Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>indicates that death or severe personal injury will result if proper precautions are not taken.</td>
</tr>
<tr>
<td>WARNING</td>
<td>indicates that death or severe personal injury may result if proper precautions are not taken.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>indicates that minor personal injury can result if proper precautions are not taken.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>indicates that property damage can result if proper precautions are not taken.</td>
</tr>
</tbody>
</table>

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.</td>
</tr>
</tbody>
</table>

Trademarks

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Table of contents

1 **Introduction / product description** ... 9
1.1 What are M200D distributed motor starters? ... 9
1.2 Fieldbus interfaces .. 11
1.2.1 AS-Interface .. 11
2 **Product family** .. 13
2.1 Motor starter M200D AS-Interface ... 13
2.2 Overview of the device functions .. 14
2.3 Design concept .. 15
2.3.1 Operator controls .. 16
2.3.2 Connections .. 17
2.3.3 Status indicators .. 18
3 **Functions** .. 19
3.1 Overview of the device functions ... 19
3.2 Introduction .. 20
3.3 Basic functions / parameters .. 21
3.3.1 Rated operating current ... 21
3.3.2 Protection against voltage failure ... 21
3.4 Fieldbus interface .. 22
3.5 Motor control .. 22
3.5.1 Control function: reversing starter ... 22
3.5.2 Brake output ... 23
3.6 Motor protection .. 25
3.6.1 Thermal motor model .. 25
3.6.2 Temperature sensor .. 27
3.7 System monitoring .. 28
3.7.1 Current limit values ... 28
3.7.2 Asymmetry monitoring ... 30
3.7.3 Inputs ... 31
3.7.4 Outputs .. 35
3.7.5 Connector monitoring ... 35
3.7.5.1 Power connector ... 35
3.7.5.2 Motor connector ... 37
3.8 Short-circuit protection (circuit breaker / disconnecting means) 37
3.9 Communication ... 38
3.9.1 Mode monitoring ... 38
3.9.2 Plausibility check for settings ... 39
3.9.3 Message output .. 39
3.10 Trip reset .. 40
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.11</td>
<td>Self-test</td>
<td>40</td>
</tr>
<tr>
<td>3.12</td>
<td>Solid-state/mechanical switching technology</td>
<td>41</td>
</tr>
<tr>
<td>3.13</td>
<td>Local device interface</td>
<td>42</td>
</tr>
<tr>
<td>3.14</td>
<td>Integrated manual local control</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>Installation / connection</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Installation</td>
<td>47</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Installation rules</td>
<td>47</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Derating</td>
<td>48</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Installing the protection guards</td>
<td>52</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Installing the motor starter</td>
<td>53</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Functional ground</td>
<td>54</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Setting the AS-i address</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Connection</td>
<td>56</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Required components/cables</td>
<td>57</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Prefabricating power cables</td>
<td>58</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Installing and wiring power connectors</td>
<td>59</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Power terminal</td>
<td>60</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Brake output</td>
<td>62</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Digital inputs/outputs</td>
<td>64</td>
</tr>
<tr>
<td>4.2.6.1</td>
<td>Digital inputs</td>
<td>65</td>
</tr>
<tr>
<td>4.2.6.2</td>
<td>Digital output</td>
<td>66</td>
</tr>
<tr>
<td>4.2.7</td>
<td>AS-Interface</td>
<td>66</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Connection options for AS-Interface</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>Configuration / parameterization</td>
<td>69</td>
</tr>
<tr>
<td>5.1</td>
<td>Configuration</td>
<td>69</td>
</tr>
<tr>
<td>5.1.1</td>
<td>ID1 code</td>
<td>69</td>
</tr>
<tr>
<td>5.2</td>
<td>Configuration on the AS-i master CP 343-2</td>
<td>70</td>
</tr>
<tr>
<td>5.3</td>
<td>Parameterization</td>
<td>73</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Parameterization</td>
<td>73</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Parameterization via local setting</td>
<td>74</td>
</tr>
<tr>
<td>5.4</td>
<td>Process images</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>Commissioning</td>
<td>79</td>
</tr>
<tr>
<td>6.1</td>
<td>Prerequisites</td>
<td>79</td>
</tr>
<tr>
<td>6.2</td>
<td>M200D AS-i components</td>
<td>80</td>
</tr>
<tr>
<td>6.3</td>
<td>Procedure</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Diagnostics</td>
<td>83</td>
</tr>
<tr>
<td>7.1</td>
<td>Diagnostics</td>
<td>83</td>
</tr>
<tr>
<td>7.2</td>
<td>Diagnostics with LED</td>
<td>83</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Statuses of the individual LEDs</td>
<td>83</td>
</tr>
<tr>
<td>7.2.2</td>
<td>LED display combinations</td>
<td>86</td>
</tr>
<tr>
<td>7.3</td>
<td>Diagnostics via parameter channel (parameter echo)</td>
<td>88</td>
</tr>
<tr>
<td>7.4</td>
<td>Diagnostics with the addressing and diagnostics unit</td>
<td>91</td>
</tr>
</tbody>
</table>
Table of contents

7.5 Troubleshooting ... 91
 7.5.1 Response to faults .. 91
 7.5.2 Acknowledging faults .. 92

8 Technical specifications ... 93
 8.1 General technical specifications 93
 8.2 Motor starter ... 94
 8.3 Brake control ... 96
 8.4 Inputs ... 96
 8.5 Output ... 97
 8.6 Thermistor motor protection 97
 8.7 Switching frequency .. 98
 8.8 Electrical service life of contactor 101
 8.9 Dimension drawing ... 103

A Appendix .. 105
 A.1 Order numbers .. 105
 A.1.1 M200D AS-i motor starter 105
 A.1.2 Spare parts/accessories 106
 A.2 Bibliography ... 109

B Correction sheet ... 111

Glossary ... 113

Index .. 117
1.1 **What are M200D distributed motor starters?**

M200D motor starters are standalone devices with a high degree of protection (IP65) for distributed use near the motor.

