP7 to $TC_DP11 or the corresponding val‐
ues for wear, setting up or additive offsets. These parameters
are treated just like the tool radius.

If this parameter is not specified then its value is "0".

Work preparation
3.13 Tool offsets

NC programming
780 Programming Manual, 06/2019, A5E47437142B AA

4 <CorMode>: Specifies the type of write operation to be executed (optional).
Data type: INT
Value: 0 Val1new = <CorVal>

1 Val1new = Val1old + <CorVal>
2 Val1new = <CorVal>

Val2new = 0
3 Val1new = Val1old + Val2old + <CorVal>

Val2new = 0
The notation Val1old + Val2old is symbolic. If the two components (due to the status
of <_Stat>) are evaluated in different ways, i.e. if a rotation is effective between the
two components, then Val2old is transformed prior to addition so that the resulting
tool length after deleting Val2new and prior to the addition of <CorVal> remains
unchanged.
<CorVal> always refers to Val1. <CorVal> is a value, which dependent on the
second part of parameter <Comp>, is measured in the workpiece coordinate sys‐
tem (WCS) or in the tool coordinate system (TCS). It is therefore already trans‐
formed with respect to the tool components, in which it should be calculated.
Therefore, it cannot be directly calculated together with the saved value, but must
be transformed back prior to adding to Val1 or Val2. This can mean that the offset
acts on an axis different than the one defined by <CorComp> – or that it acts on
several axes.
For the case <CorComp> = 0, i.e. when <CorVal> does not contain a vector, but
only an individual value, then the described operations are executed in the coor‐
dinates in which <CorVal> was measured (WCS/TCS). In particular, this also ap‐
plies to setting Val2new to zero in variants 2 and 3. This result is then transformed
back into the coordinates of the tool. This can mean that none of the coordinate
values to be set to zero (L1, L2, L3) become zero, or coordinate values, that were
previously zero, are now not equal to zero. However, if the corresponding opera‐
tions are successively executed for all three geometry axes, then it is guaranteed
that all three coordinate values of the components to be deleted are zero. If the tool
is not rotated with respect to the workpiece coordinate system or is rotated so that
all tool components remain parallel to the coordinate axes (axis exchange opera‐
tions), then this also ensures that only one tool coordinate changes.
The successive execution of the same operation (<CorMode>) with <Cor‐
Comp> = 0 for all three coordinate axes in any sequence is identical with the single
execution of the same operation with <CorComp>=1.
For parameter values "0" and "1", parameter <Comp> must contain one character,
and for parameter values "2" and "3", two characters.
Example:
<Comp> contains string "ES", <CorMode> the value "2"
⇒ Setup offsetnew = <CorVal>, summed offsetnew = 0
If parameter <CorMode> is not specified, then its value is "0".

5 <GeoAx>: Specifies the index of the geometry axis in which the offset value <CorVal>[0] was
read (optional)
Data type: INT
Value range: 0 ... 2
Indices 0 to 2 refer to abscissa, ordinate and applicate in the active plane
(G17/G18/G19) of the current tool environment.
The content of this parameter is only evaluated if parameter <CorComp> has a
value of "0".

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 781

6 <Stat>: Name of the data set for describing a tool environment (optional)
Data type: STRING
If the value of this parameter is the null string (""), or is not specified, then the
current status is used. The current tool is used if a tool is not specified.

7 <T>: Internal T number of the tool (optional).
Data type: INT
If this parameter is not specified or if its value is "0", then the tool stored in <Stat>
is used.
If the value of this parameter is "-1", then the T number of the active tool is used.
It is also possible to explicitly specify the number of the active tool.
Note:
If <Stat> is not specified, the actual status is used as the tool environment. Since
<T> = 0 refers to the T number saved in the tool environment, the active tool is used
in this environment, i.e. parameters <T> = 0 and <T> = -1 have the same meaning
in this special case.

8 <D>: Cutting edge of the tool (optional).
Data type: INT
If this parameter is not specified, or if its value is "0", then the D number used is
based on the source of the T number. If the T number from the tool environment is
used, the D number of the tool environment is also read, otherwise the D number
of the currently active tool is read.

9 <TL>: Number of the offset dependent on the location (optional).
Data type: INT
If this parameter is not specified, then the DL number used is based on the source
of the T number. If the T number from the tool environment is used, the D number
of the tool environment is also read, otherwise the D number of the currently active
tool is read. If T, D and DL specify a tool without location-dependent offsets, no
summed or setup offsets may be specified in parameter <Comp> (error code in
<Status>).

Note

Not all possible combinations of the three parameters <Comp>, <CorComp> and <CorMode>
make sense. For example, algorithm 3 in <CorComp> requires that two characters are
specified in <Comp>. If an invalid parameter combination is specified, then a corresponding
error code is returned in the <Status>.

Examples

Example 1

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0

Work preparation
3.13 Tool offsets

NC programming
782 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N70 R1=SETTCOR(_CORVAL,"G",0,0,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z1.333
N90 M30

<CorComp> is "0", therefore, the coordinate value of the geometry component acting in the Z
direction must be replaced by the offset value 0.333.

The resulting total tool length is thus: L1 = 0.333 + 1.000 = 1.333

Example 2

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; milling tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"W",0,1,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z11.333
N90 M30

<CorComp> is "1", this means that the offset value of 0.333 – acting in the Z axis – is added to
the wear value of 1.0.

The resulting total tool length is thus: L1 = 10.0 + 1.333 = 11.333

Example 3

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; Wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,2,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z0.333
N90 M30

<CorComp> is "2", therefore, the offset effective in the Z axis is entered in the geometry
component (the old value is overwritten) and the wear value is deleted.

The resulting total tool length is thus: L1 = 0.333 + 0.0 = 0.333

Example 4

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 783

Program code Comment
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,3,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z11.333
N90 M30

<CorComp> is "3", therefore, the wear value and compensation value are added to the
geometry component and the wear component is deleted.

The resulting total tool length is thus: L1 = 11.333 + 0.0 = 11.333

Example 5

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; Wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,3,0)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.333 Y0.000 Z11.000
N90 M30

<CorComp> is "3", as in the previous example, but the compensation is now effective on the
geometry axis with index "0" (X axis), which for a milling tool, is assigned to tool component L3
due to G17. As a consequence, when calling SETTCOR, tool parameters $TC_DP3 and
$TC_DP12 are not influenced. Instead, the compensation value is entered in $TC_DP5.

Example 6

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=5.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",0,3,1)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500
N120 M30

The tool is a turning tool. A frame rotation is activated in N80, causing the basic coordinate
system (BCS) to be rotated in relation to the workpiece coordinate system (WCS). In the WCS,
the compensation value (N70) acts on the geometry axis with index 1, i.e. on the X axis because

Work preparation
3.13 Tool offsets

NC programming
784 Programming Manual, 06/2019, A5E47437142B AA

G18 is active. Since <CorMode> = 3, the tool wear in the direction of the X axis of the WCS must
become zero once N100 has been executed.

The contents of the relevant tool parameters at the end of the program are thus:

$TC_DP3[1,1]: 21.830 ; geometry L1

$TC_DP4[1,1] : 21.830 ; geometry L2

$TC_DP12[1,1] : 2.500 ; wear L1

$TC_DP13[1,1] : -4.330 ; wear L2

The geometrical relationships are shown in the figure below: The total wear including
_CORVAL is mapped onto the X' direction in the WCS. This produces point P2. The
coordinates of this point (measured in X/Y coordinates) are entered in the geometry component
of the tool. The difference vector P2 - P1 remains in the wear. The wear thus no longer has a
component in the direction of _CORVAL.

If the program example is continued after N110 with the following instructions, then the
remaining wear is included completely in the geometry because the compensation is now
effective in the Z' axis (parameter <GeoAx> = 0):

N120 _CORVAL[0]=0.0
N130 R1=SETTCOR(_CORVAL,"GW",0,3,0)
N140 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500

Since the new compensation value is "0", the total tool length and thus the position approached
in N140 may not change. If _CORVAL were not equal to "0" in N120, a new total tool length and
thus a new position in N140 would result, however, the wear component of the tool length would
always be zero, i.e. the total tool length is subsequently always contained in the geometry
component of the tool.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 785

The same result as that achieved by calling the SETTCOR function with the <CorComp> = 0
parameter twice can also be reached by calling <CorComp> = 1 (vectorial compensation) just
once:

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=0.0
N71 _CORVAL[1]=5.0
N72 _CORVAL[2]=0.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",1,3,1)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500
N120 M30

In this case, all wear components of the tool are set to zero immediately after the first call of
SETTCOR in N100.

Example 7

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=5.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",3,3)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X25.000 Y0.000 Z15.000
N120 M30

When compared to example 6, parameter <CorComp> = 3, and so the <GeoAx> parameter
can be omitted. The value contained in _CORVAL[0] now acts immediately on the tool length
component L1, the rotation in N80 has no effect on the result, the wear components in
$TC_DP12 are included in the geometry component together with _CORVAL[0], with the result
that the total tool length is stored in the geometry component of the tool, due to $TC_DP13, after
the first SETTCOR call in N100.

Work preparation
3.13 Tool offsets

NC programming
786 Programming Manual, 06/2019, A5E47437142B AA

Example 8

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP5[1,1]=20.0 ; geometry L3
N60 $TC_DP12[1,1]=10.0 ; wear L1
N70 $TC_DP13[1,1]=0.0 ; wear L2
N80 $TC_DP14[1,1]=0.0 ; wear L3
N90 $SC_WEAR_SIGN=TRUE
N100 _CORVAL[0]=10.0
N110 _CORVAL[1]=15.0
N120 _CORVAL[2]=5.0
N130 ROT Y-30
N140 T1 D1 G18 G0
N150 R1=SETTCOR(_CORVAL,"W",1,1)
N160 T1 D1 X0 Y0 Z0 ; ==> MCS position X7.990 Y25.000 Z31.160
N170 M30

Setting data:SD42930 $SC_WEAR_SIGN is enabled in N90, i.e. the wear must be evaluated
with a negative sign. The compensation is vectorial (<CorComp> = 1), and the compensation
vector must be added to the wear (<CorMode> = 1). The geometrical relationships in the Z/X
plane are shown in the diagram below:

The geometry component of the tool remains unchanged due to <CorMode> = 1. The
compensation vector defined in the WCS (rotation around the y axis) must be included in the
wear component such that the total tool length in Fig. 3 refers to point P2. Therefore, the
resulting wear component of the tool is given by the distance of the two points P1 and P2.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 787

However, since the wear is evaluated negatively, due to setting data SD42930
$SC_WEAR_SIGN, the compensation determined in this way has to be entered in the
compensation memory with a negative sign. The contents of the relevant tool parameters at the
end of the program are thus:

$TC_DP3[1,1]: 10.000 ; geometry L1 (unchanged)

$TC_DP4[1,1] : 15.000 ; geometry L2 (unchanged)

$TC_DP5[1,1]: 10.000 ; geometry L3 (unchanged)

$TC_DP12[1,1] : 2.010 ; wear L1 (= 10 - 15 * cos(30) + 10 * sin(30))

$TC_DP13[1,1] : -16.160 ; wear L2 (= -15 * sin(30) - 10 * cos(30))

$TC_DP14[1,1] : -5.000 ; wear L3

The effect of setting data SD42930 $SC_WEAR_SIGN on the L3 component in the Y direction
can be recognized without the additional complication caused by the frame rotation.

Additional information

Turning/grinding tools: Calculating the tool length depending on MD20360
$MC_TOOL_PARAMETER_DEF_MASK
The following machine data defines how the wear and tool length are to be evaluated if a
diameter axis is used for turning/grinding tools:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK.<Bit> = <Value>

<Bit> <Value> Meaning
0

0 For turning/grinding tools, the wear parameter of the transverse axis is taken into
account in the radius value:

1 For turning/grinding tools, the wear parameter of the transverse axis is taken into
account as the diameter value:

1 0 For turning/grinding tools, the tool length component of the transverse axis is taken
into account as the radius value:

1 For turning/grinding tools, the tool length component of the transverse axis is taken
into account as the diameter value:

If the bits involved are set, the associated entry is weighted with a factor of 0.5. The correction
using SETTCOR is executed so that the total effective tool length change is equal to the value
transferred in <CorVal>. If, when calculating the length, a length is evaluated with a factor of 0.5
as a result of machine data MD20360 $MC_TOOL_PARAMETER_DEF_MASK, then the
compensation of this component must be realized with twice the value transferred.

Example
MD20360 $MC_TOOL_PARAMETER_DEF_MASK = 2 (tool length must be evaluated in the
diameter axis using a factor of 0.5)

Axis X is the diameter axis.

Program code Comment
N10 DEF REAL _LEN[11]
N20 DEF REAL _CORVAL[3]
N30 $TC_DP1[1,1]=500 ; Tool type

Work preparation
3.13 Tool offsets

NC programming
788 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N40 $TC_DP2[1,1]=2 ; Cutting edge position
N50 $TC_DP3[1,1]=3. ; Geometry - length 1
N60 $TC_DP4[1,1]=4. ; Geometry - length 2
N70 $TC_DP5[1,1]=5. ; Geometry - length 3
N80 _CORVAL[0]=1.
N90 _CORVAL[1]=1.
N100 _CORVAL[2]=1.
N110 T1 D1 G18 G0 X0 Y0 Z0 ; ==> MCS position X1.5 Y5 Z4
N120 R1=SETTCOR(_CORVAL,"G",1,1)
N130 T1 D1 X0 Y0 Z0 ; ==> MCS position X2.5 Y6 Z5
N140 R3=$TC_DP3[1,1] ; = 5. = (3.000 + 2.*1.000)
N150 R4=$TC_DP4[1,1] ; = 5. = (4.000 + 1.000)
N160 R5=$TC_DP5[1,1] ; = 6. = (5.000 + 1.000)
N170 M30

In each axis, the tool length compensation should be 1 mm (N80 to N100). 1 mm is thus added
to the original length in lengths L2 and L3. Twice the compensation value (2 mm) is added to
the original tool length in L1, in order to change the total length by 1 mm as required. If the
positions approached in blocks N110 and N130 are compared, it can be seen that each axis
position has changed by 1 mm.

3.13.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes
(LENTOAX)

The LENTOAX function provides information about the assignment of tool lengths L1, L2 and
L3 of the active tool to the abscissa, ordinate and applicate. The assignment of abscissa,
ordinate and applicate to the geometry axes is affected by frames and the active plane (G17 -
G19).

Only the geometry component of a tool ($TC_DP3[<t>,<d>] to $TC_DP5[<t>,<d>]) is
considered, i.e. a different axis assignment for other components (e.g. wear) has no effect on
the result.

Syntax
<Status> = LENTOAX(<AxInd>, <Matrix>[, <Coord>])

Principle

LENTOAX(...): Predefined function to read the assignment of tool lengths L1, L2 and L3 of the
active tool to the coordinate axes
Alone in the block: Yes

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 789

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

Information provided in <AxInd> is sufficient for the descrip‐
tion (all tool length components are in parallel to the geom‐
etry axes).

1 Function is OK, however, the content of <Matrix> must be
evaluated for a correct description (the tool length compo‐
nents are not parallel to the geometry axes).

-1 Invalid string in parameter <Coord>.
-2 No tool active.

Parameters
1 <AxInd>: If the tool length components are parallel to the geometry axes, the axis indices

assigned to length components L1 to L3 are returned in the <AxInd> array.
● <AxInd> [0]: Abscissa
● <AxInd> [1]: Ordinate
● <AxInd> [2]: Applicate
Data type: INT[3]
Value: 0 No assignment exists (axis does not exist)

1 ... 3
or

-1 ... -3

Number of the length effective in the corresponding coordi‐
nate axis.
The sign is negative if the tool length component is pointing
in the negative coordinate direction.

If not all length components are parallel or antiparallel to the geometry axes, the
index of the axis, which contains the largest part of a tool length component, is
returned in <AxInd>. In this case (if the function does not return an error for a
different reason), then the return value is <Status> = 1. The mapping of tool length
components L1 to L3 to geometry axes 1 to 3 is then described completely by the
content of the 2nd parameter <Matrix>.

2 <Matrix>: Matrix which represents the vector of the tool lengths (L1=1, L2=1, L3=1) to the
vector of the coordinate axes (abscissa, ordinate, applicate), i.e. the tool length
components are assigned to the columns in the order L1, L2, L3 and the axes are
assigned to the lines in the order abscissa, ordinate, applicate.
Data type: REAL
All elements are always valid in the matrix, even if the geometry axis belonging to
the coordinate axis is not available, i.e. if the corresponding entry in <AxInd> is 0.

Work preparation
3.13 Tool offsets

NC programming
790 Programming Manual, 06/2019, A5E47437142B AA

3 <Coord>: coordinate system applicable for the assignment (optional)
Data type: STRING
Charac‐
ters:

MCS
M

The tool length is represented in the machine coordinate
system.

BCS
B

The tool length is represented in the basic coordinate system.

WCS
W

The tool length is represented in the workpiece coordinate
system (default setting).

KCS
K

The tool length is represented in the tool coordinate system
of the kinematic transformation.

TCS
T

The tool length is represented in the tool coordinate system.

The notation of the characters in the string (upper or lower case) is arbitrary.
If the parameter <Coord> is not specified, then WCS is used (default setting).

Note

In the TCS, all tool length components are always parallel or antiparallel to the axes.

The components can only be antiparallel when mirroring is active and the following setting data
is activated:

SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

Example
Standard application, milling tool for G17.

L1 applies in Z (applicate), L2 applies in Y (ordinate), L3 applies in X (abscissa).

Function call in the form:
<Status>=LENTOAX(<AxInd>,<Matrix>,"WCS")
The result parameter <AxInd> then contains the values:

<AxInd>[0] = 3

<AxInd>[1] = 2

<AxInd>[2] = 1

Or, in short: (3, 2, 1)

In this case, the associated matrix (<Matrix>) is:

A change from G17 to G18 or G19 does not alter the result, because the assignment of the
length components to the geometry axes changes in the same way as the assignment of the
abscissa, ordinate and applicate.

A frame rotation of Z through 60 degrees is now programmed with G17 active, e.g.

Work preparation
3.13 Tool offsets

NC programming
Programming Manual, 06/2019, A5E47437142B AA 791

ROT Z60
The direction of the applicate (Z direction) remains unchanged; the main component of L2 now
lies in the direction of the new X axis; the main component of L1 now lies in the direction of the
negative Y axis. As a consequence, the return value (<Status>) is "1", <AxInd> contains the
values (2, -3, 1).

In this case, the associated matrix (<Matrix>) is:

Work preparation
3.13 Tool offsets

NC programming
792 Programming Manual, 06/2019, A5E47437142B AA

3.14 Path traversing behavior

3.14.1 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)
To permit flexible definition of the feedrate characteristic, the feedrate programming according
to DIN 66025 has been extended by linear and cubic characteristics.

The cubic characteristics can be programmed either directly or as interpolating splines. These
additional characteristics make it possible to program continuously smooth velocity
characteristics depending on the curvature of the workpiece to be machined.

These additional characteristics make it possible to program continuously smooth velocity
characteristics depending on the curvature of the workpiece to be machined.

Syntax
F… FNORM
F… FLIN
F… FCUB
F=FPO(…,…,…)

Meaning

FNORM: Basic setting. The feed value is specified as a function of the traverse path of the block
and is then valid as a modal value.

FLIN: Path velocity profile linear:
The feed value is approached linearly via the traverse path from the current value at the
block beginning to the block end and is then valid as a modal value. The response can
be combined with G93 and G94.

FCUB: Path velocity profile cubic:
The blockwise programmed F values (relative to the end of the block) are connected by
a spline. The spline begins and ends tangentially with the previous and following defined
feedrate and takes effect with G93 and G94.
If the F address is missing from a block, the last F value to be programmed is used.

F=FPO… : Polynomial path velocity profile:
The F address defines the feed characteristic via a polynomial from the current value to
the block end. The end value is valid thereafter as a modal value.

Feed optimization on curved path sections
Feed polynomial F=FPO and feed spline FCUB should always be traversed at constant
cutting rate CFC, thereby allowing a jerk-free setpoint feed profile to be generated. This
enables creation of a continuous acceleration setpoint feed profile.

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 793

Example: Various feed profiles
This example shows you the programming and graphic representation of various feed profiles.

Program code Comment
N1 F1000 FNORM G1 X8 G91 G64 ; Constant feedrate profile, incremental di-

mension data
N2 F2000 X7 ; Setpoint velocity step change
N3 F=FPO(4000, 6000, -4000) ; Feed profile via polynomial with feed 4000

at the end of the block
N4 X6 ; Polynomial feedrate 4000 is valid as modal

value
N5 F3000 FLIN X5 ; Linear feedrate profile
N6 F2000 X8 ; Linear feedrate profile
N7 X5 ; Linear feedrate is valid as modal value
N8 F1000 FNORM X5 ; Constant feedrate profile with acceleration

step change
N9 F1400 FCUB X8 ; All of the following F values programmed in

blocks are connected with splines
N10 F2200 X6
N11 F3900 X7
N12 F4600 X7
N13 F4900 X5 ; Switch-out spline profile
N14 FNORM X5
N15 X20

Further information

FNORM
The feed address F defines the path feedrate as a constant value according to DIN 66025.

Please refer to Programming Manual "Fundamentals" for more detailed information on this
subject.

Work preparation
3.14 Path traversing behavior

NC programming
794 Programming Manual, 06/2019, A5E47437142B AA

FLIN
The feedrate characteristic is approached linearly from the current feedrate value to the
programmed F value until the end of the block.

Example:

N30 F1400 FLIN X50

FCUB
The feedrate is approached according to a cubic characteristic from the current feedrate value
to the programmed F value until the end of the block. The control uses splines to connect all the

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 795

feedrate values programmed non-modally that have an active FCUB. The feedrate values act
here as interpolation points for calculation of the spline interpolation.

Example:

N50 F1400 FCUB X50
N60 F2000 X47
N70 F3800 X52

F=FPO(…,…,…)
The feedrate characteristic is programmed directly via a polynomial. The polynomial
coefficients are specified according to the same method used for polynomial interpolation.

Example:

F=FPO(endfeed, quadf, cubf)
endfeed, quadf and cubf are previously defined variables.

endfeed: Feedrate at block end
quadf: Quadratic polynomial coefficient
cubf: Cubic polynomial coefficient

With an active FCUB, the spline is linked tangentially to the characteristic defined via FPO at the
block beginning and block end.

Work preparation
3.14 Path traversing behavior

NC programming
796 Programming Manual, 06/2019, A5E47437142B AA

Supplementary conditions
● The functions for programming the path traversing characteristics apply regardless of the

programmed feedrate characteristic.

● The programmed feedrate characteristic is always absolute regardless of G90 or G91.

● The feed characteristic curve FLIN and FCUB does not act with G93 and G94 for G95,
G96/G961 and G97/G971.

● With an active compressor COMPON the following applies when several blocks are joined to
form a spline segment:

FNORM: The F word of the last block in the group applies to the spline segment.
FLIN: The F word of the last block in the group applies to the spline segment.

The programmed F value applies until the end of the segment and is then
approached linearly.

FCUB: The generated feedrate spline deviates from the programmed end points by an
amount not exceeding the value set in machine data MD20172 $MC_COM‐
PRESS_VELO_TOL.

F=FPO(…,…,…): These blocks are not compressed.

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 797

3.14.2 Acceleration behavior

3.14.2.1 Acceleration mode (BRISK, BRISKA, SOFT, SOFTA, DRIVE, DRIVEA)
The following part program commands are available for programming the current acceleration
mode:

● "BRISK, BRISKA"
The single axes or the path axes traverse with maximum acceleration until the programmed
feedrate is reached (acceleration without jerk limitation).

● "SOFT, SOFTA"
The single axes or the path axes traverse with constant acceleration until the programmed
feedrate is reached (acceleration with jerk limitation).

● "DRIVE, DRIVEA"
The single axes or the path axes traverse with maximum acceleration up to a programmed
velocity limit (MD setting!). The acceleration rate is then reduced (MD setting) until the
programmed feedrate is reached.

Figure 3-9 Path velocity curve with BRISK and SOFT

Work preparation
3.14 Path traversing behavior

NC programming
798 Programming Manual, 06/2019, A5E47437142B AA

Figure 3-10 Path velocity curve with DRIVE

Syntax
BRISK
BRISKA(<axis1>,<axis2>,…)
SOFT
SOFTA(<axis1>,<axis2>,…)
DRIVE
DRIVEA(<axis1>,<axis2>,…)

Meaning

BRISK: Command for activating the "acceleration without jerk limitation"
for the path axes.

BRISKA: Command for activating the "acceleration without jerk limitation"
for single axis movements (JOG, JOG/INC, positioning axis, os‐
cillating axis, etc.).

SOFT: Command for activating the "acceleration with jerk limitation" for
the path axes.

SOFTA: Command for activating the "acceleration with jerk limitation" for
single axis movements (JOG, JOG/INC, positioning axis, oscil‐
lating axis, etc.).

DRIVE: Command for activating the reduced acceleration above a con‐
figured velocity limit (MD35220 $MA_ACCEL_REDUC‐
TION_SPEED_POINT) for the path axes.

DRIVEA: Command for activating the reduced acceleration above a con‐
figured velocity limit (MD35220 $MA_ACCEL_REDUC‐
TION_SPEED_POINT) for single axis movements (JOG, JOG/
INC, positioning axis, oscillating axis, etc.).

(<axis1>,<axis2>, etc.): Single axes for which the called acceleration mode is to apply.

Supplementary conditions

Changing acceleration mode during machining
If the acceleration mode is changed in a part program during machining (BRISK ↔ SOFT), then
there is a block change with exact stop at the end of the block during the transition even with
continuous-path mode.

Examples

Example 1: SOFT and BRISKA

Program code
N10 G1 X… Y… F900 SOFT
N20 BRISKA(AX5,AX6)
...

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 799

Example 2: DRIVE and DRIVEA

Program code
N05 DRIVE
N10 G1 X… Y… F1000
N20 DRIVEA (AX4, AX6)
...

References
Function Manual, Basic Functions; Acceleration (B2)

3.14.2.2 Influence of acceleration on following axes (VELOLIMA, ACCLIMA, JERKLIMA)
In the case of axis couplings (tangential correction, coupled motion, master value coupling,
electronic gear; see "Axis couplings (Page 844)").

The dynamics limits of the following axes/spindles can be manipulated using the VELOLIMA,
ACCLIMA, and JERKLIMA functions from the part program or from synchronized actions, even
if the axis coupling is already active.

Note

The JERKLIMA function is not available for all types of coupling.

References:
● Function Manual, Special Functions; Axis Couplings (M3)
● Function Manual, Extended Functions; Synchronous Spindle (S3)

Note
Availability for SINUMERIK 828D

The VELOLIMA, ACCLIMA and JERKLIMA functions can only be used with SINUMERIK 828D
in conjunction with the "coupled motion" function!

Syntax
VELOLIMA(<axis>)=<value>
ACCLIMA(<axis>)=<value>
JERKLIMA(<axis>)=<value>

Meaning

VELOLIMA: Command to correct the parameterized maximum velocity
ACCLIMA: Command to correct the parameterized maximum acceleration
JERKLIMA: Command to correct the parameterized maximum jerk
<axis>: Following axis whose dynamics limits need to be corrected
<value>: Percentage correction value

Work preparation
3.14 Path traversing behavior

NC programming
800 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Correction of the dynamics limits for a following axis (AX4)

Program code Comment
...
VELOLIMA[AX4]=75 ; Limit correction to 75% of the maximum axial velocity

stored in the machine data
ACCLIMA[AX4]=50 ; Limit correction to 50% of the maximum axial acceleration

stored in the machine data
JERKLIMA[AX4]=50 ; Limit correction to 50% of the maximum axial jerk stored

in the machine data
...

Example 2: Electronic gear
Axis 4 is coupled to axis X via an "electronic gear" coupling. The acceleration capacity of the
following axis is limited to 70% of the maximum acceleration. The maximum permissible
velocity is limited to 50% of the maximum velocity. Once the coupling has been activated
successfully, the maximum permissible velocity is restored to 100%.

Program code Comment
...
N120 ACCLIMA[AX4]=70 ; Reduced maximum acceleration.
N130 VELOLIMA[AX4]=50 ; Reduced maximum velocity.
...
N150 EGON(AX4,"FINE",X,1,2) ; Activation of the EG coupling.
...
N200 VELOLIMA[AX4]=100 ; Full maximum velocity.
...

Example 3: Influencing master value coupling by static synchronized action
Axis 4 is coupled to X by master value coupling. The acceleration response is limited to position
80% by static synchronized action 2 from position 100.

Program code Comment
...
N120 IDS=2 WHENEVER $AA_IM[AX4] >
100 DO ACCLIMA[AX4]=80

; Synchronized action

N130 LEADON(AX4, X, 2) ; Master value coupling on
...

3.14.2.3 Activation of technology-specific dynamic values (DYNNORM, DYNPOS, DYNROUGH,
DYNSEMIFIN, DYNFINISH, DYNPREC)

The appropriate dynamic response for differing technological machining steps can be activated
with the commands of G group 59 "Dynamic response mode for path interpolation".

Dynamic values and G commands can be configured and are, therefore, dependent on
machine data settings (→ machine manufacturer).

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 801

References:
Function Manual, Basic Functions; Continuous-Path Mode, Exact Stop, Look Ahead (B1)

Syntax

Activate dynamic values:
DYNNORM
DYNPOS
DYNROUGH
DYNSEMIFIN
DYNFINISH
DYNPREC

Note

The dynamic values are already active in the block in which the associated G command is
programmed. Machining is not stopped.

Read or write a specific field element:
R<m>=$MA...[n,X]
$MA...[n,X]=<value>

Meaning

DYNNORM: Activate normal dynamic response
DYNPOS: Activate dynamic response for positioning mode, tapping
DYNROUGH: Activate dynamic response for roughing
DYNSEMIFIN: Activate dynamic response for semi-finishing
DYNFINISH: Activate dynamic response for finishing
DYNPREC: Activate dynamic response for smooth finishing

R<m>: R-parameter with number <m>
$MA...[n,X]: Machine data with field element affecting dynamic response
<n>: Array index

Range of values: 0 ... 5
0 Normal dynamic response (DYNNORM)
1 Dynamic response for positioning mode (DYNPOS)
2 Dynamic response for roughing (DYNROUGH)
3 Dynamic response for semi-finishing (DYNSEMIFIN)
4 Dynamic response for finishing (DYNFINISH)
5 Dynamic response for smooth finishing (DYNPREC)

<X>: Axis address
<value>: Dynamic value

Work preparation
3.14 Path traversing behavior

NC programming
802 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Activate dynamic values

Program code Comment
DYNNORM G1 X10 ; Initial setting
DYNPOS G1 X10 Y20 Z30 F… ; Positioning mode, tapping
DYNROUGH G1 X10 Y20 Z30 F10000 ;Roughing
DYNSEMIFIN G1 X10 Y20 Z30 F2000 ; Semi-finishing
DYNFINISH G1 X10 Y20 Z30 F1000 ;Finishing
DYNPREC G1 X10 Y20 Z30 F600 ; Smooth finishing

Example 2: Read or write a specific field element
Maximum acceleration for roughing, axis X

Program code Comment
R1=$MA_MAX_AX_ACCEL[2,X] ; reading
$MA_MAX_AX_ACCEL[2,X]=5 ; writing

3.14.3 Traversing with feedforward control (FFWON, FFWOF)
The feedforward control reduces the velocity-dependent overtravel when contouring towards
zero. Traversing with feedforward control permits higher path accuracy and thus improved
machining results.

Syntax
FFWON
FFWOF

Meaning

FFWON: Command to activate the feedforward control
FFWOF: Command to deactivate the feedforward control

Note

The type of feedforward control and which path axes are to be traversed with feedforward
control is specified via machine data.

Default: Velocity-dependent feedforward control

Option: Acceleration-dependent feedforward control

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 803

Example

Program code
N10 FFWON
N20 G1 X… Y… F900 SOFT

3.14.4 Programmable contour accuracy (CPRECON, CPRECOF)
The "Programmable contour accuracy" function reduces the path error on curved contours
through automatic adaptation of the velocity.

The contour accuracy to be maintained is specified depending on the configuration of the
machine (MD20470 $MC_MC_CPREC_WITH_FFW; see machine manufacturer
specifications) either via the setting data $SC_CONTPREC or via the programmed contour
tolerance CTOL. The smaller the value and the smaller the KV factor of the geometry axes, the
greater the path feedrate is reduced on curved contours.

The "Programmable contour accuracy" function is activated or deactivated via the operations
CPRECON and CPRECOF in the NC program.

Syntax

CPRECON
...
CPRECOF

Meaning

CPRECON:

G command call: Switch "Programmable contour accuracy" on
Effectiveness: Modal

CPRECOF:

G command call: Switch "Programmable contour accuracy" off
Effectiveness: Modal

Together CPRECON and CPRECOF form the G function group 39 (programmable contour
accuracy).

Note

The user can specify a minimum velocity for the path feedrate via the setting data
$SC_MINFEED (minimum path feedrate with CPRECON).

The feedrate is not limited below this value, unless a lower F value has been programmed or
the dynamic limits of the axes require a lower path velocity.

Note

The "Programmable contour accuracy" function only considers the geometry axes of the path.
It has no effect on the velocities of positioning axes.

Work preparation
3.14 Path traversing behavior

NC programming
804 Programming Manual, 06/2019, A5E47437142B AA

Example

Program code Comment
N10 G0 X0 Y0
N20 CPRECON ; Activate the "programmable contour accuracy".
N30 G1 G64 X100 F10000 ; Machining with 10 m/min in the continuous-path

mode.
N40 G3 Y20 J10 ; Automatic feed limitation in circular block.
N50 G1 X0 ; Feedrate again without limitation (10 m/min).
...
N100 CPRECOF ; Deactivate the "programmable contour accuracy".
N110 G0 ...

See also
Programming contour/orientation tolerance (CTOL, OTOL, ATOL) (Page 823)

3.14.5 Program sequence with preprocessing memory (STOPFIFO, STARTFIFO,
FIFOCTRL, STOPRE)

Depending on its expansion level, the control system has a certain quantity of so-called
preprocessing memory in which prepared blocks are stored prior to program execution and
then output as high-speed block sequences while machining is in progress. These sequences
allow short paths to be traversed at a high velocity. Provided that there is sufficient residual
control time available, the preprocessing memory is always filled.

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 805

Designate machining step
The beginning and end of the machining step to be buffered in the preprocessing memory are
identified in the part program with "STOPFIFO" and "STARTFIFO" respectively. The
processing of the preprocessed and buffered blocks starts only after the "STARTFIFO"
command or if the preprocessing memory is full.

Automatic preprocessing memory control
Automatic preprocessing memory control is called with the "FIFOCTRL" command.
"FIFOCTRL" acts initially just like "STOPFIFO". Whatever the programming, processing will not
start until the preprocessing memory is full. However, the response to the emptying of the
preprocessing memory does differ: With "FIFOCTRL", the path velocity is reduced increasingly
once the fill level reaches 2/3 in order to prevent complete emptying and deceleration to
standstill.

Preprocessing stop
Programming the "STOPRE" command in a block will stop block preprocessing and buffering.
The following block is not executed until all preprocessed and saved blocks have been
executed in full. The preceding block is halted in exact stop (as with G9).

NOTICE

Program abort

If tool offset or spline interpolations are active, a "STOPRE" command should not be
programmed, as this will lead to contiguous block sequences being interrupted.

Syntax

Table 3-3 Identify machining step:

STOPFIFO
...
STARTFIFO

Table 3-4 Automatic preprocessing memory control:

...
FIFOCTRL
...

Table 3-5 Preprocessing stop:

...
STOPRE
...

Work preparation
3.14 Path traversing behavior

NC programming
806 Programming Manual, 06/2019, A5E47437142B AA

Note

The "STOPFIFO", "STARTFIFO", "FIFOCTRL" and "STOPRE" commands must be
programmed in their own block.

Meaning

STOPFIFO: "STOPFIFO" identifies the start of a machining step to be buffered in the prepro‐
cessing memory. "STOPFIFO" stops processing and fills the preprocessing mem‐
ory until:
● "STARTFIFO" or "STOPRE" is recognized

or
● The preprocessing memory is full

or
● The end of the program is reached

STARTFIFO: "STARTFIFO" starts rapid processing of the machining step; the preprocessing
memory is filled in parallel to this.

FIFOCTRL: Activation of automatic preprocessing memory control
STOPRE: Stop preprocessing

Note

The preprocessing memory is not filled or filling is interrupted if the machining step contains
commands that require unbuffered operation (search for reference, measuring functions, etc.).

Note

The control generates an internal preprocessing stop in the event of access to status data
($SA...).

Example: Stop preprocessing

Program code Comment
...
N30 MEAW=1 G1 F1000 X100 Y100 Z50 ; Measurement block with probe at first

measuring input and linear interpola-
tion.

N40 STOPRE ; Preprocessing stop.
...

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 807

3.14.6 Defining a stop delay range (DELAYFSTON, DELAYFSTOF)
The predefined DELAYFSTON and DELAYFSTOF procedures are used to define a
conditionally interruptible range in the part program (stop delay range).

Note

DELAYFSTON and DELAYFSTOF are not permitted in synchronized actions!

Syntax

DELAYFSTON
...
DELAYFSTOF

Meaning

DELAYFSTON: Defining the start of a stop delay range
Alone in the block: Yes

DELAYFSTOF: Define the end of the stop delay area
Alone in the block: Yes

Programming example
The following program block is repeated in a loop:

Program code
...
N99 MY_LOOP:
N100 G0 Z200
N200 G0 X0 Z200
N300 DELAYFSTON
N400 G33 Z5 K2 M3 S1000
N500 G33 Z0 X5 K3
N600 G0 X100
N700 DELAYFSTOF
N800 GOTOB MY_LOOP
...

In the following diagram it can be seen that the user pressed "Stop" in the stop delay range, and
the NC started braking outside the stop delay range, i.e. in block N100. That causes the NC to
stop at the beginning of N100.

Work preparation
3.14 Path traversing behavior

NC programming
808 Programming Manual, 06/2019, A5E47437142B AA

Additional information

End of subprogram
DELAYFSTOF is activated implicitly at the end of the subprogram in which DELAYFSTON is
called.

Nesting
If subprogram 1 calls subprogram 2 in a stop delay area, the whole of subprogram 2 is a stop
delay area. In particular, DELAYFSTOF in subprogram 2 has no effect.

Example:

Program code Comment
N10010 DELAYFSTON ; Blocks with N10xxx program level 1.
N10020 R1 = R1 + 1
N10030 G4 F1 ; Stop delay area starts.
...
N10040 subprogram2
...
... ; Interpretation of subprogram 2.
N20010 DELAYFSTON ; Ineffective, repeated start, 2nd level.
...
N20020 DELAYFSTOF ; Ineffective, end at another level.
N20030 RET
N10050 DELAYFSTOF ; Stop delay end of range at the same level.
...
N10060 R2 = R2 + 2
N10070 G4 F1 ; Stop delay area ends. From now, stops act immediately.

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 809

System variables
The following system variables can be queried to determine whether part program processing
is currently in a stop delay area:

● in the part program with $P_DELAYFST

● in synchronized actions with $AC_DELAYFST

Value Meaning
0 Delay stop range not active
1 Delay stop area active

3.14.7 Prevent program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)
For some complicated mechanical situations on the machine it is necessary to the stop block
search SERUPRO.

By using a programmable interruption pointer it is possible to intervene before an untraceable
point with "Search at point of interruption".

It is also possible to define untraceable sections in part program sections that the NC cannot yet
re-enter. When the program is interrupted, the NC notes the last block that was processed that
can then be searched for via the HMI user interface.

Syntax
IPTRLOCK
IPTRUNLOCK
The commands are located in a part program line and allow a programmable interruption
pointer

Meaning

IPTRLOCK: Start of untraceable program section
IPTRUNLOCK: End of untraceable program section

Both commands are only permitted in part programs, but not in synchronous actions.

Example
Nesting of untraceable program sections in two program levels with implicit "IPTRUNLOCK".
Implicit "IPTRUNLOCK" in subprogram 1 ends the untraceable section.

Program code Comment
N10010 IPTRLOCK()
N10020 R1 = R1 + 1
N10030 G4 F1 ; Hold block of the search-suppressed program sec-

tion starts.
...

Work preparation
3.14 Path traversing behavior

NC programming
810 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N10040 subprogram2
... ; Interpretation of subprogram 2.
N20010 IPTRLOCK () ; Ineffective, repeated start.
...
N20020 IPTRUNLOCK () ; Ineffective, end at another level.
N20030 RET
...
N10060 R2 = R2 + 2
N10070 RET ; End of search-suppressed program section.
N100 G4 F2 ; Main program is continued.

The interruption pointer then produces an interruption at 100 again.

Further information

Acquiring and finding untraceable sections
Untraceable program sections are identified with language commands "IPTRLOCK" and
"IPTRUNLOCK".

Command "IPTRLOCK" freezes the interruption pointer at a single block executable in the main
run (SB1). This block will be referred to as the hold block below. If the program is aborted after
"IPTRLOCK", this hold block can be searched for from the HMI user interface.

Continuing from the current block
The interruption pointer is placed on the current block with "IPTRUNLOCK" as the interruption
point for the following program section.

Once the search target is found a new search target can be repeated with the hold block.

An interrupt pointer edited by the user must be removed again via the HMI.

Rules for nesting
The following points govern the interaction between language commands "IPTRLOCK" and
"IPTRUNLOCK" with nesting and the subprogram end.

1. "IPTRLOCK" is activated implicitly at the end of the subprogram in which "IPTRUNLOCK"
is called.

2. "IPTRLOCK" in an untraceable section has no effect.

3. If subprogram 1 calls subprogram 2 in an untraceable section, the whole of subprogram 2
remains untraceable. "IPTRUNLOCK" in particular has no effect in subprogram 2.

For more information, see
/FB1/ Function Manual, Basic Functions; Mode Group, Channel, Program Operation Mode
(K1).

System variable
An untraceable section can be detected in the part program with "$P_IPTRLOCK".

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 811

Automatic interrupt pointer
The automatic interrupt pointer automatically defines a previously defined coupling type as
untraceable. Using machine data, for the

● Electronic gear for "EGON"

● Axial master value coupling for "LEADON"

the automatic interrupt pointer is activated. If the programmed interrupt pointer and the
automatic interrupt pointer that can be activated via machine data overlap, then the largest
possible untraceable section will be generated.

3.14.8 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA,
REPOSH, REPOSHA, DISR, DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

If you interrupt the program run and retract the tool during the machining operation – because,
for example, the tool has broken or you wish to measure the workpiece – you can reposition at
any selected point on the contour under control by the program.

The command REPOS acts in an ASUB as a subprogram return (e.g. M17). The following blocks
are not executed. For information on interrupting program runs, see also "Interrupt routine
(ASUB) (Page 528)."

Syntax
REPOSA RMIBL DISPR=…
REPOSA RMBBL
REPOSA RMEBL
REPOSA RMNBL
REPOSL RMIBL DISPR=…
REPOSL RMBBL
REPOSL RMEBL

Work preparation
3.14 Path traversing behavior

NC programming
812 Programming Manual, 06/2019, A5E47437142B AA

REPOSL RMNBL
REPOSQ RMIBL DISPR=… DISR=…
REPOSQ RMBBL DISR=…
REPOSQ RMEBL DISR=…
REPOSQA DISR=…
REPOSH RMIBL DISPR=… DISR=…
REPOSH RMBBL DISR=…
REPOSH RMEBL DISR=…
REPOSHA DISR=…

Meaning

Selecting the approach path

REPOSA: Repositioning to the contour with the geometry axes along a straight line.
All other channel axes are also repositioned.

REPOSL: Repositioning to the contour with the geometry axes along a straight line.
Other axes have to be programmed explicitly.

REPOSQ DISR=… : Repositioning to the contour with the geometry axes along a quadrant of
radius DISR.
Other axes have to be programmed explicitly.

REPOSQA DISR=… : Repositioning to the contour with the geometry axes along a quadrant of
radius DISR.
All other channel axes are also repositioned.

REPOSH DISR=… : Repositioning to the contour with the geometry axes along a semicircle of
diameter DISR.
Other axes have to be programmed explicitly.

REPOSHA DISR=… : Repositioning to the contour with the geometry axes along a semi-circle
of radius DISR.
All other channel axes are also repositioned.

Selecting the repositioning point

RMIBL: Approach interruption point
RMIBL DISPR=…: Entry point at distance DISPR in mm/inch in front of interruption point
RMBBL: Approach block start point
RMEBL: Approach end of block
RMEBL DISPR=… : Approach block end point at distance DISPR in front of end point
RMNBL: Approach at nearest path point
A0 B0 C0 : Axes in which approach is to be made

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 813

Note
Compatibility

To remain compatible with older software versions, you can still program the REPOS approach
mode via the modal commands RMI, RMB, RME and RMN. When used within an ASUB, this
should be allocated the attribute SAVE in the PROC statement. Otherwise the modal REPOS
approach mode used in the ASUB will take effect in subsequent REPOS processes, too, if it
deviates from the preset RMI.

Repositioning to the contour along a straight line, REPOSA, REPOSL
The tool approaches the repositioning point along a straight line.

Example
REPOSL RMIBL DISPR=6 F400

Repositioning to the contour along a quadrant, REPOSQ, REPOSQA
The tool approaches the repositioning point along a quadrant with a radius of DISR=…. The
control automatically calculates the necessary intermediate point between the start and
repositioning point.

Example
REPOSQ RMIBL DISR=10 F400

Work preparation
3.14 Path traversing behavior

NC programming
814 Programming Manual, 06/2019, A5E47437142B AA

Repositioning to the contour along a semicircle, REPOSH, REPOSHA
The tool approaches the repositioning point along a semi-circle with a diameter of DISR=…. The
control automatically calculates the necessary intermediate point between the start and
repositioning point.

Example
REPOSH RMIBL DISR=20 F400

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 815

Specifying the repositioning point (not for SERUPRO approaching with RMNBL)
With reference to the NC block in which the program run has been interrupted, it is possible to
select one of three different repositioning points:

● RMIBL, interruption point

● RMBBL, block start point or last end point

● RMEBL, block end point

RMIBL DISPR=… or RME DISPR=… allows you to select a repositioning point which lies
before the interruption point or the block end point.

DISPR=… allows you to describe the contour distance in mm/inch between the repositioning
point and the interruption before the end point. Even for high values, this point cannot be further
away than the block start point.

If no DISPR=… command is programmed, then DISPR=0 applies and with it the interruption
point (with RMIBL) or the block end point (with RMEBL).

DISPR sign
The sign of DISPR is evaluated. In the case of a plus sign, the behavior is as previously.

In the case of a minus sign, approach is behind the interruption point or, with RMBBL, behind
the block start point.

The distance between interruption point and approach point depends on the value of DISPR.
Even for higher values, this point can lie in the block end point at the maximum.

Application example:
A sensor will recognize the approach to a clamp. An ASUB is initiated to bypass the clamp.

Afterwards, a negative DISPR is repositioned on one point behind the clamp and the program
is continued.

Work preparation
3.14 Path traversing behavior

NC programming
816 Programming Manual, 06/2019, A5E47437142B AA

SERUPRO approach with RMNBL
If an abort is forced during machining at any position, the shortest path from the abort point is
approached with SERUPRO approach and RMNBL so that afterward only the distance-to-go
is processed. The user starts a SERUPRO process at the interruption block and uses the JOG
keys to move in front of the problem component of the target block.

Note
SERUPRO

For SERUPRO, RMIBL and RMBBL are identical. RMNBL is not only limited to SERUPRO, but
is generally valid.

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 817

Approach from the nearest path point RMNBL
When REPOSA is interpreted, the repositioning block with RMNBL is not started again in full
after an interruption, but only the distance-to-go processed. The nearest path point of the
interrupted block is approached.

Status for the valid REPOS mode
The valid REPOS mode of the interrupted block can be read with synchronized actions and
variable $AC_ REPOS_PATH_MODE:

0 Approach not defined
1 RMBBL: Approach to beginning
2 RMIBL: Approach to point of interruption
3 RMEBL: Approach to end of block
4 RMNBL: Approach to next path point of the interrupted block

Approaching with a new tool
The following applies if you have stopped the program run due to tool breakage:

When the new D number is programmed, the machining program is continued with modified
tool offset values at the repositioning point.

Where tool offset values have been modified, it may not be possible to reapproach the
interruption point. In such cases, the point closest to the interruption point on the new contour
is approached (possibly modified by DISPR).

Work preparation
3.14 Path traversing behavior

NC programming
818 Programming Manual, 06/2019, A5E47437142B AA

Approach contour
The motion with which the tool is repositioned on the contour can be programmed. Enter zero
for the addresses of the axes to be traversed.

The REPOSA, REPOSQA and REPOSHA commands automatically reposition all axes.
Individual axis names need not be specified.

When the commands REPOSL, REPOSQ and REPOSH are programmed, all geometry axes
are traversed automatically, i.e. they do not have to be specified in the command. All other axes
must be specified in the commands.

The following applies to the REPOSH and REPOSQ circular motions:
The circle is traversed in the specified working planes G17 to G19.

If you specify the third geometry axis (infeed direction) in the approach block, the repositioning
point is approached along a helix in case the tool position and programmed position in the
infeed direction do not coincide.

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 819

In the following cases, there is an automatic switchover to linear approach REPOSL:

● You have not specified a value for DISR.

● No defined approach direction is available (program interruption in a block without travel
information).

● With an approach direction that is perpendicular to the current working plane.

3.14.9 Influencing the motion control

3.14.9.1 Percentage jerk correction (JERKLIM)
Using the NC command "JERKLIM", the maximum jerk of an axis for path motion - set using
machine data - can be reduced or increased in critical program sections.

Requirement
The acceleration mode SOFT must be active.

Effectiveness
The function is effective:

● In the AUTOMATIC operating modes.

● Only on path axes.

Syntax
JERKLIM[<axis>]=<value>

Work preparation
3.14 Path traversing behavior

NC programming
820 Programming Manual, 06/2019, A5E47437142B AA

Meaning

JERKLIM: Command for jerk correction
<axis>: Machine axis whose jerk limit value is to be adapted.
<value>: Percentage correction value, referred to the configured maximum axis jerk for path

motion (MD32431 $MA_MAX_AX_JERK).
Range of values: 1 ... 200
Value 100 does not influence the jerk.

Note

The behavior of JERKLIM at the end of the part program and channel reset is configured with
bit 0 in machine data MD32320 $MA_DYN_LIMIT_RESET_MASK:
● Bit 0 = 0:

The programmed value for JERKLIM is reset to 100% with channel reset/M30.
● Bit 0 = 1:

The programmed value for JERKLIM is retained beyond the channel reset/M30.

Example

Program code Comment
...
N60 JERKLIM[X]=75 ; The axis slide in the X direction should only be ac-

celerated/decelerated with a maximum of 75% of the jerk
permissible for the axis.

...

3.14.9.2 Percentage velocity correction (VELOLIM)
The maximum possible velocity of an axis or the maximum possible gear-stage-dependent
speed of a spindle set via machine data can be reduce with the VELOLIM command in the part
program or synchronized action.

Effectiveness
The function is effective:

● In the AUTOMATIC operating modes.

● On path and positioning axes.

● On spindles in spindle/axis operations

Syntax
VELOLIM[<axis/spindle>]=<value>

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 821

Meaning

VELOLIM: Command for velocity correction
<axis/spindle>: Axis or spindle whose velocity or speed limit value should be adapted.

VELOLIM for spindles
Using machine data (MD30455 $MA_MISC_FUNCTION_MASK, bit 6),
when programming in the part program, it can be set as to whether "VE‐
LOLIM" is effective independent of whether used as spindle or axis
(bit 6 = 1) - or is able to be programmed separately for each operating mode
(bit 6 = 0). If they are to be separately effective, then the selection is made
using the identifier when programming:
● Spindle identifier S<n> for spindle operating modes
● Axis identifier, e.g. "C", for axis operation

<value>: Percentage correction value
The correction value refers to:
● For axes/spindles in axis operation (MD30455 bit 6 == 0):

To the configured maximum axis velocity
(MD32000 $MA_MAX_AX_VELO).

● For spindles in spindle or axis operation (MD30455 bit 6 == 1):
To the maximum speed of the active gear unit stage
(MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[<n>])

Range of values: 1 ... 100
The value 100 does not influence the velocity or speed.

Note
Behavior at the end of the part program and for a channel reset

The behavior of "VELOLIM" at the end of the part program and channel reset can be set via the
machine data: MD32320 $MA_DYN_LIMIT_RESET_MASK, bit 0

Detection of an active speed limitation in spindle operation
A speed limitation via "VELOLIM" (less than 100%) can be detected in spindle operation via the
following system variables:

● $AC_SMAXVELO (maximum possible spindle speed)

● $AC_SMAXVELO_INFO (identifier for the speed-limiting cause)

Examples

Example 1: Velocity limitation, machine axis

Program code Comment
...
N70 VELOLIM[X]=80 ; The axis slide in the X direction should only be trav-

ersed with a maximum of 80% of the velocity permissible
for the axis.

Work preparation
3.14 Path traversing behavior

NC programming
822 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
...

Example 2: Speed limitation, spindle

Program code Comment
N05 VELOLIM[S1]=90 ; Limiting the maximum speed of spindle 1 to 90% of

1000 rpm.
...
N50 VELOLIM[C]=45 ; Limiting the speed to 45% of 1000 rpm, C is the axis

identifier of S1.
...

Machine data settings for spindle 1 (AX5)

● Maximum speed of gear stage 1 = 1000 rpm:
MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[1, AX5] = 1000

● Programming "VELOLIM" acts together for spindle and axis operation independent of the
programmed identifier:
MD30455 $MA_MISC_FUNCTION_MASK[AX5], bit 6 = 1

3.14.9.3 Program example for JERKLIM and VELOLIM
The following program presents an application example for the percentage jerk and velocity
limit:

Program code Comments
N1000 G0 X0 Y0 F10000 SOFT G64
N1100 G1 X20 RNDM=5 ACC[X]=20
ACC[Y]=30
N1200 G1 Y20 VELOLIM[X]=5 ; The axis slide in the X direction should

only be traversed with max. 5% of the veloc-
ity permissible for the axis.

JERKLIM[Y]=200 ; The axis slide in the Y direction can be
accelerated/decelerated with max. 200% of
the jerk permissible for the axis.

N1300 G1 X0 JERKLIM[X]=2 ; The axis slide in the X direction should
only be accelerated/decelerated with max. 2%
of the jerk permissible for the axis.

N1400 G1 Y0
M30

3.14.10 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)
Addresses CTOL, OTOL and ATOL can be used to adapt the machining tolerances -
parameterized using machine and setting data - for compressor functions, smoothing and
orientation smoothing in the part program.

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 823

The programmed tolerance values are valid until they are reprogrammed or deleted by
assigning a negative value. Further, they are deleted at the end of the program or a reset The
parameterized tolerance values become effective again after deletion.

Syntax
CTOL=<Value>
OTOL=<Value>
ATOL[<Axis>]=<Value>

Meaning

CTOL: Address to program the contour tolerance
Applications: ● All compressor functions

● All rounding types except G641 and G644
Preprocessing stop: No
Effective: Modal
<Value>: The value for the contour tolerance is specified as a length.

Type: REAL
Unit: inch/mm (dependent on the current dimensions

setting)
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

OTOL: Address to program the orientation tolerance
Applications: ● All compressor functions

● ORISON orientation smoothing
● All smoothing types except G641, G644 and OSD

Preprocessing stop: No
Effective: Modal
<Value>: The value for the orientation tolerance is specified as an angle.

Type: REAL
Unit: degrees
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

Work preparation
3.14 Path traversing behavior

NC programming
824 Programming Manual, 06/2019, A5E47437142B AA

ATOL: Address for programming an axis-specific tolerance
Applications: ● All compressor functions

● ORISON orientation smoothing
● All smoothing types except G641, G644 and OSD

Preprocessing stop: No
Effective: Modal
<Axis>: Name of the channel axis to which the programmed tolerance will

apply
<Value>: The value for the axis tolerance will be specified as a length or an

angle dependent on the axis type (linear or rotary axis).
Type: REAL
Unit: For linear axes: inch/mm (dependent on

the current dimensions set‐
ting)

For rotary axes: degrees
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

Note

The channel-specific tolerance values programmed with CTOL and OTOL have higher priority
than the axis-specific tolerance values programmed with ATOL.

Note
Scaling frames

Scaling frames affect programmed tolerances in the same way as axis positions; in other
words, the relative tolerance remains the same.

Example

Program code Comment
COMPCAD G645 G1 F10000 ; Activate COMPCAD compressor function.
X... Y... Z... ; The machine and setting data is applied here.
X... Y... Z...
X... Y... Z...
CTOL=0.02 ; A contour tolerance of 0.02 mm is applied start-

ing from here.
X... Y... Z...
X... Y... Z...
X... Y... Z...
ASCALE X0.25 Y0.25 Z0.25 ; A contour tolerance of 0.005 mm is applied start-

ing from here.

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 825

Program code Comment
X... Y... Z...
X... Y... Z...
X... Y... Z...
CTOL=–1 ; The machine and setting data is applied again

starting from here.
X... Y... Z...
X... Y... Z...
X... Y... Z...

System variables

Reading with preprocessing stop
Using the following system variables, the currently active tolerances can be read in the part
program and synchronized action:

● $AC_CTOL
Channel-specific contour tolerance effective when the actual main run block was
preprocessed.
If no contour tolerance is effective, $AC_CTOL will return the root of the sum of the squares
of the tolerances of the geometry axes.

● $AC_OTOL
Channel-specific orientation tolerance effective when the actual main run block was
preprocessed.
If no orientation tolerance is effective, $AC_OTOL will return the root of the sum of the
squares of the tolerances of the orientation axes during active orientation transformation.
Otherwise, it will return the value "-1."

● $AA_ATOL[<axis>]
Axis-specific contour tolerance effective when the actual main run block was preprocessed.
If no contour tolerance is active, $AA_ATOL[<geometry axis>] returns the contour tolerance
divided by the root of the number of geometry axes.
If an orientation tolerance and an orientation transformation are active
$AA_ATOL[<orientation axis>] will return the orientation tolerance divided by the root of the
number of orientation axes.

Note

If now tolerance values have been programmed, the $A variables are not differentiated enough
to distinguish the tolerance of the individual functions.

Circumstances like this can occur if the machine data and the setting data set different
tolerances for compressor functions, smoothing and orientation smoothing. The system
variables then return the greatest value occurring with the functions that are currently active.
For example, if a compressor function is active with an orientation tolerance of 0.1° and
ORISON orientation smoothing with 1°, the $AC_OTOL variable will return the value "1." If
orientation smoothing is deactivated, $AC_OTOL returns a value value "0.1."

Work preparation
3.14 Path traversing behavior

NC programming
826 Programming Manual, 06/2019, A5E47437142B AA

Reading without preprocessing stop
Using the following system variables, the currently active tolerances can be read in the part
program:

● $P_CTOL
Currently active channel-specific contour tolerance.

● $P_OTOL
Currently active channel-specific orientation tolerance.

● $PA_ATOL
Currently active axis-specific contour tolerance.

Supplementary conditions
The tolerances programmed with CTOL, OTOL and ATOL also affect functions that indirectly
depend on these tolerances:

● Limiting the chord error in the setpoint value calculation

● The basic functions of the free-form surface mode

The following smoothing functions are not affected by the programming of CTOL, OTOL and
ATOL:

● Smoothing the orientation with OSD
OSD does not use a tolerance, it uses a distance from the block transition.

● Smoothing with G644
G644 is not used for smoothing, it is used for optimizing tool changes and other motion not
involving machining.

● Smoothing with G645
G645 virtually always behaves like G642 and, thus, uses the programmed tolerances. The
tolerance value from machine data MD33120 $MA_PATH_TRANS_POS_TOL is only used
in uniformly tangential block transitions with a jump in curvature, e.g. a tangential circle/
straight line transition. The rounding path at these points may also be located outside the
programmed contour, where many applications are less tolerant. Furthermore, it generally
takes a small, fixed tolerance to compensate for the sort of changes in curvature which need
not concern the NC programmer.

3.14.11 Block change behavior with active coupling (CPBC)
The CPBC command specifies the block change criterion that must be satisfied so that a block
change can be executed in the part program with active coupling.

Syntax
CPBC[<following axis>] = <criterion>

Work preparation
3.14 Path traversing behavior

NC programming
Programming Manual, 06/2019, A5E47437142B AA 827

Meaning

CPBC: Block change criterion with active coupling
<following axis>: Axis identifier of the following axis
<criterion>: Block change criterion

Type: STRING
Value Meaning: Block change is performed
"NOC" Irrespective of the coupling status
"IPOSTOP" For setpoint synchronism
"COARSE" For actual value synchronism "coarse"
"FINE" For actual value synchronism "fine"

Example

Program code
; Block change takes place with:
; - Coupling to following axis X2 == active
; - Setpoint synchronism == active

CPBC[X2]="IPOSTOP"

Work preparation
3.14 Path traversing behavior

NC programming
828 Programming Manual, 06/2019, A5E47437142B AA

3.15 Axis functions

3.15.1 Axis replacement, spindle replacement (RELEASE, GET, GETD)
One or more axes or spindles can only ever be interpolated in one channel. If an axis has to
alternate between two different channels (e.g. pallet changer) it must first be enabled in the
current channel and then transferred to the other channel. Axis replacement is effective
between channels.

Axis replacement extensions

An axis/spindle can be replaced either with a preprocessing stop and synchronization between
preprocessing and main run, or without a preprocessing stop. An axis interchange is also
possible via:

● Frame with rotation if this process links the axis with other axes.

● Synchronized actions, see Motion-synchronous actions, "Axis replacement RELEASE, GET".

Machine manufacturer

Please refer to the machine manufacturer's instructions. For the purpose of axis replacement,
one axis must be defined uniquely in all channels in the configurable machine data and the axis
replacement characteristics can also be set using machine data.

Syntax
RELEASE (axis name, axis name, ...) or RELEASE (S1)
GET (axis name, axis name, ...) or GET (S2)
GETD (axis name, axis name, etc.) or GETD(S3)
With GETD (GET Directly), an axis is fetched directly from another channel. This means that no
suitable RELEASE must be programmed for this GETD in another channel. It also means that
other channel communication has to be established (e.g. wait markers).

Meaning

RELEASE (axis name, axis name, etc.): Release the axis (axes)
GET (axis name, axis name, etc.): Accept the axis (axes)
GETD (axis name, axis name, etc.): Directly accept the axis (axes)
Axis name: Axis assignment in the system: AX1, AX2, ... or

specify machine axis name
RELEASE(S1): Release spindles S1, S2, ...
GET(S2): Accept spindles S1, S2, ...
GETD(S3): Direct acceptance of spindles S1, S2, ...

GET request without preprocessing stop

Work preparation
3.15 Axis functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 829

If, following a GET request without preprocessing stop, the axis is enabled again with
RELEASE(axis) or WAITP(axis), a subsequent GET will induce a GET with preprocessing
stop.

CAUTION

Axis assignment changed

An axis or spindle accepted with GET remains assigned to this channel even after a key or
program RESET.

When a program is restarted the replaced axes or spindles must be reassigned in the program
if the axis is required in its original channel.

It is assigned to the channel defined in the machine data on POWER ON.

Examples

Example 1: Axis exchange between two channels
Of the six axes, the following are used for machining in channel 1: 1st, 2nd, 3rd and 4th axis.
5th and 6th axis is used in channel 2 for the workpiece change.

Axis 2 should be exchanged between two channels and after POWER ON can be assigned to
channel 1.

Program "MAIN" in channel 1:

Program code Comment
INIT (2,"TRANSFER2") ; Select program TRANSFER2 in channel 2.
N… START (2) ; Start the program in channel 2.
N… GET (AX2) ; Accept axis AX2.
...
N… RELEASE (AX2) ; Release axis AX2.
N… WAITM (1,1,2) ; Wait for WAIT marker in channel 1 and 2 for synchro-

nizing in both channels.
... ; Rest of program after axis replacement.
N… M30

Program "TRANSFER2" in channel 2:

Programming Comment
N… RELEASE (AX2)
N160 WAITM(1,1,2) ; Wait for WAIT marker in channel 1 and 2 for synchro-

nizing in both channels.
N150 GET(AX2) ; Accept axis AX2.
... ; Rest of program after axis replacement.
N… M30

Work preparation
3.15 Axis functions

NC programming
830 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Axis exchange without synchronization
If the axis does not have to be synchronized no preprocessing stop is generated by GET.

Programming Comment
N01 G0 X0
N02 RELEASE(AX5)
N03 G64 X10
N04 X20
N05 GET(AX5) ; If synchronization is not required, then this is

not a block that can be executed.
N06 G01 F5000 ; Block that cannot be executed.
N07 X20 ; Block that cannot be executed, because X position

as in N04.
N08 X30 ; First block that can be executed after N05.
...

Example 3: Activating an axis exchange without a preprocessing stop
Requirement: Axis replacement without a preprocessing stop must be configured via machine
data.

Programming Comment
N010 M4 S100
N011 G4 F2
N020 M5
N021 SPOS=0
N022 POS[B]=1
N023 WAITP(B) ; Axis B becomes the neutral axis.
N030 X1 F10
N031 X100 F500
N032 X200
N040 M3 S500 ; Axis does not trigger a preprocessing stop / REORG
N041 G4 F2
N050 M5
N099 M30

If the spindle or axis B is traversed, e.g. to 180 degrees and then back to 1 degree immediately
after block N023 as the PLC axis, this axis will revert to its neutral status and will not trigger a
preprocessing stop in block N40.

Further information

Requirements for axis replacement
● The axis must be defined in all channels that use the axis in the machine data.

● It is necessary to define to which channel the axis will be assigned after POWER ON in
the axis-specific machine data.

Work preparation
3.15 Axis functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 831

Description
Release axis: RELEASE

When enabling the axis please note:

1. The axis must not be involved in a transformation.

2. All the axes involved in an axis link (tangential control) must be enabled.

3. A concurrent positioning axis cannot be replaced in this situation.

4. All the following axes of a gantry master axis are transferred with the master.

5. With coupled axes (coupled motion, master value coupling, electronic gear) only the leading
axis of the group can be enabled.

Accept axis: GET

The actual axis replacement is performed with this command. The channel for which the
command is programmed takes full responsibility for the axis.

Effects of GET:

Axis replacement with synchronization:

An axis always has to be synchronized if it has been assigned to another channel or the PLC
in the meantime and has not been resynchronized with "WAITP", G74 or delete distance-to-go
before GET.

● A preprocessing stop follows (as for STOPRE).

● Execution is interrupted until the replacement has been completed.

Automatic "GET"
If an axis is in principle available in a channel but is not currently defined as a "channel axis",
GET is executed automatically. If the axis/axes is/are already synchronized no preprocessing
stop is generated.

Varying the axis replacement behavior
The transfer point of axes can be set as follows using machine data:

● Automatic axis replacement between two channels then also takes place when the axis has
been brought to a neutral state by WAITP (response as before)

● When requesting an axis container rotation, all axes of the axis container which can be
assigned to the executing channel are brought into the channel using implicit GET or GETD.
A subsequent axle replacement is only permitted again once the axis container rotation has
been completed.

Work preparation
3.15 Axis functions

NC programming
832 Programming Manual, 06/2019, A5E47437142B AA

● When an intermediate block is inserted in the main run, a check will be made to determine
whether or not reorganization is required. Reorganization is only necessary if the axis states
of this block do not match the current axis states.

● Instead of a GET block with preprocessing stop and synchronization between
preprocessing and main run, axes can be replaced without a preprocessing stop. In this
case, an intermediate block is simply generated with the GET request. In the main run, when
this block is executed, the system checks whether the states of the axes in the block match
the current axis states.

For more information about how axis or spindle replacement works, see
Function Manual, Extended Functions, Mode Groups, Channels, Axis Replacement (K5).

3.15.2 Transfer axis to another channel (AXTOCHAN)
The AXTOCHAN language command can be used to request an axis in order to move it to a
different channel. The axis can be moved to the corresponding channel both from the NC part
program and from a synchronized action.

Syntax
AXTOCHAN(axis name,channel number[,axis name,channel number[,...]])

Meaning

Element Description
AXTOCHAN: Request axis for a specific channel
Axis name: Axis assignment in the system: X, Y, … or entry of machine axis names con‐

cerned. The executing channel does not have to be the same channel or even
the channel currently in possession of the interpolation right for the axis.

Channel number: Name of the channel to which the axis is to be assigned

Note
Competing positioning axis and PLC controlled axis exclusively

A PLC axis cannot replace the channel as a competing positioning axis. An axis controlled
exclusively by the PLC cannot be assigned to the NC program.

References:
Function Manual, Extended Functions; Positioning Axes (P2)

Work preparation
3.15 Axis functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 833

Example

AXTOCHAN in the NC program
Axes X and Y have been declared in the first and second channels. Currently, channel 1 has
the interpolation right and the following program is started in that channel.

Program code Comment
N110 AXTOCHAN(Y,2) ;Move Y axis to the second channel
N111 M0
N120 AXTOCHAN(Y,1) ; Retrieve Y axis (neutral).
N121 M0
N130 AXTOCHAN(Y,2,X,2) ;Move Y axis and X axis to the second channel (axes

are neutral).
N131 M0
N140 AXTOCHAN(Y,2) ; Move Y axis to the second channel (NC program).
N141 M0

Further information

AXTOCHAN in the NC program
A GET is only executed in the event of the axis being requested for the NC program in the same
channel (this means that the system waits for the state to actually change). If the axis is
requested for another channel or is to become the neutral axis in the same channel, the request
is sent accordingly.

AXTOCHAN from a synchronized action
In the event of an axis being requested for the same channel, AXTOCHAN from a synchronized
action is mapped to a GET from a synchronized action. In this case, the axis becomes the
neutral axis on the first request for the same channel. On the second request, the axis is
assigned to the NC program in the same way as the GET request in the NC program. For more
information about GET requests from a synchronized action, see "Motion-synchronous
actions".

3.15.3 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING, MODAXVAL)
"AXNAME" is used, e.g. to generate cycles that are generally valid, if the names of the axes are
not known.

"AX" is used to indirectly program geometry and synchronous axes. The axis identifier is saved
in a type AXIS variable or is supplied from a command such as "AXNAME" or "SPI".

"SPI" is used if axis functions are programmed for a spindle, e.g. a synchronous spindle.

"AXTOSPI" is used to convert an axis identifier into a spindle index (inverse function to "SPI").

"AXSTRING" is used to convert an axis identifier (data type AXIS) into a string (inverse function
to "AXNAME").

Work preparation
3.15 Axis functions

NC programming
834 Programming Manual, 06/2019, A5E47437142B AA

"ISAXIS" is used in universal cycles in order to ensure that a specific geometry axis exists and
thus that any following $P_AXNX call is not aborted with an error message.

"MODAXVAL" is used in order to determine the modulo position for modulo rotary axes.

Syntax
AXNAME("string")
AX[AXNAME("string")]
SPI(n)
AXTOSPI(A) or AXTOSPI(B) or AXTOSPI(C)
AXSTRING(SPI(n))
ISAXIS(<geometry axis number>)
<Modulo position>=MODAXVAL(<axis>,<axis position>)

Meaning

AXNAME: Converts an input string into axis identifiers; the input string must contain a valid
axis name.

AX: Variable axis identifier
SPI: Converts the spindle number into an axis identifier; the transfer parameter must

contain a valid spindle number.
n: Spindle number
AXTOSPI: Converts an axis identifier into an integer spindle index. "AXTOSPI" corresponds

to the inverse function to "SPI".
X, Y, Z: Axis identifier of AXIS type as variable or constant
AXSTRING: The string is output with the associated spindle number.
ISAXIS: Checks whether the specified geometry axis exists.
MODAXVAL: For modulo rotary axes, determines the modulo position; this corresponds to the

modulo rest referred to the parameterized modulo range (in the default setting,
this is 0 to 360 degrees; the start and size of the modulo range can be changed
using MD30340 MODULO_RANGE_START and MD30330 $MA_MODU‐
LO_RANGE).

Note
SPI extensions

The axis function SPI(n) can also be used to read and write frame components. This means that
frames can be written, e.g. with the syntax $P_PFRAME[SPI(1),TR]=2.22.

An axis can be traversed by additionally programming axis positions using the
address AX[SPI(1)]=<axis position>. The prerequisite is that the spindle is either in the
positioning or axis mode.

Work preparation
3.15 Axis functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 835

Examples

Example 1: AXNAME, AX, ISAXIS

Program code Comment
OVRA[AXNAME("Transverse axis")]=10 ; Override for transverse axis
AX[AXNAME("Transverse axis")]=50.2 ; End position for transverse axis
OVRA[SPI(1)]=70 ; Override for spindle 1
AX[SPI(1)]=180 ; End position for spindle 1
IF ISAXIS(1) == FALSE GOTOF CONTINUE ; Abscissa available?
AX[$P_AXN1]=100 ; Move abscissa
CONTINUE:

Example 2: AXSTRING
When programming with AXSTRING[SPI(n)], the axis index of the axis, which is assigned to the
spindle, is no longer output as spindle number, but instead the string "Sn" is output.

Program code Comment
AXSTRING[SPI(2)] ; String "S2" is output.

Example 3: MODAXVAL
The modulo position of modulo rotary axis A is to be determined.

Axis position 372.55 is the starting value for the calculation.

The parameterized modulo range is 0 to 360 degrees:

MD30340 MODULO_RANGE_START = 0

MD30330 $MA_MODULO_RANGE = 360

Program code Comment
R10=MODAXVAL(A,372.55) ; Calculated modulo position R10 = 12.55.

Example 4: MODAXVAL
If the programmed axis identifier does not refer to a modulo rotary axis, then the value to be
converted (<axis position>) is returned unchanged.

Program code Comment
R11=MODAXVAL(X,372.55) ; X is a linear axis; R11 = 372.55.

3.15.4 Replaceable geometry axes (GEOAX)
The "Switchable geometry axes" function allows the geometry axes configured via machine
data to be replaced by other channel axes.

Syntax
GEOAX(<n>,<channel axis>,<n>,<channel axis>,<n>,<channel axis>)
GEOAX()

Work preparation
3.15 Axis functions

NC programming
836 Programming Manual, 06/2019, A5E47437142B AA

Meaning

GEOAX(...) Function for switching geometry axes.
Note:
GEOAX() without parameter specification activates the basic configuration of the
geometry axes parameterized in the machine data again.

<n> Number of the geometry axis that is to be replaced by the specified channel axis.
Range of values: 0, 1, 2, 3
Note:
0: The specified channel axis is removed from the geometry axis group without
being replaced
1: 1. geometry axis ≙ coordinate axis X (abscissa) of the WCS
2: 2. geometry axis ≙ coordinate axis Y (ordinate) of the WCS
3: 3. geometry axis ≙ coordinate axis Z (applicate) of the WCS

<channel axis> Name of the channel axis which is to added to the geometry axis group

Examples

Example 1: Switching two axes alternating as geometry axis
A tool slide can be traversed using channel axes X1, Y1, Z1, Z2:

The geometry axes are configured so that after powering-up, initially Z1 is effective as 3rd
geometry axis under the geometry axis name "Z" and together with X1 and Y1 forms the
geometry axis group.

Axes Z1 and Z2 should now be used, alternating, as geometry axis Z in the part program:

Program code Comment
...
N100 GEOAX(3,Z2) ; Channel axis Z2 acts as 3rd geometry axis (Z).

Work preparation
3.15 Axis functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 837

Program code Comment
N110 G1 ...
N120 GEOAX(3,Z1) ; Channel axis Z1 acts as 3rd geometry axis (Z).
...

Example 2: Changing over the geometry axes for six channel axes
A machine has six channel axes with the names XX, YY, ZZ, U, V, W.

The basic setting of the geometry axis configuration via machine data is:

Channel axis XX = 1st geometry axis (X axis)

Channel axis YY = 2nd geometry axis (Y axis)

Channel axis ZZ = 3rd geometry axis (Z axis)

Program code Comment
N10 GEOAX() ; The basic configuration of the geometry axes is ef-

fective.
N20 G0 X0 Y0 Z0 U0 V0 W0 ; All axes in rapid traverse to position 0.
N30 GEOAX(1,U,2,V,3,W) ; Channel axis U becomes the first (X), V the second

(Y)
; and W the third geometry axis (Z).

N40 GEOAX(1,XX,3,ZZ) ; Channel axis XX becomes the first (X), ZZ the third
; geometry axis (Z). Channel axis V remains the second
; geometry axis (Y).

N50 G17 G2 X20 I10 F1000 ; Full circle in the X/Y plane. Channel axes
; XX and V traverse.

N60 GEOAX(2,W) ; Channel axis W becomes the second geometry (Y).
N80 G17 G2 X20 I10 F1000 ; Full circle in the X/Y plane. Channel axes

; XX and W traverse.
N90 GEOAX() ; Reset to the initial state.
N100 GEOAX(1,U,2,V,3,W) ; Channel axis U becomes the first (X), V the second

; (Y) and W the third geometry axis (Z).
N110 G1 X10 Y10 Z10 XX=25 ; Channel axes U, V, W each traverse to

; position 10. XX as special axis traverses to posi-
tion 25.

N120 GEOAX(0,V) ; V is removed from the geometry axis group.
; U and W remain the first (X) and third
; geometry axis (Z).
; The second geometry (Y) axis remains unassigned.

N130 GEOAX(1,U,2,V,3,W) ; Channel axis U remains the first (X), V becomes
; the second (Y), W remains the third geometry axis
(Z).

N140 GEOAX(3,V) ; V becomes the third geometry axis (Z), whereby W
; is overwritten and therefore removed from the geom-
etry
; axis group. The second geometry axis (Y)
; still remains unassigned.

Work preparation
3.15 Axis functions

NC programming
838 Programming Manual, 06/2019, A5E47437142B AA

Machine data

Axis configuration
Assignment of geometry, special and machine axes to channel axes:

● MD10000 $MN_AXCONF_MACHAX_NAME_TAB

● MD20050 $MC_AXCONF_GEOAX_ASIGN_TAB

● MD20060 $MC_AXCONF_GEOAX_NAME_TAB

● MD20070 $MC_AXCONF_MACHAX_USED

● MD20080 $MC_AXCONF_CHANAX_NAME_TAB

● MD35000 $MA_SPIND_ASSIGN_TO_MACHAX

Reset behavior
Reset behavior of changed geometry axis assignments:

● MD20110 $MC_RESET_MODE_MASK, bit 12

● MD20118 $MC_GEOAX_CHANGE_RESET

NC start behavior
● MD20112 $MC_START_MODE_MASK, bit 12

Notification to the PLC user program
Parameterization option of the M command which is output on the NC/PLC interface when the
geometry axes are changed.

● MD22532 $MC_GEOAX_CHANGE_M_CODE

Supplementary conditions

No geometry axis changeover
● If one of the following functions is active, a geometry axis changeover is not possible:

– Transformation

– Spline interpolation

– Tool radius compensation

– Tool fine offset

● The geometry axis and another channel axis have the same name.

● One of the axes participating in the geometry axis changeover is involved in an action that
goes beyond block limits, e.g. block-wide positioning axis or following axis of an axis
coupling.

Rotary axes
Rotary axes cannot be programmed as geometry axes.

Work preparation
3.15 Axis functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 839

Axis state after replacing
An axis replaced by the changeover in the geometry axis group can be programmed as
supplementary axis after the changeover operation via its channel axis names.

Frames, protection areas, working area limits
All frames, protection areas and working area limits are deleted after changing over the
geometry axes.

Polar coordinates
Replacing the geometry axes with GEOAX sets analog to a level change with G17-G19, the
modal polar coordinates to a value of 0.

DRF, WO
A possible handwheel offset (DRF) or an external work offset (WO) remains effective after the
changeover.

Basic configuration of the geometry axes
The GEOAX() command calls the basic configuration of the geometry axis group.

The system automatically changes back to the basic configuration after POWER ON and when
changing over into the "reference point approach" mode.

Tool length compensation
An active tool length compensation is also effective after the changeover operation. However,
for geometry axes that have been newly added or those where the position has been replaced,
it is still considered not to have been moved through. For the first motion command for these
geometry axes, the resulting traversing distance correspondingly comprises the sum of the tool
length compensation and the programmed traversing distance.

Geometry axes, which retain their position in the axis group after a replacement operation, also
retain their status with respect to tool length compensation.

Geometry axis configuration for active transformation
● The geometry axis configuration parameterized for an active transformation via

transformation machine data cannot be changed using the "Switchable geometry axes"
function.

● Different data sets must be parameterized in the transformation machine data for a different
geometry axis configuration for a transformation.

● A geometry axis configuration changed using GEOAX is deleted by activating a
transformation.

● With regard to the geometry axes, the transformation-specific geometry axis
parameterizations of active transformations have priority over the parameterizations
relevant for the changeover of geometry axes.
Example: A transformation is active. According to the machine data, the transformation
should be retained at a channel reset. At the same time, the basic configuration of the
geometry axes should be restored at a channel reset. The geometry axis configuration that
has been specified for the transformation is retained.

● If a transformation is switched off, the parameterized basic setting of the geometry axis
configuration takes effect again.

Work preparation
3.15 Axis functions

NC programming
840 Programming Manual, 06/2019, A5E47437142B AA

JOG mode, REF machine function
When switching over to the JOG mode, REF machine function (reference point approach), the
geometry axis configuration parameterized in the machine data takes effect

3.15.5 Wait for valid axis position (WAITENC)
Using the language command "WAITENC", the NC program waits until the synchronized or
restored axis positions are available for the axes configured with
MD34800 $MA_WAIT_ENC_VALID = 1.

An interruption can take place in the wait state, e.g. by starting an ASUB or by changing the
operating mode to JOG. When the program is continued, where relevant, the wait state is
resumed.

Note

In the user interface, the wait state is displayed using the hold state "Wait for measuring
system".

Syntax
"WAITENC" can be programmed in the program section of any NC program.

Programming must be realized in a dedicated block:

...
WAITENC
...

Example
"WAITENC" is for example used in an event-controlled user program, .../_N_CMA_DIR/
_N_PROG_EVENT_SPF, as shown in the following application example.

Application example: Tool withdrawal after POWER OFF with orientation transformation

Machining with tool orientation was interrupted due to a power failure.
When powering up again, the event-controlled user program .../_N_CMA_DIR/
_N_PROG_EVENT_SPF is called.

In the event-controlled user program, the system waits for synchronized or restored axis
positions using "WAITENC"; in order to then be able to calculate a frame, which aligns the Work
in the tool direction.

Program code Comment
...
IF $P_PROG_EVENT == 4 ; Run-up.
 IF $P_TRAFO <> 0 ; Transformation has been selected.
 WAITENC ; Wait for valid axis positions of the orientation

axes.

Work preparation
3.15 Axis functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 841

Program code Comment
 TOROTZ ; Rotate the Z axis of the WCS towards the tool axis.
 ENDIF
 M17
ENDIF
...

The tool can then be retracted in JOG mode by means of a retraction movement towards the
tool axis.

3.15.6 Programmable parameter set changeover (SCPARA)
The changeover to a specific parameter set can be requested for an axis with the SCPARA
command.

Note
No parameter set changeover during thread cutting

During thread cutting G33 and tapping G331/G332, the parameter set is selected by the control
and cannot be changed.

Disabled parameter set changeover
A parameter set changeover can also be requested via the NC/PLC interface. In order to avoid
changeover conflicts, the parameter set changeover of the NC (SCPARA) can be disabled via
the NC/PLC interface:

DB31, ... DBX9.3 (parameter set specification disabled by NC)

Note

If a parameter set changeover is requested by SCPARA while the parameter set changeover
is disabled via the NC/PLC interface, the changeover is rejected without an error message.

Syntax
SCPARA[<axis>]=<value>

Meaning

SCPARA: Command: Change parameter set
<axis>: Axis identifier (channel axis)

Type: AXIS
<value>: Parameter set number: 1, 2, 3, ... max. parameter set number

Work preparation
3.15 Axis functions

NC programming
842 Programming Manual, 06/2019, A5E47437142B AA

Example

Program code Comment
...
N110 SCPARA[X]= 3 ; Select: Axis X, 3rd parameter set
...

Further information

Enable of the parameter set changeover
The parameter set changeover of the axis must be explicitly enabled:

MD35590 $MA_PARAMSET_CHANGE_ENABLE[<axis>]

Read parameter set number
The number of the selected parameter set (specified parameter set) can be read via the system
variable $AA_SCPAR.

References
Detailed information on the parameter sets can be found in:

Function Manual, Basic Functions; Section "Velocities, setpoint / actual value systems, closed-
loop control (G2)" > "Closed-loop control" > "Parameter sets of the position controller"

Work preparation
3.15 Axis functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 843

3.16 Axis couplings

3.16.1 Coupled motion (TRAILON, TRAILOF)
When a defined leading axis is moved, the coupled motion axes (= following axes) assigned to
it traverse through the distances described by the leading axis, allowing for a coupling factor.

Together, the leading axis and following axis represent coupled axes.

Applications
● Traversal of an axis by means of a simulated axis. The leading axis is a simulated axis and

the coupled axis a real axis. In this way, the real axis can be traversed as a function of the
coupling factor.

● Two-sided machining with two coupled motion groups:
1. leading axis Y, coupled motion axis V
2. leading axis Z, coupled motion axis W

Syntax
TRAILON(<following axis>,<leading axis>,<coupling factor>)
TRAILOF(<following axis>,<leading axis>,<leading axis 2>)
TRAILOF(<following axis>)

Meaning

TRAILON: Command for activating and defining a coupled axis grouping
Effective: Modal

<following axis>: Parameter 1: Axis name of trailing axis
Note:
A coupled-motion axis can also act as the leading axis for other coupled-
motion axes. In this way, it is possible to create a range of different coupled
axis groupings.

<leasing axis>: Parameter 2: Axis name of trailing axis

Work preparation
3.16 Axis couplings

NC programming
844 Programming Manual, 06/2019, A5E47437142B AA

<coupling factor>: Parameter 3: Coupling factor
The coupling factor specifies the desired relationship between the paths of
the coupled-motion axis and the leading axis:
<coupling factor> = path of coupled-motion axis/path of leading axis
Type: REAL
Default: 1
The input of a negative value causes the master and coupled axes to tra‐
verse in opposition.
If a coupling factor is not programmed, then coupling factor 1 automatically
applies.

TRAILOF: Command for deactivating a coupled axis grouping

Effective: Modal
TRAILOF with 2 parameters deactivates only the coupling to the specified
leading axis:
TRAILOF(<following axis>,<leading axis>)
If a coupled-motion axis has two leading axes, TRAILOF can be called with
three parameters to deactivate both couplings.
TRAILOF(<following axis>,<leading axis>,<leading axis
2>)
Programming TRAILOF without specifying a leading axis produces the
same result:
TRAILOF(<following axis>)

Note

Coupled axis motion is always executed in the base coordinate system (BCS).

The number of coupled axis groupings which may be simultaneously activated is limited only
by the maximum possible number of combinations of axes on the machine.

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 845

Example
The workpiece is to be machined on two sides with the axis configuration shown in the diagram.
To do this, you create two combinations of coupled axes.

Program code Comment
…
N100 TRAILON(V,Y) ; Activation of 1st coupled axis group.
N110 TRAILON(W,Z,–1) ; Activation of 2nd coupled axis grouping, Negative cou-

pling factor: Coupled-motion axis traverses in the oppo-
site direction from leading axis.

N120 G0 Z10 ; Infeed of Z and W axes in opposite axial directions.
N130 G0 Y20 ; Infeed of Y and V axes in same axis direction.
…
N200 G1 Y22 V25 F200 ; Overlaying of a dependent and independent movement of

coupled motion axis V.
…
TRAILOF(V,Y) ; Deactivation of 1st coupled axis grouping.
TRAILOF(W,Z) ; Deactivation of 2nd coupled axis grouping.

Further information

Axis types
A coupled axis grouping can consist of any desired combinations of linear and rotary axes. A
simulated axis can also be defined as a leading axis.

Coupled-motion axes
Up to two leading axes can be assigned simultaneously to a trailing axis. The assignment is
made in different combinations of coupled axes.

A coupled-motion axis can be programmed with the full range of available motion commands
(G0, G1, G2, G3, etc.). The coupled axis not only traverses the independently defined paths, but
also those derived from its leading axes on the basis of coupling factors.

Work preparation
3.16 Axis couplings

NC programming
846 Programming Manual, 06/2019, A5E47437142B AA

Dynamics limit
The dynamics limit is dependent on the type of activation of the coupled axis grouping:

● Activation in part program
If activation is performed in the part program and all leading axes are active as program axes
in the activated channel, the dynamic response of all coupled-motion axes is taken into
account during traversing of the leading axis to avoid overloading the coupled-motion axes.
If activation is performed in the part program with leading axes that are not active as
program axes in the activating channel ($AA_TYP ≠ 1), then the dynamic response of the
coupled-motion axes is not taken into account during traversing of the leading axis. This can
cause the overloading of coupled-motion axes with a dynamic response which is less than
that required for the coupling.

● Activation in synchronized action
If activation is performed in a synchronized action, the dynamic response of the coupled-
motion axes is not taken into account during traversing of the leading axis. This can cause
the overloading of coupled-motion axes with a dynamic response which is less than that
required for the coupling.

CAUTION

Axis overload

If a coupled axis grouping is activated:
● In synchronized actions
● In the part program with leading axes that are not program axes in the channel of the

coupled-motion axes

It is the specific responsibility of the user / machine manufacturer to take suitable action to
ensure that the traversing of the leading axis will not cause the overloading of the coupled-
motion axes.

Coupling status
The coupling status of an axis can be checked in the part program with the system variable:

$AA_COUP_ACT[<axis>]

Value Meaning
0 No coupling active
8 Coupled motion active

Display of distance-to-go of the coupled-motion axis for modulo rotary axes
If the leading and coupled-motion axes are modulo rotary axes, traversing movements in the
leading axis from n * 360° with n = 1, 2, 3 ... , add up in the distance-to-go display of the coupled-
motion axis until the coupling is switched off.

Example: Program section with TRAILON and leading axis B and following axis C

Program code Comment
TRAILON(C,B,1) ; Activate coupling
G0 B0 ; Starting position
 ; Distance-to-go display at block start:

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 847

Program code Comment
G91 B360 ; B=360, C=360
G91 B720 ; B=720, C=1080
G91 B360 ; B=360, C=1440

3.16.2 Curve tables (CTAB)

Curve tables can be used to program position and velocity relationships between two axes
(leading and following axis). Curve tables are defined in the part program.

Application
Curve tables replace mechanical cams. The curve table forms the basis for the axial master
value coupling by creating the functional relationship between the leading and the following
value: With appropriate programming, the control calculates a polynomial that corresponds to
the cam from the relative positions of the leading and following axes.

3.16.2.1 Define curve tables (CTABDEF, CATBEND)
A curve table represents a part program or a section of a part program enclosed by CTABDEF
at the start and CTABEND at the end.

Within this part program section, unique following axis positions are assigned to individual
positions of the leading axis using motion operations; these following axis positions are used as
intermediate points when calculating the curve definition in the form of a polynomial up to the
5th order.

Work preparation
3.16 Axis couplings

NC programming
848 Programming Manual, 06/2019, A5E47437142B AA

Requirement
The MD must be configured accordingly to ensure that sufficient memory space is reserved for
the definition of curve tables (→ machine manufacturer).

Syntax
CTABDEF(<following axis>,<leading axis>,<n>,<periodicity>[,<memory
location>])
...
CTABEND

Meaning

CTABDEF(): Start of curve table definition
CTABEND: End of curve table definition
<following axis>: Axis whose motion is to be calculated using the curve table
<leasing axis>: Axis providing the master values for the calculation of the following axis motion
<n>: Number (ID) of curve table

The number of a curve table is unique and independent of the memory loca‐
tion. It is not possible for there to be tables with the same number in the static
and dynamic NC memory.

<periodicity>: Table periodicity
0 Table is non-periodic (table is processed only once, even for rotary

axes)
1 Table is periodic with regard to the leading axis
2 Table is periodic with regard to leading axis and following axis

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 849

<memory
location>:

Specification of memory location (optional)
"SRAM" The curve table is created in the static NC memory.
"DRAM" The curve table is created in the dynamic NC memory.
Note:
If a value is not programmed for this parameter, the default memory location
set with MD20905 $MC_CTAB_DEFAULT_MEMORY_TYPE is used.

Note
Overwrite

A curve table is overwritten as soon as its number (<n>) is used in another table definition.
(exception: the curve table is either active in an axis coupling or locked with CTABLOCK). No
warning is output when curve tables are overwritten.

Examples

Example 1: Program section as curve table definition
A program section is to be used unchanged for defining a curve table. The STOPRE command
for preprocessing stop can remain and is reactivated immediately as soon as the program
section is no longer being used for table definition and CTABDEF and CTABEND have been
removed.

Program code Comment
…
CTABDEF(Y,X,1,1) ; Definition of a curve table.
…
IF NOT ($P_CTABDEF)
STOPRE
ENDIF
…
CTABEND

Work preparation
3.16 Axis couplings

NC programming
850 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Definition of a non-periodic curve table

Program code Comment
N100 CTABDEF(Y,X,3,0) ; Beginning of the definition of a ;non-periodic curve

table with number 3.
N110 X0 Y0 ; 1st motion operation, defines the starting values and

1st intermediate point:
Master value: 0, Following value: 0

N120 X20 Y0 ; 2nd interpolation point:
Master value: 0…20, Following value: starting value…0

N130 X100 Y6 ; 3rd interpolation point:
Master value: 20…100, Following value: 0…6

N140 X150 Y6 ; 4th interpolation point:
Master value: 100…150, Following value: 6…6

N150 X180 Y0 ; 5th interpolation point:
Master value: 150…180, Following value: 6…0

N200 CTABEND ; End of the definition. The curve table is generated
in its internal representation as a polynomial of up to
the 5th order. The calculation of the curve definition
with the specified intermediate points is dependent on
the modally selected interpolation type (circular, lin-
ear, spline interpolation). The part program state be-
fore starting the definition is restored.

Example 3: Definition of a periodic curve table
Definition of a periodic curve table with number 2, master value range 0 to 360, following axis
motion from 0 to 45 and back to 0:

Program code Comment
N10 DEF REAL DEPPOS

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 851

Program code Comment
N20 DEF REAL GRADIENT
N30 CTABDEF(Y,X,2,1) ; Start of definition.
N40 G1 X=0 Y=0
N50 POLY
N60 PO[X]=(45.0)
N70 PO[X]=(90.0) PO[Y]=(45.0,135.0,-90)
N80 PO[X]=(270.0)
N90 PO[X]=(315.0) PO[Y]=(0.0,-135.0,90)
N100 PO[X]=(360.0)
N110 CTABEND ; End of the definition.
;Test of the curve by coupling Y to X:
N120 G1 F1000 X0
N130 LEADON(Y,X,2)
N140 X360
N150 X0
N160 LEADOF(Y,X)

N170 DEPPOS=CTAB(75.0,2,GRADIENT) ; Read the table function for mas-

ter value 75.0.
N180 G0 X75 Y=DEPPOS ; Positioning leading and follow-

ing axes.
;After activating the coupling, no synchronization of the following axis is required.
N190 LEADON(Y,X,2)
N200 G1 X110 F1000
N210 LEADOF(Y,X)
N220 M30

Further Information

Starting and end value of the curve table
The starting value for the beginning of the definition range of the curve table are the first
associated axis positions specified (the first traverse statement) within the curve table
definition. The end value of the definition range of the curve table is determined in accordance
with the last traverse command.

Work preparation
3.16 Axis couplings

NC programming
852 Programming Manual, 06/2019, A5E47437142B AA

Available language scope
Within the definition of the curve table, you have use of the entire NC language.

Note

The following entries are not permitted in curve table definitions:
● Preprocessing stop
● Jumps in the leading axis movement (e.g. on changing transformations)
● Traverse statement for the following axis only
● Reversal of the leading axis, i.e. position of the leading axis must always be unique
● CTABDEF and CTABEND statement on various program levels.

Effectiveness of modal operations
All modal statements that are made within the curve table definition are invalid when the table
definition is completed. The part program in which the table definition is made is therefore
before and after the table definition in the same state.

Assignments to R-parameters
Assignments to R-parameters in the table definition are reset after CTABEND.

Example:

Program code Comment
...
R10=5 R11=20 ;R10=5
...
CTABDEF
G1 X=10 Y=20 F1000
R10=R11+5 ;R10=25
X=R10
CTABEND
... ;R10=5

Activating ASPLINE, BSPLINE, CSPLINE
If an ASPLINE, BSPLINE or CSPLINE is activated within a curve definition table CTABDEF ...
CTABEND, at least a start point should be programmed before this spline activation. Immediate
activation after CTABDEF should be avoided, otherwise the spline will depend on the current
axis position before the curve table definition.

Example:

Program code
...
CTABDEF(Y,X,1,0)
X0 Y0
ASPLINE
X=5 Y=10

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 853

Program code
X10 Y40
...
CTABEND

Repeated use of curve tables
The functional relationship between the leading axis and the following axis calculated using the
curve table will be retained under the selected table number after the end of the part program
and POWER OFF if the table has been saved to the static NC memory (SRAM).

A table created in the dynamic memory (DRAM) will be deleted on POWER ON and may have
to be regenerated.

Once created, the curve table can be applied to any axis combinations of leading and following
axis and is independent of the axes used to create the curve table.

Overwriting curve tables
A curve table is overwritten as soon as its number is used in another table definition.

Exception: A curve table is either active in an axis coupling or locked with CTABLOCK.

Note

No warning is output when curve tables are overwritten.

Curve table definition active?
The $P_CTABDEF system variable can be used at any time in the part program to check
whether a curve table definition is active.

Revoking the curve table definition
Once the operations relating to the curve table definition have been excluded, the part program
section can be used as a real part program again.

Loading curve tables using "Execution from external source"
If curve tables are executed from an external source, the selection of the size of the reload
buffer (DRAM) in MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE has to support the
simultaneous storage of the entire curve table definition in the reload buffer. If it is not, part
program processing will be canceled with an alarm.

Jumps in the following axis
Depending on the setting in machine data
MD20900 $MC_CTAB_ENABLE_NO_LEADMOTION
, jumps in the following axis may be tolerated if a movement is missing in the leading axis.

3.16.2.2 Check for presence of curve table (CTABEXISTS)
The CTABEXISTS command can be used to check if a specific curve table number is present
in the NC memory.

Work preparation
3.16 Axis couplings

NC programming
854 Programming Manual, 06/2019, A5E47437142B AA

Syntax
CTABEXISTS(<n>)

Meaning

CTABEXISTS: Checks for the presence of curve table number <n> in the static or dynamic NC
memory.
0 Table does not exist
1 Table exists

<n>: Number (ID) of curve table

3.16.2.3 Delete curve tables (CTABDEL)
CTABDEL can be used to delete curve tables.

Note

Curve tables that are active in an axis coupling cannot be deleted.

Syntax
CTABDEL(<n>)
CTABDEL(<n>,<m>)
CTABDEL(<n>,<m>,<memory location>)
CTABDEL()
CTABDEL(,,<memory location>)

Meaning

CTABDEL: Command for deleting curve tables
<n>: Number (ID) of the curve table to be deleted

When a curve table range CTABDEL(<n>,<m>) is deleted, <n> is used to
specify the number of the first curve table in the range.

<m>: When a curve table range CTABDEL(<n>,<m>) is deleted, <m> is used to
specify the number of the last curve table in the range.
<m> has to be greater than <n>.

<memory
location>:

Specification of memory location (optional)
In the case of deletion without a memory location being specified, the specified
curve tables are deleted in the static and the dynamic NC memory.
In the case of deletion with a memory location being specified, of the specified
curve tables, only those located in the specified memory location are deleted.
The rest are retained.
"SRAM" Deletion in the static NC memory
"DRAM" Deletion in the dynamic NC memory

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 855

If CTABDEL is programmed without specification of the curve table to be deleted, then all curve
tables or all curve tables in the specified memory will be deleted:

CTABDEL(): Deletes all curve tables in the static and the dynamic NC memory
CTABDEL(,,"SRAM"): Deletes all curve tables in the static NC memory
CTABDEL(,,"DRAM"): Deletes all curve tables in the dynamic NC memory

Note

If, in the case of multiple deletion with CTABDEL(<n>,<m>) or CTABDEL(), at least one of the
of the curve tables to be deleted is active in a coupling, the delete command will not be
executed; in other words, none of the addressed curve tables will be deleted.

3.16.2.4 Locking curve tables to prevent deletion and overwriting (CTABLOCK, CTABUNLOCK)
Locks can be set to protect curve tables against unintentional deletion and overwriting. Once
a lock has been set, it can be revoked at any time.

Syntax

Lock:
CTABLOCK(<n>)
CTABLOCK(<n>,<m>)
CTABLOCK(<n>,<m>,<memory location>)
CTABLOCK()
CTABLOCK(,,<memory location>)

Unlock:
CTABUNLOCK(<n>)
CTABUNLOCK(<n>,<m>)
CTABUNLOCK(<n>,<m>,<memory location>)
CTABUNLOCK()
CTABUNLOCK(,,<memory location>)

Meaning

CTABLOCK: Command for setting a lock to prevent deletion/overwriting
CTABUNLOCK: Command for revoking a lock to prevent deletion/overwriting

CTABUNLOCK unlocks the curve tables locked with CTABLOCK. Curve tables
which are involved in an active coupling remain locked and cannot be deleted.
The lock with CTABLOCK is unlocked as soon as the lock applied due to the
active coupling is unlocked when the coupling is deactivated. This table can
therefore be deleted. It is not necessary to call CTABUNLOCK again.

<n>: Number (ID) of the curve table to be locked/unlocked
When a curve table range CTABLOCK(<n>,<m>)/CTABUNLOCK(<n>,<m>)
is locked/unlocked, <n> is used to specify the number of the first curve table
in the range.

Work preparation
3.16 Axis couplings

NC programming
856 Programming Manual, 06/2019, A5E47437142B AA

<m>: When a curve table range CTABLOCK(<n>,<m>)/CTABUNLOCK(<n>,<m>)
is locked/unlocked, <m> is used to specify the number of the last curve table
in the range.
<m> has to be greater than <n>.

<memory
location>:

Specification of memory location (optional)
In the case of locking/unlocking without a memory location being specified, the
specified curve tables are locked/unlocked in the static and the dynamic NC
memory.
In the case of locking/unlocking with a memory location being specified, of the
specified curve tables, only those located in the specified memory location are
locked/unlocked. The rest are not locked/unlocked.
"SRAM" Lock/unlock in the static NC memory
"DRAM" Lock/unlock in the dynamic NC memory

If CTABLOCK/CTABUNLOCK is programmed without specification of the curve table to be
locked/unlocked, then all curve tables or all curve tables in the specified memory will be locked/
unlocked:

CTABLOCK(): Locks all curve tables in the static and the dynamic NC memory
CTABLOCK(,,"SRAM"): Locks all curve tables in the static NC memory
CTABLOCK(,,"DRAM"): Locks all curve tables in the dynamic NC memory

CTABUNLOCK(): Unlocks all curve tables in the static and dynamic NC memory
CTABUNLOCK(,,"SRAM"): Unlocks all curve tables in the static NC memory
CTABUNLOCK(,,"DRAM"): Unlocks all curve tables in the dynamic NC memory

3.16.2.5 Curve tables: Determine table properties (CTABID, CTABISLOCK, CTABMEMTYP,
CTABPERIOD)

These commands can be used to poll important properties of a curve table (table number, lock
state, memory location, periodicity).

Syntax
CTABID(<p>)
CTABID(<p>,<memory location>)
CTABISLOCK(<n>)
CTABMEMTYP(<n>)
TABPERIOD(<n>)

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 857

Meaning

CTABID: Returns the table number entered as the <p>th curve table in the specified
memory.
Example:
CTABID(1,"SRAM") returns the number of the first curve table in the static
NC memory. In this context the first curve table is the curve table with the
highest table number.
Note:
If the sequence of curve tables in the memory changes between consecutive
calls of CTABID, e.g. due to the deletion of curve tables with CTABDEL,
CTABID(<p>,...) can return a different curve table with the same num‐
ber <p>.

CTABISLOCK: Returns the lock state of curve table number <n>:
0 Table is not locked
1 Table is locked by CTABLOCK
2 Table is locked by active coupling
3 Table is locked by CTABLOCK and active coupling
-1 Table does not exist

CTABMEMTYP: Returns the memory location of curve table number <n>:
0 Table in the static NC memory
1 Table in the dynamic NC memory
-1 Table does not exist

CTABPERIOD: Returns the periodicity of curve table number <n>:
0 Table is not periodic
1 Table is periodic in the leading axis
2 Table is periodic in the leading and following axes
-1 Table does not exist

<p>: Entry number in memory
<n>: Number (ID) of curve table
<memory
location>:

Specification of memory location (optional)
"SRAM" Static NC memory
"DRAM" Dynamic NC memory
Note:
If a value is not programmed for this parameter, the default memory location
set with MD20905 $MC_CTAB_DEFAULT_MEMORY_TYPE is used.

3.16.2.6 Read curve table values (CTABTSV, CTABTEV, CTABTSP, CTABTEP, CTABSSV,
CTABSEV, CTAB, CTABINV, CTABTMIN, CTABTMAX)

The following curve table values can be read in the part program:

● Following axis and leading axis values at the start and end of a curve table

● Following axis values at the start and end of a curve segment

● Following axis value for a leading axis value

Work preparation
3.16 Axis couplings

NC programming
858 Programming Manual, 06/2019, A5E47437142B AA

● Leading axis value for a following axis value

● Following axis minimum and maximum values

– In the entire definition range of the curve table
or

– In a defined curve table interval

Syntax
CTABTSV(<n>,<gradient>[,<following axis>])
CTABTEV(<n>,<gradient>[,<following axis>])
CTABTSP(<n>,<gradient>[,<leading axis>])
CTABTEP(<n>,<gradient>[,<leading axis>])
CTABSSV(<master value>,<n>,<gradient>[,<following axis>])
CTABSEV(<master value>,<n>,<gradient>[,<following axis>])
CTAB(<master value>,<n>,<gradient>[,<following axis>,<leading axis>]
CTABINV(<following value>,<approximate
value>,<n>,<gradient>[,<following axis>,<leading axis>]
CTABTMIN(<n>[,<following axis>])
CTABTMAX(<n>[,<following axis>])
CTABTMIN(<n>,<a>,[,<following axis>,<leading axis>])
CTABTMAX(<n>,<a>,[,<following axis>,<leading axis>])

Meaning

CTABTSV: Read following axis value at the start of curve table no. <n>
CTABTEV: Read following axis value at the end of curve table no. <n>
CTABTSP: Read leading axis value at the start of curve table no. <n>
CTABTEP: Read leading axis value at the end of curve table no. <n>
CTABSSV: Read following axis value at the start of the curve segment belonging to the

specified leading axis value (<master value>)
CTABSEV: Read following axis value at the end of the curve segment belonging to the

specified leading axis value (<master value>)
CTAB: Read following axis value for specified leading axis value (<master

value>)
CTABINV: Read leading axis value for specified following axis value (<following

value>)
CTABTMIN: Define following axis minimum value:

● In the entire definition range of the curve table
or

● In a defined interval <a> ...
CTABTMAX: Define following axis maximum value:

● In the entire definition range of the curve table
or

● In a defined interval <a> ...
<n>: Number (ID) of curve table
<gradient>: The <gradient> parameter returns the incline of the curve table function

at the calculated position.

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 859

<following axis>: Axis whose motion is to be calculated using the curve table (optional)
<leasing axis>: Axis providing the master values for the calculation of the following axis

motion (optional)
<following value>: Following axis value for reading the associated leading axis value

for CTABINV
<leading value>: Leading axis value:

● For reading the associated following axis value with CTAB
or

● For the selection of the curve segment with CTABSSV/CTABSEV
<approximate
value>:

The assignment of a leading axis value to a following axis value
with CTABINV must not always be unique. CTABINV requires, therefore, an
approximate value for the expected leading axis value as a parameter.

<a>: Lower limit of the master value interval with CTABTMIN/CTABTMAX
:

Upper limit of the master value interval with CTABTMIN/CTABTMAX
Note:
The master value interval <a> to always has to be within the curve
table's definition range.

Examples

Example 1:
Define following axis and leading axis values at the start and end of the curve table, along with
the minimum and maximum values of the following axis in the entire definition range of the
curve table.

Program code Comment
N10 DEF REAL STARTPOS
N20 DEF REAL ENDPOS
N30 DEF REAL STARTPARA
N40 DEF REAL ENDPARA
N50 DEF REAL MINVAL
N60 DEF REAL MAXVAL
N70 DEF REAL GRADIENT
...
N100 CTABDEF(Y,X,1,0) ; Start of table definition
N110 X0 Y10 ; Start position 1st table segment
N120 X30 Y40 ; End position 1st table segment =

start position 2nd table segment
N130 X60 Y5 ; End position 2nd table segment = ...
N140 X70 Y30
N150 X80 Y20
N160 CTABEND ; End of table definition.
...
N200 STARTPOS=CTABTSV(1,GRADIENT) ; Following axis value at start of curve table

= 10
N210 ENDPOS=CTABTEV(1,GRADIENT) ; Following axis value at end of curve table =

20

Work preparation
3.16 Axis couplings

NC programming
860 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N220 STARTPARA=CTABTSP(1,GRADIENT) ; Master axis value at start of curve table =

0
N230 ENDPARA=CTABTEP(1,GRADIENT) ; Master axis value at end of curve table = 80
N240 MINVAL=CTABTMIN(1) ; Minimum value of following axis with Y=5
N250 MAXVAL=CTABTMAX(1) ; Maximum value of following axis with Y=40

Example 2:
Determination of following axis values at the start and end of the curve segment associated with
leading axis value X=30.

Program code Comment
N10 DEF REAL STARTPOS
N20 DEF REAL ENDPOS
N30 DEF REAL GRADIENT
...
N100 CTABDEF(Y,X,1,0) ; Start of table definition.
N110 X0 Y0 ; Start position 1st table segment
N120 X20 Y10 ; End position 1st table segment =

start position 2nd table segment
N130 X40 Y40 ; End position 2nd table segment = ...
N140 X60 Y10
N150 X80 Y0
N160 CTABEND ; End of table definition.
...
N200 STARTPOS=CTABSSV(30.0,1,GRADIENT) ; Start position Y in 2nd segment = 10
N210 ENDPOS=CTABSEV(30.0,1,GRADIENT) ; End position Y in 2nd segment = 40

Further information

Use in synchronized actions
All commands for reading curve table values can also be used in synchronized actions (see
also the chapter titled "Motion-synchronous actions").

When using the CTABINV, CTABTMIN, and CTABTMAX commands, make sure that:

● Sufficient NC power is available at the time of execution
or

● The number of segments in the curve table is queried prior to the call, so that the table
concerned can be subdivided if necessary

CTAB with non-periodic curve tables
If the specified <master value> is outside the definition range, the upper or lower limit will be
output as the following value:

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 861

CTAB with periodic curve tables
If the specified <master value> is outside the definition range, the master value is evaluated
modulo of the definition range and the corresponding following value is output:

Approximate value for CTABINV
The CTABINV command, therefore, requires an approximate value for the expected master
value. CTABINV returns the leading value that is closest to the approximate value. The
approximate value can be, for example, the master value from the previous interpolator clock
cycle.

Work preparation
3.16 Axis couplings

NC programming
862 Programming Manual, 06/2019, A5E47437142B AA

Incline of the curve table function
The output of the incline (<gradient>) makes it possible to calculate the velocity of the
leading or following axis at the corresponding position.

Specification of the leading or following axis
The optional specification of the leading and/or following axis is important if the leading and
following axes are configured in different length units.

CTABSSV, CTABSEV
The CTABSSV and CTABSEV commands are not suitable to query programmed segments in
the following cases:

● Circles or involutes are programmed.

● Chamfer or rounding with CHF/ RND is active

● Smoothing with G643 is active

● NC block compression with COMPON/COMPCURV/COMPCAD is active

3.16.2.7 Curve tables: Check use of resources (CTABNO, CTABNOMEM, CTABFNO,
CTABSEGID, CTABSEG, CTABFSEG, CTABMSEG, CTABPOLID, CTABPOL,
CTABFPOL, CTABMPOL)

The programmer can use these commands to obtain up-to-date information about the use of
resources for curve tables, table segments, and polynomials.

Syntax
CTABNO
CTABNOMEM(<memory location>)
CTABFNO(<memory location>)
CTABSEGID(<n>,<memory location>)
CTABSEG(<memory location>,<segment type>)
CTABFSEG(<memory location>,<segment type>)
CTABMSEG(<memory location>,<segment type>)
CTABPOLID(<n>)
CTABPOL(<memory location>)
CTABFPOL(<memory location>)
CTABMPOL(<memory location>)

Meaning

CTABNO: Determine the total number of defined curve tables (in the static and the dy‐
namic NC memory)

CTABNOMEM: Determine the number of defined curve tables in the specified <memory
location>

CTABFNO: Determine the number of curve tables remaining possible in the
specified <memory location>

CTABSEGID: Determine the number of curve segments of the specified <segment type>
used by curve table number <n>

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 863

CTABSEG: Determine the number of curve segments of the specified <segment
type> used in the specified <memory location>

CTABFSEG: Determine the number of curve segments of the specified <segment
type> remaining possible in the specified <memory location>

CTABMSEG: Determine the maximum possible number of curve segments of the speci‐
fied <segment type> in the specified <memory location>

CTABPOLID: Determine the number of curve polynomials used by curve table number <n>
CTABPOL: Determine the number of curve polynomials used in the specified <memory

location>
CTABFPOL: Determine the number of curve polynomials remaining possible in the speci‐

fied <memory location>
CTABMPOL: Determine the maximum possible number of curve polynomials in the speci‐

fied <memory location>
<n>: Number (ID) of curve table
<memory
location>:

Specification of memory location (optional)
"SRAM" Static NC memory
"DRAM" Dynamic NC memory
Note:
If a value is not programmed for this parameter, the default memory location
set with MD20905 $MC_CTAB_DEFAULT_MEMORY_TYPE is used.

<segment type>: Specification of segment type (optional)
"L" Linear segments
"P" Polynomial segments
Note:
If no value is programmed for this parameter, the sum of the linear and poly‐
nomial segments is output.

3.16.3 Axial master value coupling (LEADON, LEADOF)

Note

This function is not available for SINUMERIK 828D!

With the axial master value coupling, a leading and a following axis are moved in synchronism.
It is possible to assign the position of the following axis via a curve table or the resulting
polynomial uniquely to a position of the leading axis – simulated if necessary.

Work preparation
3.16 Axis couplings

NC programming
864 Programming Manual, 06/2019, A5E47437142B AA

The leading axis is the axis which supplies the input values for the curve table. The following
axis is the axis, which takes the positions calculated by means of the curve table.

Actual value and setpoint coupling
The following can be used as the master value, i.e. as the output values for position calculation
of the following axis:

● Actual values of the leading axis position: Actual value coupling

● Setpoints of the leading axis position: Setpoint value coupling

The master value coupling always applies in the basic coordinate system.

For information on the creation of curve tables, see Section "Curve tables".

Syntax
LEADON(<following axis>,<leading axis>,<n>)
LEADOF(<following axis>,<leading axis>)
or deactivation without specifying the leading axis:
LEADOF(<following axis>)
The master value coupling can be activated/deactivated both from the part program and also
during motion from synchronized actions.

Meaning

LEADON: Activate master value coupling
LEADOF: Deactivate master value coupling
<following axis>: Following axis
<leasing axis>: Leading axis

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 865

<n>: Curve table number
$SA_LEAD_TYPE: Switching between setpoint and actual value coupling

Deactivate master value coupling, LEADOF
When you deactivate the master value coupling, the following axis becomes a normal
command axis again!

Axial master value coupling and different operating states, RESET
Depending on the setting in the machine data, the master value couplings are deactivated with
RESET.

Example of master value coupling from synchronous action
In a pressing plant, an ordinary mechanical coupling between a leading axis (stanchion shaft)
and axis of a transfer system comprising transfer axes and auxiliary axes is to be replaced by
an electronic coupling system.

It demonstrates how a mechanical transfer system is replaced by an electronic transfer system.
The coupling and decoupling processes are implemented as static synchronized actions.

From the leading axis LV (stanchion shaft), transfer axes and auxiliary axes are controlled as
following axes that are defined via curve tables.

Following axes
X feed or longitudinal axis
YL closing or transverse axis
ZL lifting axis
U roll feed, auxiliary axis
V guide head, auxiliary axis
W greasing, auxiliary axis

Actions
The actions that occur include, for example, the following synchronized actions:

● Activate coupling, LEADON(<following axis>,<leading axis>,<curve table
number>)

● Deactivate coupling, LEADOF(<following axis>,<leading axis>)
● Set actual value, PRESETON(<axis>,<value>)
● Set marker, $AC_MARKER[i]=<value>
● Coupling type: real/virtual master value

● Approaching axis positions, POS[<axis>]=<value>
Conditions

Work preparation
3.16 Axis couplings

NC programming
866 Programming Manual, 06/2019, A5E47437142B AA

Fast digital inputs, real-time variables $AC_MARKER and position comparisons are linked using
the Boolean operator AND for evaluation as conditions.

Note

In the following example, line change, indentation and bold type are used for the sole purpose
of improving readability of the program. For the control, everything that follows a line number
constitutes a single line.