Depending on the order variant, they are available as:

- Direct starters, electromechanical or electronic (DSte, sDSte)
- Reversing starters, electromechanical or electronic (RSte, sRSte)

They are suitable for the following tasks:

- Switching and protecting three-phase loads at 400 V AC up to 5.5 kW
- Control via AS-Interface

Depending on the order variant, they are equipped with:

- Brake output for 400 / 230 V AC or 180 V DC
- Integrated manual local control with a key-operated switch and keypad
1.1 What are M200D distributed motor starters?

Connecting the M200D motor starter to AS-Interface

![Diagram of connecting M200D motor starter to AS-Interface]

Figure 1-1 M200D: overview
1.2 Fieldbus interfaces

1.2.1 AS-Interface

Overview

The AS-Interface (actuator sensor interface, AS-i) is an open international standard for fieldbus communication between distributed actuators and sensors at the lowest control level.

AS-i complies with the IEC 61158 / EN 50295 standards and was specifically designed for connecting binary sensors and actuators that comply with these standards. AS-i makes it possible to replace point-to-point cabling of the sensors and actuators by a bus line.

The AS-Interface has the following advantages:

- Flexibility
- Cost effectiveness
- Simple and rapid installation with a minimum of errors
- A common line for transferring data and power
1.2 Fieldbus interfaces
2.1 Motor starter M200D AS-Interface

The following motor starters with AS-Interface (AS-i) are available:

- M200D AS-i Basic
 motor starter with thermistor motor protection + thermal motor model:
 - Direct starter (electromechanical) (DSte) up to 5.5 kW,
 Current ranges: 0.15 – 2 A and 1.5 – 12 A
 - Reversing starter (electromechanical) (RSte) up to 5.5 kW,
 Current ranges: 0.15 – 2 A and 1.5 – 12 A
 - Direct starter (electronic) (sDSte) up to 4 kW,
 Current ranges: 0.15 – 2 A and 1.5 – 9 A
 - Reversing starter (electronic) (sRSte) up to 4 kW,
 Current ranges: 0.15 – 2 A and 1.5 – 9 A

Order variants:

- Brake output for:
 - 400/230 V AC
 - 180 V DC
- Integrated manual local control (key-operated switch and keypad)

Accessories:

- Connection components (e.g. cables, connectors, etc.)
- Hand-held device
- Safety bar for the plug connections
2.2 Overview of the device functions

<table>
<thead>
<tr>
<th>Device functions</th>
<th>Electromechanical (DSte, RSte)/ electronic (sDSte, sRSte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fieldbus interface</td>
<td>•</td>
</tr>
<tr>
<td>Control function: reversing starter</td>
<td>○</td>
</tr>
<tr>
<td>Control function: soft starter</td>
<td>—</td>
</tr>
<tr>
<td>Brake output 400 V / 230 V AC</td>
<td>○</td>
</tr>
<tr>
<td>Brake output 180 V DC</td>
<td>○</td>
</tr>
<tr>
<td>Thermal motor model</td>
<td>•</td>
</tr>
<tr>
<td>Temperature sensor (thermistor motor protection)</td>
<td>•</td>
</tr>
<tr>
<td>Asymmetry monitoring</td>
<td>•</td>
</tr>
<tr>
<td>Blocking current monitoring</td>
<td>•</td>
</tr>
<tr>
<td>Zero-current monitoring</td>
<td>•</td>
</tr>
<tr>
<td>M12 inputs (routed via AS-i)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>M12 outputs (routed via AS-i)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Connector monitoring</td>
<td>•</td>
</tr>
<tr>
<td>Short-circuit protection</td>
<td>•</td>
</tr>
</tbody>
</table>

Communication

<table>
<thead>
<tr>
<th>Slave type</th>
<th>A/B slave (4I / 3O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication profile</td>
<td>7.A.E</td>
</tr>
<tr>
<td>Diagnostics via parameter channel (parameter echo)</td>
<td>•</td>
</tr>
<tr>
<td>Support for AS-i S1 status bit</td>
<td>•</td>
</tr>
<tr>
<td>Transfer of data sets via AS-i</td>
<td>—</td>
</tr>
<tr>
<td>Extended cyclic process image</td>
<td>—</td>
</tr>
<tr>
<td>Access via "Motor Starter ES"</td>
<td>—</td>
</tr>
</tbody>
</table>

Additional functions

Self-test	•
Local device interface	•
Disconnecting means	•
Integrated manual local control (key-operated switch, keypad with LEDs)	○
Setting elements parameterized on device	•

- • Integrated
- ○ Order variant
2.3 Design concept

Connections and controls on the motor starter

1. Disconnecting means (circuit breaker), can be locked
2. Optical device interface
3. M12 AS-i connection
4. Diagnostic LEDs
5. Cover (setting elements)
6. M12 output
7. M12 inputs
8. Protection guard for cables and connections (accessories)
9. Fixing holes for installation
10. 400 V infeed
11. Motor connection
12. Key-operated switch (order variant)
13. Keypad for manual operation (order variant)
2.3 Design concept

2.3.1 Operator controls

The motor starter is equipped with the following operator controls:

1. Key-operated switch (order variant)
2. Keypad (order variant)
3. Disconnecting means (circuit breaker)
4. Cover for parameter setting elements

Integrated manual local control (key-operated switch ① and keypad ②; order variant)

A key-operated switch and keypad are used for local operation. The key can be inserted/removed in three positions.

Disconnecting means ③ (circuit breaker)

The disconnecting means is designed for the following individual functions:

- Disconnecting the series-connected consumers from the supply voltage
- Short-circuit protection of the series-connected consumer
- Switching on inhibited via padlock (max. three padlocks possible)

Parameter settings ④

The following setting elements can be found under the cover of the M200D AS-i Basic:

- Rotary coding switch for:
 - Setting the rated operating current
 - Deactivating the thermal motor model (class OFF)
- DIP switch for:
 - Autoreset (ON / OFF)
 - Connector monitoring (ON / OFF)
 - Temperature sensor (ON / OFF)
 - Temperature sensor (PTC / TC)
2.3.2 Connections

Power terminals

1. Infeed for the three phases as well as the PE and N conductor via power connectors (HAN Q4/2 with ISO23570 assignment)
2. Connection of the motor via power connectors (HAN Q8/0 with ISO23570 assignment)

Control circuit / bus

1. AS-i bus connection with auxiliary voltage, M12 connector
2. Optical device interface (under the labeling strip) for connecting the hand-held device
3. 1 x M12 output
4. 4 x M12 inputs
 - 2 inputs can be read via AS-i
 - 2 inputs with fixed input function
2.3.3 Status indicators

The following LEDs on the front of the starter indicate the device status:

① Indicators for the device status and communication
② Indicator for output OUT1
③ Indicators for inputs IN1 ... IN4

For a detailed description of the indicators, see "Diagnostics (Page 83)".
3.1 Overview of the device functions

<table>
<thead>
<tr>
<th>Device functions</th>
<th>Electromechanical (DSte, RSte)/electronic (sDSte, sRSte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fieldbus interface (Page 22)</td>
<td>●</td>
</tr>
<tr>
<td>Control function: reversing starter (Page 22)</td>
<td>○</td>
</tr>
<tr>
<td>Brake output 400 V / 230 V AC (Page 23)</td>
<td>○</td>
</tr>
<tr>
<td>Brake output 180 V DC (Page 23)</td>
<td>○</td>
</tr>
<tr>
<td>Thermal motor model (Page 25)</td>
<td>●</td>
</tr>
<tr>
<td>Temperature sensor (thermistor motor protection) (Page 27)</td>
<td>●</td>
</tr>
<tr>
<td>Blocking protection (Page 28)</td>
<td>●</td>
</tr>
<tr>
<td>Residual current monitoring (Page 28)</td>
<td>●</td>
</tr>
<tr>
<td>Asymmetry monitoring (Page 30)</td>
<td>●</td>
</tr>
<tr>
<td>M12 inputs (routed via AS-i) (Page 31)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>M12 outputs (routed via AS-i) (Page 35)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Connector monitoring (Page 35)</td>
<td>●</td>
</tr>
<tr>
<td>Short-circuit protection (Page 37)</td>
<td>●</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Slave type</td>
<td>A/B slave (4I / 3O)</td>
</tr>
<tr>
<td>Communication profile (Page 70)</td>
<td>7.A.E</td>
</tr>
<tr>
<td>Diagnostics via parameter channel (parameter echo) (Page 88)</td>
<td>●</td>
</tr>
<tr>
<td>Support for AS-i S1 status bit (Page 88)</td>
<td>●</td>
</tr>
<tr>
<td>Transfer of data sets via AS-i</td>
<td>—</td>
</tr>
<tr>
<td>Extended cyclic process image</td>
<td>—</td>
</tr>
<tr>
<td>Access via "Motor Starter ES"</td>
<td>—</td>
</tr>
<tr>
<td>Additional functions</td>
<td></td>
</tr>
<tr>
<td>Self-test (Page 40)</td>
<td>●</td>
</tr>
<tr>
<td>Local device interface (Page 42)</td>
<td>●</td>
</tr>
<tr>
<td>Disconnecting means (Page 37)</td>
<td>●</td>
</tr>
<tr>
<td>Integrated manual local control (Page 43)</td>
<td>○</td>
</tr>
<tr>
<td>(key-operated switch, keypad with LEDs)</td>
<td></td>
</tr>
<tr>
<td>Setting elements for parameter assignment on device (Page 74)</td>
<td>●</td>
</tr>
</tbody>
</table>
3.2 Introduction

Device functions

This section describes the device functions. All the device functions are assigned inputs (e.g. device parameters) and outputs (e.g. messages).

The following schematic diagram illustrates the functional principle of the device:

![Functional principle of the device](image)

Self-protection

The motor protects itself against fatal damage by means of the thermal motor model and temperature measurements for electronic switching elements.

Currents

Note

All current values (e.g. blocking current, current limits) are percentages of the rated operating current set on the device (e.g. $I_e = 2 \text{ A} = 100 \%$).
3.3 Basic functions / parameters

Definition

Basic parameters are "central" parameters required by a range of device functions.

3.3.1 Rated operating current

Here, you can enter the rated operating current that the branch (switchgear and motor) can carry without interruption. This is usually the rated motor current. The setting range depends on the output class of the M200D motor starter (0.15 ... 2 A or 1.5 ... 12 A).

Note

The rated operating current is one of the key parameters.

The rated operating current must always be set if motor protection is to be ensured via the electronic overload relay.

The overload relay can be deactivated.

In this case, motor protection must be ensured by means of a thermistor in the motor.

Notes

- On the motor starter, the default rated operating current is set to the minimum value.
- The rated operating current for the M200D AS-i Basic motor starter is set by means of the rotary coding switch. For more information, see Parameterization via local setting (Page 74).

3.3.2 Protection against voltage failure

If the supply voltage fails, the last overload message "Overload" is retained.
3.4 Fieldbus interface

Response to CPU / master STOP

If the fieldbus interface is interrupted, all control signals are set to 0.

Note
This is only relevant in "automatic" mode.

Group diagnosis

The controller is informed of whether or not a group fault message is present in the device when "I/O fault bits" on the SAP status tab (S1 = 1) is set. The AS-i master enters the S1 value in the list of I/O faults (LPF) that have been signaled. The controller can read this list via the "GET_LPF" command and then query a specific diagnostic value from the slave (see also Diagnostics via parameter channel (parameter echo) (Page 88)).

The motor starter issues a fault message if a fault is present. In this case, the SF LED lights up red.

Reference

For more information, refer to the documentation for your AS-i master.

3.5 Motor control

3.5.1 Control function: reversing starter

Description

This control function allows the motor starter to control the direction in which motors rotate. An internal logic prevents both directions of rotation from being activated simultaneously. The delayed switchover from one direction of rotation to another is implemented by means of the lock-out time, which is permanently set to 150 ms.