Comment

Program code Comment
 ; Defines all static synchronized actions.
 ; ****Reset marker
N2 $AC_MARKER[0]=0 $AC_MARKER[1]=0 $AC_MARKER[2]=0 $AC_MARKER[3]=0 $AC_MARKER[4]=0 $AC_MARKER[5]=0
$AC_MARKER[6]=0 $AC_MARKER[7]=0
 ; **** E1 0=>1 transfer ON
N10 IDS=1 EVERY ($A_IN[1]==1) AND ($A_IN[16]==1) AND ($AC_MARKER[0]==0)
DO LEADON(X,LW,1) LEADON(YL,LW,2) LEADON(ZL,LW,3) $AC_MARKER[0]=1
 ;**** E1 0=>1 coupling roller feed ON
N20 IDS=11 EVERY ($A_IN[1]==1) AND ($A_IN[5]==0) AND ($AC_MARKER[5]==0)
DO LEADON(U,LW,4) PRESETON(U,0) $AC_MARKER[5]=1
 ; **** E1 0->1 coupling alignment head ON
N21 IDS=12 EVERY ($A_IN[1]==1) AND ($A_IN[5]==0) AND ($AC_MARKER[6]==0)
DO LEADON(V,LW,4) PRESETON(V,0) $AC_MARKER[6]=1
 ; **** E1 0->1 lubrication coupling ON
N22 IDS=13 EVERY ($A_IN[1]==1) AND ($A_IN[5]==0) AND ($AC_MARKER[7]==0)
DO LEADON(W,LW,4) PRESETON(W,0) $AC_MARKER[7]=1
 ; **** E2 0=>1 coupling OFF
N30 IDS=3 EVERY ($A_IN[2]==1)
DO LEADOF(X,LW) LEADOF(YL,LW) LEADOF(ZL,LW) LEADOF(U,LW) LEADOF(V,LW) LEADOF(W,LW) $AC_MARKER[0]=0
$AC_MARKER[1]=0 $AC_MARKER[3]=0 $AC_MARKER[4]=0 $AC_MARKER[5]=0 $AC_MARKER[6]=0 $AC_MARKER[7]=0
....
N110 G04 F01
N120 M30

Description
Master value coupling requires synchronization of the leading and the following axes. This
synchronization can only be achieved if the following axis is inside the tolerance range of the
curve definition calculated from the curve table when the master value coupling is activated.

The tolerance range for the position of the following axis is defined via machine data MD
37200: COUPLE_POS_POL_COARSE A_LEAD_TYPE.

If the following axis is not yet at the correct position when the master value coupling is activated,
the synchronization run is automatically initiated as soon as the position setpoint value
calculated for the following axis is approximately the real following axis position. During the
synchronization procedure the following axis is traversed in the direction that is defined by the

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 867

setpoint speed of the following axis (calculated from master spindle and using the CTAB curve
table).

No synchronism
If the following axis position calculated moves away from the current following axis position
when the master value coupling is activated, it is not possible to establish synchronization.

Actual value and setpoint coupling
Setpoint coupling provides better synchronization of the leading and following axis than actual
value coupling and is therefore set by default.

Setpoint coupling is only possible if the leading and following axis are interpolated by the same
NCU. With an external leading axis, the following axis can only be coupled to the leading axis
via the actual values.

Work preparation
3.16 Axis couplings

NC programming
868 Programming Manual, 06/2019, A5E47437142B AA

A switchover can be programmed via setting data $SA_LEAD_TYPE.

You must always switch between the actual-value and setpoint coupling when the following
axis stops. It is only possible to resynchronize after switchover when the axis is motionless.

Application example
You cannot read the actual values without error during large machine vibrations. If you use
master value coupling in press transfer, it might be necessary to switchover from actual-value
coupling to setpoint coupling in the work steps with the greatest vibrations.

Master value simulation with setpoint coupling

Via machine data, you can disconnect the interpolator for the leading axis from the servo. In this
way you can generate setpoints for setpoint coupling without actually moving the leading axis.

Master values generated from a setpoint link can be read from the following variables so that
they can be used, for example, in synchronized actions:

- $AA_LEAD_P Master value position
- $AA_LEAD_V Master value velocity

Create master value
As an option, master values can be generated with other self-programmed methods. The
master values generated in this way are written to and read from variables

- $AA_LEAD_SP Master value position
- $AA_LEAD_SV Master value velocity

 Before you use these variables, the setting data $SA_LEAD_TYPE = 2 must be set.

Status of coupling
You can query the status of the coupling in the NC program with the following system variable:

$AA_COUP_ACT[[axis]]
0: No coupling active
16: Master value coupling active

Status management for synchronized actions
Switching and coupling events are managed via real-time variables:

$AC_MARKER[i] = n
managed with:

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 869

i flag number
n status value

3.16.4 Electronic gear (EG)

The "Electronic gear" function allows you to control the movement of a following axis according
to linear traversing block as a function of up to five leading axes. The relationship between each
leading axis and the following axis is defined by the coupling factor.

The following axis motion part is calculated by an addition of the individual leading axis motion
parts multiplied by their respective coupling factors. When an EG axis grouping is activated, it
is possible to synchronize the following axes in relation to a defined position. A gear group can
be:

● Defined

● Activated

● Deactivated

● Deleted

.

The following axis movement can be optionally derived from

● Setpoints of the leading axes, as well as

● Actual values of leading axes.

Non-linear relationships between each leading axis and the following axis can also be realized
as extension using curve tables (see "Path traversing behavior" section). Electronic gears can
be cascaded, i.e., the following axis of an electronic gear can be the leading axis for a further
electronic gear.

3.16.4.1 Defining an electronic gear (EGDEF)
An EG axis group is defined by specifying the following axis and at least one, however not more
than five, leading axis, each with the relevant coupling type.

Requirement
Requirements for defining an EG axis group:

It is not permissible to define an axis coupling for the following axis (or an existing one must first
be deleted with EGDEL).

Syntax
EGDEF(following axis,leading axis1,coupling type1,leading
axis2,coupling type2,...)

Work preparation
3.16 Axis couplings

NC programming
870 Programming Manual, 06/2019, A5E47437142B AA

Meaning

EGDEF: Definition of an electronic gear
Following axis: Axis that is influenced by the leading axes
Leading axis1
,...,
Leading axis5

Axes that influence the following axis

Coupling type1
,...,
Coupling type5

Coupling type
The coupling type does not need to be the same for all leading axes and
must be programmed separately for each individual master.
Value: Meaning:
0 The following axis is influenced by the actual value of the

corresponding leading axis.
1 The following axis is influenced by the setpoint of the corre‐

sponding leading axis.

Note

The coupling factors are preset to zero when the EG axis grouping is defined.

Note

EGDEF triggers preprocessing stop. The gearbox definition with EGDEF should also be used
unaltered if, for systems, one or more leading axes affect the following axis via a curve table.

Example

Program code Comment
EGDEF(C,B,1,Z,1,Y,1) ; Definition of an EG axis group. Leading axes B, Z, Y

influence the following axis C via the setpoint.

3.16.4.2 Switch-in the electronic gearbox (EGON, EGONSYN, EGONSYNE)
There are 3 ways to switch-in an EG axis group.

Syntax

Variant 1:
The EG axis group is selectively switched-in without synchronization with:
EGON(FA,"block change mode",LA1,Z1,N1,LA2,Z2,N2,...,LA5,Z5,N5)

Variant 2:
The EG axis group is selectively activated with synchronization with:
EGONSYN(FA,"block change mode",SynPosFA,[,LAi,SynPosLAi,Zi,Ni])

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 871

Variant 3:
The EG axis group is selectively switched-in with synchronization and the approach mode
specified with:
EGONSYNE(FA,"block change mode",SynPosFA,approach
mode[,LAi,SynPosLAi,Zi,Ni])

Meaning

Variant 1:

FA Following axis
Block change mode: The following modes can be used:

"NOC" Block change takes place immediately
"FINE" Block change is performed in "Fine synchronism"
"COARSE" Block change is performed in "Coarse synchron‐

ism"
"IPOSTOP" Block change is performed for setpoint-based

synchronism
LA1, ... LA5 Leading axes
Z1, ... Z5 Numerator for coupling factor i
N1, ... N5 Denominator for coupling factor i

Coupling factor i = numerator i/denominator i

Only the leading axes previously specified with the EGDEF command may be programmed in
the activation line. At least one leading axis must be programmed.

Variant 2:

FA Following axis
Block change mode: The following modes can be used:

"NOC" Block change takes place immediately
"FINE" Block change is performed in "Fine synchron‐

ism"
"COARSE" Block change is performed in "Coarse synchron‐

ism"
"IPOSTOP" Block change is performed for setpoint-based

synchronism
[,LAi,SynPosLAi,Zi,Ni] (do not write the square brackets)

Min. 1, max. 5 sequences of:
LA1, ... LA5 Leading axes
SynPosLAi Synchronized position for i-th leading axis
Z1, ... Z5 Numerator for coupling factor i
N1, ... N5 Denominator for coupling factor i

Coupling factor i = numerator i/denominator i

Only leading axes previously specified with the EGDEF command may be programmed in the
activation line. Through the programmed "Synchronized positions" for the following axis
(SynPosFA) and for the leading axes (SynPosLA), positions are defined for which the axis

Work preparation
3.16 Axis couplings

NC programming
872 Programming Manual, 06/2019, A5E47437142B AA

grouping is interpreted as synchronous. If the electronic gear is not in the synchronized state
when the grouping is switched on, the following axis traverses to its defined synchronized
position.

Variant 3:
The parameters correspond to those of variant 2 plus:

Approach mode: The following modes can be used:
"NTGT" Approach next tooth gap time-optimized
"NTGP" Approach next tooth gap path-optimized
"ACN" Traverse rotary axis in negative direction absolute
"ACP" Traverse rotary axis in positive direction absolute
"DCT" Time-optimized for programmed synchronous position
"DCP" Distance-optimized to the programmed synchronous position

Variant 3 only affects modulo following axes that are coupled to modulo leading axes. Time
optimization takes account of velocity limits of the following axis.

Further information

Description of the switch-in versions
Variant 1:

The positions of the leading axes and following axis at the instant the grouping is switched on
are stored as "Synchronized positions". The "Synchronized positions" can be read with the
system variable $AA_EG_SYN.

Variant 2:

If modulo axes are contained in the coupling group, their position values are modulo-reduced.
This ensures that the next possible synchronized position is approached (so-called relative
synchronization: e.g. the next tooth gap). The synchronized position is only approached if
"Enable following axis override" interface signal DB(30 + axis number), DBX 26 bit 4 is issued
for the following axis. Instead, the program stops at the EGONSYN block and self-clearing
alarm 16771 is output until the above mentioned signal is set.

Variant 3:

The tooth distance (deg.) is calculated like this: 360 * Zi/Ni. If the following axis is stopped at the
time of calling, path optimization returns responds identically to time optimization.

If the following axis is already in motion, NTGP will synchronize at the next tooth gap
irrespective of the current velocity of the following axis. If the following axis is already in motion,
NTGT will synchronize at the next tooth gap depending on the current velocity of the following
axis. The axis is also decelerated, if necessary.

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 873

Curve tables
If a curve table is used for one of the leading axes:

Ni The denominator of the coupling factor for linear coupling must be set to 0. (De‐
nominator 0 would be illegal for linear couplings.) Denominator zero tells the control
that

Zi is the number of the curve table to use. The curve table with the specified number
must already be defined at POWER ON.

LAi The leading axis specified corresponds to the one specified for coupling via coupling
factor (linear coupling).

For more information about using curve tables and cascading and synchronizing electronic
gears, please refer to:
References:
Function Manual Special Functions; Coupled Axes and ESR (M3), "Coupled Motion and
Leading Value Coupling".

Response of the electronic gear for power on, RESET, operating mode change, block search
● No coupling is active after POWER ON.

● The status of active couplings is not affected by RESET or operating mode switchover.

● During block searches, commands for switching, deleting and defining the electronic gear
are not executed or collected, but skipped.

System variables of the electronic gear
By means of the electronic gear's system variables, the part program can determine the current
states of an EG axis grouping and react to them if required.

The system variables of the electronic gearbox are designated as follows:

$AA_EG_ ...

or

$VA_EG_ ...

References:
System Variables Manual

3.16.4.3 Switching-in the electronic gearbox (EGOFS, EGOFC)
There are 3 different ways to switch-out an active EG axis group.

Programming

Variant 1:

Syntax Meaning
EGOFS(following axis) The electronic gear is deactivated. The following axis is braked to a

standstill. This call triggers a preprocessing stop.

Work preparation
3.16 Axis couplings

NC programming
874 Programming Manual, 06/2019, A5E47437142B AA

Variant 2:

Syntax Meaning
EGOFS(following axis,leading axis1,
…,leading axis5)

This command parameter setting made it
possible to selectively remove the influence
of the individual leading axes on the following
axis' motion.

At least one leading axis must be specified. The influence of the specified leading axes on the
slave is selectively inhibited. This call triggers a preprocessing stop. If the call still includes
active leading axes, then the slave continues to operate under their influence. If the influence
of all leading axes is excluded by this method, then the following axis is braked to a standstill.

Variant 3:

Syntax Meaning
EGOFC(following
spindle1)

The electronic gear is deactivated. The following spindle continues
to traverse at the speed/velocity that applied at the instant of deac‐
tivation. This call triggers a preprocessing stop.

Note

This variant is only permitted for spindles.

3.16.4.4 Deleting the definition of an electronic gear (EGDEL)
An EG axis group must be switched-out before its definition can be deleted.

Programming

Syntax Meaning
EGDEL(following axis) The coupling definition of the axis group is deleted. Additional axis

groups can be defined by means of EGDEF until the maximum number
of simultaneously activated axis groups is reached. This call triggers a
preprocessing stop.

3.16.4.5 Rotational feedrate (G95) / electronic gear (FPR)
The FPR command can be used to specify the following axis of an electronic gear as the axis,
which determines the revolutional feedrate. Please note the following with respect to this
command:

● The feedrate is determined by the setpoint velocity of the following axis of the electronic
gear.

● The setpoint velocity is calculated from the speeds of the leading spindles and modulo axes
(which are not path axes) and from their associated coupling factors.

● Speed parts of linear or non-modulo leading axes and overlaid movement of the following
axis are not taken into account.

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 875

3.16.5 Synchronous spindle

Synchronous operation involves a following spindle (FS) and a leading spindle (LS), referred to
as the synchronous spindle pair. The following spindle imitates the movements of the leading
spindle when a coupling is active (synchronous operation) in accordance with the defined
functional interrelationship.

The synchronous spindle pairs for each machine can be assigned a fixed configuration by
means of channel-specific machine data or defined for specific applications via the CNC part
program. Up to two synchronized spindle pairs can be operated simultaneously on each NC
channel.

Refer to the part program for the following coupling actions

● Defined or changed

● Activated

● Deactivated

● Deleted

.

In addition, depending on the software status

● It is possible to wait for the synchronism conditions

● The block change method can be changed

● Either the setpoint coupling or actual value coupling type is selected or the angular offset
between master and following spindle specified

● When activating the coupling, previous programming of the following axis is transferred

● Either a measured or a known synchronism variance is corrected

3.16.5.1 Synchronous spindle: Programming (COUPDEF, COUPDEL, COUPON, COUPONC,
COUPOF, COUPOFS, COUPRES, WAITC)

The "Synchronous spindle" enables the speed-synchronous traversing of the following spindle
(FS) and leading spindle (LS) with a programmable transformation ratio.

The function supports the following modes:

● Speed synchronism (nFS = n LS)

● Position synchronism (ϕFS = ϕLS)

● Position synchronism with angular offset (ϕFS = ϕLS+ ∆ϕ)

Work preparation
3.16 Axis couplings

NC programming
876 Programming Manual, 06/2019, A5E47437142B AA

Application examples:

● Flying workpiece transfer, e.g. to machine the rear side, transformation ratio: 1:1

① Synchronize the speed
② Transfer the workpiece
③ Machine the rear side

● Multi-edge machining (polygonal turning), speed synchronism, transformation ratio: n1:n2

Syntax
COUPDEF(<FS>,<LS>,<ZFS>,<NLS>,<block change>,<coupling type>)
COUPON(<FS>,<LS>,<POSFS>)
COUPONC(<FS>,<LS>)
COUPOF(<FS>,<LS>,<POSFS>,<POSLS>)
COUPOFS(<FS>,<LS>)
COUPOFS(<FS>,<LS>,<POSFS>)
COUPRES(<FS>,<LS>)
COUPDEL(<FS>,<LS>)
WAITC(<FS>,<block change>,<LS>,<block change>)

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 877

Note
Abbreviated notation

A shorter notation without specification of the leading spindle is possible for the COUPOF,
COUPOFS, COUPRES and COUPDEL statements.

Meaning

COUPDEF: Define/change coupling on user-specific basis
COUPON: Activate coupling. The following spindle synchronizes to the leading spindle

based on the actual speed
COUPONC: Coupling when activating with previous programming of M3 S...

or M4 S....
A difference in speed for the following spindle is transferred immediately.

COUPOF: Deactivate coupling.
● with immediate block change:

COUPOF(<S2>,<S1>)
● Block change only after <POSFS> or <POSLS> deactivation position(s) has

(have) been crossed:
COUPOF(<S2>,<S1>,<POSFS>)
COUPOF(<S2>,<S1>,<POSFS>,<POSLS>)

COUPOFS: Deactivating a coupling with stop of following spindle.
Block change as quickly as possible with immediate block change:
COUPOFS(<S2>,<S1>)
Block change only after passing the switch-off position:
COUPOFS(<S2>,<S1>,<POSFS>)

COUPRES: Reset coupling parameters to configured MD and SD
COUPDEL: Delete user-defined coupling
WAITC: Wait for synchronized run condition

(NOC are increased to IPO during block changes)
<FS>: Designation of following spindle

Optional parameters:
<LS>: Designation of main spindle

Specification with spindle number: e.g. S2, S1
<ZFS>, <NLS>: Transformation ratio between FS and LS.

<ZFS>/<NLS> = numerator/denominator
Default setting: <ZFS> / <NLS> = 1.0 ; specification of denominator optional

Work preparation
3.16 Axis couplings

NC programming
878 Programming Manual, 06/2019, A5E47437142B AA

<block change>: Block change behavior
The block change is:
"NOC" Immediately
"FINE" On reaching "Synchronism fine"
"COARSE" On reaching "Synchronism coarse"
"IPOSTOP" On reaching IPOSTOP; in other words, after setpoint-

based synchronism (default)
The block change behavior is effective modally.

<coupling type>: Coupling type: Coupling between FS and LS
"DV" Setpoint linkage (default)
"AV" Actual value coupling
"VV" Speed coupling
The coupling type is modal.

<POSFS>: Angle offset between leading and following spindles
Range of val‐
ues:

0°… 359.999°

<POSFS>,<POSLS>: Switch-off positions of the following and leading spindles
"The block change is enabled once POSFS, POSLS has been passed"
Range of val‐
ues:

0°… 359.999°

Examples

Working with leading and following spindles

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N05 M3 S3000 M2=4 S2=500 Leading spindle rotates at 3000 rpm,

following spindle at 500 rpm.
N10 COUPDEF(S2,S1,1,1,"NOC","Dv") Definition of the coupling (can also be config-

ured).
...
N70 SPCON Bring leading spindle into closed-loop position

control (setpoint coupling).
N75 SPCON(2) Bring following spindle into closed-loop posi-

tion control.
N80 COUPON(S2,S1,45) On-the-fly coupling to offset position = 45 de-

grees.
...
N200 FA[S2]=100 Positioning speed = 100 degrees/min
N205 SPOS[2]=IC(-90) Traverse with 90 degrees overlay in negative di-

rection.
N210 WAITC(S2,"Fine") Wait for "fine" synchronism.
N212 G1 X... Y... F... Machining
...

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 879

Program code Comment
N215 SPOS[2]=IC(180) Traverse with 180 degrees overlay in the posi-

tive direction.
N220 G4 S50 Dwell time = 50 revolutions of the master spindle
N225 FA[S2]=0 Activate configured velocity (MD).
N230 SPOS[2]=IC(-7200) 20 revolutions. Move with configured velocity in

the negative direction.
...
N350 COUPOF(S2,S1) Couple-out on-the-fly, S=S2=3000
N355 SPOSA[2]=0 Stop FS at zero degrees.
N360 G0 X0 Y0
N365 WAITS(2) Wait for spindle 2.
N370 M5 Stop FS.
N375 M30

Programming a difference in speed

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N01 M3 S500 Leading spindle rotates at 500 rpm.
N02 M2=3 S2=300 Following spindle rotates at 300 rpm.
...
N10 G4 F1 Dwell time of master spindle.
N15 COUPDEF (S2,S1,-1) Coupling factor with ratio -1:1
N20 COUPON(S2,S1) Activate coupling. The speed of the following

spindle results from the speed of the leading
spindle and coupling factor.

...
N26 M2=3 S2=100 Programming a difference in speed.

Examples of transfer of a movement for difference in speed
1. Activate coupling during previous programming of following spindle with COUPON

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N05 M3 S100 M2=3 S2=200 Leading spindle rotates at 100 rpm, following

spindle at 200 rpm.
N10 G4 F5 Dwell time = 5 seconds of master spindle
N15 COUPDEF(S2,S1,1) Transformation ratio of FS to LS is 1.0 (de-

fault).
N20 COUPON(S2,S1) On-the-fly coupling to the leading spindle.
N10 G4 F5 Following spindle rotates at 100 rpm.

Work preparation
3.16 Axis couplings

NC programming
880 Programming Manual, 06/2019, A5E47437142B AA

2. Activate coupling during previous programming of following spindle with COUPONC

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N05 M3 S100 M2=3 S2=200 Leading spindle rotates at 100 rpm, following

spindle at 200 rpm.
N10 G4 F5 Dwell time = 5 seconds of master spindle
N15 COUPDEF(S2,S1,1) Transformation ratio of FS to LS is 1.0 (de-

fault).
N20 COUPONC(S2,S1) On-the-fly coupling to leading spindle and trans-

fer previous speed to S2.
N10 G4 F5 S2 rotates at 100 rpm + 200 rpm = 300 rpm

3. Activate coupling with following spindle stationary with COUPON

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N05 SPOS=10 SPOS[2]=20 Following spindle S2 in positioning mode.
N15 COUPDEF(S2,S1,1) Transformation ratio of FS to LS is 1.0 (de-

fault).
N20 COUPON(S2,S1) On-the-fly coupling to the leading spindle.
N10 G4 F1 Coupling is closed, S2 stops at 20 degrees.

4. Activate coupling with following spindle stationary with COUPONC

Note
Positioning or axis mode

If the following spindle is in positioning or axis mode before coupling, then the following spindle
behaves the same for COUPON(<FS>,<LS>) and COUPONC(<FS>,<LS>).

Note
Leading spindle and axis operation

If, prior to the coupling being defined, the leading spindle is in axis operation, the velocity limit
value from machine data

MD32000 $MA_MAX_AX_VELO (maximum axis velocity) will still apply even after the coupling
is activated.

To avoid this behavior, the axis must be switched to spindle mode (M3 S... or M4 S...) prior
to the coupling being defined.

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 881

Further information

Configured coupling
For the configured coupling, the LS and FS are defined via machine data. The configured
spindles cannot be changed in the part program. The coupling can be parameterized in the part
program using COUPDEF (on condition that no write protection is valid).

User-defined coupling
COUPDEF can be used to redefine or change a coupling in the part program. If a coupling is
already active, it has to be deleted first with COUPDEL before a new coupling is defined.

A coupling is defined in its entirety by:

COUPDEF(<FS>,<LS>,<TFS>,<TLS>, block change behavior, coupling type)

Following spindle (FS) and leading spindle (LS)
The coupling is uniquely defined using the axis names for the FS and LS. The axis names have
to be programmed with every COUPDEF statement. The other coupling parameters are modal
and only have to be programmed if they change.

Example:

COUPDEF(S2,S1)

Transformation ratio
The transformation ratio is defined as the speed ratio between FS and LS:

Following spindle / leading spindle = numerator/denominator

The numerator must be programmed. The denominator must not be programmed. The default
value 1.0 is then set for the denominator.

Example:

Following spindle S2 and leading spindle S1, transformation ratio = 1/1

COUPDEF(S2, S1, 1.0)

Work preparation
3.16 Axis couplings

NC programming
882 Programming Manual, 06/2019, A5E47437142B AA

Note

The transformation ratio can also be changed on-the-fly (when the coupling is active and the
spindles are rotating).

Block change behavior NOC, FINE, COARSE, IPOSTOP
The following abbreviated notation can be used when programming the block change behavior:

● "NO": Immediately (default)

● "FI": On reaching "Synchronism fine"

● "CO": On reaching "Synchronism coarse"

● "IP": On reaching IPOSTOP; i.e. after setpoint-based synchronism

Type of coupling

Note

The coupling type may only be changed when the coupling is deactivated.

Activate synchronous mode COUPON, <POSFS>
● Activation of coupling with any angular offset between LS and FS:

– COUPON(S2,S1)
– COUPON(S2)

● Activation of coupling with angular offset <POSFS>
<POSFS> refers to the 0° position of the leading spindle in the positive direction of
rotation <POSFS> value range: 0°… 359,999°

– COUPON(S2,S1,30)

Note

The angular offset can also be changed when the coupling is active.

Position the following spindle
Even with activated synchronous spindle coupling, the FS can be positioned in the range ±180°
independently of the LS.

● Spindle positioning of the FS with SPOS
Example: SPOS[2]=IC(-90)
Further information on SPOS can be found in:
References:
Programming Manual, Fundamentals

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 883

Differential speed
A speed difference results in speed control mode and active synchronous spindle coupling
through signed overlay of an FS speed because of LS movement and an FS speed because of
spindle programming:

● Synchronous spindle coupling with COUPONC
● S<FS>=<speed> [M<FS>=<direction of rotation>]

Note

Supplementary conditions
● Speed S... must also be reprogrammed with direction of rotation M3/M4.
● Overlay of a spindle speed (M<direction of rotation> S<FS>) through the LS

movement with synchronous spindle coupling COUPONC only becomes effective if the
overlay has been enabled.

● The dynamic responses of the leading spindle have to be restricted to such an extent that
when overlaying is applied to the following spindle, its dynamics limit values are not
exceeded.

For more information about the speed difference, see:
References:
Function Manual, Extended Functions; Synchronous Spindle (S3)

Velocity, acceleration: FA, ACC, OVRA, VELOLIMA
Axial velocity and acceleration of a following spindle can be programmed with:

● FA[SPI(S<n>)] or FA[S<n>] (axial velocity)

● ACC[SPI(S<n>)] or ACC[S<n>] (axial acceleration)

● OVRA[SPI(S<n>)] and OVRA[S<n>] (axial override)

● VELOLIMA[SPI(S<n>)] and VELOLIMA[S<n>] (increase and reduction of axial velocity
respectively)

When <n> = 1, 2, 3, ... (spindle numbers of the following spindles)

References:
Programming Manual, Fundamentals

Note

A reduction or increase of the maximum axial jerk has no effect with spindles.

Further information about the axial dynamic response is provided in:
References:
Function Manual, Extended Functions; Rotary Axes (R2)

Programmable block change behavior WAITC
WAITC can be used to define block change behavior, for example after a change to coupling
parameters or positioning actions, with a variety of synchronism conditions (coarse, fine,
IPOSTOP). If no synchronism conditions are specified, the block change behavior specified in
the COUPDEF definition will apply.

Work preparation
3.16 Axis couplings

NC programming
884 Programming Manual, 06/2019, A5E47437142B AA

Examples

● Wait for synchronism condition FINE to be fulfilled for following spindle S2 and COARSE to
be fulfilled for following spindle S4: WAITC(S2,"FINE",S4,"COARSE")

● Wait for synchronism condition according to COUPDEF to be fulfilled: WAITC()

Deactivate coupling COUPOF
COUPOF can be used to define the turn-off behavior of the coupling:

● Deactivation of coupling with immediate block change:

– COUPOF(S2,S1) (with specification of leading spindle)

– COUPOF(S2) (without specification of leading spindle)

● Deactivation of coupling after switch-off positions have been crossed. The block change
takes place after the switch-off positions have been crossed.

– COUPOF(S2,S1,150) (switch-off position FS: 150°)

– COUPOF(S2,S1,150,30) (switch-off position FS: 150°, LS: 30°)

Deactivate coupling with following spindle stop COUPOFS
COUPOFS can be used to define the turn-off behavior of the coupling with following spindle stop:

● Deactivation of coupling with following spindle stop and immediate block change:

– COUPOFS(S2,S1) (with specification of leading spindle)

– COUPOFS(S2) (without specification of leading spindle)

● Deactivation of coupling after switch-off positions have been crossed with following spindle
stop. The block change takes place after the switch-off positions have been crossed.

– COUPOFS(S2,S1,150) (switch-off position FS: 150°)

Delete couplings COUPDEL
COUPDEL deletes the coupling:

● COUPDEL(S2,S1) (with specification of leading spindle)

● COUPDEL(S2) (without specification of leading spindle)

Reset coupling parameters, COUPRES
COUPRES activates the coupling values parameterized in the machine and setting data:

● COUPRES(S2,S1) (with specification of leading spindle)

● COUPRES(S2) (without specification of leading spindle)

System variables
● Current coupling status of following spindle

The current coupling status of a following spindle can be read bit-coded via:
<value> = $AA_COUP_ACT[<FS>]

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 885

Bit <value> Meaning
- 0 No coupling active
2 4 Synchronous spindle coupling active

Note
● All other values refer to axis mode
● If the spindle is a following spindle or several couplings, then the value of the coupling state of all

couplings is returned as a total state.

● Current angular offset
The current angular offset of the following spindle to the leading spindle can be read via:

– $AA_COUP_OFFS[<FS>] (angular offset on the setpoint side)

– $VA_COUP_OFFS[<FS>] (angular offset on the actual value side)

Application example
Correction of the angular offset difference in the NC program after cancelling the follow-up
mode:
Angular offset difference = programmed angular offset - system variable

References
Detailed information on the system variables can be found in:

List Manual, System Variables

3.16.6 Generic coupling (CP...)
"Generic Coupling" is a general coupling function, combining all coupling characteristics of
existing coupling types (coupled motion, master value coupling, electronic gearbox and
synchronous spindle).

The function allows flexible programming:

● Users can select the coupling properties required for their applications (building block
principle).

● Each coupling property can be programmed individually.

● The coupling properties of a defined coupling (e.g. coupling factor) can be changed.

● Later use of additional coupling properties is possible.

● The coordinate reference system of the following axis (base coordinate system or machine
coordinate system) is programmable.

● Certain coupling properties can also be programmed with synchronous actions.
References: Function Manual, Synchronized Actions

Work preparation
3.16 Axis couplings

NC programming
886 Programming Manual, 06/2019, A5E47437142B AA

Note

Previous coupling calls for coupled motion (TRAIL*), Master value coupling (LEAD*), Electronic
Gearbox (EG*) and Synchronous spindle (COUP*) are supported via adaptive cycles.

Overview of all keywords and coupling characteristics
The following table gives an overview of all keywords of the generic coupling and the
programmable coupling characteristics:

Keyword Coupling characteristics / mean‐
ing

Syntax

CPDEF Creation of a coupling module CPDEF=(<FAx>)
CPDEL Deletion of a coupling module CPDEL=(<FAx>)
CPLA Definition of a leading axis CPLA[<FAx>]=(<LAx>)
CPLDEF Definition of a leading axis and

creation of a coupling module
(also possible with CPDEF
+ CPLA)

CPLDEF[<FAx>]=(<LAx>)
or
CPDEF=(<FAx>) CPLA[<FAx>]=(<LAx>)

CPLDEL Deletion of a leading axis of a
coupling module
(also possible with CPDEF
+ CPLA)

CPLDEL[<FAx>]=(<LAx>)
or
CPDEL=(<FAx>) CPLA[<FAx>]=(<LAx>)

CPON Switching on a coupling module CPON=(<FAx>)
CPOF Switching off a coupling module CPOF=(<FAx>)
CPLON Switching on a leading axis of a

coupling module
CPLON[<FAx>]=<LAx>

CPLOF Switching off a leading axis of a
coupling module

CPLOF[<FAx>]=<LAx>

CPLNUM Numerator of the coupling factor CPLNUM[FAx,LAx]=<value>
CPLDEN Denominator of the coupling

factor
CPLDEN[FAx,LAx]=<value>

CPLCTID Number of the curve table CPLCTID[FAx,LAx]=<value>

CPLSETVAL Coupling reference CPLSETVAL[FAx,LAx]="<coupling reference>"

"<coupling
reference>":

"CMDPOS" Setpoint value coupling
"CMDVEL" Speed coupling
"ACTPOS" Actual value coupling

CPFRS Coordinate reference system CPFRS[FAx]="<coordinate reference>"
"<coordinate
reference>":

"BCS" Basic Coordinate System
"MCS" Machine Coordinate Sys‐

tem

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 887

Keyword Coupling characteristics / mean‐
ing

Syntax

CPBC Block change criterion CPBC[FAx]="<block change criterion>"
"<block change
criterion>":

"NOC" Block change is performed
irrespective of the coupling
status.

"IPOSTOP" Block change is performed
with setpoint synchronism.

"COARSE" Block change is performed
with actual value synchron‐
ism “coarse”.

"FINE" Block change is performed
with actual value synchron‐
ism "fine".

CPFPOS + CPON Synchronized position of the fol‐

lowing axis when switching on
CPON=FAx CPFPOS[FAx]=<value>

CPLPOS + CPON Synchronized position of the
leading axis when switching on

CPLPOS[FAx,LAx]=<value>

Work preparation
3.16 Axis couplings

NC programming
888 Programming Manual, 06/2019, A5E47437142B AA

Keyword Coupling characteristics / mean‐
ing

Syntax

CPFMSON Synchronization mode CPFMSON[FAx]="<synchronization mode>"
"<synchronization
mode>":

"CFAST" The coupling is closed time-
optimized.

"CCOARSE" The coupling is only closed
when the following axis po‐
sition, required according
to the coupling rule, is in the
range of the current follow‐
ing axis position.

"NTGT" The next tooth gap is ap‐
proached time-optimized.

"NTGP" The next tooth gap is ap‐
proached path-optimized.

"NRGT" The next segment is ap‐
proached in a time-opti‐
mized manner, in accord‐
ance with the ratio of the
number of gears to the
number of teeth.

"NRGP" The next segment is ap‐
proached in a path-opti‐
mized manner, in accord‐
ance with the ratio of the
number of gears to the
number of teeth.

"ACN" For rotary axes only!
The rotary axis traverses to
the synchronized position
in the negative axis direc‐
tion. Synchronization is re‐
alized immediately.

"ACP" For rotary axes only!
The rotary axis traverses to
the synchronized position
in the positive axis direc‐
tion. Synchronization is re‐
alized immediately.

"DCT" For rotary axes only!
The rotary axis traverses to
the programmed synchron‐
ized position time-opti‐
mized. Synchronization is
realized immediately.

"DCP" For rotary axes only!
The rotary axis traverses to
the programmed synchron‐
ized position path-opti‐
mized. Synchronization is
realized immediately.

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 889

Keyword Coupling characteristics / mean‐
ing

Syntax

CPFMON Behavior of the following axis
when switching on

CPFMON[FAx]= "<switch-on behavior>"
"<switch-on
behavior>":

"STOP" For spindles only!
An active motion of the fol‐
lowing spindle is stopped
before switch-on.

"CONT" For spindles and main tra‐
verse axes only!
The current motion of the
following axis/spindle is tak‐
en over into the coupling as
start motion.

"ADD" For spindles only!
The motion components of
the coupling operate in ad‐
dition to the currently over‐
laid motion, i.e. the current
motion of the following axis/
spindle is retained as over‐
laid motion.

CPFMOF Behavior of the following axis at
complete switch-off

CPFMOF[FAx]="<switch-off behavior>"
"<switch-off
behavior>":

"STOP" Stop of a following axis/
spindle.
An active overlaid motion is
also braked to standstill.
The coupling is then
opened

"CONT" For spindles and main tra‐
verse axes only!
The following spindle con‐
tinues to traverse at the
speed/velocity that applied
at the instant of deactiva‐
tion.

CPFPOS + CPOF Switch-off position of the follow‐
ing axis when switching off

CPOF=(FAx) CPFPOS[FAx]=<value>

Work preparation
3.16 Axis couplings

NC programming
890 Programming Manual, 06/2019, A5E47437142B AA

Keyword Coupling characteristics / mean‐
ing

Syntax

CPMRESET Coupling behavior for RESET CPMRESET[FAx]="<Reset behavior>"
"<reset
behavior>":

"NONE" The current state of the cou‐
pling is retained.

"ON" When the appropriate cou‐
pling module is created, the
coupling is switched on. All
defined leading axis rela‐
tionships are activated.
This is also performed
when all or parts of these
leading axis relationships
are active, i.e. resynchroni‐
zation is performed even
with a completely activated
coupling.

"OF" An active overlaid motion is
also braked to standstill.
The coupling is then deacti‐
vated. When the relevant
coupling module was cre‐
ated without an explicit def‐
inition (CPDEF), the cou‐
pling module is deleted.
Otherwise it is retained, i.e.
it can still be used.

"OFC" Possible only in spindles!
The following spindle con‐
tinues to traverse at the
speed/velocity that applied
at the instant of deactiva‐
tion. The coupling is switch‐
ed off. When the relevant
coupling module was cre‐
ated without an explicit def‐
inition (CPDEF), the cou‐
pling module is deleted.
Otherwise it is retained, i.e.
it can still be used.

"DEL" An active overlaid motion is
also braked to standstill.
The coupling is then deacti‐
vated and then deleted.

"DELC" Possible only in spindles!
The following spindle con‐
tinues to traverse at the
speed/velocity that applied
at the instant of deactiva‐
tion. The coupling is deacti‐
vated and then deleted.

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 891

Keyword Coupling characteristics / mean‐
ing

Syntax

CPMSTART Coupling behavior at part pro‐
gram start

CPMSTART[FAx]="<start behavior>"
"<start
behavior>":

"NONE" The current state of the cou‐
pling is retained.

"ON" Coupling switched-on. All
defined leading axis rela‐
tionships are activated.
This is also performed
when all or parts of these
leading axis relationships
are active, i.e. resynchroni‐
zation is performed even
with a completely activated
coupling.

"OF" The coupling is switched
off. When the relevant cou‐
pling module was created
without an explicit definition
(CPDEF), the coupling
module is deleted. Other‐
wise it is retained, i.e. it can
still be used.

"DEL" The coupling is deactivated
and then deleted.

CPMPRT Coupling response at part pro‐
gram start under block search
run via program test

CPMPRT[FAx]="<start behavior>"
"<start
behavior>":

see CPMSTART

CPLINTR Offset value of the input value of

a leading axis
CPLINTR[FAx,LAx]=<value>

CPLINSC Scaling factor of the input value
of a leading axis

CPLINSC[FAx,LAx]=<value>

CPLOUTTR Offset value for the output value
of a coupling

CPLOUTTR[FAx,LAx]=<value>

CPLOUTSC Scaling factor for the output val‐
ue of a coupling

CPLOUTSC[FAx,LAx]=<value>

CPSYNCOP Threshold value of position syn‐

chronism "Coarse"
CPSYNCOP[FAx]=<value>

CPSYNFIP Threshold value of position syn‐
chronism "Fine"

CPSYNFIP[FAx]=<value>

CPSYNCOP2 Second threshold value for the
"Coarse" position synchronism

CPSYNCOP2[FAx]=<value>

CPSYNFIP2 Second threshold value for the
"Fine" position synchronism

CPSYNFIP2[FAx]=<value>

CPSYNCOV Threshold value of velocity syn‐
chronism "Coarse"

CPSYNCOV[FAx]=<value>

CPSYNFIV Threshold value of velocity syn‐
chronism "Fine"

CPSYNFIV[FAx]=<value>

Work preparation
3.16 Axis couplings

NC programming
892 Programming Manual, 06/2019, A5E47437142B AA

Keyword Coupling characteristics / mean‐
ing

Syntax

CPMBRAKE Response of the following axis
to certain stop signals and stop
commands

CPMBRAKE[FAx]=<bit-coded value>

CPMVDI Response of the following axis
to certain NC/PLC interface sig‐
nals

CPMVDI[FAx]=<bit-coded value>

CPMALARM Suppression of special cou‐
pling-related alarm outputs

CPMALARM[FAx]=<bit-coded value>

CPSETTYPE Coupling type CPSETTYPE[FAx]="<coupling type>"

"<coupling type>": "CP" Freely programmable
"TRAIL" Coupling type "Coupled

motion"
"LEAD" Coupling type "Master Val‐

ue Coupling"
"EG" Coupling type "Electronic

gearbox"
"COUP" Coupling type "Synchron‐

ized spindle"

FAx: Following axis/spindle
LAx: Leading axis/spindle

Note

Coupling characteristics, which are not explicitly programmed (in part program of synchronous
actions), become effective with their default settings.

Depending on the settings of the keyword CPSETTYPE instead of the default settings
(CPSETTYPE="CP") preset coupling characteristics can become effective.

References
For detailed information on generic couplings, see:

● Function Manual, Special Functions; M3: Axis couplings, Chapter: "Generic coupling"

3.16.7 Tangential control

3.16.7.1 Defining coupling (TANG)
Via the predefined procedure TANG(...), a tangential coupling between a rotary axis is defined
as the following axis and two geometry axes as the leading axes. The following axis is
continuously aligned with the path tangent of the leading axes.

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 893

Note
Coupling factor

A coupling factor of 1 does not have to be programmed explicitly.
The direction of the tangential axis is rotated using the coupling factor of -1.

Syntax
TANG(<following axis>, <leading axis_1>, <leading axis_2>, <coupling
factor>, <coordinate system>, <optimization>)

Meaning

TANG(...): Define tangential coupling
<following axis>: Axis name of the following axis (rotary axis)

Data type: AXIS
Range of values: Channel axis names

<leading axis_1>
<leading axis_2>:

Axis names of the leading axes (geometry axes) 1)

Data type: AXIS
Range of values: Geometry axis names of the channel

<coupling factor>: Factor n of the angle change of the following axis for changing the path
tangent of the leading axes:
Angle changefollowing axis = angle changepath tangent * n
Data type: REAL
Default value: 1.0

<coordinate system>: Active coordinate system 2)

Data type: CHAR
Value: "B": Basic coordinate system (default value)

"W": Workpiece coordinate system (not availa‐
ble)

Work preparation
3.16 Axis couplings

NC programming
894 Programming Manual, 06/2019, A5E47437142B AA

<optimization>: Optimization type
Data type: CHAR
Value: "S": Standard (default value)

The dynamic response of the rotary axis
has no effect on the leading axes If the dy‐
namic response of the rotary axis is greater
than required for tracking, this method is
sufficiently precise. If the dynamic re‐
sponse of the rotary axis is not great
enough to follow the change in the path
tangent, the orientation of the rotary axis
will deviate from the target orientation
along an undefined rounding clearance.

"P": The dynamic response of the rotary axis is
considered in the path planning of the lead‐
ing axes.
For this purpose, on activation of the tan‐
gential coupling with TANGON(), two addi‐
tional parameters must be specified:
● Rounding clearance
● Angular tolerance
See Section "Activating the coupling (TAN‐
GON) (Page 896)"
Note
With kinematic transformations, we recom‐
mend using optimization method "P."

Note
Default values do not have to be programmed explicitly.
1) Note
As the leading axes for tangential coupling, the geometry axes must be used that travel along the
programmed path in the machine coordinate system (MCS) with reference to the initial position of the
machine. For example, if swivel cycle CYCLE800 is used on a milling machine with a swivel head,
depending on how the cycle is configured, interpolation will be performed in the WCS, e.g. with the
geometry axes X and Y. The tangential coupling, however, must be defined with the geometry axes as
the leading axes, which travel along the programmed path in the MCS. For this purpose, the geometry
axes in the non-swiveled condition of the machine must be used as the leading axes.
2) Note
The basic coordinate system (BCS) must not be rotated with respect to the MCS. For example, if the
BCS is rotated with the ROT command or with the swivel cycle CYCLE800, the tangential control is no
longer correct.

3.16.7.2 Activating intermediate block generation (TLIFT)
If the tangent change of the following axis at any position along the programmed path of the
leading axes exceeds the limit parameterized in machine data MD37400
$MA_EPS_TLIFT_TANG_STEP, further path planning will depend on the set behavior at
corners. Without use of the predefined procedure TLIFT(...), the path is traversed in
accordance with the rounding behavior programmed in connection with TANG(...) (Page 893)
and TANGON(...) (Page 896).

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 895

Activating intermediate block generation
If TLIFT(...) is programmed after TANG(...), an intermediate block automatically generated by
the control is inserted at this point when a corner is detected during preprocessing.

When the program is executed, the leading axes are stopped when the intermediate block is
reached. In the intermediate block, the following axis is rotated with maximum axis dynamics
toward the path tangent of the following block. The leading axes are then traversed further on
the programmed path.

Deactivating intermediate block generation
To deactivate intermediate block generation, the tangential coupling must be defined again
using TANG(...), but without subsequent activation of intermediate block generation by means
of TLIFT(...).

Syntax
TLIFT(<following axis>)

Meaning

TLIFT(...): Activate corner detection with intermediate block calculation
<following axis>: Axis name of the following axis (rotary axis)

Data type: AXIS
Range of values: Channel axis names

Speed of rotation of the following axis

Path axis
If the following axis had already been traversed as a path axis before tangential coupling was
activated, the rotational movement is performed in the intermediate block as a path axis.

If you specify the reference radius with FGREF[<axis>]=0.001, the rotational movement will
be performed with the parameterized maximum axis velocity:

MD32000 $MA_MAX_AX_VELO[<following axis>]

Positioning axis
If the following axis had not yet been traversed as a path axis before tangential coupling was
activated, the rotation is performed in the intermediate block as a positioning axis.

The rotational movement is performed with the parameterized positioning axis velocity:

MD32060 $MA_POS_AX_VELO[<following axis>]

3.16.7.3 Activating the coupling (TANGON)
Via the predefined procedure TANGON(...), a tangential coupling previously defined
with TANG(...) (Page 893) is activated. The following axis is then continuously aligned with the
path tangent during subsequent travel.

Work preparation
3.16 Axis couplings

NC programming
896 Programming Manual, 06/2019, A5E47437142B AA

Angle of the following axis
The angle of the following axis with respect to the path tangent depends on the transformation
ratio specified in TANG(...), the offset angle parameterized in the machine data MD37402
$MA_TANG_OFFSET, and the offset angle specified for TANGON(...), which is applied
additively.

Optimization "P"
If the value "P" was specified as the optimization parameter in the definition of the tangential
coupling (TANG(...)), the parameter "rounding clearance" and optionally the parameter
"angular tolerance" must be set when coupling is activated.

If the value 0 is specified as the angular tolerance, only the parameter "rounding clearance" will
be active.

If a value greater than 0 is specified as the angular tolerance, the active rounding clearance
results from the minimum of the parameterized rounding clearance and the rounding clearance
based on the parameterized angular tolerance.

If the dynamic response of the following axis is not sufficient to follow the parameterized
conditions, the path velocity of the leading axes will be reduced accordingly.

Syntax
TANGON(<following axis>, <offset angle>, <rounding clearance>,
<angular tolerance>)

Meaning

TANGON(...): Activate tangential coupling
<following axis>: Axis name of the following axis (rotary axis)

Data type: AXIS
Range of values: Channel axis names

<offset angle>: Offset angle of following axis with respect to the path tangent
The reference point is the zero point of the rotary axis.
Data type: REAL

<rounding clearance>: Maximum permissible rounding clearance
If the rounding clearance is increased due to the dynamic conditions, the
path velocity of the leading axes is reduced.
Data type: REAL

<angular tolerance>: Maximum permissible tolerance with respect to the specified angle be‐
tween the following axis zero setting and the path tangent
Data type: REAL

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 897

3.16.7.4 Deactivating the coupling (TANGOF)
Via the predefined procedure TANGOF(...), a tangential coupling defined with TANG(...)
(Page 893) and activated with TANGON(...) (Page 896) is deactivated. The following axis is
then no longer aligned with the path tangent of the leading axis. However, the coupling of the
following axis to the leading axes is retained even after deactivation, which prevents the
following functions, for example:

● Plane change

● Geometry axis switchover

● Definition of a new tangential coupling for the following axis

Final cancellation of the connection of the coupling of the following axis to the leading axes is
not completed until the coupling has been deleted with TANGDEL(...) (Page 898).

Programming
TANGOF(<following axis>)

Meaning

TANGOF(...): Deactivate a tangential coupling
<following axis>: Axis name of the following axis (rotary axis)

Data type: AXIS
Range of values: Channel axis names

3.16.7.5 Deleting a coupling (TANGDEL)
A tangential coupling defined with TANG(...) (Page 893) will be retained even after deactivation
of the tangential coupling with TANGOF(...) (Page 898). The existing tangential coupling then
continues to prevent, for example, the following functions:

● Plane change

● Geometry axis switchover

● Definition of a new tangential coupling for the following axis

With the predefined procedure TANGDEL(...), the existing tangential coupling is deleted after
the tangential coupling has been deactivated with TANGOF(...).

Syntax
TANGDEL(<following axis>)

Meaning

TANGDEL(...): Delete a tangential coupling defined with TANG()
Effective: Non-modal

Work preparation
3.16 Axis couplings

NC programming
898 Programming Manual, 06/2019, A5E47437142B AA

<following axis>: Axis name of the following axis whose tangential coupling is to be de‐
leted
Data type: AXIS
Range of values: Channel axis names

Examples

Leading axis change
Before a new tangential coupling can be defined with another leading axis for the following axis,
the existing tangential coupling must first be deleted.

Program code Comment
N10 TANG(A, X, Y, 1) ; Define tangential couping for following axis A: A to

X and Y
N20 TANGON(A) ; Activate tangential coupling for following axis A
N30 X10 Y20
...
N80 TANGOF(A) ; Deactivate tangential coupling for following axis A
N90 TANGDEL(A) ; Delete tangential coupling for following axis A
...
N120 TANG(A, X, Z) ; Define new tangential coupling for following axis A
N130 TANGON(A) ; Activate new tangential coupling for following axis A
...

Geometry axis switchover
Before geometry axis switchover can be performed for an existing coupling, the coupling must
first be deleted.

Program code Comment
N10 GEOAX(2,Y1) ; 2nd geometry axis = machine axis Y1
N20 TANG(A, X, Y) ; Define tangential coupling for following axis A
N30 TANGON(A, 90) ; Activate tangential coupling for following axis A
N40 G2 F8000 X0 Y0 I0 J50 ; Motion block
N50 TANGOF(A) ; Deactivate tangential coupling for following axis A
N60 TANGDEL(A) ; Delete tangential coupling for following axis A
N70 GEOAX(2, Y2) ; 2nd geometry axis = machine axis Y2
N80 TANG(A, X, Y) ; Define new tangential coupling for following axis A
N90 TANGON(A, 90) ; Activate new tangential coupling for following axis

A
...

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 899

3.16.8 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)
The "master/slave coupling" enables:

● The coupling of the slave axes to the master axis, when the axes involved are at standstill.

● The coupling/decoupling of rotating, speed-controlled spindles.

● The dynamic configuration.

Note
Positioning mode

For axes and spindles in the positioning mode, the coupling is only closed and opened at
standstill.

Syntax
MASLON(<slave_1>,<slave_2>,...)
MASLOF(<slave_1>,<slave_2>,...)
MASLOFS(<slave_1>,<slave_2>,...)

Dynamic configuration:
MASLDEF(<slave_1>,<slave_2>, ... ,<master>)
MASLDEL(<slave_1>,<slave_2>,...)

Meaning

MASLON:

Activating a temporary master/slave coupling
<Slave_x>,...: Slave axis 1 ... n

MASLOF:

Decoupling an active master/slave coupling
<slave_1>,...: Slave axis 1 ... n

MASLOFS:

Decoupling a master/slave coupling and automatically braking slave spindles (see note
"Coupling behavior for spindles! in speed control mode"!)
<slave_1>,...: Slave axis 1 ... n

MASLDEF:

Creating/changing a master/slave group from the part program
<slave_1>,...: Slave axis 1 ... n
<master>: Master axis

MASLDEL:

Separate master/slave coupling and delete the definition of the grouping
<slave_1>,...: Slave axis 1 ... n
Note:
The master/slave definitions configured in the machine data are retained.

Work preparation
3.16 Axis couplings

NC programming
900 Programming Manual, 06/2019, A5E47437142B AA

Note
Coupling behavior for spindles in speed control mode

For spindles in the speed control mode, the coupling behavior of MASLON, MASLOF, MASLOFS
and MASLDEL are specified explicitly via the following machine data:

MD37263 $MA_MS_SPIND_COUPLING_MODE

For the default setting with MD37263 = 0, the slave axes are coupled-in and coupled-out only
when the axes involved are at standstill. MASLOFS corresponds to MASLOF.

For MD37263 = 1, the coupling instruction is immediately executed and therefore also the
motion. For MASLON the coupling is immediately closed and for MASLOFS or MASLOF
immediately opened. With MASLOF, the slave spindles rotating at this instant keep their speeds
until a new speed is programmed. However, with MASLOFS, they are braked automatically.

Note

For MASLOF/MASLOFS, the implicit preprocessing stop is not required. Because of the missing
preprocessing stop, the $P system variables for the slave axes do not provide updated values
until next programming.

Note

For the slave axis, the actual value can be synchronized to the same value of the master axis
using PRESETON. To do this, the permanent/slave coupling must be briefly switched off in order
to set the actual value of the non-referenced slave axis to the value of the master/axis with
POWER ON. Then the coupling is permanently re-established.

The permanent master/slave coupling is activated with the following MD setting:
MD37262 $MA_MS_COUPLING_ALWAYS_ACTIVE = 1
It has no effect on the language commands of the temporary coupling.

Example
For a permanent master/slave coupling, PRESETON sets the actual value of the slave axis to
the value of the master axis.

Program code Comment
$MA_MS_COUPLING_ALWAYS_ACTIVE[AX2]=0 ; Deactivate the permanent coupling of

the slave axis
NEWCONF ; Activate machine data change
STOPRE
MASLOF(Y1) ; Deactivate temporary coupling
PRESETON(AX2,$VA_IM(M_AX)) ; Actual value of the slave axis = actual

value of the master axis
$MA_MS_COUPLING_ALWAYS_ACTIVE[AX2]=1 ; Activate the permanent coupling of the

slave axis
NEWCONF ; Activate machine data change

Work preparation
3.16 Axis couplings

NC programming
Programming Manual, 06/2019, A5E47437142B AA 901

3.17 Synchronized actions

3.17.1 Brief description

General
A synchronized action consists of a series of related statements within a part program that is
called cyclically in the interpolator clock cycle synchronously to the machining blocks.

A synchronized action is essentially divided into two parts, the optional condition and the
obligatory action part. The time at which the actions are executed can be made dependent on
a specific system state using the condition part. The conditions are evaluated cyclically in the
interpolator clock cycle. The actions are then a reaction to user-definable system states. Their
execution is not bound to block limits.

Furthermore, the validity of the synchronized action (non-modal, modal or static) and the
frequency of the execution of the actions (once, repeatedly) can be defined.

Examples of permissible actions
● Output of auxiliary functions to PLC

● Writing and reading of main run variables

● Traversing of positioning axes

● Activation of synchronous procedures, such as:

– Read-in disable

– Delete distance-to-go

– End preprocessing stop

● Activation of technology cycles

● Calculation of function values

● Tool offsets

● Activating/deactivating couplings

● Measuring

● Enabling/disabling of synchronized actions

Examples of non-permissible actions
● Traversing of path axes

Work preparation
3.17 Synchronized actions

NC programming
902 Programming Manual, 06/2019, A5E47437142B AA

Schematic diagram of synchronized actions

3.17.2 Definition of a synchronized action
A synchronized action is defined in a block of a part program. Any further commands that are
not part of the synchronized action, must not be programmed within this block.

Components of a synchronized action
A synchronized action consists of the following components:

Validity, ID
no.

(Page
905)

(optional)

Condition part
(optional)

Action part with condition fulfilled Action part with condition unfulfil‐
led

(optional)
Frequency

(Page
906)

G com‐
mand
(Page
907)

(option‐
al)

Condition
(Page 908)

Keyword G com‐
mand
(Page
907)

(option‐
al)

Actions
(Page
909)

Keyword G com‐
mand
(Page
907)

(option‐
al)

Actions
(Page
909)

--- 1)

ID=<no.>
IDS=<no.

>

--- 1)

WHENEVER
FROM
WHEN
EVERY

G... Logical
Expressio

n

DO G... Action 1
...

Action n

ELSE G... Action 1
...

Action n

1) Not programmed

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 903

Syntax
Examples:

● DO <Action 1...n>

● <frequency> [<G function>] <condition> DO <action 1...n>
● ID=<no.> <frequency> [<G function>] <condition> DO <action 1...n>
● IDS=<no.> <frequency> [<G function>] <condition> DO <action 1...n>
● IDS=<no.> <frequency> [<G function>] <condition> DO <action 1...n>

ELSE <action 1...n>

Work preparation
3.17 Synchronized actions

NC programming
904 Programming Manual, 06/2019, A5E47437142B AA

3.17.3 Components of synchronized actions

3.17.3.1 Validity, identification number (ID, IDS)

Validity
The validity defines when and where the synchronized action will be processed:

Validity Meaning
--- 1) Non-modal synchronized action

A non-modal synchronized action applies:
● As long as the main run block following the synchronized action is active
● Only in the AUTOMATIC mode
Example:
The synchronized action from N10 takes effect as long as N20 is active.
N10 WHEN $A_IN[1]==TRUE DO $A_OUTA[1]=10
N20 G90 F1000 X100

ID=<ID number> Modal synchronized action
A modal synchronized action applies:
● Until the part program has been completed
● Only in the AUTOMATIC mode
Range of values: See the paragraph below "Identification number" > "Value
range"
Example:
N20 ID=1 EVERY $A_IN[1]==TRUE DO $A_OUTA[1]=10

IDS=<ID number> Static synchronized action
A static synchronized action applies:
● In all operating modes for an unlimited period of time
Range of values: See the paragraph below "Identification number" > "Value
range"
Example:
N30 IDS=1 EVERY $A_IN[1]==TRUE DO $A_OUTA[1]=10

1) Not programmed

Note
Static synchronized actions

Static synchronized actions (IDS) can be defined in an ASUB and activated at any time by
activation of the ASUB via the PLC user program.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 905

Identification number ID/IDS
Range of values
The identification numbers ID/IDS are in various number ranges. The number ranges are
assigned to different users.

ID/IDS User Directory
1 ... 999 "General area" Any directory

"Safety Integrated" function /_N_CST_DIR/_N_SAFE_SPF
1000 ... 1199 Machine manufacturer /_N_CMA_DIR
1200 ... 1399 Siemens /_N_CST_DIR

Parallelization
If several synchronized actions are to be active in parallel in a channel, their identification
numbers ID/IDS must be different. Synchronized actions with the same identification number
replace each other within a channel.

Sequence of execution
Modal and static synchronized actions are executed in the order of their identification numbers
ID/IDS.

Non-modal synchronized actions are executed after execution of the modal synchronized
actions in the order of their programming.

Coordination via part programs and synchronized actions
Synchronized actions can be coordinated via part programs and synchronized actions based
on the identification numbers ID/IDS (see Section "Coordination via part program and
synchronized action (LOCK, UNLOCK, CANCEL) (Page 1011)").

Coordination via PLC
Synchronized actions with identification numbers ID/IDS in the range from 1 to 64 can be
coordinated via the NC/PLC interface from the PLC user program (see Section "Coordination
via PLC (Page 1011)").

3.17.3.2 Frequency (WHENEVER, FROM, WHEN, EVERY)
The frequency specifies how often the condition is queried and, when the condition is fulfilled,
how often the action should be executed. The frequency is part of the condition.

Frequency Meaning
--- 1) If no frequency is specified, the action is executed cyclically in every interpolator clock cycle.
WHENEVER If the condition is fulfilled, the action is executed cyclically in every interpolator clock cycle.
FROM After the condition has been fulfilled once, the action is executed cyclically in every interpolator clock

cycle for as long as the synchronized action is active.

Work preparation
3.17 Synchronized actions

NC programming
906 Programming Manual, 06/2019, A5E47437142B AA

Frequency Meaning
WHEN If the condition is fulfilled, the action is executed once and then the condition is no longer checked.
EVERY In the following cases, the action is executed once:

● The condition is already satisfied at the start of the synchronized action (state: TRUE)
● At every state transition of the condition from FALSE to TRUE (rising edge)

1) Not programmed

See also
Technology cycles (Page 1006)

3.17.3.3 G command (condition)

Defined initial state
With regard to the part program sequence, synchronized actions can be executed at any time
depending on fulfillment of the condition. It is therefore recommended that the measuring
system (inch or metric) be defined in a synchronized action before the condition and/or in the
action part. This generates a defined initial position for the evaluation of the condition and the
execution of the action, irrespective of the current part program state.

G commands
The following G commands are permissible:

● G70 (Inch dimensions for geometric specifications (lengths))

● G71 (Metric dimensions for geometric specifications (lengths))

● G700 (Inch dimensions for geometric and technological specifications (lengths, feedrate))

● G710 (Metric dimensions for geometric and technological specifications (lengths, feedrate))

Note

No other G commands are permitted in synchronized actions except G70, G71, G700
and G710.

Validity
A G command programmed in the condition part also applies for the action part even if no G
command has been programmed in the action part itself.

A G command programmed in the action part only applies within the action part.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 907

3.17.3.4 Condition
Execution of the action can be made dependent on the fulfillment of a condition. As long as the
synchronized action is active, the condition is checked cyclically in the interpolator clock cycle.
If no condition is specified, the action is executed cyclically in every interpolator clock cycle.

All operations that return a truth value (TRUE/FALSE) as the result can be programmed as a
condition:

● Comparisons of system variables with constants

● Comparisons of system variables with system variables

● Comparisons of system variables with results of arithmetic operations

● Linking of comparisons through Boolean expressions

Examples

Comparisons

Program code
ID=1 WHENEVER $AA_IM[X] > $$AA_IM[Y] DO ...
ID=2 WHENEVER $AA_IM[X] > (10.5 * SIN(45)) DO ...

Boolean operations

Program code
ID=1 WHENEVER ($A_IN[1]==1) OR ($A_IN[3]==0) DO ...

See also
System variables for synchronized actions (Page 910)

3.17.3.5 G command (action)

Defined initial state
With regard to the part program sequence, synchronized actions can be executed at any time
depending on fulfillment of the condition. Therefore, it is advisable to define the required
measuring system (inch or metric) in the action part in a synchronized action. This generates
a defined initial position for the execution of the action, irrespective of the current part program
state.

G commands
The following G commands are permissible:

● G70 (Inch dimensions for geometric specifications (lengths))

● G71 (Metric dimensions for geometric specifications (lengths))

Work preparation
3.17 Synchronized actions

NC programming
908 Programming Manual, 06/2019, A5E47437142B AA

● G700 (Inch dimensions for geometric and technological specifications (lengths, feedrate))

● G710 (Metric dimensions for geometric and technological specifications (lengths, feedrate))

Validity
A G command programmed in the condition part also applies for the action part even if no G
command has been programmed in the action part itself.

A G command programmed in the action part only applies within the action part.

3.17.3.6 Actions with condition fulfilled (DO)
The action part of a synchronized action is initiated with the keyword DO.

One or more actions can be programmed in the action part. These are executed when the
appropriate condition is fulfilled. If several actions are programmed in one synchronized action,
they are all executed in the same interpolator clock cycle.

Example:
If the actual value of the Y axis is greater than or equal to 35.7, the auxiliary function M135 is
output on the PLC and, at the same time, digital output 1 = 1 is set.

Program code
WHEN $AA_IM[Y] >= 35.7 DO M135 $A_OUT[1]=1

Technology cycle
A technology cycle can be called as an action (see Section "Technology cycles (Page 1006)").

3.17.3.7 Actions with condition unfulfilled (ELSE)
With the keyword ELSE, every synchronized action can be expanded by actions which are to
be executed if the condition is not fulfilled. This allows the combination of synchronized actions
which have contrary conditions.

Example:

ID=101 WHENEVER $VA_IM[x] < 100 DO $AC_OVR=100

ID=102 WHENEVER $VA_IM[x] >= 100 DO $AC_OVR=50

The two synchronized actions can be brought together by programming ELSE:

ID=101 WHENEVER $VA_IM[x] < 100 DO $AC_OVR=100 ELSE $AC_OVR=50

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 909

Additional properties
● In the ELSE branch, the same conditions apply as for the actions with the condition fulfilled

(Page 909)

● ELSE is always possible with every condition. The practical use is the responsibility of the
user.
Example:
WHEN $AA_IW[X] > 100 DO $R1=1 ELSE $R1=2
G0 X100 F10
Here, the expression $R1=2 is executed in each interpolation cycle and the R parameter is
written, even if this is not essential. This must be taken into account by the user.

● The language command ELSE can be used together with all frequency variants.
Examples:

– The ELSE branch is always executed when the condition is not fulfilled:
WHENEVER $AA_IW[X] > 100 DO $R1=1 ELSE $R1=2
EVERY $AA_IW[X] > 100 DO $R1=1 ELSE $R1=2

– As long as the condition is not fulfilled, the ELSE branch is executed, then always the
action:
FROM $AA_IW[X] > 100 DO $R1=1 ELSE $R1=2

– As long as the condition is not fulfilled, the ELSE branch is executed, then the action and
the synchronized action are ended:
WHEN $AA_IW[X] > 100 DO $R1=1 ELSE $R1=2

3.17.4 System variables for synchronized actions

The system variables of the NC are listed in the "System Variables" Parameter Manual with
their respective properties. System variables that can be read or written in synchronized
actions, are marked with an "X" in the corresponding line (Read or Write) of the "SA"
(synchronized action) column.

Note

System variables used in synchronized actions are implicitly read and written synchronous to
the main run.

References
A comprehensive description of the system variables listed in this function manual can be found
in:

● System Variables Parameter Manual

Work preparation
3.17 Synchronized actions

NC programming
910 Programming Manual, 06/2019, A5E47437142B AA

3.17.4.1 Reading and writing
The reading and writing of variables is performed in the main run in synchronized actions with
a few exceptions. Exceptions are:

● User-defined variables: LUD, GUD

● Machine data: $M...

● Setting data: $S...

● R parameters: R<number> or R[<index>]

These variables are already read and written during the preprocessing.

System variables
Generally, all system variables that can be used in synchronized actions are read/written in the
main run. These system variables are marked with an "X" in the "Read" and/or "Write" line of
the "SA" (synchronized action) column in the "System Variables" Parameter Manual.

References:
System Variables Parameter Manual

System of the identifiers
The identifiers of the system variables that are read/written in the main run have the following
system:

$A... Current main run data
$V... Servo data
$R... R parameters to be read/written in the main run
$$M... Machine data to be read/written in the main run
$$S... Setting data to be read/written in the main run

3.17.4.2 Operators and arithmetic functions

Operators

Arithmetic operators
System variables of the REAL and INT type can be linked by the following operators:

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ ● Division in synchronized actions: INT / INT ⇒ INT

● Division in synchronized actions with REAL result by using the function ITOR():
ITOR(INT) / ITOR(INT) ⇒ REAL

● Division in NC programs: INT / INT ⇒ REAL

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 911

Operator Meaning
DIV Integer division: INT / INT ⇒ INT
MOD Modulo division (only for type INT) supplies remainder of an INT division

Example: 3 MOD 4 = 3

Note

Only variables of the same type may be linked by these operations.

Relational operators

Operator Meaning
== Equal to
<> Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Boolean operators

Operator Meaning
NOT NOT
AND AND
OR OR
XOR Exclusive OR

Bit logic operators

Operator Meaning
B_OR Bit-by-bit OR
B_AND Bit-by-bit AND
B_XOR Bit-by-bit exclusive OR
B_NOT Bit-by-bit negation

Priority of the operators
The operators have the following priorities for execution in the synchronized action (highest
priority: 1):

Priori‐
ty

Operators Meaning

1 NOT, B_NOT Negation, bit-by-bit negation
2 *, /, DIV, MOD Multiplication, division
3 +, - Addition, subtraction
4 B_AND Bit-by-bit AND

Work preparation
3.17 Synchronized actions

NC programming
912 Programming Manual, 06/2019, A5E47437142B AA

Priori‐
ty

Operators Meaning

5 B_XOR Bit-by-bit exclusive OR
6 B_OR Bit-by-bit OR
7 AND AND
8 XOR Exclusive OR
9 OR OR
10 << Concatenation of strings, result type STRING
11 ==, <>, <, >, >=, <= Relational operators

Note

It is strongly recommended that the individual operators are clearly prioritized by setting
parentheses "(…)" when several operators are used in an expression.

Example of a condition with an expression with several operators:

Program code
... WHEN ($AA_IM[X] > VALUE) AND ($AA_IM[Y] > VALUE1) DO ...

Arithmetic functions

Operator Meaning
SIN() Sine
COS() Cosine
TAN() Tangent
ASIN() Arc sine
ACOS() Arc cosine
ATAN2() Arc tangent 2
SQRT() Square root
ABS() Absolute value
POT() 2nd power (square)
TRUNC() Integer component

The accuracy for comparison commands can be set using TRUNC
ROUND() Round to an integer
LN() Natural logarithm
EXP() Exponential function

A detailed description of the functions can be found in:
References
Programming Manual, Job Planning; Section "Flexible NC programming" ff.

Indexing
The index of a system variable of type "Array of …" can in turn be a system variable. The index
is also evaluated in the main run in the interpolator clock cycle.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 913

Example

Program code
... WHEN … DO $AC_PARAM[$AC_MARKER[1]]=3

Restrictions
● It is not permissible to nest indices with further system variables.

● The index must not be formed via preprocessing variables. The following example is
therefore not permitted since $P_EP is a preprocessing variable:
$AC_PARAM[1] = $P_EP[$AC_MARKER[0]]

3.17.4.3 Type conversions
An implicit type conversion is performed between the following data types for value
assignments and parameter transfers with different data types:

● REAL

● INT

● BOOL

Note
Conversion REAL to INT

For the conversion from REAL to INT, a decimal place value ≧ 0.5 rounded up to the next
higher integer. For a decimal place value < 0.5, rounding is to the next lower integer.
Behavior in accordance with the ROUND function.

If the REAL value is outside the INT value range, an alarm is displayed and a conversion is
not performed.
Conversion from REAL or INT to BOOL
● Value <> 0 → TRUE
● Value == 0 → FALSE

Examples
Conversion: INT $AC_MARKER → REAL $AC_PARAM

Program code
$AC_MARKER[1]=561
ID=1 WHEN TRUE DO $AC_PARAM[1] = $AC_MARKER[1]

Conversion: REAL $AC_PARAM → INT $AC_MARKER

Program code
$AC_PARAM[1]=561.0
ID=1 WHEN TRUE DO $AC_MARKER[1] = $AC_PARAM[1]

Work preparation
3.17 Synchronized actions

NC programming
914 Programming Manual, 06/2019, A5E47437142B AA

Conversion: INT $AC_MARKER → BOOL $A_OUT

Program code
$AC_MARKER[1]=561
ID=1 WHEN $A_IN[1] == TRUE DO $A_OUT[0]=$AC_MARKER[1]

Conversion: REAL $R401 → BOOL $A_OUT

Program code
R401 = 100.542
WHEN $A_IN[0] == TRUE DO $A_OUT[2]=$R401

Conversion: BOOL $A_OUT → INT $AC_MARKER

Program code
ID=1 WHEN $A_IN[2] == TRUE DO $AC_MARKER[4] = $A_OUT[1]

Conversion: BOOL $A_OUT → REAL $R10

Program code
WHEN $A_IN[3] == TRUE DO $R10 = $A_OUT[3]

3.17.4.4 Marker/counter ($AC_MARKER)
The $AC_MARKER[<index>] variables are channel-specific arrays of system variables for use
as markers or counters.

Data type: INT (integer)
<Index>: Array index: 0, 1, 2, ... (max. number – 1)

Number per channel
The maximum number of $AC_MARKER variables per channel can be set via the machine
data:

MD28256 $MC_MM_NUM_AC_MARKER = <maximum number>

Storage location
The storage location of the $AC_MARKER variables can be defined channel-specifically via
the machine data:

MD28257 $MC_MM_BUFFERED_AC_MARKER = <value>

Value Storage location
0 Dynamic memory (default setting)
1 Static memory

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 915

Note
Data backup and memory space
● The $AC_MARKER variables created in the static memory can be saved channel-

specifically via the data backup. Data block: _N_CH<channel number>_ACM
● Please ensure that sufficient memory is available in the selected memory area. An array

element requires 4 bytes of memory space.

Reset behavior
The reset behavior depends on the storage location of the $AC_MARKER variables:

● Dynamic memory: Initialization with the value "0"

Static memory: Retention of the current value

3.17.4.5 Parameters ($AC_PARAM)
The $AC_PARAM[<index>] variables are channel-specific arrays of system variables for use
as general buffers.

Data type: REAL
<Index>: Array index: 0, 1, 2, ... (max. number - 1)

Number per channel
The maximum number of $AC_PARAM variables per channel can be set via the machine data:

MD28254 $MC_MM_NUM_AC_PARAM = <maximum number>

Storage location
The storage location of the $AC_PARAM variables can be defined channel-specifically via the
machine data:

MD28255 $MC_MM_BUFFERED_AC_PARAM = <value>

Value Storage location
0 Dynamic memory (default setting)
1 Static memory

Work preparation
3.17 Synchronized actions

NC programming
916 Programming Manual, 06/2019, A5E47437142B AA

Note
Data backup and memory space
● The $AC_PARAM variables created in the static memory can be saved channel-specifically

via the data backup. Data block: _N_CH<channel number>_ACP
● Please ensure that sufficient memory is available in the selected memory area. An array

element requires 4 bytes of memory space.

Reset behavior
The reset behavior depends on the storage location of the $AC_PARAM variables:

● Dynamic memory: Initialization with the value "0"

● Static memory: Retention of the current value

3.17.4.6 R parameters ($R)
Whether R parameters are treated as preprocessing or main run variables depends on whether
they are written with or without $ characters. In principle, the notation is freely selectable. For
use in synchronized actions, R parameters should be used as main run variables, i.e. with $
characters:

● $R[<index>]

● $R<number>

Data type: REAL
<Index>: Array index: 0, 1, 2, ...
<Number>: Number of the R parameter: 0, 1, 2, ...
The notations with index or number are equivalent.

Parameterizable number per channel
The maximum number of R parameters per channel can be set via the machine data:

MD28050 $MC_MM_NUM_R_PARAM = <maximum number>

Reset behavior
R parameters are saved persistently in the static memory of the NC. Therefore, R parameters
retain their values with all reset types:

● Power on reset

● NC reset

● End of part program reset

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 917

Example
Value assignment to R10 in the action part of the synchronized action and subsequent
evaluation in the part program

WHEN $A_IN[1]==1 DO $R[10]=$AA_IM[Y] ; assignment
G1 X100 F150
STOPRE
IF R[10] > 50 ... ; evaluation in the part program

3.17.4.7 Machine and setting data ($$M, $$S)

Reading and writing MD and SD
When machine and setting data is used in synchronized actions, a distinction must be made as
to whether this remains unchanged during the execution of the synchronized action, or is
changed through parallel processes.

Data that remains unchanged can already be read or written by the NC during preprocessing.

Data that is changed can only be read or written by the NC during the main run.

Data access during preprocessing
Machine and setting data that can already be read and written in synchronized actions during
preprocessing, is programmed with the same identifiers as in the part program: $M ... or $S ...

Program code
; The reversal position of the Z axis $SA_OSCILL_REVERSE_POS2[Z]
; remains unchanged over the entire machining period
ID=2 WHENEVER $AA_IM[z]<$SA_OSCILL_REVERSE_POS2[Z]–6 DO $AA_OVR[X]=0

Data access during the main run
An additional "$" is added as prefix for machine and setting data that may only be read or written
in synchronized actions during the main run: $$M… or $$S…

Program code
; The reversal position of the Z axis $SA_OSCILL_REVERSE_POS2[Z]
; can be changed by operator input at any time
ID=1 WHENEVER $AA_IM[z] < $$SA_OSCILL_REVERSE_POS2[Z] DO $AA_OVR[X] = 0

Writing during the main run
The following requirements must be satisfied for writing during the main run:

● The access authorization at the time of writing must be sufficient for writing.

● The machine or setting data must have the property "Effective immediately".

Work preparation
3.17 Synchronized actions

NC programming
918 Programming Manual, 06/2019, A5E47437142B AA

Program code
; The switching position of the SW cam $SN_SW_CAM_ ... must,
; depending on the current setpoint of the X axis in WCS $AA_IW[X],
; only be written during the main run
ID=2 WHEN $AA_IW[X] > 10 DO $$SN_SW_CAM_PLUS_POS_TAB_1[0] = 20
 $$SN_SW_CAM_MINUS_POS_TAB_1[0]=20

A complete overview of the properties of the machine and setting data can be found in:

References

● Parameter Manual: Lists (Book 1)

● Parameter Manual: Detailed Machine Data Description

3.17.4.8 Timer ($AC_TIMER)
The $AC_TIMER[<index>] variables are channel-specific arrays of system variables.

Data type: REAL
<Index>: Array index: 0, 1, 2, ... (max. number - 1)
Unit: Seconds

Number per channel
The maximum number of $AC_TIMER variables per channel can be set via the machine data:

MD28258 $MC_MM_NUM_AC_TIMER = <maximum number>

Function

Starting
A timer is started by assigning a value ≥ 0:

$AC_TIMER[<index>] = <starting value>; with starting value ≥ 0

Incrementing
The value of the timer is incremented by the duration of the set interpolator clock cycle
(MD10071 IPO_CYCLE_TIME) for each interpolator clock cycle.

$AC_TIMER[<index>] += <interpolator clock cycle>

Stopping
A timer is stopped by assigning a value < 0:

$AC_TIMER[<index>] = <stopping value>; with stopping value < 0

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 919

When a stopping value is assigned, only the further incrementing of the timer is stopped. The
stopping value is not assigned. After the timer is stopped, the last valid value is retained and can
still be read.

Note

The current value of a timer can be be read when the timer is running or stopped.

Example
Output the actual value of the X axis as voltage value via analog output $A_OUTA[3], 500 ms
after the detection of digital input $A_IN[1]:

Program code Comment
WHEN $A_IN[1] == 1 DO $AC_TIMER[1]=0 ; Start timer, starting value 0
WHEN $AC_TIMER[1]>=0.5 DO $A_OUTA[3]=$AA_IM[X] $AC_TIMER[1]=-1

3.17.4.9 FIFO variables ($AC_FIFO)
A FIFO variable provides a complex data structure based on R parameters. The data structure
comprises one administration part and one user data part. The user data part is structured as
a stack according to the FIFO principle (first in, first out). Using the index of the FIFO variables,
the different functions are addressed in the administration part as well as the user data.

① Administration part
② User data part
③ R parameter range above the FIFO variables: Read and write permitted
④ R parameter range below the FIFO variables: Only read permitted

Work preparation
3.17 Synchronized actions

NC programming
920 Programming Manual, 06/2019, A5E47437142B AA

Note

The statements regarding R parameters also apply to FIFO variables. See Chapter "R
parameters ($R) (Page 917)".

Syntax

Write
$AC_FIFO<n>[<i>] = <value>
$AC_FIFO[<n>, <i>] = <value>

Read
<variable> = $AC_FIFO<n>[<i>]
<variable> = $AC_FIFO[<n>, <i>]

Meaning

$AC_FIFO: FIFO data structure in the R parameters, starting from value in MD28262
$MC_START_AC_FIFO
Data type: REAL

<n>: Number of FIFO variables
Data type: INT
Value range: 1, 2, ... max. number (see references below)

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 921

<i>: Index of the FIFO variables with which the various functions and data within the data
structure of the FIFO variables is accessed.
Value range: 0, 1, 2, ... (MD28264 $MC_LEN_AC_FIFO - 1)

Value Meaning
Administrative data

0 Write
A value is written to the FIFO stack by assigning a value to the FIFO stack via
index 0 ($AC_FIFO[0] = <value>). The assigned value is written to the next
free location in the FIFO stack.
If all memory locations in the FIFO stack are already occupied, an alarm is
displayed:
● When writing in an NC program: Alarm 20149
● When writing in a synchronized action: Alarm 17020
Read
A value is read from the FIFO stack by assigning the FIFO stack to a variable
with index 0 (<variable> = $AC_FIFO[0]). The oldest value is read and then
removed from the FIFO stack.
Note
● Reading in the NC program / synchronized action

If a value is read in an NC program / synchronized action with index 0, the
oldest value is read and removed from the FIFO stack as described
above.

● Reading on the user interface, e.g. SINUMERIK Operate
If a value is read or displayed with index 0 on the user interface, e.g.
SINUMERIK Operate: "Diagnosis" > "NC/PLC Variables", the value is
read internally with index 1 (oldest value) without changing the FIFO
stack.

1 Write / Read: The "oldest" user data is addressed; the FIFO stack is not
changed

2 Write / Read: The "newest" user data is addressed; the FIFO stack is not
changed

3 Read: Returns the sum of the values of all user data
Enable via MD28266 $MC_MODE_AC_FIFO, bit 0 required. See paragraph
below "Summation across all user data"

4 Read: Supplies the number of user data currently stored in the FIFO stack.
Write: Reset to the initial state is realized by writing the value of 0 to FIFO
variable, index 4.
Example: $AC_FIFO1[4] = 0

5 Read: Returns the current write index, relative to the beginning of the FIFO
stack

User data
6 Write/read: The 1st field element of the user data range is addressed
7 Write/read: The 2nd field element of the user data range is addressed
n Write/read: The nth field element of the user data range is addressed

References
List Manual, System Variables

Work preparation
3.17 Synchronized actions

NC programming
922 Programming Manual, 06/2019, A5E47437142B AA

Machine data

Number of FIFO variables per channel
The number of FIFO variables per channel is set using:

MD28260 $MC_NUM_AC_FIFO = <number of FIFO variables per channel>

Beginning of the R parameter range of FIFO variables
The R parameter, from which the range of FIFO variables for the channel begins, is set using:

MD28262 $MC_START_AC_FIFO = <number of the start R parameter>

Note
Free R parameters

Only the R parameters whose numbers are below the start R parameter of the FIFO variables,
can be written to the NC program.

Number of field elements for each FIFO variable
The maximum number of field elements per FIFO variable is set using:

MD28264 $MC_LEN_AC_FIFO = <number of field elements per FIFO variable>

Total number of R parameters in the channel
The total number of R parameters, which are required in the channel, is set using:

MD28050 $MC_MM_NUM_R_PAR‐
AM =

MD28262 $MC_START_AC_FIFO +
MD28260 $MC_NUM_AC_FIFO *
(MD28264 $MC_LEN_AC_FIFO + 6)

Summation of all user data
The sum of the values of all user data is only provided via $AC_FIFO[3] if the function is
activated via machine data:

MD28266 $MC_MODE_AC_FIFO, bit 0 = <value>

Value Meaning
FALSE The sum of the values of all user data is not provided
TRUE The sum of the values of all user data is provided

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 923

Example
Serial determination of the length of workpieces that move past an automatic measuring station
on a conveyor belt.

The measurement results are written to or read from the $AC_FIFO1 system variable via
synchronized actions.

● Read: With index 0, the "oldest" user data element is read and deleted from the FIFO stack.

● Write: With index 0, the value is written to the next free user data element.

Work preparation
3.17 Synchronized actions

NC programming
924 Programming Manual, 06/2019, A5E47437142B AA

3.17.4.10 Path tangent angle ($AC_TANEB)
The angle between the tangent at the end point of the current block and the tangent at the start
point of the following block can be read via the channel-specific system variable $AC_TANEB
(Tangent ANgle at End of Block).

Data type: REAL

The tangent angle is always specified positive in the range 0.0 to 180.0°.

If the tangent angle cannot be determined, the value -180.0° is output.

Used only with programmed blocks
It is recommended that the tangent angle only be read for programmed blocks, not for
intermediate blocks generated by the system. A distinction can be made via the system variable
$AC_BLOCKTYPE:

$AC_BLOCKTYPE == 0 (programmed block)

Example:

Program code
ID=2 EVERY $AC_BLOCKTYPE==0 DO $R1=$AC_TANEB

3.17.4.11 Override ($A...OVR)

Current override

Channel-specific override
The path feedrate can be changed via the channel-specific system variable $AC_OVR.

Data type: REAL
Unit: %
Range of val‐
ues:

0.0 to machine data
● For binary-coded override switch

MD12100 $MN_OVR_FACTOR_LIMIT_BIN
● For gray-coded override switch

MD12030 $MN_OVR_FACTOR_FEEDRATE[30]

The system variable $AC_OVR must be written in every interpolator clock cycle, otherwise the
value "100%" is effective.

Channel-specific rapid traverse override
With G0 blocks (rapid traverse), the rapid traverse feedrate can also be influenced via the
setting data SD42122 $SC_OVR_RAPID_FACTOR in addition to the system variable
$AC_OVR.

Requirement: Release of the rapid traverse override via the user interface.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 925

Axis-specific override
The axial feedrate can be changed via the axis-specific system variable $AA_OVR:

Data type: REAL
Unit: %
Range of val‐
ues:

0.0 to machine data
● For binary-coded override switch

MD12100 $MN_OVR_FACTOR_LIMIT_BIN
● For gray-coded override switch

MD12030 $MN_OVR_FACTOR_FEEDRATE[30]

The system variable $AA_OVR must be written in every interpolator clock cycle, otherwise the
value "100%" is effective.

PLC override

Channel-specific override
The channel-specific override (DB21, ... DBB4) set via the machine control panel can be read
via the channel-specific system variable $AC_PLC_OVR:

Data type: REAL
Unit: %
Range of val‐
ues:

0.0 to maximum value

Axis-specific override
The axis-specific override (DB31, ... DBB0) set via the machine control panel can be read via
the axis-specific system variable $AA_PLC_OVR:

Data type: REAL
Unit: %
Range of val‐
ues:

0.0 to maximum value

Effective override

Effective channel-specific override
The effective channel-specific override can be read via the channel-specific system variable
$AC_TOTAL_OVR:

Data type: REAL
Unit: %
Range of val‐
ues:

0.0 to maximum value

Work preparation
3.17 Synchronized actions

NC programming
926 Programming Manual, 06/2019, A5E47437142B AA

Effective axis-specific override
The effective axis-specific override can be read via the axis-specific system variable
$AA_TOTAL_OVR:

Data type: REAL
Unit: %
Range of val‐
ues:

0.0 to maximum value

3.17.4.12 Capacity evaluation ($AN_IPO ... , $AN/AC_SYNC ... , $AN_SERVO)
The values of the current, maximum and average system utilization due to synchronized
actions can be read via the following system variables:

NC-specific system variable Meaning
$AN_IPO_ACT_LOAD Current computing time of the interpolator level (incl. synchron‐

ized actions of all channels)
$AN_IPO_MAX_LOAD Longest computing time of the interpolator level (incl. synchron‐

ized actions of all channels)
$AN_IPO_MIN_LOAD Shortest computing time of the interpolator level (incl. synchron‐

ized actions of all channels)
$AN_IPO_LOAD_PERCENT Current computing time of the interpolator level in relation to the

interpolator cycle (%)
$AN_SYNC_ACT_LOAD Current computing time for synchronized actions over all chan‐

nels
$AN_SYNC_MAX_LOAD Longest computing time for synchronized actions over all chan‐

nels
$AN_SYNC_TO_IPO Percentage share that the synchronized actions have of the total

computing time (over all channels)
$AN_SERVO_ACT_LOAD Current computing time of the position controller
$AN_SERVO_MAX_LOAD Longest computing time of the position controller
$AN_SERVO_MIN_LOAD Shortest computing time of the position controller

Channel-specific system variable Meaning
$AC_SYNC_ACT_LOAD Current computing time for synchronized actions in the channel
$AC_SYNC_MAX_LOAD Longest computing time for synchronized actions in the channel
$AC_SYNC_AVERAGE_LOAD Average computing time for synchronized actions in the channel

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 927

Figure 3-11 Computing time shares of the synchronized actions on the interpolator cycle

Activation
The system variables only contain valid values when the "Utilization evaluation via
synchronized actions" diagnostic function is active.

For this, the following machine data must be greater than zero:

MD11510 $MN_IPO_MAX_LOAD > 0 (maximum permissible interpolator utilization)

When the function is active, the current values are displayed in the "Time required for
synchronized actions" line in the "Diagnostics" > "System utilization" operating area.

Note

The system variables always contain the values of the previous interpolator cycle.

Overload limit
An overload limit is specified via the value set via MD11510 $MN_IPO_MAX_LOAD:

MD11510 $MN_IPO_MAX_LOAD = <maximum permissible utilization in % of the interpolator
cycle>

If the value set in the machine data is exceeded, the following system variable is set:

$AN_IPO_LOAD_LIMIT = TRUE

If the value falls below the set value again, the system variable is reset:

$AN_IPO_LOAD_LIMIT = FALSE

Application
A user-specific strategy to avoid a level overflow can be implemented via the system variable
$AN_IPO_LOAD_LIMIT.

Work preparation
3.17 Synchronized actions

NC programming
928 Programming Manual, 06/2019, A5E47437142B AA

Resetting of min./max. values
The following system variables for min./max. values are reset by writing arbitrary values:

System variable Meaning
$AN_SERVO_MAX_LOAD Longest computing time of the position controller
$AN_SERVO_MIN_LOAD Shortest computing time of the position controller
$AN_IPO_MAX_LOAD Longest computing time of the interpolator level

(incl. synchronized actions of all channels)
$AN_IPO_MIN_LOAD Shortest computing time of the interpolator level

(incl. synchronized actions of all channels)
$AN_SYNC_MAX_LOAD Longest computing time for synchronized actions

over all channels
$AC_SYNC_MAX_LOAD Longest computing time for synchronized actions

in the channel

Example

Program code Comment
$MN_IPO_MAX_LOAD=80 ; Overload limit
;
; Initialization of the min./max. values
N01 $AN_SERVO_MAX_LOAD=0
N02 $AN_SERVO_MIN_LOAD=0
N03 $AN_IPO_MAX_LOAD=0
N04 $AN_IPO_MIN_LOAD=0
N05 $AN_SYNC_MAX_LOAD=0
N06 $AC_SYNC_MAX_LOAD=0
;
; Alarm 63111 when the overload limit is exceeded
N10 IDS=1 WHENEVER $AN_IPO_LOAD_LIMIT == TRUE DO M4711 SETAL(63111)
;
; Alarm 63222 when the computing time share of the
; synchronized actions over all channels exceeds 30% of the interpolator cycle
N20 IDS=2 WHENEVER $AN_SYNC_TO_IPO > 30 DO SETAL(63222)
;
N30 G0 X0 Y0 Z0
...
N999 M30

3.17.4.13 Working-area limitation ($SA_WORKAREA_ ...)
Only the activation via the setting data is effective for the traversable command axes in
synchronized actions with regard to the programmable working-area limitation G25/G26:

● $SA_WORKAREA_PLUS_ENABLE

● $SA_WORKAREA_MINUS_ENABLE

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 929

Switching the working-area limitation on and off via the commands WALIMON/WALIMOF in the
part program has no effect on the command axes traversable via synchronized actions.

3.17.4.14 SW cam positions and times ($$SN_SW_CAM_ ...)
The values of the SW cam positions and times can be read and written via the following setting
data:

NC-specific setting data Meaning
$SN_SW_CAM_MINUS_POS_TAB_1[0..7] Minus cam positions
$SN_SW_CAM_MINUS_POS_TAB_2[0..7] Minus cam positions
$SN_SW_CAM_PLUS_POS_TAB_1[0..7] Plus cam positions
$SN_SW_CAM_PLUS_POS_TAB_2[0..7] Plus cam positions
$SN_SW_CAM_MINUS_TIME_TAB_1[0..7] Minus cam lead or delay time
$SN_SW_CAM_MINUS_TIME_TAB_2[0..7] Minus cam lead or delay time
$SN_SW_CAM_PLUS_TIME_TAB_1[0..7] Plus cam lead or delay time
$SN_SW_CAM_PLUS_TIME_TAB_2[0..7] Plus cam lead or delay time

Note

The setting of a software cam via synchronized actions must not be performed immediately
before the cam is reached. At least three interpolation cycles must be available before the cam
is reached.

A detailed description of the "Software cam" function can be found in:

References
Function Manual for Extended Functions, Software Cams, Position-Switching Signals (N3)

Examples

Program code
; Changing a cam position:
ID=1 WHEN $AA_IW[x] > 0 DO $$SN_SW_CAM_MINUS_POS_TAB_1[0] = 50.0
...
; Changing a lead time
ID=1 WHEN $AA_IW[x] > 0 DO $$SN_SW_CAM_MINUS_TIME_TAB_1[0] = 1.0

See also
Machine and setting data ($$M, $$S) (Page 918)

3.17.4.15 Path length evaluation / machine maintenance ($AA_TRAVEL ... , $AA_JERK ...)
The data of the path length evaluation, e.g. for machine maintenance, can be read via the
system variables listed below.

Work preparation
3.17 Synchronized actions

NC programming
930 Programming Manual, 06/2019, A5E47437142B AA

Activation
The activation for the recording of the path length evaluation data is performed via:

MD18860 $MN_MM_MAINTENANCE_MON = 1

The data to be recorded for the specific axis can be selected via the following axis-specific
machine data:

MD33060 $MA_MAINTENANCE_DATA[<axis>], bit n = 1

Bit Meaning
0 Recording of total traversing distance, total traversing time and number of traversing operations

of the axis.
1 Recording of total traversing distance, total traversing time and number of traversing operations

of the axis at high speed.
2 Recording of total number of axis jerks, the time during which the axis is traversed with jerk and

the number of traversing operations with jerk.

System variable

System variable Meaning n
$AA_TRAVEL_DIST Total travel distance:

Sum of all set position changes in MCS in [mm] or [deg.]
0

$AA_TRAVEL_TIME Total travel time:
Sum of IPO cycles of set position changes in MCS in [s] (resolution: 1 IPO cycle)

$AA_TRAVEL_COUNT Total travel count:
A complete machine axis trip is defined by the following succession of states,
as based on set position: standstill > traversing > standstill

$AA_TRAVEL_DIST_HS Total traversing distance at high axis velocities 1) 1
$AA_TRAVEL_TIME_HS Total traversing time at high axis velocities 1)

$AA_TRAVEL_COUNT_HS Total number of traversing operations at high axis velocities 3)

$AA_JERK_TOT Total sum of axis jerks:
Sum of all jerk setpoints in [m/s3] or [deg./ s3]

2

$AA_JERK_TIME Total travel time with jerk:
Sum of IPO cycles from jerk setpoint changes in [s] (solution: 1 IPO cycle)

$AA_JERK_COUNT Total number of traversing operations with jerk
1) Actual machine axis velocity ≥ 80% of the maximum parameterized axis velocity (MD32000 MAX_AX_VELO)

References
For a detailed description of the function, refer to:

Function Manual, Special Functions, Section "Path length evaluation (W6)"

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 931

3.17.4.16 Polynomial coefficients, parameters ($AC_FCT ...)

Function
Using the FCTDEF function, as a maximum, a 3rd degree polynomial can be defined:

f(x) = a0 + a1*x + a2*x2 + a3*x3

Note

The definition must be made in a part program.

Syntax
FCTDEF(<Poly_No>,<Lo_Limit>,<Up_Limit>,a0,a1,a2,a3)

Meaning

Parameter Meaning
<Poly_No>: Number of the polynomial function
<Lo_Limit>: Lower limit of the function values
<Up_Limit>: Upper limit of the function values
a0, a1, a2, a3: Polynomial coefficient

Note

Polynomial coefficients (a2, a3) that are not required can be omitted when programming
the FCTDEF(...) function.

System variable
Read and write access to polynomial coefficients and parameters is also possible from
synchronized actions via the following system variables:

System variable Meaning
$AC_FCTLL[<Poly_No>]: Lower limit for function value
$AC_FCTUL[<Poly_No>]: Upper limit for function value
$AC_FCT0[<Poly_No>]: a0

$AC_FCT1[<Poly_No>]: a1

$AC_FCT2[<Poly_No>]: a2

$AC_FCT3[<Poly_No>]: a3

<Poly_No>: The number specified during the definition of the
polynomial function (see above: Syntax)

Work preparation
3.17 Synchronized actions

NC programming
932 Programming Manual, 06/2019, A5E47437142B AA

Part program
When writing system variables in the part program, preprocessing stop STOPRE must be
programmed explicitly for block-synchronous writing.

Note
Block-synchronous writing in the part program

So that the system variables can be written block-synchronously in the part program,
the STOPRE command (preprocessing stop) must be used after writing the system variables.

Synchronized action
When writing system variables in synchronized actions, they take effect immediately.

Use
The function value f(x) of the polynomial can be used as input value in synchronized actions,
e.g. for the following functions:

● "Polynomial evaluation (SYNFCT) (Page 957)"

● "Online tool offset (FTOC) (Page 962)"

Example: Linear dependency

Figure 3-12 Example of linear dependency

Parameter Meaning
<Poly_No>: Number of the polynomial, e.g. = 1
<Lo_Limit>: Lower limit of the function values = -100
<Up_Limit>: Upper limit of the function values = 100
a0: Axis section on the ordinate (feedrate):

(5 - 4) / 100 = 5 / a0

a0 = 100 * 5 / (5 - 4) = 500
a1: Gradient of the straight line:

a1 = 100 / (4 - 5) = -100

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 933

Parameter Meaning
a2: = 0 (no square component)
a3: = 0 (no cubic component)

Program code
FCTDEF(1, -100, 100, 500, -100, 0, 0)
; Or in abbreviated notation without parameters a2 and a3
FCTDEF(1, -100, 100, 500, -100)

3.17.4.17 Overlaid movements ($AA_OFF)

Overlaid movements
The system variable $AA_OFF can be used to specify a position offset in a channel axis which
is traversed immediately:

$AA_OFF[<channel axis>] = <position offset>

The following machine data can be used to set whether the position offset of the system
variable is to be assigned or summed up (integrated):

MD36750 $MA_AA_OFF_MODE, bit 0 = <value>

<value> Meaning
0 Assignment: $AA_OFF = <position offset>
1 Summing (integration): $AA_OFF += <position offset>

Limitation of the overlay velocity
The maximum permissible velocity with which the position offset can be traversed can be set
via the machine data:

MD32070 $MA_CORR_VELO (axis velocity for overlay)

Axial jerk limitation
Setting the following machine data activates an axial jerk limitation for the $AA_OFF overlaying:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE (basic position of axial jerk limitation) = 1

The axial jerk is limited to the value set in MD32430 $MA_JOG_AND_POS_MAX_JERK (axial
jerk).

Note

No predictive velocity control can be made for the overlaid $AA_OFF motion. This can cause
a discontinuous velocity change, in particular for clocked specification (via synchronous
actions) for $AA_OFF overlay values. In such cases, we recommend the deactivation of the jerk
limitation when possible.

Work preparation
3.17 Synchronized actions

NC programming
934 Programming Manual, 06/2019, A5E47437142B AA

Upper limit of the compensation value
The value of $AA_OFF can be limited via the following setting data:

SD43350 $SA_AA_OFF_LIMIT (upper limit of the compensation value $AA_OFF in case of
clearance control)

The status of the limitation can be read via the following system variable:

$AA_OFF_LIMIT[<axis>] == <value>

Value Meaning
-1 Compensation value is limited in the negative direction
1 Compensation value is limited in the positive direction.
0 No limitation of the offset value

Reset behavior
With static synchronized actions (IDS = <number> DO $AA_OFF = <value>), deselection
of the position offset effective in $AA_OFF results in an immediate new overlaid movement.
The reset behavior with regard to $AA_OFF can therefore be set via the following machine data:

MD36750 $MA_AA_OFF_MODE, bit 1 = <value>

<value> Meaning
0 The position offset in $AA_OFF is deselected with RESET
1 The position offset in $AA_OFF is retained after RESET

JOG mode
Execution of an overlaid movement because of $AA_OFF can also be enabled for JOG mode:

MD36750 $MA_AA_OFF_MODE, bit 2 = <value>

<value> Meaning
0 JOG mode: Overlaid movement because of $AA_OFF disabled
1 JOG mode: Overlaid movement because of $AA_OFF enabled

A mode change to JOG mode is only possible when the current position offset has been
traversed. Otherwise the following alarm is displayed:

Alarm "16907 Action ... only possible in stop state"

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 935

Supplementary conditions
● Interrupt routines and ASUB

When an interrupt routine is activated, modal motion-synchronous actions are retained and
are also effective in the ASUB. If the subprogram return is not made with REPOS, the modal
synchronized actions changed in the asynchronous subprogram continue to be effective in
the main program.

● REPOS
In the remainder of the block, the synchronized actions are treated in the same way as in an
interruption block. Modifications to modal synchronized actions in the ASUB are not
effective in the interrupted program. Polynomial coefficients programmed with FCTDEF are
not affected by ASUB and REPOS.
The polynomial coefficients from the calling program are active in the ASUB. The polynomial
coefficients from the ASUB continue to be active in the calling program.

● End of program
Polynomial coefficients programmed with FCTDEF remain active after the end of program.

● Block search: Collection of the polynomial coefficients
During block search with calculation, the polynomial coefficients are collected in the system
variables.

● Block search: Deselection of active overlaid movements
During block search, the CORROF and DRFOF commands are collected and output in an
action block. All the deselected DRF offsets are collected in the last block that
contains CORROF or DRFOF.
The commands for the deselection of overlaid movements CORROF(<axis>, "AA_OFF")
are not collected during a block search. If a user wishes to continue to use this block search,
this is possible by means of block search via "SERUPRO" program testing.
Reference:
Function Manual Basic Functions; Mode Group, Channel, Program Operation (K1)

● Deselection of the position offset in case of synchronized actions
Alarm 21660 is displayed if a synchronized action is active when the position offset is
deselected via the CORROF(<axis>,"AA_OFF") command. $AA_OFF is deselected
simultaneously and not set again. If the synchronized action becomes active later in the
block after CORROF, $AA_OFF remains set and a position offset is interpolated.

References:

Programming Manual, Fundamentals

Note

The coordinate system (BCS or WCS) in which a main run variable is defined determines
whether frames will or will not be included.

Distances are always calculated in the set basic system (metric or inch). A change with G70
or G71 has no effect.

DRF offsets, zero offsets external, etc., are only taken into consideration in the case of main run
variables that are defined in the MCS.

Work preparation
3.17 Synchronized actions

NC programming
936 Programming Manual, 06/2019, A5E47437142B AA

3.17.4.18 Online tool length compensation ($AA_TOFF)

Function
In conjunction with an active orientation transformer or an active tool carrier, tool length
compensations can be applied during processing/machining in real time. Changing the
effective tool length using online tool length compensation produces changes in the
compensatory movements of the axes involved in the transformation in the event of changes
in orientation. The resulting velocities can be higher or lower depending on machine kinematics
and the current axis position.

Velocity and acceleration with which specified tool length compensations can be traversed via
the system variable $AA_TOFF, can be specified via the following machine data:

● MD21194 $MC_TOFF_VELO (velocity, online offset in tool direction)

● MD21196 $MC_TOFF_ACCEL (acceleration, online offset in tool direction)

For further information regarding the activation of the function, see:

References:

Programming Manual, Job Planning; Section "Transformations "TOFFON, TOFFOF""

Applications in synchronized actions
In synchronized actions, tool length compensations can be applied in all three dimensions via
the system variable $AA_TOFF. The three geometry axis names X, Y, Z are used as index. All
three offset directions can be active at the same time.

For an active orientation transformation or for an active tool carrier that can be oriented, the
offsets are effective in the respective tool axes. An overlaid motion must be switched off with
TOFFOF() before switching a transformation on or off.

After deselection of the tool length compensation in one dimension, the value of the system
variable $AA_TOFF in this dimension is equal to 0.

Mode of operation of the offset in the tool direction
The tool length compensations do not change the tool parameters, but are taken into account
within the transformation or the tool carrier that can be orientated, so that offsets are obtained
in the tool coordinate system.

For each dimension, it is possible to define whether the tool length compensation specified in
$AA_TOFF should be calculated as an absolute or incremental (integrating) value via the
following machine data:

MD21190 $MC_TOFF_MODE (operation of tool offset in tool direction)

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 937

The current value of the tool length compensation can be read via the system variable
$AA_TOFF_VAL.

Note

An evaluation of the variables $AA_TOFF_VAL is only useful in conjunction with an active
orientation transformation or an active tool carrier.

Examples

Selecting the online tool length compensation
Machine data for online tool length compensation:

● MD21190 $MC_TOFF_MODE = 1

● MD21194 $MC_TOFF_VEL[0] = 10000

● MD21194 $MC_TOFF_VEL[1] = 10000

● MD21194 $MC_TOFF_VEL[2] = 10000

● MD21196 $MC_TOFF_ACC[0] = 1

● MD21196 $MC_TOFF_ACC[1] = 1

● MD21196 $MC_TOFF_ACC[2] = 1

Activate online tool length compensation in the part program:

Program code
N5 DEF REAL XOFFSET
; Activate orientation transformation
N10 TRAORI
; Activate tool length compensation in the Z direction
N20 TOFFON(Z)
; Tool length compensation in the Z direction: 10 mm
N30 WHEN TRUE DO $AA_TOFF[Z] = 10
G4 F5
...
; Static synchronized action: Tool length compensation in the X direction
; corresponds to the position of the X2 axis in the WCS

N50 ID=1 DO $AA_TOFF[X] = $AA_IW[X2]
G4 F5
...
; Note: Current total tool length compensation in the X direction
N100 XOFFSET = $AA_TOFF_VAL[X]
; Retract the tool length compensation in the X direction to 0
N120 TOFFON(X, -XOFFSET)
G4 F5

Work preparation
3.17 Synchronized actions

NC programming
938 Programming Manual, 06/2019, A5E47437142B AA

Deselecting the online tool length compensation

Program code
; Activate orientation transformation
N10 TRAORI
; Activate tool length compensation in the X direction
N20 TOFFON(X)
; Tool length compensation in the X direction: 10 mm
N30 WHEN TRUE DO $AA_TOFF[X] = 10
G4 F5
...
; Delete tool length compensation in the X direction
; No axis is traversed. To the current position in the WCS,
; the position offset in accordance with the current orientation
; is added.

N80 TOFFOF(X)
N90 TRAFOOF

Activating and deactivating in the part program
The online tool length compensation is activated in the part program with TOFFON and
deactivated with TOFFOF. When activating for the respective offset direction, an offset value
can be specified, e.g. TOFFON(Z,25), which is then immediately traversed. The status of the
online tool length compensation is activated at the NC/PLC interface via the following signals:

● DB21, ... DBX318.2 (TOFF active)

● DB21, ... DBX318.3 (TOFF movement active)

Note

The online tool length compensation remains inactive until it is reselected using via TOFFON
in the part program.

Behavior at reset and power on
The behavior at reset can be set via the machine data:

MD21190 $MC_TOFF_MODE, bit 0 = <value> (operation of tool offset in tool direction)

Value Meaning
0 The tool length offset $AA_TOFF is deselected at reset
1 The tool length offset $AA_TOFF is retained at reset

This is always necessary in case of synchronized actions IDS=<number> DO
$AA_TOFF[n]=<value>, as otherwise there would be an immediate tool length
compensation.

Similarly, a transformation or a tool carrier that can be oriented, can be deselected after reset
via the following machine data:

MD20110 $MC_RESET_MODE_MASK (initial setting after reset)

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 939

The tool length compensation must also be deleted in this case.

If a tool length offset is to remain active extending beyond a reset, and a transformation change
or a change of the tool carrier that can be oriented takes place, then alarm 21665 "Channel %1
$AA_TOFF[] reset" is output. The tool length compensation is set to 0.

After power on, all tool length offsets are set to 0.

The function is deactivated after POWER ON.

Behavior at change of operating mode
The tool length compensation remains active after a change of operating mode. The offset is
executed in all operating modes except JOG and REF.

If a tool length compensation is traversed because of $AA_TOFF[] at a change of operating
mode, the operating mode changeover is only carried out after the traversal of the tool length
compensation. Alarm 16907 "Channel %1 action %2 <ALNX> possible only in stop state" is
displayed.

Behavior with REPOS
The tool length compensation is active in REPOS mode.

Supplementary conditions
With an existing tool length offset, the following supplementary conditions must be taken into
account:

● A transformation must be switched off with TRAFOOF.

● Before activating a transformation in the part program, an active tool length offset must be
deleted with TOFFOF.

● A transformation is switched off when changing over from CP to PTP. A tool length offset
must be deleted before the changeover. If a tool length compensation is active when you
change to axis-specific manual travel in JOG mode, the change to PTP is not performed. CP
remains active until the tool length compensation has been deleted via TOFFOF.

● Before a geometry axis interchange, an active tool length offset in the direction of the
geometry axis must be deleted via TOFFOF.

● Before a change of plane, an active tool length offset must be deleted via TOFFOF.

● The TOFFON and TOFFOF are not collected during a block search and not output in the
action block.

3.17.4.19 Current block in the interpolator ($AC_BLOCKTYPE, $AC_BLOCKTYPEINFO,
$AC_SPLITBLOCK)

Information on the block currently being processed in the main run can be read in synchronized
actions via the following system variables.

Work preparation
3.17 Synchronized actions

NC programming
940 Programming Manual, 06/2019, A5E47437142B AA

$AC_BLOCKTYPE and $AC_BLOCKTYPEINFO
The system variable $AC_BLOCKTYPE contains the block type or the ID for the function that
generated the block.

The system variable $AC_BLOCKTYPEINFO contains, in addition to the block type (thousands
position), the function-specific cause for the generation of the intermediate block.

$AC_BLOCKTYPE $AC_BLOCKTYPEINFO
Value Meaning: Current block has been gener‐

ated because of ...
Value Meaning

0 Programmed block! - -
1 NC as intermediate block 1000 Contains no further information
2 Chamfer/rounding 2001 Straight line

2002 Circle
3 Smooth approach/retraction (SAR) 3001 Approach with straight line

3002 Approach with quadrant
3003 Approach with semicircle

4 Tool offset 4001 Approach block after STOPRE
4002 Connection blocks if intersection point not found
4003 Point-type circle on inner corners

(on TRACYL only)
4004 Bypass circle (or conical cut) at outer corners
4005 Approach blocks for offset suppression
4006 Approach blocks on repeated TRC activation
4007 Block split due to excessive curvature
4008 Compensation blocks for 3D front milling (tool vector parallel

to plane vector)
5 Corner rounding 5001 Rounding contour through G641

5002 Rounding contour through G642
5003 Rounding contour through G643
5004 Rounding contour through G644

6 Tangential tracking (TLIFT) 6001 Linear movement of the tangential axis without lift movement
6002 Non-linear movement of the tangential axis (polynomial)

without lift movement
6003 Lift movement: Tangential axis and lift movement start simul‐

taneously
6004 Lift movement: Tangential axis does not start until a certain

lift position is reached
7 Path segmentation 7001 Programmed path segmentation is active without punching

or nibbling
7002 Programmed path segmentation with active punching or nib‐

bling
7003 Automatically, internally generated path segmentation

8 Compile cycle x x: ID of the compile cycle application that generated the block
9 Path-relative orientation interpolation (OR‐

IPATH/ORIROTC)
9000 Interpolation of the tool orientation with ORIPATH
9001 Interpolation of the rotation of the tool with ORIROTC

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 941

$AC_BLOCKTYPE $AC_BLOCKTYPEINFO
Value Meaning: Current block has been gener‐

ated because of ...
Value Meaning

10 Pole handling with orientation transforma‐
tion

10000 Look-ahead positioning of the pole axis
10001 Traversal of the pole taper

$AC_SPLITBLOCK
The system variable $AC_SPLITBLOCK can be used to determine whether an internally
generated block or a programmed block shortened by the NC is present.

$AC_SPLITBLOCK
Value Meaning:

0 Programmed block. A block generated by the compressor is also treated as a programmed
block.

1 Internally generated block or a shortened original block
3 Last block in a chain of internally generated blocks or shortened original blocks

Example
Synchronized actions for counting smoothing blocks.

The query of the system variable $AC_TIMEC == 0 (interpolation cycles since start of the block)
ensures that the block type is determined only once at the start of the block.

Program code Comment
$AC_MARKER[0]=0 ; Counter for all smoothing blocks
$AC_MARKER[1]=0 ; Counter for G641 smoothing blocks
$AC_MARKER[2]=0 ; Counter for G642 smoothing blocks
...
; Synchronized action for counting all smoothing blocks
ID=1 WHENEVER ($AC_TIMEC==0) AND ($AC_BLOCKTYPE==5) DO
 $AC_MARKER[0] = $AC_MARKER[0] + 1
...
; Synchronized action for counting the G641 smoothing blocks
ID=2 WHENEVER ($AC_TIMEC==0) AND ($AC_BLOCKTYPEINFO==5001) DO
 $AC_MARKER[1] = $AC_MARKER[1]+1
...
; Synchronized action for counting the G642 smoothing blocks
ID=3 WHENEVER ($AC_TIMEC==0) AND ($AC_BLOCKTYPEINFO==5002) DO
 $AC_MARKER[2] = $AC_MARKER[2] + 1
...

Work preparation
3.17 Synchronized actions

NC programming
942 Programming Manual, 06/2019, A5E47437142B AA

3.17.4.20 Initialization of array variables (SET, REP)

Function
Array variables can also be initialized in synchronized actions via the SET and REP commands.

For a detailed description of the commands, refer to:

References
Programming Manual, Job Planning; Section "Flexible NC programming" > "Variables" >
"Definition and initialization of array variables (DEF, SET, REP)"

Example

Program code
PROC MAIN
N10 DEF REAL SYG_IS[3,2]
...
WHEN TRUE DO SYG_IS[0,0]=REP(0.0,3)
WHEN TRUE DO SYG_IS[1,1]=SET(3,4,5)
...

Supplementary conditions
● Only array variables that can be written in synchronized actions are initialized.

3.17.4.21 Grinding-specific system variables ($AC_IN_KEY_G...)
When grinding, input signals asynchronous with the machine operation must be identified and
the appropriate actions must be integrated in the program sequence. The following system
variables and NC/PLC interface signals are available:

System variable NC/PLC interface DB21, ... Description
NC-internal communication

$AC_IN_KEY_G_ENABLE[1 ... 8] 1 --- Input signal enable on the NC side
Communication NC → PLC 2)

$AC_IN_KEY_G_ISENABLE[1 ...
8] 1)

DBX390.0 ... 7 Input signal enable

$AC_IN_KEY_G_RUN_OUT[1 ... 8] DBX391.0 ... 7 Enable request for the action on the NC side (optional)
Communication PLC → NC 3)

$AC_IN_KEY_G[1 ... 8] DBX385.0 ... 7 Input signal
--- DBX386.0 ... 7 1) Input signal inhibit on the PLC side

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 943

System variable NC/PLC interface DB21, ... Description
$AC_IN_KEY_G_RUN_IN[1 ... 8] DBX387.0 ... 7 Enable request for the action on the PLC side (optional)
1) As a result of the ANDlogic operation of the NC enable signal on the NC side in $AC_IN_KEY_G_ENABLE and PLC enable
signal NOT(DBX386.0 ... 7), the enable signal is formed in $AC_IN_KEY_G_ISENABLE and DBX390.0 ... 7.
2) The content of the system variable is transferred in the NC/PLC interface
3) The content of the NC/PLC interface is transferred in the system variable

Example

Inputs
● The main program starts a cycle (ZYKLUS_1), in which grinding is executed as well as the

intermediate dressing.

● An operator can request an "intermediate dressing" action asynchronous to the machining
operation itself using an input signal of the PLC I/O.

● Identifying the input signal and requesting the action is realized in a technology cycle.
Technology cycle ("SIGNAL_IN_x") is called in the action part of the synchronized action (ID
<xy>) set up in the cycle.

The call schematic, the relevant commands and the signal flow are shown in the following
diagram.

Work preparation
3.17 Synchronized actions

NC programming
944 Programming Manual, 06/2019, A5E47437142B AA

The PLC user program must provide the functions on the PLC side, for example "enable input
signal x".

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 945

Sequence
● Main program

– Call cycle "ZYKLUS_1"

● Cycle "ZYKLUS_1"

– Set the enable for input signal x ($AC_IN_KEY_G_ENABLE)

– Set up the synchronized action with technology cycle "SIGNAL_IN_x"

– Initialize the trigger for action x "intermediate dressing" (R01)

– Grind the component

● Technology cycle "SIGNAL_IN_x" (in parallel with the cycle)

– Identify the input signal ($AC_IN_KEY_G) with the enable active
($AC_IN_KEY_G_ISENABLE)

– Request the enable of action x from the PLC ($AC_IN_KEY_G_RUN_OUT)

– Wait for the enable of action x from the PLC ($AC_IN_KEY_G_RUN_IN)

– Request action x in cycle (R01)

– Feedback signal of the request to the PLC ($AC_IN_KEY_G_RUN_OUT)

– Wait for acknowledgment from the PLC ($AC_IN_KEY_G_RUN_IN)

● Cycle "ZYKLUS_1" (after completing grinding)

– Reset the enable for input signal x ($AC_IN_KEY_G_ENABLE)

– If action x is requested ⇒ execute intermediate dressing

– ... (possibly re-execute grinding/intermediate dressing operations etc.)

● PLC user program

– Function "Enable input signal x":
Set interface signal DBX386.0 ... 7

– Function "Enable input signal x":
Logically combine (AND) the input signal from the PLC I/O and the enable of input signal
(DBX390.0 ... 7) - and set the result in the interface (DBX385.0 ... 7)

– Function "Enable action x":
Check/set the interface signals DBX391.0 ... 7 / DBX387.0 ... 7

3.17.4.22 Status Synchronized action disabled ($AC_SYNA_STATE)
System variable $AC_SYNA_STATE outputs in bit code whether a synchronized action is
disabled via the PLC (see "Coordination via PLC (Page 1011)") or via a synchronized action is
disabled (see "Coordination via part program and synchronized action (LOCK, UNLOCK,
CANCEL) (Page 1011)").

These bits have the following meaning:

Bit Value Meaning
0 0 Not disabled

1 Disabled via PLC or synchronized action

Work preparation
3.17 Synchronized actions

NC programming
946 Programming Manual, 06/2019, A5E47437142B AA

Bit Value Meaning
1 0 Not disabled via PLC

1 Disabled via PLC
2 0 Not disabled via synchronized action

1 Disabled via synchronized action

Disabling via PLC or synchronized action have different levels of priority. The following
hierarchy of priorities applies:

Priority 1 (highest priority): Disabled via PLC across all channels (⇒ all synchronized
actions in the channel are inhibited)

Priority 2: Disabled via synchronized action
Priority 3: Individual disabling via PLC (⇒ a single synchronized action

in the channel is disabled)

$AC_SYNA_STATE only outputs the value of the disable with the highest priority, even if
disabling is simultaneously active via PLC and Synchronized action:

Status Highest
priority

$AC_SYNA_STATE
Bit 2 Bit 1 Bit 0 Bit-coded value

Channel-wide disable via PLC is active.
In addition, disable via synchronized action
can be active.