Note
To reverse the direction of rotation, a mechanically-switching reversing contactor is integrated in reversing starters with electronic switching. The preferred position of this contactor is "CW rotation".
When the direction is changed to "CCW rotation", the reversing contactor is activated first, followed by the electronic contacts after an 80 ms delay.
3.5.2 Brake output

Description
A motor-mounted mechanical disk or spring-loaded brake is used to brake the motor. The brake is controlled via the brake output.

Circuit diagram: example
The following circuit diagram illustrates the mechanical braking procedure with a 180 V DC brake output:

<table>
<thead>
<tr>
<th>Circuit diagram</th>
<th>Motor connector</th>
<th>Pin</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Phase L1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Phase L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Brake L1 (switched)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Thermistor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Brake L3 (direct)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Phase L2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Thermistor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PE (yellow/green)</td>
</tr>
</tbody>
</table>

WARNING
Hazardous voltage
Danger of death or serious injury
The brake is only switched in a single phase. This means that voltage can be applied at pin 6 even when the system is switched off.
Brake output

Externally-supplied motor brakes are usually powered via a jumper on the motor terminal board.

Since switching the motor and brake simultaneously can increase wear and tear to the brake, all M200D motor starters can be fitted with an optional electronic brake controller.

Depending on the order variant, the following externally supplied brake coils can be controlled:

- **400 V AC / 230 V**
 (The brake rectifier must be installed in the motor. The rectifier input is controlled via the motor starter).

- **180 V DC**
 (A rectifier is not required for the brake in the motor because the motor starter provides the 180 V DC. In this way, brake coils for 180 V DC can be switched directly).

The brake voltage is fed to the motor together with the motor infeed via a joint cable (e.g. 6 x 1.5 mm²). For more information about connecting the brake output, see section Brake output (Page 62).

Note

With both brake output versions, the electronic switching element is located on the AC side. Please refer to the technical data of the brake (e.g. Catalog D87.1 "SIEMENS MOTOX Geared Motors") for the resulting application time of the brake.

If faster brake application times are required (DC side tripping), a 400 V / 230 V AC brake output in conjunction with a function rectifier integrated into the motor is preferable.

Devices with an 180 V DC brake output from product version E10 onwards are suitable for attaining short brake application times. In comparison to the previous product versions, this means that the time until the motor comes to a standstill is shorter.

The integrated free-wheeling diode is deactivated when switching off the brake output and the energy of the brake coil dissipated through a varistor.

Brake release delay at startup

A fixed ON-delay time of 40 ms is set for the M200D AS-i Basic motor starter to prevent wear and tear to the brake (e.g. the motor output is activated 40 ms after the brake output).

In reversing mode, the release delay does not begin until the lock-out time has expired.
3.6 Motor protection

3.6.1 Thermal motor model

Description

The approximate temperature of the motor is calculated using the measured motor currents and device parameters "Rated operating current" and "Tripping class". This indicates whether the motor is overloaded or functioning in the normal operating range.

Motor protection shutdown response

You use this device parameter to specify how the motor starter is to respond in an overload situation:

- Shutdown without restart (AUTO RESET = off)
 Following an overload situation, the shutdown command cannot be reset until the motor model has fallen below the reset threshold and after a reset command has been issued (trip reset).
- Shutdown with restart (AUTO RESET = on)

WARNING

Motor restarts automatically if AUTO RESET is on.
Can Cause Death, Serious Injury, or Property Damage

The motor starter restarts automatically after the recovery time if a start command is present (autoreset). (autoreset).
Make sure that you take appropriate measures to exclude the risk of hazardous conditions.

Trip class

The trip class (CLASS) specifies the maximum time within which a protective device must trip from a cold state at 7.2 x the setting current (motor protection to IEC 60947). The M200D AS-i Basic trip class is set permanently to CLASS 10 and can be deactivated.

If the setting is changed to CLASS OFF, the "thermal motor model" function is deactivated along with the accompanying messages. With the M200D AS-i Basic, the thermal motor model is deactivated by means of the rotary coding switch for setting the operating current (CLASS OFF position).
3.6 Motor protection

Note
Deactivation rule
To ensure motor protection, the motor cannot be switched on when the temperature sensor is deactivated and, at the same time, CLASS OFF is set. This is indicated on the M200D AS-i Basic with either a warning (if an ON command is not present) or a fault (if an ON command is present).

Recovery time
The recovery time is the time defined for cooling after which the system can be reset following an overload trip. The recovery time for the M200D AS-i Basic is set permanently to 90 s.

Trip reset signals present during the recovery time have no effect.
Voltage losses occurring before this time expires can prolong the recovery time.

Prewarning limit for motor heating
The motor starter also assumes a prewarning role, that is, it issues a warning if the motor temperature limit is exceeded. The prewarning limit for the M200D AS-i Basic is 90 % of the motor heating value. The motor is shut down at 100 %.

The warning can be read via Diagnostics via parameter channel (parameter echo) (Page 88) for the starter.
Settings

<table>
<thead>
<tr>
<th>Device parameter</th>
<th>Default setting</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor protection shutdown response</td>
<td>Shutdown without restart</td>
<td>• Shutdown without restart
 • Shutdown with restart</td>
</tr>
<tr>
<td>Trip class</td>
<td>CLASS 10</td>
<td>• CLASS 10
 • CLASS OFF</td>
</tr>
</tbody>
</table>

3.6.2 Temperature sensor

Description

Temperature sensors are used to directly monitor the motor winding temperature. This indicates whether the motor is overloaded or functioning normally. If temperature sensors are installed in the motor stator winding (order option for the motor), the M200D motor starter can use these to monitor the motor.

M200D motor starters can evaluate one temperature sensor circuit.

The temperature sensor evaluation electronics are galvanically isolated from the electronics and the auxiliary voltage.

This is beneficial if insulation damage is caused to the motor or the motor supply line, as this does not affect any further system components (see Technical Specifications).

Temperature sensor

You can activate or deactivate this parameter depending on whether or not a temperature sensor is installed in the motor. The setting is made by means of the DIP switch on the device.

Two types of temperature sensor are supported:

- Thermoclick.
 This is a switch that opens at a certain winding temperature.

- PTC type A.
 This is a PTC thermistor with a characteristic to IEC 60947-8.

When the PTC type A temperature sensor is active, temperature sensor monitoring is also activated (see below).
3.7 System monitoring

Motor protection shutdown response

You can use this parameter to determine how the motor starter is to respond to a temperature sensor or thermal motor model overload:

- Shutdown without restart (AUTO RESET = off)
- Shutdown with restart (AUTO RESET = on)

⚠️ WARNING

Motor restarts automatically if AUTO RESET is on. Can Cause Death, Serious Injury, or Property Damage

The motor starter restarts automatically after the recovery time if a start command is present (autoreset). Make sure that you take appropriate measures to exclude the risk of hazardous conditions.

Temperature sensor monitoring

Temperature sensor monitoring is activated when a PTC type A temperature sensor is parameterized.

This device parameter monitors the temperature sensor cable for interruptions (wire breakage) and short-circuits. The motor is shut down if either of these scenarios occurs.

Settings

The possible settings for the M200D AS-i Basic motor starter can be found in section Parameterization via local setting (Page 74).

3.7 System monitoring

3.7.1 Current limit values

Description

The motor current and current limit values can be used to determine different system statuses:

<table>
<thead>
<tr>
<th>System status</th>
<th>Current value</th>
<th>Protection by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor blocked</td>
<td>Very high current flowing</td>
<td>Blocking protection</td>
</tr>
<tr>
<td>Motor runs at no load (e.g. because system is damaged)</td>
<td>Very low current flowing (< 18.75 % of Ie)</td>
<td>Residual current detection</td>
</tr>
</tbody>
</table>
Response to residual current detection

Residual current detection responds when the motor current in all three phases falls below 18.75% of the set rated operating current. In this case, the motor starter shuts down the motor.

Residual current detection is deactivated by setting the rotary coding switch to "CLASS OFF".

Note
When the motor is switched on, residual current detection is suppressed for around 1 second.

Blocking current monitoring

The blocking current specifies how much current is consumed by the motor (at rated voltage) when the axis blocked.

The blocking current monitoring function detects when a motor axis is blocked mechanically. The block causes the motor to consume more power. The "blocking current" is a defined monitoring threshold for the motor current consumption.

It is monitored as follows:
When the motor starts, the tripping limit for the blocking current is set permanently to 800% of the rated operating current for a period of 10 s. During operation, the "blocking current" tripping limit is set permanently to 400% of the rated operating current.

If the blocking current is exceeded, the motor starter detects blocking. Blocking time monitoring is activated as of the point at which the blocking current is exceeded. If the blocking current flows for longer than the blocking time, the motor starter automatically generates a shutdown command.

The blocking current monitoring function is deactivated by setting the rotary coding switch to "CLASS OFF".

Note
If the blocking time expires and the system is still blocked, the motor starter is shut down.
Functions

3.7 System monitoring

Blocking time

The blocking time is the time a block can be present before the motor shuts down. If the blocking time expires and the system is still blocked, the motor starter is shut down. The blocking time in the M200D AS-i Basic is set permanently to 1 s.

![Block protection principle](image)

3.7.2 Asymmetry monitoring

Description

Three-phase induction motors respond to slight asymmetries in the supply voltage with a higher asymmetric current consumption, which causes the temperature in the stator and rotor windings to increase. In this case, the M200D motor starter protects the motor against overload by shutting it down.

Note

When the motor is switched on, asymmetry evaluation is suppressed for approx. 0.5 s.
Asymmetry limit value

The asymmetry limit is a percentage value by which the motor current is allowed to deviate in each phase. Asymmetry occurs when the difference between the lowest and highest phase current is greater than the asymmetry limit value. The asymmetry limit for the M200D AS-i Basic is set permanently to 30%.

The reference value for the evaluation is the maximum phase current in one of the 3 phases.

Response to asymmetry

If the asymmetry limit value is exceeded, the motor starter is shut down.

3.7.3 Inputs

Description

The motor starter can use the "inputs" function to execute various actions, whereby the signals at the digital inputs are evaluated. You can connect the inputs directly to sensors (PNP) (2 and 3-wire system).

The input actions of the individual digital inputs affect the motor starter functions (=OR operation) independently of one another.

The signals of inputs IN1 and IN2 are transferred cyclically via the process image.

Note

Potential transfer

With AS-i, digital inputs must not be connected to digital outputs because this can establish an impermissible connection between the U_{AS-i} and U_{AUX} voltages.
3.7 System monitoring

Input function

The input level of the digital inputs is stored for inputs IN1 and IN2, that is, the active edge executes the input action assigned to the corresponding input. Regardless of the input signal present, the action can only be deactivated again by a further event.

The input level is not stored for inputs IN3 and IN4. This input action is active as long as the input is active.

Figure 3-3 Overview of input parameters
Input n level

The input logic for the M200D AS-i Basic is set to "NO contact".

<table>
<thead>
<tr>
<th>Device parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input signal delay</td>
<td>10 ms</td>
</tr>
<tr>
<td>Input 1 level</td>
<td>Normally open contact</td>
</tr>
<tr>
<td>Input 2 level</td>
<td></td>
</tr>
<tr>
<td>Input 3 level</td>
<td></td>
</tr>
<tr>
<td>Input 4 level</td>
<td></td>
</tr>
<tr>
<td>Input 1 action</td>
<td>Quickstop</td>
</tr>
<tr>
<td>Input 2 action</td>
<td>No action</td>
</tr>
<tr>
<td>Input 3 action</td>
<td>Emergency start</td>
</tr>
<tr>
<td>Input 4 action</td>
<td>Trip with restart</td>
</tr>
<tr>
<td>Input 1 signal</td>
<td>Retentive (edge evaluation)</td>
</tr>
<tr>
<td>Input 2 signal</td>
<td>Non-retentive (level evaluation)</td>
</tr>
<tr>
<td>Input 3 signal</td>
<td></td>
</tr>
<tr>
<td>Input 4 signal</td>
<td></td>
</tr>
</tbody>
</table>

Description of the actions

Quickstop

- The motor and the brake output are switched off without a group fault.
- "Quickstop" has priority over "Motor CW" and "Motor CCW".
- The input action responds with edge triggering to the input signal. This means deactivation is possible when the static input signal "Quickstop" is present.
- The (saved) input trigger is reset when the "Motor CW" and "Motor CCW" control commands are canceled or by means of "Quickstop disable" (in the process image).