Channel-
wide disable

via PLC

0 1 1 3

Channel-wide disable via PLC is not active.
Disable via synchronized action is active.
Additionally, a single disable can be active
via PLC.

Disabled via
synchron‐
ized action

1 0 1 5

Channel-wide disable via PLC is not active.
Disable via synchronized action is not active.
Single disable via PLC is active.

Single disa‐
ble via PLC

0 1 1 3

No disable is active. - 0 0 0 0

3.17.5 User-defined variables for synchronized actions

GUD variables capable of synchronized actions
As well as specific system variables, predefined global synchronized-action user variables
(synchronized action GUD) can also be used in synchronized actions. The number of
synchronized action GUD items available to the user is parameterized for each specific data
type and access using the following machine data:

● MD18660 $MM_NUM_SYNACT_GUD_REAL[<x>] = <number>

● MD18661 $MM_NUM_SYNACT_GUD_INT[<x>] = <number>

● MD18662 $MM_NUM_SYNACT_GUD_BOOL[<x>] = <number>

● MD18663 $MM_NUM_SYNACT_GUD_AXIS[<x>] = <number>

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 947

● MD18664 $MM_NUM_SYNACT_GUD_CHAR[<x>] = <number>

● MD18665 $MM_NUM_SYNACT_GUD_STRING[<x>] = <number>

The index <x> is used to specify the data block (access rights) and the value <number> to
specify the number of synchronized-action GUDs for each data type (REAL, INT, etc.). A 1-
dimensional array variable with the following naming scheme is then created in the relevant
data block for each data type.: SYG_<data type><access right>[<index>]:

Index
<x>

 Data type
(MD18660 to MD18665)

 Block REAL INT BOOL AXIS CHAR STRING
0 SGUD SYG_RS[i] SYG_IS[i] SYG_BS[i] SYG_AS[i] SYG_CS[i] SYG_SS[i]
1 MGUD SYG_RM[i] SYG_IM[i] SYG_BM[i] SYG_AM[i] SYG_CM[i] SYG_SM[i]
2 UGUD SYG_RU[i] SYG_IU[i] SYG_BU[i] SYG_AU[i] SYG_CU[i] SYG_SU[i]
3 GUD4 SYG_R4[i] SYG_I4[i] SYG_B4[i] SYG_A4[i] SYG_C4[i] SYG_S4[i]
4 GUD5 SYG_R5[i] SYG_I5[i] SYG_B5[i] SYG_A5[i] SYG_C5[i] SYG_S5[i]
5 GUD6 SYG_R6[i] SYG_I6[i] SYG_B6[i] SYG_A6[i] SYG_C6[i] SYG_S6[i]
6 GUD7 SYG_R7[i] SYG_I7[i] SYG_B7[i] SYG_A7[i] SYG_C7[i] SYG_S7[i]
7 GUD8 SYG_R8[i] SYG_I8[i] SYG_B8[i] SYG_A8[i] SYG_C8[i] SYG_S8[i]
8 GUD9 SYG_R9[i] SYG_I9[i] SYG_B9[i] SYG_A9[i] SYG_C9[i] SYG_S9[i]

Where i = 0 to (<number> - 1)
Block: _N_DEF_DIR/_N_ ... _DEF, e.g for SGUD ⇒ _N_DEF_DIR/_N_SGUD_DEF

Properties
Synchronized-action GUD have the following properties:

● Synchronized-action GUD can be read and written in synchronized actions and part
programs/cycles.

● Synchronized-action GUD can be accessed via the OPI.

● Synchronized-action GUD is displayed on the HMI user interface in the "Parameters"
operating area.

● Synchronized-action GUD can be used on the HMI in the Wizard, in the variables view and
in the variables log.

● The array size for STRING type synchronized action GUD is set to a fixed value of 32 (31
characters + \0).

● Even if no definition files have been created manually for global user data (GUD),
synchronized-action GUD defined using machine data can be read in the corresponding
GUD block from the HMI.

Note

User variables (GUD, PUD, LUD) can only be defined with the same name as synchronized-
action GUD (DEF ... SYG_xy) if no synchronized-action GUD has been parameterized
with the same name (MD18660 - MD18665). These user-defined items of GUD cannot be
used in synchronized actions.

Work preparation
3.17 Synchronized actions

NC programming
948 Programming Manual, 06/2019, A5E47437142B AA

Access rights
The access rights defined in a GUD definition file remain valid and refer only to the GUD
variables defined in this GUD definition file.

Deletion behavior
If the content of a particular GUD definition file is reactivated, the old GUD data block in the
active file system is deleted first. The configured synchronized-action GUD is also reset at this
point. This process is also possible using the HMI in the operator area "Services" > "Define and
activated user data (GUD)".

3.17.6 Language elements for synchronized actions and technology cycles
The following language elements can be used in synchronized actions and technology cycles:

Fixed addresses
L Subprogram number
F Feed
S 1) 2) Spindle
M 1) 2) M function
H1) H function
1) Chapter: "Output of M, S and H auxiliary functions to the PLC (Page 955)"
2) Chapter: "Traversing spindles (M, S, SPOS) (Page 980)"

Fixed addresses with axis extension: Miscellaneous
POS Traversing axes, to position (POS) (Page 967)
POSA Modal positioning axis
SPOS Spindle positioning

Chapter: "Traversing spindles (M, S, SPOS) (Page 980)"
MOV 1) Positioning axis

Chapter: "Traversing axes, endless (MOV) (Page 973)"
FA Axial feedrate (FA) (Page 974)
OVRA Axial override
ACC Axial acceleration
MEASA Axial measurement with deletion of distance-to-go
MEAWA Axial measurement without deletion of distance-to-go

Chapter: "Measurement (MEAWA, MEAC) (Page 999)"
MEAC Cyclic measuring

Chapter: "Measurement (MEAWA, MEAC) (Page 999)"
SCPARA Parameter set changeover
VELOLIMA Axial velocity/speed limitation
ACCLIMA Axial acceleration limitation

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 949

Fixed addresses with axis extension: Miscellaneous
JERKLIMA Axial jerk limitation
1) Not permitted in technology cycles

Settable addresses: Travel to fixed stop 1)
FXS Activate travel to fixed stop
FXST Torque limit for travel to fixed stop
FXSW Monitoring window for travel to fixed stop
FOC Non-modal torque/force limitation
FOCON Activate travel with limited torque/force
FOCOF Deactivate travel with limited torque/force
1) Chapter: "Travel to fixed stop (FXS, FXST, FXSW, FOCON, FOCOF, FOC) (Page 1002)"

Settable addresses: Couplings > Generic coupling 1)

CPBC Block change criterion with active coupling
CPDEF Create coupling module
CPDEL Delete coupling module
CPFMOF Behavior of the following axis when switching off the coupling
CPFMON Behavior of the following axis when switching on the coupling
CPFMSON Synchronization mode during coupling
CPFPOS Synchronized position of the following axis when switching on
CPFRS Reference system for the coupling module of the following axis
CPLA 2) Assigning an axis as leading axis to a following axis
CPLCTID Number of the curve table for the coupling of the following axis
CPLDEF Definition of the reference: Leading axis to following axis
CPLDEL Cancellation of the reference: Leading axis to following axis
CPLDEN Coupling factor: Numerator
CPLNUM Coupling factor: Denominator
CPLDYPRIO Priority of the leading axis for the dynamic limitation
CPLDYVLL Limitation of the overlaid motion of the leading axis: Lower limit
CPLDYVLU Limitation of the overlaid motion of the leading axis: Upper limit
CPLINSC Scaling factor for the input value of the leading axis
CPLINTR Offset value for the input value of the leading axis
CPLOF Coupling of leading axis to following axis: Switch off
CPLON Coupling of leading axis to following axis: Switch on
CPLOUTSC Scaling of the output value
CPLOUTTR Offset of the output value
CPLPOS Synchronized position of the leading axis when switching on
CPLSETVAL Coupling type of the following axis to the leading axis
CPMALARM Define alarm behavior
CPMBRAKE 2) Defining the response to a stop signal and commands
CPMPRT Define start behavior for program test

Work preparation
3.17 Synchronized actions

NC programming
950 Programming Manual, 06/2019, A5E47437142B AA

Settable addresses: Couplings > Generic coupling 1)

CPMRESET Define reset behavior
CPMSTART Define start behavior
CPMVDI Define behavior regarding NC/PLC interface signals
CPOF Deactivation of the coupling to all defined leading axes
CPON Activation of the coupling to all defined leading axes
CPRES 2) Activates the coupling parameter parameterized in the machine data
CPSETTYPE Define basic coupling properties
CPSYNCOP Position synchronism "coarse"
CPSYNCOP2 Position synchronism 2 "coarse"
CPSYNFIP Position synchronism "fine"
CPSYNFIP2 Position synchronism 2 "fine"
CPSYNCOV Velocity synchronism "coarse"
CPSYNFIV Velocity synchronism "fine"
1) Chapter: "Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 994)"
2) Currently not available in synchronized actions

G functions: Set measuring system 1)
G70 Inch measuring system
G71 Metric measuring system
G700 Inch measuring system
G710 Metric measuring system
1) Chapter: "Setting the measuring system (G70, G71, G700, G710) (Page 971)"

Predefined subprograms: Miscellaneous
POLFA Axial retraction position for single axis
POLFC Axial retraction position for channel axes
STOPREOF Cancel preprocessing stop (STOPREOF) (Page 965)
RDISABLE Programmed read-in disable (RDISABLE) (Page 964)
DELDTG Delete distance-to-go (DELDTG) (Page 965)
LOCK Lock synchronized action
UNLOCK Unlock synchronized action
ICYCON Technology cycle: One block per interpolator clock cycle
ICYCOF Technology cycle: All blocks in one interpolator clock cycle
SYNFCT Polynomial evaluation (SYNFCT) (Page 957)
FTOC Tool fine compensation

Section: "Online tool offset (FTOC) (Page 962)"
SOFTENDSA Software limit switch
PROTA Change status of a protection zone
SETM Set marker of the channel coordination

Section: "Channel synchronization (SETM, CLEARM) (Page 1004)"

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 951

Predefined subprograms: Miscellaneous
CLEARM Delete marker of the channel coordination

Section: "Channel synchronization (SETM, CLEARM) (Page 1004)"
RET Subprogram return
GET Request axis

Section: "Axis replacement (GET, RELEASE, AXTOCHAN)
(Page 974)"

RELEASE Release axis
Section: "Axis replacement (GET, RELEASE, AXTOCHAN)
(Page 974)"

AXTOCHAN Transfer axis to another channel
Section: "Axis replacement (GET, RELEASE, AXTOCHAN)
(Page 974)"

AXCTSWEC Withdrawing the enable for the axis container rotation (AXCTSWEC)
(Page 981)

SETAL User-specific error reactions (SETAL) (Page 1004)
IPOBRKA Block change criterion: Deceleration ramp
ADISPOSA Tolerance window for end-of-motion criterion

Predefined subprograms: Coupling > Coupled motion 1)
TRAILON Coupled motion on
TRAILOF Coupled motion off
1) Section: "Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 994)"

Predefined subprograms: Couplings > Master value coupling 1)
LEADON Master value coupling on
LEADOF Master value coupling off
1) Section: "Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 994)"

Predefined subprograms: Couplings > Torque coupling (master/slave)
MASLON Coupling on
MASLOF Coupling off
MASLDEF Define coupling
MASLDEL Delete coupling
MASLOFS Coupling with slave spindle off

Predefined functions: Coupling > Curve tables 1)
CTAB Calculates the following axis position based on the leading axis posi‐

tion using the curve table
CTABINV Calculates the leading axis position based on the following axis posi‐

tion using the curve table
CTABID Determines the table number of the curve table

Work preparation
3.17 Synchronized actions

NC programming
952 Programming Manual, 06/2019, A5E47437142B AA

Predefined functions: Coupling > Curve tables 1)
CTABLOCK Disable curve table
CTABUNLOCK Enable curve table
CTABISLOCK Determines the lock status of the curve table
CTABEXISTS Checks whether the curve table exists
CTABMEMTYP Determines the storage location of the curve table (static/dynamic

memory)
CTABPERIOD Determines the periodicity of the curve table
CTABNO Determines the number of curve tables
CTABNOMEM Determines the number of existing curve tables in a specific storage

location
CTABSEG Determines the number of already used curve segments in a specific

storage location
CTABSEGID Determines the number of already used curve segments in a specific

table
CTABFSEG Determines the number of curve segments that are still possible in a

specific table
CTABMSEG Determines the maximum possible number of curve segments in a

specific storage location
CTABPOL Determines the number of already used polynomials in a specific stor‐

age location
CTABPOLID Determines the number of already used polynomials in a specific table
CTABFPOL Determines the number of polynomials that are still possible in a spe‐

cific table
CTABMPOL Determines the maximum possible number of polynomials in a specific

storage location
CTABTSV Determines the following value at the start of the table
CTABTEV Determines the following value at the end of the table
CTABTSP Determines the leading value at the start of the table
CTABTEP Determines the leading value at the end of the table
CTABTMIN Determines the minimum following value of the table
CTABTMAX Determines the minimum following value of the table
CTABFNO Determines the number of curve tables that are still possible in a spe‐

cific storage location
CTABSSV Determines the starting value of a table segment for the following axes
CTABSEV Determines the end value of a table segment for the following axes
1) Section: "Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 994)"

Predefined functions: Arithmetic
SIN Sine
ASIN Arc sine
COS Cosine
ACOS Arc cosine
TAN Tangent
ATAN2 Arc tangent 2

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 953

Predefined functions: Arithmetic
SQRT Square root
POT 2nd power (square)
TRUNC Integer component
ROUND Round to next integer
ROUNDUP Rounding up of an input value to the next integer
ABS Absolute value
LN Natural logarithm
EXP Exponential function
MINVAL Smaller of two values
MAXVAL Larger of two values
BOUND Check for defined value range

Predefined functions: Current machine data values
GETMDACT Determines the current value of the machine data
GETMDPEAK Determines the maximum value that has occurred in the machine data

since the last RESETPEAK
GETMDLIM Determines the maximum or minimum limit value of the machine data
RESETPEAK Resets the maximum value again for GETMDPEAK

Predefined functions: Format conversions
ITOR INT → REAL
RTOI REAL → INT
RTOB REAL → BOOL
BTOR BOOL → REAL
ITOB INT → BOOL
BTOI BOOL → INT

Predefined functions: Safety Integrated
SIRELAY Activation of the safety functions parameterized with SIRELIN, SIREL‐

OUT and SIRELTIME

Predefined functions: Miscellaneous
POSRANGE Position in specified reference range (POSRANGE) (Page 972)
PRESETON Actual value setting with loss of the referencing status (PRESETON)

(Page 984)
PRESETONS Actual value setting without loss of the referencing status (PRESE‐

TONS) (Page 989)

Predefined procedures: Miscellaneous
CANCELSUB Cancel the actual subprogram level (CANCELSUB) (Page 1005)

Work preparation
3.17 Synchronized actions

NC programming
954 Programming Manual, 06/2019, A5E47437142B AA

References
For detailed descriptions of the language elements not described in this manual, refer to:

● Programming Manual, Fundamentals

● Programming Manual, Job Planning

3.17.7 Language elements for technology cycles only
The following language elements may only be used in technology cycles:

Jump statements
IF Branch
GOTO Jump to label, search direction forward, then backward
GOTOF Jump to label, search direction forward
GOTOB Jump to label, search direction backward

End of program
M02 End of program
M17 End of program
M30 End of program
RET End of program

References
For detailed descriptions of the statements not described in this manual, refer to:

● Programming Manual, Fundamentals

● Programming Manual, Job Planning

3.17.8 Actions in synchronized actions

3.17.8.1 Output of M, S and H auxiliary functions to the PLC

Output timing
Auxiliary functions of the M, S and H type can be output from synchronized actions. The output
to the PLC is immediate, i.e. directly in the interpolator clock cycle in which the action is
executed.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 955

Any output times set via the machine data for auxiliary functions have no effect when output
from synchronized actions:

● MD11110 $MN_AUXFU_GROUP_SPEC (auxiliary function group specification)

● MD22200 $MC_AUXFU_M_SYNC_TYPE (output time of M functions)

● MD22210 $MC_AUXFU_S_SYNC_TYPE (output time of the S functions)

● MD22230 $MC_AUXFU_H_SYNC_TYPE (output time of the H functions)

Maximum number

General
A maximum of 10 auxiliary functions can be output simultaneously from the part program and
the active synchronized actions of a channel, i.e. in one OB40 cycle of the PLC.

Synchronized-action-specific
The maximum permissible number of auxiliary functions in the action part of a synchronized
action is:

● M functions: 5

● S functions: 3

● H functions: 3

Non-modal synchronized actions
In non-modal synchronized actions (without specification of ID or IDS), auxiliary functions can
only be output in conjunction with the scanning frequency WHEN or EVERY.

Predefined M functions
Predefined M functions generally must not be output in synchronized actions.

Exceptions: M3, M4, M5, M40, M41, M42, M43, M44, M45, M70 and M17

See also
Frequency (WHENEVER, FROM, WHEN, EVERY) (Page 906)

Work preparation
3.17 Synchronized actions

NC programming
956 Programming Manual, 06/2019, A5E47437142B AA

3.17.8.2 Reading and writing of system variables
The system variables of the NC are listed in the "System Variables" Parameter Manual with
their respective properties. System variables that can be read or written in the action part of
synchronized actions are marked with an "X" in the corresponding line (Read or Write) of the
"SA" (synchronized action) column.

Note

System variables used in synchronized actions are implicitly read and written synchronous to
the main run.

References:
System Variables Parameter Manual

3.17.8.3 Polynomial evaluation (SYNFCT)

Application
A variable that is evaluated via a polynomial can be read with the SYNFCT function in the main
run and the result can be written to another variable. Application examples:

● Feedrate as a function of drive load

● Position as a function of a sensor signal

● Laser power as a function of path velocity

Syntax
SYNFCT(<Poly_No>,<SysVar_Out>,<SysVar_In>)

Meaning

Parameter Meaning
<Poly_No>: Number of the polynomial defined with FCTDEF:

f(x) = a0 + a1*x + a2*x2 + a3*x3

<SysVar_Out>: System variable, output:
<SysVar_Out> = f(x)

<SysVar_In>: System variable, input:
x = <SysVar_In>

For information on FCTDEF, see Chapter "Polynomial coefficients, parameters ($AC_FCT ...)
(Page 932)"

Example: Additive override of the path feedrate
An override value is added to the programmed feedrate (F word):

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 957

Factive = Fprogrammed + FAC

<SysVar_Out> Meaning
$AC_VC additive path feedrate override
$AA_VC[axis] additive axial feedrate override

Input value is the actual current value $AA_CURR of the X axis.

The operating point is set to 5 A.

The feedrate may be altered by ±100 mm/min and the axial current deviation may be ±1 A.

Figure 3-13 Example: Additive control of path feed

Determining the parameters of the FCTDEF function:

FCTDEF(<Poly_No>,<Lo_Limit>,<Up_Limit>,a0,a1,a2,a3)
<Poly_No>: = 1 (example)
<Lo_Limit>: = -100
<Up_Limit>: = 100
 Polynomial: f(x) = a0 + a1x +a2x2 + a3x3

a0: 1 / 100 = 5 / a0 ⇒ a0 = 500
a1 = 100 mm/min / -1 A = -100 [mm/min / A]
a2 = 0 (not a square component)
a3 = 0 (not a cubic component)

Calculation of the override value:

SYNFCT(<Poly_No>,<SysVar_Out>,<SysVar_In>)
<Poly_No>: = 1
<SysVar_Out>: $AC_VC (additive path feedrate override)
<SysVar_In>: $AA_CURR (drive actual current value)

Programming:

Program code
N100 FCTDEF(1, -100, 100, 500, -100)

Work preparation
3.17 Synchronized actions

NC programming
958 Programming Manual, 06/2019, A5E47437142B AA

Program code
N110 ID=1 DO SYNFCT(1, $AC_VC[X], $AA_CURR[X])

Example: Multiplicative override of the path feedrate
The programmed feedrate is multiplied by a percentage factor (additional override):

Factive = Fprogrammed * FactorAC

<SysVar_Out> Meaning
$AC_OVR Path override can be specified via synchronized action

Input value is the percentage drive load $AA_LOAD of the X axis.

The operating point is set to 100% at 30% drive load.

The axis must stop at 80% load.

An excessive velocity corresponding to the programmed value +20% is permissible.

Figure 3-14 Example: Multiplicative control

Determining the parameters of the FCTDEF function:

FCTDEF(<Poly_No>,<Lo_Limit>,<Up_Limit>,a0,a1,a2,a3)
<Poly_No>: = 2 (example)
<Lo_Limit>: = 0
<Up_Limit>: = 120
 Polynomial: f(x) = a0 + a1x +a2x2 + a3x3

a0: 50 / 100 = 80 / a0 ⇒ a0 = 160
a1 = 100 % / -50 % = -2
a2 = 0 (not a square component)
a3 = 0 (not a cubic component)

Calculation of the override value:

SYNFCT(<Poly_No>,<SysVar_Out>,<SysVar_In>)
<Poly_No>: = 2

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 959

<SysVar_Out>: $AC_OVR (path override can be specified via synchronized action)
<SysVar_In>: $AA_LOAD (drive load)

Programming:

Program code
N100 FCTDEF(2, 0, 120, 160, -2)
N110 ID=1 DO SYNFCT(2, $AC_OVR[X], $AA_LOAD[X])

Example: Clearance control

Figure 3-15 Clearance control: Principle

The clearance control of the infeed axis Z is performed via the FCTDEF and SYNFCT functions
as well as by the system variables $AA_OFF and $A_INA.

Supplementary conditions:

● The analog voltage of the clearance sensor is connected via the analog input $A_INA[3].

● The position deviations are summated in $AA_OFF (integrated):
MD36750 $MA_AA_OFF_MODE, bit 0 = 1

● If the upper limit of the Z axis is exceeded by 1 mm, the X axis is stopped:
SD43350 $SA_AA_OFF_LIMIT[Z] = 1
See also Chapter "Overlaid movements ($AA_OFF) (Page 934)."

Note
$AA_OFF is effective in the basic coordinate system (BCS)

The offset is effective before the kinematic transformation in the basic coordinate system
(BCS). The example therefore cannot be used for a clearance control in the orientation
direction of the tool (workpiece coordinate system WCS).

For clearance control system with high dynamic response or 3D clearance control, see:

References:

Function Manual Special Functions; Clearance Control (TE1)
Customized responses

When the limit value SD43350 $SA_AA_OFF_LIMIT is reached, customized responses can
be triggered, for example:
● Chapter "Override ($A...OVR) (Page 925)"
● Chapter "User-specific error reactions (SETAL) (Page 1004)"

Work preparation
3.17 Synchronized actions

NC programming
960 Programming Manual, 06/2019, A5E47437142B AA

Figure 3-16 Clearance control

Determining the parameters of the FCTDEF function:

FCTDEF(<Poly_No>,<Lo_Limit>,<Up_Limit>,a0,a1,a2,a3)
<Poly_No>: = 1 (example)
<Lo_Limit>: = 0.2
<Up_Limit>: = 0.5
 Polynomial: f(x) = a0 + a1x +a2x2 + a3x3

a0: 10 / x = 20 / 0.3 ⇒ a0 = x + 0.2 = 0.15 + 0.2 = 0.35
a1 = 0.15 mm / 10 V = 1.5 * 10-2 mm/V
a2 = 0 (not a square component)
a3 = 0 (not a cubic component)

Calculation of the override value:

SYNFCT(<Poly_No>,<SysVar_Out>,<SysVar_In>)
<Poly_No>: = 1
<SysVar_Out>: $AA_OFF (overlaid movement of an axis)
<SysVar_In>: $A_INA (analog input)

Programming:

Program code: %_N_AON_SPF Comment
PROC AON ; Clearance control "ON"
 FCTDEF(1, 0.2, 0.5, 0.35, 1.5 EX-2) ; Polynomial definition
 ID=1 DO SYNFCT(1,$AA_OFF[Z],$A_INA[3]) ; Clearance control
 ID=2 WHENEVER $AA_OFF_LIMIT[Z]<>0 DO $AA_OVR[X] = 0 ; Limit value test
 RET
ENDPROC

Program code: %_N_AOFF_SPF Comment
PROC AOFF ; Clearance control "OFF"
 CANCEL(1) ; Delete clearance control
 CANCEL(2) ; Delete limit value check
 RET

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 961

Program code: %_N_AOFF_SPF Comment
ENDPROC

Program code: %_N_MAIN_MPF Comment
N100 $SA_AA_OFF_LIMIT[Z]=1
N110 AON ; Clearance control "ON"
...
N200 G1 X100 F1000
N210 AOFF ; Clearance control "OFF"
M30

See also
Online tool offset (FTOC) (Page 962)

3.17.8.4 Online tool offset (FTOC)
The FTOC function enables the overlaid movement of a geometry axis for the online tool offset,
depending on a reference value, e.g. the actual value of an arbitrary axis. The offset value is
calculated on the basis of a polynomial defined with FCTDEF (see Section "Polynomial
coefficients, parameters ($AC_FCT ...) (Page 932)"). The coefficient a0 specified in the
polynomial definition is also evaluated by FTOC.

Example: Machining and dressing in the "Grinding" technology

Figure 3-17 Dressing during machining using a dressing roller

References:

Function Manual, Extended Functions; Grinding (W4)

Syntax
FTOC(<Poly_No>,<Systemvar>,<Wear>[,<Channel_No>,<Spindle_No>])

Work preparation
3.17 Synchronized actions

NC programming
962 Programming Manual, 06/2019, A5E47437142B AA

Meaning

Parameter Meaning
<Poly_No>: Number of the polynomial defined with FCTDEF
<Systemvar>: Arbitrary system variable of the REAL type that can be used in

synchronized actions.
<Wear>: Wear parameter (length 1, 2 or 3) in which the offset value is added.
<Channel_No>: Target channel in which the offset must be applied. This enables si‐

multaneous dressing from a parallel channel. In the target channel of
the offset, the online offset must be switched on with FTOCON.
If no channel number is programmed, the offset acts in the active
channel.

<Spindle_No>: The spindle number is programmed if a non-active grinding wheel
needs to be dressed.
Requirement: One of the following functions is active
● "Constant grinding wheel peripheral speed"
● "Tool monitoring"
If no spindle number is programmed, the active tool is compensated.

Example
Compensate length of an active grinding wheel

Program code Comment
FCTDEF(1, -1000, 1000, -$AA_IW[V], 1)
; FTOC:
; Polynomial no.: 1
; System variable: $AA_IW[V] (axial actual value of the V axis)
; Wear parameter: Length 3
; Target channel: Channel 1
ID=1 DO FTOC(1, $AA_IW[V], 3, 1)
WAITM (1,1,2) ; Synchronization with the machining

channel
G1 V-0.05 F0.01 G91 ; Traversing motion of the V axis
...
CANCEL(1)

; Deselect online offset

...

Note

Because no frequency and no condition has been specified in the synchronized action, the
action part is executed in every interpolator clock cycle.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 963

3.17.8.5 Programmed read-in disable (RDISABLE)

Function
The RDISABLE command in the active section causes block processing to be stopped when
the relevant condition is fulfilled. Processing of programmed motion-synchronous actions still
continues. The read-in disable is canceled again as soon as the condition for the RDISABLE is
no longer fulfilled.

An exact stop is initiated at the end of the block containing RDISABLE irrespective of whether
or not the read-in disable is still active. The exact stop is also triggered if the control is in the
continuous-path mode (G64, G641 ... G645).

RDISABLE can be programmed with reference to the block or also modal (ID=, IDS=)!

Application
Using RDISABLE, for example, the program can be started in the interpolator clock cycle as a
function of external inputs.

Example

Program code Comment
WHENEVER $A_INA[2]<7000
DO RDISABLE

; Program processing is stopped if the voltage at input
2 drops to below 7 V (assuming that the value 1000 cor-
responds to 1 V).

...
N10 G01 X10 ; RDISABLE acts at the end of N10, if the condition is

fulfilled during its processing.
N20 Y20
...

Supplementary conditions

Read-in disable RDISABLE in conjunction with axis exchange
Acts via the synchronized actions RDISABLE read-in disable and axis exchange (e.g. path axis
→ positioning axes) together in one block, RDISABLE does not act on the action block, but the
re-approach block REPOSA implicitly generated as a result of the axis exchange:

Program code Comment
N100 G0 G60 X300 Y300
N105 WHEN TRUE DO POS[X]=20 FA[X]=20000 ; Synchronized action → REORG → REPOSA
N110 WHENEVER $AA_IM[X]<>20 DO RDISABLE ; RDISABLE acts on REPOSA
N115 G0 Y20 ; 1. X-axis, 2nd Y axis
N120 Y-20
N125 M30

Path axis X becomes a positioning axis as a result of the synchronized action in the block N105.
REORG is therefore executed in the channel with REPOSA. Therefore, RDISABLE in N110 does

Work preparation
3.17 Synchronized actions

NC programming
964 Programming Manual, 06/2019, A5E47437142B AA

not act on block N115 – but instead on the internal REPOSA block. As a consequence, to start,
positioning axis X is traversed to its programmed position and then in block N115, the Y axis to
its programmed position.

An explicit release of path axis X before traversing as positioning axis (synchronized action in
N105) with RELEASE(X) avoids the REORG operation, and the X and Y axes traverse together
in block N115.

Program code Comment
N100 G0 G60 X300 Y300
N101 RELEASE(X) ; Explicit release
N105 WHEN TRUE DO POS[X]=20 FA[X]=20000
...

3.17.8.6 Cancel preprocessing stop (STOPREOF)
With the STOPREOF command, an existing preprocessing stop can be cancelled from a
synchronized action.

Note

The STOPREOF command can only be programmed in non-modal synchronized actions
(without specification of ID or IDS) and only in conjunction with the scanning frequency WHEN.

Example
● N10: Non-modal synchronized action.

If the path distance-to-go $AC_DTEB is less than 5 mm, the existing preprocessing stop due
to the reading of the analog input $A_INA is cancelled.

● N20: Traversing block whose path distance-to-go is evaluated via $AC_DTEB.

● N30: Branch that triggers the preprocessing stop due to the reading of $A_INA.

Due to the synchronized action, input $A_INA is not evaluated at the end of the N20 block, but
already 5 mm before the end of the block. If the voltage is then greater than 5 V at input $A_INA,
there is a branch to "MARKE_1".

Program code
N10 WHEN $AC_DTEB < 5 DO STOPREOF
N20 G01 X100
N30 IF $A_INA[7] > 5000 GOTOF MARKE_1

3.17.8.7 Delete distance-to-go (DELDTG)
The path distance-to-go can be deleted with the DELDTG command and axial distances-to-go
can be deleted with the DELDTG (...) function in synchronized actions.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 965

After deletion of the distance-to-go, the value of the deleted distance-to-go can be read via a
system variable:

● Path distance-to-go: $AC_DELT

● Axial distance-to-go: $AA_DELT

Syntax
DELDTG
DELDTG(<axis 1>[,<axis 2>, ...])

Meaning

Parameter Meaning
DELDTG Deletion of the path distance-to-go
DELDTG(...) Deletion of the axial distances-to-go of the specified channel axes
<Axis n>: Channel axis

Supplementary conditions

Path-specific and axial delete distance-to-go
Path-specific and axial delete distance-to-go can only be executed in a non-modal
synchronized action (without specification of ID or IDS).

Path-specific delete distance-to-go
● The deletion of the path distance-to-go can only be executed in a non-modal synchronized

action (without specification of ID or IDS).

● The deletion of the path distance-to-go must not be used with active tool radius
compensation.

Axial delete distance-to-go
Delete distance-to-go for indexing axes:

● Without Hirth tooth system: The axis is braked immediately

● With Hirth tooth system: The axis traverses to the next indexing position

Examples

Delete path distance-to-go
If the input $A_IN is set during the traversing block N20, the path distance-to-go is deleted.

Program code
N10 WHEN $A_IN[1]==1 DO DELDTG
N20 G01 X100 Y100 F1000

Work preparation
3.17 Synchronized actions

NC programming
966 Programming Manual, 06/2019, A5E47437142B AA

Delete axial distances-to-go
N10: If input 1 is set at any time within the part program, the V axis is started as a positioning
axis in the positive traversing direction.

N100: Non-modal synchronized action to delete distance-to-go of the V axis, depending on
digital input 2.

N110: Non-modal synchronized action to delete distance-to-go of the X1 axis, depending on
digital input 3.

N120: The X1 axis is positioned modally. The Y and Z axes are traversed as path axes. The
non-modal synchronized actions from N100 and N110 are executed together with N120. The
non-modal synchronized actions are also terminated with the end of block N120.

For this reason, the distances-to-go of the X1 and V axes can only be deleted as long as N120
is active.

Program code
N10 ID=1 WHEN $A_IN[1]==1 DO MOV[V]=1 FA[V]=700
...
N100 WHEN $A_IN[2]==1 DO DELDTG(V)
N110 WHEN $A_IN[3]==1 DO DELDTG(X1)
N120 POSA[X1]=100 FA[X1]=10 G1 Y100 Z100 F1000

3.17.8.8 Traversing axes, to position (POS)
With the POS command, an axis can be traversed using a synchronized action. The axis is then
called the command axis. It is possible to traverse the axis alternating via the part program and
the synchronized action. If a command axis traversed via synchronized actions is subsequently
traversed via the part program, a preprocessing stop with reorganization (STOPRE) is executed
in the channel of the part program.

Example 1: Alternate traversing via part program and synchronized action

Program code Comment
N10 G01 X100 Y200 F1000 ; Traversing via part program
...
; Traversing via static synchronized action when input 1 is set
N20 ID=1 WHEN $A_IN[1]==1 DO POS[X]=150 FA[X]=200
...
CANCEL(1) ; Deselect synchronized action
...
; Traversing again via part program => implicit preprocessing stop
; with reorganization, if the X axis in the meantime has been
; traversed via synchronized action
N100 G01 X240 Y200 F1000

Example 2: Alternate traversing of the X-axis via two synchronized actions

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 967

If the traversing motion of one synchronized action is still active when the traversing motion of
the other synchronized action is started, the second traversing motion replaces the first.

Program code
; 1st Traversing motion
ID=1 EVERY $A_IN[1]>=1 DO POS[V]=100 FA[V]=560
; 2nd Traversing motion
ID=2 EVERY $A_IN[2]>=1 DO POS[V]=$AA_IM[V] FA[V]=790

Dimensions: Absolute/incremental
The commands G90/G91 to specify the dimensions (absolute/incremental) cannot be
programmed in synchronized actions. Therefore by default, the dimensions that were active in
the part program at the time of execution of the synchronized action are also effective in the
synchronized action.

The following commands can be programmed in the action part to specify the dimensions within
a synchronized action:

Command Meaning
IC(…) Incremental
AC(…) Absolute
DC(...) Direct (position rotary axis via shortest route)
ACN(...) Position modulo rotary axis absolutely in negative direction of motion
ACP(...) Position modulo rotary axis absolutely in positive direction of motion
CAC(...) Traverse axis to coded position absolutely
CIC(...) Traverse axis to coded position incrementally
CDC(...) Traverse rotary axis to coded position via shortest route
CACN(...) Traverse modulo rotary axis to coded position in negative direction
CACP(...) Traverse modulo rotary axis to coded position in positive direction

Examples:

Program code
; Incremental traversing by 10 mm
ID=1 EVERY G710 $AA_IM[B]>75 DO POS[X]=IC(10)
...
; Absolute traversing
ID=1 EVERY G710 $AA_IM[B]>75 DO POS[X]=AC($AA_MW[V]-$AA_IM[W]+13.5)

Behavior with active axis-specific frames
Whether programmable and settable axis-specific frames and tool length compensations are
included in synchronized actions, depends on the following MD setting:

Work preparation
3.17 Synchronized actions

NC programming
968 Programming Manual, 06/2019, A5E47437142B AA

MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED

Bit Value Meaning
9 0 (default) The active axis-specific frame and/or tool length compensation which is active

in the part program at the time of execution takes effect in the synchronized
action which is executed parallel to the part program.

1. Axis-specific frames and tool length compensation are not considered for com‐
mand axes.

Example 1: Traversing with active frames / tool length compensations (bit 9 == 0):

Program code Comment
N100 TRANS X20 ; Zero offset in X: 20 mm.
; Synchronized action: The X axis traverses to position 60 mm
IDS=1 EVERY G710 $A_IN==1 DO POS[X]=40
...
; Zero offset in X: -10 mm. =>
; Synchronized action: The X axis now traverses to position 30 mm
N130 TRANS X-10
...

Example 2: Traversing with deactivated frames / tool length compensations (bit 9 == 1):

Program code Comment
N100 TRANS X=0.001 ; Zero offset in X: 0.001 degrees
N120 POS[X]=270 ; X traverses to position 270.001 degrees
...
; With $A_IN=1, X traverses to position 180.000 degrees.
IDS=1 EVERY G710 $A_IN==1 DO POS[X]=180
...
; X traverses to position 90.001 degrees
N130 POS[X]=90
...
; Coded position 1 = 100 degrees => X traverses to 100.001 degrees
N140 POS[X]=CAC(1)
...
; Coded position 2 = 200 degrees => X traverses to 200.000 degrees
N150 POS[X]=CIC(1)

Note

If a command axis travels to indexing positions incrementally, the axis-specific frames have no
effect on this command axis.

Non-modal suppression of the active frame with G153
If MD32074 is set so that active axis-specific frames and tool offsets always have to be taken
into account for command axes (bit 9 == 0), the active frame can be suppressed in a non-modal
synchronized action, if necessary, with G153. For this purpose, the block must be turned into

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 969

an executable block with the G153 command via program code G4 F0.1. In this case, it must
be ensured that the dwell time is at least 0.1. This is the only way to ensure that the processing
time in the interpolator is sufficient.

Examples:

...
WHEN TRUE DO POS[Z]=401 FA[Z]=$MA_MAX_AX_VELO[Z]
G153 G4 F0.1
...

...
WHILE $AA_IM[Z]<400
ENDWHILE
WHEN TRUE DO POS[Z]=400
G153 G4 F0.1
...

Takeover of the control of a command axis by the PLC
The control of a command axis that has been started via a static synchronized action (IDS) is
taken over by the PLC irrespective of the status of the part program containing the
synchronized action:

DB31, ... DBX28.7 == 1 (request for PLC to control axis)

References:
Function Manual, Extended Functions; Chapter "P2: positioning axes"

Parameterizable axis status
The behavior with regard to the axis status after the end of the part program and NC Reset can
be parameterized via the following machine data:

MD30450 $MA_IS_CONCURRENT_POS_AX[<axis>] = <value>

<value> Axis status before PP end / NC RESET 1) Axis status after PP end / NC RESET 1)

0. Channel axis Channel axis
0. Command axis Channel axis
1. Channel axis Command axis
1. Command axis Command axis

1) PP end: Part program end

See also
Technology cycles (Page 1006)

Work preparation
3.17 Synchronized actions

NC programming
970 Programming Manual, 06/2019, A5E47437142B AA

3.17.8.9 Setting the measuring system (G70, G71, G700, G710)
If a specific measuring system (inch/metric) is not explicitly defined in a synchronized action
with G70, G71, G700, G710, the measuring system active in the part program at the time the
synchronized action is executed takes effect:

● G70/G71 active in the part program:

– All the programmed position values are interpreted in the programmed measuring
system.

– All the read position data is interpreted in the parameterized basic system.

● G700/G710 active in the part program:

– All the programmed position values are interpreted in the programmed measuring
system.

– All the read position data is interpreted in the parameterized basic system.

The following rules apply when defining the measuring system in the synchronized action:

● If a measuring system is programmed in the condition part, this also takes effect in the action
part if a measuring system has not been specifically programmed there.

● If there is only a measuring system programmed in the action part, the system which is
currently activated in the part program takes effect in the condition part.

● Different systems of units can be programmed in the condition and action parts.

● The measuring system programmed in the synchronized action has no effect on the part
program.

Example

Program code Comment
N10 ID=1 EVERY $AA_IM[Z]>200 DO POS[Z2]=10 ;

;
;

$AA_IM:
200:
10:

#
#
#

N20 ID=2 EVERY $AA_IM[Z]>200 DO G70 POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

#
#
inch

N30 ID=3 EVERY G71 $AA_IM[Z]>200 DO POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

#
mm
mm

N40 ID=4 EVERY G71 $AA_IM[Z]>200 DO G70 POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

#
mm
inch

N50 ID=5 EVERY $AA_IM[Z]>200 DO G700 POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

#
#
inch

N60 ID=6 EVERY G710 $AA_IM[Z]>200 DO POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

mm
mm
mm

N70 ID=7 EVERY G710 $AA_IM[Z]>200 DO G700 POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

mm
mm
inch

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 971

Program code Comment
#: The unit depends on the parameterized basic system (MD10240 $MN_SCALING_SYS-
TEM_IS_METRIC) and the measuring system programmed in the part program

Note
Measuring system and technology cycles

If a technology cycle is being used, the measuring system can also be programmed in the
technology cycle instead of the measuring system having to be assigned in the action part of
the synchronized action.

3.17.8.10 Position in specified reference range (POSRANGE)

Function
The POSRANGE function can be used to determine whether the current position of an axis is
within the tolerance range around a specified reference position.

Note

With modulo axes, the modulo offset is taken into account.

Syntax
<Status> POSRANGE(<axis>, <RefPos>, <tolerance>, [<CoordSys>])

Meaning

<status> Function return value
Type: BOOL
TRUE: The current position of the axis is within the tolerance
range.
FALSE: The current position of the axis is not within the toler‐
ance range.

<axis> Name of the channel axis
Type: AXIS

<RefPos> Reference position
Type: REAL

<Tolerance> Permissible tolerance around the reference position
Type: REAL
The tolerance is specified as an absolute value. The tolerance
range results from: Reference position +/- tolerance

Work preparation
3.17 Synchronized actions

NC programming
972 Programming Manual, 06/2019, A5E47437142B AA

<CoordSys> Optional: Coordinate system
Type: INT
Range of values:
 0 = MCS (machine coordinate system)

1 = BCS (basic coordinate system)
2 = SZS (settable zero system)
3 = WCS (workpiece coordinate system)

3.17.8.11 Traversing axes, endless (MOV)

Function
An axis can be traversed endlessly, i.e. without specifying an end position, in a specific direction
via the MOV command. The axis traverses so long in the specified direction until it is stopped or
another traversing direction is specified by a MOV command.

Application example: Endlessly rotating rotary axes

Syntax
MOV[<axis>] = <direction>

Meaning

MOV Traversing command for a command axis
<axis> Channel axis name

Type: AXIS
<Direction>

Traversing direction
Type: INT
Range of values:

> 0: Positive traversing direction (default: +1)
< 0: Negative traversing direction (default: -1)
= 0: Stop

Note
Indexing axis

If an indexing axis is stopped with MOV[<indexing axis>] = 0, it stops at the next indexing
position.
Technology cycle

The MOV command must not be used in technology cycles.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 973

See also
Axial feedrate (FA) (Page 974)

3.17.8.12 Axial feedrate (FA)
An axial feedrate can be specified in a synchronized action via the FA command. The axial
feedrate is modal.

Examples
Constant feedrate value:

Program code
ID=1 EVERY $AA_IM[B]>75 DO POS[U]=100 FA[U]=990

Variable feedrate value:

Program code
ID=1 EVERY $AA_IM[B] > 75 DO POS[U]=100 FA[U]=$AA_VACTM[W]+100
IDS=2 WHENEVER $A_IN[1] == 1 DO POS[X]=100 FA[X]=$R1

Remarks
● The default value for the feedrate of positioning axes is set via axial machine data:

MD32060 $MA_POS_AX_VELO (initial setting for positioning axis velocity)

● The axial feedrate can be specified as a linear or revolutional feedrate.
The feedrate type can be set via the setting data:
SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE (revolutional feedrate for positioning
axes / spindles)

● The feedrate type can be switched synchronous to the part program via the FPRAON
and FPRAOF commands. Refer to:
References:
/FB1/ Function Manual Basic Functions; Feedrates (V1)

Note

So that technology cycles executed in parallel do not obstruct each other, the axial feedrate
from synchronized actions is not output as an auxiliary function to the NC/PLC interface.

See also
Traversing axes, endless (MOV) (Page 973)

3.17.8.13 Axis replacement (GET, RELEASE, AXTOCHAN)
Command axes can be interchanged between channels via the GET, RELEASE and AXTOCHAN
commands.

Work preparation
3.17 Synchronized actions

NC programming
974 Programming Manual, 06/2019, A5E47437142B AA

Requirement
The command axis that is interchanged between the channels must be known and
parameterized as command axis in the respective channel.

Programming

Syntax
GET(<axis 1> [{, <axis n>}])
RELEASE((<axis 1> [{, <axis n> }])
AXTOCHAN(<axis 1>, <channel number 1> [{, <axis n>, <channel number
n> }])

Meaning

GET: Request to replace an axis in the same channel
RELEASE: Release of an axis for an axis replacement
AXTOCHAN: Request for an axis for replacement in the specified channel
<Axis n>: Machine axis name

Type: AXIS
Range of values: Machine axis names defined in the channel

<channel
number n>:

Channel number

 Type: INTEGER
 Range of values: 1 ... maximum channel number

Axis type and axis status regarding axis replacement
The axis type and axis status currently valid at the time of the synchronized action activation
can be queried via the $AA_AXCHANGE_TYP or $AA_AXCHANGE_STAT system variable.
Depending on the channel that has the current interpolation authorization for this axis and
depending on the status for the permissible axis replacement, a different sequence results from
the synchronized action.

An axis can be requested with GET from a synchronized action, if

● Another channel has the write or interpolation authorization for the axis

● The requested axis is already assigned to the requested channel

● The axis in the neutral axis state is controlled by the PLC

● The axis is a command axis, oscillating axis, or concurrent PLC axis

● The axis is already assigned to the NC program of the channel

Note

Supplementary condition: An "axis controlled exclusively by the PLC" or a "permanently
assigned PLC axis" cannot be assigned to the NC program.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 975

An axis can be released from a synchronized action with RELEASE, if the axis:

● Was previously assigned to the NC program of the channel.

● Is already in the neutral axis state.

● Already has another channel that has the interpolation authorization of this axis

Request axis from another channel
If, when the GET action is activated, another channel has the interpolation authorization for the
axis $AA_AXCHANGE_TYP[axis] == 2, axis replacement is used to fetch the axis from this
channel $AA_AXCHANGE_TYP[axis] == 6 and assign it to the requesting channel as soon as
possible. The axis then becomes the neutral axis ($AA_AXCHANGE_TYP[axis]==3).

The state change to a neutral axis does not result in reorganization in the requesting channel.

Requested axis was already requested as neutral axis:

$AA_AXCHANGE_TYP[axis]==6, the axis is required for the NC program
$AA_AXCHANGE_TYP[axis] == 5 and assigned as soon as possible to the NC program of the
channel $AA_AXCHANGE_TYP[axis] == 0.

Note

This assignment results in a reorganization.

Axis is already assigned to the requested channel
If the requested axis has already been assigned to this channel at the point of activation, and
its status is that of a neutral axis not controlled by the PLC $AA_AXCHANGE_TYP[axis]==3, it
is assigned to the NC program $AA_AXCHANGE_TYP[axis]==0.

This results in a reorganization procedure.

Axis in the state of the neutral axis is controlled from the PLC
If the axis in neutral axis state is controlled by the PLC $AA_AXCHANGE_TYP[axis]==4), the
axis is requested as a neutral axis $AA_AXCHANGE_TYP[axis] == 8. This disables the axis for
automatic axis replacement between channels (Bit 0 == 0) in accordance with the value of bit
0 in machine data:

MD10722 $MN_AXCHANGE_MASK (parameterization of the axis replacement behavior)

This corresponds to $AA_AXCHANGE_STAT[axis] == 1.

Axis is active as command axis / assigned to the PLC
If the axis is active as a command axis or oscillating axis or a concurrent positioning axis (PLC
axis) ($AA_AXCHANGE_TYP[<axis>] == 1), the axis is requested as a neutral axis
($AA_AXCHANGE_TYP[<axis>] == 8). Depending on the setting in the following machine data,
the axis is blocked for an automatic axis replacement between channels:

MD10722 $MN_AXCHANGE_MASK (parameterization of the axis replacement behavior)

Work preparation
3.17 Synchronized actions

NC programming
976 Programming Manual, 06/2019, A5E47437142B AA

This corresponds to $AA_AXCHANGE_STAT[<axis>] == 1.

With a further GET request, the axis is then requested for the NC program ⇒
$AA_AXCHANGE_TYP[axis] == 7.

Axis already assigned to the NC program of the channel
If the axis is already assigned to the NC program of the channel
($AA_AXCHANGE_TYP[<axis>] == 0) or if this assignment is requested, e.g. axis replacement
triggered by the NC program ($AA_AXCHANGE_TYP[<axis>] == 5 or
$AA_AXCHANGE_TYP[<axis>] == 7), there is no state change.

Release axis for axis replacement
If the axis is assigned to the NC program at the time of release ($AA_AXCHANGE_TYP[<axis>]
== 0), it is transferred to the neutral axis state ($AA_AXCHANGE_TYP[<axis>] == 3) and if
required, released for axis replacement in another channel.

This results in a reorganization procedure.

Axis to be released is already a neutral axis:
If the axis is already in the neutral axis state ($AA_AXCHANGE_TYP[<axis>] == 3) or active as
command or oscillating axis or assigned to the PLC as concurrent positioning axis
($AA_AXCHANGE_TYP[<axis>] == 1), the axis is released for an automatic axis replacement
between channels.

$AA_AXCHANGE_STAT[<axis>] is reset from 1 to 0 if there is no other reason to link the axis
to the channel. Such a link of the axis is present, for example, with:

● Active axis coupling

● Active fast retraction

● Active transformation

● JOG request

● Rotating frame with PLC, command or oscillating axis motion

Another channel already has the interpolation authorization
If another channel already has the interpolation authorization ($AA_AXCHANGE_TYP[<axis>]
== 2), there is no state change. This also means that waiting for an axis, triggered by NC
program ($AA_AXCHANGE_TYP[<axis>] == 5) or a previous GET request from a synchronized
action ($AA_AXCHANGE_TYP[<axis>] == 6) cannot be aborted by a RELEASE from a
synchronized action.

Supplementary conditions
● If several GET and RELEASE requests are programmed for the same axis, they may mutually

cancel each other under certain circumstances and only the last respective requests are
performed.
Example:

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 977

Programming: GET(X,Y) RELEASE(Y,Z) GET(Z)
Execution: GET(X) RELEASE(Y) GET(Z)

● If further commands are programmed in the action part of a synchronized action in addition
to GET/RELEASE, there is no waiting period until the GET/RELEASE request is completed
before these commands are executed. This can lead to an error if, for example, an axis
requested for the positioning motion with GET is not yet available:
GET[<axis>] POS[<axis>]

Example 1: GET and RELEASE as action in synchronized actions in two channels
Requirement: The Z axis must be known in the 1st and 2nd channels

1. Program sequence in the first channel:

Program code Comment
WHEN TRUE DO RELEASE(Z) ; Z axis becomes neutral
; Read-in disable as long as Z axis is program axis
WHENEVER $AA_TYP[Z] == 1 DO RDISABLE
N110 G4 F0.1
...
; Z axis returns to status as NC program axis
WHEN TRUE DO GET(Z)
; Read-in disable until Z axis is program axis
WHENEVER($AA_TYP[Z]<>1) DO RDISABLE
N120 G4 F0.1
...
WHEN TRUE DO RELEASE(Z) ; Z axis becomes neutral
; Read-in disable as long as Z axis is program axis
WHENEVER $AA_TYP[Z] == 1 DO RDISABLE
N130 G4 F0.1
...
N140 START(2) ; Start 2nd channel
N150 ; See below: "3. Continuation: Program sequence in the first channel"

2. Program sequence in the second channel:

Program code Comment
WHEN TRUE DO GET(Z) ; Move Z axis to second channel (neutral)
; Read-in disable as long as Z axis is in other channel
WHENEVER $AA_TYP[Z] == 0 DO RDISABLE
N210 G4 F0.1
...
WHEN TRUE DO GET(Z) ;Z axis is NC program axis
; Read-in disable until Z axis is program axis
WHENEVER($AA_TYP[Z]<>1) DO RDISABLE
N220 G4 F0.1

Work preparation
3.17 Synchronized actions

NC programming
978 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
...
WHEN TRUE DO RELEASE(Z) ; Z axis in second channel is neutral axis
; Read-in disable as long as Z axis is program axis
WHENEVER $AA_TYP[Z] == 1 DO RDISABLE
N230 G4 F0.1
...
N250 WAITM(10,1,2) ;Synchronize with channel 1
N999 M30

3. Continuation: Program sequence in the first channel:

Program code Comment
N150 WAITM(10,1,2) ;Synchronize with channel 2
...
WHEN TRUE DO GET(Z) ;Move Z axis to this channel
; Read-in disable as long as Z axis is in other channel
WHENEVER $AA_TYP[Z] == 0 DO RDISABLE
N160 G4 F0.1
...
N199 WAITE(2) ;Wait for end of program in channel 2
N999 M30

Transfer axis to another channel (AXTOCHAN)
An axis can be requested for an arbitrary channel from a synchronized action with
the AXTOCHAN command.

If the axis is already assigned to the NC program of the channel
($AA_AXCHANGE_TYP[<axis>] == 0), there is no state change.

If an axis is requested for the same channel from a synchronized action, AXTOCHAN is mapped
on the GET command.

● With the first request for the same channel, the axis becomes a neutral axis.

● With the second request, the axis is assigned to the NC program.

Supplementary condition
A "PLC-controlled axis" corresponds to a "concurrent positioning axis" where special
supplementary conditions must be carefully observed. For further details, see:

References:

/FB2/ Function Manual, Extended Functions; Positioning Axes (P2)

Note

A PLC axis cannot replace the channel.

An axis controlled exclusively by the PLC cannot be assigned to the NC program.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 979

3.17.8.14 Traversing spindles (M, S, SPOS)
Spindles can be started, positioned and stopped via synchronized actions. The programming
is performed in the action part of the synchronized action with the same syntax as in the part
program. Without numeric extension the commands for the master spindle apply. By specifying
a numeric extension, it is possible to program each spindle individually:

Program code Comment
ID = 1 EVERY $A_IN[1]==1 DO M3 S1000 ; Master spindle
ID = 2 EVERY $A_IN[2]==1 DO SPOS=270 ; Master spindle
ID = 1 EVERY $A_IN[1]==1 DO M1=3 S1=1000 SPOS[2]=90

If concurrent commands are specified for a spindle through synchronized actions that are
active in parallel, the chronological sequence decides the activation.

User-specific spindle enable
The start of spindle motions at defined times can be achieved via synchronized actions by
blocking the motion programmed in the part program.

Example:

The spindle is programmed within a part program and should not start at the beginning of the
block, but only when input 1 is set. The synchronized action holds the spindle override at 0%
until the enable via input 1. See Section "Override ($A...OVR) (Page 925)".

Program code
; As long as input 1 is not set => spindle override = 0%
ID=1 WHENEVER $A_IN[1]==0 DO $AA_OVR[S1]=0
...
; The start of the spindle is triggered
; The spindle is enabled when input 1 is set
G01 X100 F1000 M3 S1=1000

Transition between command axis and spindle
Since several synchronized actions can be active simultaneously, the situation may arise
where a spindle motion is started when the spindle is already active. In this case, the most
recently activated motion is applicable. At a reversal in the direction of motion, the spindle is first
braked and then traversed in the opposite direction.

Direction of rotation, speed and position can also be changed during the motion.

Examples

Program code Comment
ID=1 EVERY $AC_TIMER[1] >= 5 DO M3 S300 ; Speed and direction of rotation
ID=2 EVERY $AC_TIMER[1] >= 7 DO M4 S500 ; Speed and direction of rotation
ID=3 EVERY $A_IN[1]==1 DO S1000 ; Speed
ID=4 EVERY ($A_IN[4]==1) AND ($A_IN[1]==0) DO SPOS=0 ; Spindle positioning

Work preparation
3.17 Synchronized actions

NC programming
980 Programming Manual, 06/2019, A5E47437142B AA

Transitions between axis and spindle

In state ↓ To → POS MOV<>0 MOV=0 SPOS M3/M4 M5 LEADON TRAIL ON
during traversing
 Axis x x x x x x x x

Position-controlled spindle x x x x x x - -
Speed-controlled spindle - - - x x x - -

in motion
 Axis x x x - - - x x

Position-controlled spindle - - - - - - - -
Speed-controlled spindle - - - x x x - -

Transitions marked with x are permitted:
The transitions marked with - are rejected with an alarm.

See also
Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 994)

3.17.8.15 Withdrawing the enable for the axis container rotation (AXCTSWEC)

Function
Using the command AXCTSWEC an already issued enable signal to rotate the axis container can
be withdrawn again. The command triggers a preprocessing stop with reorganization
(STOPRE).

The following conditions must be fulfilled so that in the channel, the enable signal to rotate the
axis container is withdrawn again:

● In the channel, the axis container rotation must already have been enabled:

– AXCTSWE(<container>)
– $AC_AXCTSWA[<container>] == 1

● Axis container rotation was still not started:

– $AN_AXCTSWA[<container>] == 0

As feedback signal for the successful withdrawal of the enable signal, the following channel-
specific system variable is reset:

$AC_AXCTSWA[<container>] == 0
For a detailed description of the system variables, refer to:

References:
Parameter Manual System Variables

Syntax
DO AXCTSWEC(<container>)

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 981

Meaning

AXCTSWEC: Withdrawing the enable for the axis container rotation for the channel
<Container>: Name of axis container:

Possible data include:
● CT<container number>:

The number of the axis container is attached to the CT letter
combination. Example: CT3

● <container name>:
Individual name of the axis container set using
MD12750 $MN_AXCT_NAME_TAB. Example: A_CONT3

● <Axis name>:
Axis name of a container axis known in the channel.

Example

Program code Comment
; Initialization of the global counter for the technology cycle CTSWEC
N100 $AC_MARKER[0]=0
N110 ID=1 DO CTSWEC ; For technology cycle CTSWEC, see below.
NEXT:
 N200 G0 X30 Z1
 N210 G95 F.5
 N220 M3 S1000
 N230 G0 X25
 N240 G1 Z-10
 N250 G0 X30
 N260 M5
; Enable of the axis container rotation for container spindle S1.
 N270 AXCTSWE(S1)
N200 GOTO NEXT

Program code Comment
PROC CTSWEC(STRING _ex_CT="CT1"
 INT _ex_CTsl_BITmask=1H
 INT _ex_CT_SL_Number=1
 INT _ex_WAIT_number_of_IPOs=1000
) DISPLOF ICYCOF
DEFINE _ex_number_of_IPOs AS $AC_MARKER[0]
 IF ($AC_STOP_COND[0] + $AC_STOP_COND[1] + $AC_STOP_COND[2] + $AC_STOP_COND[3] +
 $AC_STOP_COND[4] + $AC_STOP_COND[5] + $AC_STOP_COND[6] + $AC_STOP_COND[7] +
 $AC_STOP_COND[8] + $AC_STOP_COND[9] + $AC_STOP_COND[10]) > 0)
 ; Increment IPO cycle counter
 _ex_number_of_IPOs = _ex_number_of_IPOs + 1

Work preparation
3.17 Synchronized actions

NC programming
982 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
 ; If a stop condition for longer than "_ex_WAIT_number_of_IPOs"
 ; IPO cycles is present AND its own slot has not been enabled
 IF (_ex_number_of_IPOs >= _ex_WAIT_number_of_IPOs) AND
 ($AN_AXCTSWEC[_ex_CT] == _ex_CTsl_BITmask)
 AXCTSWEC ; Cancel the enable of the axis container rotation.
 ENDIF
 ELSE
 ; Reset IPO cycle counter
 _ex_number_of_IPOs = 0
 ENDIF
RET

Supplementary condition

Time of execution of synchronized actions

Program code
; Enable of the axis container rotation.
N10 AXCTSWE(CT3)
; Traversing of the container axis AX_A => before the axis is traversed, there
; is a waiting period for the end of the axis container rotation: $AN_AXCTSWA[CT3]==0
N20 AX_A = 10
; Cancellation of the enable. No effect!
WHEN <condition> DO AXCTSWEC(AX_A)
N30 G4 F1

Because after the enable of the axis container rotation in block N10, an axis of the axis
container (AX_A) is used in block N20 and this use leads to the system waiting for the end of the
axis container rotation, the synchronized action only comes together with the program block
N30 in the main run and has therefore no effect.

Remedy:

Program code Comment
; Enable of the axis container rotation.
N11 AXCTSWE(CT3)
; Cancellation of the enable.
WHEN <condition> DO AXCTSWEC(AX_A)
N21 ... ; Executable NC block
; Traversing of the container axis AX_A => before the axis is traversed, there
; is a waiting period for the end of the axis container rotation: $AN_AXCTSWA[CT3]==0
N31 AX_A = 10

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 983

Note

Without the executable block N21, the synchronized action would only be implemented after
the end of the axis container rotation with the next executable program block N31 in the main
run and would therefore have no effect, just the same as in the example above.

3.17.8.16 Actual value setting with loss of the referencing status (PRESETON)

Function
The PRESETON() procedure sets new actual values in the machine coordinate system (MCS)
from synchronized actions for one axis. This corresponds to work offset of the axis MCS. The
axis is not traversed.

From synchronized actions, PRESETON must only be used on command axes, i.e. on axes that
have been started from a synchronized action. The axis must also be assigned to the channel,
i.e. this channel must have the interpolation right for this axis. The axis is not requested from
another channel via axis replacement.

Referencing status
By setting a new actual value in the machine coordinate system, the referencing status of the
machine axis is reset.

DB31, ... DBX60.4/.5 = 0 (referenced/synchronized measuring system 1/2)

It is recommended that PRESETON only be used for axes that do not require a reference point.

To restore the original machine coordinate system, the measuring system of the machine axis
must be referenced again, e.g. through active referencing from the part program (G74).

CAUTION

Loss of the referencing status

By setting a new actual value in the machine coordinate system with PRESETON, the
referencing status of the machine axis is reset to "not referenced/synchronized".

Programming

Syntax
WHEN | EVERY ... DO PRESETON(<axis>,<value>)

Meaning

WHEN, EVERY: Only WHEN and EVERY must be used as frequency (Page 906).
PRESETON: Actual value setting with loss of the referencing status

Work preparation
3.17 Synchronized actions

NC programming
984 Programming Manual, 06/2019, A5E47437142B AA

<axis>: Machine axis name
Type: AXIS
Range of values: Machine axis names defined in the channel

<value>: New actual value of the machine axis in the machine coordinate system
(MCS)
The input is made in the current valid system of units (inch/metric)
An active diameter programming (DIAMON) is taken into account
Type: REAL

System variable

$AC_PRESET
The axis-specific system variable $AC_PRESET provides the vector from the zero point of the
currently offset MCS' to the zero point of the original MCS0 after the referencing of the machine
axis.

$AC_PRESET<axis> = $AC_PRESET<axis> + "current actual position of the axis in the MCS"
- "PRESETON actual position"

The work offset can be undone with the system variables:

PRESETON(<axis>, $VA_IM + $AC_PRESET[<axis>]) ; "current actual
position of the axis in the MCS'" + "offsets"

Example

Program code
N10 G1 X=10 F5000
; Traverse the X axis as command axis to position 200
N20 WHEN TRUE DO G71 POS[X]=200
; IF set position of the X axis in the MCS ($AA_IM[X]) >= 80
; THEN "actual position of the X axis in the MCS" = "set position of the X
axis in the MCS" + "offset"
; = 80 + 70 = 150
; "progr. end position of the X axis" = "progr. end position of the X
axis" + "offset"
; = 200 + 70 = 270
; $AC_PRESET = $AC_PRESET - 70
N30 WHEN G71 $AA_IM[X] >= 80 DO PRESETON(X, $AA_IM[X]+70)
N40 G4 F3

Supplementary conditions

Axes for which PRESETON must not be used
● Traversing command axes in spindle mode

● Traversing concurrent positioning axes (FC18)

● Axes involved in a transformation

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 985

● Traversing path axes

● Reciprocating axes

● Axes on which one or more of the following safety functions (Safety Integrated) are active

– Enable "Safe software limit switch"
MD36901 $MA_SAFE_FUNCTION_ENABLE[<safe axis>], bit 1 = 1

– Enable "Safe software cam", pair 1 ... 4, cam +/-
MD36901 $MA_SAFE_FUNCTION_ENABLE[<safe axis>], bits 8 ... 15 = 1
or
Enable "Safe Cam Track", cam 1 ... 30
MD36903 $MA_SAFE_CAM_ENABLE[<safe axis>], bits 0 ... 29 = 1

● Hirth axes

● Synchronized axes of a gantry grouping

● Axes for which the reference point approach from the part program (G74) is active

● Slave axis of a speed/torque coupling (master-slave)

Geometry axes
● PRESETON can be used on a stationary geometry axis when a further geometry axis is not

being traversed in the channel at the same time.

● PRESETON can be used on a stationary geometry axis even when a further geometry axis
is being traversed in the channel at the same time, but this axis is in the "neutral axis" state
or traversing as a command axis.
Example: A further geometry (X) is traversing at the same time in the "neutral axis" state

Program code Comment
N10 G0 X0 Y0 ; X, Y: Geometry axes
N15 RELEASE(Y) 1) ; Neutral axis
N20 ID=1 WHEN 20.0 < $AA_IM[X] DO
PRESETON(Y,20)

; $AA_IM: Set position in the
MCS

N30 G0 X40 ; Geometry axis X traverses
N40 M30
1) Note
The release of an axis in the action part of a synchronized action does not ensure that the release
is on time.
N20 ID=1 WHEN 20.0 < $AA_IM[X] DO RELEASE(Y) PRESETON(Y,20) ; NOT
recommended!

Example: A further geometry (X) is traversing at the same time as command axis

Program code Comment
N10 G0 X0 Y0 ; X, Y: Geometry axes
N20 ID=1 WHEN TRUE DO POS[X]=40
FA[X]=1000

; X command axis

N30 ID=2 WHEN 20.0 < $AA_IM[X] DO
PRESETON(Y,20)

; $AA_IM: Set position in the
MCS

N40 M30

Work preparation
3.17 Synchronized actions

NC programming
986 Programming Manual, 06/2019, A5E47437142B AA

PLC-controlled axes
● PRESETON can be used on PLC-controlled axes according to their current type.

Spindle states
The following table shows the reactions that occur when PRESETON is used on a spindle in a
synchronized action:

PRESETON in synchronized action
Spindle mode Traversing sta‐

tus
Assigned to the NC

program
Main axis

Speed control mode In motion Alarm 17601 Alarm 17601
Stationary +/- +/-

Positioning mode SPOS In motion Alarm 17601 Alarm 17601
Stationary +/- +/-

Positioning across block bounda‐
ries SPOSA

In motion Alarm 17601 -

Axis mode In motion Alarm 17601 +/-
Stationary +/- +/-

+/- Possible
-: Not possible

PRESETON in the NC program
Spindle mode Traversing sta‐

tus
Assigned to the NC

program
Main axis

Speed control mode In motion Alarm 22324 Alarm 22324
Stationary +/- +/-

Positioning mode SPOS In motion - +/-
Stationary +/- +/-

Positioning across block bounda‐
ries SPOSA

In motion Alarm 10610 -

Axis mode In motion - +/-
Stationary +/- +/-

+/- Possible
-: Not possible

Axis couplings
● Leading axes: The sudden change of the leading axis position caused by PRESETON is not

traversed in the following axes. The coupling is not changed.

● Following axes: Only the overlaid position component of the following axis is affected
by PRESETON.

Gantry grouping
● If PRESETON is used on the guide axis of a gantry grouping, the work offset is also performed

in all synchronized axes of the gantry grouping.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 987

Indexing axes
● PRESETON can be used on indexing axes.

Software limit switches, operating range limit, protection areas
● If the axis position is outside the specified limits after a work offset by PRESETON, an alarm

is not displayed until an attempt is made to traverse the axis.

Block search with calculation
PRESETON commands are collected during the block search and executed with the NC start to
continue the NC program.

Position-dependent NC/PLC interface signals
● The status of the position-dependent NC/PLC interface signals is redetermined based on

the new actual position.
Example: Fixed point positions

– Parameterized fixed point positions: MD30600 $MA_FIX_POINT_POS[0...3] = <fixed
point position 1...4>

– NC/PLC interface signals DB31, ... DBX75.3 ... 5 (JOG approach fixed point: reached)

If the axis is at a fixed point position with the exact stop tolerance, the associated NC/PLC
interface signal is set. The NC/PLC interface signal is reset when the actual value is set
by PRESETON to a different value outside the exact stop tolerance around the fixed point
position.

DRF offset
● A DRF offset of the axis is deleted by PRESETON.

Overlaid movement $AA_OFF
● An overlaid movement ($AA_OFF) (Page 934) is not affected by PRESETON.

Online tool offset FTOC
● An active online tool offset (FTOC) (Page 962) remains active even after PRESETON.

Axis-specific compensations
Axis-specific compensations remain active after PRESETON.

JOG mode
● PRESETON must only be used on a stationary axis.

JOG mode, REF machine function
● PRESETON must not be used.

Work preparation
3.17 Synchronized actions

NC programming
988 Programming Manual, 06/2019, A5E47437142B AA

3.17.8.17 Actual value setting without loss of the referencing status (PRESETONS)

Function
The PRESETONS() procedure sets new actual values in the machine coordinate system (MCS)
from synchronized actions for one axis. This corresponds to work offset of the axis MCS. The
axis is not traversed.

From synchronized actions, PRESETONS must only be used on command axes, i.e. on axes
that have been started from a synchronized action. The axis must also be assigned to the
channel, i.e. this channel must have the interpolation right for this axis. The axis is not
requested from another channel via axis replacement.

Referencing status
By setting a new actual value in the machine coordinate system (MCS) with PRESETONS, the
referencing status of the machine axis is not changed.

Requirements
● Encoder type

PRESETONS is only possible with the following encoder types of the active measuring
system:

– MD30240 $MA_ENC_TYPE[<measuring system>] = 0 (simulated encoder)

– MD30240 $MA_ENC_TYPE[<measuring system>] = 1 (raw signal encoder)

● Referencing mode
PRESETONS is only possible with the following referencing mode of the active measuring
system:

– MD34200 $MA_ENC_REFP_MODE[<measuring system>] = 0 (no reference point
approach possible)

– MD34200 $MA_ENC_REFP_MODE[<measuring system>] = 1 (referencing of
incremental, rotary or linear measuring systems: zero pulse on the encoder track)

Startup

Axis-specific machine data
Actual value setting without loss of the referencing status (PRESETONS) must be set axis-
specifically:

MD30460 $MA_BASE_FUNCTION_MASK, bit 9 = 1

Note
PRESETON deactivated

Activation of the "Actual value setting without loss of the referencing status PRESETONS"
function deactivates the "Actual value setting with loss of the referencing status PRESETON"
function. The options mutually exclude each other.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 989

Programming

Syntax
<frequency> ... DO PRESETONS(<axis>, <value>)

Meaning

<frequency>: Only WHEN and EVERY must be used as frequency (Page 906).
PRESETONS: Actual value setting with loss of the referencing status
<axis>: Machine axis name

Type: AXIS
Range of values: Machine axis names defined in the channel

<value>: New current actual value of the machine axis in the machine coordinate
system (MCS)
The input is made in the active system of units (inch/metric)
An active diameter programming (DIAMON) is taken into account
Type: REAL

System variable

$AC_PRESET
The axis-specific system variable $AC_PRESET provides the vector from the zero point of the
currently offset MCS' to the zero point of the original MCS0 after the referencing of the machine
axis.

$AC_PRESET<axis> = $AC_PRESET<axis> + "current actual position of the axis in the MCS"
- "PRESETONS actual position"

The work offset can be undone with the system variables:

PRESETONS(<axis>, $VA_IM + $AC_PRESET[<axis>]) ; "current actual
position of the axis in the MCS'" + "offsets"

Example
Work offset of the X axis MCS by 70 units.

The programmed end position of the X axis (command axis) is transformed to the new MCS
with PRESETONS.

Program code
N10 G1 X=10 F5000
; Traverse the X axis as command axis to position 200
N20 WHEN TRUE DO G71 POS[X]=200

Work preparation
3.17 Synchronized actions

NC programming
990 Programming Manual, 06/2019, A5E47437142B AA

Program code
; IF set position of the X axis in the MCS ($AA_IM[X]) >= 80
; THEN "actual position of the X axis in the MCS" = "set position of the X
axis in the MCS" + "offset"
; = 80 + 70 = 150
; "progr. end position of the X axis" = "progr. end position of the X
axis" + "offset"
; = 200 + 70 = 270
; $AC_PRESET = $AC_PRESET - 70
N30 WHEN G71 $AA_IM[X] >= 80 DO PRESETONS(X, $AA_IM[X]+70)
N40 G4 F3

Supplementary conditions

Axes for which PRESETONS must not be used
● Traversing command axes in spindle mode

● Traversing concurrent positioning axes (FC18)

● Axes involved in a transformation

● Traversing path axes

● Reciprocating axes

● Axes on which one or more of the following safety functions (Safety Integrated) are active

– Enable "Safe software limit switch"
MD36901 $MA_SAFE_FUNCTION_ENABLE[<safe axis>], bit 1 = 1

– Enable "Safe software cam", pair 1 ... 4, cam +/-
MD36901 $MA_SAFE_FUNCTION_ENABLE[<safe axis>], bits 8 ... 15 = 1
or
Enable "Safe Cam Track", cam 1 ... 30
MD36903 $MA_SAFE_CAM_ENABLE[<safe axis>], bits 0 ... 29 = 1

● Hirth axes

● Synchronized axes of a gantry grouping

● Axes for which the reference point approach from the part program (G74) is active

● Slave axis of a speed/torque coupling (master-slave)

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 991

Geometry axes
● PRESETONS can be used on a stationary geometry axis when a further geometry axis is not

being traversed in the channel at the same time.

● PRESETONS can be used on a stationary geometry axis even when a further geometry axis
is being traversed in the channel at the same time, but this axis is in the "neutral axis" state
or traversing as a command axis.
Example: A further geometry (X) is traversing at the same time in the "neutral axis" state

Program code Comment
N10 G0 X0 Y0 ; X, Y: Geometry axes
N15 RELEASE(Y) 1) ; Neutral axis
N20 ID=1 WHEN 20.0 < $AA_IM[X] DO
PRESETONS(Y,20)

; $AA_IM: Set position in the
MCS

N30 G0 X40 ; Geometry axis X traverses
N40 M30
1) Note
The release of an axis in the action part of a synchronized action does not ensure that the release
is on time.
N20 ID=1 WHEN 20.0 < $AA_IM[X] DO RELEASE(Y) PRESETONS(Y,20) ; NOT
recommended!

Example: A further geometry (X) is traversing at the same time as command axis

Program code Comment
N10 G0 X0 Y0 ; X, Y: Geometry axes
N20 ID=1 WHEN TRUE DO POS[X]=40
FA[X]=1000

; X command axis

N30 ID=2 WHEN 20.0 < $AA_IM[X] DO
PRESETONS(Y,20)

; $AA_IM: Set position in the
MCS

N40 M30

PLC-controlled axes
● PRESETONS can be used on PLC-controlled axes according to their current type.

Spindle states
The following table shows the reactions that occur when PRESETONS is used on a spindle in a
synchronized action:

PRESETONS in synchronized action
Spindle mode Traversing sta‐

tus
Assigned to the NC

program
Main axis

Speed control mode In motion Alarm 17601 Alarm 17601
Stationary +/- +/-

Positioning mode SPOS In motion Alarm 17601 Alarm 17601
Stationary +/- +/-

Positioning across block bounda‐
ries SPOSA

In motion Alarm 17601 -

Work preparation
3.17 Synchronized actions

NC programming
992 Programming Manual, 06/2019, A5E47437142B AA

PRESETONS in synchronized action
Spindle mode Traversing sta‐

tus
Assigned to the NC

program
Main axis

Axis mode In motion Alarm 17601 +/-
Stationary +/- +/-

+/- Possible
-: Not possible

PRESETONS in the NC program
Spindle mode Traversing sta‐

tus
Assigned to the NC

program
Main axis

Speed control mode In motion Alarm 22324 Alarm 22324
Stationary +/- +/-

Positioning mode SPOS In motion - +/-
Stationary +/- +/-

Positioning across block bounda‐
ries SPOSA

In motion Alarm 10610 -

Axis mode In motion - +/-
Stationary +/- +/-

+/- Possible
-: Not possible

Axis couplings
● Leading axes: The sudden change of the leading axis position caused by PRESETONS is not

traversed in the following axes. The coupling is not changed.

● Following axes: Only the overlaid position component of the following axis is affected
by PRESETONS.

Gantry grouping
● If PRESETONS is used on the guide axis of a gantry grouping, the work offset is also

performed in all synchronized axes of the gantry grouping.

Indexing axes
● PRESETONS can be used on indexing axes.

Software limit switches, operating range limit, protection areas
● If the axis position is outside the specified limits after a work offset by PRESETONS, an alarm

is not displayed until an attempt is made to traverse the axis.

Block search with calculation
PRESETONS commands are collected during the block search and executed with the NC start
to continue the NC program.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 993

Position-dependent NC/PLC interface signals
● The status of the position-dependent NC/PLC interface signals is redetermined based on

the new actual position.
Example: Fixed point positions

– Parameterized fixed point positions: MD30600 $MA_FIX_POINT_POS[0...3] = <fixed
point position 1...4>

– NC/PLC interface signals DB31, ... DBX75.3 ... 5 (JOG approach fixed point: reached)

If the axis is at a fixed point position with the exact stop tolerance, the associated NC/PLC
interface signal is set. The NC/PLC interface signal is reset when the actual value is set
by PRESETONS to a different value outside the exact stop tolerance around the fixed point
position.

DRF offset
● A DRF offset of the axis is deleted by PRESETONS.

Overlaid movement $AA_OFF
● An overlaid movement ($AA_OFF) (Page 934) is not affected by PRESETONS.

Online tool offset FTOC
● An active online tool offset (FTOC) (Page 962) remains active even after PRESETONS.

Axis-specific compensations
Axis-specific compensations remain active after PRESETONS.

JOG mode
● PRESETONS must only be used on a stationary axis.

JOG mode, REF machine function
● PRESETONS must not be used.

3.17.8.18 Couplings (CP..., LEAD..., TRAIL..., CTAB...)
The commands listed in Section "Language elements for synchronized actions and technology
cycles (Page 949)" can be programmed in synchronized actions for the functions coupled
motion (TRAIL...), curve tables (CTAB...), master value coupling (LEAD...) and generic
coupling (CP...):

Note
Generic coupling

Note that the "generic coupling" CP ... commands are always executed in synchronized
actions in the sequence of the programming from left to right. This means that in contrast to the
programming in the part program, the effect of the various commands depends on their
sequence in the synchronized action.
Curve tables

The CTAB and CTABINV commands can be used in the condition and in the action.

Work preparation
3.17 Synchronized actions

NC programming
994 Programming Manual, 06/2019, A5E47437142B AA

References
Detailed information on coupling commands can be found in:

● Coupled motion, curve tables, master value coupling:
Programming Manual, Job Planning; Section "Axis couplings"

● Generic coupling
Description of Functions, Special Functions, Section "Axis couplings (M3)" > "Generic
coupling"

Coupled motion
When the coupling is activated from the synchronized action, the leading axis can be in motion.
In this case the following axis is accelerated up to the set velocity. The position of the leading
axis at the time of synchronization of the velocity is the starting position for coupled-axis motion.

Master value coupling

Syntax
... DO LEADON(<FA>, <LA>, <NO>, <OVW>)

Meaning

<FA>: Name of the following axis
Type: AXIS

<LA>: Name of the leading axis
Type: AXIS

<NO>: Number of the curve table
Type: INT

<OVW>: Status of the overwrite permission
Type: BOOL
0: Overwriting of the table is not permitted
1: Overwriting of the table is permitted

● Synchronized actions can be used to change the basic curve table without a
resynchronization even during an active master value coupling.
The following axis attempts as fast as possible to follow the position values specified by the
new curve table.

● In order to be able to program an axis to be coupled via synchronized actions, the axis must
first be released with the RELEASE command.
Example:

Program code
...
N60 RELEASE(X)
N50 ID=1 EVERY SR1==1 DO LEADON(C, X, 1)

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 995

Example: On-the-fly parting
An extruded material which passes continuously through the operating area of a cutting tool
must be cut into parts of equal length.

● X axis: Axis in which the extruded material moves (WCS)

● X1 axis: Machine axis of the extruded material (MCS)

● Y axis: Axis in which the cutting tool "tracks" the extruded material

It is assumed that the infeed and control of the cutting tool are controlled via the PLC user
program. The signals at the PLC interface can be evaluated to determine whether the extruded
material and cutting tool are synchronized.

Program code Comment
N100 R3=1500 ; Length of a part to be cut off
N200 R2=100000 R13=R2/300
N300 R4=100000
N400 R6=30 ; Start position Y axis
N500 R1=1 ; Start condition for conveyor axis
N600 LEADOF(Y,X) ; Delete coupling
N700 CTABDEF(Y,X,1,0) ; Table definition
N800 X=30 Y=30 ; Value pairs
N900 X=R13 Y=R13
N1000 X=2*R13 Y=30
N1100 CTABEND ; End of table definition
N1200 PRESETON(X1,0) ; PRESET at beginning
N1300 Y=R6 G0 ; Start position Y axis, axis is linear
; PRESET after length R3, new start after parting
N1400 ID=1 WHENEVER $AA_IW[X]>$R3 DO PESETON(X1,0)
N1500 RELEASE(Y)
; Couple Y to X via table 1, for X < 10
N1800 ID=6 EVERY $AA_IM[X]<10 DO LEADON(Y,X,1)
; > 30 before traversed parting distance, deactivate coupling
N1900 ID=10 EVERY $AA_IM[X]>$R3-30 DO LEADOF(Y,X)
N2000 WAITP(X)
; Set extruded material axis continuously in motion
N2100 ID=7 WHEN $R1==1 DO MOV[X]=1 FA[X]=$R4
N2200 M30

Work preparation
3.17 Synchronized actions

NC programming
996 Programming Manual, 06/2019, A5E47437142B AA

Generic coupling
● When a coupling module is activated in a synchronized action, the following axis must

already be active in the channel and be in the state “neutral axis ” or “axis already assigned
to the part program of the channel”. The corresponding axis state can be generated, if
necessary, in the synchronized action by programming GET[<following axis>].

● The commands of the generic coupling CP ... are processed directly in synchronized
actions by the coupling module. The command therefore takes effect immediately.

● With the programming of a coupling factor (CPLNUM, CPLDEN) or table number (CPLCTID),
a previously activated non-linear coupling relationship, e.g. a curve table, is deactivated.

Generic coupling: Using the TRAIL, LEAD, EG or COUP coupling type.
If in the framework of the generic coupling, a behavior corresponding to one of the known
coupling types "Coupled motion", "Master value coupling", "Electronic gear" or "Synchronous
spindle" is required, the command CPSETTYPE is also possible in synchronized actions when
creating or defining the coupling module:

CPSETTYPE[FAx] = <coupling type>

<Coupling type> Meaning
CP Freely programmable
TRAIL "Coupled motion" coupling type
LEAD "Master value coupling" coupling type
EG "Electronic gearbox" coupling type
COUP "Synchronous spindle" coupling type

Supplementary conditions

Synchronism status of a following axis
The system variable $AA_SYNC[<axis>] can be used to read the synchronism status of a
following axis in the part program or synchronized action.

Axis replacement with cross-channel coupling
For axis replacement, the following and leading axes must be known to the calling channel. Axis
replacement of leading axes can be performed independently of the state of the coupling. A
defined or active coupling does not produce any other supplementary conditions.

Note

With the activation of the coupling, the following axis becomes the main run axis and is not
available for an axis replacement. The following axis is thus logged out of the channel. With this
type of coupling, an overlaid movement is therefore not possible.

See also Section "Axis replacement (GET, RELEASE, AXTOCHAN) (Page 974)"

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 997

Conflict prevention when changing from following axis to channel axis
In order to be able to traverse a following axis traversed via synchronized actions as a channel
axis again, you must ensure that the coupling is deactivated before the channel requests the
relevant axis.

The following example shows an error case:

Program code
...
N50 WHEN TRUE DO TRAILOF(Y, X)
N60 Y100

The Y axis is not released early enough in N50 because TRAILOF only becomes active with
N60 through the non-modal synchronized action.

Corrected example:

Program code Comment
...
N50 WHEN TRUE DO TRAILOF(Y, X)
N55 WAITP(Y) ; Wait for end of travel of the positioning axis
N60 Y100

Examples
Define coupling: Y = following axis, X = leading axis

Program code
... DO CPLDEF[Y]=X CPLNUM[Y,X]=1.5

Activate coupling and define coupling relationship.

● N10 with the correct sequence: First CPLON then CPLNUM
● N20 with incorrect sequence: First CPLNUM then CPLON

Program code
N10 ... DO CPLON[Y]=X CPLNUM[X,Y]=1.5
N20 ... DO CPLNUM[X,Y]=2 CPLON[Y]=X ; Error

Activate coupling, deactivation/activation with implicit resynchronization

Program code
N10 ... DO CPLON[X]=Y CPLNUM[X,Y]=3
N20 Y100 F100
N30 ... DO CPLOF=X CPLON[X]=Y CPLNUM[X,Y]=3

Activate coupling, deactivate and traverse as a command axis

Program code
N10 ... DO CPLON[X]=Y CPLNUM[X,Y]=3
N20 Y100 F100

Work preparation
3.17 Synchronized actions

NC programming
998 Programming Manual, 06/2019, A5E47437142B AA

Program code
N30 ... DO CPLOF=X MOV[X]=10

3.17.8.19 Measurement (MEAWA, MEAC)
The following commands can be used in synchronized actions for measurement:

● MEAWA (measurement without delete distance-to-go)

● MEAC (continuous measurement without delete distance-to-go)

While the measuring function in the part program is limited to one motion block, the measuring
function can be switched on and off any number of times from synchronized actions.

Note

Measurement can also be performed in JOG mode via static synchronized actions IDS

References
Detailed information on measuring commands can be found in:

● Coupled motion, curve tables, master value coupling:
Programming Manual, Job Planning; Section "Axis couplings"

● Generic coupling
Description of Functions, Special Functions, Section "Axis couplings (M3)" > "Generic
coupling"

Measurement tasks and state changes
When a measurement task has been executed from a synchronized action, the control system
responds in the following way:

State Response
Operating mode change A measurement task activated by a modal synchronized action is not affec‐

ted by a change in operating mode. It remains active beyond block limits.
Reset The measurement task is aborted.
Block search Measurement tasks are collected, but not activated until the programmed

condition is fulfilled.
REPOS Activated measurement tasks are not affected.
End of program Measurement tasks started from static synchronized actions remain active.

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 999

Remarks

System variables
The following system variables can be used in conjunction with synchronous actions:

● $AA_MEAACT (axial measuring active)

● $A_PROBE (probe state)

● $AA_MM1 ... 4 (probe position 1st to 4th trigger (machine coordinate system))

The following system variable cannot be used in conjunction with synchronized actions:

● $AC_MEA (probe has responded)

Measurement job
Only one measurement job at a time may be active for an axis.

Priority with more than one measurement
A new measurement task for the same axis has the effect that the trigger events are reactivated
and the measurement results reset.

Measurement jobs started from the part program cannot be influenced from synchronized
actions. If a measurement task is started from a synchronized action for an axis for which a
measurement task is already active from the part program, an alarm is displayed.

If a measurement task is already active from a synchronized action, measurement can no
longer be started from the part program.

Saving measurement results
A FIFO memory is set up in the $AC_FIFO system variables to save the measurement results.
See Section "FIFO variables ($AC_FIFO) (Page 920)".

Examples
In the following examples, two FIFO memories are set up via machine data:

● MD28050 $MC_MM_NUM_R_PARAM = 300

● MD28258 $MC_MM_NUM_AC_TIMER = 1

● MD28260 $MC_NUM_AC_FIFO = 1 (set up FIFO memory)

● MD28262 $MC_START_AC_FIFO = 100 (FIFO memory starts from R100)

● MD28264 $MC_LEN_AC_FIFO = 28 (22 variables + 6 management data)

● MD28266 $MC_MODE_AC_FIFO = 0 (no summation)

Example 1
All rising edges of probe 1 are to be recorded between 0 and 100 mm for the X axis. It is
assumed that no more than 22 measuring edges occur.

Program code Comment
DEF INT NUMBER ; number of current measured values
DEF INT INDEX_R ; loop index

Work preparation
3.17 Synchronized actions

NC programming
1000 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N10 G0 X0 ; approach starting point for the measure-

ment
;Measurement: Mode = 1 (simultaneously), FIFO memory = 1,
; trigger event = 1 (rising edge of probe 1)
N20 MEAC[X]=(1, 1, 1) POS[X]=100
N30 STOPRE ; stop preprocessing
N40 MEAC[X]=(0) ; cancel measurement
N50 ANZAHL=$AC_FIFO1[4] ; number of saved measured values
N60 ANZAHL = ANZAHL - 1
N70 FOR INDEX_R=0 TO ANZAHL
N80 R[INDEX_R]=$AC_FIFO1[0] ; save measured value in R parameter
N90 ENDFOR

Example 2
All rising and falling edges of probe 1 are to be recorded between 0 and 100 mm for the X axis.
The number of measurements is not known. Therefore, the measured values must be fetched
parallel to the measurement and stored in ascending order as of $R1. The number of stored
measured values is entered in $R0.

Program code Comment
$AC_MARKER[1]=1 ; initialize index for R parameter index
N10 G0 X0 ; approach starting point for the measurement
; If measured values are available in the FIFO memory, the oldest value is read and
; stored in the current R parameter[$AC_MARKER[1]].
; The R parameter index is then incremented.
N20 ID=1 WHENEVER $AC_FIFO1[4] >= 1 DO $R[$AC_MARKER[1]] = $AC_FIFO1[0]
 $AC_MARKER[1] = $AC_MARKER[1] + 1
; Continuous measurement: Mode = 1 (simultaneously), FIFO memory = 1,
; trigger event 1 = 1 (rising edge of probe 1),
; trigger event 2 = -1 (falling edge of probe 1)
N30 MEAC[X]=(1, 1, 1, -1) POS[X]=100
N40 MEAC[X]=(0) ; turn off measurement
N50 STOPRE ; stop preprocessing
N60 R0 = $AC_MARKER[1] ; number of recorded measured values

Example 3
Rising and falling edges of probe 1 are to be recorded between 0 and 500 mm for the X axis.
The number of measurements is limited to 10.

The distance-to-go of the X axis is then deleted.

Program code Comment
N10 G0 X0 ; approach starting point for the measure-

ment
; Abort condition: Deselect continuous measurement after 10 or more measurements
; and perform "delete distance-to-go"

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1001

Program code Comment
N10 WHEN $AC_FIFO1[4] >= 10 DO MEAC[X]=(0) DELDTG(X)
; Continuous measurement: Mode = 1 (simultaneously), FIFO memory = 1,
; trigger event 1 = 1 (rising edge of probe 1),
; trigger event 2 = -1 (falling edge of probe 1)
N20 MEAC[X]=(1, 1, 1, -1) G01 X100 F500
N30 MEAC [X]=(0) ; turn off measurement
N40 R0 = $AC_FIFO1[4] ; number of recorded measured values

3.17.8.20 Travel to fixed stop (FXS, FXST, FXSW, FOCON, FOCOF, FOC)

Function

Travel to fixed stop
The function "Travel to fixed stop" can be controlled via synchronized actions with the FXS,
FXST and FXSW commands.

The activation can also be performed without traversing motion of the relevant axis. The torque
is immediately limited. The fixed stop is monitored as soon as the axis is traversed.

Travel with limited torque/force
Travel with limited torque/force can be controlled via synchronized actions with the FOCON,
FOCOF and FOC commands.

Syntax
FXS[<axis>]=<request>
FXST[<axis>]=<clamping torque>
FXSW[<axis>] = <window width>
FOCON[<axis>]
FOCOF[<axis>]
FOC[<axis>]

Meaning

Parameter Meaning
FXS: Travel to fixed stop
<Request>: Request to the "Travel to fixed stop" function:

0 = switch off
1 = switch on

FXST: Set clamping torque
<Clamping torque>: Clamping torque as % of the maximum drive torque
FXSW: Set monitoring window
<Window width>: Width of the tolerance window around the fixed stop

Unit: mm, inch or degrees
FOCON: Switch on modal torque/force limitation

Work preparation
3.17 Synchronized actions

NC programming
1002 Programming Manual, 06/2019, A5E47437142B AA

Parameter Meaning
FOCOF: Switch off modal torque/force limitation
FOC: Non-modal torque/force limitation
<axis>: Name of the channel axis on which the command will be applied

Remarks

Avoidance of multiple selection
The "Travel to fixed stop" function must only be switched on once per axis. In the event of an
error, alarm 20092 is displayed and the corresponding alarm response takes effect.

To avoid multiple selections, it is recommended that a selection marker be used in the
synchronized action.

Example:

Program code Comment
N10 R1=0 ; Initialize selection marker
...
N20 IDS=1 WHENEVER ($R1==0 AND $AA_IW[AX3] > 7) DO $R1=1 FXS[AX1]=1

Switching on during the approach motion
"Travel to fixed stop" can also be switched on during the approach motion through a non-modal
synchronized action.

Example:

Program code Comment
N10 G0 G90 X0 Y0 ; Approach initial setting
...
; "Travel to fixed stop" is switched on for the X axis,
; as soon as the position setpoint in the WCS is > 20 mm
; Execution of the non-modal synchronized action: With N30
N20 WHEN G71 $AA_IW[X] > 20 DO FXS[X]=1
N30 G1 F200 X100 ; Traversing block of the X axis

Example: Travel to fixed stop completely via synchronized actions

Program code Comment
; IF selection request $R1==1 AND state of the Y axis == "not to fixed stop"
; THEN: For the Y axis:
; - Switch on FXS
; - Traverse to position 150 mm
; - Reduce drive torque to 10%
IDS=1 WHENEVER G71 (($R1==1) AND $AA_FXS[y]==0)) DO $R1=0 FXS[Y]=1 FXST[Y]=10
 FA[Y]=200 POS[Y]=150
...

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1003

Program code Comment
; IF state of the Y-Axis == "Fixed stop has been detected"
; THEN: Increase drive torque to 30%
IDS=2 WHENEVER ($AA_FXS[Y]==4) DO FXST[Y]=30
...
; IF state of the Y axis == "Successful travel to fixed stop"
; THEN: Set drive torque in accordance with setting $R0
IDS=3 WHENEVER ($AA_FXS[Y]==1) DO FXST[Y]=$R0
...
; Deselection depending on R3 and retract.
IDS=4 WHENEVER (($R3==1) AND $AA_FXS[Y]==1)) DO FXS[Y]=0 FA[Y]=1000 POS[Y]=0
...
N10 R1=0 FXS[Y]=0 G0 G90 Y0 ; Initialization
N30 RELEASE(Y) ; Enable Y axis for traversing in synchronized actions
N50 ...
N60 GET(Y) ; Include Y axis in the path group again

3.17.8.21 Channel synchronization (SETM, CLEARM)
Synchronization markers can be set and deleted in the channel in which the synchronized
action runs with the SETM and CLEARM commands.

Syntax
SETM(<No_marker 1> [,<No_marker 2> {, ... < No_marker n>}])
CLEARM(<No_marker 1> [,<No_marker 2> {, ... < No_marker n>}])

Meaning
A detailed description of the SETM and CLEARM commands can be found in:

References
Programming Manual, Job Planning; Section "Flexible NC programming" > "Program
coordination (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)"

3.17.8.22 User-specific error reactions (SETAL)
Synchronized actions can be used to react user-specifically to application-specific error states.
Possible reactions are:

● Axis with stop via override = 0%

● Display user-specific alarm

● Set digital output

Work preparation
3.17 Synchronized actions

NC programming
1004 Programming Manual, 06/2019, A5E47437142B AA

Display alarm

Syntax
SETAL(<Alarm_no>[,"Alarm text"])

Meaning

Parameter Meaning
<Alarm_no>: Alarm number from the range: 65000 - 69999

A complete description of the configuration of user alarms can be found in:

References
Base Software and HMI Advanced Commissioning Manual,
Section "HMI Advanced" > "Configuring the HMI system" > "Configuring user alarms"

Examples

; If the distance between axes X1 and X2 is less than 5 mm =>
; stop axis X2
ID=1 WHENEVER G71 ($AA_IM[X1]-$AA_IM[X2])<5.0 DO $AA_OVR[X2]=0

; If the distance between axes X1 and X2 is less than 5 mm =>
; display alarm 65000
ID=1 WHENEVER G71 ($AA_IM[X1]-$AA_IM[X2])<5.0 DO SETAL(65000)

3.17.8.23 Cancel the actual subprogram level (CANCELSUB)
Using CANCELSUB, in the channel in which the synchronized action is executed, the NC
program active in the current subprogram level is canceled and in the calling program, the next
higher program level is selected. There, program execution is continued normally.

Properties
● For each call, only the current subprogram level is canceled.

● After a cancellation, the next higher program level can only be canceled if a return jump is
made from the canceled subprogram level.

● The main program level cannot be canceled.

Syntax
CANCELSUB

Meaning

CANCELSUB: Cancels the current subprogram level

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1005

See also
The cancellation of the current subprogram level can be realized using the channel-specific NC/
PLC interface signal, also from the PLC user program, which is functionally identical:

DB21,DBX6.4 (program level cancellation)

3.17.9 Technology cycles

3.17.9.1 General

Definition
A technology cycle is an NC program that is called in the action part of a synchronized action.
All language elements and system variables that are also used in the action part of a
synchronized action can be used in a technology cycle. In addition, there are also the following
language elements that may only be used within a technology cycle:

● Chapter "System variables for synchronized actions (Page 910)"

● Chapter "User-defined variables for synchronized actions (Page 947)"

● Chapter "Language elements for synchronized actions and technology cycles (Page 949)"

● Chapter "Language elements for technology cycles only (Page 955)"

● Chapter "Actions in synchronized actions (Page 955)"

End of program
The following commands are permitted as end of program: M02, M17, M30, RET

Search path
When calling a technology cycle, the same search path is used as for subprograms and cycles.

References
Programming Manual, Job Preparation, Section "Flexible NC programming" > "Subprogram
technique" > "General" > "Search path"

Multiple calls
If a condition is fulfilled again while the technology cycle is being executed, the technology cycle
is not restarted.

If a technology cycle is started because of a fulfilled WHENEVER condition and the condition is
still fulfilled after completion of the technology cycle, then the technology cycle is started again.

Work preparation
3.17 Synchronized actions

NC programming
1006 Programming Manual, 06/2019, A5E47437142B AA

Behavior with non-modal synchronized actions
A non-modal synchronized action is always linked to the next main run block. If the execution
time of the technology cycle is longer than the processing time of the associated main run block,
the technology cycle is aborted with the block change.

Execution sequence of technology cycles
If several technology cycles are programmed in the action part of a synchronized action, they
are executed in the programmed sequence from left to right.

Example
Calling three technology cycles in the action part of a synchronized action.

Program code
ID=1 <condition part> DO AXIS_X AXIS_Y AXIS_Z

Execution sequence of the technology cycle blocks: N10, N11, N12, N20, N21, N22, N30, N31,
N32

Note
Supplementary conditions
● A maximum of eight technology cycles may be called in the action part of a synchronized

action.
● Except for the call of further technology cycles, no other action may be programmed in the

action part of a synchronized action in which a technology cycle is called.

See also
Processing mode (ICYCON, ICYCOF) (Page 1008)

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1007

3.17.9.2 Processing mode (ICYCON, ICYCOF)

Function
The ICYCOF and ICYCON commands can be used to control the processing mode of the
actions within technology cycles.

Per default, the processing mode ICYCON is active.

Processing mode: ICYCON
A non-modal technology cycle is executed in the ICYCON processing mode. The execution of
all actions programmed in a block is initiated in the same interpolator clock cycle. As soon as
all initiated actions are completed, the next block is processed in the following interpolator clock
cycle.

A distinction is made between single-cycle and multi-cycle actions. Examples are:

● Single-cycle actions: Auxiliary function output, value assignments

● Multi-cycle actions: Traversing motions of axes and spindles

Each block of a technology cycle requires at least one interpolator clock cycle.

Processing mode: ICYCOF
All actions of all blocks of a technology cycle are initiated in parallel in the ICYCOF processing
mode.

NC program as a part program
If an NC program is executed as a part program, the ICYCOF and ICYCON commands have no
effect.

Syntax

In the action part of a synchronized action
ID=1 <condition part> DO [ICYCOF] <technology cycle 1> [ICYCOF |
ICYCON] <technology cycle 2> ...

As property of an NC program
PROC <name> [ICYCOF | ICYCON]

Within an NC program
PROC <name>
 N10 ...
 N20 [ICYCOF | ICYCON]
 N90 ...
 N100 [ICYCOF | ICYCON]
 N110 ...
RET

Work preparation
3.17 Synchronized actions

NC programming
1008 Programming Manual, 06/2019, A5E47437142B AA

Example

Program code Effective processing mode Interpolator cycle
PROC TECHNOCYC ICYCON
 $R1=1 ICYCON 1
 POS[X]=100 ICYCON 2 ... 25
 ICYCOF ICYCOF 26
 $R1=2 ICYCOF 26
 $R2=$R1+1 ICYCOF 26
 POS[X]=110 ICYCOF 26
 $R3=3 ICYCOF 26
RET ICYCOF 26

3.17.9.3 Definitions (DEF, DEFINE)
If an NC program is used as technology cycle, that contains commands for variable (DEF) and/
or macro definition (DEFINE) then these have no effect when executing the technology cycle.

Although variables and macro definitions have no effect within a technology cycle, they must
nevertheless have the correct syntax. In the event of an error, the execution of the technology
cycle is aborted and an alarm displayed.

As the variables and macros are not available in the technology cycle, special measures may
have to be taken in the program code. See Chapter "Context variable ($P_TECCYCLE)
(Page 1010)".

3.17.9.4 Parameter transfer
Only the Call-by-Value parameter transfer is possible in a subprogram being applied as a
technology cycle.

The application of Call-by-Reference parameters is not permissible and will trigger a
corresponding alarm.

References:
A detailed description of the parameter transfer and parameter definition in subprograms can
be found in:

Programming Manual Job Planning, Section "Flexible NC programming" > "Subprogram
technique" > "Definition of a subprogram" or "Call of a subprogram"

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1009

3.17.9.5 Context variable ($P_TECCYCLE)

Function
If an NC program is used as part program as well as also technology cycle, then context-
specific program sections can be defined using system variable $P_TECCYCLE:

● $P_TECCYCLE == TRUE ⇒ The NC program is currently being executed as technology
cycle

● $P_TECCYCLE == FALSE ⇒ The NC program is currently being executed as part program

Application
The (DEF) variables and (DEFINE) macro definitions have no effect in technology cycles. If an
NC program is executed as a technology cycle that contains the appropriate definitions, a
context-specific case distinction has to be made in the program code as the variables and
macros are then no longer available.

Example
Travel parameters via user variables in the part program and R parameters in the technology
cycle

Program code Comment: Use in
PROC UP_1
 DEF REAL POS_X=100.0 Part program
 DEF REAL F_X=250.0 Part program
 IF $P_TECCYCLE==TRUE
 $R1=100.0 Technology cycle
 $R2=250.0 Technology cycle
 ENDIF
 IF $P_TECCYCLE==TRUE
 N100 POS[X]=$R1 FA[X]=$R2 Technology cycle
 ELSE
 N200 POS[X]=POS_X FA[X]=F_X Part program
 ENDIF
RET

See also
Definitions (DEF, DEFINE) (Page 1009)

Work preparation
3.17 Synchronized actions

NC programming
1010 Programming Manual, 06/2019, A5E47437142B AA

3.17.10 Coordination via part program and synchronized action (LOCK, UNLOCK,
CANCEL)

Each modal and static synchronized action must be assigned a unique identification number
during the definition:

Program code
ID=<number> condition part DO action part
IDS=<number> condition part DO action part

By specifying the identification number, synchronized actions from part programs and from
synchronized actions can be coordinated via the following commands:

Keyword Meaning TP1) SA2)

LOCK(<number>): Lock synchronized action
An active positioning action is interrupted.

- x

UNLOCK(<number>): Continue interrupted synchronized action
An interrupted positioning operation is continued.

- x

CANCEL(<number>): Delete synchronized action
An active positioning action is terminated.

x -

1) Can be programmed in the part program
2) Can be programmed in a synchronized action / technology cycle

3.17.11 Coordination via PLC
With regard to their execution by the NC, synchronized actions that are not protected can be
locked. Either all synchronized actions in the channel can be locked together or individually in
the ID/IDS 1 - 64 area.

All, channel-specific
Lock all synchronized actions in the channel:

DB21, … DBX1.2 = 1 (inhibit all synchronized actions)

Individually, channel-specific

Synchronized actions that can be locked
The synchronized actions ID/IDS that can be inhibited are displayed using:

DB21, … DBX308.0 - 315.7 == 1 (synchronized actions ID/IDS can be locked)

The update of the inhibit signals in the interface by the NC must be actively requested from the
PLC user program:

DB21, … DBX281.1 = 1 (request: Update synchronized actions that can be locked)

The NC then updates the inhibit signals in the interface, and acknowledges the update by
resetting the request:

Work preparation
3.17 Synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1011

DB21, … DBX281.1 = 0 (acknowledgement: Synchronized actions that can be locked updated)

Lock synchronized actions
For each synchronized action ID/IDS, which is to be inhibited in the channel, the PLC user
program must set the associated inhibit signal:

DB21, … DBX300.0 - 307.7 = 1 (inhibit synchronized action ID/IDS)

The acceptance of the inhibit signals from the interface in the NC must be actively requested
from the PLC user program:

DB21, … DBX280.1 = 1 (request: Accept synchronized actions to be locked)

The NC then accepts the inhibit signals from the interface in the channel and acknowledges the
acceptance by resetting the request:

DB21, … DBX280.1 = 0 (acknowledgement: Synchronized actions to be locked accepted)

Work preparation
3.17 Synchronized actions

NC programming
1012 Programming Manual, 06/2019, A5E47437142B AA

3.18 Oscillation

3.18.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC,
OSE, OSB)

An oscillating axis travels back and forth between two reversal points 1 and 2 at a defined
feedrate, until the oscillating motion is deactivated.

Other axes can be interpolated as desired during the oscillating motion. A continuous infeed
can be achieved via a path movement or with a positioning axis, however, there is no
relationship between the oscillating movement and the infeed movement.

Properties of asynchronized oscillation
● Asynchronous oscillation is active on an axis-specific basis beyond block limits.

● Block-oriented activation of the oscillation movement is ensured by the part program.

● Combined interpolation of several axes and superimposing of oscillation paths are not
possible.

Programming
The following commands can be used to activate and control asynchronous oscillation from the
part program.

The programmed values are entered in the corresponding setting data with block
synchronization during the main run and remain active until changed again.

Syntax
OSP1[<axis>]=<value> OSP2[<axis>]=<value>
OST1[<axis>]=<value> OST2[<axis>]=<value>
FA[<axis>]=<value>
OSCTRL[<axis>]=(<setting option>,<reset option>)
OSNSC[<axis>]=<value>
OSE[<axis>]=<value>
OSB[<axis>]=<value>
OS[<axis>] = 1
OS[<axis>] = 0

Meaning

<axis>: Name of oscillating axis
OS: Activate/deactivate oscillation

Value: 1 Switch oscillation on
0 Switch oscillation off

OSP1: Define position of reversal point 1

Work preparation
3.18 Oscillation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1013

OSP2:

Define position of reversal point 2
Note:
If incremental movement is active, the position will be calculated incrementally to the last
corresponding reversal position programmed in the NC program.

OST1: Define stopping time in reversal point 1 in [s]
OST2: Define stopping time in reversal point 2 in [s]
 <value>: -2 Interpolation continues without wait for exact stop

-1 Wait for exact stop coarse
0 Wait for exact stop fine

>0 Wait for exact stop fine and then wait for specified stopping time
Note:
The unit for the stopping time is identical to that of the stopping time
programmed with G4.

FA: Define feedrate
The feedrate is the defined feedrate of the positioning axis. If no feedrate is defined, the
value stored in the machine data applies.

OSCTRL: Specify setting and reset options
Option values 0 to 3 encrypt the behavior at the reversal points on deactivation. One of the
variants from 0 to 3 can be selected. The remaining settings can be combined at will with
the selected variant. Multiple options are appended with plus characters (+).
<value>: 0 Stop at next reversal point on deactivation of oscillation (default)

Note:
Only possible if values 1 and 2 are reset.

1 When the oscillation is deactivated, stop at reversal point 1
2 When the oscillation is deactivated, stop at reversal point 2
3 When the oscillation is deactivated, do not approach reversal point if

no spark-out strokes are programmed
4 Approach end position after spark-out
8 If oscillation is canceled by deletion of distance-to-go, sparking-out

strokes will then need to be executed and the end position approach‐
ed if necessary.

16 If oscillation is canceled by deletion of distance-to-go, the corre‐
sponding reversal point will need to be approached as is the case
with shutdown.

32 New feed is only active after the next reversal point
64 FA equal to 0, FA = 0: Path overlay is active

FA not equal to 0, FA <> 0: Speed overlay is active
128 For rotary axis DC (shortest path)
256 The sparking-out stroke is a dual stroke (default). 1=Single stroke.
512 First approach start position

OSNSC: Define number of sparking-out strokes

Work preparation
3.18 Oscillation

NC programming
1014 Programming Manual, 06/2019, A5E47437142B AA

OSE: Define end position (in workpiece coordinate system) to be approached after deactivation
of oscillation.
Note:
When programming "OSE" option 4 becomes effective implicitly for "OSCTRL".

OSB: Define start position (in workpiece coordinate system) to be approached prior to activation
of oscillation.
The start position is approached before reversal point 1. If the start position coincides with
reversal position 1, reversal position 2 is approached next. No stopping time applies when
the start position is reached, even if this position coincides with reversal position 1; in‐
stead, the axis waits for the exact stop fine signal. Any exact stop condition configured is
fulfilled.
Note:
Bit 9 in setting data SD43770 $SA_OSCILL_CTRL_MASK must be set to initiate an ap‐
proach to the start position.

Examples

Example 1: Oscillating axis to oscillate between two reversal points
Oscillating axis Z is to oscillate between position 10 and 100. Reversal point 1 is to be
approached with exact stop fine, reversal point 2 with exact stop coarse. The feedrate for the
oscillating axis must be 250. 3 sparking-out strokes must be executed at the end of the
machining operation and the oscillating must approach end position 200. The feedrate for the
infeed axis must be 1 and the end of infeed in the X direction should be reached at position 15.

Program code Comment
WAITP(X,Y,Z) ; Initial setting.
G0 X100 Y100 Z100 ; Switch over to positioning axis opera-

tion.
WAITP(X,Z)
OSP1[Z]=10 OSP2[Z]=100 ; Reversal point 1, reversal point 2.
OSE[Z]=200 ; End position.
OST1[Z]=0 OST2[Z]=–1 ;Stopping time at U1: Exact stop fine

; Stopping time at U2: Exact stop coarse
FA[Z]=250 FA[X]=1 ; Feed for oscillating axis, infeed axis
OSCTRL[Z]=(4,0) ; Setting options.
OSNSC[Z]=3 ; 3 sparking-out strokes.
OS[Z]=1 ; Start oscillation.
WHEN $A_IN[3]==TRUE DO DELDTG(X) ; Deletion of distance-to-go.
POS[X]=15 ; Starting position X axis.
POS[X]=50 ; End position X axis.
OS[Z]=0 ; Stop oscillation.
M30

Note

The "OSP1[Z]=..." to "OSNCS[Z]=..." command sequence can also be programmed in a block.

Work preparation
3.18 Oscillation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1015

Example 2: Oscillation with online modification of the reversal position
The setting data necessary for asynchronous oscillation can be set in the part program.

If the setting data is described directly in the program, the change takes effect during
preprocessing. A synchronized response can be achieved by means of a preprocessing stop
(STOPRE).

Program code Comment
$SA_OSCILL_REVERSE_POS1[Z]=-10
$SA_OSCILL_REVERSE_POS2[Z]=10
G0 X0 Z0
WAITP(Z)
ID=1 WHENEVER $AA_IM[Z] < $$AA_OSCILL_REVERSE_
POS1[Z] DO $AA_OVR[X]=0
ID=2 WHENEVER $AA_IM[Z] < $$AA_OSCILL_REVERSE_
POS2[Z] DO $AA_OVR[X]=0

; If the actual value of the os-
cillating axis has exceeded the
reversal point, then the infeed
axis is stopped.

OS[Z]=1 FA[X]=1000 POS[X]=40 ; Activate oscillation.
OS[Z]=0 ; Deactivate oscillation.
M30

Further information

Oscillating axis
The following apply to the oscillating axis:

● Every axis may be used as an oscillation axis.

● Several oscillation axes can be active at the same time (maximum: the number of the
positioning axes).

● Linear interpolation G1is always active for the oscillating axis – irrespective of the G
command currently valid in the program.

The oscillating axis can:

● Act as an input axis for dynamic transformation

● Act as a guide axis for gantry and coupled-motion axes

● Be traversed:

– Without jerk limitation "BRISK"
or

– With jerk limitation "SOFT"
or

– With acceleration curve with a knee (as positioning axes)

Work preparation
3.18 Oscillation

NC programming
1016 Programming Manual, 06/2019, A5E47437142B AA

Oscillation reversal points
The current offsets must be taken into account when oscillation positions are defined:

● Absolute specification
"OSP1[Z]=<value>"
Position of reversal point = sum of offsets + programmed value

● Relative specification
"OSP1[Z]=IC(<value>)"
Position of reversal point = reversal point 1 + programmed value

Example:

Program code
N10 OSP1[Z]=100 OSP2[Z]=110
...
N40 OSP1[Z]=IC(3)

WAITP
If oscillation is to be performed with a geometry axis, you must enable this axis for oscillation
with "WAITP".

When oscillation has finished, "WAITP" is used to enter the oscillating axis as a positioning axis
again, so that normal use can resume.

Oscillation with motion-synchronous actions and stopping times
Once the set stop times have expired, the internal block change is executed during oscillation
(indicated by the new distances to go of the axes). The deactivation function is checked when
the block changes. The deactivation function is defined according to the control setting for the
motion sequence (OSCTRL). This dynamic response can be influenced by the feed override.
An oscillation stroke may then be executed before the sparking-out strokes are started or the
end position approached. Although it appears as if the deactivation response has changed, this
is not in fact the case.

3.18.2 Oscillation controlled by synchronized actions (OSCILL)
With this mode of oscillation, an infeed motion may only be executed at the reversal points or
within defined reversal areas.

Depending on requirements, the oscillation movement can be

● Continued or

● Stopped until the infeed has finished executing.

Syntax
1. Define parameters for oscillation

2. Define motion-synchronous actions

3. Assign axes, define infeed

Work preparation
3.18 Oscillation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1017

Meaning

OSP1[<oscillating axis>]= Position of reversal point 1
OSP2[<oscillating axis>]= Position of reversal point 2
OST1[<oscillating axis>]= Stopping time at reversal point 1 in seconds
OST2[<oscillating axis>]= Stopping time at reversal point 2 in seconds
FA[<oscillating axis>]= Feed for oscillating axis
OSCTRL[<oscillating axis>]= Set or reset options
OSNSC[<oscillating axis>]= Number of sparking-out strokes
OSE[<oscillating axis>]= End position
WAITP(<oscillating axis>) Enable axis for oscillation

Axis assignment, infeed
OSCILL[<oscillating axis>]=(<infeed axis 1>,<infeed axis 2>,<infeed
axis 3>)
POSP[<infeed axis>]=(<end position>,<partial length>,<mode>)

OSCILL: Assign infeed axis or axes for oscillating axis
POSP: Define complete and partial infeeds (see Section "File and Program Management")
End position: End position for the infeed axis after all partial infeeds have been traversed.
Partial
length:

Length of the partial infeed at reversal point/reversal area

Mode: Division of the complete infeed into partial infeeds
= Two residual steps of equal size (default);
= All partial infeeds of equal size

Motion-synchronous actions

WHEN… … DO when…, do…
WHENEVER … DO whenever…, do…

Work preparation
3.18 Oscillation

NC programming
1018 Programming Manual, 06/2019, A5E47437142B AA

Example
No infeed must take place at reversal point 1. At reversal point 2, the infeed is to start at a
distance of ii2 before reversal point 2 and the oscillating axis is not to wait at the reversal point
for the end of the partial infeed. Axis Z is the oscillation axis and axis X the infeed axis.

1. Parameters for oscillation

Program code Comment
DEF INT ii2 ; Define variable for reversal area 2
OSP1[Z]=10 OSP2[Z]=60 ; Define reversal points 1 and 2
OST1[Z]=0 OST2[Z]=0 ; Reversal point 1: Exact stop fine

Reversal point 2: Exact stop fine
FA[Z]=150 FA[X]=0.5 ; Oscillating axis Z feedrate, infeed axis X feedrate
OSCTRL[Z]=(2+8+16.1) ; Deactivate oscillating motion at reversal point 2; after

delete DTG spark-out and approach end position; after de-
lete DTG approach reversal position

OSNC[Z]=3 ; Sparking-out strokes
OSE[Z]=70 ; End position = 70
ii2=2 ; Set reversal point range
WAITP(Z) ; Enable oscillation for Z axis

2. Synchronized action

Program code Comment
WHENEVER $AA_IM[Z]<$SA_OSCILL_REVERSE_POS2[Z]
DO ->
 $AA_OVR[X]=0 $AC_MARKER[0]=0

; If the actual position of oscil-
lating axis Z in MCS is less than
the start of reversal range 2, then
always set the axial override of the
infeed axis X to 0% and the bit mem-
ory with index 0 to the value 0.

Work preparation
3.18 Oscillation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1019

Program code Comment
WHENEVER $AA_IM[Z]>=$SA_OSCILL_REVERSE_POS2[Z]
DO $AA_OVR[Z]=0

; If the actual position of the os-
cillating axis Z in MCS is greater
than the reversal position 2, then
always set the axial override of the
oscillating axis Z to 0%.

WHENEVER $AA_DTEPW[X] == 0 DO $AC_MARKER[0]=1 ; If the remaining distance to go of
the partial infeed is 0, then always
set the bit memory with index 0 to
the value 1.

WHENEVER $AC_MARKER[0]==1 DO $AA_OVR[X]=0
$AA_OVR[Z]=100

; Whenever the bit memory with index
0 is equal to 1, then set the axial
override of the infeed axis X to 0%.
As a consequence, a premature infeed
is prevented (oscillating axis Z has
still not left reversal area 2, but
infeed axis X is ready for a new in-
feed). Set the axial override of os-
cillating axis Z from 0% (action of
the 2nd synchronized action) back to
100% to move.

-> must be programmed in a single block

3. Start oscillation

Program code Comment
OSCILL[Z]=(X) POSP[X]=(5,1,1) ; Start the axes

Oscillating axis Z is assigned ax-
is X as infeed axis.
Up to end position 5, axis X
should travel in steps of 1.

M30 ; End of program

Further information
1. Define oscillation parameters

The parameters for oscillation should be defined before the movement block containing the
assignment of infeed and oscillating axes and the infeed definition (see "Asynchronized
oscillation").

2. Define motion-synchronized actions
The following synchronization conditions can be defined:
Suppress infeed until the oscillating axis is located within a reversal area
(ii1, ii2) or at a reversal point (U1, U2).
Stop oscillation motion during infeed at reversal point.
Restart oscillation movement on completion of partial infeed. Define
start of next partial infeed.

3. Assign oscillating and infeed axes as well as partial and complete infeed.

Work preparation
3.18 Oscillation

NC programming
1020 Programming Manual, 06/2019, A5E47437142B AA

Define oscillation parameters

Assignment of oscillating and infeed axes: OSCILL
OSCILL[<oscillating axis>]=(<infeed axis1>,<infeed axis2>,<infeed
axis3>)
The axis assignments and the start of the oscillation movement are defined with the "OSCILL"
command.

Up to 3 infeed axes can be assigned to an oscillating axis.

Note

Before oscillation starts, the synchronization conditions must be defined for the behavior of the
axes.

Define infeeds: POSP
POSP[<infeed axis>]=(<end position>,<partial length>,<mode>)
The following are declared to the control with the "POSP" command:

● Complete infeed (with reference to end position)

● The length of the partial infeed at the reversal point or in the reversal area

● The partial infeed response when the end position is reached (with reference to mode)

Mode = 0 The distance-to-go to the destination point for the last two partial infeeds is divided into
two equal steps (default setting).

Mode = 1 All partial infeeds are of equal size. They are calculated from the complete infeed.

Define motion-synchronized actions
The synchronized-motion actions listed below are used for general oscillation.

You are given example solutions for individual tasks, which you can use as modules for creating
user-specific oscillation movements

Note

In individual cases, the synchronization conditions can be programmed differentially.

Keywords

WHEN … DO … when…, do…
WHENEVER … DO whenever…, do…

Work preparation
3.18 Oscillation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1021

Functions
You can implement the following functions with the language resources described in detail
below:

1. Infeed at reversal point.

2. Infeed at reversal area.

3. Infeed at both reversal points.

4. Stop oscillation movement at reversal point.

5. Restart oscillation movement.

6. Do not start partial infeed too early.

The following assumptions are made for all examples of synchronized actions presented here:

● Reversal point 1 < reversal point 2

● Z = oscillating axis

● X = infeed axis

Note

For more details, see the "Motion-synchronous actions" section.

Assign oscillating and infeed axes as well as partial and complete infeed

Infeed in reversal point range
The infeed motion must start within a reversal area before the reversal point is reached.

These synchronized actions inhibit the infeed movement until the oscillating axis is within the
reversal area.

The following instructions are used subject to the above assumptions:

Reversal range 1:
WHENEVER $AA_IM[Z]>$SA_OSCILL_RESERVE_POS1[Z]+ii1 DO $AA_OVR[X] = 0
Whenever the actual position of the oscillating axis in the MCS is greater than the start of
reversal range 1, then set the axial override of the infeed axis to 0%.

Reversal range 2:
WHENEVER $AA_IM[Z]<$SA_OSCILL_RESERVE_POS2[Z]+ii2 DO $AA_OVR[X] = 0
Whenever the actual position of the oscillating axis in the MCS is less than the start of reversal
range 2, then set the axial override of the infeed axis to 0%.

Infeed at reversal point
As long as the oscillation axis has not reached the reversal point, the infeed axis does not
move.

Work preparation
3.18 Oscillation

NC programming
1022 Programming Manual, 06/2019, A5E47437142B AA

The following instructions are used subject to the above assumptions:

Reversal range 1:
WHENEVER $AA_IM[Z]<>$SA_OSCILL_RESERVE_POS1[Z] DO $AA_OVR[X]=0
$AA_OVR[Z]=100
Whenever the actual position of oscillating axis Z in MCS is greater or less than the position
reversal point 1, then set the axial override of the infeed axis X to 0% and the axial override of
the oscillating axis Z to 100%.

Reversal range 2:
For reversal point 2:
WHENEVER $AA_IM[Z]<>$SA_OSCILL_RESERVE_POS2[Z] DO $AA_OVR[X]=0
$AA_OVR[Z]=100
Whenever the actual position of oscillating axis Z in MCS is greater or less than the position
reversal point 2, then set the axial override of the infeed axis X to 0% and the axial override of
the oscillating axis Z to 100%.

Stop oscillation movement at the reversal point
The oscillation axis is stopped at the reversal point, the infeed motion starts at the same time.
The oscillating motion is continued when the infeed movement is complete.

At the same time, this synchronized action can be used to start the infeed movement if this has
been stopped by a previous synchronized action, which is still active.

The following instructions are used subject to the above assumptions:

Reversal range 1:
WHENEVER $SA_IM[Z]==$SA_OSCILL_RESERVE_POS1[Z] DO $AA_OVR[X]=0
$AA_OVR[Z]=100
Whenever the actual position of the oscillating axis in the MCS is the same as the reversal
position 1, then set the axial override of the oscillating axis to 0% and the axial override of the
infeed axis to 100%.

Reversal range 2:
WHENEVER $SA_IM[Z]==$SA_OSCILL_RESERVE_POS2[Z] DO $AA_OVR[X]=0
$AA_OVR[Z]=100
Whenever the actual position of the oscillating axis Z in the MCS is the same as the reversal
position 2, then set the axial override of the oscillating axis X to 0% and the axial override of
the infeed axis to 100%.

Online evaluation of reversal point
If there is a main run variable coded with $$ on the right of the comparison, then the two
variables are evaluated and compared with one another continuously in the IPO cycle.

Note

Please refer to Section "Motion-synchronized actions" for more information.

Work preparation
3.18 Oscillation

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1023

Oscillation movement restarting
The purpose of this synchronized action is to continue the movement of the oscillation axis on
completion of the part infeed movement.

The following instructions are used subject to the above assumptions:

WHENEVER $AA_DTEPW[X]==0 DO $AA_OVR[Z]= 100
Whenever the remaining distance for the partial infeed of infeed axis X in the WCS is equal to
zero, then set the axial override of the oscillating axis to 100%.

Next partial infeed
When infeed is complete, a premature start of the next partial infeed must be inhibited.

A channel-specific marker ($AC_MARKER[Index]) is used for this purpose. It is enabled at the
end of the partial infeed (partial distance-to-go ≡ 0) and deleted when the axis leaves the
reversal area. The next infeed movement is then prevented by a synchronized action.

On the basis of the given assumptions, the following instructions apply for reversal point 1:

1. Set marker:
WHENEVER $AA_DTEPW[X] == 0 DO $AC_MARKER[1]=1
Whenever the remaining distance for the partial infeed of infeed axis X in the WCS is equal to
zero, then set the bit memory with index 1 to 1.

2. Delete marker
WHENEVER $AA_IM[Z]<> $SA_OSCILL_RESERVE_POS1[Z] DO $AC_MARKER[1] = 0
Whenever the actual position of oscillating axis Z in the MCS is greater or less than the position
of reversal point 1, then set the bit memory 1 to 0.

3. Inhibit infeed
WHENEVER $AC_MARKER[1]==1 DO $AA_OVR[X]=0
Whenever bit memory 1 is the same, then set the axial override of the infeed axis X to 0%.

Work preparation
3.18 Oscillation

NC programming
1024 Programming Manual, 06/2019, A5E47437142B AA

3.19 Grinding

3.19.1 Activate/deactivate grinding-specific tool monitoring (TMON, TMOF)
With the predefined procedures TMON(...) and TMOF(...), the grinding-specific tool monitoring
is activated or deactivated (geometry and speed monitoring).

Requirement
The tool-specific parameters $TC_TPG1 to $TC_TPG9 must be set.

Syntax

TMON(<TNo>)
...
TMOF(<TNo>)

Meaning

TMON(...): Activate grinding-specific tool monitoring
The command must be programmed in the channel in which the grinding-specific tool
monitoring is to be activated.

TMOF(...): Deactivate grinding-specific tool monitoring
The command must be programmed in the channel in which the grinding-specific tool
monitoring is to be deactivated.

<TNo>: T number
Note:
Only required if the monitoring is to be switched on or off for an inactive grinding wheel
rather than the active grinding wheel that is currently in use.

TMOF(0): Deactivate monitoring for all tools

Work preparation
3.19 Grinding

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1025

3.20 Program runtime/part counter
Information on the program runtime and workpiece counter is provided to support the machine
tool operator.

This information can be processed as system variables in the NC and/or PLC program. This
information is also available to be displayed on the operator interface.

3.20.1 Program runtime
The "program runtime" function provides internal NC timers to monitor technological
processes, which can be read into the part program and into synchronized actions via the NC
and channel-specific system variables.

The trigger for the runtime measurement ($AC_PROG_NET_TIME_TRIGGER) is the only
system variable of the function that can be written to – and is used to selectively measure
program sections. This means, by writing $AC_PROG_NET_TIME_TRIGGER in the NC
program, the time measurement can be enabled and disabled again:

System variable Meaning Activity

NC-specific
$AN_SETUP_TIME Time since the last control power up with default values

("cold restart") in minutes.
Is automatically reset to "0" every time the control pow‐
ers up with default values.

● Always active

$AN_POWERON_TIME Time since the last normal control power up ("warm
restart") in minutes.
Is automatically reset to "0" every time the control pow‐
ers up normally.

Channel-specific
$AC_OPERATING_TIME Total runtime of NC programs in automatic mode in

seconds.
The value is automatically reset to "0" every time the
control powers up.

● Activated via
MD27860

● Only AUTOMATIC
mode

$AC_CYCLE_TIME Runtime of the selected NC program in seconds.
The value is automatically reset to "0" every time a new
NC program starts up.

$AC_CUTTING_TIME Processing time in seconds
The runtime of the path axes (at least one is active) is
measured in all NC programs between NC start and
end of program/NC reset without rapid traverse active.
The measurement is interrupted when a dwell time is
active.
The value is automatically reset to "0" every time the
control powers up with default values.

Work preparation
3.20 Program runtime/part counter

NC programming
1026 Programming Manual, 06/2019, A5E47437142B AA

System variable Meaning Activity
$AC_ACT_PROG_NET_TIME Actual net runtime of the current NC program in sec‐

onds.
Is automatically reset to "0" when a new NC program
starts.

● Always active
● Only AUTOMATIC

mode

$AC_OLD_PROG_NET_TIME Net runtime in seconds of the program that has just be
correctly ended with M30

$AC_OLD_PROG_NET_TIME_COUNT Changes to $AC_OLD_PROG_NET_TIME
After POWER ON,
$AC_OLD_PROG_NET_TIME_COUNT is at "0".
$AC_OLD_PROG_NET_TIME_COUNT is always in‐
creased if the control has newly written to
$AC_OLD_PROG_NET_TIME.

$AC_PROG_NET_TIME_TRIGGER Trigger for the runtime measurement: ● Only AUTOMATIC
mode0 Neutral state

The trigger is not active.
1 Exit

Ends the measurement and copies the value from
$AC_ACT_PROG_NET_TIME into
$AC_OLD_PROG_NET_TIME.$AC_ACT_PROG
_NET_TIME is set to "0" and then continues to run.

2 Start
Starts the measurement and in so doing sets
$AC_ACT_PROG_NET_TIME to "0".
$AC_OLD_PROG_NET_TIME is not changed.

3 Stop
Stops the measurement. Does not change
$AC_OLD_PROG_NET_TIME and keeps
$AC_ACT_PROG_NET_TIME constant until it re‐
sumes

4 Resume
The measurement is resumed, i.e. a measure‐
ment that was previously stopped is continued.
$AC_ACT_PROG_NET_TIME continues.
$AC_OLD_PROG_NET_TIME is not changed.

All system variables are reset to 0 as a result of POWER ON!

Note
Machine manufacturer

Machine data MD27860 $MC_PROCESSTIMER_MODE is used to switch-in the timer that can
be activated.

The behavior of active time measurements for certain functions (e.g. GOTOS, override = 0%,
active test run feed, program test, ASUB, PROG_EVENT, …) is configured using machine data
MD27850 $MC_PROG_NET_TIMER_MODE and MD27860 $MC_PROCESSTIMER_MODE.

References:
Function Manual, Basic Functions; BAG, Channel, Program Operation, Reset Response (K1),
Chapter: Program runtime

Work preparation
3.20 Program runtime/part counter

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1027

Note
Residual time for a workpiece

If the same workpieces are machined one after the other, using the following timer values, the
remaining residual time for a workpiece can be determined.
● Processing time for the last workpiece produced (see $AC_OLD_PROG_NET_TIME)
● Current processing time (see $AC_ACT_PROG_NET_TIME)

The residual time is displayed on the user interface in addition to the current processing time.

Note
Using STOPRE

The system variables $AC_OLD_PROG_NET_TIME and
$AC_OLD_PROG_NET_TIME_COUNT do not generate any implicit preprocessing stop. This
is uncritical when used in the part program if the value of the system variables comes from the
previous program run. However, if the trigger for the runtime measurement
($AC_PROG_NET_TIME_TRIGGER) is written very frequently and as a result
$AC_OLD_PROG_NET_TIME changes very frequently, then an explicit STOPRE should be
used in the part program.

Supplementary conditions
● Block search

No program runtimes are determined through block searches.

● REPOS
The duration of a REPOS process is added to the current processing time
($AC_ACT_PROG_NET_TIME).

Examples

Example 1: Measuring the duration of "mySubProgrammA"

Program code
...
N50 DO $AC_PROG_NET_TIME_TRIGGER=2
N60 FOR ii= 0 TO 300
N70 mySubProgrammA
N80 DO $AC_PROG_NET_TIME_TRIGGER=1
N95 ENDFOR
N97 mySubProgrammB
N98 M30

After the program has processed line N80, the net runtime of "mySubProgrammA" is located in
$AC_OLD_PROG_NET_TIME.

Work preparation
3.20 Program runtime/part counter

NC programming
1028 Programming Manual, 06/2019, A5E47437142B AA

The value from $AC_OLD_PROG_NET_TIME:

● is kept beyond M30.

● is updated each time the loop is run through.

Example 2: Measuring the duration of "mySubProgrammA" and "mySubProgrammC"

Program code
...
N10 DO $AC_PROG_NET_TIME_TRIGGER=2
N20 mySubProgrammA
N30 DO $AC_PROG_NET_TIME_TRIGGER=3
N40 mySubProgrammB
N50 DO $AC_PROG_NET_TIME_TRIGGER=4
N60 mySubProgrammC
N70 DO $AC_PROG_NET_TIME_TRIGGER=1
N80 mySubProgrammD
N90 M30

3.20.2 Workpiece counter
The "Workpiece counter" function makes available various counters which can be used in
particular internally in the control to count workpieces.

The counters exist as channel-specific system variables with read and write access in a range
of values from 0 to 999 999 999.

System variable Meaning
$AC_REQUIRED_PARTS Number of workpieces to be produced (setpoint number of workpieces)

In this counter the number of workpieces at which the actual workpiece
count ($AC_ACTUAL_PARTS) will be reset to "0" can be defined.

$AC_TOTAL_PARTS Total number of completed workpieces (actual workpiece total)
This counter specifies the total number of all workpieces produced since
the start time. The value is only automatically reset to "0" when the
control powers up with default values.

$AC_ACTUAL_PARTS Number of completed workpieces (actual workpiece total)
This counter registers the total number of all workpieces produced since
the start time. On condition that $AC_REQUIRED_PARTS > 0, the
counter is automatically reset to "0" when the required number of work‐
pieces ($AC_REQUIRED_PARTS) is reached.

$AC_SPECIAL_PARTS Number of workpieces selected by the user
This counter supports user-specific workpiece counts. An alarm can be
defined to be output when the setpoint number of workpieces is reached
($AC_REQUIRED_PARTS). Users must reset the counter themselves.

Work preparation
3.20 Program runtime/part counter

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1029

Note

All workpiece counters are set to "0" when the control powers up with default values and can
be read and written independent of their activation.

Note

Channel-specific machine data can be used to control counter activation, counter reset timing
and the counting algorithm.

Note
Workpiece counting with user-defined M command

Machine data can be set so that the count pulses for the various workpiece counters are
triggered using user-defined M commands rather than the end of the program (M2/M30).

Work preparation
3.20 Program runtime/part counter

NC programming
1030 Programming Manual, 06/2019, A5E47437142B AA

3.21 Additional functions

3.21.1 Activate machine data (NEWCONF)
The NEWCONF command activates all machine data. The function can also be activated in the
HMI user interface by pressing the "MD data effective" softkey.

When the "NEWCONF" function is executed there is an implicit preprocessing stop; in other
words, path movement is interrupted.

Syntax
NEWCONF

Meaning

NEWCONF: Command for setting all machine data of the "NEW_CONFIG" effectiveness level active

Cross-channel execution of NEWCONF from the part program
If changes are made to axial machine data from the part program and then activated
with NEWCONF, NEWCONF will only activate the machine data containing changes affecting the
part program channel.

Note

In order to ensure that all changes are applied, the NEWCONF command must be executed in
every channel in which the axes or functions affected by the changes to the machine data is
being calculated.

No axial machine data is effective for NEWCONF.

An axial RESET must be performed for axes controlled by the PLC.

Example
Milling: Machine drill position with different technologies

Program code Comment
N10 $MA_CONTOUR_TOL[AX]=1.0 ; Change machine data.
N20 NEWCONF ; Activate machine data.
...

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1031

3.21.2 Check scope of NC language present (STRINGIS)
Using the function "STRINGIS(...)" it can be checked as to whether the specified string is
available as element of the NC programming language in the actual language scope.

Definition
INT STRINGIS(STRING <Name>)

Syntax
STRINGIS(<Name>)

Meaning

STRINGIS: Function with return value
<name>: Name of the NC programming language element to be checked
Return value: The return value format is yxx (decimal).

Elements of the NC programming language
The following elements of the NC programming language can be checked:

● G commands of all existing G groups, e.g. "G0", "INVCW", "POLY", "ROT", "KONT",
"SOFT", "CUT2D", "CDON", "RMBBL", "SPATH"

● DIN or NC addresses, such as "ADIS", "RNDM", "SPN", "SR", "MEAS"

● Functions, e.g. "TANG(...)" or "GETMDACT"

● Procedures, e.g. "SBLOF".

● Keywords, e.g. "ACN", "DEFINE" or "SETMS"

● System data, e.g. machine data $M... , setting data $S... or option data $O...

● System variables $A... , $V... , $P...

● Arithmetic parameter R...

● Cycle names of activated cycles

● GUD and LUD variables

● Macro names

● Label names

Return value
Only the first three decimal positions of the return value are relevant. The return value format
is yxx, with y = basis information and xx = detailed information.

Return value Meaning
000 The 'name' string is not known in this system 1)

100 The 'name' string is an element of the NC programming language, but currently cannot be programmed
(option/function is inactive)

Work preparation
3.21 Additional functions

NC programming
1032 Programming Manual, 06/2019, A5E47437142B AA

Return value Meaning
2xx The 'name' string is a programmable element of the NC programming language (option/function is active).

The detailed information xx contains additional information about the element type:
 xx Meaning
 01 DIN address or NC address2)

 02 G command (e.g. G04, INVCW)
 03 Function with return value
 04 Function without return value
 05 Keyword, e.g. DEFINE
 06 Machine ($M...), setting ($S...) or option data ($O...)
 07 System parameters, e.g. system variable ($...) or arithmetic parameter (R...)
 08 Cycle (the cycle must be loaded into the NC and the cycle program must be active 3))
 09 GUD variable (the GUD variable must be defined in the GUD definition files and the GUD variables

activated)
 10 Macro name (the macro must be defined in the macro definition files and macros activated) 4)

 11 LUD variable of the actual part program
 12 ISO G command (ISO language mode must be active)
400 The 'name' string is an NC address, that was not identified as xx == 01 or xx == 10 and is not G or R 2)

y00 No specific assignment possible
1) Depending on the control, under certain circumstances, only a subset of the Siemens NC language commands are known,
e.g. SINUMERIK 802D sl. For these controls, for strings that are principally Siemens NC language commands, a value of 0
is returned. This behavior can be changed using MD10711 $MN_NC_LANGUAGE_CONFIGURATION. For MD10711 = 1,
then a value of 100 is always returned for Siemens NC language commands.
2) NC addresses are the following letters: A, B, C, E, I, J, K, Q, U, V, W, X, Y, Z. These NC addresses can also be programmed
with an address extension. The address extension can be specified when checking with STRINGIS. Example: 201 ==
STRINGIS("A1").
The letters: D, F, H, L, M, N, O, P, S, T are NC addresses or auxiliary functions that are defined by the user. A value of 400
is always returned for these. Example: 400 == STRINGIS("D"). These NC addresses cannot be specified with address
extension when checking with STRINGIS.
 Example: 000 == STRINGIS("M02"), but 400 == STRINGIS("M").
3) Names of cycle parameters cannot be checked with STRINGIS.
4) Address, defined as macro, e.g. G, H, M, L are identified as macro.

Examples
In the following examples it is assumed that the NC language elements specified as string - as
long as nothing else is noted - can in principle be programmed in the control.

1. String "T" is defined as auxiliary function:
400 == STRINGIS("T")
000 == STRINGIS ("T3")

2. String "X" is defined as axis:
201 == STRINGIS("X")
201 == STRINGIS("X1")

3. String "A2" is defined as address with extension:
201 == STRINGIS("A")
201 == STRINGIS("A2")

4. String "INVCW" is defined as named G command:
202 == STRINGIS("INVCW")

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1033

5. String "$MC_GCODE_RESET_VALUES" is defined as machine data:
206 == STRINGIS("$MC_GCODE_RESET_VALUES")

6. String "GETMDACT" is an NC language function:
203 == STRINGIS("GETMDACT ")

7. String "DEFINE" is a keyword:
205 == STRINGIS("DEFINE")

8. String "$TC_DP3" is a system parameter (tool length component):
207 == STRINGIS("$TC_DP3")

9. String "$TC_TP4" is a system parameter (tool size):
207 == STRINGIS("$TC_TP4")

10.String "$TC_MPP4" is a system parameter (magazine location state):

– Tool magazine management is active: 207 == STRINGIS("$TC_MPP4") ;

– Tool magazine management is not active: 000 == STRINGIS("$TC_MPP4")
Also refer to the paragraph below: Tool magazine management.

11.String "MACHINERY_NAME" is defined as GUD variable:
209 == STRINGIS("MACHINERY_NAME")

12.String "LONGMACRO" is defined as macro:
210 == STRINGIS("LONGMACRO")

13.String "MYVAR" is defined as LUD variable:
211 == STRINGIS("MYVAR")

14.String "XYZ" is a command that is not known in the NC, GUD variable, macro or cycle name:
000 == STRINGIS("XYZ")

Tool magazine management
If the tool magazine management function is not active, supplies STRINGIS for the system
parameters of the tool magazine management, independent of the machine data

● MD10711 $MN_NC_LANGUAGE_CONFIGURATION

always a value of 000.

ISO mode
If the "ISO mode" function is active:

● MD18800 $MN_MM_EXTERN_LANGUAGE (activation, external NC languages)

● MD10880 $MN_ MM_EXTERN_CNC_SYSTEM (control system to be adapted)

STRINGIS checks the specified string initially as SINUMERIK G command. If the string is not
a SINUMERIK G command, then it is subsequently checked as ISO G command.

Programmed switchovers (G290 (SINUMERIK mode), G291 (ISO Mode)) have no effect on
STRINGIS.

Work preparation
3.21 Additional functions

NC programming
1034 Programming Manual, 06/2019, A5E47437142B AA

Example
The machine data, relevant for the function STRINGIS(...), has the following values:

● MD10711 $MN_NC_LANGUAGE_CONFIGURATION = 2 (only the NC language
commands whose options are set are considered to be known)

● MD19410 $ON_TRAFO_TYPE_MASK = 'H0' (option: transformations)

● MD10700 $MN_PREPROCESSING_LEVEL='H43' (preprocessing for cycles is active)

The following program example is executed without error message:

Program code Comment
N1 R1=STRINGIS("TRACYL") ; R1 == 0, because TRACYL is identified as

"not known" because of the missing transformation
option

N2 IF STRINGIS("TRACYL") == 204
N3 TRACYL(1,2,3) ; N3 is skipped
N4 ELSE
N5 G00 ; and instead, N5 is executed
N6 ENDIF
N7 M30

3.21.3 Interactively call the window from the part program (MMC)
User-specific dialogs from an NC program can be displayed on the user interface via the
predefined subprogram MMC(...).

The configuration of the dialogs can be done for the following types of dialogs:

● Run MyScreens

● Easy XML

● User XML

Further information:
● Programming Manual Run MyScreens

● Programming Manual Easy XML

Syntax
MMC("<ADDRESS>,<COMMAND>,<FILE>,<DIALOG>","<QUIT>")

Meaning

MMC(...): Subprogram identifier
The parameters are specified position-coded and separated by a comma
within two strings, the command string and the acknowledgement string.

Parameters within the command string:

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1035

<ADDRESS>: Operating area in which the configured user dialog boxes are implemented
Function Operating areas
"Run MyScreens" user dialog CYCLES
"Easy XML" user dialog CYCLES
User XML XML
Pop-up window "Run MyScreens" POPUPDLG
Popup window "Easy XML" POPUPDLG

<COMMAND>: Command to be executed
Function Commands
"Run MyScreens" user dialog PICTURE_ON, PICTURE_OFF
"Easy XML" user dialog PICTURE_ON, PICTURE_OFF
User XML XML_ON, XML_OFF
Pop-up window "Run MyScreens" PICTURE_ON, PICTURE_OFF
Popup window "Easy XML" PICTURE_ON, PICTURE_OFF

<FILE>: Name of the file in which the dialog to be displayed is programmed
Function Files
"Run MyScreens" user dialog <name>.com
"Easy XML" user dialog <name>.xml
User XML <name>.xml
Pop-up window "Run MyScreens" <name>.com
Popup window "Easy XML" <name>.xml
Popup window "Easy XML" with configura‐
tion direct in the NC program (see example
2)

xmldial_emb.xml

<DIALOG>: Name of the dialog to be displayed
Function Dialog name
All functions except popup window "Easy
XML" with configuration direct in the NC
program

Name of the dialog configured
in the <FILE> file

Popup window "Easy XML" with configura‐
tion direct in the NC program (see example
3)

main

Parameters within the acknowledgment string:
<QUIT>: Acknowledgment type

N: No acknowledgment.
Program execution is continued after the command has been
sent. There is no feedback if the command could not be success‐
fully executed.
Note
Acknowledgement type "N" must be used if a display time (dwell
time) is programmed in the NC program (see Example 2 below)

A: Asynchronous acknowledgment
The program execution is continued after the command is issued.
The return value is saved in a user-specific acknowledgement
variable (GUD variable), which is defined within the scope of the
dialog configuration, and can be read in the NC program.

Work preparation
3.21 Additional functions

NC programming
1036 Programming Manual, 06/2019, A5E47437142B AA

Supplementary conditions
● The definition files *.com of the dialogs must be saved in the "proj" folder.

● The Easy XML definition files *.xml of the dialogs must be saved in the "appl" folder.
If the definition files are saved in a different directory, the path must be specified indirectly,
starting from the "appl" directory.

● User-defined dialogs from different channels cannot be simultaneously displayed.

● The MMC functionality is not supported in the simulation.

Examples

Example 1
Display of a dialog and response to the user operation in an NC program.

Program code Comment
; The acknowledgement variable QUIT has already been created as a global user varia-
ble (GUD)
; Of the type STRING when the dialog was configured:
; DEF NCK STRING[20] QUIT
QUIT = "XXX" ; Initialize acknowledgment variable
G4 F5
MMC("CYCLES,PIC-
TURE_ON,test.com,test1","A")

; Display dialog
; - Operating area: CYCLES
; - Picture status: PICTURE_ON (display)
; - Dialog screen file: test.com
; - Dialog screen: test1

INPUT: ; Wait for user input
 STOPRE ; Preprocessing stop
 IF MATCH (QUIT,"RUN") >= 0 GOTOF WORK ; Softkey "RUN"
 IF MATCH (QUIT,"CHK") >= 0 GOTOF CHECK ; Softkey "CHK"
GOTOB INPUT ; => Wait

WORK: ; Softkey "RUN" pressed
MSG("Continue with processing -> NC
start")

; Output message

MMC("CYCLES,PICTURE_OFF","N") ; Close dialog
M0 ; Wait for NC start
GOTOF END ; => Program end

CHECK: ; Softkey "CHK" pressed
MSG("Approach position -> NC start") ; Output message
MMC("CYCLES,PICTURE_OFF","N") ; Close dialog
M0 ; Wait for NC start
GOTOF END ; => Program end

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1037

Program code Comment
END:
...

Example 2
The display time of a dialog is defined in the NC program via a dwell time, for example.

Program code Comment
F1000 G94
...
MMC("POPUPDLG,PICTURE_ON,xmldial_emb.xml,main","N") ; Display dialog
X200
Z40
MMC("POPUPDLG,PICTURE_OFF","N") ; Close dialog

Example 3
Embedding a popup script in an NC program and its use.

Program code
PROC POPUP_TEST
; ----------------------------- Script -----------------------------
; <main_dialog entry="rpara_main">
; <let name="xpos" />
; <let name="ypos" />
; <let name="field_name" type="string" />
; <let name="num" />
; <menu name="rpara_main">
; <open_form name="rpara_form"/>
; <softkey_back>
; <close_form />
; </softkey_back>
; </menu>
; <form name="rpara_form">
; <init>
; <caption>mask from NC part program</caption>
; <let name="count" >0</let>
; <op>
; xpos = 120;
; ypos = 34;
; "nck/Channel/Parameter/R[10]" = 10;
; </op>
; <!-- load the number of controls -->
; <op>
; num = "nck/Channel/Parameter/R[10]";
; </op>
; <while>

Work preparation
3.21 Additional functions

NC programming
1038 Programming Manual, 06/2019, A5E47437142B AA

Program code
; <condition> count < num</condition>
; <print name="field_name" text="edit%d">count</print>
; <op>
; ypos = ypos + 24;
; count = count + 1;
; </op>
; </while>
; </init>
; <paint>
; <op>
; xpos = 8;
; ypos = 36;
; count = 0;
; </op>
; <while>
; <condition>count < num</condition>
; <print name="field_name" text="R-Parameter%d">count</print>
; <text xpos = "$xpos" ypos = "$ypos" >$$$field_name</text>
; <op>
; ypos = ypos + 24;
; count = count + 1;
; </op>
; </while>
; </paint>
; </form>
; </main_dialog>
; ========================= Program section ===========================
...
G94 F100
MMC("POPUPDLG,PICTURE_ON,xmldial_emb.xml,main","N")
G4 F4
X200
MMC("POPUPDLG,PICTURE_OFF","N")
G4 F2
X0
...

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1039

3.21.4 Process DataShare - Output to an external device/file (EXTOPEN, WRITE,
EXTCLOSE):

The writing of data from a part program to an external device/file is performed in three steps:

1. Open the external device/file
The external device/file is opened for the channel for writing using the EXTOPEN command.

2. Writing data
The output data can be processed using the string functions of the NC language, e.g.
SPRINT. The WRITE command is used for writing.

3. Close the external device/file
The external device/file assigned in the channel is released again using the EXTCLOSE
command, when the end of the program is reached (M30) or for a channel reset.

Syntax

DEF INT <Result>
DEF STRING[<n>] <Output>
…
EXTOPEN(<Result>,<ExtDev>,<SyncMode>,<AccessMode>,<WriteMode>)
…
<Output>="data output"
WRITE(<Result>,<ExtDev>,<Output>)
…
EXTCLOSE(<Result>,<ExtDev>)

Work preparation
3.21 Additional functions

NC programming
1040 Programming Manual, 06/2019, A5E47437142B AA

Meaning

EXTOPEN: Pre-defined procedure to open an external device/file
<Result>: Parameter 1: Result variable

By using the result variable value, it can be evaluated in the program as to wheth‐
er the operation was successful and processing is then appropriately continued.
Type: INT
Values: 0 No error

1 External device cannot be opened
2 External device is not configured
3 External device with invalid path configured
4 No access rights for external device
5 Usage mode: External device already "exclusively" occupied
6 Usage mode: External device already being "shared"
7 File length longer than LOCAL_DRIVE_MAX_FILESIZE
8 Maximum number of external devices has been exceeded
9 Option for LOCAL_DRIVE not set
11 Reserved
12 Write mode: Data contradicts extdev.ini
16 Invalid external path has been programmed
22 External device not mounted

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1041

<ExtDev>: Parameter 2: Symbolic identifier for the external device/file to be opened
Type: STRING
The symbolic identifier comprises:
1. the logical device name
2. where relevant, followed by a file path (attached using "/").
The following logical device names have been defined:
"LOCAL_DRIVE": Local CF card (pre-defined)
"CYC_DRIVE": Reserved drive name for use in SIEMENS cycles (pre-

defined)
"/dev/ext/1", ...
"/dev/ext/9":

Available network drives
Note:
It is necessary to configure in the extdev.ini file!

"/dev/cyc/1",
"/dev/cyc/2":

Reserved drive names for use in SIEMENS cycles
Note:
It is necessary to configure in the extdev.ini file!

File path:
● A file path must be specified for "LOCAL_DRIVE" and "CYC_DRIVE" e.g.

"LOCAL_DRIVE/my_dir/my_file.txt"
● The logical device names "/dev/ext/1...9" and "/dev/cyc/1...2" can be

configured:
– To already refer to a file, in which case only the logical device names may

be specified, e.g.:
"/dev/ext/4"

– Or to a directory, in which case a file path must be specified, e.g.:
"/dev/ext/5/my_dir/my_file.txt"

Note:
For the logical device names "/dev/ext/1...9", "/dev/v24" and "/dev/cyc/1...2" up‐
percase/lowercase is ignored; uppercase/lowercase is significant for specifying a
path to a file. Only uppercase letters are permissible for "LOCAL_DRIVE" and
"CYC_DRIVE".

<SyncMode>: Parameter 3: Processing mode for the WRITE commands to this device/file
Type: STRING
Values: "SYN": Synchronous writing

Program execution is stopped until the write operation
has been completed.
Successfully completing the synchronous write opera‐
tion can be checked by evaluating the error variables of
the WRITE command.

"ASYN": Asynchronous writing
Program execution is not interrupted by the WRITE
command.
Note.
In this mode, the result variable of the WRITE command
does not provide any information and always has the
value 0 (no error). In this particular mode, there is no
certainty that the WRITE command was successful.

Work preparation
3.21 Additional functions

NC programming
1042 Programming Manual, 06/2019, A5E47437142B AA

<AccessMode>: Parameter 4: Usage mode for this device/file
Type: STRING
Values: "SHARED": Device/file is requested in the "shared" mode. Other

channels can also use the device, i.e. also open in this
mode.

"EXCL": Device/file is exclusively used in the channel; no other
channel can use the device.

<WriteMode>:

Parameter 5: Write mode for the WRITE commands to this file/device (optional)
Type: STRING
Values: "APP": Attaching

The file is always kept regarding its contents; write calls
are attached at the end.

"OVR": Overwrite
The contents of the file are deleted and re-generated
using the subsequent write calls.

Note:
Using this parameter, the write mode configured in the extdev.ini file cannot be
overwritten. In the case of a conflict, then the EXTOPEN call is acknowledged
with error.

WRITE: Pre-defined procedure to write output data

EXTCLOSE: Pre-defined procedure to close an external device/file that has been opened
<Result>: Parameter 1: Result variable

Type: INT
Values: 0 No error

16 Invalid external path has been programmed
21 Error when closing the external device

<ExtDev>: Parameter 2: Symbolic identifier for the external device/file description to be
closed, see EXTOPEN!
Note:
The identifier must be identical to the identifier specified in the EXTOPEN call!

Example

Program code
N10 DEF INT RESULT
N20 DEF BOOL EXTDEVICE
N30 DEF STRING[80] OUTPUT
N40 DEF INT PHASE
N50 EXTOPEN(RESULT,"LOCAL_DRIVE/my_file.txt","SYN","SHARED")
N60 IF RESULT > 0
N70 MSG("Error for EXTOPEN:" << RESULT)
N80 ELSE
N90 EXTDEVICE=TRUE

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1043

Program code
N100 ENDIF
…
N200 PHASE=4
N210 IF EXTDEVICE
N220 OUTPUT=SPRINT("End phase: %D",PHASE)
N230 WRITE(RESULT,"LOCAL_DRIVE/my_file.txt",OUTPUT)
N240 ENDIF
…

See also
String operations (Page 437)

Write file (WRITE) (Page 554)

3.21.5 Alarms (SETAL)
Alarms can be set in an NC program. Alarms are displayed in a separate field at the user
interface. An alarm always goes hand in hand with a response from the control according to the
alarm category.

References:
For further information on alarm responses, refer to the Commissioning Manual.

Syntax
SETAL(<alarm number>[,<character string>])

Meaning

SETAL: Keyword to program an alarm.
SETAL must be programmed in a separate NC block.

<alarm number>: Variable of the INT type. Contains the alarm number.
The valid range for alarm numbers lies between 60000 and 69999, of which
60000 to 64999 are reserved for SIEMENS cycles and 65000 to 69999 are
available to users.

<character
string>:

When programming user cycle alarms, in addition, a character string with up
to four parameters can be specified.
Variable user texts can be defined in these parameters.
However, the following predefined parameters are available:
Parameter Meaning
%1 Channel number
%2 Block number, label
%3 Text index for cycle alarms
%4 Additional alarm parameters

Work preparation
3.21 Additional functions

NC programming
1044 Programming Manual, 06/2019, A5E47437142B AA

Note

Alarm texts must be configured in the user interface.

Example

Program code Comment
...
N100 SETAL (65000) ;Set alarm no. 65000
...

3.21.6 Define blank (WORKPIECE)
The controller must know the shape and size of a blank to be able to display it in the graphical
simulation. The user therefore has the capability of defining blanks via the user interface or
directly in the NC program. The definitions of blanks are retained beyond a (program end/
channel/BAG) reset. They are automatically deleted the next time that the control system
powers up.

Syntax
WORKPIECE("<WP>", "<RefP>", "<ZeroOffset>", "<Type>", <Par5>,
<Par6>, ..., <Par12>)

Meaning

WORKPIECE(...): Predefined procedure for defining a blank
Preprocessing
stop:

Yes

Alone in the
block:

Yes

Parameters:
1 "<WP>": Name of the workpiece (optional)

Data type: STRING
A specification is only necessary if there can be several workpieces
in one channel. Without specifying, "WORKP<n>" is automatically
accepted, with <n> being the number of the declaring channel.

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1045

2 "<RefP>": Clamping (optional, only for milling machines)
Data type: STRING
Range of values: "Table" Clamping of the fixed table

"A" Clamping on rotary axis A
"B" Clamping on rotary axis B
"C" Clamping on rotary axis C

Precondition:
The table or the rotary axis must be enabled via the corresponding
machine data for the clamping of the blank (see SINUMERIK Oper‐
ate Commissioning Manual).

3 "<ZeroOffset>": Settable work offset for positioning the blank (not programmable)
The selection of a settable work offset for positioning the blank is only
offered for the blank entry via the user interface. For the direct defi‐
nition of the blank in the part program, the blank always relates to the
currently valid work offset.

4 "<Type>": Blank shape
Data type: STRING
Range of values: "CYLINDER": Cylinder

"PIPE": Pipe
"RECTANGLE": Centered cuboid
"BOX": Cuboid
"N_CORNER": Polygon with n edges

5 ... 12 <Par5> ... <Par12>: Parameters for description of the blank shape
Data type: REAL
The number of parameters required and their meaning depend on
the respective blank shape and the value of the bit parameter.
See:
● "Parameters for description of the blank shape" table
● "Bit parameters" table

WORPIECE(): A WORKPIECE call without parameters deletes all blank definitions.
WORPIECE(<WP>): A WORKPIECE call with workpiece name only deletes this blank

definition.

Work preparation
3.21 Additional functions

NC programming
1046 Programming Manual, 06/2019, A5E47437142B AA

Table 3-6 Parameters for description of the blank shape

Blank shape

Parameter
<Par5> <Par6> <Par7> <Par8> <Par9> <Par10> <Par11> <Par12>

Cylinder Bit parameter
Real value that
is interpreted as
bit-coded inte‐
ger value. The
bits define the
meaning of the
following param‐
eters (see "Bit
parameters" ta‐

ble).

Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

Outer di‐
ameter d0

- Rotation
about ro‐
tary axis

-

Pipe Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

Outer di‐
ameter d0

Wall thick‐
ness

(inc) / in‐
ner diame‐
ter d1 (abs)

Rotation
about ro‐
tary axis

-

Centered cuboid Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

Width W Length L Rotation
about ro‐
tary axis

-

Cuboid Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

X0 Y0 X1 Y1

Polygon with n
edges

Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

Number
of corners

Width
across

flats

Rotation
about ro‐
tary axis

-

Table 3-7 Bit parameter

Bit Meaning
4 (0x0010) Cuboid: X1

= 0 inc
= 1 abs

5 (0x0020) Cuboid: Y1

= 0 inc
= 1 abs

6 (0x0040) Length Z1 (final dimension)
= 0 inc
= 1 abs

Bit 7 (0x0080) Machining dimension ZB

= 0 inc
= 1 abs

Bit 8 (0x0100) Pipe: Wall thickness / inner diameter
= 0 inc
= 1 abs

9 (0x0200) Polygon with n edges
= 0 Width across flats
= 1 Edge length

12 (0x1000) Clamping for turning machines
= 0 Main spindle
= 1 Counterspindle

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1047

Bit Meaning
13 (0x2000) Counterspindle

= 0 with mirroring
= 1 without mirroring

Examples

Example 1: Cylinder-shaped blank on a turning machine

Program code Comment
...
WORKPIECE(,,,"CYLINDER",0,0,-200,-150,100) ; Blank definition:

; Blank shape: Cylinder
; Bit parameter=0(no bit set) →
Values for length and machining
dimension are incremental, blank
on main spindle
; Reference point(Z0)=0
; Length(Z1)=-200
; Machining dimension(ZB)=-150
; Outer diameter(d0)=100

...

Work preparation
3.21 Additional functions

NC programming
1048 Programming Manual, 06/2019, A5E47437142B AA

Example 2: Pipe-shaped blank on a turning machine

Program code Comment
...
WORKPIECE(,,,"PIPE",256,0,-200,-150,100,80) ; Blank definition:

; Blank shape: Pipe
; Bit parameter=256(Bit8=1) → In-
ner diameter is absolute; length
and machining dimension are in-
cremental, blank on main spindle
; Reference point(Z0)=0
; Length(Z1)=-200
; Machining dimension(ZB)=-150
; Outer diameter(d0)=100
; Inner diameter(d1)=80

...

3.21.7 Switch language mode (G290, G291)
The controller gives you the capability of reading in part programs from external CNC systems
and processing them. The prerequisite is that the corresponding NC language mode (ISO
dialect) has been defined during commissioning.

Reference:
Function Manual ISO Dialects

The ISO dialect mode can be activated separately for each channel. For example, channel 1
can run in ISO dialect mode while channel 2 is active in SINUMERIK mode.

The switchover between SINUMERIK mode and ISO dialect mode is done in the NC program
via the commands of the G-group 47. The active tool, tool compensation and work offsets are
not influenced by the switchover.

Syntax

G291

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1049

...
G290

Meaning

G290: Activate SINUMERIK language mode
Alone in the block: Yes
Effective: Modal

G291: Activate ISO language mode
Alone in the block: Yes
Effective: Modal

Conditions

SINUMERIK mode
● The default of the G commands can be defined for each channel via machine data.

● No language commands from the ISO dialects can be programmed in SINUMERIK mode.

ISO dialect mode
● The ISO dialect mode can be set with machine data as the basic setting of the control

system. In ISO dialect mode, the control system then reboots by default.

● Only G commands from the ISO dialect can be programmed. The programming of
SINUMERIK G functions is not possible in ISO dialect mode.

● ISO dialect and SINUMERIK language cannot be mixed in the same NC block.

● G commands cannot be used to switch between ISO dialect M (milling) and ISO dialect T
(turning).

● Subprograms that are programmed in SINUMERIK mode can be called.

● If SINUMERIK functions are to be used, a switchover to SINUMERIK mode must first be
made (see example).

Example

Compression of linear blocks in the ISO dialect mode

Program code Comment
N5 G290 ; Activate SINUMERIK language mode.
N10 COMPON ; COMPON is a command in the Siemens lan-

guage and activates a compressor function
that replaces the successive linear
blocks with polynomial blocks with path
lengths that are as long as possible.

N15 G291 ; Activate ISO language mode.

Work preparation
3.21 Additional functions

NC programming
1050 Programming Manual, 06/2019, A5E47437142B AA

Program code Comment
N20 G01 X100 Y100 F1000 ; Since COMPON has been activated in SIN-

UMERIK mode, even linear blocks in the
ISO dialect mode can be compressed with
this function.

...

Work preparation
3.21 Additional functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1051

3.22 User stock removal programs

3.22.1 Supporting functions for stock removal
Preprogrammed stock removal programs are provided for stock removal. Beyond this, you
have the possibility of generating your own stock removal programs using the following listed
functions:

● Generate contour table (CONTPRON)

● Generate coded contour table (CONTDCON)

● Deactivate contour preparation (EXECUTE)

● Determine point of intersection between two contour elements (INTERSEC)
(Only for tables that were generated using CONTPRON)

● Execute contour elements of a table block-by-block (EXECTAB)
(Only for tables that were generated using CONTPRON)

● Calculate circle data (CALCDAT)

Note

You can use these functions universally, not just for stock removal.

Requirements
The following must be done before calling the CONTPRON or CONTDCON functions:

● A starting point that permits collision-free machining must be approached.

● The cutting radius compensation must be deactivated with G40.

3.22.2 Generate contour table (CONTPRON)
CONTPRON switches on the contour preparation. The NC blocks that are subsequently called
are not executed, but are split-up into individual movements and stored in the contour table.
Each contour element corresponds to one row in the two-dimensional array of the contour
table. The number of relief cuts is returned.

Syntax
Activate contour preparation:
CONTPRON(<contour table>,<machining type>,<relief cuts>,
<machining direction>)
Deactivate contour preparation and return to the normal execution mode:
EXECUTE(<ERROR>)
See "Deactivate contour preparation (EXECUTE) (Page 1066)"

Work preparation
3.22 User stock removal programs

NC programming
1052 Programming Manual, 06/2019, A5E47437142B AA

Meaning

CONTPRON: Predefined procedure to activate the contour preparation to
generate a contour table

<contour table>: Name of contour table
<machining type>: Parameter for the machining type

Type: CHAR
Value: "G": Longitudinal turning: Internal machin‐

ing
"L": Longitudinal turning: External machin‐

ing
"N": Face turning: Internal machining
"P": Face turning: External machining

<relief cuts>: Result variable for the number of relief cut elements that
occur
Type: INT

<machining direction>: Parameters for the machining direction
Type: INT
Value: 0 Contour preparation, forward (default val‐

ue)
1 Contour preparation in both directions

Example 1
Generating a contour table with:

● Name "KTAB"

● Max. 30 contour elements (circles, straight lines)

● One variable for the number of relief cut elements that occur

● One variable for error messages

Work preparation
3.22 User stock removal programs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1053

NC program:

Program code Comment
N10 DEF REAL KTAB[30,11] ; Contour table with the name KTAB and

max. 30 contour elements, parameter value
11 (number of table columns) is a fixed
quantity.

N20 DEF INT ANZHINT ; Variable for the number of relief cut
elements with the name ANZHINT.

N30 DEF INT ERROR ; Variable for error feedback signal
(0=no error, 1=error).

N40 G18
N50 CONTPRON(KTAB,"G",ANZHINT) ; Activate contour preparation.
N60 G1 X150 Z20
N70 X110 Z30
N80 X50 RND=15
N90 Z70
N100 X40 Z85
N110 X30 Z90
N120 X0

; N60 to N120: Contour description

N130 EXECUTE(ERROR) ; End filling the contour table, switch-
over to normal program mode.

N140 … ; Continue to process the table.

Contour table KTAB:

Index
Line

Column

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
7 7 11 0 0 20 150 0 82.40535663 0 0

Work preparation
3.22 User stock removal programs

NC programming
1054 Programming Manual, 06/2019, A5E47437142B AA

0 2 11 20 150 30 110 -1111 104.0362435 0 0
1 3 11 30 110 30 65 0 90 0 0
2 4 13 30 65 45 50 0 180 45 65
3 5 11 45 50 70 50 0 0 0 0
4 6 11 70 50 85 40 0 146.3099325 0 0
5 7 11 85 40 90 30 0 116.5650512 0 0
6 0 11 90 30 90 0 0 90 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Explanation of the column contents:

(0) Pointer to next contour element (to the row number of that column)
(1) Pointer to previous contour element
(2) Coding the contour mode for motion

Possible values for X = abc
a = 102 G90 = 0 G91 = 1
b = 101 G70 = 0 G71 = 1
c = 100 G0 = 0 G1 = 1 G2 = 2 G3 = 3

(3), (4) Starting point of contour elements
(3) = abscissa, (4) = ordinate of the current plane

(5), (6) Starting point of the contour elements
(5) = abscissa, (6) = ordinate of the current plane

(7) Max/min indicator: Identifies local maximum and minimum values on the contour
(8) Maximum value between contour element and abscissa (for longitudinal machin‐

ing) or ordinate (for face cutting). The angle depends on the type of machining
programmed.

(9), (10) Center point coordinates of contour element, if it is a circle block.
(9) = abscissa, (10) = ordinate

Example 2
Generating a contour table with

● Name KTAB

● Max. 92 contour elements (circles, straight lines)

● Operating mode: Longitudinal turning, external machining

● Preparation, forward and backward

Work preparation
3.22 User stock removal programs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1055

NC program:

Program code Comment
N10 DEF REAL KTAB[92,11] ; Contour table with name KTAB and max.

92 contour elements, parameter value 11
is a fixed quantity.

N20 DEF CHAR BT="L" ; Mode for CONTPRON: Longitudinal turn-
ing, external machining

N30 DEF INT HE=0 ;Number of relief cut elements=0
N40 DEF INT MODE=1 ; Preparation, forward and backward
N50 DEF INT ERR=0 ; Error feedback signal
...
N100 G18 X100 Z100 F1000
N105 CONTPRON(KTAB,BT,HE,MODE) ; Activate contour preparation.
N110 G1 G90 Z20 X20
N120 X45
N130 Z0
N140 G2 Z-15 X30 K=AC(-15) I=AC(45)
N150 G1 Z-30
N160 X80
N170 Z-40

N180 EXECUTE(ERR) ; End filling the contour table, switch-
over to normal program mode.

...

Work preparation
3.22 User stock removal programs

NC programming
1056 Programming Manual, 06/2019, A5E47437142B AA

Contour table KTAB:
After contour preparation is finished, the contour is available in both directions.

Index Column
Line (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0 61) 72) 11 100 100 20 20 0 45 0 0
1 03) 2 11 20 20 20 45 -3 90 0 0
2 1 3 11 20 45 0 45 0 0 0 0
3 2 4 12 0 45 -15 30 5 90 -15 45
4 3 5 11 -15 30 -30 30 0 0 0 0
5 4 7 11 -30 30 -30 45 -1111 90 0 0
6 7 04) 11 -30 80 -40 80 0 0 0 0
7 5 6 11 -30 45 -30 80 0 90 0 0
8 15) 26) 0 0 0 0 0 0 0 0 0
 ...
83 84 07) 11 20 45 20 80 0 90 0 0
84 90 83 11 20 20 20 45 -1111 90 0 0
85 08) 86 11 -40 80 -30 80 0 0 0 0
86 85 87 11 -30 80 -30 30 88 90 0 0
87 86 88 11 -30 30 -15 30 0 0 0 0
88 87 89 13 -15 30 0 45 -90 90 -15 45
89 88 90 11 0 45 20 45 0 0 0 0
90 89 84 11 20 45 20 20 84 90 0 0
91 839) 8510) 11 20 20 100 100 0 45 0 0

Explanation of column contents and comments for lines 0, 1, 6, 8, 83, 85 and 91
The explanations of the column contents given in example 1 apply.

Always in table line 0:

1) Predecessor: Line n contains the contour end (forward)

2) Successor: Line n is the contour table end (forward)

Once each within the contour elements forward:

3) Predecessor: Contour start (forward)

4) Successor: Contour end (forward)

Always in line contour table end (forward) +1:

5) Predecessor: Number of relief cuts (forward)

6) Successor: Number of relief cuts (backward)

Once each within the contour elements backward:

7) Successor: Contour end (backward)

8) Predecessor: Contour start (backward)

Always in last line of table:

9) Predecessor: Line n is the contour table start (backward)

Work preparation
3.22 User stock removal programs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1057

10) Successor: Line n contains the contour start (backward)

Further information

Permitted traversing commands, coordinate system
The following G commands can be used for the contour programming:

● G group 1: G0, G1, G2, G3
In addition, the following are possible:

● Rounding and chamfer

● Circle programming using CIP and CT
The spline, polynomial and thread functions result in errors.

Changes to the coordinate system by activating a frame are not permissible between
CONTPRON and EXECUTE. The same applies for a change between G70 and G71 or G700 and
G710.

Replacing the geometry axes with GEOAX while preparing the contour table produces an alarm.

Relief cut elements
The contour description for the individual relief cut elements can be performed either in a
subprogram or in individual blocks.

Stock removal independent of the programmed contour direction
The contour preparation with CONTPRON was expanded so that after it has been called, the
contour table is available independent of the programmed direction.

3.22.3 Generate coded contour table (CONTDCON)
With the contour preparation activated with CONTDCON, the following NC blocks that are called
are saved in a coded form in a 6-column contour table to optimize memory use. Each contour
element corresponds to one row in the contour table. When familiar with the coding rules
specified below, e.g. you can combine DIN code programs for cycles from the table lines. The
data of the output point is saved in the table line with the number 0.

Syntax
Activate contour preparation:
CONTDCON(<contour table>,<machining direction>)
Deactivate contour preparation and return to the normal execution mode:
EXECUTE(<ERROR>)
See "Deactivate contour preparation (EXECUTE) (Page 1066)"

Work preparation
3.22 User stock removal programs

NC programming
1058 Programming Manual, 06/2019, A5E47437142B AA

Meaning

CONTDCON: Predefined procedure to activate the contour preparation to
generate a coded contour table

<contour table>: Name of the contour table
<machining direction>: Parameter for machining direction

Type: INT
Value: 0 Contour preparation according to the se‐

quence of contour blocks (default value)
1 Not permissible

Note

The G commands permitted for CONTDCON in the program section to be included in the table
are more comprehensive than for CONTPRON. Further, feedrates and feedrate type are saved
for each contour section.

Example
Generating a contour table with:

● Name "KTAB"

● Contour elements (circles, straight lines)

● Operating mode: Turning

● Machining direction: Forward

Work preparation
3.22 User stock removal programs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1059

NC program:

Program code Comment
N10 DEF REAL KTAB[9,6] ;Contour table with name KTAB and 9

table cells. These allow 8 contour
sets. The parameter value 6 (column
number in table) is a fixed size.

N20 DEF INT MODE = 0 ; Variable for the machining direc-
tion. Standard value 0: Only in the
programmed direction of the contour.

N30 DEF INT ERROR = 0 ; Variable for the error feedback sig-
nal.

...
N100 G18 G64 G90 G94 G710
N101 G1 Z100 X100 F1000
N105 CONTDCON (KTAB, MODE) ; Contour preparation call (MODE can

be omitted).
N110 G1 Z20 X20 F200
N120 G9 X45 F300
N130 Z0 F400

; Contour description.

N140 G2 Z-15 X30 K=AC(-15) I=AC(45)F100
N150 G64 Z-30 F600
N160 X80 F700
N170 Z-40 F800

N180 EXECUTE(ERROR) ; End filling the contour table,
switchover to normal program mode.

...

Contour table KTAB:

 Column index
0 1 2 3 4 5

Line index Contour
mode

End point
abscissa

End point
ordinate

Center point
abscissa

Center point
ordinate

Feedrate

0 30 100 100 0 0 7
1 11031 20 20 0 0 200
2 111031 20 45 0 0 300
3 11031 0 45 0 0 400
4 11032 -15 30 -15 45 100
5 11031 -30 30 0 0 600
6 11031 -30 80 0 0 700
7 11031 -40 80 0 0 800
8 0 0 0 0 0 0

Work preparation
3.22 User stock removal programs

NC programming
1060 Programming Manual, 06/2019, A5E47437142B AA

Explanation of the column contents:

Line 0 Coding for the starting point:
 Column 0: 100 (ones digit): G0 = 0
 101 (tens digit): G70 = 0, G71 = 1, G700 = 2, G710 = 3
 Column 1: Starting point abscissa
 Column 2: Starting point ordinate
 Column 3-4: 0
 Column 5: Line index of last contour piece in the table

Lines 1-n: Entries for contour pieces
 Column 0: 100 (ones digit): G0 = 0, G1 = 1, G2 = 2, G3 = 3
 101 (tens digit): G70 = 0, G71 = 1, G700 = 2, G710 = 3
 102 (hundreds digit): G90 = 0, G91 = 1
 103 (thousands digit): G93 = 0, G94 = 1, G95 = 2, G96 = 3
 104 (ten thousands digit): G60 = 0, G44 = 1, G641 = 2, G642 = 3
 105 (hundred thousands digit): G9 = 1
 Column 1: End point abscissa
 Column 2: End point ordinate
 Column 3: Center point abscissa for circular interpolation
 Column 4: Center point ordinate for circular interpolation
 Column 5: Feedrate

Further information

Permitted traversing commands, coordinate system
The following G groups and G commands can be used for the contour programming:

G group 1: G0, G1, G2, G3
G group 10: G60, G64, G641, G642
G group 11: G9
G group 13: G70, G71, G700, G710
G group 14: G90, G91
G group 15: G93, G94, G95, G96, G961
In addition, the following are possible:

● Rounding and chamfer

● Circle programming using CIP and CT
The spline, polynomial and thread functions result in errors.

Changes to the coordinate system by activating a frame are not permissible between
CONTDCON and EXECUTE. The same applies for a change between G70 and G71 or G700 and
G710.

Replacing the geometry axes with GEOAX while preparing the contour table produces an alarm.

Work preparation
3.22 User stock removal programs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1061

Machining direction
The contour table generated using CONTDCON is used for stock removal in the programmed
direction of the contour.

3.22.4 Determine point of intersection between two contour elements (INTERSEC)
INTERSEC determines the point of intersection of two normalized contour elements from the
contour tables generated using CONTPRON.

Syntax
<Status>=INTERSEC(<contour table_1>[<contour element_1>],
<contour table_2>[<contour element_2>],<intersection
point>,<machining type>)

Meaning

INTERSEC: Predefined function to determine the point of intersection between
two contour elements from the contour tables generated
with CONTPRON

<Status>: Variable for the point of intersection status
Type: BOOL
Value: TRUE Point of intersection found

FALSE No intersection found
<contour table_1>: Name of the first contour table
<contour element_1>: Number of the contour element of the first contour table
<contour table_2>: Names of the second contour table
<contour element_2>: Number of the contour element of the second contour table
<point of intersection>: Intersection coordinates in the active plane (G17 / G18 / G19)

Type: REAL
<machining type>: Parameter for the machining type

Type: INT
Value: 0 Point of intersection calculation in the active

plane with parameter 2
(standard value)

1 Point of intersection calculation independent of
the transferred plane

Note

Please note that the variables must be defined before they are used.

Work preparation
3.22 User stock removal programs

NC programming
1062 Programming Manual, 06/2019, A5E47437142B AA

The values defined with CONTPRON must be observed when transferring the contours:

Parameter Meaning
2 Coding of contour mode for the movement
3 Contour start point abscissa
4 Contour start point ordinate
5 Contour end point abscissa
6 Contour end point ordinate
9 Center point coordinates for abscissa (only for circle contour)
10 Center point coordinates for ordinate (only for circle contour)

Example
Calculate the intersection of contour element 3 in table TABNAME1 and contour element 7 in
table TABNAME2. The intersection coordinates in the active plane are stored in the variables
ISCOORD (1st element = abscissa, 2nd element = ordinate). If no intersection exists, the
program jumps to NOCUT (no intersection found).

Program code Comment
DEF REAL TABNAME1[12,11] ; Contour table 1
DEF REAL TABNAME2[10,11] ; Contour table 2
DEF REAL ISCOORD [2] ; Variable for the intersection coor-

dinates.
DEF BOOL ISPOINT ; Variable for the intersection sta-

tus.
DEF INT MODE ; Variable for the machining type.
…
MODE=1 ; Calculation independent of the ac-

tive plane.
N10 ISPOINT=INTERSEC(TABNAME1[3],TABNAME2[7],
ISCOORD,MODE)

; Intersection of the contour ele-
ments call.

N20 IF ISPOINT==FALSE GOTOF NOCUT ; Jump to NOCUT.
…

3.22.5 Execute the contour elements of a table block-by-block (EXECTAB)
Using EXECTAB, you can execute the contour elements of a table – that were generated, e.g.
with CONTPRON – block-by-block.

Syntax
EXECTAB(<contour table>[<contour element>])

Work preparation
3.22 User stock removal programs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1063

Meaning

EXECTAB: Predefined procedure to execute a contour element
<contour table>: Name of the contour table
<contour element>: Number of the contour element

Example
Contour elements 0 to 2 in table KTAB should be executed block-by-block.

Program code Comment
N10 EXECTAB(KTAB[0]) ; Traverse element 0 of table KTAB.
N20 EXECTAB(KTAB[1]) ; Traverse element 1 of table KTAB.
N30 EXECTAB(KTAB[2]) ; Traverse element 2 of table KTAB.

3.22.6 Calculate circle data (CALCDAT)
With CALCDAT, you can calculate the radius and the circle center point coordinates from the
three or four points known along the circle. The specified points must be different.

Where four points do not lie directly on the circle an average value is formed for the circle center
point and the radius.

Note
Calculation regulation for the averaging

The arc calculation is performed four times:
1. With circle points 1, 2, 3
2. With circle points 1, 2, 4
3. With circle points 1, 3, 4
4. With circle points 2, 3, 4

The values of the circle center point coordinates abscissa and ordinate are calculated by
adding the abscissa and ordinate values of the four arc calculations and dividing by four.

The radius is calculated by forming the root from the sum of the four radii from the arc
calculations and multiplying the result with 0.5.

Syntax
<Status>=CALCDAT(<circle points>[<number>,<type>],<number>,<result>)

Work preparation
3.22 User stock removal programs

NC programming
1064 Programming Manual, 06/2019, A5E47437142B AA

Meaning

CALCDAT: Predefined function to calculate the radius and center point coordinates
of a circle from three or four points

<Status>: Variable for the circle calculation status
Type: BOOL
Value: TRUE The specified points lie on a circle.

FALSE The specified points do not lie on a circle.
<circle points>[]: Variable to specify the circle points

using parameters
<number>: Number of circle points (3 or 4)
<type>: Type of coordinate data,

e.g. 2 for 2-point coordinates
<number>: Parameter for the number of the points used for the calculation (3 or 4)
<result>[3]: Variable for result:

Circle center point coordinates and radius
0 Circle center point coordinate: Abscissa value
1 Circle center point coordinate: Ordinate value
2 Radius

Note

Please note that the variables must be defined before they are used.

Example
Using three points it should be determined as to whether they are located on a circle segment.

Work preparation
3.22 User stock removal programs

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1065

Program code Comment
N10 DEF REAL PT[3,2]=(20,50,50,40,65,20) ; Variable to specify the points

of a circle.
N20 DEF REAL RES[3] ; Variable for result.
N30 DEF BOOL STATUS ; Variable for status.
N40 STATUS=CALCDAT(PKT,3,ERG) ; Call of the determined circle

data.
N50 IF STATUS == FALSE GOTOF ERROR ; Jump to error.

3.22.7 Deactivate contour preparation (EXECUTE)
EXECUTE deactivates the contour preparation and at the same time the system returns to the
normal execution mode.

Syntax
EXECUTE(<ERROR>)

Meaning

EXECUTE: Predefined procedure to terminate contour preparation
<ERROR>: Variable for the error feedback signal

Type: INT
The value of the variable indicates whether the contour was able to be prepared error-
free:
0 Error
1 No error

Example

Program code
...
N30 CONTPRON(...)
N40 G1 X... Z...
...
N100 EXECUTE(...)
...

Work preparation
3.22 User stock removal programs

NC programming
1066 Programming Manual, 06/2019, A5E47437142B AA

3.23 Programming cycles externally

3.23.1 Technology cycles

3.23.1.1 Introduction

Contents
This section contains a description of the cycles for the turning, milling, and grinding
technologies.

Structure
The description of a cycle is structured as follows:

● Syntax
Cycle name and call sequence of the transfer parameters

● Parameters
Tables to explain the individual parameters

Parameter description
The following data is specified in the table for a parameter: Name, description, value range, and
dependencies on other parameters.

The column for reference to the parameter in the screen form is provided to more easily locate
values programmed on the control when externally generated cycle calls are recompiled.

"For interface only" parameters
Certain parameters are marked "for interface only" in the table. These are not relevant to
operation of the cycle. They are only needed in order to be able to recompile cycle calls
completely. If they are not programmed the cycle can still be recompiled; the fields are then
identified by color and must be completed in the mask.

"Reserved" parameters
Parameters that are described as "reserved" must be programmed with the value 0 or a comma
so that the assignment of the following call parameters matches the internal cycle parameters.
Exception: string parameters with the value "" or a comma.

Repeating cycles on a position pattern
Drilling and milling cycles can be repeated on the position pattern (modal calls). In such
cases MCALL should be written in the same line before the cycle, e.g. MCALL CYCLE83(...).

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1067

Note

If certain transfer parameters (e.g. <_VARI>, <_GMODE>, <_DMODE>, <_AMODE>) have
been indirectly programmed as parameters, the screen form is opened on recompiling but it
cannot be stored as there is no unambiguous assignment to defined selection fields.

3.23.1.2 Technology-specific overview
The following overview table lists all available externally programmable technology cycles and
the technology assigned to each of them:

Technology Technology cycle
Drilling ● CYCLE81 - drilling, centering (Page 1107)

● CYCLE82 - drilling, counterboring (Page 1108)
● CYCLE85 - reaming (Page 1117)
● CYCLE86 - boring (Page 1118)
● CYCLE83 – deep-hole drilling 1 (Page 1111)
● CYCLE830 - deep-hole drilling 2 (Page 1141)
● CYCLE84 - tapping without compensating chuck (Page 1114)
● CYCLE840 - tapping with compensating chuck (Page 1150)
● CYCLE78 - Drill thread milling (Page 1103)
● CYCLE802 - arbitrary positions (Page 1139)
● HOLES1 – row position pattern (Page 1070)
● CYCLE801 – grid or frame position pattern (Page 1137)
● HOLES2 – circle or pitch circle position pattern (Page 1070)

Turning ● CYCLE951 - stock removal (Page 1161)
● CYCLE930 - groove (Page 1156)
● CYCLE940 – undercut form E and F / undercut thread

(Page 1158)
● CYCLE99 - thread turning (Page 1127)
● CYCLE98 - thread chain (Page 1123)
● CYCLE92 - cut-off (Page 1119)

Contour turning ● CYCLE62 - contour call (Page 1089)
● CYCLE952 – stock removal / residual stock removal / plunge

cutting / residual plunge cutting / plunge turning / residual plunge
turning (Page 1164)

Work preparation
3.23 Programming cycles externally

NC programming
1068 Programming Manual, 06/2019, A5E47437142B AA

Technology Technology cycle
Milling ● CYCLE61 - Face milling (Page 1087)

● POCKET3 – rectangular pocket (Page 1072)
● POCKET4 – circular pocket (Page 1075)
● CYCLE76 – rectangular spigot (Page 1098)
● CYCLE77 – circular spigot (Page 1101)
● CYCLE79 - multi-edge (Page 1105)
● SLOT1 - longitudinal slot (Page 1077)
● SLOT2 - circumferential slot (Page 1080)
● CYCLE899 – open slot (Page 1153)
● LONGHOLE - elongated hole (Page 1082)
● CYCLE70 - thread milling (Page 1094)
● CYCLE60 – engraving (Page 1084)

Contour milling ● CYCLE62 - contour call (Page 1089)
● CYCLE72 - Path milling (Page 1095)
● CYCLE63 – contour pocket milling / contour pocket residual

material / contour spigot milling / contour spigot residual material
(Page 1089)

● CYCLE64 - Predrilling contour pocket (Page 1092)
Grinding ● CYCLE495 - form-truing (Page 1132)

● CYCLE435 - Set dresser coordinate system (Page 1132)
● CYCLE4071 - longitudinal grinding with infeed at the reversal

point (Page 1170)
● CYCLE4072 - longitudinal grinding with infeed at the reversal

point and cancel signal (Page 1172)
● CYCLE4073 - longitudinal grinding with continuous infeed

(Page 1176)
● CYCLE4074 - longitudinal grinding with continuous infeed and

cancel signal (Page 1177)
● CYCLE4075 - surface grinding with infeed at the reversal point

(Page 1180)
● CYCLE4077 - surface grinding with infeed at the reversal point

and cancel signal (Page 1183)
● CYCLE4078 - surface grinding with continuous infeed

(Page 1187)
● CYCLE4079 - surface grinding with intermittent infeed

(Page 1189)
Other ● CYCLE800 – swivel plane / swivel tool / align tool (Page 1134)

● CYCLE832 - High-Speed Settings (Page 1147)
All ● GROUP_BEGIN - beginning of program block (Page 1192)

● GROUP_END - end of program block (Page 1192)
● GROUP_ADDEND - End of trial cut addition (Page 1193)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1069

3.23.1.3 HOLES1 – row position pattern

Syntax
HOLES1(<SPCA>, <SPCO>, <STA1>, <FDIS>, <DBH>, <NUM>, <_VARI>,
<_UMODE>, <_HIDE>, <_NSP>, <_DMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <SPCA> REAL Reference point for row of holes along the 1st axis (abs)
2 Y0 <SPCO> REAL Reference point for row of holes along the 2nd axis (abs)
3 α0 <STA1> REAL Basic angle of rotation (angle to 1st axis)
4 L0 <FDIS> REAL Distance from 1st hole to reference point
5 L <DBH> REAL Spacing between the holes
6 N <NUM> INT Number of holes
7 <_VARI> INT Reserved
8 <_UMODE> INT Reserved
9 <_HIDE> STRING

[200]
Hidden positions
● Max. 198 characters
● Specification of consecutive position numbers, e.g. "1,3" (positions

1 and 3 are not executed)
10 <_NSP> INT Reserved
11 <_DMODE> INT

Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

3.23.1.4 HOLES2 – circle or pitch circle position pattern

Syntax
HOLES2(<CPA>, <CPO>, <RAD>, <STA1>, <INDA>, <NUM>, <_VARI>,
<_UMODE>, <_HIDE>, <_NSP>, <_DMODE>)

Work preparation
3.23 Programming cycles externally

NC programming
1070 Programming Manual, 06/2019, A5E47437142B AA

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <CPA> REAL Center point for circle of holes along the 1st axis
(abs)
Reference point in the 1st axis

(for XY)
(for XA, YB, ZC)

2 Y0 <CPO> REAL Center point for circle of holes along the 2nd axis
(abs)
Reference point in the 2nd axis

(for XY)
(for XA, YB, ZC)

3 R <RAD> REAL Radius of the circle of holes (for XY)
4 α0 <STA1> REAL Starting angle

or 1st rotary axis position
(for XY)
(for XA, YB, ZC)

5 α1 <INDA> REAL Advance angle (for pitch circle only) (for XY, XA, YB,
ZC)

 < 0 = Clockwise
> 0 = Counter-clockwise

6 N <NUM> INT Number of positions
7

<_VARI>

INT Machining type
UNITS: Reserved
TENS: Positioning type

0 = Approach position - linear
1 = Approach position - circular path

HUNDREDS: Reserved
THOUSANDS: Circular pattern

0 = Compatibility mode, if INDA = 0 then full
circle, INDA <> 0 then pitch circle

1 = Full circle
2 = Pitch circle

TEN THOUSANDS: Position pattern with rotary axis
0 = XY (without rotary

axis)
(for XY)

1 = XA (X axis and ro‐
tary axis around X)

(only for XA)

2 = YB (Y axis and ro‐
tary axis around Y)

(only for YB)

3 = ZC (Z axis and ro‐
tary axis around C)

(only for ZC)

ONE MILLION +
HUNDRED THOU‐
SANDS:

Offset (for several rotary axes around the same
axis; if index too large, then 1st axis)
00 = 1st A, B or C axis
01 = 2nd A, B or C axis
...
10 = 20th A, B or C axis

8 <_UMODE> INT Reserved

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1071

No. Parameter
mask

Parameter
internal

Data type Meaning

9 <_HIDE> STRING
[200]

Reserved

10 <_NSP> INT Reserved
11 <_DMODE> INT Display mode

UNITS: Machining plane G17/18/19
0 = Compatibility, the plane effective before

the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

3.23.1.5 POCKET3 – rectangular pocket

Syntax
POCKET3(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_LENG>, <_WID>, <_CRAD>,
<_PA>, <_PO>, <_STA>, <_MID>, <_FAL>, <_FALD>, <_FFP1>, <_FFD>,
<_CDIR>, <_VARI>, <_MIDA>, <_AP1>, <_AP2>, <_AD>, <_RAD1>, <_DP1>,
<_UMODE>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Pocket depth (abs/inc), see <_AMODE>
5 L <_LENG> REAL Pocket length (inc, to be entered with sign)
6 W <_WID> REAL Pocket width (inc, to be entered with sign)
7 R <_CRAD> REAL Corner radius of pocket
8 X0 <_PA> REAL Reference point 1st axis (abs)
9 YO <_PO> REAL Reference point 2nd axis (abs)
10 α0 <_STA> REAL Angle of rotation, angle between longitudinal axis (L) and 1st axis
11 DZ <_MID> REAL Maximum depth infeed
12 UXY <_FAL> REAL Finishing allowance, plane
13 UZ <_FALD> REAL Finishing allowance, depth
14 F <_FFP1> REAL Feedrate in the plane
15 FZ <_FFD> REAL Depth infeed rate
16 <_CDIR> INT Milling direction: 0 = Down-cut

1 = Up-cut

Work preparation
3.23 Programming cycles externally

NC programming
1072 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

17 <_VARI> INT Machining type
UNITS:

1 = Roughing
2 = Finishing
4 = Edge finishing
5 = Chamfering

TENS:
0 = Predrilled, infeed with G0
1 = Vertically, infeed with G1
2 = Helical
3 = Oscillation on pocket longitudinal

axis
HUNDREDS: Reserved

18 DXY <_MIDA> REAL Maximum plane infeed, for unit, see <_AMODE>
19 L1 <_AP1> REAL Length of premachining (inc)
20 W1 <_AP2> REAL Width of premachining (inc)
21 AZ <_AD> REAL Depth of premachining (inc)
22 ER <_RAD1> REAL

Radius of helical path on helical insertion

EW Maximum insertion angle for oscillation
23 EP <_DP1> REAL Helical pitch on helical insertion
24 <_UMODE> INT Reserved
25 FS <_FS> REAL Chamfer width (inc)
26 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1073

No. Parameter
mask

Parameter
internal

Data type Meaning

27 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Compatibility mode
1 = Normal machining

THOUSANDS: Dimensioning via center/corner
0 = Compatibility mode
1 = Dimensioning via center
2 = Dimensioning of corner point,

pocket position +LENG/+WID
3 = Dimensioning of corner point,

pocket position -LENG/+WID
4 = Dimensioning of corner point,

pocket position +LENG/-WID
5 = Dimensioning of corner point,

pocket position -LENG/-WID
TEN THOUSANDS: Complete machining/remachining

0 = Compatibility mode
(process <_AP1>, <_AP2>
and <_AD> as before)

1 = Complete machining
2 = Post machining

28 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

Work preparation
3.23 Programming cycles externally

NC programming
1074 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

29 <_AMODE> INT Alternative mode
UNITS: Pocket depth (Z1)

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Unit for plane infeed (DXY)
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering (ZFS)
0 = Absolute
1 = Incremental

3.23.1.6 POCKET4 – circular pocket

Syntax
POCKET4(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_CDIAM>, <_PA>, <_PO>,
<_MID>, <_FAL>, <_FALD>, <_FFP1>, <_FFD>, <_CDIR>, <_VARI>, <_MIDA>,
<_AP1>, <_AD>, <_RAD1>, <_DP1>, <_UMODE>, <_FS>, <_ZFS>, <_GMODE>,
<_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Pocket depth (abs/inc), see <_AMODE>
5 ∅ <_CDIAM> REAL Pocket diameter or radius, see <_DMODE>
6 X0 <_PA> REAL Reference point 1st axis (abs)
7 Y0 <_PO> REAL Reference point 2nd axis (abs)
8 DZ <_MID> REAL Maximum depth setting, see <_VARI> = by planes

Maximum helical setting, see <_VARI> = helically
9 UXY <_FAL> REAL Finishing allowance, plane
10 UZ <_FALD> REAL Finishing allowance, depth
11 F <_FFP1> REAL Feedrate for surface machining
12 FZ <_FFD> REAL Depth infeed rate
13 <_CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1075

No. Parameter
mask

Parameter
internal

Data type Meaning

14 <_VARI> INT Machining type
UNITS: Machining

1 = Roughing
2 = Finishing
4 = Edge finishing
5 = Chamfering

TENS: Infeed type (roughing and finishing)
0 = Predrilled, infeed with G0 (pocket

is premachined)
1 = Vertically, infeed with G1
2 = Helical

HUNDREDS: Reserved
THOUSANDS:

0 = Plane-by-plane
1 = Helical

15 DXY <_MIDA> REAL Maximum plane infeed, see <_AMODE>,
0 = 0.8 x tool diameter

16 ∅ <_AP1> REAL Diameter/radius of premachining (inc)
17 AZ <_AD> REAL Depth of premachining (inc)
18 ER <_RAD1> REAL Radius of helical path on helical insertion
19 EP <_DP1> REAL Helical pitch on insertion on helical path
20 <_UMODE> INT Reserved
21 FS <_FS> REAL Chamfer width (inc)
22 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
23 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Machining/calculation of start point

0 = Compatibility mode
1 = Normal machining

THOUSANDS: Reserved
TEN THOUSANDS: Complete machining/remachining

0 = Compatibility mode
(process <_AP1> and <_AD> as
before)

1 = Complete machining
2 = Post machining

Work preparation
3.23 Programming cycles externally

NC programming
1076 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

24 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

HUNDREDS:
0 = Compatibility mode

(enter <_CDIAM>/<_AP1> as ra‐
dius)

1 = Enter <_CDIAM>/<_AP1> as di‐
ameter

THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

25 <_AMODE> INT Alternative mode
UNITS: Pocket depth (Z1)

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Unit for infeed width (DXY)
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering (ZFS)
0 = Absolute
1 = Incremental

3.23.1.7 SLOT1 - longitudinal slot

Syntax
SLOT1 (<RTP>, <RFP>, <SDIS>, <_DP>, <_DPR>, <NUM>, <LENG>, <WID>,
<_CPA>, <_CPO>, <RAD>, <STA1>, <INDA>, <FFD>, <FFP1>, <_MID>,
<CDIR>, <_FAL>, <VARI>, <_MIDF>, <FFP2>, <SSF>, <_FALD>, <_STA2>,
<_DP1>, <_UMODE>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1077

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point of tool axis (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Slot depth (abs)
5 <_DPR> REAL Slot depth (inc) with respect to Z0 (enter without sign)
6 <NUM> INT Number of slots = 1
7 L <LENG> REAL Slot length
8 W <WID> REAL Slot width
9 X0 <_CPA> REAL Reference point in the 1st axis of the plane
10 Y0 <_CPO> REAL Reference point in the 2nd axis of the plane
11 <RAD> REAL Reserved
12 α <STA1> REAL Angle of rotation
13 <INDA> REAL Reserved
14 FZ <FFD> REAL Depth infeed rate
15 F <FFP1> REAL Feedrate
16 DZ <_MID> REAL Maximum depth infeed
17 <CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut
18 UXY <_FAL> REAL Finishing allowance on plane or slot edge
19 <VARI> INT Machining type

UNITS:
0 = Reserved
1 = Roughing
2 = Finishing
4 = Edge finishing (only machine the

edge)
5 = Chamfering

TENS: Approach
0 = Predrilled, infeed with G0 (slot is

premachined)
1 = Vertically, infeed with G1
2 = Helical
3 = Oscillation

HUNDREDS: Reserved
20 DZF <_MIDF> REAL Reserved
21 FF <FFP2> REAL Reserved
22 SF <SSF> REAL Reserved
23 UZ <_FALD> REAL Finishing allowance, depth
24 ER <_STA2> REAL Radius of helical path on helical insertion

EW Maximum insertion angle for oscillation
25 EP <_DP1> REAL Insertion depth per rev for helix

Work preparation
3.23 Programming cycles externally

NC programming
1078 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

26 <_UMODE> INT Reserved
27 FS <_FS> REAL Chamfer width (inc) for chamfering
28 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
29 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
1 = Normal machining

THOUSANDS: Dimensioning of reference point, slot
length
0 = Center
1 = Inner left-hand +L
2 = Inner right-hand -L
3 = Left-hand edge +L
4 = Right-hand edge -L

30 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Software version identification

1 = Function extension SLOT1
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

31 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (abs/inc)

0 = Compatibility
1 = Z1 (inc)
2 = Z1 (abs)

TENS: Reserved
HUNDREDS: Insertion depth for chamfering ZFS

0 = ZFS (abs)
1 = ZFS (inc)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1079

Note

The cycle is provided with new functions that are not on earlier software versions.
Consequently certain parameters in the screen form (<NUM>, <RAD>, <INDA>) are no
longer displayed. Multiple slots on one position pattern can be programmed using "MCALL"
and calling the desired position pattern, e.g. HOLES2.

3.23.1.8 SLOT2 - circumferential slot

Syntax
SLOT2(<RTP>, <RFP>, <SDIS>, <_DP>, <_DPR>, <NUM>, <AFSL>, <WID>,
<_CPA>, <_CPO>, <RAD>, <STA1>, <INDA>, <FFD>, <FFP1>, <_MID>,
<CDIR>, <_FAL>, <VARI>, <_MIDF>, <FFP2>, <SSF>, <_FFCP>, <_UMODE>,
<_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point of tool axis (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Slot depth (abs)
5 <_DPR> REAL Slot depth (inc) with respect to Z0 (enter without sign)
6 N <NUM> INT Number of slots
7 α1 <AFSL> REAL Opening angle of the slot
8 W <WID> REAL Slot width
9 X0 <_CPA> REAL Reference point = Center point of circle, 1st axis of the plane
10 Y0 <_CPO> REAL Reference point = Center point of circle, 2nd axis of the plane
11 R <RAD> REAL Radius of the circle
12 α0 <STA1> REAL Starting angle
13 α2 <INDA> REAL Incrementing angle
14 FZ <FFD> REAL Depth infeed rate
15 F <FFP1> REAL Feedrate
16 DZ <_MID> REAL Maximum depth infeed
17 <CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut
18 UXY <_FAL> REAL Finishing allowance on plane or slot edge

Work preparation
3.23 Programming cycles externally

NC programming
1080 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

19 <VARI> INT Machining type
UNITS:

0 = Complete machining
1 = Roughing
2 = Finishing
3 = Edge finishing
5 = Chamfering

TENS:
0 = Intermediate positioning with G0

line
1 = Intermediate positioning on circu‐

lar path
HUNDREDS: Reserved
THOUSANDS:

0 = Compatibility mode, if <INDA> =
0 then full circle, <INDA> <> 0
then pitch circle

1 = Full circle
2 = Pitch circle

20 DZF <_MIDF> REAL Reserved
21 <FFP2> REAL Reserved
22 <SSF> REAL Reserved
23 FF <_FFCP> REAL Reserved
24 <_UMODE> INT Reserved
25 FS <_FS> REAL Chamfer width (inc)
26 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
27 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
0 = Compatibility mode
1 = Normal machining

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1081

No. Parameter
mask

Parameter
internal

Data type Meaning

28 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Software version identification

1 = SLOT2 functions as of software
version 2.5

TEN THOUSANDS: Technology scaling in cycle screen forms
(Page 1193)
0 = Input: Complete
1 = Input: Simple

29 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (abs/inc)

0 = Compatibility
1 = Z1 (inc)
2 = Z1 (abs)

TENS: Reserved
HUNDREDS: Insertion depth for chamfering ZFS

0 = ZFS (abs)
1 = ZFS (inc)

3.23.1.9 LONGHOLE - elongated hole

Syntax
LONGHOLE(<RTP>, <RFP>, <SDIS>, <_DP>, <_DPR>, <NUM>, <LENG>, <_CPA>,
<_CPO>, <RAD>, <STA1>, <INDA>, <FFD>, <FFP1>, <MID>, <_VARI>,
<_UMODE>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Long hole depth (abs)

Work preparation
3.23 Programming cycles externally

NC programming
1082 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

5 <_DPR> REAL Long hole depth (inc) with respect to Z0 (enter without sign)
6 <NUM> INT Number of long holes = 1
7 L <LENG> REAL Length of long hole
8 X0 <_CPA> REAL Reference point 1st axis of the plane
9 Y0 <_CPO> REAL Reference point 2nd axis of the plane
10 <RAD> REAL Reserved
11 α0 <STA1> REAL Angle of rotation
12 <INDA> REAL Reserved
13 FZ <FFD> REAL Depth infeed rate
14 F <FFP1> REAL Feedrate
15 DZ <MID> REAL Maximum depth infeed
16 <_VARI> INT Machining type

UNITS: Infeed type
1 = Vertically with G1
3 = Oscillation

HUNDREDS: Reserved
17 <_UMODE> INT Reserved
18 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
0 = Compatibility mode
1 = Normal machining

THOUSANDS: Dimensioning of reference point, slot
length
0 = Center
1 = Inner left-hand +L
2 = Inner right-hand -L
3 = Left-hand edge +L
4 = Right-hand edge -L

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1083

No. Parameter
mask

Parameter
internal

Data type Meaning

19 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

HUNDREDS: Reserved
THOUSANDS: Software version identification

1 = Function extension LONGHOLE
(dimensioning of reference point)

20 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (abs/inc)

0 = Compatibility
1 = Z1 (inc)
2 = Z1 (abs)

Note

The cycle is provided with new functions that are not on earlier software versions.
Consequently certain parameters in the screen form (<NUM>, <RAD>, <INDA>) are no
longer displayed. Multiple slots on one position pattern can be programmed using "MCALL"
and calling the desired position pattern, e.g. HOLES2.

3.23.1.10 CYCLE60 – engraving

Syntax
CYCLE60(<_TEXT>, <_RTP>, <_RFP>, <_SDIS>, <_DP>, <_DPR>, <_PA>,
<_PO>, <_STA>, <_CP1>, <_CP2>, <_WID>, <_DF>, <_FFD>, <_FFP1>,
<_VARI>, <_CODEP>, <_UMODE>, <_GMODE>, <_DMODE>, <_AMODE>)

Work preparation
3.23 Programming cycles externally

NC programming
1084 Programming Manual, 06/2019, A5E47437142B AA

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_TEXT> STRING
[200]

Text to be engraved (up to 100 characters)

2 RP <_RTP> REAL Retraction plane (abs)
3 Z0 <_RFP> REAL Reference point of tool axis (abs)
4 SC <_SDIS> REAL Safety clearance (to be added to the reference plane, enter without sign)
5 Z1 <_DP> REAL Depth (abs), see <_AMODE>
6 Z1 <_DPR> REAL Depth (inc), see <_AMODE>
7 X0 <_PA> REAL

Reference point 1st axis of plane (abs) - right-angled, see <_VARI>

R Reference point, length (radius) - polar, see <_VARI>
8 Y0 <_PO> REAL

Reference point 2nd axis of plane (abs) - right-angled, see <_VARI>

α0 Reference point, angle with respect to 1st axis - polar, see <_VARI>
9 α1 <_STA> REAL Text direction, angle of line of text with respect to 1st axis), see <_VARI>
10 XM <_CP1> REAL

Center of the text circle, 1st axis of plane (abs) - right-angled,
see <_VARI>

LM Center of circle of text, length (radius) with respect to WNP - polar, see
<_VARI>

11 YM <_CP2> REAL

Center of the text circle, 2nd axis of plane (abs) - right-angled, see
<_VARI>

αM Center of text circle, angle with respect to 1st axis axis - polar,
see <_VARI>

12 W <_WID> REAL Height of characters (enter without sign)
13 DX1

DX2
<_DF> REAL

Distance between characters / overall width, see <_VARI>

α2 Opening angle, see <_VARI>
14 FZ <_FFD> REAL Depth infeed rate, see <_DMODE>
15 F <_FFP1> REAL Feedrate for surface machining

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1085

No. Parameter
mask

Parameter
internal

Data type Meaning

16 <_VARI> INT Machining (alignment and reference point for engraved text)
UNITS: Reference point

0 = Right-angled
1 = Polar

TENS: Text alignment
0 = Text on one line
1 = Text in an upward pointing arc
2 = Text in a downward curving arc

HUNDREDS: Reserved
THOUSANDS: Reference point of the text, horizontal

0 = Left
1 = Center
2 = Right

TEN THOUSANDS: Reference point of the text, vertical
0 = Bottom
1 = Center
2 = Top

HUNDRED THOUSANDS: Text length
0 = Character spacing
1 = Overall text width (linear text only)
2 = Opening angle (only for circular

text)
ONE MILLION: Circle center

0 = Right-angled (Cartesian)
1 = Polar

TEN MILLIONS: Mirror writing
0 = Compatibility
1 = Mirror writing ON
2 = Mirror writing OFF

17 <_CODEP> INT Code page number for writing (currently only 1252)
18 <_UMODE> INT Reserved
19 _GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Compatibility mode
1 = Normal machining

Work preparation
3.23 Programming cycles externally

NC programming
1086 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

20 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

21 <_AMODE> INT Alternative mode
UNITS: Final depth (<_DP>, <_DPR>)

0 = Compatibility
1 = Incremental (<_DPR>)
2 = Absolute (<_DP>)

3.23.1.11 CYCLE61 - Face milling

Syntax
CYCLE61(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_PA>, <_PO>, <_LENG>,
<_WID>, <_MID>, <_MIDA>, <_FALD>, <_FFP1>, <_VARI>, <_LIM>,
<_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis, height of blank (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Height of finished part (abs/inc), see <_AMODE>
5 X0 <_PA> REAL Corner point 1 in 1st axis (abs)
6 Y0 <_PO> REAL Corner point 1 in 2nd axis (abs)
7 X1 <_LENG> REAL Corner point 2 in 1st axis (abs/inc), see <_AMODE>
8 Y1 <_WID> REAL Corner point 2 in 2nd axis (abs/inc), see <_AMODE>
9 DZ <_MID> REAL Maximum depth infeed
10 DXY <_MIDA> REAL Maximum plane infeed (for unit, see <_AMODE>)
11 UZ <_FALD> REAL Finishing allowance, depth

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1087

No. Parameter
mask

Parameter
internal

Data type Meaning

12 F <_FFP1> REAL Machining feedrate
13 <_VARI> INT Machining type

UNITS: Machining
1 = Roughing
2 = Finishing

TENS: Machining direction
1 = Parallel to the 1st axis, in one di‐

rection
2 = Parallel to the 2nd axis, in one di‐

rection
3 = Parallel to the 1st axis, varying

direction
4 = Parallel to the 2nd axis, varying

direction
14 <_LIM> INT Limits

UNITS: Limit 1st axis negative
0 = No
1 = Yes

TENS: Limit 1st axis positive
0 = No
1 = Yes

HUNDREDS: Limit 2nd axis negative
0 = No
1 = Yes

THOUSANDS: Limit 2nd axis positive
0 = No
1 = Yes

15 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Work preparation
3.23 Programming cycles externally

NC programming
1088 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

16 <_AMODE> INT Alternative mode
UNITS: Final depth (<_DP>)

0 = Absolute
1 = Incremental

TENS: Units for plane infeed (<_MIDA>)
0 = mm
1 = % of tool diameter

HUNDREDS: Reserved
THOUSANDS: Length of surface

0 = Incremental
1 = Absolute

TEN THOUSANDS: Width of surface
0 = Incremental
1 = Absolute

3.23.1.12 CYCLE62 - contour call

Syntax
CYCLE62(<_KNAME>,<_TYPE>, <_LAB1>, <_LAB2>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 PRG/CON <_KNAME> STRING
[140]

Contour name or subprogram name does not have to be programmed
in _TYPE = 2

2 <_TYPE> INT Determination of contour input
 0 = Subprogram

1 = Contour name
2 = Labels
3 = Labels in the subprogram

3 LAB1 <_LAB1> STRING[32] Label 1, start of contour
4 LAB2 <_LAB2> STRING[32] Label 2, end of contour

3.23.1.13 CYCLE63 – contour pocket milling / contour pocket residual material / contour spigot
milling / contour spigot residual material

Syntax
CYCLE63(<_PRG>, <_VARI>, <_RP>, <_Z0>, <_SC>, <_Z1>, <_F>, <_FZ>,
<_DXY>, <_DZ>, <_UXY>, <_UZ>, <_CDIR>, <_XS>, <_YS>, <_ER>, <_EP>,

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1089

<_EW>, <_FS>, <_ZFS>, <_TR>, <_DR>, <_UMODE>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 PRG <_PRG> STRING
[100]

Name of removal program

2 <_VARI> INT Machining type
UNITS: Machining process

1 = Roughing
3 = Base finishing
4 = Edge finishing
5 = Chamfering

TENS: Infeed type
0 = Central insertion
1 = Helical insertion
2 = Oscillating insertion

HUNDREDS: Reserved
THOUSANDS: Lift mode

0 = Lift off to retraction plane
1 = Lift off to reference point + safety

clearance
TEN THOUSANDS: Start point for roughing and finishing base

0 = Auto
1 = Manual

3 RP <_RP> REAL Retraction plane (abs)
4 Z0 <_Z0> REAL Reference point of tool axis (abs)
5 SC <_SC> REAL Safety clearance (to be added to reference point, enter without sign)
6 Z1 <_Z1> REAL Final depth (see <_AMODE> UNITS)
7 F <_F> REAL Feedrate in the plane during roughing/finishing
8 FZ <_FZ> REAL Depth infeed rate
9 DXY <_DXY> REAL Infeed plane - unit (see <_AMODE> TENS)
10 DZ <_DZ> REAL Depth infeed
11 UXY <_UXY> REAL Finishing allowance, plane
12 UZ <_UZ> REAL Finishing allowance, depth
13 <_CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut
14 XS <_XS> REAL Starting point X, absolute
15 YS <_YS> REAL Starting point Y, absolute
16 ER <_ER> REAL Helical insertion: Radius
17 EP <_EP> REAL Helical insertion: Pitch
18 EW <_EW> REAL Oscillating insertion: Maximum insertion angle

Work preparation
3.23 Programming cycles externally

NC programming
1090 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

19 FS <_FS> REAL Chamfer width (inc) for chamfering
20 ZFS <_ZFS> REAL Insertion depth of tool tip when chamfering (see <_AMODE> HUN‐

DREDS)
21 TR <_TR> STRING[32] Reference tool name when machining residual material
22 DR <_DR> INT Reference tool D number when machining residual material
23 <_UMODE> INT Reserved
24 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Normal machining (no compatibil‐

ity mode needed)
1 = Normal machining
2 = Reserved

25 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Technology mode

1 = Pocket
2 = Spigot

THOUSANDS: Machine residual material
0 = No
1 = Yes

TEN THOUSANDS: Technology scaling in cycle screen forms
(Page 1193)
0 = Input: Complete
1 = Input: Simple

HUNDRED THOUSANDS: Automatic program name
0 = No
1 = Yes

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1091

No. Parameter
mask

Parameter
internal

Data type Meaning

26 <_AMODE> INT Alternative mode
UNITS: Final depth (Z1)

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Unit for plane infeed (DXY)
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering (ZFS)
0 = Absolute
1 = Incremental

THOUSANDS: --- Reserved

3.23.1.14 CYCLE64 - Predrilling contour pocket

Syntax
CYCLE64(<_PRG>, <_VARI>, <_RP>, <_Z0>, <_SC>, <_Z1>, <_F>, <_DXY>,
<_UXY>, <_UZ>, <_CDIR>, <_TR>, <_DR>, <_UMODE>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 PRG <_PRG> STRING
[100]

Name of drilling/centering program

2 <_VARI> INT Machining type
UNITS: Reserved
TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Lift mode

0 = Lift off to retraction plane
1 = Lift off to reference point + safety

clearance
3 RP <_RP> REAL Retraction plane (abs)
4 Z0 <_Z0> REAL Reference point (abs)
5 SC <_SC> REAL Safety clearance (to be added to reference point, enter without sign)
6 Z1 <_Z1> REAL Drilling/centering depth (see <_AMODE> UNITS)
7 F <_F> REAL Drilling/centering feedrate
8 DXY <_DXY> REAL Infeed plane - unit (see <_AMODE> TENS)
9 UXY <_UXY> REAL Finishing allowance, plane
10 UZ <_UZ> REAL Finishing allowance, depth

Work preparation
3.23 Programming cycles externally

NC programming
1092 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

11 <_CDIR> INT Milling direction 0 = Down-cut
1 = Up-cut

12 TR <_TR> STRING[20] Reference tool name
13 DR <_DR> INT Reference tool D number
14 <_UMODE> INT Reserved
15 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Normal machining (no compatibil‐

ity mode needed)
1 = Normal machining
2 = Reserved

25 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Technology mode
1 = Predrilling
2 = Centering

HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: --- Reserved
HUNDRED THOUSANDS: Automatic program name

0 = No
1 = Yes

26 <_AMODE> INT Alternative mode
UNITS: Drilling/centering depth Z1

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Unit for plane infeed (DXY)
0 = mm
1 = % of tool diameter

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1093

3.23.1.15 CYCLE70 - thread milling

Syntax
CYCLE70(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_DIATH>, <_H1>, <_FAL>,
<_PIT>, <_NT>, <_MID>, <_FFR>, <_TYPTH>, <_PA>, <_PO>, <_NSP>,
<_VARI>, <_PITA>, <_PITM>, <_PTAB>, <_PTABA>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Thread length (abs, inc), see <_AMODE>

Take account of runout at base of hole (at least half pitch)
5 ∅ <_DIATH> REAL Nominal diameter of the thread
6 H1 <_H1> REAL Thread depth
7 U <_FAL> REAL Finishing allowance
8 P <_PIT> REAL Pitch (select <_PITA>: mm, inch, MODULE, threads/inch)
9 NT <_NT> INT Number of teeth on the tool tip

Tool length is always with respect to bottom tooth.
10 DXY <_MID> REAL Maximum infeed per cut

<_MID> > <_H1>: All in one cut
11 F <_FFR> REAL Milling feed
12 <_TYPTH> INT Thread type 0 = Internal thread

1 = External thread
13 X0 <_PA> REAL Circle center 1st axis (abs)
14 Y0 <_PO> REAL Circle center 2nd axis (abs)
15 αS <_NSP> REAL Start angle (multi-start thread)
16 <_VARI> INT Machining type

UNITS:
1 = Roughing
2 = Finishing

TENS:
1 = From top to bottom
2 = From bottom to top

HUNDREDS:
0 = Right-hand thread
1 = Left-hand thread

Work preparation
3.23 Programming cycles externally

NC programming
1094 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

17 <_PITA> INT Evaluation of thread pitch
 0 = Compatibility mode

1 = Pitch in mm
2 = Pitch in threads per inch (TPI)
3 = Pitch in inches
4 = Pitch as MODULE

18 <_PITM> STRING[15] String as marker for pitch input (for the interface only)
19 <_PTAB> STRING[20] String for thread table ("", "ISO", "BSW", "BSP", "UNC") (for the interface

only)
20 <_PTABA> STRING[20] String for selection from thread table (e.g. "M 10", "M 12", ...) (for the

interface only)
21 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Machining/calculation of start point

0 = Compatibility mode
1 = Normal machining

22 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

23 <_AMODE> INT Alternative mode
UNITS: Thread length (<_DP>)

0 = Absolute
1 = Incremental

3.23.1.16 CYCLE72 - Path milling

Syntax
CYCLE72(<_KNAME>, <_RTP>, <_RFP>, <_SDIS>, <_DP>, <_MID>, <_FAL>,
<_FALD>, <_FFP1>, <_FFD>, <_VARI>, <_RL>, <_AS1>, <_LP1>, <_FF3>,
<_AS2>, <_LP2>,<_UMODE>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1095

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_KNAME> STRING
[141]

Name of the contour subprogram

2 RP <_RTP> REAL Retraction plane (abs)
3 Z0 <_RFP> REAL Reference point of tool axis (abs)
4 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
5 Z1 <_DP> REAL End point, final depth (abs/inc), see <_AMODE>
6 DZ <_MID> REAL Maximum depth infeed (inc; enter without sign)
7 UXY <_FAL> REAL Finishing allowance, plane (inc), allowance at edge contour
8 UZ <_FALD> REAL Finishing allowance depth (inc), allowance at base (enter without sign)
9 FX <_FFP1> REAL Feedrate on contour
10 FZ <_FFD> REAL Feedrate for depth infeed (or spatial infeed)
11 <_VARI> INT Machining type

UNITS: Machining
1 = Roughing
2 = Finishing
5 = Chamfering

TENS:
0 = Intermediate paths with G0
1 = Intermediate paths with G1

HUNDREDS: Retraction at the end of contour
0 = Retraction at the end of contour

to reference point
1 = Retraction at the end of contour

to reference point + <_SDIS>
2 = Retraction at the end of contour

by <_SDIS>
3 = No retraction at the end of con‐

tour, approach next start point
with contour feed

THOUSANDS: Reserved
TEN THOUSANDS: Machine contour

0 = Machine contour forward
1 = Machine contour backward

Restrictions with backward ma‐
chining:
● Max 170 contour elements

(including chamfers or
rounding)

● Only values in the (X/Y) and F
planes are evaluated

Work preparation
3.23 Programming cycles externally

NC programming
1096 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

12 <_RL> INT Machining direction
 40 = Center of contour (G40, ap‐

proach and retract: straight line
or vertical)

41 = Left of contour (G41, approach
and retract: straight line or circle)

42 = Right of contour (G42, approach
and retract: straight line or circle)

13 <_AS1> INT Contour approach movement
UNITS:

1 = Straight line
2 = Quadrant
3 = Semi-circle
4 = Approach and retraction vertically

TENS:
0 = Last movement, in the plane
1 = Last movement, spatial

14 L1 <_LP1> REAL Approach path or approach radius (inc; enter without sign)
15 FZ <_FF3> REAL Feedrate for intermediate paths (G94/G95 as to contour)
16 <_AS2> INT Contour approach movement (not vertical approach/retract)

UNITS:
1 = Straight line
2 = Quadrant
3 = Semi-circle

TENS:
0 = Last movement, in the plane
1 = Last movement, spatial

17 L2 <_LP2> REAL Retract path or retract radius (inc, to be entered without sign)
18 <_UMODE> INT Reserved
19 FS <_FS> REAL Chamfer width (inc)
20 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
21 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Compatibility mode
1 = Normal machining

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1097

No. Parameter
mask

Parameter
internal

Data type Meaning

22 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

THOUSANDS:
0 = Compatibility mode: Contour

name is in <_KNAME>
1 = Contour name is programmed in

CYCLE62 and transferred to
_SC_CONT_NAME

23 <_AMODE> INT Alternative mode
UNITS: End point Z1 (<_DP>)

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Units for plane infeed
0 = mm, inch
1 = Reserved

HUNDREDS: Insertion depth for chamfering (<_ZFS>)
0 = Absolute
1 = Incremental

Note

If the following transfer parameters are programmed indirectly (as parameters), the screen
form is not reset:

<_VARI>, <_RL>, <_AS1>, <_AS2>, <_UMODE>, <_GMODE>, <_DMODE>,
<_AMODE>

3.23.1.17 CYCLE76 – rectangular spigot

Syntax
CYCLE76(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_DPR>, <_LENG>, <_WID>,
<_CRAD>, <_PA>, <_PO>, <_STA>, <_MID>, <_FAL>, <_FALD>, <_FFP1>,

Work preparation
3.23 Programming cycles externally

NC programming
1098 Programming Manual, 06/2019, A5E47437142B AA

<_FFD>, <_CDIR>, <_VARI>, <_AP1>, <_AP2>, <_FS>, <_ZFS>, <_GMODE>,
<_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Spigot depth (abs)
5 <_DPR> REAL Spigot depth (inc) with respect to Z0 (enter without sign)
6 L <_LENG> REAL Spigot length, see <_GMODE> (enter without sign)
7 W <_WID> REAL Spigot width, see <_GMODE> (enter without sign)
8 R <_CRAD> REAL Spigot corner radius (enter without sign)
9 X0 <_PA> REAL Reference point for spigot in 1st axis of plane (abs)
10 Y0 <_PO> REAL Reference point for spigot in 2nd axis of plane (abs)
11 α0 <_STA> REAL Angle of rotation, angle between longitudinal axis (L) and 1st axis of

plane
12 DZ <_MID> REAL Maximum depth infeed (inc; enter without sign)
13 UXY <_FAL> REAL Finishing allowance, plane (inc), allowance at edge contour
14 UZ <_FALD> REAL Finishing allowance depth (inc), allowance at base (enter without sign)
15 FX <_FFP1> REAL Feedrate on contour
16 FZ <_FFD> REAL Depth infeed rate
17 <_CDIR> INT Milling direction (enter without sign)

UNITS:
0 = Down-cut
1 = Up-cut

18 <_VARI> INT Machining
UNITS:

1 = Roughing
2 = Finishing
5 = Chamfering

19 L1 <_AP1> REAL Length of blank spigot
20 W1 <_AP2> REAL Width of blank spigot
21 FS <_FS> REAL Chamfer width (inc)
22 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs, inc), see <_AMODE>

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1099

No. Parameter
mask

Parameter
internal

Data type Meaning

23 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
0 = Compatibility mode
1 = Normal machining

THOUSANDS: Dimensioning of spigot acc. to center or
corner
0 = Compatibility mode
1 = Dimensioning via center
2 = Dimensioning of corner point,

spigot +L +W
3 = Dimensioning of corner point,

spigot -L +W
4 = Dimensioning of corner point,

spigot +L -W
5 = Dimensioning of corner point,

spigot -L -W
TEN THOUSANDS: Complete machining or remachining

0 = Compatibility mode
1 = Complete machining
2 = Post machining

24 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

Work preparation
3.23 Programming cycles externally

NC programming
1100 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

25 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (DP)

0 = Compatibility
1 = Incremental
2 = Absolute

TENS: Reserved
HUNDREDS: Insertion depth for chamfering (ZFS)

0 = Absolute
1 = Incremental

3.23.1.18 CYCLE77 – circular spigot

Syntax
CYCLE77(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_DPR>, <_CDIAM>, <_PA>,
<_PO>, <_MID>, <_FAL>, <_FALD>, <_FFP1>, <_FFD>, <_CDIR>, <_VARI>,
<_AP1>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Spigot depth (abs)
5 <_DPR> REAL Spigot depth (inc) with respect to Z0 (enter without sign)
6 ∅ <_CDIAM> REAL Spigot diameter (enter without sign)
7 X0 <_PA> REAL Reference point for spigot in 1st axis of plane (abs)
8 Y0 <_PO> REAL Reference point for spigot in 2nd axis of plane (abs)
9 DZ <_MID> REAL Maximum depth infeed (inc; enter without sign)
10 UXY <_FAL> REAL Finishing allowance, plane (inc), allowance at edge contour
11 UZ <_FALD> REAL Finishing allowance depth (inc), allowance at base (enter without sign)
12 FX <_FFP1> REAL Feedrate on contour
13 FZ <_FFD> REAL Depth infeed rate
14 <_CDIR> INT Milling direction (enter without sign)

UNITS:
0 = Down-cut
1 = Up-cut

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1101

No. Parameter
mask

Parameter
internal

Data type Meaning

15 <_VARI> INT Machining type
UNITS: Machining

1 = Roughing to final machining al‐
lowance

2 = Finishing (allowance X/Y/Z=0)
5 = Chamfering

16 ∅1 <_AP1> REAL Diameter of blank spigot
17 FS <_FS> REAL Chamfer width (inc)
18 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
19 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Compatibility mode
1 = Normal machining

THOUSANDS: Reserved
TEN THOUSANDS: Complete machining/remachining

0 = Compatibility mode
(process <_AP1> as before)

1 = Complete machining
2 = Post machining

20 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

Work preparation
3.23 Programming cycles externally

NC programming
1102 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

21 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (DP)

0 = Absolute (compatibility mode)
1 = Incremental
2 = Absolute

TENS: Reserved
HUNDREDS: Insertion depth for chamfering (ZFS)

0 = Absolute
1 = Incremental

3.23.1.19 CYCLE78 - Drill thread milling

Syntax
CYCLE78(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_ADPR>, <_FDPR>, <_LDPR>,
<_DIAM>, <_PIT>, <_PITA>, <_DAM>, <_MDEP>, <_VARI>, <_CDIR>, <_GE>,
<_FFD>, <_FRDP>, <_FFR>, <_FFP2>, <_FFA>, <_PITM>, <_PTAB>,
<_PTABA>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Final drilling depth (abs/inc), see <_AMODE>
5 <_ADPR> REAL Predrilling depth with reduced drilling feedrate (inc) effective

with <_VARI> TEN THOUSANDS
6 D <_FDPR> REAL Maximum depth infeed (inc)

D ≥ Z1 ⇒ One infeed to the final drilling depth
D < Z1 ⇒ Deep drilling cycle with multiple infeeds and chip removal

7 ZR <_LDPR> REAL Remaining drilling depth when through-drilling (inc) with FR feed
8 ∅ <_DIAM> REAL Nominal diameter of the thread
9 P <_PIT> REAL Pitch as a numerical value
10 <_PITA> INT Evaluation of thread pitch P

 1 = Pitch in mm/rev
2 = Pitch in threads/inch
3 = Pitch in inch/rev
4 = Pitch as MODULE

11 DF <_DAM> REAL Absolute value / percentage for each additional infeed (degression),
see<_AMODE>

12 V1 <_MDEP> REAL Minimum infeed (inc), only active for degression

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1103

No. Parameter
mask

Parameter
internal

Data type Meaning

13 <_VARI> INT Machining type
UNITS: Reserved
TENS: Swarf removal before thread milling

0 = No chip removal before thread
milling (only active at final drilling
depth)

1 = Chip removal before thread mill‐
ing (only active at final drilling
depth)

HUNDREDS: Right-hand/left-hand threads
0 = Right-hand thread
1 = Left-hand thread

THOUSANDS: Remaining drilling depth with drilling fee‐
drate
0 = No remaining drilling depth with

drilling feedrate FR
1 = Remaining drilling depth with drill‐

ing feedrate FR
TEN THOUSANDS: Predrilling with reduced feedrate

0 = No predrilling with reduced fee‐
drate

1 = Predrilling with reduced feedrate
Predrilling feedrate = 0.3 F1, if
F1 < 0.15 mm/rev
Predrilling feedrate = 0.1 mm/rev,
if F1 ≥ 0.15 mm/rev

14 <_CDIR> INT Milling direction 0 = Down-cut
1 = Up-cut
4 = Up-cut + down-cut (combined

roughing + finishing)
15 Z2 <_GE> REAL Retraction distance before thread milling (inc)
16 F1 <_FFD> REAL Drilling feedrate (mm/min or in/min or mm/rev)
17 FR <_FRDP> REAL Drilling feedrate for remaining drilling depth (mm/min or mm/rev)
18 F2 <_FFR> REAL Feedrate for thread milling (mm/min or mm/tooth)
19 FS <_FFP2> REAL Finishing feedrate for <_CDIR> =4 (mm/min or mm/tooth)
20 <_FFA> INT Evaluation of feedrates

UNITS: Drilling feed F1
TENS: Drilling feedrate for remaining drilling

depth FR
HUNDREDS: Feedrate for thread milling F2
THOUSANDS: Finishing feedrate FS

21 <_PITM> STRING[15] String as marker for pitch input (for the interface only)1)

22 <_PTAB> STRING[20] String for thread table ("", "ISO", "BSW", "BSP", "UNC") (for the interface
only)1)

23 <_PTABA> STRING[20] String for selection from thread table (e.g. "M 10", "M 12", ...) (for the
interface only)1)

Work preparation
3.23 Programming cycles externally

NC programming
1104 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

24 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data), re‐
served

25 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

26 <_AMODE> INT Alternative mode
UNITS: Drilling depth = Final drilling depth Z1

abs/inc
0 = Absolute
1 = Incremental

TENS: Absolute value / percentage DF for each
additional infeed (degression)
0 = Absolute value
1 = Percentage (0.001 to 100%)

Note
1) Parameters 21, 22 and 23 are only used for thread selection in the screen form thread tables.
The thread tables cannot be accessed via cycle definition in the cycle run time.