Note

When bit DO2 (PIO) (Quickstop disable) is set, input 1 in the PII can be used as a free input because the input function "Quickstop" is deactivated.
Example:

1. Motor is switched on by "Motor CW".
2. Motor is switched on by "Motor CW", then switched off by the rising edge at digital input 1 (permanently assigned with input action1 = Quickstop). By revoking the "Motor CW" command, the Quickstop function is reset.
3. Motor is switched on by "Motor CW", then switched off by the rising edge at digital input 1. By setting Quickstop disable, the Quickstop function is reset and the motor runs "CW" again until the "Motor CW" is revoked.
4. Motor is switched on by "Motor CW", then switched off by the rising edge at digital input 1. By setting Quickstop disable, the Quickstop function is reset and the motor runs "CW" again. Although the static digital input signal 1 (DI2) is still present, the motor continues to run and is only reset by revoking the "Motor CW" command. Reason: The input action is edge-triggered.
5. Motor is switched on by "Motor CW" and continues to run uninterrupted since Quickstop disable continuously overwrites the edges of the signal of digital input 1 (DI2).

Figure 3-4 Quickstop example

Emergency start
- Starts the motor when an ON command is issued despite the fact that an internal shutdown command is present.
- Switches on the brake output too if an ON switching command is present for this.
- The self-protection function of the motor starter remains active and prevents the device from being destroyed.

Tripping emergency limit position CW/CCW
- The motor and the brake output are tripped regardless of the direction of rotation.
- The brake output can be switched on again once the "Brake" and "Motor CW / CCW" control commands have been canceled.
- Tripping end position CW: The motor can only be switched on again with the opposite command ("motor CCW").
- Tripping end position CCW: The motor can only be switched on again with the opposite command ("Motor CW").

Trip with restart
- Results in tripping of the motor and brake.
- Acknowledged automatically after the cause of the trip has been rectified (initial status).
3.7.4 Outputs

Description

The motor starter can use the "outputs" function to control various actuators (e.g. indicator lights, signal transmitters, or contactor relays).

With the M200D AS-i Basic, the output is active in the event of...

- Group fault (permanently assigned function, not parameterizable)

...and outputs a continuous signal.

The digital output is overload/short-circuit proof and is supplied from U_{AUX}.

Note

Potential transfer

With AS-i, digital inputs must not be connected to digital outputs because this can establish an impermissible connection between the U_{AS-i} and U_{AUX} voltages.

3.7.5 Connector monitoring

3.7.5.1 Power connector

The motor starter monitors whether the infeed connector on the line side of the motor starter is plugged in. Connector monitoring is implemented by means of an input activated via a jumper between pins 11 and 12, which informs the motor starter that the connector is plugged in.

Note

When you use the "connector monitoring" function, you have to connect pin 11 to pin 12 in the connector.
Functions

3.7 System monitoring

Connector monitoring

Line-side connector monitoring can be deactivated via the DIP switch.
For more information, see Parameterization via local setting (Page 74).

Response when connector is unplugged

When the connector is unplugged, the motor starter outputs a group fault.
3.8 Short-circuit protection (circuit breaker / disconnecting means)

Description

The motor starter is equipped with an integrated circuit breaker for short-circuit protection to ensure that the system is safe and to protect personnel. Short-circuits between one phase and ground (= ground fault) as well as between two phases are monitored.

Properties of the circuit breaker

The circuit breaker / disconnecting means is designed for the following functions:

- Disconnecting the series-connected starter and consumer from the supply voltage
- Closing lockout by means of a padlock on the rotating element
- Short-circuit protection for the series-connected consumer with circuit breaker

Response when circuit breaker is OFF:

If a short circuit occurs or the circuit breaker is tripped manually, the motor starter responds with a group fault.

- Settings

<table>
<thead>
<tr>
<th>Device parameter</th>
<th>Default setting</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector monitoring</td>
<td>Line side</td>
<td>Deactivated, Line side</td>
</tr>
</tbody>
</table>

3.7.5.2 Motor connector

The "connector monitoring" function is only valid for the infeed connector.

A connector monitoring function for the motor connector can be logically combined with the thermistor cable and/or thermistor evaluation function.

If a motor is operated without a thermistor, you can activate thermistor monitoring (thermoclick) and use it to monitor the connector by means of a wire jumper on the motor terminal board or in the motor connector.

Note

The "overload" message must be interpreted to mean that the motor connector has been unplugged.
3.9 Communication

Description

Communication is a higher-level device function comprising a number of sub-functions:

- Mode monitoring
- Fieldbus interface
- Data plausibility check
- Message output

3.9.1 Mode monitoring

Data channels

The M200D AS-i Basic motor starter has three different data channels:

- Local optical device interface (for hand-held device)
- Control with integrated manual local control in "Manual operation local" mode (key-operated switch + keypad; order variant)
- Via the fieldbus interface AS-Interface:
 - Cyclic data via AS-i

The data channel used for control purposes depends on the operating mode.

Operating modes

The following operating modes are available (in ascending order of priority):

- Automatic (lowest priority)
 The motor starter can only be controlled with the PLC via the fieldbus.

- Manual operation local
 The motor starter can be controlled with:
 - Integrated manual local control (key-operated switch + keypad; order variant)
 - Local device interface (e.g. hand-held device) (highest priority)

In this operating mode, the message "Manual local operation" is output when diagnosis is performed via the parameter channel.
3.9.2 Plausibility check for settings

Description

The motor starter checks all the parameters that have been set to ensure that they are valid and plausible.