3.23.1.20 CYCLE79 - multi-edge

Syntax
CYCLE79(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_NUM>, <_SWL>, <_PA>,
<_PO>, <_STA>, <_RC>, <_AP1>, <_MIDA>, <_MID>, <_FAL>, <_FALD>,
<_FFP1>, <_CDIR>, <_VARI>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Multiple-edge depth (abs/inc), see <_AMODE>
5 N <_NUM> INT Number of edges (1...n)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1105

No. Parameter
mask

Parameter
internal

Data type Meaning

6

SW/L <_SWL> REAL Width across flats or edge length (depending on <_VARI>)
("SW" for width across flats, "L" for edge length)
Width across flats only if even number of edges, and single edge

7 X0 <_PA> REAL Spigot reference point, 1st axis (abs)
8 Y0 <_PO> REAL Spigot reference point, 2nd axis (abs)
9 α0 <_STA> REAL Angle of rotation, center of edge against 1st axis (X axis)
10 R1/FS1 <_RC> REAL Corner rounding with <_NUM> > 2 (radius/chamfer, see <_AMODE>)

(inc, to be entered without sign)
("R1" for radius, "FS1" for chamfer)

11 ∅ <_AP1> REAL Unmachined diameter of spigot
12 DXY <_MIDA> REAL Maximum infeed width (for unit, see <_AMODE>)
13 DZ <_MID> REAL Maximum depth infeed
14 UXY <_FAL> REAL Finishing allowance, plane
15 UZ <_FALD> REAL Finishing allowance, depth
16 F <_FFP1> REAL Machining feedrate
17 <_CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut
18 <_VARI> INT Machining type

UNITS: Machining
1 = Roughing
2 = Finishing
3 = Edge finishing
5 = Chamfering

TENS: Width across flats or edge length
0 = Width across flats
1 = Edge length

19 FS <_FS> REAL Chamfer width (inc)
20 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
21 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
1 = Normal machining

Work preparation
3.23 Programming cycles externally

NC programming
1106 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

22 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

23 <_AMODE> INT Alternative mode
UNITS: Final depth (<_DP>)

0 = Absolute
1 = Incremental

TENS: Units for plane infeed (<_MIDA>)
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering (<_ZFS>)
0 = Absolute
1 = Incremental

THOUSANDS: Corner rounding (<_RC>)
0 = Radius
1 = Chamfer

3.23.1.21 CYCLE81 - drilling, centering

Syntax
CYCLE81(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <_GMODE>,
<_DMODE>, <_AMODE>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1107

No. Parameter
mask

Parameter
internal

Data type Meaning

4 Z1/∅ <DP> REAL Drilling depth (abs) / centering diameter (abs), see <_GMODE>
5 Z1 <DPR> REAL Drilling depth (inc)
6 DT <DTB> REAL Dwell time at final drilling depth, see <_AMODE>
7 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Centering with respect to depth/diameter

0 = Compatibility, depth
1 = Diameter

8 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

9 <_AMODE> INT Alternative mode
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from DP/DPR pro‐
gramming

1 = Incremental
2 = Absolute

TENS: Dwell time at final drilling depth DT in
seconds/revolutions
0 = Compatibility, from DTB sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

3.23.1.22 CYCLE82 - drilling, counterboring

Syntax
CYCLE82(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <_GMODE>,
<_DMODE>, <_AMODE>, <_VARI>, <S_ZA>, <S_FA>, <S_ZD>, <S_FD>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)

Work preparation
3.23 Programming cycles externally

NC programming
1108 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

4 Z1 <DP> REAL Drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time at final drilling depth, see <_AMODE>
7 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Drilling depth with respect to tip/shank

0 = Compatibility, tip
1 = Shank

8 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Basic

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1109

No. Parameter
mask

Parameter
internal

Data type Meaning

9 <_AMODE> INT Alternative mode
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from DP/DPR pro‐
gramming

1 = Incremental
2 = Absolute

TENS: Dwell time DT at final drilling depth in
seconds/revolutions
0 = Compatibility, from DT sign (> 0

seconds / < 0 revolutions)
1 = In seconds
2 = In revolutions

HUNDREDS: Drilling depth ZA abs/inc
0 = Incremental
1 = Absolute

THOUSANDS: Evaluation of predrilling feedrate
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

TEN THOUSANDS: Remaining drilling depth ZD abs/inc
0 = Incremental
1 = Absolute

HUNDRED THOUSANDS: Evaluation of remaining drilling feedrate
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

10 <_VARI> INT Predrilling/through-drilling machining type
UNITS: Reserved
TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Through drilling

0 = Through drilling "No"
1 = Through drilling "Yes"

TEN THOUSANDS: Predrilling
0 = Predrilling "No"
1 = Predrilling "Yes"

11 ZA <S_ZA> REAL Incremental predrilling depth in relation to reference point or absolute
(see <_AMODE> HUNDREDS)

12 FA <S_FA> REAL Predrilling feedrate as value or in % (in conjunction with <_AMODE>
THOUSANDS)

Work preparation
3.23 Programming cycles externally

NC programming
1110 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

13 ZD <S_ZD> REAL Incremental remaining drilling depth in relation to final drilling depth or
absolute (see <_AMODE> TEN THOUSANDS)

14 FD <S_FD> REAL Remaining drilling feedrate as value or in % (in conjunction
with <_AMODE> HUNDRED THOUSANDS)

3.23.1.23 CYCLE83 – deep-hole drilling 1

Syntax
CYCLE83(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <FDEP>, <FDPR>, <_DAM>,
<DTB>, <DTS>, <FRF>, <VARI>, <_AXN>, <_MDEP>, <_VRT>, <_DTD>,
<_DIS1>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Final drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Final drilling depth (inc), see <_AMODE>
6 D <FDEP> REAL 1st drilling depth (abs), see <_AMODE>
7 D <FDPR> REAL 1st drilling depth (inc), see <_AMODE>
8 DF <_DAM> REAL Degression value / percentage for each additional infeed,

see <_AMODE>
9 DTB <DTB> REAL Dwell time at drilling depth, see <_AMODE>
10 DTS <DTS> REAL Dwell time at start point (for chip removal only), see <_AMODE>
11 FD1 <FRF> REAL Percentage for the feedrate for the first infeed, see <_AMODE>
12 <VARI> INT Machining type

UNITS: Chip breaking/removal
0 = Chip breaking
1 = Swarf removal

13 <_AXN> INT Tool axis
 0 = 3rd geometry axis

1 = 1st geometry axis
2 = 2nd geometry axis
> 2 3rd geometry axis

14 V1 <_MDEP> REAL Minimum infeed (only for degression percentage)
15 V2 <_VRT> REAL Retraction distance after each machining step (for chip breaking only)

 > 0 Variable retraction distance
0 = Default value 1 mm

16 DT <_DTD> REAL Dwell time at final drilling depth, see <_AMODE>

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1111

No. Parameter
mask

Parameter
internal

Data type Meaning

17 V3 <_DIS1> REAL Limit distance (for chip removal only), see <_AMODE>
18 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Drilling depth with respect to tip/shank

0 = Tip
1 = Shank

19 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

Work preparation
3.23 Programming cycles externally

NC programming
1112 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

20 <_AMODE> INT

Alternative mode
UNITS: Drilling depth = Final drilling depth Z1

(abs/inc)
0 = Compatibility, from program‐

ming <DP>/<DPR>
1 = Incremental
2 = Absolute

TENS: Dwell time at drilling depth DTB in sec‐
onds/revolutions
0 = Compatibility, from DTB sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

HUNDREDS: Dwell time at start point of DTS in sec‐
onds/revolutions
0 = Compatibility, from DTS sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

THOUSANDS: Dwell time at final drilling depth DTD in
seconds/revolutions
0 = Compatibility, from DTD sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

TEN THOUSANDS: 1st drilling depth D (abs/inc)
0 = Compatibility, from program‐

ming <FDEPF>/<DPR>
1 = Incremental
2 = Absolute

HUNDRED THOUSANDS: Degression value / percentage <_DAM>
for each additional infeed
0 = Compatibility, from <_DAM> sign

(> 0 degression value or < 0 fac‐
tor 0.001 to 1.0)

1 = Degression value
2 = Percentage (0.001 to 100%)

ONE MILLION: Limit distance V3 automatic/manual
0 = Compatibility from <_DIS1> sign

(= 0 automatic or > 0 manual)
1 = Automatic (calculated in the cy‐

cle)
2 = Manual (programmed value)

TEN MILLIONS: Feedrate factor for first infeed <FRF> as
factor/percentage

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1113

No. Parameter
mask

Parameter
internal

Data type Meaning

0 = Compatibility, as a factor (0.001
to 1.0, FRF = 0 means 100%)

1 = Percentage (0.001 to 999.999%)

3.23.1.24 CYCLE84 - tapping without compensating chuck

Syntax
CYCLE84(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <SDAC>, <MPIT>,
<PIT>, <POSS>, <SST>, <SST1>, <_AXN>, <_PITA>, <_TECHNO>, <_VARI>,
<_DAM>, <_VRT>, <_PITM>, <_PTAB>, <_PTABA>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth = final drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth = final drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time at drilling depth in seconds
7 SDE <SDAC> INT Direction of rotation after end of cycle
8 <MPIT> REAL Thread size for "ISO metric" only (pitch is calculated internally during run

time)
9 P <PIT> REAL Pitch as a value, for unit see <_PITA>
10 αS1) <POSS> REAL Spindle position for oriented spindle stop
11 S <SST> REAL Spindle speed for tapping
12 SR <SST1> REAL Spindle speed for retraction
13 <_AXN> INT Drilling axis 0 = 3rd geometry axis

1 = 1st geometry axis
2 = 2nd geometry axis
≥ 3 = 3rd geometry axis

14 <_PITA> INT Pitch unit (evaluation of <PIT> and <MPIT>)
 0 = Pitch in mm - evalua‐

tion<MPIT>/
<PIT>

1 = Pitch in mm - evaluation<PIT>
2 = Pitch in TPI - evaluation of

<PIT>
(threads per inch)

3 = Pitch in inches - evaluation<PIT>
4 = MODULUS - evaluation<PIT>

Work preparation
3.23 Programming cycles externally

NC programming
1114 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

15 <_TECHNO> INT Technology1)

UNITS: Exact stop response
0 = Exact stop response active as before cy‐

cle call
1 = Exact stop G601
2 = Exact stop G602
3 = Exact stop G603

TENS: Feedforward control
0 = With/without feedforward control active

as before cycle call
1 = With feedforward control FFWON
2 = Without feedforward control FFWOF

HUNDREDS: Acceleration
0 = SOFT/BRISK/DRIVE active as before cy‐

cle call
1 = With jerk limitation SOFT
2 = Without jerk limitation BRISK
3 = Reduced acceleration DRIVE

THOUSANDS: MCALL spindle mode
0 = Reactivate spindle operation for MCALL
1 = For MCALL remain in position control

16 <_VARI> INT Machining type
UNITS: 0 = 1 cut

1 = Chip breaking (deep hole tapping)
2 = Chip removal (deep hole tapping)

THOUSANDS: ISO/SIEMENS mode not relevant for screen form
0 = Call from ISO compatibility
1 = Call from SIEMENS context

17 D <_DAM> REAL Maximum depth infeed (for chip removal/breaking only)
18 V2 <_VRT> REAL Retraction distance after each machining step (for chip breaking only),

see <_AMODE>
19 <_PITM> STRING[15] String as marker for pitch input2)

20 <_PTAB> STRING[5] String for thread table ("", "ISO", "BSW", "BSP", "UNC")2)

21 <_PTABA> STRING[20] String for selection from thread table (e.g. "M 10", "M 12", ...)2)

22 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1115

No. Parameter
mask

Parameter
internal

Data type Meaning

23 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective before
the cycle call remains active

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Compatibility mode (for recompilation screen

form only),
if MD 52216 bit0 = 11)

0 = Technology parameters are displayed
(compatibility): TECHNO parameters ef‐
fective

1 = Technology parameters are not dis‐
played: Technology active "as before cy‐
cle call"

TEN THOUSANDS: Technology scaling in cycle screen forms
(Page 1193)
0 = Input: Complete
1 = Input: Simple

Work preparation
3.23 Programming cycles externally

NC programming
1116 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

24 <_AMODE> INT Alternative mode
UNITS: Drilling depth = Final drilling depth Z1 (abs/inc)

0 = Compatibility, from programming <DP>/
<DPR>

1 = Incremental
2 = Absolute

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Thread direction of rotation right/left

0 = Compatibility, from PIT/MPTI sign
1 = Right
2 = Left

TEN THOUSANDS: Reserved
HUNDRED THOU‐
SANDS:

Reserved

ONE MILLION: Retraction distance after each machining step
V2 manual/automatic
0 = Compatibility, from <_VRT> program‐

ming (> 0 variable value or ≤ 0 standard
value 1 mm / 0.0394 inch)

1 = Automatic (standard value 1 mm / 0.0394
inch)

2 = Manual (programmed as under V2)
1) Technology fields may be hidden, depending on the setting date SD52216 $MCS_FUNCTION_MASK_DRILL
2) Parameters 19, 20 and 21 are only used for thread selection in the screen form thread tables. The thread tables cannot be
accessed via cycle definition in the cycle run time.

3.23.1.25 CYCLE85 - reaming

Syntax
CYCLE85(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <FFR>, <RFF>,
<_GMODE>, <_DMODE>, <_AMODE>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time at final drilling depth, see <_AMODE>

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1117

No. Parameter
mask

Parameter
internal

Data type Meaning

7 F <FFR> REAL Feedrate
8 FR <RFF> REAL Feedrate during retraction
9 <_GMODE> INT Reserved
10 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

11 <_AMODE> INT

Alternative mode (drilling)
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from DP/DPR pro‐
gramming

1 = Incremental
2 = Absolute

TENS: Dwell time DT at final drilling depth in
seconds/revolutions
0 = Compatibility, from DT sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

3.23.1.26 CYCLE86 - boring

Syntax
CYCLE86(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <SDIR>, <RPA>,
<RPO>, <RPAP>, <POSS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time at final drilling depth, see <_AMODE>
7 DIR <SDIR> INT Direction of spindle rotation 3 = M3

4 = M4

Work preparation
3.23 Programming cycles externally

NC programming
1118 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

8 DX <RPA> REAL Lift-off distance in X direction
9 DY <RPO> REAL Lift-off distance in the Y direction
10 DZ <RPAP> REAL Lift-off distance in the Z direction
11 SPOS <POSS> REAL Spindle position for lift-off (for oriented spindle stop, in degrees)
12 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Lift mode
0 = Lift off, compatibility
1 = Do not lift off contour

13 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

14 <_AMODE> INT

Alternative mode
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from program‐
ming<DP>/<DPR>

1 = Incremental
2 = Absolute

TENS: Dwell time at final drilling depth DT in
seconds/revolutions
0 = Compatibility, from DT sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

3.23.1.27 CYCLE92 - cut-off

Syntax
CYCLE92(<_SPD>, <_SPL>, <_DIAG1>, <_DIAG2>, <_RC>, <_SDIS>, <_SV1>,
<_SV2>, <_SDAC>, <_FF1>, <_FF2>, <_SS2>, <_DIAGM>, <_VARI>, <_DN>,
<_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <_SPD> REAL Reference point (abs, always diameter)
2 Y0 <_SPL> REAL Reference point (abs)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1119

No. Parameter
mask

Parameter
internal

Data type Meaning

3 X1 <_DIAG1> REAL Depth for speed reduction, see <_AMODE> (UNITS)
4 X2 <_DIAG2> REAL Final depth, see <_AMODE> (TENS)
5 R/FS <_RC> REAL Rounding status or chamfer width, see <_AMODE> (THOUSANDS)
6 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
7 S <_SV1> REAL Constant spindle speed, see <_AMODE> (TEN THOUSANDS)

V Constant cutting rate
8 SV <_SV2> REAL Maximum speed at constant cutting speed
9 DIR <_SDAC> INT Direction of spindle rotation 3 = For M3

4 = For M4
10 F <_FF1> REAL Infeed as far as depth for speed reduction
11 FR <_FF2> REAL Reduced infeed as far as final depth
12 SR <_SS2> REAL Reduced speed as far as final depth
13 XM <_DIAGM> REAL Depth to withdraw parts gripper (abs, always diameter)
14 <_VARI> INT Machining type

UNITS: Retraction
0 = Retraction to <_SPD> + <_SDIS>
1 = No retraction at the end

TENS: Parts gripper
0 = No, do not execute M command
1 = Yes, call from CUST_TECH‐

CYC(101)- open drawer,
CUST_TECHCYC(102)- close
drawer

15 <_DN> INT D number for 2nd edge of tool; if not programmed ⇒ D+1
20 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Work preparation
3.23 Programming cycles externally

NC programming
1120 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

21 <_AMODE> INT Alternative mode
UNITS: Depth for speed reduction (<_DIAG1>)

0 = Absolute, value of transverse ax‐
is in the diameter

1 = Incremental, value of transverse
axis in the radius

TENS: Final depth (<_DIAG2>)
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
HUNDREDS: Reserved
THOUSANDS: Radius/chamfer (<_RC>)

0 = Radius
1 = Chamfer

TEN THOUSANDS: Spindle speed / cutting rate (<_SV1>)
0 = Constant spindle speed
1 = Constant cutting rate

3.23.1.28 CYCLE95 - contour cutting

Syntax
CYCLE95(<NPP>, <MID>, <FALZ>, <FALX>, <FAL>, <FF1>, <FF2>, <FF3>,
<_VARI>, <DT>, <DAM>, <_VRT>, <_GMODE>, <_DMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 CON <NPP> STRING
[140]

Contour name

2 D <MID> REAL Maximum depth infeed during roughing, see <_GMODE>
3 UZ <FALZ> REAL Finishing allowance in Z
4 UX <FALX> REAL Finishing allowance in X
5 U <FAL> REAL Finishing allowance parallel to contour (effective in both axes)
6 F <FF1> REAL Feedrate for roughing
7 FY <FF2> REAL Insertion feedrate, relief cuts
8 FS <FF3> REAL Finishing feedrate

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1121

No. Parameter
mask

Parameter
internal

Data type Meaning

9 <_VARI> INT Machining type
UNITS and TENS:

1 = Roughing, longitudinal, external
2 = Roughing, transverse, external
3 = Roughing, longitudinal, internal
4 = Roughing, transverse, internal
5 = Finishing, longitudinal, external
6 = Finishing, transverse, external
7 = Finishing, longitudinal, internal
8 = Finishing, transverse, internal
9 = Complete machining, longitudi‐

nal, external
10 = Complete machining, transverse,

external
11 = Complete machining, longitudi‐

nal, internal
12 = Complete machining, transverse,

internal
HUNDREDS:

0 = With rounding at the contour,
without residual corners

1 = Without rounding at the contour
2 = Rounding only to previous inter‐

section, residual corners can re‐
sult

10 DT <DT> REAL Dwell time at feed interruption
11 DI <DAM> REAL Distance for feed interruptions
12 VRT <_VRT> REAL Lift-off distance from the contour

 0 = A lift-off distance of 1 mm is used
internally regardless of the active
system (inch or metric)

> 0 = Lift-off distance
13 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Evaluation of the infeed depth
0 = Infeed depth is calculated

corresponding to the G group DI‐
AMON/DIAMOF

1 = Infeed depth acts as radius value
(independent of DIAMON/
DIAMOF)

Work preparation
3.23 Programming cycles externally

NC programming
1122 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

14 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

THOUSANDS:
0 = Compatibility mode: Contour

name is in NPP
1 = Contour name is programmed in

CYCLE62 and transferred to
_SC_CONT_NAME

3.23.1.29 CYCLE98 - thread chain

Syntax
CYCLE98(<_PO1>, <_DM1>, <_PO2>, <_DM2>, <_PO3>, <_DM3>, <_PO4>,
<_DM4>, <APP>, <ROP>, <TDEP>, <FAL>, <_IANG>, <NSP>, <NRC>, <NID>,
<_PP1>, <_PP2>, <_PP3>, <_VARI>, <_NUMTH>, <_VRT>, <_MID>, <_GDEP>,
<_IFLANK>, <_PITA>, <_PITM1>, <_PITM2>, <_PITM3>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 Z0 <_PO1> REAL Reference point in Z (abs)
2 X0 <_DM1> REAL Reference point in X (abs), in diameter
3 Z1 <_PO2> REAL Intermediate point 1 in Z (abs/inc), see <_AMODE> (UNITS)
4 X1 <_DM2> REAL Intermediate point 1 in X (abs/inc), see <_AMODE> (TENS) or

X1α Thread inclination 1 (-90° to 90°)
abs is always diameter, inc is always radius

5 Z2 <_PO3> REAL Intermediate point 2 in Z, (abs/inc), see <_AMODE> (HUNDREDS)
6 X2 <_DM3> REAL Intermediate point 2 in X (abs/inc), see <_AMODE> (THOUSANDS) or

X2α Thread inclination 2 (-90° to 90°)
abs is always diameter, inc is always radius

7 Z3 <_PO4> REAL End point in Z, (abs/inc), see <_AMODE> (TEN THOUSANDS)
8 X3 <_DM4> REAL End point in X, (abs/inc), see <_AMODE> (HUNDRED THOUSANDS) or

X3α Thread inclination 3 (-90° to 90°)
abs is always diameter, inc is always radius

9 LW <APP> REAL Thread run-in (inc, to be entered without sign)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1123

No. Parameter
mask

Parameter
internal

Data type Meaning

10 LR <ROP> REAL Thread run-out (inc, to be entered without sign)
11 H1 <TDEP> REAL Thread depth (inc, to be entered without sign)
12 U <FAL> REAL Finishing allowance in X and Z
13 DP <_IANG> REAL Infeed slope as a distance or an angle, see <_AMODE> (ONE MILLION)

αP The infeed slope is applied according to the setting of
parameter <_VARI> (HUNDREDS).
 Definition for <_VARI_HUNDREDS = 0 -

Compatibility mode:
> 0 = Side infeed on one side
0 = Infeed vertical in the thread
< 0 = Side infeed with alternating sides
Definition for _VARI_HUNDREDS<>0:
> 0 = Infeed on the positive side
0 = Center infeed
< 0 = Infeed on the negative side

14 α0 <NSP> REAL Starting angle offset for the 1st thread
15 <NRC> INT Number of roughing cuts, see <_VARI> (TEN THOUSANDS)
16 NN <NID> INT Number of non-cuts
17 P0 <_PP1> REAL Pitch for 1st section of thread, see <_PITA>
18 P1 <_PP2> REAL Pitch for 2nd section of thread, see <_PITA>
19 P2 <_PP3> REAL Pitch for 3rd section of thread, see <_PITA>

Work preparation
3.23 Programming cycles externally

NC programming
1124 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

20 <_VARI> INT Machining
UNITS: Technology

1 = External thread with linear infeed
2 = Internal thread with linear infeed
3 = External thread with degressive

infeed, cross-section of cut re‐
mains constant

4 = Internal thread with degressive
infeed, cross-section of cut re‐
mains constant

TENS: Reserved
HUNDREDS: Infeed type

0 = Compatibility mode for <_IANG>
1 = Infeed on one side
2 = Infeed alternate sides

THOUSANDS: Reserved
TEN THOUSANDS: Alternative depth infeed

0 = Compatibility, preset number of
roughing cuts (<_NRC>)

1 = Preset value for 1st infeed
(<_MID>)

HUNDRED THOUSANDS: Machining type
0 = Compatibility (roughing and fin‐

ishing)
1 = Roughing
2 = Finishing
3 = Roughing and finishing

ONE MILLION: Machining sequence for multistart thread
0 = In ascending order of threads
1 = In descending order of threads

21 N <_NUMTH> INT Number of thread turns
22 <_VRT> REAL Return distance (inc)

 0 = A lift-off distance of 1 mm is used
internally regardless of the active
system (inch or metric)

> 0 = Lift-off distance
23 D1 <_MID> REAL First infeed, see <_VARI> (TEN THOUSANDS)
24 DA <_GDEP> REAL Thread changeover depth (only effective with "multiple start")

 0 = Do not observe any thread
changeover depth

> 0 = Observe thread changeover
depth

25 <_IFLANK> REAL Infeed slope as width (for interface only)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1125

No. Parameter
mask

Parameter
internal

Data type Meaning

26 <_PITA> INT Evaluation of thread pitch
 0 = Compatibility mode for pitch,

evaluation <_PP1> to <_PP3> as
previously, according to active
system (metric/inch)

1 = Pitch in mm
2 = Pitch in TPI (threads per inch)
3 = Pitch in inches
4 = MODULUS

27 <_PITM1> STRING[15] String as marker for pitch input (for the interface only)
28 <_PITM2> STRING[15] String as marker for pitch input (for the interface only)
29 <_PITM3> STRING[15] String as marker for pitch input (for the interface only)
30 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

Work preparation
3.23 Programming cycles externally

NC programming
1126 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

31 <_AMODE> INT Alternative mode
UNITS: 1st intermediate point in Z (Z1)

0 = Absolute
1 = Incremental

TENS: 1st intermediate point in X (X1)
0 = Absolute
1 = Incremental
2 = α

HUNDREDS: 2nd intermediate point in Z (Z2)
0 = Absolute
1 = Incremental

THOUSANDS: 2nd intermediate point in X (X2)
0 = Absolute
1 = Incremental
2 = α

TEN THOUSANDS: End point in Z (Z3)
0 = Absolute
1 = Incremental

HUNDRED THOUSANDS: End point in X (X3)
0 = Absolute
1 = Incremental
2 = α

ONE MILLION: Select infeed slope as angle or width
0 = Infeed angle <_IANG>
1 = Infeed slope <_IFLANK>

TEN MILLIONS: Single/multiple thread
0 = Compatibility mode (starting an‐

gle <_NSP> is evaluated)
1 = Single thread (with starting angle

offset <_NSP>)
2 = Multiple

3.23.1.30 CYCLE99 - thread turning

Syntax
CYCLE99(<_SPL>, <_SPD>, <_FPL>, <_FPD>, <_APP>, <_ROP>, <_TDEP>,
<_FAL>, <_IANG>, <_NSP>, <_NRC>, <_NID>, <_PIT>, <_VARI>, <_NUMTH>,
<_SDIS>, <_MID>, <_GDEP>, <_PIT1>, <_FDEP>, <_GST>, <_GUD>,
<_IFLANK>, <_PITA>, <_PITM>, <_PTAB>, <_PTABA>, <_DMODE>, <_AMODE>,
<_S_XRS>)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1127

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 Z0 <_SPL> REAL Reference point (abs)
2 X0 <_SPD> REAL Reference point (abs, always diameter)
3 Z1 <_FPL> REAL End point in conjunction with <_AMODE> (UNITS)
4 X1 <_FPD> REAL End point in conjunction with <_AMODE> (TENS)
5 LW/LW2 <_APP> REAL Thread run-in in conjunction with <_AMODE> (HUNDREDS) or

Thread run-in = thread run-out in conjunction with <_AMODE> (HUN‐
DREDS)

6 LR <_ROP> REAL Thread run-out
7 H1 <_TDEP> REAL Thread depth
8 U <_FAL> REAL Finishing allowance in X and Z
9 DP <_IANG> REAL Infeed slope as a distance or an angle, in conjunction with <_AMODE>

(THOUSANDS)
αP > 0 = Infeed on the positive side

< 0 = Infeed on the negative side
0 = Center infeed

10 α0 <_NSP> REAL Starting angle offset (only effective with "single start")
11 ND <_NRC> INT Number of roughing cuts, in combination with <_VARI> (TEN THOU‐

SANDS)
12 NN <_NID> INT Number of non-cuts
13 P <_PIT> REAL Pitch as a value, in conjunction with <_PITA>

Work preparation
3.23 Programming cycles externally

NC programming
1128 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

14 <_VARI> INT Machining type
UNITS: Technology

1 = External thread with linear infeed
2 = Internal thread with linear infeed
3 = External thread with degressive

infeed, cross-section of cut re‐
mains constant

4 = Internal thread with degressive
infeed, cross-section of cut re‐
mains constant

TENS: Reserved
HUNDREDS: Infeed type

1 = Infeed on one side
2 = Infeed alternate sides

THOUSANDS: Reserved
TEN THOUSANDS: Alternative depth infeed

0 = Preset number of roughing cuts
(<_NRC>)

1 = Preset value for 1st infeed
(<_MID>)

HUNDRED THOUSANDS: Machining type
1 = Roughing
2 = Finishing
3 = Roughing and finishing

ONE MILLION: Machining sequence for multistart thread
0 = In ascending order of threads
1 = In descending order of threads

15 N <_NUMTH> INT Number of thread turns
16 VR <_SDIS> REAL Return distance, inc
17 D1 <_MID> REAL First infeed depth, in conjunction with <_VARI> (TEN THOUSANDS)
18 DA <_GDEP> REAL Thread changeover depth (only effective with "multiple start")

 0 = Do not observe any thread
changeover depth

> 0 = Observe thread changeover
depth

19 G <_PIT1> REAL Change of pitch per revolution
 0 = Pitch is constant (G33)

> 0 = Pitch increases (G34)
< 0 = Pitch decreases (G35)

20 <_FDEP> REAL Insertion depth (enter without sign)
21 N1 <_GST> INT Starting thread N1 = 1...N, in conjunction with <_AMODE> (HUNDRED

THOUSANDS)
22 <_GUD> INT Reserved
23 <_IFLANK> REAL Infeed slope as width (for interface only)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1129

No. Parameter
mask

Parameter
internal

Data type Meaning

24 <_PITA> INT Pitch unit (evaluation of PIT and/or MPIT)
 0 = Pitch in mm - MPIT/PIT evalua‐

tion
1 = Pitch in mm - PIT evaluation
2 = Pitch in TPI - PIT evaluation

(threads per inch)
3 = Pitch in inches - PIT evaluation
4 = MODULE - PIT evaluation

25 <_PITM> STRING[15] String as marker for pitch input (for the interface only)1)

26 <_PTAB> STRING[20] String for thread table (for the interface only)1)

27 <_PTABA> STRING[20] String for selection in the thread table (for the interface only)1)

28 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of thread
0 = Longitudinal thread
1 = Face thread
2 = Tapered thread

HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Basic

Work preparation
3.23 Programming cycles externally

NC programming
1130 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

29 <_AMODE> INT Alternative mode
UNITS: Thread length in Z

0 = Absolute
1 = Incremental

TENS: Thread length in X
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
2 = α

HUNDREDS: Calculation of approach/run-in
path <_APP>
0 = Thread run-in <_APP>
1 = Thread run-in = thread run-out

 <_APP> = -<_ROP>
2 = Specify thread run-in path

 <_APP> = -<_APP>
THOUSANDS: Select infeed slope as angle or width

0 = Infeed angle <_IANG>
1 = Infeed slope <_IFLANK>

TEN THOUSANDS: Single/multiple thread
0 = Single thread (with starting angle

offset <_NSP>)
1 = Multiple

HUNDRED THOUSANDS: Starting thread <_GST>
0 = Full machining
1 = Start machining from this thread
2 = Only machine this thread

ONE MILLION: Sag compensation for longitudinal thread
0 = Segment height, crowned thread

XS
1 = Radius, crowned thread RS

30 XS/RS <_S_XRS> REAL Sag compensation for longitudinal thread in conjunction
with <_AMODE>: ONE MILLION

Note
1) Parameters <_PITM>, <_PTAB> and <_PTABA> are only used for thread selection in the
screen form thread tables.
The thread tables cannot be accessed via cycle definition in the cycle run time.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1131

3.23.1.31 CYCLE435 - Set dresser coordinate system

Syntax
CYCLE435(<_T>, <_DD>, <S_TA>, <S_DA>, <S_AD>, <S_AL>, <S_PVD>,
<S_PVL>, <S_PD>, <S_PL>, <_AMODE>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_T> STRING[32] Tool name of the grinding wheel
2 <_DD> INT Cutting edge number of the grinding wheel
3 <S_TA> STRING[32] Dressing tool reference point - dressing tool name
4 <S_DA> INT Cutting edge number of the dressing tool
5 <S_AD> REAL Dressing value, diameter
6 <S_AL> REAL Dressing value, face
7 <S_PVD> REAL Form-truing offset, diameter
8 <S_PVL> REAL Form-truing offset, face
9 <S_PD> REAL Form-truing allowance, diameter
10 <S_PL> REAL Form-truing allowance, face
11 <_AMODE> INT Alternative mode

UNITS: active tool at the end of the cycle
0 = dressing tool active
1 = wheel active

3.23.1.32 CYCLE495 - form-truing

Syntax
CYCLE495(<_T>, <_DD>, <_SC>, <_F>, <_VARI>, <_D>, <_DX>, <_DZ>,
<S_PA>, <S_N>, <_DMODE>, <_AMODE>, <S_FW>, <S_HW>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_T> STRING[20] Tool name of the grinding wheel
2 <_DD> INT Cutting edge number of the grinding wheel
3 <_SC> REAL Lift-off distance for avoiding obstacles, incremental
4 <_F> REAL Form-truing feedrate

Work preparation
3.23 Programming cycles externally

NC programming
1132 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

5 <_VARI> INT Machining type
UNITS: Form-truing type

1 = Parallel to the axis
2 = Parallel to the contour

TENS: Machining direction
0 = Pulling

Possible with cutting edge posi‐
tions 1 to 4

1 = Pushing
Possible with cutting edge posi‐
tions 1 to 4

2 = Alternating
Possible with cutting edge posi‐
tions 1 to 8

3 = Start → end
Possible with cutting edge posi‐
tions 1 to 8

4 = End → start
Possible with cutting edge posi‐
tions 1 to 8

HUNDREDS: Infeed direction
1 = Infeed X for G18 or Y- for G19
2 = Infeed X+ for G18 or Y+ for G19
3 = Infeed Z- for G18 and for G19
4 = Infeed Z+ for G18 and for G19

6 <_D> REAL Dressing value for form-truing type parallel to the axis
7 <_DX> REAL Dressing value X for G18 or Y for G19 for form-truing type parallel to the

contour
8 <_DZ> REAL Dressing value Z for G18 and G19 for form-truing type parallel to the

contour
9 <S_PA> REAL Form-truing allowance
10 <S_N> INT Number of strokes in the form-truing program
11 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1133

No. Parameter
mask

Parameter
internal

Data type Meaning

12 <_AMODE> INT Alternative mode
UNITS: Form-truing selection, new/continue

1 = New
2 = Continue

TENS: Select form-truing allowance
0 = From the rough contour to the

lowest point of the contour
1 = From the rough contour to the

highest point of the contour
13 <S_FW> REAL Clear angle of the dressing tool
14 <S_HW> REAL Holder angle of the dressing tool

3.23.1.33 CYCLE800 – swivel plane / swivel tool / align tool

Syntax
CYCLE800(<_FR>, <_TC>, <_ST>, <_MODE>, <_X0>, <_Y0>, <_Z0>, <_A>,
<_B>, <_C>, <_X1>, <_Y1>, <_Z1>, <_DIR>, <_FR_I>, <_DMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_FR> INT Retraction mode: 0 = No retraction
1 = Retraction machine axis Z
2 = Retraction machine axis Z and

then XY
3 = Reserved
4 = Maximum retraction in tool direc‐

tion
5 = Incremental retraction in tool di‐

rection
2 <_TC> STRING[32] Name of swivel data block: "" "" (no name) if only one swivel

data block exists
"0" Deselect swivel data block (de‐

lete the swivel frames)

Work preparation
3.23 Programming cycles externally

NC programming
1134 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

3 <_ST> INT Status transformations
UNITS:

0 = New, swivel level is deleted and
recalculated using the current pa‐
rameters

1 = Additive, swivel level is added to
active swivel level

TENS: Track tool tip yes/no (only active when
the SWIVEL function is created in the
commissionig)
0 = Do not track tool tip
1 = Track tool tip (TRAORI)

HUNDREDS: Approach/align tool (function is shown in
tool swivel screen form)
0 = Do not approach tool
1 = Approach tool (preferably radial

mill)
2 = Align turning tool (when B axis

kinematic is set up for milling in
commissioning swiveling)

3 = Align milling tool (when B axis
kinematic is set up for milling in
commissioning swiveling)

THOUSANDS: Internal "Swiveling in JOG" parameter
TEN THOUSANDS: See direction parameter <_DIR>

0 = Swivel "Yes"
1 = Swivel "No", "Minus" direction3)

2 = Swivel "No", "Plus" direction3)

HUNDRED THOUSANDS: See direction parameter <_DIR>
0 = Compatibility
1 = Direction selection "Minus" opti‐

mized (only for user interface) 4)

2 = Direction selection "Plus" opti‐
mized (only for user interface) 4)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1135

No. Parameter
mask

Parameter
internal

Data type Meaning

4 <_MODE> 5) INT Swivel mode: Evaluation of swivel angle and swivel sequence (bit-co‐
ded)
Bit: 7 6 0 0: Swivel angle axis-by-axis -> see

parameters <_A>, <_B>,
<_C>

0 1: Solid angle -> see
parameters <_A>, <_B> 1)

1 0: Projection angle -> see parame‐
ters <_A>, <_B>,
 <_C> 1)

1 1: Direct rotary axis swivel mode ->
see parameters <_A>, <_B> 1)

Bit: 5 4 3 2 1 0
(these do not apply to solid
angles)

x x x x 0 1 1st rotation _A around X
x x x x 1 0 1st rotation _A around Y
x x x x 1 1 1st rotation _A around Z
x x 0 1 x x 2nd rotation _B around X
x x 1 0 x x 2nd rotation _B around Y
x x 1 1 x x 2nd rotation _B around Z
0 1 x x x x 3rd rotation _C around X
1 0 x x x x 3rd rotation _C around Y
1 1 x x x x 3rd rotation _C around Z

5 X0 <_X0> REAL Reference point X prior to rotation
6 Y0 <_Y0> REAL Reference point Y prior to rotation
7 Z0 <_Z0> REAL Reference point Z prior to rotation
8 X(A) <_A> REAL 1st rotation acc. to setting in parameter <_MODE>
9 Y(B) <_B> REAL 2nd rotation acc. to setting in parameter <_MODE>
10 Z(C) <_C> REAL 3rd rotation acc. to setting in parameter <_MODE>
11 X1 <_X1> REAL Reference point X after rotation
12 Y1 <_Y1> REAL Reference point Y after rotation
13 Z1 <_Z1> REAL Reference point Z after rotation
14 - or + <_DIR> INT Initiate travel of rotary axes (default = -1!)

 -1 = Position at smaller value of rotary
axis 1 or 2 2)

+1 = Position at larger value of rotary
axis 1 or 2 2)

0 = Do not swivel (merely calculate
swivel frame) 1) 3)

15 FR <_FR_I> REAL Value (inc) of retraction in tool direction incremental

Work preparation
3.23 Programming cycles externally

NC programming
1136 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

16 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Representation of the beta value during
align tool
0 = Value
1 = Arrow

Note

If the following transfer parameters are programmed indirectly (as parameters), the screen
form is not reset: <_FR>, <_ST>, <_TC>, <_MODE>, <_DIR>
1) Can be selected if the SWIVEL function is created in the commissioning
2) Can be selected if direction reference to rotary axis 1 or 2 is set in IBN SWIVEL

If direction reference is "No" there is no selection field
3) Swivel selection "No" can be grayed out SD 55221 Bit 0

Swivel "No", "Minus" direction corresponds to <_DIR> = 0 and _ST TEN THOUSANDS = 1

Swivel "No", "Plus" direction corresponds to <_DIR> = 0 and _ST TEN THOUSANDS = 2
4) The direction selection for rotary axis 1 or 2 also occurs if the rotary axis with the direction
reference is in the pole position (position value equals zero).
5) Coding example: Axis-by-axis rotation, rotary sequence ZYX

Binary: 00011011 Decimal: 27

The axis identifiers XYZ correspond to the geometry axes of the NC channel. Individual
rotations around the XYZ axes are permissible. For example, rotary sequence around ZXZ is
not permitted in one call of CYCLE800

3.23.1.34 CYCLE801 – grid or frame position pattern

Syntax
CYCLE801(<_SPCA>, <_SPCO>, <_STA>, <_DIS1>, <_DIS2>, <_NUM1>,
<_NUM2>, <_VARI>, <_UMODE>, <_ANG1>, <_ANG2>, <_HIDE>, <_NSP>,
<_DMODE>)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1137

Parameters

No. Parameter
mask

Parameters
internal

Data type Meaning

1 X0 <_SPCA> REAL Reference point for position pattern (grid/frame) along the 1st axis (abs)
2 Y0 <_SPCO> REAL Reference point for position pattern (grid/frame) along the 2nd axis (abs)
3 α0 <_STA> REAL Basic angle of rotation

(angle to 1st axis)
< 0 = Clockwise rotation
> 0 = Counterclockwise rotation

4 L1 <_DIS1> REAL Distance between columns (position distance from the 1st axis, enter
without sign)

5 L2 <_DIS2> REAL Distance between rows (distance from the 2nd axis, enter without sign)
6 N1 <_NUM1> INT Number of columns
7 N2 <_NUM2> INT Number of rows
8 <_VARI> INT Machining type

UNITS: Position pattern
0 = Grid
1 = Frame

TENS: Reserved
HUNDREDS: Reserved

9 <_UMODE> INT Reserved
10 αX <_ANG1> REAL Shear angle to 1st axis (lines inclined in relation to the 1st axis)

 < 0 = Clockwise measurement
(0 to -90 degrees)

> 0 = Counter-clockwise measure‐
ment
(0 to 90 degrees)

11 αY <_ANG2> REAL Shear angle to 2nd axis (columns inclined in relation to the 2nd axis)
 < 0 = Clockwise measurement

(0 to -90 degrees)
> 0 = Counter-clockwise measure‐

ment
(0 to 90 degrees)

12 <_HIDE> STRING
[200]

Hidden positions
● Max. 198 characters
● Specification of consecutive position numbers, e.g. "1,3" (positions

1 and 3 are not executed)
13 <_NSP> INT Reserved
14 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Work preparation
3.23 Programming cycles externally

NC programming
1138 Programming Manual, 06/2019, A5E47437142B AA

3.23.1.35 CYCLE802 - arbitrary positions

Syntax
CYCLE802(<_XA>, <_YA>, <_X0>, <_Y0>, <_X1>, <_Y1>, <_X2>, <_Y2>,
<_X3>, <_Y3>, <_X4>, <_Y4>, <_X5>, <_Y5>, <_X6>, <_Y6>, <_X7>, <_Y7>,
<_X8>, <_Y8>, <_VARI>, <_UMODE>, <_DMODE>, <S_ABA>, <S_AB0>,
<S_AB1>, <S_AB2>, <S_AB3>, <S_AB4>, <S_AB5>, <S_AB6>, <S_AB7>,
<S_AB8>)

Parameters

No. Parameter
mask

Parameters
internal

Data type Meaning

1 <_XA> INT Alternatives for all X positions (9-digit decimal value)
Number of digits: 876543210 (digit position corresponds to drilling po‐
sition Xn)
Position value: 1 = Absolute (1st programmed posi‐

tion is always absolute)
2 = Incremental

2 <_YA> INT Alternatives for all Y positions (9-digit decimal value)
Number of digits: 876543210 (digit position corresponds to drilling po‐
sition Yn)
Position value: 1 = Absolute (1st programmed posi‐

tion is always absolute)
2 = Incremental

3 X0 <_X0> REAL 1. Position X
4 Y0 <_Y0> REAL 1. Position Y
5 X1 <_X1> REAL 2. Position X
6 Y1 <_Y1> REAL 2. Position Y
7 X2 <_X2> REAL 3. Position X
8 Y2 <_Y2> REAL 3. Position Y
9 X3 <_X3> REAL 4. Position X
10 Y3 <_Y3> REAL 4. Position Y
11 X4 <_X4> REAL 5. Position X
12 Y4 <_Y4> REAL 5. Position Y
13 X5 <_X5> REAL 6. Position X
14 Y5 <_Y5> REAL 6. Position Y
15 X6 <_X6> REAL 7. Position X
16 Y6 <_Y6> REAL 7. Position Y
17 X7 <_X7> REAL 8. Position X
18 Y7 <_Y7> REAL 8. Position Y
19 X8 <_X8> REAL 9. Position X
20 Y8 <_Y8> REAL 9. Position Y

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1139

No. Parameter
mask

Parameters
internal

Data type Meaning

21 <_VARI> INT Machining
HUNDREDS: (Only for call from Jobshop) (At present

only 0 and 2 evaluated)
0 = Do not clamp spindle
1 = Only clamp spindle for vertical in‐

sertion with G00 or G01
2 = Clamp spindle during the entire

machining operation
THOUSANDS: Reserved
TEN THOUSANDS: Position pattern with/without rotary axis –

axis combination
(with <_VARI> HUNDRED THOU‐
SANDS)
0 = XY (only XY without rotary axis,

compatibility)
1 = X,Y or Z and rotary axis:

XA, YB, ZC
(1 rotary axis with geometry axis
around which the rotary axis ro‐
tates)

2 = XY and rotary axis:
XYA, XYB, XYC
(1 rotary axis with 1st and 2nd
geometry axis, without TRACYL)

HUNDRED THOUSANDS: Rotary axis
0 = Without rotary axis

(only XY, compatibility)
1 = A axis (rotary axis around X)
2 = B axis (rotary axis around Y)
3 = C axis (rotary axis around Z)

TEN MILLIONS + ONE MIL‐
LION:

Position pattern with rotary axis – offset
(for several rotary axes around the same
axis; if index too large, then 1st axis)
00 = 1st A, B or C axis or for compati‐

bility
01 = 2nd A, B or C axis
...
19 = 20th A, B or C axis

22 <_UMODE> INT Selection of the spindle to be clamped: (Only for call from Jobshop) (Call
of user cycle CUST_TECHCYC)
 3 = Clamp/release main spindle

23 = Clamp/release counterspindle

Work preparation
3.23 Programming cycles externally

NC programming
1140 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameters
internal

Data type Meaning

23 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

24 <S_ABA> INT Alternatives for all AB positions (9-digit decimal value)
Number of digits: 876543210 (digit position corresponds to position
ABn)
Position value: 1 = Absolute (1st programmed posi‐

tion is always absolute)
2 = Incremental

25 A0 <S_AB0> REAL 1st rotary axis position for position pattern with rotary axis (in conjunc‐
tion with <_VARI>))

26 A1 <S_AB1> REAL 2nd rotary axis position for position pattern with rotary axis
27 A2 <S_AB2> REAL 3rd rotary axis position for position pattern with rotary axis
28 A3 <S_AB3> REAL 4th rotary axis position for position pattern with rotary axis
29 A4 <S_AB4> REAL 5th rotary axis position for position pattern with rotary axis
30 A5 <S_AB5> REAL 6th rotary axis position for position pattern with rotary axis
31 A6 <S_AB6> REAL 7th rotary axis position for position pattern with rotary axis
32 A7 <S_AB7> REAL 8th rotary axis position for position pattern with rotary axis
33 A8 <S_AB8> REAL 9th rotary axis position for position pattern with rotary axis

Note

Positions that are not required for parameters X1/Y1/A1 to X8/Y8/A8 can be ignored. The
alternative values for <_XA>, <_YA> and <S_ABA>, however, must be provided in full for all 9
positions.

For position pattern XA, YB or ZC (a geometry axis and rotary axis), the axis of the machining
plane that is not traversed via the position pattern (Y for G17 and XA) must be positioned before
the cycle call.

3.23.1.36 CYCLE830 - deep-hole drilling 2

Syntax
CYCLE830(<RTP>, <RFP>, <SDIS>, <_DP>, <FDEP>, <_DAM>, <DTB>, <DTS>,
<FRF>, <VARI>, <_MDEP>, <_VRT>, <_DTD>, <_DIS1>, <S_FP>, <S_SDAC2>,
<S_SV2>, <S_FB>, <_SDAC>, <_SV1>, <S_SPOS>, <S_ZA>, <S_FA>, <S_ZP>,
<S_FS>, <S_ZS1>, <S_ZS2>, <S_N>, <S_ZD>, <S_FD>, <S_FR>, <S_SDAC3>,
<S_SV3>, <S_CON>, <S_COFF>, <_GMODE>, <_DMODE>, <_AMODE>,
<S_AMODE2>, <S_AMODE3>, <S_ZPV>)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1141

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, without sign)
4 Z1 <_DP> REAL Final drilling depth abs/inc (see <_AMODE>UNITS)
5 D <FDEP> REAL 1st drilling depth for the absolute or incremental chip breaking/removal

in relation to the reference point with/without predrilling or in relation to
pilot hole depth (see <_AMODE> TEN THOUSANDS)

6 DF <_DAM> REAL Absolute value / percentage for each additional infeed, degression ab‐
solute value / percentage (see <_AMODE> HUNDRED THOUSANDS)

7 DTB <DTB> REAL Dwell time at each drilling depth (see <_AMODE> TENS)
8 DTS <DTS> REAL Dwell time during chip removal at starting point (see <_AMODE> HUN‐

DREDS)
9 FD1 <FRF> REAL Percentage for the feedrate for the first infeed (see <_AMODE> TEN

MILLION)
10 <VARI> INT

Machining
UNITS: Chip breaking / swarf removal

0 = In one cut
1 = Chip breaking
2 = Swarf removal
3 = Chip breaking and swarf removal

TENS: Retraction during swarf removal
0 = To pilot hole depth
1 = To safety clearance

HUNDREDS: Soft first cut
0 = No
1 = Yes

THOUSANDS: Through drilling
0 = No
1 = Yes

TEN THOUSANDS: Predrilling / pilot hole
0 = Without predrilling
1 = With predrilling
2 = With pilot hole

HUNDRED THOUSANDS: Retraction
0 = To pilot hole depth
1 = To retraction plane

11 V1 <_MDEP> REAL Minimum incremental infeed (only for degression percentage)
12 V2 <_VRT> REAL Retraction distance after each incremental machining step (for chip

breaking only)
 0 = Default value 1 mm

> 0 = Variable retraction distance
13 DT <_DTD> REAL Dwell time at final drilling depth (see <_AMODE> THOUSANDS)

Work preparation
3.23 Programming cycles externally

NC programming
1142 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

14 V3 <_DIS1> REAL Incremental limit distance for chip removal only (see <_AMODE> ONE‐
MILLION)

15 FP <S_FP> REAL Feedrate for travel into the pilot hole as value or in % (in conjunction
with <S_AMODE2> HUNDREDS)

16 <S_SDAC2> INT Direction of spindle rotation during approach
 3 = M3

4 = M4
5 = M5 (default)

17 SP <S_SV2> REAL Approach with constant spindle speed
(see <S_AMODE2> TEN MILLION)

V4 constant cutting rate
 Spindle speed in % of the drilling speed

18 F <S_FB> REAL Drilling feedrate (see <S_AMODE2> UNITS)
19 <_SDAC> REAL Direction of spindle rotation during drilling

 3 = M3
4 = M4

20 S <_SV1> REAL Drilling with constant spindle speed
(see <S_AMODE2> ONE MILLION)

V5 constant cutting rate
21 SPOS <S_SPOS> REAL Spindle position, only if approach with M5
22 ZA <S_ZA> REAL Incremental predrilling depth in relation to reference point or absolute

(see <S_AMODE3> UNITS)
23 FA <S_FA> REAL Predrilling feedrate as value or in % (in conjunction with <S_AMODE2>

TENS)
24 ZP <S_ZP> REAL Incremental pilot hole in relation to reference point or absolute or factor

of the hole diameter (see <S_AMODE3> TENS)
25 FS <S_FS> REAL First cut feedrate as value or in % (in conjunction with <S_AMODE2>

THOUSANDS)
26 ZS1 <S_ZS1> REAL Depth of each first cut with constant feedrate (inc)
27 ZS2 <S_ZS2> REAL Depth of each first cut for feedrate increase (inc)
28 N <S_N> INT Number of chip breaking strokes before each chip removal
29 ZD <S_ZD> REAL Incremental remaining drilling depth in relation to final drilling depth or

absolute (see <S_AMODE3> HUNDREDS)
30 FD <S_FD> REAL Remaining drilling feedrate as value or in % (in conjunction

with <S_AMODE2> TEN THOUSANDS)
31 FR <S_FR> REAL Retraction feedrate (in conjunction with <S_AMODE2> HUNDRED

THOUSANDS)
32 <S_SDAC3> INT Direction of spindle rotation during retraction

 3 = M3
4 = M4
5 = M5

33 SR <S_SV3> REAL Retraction with constant spindle speed
(see <S_AMODE2> HUNDRED MILLION)

V6 constant cutting rate
 Spindle speed in % of the drilling speed

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1143

No. Parameter
mask

Parameter
internal

Data type Meaning

34 Coolant on <S_CON> STRING[10] Coolant on, M command or subprogram call
35 Coolant off <S_COFF> STRING[10] Coolant off, M command or subprogram call
36 <_GMODE> INT

Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Drilling depth with respect to tip/shank

0 = Tip
1 = Shank

37 <_DMODE> INT

Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Basic

Work preparation
3.23 Programming cycles externally

NC programming
1144 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

38 <_AMODE> INT

Alternative mode 1
UNITS: Drilling depth = Final drilling depth Z1

abs/inc
0 = Incremental
1 = Absolute

TENS: Dwell time at each drilling depth DTB in
seconds/revolutions
0 = In seconds
1 = In revolutions

HUNDREDS: Dwell time for chip removal DTS in sec‐
onds/revolutions
0 = In seconds
1 = In revolutions

THOUSANDS: Dwell time at final drilling depth DT in
seconds/revolutions
0 = In seconds
1 = In revolutions

TEN THOUSANDS: 1st drilling depth D abs/inc
0 = Incremental
1 = Absolute

HUNDRED THOUSANDS: Absolute value / percentage DF for each
additional infeed (degression)
0 = Absolute value
1 = Percentage (0.001 to 100%)

ONE MILLION: Limit distance V3 automatic/manual
0 = Automatic (calculated in the cy‐

cle)
1 = Manual (programmed value)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1145

No. Parameter
mask

Parameter
internal

Data type Meaning

39 <S_AMODE2
>

INT Alternative mode 2
UNITS: UNITS: Drilling feedrate F

0 = F/min
1 = F/rev

TENS: Evaluation of predrilling feedrate FA
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

HUNDREDS: Evaluation of feedrate for travel into pilot
hole FP
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

THOUSANDS: Evaluation of first cut feedrate FS
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

TEN THOUSANDS: Evaluation of through-drilling feedrate FD
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

HUNDRED THOUSANDS: Retraction feedrate FR
0 = F/min
1 = Rapid traverse

ONE MILLION: Drilling - spindle speed / cutting rate
(S/V5)
0 = Constant spindle speed
1 = Constant cutting rate

TEN MILLIONS: Approach with spindle speed / cutting
rate (SP/V4)
0 = Constant spindle speed
1 = Constant cutting rate
2 = Spindle speed in % of the drilling

speed
HUNDRED MILLIONS: Retraction - spindle speed / cutting rate

(SR/V6)
0 = Constant spindle speed
1 = Constant cutting rate
2 = Spindle speed in % of the drilling

speed

Work preparation
3.23 Programming cycles externally

NC programming
1146 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

40 <S_AMODE3
>

INT Alternative mode 3
UNITS: Drilling depth ZA abs/inc

0 = Incremental
1 = Absolute

TENS: Depth of the pilot hole ZP
0 = Incremental
1 = Absolute
2 = Factor of the hole diameter

HUNDREDS: Remaining drilling depth ZD abs/inc
0 = Incremental
1 = Absolute

41 ZPV <S_ZPV> REAL Incremental limit distance from pilot hole depth

3.23.1.37 CYCLE832 - High-Speed Settings

Syntax
CYCLE832(<S_TOL>, <S_TOLM>, <S_OTOL>)

Note

CYCLE832 does not relieve the machine manufacturer from optimization tasks that are
necessary when commissioning the machine. This involves the optimization of the axes
involved in the machining process and NCU settings (precontrol, jerk limiting, etc.).

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1147

Parameters

No. Parame‐
ter mask

Parameter
internal

Data type Meaning

1 Tolerance <S_TOL> REAL Contour tolerance
The contour tolerance corresponds to the axis tolerance of the geometry axes.

2

 <S_TOLM> INT Machining type (technology)
UNITS:

0 = Deselection
1 = Finishing
2 = Rough finishing (semi-finishing)
3 = Roughing
4 = Smooth finishing (precision)

TENS:
0 = Compatibility1) or no orientation tol‐

erance
1 = Orientation tolerance in parame‐

ter <S_OTOL>
HUNDREDS
...
HUNDRED
THOUSANDS

Assigned
for reasons of
compatibility

ONE MILLION:
0 = Compatibility. The best available

mold making function is automati‐
cally used:
● Option Top Surface not active:

 Advanced Surface
● Option Top Surface active:

⇒ Top Surface with smoothing
1 = Top Surface without smoothing
2 = Top Surface with smoothing

3 ORI toler‐
ance

<S_OTOL> REAL Orientation tolerance or version identifier CYCLE832
Tolerance parameter for the orientation of the workpiece.
Is required when executing a high-speed machining program on machines
with dynamic orientation transformation (e.g. 5-axis machining).
Parameter <S_OTOL> must be programmed. This also applies for applications
on 3-axis machines for programs without orientation of the tool
(<S_OTOL> = 1).

1) Orientation tolerance derived from the cycle setting data SD55451 ... SD55454 (orientation tolerance for dynamic response
mode...) or SD55445 ... SD55449 (contour tolerance for dynamic response mode...) multiplied by the factor from
SD55441 ... SD55444.
Further information: SINUMERIK Operate Commissioning Manual

Work preparation
3.23 Programming cycles externally

NC programming
1148 Programming Manual, 06/2019, A5E47437142B AA

Plain text entry
To improve the readability of the cycle call, parameter <S_TOLM> (machining type) can also be
entered in the plain text. Plain texts are independent of any language. The following entries are
permitted:

_OFF for 0 Deselection
_FINISH for 1 Finishing
_SEMIFIN for 2 Rough finishing
_ROUGH for 3 Roughing
_PRECISION for 4 Smooth finishing
_ORI_FINISH for 11 Finishing with input of an orienta‐

tion tolerance
_ORI_SEMIFIN for 12 Semi-finishing with input of an ori‐

entation tolerance
_ORI_ROUGH for 13 Roughing with input of an orienta‐

tion tolerance
_ORI_PRECISION for 14 Smooth finishing with input of an

orientation tolerance
_TOP_SURFACE_SMOOTH_OFF for 1000000 Top Surface without smoothing
_TOP_SURFACE_SMOOTH_ON for 2000000 Top Surface with smoothing

For plain text input for Top Surface, plain texts are combined as shown in the following example:

CYCLE832(0.1, _TOP_SURFACE_SMOOTH_OFF+_ORI_FINISH, 1)

Note

The plain texts are based on the function names of the G group 59 (dynamic mode for path
interpolation). With these plain texts, 3-axis machines and machines with multi-axis orientation
transformation (TRAORI) are clearly separated in the application.

Deselecting CYCLE832
When CYCLE832 is deselected, parameter <S_TOL> must be transferred with zero.

Example: CYCLE832(0,0,1)
The syntax CYCLE832() is also permitted for deselecting CYCLE832.

Examples

Example 1: CYCLE832 on 3-axis machine without orientation transformation
a) Cycle call with plain text input

Program code Comment
G710 ; Dimension system is metric.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1149

Program code Comment
CYCLE832(0.004,_FINISH,1) ; CYCLE832 call with:

Contour tolerance = 0.004 mm, machining type:
Finishing

... ; Execution of a high-speed machining program

b) Cycle call without plain text input

Program code Comment
G710 ; See above
CYCLE832(0.004,1,1) ; See above
... ; See above

Example 2: CYCLE832 on 5-axis machine with orientation transformation
a) Cycle call and deselection with plain text input

Program code Comment
G710 ; Dimension system is metric.
TRAORI ; Activate orientation transformation.
CYCLE832(0.3,_ORI_ROUGH,0.8) ; CYCLE832 call with:

Contour tolerance = 0.3 mm, machining type:
Roughing with input of an orientation toler-
ance; orientation tolerance = 0.8 degrees

... ; Execution of a high-speed machining program
CYCLE832(0,_OFF,1) ; Contour tolerance = 0,

machining type: Deselection of CYCLE832,
orientation tolerance = 0 degrees

b) Cycle call and deselection without plain text input

Program code Comment
G710 ; See above
TRAORI ; See above
CYCLE832(0.3,13,0.8) ; See above
... ; See above
CYCLE832(0,0,1) ; See above

3.23.1.38 CYCLE840 - tapping with compensating chuck

Syntax
CYCLE840(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <SDR>, <SDAC>,
<ENC>, <MPIT>, <PIT>, <_AXN>, <_PITA>, <_TECHNO>, <_PITM>, <_PTAB>,
<_PTABA>, <_GMODE>, <_DMODE>, <_AMODE>)

Work preparation
3.23 Programming cycles externally

NC programming
1150 Programming Manual, 06/2019, A5E47437142B AA

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time in seconds at drilling depth / safety clearance after retraction,

see <ENC>
7 <SDR> INT Direction of rotation for retraction
8 SDE <SDAC> INT Direction of rotation after end of cycle
9 <ENC> INT Tapping with spindle mounted encoder (G33)/tapping without spindle

mounted encoder (G63)
 0 = With spindle moun‐

ted encoder
- Pitch
from <MPIT>/
<PIT> - without
DT

20 = With spindle moun‐
ted encoder

- Pitch from
<MPIT>/<PIT> -
with DT after retrac‐
tion to safety clear‐
ance

11 = Without spindle
mounted encoder

- Pitch
from <MPIT>/
<PIT> - with DT
at drilling depth

1 = Without spindle
mounted encoder

- Pitch from pro‐
grammed feedrate
- with DT at drilling
depth (feedrate =
speed · pitch)

10 <MPIT> REAL Thread size for "ISO metric" only (pitch is calculated internally during run
time)
Range of values: 3 to 48 (for M3 to M48), alternative to <PIT>

11 <PIT> REAL Pitch as a value, for unit see <_PITA>
Range of values: > 0, alternative to MPIT

12 <_AXN> INT Drilling axis 0 = 3rd geometry axis
1 = 1st geometry axis
2 = 2nd geometry axis
≥ 3 = 3rd geometry axis

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1151

No. Parameter
mask

Parameter
internal

Data type Meaning

13 <_PITA> INT Pitch unit (evaluation of <PIT> and <MPIT>)
 0 = Pitch in mm - evalua‐

tion<MPIT>/
<PIT>

1 = Pitch in mm - evaluation<PIT>
2 = Pitch in TPI - evaluation of

<PIT>
(threads per inch)

3 = Pitch in inches - evaluation<PIT>
4 = MODULUS - evaluation<PIT>

14 <_TECHNO> INT Technology1)

UNITS: Exact stop response
0 = Exact stop response active as before cy‐

cle call
1 = Exact stop G601
2 = Exact stop G602
3 = Exact stop G603

TENS: Feedforward control
0 = With/without feedforward control active

as before cycle call
1 = With feedforward control FFWON
2 = Without feedforward control FFWOF

15 <_PITM> STRING[15] String as marker for pitch input2)

16 <_PTAB> STRING[5] String for thread table ("", "ISO", "BSW", "BSP", "UNC")2)

17 <_PTABA> STRING[20] String for selection from thread table (e.g. "M 10", "M 12", ...)2)

18 <_GMODE> INT Reserved

Work preparation
3.23 Programming cycles externally

NC programming
1152 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

19 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective before
the cycle call remains active

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Compatibility mode (for recompilation screen

form only), if MD 52216 bit0 = 11)

0 = Technology parameters are displayed
(compatibility): TECHNO parameters ef‐
fective

1 = Technology parameters are not dis‐
played: Technology active "as before cy‐
cle call"

TEN THOUSANDS: Technology scaling in cycle screen forms
(Page 1193)
0 = Input: Complete
1 = Input: Simple

20 <_AMODE> INT Alternative mode
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from programming <DP>/
<DPR>

1 = Incremental
2 = Absolute

1) Technology fields may be hidden, depending on the setting date SD52216 MCS_FUNCTION_MASK_DRILL
2) Parameters 15, 16 and 17 are only used for thread selection in the screen form thread tables. The thread tables cannot be
accessed via cycle definition in cycle run time.

3.23.1.39 CYCLE899 – open slot

Syntax
CYCLE899(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_LENG>, <_WID>, <_PA>,
<_PO>, <_STA>, <_MID>, <_MIDA>, <_FAL>, <_FALD>, <_FFP1>, <_CDIR>,
<_VARI>, <_GMODE>, <_DMODE>, <_AMODE>, <_UMODE>, <_FS>, <_ZFS>)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1153

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Slot depth (abs/inc), see <_AMODE>
5 L <_LENG> REAL Length of slot (inc)
6 W <_WID> REAL Width of slot (inc)
7 X0 <_PA> REAL Reference point/starting position 1st axis (abs)
8 Y0 <_PO> REAL Reference point/starting position 2nd axis (abs)
9 α0 <_STA> REAL Angle of rotation with respect to 1st axis
10 DZ <_MID> REAL Maximum infeed depth (inc), for vortex milling only
11 DXY <_MIDA> REAL Maximum plane infeed, see <_AMODE>
12 UXY <_FAL> REAL Finishing allowance, plane
13 UZ <_FALD> REAL Finishing allowance, depth
14 F <_FFP1> REAL Feedrate
15 <_CDIR> INT Milling direction

UNITS:
0 = Down-cut
1 = Up-cut
4 = Alternating

16 <_VARI> INT Machining
UNITS:

1 = Roughing
2 = Finishing
3 = Base finishing
4 = Edge finishing
5 = Rough-finishing
6 = Chamfering

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS:

1 = Vortex milling
2 = Plunge cutting

Work preparation
3.23 Programming cycles externally

NC programming
1154 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

17 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
1 = Normal machining

THOUSANDS: Dimensioning via center/edge
0 = Dimensioning via center
1 = "Left-hand" dimensioning using

edge ("-" direction of 1st axis)
2 = "Right-hand" dimensioning using

edge ("+" direction of 1st axis)
18 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

19 <_AMODE> INT Alternative mode
UNITS: Slot depth Z1

0 = Absolute
1 = Incremental

TENS: Unit for plane infeed (<_MIDA>) DXY
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering ZFS
0 = Absolute
1 = Incremental

20 <_UMODE> INT Reserved
21 FS <_FS> REAL Chamfer width (inc)
22 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1155

3.23.1.40 CYCLE930 - groove

Syntax
CYCLE930(<_SPD>, <_SPL>, <_WIDG>, <_WIDG2>, <_DIAG>, <_DIAG2>,
<_STA>, <_ANG1>, <_ANG2>, <_RCO1>, <_RCI1>, <_RCI2>, <_RCO2>,
<_FAL>, <_IDEP1>, <_SDIS>, <_VARI>, <_DN>, <_NUM>, <_DBH>, <_FF1>,
<_NR>, <_FALX>, <_FALZ>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <_SPD> REAL Reference point in the plane axis (always diameter)
2 Z0 <_SPL> REAL Reference point along the longitudinal axis
3 B1 <_WIDG> REAL Width at bottom of groove
4 B2 <_WIDG2> REAL Width at top of groove (for interface only)
5 T1 <_DIAG> REAL Depth of groove at the reference point

for abs and longitudinal machining = diameter, otherwise inc
6 T2 <_DIAG2> REAL Groove depth opposite the reference point (for interface only),

for abs and longitudinal machining = diameter, otherwise inc
7 α0 <_STA> REAL Angle of inclination (-180 ≤ <_STA> ≤ 180)
8 α1 <_ANG1> REAL Side angle 1 (0 ≤ <_ANG1> < 90) at the side of the groove determined

by the reference point
9 α2 <_ANG2> REAL Side angle 2 (0 ≤ <_ANG2> < 90) opposite the reference point
10 R1/FS1 <_RCO1> REAL Rounding radius or chamfer width 1, external at the reference point
11 R2/FS2 <_RCI1> REAL Rounding radius or chamfer width 2, internal at the reference point
12 R3/FS3 <_RCI2> REAL Rounding radius or chamfer width 3, internal opposite the reference

point
13 R4/FS4 <_RCO2> REAL Rounding radius or chamfer width 4, external opposite the reference

point
14 U <_FAL> REAL Finishing allowance in X and Z, see <_VARI> (TEN THOUSANDS) (to

be entered without sign)
15 D <_IDEP1> REAL Maximum depth infeed on insertion (enter without sign)

 0 = 1. Cut directly to full depth
> 0 = 1. Cut <_IDEP1>, 2nd cut 2

· <_IDEP1>, etc.
16 SC <_SDIS> REAL Safety clearance (enter without sign)

Work preparation
3.23 Programming cycles externally

NC programming
1156 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

17 <_VARI> INT Machining type
UNITS: Reserved
TENS: Machining process

1 = Roughing
2 = Finishing
3 = Roughing and finishing

HUNDREDS: Position longitudinal/transverse external/
internal +Z/+Z and +X/-X
1 = Longitudinal/external +Z
2 = Transverse/internal -X
3 = Longitudinal/internal +Z
4 = Transverse/internal +X
5 = Longitudinal/external -Z
6 = Transverse/external -X
7 = Longitudinal/internal -Z
8 = Transverse/external +X

THOUSANDS: Position of reference point
0 = Upper reference point
1 = Lower reference point

TEN THOUSANDS: Define effect of finishing allowances
0 = Finishing allowance U parallel to

the contour
1 = Separate UX and UZ finishing al‐

lowances
18 <_DN> INT D number for 2nd edge of tool

 > 0 = D number for tool offset of 2nd
edge of grooving tool

0 = No 2nd edge programmed
19 N <_NUM> INT Number of grooves (0 = 1 groove)
20 DP <_DBH> REAL Distance between grooves (only needed when <_NUM> > 1)
21 F <_FF1> REAL Feedrate
22 <_NR> INT Identification for form of groove corresponds to vertical softkey for form

selection
 0 = 90° sides without chamfers/

rounding
1 = Inclined sides with chamfers/

rounding (without α0)
2 = As 1, but on taper (with α0)

23 UX <_FALX> REAL Finishing allowance in X axis, see <_VARI> (TEN THOUSANDS) (to be
entered without sign)

24 UZ <_FALZ> REAL Finishing allowance in Z axis, see <_VARI> (TEN THOUSANDS) (to be
entered without sign)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1157

No. Parameter
mask

Parameter
internal

Data type Meaning

25 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

26 <_AMODE> INT Alternative mode
UNITS: Dimensioning for top of groove (for inter‐

face only)
0 = At the reference point
1 = Opposite the reference point

TENS: Depth
0 = Absolute
1 = Incremental

HUNDREDS: Dimensioning for width (for interface on‐
ly)
0 = At outer diameter (top)
1 = At inner diameter (bottom)

THOUSANDS: Radius/chamfer 1 (<_RCO1>)
0 = Radius
1 = Chamfer

TEN THOUSANDS: Radius/chamfer 2 (<_RCI1>)
0 = Radius
1 = Chamfer

HUNDRED THOUSANDS: Radius/chamfer 3 (<_RCI2>)
0 = Radius
1 = Chamfer

ONE MILLION: Radius/chamfer 4 (<_RCO2>)
0 = Radius
1 = Chamfer

3.23.1.41 CYCLE940 – undercut form E and F / undercut thread
Various undercuts can be programmed using the CYCLE940 cycle. In some cases, these differ
significantly regarding the parameterization.

The additional columns in the table indicate which parameters are required for which undercut
type. They correspond to the vertical selection softkeys in the cycle screen form:

● E: Undercut form E

● F: Undercut form F

Work preparation
3.23 Programming cycles externally

NC programming
1158 Programming Manual, 06/2019, A5E47437142B AA

● A-D: DIN thread undercut (forms A-D)

● T: Thread undercut (free definition of form)

Syntax
CYCLE940(<_SPD>, <_SPL>, <_FORM>, <_LAGE>, <_SDIS>, <_FFP>, <_VARI>,
<_EPD>, <_EPL>, <_R1>, <_R2>, <_STA>, <_VRT>, <_MID>, <_FAL>,
<_FALX>, <_FALZ>, <_PITI>, <_PTAB>, <_PTABA>, <_DMODE>, <_AMODE>)

Parameters

No
.

Param‐
eter
mask

Parameter
internal

Data type Prog. for form Meaning

 E F A-D T
1 X0 <_SPD> REAL x x x x Reference point in the plane axis (always diameter)
2 Z0 <_SPL> REAL x x x x Reference point on longitudinal axis (abs)
3 FORM <_FORM> CHAR x x x x Form of undercut (capital letters, e.g. "T")

Selection, table from which the undercut values should be taken
 A = External, reference DIN76,

A = normal
B = External, reference DIN76,

B = short
C = Internal, reference DIN76,

C = normal
D = Internal, reference DIN76,

D = short
E = Reference DIN509
F = Reference DIN509
T= Free-form

4 POSI‐
TION

<_LAGE> INT x x x x Position of under‐
cut (parallel Z)

0 = External +Z: ____|
 1 = External -Z: |____/

2 = Internal +Z: /-----|
3 = Internal -Z: |-----\

5 SC <_SDIS> x x x x Safety clearance (inc)
6 F <_FFP> x x x x Machining feedrate (mm/rev)
7 <_VARI> INT - - x x Machining type

UNITS: Machining
1 = Roughing
2 = Finishing
3 = Roughing + finishing

TENS: Machining strategy
0 = Parallel to the contour
1 = Longitudinal

Undercut forms E and F are always machined in a single pass like finishing.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1159

No
.

Param‐
eter
mask

Parameter
internal

Data type Prog. for form Meaning

8 X1 <_EPD> x x - - Allowance X (abs/inc), see <_AMODE>
- - - x Undercut depth (abs/inc), see <_AMODE>

9 Z1 <_EPL> - x - - Allowance Z
- - - x Undercut width (abs/inc), see <_AMODE>

10 R1 <_R1> - - - x Rounding radius on slopes
11 R2 <_R2> - - - x Rounding radius in the corner
12 α <_STA> - - x x Insertion angle
13 VX <_VRT> x x - - Cross-feed X (abs/inc), see <_AMODE>

- - x x Cross-feed X when finishing, (abs/inc), see <_AMODE>
14 D <_MID> - - x x Depth infeed
15 U <_FAL> - - x x Finishing allowance parallel to contour, see <_AMODE>
16 UX <_FALX> - - x x Finishing allowance X
17 UZ <_FALZ> - - x x Finishing allowance Z
18 P <_PITI> INT - - x - Select pitch, form A-D, corresponds to M1 ... M68

 0 = 0.20
1 = 0.25
2 = 0.30
3 = 0.35
4 = 0.40
5 = 0.45

6 = 0.50
7 = 0.60
8 = 0.70
9 = 0.75
10 = 0.80
11 = 1.00

12 = 1.25
13 = 1.50
14 = 1.75
15 = 2.00
16 = 2.50
17 = 3.00

18 = 3.50
19 = 4.00
20 = 4.50
21 = 5.00
22 = 5.50
23 = 6.00

x x - - Select radius/depth, form E, F
 0 = 0.6 x 0.3

1 = 1.0 x 0.4
2 = 1.0 x 0.2
3 = 1.6 x 0.3

4 = 2.5 x 0.4
5 = 4.0 x 0.5
6 = 0.4 x 0.2
7 = 0.6 x 0.2

8 = 0.1 x 0.1
9 = 0.2 x 0.1

19 <_PTAB> STRING
[5]

 String for thread table ("", "ISO", "BSW", "BSP", "UNC")
(for the surface only)

20 <_PTABA> STRING
[20]

 String for selection from thread table
(e.g. "M 10", "M 12", ...)
(for the surface only)

21 <_DMODE> INT Display mode
x x x x UNITS: Machining plane G17/G18/G19

 0 = Compatibility, the plane effec‐
tive before the cycle call re‐
mains active

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Work preparation
3.23 Programming cycles externally

NC programming
1160 Programming Manual, 06/2019, A5E47437142B AA

No
.

Param‐
eter
mask

Parameter
internal

Data type Prog. for form Meaning

22 <_AMODE> INT Alternative mode
x x - x UNITS: Parameter <_EPD> allowance X or under‐

cut depth
 0 = Absolute (always diameter)

1 = Incremental
x x - x TENS: Parameter <_EPL> allowance Z or un‐

dercut width
 0 = Absolute

1 = Incremental
x x x x HUNDREDS: Parameter <_VRT> cross-feed X

 0 = Absolute (always diameter)
1 = Incremental

- - x x THOUSANDS: Finishing allowance
 0 = Finishing allowance parallel to

the contour (<_FAL>)
1 = Separate machining allow‐

ance (<_FALX>/<_FALZ>)

3.23.1.42 CYCLE951 - stock removal

Syntax
CYCLE951(<_SPD>, <_SPL>, <_EPD>, <_EPL>, <_ZPD>, <_ZPL>, <_LAGE>,
<_MID>, <_FALX>, <_FALZ>, <_VARI>, <_RF1>, <_RF2>, <_RF3>, <_SDIS>,
<_FF1>, <_NR>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <_SPD> REAL Reference point (abs, always diameter)
2 Z0 <_SPL> REAL Reference point (abs)
3 X1 <_EPD> REAL End point
4 Z1 <_EPL> REAL End point
5 XM

α1
α2

<_ZPD> REAL Intermediate point, see <_DMODE> (TENS)

6 ZM
α1
α2

<_ZPL> REAL Intermediate point, see <_DMODE> (TENS)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1161

No. Parameter
mask

Parameter
internal

Data type Meaning

7 Position <_LAGE> INT Position of stock removal
corner

0 = External/rear
1 = External/front
2 = Internal/rear
3 = Internal/front

8 D <_MID> REAL Maximum depth infeed on insertion
9 UX <_FALX> REAL Finishing allowance in X
10 UZ <_FALZ> REAL Finishing allowance in Z
11 <_VARI> INT Machining type

UNITS: Stock removal direction (longitudinal or
transverse) in the coordinate system
1 = Longitudinal
2 = Face

TENS:
1 = Roughing to final machining al‐

lowance
2 = Finishing

HUNDREDS: Reserved
THOUSANDS: Reserved
TEN THOUSANDS: Reserved

12 R1/FS1 <_RF1> REAL Rounding radius or chamfer width 1, see <_AMODE> (TEN THOU‐
SANDS)

13 R2/FS2 <_RF2> REAL Rounding radius or chamfer width 2, see <_AMODE> (HUNDRED
THOUSANDS)

14 R3/FS3 <_RF3> REAL Rounding radius or chamfer width 3, see <_AMODE> (ONE MILLION)
15 SC <_SDIS> REAL Safety clearance
16 F <_FF1> REAL Feedrate for roughing/finishing
17 <_NR> INT Identification of stock removal type (corresponds to vertical softkey for

selecting form):
 0 = Stock removal 1, 90 degree cor‐

ner without chamfers/rounding
1 = Stock removal 2, 90 degree cor‐

ner with chamfers/rounding
2 = Stock removal 3, any corner with

chamfers/rounding

Work preparation
3.23 Programming cycles externally

NC programming
1162 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

18 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Form of input <_ZPD>/<_ZPL>
0 = Xm/Zm
1 = Xm/α1
2 = Xm/α2
3 = α1/Zm
4 = α2/Zm
5 = α1/α2

21 <_AMODE> INT Alternative mode
UNITS: Intermediate point in X

0 = Absolute, value of transverse ax‐
is in the diameter

1 = Incremental, value of transverse
axis in the radius

TENS: Intermediate point in Z
0 = Absolute
1 = Incremental

HUNDREDS: End point in X
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
THOUSANDS: End point in Z.

0 = Absolute
1 = Incremental

TEN THOUSANDS: Radius/chamfer 1
0 = Radius
1 = Chamfer

HUNDRED THOUSANDS: Radius/chamfer 2
0 = Radius
1 = Chamfer

ONE MILLION: Radius/chamfer 3
0 = Radius
1 = Chamfer

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1163

3.23.1.43 CYCLE952 – stock removal / residual stock removal / plunge cutting / residual plunge
cutting / plunge turning / residual plunge turning

Syntax
CYCLE952(<_PRG>, <_CON>, <_CONR>, <_VARI>, <_F>, <_FR>, <_RP>, <_D>,
<_DX>, <_DZ>, <_UX>, <_UZ>, <_U>, <_U1>, <_BL>, <_XD>, <_ZD>, <_XA>,
<_ZA>, <_XB>, <_ZB>, <_XDA>, <_XDB>, <_N>, <_DP>, <_DI>, <_SC>,
<_DN>, <_GMODE>, <_DMODE>, <_AMODE>, <_PK>, <_DCH>, <_FS>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 PRG <_PRG> STRING[100
]

Name of the stock removal program

2 CON <_CON> STRING[100
]

Name of the program from which the updated contour of the blank is
read (for residual machining)

3 CONR <_CONR> STRING[100
]

Name of the program into which the updated contour for the blank
(see <_AMODE> TEN THOUSANDS) will be written

Work preparation
3.23 Programming cycles externally

NC programming
1164 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

4 <_VARI> INT Machining type
UNITS: Type of stock removal

1 = Longitudinal
2 = Face
3 = Parallel to the contour

TENS: Machining process (see <_GMODE>
HUNDREDS)
1 = Roughing
2 = Finishing
3 = Reserved
4 = Roughing, two-channel
5 = Finishing, two-channel

HUNDREDS: Machining direction
1 = Machining direction X -
2 = Machining direction X +
3 = Machining direction Z -
4 = Machining direction Z +

THOUSANDS: Infeed direction
1 = External X -
2 = Internal X +
3 = Front face Z -
4 = Rear face Z +

TEN THOUSANDS: Define effect of finishing allowances
0 = Separate UX and UZ finishing al‐

lowances
1 = Finishing allowance U parallel to

the contour
HUNDRED THOUSANDS: Rounding

0 = Compatibility, automatic rounding
1 = With rounding at the contour
2 = Without rounding
3 = Automatic rounding

ONE MILLION: Relief cuts
0 = Position is not evaluated during

grooving, - residual and groove
turning, - remainder

1 = Machine relief cuts
2 = No machining of relief cuts

TEN MILLIONS: Behind/in front of turning center
0 = Machining in front of the turning

center
1 = Reserved

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1165

No. Parameter
mask

Parameter
internal

Data type Meaning

5 F <_F> REAL

Feedrate for roughing/finishing
FZ Infeed abscissa groove turning

6 FR <_FR> REAL Feedrate for insertion into relief cuts, roughing
FX Infeed ordinate groove turning

7 RP <_RP> REAL Retraction plane for internal machining (abs., always diameter)
8 D <_D> REAL Roughing infeed (see <_AMODE> UNITS)
9 DX <_DX> REAL X infeed (see <_AMODE> UNITS)
10 DZ <_DZ> REAL Z infeed (see <_AMODE> UNITS)
11 UX <_UX> REAL Finishing allowance X, (see <_VARI> TEN THOUSANDS)
12 UZ <_UZ> REAL Finishing allowance Z, (see <_VARI> TEN THOUSANDS)
13 U <_U> REAL Finishing allowance parallel to contour, (see <_VARI> TEN THOU‐

SANDS)
14 U1 <_U1> REAL Additional finishing allowance while finishing (see <_AMODE> THOU‐

SANDS)
15 BL <_BL> INT Definition of blank 1 = Cylinder with allowance

2 = Allowance at contour of finished
part

3 = Contour of blank is specified
16 XD <_XD> REAL Definition of blank X (see <_AMODE> HUNDRED THOUSANDS)
17 ZD <_ZD> REAL Definition of blank Z (see <_AMODE> ONE MILLION)
18 XA <_XA> REAL Limit 1 X (abs., always diameter)
19 ZA <_ZA> REAL Limit 1 Z (abs.)
20 XB <_XB> REAL Limit 2 X (see <_AMODE> TEN MILLIONS)
21 ZB <_ZB> REAL Limit 2 Z (see <_AMODE> HUNDRED MILLIONS)
22 XDA <_XDA> REAL Grooving limit 1 for the 1st groove position on the end face (abs., always

diameter)
23 XDB <_XDB> REAL Grooving limit 2 for the 1st groove position on the end face (abs., always

diameter)
24 N <_N> INT Number of grooves
25 DP <_DP> REAL Distance between grooves

Longitudinal groove: Parallel to Z axis
Transverse groove: Parallel to X axis

26 DI <_DI> REAL Distance for interruption of
infeed

0 = No interruption
> 0 = With interruption

27 SC <_SC> REAL Safety clearance for avoiding obstacles, incremental
28 D2 <_DN> INT D number for 2nd cutting edge if not programmed ⇒ D+1

Work preparation
3.23 Programming cycles externally

NC programming
1166 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

29 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Re‐

serve
d

TENS: Re‐
serve
d

HUNDREDS: Select machining/only calculation of start
point
0 = Normal machining (no compatibil‐

ity mode needed)
1 = Normal machining
2 = Calculate start point - no machin‐

ing (only for call from ShopMill/
ShopTurn)

THOUSANDS: Limit
0 = No
1 = Yes

TEN THOUSANDS: Enter limit 1 X
0 = No
1 = Yes

HUNDRED THOUSANDS: Enter limit 2 X
0 = No
1 = Yes

ONE MILLION: Enter limit 1 Z
0 = No
1 = Yes

TEN MILLIONS: Enter limit 2 Z
0 = No
1 = Yes

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1167

No. Parameter
mask

Parameter
internal

Data type Meaning

30 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Technology mode
1 = Stock removal along the contour
2 = Contour grooving
3 = Groove turning

HUNDREDS: Machine residual material
0 = No
1 = Yes

THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen forms

(Page 1193)
0 = Input: Complete
1 = Input: Simple

HUNDRED THOUSANDS: Automatic program name
0 = No
1 = Yes

Work preparation
3.23 Programming cycles externally

NC programming
1168 Programming Manual, 06/2019, A5E47437142B AA

No. Parameter
mask

Parameter
internal

Data type Meaning

31 <_AMODE> INT Alternative mode
UNITS: Select infeed

0 = DX and DZ infeed for stock re‐
moval parallel to contour

1 = D infeed
TENS: Infeed strategy

0 = Variable cutting depth (90 ...
100%)

1 = Constant cutting depth
HUNDREDS: Cut segmentation

0 = Uniform
1 = Align to edges

THOUSANDS: Select contour allowance U1, double fin‐
ishing
0 = No
1 = Yes

TEN THOUSANDS: Update selection of blank
0 = No
1 = Yes

HUNDRED THOUSANDS: Select allowance on blank XD
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
ONE MILLION: Select allowance on blank ZD

0 = Absolute
1 = Incremental

TEN MILLIONS: Select limit 2 XB
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
HUNDRED MILLION: Select limit 2 ZB

0 = Absolute
1 = Incremental

ONE BILLION:
0 = Leading channel
1 = Following channel

32 <_PK> INT Number of the partner channel if there are more than two channels
available at the machine.

33 DCH <_DCH> REAL Channel offset
34 FS <_FS> REAL Finishing feedrate during complete machining

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1169

3.23.1.44 CYCLE4071 - longitudinal grinding with infeed at the reversal point

Syntax
CYCLE4071(<S_A>, <S_B>, <S_W>, <S_U>, <S_I>, <S_K>, <S_H>, <S_A1>,
<S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_A> REAL Infeed depth at the start
2 <S_B> REAL Infeed depth at the end
3 <S_W> REAL Grinding width
4 <S_U> REAL Sparking-out time
5 <S_I> REAL Feedrate for infeed
6 <S_K> REAL Feedrate for transverse infeed
7 <S_H> INT Number of repetitions
8 <S_A1> AXIS Infeed axis (optional) or 1st geometry axis
9 <S_A2> AXIS Oscillating axis (optional) or 2nd geometry axis

Function
The cycle is used for the execution of repeating infeeds. The infeed depth at the start and at the
end can be different. There is a tangential motion between the infeeds.

Work preparation
3.23 Programming cycles externally

NC programming
1170 Programming Manual, 06/2019, A5E47437142B AA

Sequence

① Start of the cycle at the current position of the oscillating axis.
② Traversing of the infeed axis to the infeed depth at the start <S_A> with the feedrate for in‐

feed <S_I>.
③ Sparking out with the sparking-out time <S_U>.
④ Traversing of the oscillating axis with the grinding width <S_W> as travel path and the feedrate

for transverse infeed <S_K>.
⑤ Traversing of the infeed axis to the infeed depth at the end <S_B> with the feedrate for

infeed <S_I>.
⑥ Sparking out with the sparking-out time <S_U>.
⑦ Traversing of the oscillating axis with the grinding width <S_W> as travel path to the starting point

and the feedrate for transverse infeed <S_K>.
Indicates reiterating sequential steps.
The sequence is repeated until the programmed number of repetitions <S_H> has been reached.

Note

The sequence cannot be interrupted with a single block.

Example
Executing two oscillating motions with the following cycle parameters:

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Infeed feedrate: 1 mm/min

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Program code
N10 T1 D1

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1171

Program code
N20 CYCLE4071(0.02,0.01,100,1,1,1000,2)
N30 M30

3.23.1.45 CYCLE4072 - longitudinal grinding with infeed at the reversal point and cancel signal

Syntax
CYCLE4072(<S_GAUGE>, <S_A>, <S_B>, <S_W>, <S_U>, <S_I>, <S_K>,
<S_H>, <S_A1>, <S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_GAUGE> STRING Cancel conditions for infeed:

1. Number of a rapid input
2. Logical expression

2 <S_A> REAL Infeed depth at the start
3 <S_B> REAL Infeed depth at the end
4 <S_W> REAL Grinding width
5 <S_U> REAL Sparking-out time
6 <S_I> REAL Feedrate for infeed
7 <S_K> REAL Feedrate for transverse infeed
8 <S_H> INT Number of repetitions
9 <S_A1> AXIS Infeed axis (optional) or 1st geometry axis
10 <S_A2> AXIS Oscillating axis (optional) or 2nd geometry axis

Function
The cycle is used for the execution of repeating infeeds taking into account an external cancel
signal. The infeed depth can be different at the start and at the end. There is a tangential motion
between the infeeds. The depth infeed is cancelled when the cancel condition is satisfied. A
complete stroke is always performed after the cancellation of the depth infeed.

Work preparation
3.23 Programming cycles externally

NC programming
1172 Programming Manual, 06/2019, A5E47437142B AA

Sequence

Cancellation of the infeed at the end

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1173

Cancellation of the infeed at the start

① Start of the cycle at the current position of the oscillating axis.
② Traversing of the infeed axis to the infeed depth at the start <S_A> with the feedrate for in‐

feed <S_I>.
③ Sparking out with the sparking-out time <S_U>.
④ Traversing of the oscillating axis with the grinding width <S_W> as travel path and the feedrate

for transverse infeed <S_K>.
⑤ Traversing of the infeed axis to the infeed depth at the end <S_B> with the feedrate for

infeed <S_I>.
⑥ Sparking out with the sparking-out time <S_U>.
⑦ Traversing of the oscillating axis with the grinding width <S_W> as travel path to the starting point

and the feedrate for transverse infeed <S_K>.
⑧ Cancel signal: The machining stops when the next start point is reached.
⑨ Without Cancel signal: The sequence is repeated until the programmed number of

repetitions <S_H> has been reached.
Indicates reiterating sequential steps.

Note

The sequence cannot be interrupted with a single block.

Resources
As resources, the cycle uses a block-wide synchronized action and a synchronized action
variable. The synchronized action is determined dynamically from the free area of the
synchronized action range (CUS.DIR - 1 ..., CMA.DIR - 1000 ..., CST.DIR – 1199 ...).
SYG_IS[1] is used as the synchronized action variable.

Work preparation
3.23 Programming cycles externally

NC programming
1174 Programming Manual, 06/2019, A5E47437142B AA

Examples

Example 1: Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Infeed feedrate: 1 mm/min

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Cancel signal: Rapid input 1 ($A_IN[1])

Program code
N10 T1 D1
N20 CYCLE4072("1",0.02,0.01,100,1,1,1000,2)
N30 M30

Example 2: Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Infeed feedrate: 1 mm/min

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Cancel signal: Variable $A_DBR[20] < 0.01

Program code
N10 T1 D1
N20 CYCLE4072("($A_DBR[20]<0.01)",0.02,0.01,100,1,1,1000,2)
N30 M30

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1175

3.23.1.46 CYCLE4073 - longitudinal grinding with continuous infeed

Syntax
CYCLE4073(<S_A>, <S_B>, <S_W>, <S_U>, <S_K>, <S_H>, <S_A1>, <S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_A> REAL Infeed depth at the start
2 <S_B> REAL Infeed depth at the end
3 <S_W> REAL Grinding width
4 <S_U> REAL Sparking-out time
5 <S_K> REAL Feedrate for transverse infeed
6 <S_H> INT Number of repetitions
7 <S_A1> AXIS Infeed axis (optional) or 1st geometry axis
8 <S_A2> AXIS Oscillating axis (optional) or 2nd geometry axis

Function
The cycle is used for the execution of repeating infeeds. The infeed from the start to the end and
from the end to the start can be different.

Sequence

① Start of the cycle at the current position of the oscillating axis with infeed depth 0.
② Traversing of the oscillating axis with the grinding width <S_W> as travel path and feedrate for

transverse infeed <S_K> with continuous increase in the infeed depth up to the infeed depth at
the start <S_A>.

③ Sparking out with the sparking-out time <S_U>.
④ Traversing of the oscillating axis with the grinding width <S_W> as travel path to the starting point

and feedrate for transverse infeed <S_K> with continuous increase in the infeed depth up to the
infeed depth at the end <S_B>.

⑤ Sparking out with the sparking-out time <S_U>.
Indicates reiterating sequential steps.
The sequence is repeated until the programmed number of repetitions <S_H> has been reached.

Work preparation
3.23 Programming cycles externally

NC programming
1176 Programming Manual, 06/2019, A5E47437142B AA

Note

The sequence cannot be interrupted with a single block.

Example

Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Program code
N10 T1 D1
N20 CYCLE4073(0.02,0.01,100,1,1000,2)
N30 M30

3.23.1.47 CYCLE4074 - longitudinal grinding with continuous infeed and cancel signal

Syntax
CYCLE4074(<S_GAUGE>, <S_A>, <S_B>, <S_W>, <S_U>, <S_K>, <S_H>,
<S_A1>, <S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_GAUGE> STRING Cancel conditions for infeed:

1. Number of a rapid input
2. Logical expression

2 <S_A> REAL Infeed depth at the start
3 <S_B> REAL Infeed depth at the end
4 <S_W> REAL Grinding width
5 <S_U> REAL Sparking-out time
6 <S_K> REAL Feedrate for transverse infeed
7 <S_H> INT Number of repetitions

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1177

No. Parameter Data type Meaning
8 <S_A1> AXIS Infeed axis (optional) or 1st geometry axis
9 <S_A2> AXIS Oscillating axis (optional) or 2nd geometry axis

Function
The cycle is used for the execution of repeating infeeds taking into account e.g. an external
cancel signal. The infeed depth can be different at the start and at the end. The depth infeed is
cancelled when the cancel condition is satisfied. A complete stroke is always performed after
the cancellation of the depth infeed.

Sequence

Cancellation of the infeed from the end to the start

Work preparation
3.23 Programming cycles externally

NC programming
1178 Programming Manual, 06/2019, A5E47437142B AA

Cancellation of the infeed from the start to the end

① Start of the cycle at the current position of the oscillating axis with infeed depth 0.
② Traversing of the oscillating axis with the grinding width <S_W> as travel path and feedrate for

transverse infeed <S_K> with continuous increase in the infeed depth up to the infeed depth at
the start <S_A>.

③ Sparking out with the sparking-out time <S_U>.
④ Traversing of the oscillating axis with the grinding width <S_W> as travel path to the starting point

and feedrate for transverse infeed <S_K> with continuous increase in the infeed depth up to the
infeed depth at the end <S_B>.

⑤ Sparking out with the sparking-out time <S_U>.
⑥ Cancel signal: The depth infeed is canceled. The machining stops when the next start point is

reached.
⑦ Without Cancel signal: The sequence is repeated until the programmed number of

repetitions <S_H> has been reached.
Indicates reiterating sequential steps.

Note

The sequence cannot be interrupted with a single block.

Resources
As resources, the cycle uses a block-wide synchronized action and a synchronized action
variable. The synchronized action is determined dynamically from the free area of the
synchronized action range (CUS.DIR - 1 ..., CMA.DIR - 1000 ..., CST.DIR – 1199 ...).
SYG_IS[1] is used as the synchronized action variable.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1179

Examples

Example 1: Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Cancel signal: Rapid input 1 ($A_IN[1])

Program code
N10 T1 D1
N20 CYCLE4074("1",0.02,0.01,100,1,1000,2)
N30 M30

Example 2: Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Cancel signal: Variable $A_DBR[20] < 0.01

Program code
N10 T1 D1
N20 CYCLE4074("($A_DBR[20]<0.01)",0.02,0.01,100,1,1000,2)
N30 M30

3.23.1.48 CYCLE4075 - surface grinding with infeed at the reversal point

Syntax
CYCLE4075(<S_I>, <S_J>, <S_K>, <S_A>, <S_R>, <S_F>, <S_P>, <S_A1>,
<S_A2>)

Work preparation
3.23 Programming cycles externally

NC programming
1180 Programming Manual, 06/2019, A5E47437142B AA

Parameters

No. Parameter Data type Meaning
1 <S_I> REAL Infeed depth at the start
2 <S_J> REAL Infeed depth at the end
3 <S_K> REAL Total infeed depth
4 <S_A> REAL Grinding width
5 <S_R> REAL Feedrate for infeed
6 <S_F> REAL Feedrate for transverse infeed
7 <S_P> REAL Sparking-out time
8 <S_A1> AXIS Infeed axis (optional)
9 <S_A2> AXIS Oscillating axis (optional)

Function
The cycle is used for machining with a total infeed depth in infeed steps. The infeed depths at
the start and at the end can be different. There is a tangential motion between the infeeds.

The positional data P1 to P4 can be negative or positive.

The specification of the infeed axis and/or oscillating axis is optional. If one or both parameters
are not specified, the cycle uses the first two geometry axes of the channel.

If the sum of the infeed depth at the start and end is 0 or the total infeed depth is 0, only one
sparking-out stroke is performed.

Sequence

Total infeed depth reached with infeed at the second reversal point

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1181

Total infeed depth reached with infeed at the first reversal point

① Start of the cycle at the current position of the oscillating axis.
② Traversing of the infeed axis to the infeed depth at the start <S_I> with the feedrate for in‐

feed <S_R>.
③ Sparking out with the sparking-out time <S_P>.
④ Traversing of the oscillating axis with the grinding width <S_A> as travel path and the feedrate

for transverse infeed <S_F>.
⑤ Traversing of the infeed axis to the infeed depth at the end <S_J> with the feedrate for

infeed <S_R>.
⑥ Sparking out with the sparking-out time <S_P>.
⑦ Traversing of the oscillating axis with the grinding width <S_A> as travel path to the starting point

and the feedrate for transverse infeed <S_F>.
Indicates reiterating sequential steps.
The sequence is repeated until the total infeed depth <S_K> has been reached. The last stroke
is then distributed unevenly.

Note

The sequence cannot be interrupted with a single block.

Example
Oscillation with:

● 0.02 mm infeed depth at the start

● 0.01 mm infeed depth at the end

● Total infeed depth 1 mm

● 100 mm stroke

● Infeed feedrate 1 mm/min

● Transverse feedrate 1000 mm/min

Work preparation
3.23 Programming cycles externally

NC programming
1182 Programming Manual, 06/2019, A5E47437142B AA

● 1 second sparking-out time

● Standard geometry axes

Program code
N10 T1 D1
N20 CYCLE4075(0.02,0.01,1,100,1,1000,1)
N30 M30

3.23.1.49 CYCLE4077 - surface grinding with infeed at the reversal point and cancel signal

Syntax
CYCLE4077(<S_GAUGE>, <S_I>, <S_J>, <S_K>, <S_A>, <S_R>, <S_F>,
<S_P>, <S_A1>, <S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_GAUGE> STRING Cancel condition for infeed:

● Number of a rapid input
● Logical expression

2 <S_I> REAL Infeed depth at the start
3 <S_J> REAL Infeed depth at the end
4 <S_K> REAL Total infeed depth
5 <S_A> REAL Grinding width
6 <S_R> REAL Feedrate for infeed
7 <S_F> REAL Feedrate for transverse infeed
8 <S_P> REAL Sparking-out time
9 <S_A1> AXIS Infeed axis (optional)
10 <S_A2> AXIS Oscillating axis (optional)

Function
The cycle is used for machining with a total infeed depth in infeed steps. The infeed depths at
the start and at the end can be different. There is a tangential motion between the infeeds. The
depth infeed is cancelled when the cancel signal of the rapid input is 1 or the cancel condition
is satisfied. A complete stroke is performed after the cancellation.

The positional data P2 to P5 can be negative or positive.

The specification of the infeed axis and/or oscillating axis is optional. If one or both parameters
are not specified, the cycle uses the first two geometry axes of the channel.

If the sum of the infeed depth at the start and end is 0 or the total infeed depth is 0, only one
sparking-out stroke is performed.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1183

Sequence

Cancellation of the infeed at the end

Work preparation
3.23 Programming cycles externally

NC programming
1184 Programming Manual, 06/2019, A5E47437142B AA

Cancellation of the infeed at the start

① Start of the cycle at the current position of the oscillating axis.
② Traversing of the infeed axis to the infeed depth at the start <S_I> with the feedrate for in‐

feed <S_R>.
③ Sparking out with the sparking-out time <S_P>.
④ Traversing of the oscillating axis with the grinding width <S_A> as travel path and the feedrate

for transverse infeed <S_F>.
⑤ Traversing of the infeed axis to the infeed depth at the end <S_J> with the feedrate for

infeed <S_R>.
⑥ Sparking out with the sparking-out time <S_P>.
⑦ Traversing of the oscillating axis with the grinding width <S_A> as travel path to the starting point

and the feedrate for transverse infeed <S_F>.
⑧ Cancel signal: The machining stops when the next start point is reached.
⑨ Without Cancel signal: The sequence is repeated until the total infeed depth <S_K> has been

reached. The last stroke is then distributed unevenly.
Indicates reiterating sequential steps.

Note

The sequence cannot be interrupted with a single block.

Resources
As resources, the cycle uses a block-wide synchronized action and a synchronized action
variable. The synchronized action is determined dynamically from the free area of the
synchronized action range (CUS.DIR - 1 ..., CMA.DIR - 1000 ..., CST.DIR – 1199 ...).
SYG_IS[1] is used as the synchronized action variable.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1185

Examples

Example 1
Oscillation with:

● 0.02 mm infeed depth at the start

● 0.01 mm infeed depth at the end

● Total infeed depth 1 mm

● 100 mm stroke

● Infeed feedrate 1 mm/min

● Transverse feedrate 1000 mm/min

● 1 second sparking-out time

● Standard geometry axes

Cancel signal: Rapid input 1 ($A_IN[1])

Program code
N10 T1 D1
N20 CYCLE4077("1",0.02,0.01,1,100,1,1000,1)
N30 M30

Example 2
Oscillation with:

● 0.02 mm infeed depth at the start

● 0.01 mm infeed depth at the end

● Total infeed depth 1 mm

● 100 mm stroke

● Infeed feedrate 1 mm/min

● Transverse feedrate 1000 mm/min

● 1 second sparking-out time

● Standard geometry axes

Cancel signal: Dual-port RAM variable 20 less than 0.01 ($A_DBR[20] < 0.01)

Program code
N10 T1 D1
N20 CYCLE4077("($A_DBR[20]<0.01)",0.02,0.01,1,100,1,1000,1)
N30 M30

Work preparation
3.23 Programming cycles externally

NC programming
1186 Programming Manual, 06/2019, A5E47437142B AA

3.23.1.50 CYCLE4078 - surface grinding with continuous infeed

Syntax
CYCLE4078(<S_I>, <S_J>, <S_K>, <S_A>, <S_F>, <S_P>, <S_A1>, <S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_I> REAL Infeed depth from the start to the end
2 <S_J> REAL Infeed depth from the end to the start
3 <S_K> REAL Total infeed depth
4 <S_A> REAL Grinding width
5 <S_F> REAL Feedrate
6 <S_P> REAL Sparking-out time
7 <S_A1> AXIS Infeed axis (optional)
8 <S_A2> AXIS Oscillating axis (optional)

Function
The cycle is used for machining with a total infeed depth by means of continuous infeed. The
infeed depths from the start to the end and from the end to the start can be different.

The positional data P1 to P4 can be negative or positive.

The specification of the infeed axis and/or oscillating axis is optional. If one or both parameters
are not specified, the cycle uses the first two geometry axes of the channel.

If the sum of the infeed depths P1 and P2 is 0 or the total infeed depth is 0, only one sparking-
out stroke is performed.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1187

Sequence

① Start of the cycle at the current position of the oscillating axis with infeed depth 0.
② Traversing of the oscillating axis with the grinding width <S_A> as travel path and

feedrate <S_F> with continuous increase in the infeed depth up to the infeed depth at the start
<S_I>.

③ Sparking out with the sparking-out time <S_P>.
④ Traversing of the oscillating axis with the grinding width <S_A> as travel path to the starting point

and feedrate <S_F> with continuous increase in the infeed depth up to the infeed depth at the
end <S_J>.

⑤ Sparking out with the sparking-out time <S_P>.
⑥ Traversing of the oscillating axis with the grinding width <S_A> as travel path to the starting point

and feedrate <S_F>.
Indicates reiterating sequential steps.
The sequence is repeated until the total infeed depth <S_K> has been reached. The last stroke
is then distributed unevenly.

Note

The sequence cannot be interrupted with a single block.

Example
Oscillation with:

● 20 mm infeed depth at the start

● 10 mm infeed depth at the end

● Total infeed depth 100 mm

● 100 mm stroke

● Feedrate 1000 mm/min

● 1 second sparking-out time

● Standard geometry axes

Work preparation
3.23 Programming cycles externally

NC programming
1188 Programming Manual, 06/2019, A5E47437142B AA

Program code
N10 T1 D1
N20 CYCLE4078(20,10,100,100,1000,1)
N30 M30

3.23.1.51 CYCLE4079 - surface grinding with intermittent infeed

Syntax
CYCLE4079(<S_I>, <S_J>, <S_K>, <S_A>, <S_R>, <S_F>, <S_P>, <S_A1>,
<S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_I> REAL Infeed depth at the start
2 <S_J> REAL Infeed depth at the end
3 <S_K> REAL Total infeed depth
4 <S_A> REAL Grinding width
5 <S_R> REAL Feedrate for infeed
6 <S_F> REAL Feedrate for transverse infeed
7 <S_P> REAL Sparking-out time
8 <S_A1> AXIS Infeed axis (optional)
9 <S_A2> AXIS Oscillating axis (optional)

Function
The cycle is used for machining with a total infeed depth in infeed steps. The infeed depths at
the start and at the end can be different. There is a tangential motion between the infeeds.

The positional data P1 to P4 can be negative or positive.

The specification of the infeed axis and/or oscillating axis is optional. If one or both parameters
are not specified, the cycle uses the first two geometry axes of the channel.

If the sum of the infeed depth at the start and end is 0 or the total infeed depth is 0, only one
sparking-out stroke is performed.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1189

Sequence

Total infeed depth reached with infeed at the second reversal point

Work preparation
3.23 Programming cycles externally

NC programming
1190 Programming Manual, 06/2019, A5E47437142B AA

Total infeed depth reached with infeed at the first reversal point

① Start of the cycle at the current position of the oscillating axis.
② Traversing of the infeed axis to the infeed depth at the start <S_I> with the feedrate for in‐

feed <S_R>.
③ Sparking out with the sparking-out time <S_P>.
④ Traversing of the oscillating axis with the grinding width <S_A> as travel path and the feedrate

for transverse infeed <S_F>.
⑤ Traversing of the infeed axis to the infeed depth at the end <S_J> with the feedrate for

infeed <S_R>.
⑥ Sparking out with the sparking-out time <S_P>.
⑦ Traversing of the oscillating axis with the grinding width <S_A> as travel path to the starting point

and the feedrate for transverse infeed <S_F>.
Indicates reiterating sequential steps.
The sequence is repeated until the total infeed depth <S_K> has been reached. The last stroke
is then distributed unevenly.

Note

The sequence cannot be interrupted with a single block.

Example
Oscillation with:

● 0.02 mm infeed depth at the start

● 0.01 mm infeed depth at the end

● Total infeed depth 1 mm

● 100 mm stroke

● Infeed feedrate 1 mm/min

● Transverse feedrate 1000 mm/min

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1191

● 1 second sparking-out time

● Standard geometry axes

Program code
N10 T1 D1
N20 CYCLE4079(0.02,0.01,1,100,1,1000,1)
N30 M30

3.23.1.52 GROUP_BEGIN - beginning of program block

Syntax
GROUP_BEGIN(<_LEVEL>, <_NAME>, <_SP>, <_MODE>, <S_ICON>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_LEVEL> INT Level
0 = Main level
1 = 1st sublevel

2 <_NAME> STRING[128] Block name
3 <_SP> INT Spindle

0 = No spindle
1 = Main spindle
2 = Counterspindle

4 <_MODE> INT Mode
Bit 0 = 1 GROUP_ADDEND exists
Bit 1 = 1 ShopTurn: Automatic retraction (traverse to tool

change point)
Bit 12 Reserved
Bit 13 Reserved

5 <S_ICON> STRING[32] Name of the icon (only for operator interface)

3.23.1.53 GROUP_END - end of program block

Syntax
GROUP_END(<_LEVEL>, <_SP>)

Work preparation
3.23 Programming cycles externally

NC programming
1192 Programming Manual, 06/2019, A5E47437142B AA

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_LEVEL> INT Level
0 = Main level
1 = 1st sublevel

2 <_SP> INT Spindle
0 = No spindle
1 = Main spindle
2 = Counterspindle

3.23.1.54 GROUP_ADDEND - End of trial cut addition

Syntax
GROUP_ADDEND(<_LEVEL>, <_SP>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_LEVEL> INT Level
0 = Main level
1 = 1st sublevel

2 <_SP> INT Spindle
0 = No spindle
1 = Main spindle
2 = Counterspindle

3.23.1.55 Supplementary conditions

Technology scaling in cycle screen forms
When the technology scaling is active, the simplified input can be selected for various cycle
screen forms, in which only the most important cycle parameters are displayed

For example, the simplified input can be selected for the following cycle screen forms:

Technology Cycle screen form
Drilling Deep-hole drilling

Tapping
Milling Rectangular pocket

Contour milling: Pocket

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1193

Technology Cycle screen form
Turning Thread turning: Longitudinal

Contour turning: Stock removal
Contour turning: Grooving
Contour turning: Groove turning

In the user interface of the relevant cycle screen forms, the options "Input: Simple" and "Input:
Complete" are available.

Cycle parameters that are not displayed
The cycle parameters that are not displayed in the simplified input are pre-assigned fixed,
technologically useful, but not variable values. Or the cycle parameters are assigned
parameterizable values via the channel-specific cycle setting data. See the paragraph below
"Commissioning" > "Channel-specific cycle setting data"

Switchover from "Input: Complete" > "Input: Simple"
If a cycle screen form is filled in with the setting "Input complete" and then switched to "Input
simple", the default or setting data values are used for the parameters no longer displayed
when generating the cycle call.

Commissioning

Channel-specific configuration machine data
The technology scaling in cycle screen forms can be activated with the machine data:

MD52210 $MCS_FUNCTION_MASK_DISP, bit 9 = 1 (select display "Input simple")

Channel-specific cycle setting data
If the simplified input in cycle screen forms is active, the values for certain cycle parameters can
be specified via the following setting data:

Number Identifier Meaning
SD55300 $SCS_EASY_SAFETY_CLEARANCE Safety clearance
SD55301 $SCS_EASY_DWELL_TIME Dwell time
SD55305 $SCS_EASY_DRILL_DEEP_FD1 Deep-hole drilling: Percentage: 1st feedrate
SD55306 $SCS_EASY_DRILL_DEEP_DF Deep-hole drilling: Percentage: Infeed
SD55307 $SCS_EASY_DRILL_DEEP_V1 Deep-hole drilling: Minimum depth infeed
SD55308 $SCS_EASY_DRILL_DEEP_V2 Deep-hole drilling: Retraction distance
SD55309 $SCS_EASY_THREAD_RETURN_DIST Thread turning: Return distance

Work preparation
3.23 Programming cycles externally

NC programming
1194 Programming Manual, 06/2019, A5E47437142B AA

3.23.2 Overview of measuring cycle parameters

3.23.2.1 CYCLE973 measuring cycle parameters

PROC CYCLE973(INT S_MVAR,INT S_PRNUM,INT S_CALNUM,REAL S_SETV,INT S_MA,INT S_MD,REAL
S_FA,REAL S_TSA,REAL S_VMS,INT S_NMSP,INT S_MCBIT,INT _DMODE,INT _AMODE)

Table 3-8 CYCLE973 call parameters 1)

No. Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measuring variant (default=0012103)
Val‐
ues:

UNITS: Calibration on a surface, edge or in a groove
0 = Length on surface/edge (in the WCS) with known setpoint
1 = Radius on surface (in the WCS) with known setpoint
2 = Length in groove (in the WCS), see S_CALNUM
3 = Radius in groove (in the WCS), see S_CALNUM
TENS: Reserved
0 = 0
HUNDREDS: Reserved
0 = 0
THOUSANDS: Selection of measuring axis and measuring direction for calibra‐
tion 2)

0 = No specification (for surface calibration on the groove base, no selection of the
measuring axis and measuring direction) 4)

1 = Specify selection of measuring axis and measuring direction, see S_MA, S_MD
(one measuring direction in a measuring axis)
2 = Specify selection of measuring axis, see S_MA (two measuring directions in a
measuring axis)
TEN THOUSANDS: Determination of the positional deviation (probe skew) 2), 3)

0 = Determine positional deviation
1 = Do not determine positional deviation
HUNDRED THOUSANDS: Reserved
0 = 0
ONE MILLION:adapt tool length 7)

0 = Do not adapt tool length (only trigger points)
1 = Adapt tool length

2 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)
(default=1)

3 S_CALNUM Number of the calibration groove for calibration on a groove (default=1) 5)

4 S_SETV Setpoint for calibration on a surface

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1195

No. Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

5 X0 S_MA Measuring axis (number of the axis) 6) (default=1)
Val‐
ues:

1 = 1st axis of the plane (for G18 Z)
2 = 2nd axis of the plane (for G18 X)
3 = 3rd axis of the plane (for G18 Y) 6)

6 +- S_MD Measuring direction (default=1)
Val‐
ues:

0 = Positive measuring direction
1 = Negative measuring direction

7 DFA S_FA Measurement path
8 TSA S_TSA Safe area
9 VMS S_VMS Variable measuring velocity for calibration 2)

10 Measure‐
ments

S_NMSP Number of measurements at the same location 2) (default=1)

11 S_MCBIT Reserved
12 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

13 _AMODE Alternative mode
1) All default values = 0 or marked as default=x
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) Only relevant for calibration in two axis directions
4) Only measuring axis and measuring direction are determined automatically from the cutting edge position (SL) of the probe.

SL=8 → -X , SL=7 → -Z
5) The number of the calibration groove (n) refers to the following general setting data (all positions in machine coordinate

system):
For cutting edge SL=7:
SD54615 $SNS_MEA_CAL_EDGE_BASE_AX1[n] Position base of the groove in the 1st axis of the plane (for G18 Z)
SD54621 $SNS_MEA_CAL_EDGE_PLUS_DIR_AX2[n] Position of the groove wall in the positive direction of the 2nd axis
of the plane (for G18 X)
SD54622 $SNS_MEA_CAL_EDGE_MINUS_DIR_AX2[n] Position of the groove wall in the negative direction of the 2nd axis
of the plane
for cutting edge position SL=8:
SD54619 $SNS_MEA_CAL_EDGE_BASE_AX2[n] Position of the groove base in the 2nd axis of the plane
SD54620 $SNS_MEA_CAL_EDGE_UPPER_AX2[n] Position of the upper edge of the groove in the 2nd axis of the plane
(only to preposition the probe)
SD54617 $SNS_MEA_CAL_EDGE_PLUS_DIR_AX1[n] Position of the groove wall in the positive direction of the 1st axis of
the plane
SD54618 $SNS_MEA_CAL_EDGE_MINUS_DIR_AX1[n] Position of the groove wall in the negative direction of the 1st axis
of the plane
Note:
The positions values for the groove wall +- can be determined roughly.
The groove width from the difference of the position values of the groove wall must be determined precisely (precision dial
gauge).
For calibration in the groove, it is assumed that the tool length of the probe of the calibrated axis = 0.
The positions values for the groove base must also be determined precisely on the machine (no drawing dimensions).

6) Measuring axis S_MA=3 for calibration on a surface and on a turning machine with real 3rd axis of the plane (for G18 Y).

Work preparation
3.23 Programming cycles externally

NC programming
1196 Programming Manual, 06/2019, A5E47437142B AA

7) Adapt tool length when calibrating length in the groove, or for lengths at the surface.
Workpiece probe in lathes can be defined using 2 lengths (X Z).
Turning probe, type 580
cutting-edge position 7: For length calibration, optionally, the Z length is corrected.
Turning probe, type 580
cutting edge position 8: For length calibration, optionally, the X length is corrected
The tool length is not adapted for the measurement version, radius at groove or radius at the surface.
Only the corresponding trigger points are saved.

3.23.2.2 CYCLE974 measuring cycle parameters

PROC CYCLE974(INT S_MVAR,INT S_KNUM,INT S_KNUM1,INT S_PRNUM,REAL S_SETV,INT S_MA,REAL
S_FA,REAL S_TSA,REAL S_STA1,INT S_NMSP,STRING[32] S_TNAME,INT S_DLNUM,REAL S_TZL,REAL
S_TDIF,REAL S_TUL,REAL S_TLL,REAL S_TMV,INT S_K,INT S_EVNUM,INT S_MCBIT,INT _DMODE,INT
_AMODE,INT _DP)

Table 3-9 CYCLE974 call parameters 1)

No. Screen
form pa‐
rameter

Cycle pa‐
rameter

Meaning

1 S_MVAR Measuring variant
Val‐
ues:

UNITS:
0 = Measure front face
1 = Inside measurement
2 = Outside measurement
TENS: Reserved
HUNDREDS: Correction target
0 = Only measurement (no correction of the WO or no tool offset)
1 = Measurement, determination and correction of the WO (see S_KNUM) 3)

2 = Measurement and tool offset (see S_KNUM1)
THOUSANDS: Reserved
TEN THOUSANDS: Measurement with or without reversal of the main spindle
(workspindle)
0 = Measurement without reversal
1 = Measurement with reversal

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1197

No. Screen
form pa‐
rameter

Cycle pa‐
rameter

Meaning

2 Selection S_KNUM Correction in work offset (WO) or basic WO or basic reference 2)

Val‐
ues:

UNITS:
TENS:
0 = No correction
1 to max. 99 numbers of the work offset or
1 to max. 16 numbers of the basic offset
HUNDREDS: Reserved
THOUSANDS: Correction in WO or basic WO or basic reference
0 = Correction of the adjustable WO
1 = Correction of the channel-specific basic WO
2 = Correction of the basic reference
3 = Correction of the global basic WO
9 = Correction of the active WO or for G500, last active channel-specific basic WO
TEN THOUSANDS: Coarse or fine correction in the WO, basic WO or basic refer‐
ence
0 = Fine correction 6)

1 = Coarse correction

Work preparation
3.23 Programming cycles externally

NC programming
1198 Programming Manual, 06/2019, A5E47437142B AA

No. Screen
form pa‐
rameter

Cycle pa‐
rameter

Meaning

3 Selection S_KNUM1 Correction in tool offset 2), 4)

Val‐
ues:

UNITS:
TENS:
HUNDREDS:
0 = No correction
1 to max. 999 D numbers (cutting edge numbers) for tool offset;
for additive and setup offset, see also S_DLNUM
THOUSANDS: 0 or unique D number
TEN THOUSANDS: 0 or unique D number
1 to max. 32000 if unique D numbers in MD have been set up
HUNDRED THOUSANDS: Tool offset 2)

0 = No specification (offset in tool geometry)
1 = Offset of length L1
2 = Offset of length L2
3 = Offset of length L3
4 = Radius offset
ONE MILLION: Tool offset 2)

0 = No specification (offset of the tool length wear)
1 = Tool offset, additive offset (AO) 5)

Tool offset value is added to the existing AO
2 = Tool offset, setup offset (SO) 5)

SO (new) = SO (old) + AO (old) offset value, AO (new) = 0
3 = Tool offset, setup offset (SO) 5)

Tool offset value is added to the existing SO
4 = Tool offset, geometry
TEN MILLION: Tool offset 2)

0 = No specification (offset in tool geometry normal (not inverted))
1 = Offset inverted
HUNDRED MILLIONS: Tool offset
0 = tool offset without replacement tools
1 = tool offset in replacement tool (_DP)

4 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)
(default=1)

5 X0 S_SETV Setpoint
6 X S_MA Measuring axis (number of the axis) (default=1)

Val‐
ues:

1 = 1st axis of the plane (for G18 Z)
2 = 2nd axis of the plane (for G18 X)
3 = 3rd axis of the plane (for G18 Y) 5)

7 DFA S_FA Measurement path
8 TSA S_TSA Safe area
9 α S_STA1 Starting angle for measurement with reversal
10 Measure‐

ments
S_NMSP Number of measurements at the same location 2) (default=1)

11 T S_TNAME Tool name 2)

12 DL S_DLNUM Setup additive offset DL number 5)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1199

No. Screen
form pa‐
rameter

Cycle pa‐
rameter

Meaning

13 ST _DP Number of the replacement tool (duplo number) to be corrected
14 TZL S_TZL Work offset 2), 4)

15 DIF S_TDIF Dimensional difference check 2), 4)

16 TUL S_TUL Upper tolerance limit (incremental to the setpoint) 4)

17 TLL S_TLL Lower tolerance limit (incremental to the setpoint) 4)

18 TMV S_TMV Offset range for averaging 2)

19 FW S_K Weighting factor for averaging 2)

20 EVN S_EVNUM Number of the empirical mean value memory 2), 7)

21 S_MCBIT Reserved
22 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

23 _AMODE Alternative mode
Val‐
ues:

UNITS: Dimensional tolerance yes/no
0 = No
1 = Yes

1) All default values = 0 or marked as default=x
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) Correction in WO only possible for measurement without reversal
4) For tool offset in the channel-specific MD 20360 TOOL_PARAMETER_DEF_MASK , observe bit0 and bit1
5) Only if the "Setup additive offset" function has been set-up in the general MD 18108 $MN_MM_NUM_SUMCORR . In

addition, in the general MD 18080 $MN_MM_TOOL_MANAGEMENT_MASK , bit8 must be set to 1.
6) If WO "fine" has not been set up in MDs, correction is according to WO "coarse"
7) Empirical averaging only possible for tool offset

Value range for empirical mean value memory:
1 to 20 numbers (n) of the empirical value memory, see channel-specific SD 55623 $SCS_MEA_EMPIRIC_VALUE[n-1]
10000 to 200000 numbers (n) of the mean value memory, see channel-specific SD 55625
$SCS_MEA_AVERAGE_VALUE[n-1]

3.23.2.3 CYCLE994 measuring cycle parameters

PROC CYCLE994(INT S_MVAR,INT S_KNUM,INT S_KNUM1,INT S_PRNUM,REAL S_SETV,INT S_MA,REAL
S_SZA,REAL S_SZO,REAL S_FA,REAL S_TSA,INT S_NMSP,STRING[32] S_TNAME,INT S_DLNUM,REAL
S_TZL,REAL S_TDIF,REAL S_TUL,REAL S_TLL,REAL S_TMV,INT S_K,INT S_EVNUM,INT S_MCBIT,INT
_DMODE,INT _AMODE,INT _DP)

Work preparation
3.23 Programming cycles externally

NC programming
1200 Programming Manual, 06/2019, A5E47437142B AA

Table 3-10 CYCLE994 call parameters 1)

No. Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

1 S_MVAR Measuring variant
Val‐
ues:

UNITS: Inside or outside measurement (default = 1)
1 = Inside measurement
2 = Outside measurement
TENS: Reserved
HUNDREDS: Correction target
0 = Only measurement (no correction of the WO or no tool offset)
1 = Measurement and determination and correction of the WO (see S_KNUM) 3)

2 = Measurement and tool offset (see S_KNUM1)
THOUSANDS: Bypass area
0 = no bypass area
1 = bypass axis 1st axis of the plane (for G18 Z) Measuring axis, see S_MA.
2 = bypass axis 2nd axis of the plane (for G18 X) Measuring axis, see S_MA.
3 = bypass axis 3rd axis of the plane (for G18 Y). Measuring axis, see S_MA. 8)

2 Selection S_KNUM Correction of work offset (WO) or basic WO or basic reference 2)

Val‐
ues:

UNITS:
TENS:
0 = No correction
1 to max. 99 numbers of the work offset or
1 to max. 16 numbers of the basic offset
HUNDREDS: Reserved
THOUSANDS: Correction of WO or basic or basic reference
0 = Correction of the adjustable WO
1 = Correction of the channel-specific basic WO
2 = Correction of the basic reference
3 = Correction of the global basic WO
9 = Correction of the active WO or for G500 in last active channel-specific basic
WO
TEN THOUSANDS: Coarse or fine correction in the WO, basic WO or basic
reference
0 = Fine correction 6)

1 = Coarse correction

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1201

No. Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

3 Selection S_KNUM1 Correction in tool offset 2), 4)

Val‐
ues:

UNITS:
TENS:
HUNDREDS:
0 = No correction
1 to max. 999 D numbers (cutting edge numbers) for tool offset;
for additive and setup offset, see also S_DLNUM
THOUSANDS: 0 or unique D numbers
TEN THOUSANDS: 0 or unique D numbers
1 to max. 32000, if unique D numbers in MD have been set up
HUNDRED THOUSANDS: Tool offset 2)

0 = No specification (offset tool geometry)
1 = Offset of length L1
2 = Offset of length L2
3 = Offset of length L3
4 = Radius offset
ONE MILLION: Tool offset 2)

0 = No specification (offset of the tool length wear)
1 = Tool offset, additive offset (AO) 5)

 Tool offset value is added to the existing AO
2 = Tool offset, setup offset (SO) 5)

 SO (new) = SO (old) + AO (old) offset value, AO (new) = 0
3 = Tool offset, setup offset (SO) 5)

 Tool offset value is added to the existing SO
4 = Tool offset, geometry
TEN MILLION: Tool offset 2)

0 = No specification (offset in tool geometry normal, not inverted)
1 = Offset inverted
HUNDRED MILLIONS: Tool offset
0 = tool offset without replacement tools
1 = tool offset in replacement tool (_DP)

4 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)
(default=1)

5 X0 S_SETV Setpoint
6 X S_MA Number of the measuring axis (default=1)

Val‐
ues:

1 = 1st axis of the plane (for G18 Z)
2 = 2nd axis of the plane (for G18 X)
3 = 3rd axis of the plane (for G18 Y) 8)

7 X1 S_SZA Bypass distance in the measured axis
8 Y1 S_SZO Bypass distance in the bypass axis
9 DFA S_FA Measurement path
10 TSA S_TSA Safe area
11 Measure‐

ments
S_NMSP Number of measurements at the same location 2) (default=1)

12 T S_TNAME Tool name 2)

Work preparation
3.23 Programming cycles externally

NC programming
1202 Programming Manual, 06/2019, A5E47437142B AA

No. Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

13 DL S_DLNUM Setup additive offset DL number 5)

14 ST _DP Number of the replacement tool (duplo number) to be corrected
15 TZL S_TZL Work offset 2), 4)

16 DIF S_TDIF Dimensional difference check 2), 4)

17 TUL S_TUL Upper tolerance limit (incremental to the setpoint) 4)

18 TLL S_TLL Lower tolerance limit (incremental to the setpoint) 4)

19 TMV S_TMV Offset range for averaging 2)

20 FW S_K Weighting factor for averaging 2)

21 EVN S_EVNUM Number of the empirical value memory 2), 7)

22 S_MCBIT Reserved
23 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

24 _AMODE Alternative mode
Val‐
ues:

UNITS: Dimensional tolerance yes/no
0 = No
1 = Yes

1) All default values = 0 or marked as default=x
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) Correction in WO only possible for measurement without reversal
4) For tool offset, observe the channel MD 20360 TOOL_PARAMETER_DEF_MASK
5) Only if the "Setup additive offset" function has been set-up in the general MD 18108 $MN_MM_NUM_SUMCORR . In

addition, the general MD 18080 $MN_MM_TOOL_MANAGEMENT_MASK , bit8 must be set to 1.
6) If WO "fine" has not been set up in MDs, correction is according to WO "coarse"
7) Empirical averaging only possible for tool offset

Value range for empirical mean value memory:
1 to 20 numbers (n) of the empirical value memory, see channel-specific SD 55623 $SCS_MEA_EMPIRIC_VALUE[n-1]
10000 to 200000 numbers (n) of the mean value memory, see channel-specific SD 55625
$SCS_MEA_AVERAGE_VALUE[n-1]

8) If Y axis is available on the machine

3.23.2.4 CYCLE976 measuring cycle parameters

PROC CYCLE976(INT S_MVAR,INT S_PRNUM,REAL S_SETV,REAL S_SETV0,INT S_MA,INT S_MD,REAL
S_FA,REAL S_TSA,REAL S_VMS,REAL S_STA1,INT S_NMSP,INT S_SETV1,INT _DMODE,INT _AMODE)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1203

Table 3-11 CYCLE976 call parameters 1)

No
.

Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measuring version (default=1000)
Val‐
ues:

UNITS: Calibration on surface, calibration sphere or calibration ring 2)

0 = Length on surface with known setpoint
1 = Radius in calibration ring with known diameter (setpoint) and known center point.
2 = Radius in calibration ring with known diameter (setpoint) and an unknown center
point
3 = Radius and length at the calibration sphere
4 = Radius at the edge with known setpoint. Note selection of measuring axis and
measuring direction. 3)

5 = Radius between two edges with known setpoint and edge clearance. Measuring
axis should be selected.
TENS: Reserved
0 = 0
HUNDREDS: Reserved
0 = 0
THOUSANDS: Selection of measuring axis and measuring direction during calibra‐
tion.
0 = No specification (no selection of the measuring axis and measuring direction
required) 8)

1 = Specify selection of measuring axis and measuring direction, see S_MA, S_MD
(one measuring direction in a measuring axis)
2 = Specify selection of measuring axis, see S_MA (two measuring directions in a
measuring axis)
TEN THOUSANDS: Determination of the positional deviation (probe skew) 2)

0 = Determine positional deviation of the probe 6)

1 = Do not determine positional deviation
HUNDRED THOUSANDS: Paraxial calibration or at an angle

0 = Paraxial calibration in the active WCS
1 = Calibration at an angle 7)

ONE MILLION: Determination of tool length during calibration on surface or on
sphere
0 = tool length is not determined
1 = tool length is determined4)

2 = infeed axis is calibrated at the sphere, the tool length is determined, the tool
length measured difference is entered in the calibration data

2 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)
(default=1)

3 S_SETV Setpoint
4 Z0 S_SETV0 Setpoint of the length for sphere calibration
5 X / Y / Z S_MA Measuring axis (number of the axis) 2), 6) (default=1)

Val‐
ues:

1 = 1st axis of the plane (for G17 X)
2 = 2nd axis of the plane (for G17 Y)
3 = 3rd axis of the plane (for G17 Z)

Work preparation
3.23 Programming cycles externally

NC programming
1204 Programming Manual, 06/2019, A5E47437142B AA

No
.

Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

6 +- S_MD Measuring direction 2), 6)

Val‐
ues:

0 = Positive
1 = Negative

7 DFA S_FA Measurement path
8 TSA S_TSA Safe area
9 VMS S_VMS Variable measuring velocity for calibration 2)

10 α S_STA1 Starting angle 2), 5)

11 Measure‐
ments

S_NMSP Number of measurements at the same location 2) (default=1)

12 X0 S_SETV1 Edge reference point when calibrating between 2 edges 3)

13 _DMODE Display mode
Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

14 _AMODE Alternative mode
1) All default values = 0 or marked as default=x
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) For "Radius in the calibration ring" calibration, the diameter and the center point of the ring must be known (four measuring

directions).
For "Radius on two edges" calibration, the distance to the edges in the direction of the measuring axis must be known
(two measuring directions).
For "Radius on one edge" calibration, the setpoint of the surface must be known.

4) Measuring variant only calibration on a surface (length on surface), corrected tool length results from S_MD and S_MA.
5) Only for measuring variant "Calibration ring, ... and known center point" (S_MVAR=1xxx02).
6) Measuring axis only for measuring variant S_MVAR=0 or =xx1x01 or =xx2x01 or =20000

Measuring variant: "Calibration on a surface" → selection of measuring axis and measuring direction
or on the "Calibration ring, ... and known center point" → selection of an axis direction and selection of measuring axis and
measuring direction
or on the "Calibration ring, ... and known center point" → selection of two axis directions and selection of measuring axis
or "Determination of the probe length" → S_MA=3 → 3rd axis of the plane (for G17 Z)

7) Measuring version, only calibration in calibration ring or on calibration sphere
For "Calibration on calibration sphere", for measuring at an angle, the axis circles around the sphere at the equator.

8) For "Radius in calibration ring" calibration with unknown center point, four measuring directions in the plane (for G17 +-X +-
Y).
For "Length on surface" calibration in minus direction of the tool axis (for G17 -Z).

3.23.2.5 CYCLE978 measuring cycle parameters

PROC CYCLE978(INT S_MVAR,INT S_KNUM,INT S_KNUM1,INT S_PRNUM,REAL S_SETV,REAL S_FA,REAL
S_TSA,INT S_MA,INT S_MD,INT S_NMSP,STRING[32] S_TNAME,INT S_DLNUM,REAL S_TZL,REAL
S_TDIF,REAL S_TUL,REAL S_TLL,REAL S_TMV,INT S_K,INT S_EVNUM,INT S_MCBIT,INT _DMODE,INT
_AMODE,INT _DP)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1205

Table 3-12 CYCLE978 call parameters 1)

No. Screen form
parameter

Cycle pa‐
rameter

Meaning

1 S_MVAR Measuring variant
Val‐
ues:

UNITS: Contour element
0 = Measure surface
TENS: Reserved
HUNDREDS: Correction target
0 = Only measurement (no correction of the WO or no tool offset)
1 = Measurement, determination and correction of the WO (see S_KNUM)
2 = Measurement and tool offset (see S_KNUM1)
THOUSANDS: Reserved
TEN THOUSANDS: Measurement with/without spindle reversal or align probe in
the switching direction 9)

0 = Measurement without spindle reversal, without probe alignment
1 = Measurement with spindle reversal
2 = Align probe in switching direction

2 Selection S_KNUM Correction of work offset (WO) or basic WO or basic reference 2)

Val‐
ues:

UNITS:
TENS:
0 = No correction
1 to max. 99 numbers of the work offset or
1 to max. 16 numbers of the basic offset
HUNDREDS: Reserved
THOUSANDS: Correction of WO or basic or basic reference
0 = Correction of the adjustable WO
1 = Correction of the channel-specific basic WO
2 = Correction of the basic reference
3 = Correction of the global basic WO
9 = Correction of the active WO or for G500 in last active channel-specific basic
WO
TEN THOUSANDS: Coarse or fine correction in the WO, basic WO or basic
reference
0 = Fine correction 6)

1 = Coarse correction

Work preparation
3.23 Programming cycles externally

NC programming
1206 Programming Manual, 06/2019, A5E47437142B AA

No. Screen form
parameter

Cycle pa‐
rameter

Meaning

3 Selection S_KNUM1 Correction in tool offset 2)

Val‐
ues:

UNITS:
TENS:
HUNDREDS:
0 = No correction
1 to max. 999 D numbers (cutting edge numbers) for tool offset,
for additive and setup offset, see also S_DLNUM
THOUSANDS: 0 or unique D numbers
TEN THOUSANDS: 0 or unique D numbers
1 to max. 32000 if unique D numbers in MDs have been set up
HUNDRED THOUSANDS: Tool offset 2)

0 = No specification (offset in tool geometry)
1 = Offset of length L1
2 = Offset of length L2
3 = Offset of length L3
4 = Radius offset
ONE MILLION: Tool offset 2)

0 = No specification (offset of the tool radius wear)
1 = Tool offset, additive offset (AO) 5)

 Tool offset value is added to the existing AO
2 = Tool offset, setup offset (SO) 5)

 SO (new) = SO (old) + AO (old) offset value, AO (new) = 0
3 = Tool offset, setup offset (SO) 5)

 Tool offset value is added to the existing SO
4 = Tool offset, geometry
TEN MILLION: Tool offset 2)

0 = No specification (offset in tool geometry normal, not inverted)
1 = Offset inverted
HUNDRED MILLIONS: Tool offset
0 = tool offset without replacement tools
1 = tool offset in replacement tool (_DP)

4 Icon+num‐
ber

S_PRNUM Number of the field of the probe parameters (not probe number)
(value range 1 to 40)

5 X0 S_SETV Setpoint
6 DFA S_FA Measurement path
7 TSA S_TSA Safe area
8 X S_MA Number of the measuring axis 7) (value range 1 to 3)

Val‐
ues:

1 = 1st axis of the plane (for G17 X)
2 = 2nd axis of the plane (for G17 Y)
3 = 3rd axis of the plane (for G17 Z) measurement in tool direction

9 S_MD Measuring direction of the measuring axis
Val‐
ues:

1 = Positive measuring direction
2 = Negative measuring direction

10 Measure‐
ments

S_NMSP Number of measurements at the same location 2) (value range 1 to 9)

11 TR S_TNAME Tool name 3)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1207

No. Screen form
parameter

Cycle pa‐
rameter

Meaning

12 DL S_DLNUM Setup additive offset DL number 5)

13 ST _DP Number of the replacement tool (duplo number) to be corrected
14 TZL S_TZL Work offset 2), 3)

15 DIF S_TDIF Dimensional difference check 2), 3)

16 TUL S_TUL Upper tolerance limit (incremental to the setpoint) 3)

17 TLL S_TLL Lower tolerance limit (incremental to the setpoint) 3)

18 TMV S_TMV Offset range for averaging 2)

19 FW S_K Weighting factor for averaging 2)

20 EVN S_EVNUM Date set, empirical value memory 2), 8)

21 S_MCBIT Reserved
22 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

23 _AMODE Alternative mode
Val‐
ues:

UNITS: Dimensional tolerance yes/no
0 = No
1 = Yes

1) All default values = 0 or marked as the range of values a to b
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) Only for offset in tool, otherwise parameter = ""
4) Only for offset in tool and dimensional tolerance "Yes", otherwise parameter = 0
5) Only if the "Setup additive offset" function has been set-up in the general MD 18108 $MN_MM_NUM_SUMCORR . In

addition, in the general MD 18080 $MN_MM_TOOL_MANAGEMENT_MASK , bit8 must be set to 1.
6) If WO "fine" has not been set up in MDs, correction is according to WO "coarse"
7) Offset in tool geometry:

For measurement in the plane (S_MA=1 or S_MA=2) Offset in tool radius
For measurement in tool direction (S_MA=3) Offset in tool length L1

8) Empirical averaging for tool offset and correction in WO possible
Value range for empirical mean value memory:
1 to 20 numbers (n) of the empirical value memory, see channel-specific SD 55623 $SCS_MEA_EMPIRIC_VALUE[n-1]
10000 to 200000 numbers (n) of the mean value memory, see channel-specific SD 55625
$SCS_MEA_AVERAGE_VALUE[n-1]

9) When measuring with spindle reversal, the radius/diameter of the probe must be precisely determined. This should be
realized with a calibration variant of the CYCLE976 radius at the ring or at the edge or at the sphere. Otherwise, the
measurement result will be falsified.

3.23.2.6 CYCLE998 measuring cycle parameters

PROC CYCLE998(INT S_MVAR,INT S_KNUM,INT S_RA,INT S_PRNUM,REAL S_SETV,REAL S_STA1,REAL
S_INCA,REAL S_FA,REAL S_TSA,INT S_MA,INT S_MD,REAL S_ID,REAL S_SETV0,REAL S_SETV1,REAL
S_SETV2,REAL S_SETV3,INT S_NMSP,INT S_EVNUM,INT _DMODE,INT _AMODE)

Work preparation
3.23 Programming cycles externally

NC programming
1208 Programming Manual, 06/2019, A5E47437142B AA

Table 3-13 CYCLE998 call parameters 1)

No
.

Screen form
parameters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measuring variant (default=5)
Val‐
ues:

UNITS: Contour element
5 = Measure edge (one angle)
6 = Measure plane (two angles)
TENS: Reserved
HUNDREDS: Correction target
0 = Only measurement and no correction of WO
1 = Measurement and determination and correction of the WO (see S_KNUM)
THOUSANDS: Protection zone
0 = No consideration of a protection zone
1 = Consideration of a protection zone
TEN THOUSANDS: Measurement with spindle reversal (difference measurement)
0 = Measurement without spindle reversal
1 = Measurement with spindle reversal
HUNDRED THOUSANDS: Measurement at an angle or paraxial
0 = Measurement at an angle
1 = Measurement paraxial

2 Selection S_KNUM Correction of work offset (WO) or basic WO or basic reference 2)

Val‐
ues:

UNITS:
TENS:
0 = No correction
1 to max. 99 numbers of the work offset or
1 to max. 16 numbers of the basic offset
HUNDREDS: Reserved
THOUSANDS: Correction of WO or basic or basic reference
0 = Correction of the adjustable WO
1 = Correction of the channel-specific basic WO
2 = Correction of the basic reference
9 = Correction of the active WO or for G500 in last active channel-specific basic WO
TEN THOUSANDS: Coarse or fine correction in the WO or basic WO or basic
reference 3)

0 = Fine correction
1 = Coarse correction

3

A, B, C

S_RA Correction target coordinate rotation or rotary axis
Val‐
ues:

0 = Correction target coordinate rotation around the axis that results from param‐
eter S_MA 4)

>0 = Correction target rotary axis. Number of the channel axis number of the rotary
axis (preferably rotary table). The angular offset is made in the translatory part of
the WO of the rotary axis.

4 Icon+
number

S_PRNUM Number of the field of the probe parameter
(default=1)

5 DX / DY / DZ S_SETV Distance (incremental) from the starting position to measuring point P1 of the measuring axis
(S_MA) 5)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1209

No
.

Screen form
parameters

Cycle pa‐
rameters

Meaning

6 α S_STA1 Angle setpoint for "Align edge" or for "Align plane" around the 1st axis of the plane (for G17
X) 9)

7 β S_INCA Angle setpoint for "Align plane" around the 2nd axis of the plane (for G17 Y) 9)

8 DFA S_FA Measurement path
9 TSA S_TSA Safe area

Monitoring of the angle difference to the angle setpoint [degrees] 6)

10 X / Y / Z S_MA Measuring axis, offset axis 7) (default=201)
Val‐
ues:

UNITS: Number of the measuring axis
1 = 1st axis of the plane (for G17 X)
2 = 2nd axis of the plane (for G17 Y)
3 = 3rd axis of the plane (for G17 Z)
TENS: Reserved
HUNDREDS: Number of the offset axis
1 = 1st axis of the plane (for G17 X)
2 = 2nd axis of the plane (for G17 Y)
3 = 3rd axis of the plane (for G17 Z)

11 +- S_MD Measuring direction of the measuring axis 8)

Val‐
ues:

0 = Measuring direction is determined from the setpoint and the actual position of
the measuring axis (compatibility)
1 = Positive measuring direction
2 = Negative measuring direction

12 L2 S_ID For measuring variant "Align edge":
Distance (incremental) between the measuring points P1 and P2 in the offset axis (value >0)
For measuring variant "Align plane", the parameters listed below apply.

13 L2 S_SETV0 Distance between the measuring points P1 and P2 in the 1st axis of the plane 10)

14 S_SETV1 Distance between the measuring points P1 and P2 in the 2nd axis of the plane 11), 12)

15 L3x S_SETV2 Distance between the measuring points P1 and P3 in the 1st axis of the plane 11)

16 L3y S_SETV3 Distance between the measuring points P1 and P3 in the 2nd axis of the plane 10)

17 Measure‐
ments

S_NMSP Number of measurements at the same location 2) (default=1)

18 S_EVNUM Date set, empirical value memory 2), 13)

19 _DMODE Display mode
Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

20 _AMODE Reserved (alternative mode)
1) All default values = 0 or marked as default=x
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) WO "fine" only if correction target is rotary axis and MD 52207 $MCS_AXIS_USAGE_ATTRIB[n] Bit6=1.

If WO has not been set up in MDs, correction is according to WO "coarse".
4) Example for offset in coordinate rotation: S_MA=102 Measuring axis Y, offset axis X results in coordinate rotation around

Z (for G17)
5) Value only relevant for protection zone "Yes" (S_MVAR THOUSANDS position = 1)

Work preparation
3.23 Programming cycles externally

NC programming
1210 Programming Manual, 06/2019, A5E47437142B AA

6) When positioning from measuring point P1 to measuring point P2 in the offset axis, the angles in parameters S_STA1
and S_TSA are added.

7) Number of the measuring axis must not be the same as the number of the offset axis (e.g. 101 not permitted)
8) Measuring direction only for "Align edge" and "Measurement paraxial" (S_MVAR=10x105)
9) Angular range S_STA1 ±45 degrees for "Align edge"

Angular range S_STA1 0 to +60 degrees and S_INCA ±30 degrees for "Align plane"
10) For measuring variants "Align plane" and "Align edge"
11) For measuring variants "Measure plane" and "Measurement paraxial"
12) Not for measuring cycle version SW04.04.
13) Empirical value generation for correction in WO; value range of the empirical mean value memory:

 1 to 20 numbers of the empirical value memory, see channel-specific SD 55623 $SCS_MEA_EMPIRIC_VALUE[n-1]

3.23.2.7 CYCLE977 measuring cycle parameters

PROC CYCLE977(INT S_MVAR,INT S_KNUM,INT S_KNUM1,INT S_PRNUM,REAL S_SETV,REAL S_SETV0,REAL
S_SETV1,REAL S_FA,REAL S_TSA,REAL S_STA1,REAL S_ID,REAL S_SZA,REAL S_SZO,INT S_MA,INT
S_NMSP,STRING[32] S_TNAME,INT S_DLNUM,REAL S_TZL,REAL S_TDIF,REAL S_TUL,REAL S_TLL,REAL
S_TMV,INT S_K,INT S_EVNUM,INT S_MCBIT,INT _DMODE,INT _AMODE,REAL S_XM,REAL_S_YM,INT _DP)

Table 3-14 CYCLE977 call parameters 1)

No. Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

1 S_MVAR Measuring variant
Val‐
ues:

UNITS: Contour element (value range 1 to 6)
1 = Measure hole
2 = Measure spigot (shaft)
3 = Measure groove
4 = Measure rib
5 = Measure rectangle, inside
6 = Measure rectangle, outside
TENS: Reserved
HUNDREDS: Correction target
0 = Only measurement (no correction of the WO or no tool offset)
1 = Measurement and determination and correction of the WO (see S_KNUM)
2 = Measurement and tool offset (see S_KNUM1)
THOUSANDS: Protection zone
0 = No consideration of a protection zone
1 = Consideration of a protection zone
TEN THOUSANDS: Measurement with/without spindle reversal (differential meas‐
urement) or align probe in the switching direction
0 = Measurement without spindle reversal, do not align probe
1 = Measurement with spindle reversal
2 = Align probe in switching direction

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1211

No. Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

2 Selection S_KNUM Correction of work offset (WO) or basic WO or basic reference 2)

Val‐
ues:

UNITS:
TENS:
0 = No correction
1 to max. 99 numbers of the work offset or
1 to max. 16 numbers of the basic offset
HUNDREDS: Reserved
THOUSANDS: Correction of WO or basic or basic reference
0 = Correction of the adjustable WO
1 = Correction of the channel-specific basic WO
2 = Correction of the basic reference
3 = Correction of the global basic WO
9 = Correction of the active WO or for G500 in last active channel-specific basic WO
TEN THOUSANDS: Coarse or fine correction in the WO, basic WO or basic refer‐
ence
0 = Fine correction 6)

1 = Coarse correction

Work preparation
3.23 Programming cycles externally

NC programming
1212 Programming Manual, 06/2019, A5E47437142B AA

No. Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

3 Selection S_KNUM1 Correction in tool offset 2)

Val‐
ues:

UNITS:
TENS:
HUNDREDS:
0 = No correction
1 to max. 999 D numbers (cutting edge numbers) for tool offset; for additive and
setup offset, see also S_DLNUM
THOUSANDS: 0 or unique D numbers
TEN THOUSANDS: 0 or unique D numbers
1 to max. 32000 if unique D numbers in MDs have been set up
HUNDRED THOUSANDS: Tool offset 2)

0 = No specification (offset tool radius)
1 = Offset of length L1
2 = Offset of length L2
3 = Offset of length L3
4 = Radius offset
ONE MILLION: Tool offset 2)

0 = No specification (offset of the tool radius wear)
1 = Tool offset, additive offset (AO) 5)

 Tool offset value is added to the existing AO
2 = Tool offset, setup offset (SO) 5)

 SO (new) = SO (old) + AO (old) offset value, AO (new) = 0
3 = Tool offset, setup offset (SO) 5)

 Tool offset value is added to the existing SO
4 = Tool offset, geometry
TEN MILLION: Tool offset 2)

0 = No specification (offset in tool geometry normal, not inverted)
1 = Offset inverted
HUNDRED MILLIONS: Tool offset
0 = tool offset without replacement tools
1 = tool offset in replacement tool (_DP)

4 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)
(value range 1 to 40)

5 X0 S_SETV Setpoint
6 X0 S_SETV0 Setpoint for rectangle in 1st axis of the plane (X for G17)
7 Y0 S_SETV1 Setpoint for rectangle in 2nd axis of the plane (Y for G17)
8 XM S_XM Setpoint center point input geometry axis X
9 YM S_YM Setpoint center point input geometry axis Y
10 DFA S_FA Measurement path
11 TSA S_TSA Safe area
12 α 0 S_STA1 Starting angle

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1213

No. Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

13 DZ S_ID Absolute incremental value
1. Incremental infeed of the 3rd axis of the plane (Z for G17)

Infeed direction via sign of S_ID. For measurement of spigot, rib and rectangle
outside, S_ID is used to define the lowering to measuring height.

2. Consideration of a protection zone
For measurement of hole, groove and rectangle inside and a protection zone, S_ID is
used to define the overtravel height.

14 X1 S_SZA Diameter or length (width) of the protection zone 7)

15 Y1 S_SZO For "Measure rectangle": Width of the protection zone of the 2nd axis of the plane
16 X S_MA Number of the measuring axis 7) (only for measurement of groove or rib)

Val‐
ues:

1 = 1st axis of the plane (for G17 X)
2 = 2nd axis of the plane (for G17 Y)

17 ST _DP Number of the replacement tool (duplo number) to be corrected
18 Measure‐

ments
S_NMSP Number of measurements at the same location 2) (value range 1 to 9)

19 TR S_TNAME Tool name 2)

20 DL S_DLNUM Setup additive offset DL number 5)

21 TZL S_TZL Work offset 2), 4)

22 DIF S_TDIF Dimensional difference check 2), 4)

23 TUL S_TUL Upper tolerance limit (incremental to the setpoint) 4)

24 TLL S_TLL Lower tolerance limit (incremental to the setpoint) 4)

25 TMV S_TMV Offset range for averaging 2)

26 FW S_K Weighting factor for averaging 2)

27 S_EVNUM Data set, empirical mean value memory 2), 8)

28 S_MCBIT Reserved
29 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

30 _AMODE Alternative mode
Val‐
ues:

UNITS: Dimensional tolerance yes/no
0 = No
1 = Yes

1) All default values = 0 or marked as the range of values a to b
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) Only for offset in tool, otherwise parameter = ""
4) Only for offset in tool and dimensional tolerance "Yes", otherwise parameter = 0
5) Only if the "Setup additive offset" function has been set-up in the general MD 18108 $MN_MM_NUM_SUMCORR . In

addition, in the general MD 18080 $MN_MM_TOOL_MANAGEMENT_MASK , bit8 must be set to 1.
6) If WO "fine" has not been set up in MDs, correction is according to WO "coarse"

Work preparation
3.23 Programming cycles externally

NC programming
1214 Programming Manual, 06/2019, A5E47437142B AA

7) Diameter or width of the protection zone within a hole or groove
Diameter or width of the protection zone outside of a spigot or rib

8) Empirical averaging possible for tool offset
Value range for empirical mean value memory:
1 to 20 numbers (n) of the empirical value memory, see channel-specific SD 55623 $SCS_MEA_EMPIRIC_VALUE[n-1]
10000 to 200000 numbers (n) of the mean value memory, see channel-specific SD 55625
$SCS_MEA_AVERAGE_VALUE[n-1]

3.23.2.8 CYCLE961 measuring cycle parameters

PROC CYCLE961(INT S_MVAR,INT S_KNUM,INT S_PRNUM,REAL S_SETV0,REAL S_SETV1,REAL
S_SETV2,REAL S_SETV3,REAL S_SETV4,REAL S_SETV5,REAL S_SETV6,REAL S_SETV7,REAL S_SETV8,REAL
S_SETV9,REAL S_STA1,REAL S_INCA,REAL S_ID,REAL S_FA,REAL S_TSA,INT S_NMSP,INT S_MCBIT,INT
_DMODE,INT _AMODE)

Table 3-15 CYCLE961 call parameters 1)

No
.

Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measuring variant (default ≥ 6)
Val‐
ues:

UNITS: Contour element
5 = Setup of right-angled inside corner, setpoint specification of angle and distan‐
ces A1 to A3
6 = Setup of right-angled outside corner, setpoint specification of angle and dis‐
tances A1 to A3
7 = Setup of inside corner, specification of angle and distances A1 to A4
8 = Setup of outside corner, specification of angle and distances A1 to A4
TENS: Setpoint specification as distance or via four points
0 = Setpoint specification as distance (polar)
1 = Setpoint specification using four points (measuring points P1 to P4)
HUNDREDS: Correction target
0 = Only measurement (no correction of the WO or no tool offset)
1 = Measurement and determination and correction of the WO, see S_KNUM
THOUSANDS: Protection zone
0 = No consideration of a protection zone (obstacle)
1 = Consideration of a protection zone (obstacle), see S_ID
TEN THOUSANDS: Position of the corner in the WCS
0 = Position of the corner is determined via parameter S_STA1 (compatibility)
1 = Position 1 of the corner in the positioned starting point of the measurement 6)

2 = Position 2 of the corner, distances in the 1st axis of the plane (for G17 X) are
negative (see S_SETV0, S_SETV1)
3 = Position 3 of the corner, distances in the 1st and 2nd axis of the plane (for
G17 XY) are negative (see S_SETV0 to S_SETV3)
4 = Position 4 of the corner, distances in the 2nd axis of the plane (for G17 Y) are
negative (see S_SETV2, S_SETV3)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1215

No
.

Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

2 Selection S_KNUM Correction of work offset (WO) or basic WO or basic reference 2)

Val‐
ues:

UNITS:
TENS:
0 = No correction
1 to max. 99 numbers of the work offset or
1 to max. 16 numbers of the basic offset
HUNDREDS: Reserved
THOUSANDS: Correction of WO or basic or basic reference
0 = Correction of the adjustable WO
1 = Correction of the channel-specific basic WO
2 = Correction of the basic reference
9 = Correction of the active WO or for G500 in last active channel-specific basic WO
TEN THOUSANDS: Coarse or fine correction in the WO, basic WO or basic refer‐
ence
0 = Fine correction 5)

1 = Coarse correction
3 Icon+

number
S_PRNUM Number of the field of the probe parameters (not probe number)

(value range 1 to 40)
4 L1/X1 S_SETV0 Distance L1 between the pole and measuring point P1 in the direction of the 1st axis of the

plane (for G17 X) 3)

(if the actual distance L1=0, then L1 = M_SETV1 / 2 is automatically calculated) or
starting point P1x of the 1st axis of the plane (for G17 X) 4)

5 L2/Y1 S_SETV1 Distance L2 between the pole and measuring point P2 in the direction of the 1st axis of the
plane 3)
or starting point P1y of the 2nd axis of the plane (for G17 Y) 4)

6 L3/X2 S_SETV2 Distance L3 between the pole and measuring point P3 in the direction of the 2nd axis of the
plane 3)

(if the distance L3=0, then for a corner that is not right angled, L3 = M_SETV3 / 2 is auto‐
matically calculated)
or starting point P2x of the 1st axis of the plane4)

7 L4/Y2 S_SETV3 Distance L4 between the pole and measuring point P3 in the direction of the 2nd axis of the
plane with a corner that is not right angled 3)
or starting point P2y of the 2nd axis of the plane4)

8 XP/X3 S_SETV4 Position of the pole in the 1st axis of the plane 3)

or starting point P3x of the 1st axis of the plane4)

9 XP/Y3 S_SETV5 Position of the pole in the 2nd axis of the plane 3)

or starting point P3y of the 2nd axis of the plane4)

10 X4 S_SETV6 Starting point P4x of the 1st axis of the plane 4)

11 Y4 S_SETV7 Starting point P4y of the 2nd axis of the plane 4)

12 X0 S_SETV8 Setpoint of the measured corner in the 1st axis of the plane for correcting in WO
13 Y0 S_SETV9 Setpoint of the measured corner in the 2nd axis of the plane for correcting in WO
14 α0 S_STA1 Starting angle from the positive direction of the 1st axis of the plane to the reference edge of

the workpiece in the MCS (+-270 degrees)
15 α1 S_INCA Angle between workpiece reference edges when measuring a non-right-angled corner 7)

16 DZ S_ID Infeed amount at the measuring height for each measuring point for active protection zone
(see S_MVAR).

Work preparation
3.23 Programming cycles externally

NC programming
1216 Programming Manual, 06/2019, A5E47437142B AA

No
.

Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

17 DFA S_FA Measurement path
18 TSA S_TSA Safe area

Monitoring the angular difference to the angle setpoint [degrees]
19 Measure‐

ments
S_NMSP Number of measurements at the same location 2) (value range 1 to 9) 2)

20 S_MCBIT Reserved
21 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

22 _AMODE Alternative mode
1) All default values = 0 or marked as the range of values a to b
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3)) Input of the measuring points in polar coordinates, taking into account the starting angle S_STA1 for measuring point 3

or 4 of the incremental angle S_INCA .
4) Input of the measuring points in the right-angled coordinate system (input using 4 points),
5) If WO "fine" has not been set up in MDs, correction is according to WO "coarse".
6) Value range of angle S_INCA: -180 to +180 degrees
7) Starting angle S_STA1, value range: right-angled corner: +- 90 degrees, any corner: +- 45 degrees

3.23.2.9 CYCLE979 measuring cycle parameters

PROC CYCLE979(INT S_MVAR,INT S_KNUM,INT S_KNUM1,INT S_PRNUM,REAL S_SETV,REAL S_FA,REAL
S_TSA,REAL S_CPA,REAL S_CPO,REAL S_STA1,REAL S_INCA,INT S_NMSP,STRING[32] S_TNAME,REAL
S_DLNUM,REAL S_TZL,REAL S_TDIF,REAL S_TUL,REAL S_TLL,REAL S_TMV,INT S_K,INT S_EVNUM,INT
S_MCBIT,INT _DMODE,INT _AMODE,REAL S_XM,REAL S_YM,INT _DP)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1217

Table 3-16 CYCLE979 call parameters 0)

No
.

Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

1 S_MVAR Measuring variant
Val‐
ues:

UNITS: Contour element
1 = Measure hole
2 = Measure spigot (shaft)
TENS: Reserved
HUNDREDS: Correction target
0 = Only measurement (no correction of the WO or no tool offset)
1 = Measurement and determination and correction of the WO (see S_KNUM)
2 = Measurement and tool offset (see S_KNUM1)
THOUSANDS: Number of measurement points
0 = 3 measuring points
1 = 4 measuring points
TEN THOUSANDS: Measurement with/without spindle reversal (differential meas‐
urement) or align probe in the switching direction
0 = Measurement without spindle reversal, without probe alignment
1 = Measurement with spindle reversal
2 = Align probe in switching direction

2 Selection S_KNUM Correction of work offset (WO) or basic WO or basic reference 2)

Val‐
ues:

UNITS:
TENS: 0 = No correction
1 to max. 99 numbers of the work offset or
1 to max. 16 numbers of the basic offset
HUNDREDS: Reserved
THOUSANDS: Correction of WO or basic or basic reference
0 = Correction of the adjustable WO
1 = Correction of the channel-specific basic WO
2 = Correction of the basic reference
3 = Correction of the global basic WO
9 = Correction of the active WO or for G500 in last active channel-specific basic WO
TEN THOUSANDS: Coarse or fine correction in the WO, basic WO or basic ref‐
erence
0 = Fine correction 6)

1 = Coarse correction

Work preparation
3.23 Programming cycles externally

NC programming
1218 Programming Manual, 06/2019, A5E47437142B AA

No
.

Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

3 Selection S_KNUM1 Correction in tool offset 2)

Val‐
ues:

UNITS:
TENS:
HUNDREDS:
0 = No correction
1 to max. 999 D numbers (cutting edge numbers) for tool offset; for additive and
setup offset, see also S_DLNUM
THOUSANDS: 0 or unique D numbers
TEN THOUSANDS: 0 or unique D numbers
1 to max. 32000 if unique D numbers in MDs have been set up
HUNDRED THOUSANDS: Tool offset 2)

0 = No specification (offset in tool radius)
1 = Offset of length L1
2 = Offset of length L2
3 = Offset of length L3
4 = Radius offset
ONE MILLION: Tool offset 2)

0 = No specification (offset of the tool radius wear)
1 = Tool offset, additive offset (AO) 5)

 Tool offset value is added to the existing AO
2 = Tool offset, setup offset (SO) 5)

 SO (new) = SO (old) + AO (old) offset value, AO (new) = 0
3 = Tool offset, setup offset (SO) 5)

 Tool offset value is added to the existing SO
4 = Tool offset, geometry
TEN MILLION: Tool offset 2)

0 = No specification (offset in tool geometry normal, not inverted)
1 = Offset inverted
HUNDRED MILLIONS: Tool offset
0 = tool offset without replacement tools
1 = tool offset in replacement tool (_DP)

4 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)
(value range 1 to 40)

5 X0 S_SETV Setpoint
6 DFA S_FA Measurement path
7 TSA S_TSA Safe area
8 X0 S_CPA Center point of the 1st axis of the plane (for G17 X)
9 Y0 S_CPO Center point of the 2nd axis of the plane (for G17 Y)
10 XM S_XM Setpoint center point input geometry axis X
11 YM S_YM Setpoint center point input geometry axis Y
12 alpha 0 S_STA1 Starting angle 7)

13 Alpha 1 S_INCA Incremental angle 8)

14 Measure‐
ments

S_NMSP Number of measurements at the same location 1) (value range 1 to 9)

15 ST _DP Number of the replacement tool (duplo number) to be corrected

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1219

No
.

Screen
form param‐
eter

Cycle pa‐
rameter

Meaning

16 T S_TNAME Tool name 2)

17 DL S_DLNUM Setup additive offset DL number 1), 4)

18 TZL S_TZL Work offset 1), 2)

19 DIF S_TDIF Dimensional difference check 1), 2)

20 TUL S_TUL Upper tolerance limit (incremental to the setpoint) 2)

21 TLL S_TLL Lower tolerance limit (incremental to the setpoint) 2)

22 TMV S_TMV Offset range for averaging 1)

23 FW S_K Weighting factor for averaging 1)

24 S_EVNUM Date set, empirical value memory 1), 6)

25 S_MCBIT Reserved
26 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

27 _AMODE Alternative mode
Val‐
ues:

UNITS: Dimensional tolerance yes/no
0 = No
1 = Yes

0) All default values = 0 or marked as the range of values a to b
1) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
2) Only for offset in tool, otherwise parameter = ""
3) Only for offset in tool and dimensional tolerance "Yes", otherwise parameter = 0
4) Only if the "Setup additive offset" function has been set-up in the general MD 18108 $MN_MM_NUM_SUMCORR .
5) If WO "fine" has not been set up in MDs, correction is according to WO "coarse".
6) Empirical averaging only possible for tool offset

Value range for empirical mean value memory:
1 to 20 numbers (n) of the empirical value memory, see channel-specific SD 55623 $SCS_MEA_EMPIRIC_VALUE[n-1]
10000 to 200000 numbers (n) of the mean value memory, see channel-specific SD 55625
$SCS_MEA_AVERAGE_VALUE[n-1]

7) Value range of starting angle -360 to +360 degrees
8) Value range of incremental angle >0 to ≤90 degrees for four measuring points or >0 to ≤120 degrees for three measuring

points.

3.23.2.10 CYCLE997 measuring cycle parameters

PROC CYCLE997 (INT S_MVAR,INT S_KNUM,INT S_PRNUM,REAL S_SETV,REAL S_FA,REAL S_TSA,REAL
S_STA1,REAL S_INCA,REAL S_SETV0,REAL S_SETV1,REAL S_SETV2,REAL S_SETV3,REAL S_SETV4,REAL
S_SETV5,REAL S_SETV6,REAL S_SETV7,REAL S_SETV8,REAL S_TNVL,INT S_NMSP,INT S_MCBIT,INT
_DMODE,INT _AMODE)

Work preparation
3.23 Programming cycles externally

NC programming
1220 Programming Manual, 06/2019, A5E47437142B AA

Table 3-17 CYCLE997 call parameters 1), 2)

No
.

Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measuring variant (default =9)
Val‐
ues:

UNITS: Contour element
9 = Measure sphere
TENS: Repeat measurement
0 = Without measurement repetition
1 = With measurement repetition
HUNDREDS: Correction target
0 = Only measurement (no correction of WO)
1 = Measurement and determination and correction of the WO (see S_KNUM)
THOUSANDS: Measuring strategy
0 = Paraxial measurement, without starting angle, probe alignment corresponding
to SD55740, bit 1
1 = Circling measurement, with starting angle, probe alignment corresponding to
SD55740, Bit 1
2 = Circling measurement, with starting angle, align probe in the switching direction
3 = Paraxial measurement, with starting angle, probe alignment corresponding to
SD55740, bit 1
4 = Paraxial measurement, with starting angle, align probe in the switching direction
TEN THOUSANDS: Number of spheres to be measured
0 = Measure one sphere
1 = Measure three spheres
HUNDRED THOUSANDS: Number of measuring points, only for measurement at
an angle (note measuring strategy: THOUSANDS position > 0)
0 = Three measuring points for measurement at an angle (traversing around the
sphere)
1 = Four measuring points for measurement at an angle (traversing around the
sphere)
ONE MILLION: Determination of the diameter setpoint of the sphere
0 = No determination of the diameter setpoint of the sphere
1 = Determination of the diameter setpoint of the sphere

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1221

No
.

Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

2 Selection S_KNUM Correction in work offset (WO) or basic or basic reference 3)

Val‐
ues:

UNITS:
TENS:
0 = No correction
1 to max. 99 numbers of the work offset or
1 to max. 16 numbers of the basic offset
HUNDREDS: Reserved
THOUSANDS: Correction in WO or basic WO or basic reference
0 = Correction in adjustable WO
1 = Correction in channel-specific basic WO
2 = Correction in basic reference
3 = Correction in global basic WO 7)

9 = Correction in active WO or for G500 in last active channel-specific basic WO
TEN THOUSANDS: Correction in WO or basic WO or basic reference coarse or
fine
0 = Fine correction 6)

1 = Coarse correction
3 Icon+

number
S_PRNUM Number of the field of the probe parameters (not probe number)

(value range 1 to 40)
4 S_SETV Diameter of the sphere(s) 4)

5 DFA S_FA Measurement path
6 TSA S_TSA Safe area
7 Alpha 0 S_STA1 Starting angle for measurement at an angle
8 Alpha 1 S_INCA Incremental angle for measurement at an angle
9 X1 S_SETV0 Position setpoint of the 1st sphere of the 1st axis of the plane (for G17 X) for 3 sphere

measurement
10 Y1 S_SETV1 Position setpoint of the 1st sphere of the 2nd axis of the plane (for G17 Y) for 3 sphere

measurement
11 Z1 S_SETV2 Position setpoint of the 1st sphere of the 3rd axis of the plane (for G17 Z) for 3 sphere

measurement
12 X2 S_SETV3 Position setpoint of the 2nd sphere of the 1st axis of the plane for 3 sphere measurement
13 Y2 S_SETV4 Position setpoint of the 2nd sphere of the 2nd axis of the plane for 3 sphere measurement
14 Z2 S_SETV5 Position setpoint of the 2nd sphere of the 3rd axis of the plane for 3 sphere measurement
15 X3 S_SETV6 Position setpoint of the 3rd sphere of the 1st axis of the plane for 3 sphere measurement
16 Y3 S_SETV7 Position setpoint of the 3rd sphere of the 2nd axis of the plane for 3 sphere measurement
17 Z3 S_SETV8 Position setpoint of the 3rd sphere of the 3rd axis of the plane for 3 sphere measurement
18 TVL S_TNVL Limit value for distortion of the triangle (sum of the deviations) for 3 sphere measurement 5)

19 Measure‐
ments

S_NMSP Number of measurements at the same location 2) (value range 1 to 9)

20 S_MCBIT Reserved

Work preparation
3.23 Programming cycles externally

NC programming
1222 Programming Manual, 06/2019, A5E47437142B AA

No
.

Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

21 _DMODE Display mode
Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

22 _AMODE Alternative mode
1) All default values = 0 or marked as the range of values a to b
2) Display depends on the general SD 54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) Intermediate positioning, circling around the sphere at the equator
4) 3 sphere measurement: The same diameter setpoint applies for all three spheres (_SETV)
5) Default value for S_TNVL=1.2

Correction in WO: Correction is only performed in the WO when the determined distortion is below the S_TNVL limit value.
6) If WO "fine" has not been set up in MDs, correction is according to WO "coarse"
7) For measuring variant "Measure three spheres", correction in a global basic frame is not possible (S_KNUM = 3001 to 3016),

as the frame does not have a rotation component.

3.23.2.11 CYCLE995 measuring cycle parameters

PROC CYCLE995 (INT S_MVAR,INT S_KNUM,INT S_PRNUM,REAL S_SETV,REAL S_FA,REAL S_TSA,REAL
S_STA1,REAL S_INCA,REAL S_DZ,REAL S_SETV0,REAL S_SETV1,REAL S_SETV2,REAL S_TUL,REAL
S_TZL,INT S_NMSP,INT S_MCBIT,INT _DMODE,INT _AMODE)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1223

Table 3-18 CYCLE995 call parameters 1)

No
.

Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measuring variant (default=5)
Val‐
ues:

UNITS: Contour element
5 = Spindle geometry (parallel to the tool axis)
TENS: Repeat measurement
1 = with repeat measurement
HUNDREDS: No offset target
0 = measurement only
THOUSANDS: Measuring strategy
2 = measurement at an angle, align probe in direction of switching
TEN THOUSANDS: Number of spheres to be measured
0 = measure a sphere
HUNDRED THOUSANDS: Number of measurement points
1 = 4 measurement points when measuring at an angle (circle the sphere)
ONE MILLION: Determination of the diameter setpoint of the sphere
0 = No determination of the diameter setpoint of the sphere
1 = Determination of the diameter setpoint of the sphere

2 Selection S_KNUM Correction target
0 = 0

3 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)
(value range 1 to 40)

4 DM S_SETV Diameter of the calibration sphere 4)

5 DFA S_FA Measurement path
6 TSA S_TSA Safe area 5)

7 alpha 0 S_STA1 Starting angle for measurement at an angle 3)

8 S_INCA Incremental angle for measurement at an angle 2)

9 DZ S_DZ Clearance 1st measurement P1 to the 2nd measurement P2 at the shaft of the probe
10 S_SETV0 Setpoint position of the sphere of the 1st axis of the plane (for G17 X) 2)

11 S_SETV1 Setpoint position of the sphere of the 2nd axis of the plane (for G17 Y) 2)

12 S_SETV2 Setpoint position of the sphere of the 3rd axis of the plane (for G17 Z) 2)

13 TUL S_TUL Upper tolerance value of the angular deviation
14 TZL S_TZL Zero offset range 1), 4)

15 Number S_NMSP Number of measurements at the same location 2) (value range 1 to 9)
16 S_MCBIT Reserved2)

17 _DMODE Display mode
Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Work preparation
3.23 Programming cycles externally

NC programming
1224 Programming Manual, 06/2019, A5E47437142B AA

No
.

Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

18 _AMODE Alternative mode
Val‐
ues:

UNITS: Dimensional tolerance yes/no
0 = No
1 = Yes

All default values = 0 or marked as the range of values a to b
1) Display depends on the general SD54760 $SNS_MEA_FUNCTION_MASK_PIECE
2) Parameters are currently not used and also not displayed in the input screen.

The parameter incremental angle S_INCAis permanently set to 90 degrees.
3) Value range of starting angle -360 to +360 degrees
4) for dimensional tolerance yes:

If the measured angle is less than the value of the work offset range TZL, then the result parameters for the angle (_OVR[2],
_OVR[3]) and deviations (_OVR[7], _OVR[8]) are set to zero.
DisplayTZL is realized using the general SD54760 $SNS_MEA_FUNCTION_MASK_PIECE bit25=1.
(enable selected zero offset when measuring angularity, spindle)

5) Parameter TSA refers to the 1st measurement of the calibration sphere.

3.23.2.12 CYCLE996 measuring cycle parameters

PROC CYCLE996(INT S_MVAR,INT S_TC,INT S_PRNUM,REAL S_SETV,REAL S_STA1,REAL S_SETV0,REAL
S_SETV1,REAL S_SETV2,REAL S_SETV3,REAL S_SETV4,REAL S_SETV5,REAL S_TNVL,REAL S_FA,REAL
S_TSA,INT S_NMSP,INT S_MCBIT,INT _DMODE,INT _AMODE)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1225

Table 3-19 CYCLE996 call parameters 1)

No
.

Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measurement version (default=1)
Val‐
ues:

UNITS: Measuring sequence
0 = Calculate kinematics (selection with: Result display, protocol, change of the
swivel data sets, where relevant with operator acknowledgment), see _AMODE
1 = 1st measurement
2 = 2nd measurement
3 = 3rd measurement
TENS: Reserved
0 = 0
HUNDREDS: Measurement version for 1st to 3rd measurement
0 = Measurement of the calibration ball paraxial
1 = Measurement of the calibration sphere at an angle and no spindle correction 3)

2 = Measurement of the calibration sphere and correction of the spindle in the
switching direction of the probe 3)

3 = Paraxial measurement, with starting angle 8)

4 = Paraxial measurement, with starting angle, tracking spindle in the switching
direction of the probe 8)

THOUSANDS: Calculate correction target for kinematics 4)

0 = measuring only. Swivel data sets are calculated, but remain unchanged
1 = calculate swivel data set. Swivel data sets are, if necessary, changed after
acknowledgment by the operator 4)

TEN THOUSANDS: Measuring axis (rotary axis 1 or 2) or vector chain open or
closed for calculate kinematics
0 = Vector chain closed (only for calculate kinematics)
1 = Rotary axis 1 (only for 1st to 3rd measurement)
2 = rotary axis 2 (only for the 1st to 3rd measurement) 5)

3 = vector chain open (only for calculate kinematics)
HUNDRED THOUSANDS: Normalizing of rotary axis 1 for calculate kinematics
0 = no scaling rotary axis 1
1 = scaling in the direction of the 1st axis of the plane (for G17 X)
2 = scaling in the direction of the 2nd axis of the plane (for G17 Y)
3 = scaling in the direction of the 3rd axis of the plane (for G17 Z)
ONE MILLION: Normalizing of rotary axis 2 for calculate kinematics 5)

0 = no scaling rotary axis 2
1 = scaling in the direction of the 1st axis of the plane (for G17 X)
2 = scaling in the direction of the 2nd axis of the plane (for G17 Y)
3 = scaling in the direction of the 3rd axis of the plane (for G17 Z)
TEN MILLION: Log file
0 = no protocol file
1 = protocol file with the calculated vectors (tool carrier) and the 1st dynamic 5-axis
transformation (TRAORI(1)), if set-up in MDs.

2 S_TC Number of the swivel data record (tool carrier)
3 Icon+

number
S_PRNUM Number of the field of the probe parameters (not probe number)

(default=1)

Work preparation
3.23 Programming cycles externally

NC programming
1226 Programming Manual, 06/2019, A5E47437142B AA

No
.

Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

4 S_SETV Diameter of the calibration ball
5 alpha 0 S_STA1 Starting angle for measurement at an angle
6 alpha 0 S_SETV0 Position value of rotary axis 1 (if rotary axis is manual or semi-automatic)
7 alpha 1 S_SETV1 Position value of rotary axis 2 (if rotary axis is manual or semi-automatic) 6)

8 XN S_SETV2 Position value for normalizing rotary axis 1
9 XN S_SETV3 Position value for normalizing of rotary axis 2 6)

10 Delta S_SETV4 Tolerance value of the offset vectors I1 to I4
11 Delta S_SETV5 Tolerance value of rotary axis vectors V1 and V2
12 TVL S_TNVL Limit value of angular segment of the rotary axis (value range 1 to 60 degrees)

(default=20) 7)

13 DFA S_FA Measurement path
14 TSA S_TSA Safe area
15 Measure‐

ments
S_NMSP Number of measurements at the same location 2) (default=1)

16 S_MCBIT Reserved
17 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

18 _AMODE Alternative mode
Val‐
ues:

UNITS: Tolerance check yes/no
0 = No
1 = Yes: Evaluation of the tolerance values of the vectors S_SETV4, S_SETV5
TENS: Acknowledgment by the operator when entering the calculated vectors in
the swivel data set 4)

0 = yes: Operator must acknowledge the change
1 = no: calculated vectors are entered immediately (only effective if HUNDREDS
and THOUSANDS position = 0)
HUNDREDS: Measurement result display 5)

0 = no
1 = yes
THOUSANDS: Measurement result display can be edited
0 = no
1 = yes, and can be edited (only effective, if the HUNDREDS position = 1)

1) All default values = 0 or marked as default=x
2) Display depends on the general SD54760 $SNS_MEA_FUNCTION_MASK_PIECE
3) Using this version, for example, for 90 degree positions, the kinematics can be measured at the calibration ball, without

colliding with the retaining shaft of the calibration ball. A starting angle S_STA1 (0 to 360 degrees) can be entered. The
incremental angle when circling the sphere is equal to 90 degrees.
As feedrate along the circular path, the channel-specific SD55634 $SCS_MEA_FEED_PLANE_VALUE is used

4) There is an operator prompt with M0 before entering. The vectors are only entered with NC start.
If the measuring program is aborted with RESET no calculated vectors are entered.
Vectors are only entered when the tolerance of the offset vectors has not been exceeded during the calculation.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1227

5) Measurement result display only for the calculated kinematics measuring version.
If the measurement result should also be displayed after the 1st to the 3rd measurement, then this is realized by setting the
channel-specific SD 55613 $SCS_MEA_RESULT_DISPLAY.

6) Rotary axis 2 only for kinematics with two rotary axes
7) Limit value angular segment of the rotary axis. Value range of S_TNVL between 20 and 60 degrees. For values of S_TNVL

< 20 degrees, inaccuracies can be expected as a result of the measuring inaccuracies in the micrometer range of the probe.
If the limit value is violated, then error message 61430 is output – with a display of the minimum limit value.

8) Spindle is tracked in the probe switching direction if SD54760 bit 17 = 1

3.23.2.13 CYCLE9960 measuring cycle parameters

PROC CYCLE9960(INT S_MVAR,STRING[40] S_TNAME,INT S_PRNUM,REAL S_SETV,REAL S_SETV1,REAL
S_START_RA1,REAL S_END_RA1,INT S_CMEA_RA1,REAL S_POS_RA2,REAL S_SETV2,REAL
S_START_RA2,REAL S_END_RA2,INT S_CMEA_RA2,REAL S_POS_RA1,REAL S_SETV4,REAL S_FA,REAL
S_TSA,INT S_NMSP,INT S_DMODE,INT S_AMODE,INT S_KNUM)

Table 3-20 CYCLE9960 call parameters 1)

No
.

Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

1 Selection S_MVAR Measurement version (default=1)
Values: UNITS: Measuring variant

0 = measure and calculate kinematics (select with: Result display, protocol,
change of swivel data set (see thousands S_MVAR)
1 = measure reference head
2 = adapt head to reference head
3 = measure and calculate interpolation points (E996)
TENS: Reserved
HUNDREDS: Ball measuring variant
2 = measurement of the calibration ball and tracking of the spindle in the switch‐
ing direction of the probe
4 = paraxial measurement, with starting angle, tracking spindle in the switching
direction of the probe 2)

THOUSANDS: Calculate correction target for kinematics 3)

0 = measure and calculate. Data sets are calculated and remain unchanged
1 = calculated data sets may be changed after operator acknowledgment
2 = previously measured kinematics are calculated and, if applicable, changed
after operator acknowledgment
TENTHOUSANDS: Measuring axis (rotary axis 1 or 2)
1 = measure and calculate all existing rotary axes
4 = measure and calculate only rotary axis 1
5 = measure and calculate only rotary axis 2

2 S_TNAME Name of the transformation (swivel data set or transformation based on kinematic chains)
3 Icon+

number
S_PRNUM Number of the field of the probe parameters (not probe number)

(default=1)
4 S_SETV Diameter of the calibration ball

Work preparation
3.23 Programming cycles externally

NC programming
1228 Programming Manual, 06/2019, A5E47437142B AA

No
.

Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

5 Alpha 1 S_SETV1 Starting angle for measuring at an angle for the 1st rotary axis
6 S_START_RA1: Starting angle of the 1st rotary axis
7 S_END_RA1: Final angle of 1st rotary axis
8 S_CMEA_RA1: Number of measurements of the 1st rotary axis, 3 for measuring and cal‐

culating kinematics. Up to 12 measurements are possible for interpolation points.
9 S_POS_RA2: Position of the 2nd rotary axis while measuring the 1st rotary axis 4)

10 Alpha 2 S_SETV2 Starting angle for measuring at an angle for the 2nd rotary axis 4)

11 S_START_RA2: Starting angle of the 2nd rotary axis 4)

12 S_END_RA2: Final angle of 2nd rotary axis 4)

13 S_CMEA_RA2: Number of measurements of the 2nd rotary axis, 3 for measuring and calcu‐
lating kinematics. Up to 12 measurements are possible for interpolation points.4)

14 S_POS_RA1: Position of the 1st rotary axis while measuring the 2nd rotary axis
15 Delta S_SETV4 Tolerance value of offset vectors
16 DFA S_FA Measurement path
17 TSA S_TSA Safe area
18 Number S_NMSP Number of measurements at the same location 5)

 (default=1)
19 _DMODE Display mode

Values: UNITS: Machining plane G17/G18/G19
0 = compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

20 _AMODE Alternative mode
Values: ONES: Tolerance check yes/no

0 = no
1 = yes: Evaluation of the tolerance values of the vectors -> S_SETV4, S_SETV5
TENS: Automatic calibration
0 = without automatic calibration
1 = automatic calibration
HUNDREDS: Automatic starting angle
0 = set starting angle is used
1 = automatic calculation of the starting angle, for each measuring point

21 S_KNUM Number of the WO to be corrected for reference head measurement
Values UNITS: The correction is always applied to the coarse offset, the fine offset is

deleted
TENS: 1 ... 99 number of the adjustable WO (1=G54)
THOUSANDS: 9 correction active, adjustable WO

1) All default values = 0 or marked as default = xx
2) Spindle is tracked in the switching direction of the probe if SD54760 bit 17 = 1
3) There is an operator prompt with M0 before entering. The vectors cannot be entered until the NC has been started. If the

measuring program is interrupted with RESET, no calculated vectors are entered. Vectors are entered only if the tolerance
of the offset vectors is not exceeded in the calculation.

4) Rotary axis 2 only for kinematics with 2 rotary axes
5) Display depends on the general SD54760 $SNS_MEA_FUNCTION_MASK_PIECE.

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1229

3.23.2.14 CYCLE982 measuring cycle parameters

PROC CYCLE982(INT S_MVAR,INT S_KNUM,INT S_PRNUM,INT S_MA,INT S_MD,REAL S_ID,REAL S_FA,REAL
S_TSA,REAL S_VMS,REAL S_STA1,REAL S_CORA,REAL S_TZL,REAL S_TDIF,INT S_NMSP,INT S_EVNUM,INT
S_MCBIT,INT _DMODE,INT _AMODE)

Table 3-21 CYCLE982 call parameters 1)

No. Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measuring version
Val‐
ues:

UNITS: Calibration/measurement
0 = Calibrate tool probe
1 = Single tool measurement 3)

2 = Multiple tool measurement, determine lengths and tool radius (for milling tools)
TENS: Calibration or measurement in the MCS or WCS
0 = Machine-related 4)

1 = Workpiece-related
HUNDREDS: Measurement with or without reversal for milling tools
0 = Measurement without reversal
1 = Measurement with reversal
THOUSANDS: Correction target for milling tools
0 = determine length or length and radius (see S_MVAR 1st position)
1 = determine radius, if S_MVAR 1st position = 1
2 = determine length and radius (face side), if S_MVAR 1st position = 1 or 2
3 = side milling tool, upper cutting edge (rear side) and determine length and radi‐
us 5)

TEN THOUSANDS: Position of the milling tool or the drill
0 = Axial position of the milling tool or the drill, radius in 2nd axis of the plane (for
G18 X) 7)

1 = Radial position of the milling tool or the drill, radius in 1st axis of the plane (for
G18 Z) 7)

HUNDRED THOUSANDS: Incremental calibration or measurement
0 = No specification
1 = Incremental calibration or measurement
ONE MILLION: Position spindle at starting angle S_STA1 (only for measurement of
milling tools)
0 = spindle is not positioned
1 = spindle is positioned at the starting angle S_STA1

2 Selection S_KNUM Offset variant 2)

Val‐
ues:

UNITS: Tool offset
0 = No specification (tool offset in geometry)
1 = Tool offset in wear

3 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)
(default=1)

Work preparation
3.23 Programming cycles externally

NC programming
1230 Programming Manual, 06/2019, A5E47437142B AA

No. Screen
form param‐
eters

Cycle pa‐
rameters

Meaning

4 X0 S_MA Measuring axis
Val‐
ues:

1 = 1. Axis of the plane (for G18 Z)
2 = 2nd axis of the plane (for G18 X)

5 +- S_MD Measuring direction
Val‐
ues:

0 = No selection (measuring direction is determined from actual value)
1 = Positive
2 = Negative

6 Z2 S_ID Offset
7 DFA S_FA Measurement path
8 TSA S_TSA Safe area
9 VMS S_VMS Variable measuring velocity for calibration 2)

10 Alpha1 S_STA1 Starting angle when measuring milling tools
11 Alpha2 S_CORA Offset angle when measuring milling tools with reversal 8)

12 TZL S_TZL Work offset when measuring milling tools When calibrating S_TZL = 0
13 DIF S_TDIF Dimension difference check
14 Measure‐

ments
S_NMSP Number of measurements at the same location 2) (default=1)

15 EVN S_EVNUM Number of the empirical mean value memory 2), 9)

16 S_MCBIT Reserved
17 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)
TENS: Cutting edge position for turning and milling tools
(only for display in the input screens 1 to 9)
HUNDREDS: Tool type
0 = Turning tool
1 = Milling tool
2 = Drill
THOUSANDS: The approach strategy with reference to the tool probe
0 = PLUS [X/Z]; X if tool position axial, Z if tool position radial
1 = MINUS [X/Z]; X if tool position axial, Z if tool position radial

18 _AMODE Alternative mode
 Val‐

ues:
UNITS: Reserved

 TENS: Reserved
 HUNDREDS: Reserved
 THOUSANDS: approach starting position after measurement for calibration and

single measurement (see S_MVAR - UNITS)
0 = tool is located, offset by DFA with respect to the probe edge
1 = approach starting position

1) All default values = 0 or marked as default=x

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1231

2) Display depends on the general SD 54762 _MEA_FUNCTION_MASK_TOOL
3) Measure turning or milling tool or drill. Measuring axis in parameter S_MA

Specification for turning tools via cutting edge position 1...8, for milling tools via HUNDREDS to THOUSANDS position in
parameter S_MVAR.

4) Measurement and calibration are performed in the basic coordinate system (MCS for kinematic transformation switched off).
5) Not for incremental measuring
6) Only for multiple measurements S_MVAR=x2x02 or x3x02 (example, disk-type or groove milling tools)
7) If the channel-specific SD 42950 $SC_TOOL_LENGTH_TYPE = 2, then the tool length components are assigned just the

same as for turning tools
8) Only for measurement with reversal S_MVAR=xx1x1
9) Empirical value generation

Value range of the empirical value memory: 1 to 20 numbers(n) of the empirical value memory, see channel-specific
SD 55623 $SCS_MEA_EMPIRIC_VALUE[n-1].

3.23.2.15 CYCLE971 measuring cycle parameters

PROC CYCLE971(INT S_MVAR,INT S_KNUM,INT S_PRNUM,INT S_MA,INT S_MD,REAL S_ID,REAL S_FA,REAL
S_TSA,REAL S_VMS,REAL S_TZL,REAL S_TDIF,INT S_NMSP,REAL S_F1,REAL S_S1,REAL S_F2,REAL
S_S2,REAL S_F3,REAL S_S3,INT S_EVNUM,INT S_MCBIT,INT _DMODE,INT _AMODE)

Work preparation
3.23 Programming cycles externally

NC programming
1232 Programming Manual, 06/2019, A5E47437142B AA

Table 3-22 CYCLE971 call parameters 1)

No. Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

1 S_MVAR Measuring version
Val‐
ues:

UNITS:
0 = Calibrate tool probe
1 = Measure tool with stationary spindle (length or radius)
2 = Measure tool with rotating spindle (length or radius), see parameters S_F1
to S_S4
TENS: Measurement in the machine coordinate system or workpiece coordinate
system
0 = Measurement in MCS (machine-related), measure tool or calibrate tool probe
1 = Measurement in WCS (workpiece-related), measure tool or calibrate tool probe
HUNDREDS: Individually check teeth
0 = no
1 = yes
THOUSANDS:
0 = 0
TEN THOUSANDS: Incremental calibration or measurement
0 = No specification
1 = Incremental calibration or measurement
HUNDRED THOUSANDS: Calibrate tool probe automatically
0 = Do not calibrate tool probe automatically
1 = Calibrate tool probe automatically
ONE MILLION: Calibrating in the plane with spindle reversal
0 = Calibrating in the plane without spindle reversal
1 = Calibrating in the plane with spindle reversal

2 Selection S_KNUM Offset variant 2)

Val‐
ues:

UNITS: Tool offset
0 = No specification (tool offset in geometry)
1 = Tool offset in wear

3 Icon+
number

S_PRNUM Number of the field of the probe parameters (not probe number)

4 X0 S_MA Measuring axis, offset axis 4)

Val‐
ues:

UNITS: Number of the measuring axis
1 = 1st axis of the plane (for G17 X)
2 = 2nd axis of the plane (for G17 Y)
3 = 3rd axis of the plane (for G17 Z)
TENS:
0 = 0
HUNDREDS: Number of the offset axis
0 = not an offset axis
1 = 1. axis of the plane (for G17 X)
2 = 2nd axis of the plane (for G17 Y)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1233

No. Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

5 +- S_MD Measuring direction
Val‐
ues:

0 = No selection (measuring direction is determined from actual value)
1 = Positive
2 = Negative

6 V S_ID Offset
Val‐
ues:

0 = For tools without offset
>0 =
● Calibration: The offset acts on the 3rd axis of the plane (for G17 Z) if the

diameter of the calibration tool is greater than the upper diameter of the probe.
The tool is offset by the tool radius from the center of the probe, minus the value
of S_ID. The offset axis is also specified in S_MA .

● Measure: With multiple cutting edges, the offset of tool length and the highest
point of the cutting edge must be specified for radius measurement or the offset
of tool radius to the highest point of the cutting edge must be specified when
measuring the length.

7 DFA S_FA Measurement path
8 TSA S_TSA Safe area
9 VMS S_VMS Variable measuring velocity for calibration 2)

10 TZL S_TZL Work offset (only for tool measurement)

11 DIF S_TDIF Dimensional difference check for tool measurement (S_MVAR=xx1 or S_MVAR=xx2)
12 Measure‐

ments
S_NMSP Number of measurements at the same location 2)

13 F1 S_F1 1st feedrate for contact with rotating spindle 2)

14 S1 S_S1 1st speed for contact with rotating spindle 2)

15 F2 S_F2 2nd feedrate for contact with rotating spindle 2)

16 S2 S_S2 2nd speed for contact with rotating spindle 2)

17 F3 S_F3 2nd feedrate for contact with rotating spindle 3)

18 S3 S_S3 2nd speed for contact with rotating spindle 3)

19 EVN S_EVNUM Number of the empirical value memory 2)

20 S_MCBIT Screen form of the _CBITs or _CHBITs
21 _DMODE Display mode

Val‐
ues:

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane active before the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Work preparation
3.23 Programming cycles externally

NC programming
1234 Programming Manual, 06/2019, A5E47437142B AA

No. Screen
form pa‐
rameters

Cycle pa‐
rameters

Meaning

22 _AMODE Alternative mode
Val‐
ues:

UNITS: Measuring the tool offset for radius
1 = no
2 = yes
TENS: Direction of the tool offset when measuring the radius in the 3rd axis of the
plane (for G17 Z)
1 = Positive
2 = Negative
HUNDREDS: Tool offset when measuring the length or when calibrating the probe
in the 3rd axis
0 = Compatibility, auto
1 = No
2 = Yes

 THOUSANDS: Direction of the tool offset when measuring the length in the offset
axis (see S_MA HUNDREDS)
1 = Positive
2 = Negative

1) All default values = 0 or marked as default=x
2) Display depends on the general SD 54762 MEA_FUNCTION_MASK_TOOL
3) Only for offset in tool and dimensional tolerance "Yes", otherwise parameter = 0
4) For automatic measurement (S_MVAR=1x00xx), no display of measuring axis, offset axis ⇒ S_MA=0.

3.23.2.16 CYCLE150 measuring cycle parameters
PROC CYCLE150(INT S_PICT,INT S_PROT,STRING[160] S_PATH) SAVE
ACTBLOCNO DISPLOF

Table 3-23 CYCLE150 call parameters

No. Screen pa‐
rameters

Cycle pa‐
rameters

Meaning

1 Measuring
result
screen

S_PICT Select result display (default = 0)

 Values: UNITS:
0 = Measuring result screen OFF
1 = Measuring result screen ON

 Tens: Select display mode (values as for SD 55613)
1 = Display measuring result screen - automatically deselect after 8 s
3 = Display measuring result screen - acknowledge using NC Start
4 = Display measuring result screen - only for alarms (61303 ... 61306)

2 S_PROT Select logging (default = 0)

Work preparation
3.23 Programming cycles externally

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1235

No. Screen pa‐
rameters

Cycle pa‐
rameters

Meaning

 Log Values: UNITS: Select protocol off / on / last measurement
0 = Log OFF
1 = Log ON
2 = Log last measurement

 Log type TENS: Select log type
0 = Standard log
1 = User log (can be freely defined)

 Log format HUNDREDS: Select log format
0 = Text format
1 = Table format (for import to Excel)

 Log data THOUSANDS: Rewrite or attach selection
0 = New
1 = Attach

 Log
archive

 TEN THOUSANDS: Select log archive
0 = As part program
1 = Directory

3 S_PATH Path for the log file corresponding to the log archive selection
(complete path name or only file name, e.g.:
"//NC:/WKS.DIR/NAME.WPD or "MESSPROTOKOLL.TXT"

Work preparation
3.23 Programming cycles externally

NC programming
1236 Programming Manual, 06/2019, A5E47437142B AA

Tables 4
4.1 Operations

Note
Cycles

The list of operations contains all cycles, which occur in the NC program (G code), i.e. can be
programmed in the program editor using masks - or must be programmed for loops without
programming support. Cycles, which for reasons of compatibility, are still available in the
control, however can no longer be edited using the SINUMERIK Operate program editor
("compatibility cycles") are not taken into account.

Operations A ... C

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
: O NC main block number, jump label termina‐

tion, concatenation operator
 + PGAsl

* O Operator for multiplication + PGAsl
+ O Operator for addition + PGAsl
- O Operator for subtraction + PGAsl
< O Comparison operator, less than + PGAsl
<< O Concatenation operator for strings + PGAsl
<= O Comparison operator, less than or equal to + PGAsl
= O Assignment operator + PGAsl
>= O Comparison operator, greater than or equal to + PGAsl
/ O Operator for division + PGAsl
/0
…
…
/7

 block is skipped (1st skip level)
...
...
block is skipped (8th skip level)

 + PGsl

A A Axis name m/s + PGAsl
A2 A Tool orientation: RPY or Euler angle s + PGAsl
A3 A Tool orientation: 1st component of the direc‐

tion vector
s + PGAsl

A4 A Tool orientation: 1st component of the surface
normal vector at start of block

s + PGAsl

A5 A Tool orientation: 1st component of the surface
normal vector at end of block

s + PGAsl

A6 A Tool orientation: 1st component of the direc‐
tion vector for taper's axis of rotation

s + PGAsl

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1237

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
A7 A Tool orientation: 1st Vector component for in‐

termediate orientation on peripheral surface
of taper

s + PGAsl

ABS F Absolute value (amount) + + PGAsl
AC K Absolute dimensions of coordinates/positions s + PGsl
ACC K Effect of current axial acceleration m + + PGsl
ACCLIMA K Effect of current maximum axial acceleration m + + PGAsl
ACN K Absolute dimensions for rotary axes, ap‐

proach position in negative direction
s + PGsl

ACOS F Arc cosine
(trigon. function)

 + + PGAsl

ACP K Absolute dimensions for rotary axes, ap‐
proach position in positive direction

s + PGsl

ACTBLOCNO P Output of current block number of an alarm
block, even if "current block display sup‐
pressed" (DISPLOF) is active!

 + PGAsl

ADDFRAME F Inclusion and possible activation of a meas‐
ured frame

 + - PGAsl, FB1sl (K2)

ADIS A Rounding clearance for path functions G1,
G2, G3, ...

m + PGsl

ADISPOS A Rounding clearance for rapid traverse G0 m + PGsl
ADISPOSA P Size of the tolerance window for IPOBRKA m + + PGAsl
ALF A LIFTFAST angle m + PGAsl
AMIRROR G Programmable mirroring s + PGsl
AND K Logical AND + PGAsl
ANG A Contour angle s + PGsl
AP A Polar angle m/s + PGsl
APR K Read/show access protection + PGAsl
APRB K Read access right, OPI + PGAsl
APRP K Read access right, part program + PGAsl
APW K Write access protection + PGAsl
APWB K Write access right, OPI + PGAsl
APWP K Write access right, part program + PGAsl
APX K Definition of the access right for executing the

specified language element
 + PGAsl

AR A Opening angle m/s + PGsl
AROT G Programmable rotation s + PGsl
AROTS G Programmable frame rotations with solid an‐

gles
s + PGsl

AS K Macro definition + PGAsl
ASCALE G Programmable scaling s + PGsl
ASIN F Arithmetic function, arc sine + + PGAsl
ASPLINE G Akima spline m + PGAsl

Tables
4.1 Operations

NC programming
1238 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
ATAN2 F Arc tangent 2 + + PGAsl
ATOL A Axis-specific tolerance for compressor func‐

tions, orientation smoothing and smoothing
types

m + PGAsl

ATRANS G Additive programmable work offset s + PGsl
AUXFUDEL P Delete auxiliary function channel-specifically

from the global list
 + - FB1sl (H2)

AUXFUDELG P Delete all auxiliary functions of an auxiliary
function group channel-specifically from the
global list

 + - FB1sl (H2)

AUXFUMSEQ P Determine output sequence of M auxiliary
functions

 + - FB1sl (H2)

AUXFUSYNC P Generate a complete part program block for
the channel-specific SERUPRO end ASUB as
string from the global list of auxiliary functions

 + - FB1sl (H2)

AX K Variable axis identifier m/s + PGAsl
AXCTSWE P Rotate axis container + - PGAsl
AXCTSWEC P Cancel enable for axis container rotation + + PGAsl
AXCTSWED P Rotating axis container (command variant for

commissioning!)
 + - PGAsl

AXIS K Axis identifier, axis address + PGAsl
AXNAME F Converts input string into axis identifier + - PGAsl
AXSTRING F Converts string spindle number + - PGAsl
AXTOCHAN P Request axis for a specific channel. Possible

from NC program and synchronized action.
 + + PGAsl

AXTOSPI F Converts axis identifier into a spindle index + - PGAsl
B A Axis name m/s + PGAsl
B2 A Tool orientation: RPY or Euler angle s + PGAsl
B3 A Tool orientation: component of the direction

vector
s + PGAsl

B4 A Tool orientation: 2nd component of the sur‐
face normal vector at start of block

s + PGAsl

B5 A Tool orientation: 2nd component of the sur‐
face normal vector at end of block

s + PGAsl

B6 A Tool orientation: 2nd component of the direc‐
tion vector for taper's axis of rotation

s + PGAsl

B7 A Tool orientation: 2nd Vector component for in‐
termediate orientation on peripheral surface
of taper

s + PGAsl

B_AND O Bit-by-bit AND + PGAsl
B_OR O Bit-by-bit OR + PGAsl
B_NOT O Bit-by-bit negation + PGAsl
B_XOR O Bit-by-bit exclusive OR + PGAsl
BAUTO G Definition of the first spline section by means

of the next 3 points
m + PGAsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1239

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
BLOCK K Together with the keyword TO defines the pro‐

gram part to be processed in an indirect sub‐
program call

 + PGAsl

BLSYNC K Processing of interrupt routine is only to start
with the next block change

 + PGAsl

BNAT 6) G Natural transition to first spline block m + PGAsl
BOOL K Data type: Boolean value TRUE/FALSE or 1/0 + PGAsl
BOUND F Tests whether the value falls within the de‐

fined value range. If the values are equal, the
test value is returned.

 + + PGAsl

BRISK 6) G Fast non-smoothed path acceleration m + PGAsl
BRISKA P Switch on brisk path acceleration for the pro‐

grammed axes
 + - PGAsl

BSPLINE G B spline m + PGAsl
BTAN G Tangential transition to first spline block m + PGAsl
C A Axis name m/s + PGAsl
C2 A Tool orientation: RPY or Euler angle s + PGAsl
C3 A Tool orientation: 3rd component of the direc‐

tion vector
s + PGAsl

C4 A Tool orientation: 3rd component of the surface
normal vector at start of block

s + PGAsl

C5 A Tool orientation: 3rd component of the surface
normal vector at end of block

s + PGAsl

C6 A Tool orientation: 3rd component of the direc‐
tion vector for taper's axis of rotation

s + PGAsl

C7 A Tool orientation: 3rd Vector component for in‐
termediate orientation on peripheral surface
of taper

s + PGAsl

CAC K Absolute position approach + PGAsl
CACN K Absolute approach of the value listed in the

table in negative direction
 + PGAsl

CACP K Absolute approach of the value listed in the
table in positive direction

 + PGAsl

CADAPTOF P Deactivate load adjustment + - PGAsl
CADAPTON P Activate load adjustment + - PGAsl
CALCDAT F Calculates radius and center point of circle

from 3 or 4 points
 + - PGAsl

CALCPOSI F Checking for protection area violation, work‐
ing area limitation and software limits

 + - PGAsl

CALL K Indirect subprogram call + PGAsl
CALLPATH P Programmable search path for subprogram

calls
 + - PGAsl

CANCEL P Cancel modal synchronized action + - FBSYsl
CANCELSUB P Cancel current subprogram level + + FBSYsl
CASE K Conditional program branch + PGAsl

Tables
4.1 Operations

NC programming
1240 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
CDC K Direct approach of a position + PGAsl
CDOF 6) G Switch off collision monitoring m + PGsl
CDOF2 G Switch off collision monitoring during 3D cir‐

cumferential milling
m + PGsl

CDON G Activate collision monitoring m + PGsl
CFC 6) G Constant feedrate on contour m + PGsl
CFIN G Constant feedrate for internal radius only, not

for external radius
m + PGsl

CFINE F Assignment of fine offset to a FRAME variable + - PGAsl
CFTCP G Constant feedrate in tool center point (center

point path)
m + PGsl

CHAN K Specify validity range for data + PGAsl
CHANDATA P Set channel number for channel data access + - PGAsl
CHAR K Data type: ASCII character + PGAsl
CHF A Chamfer;

value = length of chamfer
s + PGsl

CHKDM F Uniqueness check within a magazine + - FBWsl
CHKDNO F Check for unique D numbers + - PGAsl
CHR A Chamfer;

value = length of chamfer in direction of move‐
ment

 + PGsl

CIC K Approach position by increments + PGAsl
CIP G Circular interpolation through intermediate

point
m + PGsl

CLEARM P Reset one/several markers for channel coor‐
dination

 + + PGAsl

CLRINT P Deselect interrupt + - PGAsl
CMIRROR F Mirror on a coordinate axis + - PGAsl
COARSEA K Motion end when "Exact stop coarse" reached m + PGAsl
COLLPAIR F Check whether part of a collision pair + PGAsl
COMPCAD G Activate the compressor function COMPCAD m + PGAsl
COMPCURV G Activate the compressor function COMP‐

CURV
m + PGAsl

COMPLETE Control instruction for reading and writing data + PGAsl
COMPOF 6) G Deactivate NC block compression m + PGAsl
COMPON G Activate the compressor function COMPON m + PGAsl
COMPSURF G Activate the compressor function COMPSURF m + PGAsl
CONTDCON P Activate tabular contour decoding + - PGAsl
CONTPRON P Activate reference preprocessing + - PGAsl
CORROF P All active overlaid movements are deselected. + - PGsl
CORRTC F Modify offset vectors or direction vectors of

orientable tool carriers according to machine
measurement.

 + - PGAsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1241

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
CORRTRAFO F Modifying offset vectors or direction vectors

for the orientation axes in the kinematic model
of the machine

 + - PGAsl

COS F Cosine
(trigon. function)

 + + PGAsl

COUPDEF P Definition ELG group/synchronous spindle
group

 + - PGAsl

COUPDEL P Delete ELG group + - PGAsl
COUPOF P Deactivate ELG group / synchronous spindle

pair
 + - PGAsl

COUPOFS P Deactivate ELG group/synchronous spindle
pair with stop of following spindle

 + - PGAsl

COUPON P Activate ELG group / synchronous spindle pair + - PGAsl
COUPONC P Transfer activation of ELG group/synchro‐

nous spindle pair with previous programming
 + - PGAsl

COUPRES P Reset ELG group + - PGAsl
CP 6) G Path motion m + PGAsl
CPBC K Generic coupling: Block change criterion + + FB3sl (M3)
CPDEF K Generic coupling: Creating a coupling module + + FB3sl (M3)
CPDEL K Generic coupling: Deletion of a coupling mod‐

ule
 + + FB3sl (M3)

CPFMOF K Generic coupling: Behavior of the following
axis at complete switch-off

 + + FB3sl (M3)

CPFMON K Generic coupling: Behavior of the following
axis when switching on

 + + FB3sl (M3)

CPFMSON K Generic coupling: Synchronization mode + + FB3sl (M3)
CPFPOS K Generic coupling: Synchronized position of

the following axis
 + + FB3sl (M3)

CPFRS K Generic coupling: Coordinate reference sys‐
tem

 + + FB3sl (M3)

CPLA K Generic coupling: Definition of a leading axis + - FB3sl (M3)
CPLCTID K Generic coupling: Number of the curve table + + FB3sl (M3)
CPLDEF K Generic coupling: Definition of a leading axis

and creation of a coupling module
 + + FB3sl (M3)

CPLDEL K Generic coupling: Deleting a leading axis of a
coupling module

 + + FB3sl (M3)

CPLDEN K Generic coupling: Denominator of the cou‐
pling factor

 + + FB3sl (M3)

CPLINSC K Generic coupling: Scaling factor of the input
value of a leading axis

 + + FB3sl (M3)

CPLINTR K Generic coupling: Offset value of the input val‐
ue of a leading axis

 + + FB3sl (M3)

CPLNUM K Generic coupling: Numerator of the coupling
factor

 + + FB3sl (M3)

Tables
4.1 Operations

NC programming
1242 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
CPLOF K Generic coupling: Switching off a leading axis

of a coupling module
 + + FB3sl (M3)

CPLON K Generic coupling: Switching on a leading axis
of a coupling module

 + + FB3sl (M3)

CPLOUTSC K Generic coupling: Scaling factor for the output
value of a coupling

 + + FB3sl (M3)

CPLOUTTR K Generic coupling: Offset value for the output
value of a coupling

 + + FB3sl (M3)

CPLPOS K Generic coupling: Synchronized position of
the leading axis

 + + FB3sl (M3)

CPLSETVAL K Generic coupling: Coupling reference + + FB3sl (M3)
CPMALARM K Generic coupling: Suppression of special cou‐

pling-related alarm outputs
 + + FB3sl (M3)

CPMBRAKE K Generic coupling: Response of the following
axis to certain stop signals and stop com‐
mands

 + - FB3sl (M3)

CPMPRT K Generic coupling: Coupling response at part
program start under block search run via pro‐
gram test

 + + FB3sl (M3)

CPMRESET K Generic coupling: Coupling behavior for RE‐
SET

 + + FB3sl (M3)

CPMSTART K Generic coupling: Coupling behavior at part
program start

 + + FB3sl (M3)

CPMVDI K Generic coupling: Response of the following
axis to certain NC/PLC interface signals

 + + FB3sl (M3)

CPOF K Generic coupling: Switching off a coupling
module

 + + FB3sl (M3)

CPON K Generic coupling: Switching on a coupling
module

 + + FB3sl (M3)

CPRECOF 6) G Deactivate programmable contour accuracy m + PGAsl
CPRECON G Activate programmable contour accuracy m + PGAsl
CPRES K Generic coupling: Activates the configured da‐

ta of the synchronous spindle coupling
 + - FB3sl (M3)

CPROT P Activate / deactivate channel-specific protec‐
tion zone

 + - PGAsl

CPROTDEF P Definition of a channel-specific protection area + - PGAsl
CPSETTYPE K Generic coupling: Coupling type + + FB3sl (M3)
CPSYNCOP K Generic coupling: Threshold value of position

synchronism "Coarse"
 + + FB3sl (M3)

CPSYNCOP2 K Generic coupling: Threshold value of position
synchronism "Coarse" 2

 + + FB3sl (M3)

CPSYNCOV K Generic coupling: Threshold value of velocity
synchronism "Coarse"

 + + FB3sl (M3)

CPSYNFIP K Generic coupling: Threshold value of position
synchronism "Fine"

 + + FB3sl (M3)

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1243

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
CPSYNFIP2 K Generic coupling: Threshold value of position

synchronism "Fine" 2
 + + FB3sl (M3)

CPSYNFIV K Generic coupling: Threshold value of velocity
synchronism "Fine"

 + + FB3sl (M3)

CR A Circle radius s + PGsl
CROT F Rotation of the current coordinate system + - PGAsl
CROTS F Programmable frame rotations with solid an‐

gles (rotation in the specified axes)
s + - PGsl

CRPL F Frame rotation in any plane + - FB1sl (K2)
CSCALE F Scale factor for multiple axes + - PGAsl
CSPLINE F Cubic spline m + PGAsl
CT G Circle with tangential transition m + PGsl
CTAB F Define following axis position according to

leading axis position from curve table
 + + PGAsl

CTABDEF P Activate table definition + - PGAsl
CTABDEL P Clear curve table + - PGAsl
CTABEND P Deactivate table definition + - PGAsl
CTABEXISTS F Checks the curve table with number n + + PGAsl
CTABFNO F Number of curve tables still possible in the

memory
 + + PGAsl

CTABFPOL F Number of polynomials still possible in the
memory

 + + PGAsl

CTABFSEG F Number of curve segments still possible in the
memory

 + + PGAsl

CTABID F Returns table number of the nth curve table + + PGAsl
CTABINV F Define leading axis position according to fol‐

lowing axis position from curve table
 + + PGAsl

CTABISLOCK F Returns the lock state of the curve table with
number n

 + + PGAsl

CTABLOCK P Delete and overwrite, lock + + PGAsl
CTABMEMTYP F Returns the memory in which curve table num‐

ber n is created.
 + + PGAsl

CTABMPOL F Max. number of polynomials still possible in
the memory

 + + PGAsl

CTABMSEG F Max. number of curve segments still possible
in the memory

 + + PGAsl

CTABNO F Number of defined curve tables in SRAM or
DRAM

 + + FB3sl (M3)

CTABNOMEM F Number of defined curve tables in SRAM or
DRAM

 + + PGAsl

CTABPERIOD F Returns the table periodicity of curve table
number n

 + + PGAsl

CTABPOL F Number of polynomials already used in the
memory

 + + PGAsl

Tables
4.1 Operations

NC programming
1244 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
CTABPOLID F Number of the curve polynomials used by the

curve table with number n
 + + PGAsl

CTABSEG F Number of curve segments already used in
the memory

 + + PGAsl

CTABSEGID F Number of the curve segments used by the
curve table with number n

 + + PGAsl

CTABSEV F Returns the final value of the following axis of
a segment of the curve table

 + + PGAsl

CTABSSV F Returns the initial value of the following axis of
a segment of the curve table

 + + PGAsl

CTABTEP F Returns the value of the leading axis at curve
table end

 + + PGAsl

CTABTEV F Returns the value of the the following axis at
curve table end

 + + PGAsl

CTABTMAX F Returns the maximum value of the following
axis of the curve table

 + + PGAsl

CTABTMIN F Returns the minimum value of the following
axis of the curve table

 + + PGAsl

CTABTSP F Returns the value of the leading axis at curve
table start

 + + PGAsl

CTABTSV F Returns the value of the following axis at curve
table start

 + + PGAsl

CTABUNLOCK P Revoke delete and overwrite lock + + PGAsl
CTOL A Contour tolerance for compressor functions,

orientation smoothing and smoothing types
m + PGAsl

CTRANS F Work offset for multiple axes + - PGAsl
CUT2D 6) G 2D TRC m + PGsl
CUT2DD G 2½ D TRC in relation to the differential tool m + PGsl
CUT2DF G 2D TRC relative to the current frame (inclined

plane)
m + PGsl

CUT2DFD G 2½D TRC in relation to a differential tool rela‐
tive to the current frame (inclined plane)

m + PGsl

CUT3DC G 3D TRC for circumferential milling m + PGAsl
CUT3DCC G 3D TRC for circumferential milling taking into

account a limitation surface with 3D radius
compensation Contour on the machining sur‐
face

m + PGAsl

CUT3DCCD G 3D TRC for circumferential milling taking into
account a limitation surface with differential
tool on the tool center-point path: Infeed to the
limitation surface

m + PGAsl

CUT3DCD G 3D TRC in relation to a differential tool for cir‐
cumferential milling

m + PGAsl

CUT3DF G 3D TRC for face milling with change in orien‐
tation

m + PGAsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1245

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
CUT3DFD G 3D TRC in relation to a differential tool for face

milling with change in orientation
m + PGAsl

CUT3DFF G 3D TRC for face milling with constant orienta‐
tion. The tool orientation is the direction de‐
fined by G17 - G19 and, in some cases, rota‐
ted by a frame.

m + PGAsl

CUT3DFS G 3D TRC for face milling with constant orienta‐
tion. The tool orientation is defined by G17 -
 G19 and is not influenced by frames.

m + PGAsl

CUTCONOF 6) G Deactivate tool radius compensation m + PGsl
CUTCONON G Activate tool radius compensation m + PGsl
CUTMOD A Activate Modification of the offset data for ro‐

tatable tools (in connection with orientable tool
carriers)

m + PGAsl

CUTMODK A Activate Modification of the offset data for ro‐
tatable tools (in connection with orientation
transformations defined by kinematic chains)

m + PGAsl

CYCLE60 C (T) Engraving cycle + PGAsl
CYCLE61 C (T) Face milling + PGAsl
CYCLE62 C (T) Contour call + PGAsl
CYCLE63 C (T) Contour pocket milling + PGAsl
CYCLE64 C (T) Contour pocket predrilling + PGAsl
CYCLE70 C (T) Thread milling + PGAsl
CYCLE72 C (T) Path milling + PGAsl
CYCLE76 C (T) Milling the rectangular spigot + PGAsl
CYCLE77 C (T) Circular spigot milling + PGAsl
CYCLE78 C (T) Mill cutting thread + PGAsl
CYCLE79 C (T) Multiple edge + PGAsl
CYCLE81 C (T) Drilling, centering + PGAsl
CYCLE82 C (T) Drilling, counterboring + PGAsl
CYCLE83 C (T) Deep-hole drilling + PGAsl
CYCLE84 C (T) Tapping without compensating chuck + PGAsl
CYCLE85 C (T) Reaming + PGAsl
CYCLE86 C (T) Boring + PGAsl
CYCLE92 C (T) Parting + PGAsl
CYCLE95 C (T) Stock removal along the contour + PGAsl
CYCLE98 C (T) Thread chain + PGAsl
CYCLE99 C (T) Thread cutting + PGAsl
CYCLE116 C (M) Calculation of center point and radius of a cir‐

cle
 + BNMsl

CYCLE119 C (M) Determining position in space + BNMsl
CYCLE150 C (M) Displaying/logging measurement results + BNMsl
CYCLE435 C (T) Calculate dressing tool position + PGAsl

Tables
4.1 Operations

NC programming
1246 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
CYCLE495 C (T) Form-truing + PGAsl
CYCLE750 C (A) Internal operating cycle for CYCLE751 ... CY‐

CLE759 (contains the MMC command for the
actual function call)

 - FB3sl (T4)

CYCLE751 C (A) Open / perform / close an optimization session M FB3sl (T4)
CYCLE752 C (A) Add axis to an optimization session M FB3sl(T4)
CYCLE753 C (A) Select optimization mode M FB3sl (T4)
CYCLE754 C (A) Add / remove language block M FB3sl (T4)
CYCLE755 C (A) Backing up/restoring data block M FB3sl (T4)
CYCLE756 C (A) Activate optimization results M FB3sl (T4)
CYCLE757 C (A) Store optimization data M FB3sl (T4)
CYCLE758 C (A) Changing the parameter value M FB3sl (T4)
CYCLE759 C (A) Read parameter value M FB3sl (T4)
CYCLE782 C (T) Adapt to load + PGAsl
CYCLE800 C (T) Swiveling + PGAsl
CYCLE801 C (T) Grid or frame + PGAsl
CYCLE802 C (T) Arbitrary positions + PGAsl
CYCLE830 C (T) Deep-hole drilling 2 + PGAsl
CYCLE832 C (T) High-Speed Settings + PGAsl
CYCLE840 C (T) Tapping with compensating chuck + PGAsl
CYCLE899 C (T) Open slot milling + PGAsl
CYCLE930 C (T) Groove + PGAsl
CYCLE940 C (T) Undercut forms + PGAsl
CYCLE951 C (T) Stock removal + PGAsl
CYCLE952 C (T) Contour grooving + PGAsl
CYCLE961 C (M) Determine the position of a workpiece corner

(inner or outer) and insert as work offset.
 + BNMsl

CYCLE971 C (M) Calibrate tool probe, measure tool length and/
or tool radius (only for milling)

 + BNMsl

CYCLE973 C (M)

Calibrate a workpiece probe on a surface on
the workpiece or in a groove (only for turning)

 + BNMsl

CYCLE974 C (M) Determine the workpiece zero in the selected
measuring axis, determine tool offset with 1-
point measurement (only for turning).

 + BNMsl

CYCLE976 C (M) Calibrate a workpiece probe in a calibration
ring or on a calibration ball completely in the
working plane or at an edge for a particular
axis and direction

 + BNMsl

CYCLE977 C (M) Determine the center in the plane as well as
the width or the diameter

 + BNMsl

CYCLE978 C (M) Measure the position of an edge in the work‐
piece coordinate system

 + BNMsl

CYCLE979 C (M) Determine center in the plane, measure radi‐
us of circle segment.

 + BNMsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1247

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
CYCLE982 C (M) Calibrate tool probe, measure turning drilling

and milling tools (only for turning)
 + BNMsl

CYCLE994 C (M) Determine the workpiece zero in the selected
measuring axis with 2-point measurement (on‐
ly for turning).

 + BNMsl

CYCLE995 C (M) Measure the angularity of the spindle on a ma‐
chine tool

 + BNMsl

CYCLE996 C (M) Determine transformation-relevant data for
kinematic transformations with rotary axes

 + BNMsl

CYCLE997 C (M) Determine center and diameter of a ball,
measure center of three distributed balls

 + BNMsl

CYCLE998 C (M) Determine the angular position of a surface
(plane) referred to the working plane, deter‐
mine angle of edges in the workpiece coordi‐
nate system.

 + BNMsl

CYCLE4071 C (T) Longitudinal grinding with infeed at the rever‐
sal point

 + PGAsl

CYCLE4072 C (T) Longitudinal grinding with infeed at the rever‐
sal point and cancel signal

 + PGAsl

CYCLE4073 C (T) Longitudinal grinding with continuous infeed + PGAsl
CYCLE4074 C (T) Longitudinal grinding with continuous infeed

and cancel signal
 + PGAsl

CYCLE4075 C (T) Surface grinding with infeed at the reversal
point

 + PGAsl

CYCLE4077 C (T) Surface grinding with infeed at the reversal
point and cancel signal

 + PGAsl

CYCLE4078 C (T) Surface grinding with continuous infeed + PGAsl
CYCLE4079 C (T) Surface grinding with intermittent infeed + PGAsl
CYCLE9960 C (M) Measure kinematics completely + BNMsl

Operations D ... F

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 1272).
D A Tool offset number + PGsl
D0 A With D0, offsets for the tool are ineffective + PGsl
DAC K Absolute non-modal axis-specific diameter

programming
s + PGsl

DC K Absolute dimensions for rotary axes, ap‐
proach position directly

s + PGsl

DCI K Assign data class I (= Individual) (only SINU‐
MERIK 828D)

 + PGAsl

DCM K Assign data class M (= Manufacturer) (only
SINUMERIK 828D)

 + PGAsl

Tables
4.1 Operations

NC programming
1248 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 1272).
DCU K Assign data class U (= User) (only SINUMER‐

IK 828D)
 + PGAsl

DEF K Variable definition + PGAsl
DEFAULT K Branch in CASE branch + PGAsl
DEFINE K Keyword for macro definitions + PGAsl
DELAYFSTOF P Define the end of a stop delay section m + - PGAsl
DELAYFSTON P Define the start of a stop delay section m + - PGAsl
DELDL F Delete additive offsets + - PGAsl
DELDTG P Delete distance-to-go - + FBSYsl
DELETE P Delete the specified file. The file name can be

specified with path and file identifier.
 + - PGAsl

DELMLOWNER F Delete owner magazine location of the tool + - FBWsl
DELMLRES F Delete magazine location reservation + - FBWsl
DELMT P Delete multitool + - FBWsl
DELOBJ F Deletion of elements from kinematic chains,

protection areas, protection area elements,
collision pairs and transformation data

 + PGAsl

DELT P Delete tool + - FBWsl
DELTC P Delete toolholder data record + - FBWsl
DELTOOLENV F Delete data records describing tool environ‐

ments
 + - PGAsl

DIACYCOFA K Axis-specific modal diameter programming:
OFF in cycles

m + FB1sl (P1)

DIAM90 G Diameter programming for G90, radius pro‐
gramming for G91

m + PGAsl

DIAM90A K Axis-specific modal diameter programming for
G90 and AC, radius programming for G91 and
IC

m + PGsl

DIAMCHAN K Transfer of all axes from MD axis functions to
diameter programming channel status

 + PGsl

DIAMCHANA K Transfer of the diameter programming chan‐
nel status

 + PGsl

DIAMCYCOF G Channel-specific diameter programming:
OFF in cycles

m + FB1sl (P1)

DIAMOF 6) G Diameter programming: OFF
Normal position, see machine manufacturer

m + PGsl

DIAMOFA K Axis-specific modal diameter programming:
OFF
Normal position, see machine manufacturer

m + PGsl

DIAMON G Diameter programming: ON m + PGsl
DIAMONA K Axis-specific modal diameter programming:

ON
Activation, see machine manufacturer

m + PGsl

DIC K Relative non-modal axis-specific diameter
programming

s + PGsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1249

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 1272).
DILF A Retraction path (length) m + PGsl
DISABLE P Interrupt OFF + - PGAsl
DISC A Transition circle overshoot tool radius com‐

pensation
m + PGsl

DISCL A Clearance between the end point of the fast
infeed motion and the machining plane

 + PGsl

DISPLOF PA Suppress current block display + PGAsl
DISPLON PA Revoke suppression of the current block dis‐

play
 + PGAsl

DISPR A Path differential for repositioning s + PGAsl
DISR A Distance for repositioning s + PGAsl
DISRP A Distance between the retraction plane and the

machining plane during smooth approach and
retraction

 + PGsl

DITE A Thread run-out path m + PGsl
DITS A Thread run-in path m + PGsl
DIV K Integer division + PGAsl
DL A Select location-dependent additive tool offset

(DL, total set-up offset)
m + PGAsl

DO K Synchronized action: Triggering of actions
when condition fulfilled

 - + FBSYsl

DRFOF P Deactivation of handwheel offsets (DRF) m + - PGsl
DRIVE G Velocity-dependent path acceleration m + PGAsl
DRIVEA P Activate knee-shaped acceleration character‐

istic for the programmed axes
 + - PGAsl

DYNFINISH G Dynamic response for finishing m + PGAsl
DYNNORM 6) G Standard dynamic response m + PGAsl
DYNPOS G Dynamic response for positioning mode, tap‐

ping
m + PGAsl

DYNPREC G Dynamic response for smooth finishing m + PGAsl
DYNROUGH G Dynamic response for roughing m + PGAsl
DYNSEMIFIN G Dynamic response for semi-finishing m + PGAsl
DZERO P Marks all D numbers of the TO unit as invalid + - PGAsl
EAUTO G Definition of the last spline section by means

of the last 3 points
m + PGAsl

EGDEF P Definition of an electronic gear + - PGAsl
EGDEL P Delete coupling definition for the following axis + - PGAsl
EGOFC P Turn off electronic gear continuously + - PGAsl
EGOFS P Turn off electronic gear selectively + - PGAsl
EGON P Turn on electronic gear + - PGAsl
EGONSYN P Turn on electronic gear + - PGAsl
EGONSYNE P Turn on electronic gear, with specification of

approach mode
 + - PGAsl

Tables
4.1 Operations

NC programming
1250 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 1272).
ELSE K NC program: Program branch if the IF condi‐

tion is not fulfilled.
 + - PGAsl

ELSE K Synchronized action: Triggering of actions
when condition unfulfilled

 - + FBSYsl

ENABLE P Interrupt ON + - PGAsl
ENAT 6) G Natural transition to next traversing block m + PGAsl
ENDFOR K End line of FOR counter loop + PGAsl
ENDIF K End line of IF branch + PGAsl
ENDLABEL K End label for part program repetitions with RE‐

PEAT
 + PGAsl, FB1sl (K1)

ENDLOOP K End line of endless program loop LOOP + PGAsl
ENDPROC K End line of program with start line PROC +
ENDWHILE K End line of WHILE loop + PGAsl
ESRR P Parameterizing drive-autonomous ESR re‐

traction in the drive
 + PGAsl

ESRS P Parameterizing drive-autonomous ESR shut‐
down in the drive

 + PGAsl

ETAN G Tangential transition to next traversing block
at spline begin

m + PGAsl

EVERY K Execute synchronized action on transition of
condition from FALSE to TRUE

 - + FBSYsl

EX K Keyword for value assignment in exponential
notation

 + PGAsl

EXECSTRING P Transfer of a string variable with the executing
part program line

 + - PGAsl

EXECTAB P Execute an element from a motion table + - PGAsl
EXECUTE P Program execution ON + - PGAsl
EXP F Exponential function ex + + PGAsl
EXTCALL A Execute external subprogram + + PGAsl
EXTCLOSE P Closing external device / file that was opened

for writing
 + - PGAsl

EXTERN K Declaration of a subprogram with parameter
transfer

 + PGAsl

EXTOPEN P Opening external device / file for the channel
for writing

 + - PGAsl

F A Feedrate value
(in conjunction with G4 the dwell time is also
programmed with F)

 + + PGsl

FA K Axial feedrate m + + PGsl
FAD A Infeed rate for soft approach and retraction + PGsl
FALSE K Logical constant: Incorrect + + PGAsl
FB A Non-modal feedrate + PGsl
FCTDEF P Define polynomial function + - PGAsl
FCUB G Feedrate variable according to cubic spline m + PGAsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1251

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 1272).
FD A Path feedrate for handwheel override s + PGsl
FDA K Axis feedrate for handwheel override s + PGsl
FENDNORM 6) G Corner deceleration OFF m + PGAsl
FFWOF 6) G Feedforward control OFF m + PGAsl
FFWON G Feedforward control ON m + PGAsl
FGREF K Reference radius for rotary axes or path refer‐

ence factors for orientation axes (vector inter‐
polation)

m + PGsl

FGROUP P Definition of axis/axes with path feedrate + - PGsl
FI K Parameter for access to frame data: Fine off‐

set
 + PGAsl

FIFOCTRL G Control of preprocessing buffer m + PGAsl
FILEDATE P Returns date of most recent write access to file + - PGAsl
FILEINFO P Returns summary information listing FILE‐

DATE, FILESIZE, FILESTAT, and FILETIME
 + - PGAsl

FILESIZE P Returns current file size + - PGAsl
FILESTAT P Returns file status of rights for read, write, ex‐

ecute, display, delete (rwxsd)
 + - PGAsl

FILETIME P Returns time of most recent write access to file + - PGAsl
FINEA K End of motion when "Exact stop fine" reached m + PGAsl
FL K Limit velocity for synchronized axis m + PGsl
FLIN G Feed linear variable m + PGAsl
FMA K Multiple feedrates axial m + PGsl
FNORM 6) G Feedrate normal to DIN 66025 m + PGAsl
FOC K Non-modal torque/force limitation s - + FBSYsl
FOCOF K Switch off modal torque/force limitation m - + FBSYsl
FOCON K Switch on modal torque/force limitation m - + FBSYsl
FOR K Counter loop with fixed number of passes + PGAsl
FP A Fixed point: Number of fixed point to be ap‐

proached
s + PGsl

FPO K Feedrate characteristic programmed via a pol‐
ynomial

 + PGAsl

FPR P Rotary axis identifier + - PGsl
FPRAOF P Deactivate revolutional feedrate + - PGsl
FPRAON P Activate revolutional feedrate + - PGsl
FRAME K Data type for the definition of coordinate sys‐

tems
 + PGAsl

FRC A Feedrate for radius and chamfer s + PGsl
FRCM A Feedrate for radius and chamfer, modal m + PGsl
FROM K The action is executed if the condition is fulfil‐

led once and as long as the synchronized ac‐
tion is active

 - + FBSYsl

FTOC P Change fine tool offset - + FBSYsl

Tables
4.1 Operations

NC programming
1252 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 1272).
FTOCOF 6) G Online fine tool offset OFF m + PGAsl
FTOCON G Online fine tool offset ON m + PGAsl
FXS K Travel to fixed stop ON m + + PGsl
FXST K Torque limit for travel to fixed stop m + + PGsl
FXSW K Monitoring window for travel to fixed stop + + PGsl
FZ K Tooth feedrate m + PGsl

Operations G ... L

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
G0 G Linear interpolation with rapid traverse (rapid

traverse motion)
m + PGsl

G1 6) G Linear interpolation with feedrate (linear inter‐
polation)

m + PGsl

G2 G Circular interpolation clockwise m + PGsl
G3 G Circular interpolation counter-clockwise m + PGsl
G4 G Dwell time, preset s + PGsl
G5 G Oblique plunge-cut grinding s + PGAsl
G7 G Compensatory motion during oblique plunge-

cut grinding
s + PGAsl

G9 G Exact stop - deceleration s + PGsl
G17 6) G Selection of working plane X/Y m + PGsl
G18 G Selection of working plane Z/X m + PGsl
G19 G Selection of working plane Y/Z m + PGsl
G25 G Lower working area limitation s + PGsl
G26 G Upper working area limitation s + PGsl
G33 G Thread cutting with constant lead m + PGsl
G34 G Thread cutting with linear increasing lead m + PGsl
G35 G Thread cutting with linear decreasing lead m + PGsl
G40 6) G Tool radius compensation OFF m + PGsl
G41 G Tool radius compensation left of contour m + PGsl
G42 G Tool radius compensation right of contour m + PGsl
G53 G Suppression of current zero offset (non-mo‐

dal)
s + PGsl

G54 G 1st settable zero offset m + PGsl
G55 G 2nd settable zero offset m + PGsl
G56 G 3rd settable zero offset m + PGsl
G57 G 4th settable zero offset m + PGsl
G58 (840D sl) G Absolute programmable work offset (coarse

offset)
s + PGsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1253

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
G58 (828D) G 5th settable zero offset m + PGsl
G59 (840D sl) G Additive programmable work offset (fine off‐

set)
s + PGsl

G59 (828D) G 6th settable zero offset m + PGsl
G60 6) G Exact stop - deceleration m + PGsl
G62 G Corner deceleration at inside corners when

tool radius offset is active (G41, G42)
m + PGAsl

G63 G Tapping with compensating chuck s + PGsl
G64 G Continuous-path mode m + PGsl
G70 G Inch dimensions for geometric specifications

(lengths)
m + + PGsl

G71 6) G Metric dimensions for geometric specifica‐
tions (lengths)

m + + PGsl

G74 G Search for reference s + PGsl
G75 G Fixed point approach s + PGsl
G90 6) G Absolute dimensions m/s + PGsl
G91 G Incremental dimensions m/s + PGsl
G93 G Inverse-time feedrate rpm m + PGsl
G94 6) G Linear feedrate F in mm/min or inch/min and

degree/min
m + PGsl

G95 G Revolutional feedrate F in mm/rev or inch/rev m + PGsl
G96 G Revolutional feedrate (as for G95) and con‐

stant cutting rate
m + PGsl

G97 G Revolutional feedrate and constant spindle
speed (constant cutting rate OFF)

m + PGsl

G110 G Pole programming relative to the last program‐
med setpoint position

s + PGsl

G111 G Pole programming relative to zero of current
workpiece coordinate system

s + PGsl

G112 G Pole programming relative to the last valid pole s + PGsl
G140 6) G SAR approach direction defined by G41/G42 m + PGsl
G141 G SAR approach direction to left of contour m + PGsl
G142 G SAR approach direction to right of contour m + PGsl
G143 G SAR approach direction tangent-dependent m + PGsl
G147 G Soft approach with straight line s + PGsl
G148 G Soft retraction with straight line s + PGsl
G153 G Suppression of current frames including basic

frame
s + PGsl

G247 G Soft approach with quadrant s + PGsl
G248 G Soft retraction with quadrant s + PGsl
G290 6) G Switch over to SINUMERIK mode ON m + FBWsl
G291 G Switch over to ISO2/3 mode ON m + FBWsl
G331 G Rigid tapping, positive lead, clockwise m + PGsl

Tables
4.1 Operations

NC programming
1254 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
G332 G Rigid tapping, negative lead, counter-clock‐

wise
m + PGsl

G335 G Turning a convex thread in clockwise direction m + PGsl
G336 G Turning a convex thread in counter-clockwise

direction
m + PGsl

G340 6) G Spatial approach block (depth and in plane at
the same time (helix))

m + PGsl

G341 G Initial infeed on perpendicular axis (z), then
approach in plane

m + PGsl

G347 G Soft approach with semicircle s + PGsl
G348 G Soft retraction with semicircle s + PGsl
G450 6) G Transition circle m + PGsl
G451 G Intersection of equidistances m + PGsl
G460 6) G Activation of collision detection for the ap‐

proach and retraction block
m + PGsl

G461 G Insertion of a circle into the TRC block m + PGsl
G462 G Insertion of a straight line into the TRC block m + PGsl
G500 6) G Deactivation of all adjustable frames, basic

frames are active
m + PGsl

G505 ... G599 G 5 ... 99 Settable work offset m + PGsl
G601 6) G Block change at exact stop fine m + PGsl
G602 G Block change at exact stop coarse m + PGsl
G603 G Block change at IPO block end m + PGsl
G621 G Corner deceleration at all corners m + PGAsl
G641 G Continuous-path mode with smoothing as per

distance criterion (= programmable rounding
clearance)

m + PGsl

G642 G Continuous-path mode with smoothing within
the defined tolerances

m + PGsl

G643 G Continuous-path mode with smoothing within
the defined tolerances (block-internal)

m + PGsl

G644 G Continuous-path mode with smoothing with
maximum possible dynamic response

m + PGsl

G645 G Continuous-path mode with smoothing and
tangential block transitions within the defined
tolerances

m + PGsl

G700 G Inch dimensions for geometric and technolog‐
ical specifications (lengths, feedrate)

m + + PGsl

G710 6) G Metric dimensions for geometric and techno‐
logical specifications (lengths, feedrate)

m + + PGsl

G810 6), ..., G819 G G group reserved for the OEM user + PGAsl
G820 6), ..., G829 G G group reserved for the OEM user + PGAsl
G931 G Feedrate specified by means of traversing

time, deactivate constant path velocity
m +

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1255

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
G942 G Freeze linear feedrate and constant cutting

rate or spindle speed
m +

G952 G Freeze revolutional feedrate and constant cut‐
ting rate or spindle speed

m +

G961 G Linear feedrate (as for G94) and constant cut‐
ting rate

m + PGsl

G962 G Linear feedrate or revolutional feedrate and
constant cutting rate

m + PGsl

G971 G Linear feedrate and constant spindle speed
(constant cutting rate OFF)

m + PGsl

G972 G Linear feedrate or revolutional feedrate and
constant spindle speed (constant cutting rate
OFF)

m + PGsl

G973 G Revolutional feedrate without spindle speed
limitation and constant spindle speed (G97
without LIMS for ISO mode)

m + PGsl

GEOAX P Assign new channel axes to geometry axes 1 -
 3

 + - PGAsl

GET P Replace enabled axis between channels + + PGAsl
GETACTT F Gets active tool from a group of tools with the

same name
 + - FBWsl

GETACTTD F Gets the T number associated with an abso‐
lute D number

 + - PGAsl

GETD P Replace axis directly between channels + - PGAsl
GETDNO F Returns the D number of a cutting edge (CE)

of a tool (T)
 + - PGAsl

GETEXET P Reading of the loaded T number + - FBWsl
GETFREELOC P Find a free space in the magazine for a given

tool
 + - FBWsl

GETSELT P Return selected T number + - FBWsl
GETT F Get T number for tool name + - FBWsl
GETTCOR F Read out tool lengths and/or tool length com‐

ponents
 + - PGAsl

GETTENV F Read T, D and DL numbers + - PGAsl
GETVARAP F Read access rights to a system/user variable + - PGAsl
GETVARDFT F Read default value of a system/user variable + - PGAsl
GETVARLIM F Read limit values of a system/user variable + - PGAsl
GETVARPHU F Read physical unit of a system/user variable + - PGAsl
GETVARTYP F Read data type of a system/user variable + - PGAsl
GFRAME0 ...
GFRAME100

G Activation of the grinding frame <n> of the da‐
ta management in channel

m + PGsl

GOTO K Jump operation first forward then backward
(direction initially to end of program and then
to beginning of program)

 + PGAsl

Tables
4.1 Operations

NC programming
1256 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
GOTOB K Jump backward (toward the beginning of the

program)
 + PGAsl

GOTOC K As GOTO, but suppress alarm 14080 "Jump
destination not found"