Motor protection deactivation rule

At least one of the motor protection functions supported by the motor starter (thermal motor model, temperature sensor) must always be active at any one time, that is, you are not permitted to deactivate all the motor protection functions by means of parameterization.

If the temperature sensor is deactivated via the DIP switch and, at the same time, the rotary coding switch is set to "Class OFF", the following applies:

- If no motor ON command is present, a group alarm is output. The alarm is canceled when motor protection is reactivated.
- If a motor ON command is present, a group fault is output immediately and a corresponding internal shutdown command generated, which must be acknowledged with "trip reset".
 - If the motor ON command remains, the fault can only be acknowledged with "trip reset" once the fault has been rectified (activate at least one motor protection function).
 - If the motor ON command is reset, the group fault can be "downgraded" to a group alarm even if a setting is incorrect.

3.9.3 Message output

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
<th>Output via</th>
</tr>
</thead>
<tbody>
<tr>
<td>General messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ready (automatic)</td>
<td>• Device can be controlled via BUS</td>
<td>Process image of inputs</td>
</tr>
<tr>
<td></td>
<td>• Automatic mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No fault</td>
<td></td>
</tr>
<tr>
<td>Group fault</td>
<td>At least one fault is set.</td>
<td>• LED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Diagnostics via parameter channel</td>
</tr>
<tr>
<td>Group alarm</td>
<td>At least one alarm is present.</td>
<td>• LED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Diagnostics via parameter channel</td>
</tr>
<tr>
<td>Mode monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual operation local mode</td>
<td>Manual operation via integrated manual local control or via the local device interface (hand-held device)</td>
<td>Diagnostics via parameter channel</td>
</tr>
</tbody>
</table>
3.10 Trip reset

Trip reset acknowledges all the faults that are currently present in the starter and that can be acknowledged. A fault can be acknowledged if its cause has been rectified or if it is no longer present.

The trip reset can be triggered by:

- Remote reset via the bus interface (DO 0 CW ON and DO 1 CCW ON simultaneously)
- Local reset via the key-operated switch (0 position; order option)
- Local reset via the device interface (hand-held device)

3.11 Self-test

Description

Two types of self-test can be carried out:

- Self-test at startup
 This is automatically selected when the device is switched on or initialized.

- Self-test during operation:
 The motor starter monitors (cyclically) specific device components and signals any faults (device faults).

Self-test fault

If a fault occurs, the "DEVICE" LED lights up red. The fault can only be acknowledged by switching the device off and then on again. If the fault is still present, the self-test will return a fault again when the device is switched on. In this case, the motor starter must be replaced.

Note

Specific device components are monitored continuously (internally) by the motor starter and the results signaled with the message "Device fault".
3.12 Solid-state/mechanical switching technology

Solid-state switching

The motor starter controls the motor (two phases) with thyristors. Phase L1 is not switched but is instead looped through from the 400 V power connection to the motor connection via the integrated disconnecting means.

DANGER
Hazardous voltage
Can cause death or serious injury.
If the line voltage is present at the 400 V power connection of the motor starter, hazardous voltage may still be present at the motor starter output even if a start command has not been issued.
When carrying out any work on the branch, make sure that you disconnect it via the disconnecting means.

Mechanical switching

The motor starter controls the motor (three phases) with contactors.
On device versions with a rated operating current of 0.15 - 2A (3RK13..-6KS41) RC elements are integrated on the motor output side to dampen interference pulses.

Contact block defective

If a contact block is defective (contactor welded / thyristor failure), the motor starter cannot shut down the motor.
If necessary, evaluate the message "Device fault" and shut down the branch on the basis of this by means of an upstream contact block.
Functions

3.13 Local device interface

Description

The local optical device interface can be used to connect the motor starter to a hand-held device (order no.: 3RK1922-3BA00; RS232 interface cable: 3RK1922-2BP00). This control source has the highest priority.

To stop the fiber-optic cable for the device interface from getting dirty, it is located under the removable unit labeling plate.

Note

To ensure that data can be transferred without any problems, make sure that the device interface is clean at all times.
3.14 Integrated manual local control

Integrated manual local control (ordering option) for the M200D motor starter involves a key-operated switch and a keypad with four pushbuttons.

Key-operated switch

![Key-operated switch](image)

The key-operated switch can be set to three different positions.

<table>
<thead>
<tr>
<th>Position</th>
<th>Meaning</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic mode</td>
<td>The pushbuttons on the keypad have no function. The LEDs on the "quick stop disable", "RIGHT", and "LEFT" pushbuttons, however, are active. They are used for indicating the status (= status of control via the PIO).</td>
<td></td>
</tr>
<tr>
<td>Manual mode</td>
<td>Control priority is assumed by a lower-priority control source (automatic mode) and transferred to the keypad. When you switch back to "REMOTE", control priority is always initially passed to the CPU/master.</td>
<td></td>
</tr>
<tr>
<td>OFF / Reset</td>
<td>When you switch to this position, a fault that is present can be acknowledged with trip reset (provided that it can be reset). If the key-operated switch remains in this position, the motor starter is in the "O" position once the "Reset" command has been issued. The motor starter does not execute any control commands in this position (regardless of the control source).</td>
<td></td>
</tr>
</tbody>
</table>

Note

The key can be inserted/removed in any position.
Keypad

The keypad has four pushbuttons arranged in a square.

Note
They are only active when the key-operated switch is set to manual mode.