 + PGAsl

GOTOF K Jump forward (toward the end of the program) + PGAsl
GOTOS K Jump back to beginning of program + PGAsl
GP K Keyword for the indirect programming of posi‐

tion attributes
 + PGAsl

GROUP_
ADDEND

C (T) End of trial cut addition + PGAsl

GROUP_BEGIN C (T) Beginning of program group + PGAsl
GROUP_END C (T) End of program group + PGAsl
GWPSOF P Deselect constant grinding wheel peripheral

speed (GWPS)
s + - PGsl

GWPSON P Select constant grinding wheel peripheral
speed (GWPS)

s + - PGsl

H... O Auxiliary function output to the PLC + + PGsl/FB1sl (H2)
HOLES1 C (T) Row of holes + PGAsl
HOLES2 C (T) Circle of holes + PGAsl
I O Interpolation parameters s + PGsl
I1 O Intermediate point coordinate s + PGsl
IC K Incremental dimensions s + PGsl
ICYCOF P All blocks of a technology cycle are processed

in one interpolation cycle following ICYCOF
 + + FBSYsl

ICYCON P Each block of a technology cycle is processed
in a separate interpolation cycle following ICY‐
CON

 + + FBSYsl

ID K Identifier for modal synchronized actions m - + FBSYsl
IDS K Identifier for modal static synchronized actions - + FBSYsl
IF K Introduction of a conditional jump in the part

program/technology cycle
 + + PGAsl

INDEX F Define index of character in input string + - PGAsl
INICF K Initialization of variables for NEWCONF + PGAsl
INIPO K Initialization of variables at POWER ON + PGAsl
INIRE K Initialization of variables at reset + PGAsl
INIT P Selection of a particular NC program for exe‐

cution in a particular channel
 + - PGAsl

INITIAL Generation of an INI file across all areas + PGAsl
INT K Data type: Integer with sign + PGAsl
INTERSEC F Calculate intersection between two contour

elements
 + - PGAsl

INVCCW G Trace involute, counter-clockwise m + PGsl
INVCW G Trace involute, clockwise m + PGsl
INVFRAME F Calculate the inverse frame from a frame + - FB1sl (K2)

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1257

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
IP K Variable interpolation parameter + PGAsl
IPOBRKA P Motion criterion from braking ramp activation m + +
IPOENDA K End of motion when “IPO stop” reached m + PGAsl
IPTRLOCK P Freeze start of the untraceable program sec‐

tion at next machine function block.
m + - PGAsl

IPTRUNLOCK P Set end of untraceable program section at cur‐
rent block at time of interruption.

m + - PGAsl

IR O Center of circle coordinate (X axis) when turn‐
ing a convex thread

 + PGsl

ISAXIS F Check if geometry axis 1 specified as param‐
eter

 + - PGAsl

ISD O Insertion depth m + PGAsl
ISFILE F Check whether the file exists in the NC appli‐

cation memory
 + - PGAsl

ISNUMBER F Check whether the input string can be conver‐
ted to a number

 + - PGAsl

ISOCALL K Indirect call of a program programmed in an
ISO language

 + PGAsl

ISVAR F Check whether the transfer parameter con‐
tains a variable declared in the NC

 + - PGAsl

J O Interpolation parameters s + PGsl
J1 O Intermediate point coordinate s + PGsl
JERKA P Activate acceleration response set via MD for

programmed axes
 + -

JERKLIM K Reduction or overshoot of maximum axial jerk m + PGAsl
JERKLIMA K Reduction or overshoot of maximum axial jerk m + + PGAsl
JR O Center of circle coordinate (Y axis) when turn‐

ing a convex thread
 + PGsl

K O Interpolation parameters s + PGsl
K1 O Intermediate point coordinate s + PGsl
KONT G Travel around contour on tool offset m + PGsl
KONTC G Approach/retract with continuous-curvature

polynomial
m + PGsl

KONTT G Approach/retract with continuous-tangent pol‐
ynomial

m + PGsl

KR O Center of circle coordinate (Z axis) when turn‐
ing a convex thread

 + PGsl

L O Subprogram number s + + PGAsl
LEAD O Lead angle

1st basic tool orientation
2nd orientation polynomials

m + PGAsl

LEADOF P Axial master value coupling OFF + + PGAsl
LEADON P Axial master value coupling on + + PGAsl

Tables
4.1 Operations

NC programming
1258 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
LENTOAX F Provides information about the assignment of

tool lengths L1, L2, and L3 of the active tool to
the abscissa, ordinate and applicate

 + - PGAsl

LFOF 6) G Fast retraction for thread cutting OFF m + PGsl
LFON G Fast retraction for thread cutting ON m + PGsl
LFPOS G Retraction of the axis declared with POLF‐

MASK or POLFMLIN to the absolute axis po‐
sition programmed with POLF

m + PGsl

LFTXT 6) G The plane of the retraction movement for fast
retraction is determined from the path tangent
and the current tool direction

m + PGsl

LFWP G The plane of the retraction movement for fast
retraction is determined by the current work‐
ing plane (G17/G18/G19)

m + PGsl

LIFTFAST K Fast retraction + PGsl
LIMS K Speed limitation

for G96/G961 and G97
m + PGsl

LLI K Lower limit value of variables + PGAsl
LN F Natural logarithm + + PGAsl
LOCK P Disable synchronized action with ID

(stop technology cycle)
 - + FBSYsl

LONGHOLE C (T) Elongated hole + PGAsl
LOOP K Introduction of an endless loop + PGAsl

Operations M ... R

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
M0 Programmed stop + + PGsl
M1 Optional stop + + PGsl
M2 End of program, main program (as M30) + + PGsl
M3 CW spindle rotation + + PGsl
M4 CCW spindle rotation + + PGsl
M5 Spindle stop + + PGsl
M6 Tool change + + PGsl
M17 End of subprogram + + PGsl
M19 Spindle positioning to the position entered in

SD43240
 + + PGsl

M30 End of program, main program (as M2) + + PGsl
M40 Automatic gear change + + PGsl
M41 ... M45 Gear stage 1 ... 5 + + PGsl
M70 Transition to axis mode + + PGsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1259

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
MASLDEF P Define master/slave axis grouping + + PGAsl
MASLDEL P Uncouple master/slave axis grouping and

clear grouping definition
 + + PGAsl

MASLOF P Deactivation of a temporary coupling + + PGAsl
MASLOFS P Deactivation of a temporary coupling with au‐

tomatic slave axis stop
 + + PGAsl

MASLON P Activation of a temporary coupling + + PGAsl
MATCH F Search for string in string + - PGAsl
MAXVAL F Larger value of two variables (arithm. function) + + PGAsl
MCALL K Modal subprogram call + PGAsl
MEAC K Continuous axial measurement without delete

distance-to-go
s + + PGAsl

MEAFRAME F Frame calculation from measuring points + - PGAsl
MEAS O Measurement with deletion of distance-to-go s + PGAsl
MEASA K Axial measurement with delete distance-to-go s + + PGAsl
MEASURE F Calculation method for workpiece and tool

measurement
 + - FB1sl (M5)

MEAW O Measurement without delete distance-to-go s + PGAsl
MEAWA K Axial measurement without delete distance-to-

go
s + + PGAsl

MI K Access to frame data: Mirroring + PGAsl
MINDEX F Define index of character in input string + - PGAsl
MINVAL F Smaller value of two variables (arithm. func‐

tion)
 + + PGAsl

MIRROR G Programmable mirroring s + PGAsl
MMC P Call the dialog window interactively from the

part program on the HMI
 + - PGAsl

MOD K Modulo division + PGAsl
MODAXVAL F Determine modulo position of a modulo rotary

axis
 + - PGAsl

MOV K Start positioning axis - + FBSYsl
MOVT O Specify end point of a traversing motion in the

tool direction
 FB1(K2)

MSG P Programmable messages m + - PGsl
MVTOOL P Language command to move tool + - FBWsl
N O NC auxiliary block number + PGsl
NAMETOINT F Determining the system variable index + PGAsl
NC K Specify validity range for data + PGAsl
NEWCONF P Apply modified machine data (corresponds to

"Activate machine data")
 + - PGAsl

NEWMT F Create new multitool + - FBWsl
NEWT F Create new tool + - FBWsl

Tables
4.1 Operations

NC programming
1260 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
NORM 6) G Standard setting in starting point and end

point with tool offset
m + PGsl

NOT K Logic NOT (negation) + PGAsl
NPROT P Machine-specific protection area ON/OFF + - PGAsl
NPROTDEF P Definition of a machine-specific protection

area
 + - PGAsl

NUMBER F Convert input string to number + - PGAsl
OEMIPO1 G OEM interpolation 1 m + PGAsl
OEMIPO2 G OEM interpolation 2 m + PGAsl
OF K Keyword in CASE branch + PGAsl
OFFN O Allowance on the programmed contour m + PGsl
OMA1 O OEM address 1 m + PGAsl
OMA2 O OEM address 2 m + PGAsl
OMA3 O OEM address 3 m + PGAsl
OMA4 O OEM address 4 m + PGAsl
OMA5 O OEM address 5 m + PGAsl
OR K Logic operator, OR operation + PGAsl
ORIAXES G Linear interpolation of machine axes or orien‐

tation axes
m + PGAsl

ORIAXPOS G Orientation angle via virtual orientation axes
with rotary axis positions

m + PGAsl

ORIC 6) G Orientation changes at outside corners are
superimposed on the circle block to be inser‐
ted

m + PGAsl

ORICONCCW G Interpolation on a circular peripheral surface
in CCW direction

m + PGAsl/FB3sl (F3)

ORICONCW G Interpolation on a circular peripheral surface
in CW direction

m + PGAsl/FB3sl (F4)

ORICONIO G Interpolation on a circular peripheral surface
with intermediate orientation setting

m + PGAsl/FB3sl (F4)

ORICONTO G Interpolation on circular peripheral surface in
tangential transition
(final orientation)

m + PGAsl/FB3sl (F5)

ORICURVE G Interpolation of orientation with specification
of motion of two contact points of tool

m + PGAsl/FB3sl (F6)

ORID G Orientation changes are performed before the
circle block

m + PGAsl

ORIEULER 6) G Orientation angle via Euler angle m + PGAsl
ORIMKS G Tool orientation in the machine coordinate

system
m + PGAsl

ORIPATH G Tool orientation in relation to path m + PGAsl
ORIPATHS G Tool orientation in relation to path, blips in the

orientation characteristic are smoothed
m + PGAsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1261

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
ORIPLANE G Interpolation in a plane

(corresponds to ORIVECT),
large-radius circular interpolation

m + PGAsl

ORIRESET P Initial tool orientation with up to 3 orientation
axes

 + - PGAsl

ORIROTA 6) G Angle of rotation to an absolute direction of
rotation

m + PGAsl

ORIROTC G Tangential rotational vector in relation to path
tangent

m + PGAsl

ORIROTR G Angle of rotation relative to the plane between
the start and end orientation

m + PGAsl

ORIROTT G Angle of rotation relative to the change in the
orientation vector

m + PGAsl

ORIRPY G Orientation angle via RPY angle (XYZ) m + PGAsl
ORIRPY2 G Orientation angle via RPY angle (ZYX) m + PGAsl
ORIS O Change in orientation m + PGAsl
ORISOF 6) G Smoothing of the orientation characteristic

OFF
m + PGAsl

ORISOLH F Calculate orientations + PGAsl
ORISON G Smoothing of the orientation characteristic ON m + PGAsl
ORIVECT 6) G Large-circle interpolation (identical to ORI‐

PLANE)
m + PGAsl

ORIVIRT1 G Orientation angle via virtual orientation axes
(definition 1)

m + PGAsl

ORIVIRT2 G Orientation angle via virtual orientation axes
(definition 1)

m + PGAsl

ORIWKS 6) G Tool orientation in the workpiece coordinate
system

m + PGAsl

OS K Oscillation on/off + PGAsl
OSB K Oscillating: Starting point m + FB1sl (P5)
OSC G Continuous tool orientation smoothing m + PGAsl
OSCILL K Axis: 1 - 3 infeed axes m + PGAsl
OSCTRL K Oscillation options m + PGAsl
OSD G Smoothing of tool orientation by specifying

smoothing distance with SD
m + PGAsl

OSE K Oscillation end position m + PGAsl
OSNSC K Oscillating: Number of spark-out cycles m + PGAsl
OSOF 6) G Tool orientation smoothing OFF m + PGAsl
OSP1 K Oscillating: Left reversal point m + PGAsl
OSP2 K Oscillation right reversal point m + PGAsl
OSS G Tool orientation smoothing at end of block m + PGAsl
OSSE G Tool orientation smoothing at start and end of

block
m + PGAsl

Tables
4.1 Operations

NC programming
1262 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
OST G Smoothing of tool orientation by specifying an‐

gular tolerance in degrees with SD (maximum
deviation from programmed orientation char‐
acteristic)

m + PGAsl

OST1 K Oscillating: Stopping point in left reversal point m + PGAsl
OST2 K Oscillating: Stopping point in right reversal

point
m + PGAsl

OTOL A Orientation tolerance for compressor func‐
tions, orientation smoothing and smoothing
types

m + PGAsl

OVR K Speed offset m + PGAsl
OVRA K Axial speed offset m + + PGAsl
OVRRAP K Rapid traverse override m + PGAsl
P O Number of subprogram repetitions + PGAsl
PAROT G Align workpiece coordinate system on work‐

piece
m + PGsl

PAROTOF 6) G Deactivate frame rotation in relation to work‐
piece

m + PGsl

PCALL K Call subprograms with absolute path and pa‐
rameter transfer

 + PGAsl

PDELAYOF G Punching with delay OFF m + PGAsl
PDELAYON 6) G Punching with delay ON m + PGAsl
PHI K Angle of rotation of the orientation around the

direction axis of the taper
 + PGAsl

PHU K Physical unit of a variable + PGAsl
PL O 1. B spline: Node clearance

2. Polynomial interpolation Length of the pa‐
rameter interval for polynomial interpolation

s + PGAsl

PM K Per minute + PGsl
PO K Polynomial coefficient for polynomial interpo‐

lation
s + PGAsl

POCKET3 C (T) Milling the rectangular pocket + PGAsl
POCKET4 C (T) Milling the circular pocket + PGAsl
POLF K LIFTFAST retraction position m + PGsl/PGAsl
POLFA P Start retraction position of single axes with

$AA_ESR_TRIGGER
m + + PGsl

POLFMASK P Enable axes for retraction without a connec‐
tion between the axes

m + - PGsl

POLFMLIN P Enable axes for retraction with a linear con‐
nection between the axes

m + - PGsl

POLY G Polynomial interpolation m + PGAsl
POLYPATH P Polynomial interpolation can be selected for

the AXIS or VECT axis groups
m + - PGAsl

PON G Punching ON m + PGAsl
PONS G Punching ON in interpolation cycle m + PGAsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1263

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
POS K Axis positioning + + PGsl
POSA K Position axis across block boundary + + PGsl
POSM P Position magazine + - FBWsl
POSMT P Position multitool on toolholder at location

number
 + - FBWsl

POSP K Positioning axis in parts (oscillation) + PGsl
POSRANGE F Determine whether the currently interpolated

position setpoint of an axis is located in a win‐
dow at a predefined reference position

 + + FBSYsl

POT F Square
(arithmetic function)

 + + PGAsl

PR K Per revolution + PGsl
PREPRO PA Identify subprograms with preparation + PGAsl
PRESETON P Actual value setting with loss of the referenc‐

ing status
 + + PGAsl

PRESETONS P Actual value setting with loss of the referenc‐
ing status

 + + PGAsl

PRIO K Keyword for setting the priority for interrupt
processing

 + PGAsl

PRLOC K Initialization of variables at reset only after lo‐
cal change

 + PGAsl

PROC K First operation in a program + PGAsl
PROTA P Request for a recalculation of the collision

model
 + PGAsl

PROTD F Calculating the distance between two protec‐
tion areas

 + PGAsl

PROTS P Setting the protection area status + PGAsl
PSI K Opening angle of the taper + PGAsl
PTP G Point-to-point motion (PTP travel) m + PGAsl
PTPG0 G Point-to-point motion only with G0, otherwise

path motion CP
m + PGAsl

PTPWOC G Point-to-point motion without compensation
movements caused by changes in orientation

m + PGAsl

PUNCHACC P Travel-dependent acceleration for nibbling + - PGAsl
PUTFTOC P Tool fine offset for parallel dressing + - PGAsl
PUTFTOCF P Tool fine offset dependent on a function for

parallel dressing defined with FCTDEF
 + - PGAsl

PW O B spline, point weight s + PGAsl
QU K Fast additional

(auxiliary) function output
 + PGsl

R... O Arithmetic parameter also as settable address
identifier and with numerical extension

 + PGAsl

RAC K Absolute non-modal axis-specific radius pro‐
gramming

s + PGsl

RDISABLE P Read-in disable - + FBSYsl

Tables
4.1 Operations

NC programming
1264 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
READ P Reads one or more lines in the specified file

and stores the information read in the array
 + - PGAsl

REAL K Data type: Floating-point variable with sign
(real numbers)

 + PGAsl

REDEF K Redefinition of system variables, user varia‐
bles, and NC language commands

 + PGAsl

RELEASE P Release machine axes for axis exchange + + PGAsl
REP K Keyword for initialization of all elements of an

array with the same value
 + PGAsl

REPEAT K Repetition of a program loop + PGAsl
REPEATB K Repetition of a program line + PGAsl
REPOSA G Linear repositioning with all axes s + PGAsl
REPOSH G Repositioning with semicircle s + PGAsl
REPOSHA G Repositioning with all axes; geometry axes in

semicircle
s + PGAsl

REPOSL G Linear repositioning s + PGAsl
REPOSQ G Repositioning in a quadrant s + PGAsl
REPOSQA G Linear repositioning with all axes, geometry

axes in quadrant
s + PGAsl

RESETMON P Language command for setpoint activation + - FBWsl
RET P End of subprogram + + PGAsl
RETB P End of subprogram + + PGAsl
RIC K Relative non-modal axis-specific radius pro‐

gramming
s + PGsl

RINDEX F Define index of character in input string + - PGAsl
RMB G Repositioning to start of block m + PGAsl
RMBBL G Repositioning to start of block s + PGAsl
RME G Repositioning to end of block m + PGAsl
RMEBL G Repositioning to end of block s + PGAsl
RMI 6) G Repositioning to interrupt point m + PGAsl
RMIBL 6) G Repositioning to interrupt point s + PGAsl
RMN G Repositioning to the nearest path point m + PGAsl
RMNBL G Repositioning to the nearest path point s + PGAsl
RND O Round the contour corner s + PGsl
RNDM O Modal rounding m + PGsl
ROT G Programmable rotation s + PGsl
ROTS G Programmable frame rotations with solid an‐

gles
s + PGsl

ROUND F Rounding of decimal places + + PGAsl
ROUNDUP F Rounding up of an input value + + PGAsl
RP O Polar radius m/s + PGsl
RPL O Rotation in the plane s + PGsl
RT K Parameter for access to frame data: Rotation + PGAsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1265

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
RTLIOF G G0 without linear interpolation (single-axis in‐

terpolation)
m + PGsl

RTLION 6) G G0 with linear interpolation m + PGsl

Operations S ... Z

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
S A Spindle speed

(with G4, G96/G961 different meaning)
m/s + + PGsl

SAVE PA Attribute for saving information when subpro‐
grams are called

 + PGAsl

SBLOF P Suppress single block + - PGAsl
SBLON P Revoke suppression of single block + - PGAsl
SC K Parameter for access to frame data: Scaling + PGAsl
SCALE G Programmable scaling s + PGsl
SCC K Selective assignment of transverse axis to

G96/G961/G962. Axis identifiers may take the
form of geometry, channel or machine axes.

 + PGsl

SCPARA K Program servo parameter set + + PGAsl
SD A Spline degree s + PGAsl
SET K Keyword for initialization of all elements of an

array with listed values
 + PGAsl

SETAL P Set alarm + + PGAsl
SETDNO F Assign the D number of a cutting edge (CE) of

a tool (T)
 + - PGAsl

SETINT K Define which interrupt routine is to be activa‐
ted when an NC input is present

 + PGAsl

SETM P Setting of markers in dedicated channel + + PGAsl
SETMS P Reset to the master spindle defined in ma‐

chine data
 + - PGsl

SETMS(n) P Set spindle n as master spindle + PGsl
SETMTH P Set master toolholder number + - FBWsl
SETPIECE P Set piece number for all tools assigned to the

spindle
 + - FBWsl

SETTA P Activate tool from wear group + - FBWsl
SETTCOR F Modification of tool components taking all sup‐

plementary conditions into account
 + - PGAsl

SETTIA P Deactivate tool from wear group + - FBWsl
SF A Starting point offset for thread cutting m + PGsl
SIN F Sine (trigon. function) + + PGAsl

Tables
4.1 Operations

NC programming
1266 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
SIRELAY F Activate the safety functions parameterized

with SIRELIN, SIRELOUT, and SIRELTIME
 - + FBSIsl

SIRELIN P Initialize input variables of function block + - FBSIsl
SIRELOUT P Initialize output variables of function block + - FBSIsl
SIRELTIME P Initialize timers of function block + - FBSIsl
SLOT1 C (T) Longitudinal groove + PGAsl
SLOT2 C (T) Circumferential groove + PGAsl
SOFT G Soft path acceleration m + PGAsl
SOFTA P Activate jerk-limited axis acceleration for the

programmed axes
 + - PGAsl

SON G Nibbling ON m + PGAsl
SONS G Nibbling ON in interpolation cycle m + PGAsl
SPATH 6) G Path reference for FGROUP axes is arc length m + PGAsl
SPCOF P Switch master spindle or spindle(s) from posi‐

tion control to speed control
m + - PGsl

SPCON P Switch master spindle or spindle(s) from
speed control to position control

m + - PGAsl

SPI F Converts spindle number into axis identifier + - PGAsl
SPIF1 6) G Fast

NC inputs/outputs for punching/nibbling byte 1
m + FB2sl (N4)

SPIF2 G Fast
NC inputs/outputs for punching/nibbling byte 2

m + FB2sl (N4)

SPLINEPATH P Define spline grouping + - PGAsl
SPN A Number of path sections per block s + PGAsl
SPOF 6) G Stroke OFF,

nibbling, punching OFF
m + PGAsl

SPOS K Spindle position m + + PGsl
SPOSA K Spindle position across block boundaries m + PGsl
SPP A Length of a path section m + PGAsl
SPRINT F Returns an input string formatted + PGAsl
SQRT F Square root

(arithmetic function)
 + + PGAsl

SR A Oscillation retraction path for synchronized
action

s + PGsl

SRA K Oscillation retraction path with external input
axial for synchronized action

m + PGsl

ST A Oscillation sparking-out time for synchronized
action

s + PGsl

STA K Oscillation sparking-out time axial for
synchronized action

m + PGsl

START P Start selected programs simultaneously in
several channels from current program

 + - PGAsl

STARTFIFO 6) G Execute; fill preprocessing memory simulta‐
neously

m + PGAsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1267

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
STAT Position of joints s + PGAsl
STOLF A G0 tolerance factor m + PGAsl
STOPFIFO G Stop machining; fill preprocessing memory

until STARTFIFO is detected, preprocessing
memory is full or end of program

m + PGAsl

STOPRE P Preprocessing stop until all prepared blocks in
the main run are executed

 + - PGAsl

STOPREOF P Revoke preprocessing stop - + FBSYsl
STRING K Data type: Character string + PGAsl
STRINGIS F Checks the present scope of NC language

and the NC cycle names, user variables, mac‐
ros, and label names belonging specifically to
this command to establish whether these ex‐
ist, are valid, defined or active.

 + - PGAsl

STRLEN F Define string length + - PGAsl
SUBSTR F Define index of character in input string + - PGAsl
SUPA G Suppression of current work offset, including

programmed offsets, system frames, hand‐
wheel offsets (DRF), external work offset, and
overlaid movement

s + PGsl

SVC K Tool cutting rate m + PGsl
SYNFCT P Evaluation of a polynomial as a function of a

condition in the motion-synchronous action
 - + FBSYsl

SYNR K The variable is read synchronously, i.e. at the
time of execution

 + PGAsl

SYNRW K The variable is read and written synchronous‐
ly, i.e. at the time of execution

 + PGAsl

SYNW K The variable is written synchronously, i.e. at
the time of execution

 + PGAsl

T A Call tool
(only change if specified in machine data; oth‐
erwise M6 command necessary)

 + PGsl

TAN F Tangent (trigon. function) + + PGAsl
TANG P Tangential control: Define coupling + - PGAsl
TANGDEL P Tangential control: Delete coupling + - PGAsl
TANGOF P Tangential control: Deactivate coupling + - PGAsl
TANGON P Tangential control: Activate coupling + - PGAsl
TCA
(828D: _TCA)

P Tool selection/tool change irrespective of tool
status

 + - FBWsl

TCARR A Request toolholder (number "m") + PGAsl
TCI P Load tool from buffer into magazine + - FBWsl
TCOABS 6) G Determine tool length components from the

current tool orientation
m + PGAsl

TCOFR G Determine tool length components from the
orientation of the active frame

m + PGAsl

Tables
4.1 Operations

NC programming
1268 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
TCOFRX G Determine tool orientation of an active frame

on selection of tool, tool points in X direction
m + PGAsl

TCOFRY G Determine tool orientation of an active frame
on selection of tool, tool points in Y direction

m + PGAsl

TCOFRZ G Determine tool orientation of an active frame
on selection of tool, tool points in Z direction

m + PGAsl

THETA A Angle of rotation s + PGAsl
TILT A Tilt angle m + PGAsl
TLIFT P Tangential control: Activate intermediate

block generation
 + - PGAsl

TML P Tool selection with magazine location number + - FBWsl
TMOF P Deselect tool monitoring + - PGAsl
TMON P Activate tool monitoring + - PGAsl
TO K Designates the end value in a FOR counter

loop
 + PGAsl

TOFF A Tool length offset in the direction of the tool
length component that is effective parallel to
the geometry axis specified in the index.

m + PGsl

TOFFL A Tool length offset in the direction of the tool
length component L1, L2 or L3

m + PGsl

TOFFLR A Simultaneous tool length offset and tool radius
offset

m + PGsl

TOFFOF P Deactivate online tool offset + - PGAsl
TOFFON P Activate online tool length offset + - PGAsl
TOFFR A Tool radius offset m + PGsl
TOFRAME G Align Z axis of the WCS by rotating the frame

parallel to the tool orientation
m + PGsl

TOFRAMEX G Align X axis of the WCS by rotating the frame
parallel to the tool orientation

m + PGsl

TOFRAMEY G Align Y axis of the WCS by rotating the frame
parallel to the tool orientation

m + PGsl

TOFRAMEZ G As TOFRAME m + PGsl
TOLOWER F Convert the letters of a string into lowercase + - PGAsl
TOOLENV F Save current states which are of significance

to the evaluation of the tool data stored in the
memory

 + - PGAsl

TOOLGNT F Determine number of tools of a tool group + - FBWsl
TOOLGT F Determine T number of a tool from a tool group + - FBWsl
TOROT G Align Z axis of the WCS by rotating the frame

parallel to the tool orientation
m + PGsl

TOROTOF 6) G Frame rotations in tool direction OFF m + PGsl
TOROTX G Align X axis of the WCS by rotating the frame

parallel to the tool orientation
m + PGsl

TOROTY G Align Y axis of the WCS by rotating the frame
parallel to the tool orientation

m + PGsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1269

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
TOROTZ G As TOROT m + PGsl
TOUPPER F Convert the letters of a string into uppercase + - PGAsl
TOWBCS G Wear values in the basic coordinate system

(BCS)
m + PGAsl

TOWKCS G Wear values in the coordinate system of the
tool head for kinetic transformation (differs
from machine coordinate system through tool
rotation)

m + PGAsl

TOWMCS G Wear values in machine coordinate system m + PGAsl
TOWSTD 6) G Initial setting value for offsets in tool length m + PGAsl
TOWTCS G Wear values in the tool coordinate system

(toolholder ref. point T at the tool holder)
m + PGAsl

TOWWCS G Wear values in workpiece coordinate system m + PGAsl
TR K Offset component of a frame variable + PGAsl
TRAANG P Transformation inclined axis + - PGAsl
TRACON P Cascaded transformation + - PGAsl
TRACYL P Cylinder: Peripheral surface transformation + - PGAsl
TRAFOOF P Deactivate active transformations in the chan‐

nel
 + - PGAsl

TRAFOON P Activate a transformation defined with kine‐
matic chains

 + - PGAsl

TRAILOF P Asynchronous coupled motion OFF + + PGAsl
TRAILON P Asynchronous coupled motion ON + + PGAsl
TRANS G Absolute programmable work offset s + PGsl
TRANSMIT P Pole transformation (face machining) + - PGAsl
TRAORI P 4-axis, 5-axis transformation, generic transfor‐

mation
 + - PGAsl

TRUE K Logical constant: True + PGAsl
TRUNC F Truncation of decimal places + + PGAsl
TU Axis angle s + PGAsl
TURN A Number of turns for helix s + PGsl
ULI K Upper limit value of variables + PGAsl
UNLOCK P Enable synchronized action with ID (continue

technology cycle)
 - + FBSYsl

UNTIL K Condition for end of REPEAT loop + PGAsl
UPATH G Path reference for FGROUP axes is curve pa‐

rameter
m + PGAsl

VAR K Keyword: Type of parameter transfer + PGAsl
VELOLIM K Reduction of the maximum axial velocity m + PGAsl
VELOLIMA K Reduction or increase of the maximum axial

velocity of the following axis
m + + PGAsl

WAITC P Wait for the coupling block change criterion to
be fulfilled for the axes/spindles

 + - PGAsl

WAITE P Wait for end of program in another channel. + - PGAsl

Tables
4.1 Operations

NC programming
1270 Programming Manual, 06/2019, A5E47437142B AA

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 1272).
WAITENC P Wait for synchronized or restored axis posi‐

tions
 + - PGAsl

WAITM P Wait for marker in specified channel; termi‐
nate previous block with exact stop.

 + - PGAsl

WAITMC P Wait for marker in specified channel; exact
stop only if the other channels have not yet
reached the marker.

 + - PGAsl

WAITP P Wait for end of travel of the positioning axis + - PGsl
WAITS P Wait for spindle position to be reached + - PGsl
WALCS0 6) G Workpiece coordinate system working area

limitation deselected
m + - PGsl

WALCS1 G WCS working area limitation group 1 active m + - PGsl
WALCS2 G WCS working area limitation group 2 active m + - PGsl
WALCS3 G WCS working area limitation group 3 active m + - PGsl
WALCS4 G WCS working area limitation group 4 active m + - PGsl
WALCS5 G WCS working area limitation group 5 active m + - PGsl
WALCS6 G WCS working area limitation group 6 active m + - PGsl
WALCS7 G WCS working area limitation group 7 active m + - PGsl
WALCS8 G WCS working area limitation group 8 active m + - PGsl
WALCS9 G WCS working area limitation group 9 active m + - PGsl
WALCS10 G WCS working area limitation group 10 active m + - PGsl
WALIMOF G BCS working area limitation OFF m + - PGsl
WALIMON 6) G BCS working area limitation ON m + - PGsl
WHEN K The action is executed once whenever the

condition is fulfilled.
 - + FBSYsl

WHENEVER K The action is executed cyclically in each inter‐
polator cycle when the condition is fulfilled.

 - + FBSYsl

WHILE K Start of WHILE program loop + PGAsl
WRITE P Write text to file system.

Appends a block to the end of the specified file.
 + - PGAsl

WRTPR P Write string in OPI variable + - PGsl
X A Axis name m/s + + PGsl
XOR O Logic exclusive OR + PGAsl
Y A Axis name m/s + + PGsl
Z A Axis name m/s + + PGsl

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1271

1) Type of operation:
 A Address

Identifier to which a value is assigned (e.g. OVR=10). There are also some addresses that
switch on or off a function without value assignment (e.g. CPLON and CPLOF).

 C (A) AST cycle
Predefined NC program for automatic post optimization (tuning) with AST (= Automatic
Servo Tuning). Parameters are used to adapt to the specific optimization situation; these
parameters are transferred at the call.

 C (M) Measuring cycle
Predefined NC program in which a specific, generally valid, measuring operation, such as
determining the inner diameter of a cylindrical workpiece, is programmed. Parameters are
used to adapt to the specific measurement situation; these parameters are transferred at the
call.

 C (T) Technological cycle
Predefined NC program in which a specific, generally valid, machining operation, such as
tapping of a thread or milling a pocket, is programmed. The adaptation to a specific machine
situation is realized via parameters that are transferred to the cycle during the call.

 F Predefined function (supplies a return value)
The call of the predefined function can be an operand in an expression.

 G G command
The G commands are divided into G groups. Only one G command of a group can be
programmed in a block. A G command can be either modal (until it is canceled by another
command of the same group) or only effective for the block in which it is programmed (non-
modal).

 K Keyword
Identifier that defines the syntax of a block. No value is assigned to a keyword, and no NC
function can be switched on/off with a keyword.
Examples: Control structures (IF, ELSE, ENDIF, WHEN, ...), program execution (GOTOB,
GOTO, RET ...)

 O Operator
Operator for a mathematical, comparison or logical operation

 P Predefined procedure (does not supply a return value)
 PA Program attribute

Program attributes are at the end of the definition line of a subprogram:
PROC <program name>(...) <program attribute>
They determine the behavior during execution of the subprogram.

2) Effectiveness of the operation:
m Modal
s Non-modal

3) Programmability in part program:
+ Programmable
- Not programmable
M Programmable only by the machine manufacturer

Tables
4.1 Operations

NC programming
1272 Programming Manual, 06/2019, A5E47437142B AA

4) Programmability in synchronized actions:
+ Programmable
- Not programmable
T Programmable only in technology cycles

5) Reference to the document containing the detailed description of the operation:
PGsl Programming Manual, Fundamentals
PGAsl Programming Manual, Job Planning
BNMsl Programming Manual Measuring Cycles
BHDsl Operating Manual, Turning
BHFsl Operating Manual, Milling
FB1sl () Function Manual, Basic Functions (with the alphanumeric abbreviation of the cor‐

responding function description in brackets)
FB2sl () Function Manual, Extended Functions (with the alphanumeric abbreviation of the

corresponding function description in brackets)
FB3sl () Function Manual, Special Functions (with the alphanumeric abbreviation of the cor‐

responding function description in brackets)
FBSIsl Function Manual, Safety Integrated
FBSYsl Function Manual, Synchronized Actions
FBWsl Function Manual, Tool Management

6) Default setting at beginning of program (factory settings of the control, if nothing else programmed).
Figure 4-1 Meaning of footnotes in the tables of operations

Tables
4.1 Operations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1273

4.2 Addresses

4.2.1 Address letters

Letter Meaning Numeric ex‐
tension

A Settable address identifier x
B Settable address identifier x
C Settable address identifier x
D Selection/deselection of tool length compensation, tool cutting edge
E Settable address identifier x
F Feedrate

Dwell time in seconds
x

G G command
H H function x
I Settable address identifier x
J Settable address identifier x
K Settable address identifier x
L Subprogram name, subprogram call
M M function x
N Subblock number
O Unassigned
P Number of program runs
Q Settable address identifier x
R Variable identifier (R parameter)

Settable address identifier (without numeric extension)
x

S Spindle value
Dwell time in spindle revolutions

x
x

T Tool number x
U Settable address identifier x
V Settable address identifier x
W Settable address identifier x
X Settable address identifier x
Y Settable address identifier x
Z Settable address identifier x
% Start character and separator for file transfer
: Main block number
/ Skip identifier

Tables
4.2 Addresses

NC programming
1274 Programming Manual, 06/2019, A5E47437142B AA

4.2.2 Fixed addresses

Fixed addresses without axial extension

Address
identifier

Address
type

Modal/
non-
modal

G70/
G71

G700/
G710

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

QU Data type of the
assigned value

D Offset num‐
ber

m x Unsigned
INT

F Feed, dwell
time

m, s x x Unsigned
REAL

G G command See list
of the
G func‐
tions

 Unsigned
INT

H Auxiliary
functions

s x M:
unsigned
INT
H:
REAL

L Subpro‐
gram num‐
ber

s Unsigned
INT

M Auxiliary
functions

s x M:
unsigned
INT
H:
REAL

N Block num‐
ber

s Unsigned
INT

OVR Override m Unsigned
REAL

OVRRAP Override for
rapid tra‐
verse veloci‐
ty

m Unsigned
REAL

P Number of
subprogram
repetitions

s Unsigned
INT

S Spindle,
dwell time

m, s x Unsigned
REAL

SCC Assignment
of a trans‐
verse axis to
G96
/G961/G962

m REAL

SPOS Spindle po‐
sition

m x x x REAL

Tables
4.2 Addresses

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1275

Address
identifier

Address
type

Modal/
non-
modal

G70/
G71

G700/
G710

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

QU Data type of the
assigned value

SPOSA Spindle po‐
sition across
block boun‐
daries

m x x x REAL

T Tool number m x Unsigned
INT

Fixed addresses with axial extension

Address
identifier

Address
type

Modal/
non-
modal

G70/
G71

G700/
G710

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

QU Data type of the
assigned value

ACC Axial accel‐
eration

m Unsigned
REAL

ACCLIMA Axial accel‐
eration limi‐
tation of fol‐
lowing axis

m Unsigned
REAL

AX Variable ax‐
is identifier

1) x x x x x x REAL

FA Axial fee‐
drate

m x x Unsigned
REAL

FDA Axis fee‐
drate for
handwheel
override

s x Unsigned
REAL

FGREF Reference
radius

m x x Unsigned
REAL

FL Axial fee‐
drate limit

m x Unsigned
REAL

FMA Axial
synchron‐
ized fee‐
drate

m Unsigned
REAL

FOC Non-modal
traversing
with limited
torque

s REAL

FOCOF Modal tra‐
versing with
limited tor‐
que OFF

m REAL

Tables
4.2 Addresses

NC programming
1276 Programming Manual, 06/2019, A5E47437142B AA

Address
identifier

Address
type

Modal/
non-
modal

G70/
G71

G700/
G710

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

QU Data type of the
assigned value

FOCON Modal tra‐
versing with
limited tor‐
que ON

m REAL

FXS Travel to
fixed stop
ON

m Unsigned
INT

FXST Torque limit
for travel to
fixed stop

m REAL

FXSW Monitoring
window for
travel to
fixed stop

m REAL

IP Variable in‐
terpolation
parameter

s x x x x x REAL

JERKLIM Axial jerk
limitation

m Unsigned
REAL

JERKLIMA Axial jerk
limitation of
following ax‐
is

m Unsigned
REAL

MEAC Cyclic meas‐
uring

s INT
Mode and
1 - 4 trigger
events

MEASA Axial meas‐
urement
with delete
distance-to-
go

s INT
Mode and
1 - 4 trigger
events

MEAWA Axial meas‐
urement
without de‐
lete dis‐
tance-to-go

s INT
Mode and
1 - 4 trigger
events

MOV Start posi‐
tioning axis

m x x x x x x x REAL

OS Oscillation
ON/OFF

m Unsigned
INT

OSB Oscillation
starting point

m x x x x x x REAL

Tables
4.2 Addresses

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1277

Address
identifier

Address
type

Modal/
non-
modal

G70/
G71

G700/
G710

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

QU Data type of the
assigned value

OSCILL Axis assign‐
ment for os‐
cillation, ac‐
tivate oscil‐
lation

m Axis:
1 - 3 infeed axes

OSCTRL Oscillation
options

m Unsigned
INT:
Setting options,
unsigned
INT: Reset op‐
tions

OSE Oscillation
end position

m x x x x x x REAL

OSNSC Number of
spark-out
cycles (oscil‐
lation)

m Unsigned
INT

OSP1 Left reversal
point (oscil‐
lation)

m x x x x x x REAL

OSP2 Right rever‐
sal point (os‐
cillation)

m x x x x x x REAL

OST1 Stopping
time at left
reversal
point (oscil‐
lation)

m REAL

OST2 Stopping
time at right
reversal
point (oscil‐
lation)

m REAL

OVRA Axial over‐
ride

m x Unsigned
REAL

PO Polynomial
coefficient

s x x x x x Unsigned
REAL

POLF LIFTFAST
position

m x x Unsigned
REAL

POS Positioning
axis

m x x x x x x x REAL

POSA Positioning
axis across
block boun‐
daries

m x x x x x x x REAL

Tables
4.2 Addresses

NC programming
1278 Programming Manual, 06/2019, A5E47437142B AA

Address
identifier

Address
type

Modal/
non-
modal

G70/
G71

G700/
G710

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

QU Data type of the
assigned value

POSP Positioning
axis in parts
(oscillation)

m x x x x x x REAL:
End position
Real:
Partial length
INT: Option

STA Sparking
out time (ax‐
ial)

m Unsigned
REAL

SRA Retraction
path on ex‐
ternal input
(axial)

m Unsigned
REAL

VELOLIM Axial veloci‐
ty limitation

m Unsigned
REAL

VELOLIMA Axial veloci‐
ty limitation
of following
axis

m Unsigned
REAL

1) Absolute end points: Modal, incremental end points: Non-modal, otherwise modal/non-modal depending on the G function
that determines the syntax.

4.2.3 Settable addresses

Address iden‐
tifier (default
setting)

Address type Modal/
non-
modal

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

PR,
PM

QU Max.
num‐
ber

Data type of the
assigned value

Axis values and end points
X, Y, Z,
A, B, C

Axis 1) x x x x 8 REAL

AP Polar angle m/s 1) x x x 1 REAL
RP Polar radius m/s 1) x x x 1 Unsigned

REAL

Tool orientation
A2, B2, C2 Euler angle or

RPY angle
s 3 REAL

A3, B3, C3 Components of
the directional
vector

s 3 REAL

Tables
4.2 Addresses

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1279

Address iden‐
tifier (default
setting)

Address type Modal/
non-
modal

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

PR,
PM

QU Max.
num‐
ber

Data type of the
assigned value

A4, B4, C4 Components of
the surface nor‐
mal vector at the
start of the block

s 3 REAL

A5, B5, C5 Components of
the surface nor‐
mal vector at the
end of the block

s 3 REAL

A6, B6, C6 Components of
the direction vec‐
tor for the rotary
axis of the taper

s 3 REAL

A7, B7, C7 Vector compo‐
nents for the in‐
termediate orien‐
tation on the pe‐
ripheral surface
of a taper

s 3 REAL

LEAD Lead angle m 1 REAL
THETA Angle of rota‐

tion, rotation
around the tool
direction

m x x 1 REAL

TILT Tilt angle m 1 REAL
ORIS Orientation

change (in rela‐
tion to the path)

m 1 REAL

Interpolation parameters
I, J, K Interpolation pa‐

rameter
intermediate
point coordinate

s x2) x2) 3 REAL

I1, J1, K1 s x x x 3 REAL
RPL Rotation in the

plane
s 1 REAL

CR Circle radius s 1 Unsigned
REAL

AR Opening angle s 1 Unsigned
REAL

TURN Number of turns
for helix

s 1 Unsigned
INT

PL Parameter inter‐
val length

s 1 Unsigned
REAL

PW weight s 1 Unsigned
REAL

Tables
4.2 Addresses

NC programming
1280 Programming Manual, 06/2019, A5E47437142B AA

Address iden‐
tifier (default
setting)

Address type Modal/
non-
modal

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

PR,
PM

QU Max.
num‐
ber

Data type of the
assigned value

SD Spline degree m 1 Unsigned
INT

TU Axis angle s 1 Unsigned
INT

STAT Position of joints m 1 Unsigned
INT

SF Starting point off‐
set for thread
cutting

m 1 REAL

DISCL Safety clear‐
ance SAR

s 1 Unsigned
REAL

DISR Repositioning
clearance / SAR
clearance

s 1 Unsigned
REAL

DISPR Path differential
for repositioning

s 1 Unsigned
REAL

ALF Rapid lift angle m 1 Unsigned
INT

DILF Rapid lift length m 1 REAL
FP Fixed point:

Number of fixed
point to be ap‐
proached

s 1 Unsigned
INT

RNDM Modal rounding m 1 Unsigned
REAL

RND Non-modal
rounding

s 1 Unsigned
REAL

CHF Chamfer non-
modal

s 1 Unsigned
REAL

CHR Chamfer in origi‐
nal direction of
motion

s 1 Unsigned
REAL

ANG Contour angle s 1 REAL
ISD Insertion depth m 1 REAL
DISC Transition circle

overshoot tool
radius compen‐
sation

m 1 Unsigned
REAL

OFFN Offset contour
normal

m 1 REAL

DITS Thread run-in
path

m 1 REAL

DITE Thread run-out
path

m 1 REAL

Tables
4.2 Addresses

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1281

Address iden‐
tifier (default
setting)

Address type Modal/
non-
modal

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

PR,
PM

QU Max.
num‐
ber

Data type of the
assigned value

Corner rounding criteria
ADIS Rounding clear‐

ance
m 1 Unsigned

REAL
ADISPOS Rounding clear‐

ance for rapid
traverse

m 1 Unsigned
REAL

Measurement
MEAS Measurement

with touch-trig‐
ger probe

s 1 Unsigned
INT

MEAW Measurement
with touch-trig‐
ger probe with‐
out deletion of
distance-to-go

s 1 Unsigned
INT

Axis, spindle behavior
LIMS Spindle speed

limitation
m 1 Unsigned

REAL
COARSEA Block change

behavior: Exact
stop coarse axial

m

FINEA Block change
behavior: Exact
stop fine axial

m

IPOENDA Block change
behavior: Inter‐
polator stop axial

m

DIACYCOFA Transverse axis:
Axial diameter
programming
OFF in cycles

m

DIAM90A Transverse axis:
Axial diameter
programming for
G90

m

DIAMCHAN Transverse axis:
Transfer of all
transverse axes
in the diameter
programming
channel status

m

Tables
4.2 Addresses

NC programming
1282 Programming Manual, 06/2019, A5E47437142B AA

Address iden‐
tifier (default
setting)

Address type Modal/
non-
modal

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

PR,
PM

QU Max.
num‐
ber

Data type of the
assigned value

DIAMCHANA Transverse axis:
Transfer of the
diameter pro‐
gramming chan‐
nel status

m

DIAMOFA Transverse axis:
Axial diameter
programming
OFF

m

DIAMONA Transverse axis:
Axial diameter
programming
ON

m

GP Position: Indi‐
rect program‐
ming of position
attributes

m

Feedrates
FAD Speed of the

slow feed move‐
ment

s x 1 Unsigned
REAL

FD Path feedrate for
handwheel over‐
ride

s 1 Unsigned
REAL

FRC Feedrate for ra‐
dius and cham‐
fer

s 1 Unsigned
REAL

FRCM Feedrate for ra‐
dius and cham‐
fer, modal

m 1 Unsigned
REAL

FB Non-modal fee‐
drate

s 1 Unsigned
REAL

Nibbling/punching
SPN Number of path

sections per
block

s 1 INT

SPP Length of a path
section

m 1 REAL

Grinding
ST Sparking-out

time
s 1 Unsigned

REAL
SR Retraction path s 1 Unsigned

REAL

Tables
4.2 Addresses

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1283

Address iden‐
tifier (default
setting)

Address type Modal/
non-
modal

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

PR,
PM

QU Max.
num‐
ber

Data type of the
assigned value

Tool selection
TCARR Tool carrier m 1 INT

Tool management
DL Total tool offset m 1 INT

OEM addresses
OMA1 OEM address 1 m x x x 1 REAL
OMA2 OEM address 2 m x x x 1 REAL
OMA3 OEM address 3 m x x x 1 REAL
OMA4 OEM address 4 m x x x 1 REAL
OMA5 OEM address 5 m x x x 1 REAL

Miscellaneous
CUTMOD Modification of

the offset data
for rotatable
tools (in combi‐
nation with ori‐
entable tool car‐
riers)

m INT

CUTMODK Modification of
the offset data
for rotatable
tools (in combi‐
nation with orien‐
tation transfor‐
mations that
have been de‐
fined by means
of kinematic
chains)

m STRING

TOFF Tool length off‐
set parallel to
the specified ge‐
ometry axis

m REAL

TOFFL Tool length off‐
set in the direc‐
tion of the tool
length compo‐
nent
L1, L2 or L3

m REAL

Tables
4.2 Addresses

NC programming
1284 Programming Manual, 06/2019, A5E47437142B AA

Address iden‐
tifier (default
setting)

Address type Modal/
non-
modal

G90/
G91

IC AC DC,
ACN,
ACP

CIC,
CAC,
CDC,
CACN,
CACP

PR,
PM

QU Max.
num‐
ber

Data type of the
assigned value

TOFFR Tool radius off‐
set

m REAL

TOFFLR Simultaneous
tool length offset
and tool radius
offset

m REAL

1) Absolute end points: Modal, incremental end points: non-modal, otherwise modal/non-modal depending on the G command
that determines the syntax.

2) As circle center points, IPO parameters act incrementally. They can be programmed in absolute mode with AC. The address
modification is ignored when the parameters have other meanings (e.g. thread lead).

Tables
4.2 Addresses

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1285

4.3 G commands

4.3.1 G commands
The G commands are divided into G groups. In part programs or synchronized actions, in a
block, only a G command of a G group can be written. A G command can be modal or non-
modal.

Modal: up to programming another G command of the same G group.

4.3.2 G group 1: Modally valid motion commands

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G0 1 Rapid traverse + m
G1 2 Linear interpolation (linear interpolation) + m x
G2 3 Circular interpolation clockwise + m
G3 4 Circular interpolation counter-clockwise + m
CIP 5 Circular interpolation through intermediate point + m
ASPLINE 6 Akima spline + m
BSPLINE 7 B spline + m
CSPLINE 8 Cubic spline + m
POLY 9 Polynomial interpolation + m
G33 10 Thread cutting with constant lead + m
G331 11 Tapping + m
G332 12 Retraction (tapping) + m
OEMIPO1 13 Reserved + m
OEMIPO2 14 Reserved + m
CT 15 Circle with tangential transition + m
G34 16 Thread cutting with linear increasing lead + m
G35 17 Thread cutting with linear decreasing lead + m
INVCW 18 Involute interpolation clockwise + m
INVCCW 19 Counter-clockwise involute interpolation + m
G335 20 Turning a convex thread in clockwise direction + m
G336 21 Turning a convex thread in counter-clockwise direction + m

Tables
4.3 G commands

NC programming
1286 Programming Manual, 06/2019, A5E47437142B AA

4.3.3 G group 2: Non-modally valid motion, dwell time

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G4 1 Dwell time, preset - s
G63 2 Tapping without synchronization - s
G74 3 Reference point approach with synchronization - s
G75 4 Fixed-point approach - s
REPOSL 5 Linear repositioning - s
REPOSQ 6 Repositioning in a quadrant - s
REPOSH 7 Repositioning in semicircle - s
REPOSA 8 Linear repositioning with all axes - s
REPOSQA 9 Linear repositioning with all axes, geometry axes in

quadrant
- s

REPOSHA 10 Repositioning with all axes; geometry axes in semicir‐
cle

- s

G147 11 Approach contour with straight line - s
G247 12 Approach contour with quadrant - s
G347 13 Approach contour with semicircle - s
G148 14 Leave contour with straight line - s
G248 15 Leave contour with quadrant - s
G348 16 Leave contour with semicircle - s
G5 17 Oblique plunge-cut grinding - s
G7 18 Compensatory motion during oblique plunge-cut grind‐

ing
- s

4.3.4 G group 3: Programmable frame, working area limitation and pole programming

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
TRANS 1 TRANSLATION: Programmable offset - s
ROT 2 ROTATION: Programmable rotation - s
SCALE 3 SCALE: Programmable scaling - s
MIRROR 4 MIRROR: Programmable mirroring - s
ATRANS 5 Additive TRANSLATION: Additive programmable

translation
- s

AROT 6 Additive ROTATION: Programmable rotation - s
ASCALE 7 Additive SCALE: Programmable scaling - s
AMIRROR 8 Additive MIRROR: Programmable mirroring - s
- 9 Unassigned - -
G25 10 Minimum working area limitation/spindle speed limita‐

tion
- s

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1287

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G26 11 Maximum working area limitation/spindle speed limita‐

tion
- s

G110 12 Pole programming relative to the last programmed set‐
point position

- s

G111 13 Polar programming relative to origin of current work‐
piece coordinate system

- s

G112 14 Pole programming relative to the last valid pole - s
G58 15 Absolute programmable work offset - s
G59 16 Additive programmable work offset - s
ROTS 17 Rotation with solid angle - s
AROTS 18 Additive rotation with solid angle - s

4.3.5 G group 4: FIFO

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
STARTFIFO 1 Start FIFO

Execute and simultaneously fill preprocessing memory
+ m x

STOPFIFO 2 STOP FIFO
Stop machining; fill preprocessing memory until
STARTFIFO is detected, FIFO is full or end of program

+ m

FIFOCTRL 3 Activation of automatic preprocessing memory control + m

4.3.6 G group 6: Plane selection

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G17 1 Plane selection 1. – 2. Geometry axis + m x
G18 2 Plane selection 3. – 1. Geometry axis + m
G19 3 Plane selection 2. – 3. Geometry axis + m

4.3.7 G group 7: Tool radius compensation

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G40 1 No tool radius compensation + m x
G41 2 Tool radius compensation left of the contour - m
G42 3 Tool radius compensation right of the contour - m

Tables
4.3 G commands

NC programming
1288 Programming Manual, 06/2019, A5E47437142B AA

4.3.8 G group 8: Settable work offset

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G500 1 Deactivation of settable work offset (G54 to G57, G505

to G599)
+ m x

G54 2 1st settable work offset + m
G55 3 2nd settable work offset + m
G56 4 3rd settable work offset + m
G57 5 4th settable work offset + m
G505 6 5th settable work offset + m
... + m
G599 100 99th settable work offset + m
Each of the G commands in this G group is used to activate an adjustable user frame $P_UIFR[].
G54 corresponds to frame $P_UIFR[1], G505 corresponds to frame $P_UIFR[5].
The number of adjustable user frames and therefore the number of G commands in this G group can be set using machine
data MD28080 $MC_MM_NUM_USER_FRAMES.

4.3.9 G group 9: Frame suppression

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G53 1 Suppression of current frames:

Programmable frame including
system frame for TOROT and TOFRAME and
active adjustable frame (G54 to G57, G505 to G599)

- s

SUPA 2 As for G153 including suppression of
system frames for actual-value setting, scratching, ext.
work offset, PAROT including handwheel offsets
(DRF), [external work offset], overlaid movement

- s

G153 3 As for G53 including suppression of all channel-specif‐
ic and/or NCU-global basic frames

- s

4.3.10 G group 10: Exact stop - continuous-path mode

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G60 1 Exact stop + m x
G64 2 Continuous-path mode + m
G641 3 Continuous-path mode with smoothing according to

distance criterion (= programmable rounding clear‐
ance)

+ m

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1289

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G642 4 Continuous-path mode with smoothing within the de‐

fined tolerances
+ m

G643 5 Continuous-path mode with smoothing within the de‐
fined tolerances (block-internal)

+ m

G644 6 Continuous-path mode with smoothing with maximum
possible dynamic response

+ m

G645 7 Continuous-path mode with smoothing and tangential
block transitions within defined tolerances

+ m

4.3.11 G group 11: Exact stop, non-modal

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G9 1 Exact stop - s

4.3.12 G group 12: Block change criteria at exact stop (G60/G9)

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G601 1 Block change at exact stop fine + m x
G602 2 Block change at exact stop coarse + m
G603 3 Block change at IPO block end + m

4.3.13 G group 13: Workpiece measuring inch/metric

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G70 1 Input system inches (length) + m
G71 2 Input system metric mm (lengths) + m x
G700 3 Input system inch, inch/min

(lengths + velocity + system variable)
+ m

G710 4 Input system metric mm, mm/min
(lengths + velocity + system variable)

+ m

Tables
4.3 G commands

NC programming
1290 Programming Manual, 06/2019, A5E47437142B AA

4.3.14 G group 14: Workpiece measuring absolute/incremental

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G90 1 Absolute dimension + m x
G91 2 Incremental dimensions + m

4.3.15 G group 15: Feed type

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G93 1 Inverse-time feedrate rpm + m
G94 2 Linear feedrate in mm/min, inch/min + m x
G95 3 Revolutional feedrate in mm/rev, inch/rev + m
G96 4 Revolutional feedrate (as for G95) and constant cutting

rate
+ m

G97 5 Revolutional feedrate and constant spindle speed (con‐
stant cutting rate OFF)

+ m

G931 6 Feedrate specified by means of traversing time, deac‐
tivate constant path velocity

+ m

G961 7 Linear feedrate (as for G94) and constant cutting rate + m
G971 8 Linear feedrate and constant spindle speed (constant

cutting rate OFF)
+ m

G942 9 Linear feedrate and constant cutting rate or constant
spindle speed

+ m

G952 10 Revolutional feedrate and constant cutting rate or con‐
stant spindle speed

+ m

G962 11 Linear feedrate or revolutional feedrate and constant
cutting rate

+ m

G972 12 Linear feedrate or revolutional feedrate and constant
spindle speed (constant cutting rate OFF)

+ m

G973 13 Revolutional feedrate without spindle speed limitation
and constant spindle speed (G97 without LIMS for ISO
mode)

+ m

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1291

4.3.16 G group 16: Feedrate override at inside and outside curvature

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
CFC 1 Constant feedrate at contour effective for internal and

external radius
+ m x

CFTCP 2 Constant feedrate in tool center point (center point
path)

+ m

CFIN 3 Constant feedrate for internal radius only, acceleration
for external radius

+ m

4.3.17 G group 17: Approach and retraction response, tool offset

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
NORM 1 Normal position at starting and end points + m x
KONT 2 Travel around contour at starting and end points + m
KONTT 3 Approach/retraction with constant tangent + m
KONTC 4 Approach/retraction with constant curvature + m

4.3.18 G group 18: Corner behavior, tool offset

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G450 1 Transition circle

(tool travels around workpiece corners on a circular
path)

+ m x

G451 2 Intersection of equidistant paths
(tool backs off from the workpiece corner)

+ m

4.3.19 G group 19: Curve transition at beginning of spline

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
BNAT 1 Natural transition to first spline block + m x
BTAN 2 Tangential transition to first spline block + m
BAUTO 3 Definition of the first spline section by means of the next

3 points
+ m

Tables
4.3 G commands

NC programming
1292 Programming Manual, 06/2019, A5E47437142B AA

4.3.20 G group 20: Curve transition at end of spline

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
ENAT 1 Natural transition to next traversing block + m x
ETAN 2 Tangential transition to next traversing block + m
EAUTO 3 Definition of the last spline section by means of the last

3 points
+ m

4.3.21 G group 21: Acceleration profile

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
BRISK 1 Fast non-smoothed path acceleration + m x
SOFT 2 Soft smoothed path acceleration + m
DRIVE 3 Velocity-dependent path acceleration + m

4.3.22 G group 22: Tool offset type

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
CUT2D 1 2½D TRC + m x
CUT2DF 2 2½D TRC relative to the current frame (inclined plane) + m
CUT2DD 9 2½ D TRC in relation to the differential tool + m
CUT2DFD 10 2½D TRC in relation to a differential tool relative to the

current frame (inclined plane)
+ m

4.3.23 G group 23: Collision monitoring at inside contours

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
CDOF 1 Collision detection OFF + m x
CDON 2 Collision detection ON + m
CDOF2 3 Collision detection OFF for 3D circumferential milling + m

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1293

4.3.24 G group 24: Precontrol

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
FFWOF 1 Feedforward control OFF + m x
FFWON 2 Feedforward control ON + m

4.3.25 G group 25: Tool orientation reference

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
ORIWKS 1 Tool orientation in workpiece coordinate system (WCS) + m x
ORIMKS 2 Tool orientation in machine coordinate system (MCS) + m

4.3.26 G group 26: Repositioning mode for REPOS (modal)

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
RMB 1 Repositioning to start of block - m
RMI 2 Repositioning to interrupt point - m x
RME 3 Repositioning to end of block - m
RMN 4 Repositioning to the nearest path point - m

4.3.27 G group 27: Tool offset for change in orientation at outside corners

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
ORIC 1 Orientation changes at outside corners are superim‐

posed on the circle block to be inserted
+ m x

ORID 2. Orientation changes are performed before the circle
block

+ m

Tables
4.3 G commands

NC programming
1294 Programming Manual, 06/2019, A5E47437142B AA

4.3.28 G group 28: Working area limitation

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
WALIMON 1 Working area limitation ON + m x
WALIMOF 2 Working area limitation OFF + m

4.3.29 G group 29: Radius/diameter programming

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
DIAMOF 1 Modal channel-specific diameter programming OFF

Deactivation activates channel-specific radius pro‐
gramming.

+ m x

DIAMON 2 Modal independent channel-specific diameter pro‐
gramming ON
The effect is independent of the programmed dimen‐
sions mode (G90/G91).

+ m

DIAM90 3 Modal dependent channel-specific diameter program‐
ming ON
The effect is dependent on the programmed dimen‐
sions mode (G90/G91).

+ m

DIAMCYCOF 4 Modal channel-specific diameter programming during
cycle processing OFF

+ m

4.3.30 G group 30: NC block compression

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
COMPOF 1 NC block compression OFF + m x
COMPON 2 Compressor function COMPON ON + m
COMPCURV 3 Compressor function COMPCURV ON + m
COMPCAD 4 Compressor function COMPCAD ON + m
COMPSURF 5 COMPSURF EIN compressor function + m

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1295

4.3.31 G group 31: OEM G commands

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G810 1 OEM G command - m
G811 2 OEM G command - m
G812 3 OEM G command - m
G813 4 OEM G command - m
G814 5 OEM G command - m
G815 6 OEM G command - m
G816 7 OEM G command - m
G817 8 OEM G command - m
G818 9 OEM G command - m
G819 10 OEM G command - m
Two G groups are reserved for the OEM user. This enables the OEM to program functions that can be customized.

4.3.32 G group 32: OEM G commands

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G820 1 OEM G command - m
G821 2 OEM G command - m
G822 3 OEM G command - m
G823 4 OEM G command - m
G824 5 OEM G command - m
G825 6 OEM G command - m
G826 7 OEM G command - m
G827 8 OEM G command - m
G828 9 OEM G command - m
G829 10 OEM G command - m
Two G groups are reserved for the OEM user. This enables the OEM to program functions that can be customized.

4.3.33 G group 33: Settable fine tool offset

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
FTOCOF 1 Online fine tool offset OFF + m x
FTOCON 2 Online fine tool offset ON - m

Tables
4.3 G commands

NC programming
1296 Programming Manual, 06/2019, A5E47437142B AA

4.3.34 G group 34: Tool orientation smoothing

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
OSOF 1 Tool orientation smoothing OFF + m x
OSC 2 Continuous tool orientation smoothing + m
OSS 3 Tool orientation smoothing at end of block + m
OSSE 4 Tool orientation smoothing at start and end of block + m
OSD 5 Block-internal smoothing with specification of path

length
+ m

OST 6 Block-internal smoothing with specification of angular
tolerance

+ m

4.3.35 G group 37: Feedrate profile

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
FNORM 1 Feedrate normal to DIN 66025 + m x
FLIN 2 Feed linear variable + m
FCUB 3 Feedrate variable according to cubic spline + m

4.3.36 G group 39: Programmable contour accuracy

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
CPRECOF 1 Programmable contour accuracy OFF + m x
CPRECON 2 Programmable contour accuracy ON + m

4.3.37 G group 40: Tool radius compensation constant

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
CUTCONOF 1 Constant tool radius compensation OFF + m x
CUTCONON 2 Constant tool radius compensation ON + m

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1297

4.3.38 G group 41: Interruptible thread cutting

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
LFOF 1 Interruptible thread cutting OFF + m x
LFON 2 Interruptible thread cutting ON + m

4.3.39 G group 42: Tool carrier

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
TCOABS 1 Determine tool length components from the current tool

orientation
+ m x

TCOFR 2 Determine tool length components from the orientation
of the active frame

+ m

TCOFRZ 3 Determine tool orientation of an active frame on selec‐
tion of tool, tool points in Z direction

+ m

TCOFRY 4 Determine tool orientation of an active frame on selec‐
tion of tool, tool points in Y direction

+ m

TCOFRX 5 Determine tool orientation of an active frame on selec‐
tion of tool, tool points in X direction

 m

4.3.40 G group 43: SAR approach direction

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G140 1 SAR approach direction defined by G41/G42 + m x
G141 2 SAR approach direction to left of contour + m
G142 3 SAR approach direction to right of contour + m
G143 4 SAR approach direction tangent-dependent + m

4.3.41 G group 44: SAR path segmentation

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G340 1 Spatial approach block; in other words, infeed depth

and approach in plane in one block
+ m x

G341 2 Start with infeed on perpendicular axis (Z), then ap‐
proach in plane

+ m

Tables
4.3 G commands

NC programming
1298 Programming Manual, 06/2019, A5E47437142B AA

4.3.42 G group 45: Path reference for FGROUP axes

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
SPATH 1 Path reference for FGROUP axes is arc length + m x
UPATH 2 Path reference for FGROUP axes is curve parameter + m

4.3.43 G group 46: Plane selection for fast retraction

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
LFTXT 1 The plane is determined from the path tangent and the

current tool orientation
+ m x

LFWP 2 The plane is determined by the current working plane
(G17/G18/G19)

+ m

LFPOS 3 Axial retraction to a position + m

4.3.44 G group 47: Mode switchover for external NC code

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G290 1 Activate SINUMERIK language mode + m x
G291 2 Activate ISO language mode + m

4.3.45 G group 48: Approach and retraction response with tool radius compensation

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
G460 1 Collision detection for approach and retraction block

ON
+ m x

G461 2 Extend border block with arc if no intersection in TRC
block

+ m

G462 3 Extend border block with straight line if no intersection
in TRC block

+ m

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1299

4.3.46 G group 49: Point-to-point motion

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
CP 1 Path motion + m x
PTP 2 Point-to-point motion (synchronized axis motion) + m
PTPG0 3 Point-to-point motion only with G0, otherwise path mo‐

tion CP
+ m

PTPWOC 4 Point-to-point motion without compensationary motion,
which is caused by orientation changes

+ m

4.3.47 G group 50: Orientation programming

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
ORIEULER 1 Orientation angle via Euler angle + m x
ORIRPY 2 Orientation angle via RPY angle (rotation sequence

XYZ)
+ m

ORIVIRT1 3 Orientation angle via virtual orientation axes (definition
1)

+ m

ORIVIRT2 4 Orientation angle via virtual orientation axes (definition
2)

+ m

ORIAXPOS 5 Orientation angle via virtual orientation axes with rotary
axis positions

+ m

ORIRPY2 6 Orientation angle via RPY angle (rotation sequence
ZYX)

+ m

4.3.48 G group 51: Interpolation type for orientation programming

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
ORIVECT 1 Large-circle interpolation (identical to ORIPLANE) + m x
ORIAXES 2 Linear interpolation of machine axes or orientation axes + m
ORIPATH 3 Tool orientation trajectory referred to path + m
ORIPLANE 4 Interpolation in plane (identical to ORIVECT) + m
ORICONCW 5 Interpolation on the peripheral surface of a taper in the

clockwise direction
+ m

ORI‐
CONCCW

6 Interpolation on the peripheral surface of a taper in the
counter-clockwise direction

+ m

ORICONIO 7 Interpolation on a conical peripheral surface with inter‐
mediate orientation setting

+ m

Tables
4.3 G commands

NC programming
1300 Programming Manual, 06/2019, A5E47437142B AA

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
ORICONTO 8 Interpolation on a peripheral surface of the cone with

tangential transition
+ m

ORICURVE 9 Interpolation with additional space curve for orientation + m
ORIPATHS 10 Tool orientation in relation to the path, kinks in the ori‐

entation characteristic are smoothed
+ m

4.3.49 G group 52: Frame rotation in relation to workpiece

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
PAROTOF 1 Frame rotation in relation to workpiece OFF + m x
PAROT 2 Frame rotation in relation to workpiece ON

The workpiece coordinate system is aligned on the
workpiece.

+ m

4.3.50 G group 53: Frame rotation in relation to tool

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
TOROTOF 1 Frame rotation in relation to tool OFF + m x
TOROT 2 Align Z axis of the WCS by rotating the frame parallel to

the tool orientation
+ m

TOROTZ 3 As TOROT + m
TOROTY 4 Align Y axis of the WCS by rotating the frame parallel to

the tool orientation
+ m

TOROTX 5 Align X axis of the WCS by rotating the frame parallel to
the tool orientation

+ m

TOFRAME 6 Align Z axis of the WCS by rotating the frame parallel to
the tool orientation

+ m

TOFRAMEZ 7 As TOFRAME + m
TOFRAMEY 8 Align Y axis of the WCS by rotating the frame parallel to

the tool orientation
+ m

TOFRAMEX 9 Align X axis of the WCS by rotating the frame parallel to
the tool orientation

+ m

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1301

4.3.51 G group 54: Vector rotation for polynomial programming

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
ORIROTA 1 Vector rotation absolute + m x
ORIROTR 2 Vector rotation relative + m
ORIROTT 3 Vector rotation tangential + m
ORIROTC 4 Tangential rotational vector in relation to path tangent + m

4.3.52 G group 55: Rapid traverse with/without linear interpolation

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
RTLION 1 Rapid traverse motion with linear interpolation ON + m x
RTLIOF 2 Rapid traverse motion with linear interpolation OFF

Rapid traverse motion is achieved with single-axis in‐
terpolation.

+ m

4.3.53 G group 56: Taking into account tool wear

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
TOWSTD 1 Initial setting value for offsets in tool length + m x
TOWMCS 2 Wear values in the machine coordinate system (MCS) + m
TOWWCS 3 Wear values in the workpiece coordinate system

(WCS)
+ m

TOWBCS 4 Wear values in the basic coordinate system (BCS) + m
TOWTCS 5 Wear values in the tool coordinate system (toolholder

ref. point T at the toolholder)
+ m

TOWKCS 6 Wear values in the coordinate system of the tool head
for kinetic transformation
(differs from machine coordinate system through tool
rotation)

+ m

Tables
4.3 G commands

NC programming
1302 Programming Manual, 06/2019, A5E47437142B AA

4.3.54 G group 57: Corner deceleration

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
FENDNORM 1 Corner deceleration OFF + m x
G62 2 Corner deceleration at inside corners when tool radius

compensation is active (G41/G42)
+ m

G621 3 Corner deceleration at all corners + m

4.3.55 G group 59: Dynamic response mode for path interpolation

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
DYNNORM 1 Standard dynamic response + m x
DYNPOS 2 Positioning mode, tapping + m
DYNROUGH 3 Roughing + m
DYNSEMIFIN 4 Rough finishing + m
DYNFINISH 5 Finishing + m
DYNPREC 6 Smooth finishing + m

4.3.56 G group 60: Working area limitation

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
WALCS0 1 Workpiece coordinate system working area limitation

OFF
+ m x

WALCS1 2 WCS working area limitation group 1 active + m
WALCS2 3 WCS working area limitation group 2 active + m
WALCS3 4 WCS working area limitation group 3 active + m
WALCS4 5 WCS working area limitation group 4 active + m
WALCS5 6 WCS working area limitation group 5 active + m
WALCS6 7 WCS working area limitation group 6 active + m
WALCS7 8 WCS working area limitation group 7 active + m
WALCS8 9 WCS working area limitation group 8 active + m
WALCS9 10 WCS working area limitation group 9 active + m
WALCS10 11 WCS working area limitation group 10 active + m

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1303

4.3.57 G group 61: Tool orientation smoothing

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
ORISOF 1 Tool orientation smoothing OFF + m x
ORISON 2 Tool orientation smoothing ON + m

4.3.58 G group 62: Repositioning mode for REPOS (non-modal)

G command No. 1) Meaning MD20150 2) W 3) STD 4)

SAG MH
RMBBL 1 Repositioning to start of block - s
RMIBL 2 Repositioning to interrupt point - s x
RMEBL 3 Repositioning to end of block - s
RMNBL 4 Repositioning to the nearest path point - s

4.3.59 G group 64: Grinding frames

G command No. 1) Meaning
Active grinding frame in the channel $P_GFRAME =

MD20150 2) W 3) STD 4)

SAG MH
GFRAME[0] 1 Grinding frame of the data management $P_GFR[0]

(null frame)
+ m x

GFRAME[1] 2 Grinding frame of the data management $P_GFR[1] + m
GFRAME[2] 3 Grinding frame of the data management $P_GFR[2] + m
... ... + m
GFRAME[10
0]

101 Grinding frame of the data management $P_GFR[100] + m

Tables
4.3 G commands

NC programming
1304 Programming Manual, 06/2019, A5E47437142B AA

1) Internal number (e.g. for PLC interface)
2) Configurability of the G command as a reset setting for the G group on power up, reset or end of part

program (with MD20150 $MC_GCODE_RESET_VALUES):
+ Configurable
- Not configurable

3) Effectiveness of the G command:
m modal
s Non-modal

4) Reset setting, see the following machine data:
● MD20149GCODE_RESET_S_VALUES (reset position of G groups (fix))
● MD20150 $MC_GCODE_RESET_VALUES (reset position of the G groups)
● MD20151GCODE_RESET_S_MODE (reset behavior of G groups (fix))
● MD20152 $MC_GCODE_RESET_MODE (reset behavior of G groups)
● MD20154 $MC_EXTERN_GCODE_RESET_VALUES (reset position of the G groups in ISO

mode)
● MD20156 $MC_EXTERN_GCODE_RESET_MODE (reset behavior of external G groups)
SAG Default setting Siemens AG
MM Default setting Machine Manufacturer (see machine manufacturer's specifications)

Tables
4.3 G commands

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1305

4.4 Predefined procedures
The call of a predefined procedure triggers the execution of a predefined NC function. A
predefined procedure does not supply a return value in contrast to a predefined function.

Coordinate system
Identifier Parameter Explanation

 1. 2. 3. - 15. 4. - 16.
PRESETON AXIS *):

Axis identifier
of
machine axis

REAL:
Preset offset
G700/G710
context

As 1 ... As 2 ... Set actual value for the programmed
axes with loss of the referencing sta‐
tus

PRESETONS AXIS *):
Axis identifier
of
machine axis

REAL:
Preset offset
G700/G710
context

As 1 ... As 2 ... Set actual value for the programmed
axes without loss of the referencing
status

DRFOF Deletes the DRF offset for all axes

assigned to the channel.
) As a general rule, geometry or special axis identifiers can also be used instead of the machine axis identifier, as long as the

reference is unambiguous.

Axis groupings
Identifier Parameter Explanation

GEOAX 1. 2. 3. / 5. 4. / 6. Selection of a parallel coordinate sys‐

temINT:
Geometry ax‐
is number
1 ... 3

AXIS:
Channel axis
identifier

As 1 As 2

FGROUP 1. – 8. Variable F value reference: Definition

of the axes to which the path feed re‐
fers
Maximum number of axes: 8
The default setting for the F value ref‐
erence is activated with FGROUP ()
without parameters

AXIS:
Channel axis identifier

SPLINEPATH 1. 2. – 9. Definition of the spline grouping

Maximum number of axes: 8INT:
Spline group‐
ing (must be 1)

AXIS:
Geometry of additional identifier

POLYPATH 1. 2. Activation of the polynomial interpo‐

lation for selective axis groupsSTRING STRING

Tables
4.4 Predefined procedures

NC programming
1306 Programming Manual, 06/2019, A5E47437142B AA

Coupled motion
Identifier Parameter Explanation

1. 2. 3. 4. 5. 6.
TANG AXIS: Ax‐

is name
following
axis

AXIS:
Leading
axis 1

AXIS:
Leading
axis 2

REAL:
Coupling
factor

CHAR:
Option:
"B":
Tracking
in the
BCS
"W":
Tracking
in the
WCS

CHAR
optimiza‐
tion:
"S":
Standard
"P":
Autom.
with
rounding
clear‐
ance, an‐
gle toler‐
ance

Tangential control: Define coupling
The tangent for the follow-up is de‐
termined by the two master axes
specified. The coupling factor speci‐
fies the relationship between a
change in the angle of tangent and
the following axis. It is usually 1.

TANGON AXIS: Ax‐
is name
following
axis

REAL:
Offset
angle

REAL:
Round‐
ing clear‐
ance

REAL:
Angular
tolerance

 Tangential control: Activate cou‐
pling

TANGOF AXIS: Ax‐
is name
following
axis

 Tangential control: Deactivate cou‐
pling

TLIFT AXIS:
Tracked
axis

 Tangential control: Activate inter‐
mediate block generation

TRAILON AXIS:
Follow‐
ing axis

AXIS:
Leading
axis

REAL:
Coupling
factor

 Asynchronous coupled motion OFF

TRAILOF AXIS:
Follow‐
ing axis

AXIS:
Leading
axis

 Deactivate coupled-axis motion

TANGDEL AXIS:
Follow‐
ing axis

 Tangential control: Delete coupling

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1307

Curve tables
Identifier Parameter Explanation

1. 2. 3. 4. 5.
CTABDEF AXIS:

Following
axis

AXIS:
Leading ax‐
is

INT:
Table num‐
ber

INT:
Behavior at
edges of
the defini‐
tion range

STRING:
Specifica‐
tion of the
storage lo‐
cation

Table definition ON
The following motion blocks deter‐
mine the curve table

CTABEND AXIS:
Following
axis

AXIS:
Leading ax‐
is

INT:
Table num‐
ber

INT:
Behavior at
edges of
the defini‐
tion range

 Table definition OFF

CTABDEL INT:
Table num‐
ber n

INT:
Table num‐
ber m

STRING:
Specifica‐
tion of the
storage lo‐
cation

 Clear curve table

CTABLOCK INT:
Table num‐
ber n

 Locks the curve table with number
n, i.e. this table cannot be deleted/
overwritten

CTABUNLOCK INT:
Table num‐
ber n

 Releases the table with the number
n protected with CTABLOCK again

LEADON AXIS:
Following
axis

AXIS:
Leading ax‐
is

INT:
Table num‐
ber

 Master value coupling ON

LEADOF AXIS:
Following
axis

AXIS:
Leading ax‐
is

 Master value coupling OFF

Axial acceleration profile
Identifier Parameter Explanation

1. – 8.
BRISKA AXIS Activate stepped axis acceleration

for the programmed axes
SOFTA AXIS Activate jerk-limited axis accelera‐

tion for the programmed axes
DRIVEA AXIS Activate knee-shaped acceleration

characteristic for the programmed ax‐
es

JERKA AXIS The acceleration behavior set in ma‐
chine data $MA_AX_JERK_ENA‐
BLE is active for the programmed ax‐
es

Tables
4.4 Predefined procedures

NC programming
1308 Programming Manual, 06/2019, A5E47437142B AA

Revolutional feedrate
Identifier Parameter Explanation

FPRAON 1. 2. Axial revolutional feedrate ON

AXIS:
Axis for which revolutional fee‐
drate is activated

AXIS:
Axis/spindle from which revolu‐
tional feedrate is derived.
If no axis has been program‐
med, the revolutional feedrate
is derived from the master spin‐
dle.

FPRAOF 1. - n. Axial revolutional feedrate OFF

The revolutional feedrate can be de‐
activated for several axes simultane‐
ously. You can program as many ax‐
es as are permitted in a block.

AXIS:
Axes for which revolutional feedrate is deactivated

FPR 1. Selection of a rotary axis or spindle

from which the revolutional feedrate
of the path is derived for G95.
The setting made with FPR is modal.

AXIS:
Axis/spindle from which revolu‐
tional feedrate is derived.
If no axis has been program‐
med, the revolutional feedrate
is derived from the master spin‐
dle.

Transformations
Identifier Parameter Explanation

1. 2. 3.
TRACYL REAL:

Working diam‐
eter

INT:
Number of the
transformation

 Cylinder: Peripheral surface transformation
Several transformations can be set per channel. The
transformation number specifies which transforma‐
tion is to be activated. If the 2nd parameter is omitted,
the transformation grouping set via MD is activated.

TRANSMIT INT:
Number of the
transformation

 Transmit: Polar transformation
Several transformations can be set per channel. The
transformation number specifies which transforma‐
tion is to be activated. If the parameter is omitted, the
transformation group defined in the MD is activated.

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1309

Transformations
Identifier Parameter Explanation

1. 2. 3.
TRAANG REAL:

Angle
INT:
Number of the
transformation

 Transformation inclined axis
Several transformations can be set per channel. The
transformation number specifies which transforma‐
tion is to be activated. If the 2nd parameter is omitted,
the transformation grouping set via MD is activated.
If the angle is not programmed
(TRAANG (,2) or TRAANG)
the last angle applies modally.

TRAORI INT:
Number of the
transformation

 4-axis, 5-axis transformation
Several transformations can be set per channel. The
transformation number specifies which transforma‐
tion is to be activated.

TRACON INT:
Number of the
transformation

REAL: Further
parameters,
MD-depend‐
ent

 Cascaded transformation
The meaning of the parameters depends on the type
of cascading.

TRAFOOF Deactivate transformation
TRAFOON STRING:

Name of the
transforma‐
tion data set

REAL:
Reference or
working diam‐
eter
(TRACYL on‐
ly)

BOOL:
With/without
groove side
offset
(TRACYL on‐
ly)

Activate a transformation defined with kinematic
chains

Spindle
Identifier Parameter Explanation

1 2. - n.
SPCON INT:

Spindle number
INT:
Spindle number

Switch to position-controlled spindle operation.

SPCOF INT:
Spindle number

INT:
Spindle number

Switch to speed-controlled spindle operation.

SETMS INT:
Spindle number

 Declaration of spindle as master spindle for the cur‐
rent channel
With SETMS(), the machine data default applies au‐
tomatically without any need for parameterization.

Tables
4.4 Predefined procedures

NC programming
1310 Programming Manual, 06/2019, A5E47437142B AA

Grinding
Identifier Parameter Explanation

1.
GWPSON INT:

Spindle number
Constant grinding wheel peripheral speed ON
If the spindle number is not programmed, the grinding wheel peripheral
speed for the spindle of the active tool is selected.

GWPSOF INT:
Spindle number

Constant grinding wheel peripheral speed OFF
If the spindle number is not programmed, the grinding wheel peripheral
speed for the spindle of the active tool is deselected.

TMON INT:
T number

Grinding-specific tool monitoring ON
If no T number is programmed, monitoring is activated for the active
tool.

TMOF INT:
T number

Tool monitoring OFF
If no T number is programmed, monitoring is deactivated for the active
tool.

Stock removal
Identifier Parameter Explanation

1. 2. 3. 4.
CONTPRON REAL [,11]:

Contour table
CHAR: Ma‐
chining type

INT:
Number of re‐
lief cuts

INT:
Status of the
calculation

Activate reference preprocessing
The contour programs or NC blocks
which are called in the following
steps are divided into individual
movements and stored in the contour
table.
The number of relief cuts is returned.

CONTDCON REAL [, 6]:
Contour table

INT:
Machining di‐
rection

 Contour decoding
The blocks for a contour are stored in
a named table with one table line per
block and coded to save memory.

EXECUTE INT: Error sta‐
tus

 Activate program execution
This switches back to normal pro‐
gram execution from reference point
editing mode or after setting up a pro‐
tection area.

Execute table
Identifier Parameter Explanation

1.
EXECTAB REAL [11]:

Element from motion table
Execute an element from a motion table

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1311

Protection areas
Identifier Parameter Explanation

1. 2. 3. 4. 5.
CPROTDEF INT:

Number of the
protection
area

BOOL:
TRUE:
Tool-related
protection
area

INT:
0:
4th and 5th
parameters
are not evalu‐
ated
1:
4th parameter
is evaluated
2:
5th parameter
is evaluated
3:
4th and 5th
parameters
are evaluated

REAL: Limit in
plus direction

REAL: Limit in
minus direc‐
tion

Definition of a channel-
specific protection area

NPROTDEF INT:
Number of the
protection
area

BOOL:
TRUE:
Tool-related
protection
area

INT:
0:
4th and 5th
parameters
are not evalu‐
ated
1:
4th parameter
is evaluated
2:
5th parameter
is evaluated
3:
4th and 5th
parameters
are evaluated

REAL: Limit in
plus direction

REAL: Limit in
minus direc‐
tion

Definition of a ma‐
chine-specific protec‐
tion area

Tables
4.4 Predefined procedures

NC programming
1312 Programming Manual, 06/2019, A5E47437142B AA

Protection areas
Identifier Parameter Explanation

1. 2. 3. 4. 5.
CPROT INT:

Number of the
protection
area

INT: Option
0: Protection
area OFF
1: Preactivate
protection
area
2: Protection
area ON
3: Preactivate
protection
area with con‐
ditional stop,
only with pro‐
tection areas
active

REAL: Offset
of the protec‐
tion area in
the first geom‐
etry axis

REAL: Offset
of the protec‐
tion area in
the second
geometry axis

REAL: Offset
of the protec‐
tion area in
the third ge‐
ometry axis

Channel-specific pro‐
tection area ON/OFF

NPROT INT:
Number of the
protection
area

INT: Option
0: Protection
area OFF
1: Preactivate
protection
area
2: Protection
area ON
3: Preactivate
protection
area with con‐
ditional stop,
only with pro‐
tection areas
active

REAL: Offset
of the protec‐
tion area in
the first geom‐
etry axis

REAL: Offset
of the protec‐
tion area in
the second
geometry axis

REAL: Offset
of the protec‐
tion area in
the third ge‐
ometry axis

Machine-specific pro‐
tection area ON/OFF

Preprocessing / single block
Identifier Parameter Explanation
STOPRE Preprocessing stop until all prepared blocks in the main

run are executed
SBLOF Suppress single-block processing
SBLON Cancel suppression of the single-block processing

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1313

Interrupts
Identifier Parameter Explanation

1.
DISABLE INT:

Number of the in‐
terrupt input

Deactivates the interrupt routine assigned to the specified hardware input. Fast
retraction is not executed. The assignment between the hardware input and the
interrupt routine made with SETINT remains valid and can be reactivated with
ENABLE.

ENABLE INT:
Number of the in‐
terrupt input

Reactivation of the interrupt routine assignment deactivated with DISABLE.

CLRINT INT:
Number of the in‐
terrupt input

Delete assignment of interrupt routines and attributes to an interrupt input. The
interrupt routine is deactivated and no reaction occurs when the interrupt is gen‐
erated.

Synchronized actions
Identifier Parameter Explanation

1. - n.
CANCEL INT:

Number of the synchronized action
Aborts the modal synchronized action with the speci‐
fied ID. Several IDs, separated by commas, can be
specified.

CANCELSUB Cancel current subprogram level

Function definition
Identifier Parameter Explanation

1. 2. 3. 4.-7.
FCTDEF INT:

Function num‐
ber

REAL:
Lower limit
value

REAL:
Upper limit
value

REAL:
Coefficients a0 -
a3

Define polynomial function
This is evaluated in SYFCT or
PUTFTOCF.

Communication
Identifier Parameter Explanation

1. 2.
MMC STRING:

Command
CHAR:
Acknowledgement mode*)
"N": Without acknowledgement
"S": Synchronous acknowledgement
"A": Asynchronous acknowledgement

Command to HMI command Inter‐
preter for the configuration of win‐
dows via NC program

) Commands are acknowledged on request from the executing component (channel, NC, etc.).

Tables
4.4 Predefined procedures

NC programming
1314 Programming Manual, 06/2019, A5E47437142B AA

Program coordination
Identifier Parameter Explanation

INIT 1. 2. 3. Selection of an NC program for execution in a

channelINT:
Channel
number
or
channel
name from
MD20000*)

STRING:
Path speci‐
fication

CHAR:
Acknowl‐
edgement
mode**)

 1. - n.
START INT:

Channel number
or
channel name from MD20000*)

Start selected programs simultaneously in sev‐
eral channels from current program
This command has no effect for the own chan‐
nel

WAITE INT:
Channel number
or
channel name from MD20000*)

Wait for end of program in one or more other
channels

 1. 2. - n.
WAITM INT:

Marker
number

INT:
Channel number
or
channel name from MD20000*)

Wait until a marker is reached in the specified
channels
The previous block is terminated with exact
stop

WAITMC INT:
Marker
number

INT:
Channel number
or
channel name from MD20000*)

Wait until a marker is reached in the specified
channels
An exact stop is initiated only if the other chan‐
nels have not yet reached the marker

 1. - n.
SETM INT:

Marker number
Set one or more markers for the channel coor‐
dination
The processing in own channel is not affected
by this.

CLEARM INT:
Marker number

Delete one or more markers for the channel
coordination
The processing in own channel is not affected
by this.

 1. - n.
WAITP AXIS:

Axis identifier
Wait until the specified positioning axes that
were previously programmed with POSA,
reach their programmed end point

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1315

Program coordination
Identifier Parameter Explanation
WAITS INT:

Spindle number
Wait until the specified spindles that were pre‐
viously programmed with SPOSA, reach their
programmed end point

RET 1. 2. 3. 4. End of subprogram with no function output to

the PLC
If the 1st parameter (jump destination) is speci‐
fied, the return jump is first made to the block
after the calling block. The target is then sought
depending on the programming (RET or
RETB) according to the following strategy:
● RET:

Search in the direction of the end of the
program. A search is made toward the start
of the program if the search was not
successful.

● RETB:
Search in the direction of the start of the
program. A search is made toward the end
of the program if the search was not
successful.

INT (or
STRING):
Jump tar‐
get (block
no./ mark‐
er) for re‐
turn

INT:
0:
Return
jump to
jump desti‐
nation from
1st par.
> 0:
Return to
the follow‐
ing block

INT:
Number of
subpro‐
gram levels
to be skip‐
ped

BOOL:
Return to
first block in
the main
program

RETB INT (or
STRING):
Jump tar‐
get (block
no./ mark‐
er) for re‐
turn

INT:
0:
Return
jump to
jump desti‐
nation from
1st par.
> 0:
Return to
the follow‐
ing block

INT:
Number of
subpro‐
gram levels
to be skip‐
ped

BOOL:
Return to
first block in
the main
program

 1. - n.
GET AXIS:

Axis identifier ***)
Assign machine axis(axes)
The specified axes must be released in the
other channel with RELEASE

GETD AXIS:
Axis identifier ***)

Assign machine axis(axes) directly
The specified axes must not be released with
RELEASE

RELEASE AXIS:
Axis identifier ***)

Release machine axis(axes)

 1. 2. 3. 4.
PUTFTOC REAL:

Offset value
INT:
Parameter
number

INT:
Channel
number
or
channel
name from
MD20000*)

INT: Spin‐
dle number

Change of fine tool compensation

Tables
4.4 Predefined procedures

NC programming
1316 Programming Manual, 06/2019, A5E47437142B AA

Program coordination
Identifier Parameter Explanation
PUTFTOCF INT:

No. of the
function

VAR REAL:
Reference
value

INT: Pa‐
rameter
number

INT:
Channel
number
or
channel
name from
MD20000*)

Change of fine tool compensation depending
on a function defined with FCTDEF
(max. 3rd degree polynomial)
The number used here must be specified in
FCTDEF

AXTOCHAN 1. 2. 3. - n. 4. - m. Axes transferred to other channels

AXIS:
Axis identifi‐
er

INT:
Channel
number
or
channel
name from
MD20000*)

As 1 ... As 2 ...

) Instead of channel numbers, the channel names defined via MD20000 $MC_CHAN_NAME can also be programmed.
**) Commands are acknowledged on request from the executing component (channel, NC, etc.).
***) The SPI function can be used to program a spindle instead of an axis. E.g. GET(SPI(1))

Data access
Identifier Parameter Explanation

CHANDATA 1. Set channel number for channel data access (only permitted in the initialization block).

The following access refers to the channel set with CHANDATA.INT:
Channel num‐
ber

NEWCONF Accept changed machine data

Messages
Identifier Parameter Explanation

1. 2.
MSG STRING:

Message
INT:
Execution

Output arbitrary character string as message on the user in‐
terface

WRTPR STRING:
Character string

INT:
Execution

Write string in OPI variable

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1317

File access
Identifier Parameter Explanation

READ 1. 2. 3. 4. 5. Read blocks from file

systemVAR INT:
Error

CHAR[160]:
File name

INT:
Start line of
the file section
to be read

INT:
Number of
lines to be
read

VAR
CHAR[255]:
Variable array
in which the
read informa‐
tion is stored

WRITE 1. 2. 3. 4. Write block to file sys‐

tem (or to an external
device/file)

VAR INT:
Error

CHAR[160]:
File name

STRING:
Device/file for
external out‐
put

CHAR[200]:
Block

DELETE 1. 2. Delete file

VAR INT:
Error

CHAR[160]:
File name

Alarms
Identifier Parameter Explanation

1. 2.
SETAL INT:

Alarm number
(cycle alarms)

STRING:
Character
string

Set alarm
A character string with up to four parameters can be specified in addition
to the alarm number.
The following predefined parameters are available:
%1 = channel number
%2 = block number, label
%3 = text index for cycle alarms
%4 = additional alarm parameters

Tool management
Identifier Parameter Explanation

 1. 2.
DELDL INT:

T no.
INT:
D no.

 Delete all additive off‐
sets of the tool edge
(or of a tool if D is not
specified)

DELT STRING[32]:
Tool identifier

INT:
Duplo no.

 Delete tool
Duplo number can be
omitted

Tables
4.4 Predefined procedures

NC programming
1318 Programming Manual, 06/2019, A5E47437142B AA

Tool management
Identifier Parameter Explanation
DELTC INT:

Data set no. n
INT:
Data set no.
m

 Delete tool carrier data
set number n to m

DZERO Set D numbers of all

tools of the TO unit as‐
signed to the channel
to invalid

 1. 2. 3. 4. 5. 6.
GETFREELOC VAR INT:

Magazine no.
(return value)

VAR INT:
Location
no. (return
value)

INT:
T no.

INT:
Reference
magazine
no.

CHAR:
Specifi‐
cation
dep. on
4th pa‐
rameter

INT:
Reserva‐
tion mode

Find empty location for
a tool

 1. 2.
GETSELT VAR INT:

T no. (return
value)

INT:
Spindle no.

 Returns the T number
of the tool preselected
for the spindle

GETEXET VAR INT:
T no. (return
value)

INT:
Spindle no.

 Returns the T number
of the tool active from
the point of view of the
NC program

GETTENV STRING:
Name of the
tool environ‐
ment

INT AR‐
RAY[3]:
Return val‐
ues

 Reads the T, D and DL
numbers stored in a
tool environment

 1. 2. 3. 4.
POSM INT:

No. of the lo‐
cation for po‐
sitioning

INT:
No. of the
magazine
to be moved

INT:
Location
no. of the in‐
ternal mag‐
azine

INT: Maga‐
zine no. of
the internal
magazine

 Position magazine

RESETMON VAR INT:
Status = re‐
sult of the op‐
eration (re‐
turn value)

INT: Inter‐
nal
T no.

INT:
D no. of the
tool

INT:
Optional bit-
coded pa‐
rameter

 Set actual value of tool
to setpoint

SETDNO 1. 2. 3. Set offset number (D)

of the cutting edge of
the tool (T)

INT:
T no.

INT: Cut‐
ting edge
no.

INT:
D no.

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1319

Tool management
Identifier Parameter Explanation
SETMTH 1. Set tool carrier no.

INT:
Tool carrier
no.

SETPIECE 1. 2. Decrement workpiece

counter of the spindle
Update the count mon‐
itoring data of the tools
associated with the
machining process

INT:
Value used
when decre‐
menting

INT: Spin‐
dle no.

 1. 2. 3. 4.
SETTA VAR INT:

Status = re‐
sult of the op‐
eration (re‐
turn value)

INT: Maga‐
zine no.

INT: Wear
group no.

INT:
Tool sub‐
group

 Activate tool from wear
group

SETTIA VAR INT:
Status = re‐
sult of the op‐
eration (re‐
turn value)

INT: Maga‐
zine no.

INT: Wear
group no.

INT:
Tool sub‐
group

 Deactivate tool from
wear group

TCA 1. 2. 3. Tool selection/change

irrespective of the tool
status

STRING[32]:
Tool identifier

INT:
Duplo no.

INT:
Tool carrier
no.

TCI 1. 2. Load tool from buffer

into the magazineINT:
No. of the buf‐
fer

INT:
Tool carrier
no.

MVTOOL 1. 2. 3. 4. 5. Language command

to move toolINT:
Status

INT: Maga‐
zine no.

INT:
Location no.

INT: Maga‐
zine no. af‐
ter moving

INT: Tar‐
get loca‐
tion no.
after
moving

Tables
4.4 Predefined procedures

NC programming
1320 Programming Manual, 06/2019, A5E47437142B AA

Tool orientation
Identifier Parameter Explanation

1. 2. 3.
ORIRESET REAL:

Initial setting,
1st geometry
axis

REAL:
Initial setting,
2nd geometry
axis

REAL:
Initial setting,
3rd geometry
axis

Initial setting of the tool orientation

Synchronous spindle
Identifier Parameter Explanation

1. 2. 3. 4. 5. 6.
COUPDEF AXIS:

Follow‐
ing spin‐
dle

AXIS:
Leading
spindle

REAL:
Numerator
of transmis‐
sion ratio

REAL:
Denomina‐
tor of trans‐
mission ra‐
tio

STRING[8]:
Block
change be‐
havior

STRING[2]:
Coupling
type

Define synchronous
spindle grouping

COUPDEL AXIS:
Follow‐
ing spin‐
dle

AXIS:
Leading
spindle

 Delete synchronous
spindle grouping

COUPRES AXIS:
Follow‐
ing spin‐
dle

AXIS:
Leading
spindle

 Reset coupling param‐
eters to configured MD
and SD values

COUPON AXIS:
Follow‐
ing spin‐
dle

AXIS:
Leading
spindle

REAL:
Switch-on
position of
the follow‐
ing spindle

 Switch-on synchro‐
nous spindle coupling
If a switch-on position
is specified for the fol‐
lowing spindle (angu‐
lar offset between FS
and LS that refers --
absolutely or incre‐
mentally -- to the zero
degree position of the
LS in the positive direc‐
tion of rotation), the
coupling is only switch‐
ed on when the speci‐
fied position is
crossed.

COUPONC AXIS:
Follow‐
ing spin‐
dle

AXIS:
Leading
spindle

 Switch-on synchro‐
nous spindle coupling
With COUPONC, the
currently active speed
of the following spindle
is taken over when
switching on the cou‐
pling
(M3/M4 S...).

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1321

Synchronous spindle
Identifier Parameter Explanation

1. 2. 3. 4. 5. 6.
COUPOF AXIS:

Follow‐
ing spin‐
dle

AXIS:
Leading
spindle

REAL:
Switch-off
position of
the follow‐
ing spindle
(absolute)

REAL:
Switch-off
position of
the leading
spindle (ab‐
solute)

 Switch-off synchro‐
nous spindle coupling
If positions are speci‐
fied, the coupling is on‐
ly cancelled when all
the specified positions
have been overtrav‐
eled
The following spindle
continues to revolve at
the last speed pro‐
grammed before deac‐
tivation of the coupling

COUPOFS AXIS:
Follow‐
ing spin‐
dle

AXIS:
Leading
spindle

REAL:
Switch-off
position of
the follow‐
ing spindle
(absolute)

 Switch off the synchro‐
nous spindle coupling
with stop of the follow‐
ing spindle
If a position is speci‐
fied, the coupling is on‐
ly cancelled when the
specified position is
crossed

WAITC AXIS:
Follow‐
ing spin‐
dle

STRING
[8]:
Block
change
behavior

AXIS:
Following
spindle

STRING[8]:
Block
change be‐
havior

 Wait until the coupling
block change criterion
for the spindles (max.
2) has been fulfilled
If the block change be‐
havior is not specified,
the block change be‐
havior specified in the
definition with COUP‐
DEF applies

Electronic gear
Identifier Parameter Explanation

EGDEL 1. Delete cou‐

pling defini‐
tion for the fol‐
lowing axis

AXIS:
Follow‐
ing axis

EGDEF 1. 2. / 4. /

6. / 8. /
10.

3. / 5. /
7. / 9. /
11.

 Definition of
an electronic
gear

AXIS:
Follow‐
ing axis

AXIS:
Leading
axis

INT:
Coupling
type

Tables
4.4 Predefined procedures

NC programming
1322 Programming Manual, 06/2019, A5E47437142B AA

Electronic gear
Identifier Parameter Explanation

EGON 1. 2. 3. / 6. /

9. / 12. /
15.

4. / 7. /
10. / 13. /
16.

5. / 8. /
11. / 14. /
17.

 Electronic
gear ON with‐
out synchroni‐
zationAXIS:

Follow‐
ing axis

STRING:
Block
change
behavior

AXIS:
Leading
axis

REAL:
Numera‐
tor of the
coupling
factor

REAL:
Denomi‐
nator of
the cou‐
pling fac‐
tor

EGONSYN 1. 2. 3. 4. / 8. /

12. / 16. /
20.

5. / 9. /
13. / 17. /
21.

6. / 10. /
14. / 18. /
22.

7. / 11. /
15. / 19. /
23.

 Electronic
gear ON with
synchroniza‐
tionAXIS:

Follow‐
ing axis

STRING:
Block
change
behavior

REAL:
Synchron
ized posi‐
tion of
the fol‐
lowing
axis

AXIS:
Leading
axis

REAL:
Synchron
ized posi‐
tion of
the lead‐
ing axis

REAL:
Numera‐
tor of the
coupling
factor

REAL:
Denomi‐
nator of
the cou‐
pling fac‐
tor

EGONSYNE 1. 2. 3. 4. 5. / 9. /

13. / 17. /
21.

6. / 10. /
14. / 18. /
22.

7. / 11. /
15. / 19. /
23.

8. / 12. /
16. / 20. /
24.

Electronic
gear ON with
synchroniza‐
tion and
specification
of the ap‐
proach mode

AXIS:
Follow‐
ing axis

STRING:
Block
change
behavior

REAL:
Synchron
ized posi‐
tion of
the fol‐
lowing
axis

STRING:
Ap‐
proach
mode

AXIS:
Leading
axis

REAL:
Synchron
ized posi‐
tion of
the lead‐
ing axis

REAL:
Numera‐
tor of the
coupling
factor

REAL:
Denomi‐
nator of
the cou‐
pling fac‐
tor

EGOFS 1. 2. - n. Turn off elec‐

tronic gear se‐
lectively

AXIS:
Follow‐
ing axis

AXIS:
Leading axis

EGOFC 1. Switch off

electronic
gear (version
only for spin‐
dles)

AXIS:
Follow‐
ing spin‐
dle

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1323

Nibbling
Identifier Parameter Explanation

1. 2. 3. 4.
PUNCHAAC REAL:

Minimum hole
spacing

REAL:
Initial acceler‐
ation

REAL:
Maximum
hole spacing

REAL:
Final accelera‐
tion

Activate travel-dependent acceler‐
ation

Information functions in the passive file system
Identifier Parameter Explanation

1. 2. 3.
FILEDATE VAR INT:

Error message
CHAR[160]:
File name

VAR CHAR[8]:
Date in the for‐
mat
"dd.mm.yy"

Returns the date of the last write access to a file

FILETIME VAR INT:
Error message

CHAR[160]:
File name

VAR CHAR[8]:
Time in the for‐
mat
"hh.mm.ss"

Returns the time of the last write access to a file

FILESIZE VAR INT:
Error message

CHAR[160]:
File name

VAR INT:
File size

Returns the current size of a file

FILESTAT VAR INT:
Error message

CHAR[160]:
File name

VAR CHAR[5]:
Date in the for‐
mat "rwxsd"

Returns the status of a file with respect to the follow‐
ing rights:
● Read (r: read)
● Write (w: write)
● Execute (x: execute)
● Show (s: show)
● Delete (d: delete)

FILEINFO VAR INT:
Error message

CHAR[160]:
File name

VAR
CHAR[32]:
Date in the for‐
mat "rwxsd
nnnnnnnn
dd.mm.yy
hh:mm:ss"

Returns the sum of the information for a file that can
be read out via FILEDATE, FILETIME, FILESIZE,
and FILESTAT

Axis container
Identifier Parameter Explanation

1. - n.
AXCTSWE AXIS:

Axis container
Rotate axis container

AXCTSWED AXIS:
Axis container

Rotating axis container (command variant for commissioning!)

AXCTSWEC: AXIS:
Axis container

Cancel enable for axis container rotation

Tables
4.4 Predefined procedures

NC programming
1324 Programming Manual, 06/2019, A5E47437142B AA

Master/slave coupling
Identifier Parameter Explanation

1. - n.
MASLON AXIS:

Axis identifier
Switch on master/slave coupling

MASLOF AXIS:
Axis identifier

Separate master/slave coupling

MASLOFS AXIS:
Axis identifier

Separate master/slave coupling and automatically brake slave spin‐
dles

MASLDEF AXIS:
Axis identifier

Define master/slave coupling
The last axis is the master axis

MASLDEL AXIS:
Axis identifier

Separate master/slave coupling and delete the definition of the group‐
ing

Online tool length offset
Identifier Parameter Explanation

1. 2.
TOFFON AXIS:

Offset direc‐
tion

REAL:
Offset value
in offset direc‐
tion

Activate online tool length offset in the specified offset direction

TOFFOF AXIS:
Offset direc‐
tion

 Reset online tool length offset in the specified offset direction

SERUPRO
Identifier Parameter Explanation
IPTRLOCK Start of untraceable program section
IPTRUNLOCK End of search-suppressed program section

Retraction
Identifier Parameter Explanation

 1. - n.
POLFMASK AXIS:

Geometry or machine axis name
Enable axes for rapid retraction
(without a connection between the
axes)

POLFMLIN AXIS:
Geometry or machine axis name

Enable axes for linear rapid retrac‐
tion

Tables
4.4 Predefined procedures

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1325

Retraction
Identifier Parameter Explanation
POLFA 1. 2. 3. Retraction position for single axes

AXIS:
Channel axis identi‐
fier

INT:
Type

REAL:
Value

Collision avoidance
Identifier Parameter Explanation

 1.
PROTA STRING:

"R"
Request for a recalculation of the collision model

PROTS 1. 2. - n. Set protection area status

CHAR:
Status

STRING:
Protection
zone name

Intelligent load adjustment
Identifier Parameter Explanation

CADAPTON 1. 2. 3. 4. Activate load adjustment

INT:
Status

AXIS:
machine axis
name

INT:
input variable

REAL:
input value (op‐
tional)

CADAPTOF 1. 2. 3. Deactivate load adjustment

INT:
Status

AXIS:
machine axis
name

INT:
input variable

Tables
4.4 Predefined procedures

NC programming
1326 Programming Manual, 06/2019, A5E47437142B AA

4.5 Predefined procedures in synchronized actions
The following predefined procedures are only available in synchronized actions.

Synchronous procedures
Identifier Parameter Explanation

STOPREOF Revoke preprocessing stop

A synchronized action with a STOPREOF command causes
a preprocessing stop after the next output block (= block for
the main run). The preprocessing stop is canceled with the
end of the output block or when the STOPREOF condition is
fulfilled. All synchronized action operations with the STO‐
PREOF command are therefore interpreted as having been
executed.

RDISABLE Read-in disable

DELDTG 1. Delete distance-to-go

A synchronized action with a DELDTG command causes a
preprocessing stop after the next output block (= block for the
main run). The preprocessing stop is canceled with the end of
the output block or when the first DELDTG condition is fulfil‐
led. The axial distance to the destination point on an axial
delete distance-to-go is stored in $AA_DELT[axis]; the dis‐
tance-to-go is stored in $AC_DELT.

AXIS:
Axis for axial delete distance-to-go (op‐
tional). If the axis is omitted, delete dis‐
tance-to-go is triggered for the path dis‐
tance.

Program coordination of technology cycles
Identifier Parameter Explanation

 1.
LOCK INT:

ID of the synchronized action to be disa‐
bled

Lock synchronized action with ID or stop technology cycle
One or more IDs can be programmed

UNLOCK INT:
ID of the synchronized action to be un‐
locked

Unlock synchronized action with ID or continue technology
cycle
One or more IDs can be programmed

ICYCON Each block of a technology cycle is processed in a separate

interpolation cycle following ICYCON
ICYCOF All blocks of a technology cycle are processed in one inter‐

polation cycle following ICYCOF

Tables
4.5 Predefined procedures in synchronized actions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1327

Polynomial functions
Identifier Parameter Explanation

SYNFCT 1. 2. 3. If the condition in the motion-

synchronous action is fulfilled,
the polynomial determined by
the first expression is evaluated
at the input variable. The upper
and lower range of the value is
limited and the result variable is
assigned.

INT:
Number of
the polyno‐
mial func‐
tion defined
with
FCTDEF

VAR REAL:
Result vari‐
able *)

VAR REAL:
Input varia‐
ble **)

FTOC 1. 2. 3. 4. 5. Change of fine tool compensa‐

tion depending on a function de‐
fined with FCTDEF (max. 3rd
degree polynomial).
The number used here must be
specified in FCTDEF.

INT:
Number of
the polyno‐
mial func‐
tion defined
with
FCTDEF

VAR REAL:
Input varia‐
ble **)

INT:
Length
1, 2, 3

INT:
Channel
number

INT:
Spindle
number

*) Only special system variables are permissible as a result variable (see Function Manual Synchronized Actions).
**) Only special system variables are permissible as input variable (see Function Manual Synchronized Actions).

Tables
4.5 Predefined procedures in synchronized actions

NC programming
1328 Programming Manual, 06/2019, A5E47437142B AA

4.6 Predefined functions
The call of a predefined function triggers the execution of a predefined NC function, which in
contrast to the predefined procedure, supplies a return value. The call of the predefined
function can be an operand in an expression.

Coordinate system
Identifier Return val‐

ue
Parameter Explanation

 1. 2. 3. - 15. 4. - 16.
CTRANS FRAME AXIS:

Axis identifier
REAL: Offset AXIS:

Axis identifier
REAL: Offset Translation: Zero offset

COARSE for multiple ax‐
es

CFINE FRAME AXIS:
Axis identifier

REAL: Offset AXIS:
Axis identifier

REAL: Offset Translation: Zero offset
for FINE multiple axes

CSCALE FRAME AXIS:
Axis identifier

REAL:
Scale factor

AXIS:
Axis identifier

REAL:
Scale factor

Scale: Scale factor for
multiple axes

 1. 2. 3. and 5. 4. and 6.
CROT FRAME AXIS:

Axis identifier
REAL: Rota‐
tion

AXIS:
Axis identifier

REAL: Rota‐
tion

Rotation: Rotation of the
current coordinate sys‐
tem
Maximum number of pa‐
rameters: 6
(one axis identifier and
one value per geometry
axis)

CROTS FRAME AXIS:
Axis identifier

REAL: Rota‐
tion with solid
angle

AXIS:
Axis identifier

REAL: Rota‐
tion with solid

angle

Rotation: Rotation of the
current coordinate sys‐
tem with solid angle
Maximum number of pa‐
rameters: 6
(one axis identifier and
one value per geometry
axis)

CMIRROR 1. 2. – 8. Mirror: Mirror on a coor‐

dinate axisFRAME AXIS AXIS

Tables
4.6 Predefined functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1329

Coordinate system
Identifier Return val‐

ue
Parameter Explanation

 1. 2.
CRPL FRAME INT:

Rotary axis
REAL:
Angle of rota‐
tion

Frame rotation in any
plane

ADDFRAME INT:
0: OK
1: Speci‐
fied target
(string) is
wrong
2: Target
frame is
not config‐
ured
3: Rotation
in frame is
not permit‐
ted

FRAME:
Additively
measured or
calculated
frame

STRING:
Specified tar‐
get frame

Calculates the target
frame specified by the
string
The target frame is cal‐
culated in such a way
that the new complete
frame appears as a
chain of the old complete
frame and the transfer‐
red frame.

INVFRAME FRAME 1. Calculates the inverse

frame from a frame
The frame chaining of a
frame with its inverse
frame always results in a
zero frame

FRAME

MEAFRAME FRAME 1. 2. 3. Frame calculation from 3

measuring points in
space

REAL[3,3]:
Coordinates of
the measured
spatial points

REAL[3,3]:
Coordinates of
the specified
points

VAR REAL:
Variable with
which the infor‐
mation on the
quality of
FRAME calcu‐
lation is re‐
turned

Tables
4.6 Predefined functions

NC programming
1330 Programming Manual, 06/2019, A5E47437142B AA

Geometry functions
Identifier Return value Parameter Explanation

1. 2. 3.
CALCDAT BOOL:

Error status
VAR REAL [n,
2]:
Table (abscissa,
ordinate) of
points 1 to n

INT:
Number of points

VAR REAL [3]:
Result: Abscis‐
sa, ordinate and
radius of calcula‐
ted circle center
point

Calculates the center point coor‐
dinates and the radius of the cir‐
cle from 3 or 4 points
The points must be different.

INTERSEC BOOL:
Error status

VAR REAL [11]:
First contour ele‐
ment

VAR REAL [11]:
Second contour
element

VAR REAL [2]:
Result vector for
the intersection
coordinates: Ab‐
scissa and ordi‐
nate

Calculates the intersection coor‐
dinates between two contour el‐
ements.
The error status indicates wheth‐
er an intersection was found.

Curve table functions
Identifier Return

value
Parameter Explanation

1. 2. 3. 4. 5. 6.
CTAB REAL:

Follow‐
ing axis
position

REAL:
Leading
axis posi‐
tion

INT:
Table
number

VAR RE‐
AL[]:
Pitch re‐
sult

AXIS:
Follow‐
ing axis
for scal‐
ing

AXIS:
Leading
axis for
scaling

 Determines the follow‐
ing axis position to the
specified leading axis
position from the curve
table.
If parameters 4/5 are
not programmed, cal‐
culation is with stand‐
ard scaling.

CTABINV REAL:
Leading
axis posi‐
tion

REAL:
Follow‐
ing axis
position

REAL:
Leading
position

INT:
Table
number

VAR RE‐
AL[]:
Pitch re‐
sult

AXIS:
Follow‐
ing axis
for scal‐
ing

AXIS:
Leading
axis for
scaling

Determines the lead‐
ing axis position to the
specified following ax‐
is position from the
curve table.
If parameters 5/6 are
not programmed, cal‐
culation is with stand‐
ard scaling.

CTABID INT:
Curve ta‐
ble num‐
ber

INT:
Entry
number
in memo‐
ry

STRING:
Storage
location:
"SRAM",
"DRAM"

 Determines the curve
table number entered
under the specified
number in the memory.

Tables
4.6 Predefined functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1331

Curve table functions
Identifier Return

value
Parameter Explanation

1. 2. 3. 4. 5. 6.
CTABISLOCK INT:

Lock
state

INT:
Table
number

 Determines the lock
state of the curve table:
> 0: Table is locked
1: CTABLOCK
2: Active coupling
3: CTABLOCK and ac‐
tive coupling
0: Table is not locked
-1: Table does not ex‐
ist

CTABEXISTS INT:
Exis‐
tence

INT:
Table
number

 Determines the exis‐
tence of the curve ta‐
ble in the static or dy‐
namic NC memory:
0: FALSE
1: TRUE

CTABMEMTYP INT:
Storage
location

INT:
Table
number

 Determines the stor‐
age location of the
curve table:
1: DRAM
0: SRAM
-1: Table does not ex‐
ist

CTABPERIOD INT:
Periodici‐
ty

INT:
Table
number

 Determines the perio‐
dicity of the curve ta‐
ble:
0: Not periodic
1: Periodic in leading
axis
2: Periodic in leading
and following axis
-1: Table does not ex‐
ist

CTABNO INT:
Number
of curve
tables

 Determines the num‐
ber of defined curve ta‐
bles (in static and dy‐
namic NC memory)

CTABNOMEM INT:
Number
of curve
tables

STRING:
Storage
location:
"SRAM",
"DRAM"

 Determines the num‐
ber of defined curve ta‐
bles in the specified
memory

CTABFNO INT:
Number
of tables

STRING:
Storage
location:
"SRAM",
"DRAM"

 Determines the num‐
ber of curve tables still
possible in the speci‐
fied memory

Tables
4.6 Predefined functions

NC programming
1332 Programming Manual, 06/2019, A5E47437142B AA

Curve table functions
Identifier Return

value
Parameter Explanation

1. 2. 3. 4. 5. 6.
CTABSEG INT:

Number
of curve
seg‐
ments

STRING:
Storage
location:
"SRAM",
"DRAM"

STRING:
Segment
type:
"L": Line‐
ar
"P": Poly‐
nomial

 Determines the num‐
ber of curve segments
used of the specified
segment type in the
specified memory
>=0: Number
-1: Invalid memory
type
If parameter 2 is not
programmed, the sum
of the linear and poly‐
nomial segments is
output.

CTABFSEG INT:
Number
of curve
seg‐
ments

STRING:
Storage
location:
"SRAM",
"DRAM"

STRING:
Segment
type:
"L": Line‐
ar
"P": Poly‐
nomial

 Determines the num‐
ber of still possible
curve segments of the
specified segment
type in the specified
memory
>=0: Number
-1: Invalid memory
type

CTABSEGID INT:
Number
of curve
seg‐
ments

INT:
Table
number

STRING:
Segment
type:
"L": Line‐
ar
"P": Poly‐
nomial

 Determines the num‐
ber of curve segments
of the specified seg‐
ment type that are
used by the curve table
>=0: Number
-1: Table does not ex‐
ist

CTABMSEG INT:
Number
of curve
seg‐
ments

STRING:
Storage
location:
"SRAM",
"DRAM"

STRING:
Segment
type:
"L": Line‐
ar
"P": Poly‐
nomial

 Determines the maxi‐
mum possible number
of curve segments of
the specified segment
type in the specified
memory
>=0: Number
-1: Table does not exist

CTABPOL INT:
Number
of curve
polyno‐
mials

STRING:
Storage
location:
"SRAM",
"DRAM"

 Determines the num‐
ber of used curve poly‐
nomials in the speci‐
fied memory
>=0: Number
-1: Table does not exist

Tables
4.6 Predefined functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1333

Curve table functions
Identifier Return

value
Parameter Explanation

1. 2. 3. 4. 5. 6.
CTABPOLID INT:

Number
of curve
polyno‐
mials

INT:
Table
number

 Determines the num‐
ber of curve polyno‐
mials used by the
curve table
>=0: Number
-1: Table does not exist

CTABFPOL INT:
Number
of curve
polyno‐
mials

STRING:
Storage
location:
"SRAM",
"DRAM"

 Determines the maxi‐
mum possible number
of curve polynomials in
the specified memory:
>=0: Number
-1: Table does not exist

CTABMPOL INT:
Number
of curve
polyno‐
mials

STRING:
Storage
location:
"SRAM",
"DRAM"

 Determines the maxi‐
mum possible number
of curve polynomials in
the specified memory:
>=0: Number
-1: Table does not exist

CTABSSV REAL:
Follow‐
ing axis
position

REAL:
Leading
axis posi‐
tion

INT:
Table
number

VAR RE‐
AL[]:
Pitch re‐
sult

AXIS:
Follow‐
ing axis
for scal‐
ing

AXIS:
Leading
axis for
scaling

 Determines the follow‐
ing axis position at the
start of the curve seg‐
ment belonging to the
specified leading axis
value

CTABSEV REAL:
Follow‐
ing axis
position

REAL:
Leading
axis posi‐
tion

INT:
Table
number

VAR RE‐
AL[]:
Pitch re‐
sult

AXIS:
Follow‐
ing axis
for scal‐
ing

AXIS:
Leading
axis for
scaling

 Determines the follow‐
ing axis position at the
end of the curve seg‐
ment belonging to the
specified leading axis
value

CTABTSV REAL:
Follow‐
ing axis
position

INT:
Table
number

VAR RE‐
AL[]:
Pitch re‐
sult at
start of
the table

AXIS:
Follow‐
ing axis

 Determines the follow‐
ing axis position at the
start of the curve table.

CTABTEV REAL:
Follow‐
ing axis
position

INT:
Table
number

VAR RE‐
AL[]:
Pitch re‐
sult at
end of
the table

AXIS:
Follow‐
ing axis

 Determines the follow‐
ing axis position at the
end of the curve table.

CTABTSP REAL:
Leading
axis posi‐
tion

INT:
Table
number

VAR RE‐
AL[]:
Pitch re‐
sult at
start of
the table

AXIS:
Leading
axis

 Determines the lead‐
ing axis position at the
start of the curve table.

Tables
4.6 Predefined functions

NC programming
1334 Programming Manual, 06/2019, A5E47437142B AA

Curve table functions
Identifier Return

value
Parameter Explanation

1. 2. 3. 4. 5. 6.
CTABTEP REAL:

Leading
axis posi‐
tion

INT:
Table
number

VAR RE‐
AL[]:
Pitch re‐
sult at
end of
the table

AXIS:
Leading
axis

 Determines the lead‐
ing axis position at the
end of the curve table.

CTABTMIN REAL:
Minimum
value

INT:
Table
number

REAL:
Leading
value in‐
terval
lower lim‐
it

REAL:
Leading
value in‐
terval up‐
per limit

AXIS:
Follow‐
ing axis

AXIS:
Leading
axis

 Determines the mini‐
mum value of the fol‐
lowing axis in the en‐
tire definition range of
the curve table or in a
defined interval

CTABTMAX REAL:
Maxi‐
mum val‐
ue

INT:
Table
number

REAL:
Leading
value in‐
terval
lower lim‐
it

REAL:
Leading
value in‐
terval up‐
per limit

AXIS:
Follow‐
ing axis

AXIS:
Leading
axis

 Determines the maxi‐
mum value of the fol‐
lowing axis in the en‐
tire definition range of
the curve table or in a
defined interval

Note:
The curve table functions can also be programmed in synchronized actions.

Axis functions
Identifier Return value Parameter

1. 2. 3. 4. Explanation
AXNAME AXIS:

Axis identifier
STRING []:

Input string

 Converts input string in‐
to axis identifier

AXSTRING STRING[]:
Axis name

AXIS:
Axis identifier

 Converts axis identifier
into string

ISAXIS BOOL:
Axis present
(TRUE) or not
(FALSE)

INT:

Number of the
geometry axis
(1 to 3)

 Checks whether the ge‐
ometry axes 1 to 3
specified as parame‐
ters are present in ac‐
cordance with machine
data MD20050
$MC_AXCONF_GEO‐
AX_ASSIGN_TAB

SPI AXIS:
Axis identifier

INT:
Spindle num‐
ber

 Converts spindle num‐
ber into axis identifier

AXTOSPI INT:
Spindle num‐
ber

AXIS:
Axis identifier

 Converts axis identifier
into spindle number

Tables
4.6 Predefined functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1335

Axis functions
Identifier Return value Parameter

1. 2. 3. 4. Explanation
MODAXVAL REAL:

modulo value
AXIS:
Axis identifier

REAL:
Axis position

 From the entered axis
position, calculates the
modulo rest
If the specified axis is
not a modulo axis, the
axis position is returned
unchanged.

POSRANGE BOOL:
Position set‐
point within
the position
window
(TRUE) or not
(FALSE)

AXIS:
Axis identifier

REAL:
Reference po‐
sition in the
coordinate
system

REAL:
Position win‐
dow width

INT:
Coordinate
system

Determines whether
the position setpoint of
an axis is located in a
window at a predefined
reference position

Tool management
Identifier Return value Parameter Explanation

1. 2. 3.
CHKDM INT:

Status: Result
of the check:

INT:
Magazine num‐
ber

INT:
D number

 Checks the uniqueness of the D
number within a magazine

CHKDNO INT:
Status: Result
of the check:

INT:
T number of the
1st tool

INT:
T number of the
2nd tool

INT:
D number

Checks the uniqueness of the D
number

GETACTT INT:
Status

INT:
T number

STRING [32]:
Tool name

 Determines the active tool from
a group of tools with the same
name

GETACTTD INT:
Status: Result
of the check:

VAR INT:
T number found
(return value)

INT:
D number

 Determines the T number asso‐
ciated with an absolute D num‐
ber

GETDNO INT:
D number

INT:
T number

INT:
Cutting edge
number

 Determines the D number of the
cutting edge of tool T

GETT INT:
T number

STRING [32]:
Tool name

INT:
Duplo number

 Determines the T number for the
tool name

NEWT INT:
T number

STRING [32]:
Tool name

INT:
Duplo number

 Sets up a new tool (provides the
tool data)
The duplo number can be omit‐
ted.

TOOLENV INT:
Status

STRING:
Name

 Stores the tool environment with
the specified name in the static
NC memory

Tables
4.6 Predefined functions

NC programming
1336 Programming Manual, 06/2019, A5E47437142B AA

Tool management
Identifier Return value Parameter Explanation

1. 2. 3.
DELTOOLENV INT:

Status
STRING:
Name

 Deletes the tool environment
with the specified name in the
static NC memory
Deletes all tool environments if
no name is specified.

GETTENV INT:
Status

STRING:
Name

VAR INT:
T number [0]
D number [1]
DL number [2]

 Determines the T number, D
number, and DL number from a
tool environment with the speci‐
fied name

Arithmetic
Identifier Return value Parameter Explanation

1. 2. 3.
SIN REAL REAL Sine
ASIN REAL REAL Arc sine
COS REAL REAL Cosine
ACOS REAL REAL Arc cosine
TAN REAL REAL Tangent
ATAN2 REAL REAL REAL Arc tangent 2
SQRT REAL REAL Square root
POT REAL REAL Square
TRUNC REAL REAL Integer component
ROUND REAL REAL Round down
ROUNDUP REAL REAL Round up
ABS REAL REAL Absolute value
LN REAL REAL Natural logarithm
EXP REAL REAL Exponential function ex

MINVAL REAL REAL REAL Determines the smaller value
of two parameters

MAXVAL REAL REAL REAL Determines the larger value of
two parameters

BOUND REAL:
Check status

REAL:
Lower limit

REAL:
Upper limit

REAL:
Reference value

Determines whether the refer‐
ence value is within the limits.

Note:
The arithmetic functions can also be programmed in synchronized actions. These arithmetic functions are calculated and
evaluated in the main run. The synchronized action parameter $AC_PARAM[<n>] can also be used for calculations and as
buffer.

Tables
4.6 Predefined functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1337

String functions
Identifier Return value Parameter Explanation

1. 2. 3.
ISNUMBER BOOL STRING:

Input string
 Checks whether the input string can be con‐

verted to a number.
NUMBER REAL STRING:

Input string
 Converts the input string into a number.

TOUPPER STRING STRING:
Input string

 Converts the input string into upper case

TOLOWER STRING STRING:
Input string

 Converts the input string into lower case

STRLEN INT STRING:
Input string

 Determines the length of the input string up to
the end of the string (/0)

INDEX INT STRING:
Input string

CHAR:
Search
characters

 Determines the position of the character in the
input string from left to right.
The 1st character of the string from the left has
the index 0.

RINDEX INT STRING:
Input string

CHAR:
Search
characters

 Determines the position of the character in the
input string from right to left.
The 1st character of the string from the right
has the index 0.

MINDEX INT STRING:
Input string

STRING:
Search
character

 Determines the position of a character speci‐
fied in the 2nd parameter in the input string
from left to right.
The 1st character of the input string from the
left has the index 0.

SUBSTR STRING STRING:
Input string

INT INT Determines the substring of the input string,
defined by the start character (2nd parameter)
and number of characters (3rd parameter).

SPRINT STRING STRING:
Input string

 Determines the formatted input string

Tables
4.6 Predefined functions

NC programming
1338 Programming Manual, 06/2019, A5E47437142B AA

Functions for measuring cycles
Identifier Return

value
Parameter Explanation

1. 2. 3. 4. 5. 6.
CALCPOSI INT:

Status
REAL[3]:
Starting
position
in the
WCS

REAL[3]:
Incre‐
mental
path
specifica‐
tion in re‐
lation to
the start‐
ing posi‐
tion

REAL[5]:
Minimum
distan‐
ces to
the moni‐
toring
limits

REAL[3]:
Return
array for
the poss.
incr. dis‐
tance

BOOL:
Conver‐
sion of
the
measur‐
ing sys‐
tem
Yes/No

INT:
Type of
limit
monitor‐
ing

Checks whether the ge‐
ometry axes can traverse
a defined path without vi‐
olating the axis limits
starting from a specified
starting point.
If the defined path cannot
be traversed without vio‐
lating limits, the maxi‐
mum permissible value is
returned.

GETTCOR INT:
Status

REAL
[11]:

STRING:
Tool
length
compo‐
nent: Co‐
ordinate
system

STRING:
Name of
the tool
environ‐
ment

INT:
Internal
T no. of
the tool

INT:
Cutting-
edge
number
(D no.) of
the tool

INT:
Number
of the lo‐
cation-
depend‐
ent offset
(DL no.
of the
tool)

Determines the tool
lengths and tool length
components from tool en‐
vironment or current envi‐
ronment

LENTOAX INT:
Status

INT[3]:
Axis as‐
signment
of the ge‐
ometry
axes

REAL[3]:
Matrix for
mapping
the tool
lengths
in the co‐
ordinate
system

STRING:
Coordi‐
nate sys‐
tem for
the as‐
signment

 Determines information
about the assignment of
the tool lengths L1, L2, L3
of the active tool to ab‐
scissa, ordinate, appli‐
cate.
The assignment to the ge‐
ometry axes is affected
by frames and the active
plane (G17 - 19).

SETTCOR INT:
Status

1. 2. 3. 4. 5. 6. 7. 8. 9.
 REAL

[3]:
Offset
vector
in
space

STR.:
Com‐
po‐
nent
identi‐
fier

INT:
Com‐
po‐
nent(s)
 to be
correc‐
ted
0 - 11

INT:
Type
of
write
opera‐
tion
0 - 3

INT:
Index
of the
geom‐
etry
axis

STRIN
G:
Name
of the
tool
envi‐
ron‐
ment

INT:
int. T
No. of
the tool

INT:
D no.
of the
tool

INT:
DL no.
of the
tool

Changes
the tool
compo‐
nents, con‐
sidering all
supplemen‐
tary condi‐
tions that
are inclu‐
ded in the
evaluation
of the indi‐
vidual com‐
ponents

Tables
4.6 Predefined functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1339

Other functions
Identifier Return

value
Parameter Explanation

1. 2. 3. 4. 5. 6.
STRINGIS INT:

Informa‐
tion
about the
string

STRING:
Name of
the ele‐
ment to
be
checked

 Checks whether the
specified string is avail‐
able as element of the
NC programming lan‐
guage in the current
language scope.

ISVAR BOOL:
Variable
known
Yes/No

STRING:
Name of
the varia‐
ble

 Checks whether the
transfer parameter con‐
tains a variable known
in the NC (machine da‐
ta, setting data, system
variable, general varia‐
bles such as GUDs).

GETVARTYP INT:
Data type

STRING:
Name of
the varia‐
ble

 Determines the data
type of a system/user
variable

GETVARPHU INT:
Numeric
value of
the physi‐
cal unit

STRING:
Name of
the varia‐
ble

 Determines the physi‐
cal unit of a system/
user variable

GETVARAP INT:
Protec‐
tion level
for ac‐
cess

STRING:
Name of
the varia‐
ble

STRING:
Type of
access

 Determines the access
right to a system/user
variable

GETVARLIM INT:
Status

STRING:
Name of
the varia‐
ble

CHAR:
Specifies
which
limit val‐
ue
should
be read
out

VAR RE‐
AL:
Return of
the limit
value

 Determines the lower/
upper limit value of a
system/user variable

GETVARDFT INT:
Status

STRING:
Name of
the varia‐
ble

VAR RE‐
AL
/
STRING/
FRAME:
Return of
the de‐
fault val‐
ue

INT:
Index to
the first
dimen‐
sion (op‐
tional)

INT:
Index to
the sec‐
ond di‐
mension
(optional)

INT:
Index to
the third
dimen‐
sion (op‐
tional)

 Determines the default
value of a system/user
variable

COLLPAIR INT:
Check re‐
sult

STRING:
Name of
the 1st
protec‐
tion area

STRING:
Name of
the 2nd
protec‐
tion area

BOOL:
Alarm
suppres‐
sion (op‐
tional)

 Checks whether part of
a collision pair

Tables
4.6 Predefined functions

NC programming
1340 Programming Manual, 06/2019, A5E47437142B AA

Other functions
Identifier Return

value
Parameter Explanation

1. 2. 3. 4. 5. 6.
PROTD REAL:

Clear‐
ance of
the two
protec‐
tion
zones

STRING:
Name of
the 1st
protec‐
tion area

STRING:
Name of
the 2nd
protec‐
tion area

VAR RE‐
AL:
Return
value:
3-dimen‐
sional
clear‐
ance vec‐
tor

BOOL:
Measur‐
ing sys‐
tem for
clear‐
ance and
clear‐
ance vec‐
tor (op‐
tional)

 Determines the clear‐
ance of the two speci‐
fied protection areas.

DELOBJ INT:
Error
number

STRING:
Compo‐
nent type
to be de‐
leted

INT:
Start in‐
dex of
the com‐
ponents
to be de‐
leted (op‐
tional)

INT:
End in‐
dex of
the com‐
ponents
to be de‐
leted (op‐
tional)

BOOL:
Alarm
suppres‐
sion
(optional)

 Deletes elements from
kinematic chains, pro‐
tection areas, protec‐
tion area elements, col‐
lision pairs and transfor‐
mation data

NAMETOINT INT:
System
variable
index

STRING:
Name of
the sys‐
tem vari‐
able ar‐
ray

STRING:
Charac‐
ter
string /
name

BOOL:
Alarm
suppres‐
sion
(optional)

 Determines the associ‐
ated system variable in‐
dex based on the char‐
acter string

ORISOLH INT:
Error
number

INT:
Controls
the be‐
havior of
the func‐
tion

REAL:
First an‐
gle

REAL:
Second
angle

 Helps the user to set
the rotary axis positions
of a machine so that a
turning tool can be
brought into a defined,
kinematic-independent
position relative to the
workpiece.
Requirement:
A 6-axis transformation
is active that has been
parameterized with kin‐
ematic chains.

CORRTRAFO INT:
Error
number

REAL:
Correc‐
tion vec‐
tor

INT:
Element
to be
modified

INT:
Correc‐
tion
mode

BOOL:
Alarm
suppres‐
sion
(optional)

 Modifies offset vectors
or direction vectors of
the orientation axes in
the kinematic model of
the machine.

CORRTC INT:
Error
number

REAL:
Correc‐
tion vec‐
tor

INT:
Element
to be
modified

INT:
Correc‐
tion
mode

BOOL:
Alarm
suppres‐
sion
(optional)

 Modify offset vectors or
direction vectors of ori‐
entable tool carriers ac‐
cording to machine
measurement.

Tables
4.6 Predefined functions

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1341

Tables
4.6 Predefined functions

NC programming
1342 Programming Manual, 06/2019, A5E47437142B AA

Appendix A
A.1 List of abbreviations

A
O Output
ADI4 (Analog drive interface for 4 axes)
AC Adaptive Control
ALM Active Line Module
ARM Rotating induction motor
AS Automation system
ASCII American Standard Code for Information Interchange: American coding standard for

the exchange of information
ASIC Application-Specific Integrated Circuit: User switching circuit
ASUB Asynchronous subprogram
AUXFU Auxiliary function: Auxiliary function
STL Statement List
UP User Program

B
OP Operating Mode
BAG Mode group
BCD Binary Coded Decimals: Decimal numbers encoded in binary code
BERO Contact-less proximity switch
BI Binector Input
BICO Binector Connector
BIN BINary files: Binary files
BIOS Basic Input Output System
BCS Basic Coordinate System
BO Binector Output
OPI Operator Panel Interface

C
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CC Compile Cycle: Compile cycles
CEC Cross Error Compensation
CI Connector Input
CF Card Compact Flash Card

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1343

C
CNC Computerized Numerical Control: Computer-Supported Numerical Control
CO Connector Output
CoL Certificate of License
COM Communication
CPA Compiler Projecting Data: Configuring data of the compiler
CRT Cathode Ray Tube: picture tube
CSB Central Service Board: PLC module
CU Control Unit
CP Communication Processor
CPU Central Processing Unit: Central processing unit
CR Carriage Return
CTS Clear To Send: Ready to send signal for serial data interfaces
CUTCOM Cutter radius Compensation: Tool radius compensation

D
DAC Digital-to-Analog Converter
DB Data Block (PLC)
DBB Data Block Byte (PLC)
DBD Data Block Double word (PLC)
DBW Data Block Word (PLC)
DBX Data block bit (PLC)
DDE Dynamic Data Exchange
DDS Drive Data Set: Drive data set
DIN Deutsche Industrie Norm
DIO Data Input/Output: Data transfer display
DIR Directory: Directory
DLL Dynamic Link Library
DO Drive Object
DPM Dual Port Memory
DPR Dual Port RAM
DRAM Dynamic memory (non-buffered)
DRF Differential Resolver Function: Differential revolver function (handwheel)
DRIVE-CLiQ Drive Component Link with IQ
DRY Dry Run: Dry run feedrate
DSB Decoding Single Block: Decoding single block
DSC Dynamic Servo Control / Dynamic Stiffness Control
DW Data Word
DWORD Double Word (currently 32 bits)

Appendix
A.1 List of abbreviations

NC programming
1344 Programming Manual, 06/2019, A5E47437142B AA

E
I Input
EES Execution from External Storage
I/O Input/Output
ENC Encoder: Actual value encoder
EFP Compact I/O module (PLC I/O module)
ESD Electrostatic Sensitive Devices
EMC ElectroMagnetic Compatibility
EN European standard
ENC Encoder: Actual value encoder
EnDat Encoder interface
EPROM Erasable Programmable Read Only Memory: Erasable, electrically programmable

read-only memory
ePS Network Services Services for Internet-based remote machine maintenance
EQN Designation for an absolute encoder with 2048 sine signals per revolution
ES Engineering System
ESR Extended Stop and Retract
ETC ETC key ">"; softkey bar extension in the same menu

F
FB Function Block (PLC)
FC Function Call: Function Block (PLC)
FEPROM Flash EPROM: Read and write memory
FIFO First In First Out: Memory that works without address specification and whose data is

read in the same order in which they was stored
FIPO Fine interpolator
FPU Floating Point Unit: Floating Point Unit
CRC Cutter Radius Compensation
FST Feed Stop: Feedrate stop
FBD Function Block Diagram (PLC programming method)
FW Firmware

G
GC Global Control (PROFIBUS: Broadcast telegram)
GDIR Global part program memory
GEO Geometry, e.g. geometry axis
GIA Gear Interpolation dAta: Gear interpolation data
GND Signal Ground
GP Basic program (PLC)
GS Gear Stage
GSD Device master file for describing a PROFIBUS slave

Appendix
A.1 List of abbreviations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1345

G
GSDML Generic Station Description Markup Language: XML-based description language for

creating a GSD file
GUD Global User Data: Global user data

H
HEX Abbreviation for hexadecimal number
AuxF Auxiliary function
HLA Hydraulic linear drive
HMI Human Machine Interface: SINUMERIK user interface
MSD Main Spindle Drive
HW Hardware

I
IBN Commissioning
ICA Interpolatory compensation
IM Interface Module: Interconnection module
IMR Interface Module Receive: Interface module for receiving data
IMS Interface Module Send: Interface module for sending data
INC Increment: Increment
INI Initializing Data: Initializing data
IPO Interpolator
ISA Industry Standard Architecture
ISO International Standardization Organization

J
JOG Jogging: Setup mode

K
KV Gain factor of control loop
Kp Proportional gain
KÜ Transformation ratio
LAD Ladder Diagram (PLC programming method)

L
LAI Logic Machine Axis Image: Logical machine axes image
LAN Local Area Network
LCD Liquid Crystal Display: Liquid crystal display
LED Light Emitting Diode: Light-emitting diode
LF Line Feed

Appendix
A.1 List of abbreviations

NC programming
1346 Programming Manual, 06/2019, A5E47437142B AA

L
PMS Position Measuring System
LR Position controller
LSB Least Significant Bit: Least significant bit
LUD Local User Data: User data (local)

M
MAC Media Access Control
MAIN Main program: Main program (OB1, PLC)
MB Megabyte
MCI Motion Control Interface
MCIS Motion Control Information System
MCP Machine Control Panel: Machine control panel
MD Machine Data
MDA Manual Data Automatic: Manual input
MDS Motor Data Set: Motor data set
MSGW Message Word
MCS Machine Coordinate System
MM Motor Module
MPF Main Program File: Main program (NC)
MCP Machine control panel

N
NC Numerical Control: Numerical control with block preparation, traversing range, etc.
NCU Numerical Control Unit: NC hardware unit
NRK Name for the operating system of the NC
IS Interface Signal
NURBS Non-Uniform Rational B-Spline
WO Work Offset
NX Numerical Extension: Axis expansion board

O
OB Organization block in the PLC
OEM Original Equipment Manufacturer
OP Operator Panel: Operating equipment
OPI Operator Panel Interface: Interface for connection to the operator panel
OPT Options: Options
OLP Optical Link Plug: Fiber optic bus connector
OSI Open Systems Interconnection: Standard for computer communications

Appendix
A.1 List of abbreviations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1347

P
PIQ Process Image Output
PII Process Image Input
PC Personal Computer
PCIN Name of the SW for data exchange with the control
PCMCIA Personal Computer Memory Card International Association:

Plug-in memory card standardization
PCU PC Unit: PC box (computer unit)
PG Programming device
PKE Parameter identification: Part of a PIV
PIV Parameter identification: Value (parameterizing part of a PPO)
PLC Programmable Logic Control: Adaptation control
PN PROFINET
PNO PROFIBUS user organization
PO POWER ON
POU Program Organization Unit
POS Position/positioning
POSMO A Positioning Motor Actuator: Positioning motor
POSMO CA Positioning Motor Compact AC: Complete drive unit with integrated power and control

module as well as positioning unit and program memory; AC infeed
POSMO CD Positioning Motor Compact DC: Like CA but with DC infeed
POSMO SI Positioning Motor Servo Integrated: Positioning motor, DC infeed
PPO Parameter Process data Object: Cyclic data telegram for PROFIBUS DP transmission

and "Variable speed drives" profile
PPU Panel Processing Unit (central hardware for a panel-based CNC, e.g SINUMERIK

828D)
PROFIBUS Process Field Bus: Serial data bus
PRT Program Test
PSW Program control word
PTP Point-To-Point: Point-To-Point
PUD Program global User Data: Program-global user variables
PZD Process data: Process data part of a PPO

Q
QEC Quadrant Error Compensation

R
RAM Random Access Memory: Read/write memory
REF REFerence point approach function
REPOS REPOSition function
RISC Reduced Instruction Set Computer: Type of processor with small instruction set and

ability to process instructions at high speed
ROV Rapid Override: Input correction

Appendix
A.1 List of abbreviations

NC programming
1348 Programming Manual, 06/2019, A5E47437142B AA

R
RP R Parameter, arithmetic parameter, predefined user variable
RPA R Parameter Active: Memory area in the NC for R parameter numbers
RPY Roll Pitch Yaw: Rotation type of a coordinate system
RTLI Rapid Traverse Linear Interpolation: Linear interpolation during rapid traverse motion
RTS Request To Send: Control signal of serial data interfaces
RTCP Real Time Control Protocol

S
SA Synchronized Action
SBC Safe Brake Control: Safe Brake Control
SBL Single Block: Single block
SBR Subroutine: Subprogram (PLC)
SD Setting Data
SDB System Data Block
SEA Setting Data Active: Identifier (file type) for setting data
SERUPRO SEarch RUn by PROgram test: Block search, program test
SFB System Function Block
SFC System Function Call
SGE Safety-related input
SGA Safety-related output
SH Safe standstill
SIM Single in Line Module
SK Softkey
SKP Skip: Function for skipping a part program block
SLM Synchronous Linear Motor
SM Stepper Motor
SMC Sensor Module Cabinet Mounted
SME Sensor Module Externally Mounted
SMI Sensor Module Integrated
SPF Sub Routine File: Subprogram (NC)
PLC Programmable Logic Controller
SRAM Static RAM (non-volatile)
TNRC Tool Nose Radius Compensation
SRM Synchronous Rotary Motor
LEC Leadscrew Error Compensation
SSI Serial Synchronous Interface: Synchronous serial interface
SSL Block search
STW Control word
GWPS Grinding Wheel Peripheral Speed
SW Software
SYF System Files: System files
SYNACT SYNchronized ACTion: Synchronized Action

Appendix
A.1 List of abbreviations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1349

T
TB Terminal Board (SINAMICS)
TCP Tool Center Point: Tool tip
TCP/IP Transport Control Protocol / Internet Protocol
TCU Thin Client Unit
TEA Testing Data Active: Identifier for machine data
TIA Totally Integrated Automation
TM Terminal Module (SINAMICS)
TO Tool Offset: Tool offset
TOA Tool Offset Active: Identifier (file type) for tool offsets
TRANSMIT Transform Milling Into Turning: Coordination transformation for milling operations on a

lathe
TTL Transistor-Transistor Logic (interface type)
TZ Technology cycle

U
UFR User Frame: Work offset
SR Subprogram
USB Universal Serial Bus
UPS Uninterruptible Power Supply

V
VDI Internal communication interface between NC and PLC
VDI Verein Deutscher Ingenieure [Association of German Engineers]
VDE Verband Deutscher Elektrotechniker [Association of German Electrical Engineers]
VI Voltage Input
VO Voltage Output
FDD Feed Drive

W
SAR Smooth Approach and Retraction
WCS Workpiece Coordinate System
T Tool
TLC Tool Length Compensation
WOP Workshop-Oriented Programming
WPD Workpiece Directory: Workpiece directory
TRC Tool Radius Compensation
T Tool
TO Tool Offset
TM Tool Management
TC Tool change

Appendix
A.1 List of abbreviations

NC programming
1350 Programming Manual, 06/2019, A5E47437142B AA

X
XML Extensible Markup Language

Z
WOA Work Offset Active: Identifier for work offsets
ZSW Status word (of drive)

Appendix
A.1 List of abbreviations

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1351

Appendix
A.1 List of abbreviations

NC programming
1352 Programming Manual, 06/2019, A5E47437142B AA

Index

-
- End of trial cut addition - GROUP_ADDEND

External programming, 1193

$
$A_INA, 960
$A_PROBE, 591, 598, 1000
$A_PROBE_LIMITED, 599
$AA_ACC, 129
$AA_ATOL, 826
$AA_AXCHANGE_STAT, 976
$AA_AXCHANGE_TYP, 976, 979
$AA_COUP_ACT

during coupled motion, 847
for axial master value coupling, 869

$AA_FGREF, 114
$AA_FGROUP, 114
$AA_G0MODE, 183
$AA_JERK_COUNT, 931
$AA_JERK_TIME, 931
$AA_JERK_TOT, 931
$AA_LEAD_SP, 869
$AA_LEAD_SV, 869
$AA_MEAACT, 1000
$AA_MM, 592
$AA_MM1 ... 4, 1000
$AA_MM1...4, 599
$AA_MW, 592
$AA_MW1...4, 599
$AA_OFF, 934
$AA_OFF_LIMIT, 935
$AA_OVR, 926
$AA_PLC_OVR, 926
$AA_TOFF, 937
$AA_TOFF_VAL, 938
$AA_TOTAL_OVR, 927
$AA_TRAVEL_COUNT, 931
$AA_TRAVEL_COUNT_HS, 931
$AA_TRAVEL_DIST, 931
$AA_TRAVEL_DIST_HS, 931
$AA_TRAVEL_TIME, 931
$AA_TRAVEL_TIME_HS, 931
$AC_ACT_PROG_NET_TIME, 1027
$AC_ACTUAL_PARTS, 1029
$AC_AXCTSWA, 981

$AC_BLOCKTYPE, 925, 941
$AC_BLOCKTYPEINFO, 941
$AC_CTOL, 826
$AC_CTOL_G0_ABS, 186
$AC_CUT_INV, 762
$AC_CUTMOD, 762
$AC_CUTMOD_ANG, 762
$AC_CUTMODK, 762
$AC_CUTTING_TIME, 1026
$AC_CYCLE_TIME, 1026
$AC_DELAYFST, 810
$AC_DTEB, 965
$AC_F_TYPE, 145
$AC_FCT0, 932
$AC_FCT1, 932
$AC_FCT2, 932
$AC_FCT3, 932
$AC_FCTLL, 932
$AC_FCTUL, 932
$AC_FGROUP_MASK, 114
$AC_FIFO, 920
$AC_FZ, 145
$AC_MARKER, 915
$AC_MEA, 591, 599, 1000
$AC_OLD_PROG_NET_TIME, 1027
$AC_OLD_PROG_NET_TIME_COUNT, 1027
$AC_OPERATING_TIME, 1026
$AC_OTOL, 826
$AC_OTOL_ G0_ABS, 186
$AC_OVR, 925
$AC_PARAM, 916
$AC_PLC_OVR, 926
$AC_PROG_NET_TIME_TRIGGER, 1027
$AC_REPOS_PATH_MODE, 818
$AC_REQUIRED_PARTS, 1029
$AC_S_TYPE, 99
$AC_SMAXVELO, 822
$AC_SMAXVELO_INFO, 822
$AC_SPECIAL_PARTS, 1029
$AC_SPLITBLOCK, 942
$AC_STOLF, 185
$AC_SVC, 99
$AC_SYNA_STATE, 946
$AC_SYNC_ACT_LOAD, 927
$AC_SYNC_AVERAGE_LOAD, 927
$AC_SYNC_MAX_LOAD, 927
$AC_TANEB, 925
$AC_TIMER, 919
$AC_TOFF, 90

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1353

$AC_TOFFCR, 90
$AC_TOFFL, 90
$AC_TOFFR, 90
$AC_TOTAL_OVR, 926
$AC_TOTAL_PARTS, 1029
$AC_TRAFO_CORR_ELEM_P, 710
$AC_TRAFO_CORR_ELEM_T, 710
$AC_TRAFO_ORIAX_LOC, 711
$AN_AXCTSWA, 981
$AN_IPO_ACT_LOAD, 927
$AN_IPO_LOAD_LIMIT, 928
$AN_IPO_LOAD_PERCENT, 927
$AN_IPO_MAX_LOAD, 927
$AN_IPO_MIN_LOAD, 927
$AN_POWERON_TIME, 1026
$AN_SERVO_ACT_LOAD, 927
$AN_SERVO_MAX_LOAD, 927
$AN_SERVO_MIN_LOAD, 927
$AN_SETUP_TIME, 1026
$AN_SYNC_ACT_LOAD, 927
$AN_SYNC_MAX_LOAD, 927
$AN_SYNC_TO_IPO, 927
$NT_CLOSE_CHAIN_T, 711
$NT_CNTRL, 710
$NT_CORR_ELEM_P, 710
$NT_CORR_ELEM_T, 710
$NT_NAME, 703
$NT_ROT_AX_NAME, 759
$NT_TRAFO_INDEX, 703
$P_ACTBFRAME, 628
$P_AD, 761
$P_AEP, 277
$P_APDV, 277
$P_APR, 277
$P_BFRAME, 628
$P_CHBFRAME, 628
$P_CHBFRMASK, 629
$P_CTOL, 827
$P_CTOL_ G0_ABS, 186
$P_CUT_INV, 762
$P_CUTMOD, 762
$P_CUTMOD_ANG, 762
$P_CUTMOD_ERR, 763
$P_CUTMODK, 762
$P_DELAYFST, 810
$P_F_TYPE, 145
$P_FGROUP_MASK, 114
$P_FZ, 145
$P_GWPS, 105
$P_IFRAME, 629
$P_IS_EES_PATH, 550
$P_NCBFRAME, 628

$P_NCBFRMASK, 629
$P_ORI_DIFF, 755
$P_ORI_POS, 755
$P_ORI_SOL, 756
$P_ORI_STAT, 758
$P_OTOL, 827
$P_OTOL_ G0_ABS, 186
$P_PATH, 549
$P_PFRAME, 630
$P_PROG, 549
$P_PROGPATH, 549
$P_S_TYPE, 99
$P_SIM, 602
$P_STACK, 549
$P_STOLF, 185
$P_SUBPAR, 485
$P_SVC, 99
$P_TECCYCLE, 1010
$P_TOFF, 89
$P_TOFFCR, 89
$P_TOFFL, 89
$P_TOFFR, 89
$P_TOOLENV, 771
$P_TOOLENVN, 771
$P_WORKAREA_CS_COORD_SYSTEM, 350
$P_WORKAREA_CS_LIMIT_MINUS, 351
$P_WORKAREA_CS_LIMIT_PLUS, 351
$P_WORKAREA_CS_MINUS_ENABLE, 350
$P_WORKAREA_CS_PLUS_ENABLE, 350
$PA_ATOL, 827
$PA_FGREF, 114
$PA_FGROUP, 114
$SA_LEAD_TYPE, 869
$SA_WORKAREA_MINUS_ENABLE, 929
$SA_WORKAREA_PLUS_ENABLE, 929
$SC_CONTPREC, 804
$SC_MINFEED, 804
$SC_PA_ACTIV_IMMED, 570
$SN_PA_ACTIV_IMMED, 570
$SN_SW_CAM_MINUS_POS_TAB_1, 930
$SN_SW_CAM_MINUS_POS_TAB_2, 930
$SN_SW_CAM_MINUS_TIME_TAB_1, 930
$SN_SW_CAM_MINUS_TIME_TAB_2, 930
$SN_SW_CAM_PLUS_POS_TAB_1, 930
$SN_SW_CAM_PLUS_POS_TAB_2, 930
$SN_SW_CAM_PLUS_TIME_TAB_1, 930
$SN_SW_CAM_PLUS_TIME_TAB_2, 930
$TC_CARR_CORR_ELEM, 747
$TC_CARR1...14, 737
$TC_CARR18...23, 737
$TC_CARR18[m], 741
$TC_DP1 ... 25, 712

Index

NC programming
1354 Programming Manual, 06/2019, A5E47437142B AA

$TC_ECPxy, 716
$TC_SCPxy, 716
$TC_TP_MAX_VELO, 96

*
* (arithmetic function), 431

/
/ (arithmetic function), 431

+
+ (arithmetic function), 431

<
< (comparison operator), 433
<< (concatenation operator), 440
<= (relational operator), 433
<> (comparison operator), 433

=
== (comparison operator), 433

>
> (comparison operator), 433
>= (relational operator), 433

0
0 character, 437

A
ABS, 431
Absolute dimensions, 31
AC, 151
ACC, 128
Acceleration mode, 798
ACCLIMA, 800
ACN, 158
ACOS, 431
ACP, 158
Acquiring and finding untraceable sections, 811

ACTBLOCNO, 497
ACTFRAME, 608
Actual value coupling, 879
Address

Value assignment, 49
Address letters, 1274
Addresses, 371
Addressing, 544
ADIS, 290
ADISPOS, 290
ADISPOSA, 603
Alarms

set in the NC program, 1044
ALF

for fast retraction from contour, 535
For rapid retraction during thread cutting, 226

AMIRROR, 323
AND, 433
ANG, 206
ANG1, 206
ANG2, 206
AP, 176
Approach point/angle, 258
APR, 402
APRB, 402
APRP, 402
APW, 402
APWB, 402
APWP, 402
AR

Circular-path programming, 194
Arbitrary positions - CYCLE802

External programming, 1139
Arithmetic parameters

Channel-specific, 384
Global, 385

AROT, 311
AROTS, 317
Array, 407

definition, 407
element, 408

Array index, 410
AS, 477
ASCALE, 320
ASIN, 431
Asynchronous oscillation, 1013
ATAN2, 431
ATOL, 823
ATRANS, 305
Automatic interrupt pointer, 812
Auxiliary function output

High-speed, 338

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1355

In continuous-path mode, 339
Properties of the auxiliary functions, 337

AV, 876
AX, 835
AXCTSWEC, 981
Axes

Channel, 368
Command, 369
Coupled-motion, 846
Geometry, 365
Machine, 367
Main, 365
Path, 368
PLC, 370
Positioning, 368
Special, 366
Synchronized, 369

Axial master value coupling, 864
Axis,

replacement, 829
-types, 365

AXNAME, 438
AXSTRING, 835
AXTOCHAN, 833, 979
AXTOSPI, 835

B
B_AND, 433
B_NOT, 433
B_OR, 433
B_XOR, 433
Basic coordinate system, 39
Basic offset, 41
Basic zero system, 41
BCS, 39
Beginning of program block - GROUP_BEGIN, 1192
BFRAME, 608
Binary constant, 376
Blank definition, 1045
Block, 45

End, 48
-end LF, 54
Length, 48
number, 48
Order of the statements, 48
Skip, 50

Block display
suppress, 497

Blocking point, 35
BLSYNC, 530
BOOL, 387

Boolean operations, 908
Boring - CYCLE86

External programming, 1118
BOUND, 414
BRISK, 798
BRISKA, 798
BZS, 41

C
CAC, 581
CACN, 581
CACP, 581
CALCPOSI, 349
CALL, 519
CALLPATH, 523
CANCEL, 1011
Cancels the current subprogram level

CANCELSUB, 1005
CANCELSUB, 1005
Cartesian coordinates, 28
Cartesian PTP travel, 680
CASE, 457
Case-insensitive, 543
CDC, 581
CDOF, 280
CDOF2, 280
CDON, 280
Centering - CYCLE81

External programming, 1107
CFC, 133
CFIN, 133
CFINE, 617
CFTCP, 133
Chamfer, 240
CHAN, 387
CHANDATA, 550
Channel

axes, 368
CHAR, 387
Character set, 53
Check

structures, 464
CHF, 240
CHKDNO, 734
CHR, 240
CIC, 581
CIP, 198
Circle data

calculating, 1064
Circle or pitch circle position pattern – HOLES2

External programming, 1070

Index

NC programming
1356 Programming Manual, 06/2019, A5E47437142B AA

Circular interpolation
Helical interpolation, 204
with intermediate and end points, 198

Circular pocket - POCKET4
External programming, 1075

Circular spigot - CYCLE77
External programming, 1101

Circular-path programming
Interpolation types, 189
With center and end points, 189
With opening angle and center point, 194
With polar coordinates, 196
With radius and end point, 192

Circumferential slot - SLOT2
External programming, 1080

Clamping torque
-fixed stop, 360

CLEARM, 471, 1004
CLRINT, 532
COARSE, 876
COARSEA, 603
Collision detection, 280
COLLPAIR, 698
Command, 45

Axes, 369
Comments, 49
Comparison operators, 433
COMPCAD, 582
COMPCURV, 582
Compensation

Plane, 283
Tool length, 70
Tool radius, 71

COMPLETE, 550
COMPOF, 582
COMPON, 582
COMPSURF, 582
Concatenation

of strings, 440
Constant, 375
Constraints for transformations, 691
CONTDCON, 1058
Continuous-path mode, 290
Contour

Approach/leave, 255
Calculator, 207
-coding, 1058
-element, 172
-preparation, 1052
reposition, 812
table, 1052

Contour accuracy
Programmable, 804

Contour call - CYCLE62
External programming, 1089

Contour corner
Chamfering, 240
Round, 240

Contour cutting - CYCLE95
External programming, 1121

Contour definition programming, 206
Contour element

travel, 1063
Contour pocket milling / contour pocket residual
material / contour spigot milling / contour spigot
residual material – CYCLE63

External programming, 1089
Contour preparation

Error feedback signal, 1066
CONTPRON, 1052
Convex thread, 229
Coordinate system

Basic, 39
Overview, 37

Coordinate transformations (frames), 42
Coordinates

Cartesian, 28
Cylindrical, 177
Polar, 30

Corner deceleration at all corners, 603
Corner deceleration at inside corners, 603
CORROF, 331
CORRTC, 744
CORRTRAFO, 704
COS, 431
Count loop, 468
COUPDEF, 876
COUPDEL, 876
Coupled motion, 844
Coupled-axis combinations, 844
Coupled-motion axes, 846
coupling

Generic, 886
Coupling factor, 844
Coupling status

during coupled motion, 847
for axial master value coupling, 869

COUPOF, 876
COUPOFS, 876
COUPON, 876
COUPONC, 876
COUPRES, 876
CP, 681

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1357

CP..., 994
CPBC, 888
CPDEF, 887
CPDEL, 887
CPFMOF, 890
CPFMON, 890
CPFMSON, 889
CPFPOS + CPOF, 890
CPFPOS + CPON, 888
CPFRS, 887
CPLA, 887
CPLCTID, 887
CPLDEF, 887
CPLDEL, 887
CPLDEN, 887
CPLINSC, 892
CPLINTR, 892
CPLNUM, 887
CPLOF, 887
CPLON, 887
CPLOUTSC, 892
CPLOUTTR, 892
CPLPOS, 888
CPLSETVAL, 887
CPMALARM, 893
CPMBRAKE, 893
CPMPRT, 892
CPMRESET, 891
CPMSTART, 892
CPMVDI, 893
CPOF, 887
CPON, 887
CPRECOF, 804
CPRECON, 804
CPROT, 567
CPROTDEF, 564
CPSETTYPE, 893
CPSYNCOP, 892
CPSYNCOP2, 892
CPSYNCOV, 892
CPSYNFIP, 892
CPSYNFIP2, 892
CPSYNFIV, 892
CR, 192
CROTS, 317
CT, 200
CTAB, 858
CTAB..., 994
CTABDEF, 848
CTABDEL, 855
CTABEND, 848
CTABEXISTS, 854

CTABFNO, 863
CTABFPOL, 863
CTABFSEG, 863
CTABID, 857
CTABINV, 858
CTABISLOCK, 857
CTABLOCK, 856
CTABMEMTYP, 857
CTABMPOL, 863
CTABMSEG, 863
CTABNO, 863
CTABNOMEM, 863
CTABPERIOD, 857
CTABPOL, 863
CTABPOLID, 863
CTABSEG, 863
CTABSEGID, 863
CTABSEV, 858
CTABSSV, 858
CTABTEP, 858
CTABTEV, 858
CTABTMAX, 858
CTABTMIN, 858
CTABTSP, 858
CTABTSV, 858
CTABUNLOCK, 856
CTOL, 823
CTRANS, 617
CUT2D, 282
CUT2DD, 282
CUT2DF, 282
CUT2DFD, 282
CUTCONOF, 284
CUTCONON, 284
CUTMOD, 759
CUTMODK, 759
Cut-off - CYCLE92

External programming, 1119
Cutting edge

center point, 72
number, 84
Number of contour tools, 283
position, 72
radius, 72

Cutting edge number, 734
Cutting edges

-reference point, 286
-relevant position,

Cutting speed, 94
Cutting speed (constant), 100
Cycle alarms, 1044

Index

NC programming
1358 Programming Manual, 06/2019, A5E47437142B AA

CYCLE4071
External programming, 1170

CYCLE4072
External programming, 1172

CYCLE4073
External programming, 1176

CYCLE4074
External programming, 1177

CYCLE4075
External programming, 1180

CYCLE4077
External programming, 1183

CYCLE4078
External programming, 1187

CYCLE4079
External programming, 1189

CYCLE435 - Set dresser coordinate system
External programming, 1132

CYCLE495 - form-truing
External programming, 1132

CYCLE60 - Engraving
External programming, 1084

CYCLE61 - Face milling
External programming, 1087

CYCLE62- contour call
External programming, 1089

CYCLE63 – contour pocket milling / contour pocket
residual material / contour spigot milling / contour
spigot residual material

External programming, 1089
CYCLE64 - Predrilling contour pocket

External programming, 1092
CYCLE70 - thread milling

External programming, 1094
CYCLE72 - Path milling

External programming, 1095
CYCLE76 - rectangular spigot

External programming, 1098
CYCLE77 - circular spigot

External programming, 1101
CYCLE78 - Drill thread milling

External programming, 1103
CYCLE79 - multi-edge

External programming, 1105
CYCLE800 – swivel plane / swivel tool / align tool

External programming, 1134
CYCLE801 – grid or frame position pattern

External programming, 1137
CYCLE802 - arbitrary positions

External programming, 1139
CYCLE81 - centering

External programming, 1107

CYCLE82 - drilling
External programming, 1108

CYCLE83 – deep-hole drilling 1
External programming, 1111

CYCLE830 - deep-hole drilling 2
External programming, 1141

CYCLE832 - High-Speed Settings
External programming, 1147

CYCLE84 - tapping without compensating chuck
External programming, 1114

CYCLE840 - tapping with compensating chuck
External programming, 1150

CYCLE85 - reaming
External programming, 1117

CYCLE86 - boring
External programming, 1118

CYCLE899 – open slot
External programming, 1153

CYCLE92 - cut-off
External programming, 1119

CYCLE930 - groove
External programming, 1156

CYCLE940 – undercut form E and F / undercut thread
External programming, 1159

CYCLE95 - contour cutting
External programming, 1121

CYCLE951 - stock removal
External programming, 1161

CYCLE952 – stock removal / residual stock removal /
plunge cutting / residual plunge cutting / plunge
turning / residual plunge turning

External programming, 1164
CYCLE98 - thread chain

External programming, 1123
CYCLE99 - thread turning

External programming, 1127
Cylinder surface transformation, 636
Cylinder thread, 220
Cylindrical coordinates, 177

D
D number

Freely assigned, 734
D numbers

Check, 734
Renaming, 735

D..., 83
D0, 83
DAC, 166
DB21

DBX1.2, 1011

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1359

DBX280.1, 1012
DBX281.1, 1011
DBX300.0 - 307.7, 1012
DBX308.0 - 315.7, 1011

DB21,DBX6.4, 1006
DB31, ...

DBX28.7, 970
DC, 158
Decimal constant, 375
Deep-hole drilling 1 – CYCLE83

External programming, 1111
Deep-hole drilling 2 - CYCLE830

External programming, 1141
DEF, 387
DEFAULT, 457
DEFINE ... AS, 477
DELAYFSTOF, 808
DELAYFSTON, 808
DELDL, 716
DELDTG, 965
DELETE, 557
DELOBJ, 694
DELTOOLENV, 769
Denominator polynomial, 587
DIACYCOFA, 166
DIAM90, 164
DIAM90A, 166
DIAMCHAN, 166
DIAMCHANA, 166
DIAMCYCOF, 164
Diameter programming, 164
DIAMOF, 164
DIAMOFA, 166
DIAMON, 164
DIAMONA, 166
DIC, 166
DILF, 226
Dimensions

For rotary axes and spindles, 158
in the diameter, 164
in the radius, 164
Options, 151

DIN 66217, 37
DIN subprogram name, 548
Direction of rotation, 38
Direction vector, 648
Directory path, 546
DISABLE, 532
DISC, 263
DISCL, 266
DISPLOF, 497
DISPLON, 497

DISPR, 812
DISR, 266
DISRP, 266
DITE, 224
DITS, 224
DIV, 431
DL, 714
DO, 909
DRFOF, 334
Drill, 76
Drill thread milling - CYCLE78

External programming, 1103
Drilling - CYCLE82

External programming, 1108
DRIVE, 798
Drive name, 545
DRIVEA, 798
DV, 876
Dwell time, 362
DYNFINISH, 801
DYNNORM, 801
DYNPOS, 801
DYNPREC, 801
DYNROUGH, 801
DYNSEMIFIN, 801

E
Easy XML, 1035
EES, 542
EES notation, 544
EG

Electronic gear, 870
EGDEF, 870
EGDEL, 875
EGOFC, 874
EGOFS, 874
EGON, 871
EGONSYN, 871
EGONSYNE, 871
Electronic gear, 870
Elongated hole - LONGHOLE

External programming, 1082
ELSE, 466, 909
ENABLE, 532
End of program block - GROUP_END

External programming, 1192
ENDFOR, 468
ENDIF, 466
ENDLABEL, 459
Endless loop, 467
ENDLOOP, 467

Index

NC programming
1360 Programming Manual, 06/2019, A5E47437142B AA

End-of-motion criterion
Programmable, 603

ENDWHILE, 469
Engraving - CYCLE60

External programming, 1084
Euler angles, 647
EVERY, 906
Exact stop, 288
EXECSTRING, 429
EXECTAB, 1063
EXECUTE, 1066
EXP, 431
EXTCALL

for SINUMERIK 840D sl, 524
EXTCLOSE, 1040
Extended address notation, 372
EXTERN, 514
External programming, 1192
External zero offset, 618
EXTOPEN, 1040

F
F...

For feedrate, 107
For linear interpolation, 186
For thread cutting G34 G35, 222

FA, 124, 974
Face milling, 651
Face milling - CYCLE61

External programming, 1087
Face thread, 221
FAD, 266
FALSE, 387
Fast retraction from the contour, 533
FB, 139
FCTDEF, 724
FCUB, 793
FD, 130
FDA, 130
Feedrate

For path axes, 109
for positioning axes, 124
For synchronized axes, 111
Inverse-time, 110
Override, 132
-override, 127
-rate, 186
Rules, 107
Units, 112
with handwheel override, 130

FENDNORM, 602

FFWOF, 803
FFWON, 803
FGREF, 107
FGROUP, 107
FIFOCTRL, 805
File

-information, 561
File name, 547
FILEDATE, 561
FILEINFO, 561
FILESIZE, 561
FILESTAT, 561
FILETIME, 561
FINE, 876
FINEA, 603
Fixed point

Approach, 353
Fixed stop, 358
FL, 107
FLIN, 793
FMA, 136
FNORM, 793
FOC, 1002
FOCOF, 1002
FOCON, 1002
Following axis

for axial master value coupling, 864
FOR, 468
Form-truing - CYCLE495

External programming, 1132
FP, 353
FPO, 793
FPR, 124
FPRAOF, 124
FPRAON, 124
Frame,

Call, 614
-chaining, 631
Deselect, 330
-mirroring, 323
-scaling, 320
-Statements, 302

Frame component
FI, 613
MI, 613
RT, 613
SC, 613
TR, 613

Frame variable
Assigning values, 611
Calling coordinate transformations, 606
Predefined frame variable, 608

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1361

Frames, 300
Assign, 615
Channel-specific, 627
Frame chains, 616
Global, 626
System, 627

FRC, 240
FRCM, 240
FROM, 906
FTOC, 962
FTOCOF, 727
FTOCON, 727
Function

Predefined, 1329
FXS, 1002
FXST, 1002
FXSW, 1002

G
G code

Indirect programming, 425
G commands, 1286
G functions

Action, 908
Condition, 907

G group
Technology, 801

G0 tolerance, 183
G1, 186
G110, 175
G111, 175
G112, 175
G140, 266
G141, 266
G142, 266
G143, 266
G147, 266
G148, 266
G153

For deselect frame, 330
For work offset, 146

G17, 148
G18, 148
G19, 148
G2, 189
G247, 266
G248, 266
G25, 929

Spindle speed limitation, 106
Working area limitation, 346

G26, 929
Spindle speed limitation, 106
Working area limitation, 346

G290, 1049
G291, 1049
G3, 189
G33, 216
G335, 229
G336, 229
G34, 222
G340, 266
G341, 266
G347, 266
G348, 266
G35, 222
G4, 362
G40, 246
G41, 246
G42, 246
G450, 263
G451, 263
G460, 277
G461, 277
G462, 277
G5, 678
G500

For work offset, 146
G505 ... G599, 146
G53

For deselect frame, 330
For work offset, 146

G54 ... G57, 146
G58, 309
G59, 309
G60, 288
G601, 288
G602, 288
G603, 288
G62, 602
G621, 602
G64, 290
G641, 290
G642, 290
G643, 290
G644, 290
G645, 290
G7, 678
G70, 160, 971
G700, 160, 971
G71, 160, 971
G710, 160, 971
G74, 352

Index

NC programming
1362 Programming Manual, 06/2019, A5E47437142B AA

G75, 353
G810 ... G819, 601
G820 ... G829, 601
G9, 288
G90, 151
G91, 154
G93, 107
G94, 107
G95, 107
G96, 100
G961, 100
G962, 100
G97, 100
G971, 100
G972, 100
G973, 100
GEOAX, 836
Geometry

-axes, 365
Geometry axis

Switching, 836
GET, 829, 975
GETACTTD, 735
GETD, 829
GETDNO, 735
GETTCOR, 771
GETTENV, 770
GETVARAP, 418
GETVARDFT, 420
GETVARDIM, 419
GETVARLIM, 419
GETVARPHU, 417
GETVARTYP, 421
GFRAME0 ... GFRAME100, 335
Global part program memory (GDIR), 542
GOTO, 454
GOTOB, 454
GOTOC, 454
GOTOF, 454
GOTOS, 453
GP, 427
Grid or frame position pattern – CYCLE801

External programming, 1137
Grinding tools, 77
Groove - CYCLE930

External programming, 1156
GROUP_ADDEND - End of trial cut addition

External programming, 1193
GROUP_BEGIN - beginning of program block

External programming, 1192
GROUP_END - end of program block

External programming, 1192

GUD, 387, 947
GWPS, 105
GWPSOF, 105
GWPSON, 105

H
Handwheel

Override, 130
Helix interpolation, 204
Hexadecimal constant, 376
High Speed Settings - CYCLE832

External programming, 1147
Hold block, 811
HOLES1 – row position pattern

External programming, 1070
HOLES2 – circle or pitch circle position pattern

External programming, 1070

I
I...

For circular interpolation, 189
For thread cutting G33, 216
For thread cutting G34 G35, 222

IC, 154
ICYCOF, 1008
ICYCON, 1008
ID, 905
Identification number, 906
Identifier, 44

for character string, 54
for special numerical values, 54
for system variables, 54

IDS, 905
IF, 466
IFRAME, 608
Incremental dimension, 33
Incremental dimensions, 33, 154
INDEX, 442
Indirect programming

of addresses, 423
of G codes, 425
of part program lines, 429
of position attributes, 427

INICF, 387
INIPO, 387
INIRE, 387
INIT, 471
INITIAL, 550
Initial tool orientation setting ORIRESET, 644

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1363

INITIAL_INI, 550
Initialization

of arrays, 408
Initialization program, 551
INT, 387
INTEGER constant, 375
Internal preprocessing stop, 364
Interpolation of the rotation vector, 663
Interrupt routine

Deactivating/activating, 532
Delete, 532
Fast retraction from the contour, 533
Newly assign, 531
Programmable traverse direction, 535
Retraction movement, 535

INTERSEC, 1062
IPOBRKA, 603
IPOENDA, 603
IPOSTOP, 876
IPTRLOCK, 810
IPTRUNLOCK, 810
IR, 229
ISAXIS, 835
ISFILE, 560
ISNUMBER, 438
ISOCALL, 521
ISVAR, 415

J
J...

For circular interpolation, 189
For thread cutting G34 G35, 222

Jerk
Limitation, 798
offset, 820

JERKLIM, 820
JERKLIMA, 800
JR, 229
Jump

to beginning of program, 453
to jump labels, 454

Jump label
for program jumps, 455

Jump marker
For program section repetitions, 459

K
K...

For circular interpolation, 189

For thread cutting G33, 216
For thread cutting G34 G35, 222

Kinematic type, 741
Kinematics

Resolved, 741
KONT, 255
KONTC, 255
KONTT, 255
KR, 229

L
L..., 512
Label, 459
Language mode, 1049
LEAD, 645
LEAD..., 994
Leading axis

for axial master value coupling, 864
LEADOF, 864
LEADON, 864
Left-hand thread, 218
LENTOAX, 789
LF, 48
LFOF, 226
LFON, 226
LFPOS, 226
LFTXT, 226
LFWP, 226
LIFTFAST, 533
LIMS, 100
LINE FEED, 48
LLI, 399
LN, 431
LOCK, 1011
Logic operators, 433
LONGHOLE - elongated hole

External programming, 1082
Longitudinal slot - SLOT1

External programming, 1077
LookAhead, 295
LOOP, 467
LUD, 387

M
M, 980
M functions, 339
M..., 339
M0, 339
M1, 339

Index

NC programming
1364 Programming Manual, 06/2019, A5E47437142B AA

M17, 500
M19

For spindle positioning, 119
M functions, 339

M2, 339
M3, 91
M30, 500
M4, 91
M40, 339
M41, 339
M42, 339
M43, 339
M44, 339
M45, 339
M5, 91
M6, 64
M70, 119
Machine

zero point, 35
Machine coordinate system, 37
Machines

-axes, 367
Macro, 477
Main entry, 169
MASLDEF, 900
MASLDEL, 900
MASLOF, 900
MASLOFS, 900
MASLON, 900
Master spindle, 367
Master value coupling

Actual value and setpoint coupling, 868
Synchronization of leading and following
axis, 867

Master value simulation, 869
MATCH, 442
MAXVAL, 414
MCALL, 517
MCS, 37
MD10010, 471
MD10240, 162
MD10260, 160
MD10280, 471
MD10651, 230
MD10710, 225
MD10722, 976
MD11110, 956
MD11510, 928
MD15800, 386
MD18104, 768
MD18116, 769
MD18156, 386

MD18660, 947
MD18661, 947
MD18662, 947
MD18663, 947
MD18664, 948
MD18665, 948
MD20110, 939
MD20360, 775
MD21190, 937
MD21194, 937
MD21196, 937
MD22200, 956
MD22210, 956
MD22230, 956
MD24558, 776
MD24658, 776
MD28050, 917, 923, 1000
MD28254, 916
MD28255, 916
MD28256, 915
MD28257, 915
MD28258, 919, 1000
MD28260, 923, 1000
MD28262, 923, 1000
MD28264, 923, 1000
MD28266, 923, 1000
MD30450, 970
MD30460, 989
MD32060, 974
MD32070, 934
MD32074, 969
MD32420, 934
MD32430, 934
MD36750, 935
MEAC, 592, 999
MEAFRAME, 622
MEAS, 590
MEASA, 592
Measuring cycle parameters

CYCLE961, 1215
CYCLE971, 1233
CYCLE973, 1195
CYCLE974, 1197
CYCLE976, 1204
CYCLE977, 1211
CYCLE978, 1206
CYCLE979, 1218
CYCLE982, 1230
CYCLE994, 1201
CYCLE995, 1224
CYCLE996, 1226
CYCLE9960, 1228

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1365

CYCLE997, 1221
CYCLE998, 1209

MEAW, 590
MEAWA, 592, 999
Memory

Preprocessing, 805
Program, 540
Working, 550

Messages, 343
Milling tools, 74
MINDEX, 442
MINVAL, 414
MIRROR, 323
MMC, 1035
MOD, 431
Modal synchronized action, 905
Modally effective, 47
MODAXVAL, 835
MOV, 973
MPF, 541
MSG, 343
Multi-edge - CYCLE79

External programming, 1105

N
NAMETOINT, 697
NC high-level language, 46
NC program

Creating, 52
NC programming

Character set, 53
NCK, 387
NCK notation, 544
Nesting depth

of check structures, 465
NEWCONF, 1031
NOC, 876
Non-modal, 47
Non-modal synchronized action, 905
NORM, 255
NOT, 433
NPROT, 567
NPROTDEF, 564
NUMBER, 438
Numeric extension, 372
NUT, 656

O
Oblique plunge-cut grinding, 678

OEM addresses, 601
OEM functions, 601
OEMIPO1/2, 601
OFFN, 246
Offset

Tool length, 85, 86
Tool radius, 85

Offset memory, 712
OMA1 ... OMA5, 601
Online tool length offset, 747
Open slot – CYCLE899

External programming, 1153
Operation, 45
Optional stop, 342
OR, 433
ORIAXES, 654
ORIC, 728
ORICONCCW, 656
ORICONCW, 656
ORICONIO, 656
ORICONTO, 656
ORICURVE, 659
ORID, 728
Orientation axes, 654
Orientation programming, 654
Orientation transformation TRAORI

Generic 5/6-axis transformation, 635
Machine kinematics, 635
Orientation movements, 634
Orientation programming,
Variants of orientation programming,

Orientation vector THETA, 663
ORIEULER, 654
ORIMKS, 652
ORIPATH, 667
ORIPATHS, 667
ORIPLANE, 656
ORIRESET(A, B, C), 643
ORIROTA, 663
ORIROTC

during interpolation the tool rotation, 668
for rotation of the tool orientation, 663

ORIROTR, 663
ORIROTT, 663
ORIRPY, 654
ORIRPY2, 654
ORIS, 728
ORISOF, 674
ORISOLH, 750
ORISON, 674
ORIVECT, 654
ORIVIRT1, 654

Index

NC programming
1366 Programming Manual, 06/2019, A5E47437142B AA

ORIVIRT2, 654
ORIWKS, 652
OS, 1013
OSB, 1013
OSC, 728
OSCILL, 1017
Oscillating motion

Infeed at reversal point, 1022
Reversal point, 1020
Reversal range, 1020

Oscillation
Asynchronous, 1013
Asynchronous oscillation, 1013
Control via synchronized action, 1017
Partial infeed, 1020
Synchronous oscillation, 1017

OSCTRL, 1013
OSD, 728
OSE, 1013
OSNSC, 1013
OSOF, 728
OSP1, 1013
OSP2, 1013
OSS, 728
OSSE, 728
OST, 728
OST1, 1013
OST2, 1013
OTOL, 823
Output

to external device/file, 1040
OVR, 127
OVRA, 127
OVRRAP, 127

P
P..., 516
P_ACTFRAME, 630
Parameter

Actual, 484
Formal, 483
transfer for subprogram call, 514
Transfer on subprogram call, 484

Parameters
Machine, 712

PAROT, 328
PAROTOF, 328
Path axes, 368
Path calculation, 370
Path milling - CYCLE72

External programming, 1095

Path specification, 545
PCALL, 522
PFRAME, 608
PHI

For orientation along the peripheral surface of a
taper, 656
Orientation polynomials, 662

PHU, 400
PL

for polynomial interpolation, 583
PLC

-axes, 370
PM, 266
PO, 583
PO[PHI]

For orientation along the peripheral surface of a
taper, 656
for rotation of the tool orientation, 667
Orientation polynomials, 662

PO[PSI]
For orientation along the peripheral surface of a
taper, 656
for rotation of the tool orientation, 667
Orientation polynomials, 662

PO[THT]
for rotation of the tool orientation, 667
Orientation polynomials, 662

PO[XH]
for orientation specification of two contact
points, 659
Orientation polynomials, 662

PO[YH]
for orientation specification of two contact
points, 659
Orientation polynomials, 662

PO[ZH]
for orientation specification of two contact
points, 659
Orientation polynomials, 662

POCKET3 - rectangular pocket
External programming, 1072

POCKET4 - circular pocket
External programming, 1075

Point-to-point travel, 680
Polar angle, 30
Polar coordinates, 30
Polar radius, 30
Polar transformation, 636
Pole, 175
POLF

For rapid retraction during thread cutting, 226

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1367

POLFMASK
For rapid retraction during thread cutting, 226

POLFMLIN
For rapid retraction during thread cutting, 226

POLY, 583
Polynomial coefficient, 584
Polynomial interpolation, 583
POLYPATH, 583
POS, 115, 967
POSA, 115
POSFS, 876
Position attributes

Indirect programming, 427
Position synchronism, 876
Position synchronism with angular offset, 876
Positioning axes, 368
POSP, 115
POSRANGE, 972
POT, 431
PR, 266
Predrilling a contour pocket – CYCLE64

External programming, 1092
PREPRO, 500
Preprocessing

-memory, 805
Preprocessing stop

Internal, 364
PRESETON, 619, 984
PRESETONS, 621, 989
PRIO, 530
PRLOC, 387
Procedure

Predefined, 1306
Process DataShare, 1040
Processing time, 1026
Program

addressing, 544
Branch, 457
End, 47
Header, 54
Initialization, 551
Jumps, 454
memory, 541
Name, 44
repetition, 516
Runtimes, 1026

Program loop
Count loop, 468
End of loop, 467
IF loop, 466
REPEAT loop, 470
WHILE loop, 469

Program memory
File types, 541
Standard directories, 541

Program section
-repetition, 459

Program section repetition
with indirect programming CALL, 520

Programmed stop, 341
PROTA, 699
PROTD, 700
Protection zones, 564
PROTS, 700
PSI

For orientation along the peripheral surface of a
taper, 656
Orientation polynomials, 662

PTP, 680
PTPG0, 680
PTPWOC, 681
PUD, 387
Punched tape format, 45
PUTFTOC, 726
PUTFTOCF, 725

Q
QU, 338

R
RAC, 166
Radius

Effective, 113
Radius programming, 164
Rapid retraction

Thread cutting, 226
RDISABLE, 964
READ, 558
REAL, 387
REAL constant, 375
Reaming - CYCLE85

External programming, 1117
Rectangular pocket - POCKET3

External programming, 1072
Rectangular spigot - CYCLE76

External programming, 1098
REDEF, 392
Reference point, 36
Reference points, 35
Reference radius, 113
RELEASE, 829, 975

Index

NC programming
1368 Programming Manual, 06/2019, A5E47437142B AA

REP, 407, 943
REPEAT, 459
REPEATB, 459
REPOSA, 812
REPOSH, 812
REPOSHA, 812
REPOSL, 812
REPOSQ, 812
REPOSQA, 812
Residual time

for a workpiece, 1028
RET, 501
RET (parameterizable), 502
RETB (parameterizable), 508
Retraction

Direction for thread cutting, 227
RG, 385
RIC, 166
Right-hand thread, 218
RINDEX, 442
RMBBL, 812
RMEBL, 812
RMIBL, 812
RMNBL, 812
RND, 240
RNDM, 240
ROT, 311
Rotary axes

Angle of rotation, 737
Direction vectors, 737
Distance vectors, 737

Rotation
of the orientation vector, 663
Programmable, 311

ROTS, 317
ROUND, 431
Round up, 436
Rounding, 240
ROUNDUP, 436
Row position pattern – HOLES1

External programming, 1070
RP, 176
RPL, 311
RPY, 648
Run MyScreens, 1035
Runtime

Response of check structures, 465

S
S, 91, 980
SAR, 266

SAVE, 490
SBLOF, 492
SBLON, 492
SCALE, 320
Scale factor, 320
SCC, 100
SCPARA, 842
SD41610, 711
SD41611, 711
SD42010, 225
SD42122, 925
SD42440, 155
SD42442, 155
SD42465, 296
SD42466, 296
SD42475, 672
SD42476, 672
SD42477, 672
SD42900, 719
SD42910, 719
SD42920, 719
SD42930, 720
SD42935, 722
SD42940, 723
SD42984, 761
SD43240, 121
SD43250, 121
SD43300, 974
SD43350, 935
Search for reference, 352
Search path

for subprogram call, 548
Programmable search path, 523

Sequence of execution, 906
SET, 407, 943
Set dresser coordinate system - CYCLE435

External programming, 1132
SETAL, 1044
SETDNO, 735
SETINT, 530
SETM, 471, 1004
SETMS, 91
Setpoint value coupling, 879
SETTCOR, 777
Setup value, 716
SF, 216
SIN, 431
Single-block

suppression, 492
Singular positions, 653
Skip levels, 51

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1369

SLOT1 - longitudinal slot
External programming, 1077

SLOT2 - circumferential slot
External programming, 1080

Slotting saw, 82
Smoothing

of the orientation characteristic, 674
SOFT, 798
SOFTA, 798
SPCOF, 118
SPCON, 118
Special axes, 366
Special characters, 53, 54
Special tools, 81
Speed coupling, 879
Speed synchronism, 876
SPF, 541
SPI, 835
Spindle

direction of rotation, 91
M functions, 342
Main, 367
Positioning, 119
replacement, 829
speed, 91
Speed limitation, 106

SPOS, 119, 980
SPOSA, 119
SPRINT, 445
SQRT, 431
SR, 136
SRA, 136
ST, 136
STA, 136
START, 471
Start point offset

For thread cutting, 217
STARTFIFO, 805
Starting point, 36
Starting point - target point, 172
STAT, 681
Static synchronized action, 905
Stock removal

supporting functions, 1052
Stock removal - CYCLE951

External programming, 1161
Stock removal / residual stock removal / plunge
cutting / residual plunge cutting / plunge turning /
residual plunge turning – CYCLE952

External programming, 1164
STOLF, 183

Stop
At the end of the cycle, 342
Optional, 342
Programmed, 341

STOPFIFO, 805
STOPRE, 805, 967
STOPREOF, 965
Straight lines

-interpolation, 186
String,

concatenation, 440
formatting, 445
length, 441
-operations, 437

STRINGIS, 1032
STRLEN, 441
Subprogram

Application, 480
call with parameter transfer, 514
call without parameter transfer, 512
call, indirect, 519
call, modal, 517
Name, 481
Programmable search path, 523
repetition, 516
return, parameterizable (RET ...), 502
return, parameterizable (RETB...), 508

Subprogram level is canceled
CANCELSUB, 1005

Subprogram with path specification and
parameters, 522
SUBSTR, 443
SUPA

For deselect frame, 330
For work offset, 146

S-value
Interpretation, 93

SVC, 94
Switchable geometry axes, 836
Swivel plane / swivel tool / align tool – CYCLE800

External programming, 1134
Synchronism

coarse, 879
Fine, 879

Synchronized
Axes, 369

Synchronized actions
Additive adjustment via SYNFCT, 958

Synchronous oscillation
Assignment of oscillating and infeed axes, 1021
Define infeeds, 1021
Evaluation, IPO cycle, 1023

Index

NC programming
1370 Programming Manual, 06/2019, A5E47437142B AA

Infeed in reversal point range, 1022
Infeed movement, 1022
Next partial infeed, 1024
Synchronized actions, 1021

Synchronous spindle
Coupling, 876
pair definition, 882

SYNFCT, 957
SYNR, 387
SYNRW, 387
SYNW, 387
System frames, 627
System of units, 160
SZS, 42

T
T0, 62
TAN, 431
TANG, 893
TANGDEL, 898
TANGOF, 898
TANGON, 896
Tapered thread, 222
Tapping with compensating chuck - CYCLE840

External programming, 1150
Tapping without compensating chuck - CYCLE84

External programming, 1114
Target point, 172
TCARR, 742
TCOABS, 742
TCOFR, 742
TCOFRX, 742
TCOFRY, 742
TCOFRZ, 742
Technology cycle, 909
Technology cycles, 1006
THETA

during interpolation the tool rotation, 668
for rotation of the tool orientation, 663

Thread
Chain, 217
-cutting G33, 216
-cutting G34 G35, 222
-direction of rotation, 218
-lead, 222
-multiple, 217

Thread chain - CYCLE98
External programming, 1123

Thread milling - CYCLE70
External programming, 1094

Thread turning - CYCLE99
External programming, 1127

Three-finger rule, 37
TILT, 645
TLIFT, 895
TMOF, 1025
TMON, 1025
TOFF, 85
TOFFL, 85
TOFFLR, 85
TOFFOF, 748
TOFFON, 748
TOFFR, 85
TOFRAME, 328
TOFRAMEX, 328
TOFRAMEY, 328
TOFRAMEZ, 328
TOLOWER, 441
Tool

change point, 36
change with M6, 64
change with T command, 62
cutting edge, 83
Group, 73
length compensation, 70
Offset memory, 72
-orientation, 728
-orientation for frame change, 744
-parameters, 712
radius compensation, 71
tip, 72
Type, 73
Type number, 73

Tool chain, 709, 746
Tool offset

Coordinate system for wear values, 720
Offset, 85
Offset memory, 712

Tool offsets
additive, 714

Tool orientation
relative to the path, 665

Tool orientation relative to the path, 665
Tool radius compensation

At outside corners, 263
Corner deceleration, 602
CUT2DF, 283

Tool speed
maximum, 96

TOOLENV, 766
Toolholder

kinematics, 737

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1371

-orientable, 742
reference point, 36

Toolholder with orientation capability, 737
TOROT, 328
TOROTOF, 328
TOROTX, 328
TOROTY, 328
TOROTZ, 328
TOUPPER, 441
TOWBCS, 720
TOWKCS, 720
TOWMCS, 720
TOWSTD, 720
TOWTCS, 720
TOWWCS, 720
TRACYL, 675
TRAFOOF, 692
TRAFOON, 703
TRAIL..., 994
TRAILOF, 844
TRAILON, 844
TRANS, 305
Transformation types

General function, 632
Transformation with a swiveling linear axis, 641
Transformations

Chained transformations, 634
Initial tool orientation setting regardless of
kinematics, 633
Kinematic transformations, 633
Orientation transformation, 632
Three-, four- and five-axis transformation, 642

TRANSMIT, 675
Transverse axis, 171
TRAORI, 642
Travel command, 172
TRUE, 387
TRUNC, 431
TU, 685
TURN, 204
Turning tools, 79
Type of coupling, 879

U
ULI, 399
Undercut forms E and F / undercut thread –
CYCLE940

External programming, 1159
UNLOCK, 1011
UNTIL, 470
User XML, 1035

V
Value assignment, 49
Variable

Type conversion, 422
Variables

Type conversion, 438
User-defined, 387

VELOLIM, 821
VELOLIMA, 800

W
WAITC, 876
WAITE, 471
WAITENC, 841
WAITM, 471
WAITMC, 471
WAITP, 115
WAITS, 119
WALCS<n>, 349
WALCS0, 349
WALIMOF, 346
WALIMON, 346
WCS, 43

Align on workpiece, 328
Wear value, 716
WHEN, 906
WHEN-DO, 1021
WHENEVER, 906
WHENEVER-DO, 1021
WHILE, 469
Work offset

Settable, 146
Working area limitation

in BCS, 346
Working memory, 550
Working plane, 34
WORKPIECE, 1045

Contour,
counter,
directories,
main directory,
zero point,

Workpiece chain, 709, 746
Workpiece coordinate system, 43
WRITE, 554
WRTPR, 344

Index

NC programming
1372 Programming Manual, 06/2019, A5E47437142B AA

X
X..., 173
XOR, 433

Y
Y..., 173

Z
Z..., 173
Zero frame, 146
Zero offset

External, 618
Programmable, 305

Zero points
For turning, 170

Zero system
Basic, 41
Settable, 42

Index

NC programming
Programming Manual, 06/2019, A5E47437142B AA 1373

Index

NC programming
1374 Programming Manual, 06/2019, A5E47437142B AA

	NC programming
	Legal information - Warning notice system
	Preface
	Table of contents
	1 Fundamental safety instructions
	1.1 General safety instructions
	1.2 Warranty and liability for application examples
	1.3 Industrial security

	2 Fundamentals
	2.1 Fundamental Geometrical Principles
	2.1.1 Workpiece positions
	2.1.1.1 Reference system of position specifications
	2.1.1.2 Cartesian coordinates
	2.1.1.3 Polar coordinates
	2.1.1.4 Absolute dimensions
	2.1.1.5 Incremental dimension

	2.1.2 Working planes
	2.1.3 Zero points and reference points
	2.1.4 Coordinate systems
	2.1.4.1 Machine coordinate system (MCS)
	2.1.4.2 Basic coordinate system (BCS)
	2.1.4.3 Basic zero system (BZS)
	2.1.4.4 Settable zero system (SZS)
	2.1.4.5 Workpiece coordinate system (WCS)
	2.1.4.6 What is the relationship between the various coordinate systems?

	2.2 Fundamental Principles of NC Programming
	2.2.1 Name of an NC program
	2.2.2 Structure and contents of an NC program
	2.2.2.1 Blocks and block components
	2.2.2.2 Block rules
	2.2.2.3 Value assignments
	2.2.2.4 Comments
	2.2.2.5 Skipping blocks

	2.3 Creating an NC program
	2.3.1 Basic procedure
	2.3.2 Available characters
	2.3.3 Program header
	2.3.4 Program examples
	2.3.4.1 Example 1: First programming steps
	2.3.4.2 Example 2: NC program for turning
	2.3.4.3 Example 3: NC program for milling

	2.4 Tool change
	2.4.1 Tool change with T command
	2.4.2 Tool change with M6
	2.4.3 Tool change with tool management (option)
	2.4.3.1 Tool change with T command with active tool management (option)
	2.4.3.2 Tool change with M6 with active tool management (option)

	2.4.4 Behavior with faulty T programming

	2.5 Tool offsets
	2.5.1 Programmed contour and tool path
	2.5.2 Tool length compensation
	2.5.3 Tool radius compensation
	2.5.4 Tool compensation memory
	2.5.5 Tool types
	2.5.5.1 Tool type number and tool groups
	2.5.5.2 Milling tools
	2.5.5.3 Drills
	2.5.5.4 Grinding tools
	2.5.5.5 Turning tools
	2.5.5.6 Special tools

	2.5.6 Tool offset call (D)
	2.5.7 Change in the tool offset data
	2.5.8 Programmable tool offset (TOFFL, TOFF, TOFFR, TOFFLR):

	2.6 Spindle motion
	2.6.1 Spindle speed (S), spindle direction of rotation (M3, M4, M5)
	2.6.2 Tool cutting speed (SVC)
	2.6.3 Constant cutting rate (G96/G961/G962, G97/G971/G972, G973, LIMS, SCC)
	2.6.4 Switching constant grinding wheel peripheral speed (GWPSON, GWPSOF) on/off:
	2.6.5 Programmable spindle speed limitation (G25, G26)

	2.7 Feed control
	2.7.1 Feedrate (G93, G94, G95, F, FGROUP, FL, FGREF)
	2.7.2 Traverse positioning axes (POS, POSA, POSP, FA, WAITP, WAITMC)
	2.7.3 Position-controlled spindle mode (SPCON, SPCOF)
	2.7.4 Positioning spindles (SPOS, SPOSA, M19, M70, WAITS)
	2.7.5 Feedrate for positioning axes / spindles (FA, FPR, FPRAON, FPRAOF)
	2.7.6 Programmable feedrate override (OVR, OVRRAP, OVRA)
	2.7.7 Programmable acceleration compensation (ACC)
	2.7.8 Feedrate with handwheel override (FD, FDA)
	2.7.9 Feedrate optimization for curved path sections (CFTCP, CFC, CFIN)
	2.7.10 Several feedrate values in one block (F, ST, SR, FMA, STA, SRA)
	2.7.11 Non-modal feedrate (FB)
	2.7.12 Tooth feedrate (G95 FZ)

	2.8 Geometry settings
	2.8.1 Settable zero offset (G54 to G57, G505 to G599, G53, G500, SUPA, G153)
	2.8.2 Settable work offset (G54 to G57, G505 to G599, G53, G500, SUPA, G153): Further information
	2.8.3 Selection of the working plane (G17/G18/G19)
	2.8.4 Dimensions
	2.8.4.1 Absolute dimensions (G90, AC)
	2.8.4.2 Incremental dimensions (G91, IC)
	2.8.4.3 Absolute and incremental dimensions for turning and milling (G90/G91)
	2.8.4.4 Absolute dimensions for rotary axes (DC, ACP, ACN)
	2.8.4.5 Metric/inch dimension system (G70/G71, G700/G710)
	2.8.4.6 Channel-specific diameter/radius programming (DIAMON, DIAM90, DIAMOF, DIAMCYCOF)
	2.8.4.7 Axis-specific diameter/radius programming (DIAMONA, DIAM90A, DIAMOFA, DIACYCOFA, DIAMCHANA, DIAMCHAN, DAC, DIC, RAC, RIC)

	2.8.5 Position of workpiece for turning

	2.9 Motion commands
	2.9.1 General information about the travel commands
	2.9.2 Travel commands with Cartesian coordinates (G0, G1, G2, G3, X..., Y..., Z...)
	2.9.3 Travel commands with polar coordinates
	2.9.3.1 Reference point of the polar coordinates (G110, G111, G112)
	2.9.3.2 Travel commands with polar coordinates (G0, G1, G2, G3, AP, RP)

	2.9.4 Rapid traverse movements
	2.9.4.1 Activating rapid traverse (G0)
	2.9.4.2 Switch on/off linear interpolation for rapid traverse movements (RTLION, RTLIOF)
	2.9.4.3 Adjust relative G0 tolerance (STOLF)

	2.9.5 Linear interpolation (G1)
	2.9.6 Circular interpolation
	2.9.6.1 Overview
	2.9.6.2 Circular interpolation with center point and end point (G2/G3, X... Y... Z..., I... J... K...)
	2.9.6.3 Circular interpolation with radius and end point (G2/G3, X... Y... Z..., CR)
	2.9.6.4 Circular interpolation with opening angle and end point / center point (G2/G3, X... Y... Z... / I... J... K..., AR)
	2.9.6.5 Circular interpolation with polar coordinates (G2/G3, AP, RP)
	2.9.6.6 Circular interpolation with intermediate point and end point (CIP, X... Y... Z..., I1... J1... K1...)
	2.9.6.7 Circular interpolation with tangential transition (CT, X... Y... Z...)

	2.9.7 Helical interpolation (G2/G3, TURN)
	2.9.8 Contour definitions
	2.9.8.1 Contour definition programming
	2.9.8.2 Contour definitions: One straight line
	2.9.8.3 Contour definitions: Two straight lines
	2.9.8.4 Contour definitions: Three straight lines
	2.9.8.5 Contour definitions: End point programming with angle

	2.9.9 Thread cutting
	2.9.9.1 Thread cutting with constant lead (G33, SF)
	2.9.9.2 Thread cutting with increasing or decreasing lead (G34, G35)
	2.9.9.3 Programmed run-in and run-out path for G33, G34 and G35 (DITS, DITE)
	2.9.9.4 Fast retraction during thread cutting (LFON, LFOF, DILF, ALF, LFTXT, LFWP, LFPOS, POLF, POLFMASK, POLFMLIN)
	2.9.9.5 Convex thread (G335, G336)

	2.9.10 Tapping without compensating chuck
	2.9.10.1 Tapping without compensating chuck and retraction motion (G331, G332)
	2.9.10.2 Example: Tapping with G331 / G332
	2.9.10.3 Example: Output the programmed drilling speed in the current gear stage
	2.9.10.4 Example: Application of the second gear-stage data block
	2.9.10.5 Example: Speed is not programmed, the gearbox stage is monitored
	2.9.10.6 Example: Gearbox stage cannot be changed, gearbox stage monitoring
	2.9.10.7 Example: Programming without SPOS

	2.9.11 Tapping with compensating chuck
	2.9.11.1 Tapping with compensating check and retraction motion (G63)

	2.9.12 Chamfer, rounding (CHF, CHR, RND, RNDM, FRC, FRCM)

	2.10 Tool radius compensation
	2.10.1 Tool radius compensation (G40, G41, G42, OFFN)
	2.10.2 Approaching and leaving contour (NORM, KONT, KONTC, KONTT)
	2.10.3 Compensation at the outside corners (G450, G451, DISC)
	2.10.4 Smooth approach and retraction
	2.10.4.1 Approach and retraction (G140 to G143, G147, G148, G247, G248, G347, G348, G340, G341, DISR, DISCL, DISRP, FAD, PM, PR)
	2.10.4.2 Approach and retraction with extended retraction strategies (G460, G461, G462)

	2.10.5 Activation/deactivation of collision detection ("bottleneck detection") (CDON, CDOF, CDOF2)
	2.10.6 2 1/2 D tool offset (CUT2D, CUT2DD, CUT2DF, CUT2DFD)
	2.10.7 Keep tool radius compensation constant (CUTCONON, CUTCONOF)
	2.10.8 Tools with a relevant cutting edge position

	2.11 Path action
	2.11.1 Exact stop (G60, G9, G601, G602, G603)
	2.11.2 Continuous-path mode (G64, G641, G642, G643, G644, G645, ADIS, ADISPOS)

	2.12 Coordinate transformations (frames)
	2.12.1 Frames
	2.12.2 Frame instructions
	2.12.3 Programmable work offset (TRANS, ATRANS)
	2.12.4 Programmable work offset (G58, G59)
	2.12.5 Programmable rotation (ROT, AROT, RPL)
	2.12.6 Programmable frame rotations with solid angles (ROTS, AROTS, CROTS)
	2.12.7 Programmable scaling factor (SCALE, ASCALE)
	2.12.8 Programmable mirroring (MIRROR, AMIRROR)
	2.12.9 Frame generation according to tool orientation (TOFRAME, TOROT, PAROT):
	2.12.10 Deselect frame (G53, G153, SUPA, G500)
	2.12.11 Programming: Deselecting overlays axis-specifically (CORROF)
	2.12.12 Deselecting additive work offsets (DRFROF)
	2.12.13 Grinding-specific work offsets (GFRAME0, GFRAME1 ... GFRAME100)

	2.13 Auxiliary function outputs
	2.13.1 M functions

	2.14 Supplementary commands
	2.14.1 Output messages (MSG)
	2.14.2 Writing string in OPI variable (WRTPR)
	2.14.3 Working area limitation
	2.14.3.1 Working area limitation in BCS (G25/G26, WALIMON, WALIMOF)
	2.14.3.2 Working area limitation in WCS/SZS (WALCS0 ... WALCS10)

	2.14.4 Reference point approach (G74)
	2.14.5 Approaching a fixed point (G75)
	2.14.6 Travel to fixed stop (FXS, FXST, FXSW)
	2.14.7 Dwell time (G4)
	2.14.8 Internal preprocessing stop

	2.15 Other information
	2.15.1 Axes
	2.15.1.1 Axes (overview)
	2.15.1.2 Main axes/Geometry axes
	2.15.1.3 Special axes
	2.15.1.4 Main spindle, master spindle
	2.15.1.5 Machine axes
	2.15.1.6 Channel axes
	2.15.1.7 Path axes
	2.15.1.8 Positioning axes
	2.15.1.9 Synchronized axes
	2.15.1.10 Command axes
	2.15.1.11 PLC axes

	2.15.2 From travel command to machine movement
	2.15.3 Path calculation
	2.15.4 Addresses
	2.15.5 Names
	2.15.6 Constants
	2.15.7 Operators and arithmetic functions

	3 Work preparation
	3.1 Flexible NC programming
	3.1.1 Variables
	3.1.1.1 System data
	3.1.1.2 Predefined user variables: Channel-specific arithmetic parameters (R)
	3.1.1.3 Predefined user variables: Global arithmetic parameters (RG)
	3.1.1.4 Definition of user variables (DEF)
	3.1.1.5 Redefinition of system data, user data, and NC commands (REDEF)
	3.1.1.6 Attribute: Initialization value
	3.1.1.7 Attribute: Limit values (LLI, ULI)
	3.1.1.8 Attribute: Physical unit (PHU)
	3.1.1.9 Attribute: Access rights (APR, APW, APRP, APWP, APRB, APWB)
	3.1.1.10 Overview of definable and redefinable attributes
	3.1.1.11 Definition and initialization of array variables (DEF, SET, REP)
	3.1.1.12 Definition and initialization of array variables (DEF, SET, REP): Further Information
	3.1.1.13 Data types
	3.1.1.14 Variable minimum, maximum and range (MINVAL, MAXVAL and BOUND)
	3.1.1.15 Check availability of a variable (ISVAR)
	3.1.1.16 Reading attribute values / data type (GETVARPHU, GETVARAP, GETVARLIM, GETVARDIM, GETVARDFT, GETVARTYP)
	3.1.1.17 Possible type conversions

	3.1.2 Indirect programming
	3.1.2.1 Indirectly programming addresses
	3.1.2.2 Indirectly programming G commands
	3.1.2.3 Indirectly programming position attributes (GP)
	3.1.2.4 Indirectly programming part program lines (EXECSTRING)

	3.1.3 Instructions
	3.1.3.1 Arithmetic functions
	3.1.3.2 Comparison and logic operations
	3.1.3.3 Priority of the operations
	3.1.3.4 Precision correction on comparison errors (TRUNC)
	3.1.3.5 Roundup (ROUNDUP)

	3.1.4 String operations
	3.1.4.1 Type conversion to STRING (AXSTRING)
	3.1.4.2 Type conversion from STRING (NUMBER, ISNUMBER, AXNAME)
	3.1.4.3 Concatenation of strings (<<)
	3.1.4.4 Conversion to lower/upper case letters (TOLOWER, TOUPPER)
	3.1.4.5 Determine length of string (STRLEN)
	3.1.4.6 Search for character/string in the string (INDEX, RINDEX, MINDEX, MATCH)
	3.1.4.7 Selection of a substring (SUBSTR)
	3.1.4.8 Reading and writing of individual characters
	3.1.4.9 Formatting a string (SPRINT)

	3.1.5 Program jumps and branches
	3.1.5.1 Return jump to the start of the program (GOTOS)
	3.1.5.2 Program jumps to jump markers (GOTOB, GOTOF, GOTO, GOTOC)
	3.1.5.3 Program branch (CASE ... OF ... DEFAULT ...)

	3.1.6 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)
	3.1.7 Check structures
	3.1.7.1 Conditional statement and branch (IF, ELSE, ENDIF)
	3.1.7.2 Continuous program loop (LOOP, ENDLOOP)
	3.1.7.3 Count loop (FOR ... TO ..., ENDFOR)
	3.1.7.4 Program loop with condition at start of loop (WHILE, ENDWHILE)
	3.1.7.5 Program loop with condition at the end of the loop (REPEAT, UNTIL)
	3.1.7.6 Program example with nested check structures

	3.1.8 Cross-channel program coordination (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)
	3.1.9 Macro technique (DEFINE ... AS)

	3.2 Subprogram technique
	3.2.1 General information
	3.2.1.1 Subprogram
	3.2.1.2 Subprogram names
	3.2.1.3 Nesting of subprograms
	3.2.1.4 Search path
	3.2.1.5 Formal and actual parameters
	3.2.1.6 Parameter transfer

	3.2.2 Definition of a subprogram
	3.2.2.1 Subprogram without parameter transfer
	3.2.2.2 Subprogram with call-by-value parameter transfer (PROC)
	3.2.2.3 Subprogram with call-by-reference parameter transfer (PROC, VAR)
	3.2.2.4 Save modal G functions (SAVE)
	3.2.2.5 Suppress single block execution (SBLOF, SBLON)
	3.2.2.6 Suppress current block display (DISPLOF, DISPLON, ACTBLOCNO)
	3.2.2.7 Identifying subprograms with preparation (PREPRO)
	3.2.2.8 Subprogram return M17
	3.2.2.9 RET subprogram return
	3.2.2.10 Parameterizable subprogram return jump (RET ...)
	3.2.2.11 Parameterizable subprogram return jump (RETB ...)

	3.2.3 Subprogram call
	3.2.3.1 Subprogram call without parameter transfer
	3.2.3.2 Subprogram call with parameter transfer (EXTERN)
	3.2.3.3 Number of program repetitions (P)
	3.2.3.4 Modal subprogram call (MCALL)
	3.2.3.5 Indirect subprogram call (CALL)
	3.2.3.6 Indirect subprogram call with specification of the calling program part (CALL BLOCK ... TO ...)
	3.2.3.7 Indirect call of a program programmed in ISO language (ISOCALL)
	3.2.3.8 Call subprogram with path specification and parameters (PCALL)
	3.2.3.9 Extend search path for subprogram calls (CALLPATH)
	3.2.3.10 Execute external subroutine (EXTCALL)

	3.3 Interrupt routine (ASUB)
	3.3.1 Function of an interrupt routine
	3.3.2 Creating an interrupt routine
	3.3.3 Assign and start interrupt routine (SETINT, PRIO, BLSYNC)
	3.3.4 Deactivating/reactivating the assignment of an interrupt routine (DISABLE, ENABLE)
	3.3.5 Delete assignment of interrupt routine (CLRINT)
	3.3.6 Fast retraction from the contour (SETINT LIFTFAST, ALF)
	3.3.7 Traversing direction for fast retraction from the contour
	3.3.8 Motion sequence for interrupt routines

	3.4 File and Program Management
	3.4.1 Program memory
	3.4.1.1 Program memory in the NCK
	3.4.1.2 External program memory
	3.4.1.3 Addressing program memory files
	3.4.1.4 Search path for subprogram call
	3.4.1.5 Interrogating the path and file name

	3.4.2 Working memory (CHANDATA, COMPLETE, INITIAL)

	3.5 File handling
	3.5.1 Write file (WRITE)
	3.5.2 Delete file (DELETE)
	3.5.3 Read lines in the file (READ)
	3.5.4 Check for presence of file (ISFILE)
	3.5.5 Read out file information (FILEDATE, FILETIME, FILESIZE, FILESTAT, FILEINFO)

	3.6 Protection zones
	3.6.1 Defining protection zones (CPROTDEF, NPROTDEF)
	3.6.2 Activating/deactivating protection zones (CPROT, NPROT)
	3.6.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

	3.7 Special motion commands
	3.7.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)
	3.7.2 Activating/deactivating NC block compression (COMPON, COMPCURV, COMPCAD, COMPSURF, COMPOF)
	3.7.3 Polynomial interpolation (POLY, POLYPATH, PO, PL)
	3.7.4 Settable path reference (SPATH, UPATH)
	3.7.5 Channel-specific measuring (MEAS, MEAW)
	3.7.6 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)
	3.7.7 Special functions for OEM users (OMA1 ... OMA5, OEMIPO1, OEMIPO2, G810 ... G829)
	3.7.8 Feedrate reduction with corner deceleration (FENDNORM, G62, G621)
	3.7.9 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

	3.8 Coordinate transformations (frames)
	3.8.1 Coordinate transformation via frame variables
	3.8.1.1 Predefined frame variable ($P_CHBFRAME, $P_IFRAME, $P_PFRAME, $P_ACTFRAME)

	3.8.2 Value assignments to frames
	3.8.2.1 Assigning direct values (axis value, angle, scale)
	3.8.2.2 Reading and changing frame components (TR, FI, RT, SC, MI)
	3.8.2.3 Calculating with frames
	3.8.2.4 Definition of frame variables (DEF FRAME)

	3.8.3 Coarse and fine offsets (CTRANS, CFINE)
	3.8.4 External zero offset ($AA_ETRANS)
	3.8.5 Set actual value with loss of the referencing status (PRESETON)
	3.8.6 Set actual value without loss of the referencing status (PRESETONS)
	3.8.7 Frame calculation from three measuring points in space (MEAFRAME)
	3.8.8 Global frames
	3.8.8.1 Channel-specific frames ($P_CHBFR, $P_UBFR)
	3.8.8.2 Frames active in the channel

	3.9 Transformations
	3.9.1 General programming of transformation types
	3.9.1.1 General programming of transformation types
	3.9.1.2 Orientation movements for transformations
	3.9.1.3 Overview of orientation transformation TRAORI

	3.9.2 Three, four and five axis transformation (TRAORI)
	3.9.2.1 General relationships of universal tool head
	3.9.2.2 Three, four and five axis transformation (TRAORI)
	3.9.2.3 Variants of orientation programming and initial setting (ORIRESET)
	3.9.2.4 Programming the tool orientation (A..., B..., C..., LEAD, TILT)
	3.9.2.5 Face milling (A4, B4, C4, A5, B5, C5)
	3.9.2.6 Reference of the orientation axes (ORIWKS, ORIMKS):
	3.9.2.7 Programming orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY, ORIRPY2, ORIVIRT1, ORIVIRT2)
	3.9.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE, ORICONCW, ORICONCCW, ORICONTO, ORICONIO)
	3.9.2.9 Specification of orientation for two contact points (ORICURVE, PO[XH]=, PO[YH]=, PO[ZH]=)

	3.9.3 Orientation polynomials (PO[angle], PO[coordinate])
	3.9.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT, ORIROTC, THETA)
	3.9.5 Orientations relative to the path
	3.9.5.1 Orientation types relative to the path
	3.9.5.2 Rotation of the tool orientation relative to the path (ORIPATH, ORIPATHS, angle of rotation)
	3.9.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)
	3.9.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=)

	3.9.6 Compression of the orientation (COMPON, COMPCURV, COMPCAD, COMPSURF)
	3.9.7 Activating/deactivating the orientation characteristic (ORISON, ORISOF)
	3.9.8 Kinematic transformation
	3.9.8.1 Activate face end transformation (TRANSMIT)
	3.9.8.2 Activate cylinder surface transformation (TRACYL)
	3.9.8.3 Oblique plunge-cutting on grinding machines (G5, G7)

	3.9.9 Cartesian PTP travel
	3.9.9.1 Activating/deactivating Cartesian PTP travel (PTP, PTPG0, PTPWOC, CP)
	3.9.9.2 Specify the position of the joints (STAT)
	3.9.9.3 Specify the sign of the axis angle (TU)
	3.9.9.4 Example 1: PTP travel of a 6-axis robot with ROBX transformation
	3.9.9.5 Example 2: PTP travel for generic 5-axis transformation
	3.9.9.6 Example 3: PTPG0 and TRANSMIT

	3.9.10 Constraints when selecting a transformation
	3.9.11 Deselecting a transformation (TRAFOOF)

	3.10 Kinematic chains
	3.10.1 Deletion of components (DELOBJ)
	3.10.2 Index determination by means of names (NAMETOINT)

	3.11 Collision avoidance with kinematic chains
	3.11.1 Check for collision pair (COLLPAIR)
	3.11.2 Request recalculation of the machine model of the collision avoidance (PROTA)
	3.11.3 Setting the protection zone status (PROTS)
	3.11.4 Determining the clearance of two protection zones (PROTD)

	3.12 Transformation with kinematic chains
	3.12.1 Activating a transformation (TRAFOON)
	3.12.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

	3.13 Tool offsets
	3.13.1 Offset memory
	3.13.2 Additive offsets
	3.13.2.1 Selecting additive offsets (DL)
	3.13.2.2 Specify wear and setup values ($TC_SCPxy[t,d], $TC_ECPxy[t,d])
	3.13.2.3 Delete additive offsets (DELDL)

	3.13.3 Special handling of tool offsets
	3.13.3.1 Mirroring of tool lengths
	3.13.3.2 Wear sign evaluation
	3.13.3.3 Coordinate system of the active machining operation (TOWSTD, TOWMCS, TOWWCS, TOWBCS, TOWTCS, TOWKCS)
	3.13.3.4 Tool length and plane change

	3.13.4 Online tool offset
	3.13.4.1 Defining a polynomial function (FCTDEF)
	3.13.4.2 Write online tool offset continuously (PUTFTOCF)
	3.13.4.3 Write online tool offset, discrete (PUTFTOC)
	3.13.4.4 Activate/deactivate online tool offset (FTOCON/FTOCOF)

	3.13.5 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)
	3.13.6 Free assignment of D numbers, cutting edge numbers
	3.13.6.1 Free assignment of D numbers, cutting edge numbers (CE address)
	3.13.6.2 Free assignment of D numbers: Checking D numbers (CHKDNO)
	3.13.6.3 Free assignment of D numbers: Rename D numbers (GETDNO, SETDNO)
	3.13.6.4 Free assignment of D numbers: Determine T number to the specified D number (GETACTTD)
	3.13.6.5 Free assignment of D numbers: Invalidate D numbers (DZERO)

	3.13.7 Toolholder kinematics
	3.13.8 Tool length compensation for orientable toolholders (TCARR, TCOABS, TCOFR, TCOFRX, TCOFRY, TCOFRZ)
	3.13.9 Modifying the orientable tool carrier according to the machine measurement (CORRTC)
	3.13.10 Online tool length compensation (TOFFON, TOFFOF)
	3.13.11 Modification of the offset data for rotatable tools
	3.13.11.1 Calculating orientations (ORISOLH)
	3.13.11.2 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK)

	3.13.12 Working with tool environments
	3.13.12.1 Save tool environment (TOOLENV)
	3.13.12.2 Delete tool environment (DELTOOLENV)
	3.13.12.3 Read T, D and DL number (GETTENV)
	3.13.12.4 Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)
	3.13.12.5 Read tool lengths and/or tool length components (GETTCOR)
	3.13.12.6 Change tool components (SETTCOR)

	3.13.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

	3.14 Path traversing behavior
	3.14.1 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)
	3.14.2 Acceleration behavior
	3.14.2.1 Acceleration mode (BRISK, BRISKA, SOFT, SOFTA, DRIVE, DRIVEA)
	3.14.2.2 Influence of acceleration on following axes (VELOLIMA, ACCLIMA, JERKLIMA)
	3.14.2.3 Activation of technology-specific dynamic values (DYNNORM, DYNPOS, DYNROUGH, DYNSEMIFIN, DYNFINISH, DYNPREC)

	3.14.3 Traversing with feedforward control (FFWON, FFWOF)
	3.14.4 Programmable contour accuracy (CPRECON, CPRECOF)
	3.14.5 Program sequence with preprocessing memory (STOPFIFO, STARTFIFO, FIFOCTRL, STOPRE)
	3.14.6 Defining a stop delay range (DELAYFSTON, DELAYFSTOF)
	3.14.7 Prevent program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)
	3.14.8 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR, DISPR, RMIBL, RMBBL, RMEBL, RMNBL)
	3.14.9 Influencing the motion control
	3.14.9.1 Percentage jerk correction (JERKLIM)
	3.14.9.2 Percentage velocity correction (VELOLIM)
	3.14.9.3 Program example for JERKLIM and VELOLIM

	3.14.10 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)
	3.14.11 Block change behavior with active coupling (CPBC)

	3.15 Axis functions
	3.15.1 Axis replacement, spindle replacement (RELEASE, GET, GETD)
	3.15.2 Transfer axis to another channel (AXTOCHAN)
	3.15.3 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING, MODAXVAL)
	3.15.4 Replaceable geometry axes (GEOAX)
	3.15.5 Wait for valid axis position (WAITENC)
	3.15.6 Programmable parameter set changeover (SCPARA)

	3.16 Axis couplings
	3.16.1 Coupled motion (TRAILON, TRAILOF)
	3.16.2 Curve tables (CTAB)
	3.16.2.1 Define curve tables (CTABDEF, CATBEND)
	3.16.2.2 Check for presence of curve table (CTABEXISTS)
	3.16.2.3 Delete curve tables (CTABDEL)
	3.16.2.4 Locking curve tables to prevent deletion and overwriting (CTABLOCK, CTABUNLOCK)
	3.16.2.5 Curve tables: Determine table properties (CTABID, CTABISLOCK, CTABMEMTYP, CTABPERIOD)
	3.16.2.6 Read curve table values (CTABTSV, CTABTEV, CTABTSP, CTABTEP, CTABSSV, CTABSEV, CTAB, CTABINV, CTABTMIN, CTABTMAX)
	3.16.2.7 Curve tables: Check use of resources (CTABNO, CTABNOMEM, CTABFNO, CTABSEGID, CTABSEG, CTABFSEG, CTABMSEG, CTABPOLID, CTABPOL, CTABFPOL, CTABMPOL)

	3.16.3 Axial master value coupling (LEADON, LEADOF)
	3.16.4 Electronic gear (EG)
	3.16.4.1 Defining an electronic gear (EGDEF)
	3.16.4.2 Switch-in the electronic gearbox (EGON, EGONSYN, EGONSYNE)
	3.16.4.3 Switching-in the electronic gearbox (EGOFS, EGOFC)
	3.16.4.4 Deleting the definition of an electronic gear (EGDEL)
	3.16.4.5 Rotational feedrate (G95) / electronic gear (FPR)

	3.16.5 Synchronous spindle
	3.16.5.1 Synchronous spindle: Programming (COUPDEF, COUPDEL, COUPON, COUPONC, COUPOF, COUPOFS, COUPRES, WAITC)

	3.16.6 Generic coupling (CP...)
	3.16.7 Tangential control
	3.16.7.1 Defining coupling (TANG)
	3.16.7.2 Activating intermediate block generation (TLIFT)
	3.16.7.3 Activating the coupling (TANGON)
	3.16.7.4 Deactivating the coupling (TANGOF)
	3.16.7.5 Deleting a coupling (TANGDEL)

	3.16.8 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)

	3.17 Synchronized actions
	3.17.1 Brief description
	3.17.2 Definition of a synchronized action
	3.17.3 Components of synchronized actions
	3.17.3.1 Validity, identification number (ID, IDS)
	3.17.3.2 Frequency (WHENEVER, FROM, WHEN, EVERY)
	3.17.3.3 G command (condition)
	3.17.3.4 Condition
	3.17.3.5 G command (action)
	3.17.3.6 Actions with condition fulfilled (DO)
	3.17.3.7 Actions with condition unfulfilled (ELSE)

	3.17.4 System variables for synchronized actions
	3.17.4.1 Reading and writing
	3.17.4.2 Operators and arithmetic functions
	3.17.4.3 Type conversions
	3.17.4.4 Marker/counter ($AC_MARKER)
	3.17.4.5 Parameters ($AC_PARAM)
	3.17.4.6 R parameters ($R)
	3.17.4.7 Machine and setting data ($$M, $$S)
	3.17.4.8 Timer ($AC_TIMER)
	3.17.4.9 FIFO variables ($AC_FIFO)
	3.17.4.10 Path tangent angle ($AC_TANEB)
	3.17.4.11 Override ($A...OVR)
	3.17.4.12 Capacity evaluation ($AN_IPO ... , $AN/AC_SYNC ... , $AN_SERVO)
	3.17.4.13 Working-area limitation ($SA_WORKAREA_ ...)
	3.17.4.14 SW cam positions and times ($$SN_SW_CAM_ ...)
	3.17.4.15 Path length evaluation / machine maintenance ($AA_TRAVEL ... , $AA_JERK ...)
	3.17.4.16 Polynomial coefficients, parameters ($AC_FCT ...)
	3.17.4.17 Overlaid movements ($AA_OFF)
	3.17.4.18 Online tool length compensation ($AA_TOFF)
	3.17.4.19 Current block in the interpolator ($AC_BLOCKTYPE, $AC_BLOCKTYPEINFO, $AC_SPLITBLOCK)
	3.17.4.20 Initialization of array variables (SET, REP)
	3.17.4.21 Grinding-specific system variables ($AC_IN_KEY_G...)
	3.17.4.22 Status Synchronized action disabled ($AC_SYNA_STATE)

	3.17.5 User-defined variables for synchronized actions
	3.17.6 Language elements for synchronized actions and technology cycles
	3.17.7 Language elements for technology cycles only
	3.17.8 Actions in synchronized actions
	3.17.8.1 Output of M, S and H auxiliary functions to the PLC
	3.17.8.2 Reading and writing of system variables
	3.17.8.3 Polynomial evaluation (SYNFCT)
	3.17.8.4 Online tool offset (FTOC)
	3.17.8.5 Programmed read-in disable (RDISABLE)
	3.17.8.6 Cancel preprocessing stop (STOPREOF)
	3.17.8.7 Delete distance-to-go (DELDTG)
	3.17.8.8 Traversing axes, to position (POS)
	3.17.8.9 Setting the measuring system (G70, G71, G700, G710)
	3.17.8.10 Position in specified reference range (POSRANGE)
	3.17.8.11 Traversing axes, endless (MOV)
	3.17.8.12 Axial feedrate (FA)
	3.17.8.13 Axis replacement (GET, RELEASE, AXTOCHAN)
	3.17.8.14 Traversing spindles (M, S, SPOS)
	3.17.8.15 Withdrawing the enable for the axis container rotation (AXCTSWEC)
	3.17.8.16 Actual value setting with loss of the referencing status (PRESETON)
	3.17.8.17 Actual value setting without loss of the referencing status (PRESETONS)
	3.17.8.18 Couplings (CP..., LEAD..., TRAIL..., CTAB...)
	3.17.8.19 Measurement (MEAWA, MEAC)
	3.17.8.20 Travel to fixed stop (FXS, FXST, FXSW, FOCON, FOCOF, FOC)
	3.17.8.21 Channel synchronization (SETM, CLEARM)
	3.17.8.22 User-specific error reactions (SETAL)
	3.17.8.23 Cancel the actual subprogram level (CANCELSUB)

	3.17.9 Technology cycles
	3.17.9.1 General
	3.17.9.2 Processing mode (ICYCON, ICYCOF)
	3.17.9.3 Definitions (DEF, DEFINE)
	3.17.9.4 Parameter transfer
	3.17.9.5 Context variable ($P_TECCYCLE)

	3.17.10 Coordination via part program and synchronized action (LOCK, UNLOCK, CANCEL)
	3.17.11 Coordination via PLC

	3.18 Oscillation
	3.18.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC, OSE, OSB)
	3.18.2 Oscillation controlled by synchronized actions (OSCILL)

	3.19 Grinding
	3.19.1 Activate/deactivate grinding-specific tool monitoring (TMON, TMOF)

	3.20 Program runtime/part counter
	3.20.1 Program runtime
	3.20.2 Workpiece counter

	3.21 Additional functions
	3.21.1 Activate machine data (NEWCONF)
	3.21.2 Check scope of NC language present (STRINGIS)
	3.21.3 Interactively call the window from the part program (MMC)
	3.21.4 Process DataShare - Output to an external device/file (EXTOPEN, WRITE, EXTCLOSE):
	3.21.5 Alarms (SETAL)
	3.21.6 Define blank (WORKPIECE)
	3.21.7 Switch language mode (G290, G291)

	3.22 User stock removal programs
	3.22.1 Supporting functions for stock removal
	3.22.2 Generate contour table (CONTPRON)
	3.22.3 Generate coded contour table (CONTDCON)
	3.22.4 Determine point of intersection between two contour elements (INTERSEC)
	3.22.5 Execute the contour elements of a table block-by-block (EXECTAB)
	3.22.6 Calculate circle data (CALCDAT)
	3.22.7 Deactivate contour preparation (EXECUTE)

	3.23 Programming cycles externally
	3.23.1 Technology cycles
	3.23.1.1 Introduction
	3.23.1.2 Technology-specific overview
	3.23.1.3 HOLES1 – row position pattern
	3.23.1.4 HOLES2 – circle or pitch circle position pattern
	3.23.1.5 POCKET3 – rectangular pocket
	3.23.1.6 POCKET4 – circular pocket
	3.23.1.7 SLOT1 - longitudinal slot
	3.23.1.8 SLOT2 - circumferential slot
	3.23.1.9 LONGHOLE - elongated hole
	3.23.1.10 CYCLE60 – engraving
	3.23.1.11 CYCLE61 - Face milling
	3.23.1.12 CYCLE62 - contour call
	3.23.1.13 CYCLE63 – contour pocket milling / contour pocket residual material / contour spigot milling / contour spigot residual material
	3.23.1.14 CYCLE64 - Predrilling contour pocket
	3.23.1.15 CYCLE70 - thread milling
	3.23.1.16 CYCLE72 - Path milling
	3.23.1.17 CYCLE76 – rectangular spigot
	3.23.1.18 CYCLE77 – circular spigot
	3.23.1.19 CYCLE78 - Drill thread milling
	3.23.1.20 CYCLE79 - multi-edge
	3.23.1.21 CYCLE81 - drilling, centering
	3.23.1.22 CYCLE82 - drilling, counterboring
	3.23.1.23 CYCLE83 – deep-hole drilling 1
	3.23.1.24 CYCLE84 - tapping without compensating chuck
	3.23.1.25 CYCLE85 - reaming
	3.23.1.26 CYCLE86 - boring
	3.23.1.27 CYCLE92 - cut-off
	3.23.1.28 CYCLE95 - contour cutting
	3.23.1.29 CYCLE98 - thread chain
	3.23.1.30 CYCLE99 - thread turning
	3.23.1.31 CYCLE435 - Set dresser coordinate system
	3.23.1.32 CYCLE495 - form-truing
	3.23.1.33 CYCLE800 – swivel plane / swivel tool / align tool
	3.23.1.34 CYCLE801 – grid or frame position pattern
	3.23.1.35 CYCLE802 - arbitrary positions
	3.23.1.36 CYCLE830 - deep-hole drilling 2
	3.23.1.37 CYCLE832 - High-Speed Settings
	3.23.1.38 CYCLE840 - tapping with compensating chuck
	3.23.1.39 CYCLE899 – open slot
	3.23.1.40 CYCLE930 - groove
	3.23.1.41 CYCLE940 – undercut form E and F / undercut thread
	3.23.1.42 CYCLE951 - stock removal
	3.23.1.43 CYCLE952 – stock removal / residual stock removal / plunge cutting / residual plunge cutting / plunge turning / residual plunge turning
	3.23.1.44 CYCLE4071 - longitudinal grinding with infeed at the reversal point
	3.23.1.45 CYCLE4072 - longitudinal grinding with infeed at the reversal point and cancel signal
	3.23.1.46 CYCLE4073 - longitudinal grinding with continuous infeed
	3.23.1.47 CYCLE4074 - longitudinal grinding with continuous infeed and cancel signal
	3.23.1.48 CYCLE4075 - surface grinding with infeed at the reversal point
	3.23.1.49 CYCLE4077 - surface grinding with infeed at the reversal point and cancel signal
	3.23.1.50 CYCLE4078 - surface grinding with continuous infeed
	3.23.1.51 CYCLE4079 - surface grinding with intermittent infeed
	3.23.1.52 GROUP_BEGIN - beginning of program block
	3.23.1.53 GROUP_END - end of program block
	3.23.1.54 GROUP_ADDEND - End of trial cut addition
	3.23.1.55 Supplementary conditions

	3.23.2 Overview of measuring cycle parameters
	3.23.2.1 CYCLE973 measuring cycle parameters
	3.23.2.2 CYCLE974 measuring cycle parameters
	3.23.2.3 CYCLE994 measuring cycle parameters
	3.23.2.4 CYCLE976 measuring cycle parameters
	3.23.2.5 CYCLE978 measuring cycle parameters
	3.23.2.6 CYCLE998 measuring cycle parameters
	3.23.2.7 CYCLE977 measuring cycle parameters
	3.23.2.8 CYCLE961 measuring cycle parameters
	3.23.2.9 CYCLE979 measuring cycle parameters
	3.23.2.10 CYCLE997 measuring cycle parameters
	3.23.2.11 CYCLE995 measuring cycle parameters
	3.23.2.12 CYCLE996 measuring cycle parameters
	3.23.2.13 CYCLE9960 measuring cycle parameters
	3.23.2.14 CYCLE982 measuring cycle parameters
	3.23.2.15 CYCLE971 measuring cycle parameters
	3.23.2.16 CYCLE150 measuring cycle parameters

	4 Tables
	4.1 Operations
	4.2 Addresses
	4.2.1 Address letters
	4.2.2 Fixed addresses
	4.2.3 Settable addresses

	4.3 G commands
	4.3.1 G commands
	4.3.2 G group 1: Modally valid motion commands
	4.3.3 G group 2: Non-modally valid motion, dwell time
	4.3.4 G group 3: Programmable frame, working area limitation and pole programming
	4.3.5 G group 4: FIFO
	4.3.6 G group 6: Plane selection
	4.3.7 G group 7: Tool radius compensation
	4.3.8 G group 8: Settable work offset
	4.3.9 G group 9: Frame suppression
	4.3.10 G group 10: Exact stop - continuous-path mode
	4.3.11 G group 11: Exact stop, non-modal
	4.3.12 G group 12: Block change criteria at exact stop (G60/G9)
	4.3.13 G group 13: Workpiece measuring inch/metric
	4.3.14 G group 14: Workpiece measuring absolute/incremental
	4.3.15 G group 15: Feed type
	4.3.16 G group 16: Feedrate override at inside and outside curvature
	4.3.17 G group 17: Approach and retraction response, tool offset
	4.3.18 G group 18: Corner behavior, tool offset
	4.3.19 G group 19: Curve transition at beginning of spline
	4.3.20 G group 20: Curve transition at end of spline
	4.3.21 G group 21: Acceleration profile
	4.3.22 G group 22: Tool offset type
	4.3.23 G group 23: Collision monitoring at inside contours
	4.3.24 G group 24: Precontrol
	4.3.25 G group 25: Tool orientation reference
	4.3.26 G group 26: Repositioning mode for REPOS (modal)
	4.3.27 G group 27: Tool offset for change in orientation at outside corners
	4.3.28 G group 28: Working area limitation
	4.3.29 G group 29: Radius/diameter programming
	4.3.30 G group 30: NC block compression
	4.3.31 G group 31: OEM G commands
	4.3.32 G group 32: OEM G commands
	4.3.33 G group 33: Settable fine tool offset
	4.3.34 G group 34: Tool orientation smoothing
	4.3.35 G group 37: Feedrate profile
	4.3.36 G group 39: Programmable contour accuracy
	4.3.37 G group 40: Tool radius compensation constant
	4.3.38 G group 41: Interruptible thread cutting
	4.3.39 G group 42: Tool carrier
	4.3.40 G group 43: SAR approach direction
	4.3.41 G group 44: SAR path segmentation
	4.3.42 G group 45: Path reference for FGROUP axes
	4.3.43 G group 46: Plane selection for fast retraction
	4.3.44 G group 47: Mode switchover for external NC code
	4.3.45 G group 48: Approach and retraction response with tool radius compensation
	4.3.46 G group 49: Point-to-point motion
	4.3.47 G group 50: Orientation programming
	4.3.48 G group 51: Interpolation type for orientation programming
	4.3.49 G group 52: Frame rotation in relation to workpiece
	4.3.50 G group 53: Frame rotation in relation to tool
	4.3.51 G group 54: Vector rotation for polynomial programming
	4.3.52 G group 55: Rapid traverse with/without linear interpolation
	4.3.53 G group 56: Taking into account tool wear
	4.3.54 G group 57: Corner deceleration
	4.3.55 G group 59: Dynamic response mode for path interpolation
	4.3.56 G group 60: Working area limitation
	4.3.57 G group 61: Tool orientation smoothing
	4.3.58 G group 62: Repositioning mode for REPOS (non-modal)
	4.3.59 G group 64: Grinding frames

	4.4 Predefined procedures
	4.5 Predefined procedures in synchronized actions
	4.6 Predefined functions

	A Appendix
	A.1 List of abbreviations

	Index