![Keypad Diagram]

<table>
<thead>
<tr>
<th>Pushbutton</th>
<th>Meaning</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continuous operation / jog mode</td>
<td>The mode switches every time you press this pushbutton (continuous / jog). "Continuous" mode is indicated via the corresponding LED (yellow, lit up) (in manual mode only). When manual mode is deactivated, the system is reset to jog mode.</td>
</tr>
<tr>
<td></td>
<td>Quick stop disable</td>
<td>The "quick stop" input actions are deactivated for all inputs. This pushbutton is active in jog mode and continuous operation. In continuous operation, the function "quick stop disable" is switched on by pressing once and then switched off again by pressing again. The yellow LED lights up while the function is active, independently of the operating mode.</td>
</tr>
<tr>
<td></td>
<td>Clockwise rotation</td>
<td>The main circuit for CW operation is activated. In continuous operation, the main circuit can be activated by pressing the pushbutton once and deactivated by pressing it again. With reversing starters, an ongoing action can also be interrupted in continuous operation by pressing the "CCW rotation" pushbutton. The green LED lights up regardless of the operating mode (as long as the selected function is active).</td>
</tr>
<tr>
<td></td>
<td>Counterclockwise rotation</td>
<td>The pushbutton function is only enabled for reversing starters. The main circuit for CCW operation is activated. In continuous operation, the main circuit can be activated by pressing the pushbutton once and deactivated by pressing it again. In continuous operation, an ongoing action can also be interrupted by pressing the "CW" pushbutton. The green LED lights up while the selected action is active, independently of the operating mode.</td>
</tr>
</tbody>
</table>
Note
If the "CW rotation" and "CCW rotation" pushbuttons are pressed simultaneously, this is classed as an operation fault. A function cannot be restarted. A function that is being executed is interrupted (the starter shuts down).
A function cannot be restarted until both pushbuttons have been released.

Note
When the "CCW rotation" or "CW rotation" pushbuttons are actuated, a connected brake is also always actuated.
Functions

3.14 Integrated manual local control
Installation / connection

4.1 Installation

4.1.1 Installation rules

DANGER
Hazardous voltage
Can Cause Death, Serious Injury, or Property Damage
Before starting work, disconnect the system and devices from the power supply.

Simple installation

The distributed M200D AS-i motor starter is designed as a complete device that is easy to install. Carry out the following steps:

1. If you are using the optional protection guards, install these first.
2. Install the motor starter on a flat surface.

Installation position

The M200D AS-i motor starter is designed for the following installation positions on a flat surface:

![Installation positions](image)

Figure 4-1 Installation positions: horizontal, vertical, flat; must not be positioned as shown on the right
4.1.2 Derating

What is derating?

Derating allows devices to be used even in harsh operating conditions by selectively restricting the output capacity.

Derating factors

When M200D AS-i motor starters are operated under harsh conditions, the following factors must be taken into account:

- Ambient temperature T_a:
 - The ambient temperature T_a is the temperature of the air surrounding the motor starter enclosure.
 - The lower the maximum ambient temperature T_a, the higher the current load on the motor starter can be.
 - The installation position affects how quickly the motor starter cools.

- Absolute current load:
 The lower the current flowing through the motor starter, the lower the power loss (= heat) inside the device. If a small amount of self-heating occurs, the ambient temperature T_a can be higher.
Derating diagrams

You can use the following diagrams to determine the derating factors for horizontal, vertical, or flat mounting.

Figure 4-2 Derating for horizontal mounting

1. DSte, RSte (mechanically switching)
2. sDSte, sRSte (electronically switching)
Installation / connection

4.1 Installation

M200D AS-Interface Basic

Figure 4-3 Derating for vertical mounting

Figure 4-4 Derating for flat mounting
Motors with a high efficiency and high motor starting currents

High starting currents may have to be taken into consideration when using motor starters on high-efficiency motors. Motor starters are designed for motors with a maximum 8-fold starting current in accordance with IEC 60947-4-2.

If motors are operated that have a higher starting current, refer to the following table for the maximum adjustable motor current:

<table>
<thead>
<tr>
<th>Motor starter version Ie [A] at 40 °C max. motor starting current</th>
<th>3RK1315-6KS*</th>
<th>3RK1315-6LS41*</th>
<th>3RK1315-6LS71*</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 8-fold Ie</td>
<td>2 A</td>
<td>12 A</td>
<td>12 A</td>
</tr>
<tr>
<td>9-fold Ie</td>
<td>1.7 A</td>
<td>10 A</td>
<td>8 A</td>
</tr>
<tr>
<td>10-fold Ie</td>
<td>1.5 A</td>
<td>9 A</td>
<td>7 A</td>
</tr>
</tbody>
</table>
4.1.3 Installing the protection guards

Protection guard (accessory)

NOTICE
The protection guards are designed for a maximum load of 10 kg.

To prevent mechanical damage to the motor starter cables and connections, you can install protection guards on the side and top (order no.: 3RK1911-3BA00).

To secure the protection guards, the angled ends can be used as clamping bolts, which are secured in the device base by means of eccentric elements.

① Insert the eccentric elements in the locating holes on the bottom of the motor starter. Make sure that the holes are aligned for the protection guards.

② Push the ends of the protection guards into the holder until they engage.

③ Turn the eccentric elements clockwise until the protection guard is secure.
4.1.4 Installing the motor starter

Carry out the following steps to install the motor starter:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Find a flat surface for mounting the device.</td>
</tr>
<tr>
<td>2</td>
<td>Drill four holes for the screws.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Secure the motor starter using four screws (M5). If necessary, use plain washers and spring washers.</td>
</tr>
<tr>
<td></td>
<td>The tightening torque must not exceed a maximum of 2.5 Nm.</td>
</tr>
</tbody>
</table>
4.1.5 Functional ground

The motor starter must be connected to functional ground. The connection to functional ground is required to discharge interference and ensure EMC resistance. Unlike the protective conductor, functional ground does not offer protection against electric shock, which is why it must be routed separately.

The contact plate at the fixing point on the bottom right is connected to functional ground within the device. This connection must be connected to the ground potential with as little resistance as possible.

![Figure 4-5 Connection for functional ground](image)

If you do not install the motor starter on a grounded, conductive base, you have to establish a connection with the ground potential (grounding cable with cable lug, spring washer, and plain washer).
4.1.6 Setting the AS-i address

Unique addressing

In the factory setting, an I/O module (slave) has the address 0. It is detected by the master as a new slave that has not yet been addressed and, in this condition, has not yet been integrated in standard communication/data exchange.

To enable data to be exchanged between the master and slaves, you have to assign a unique address for each slave (i.e. each slave address must be different) when commissioning the AS-Interface network.

You can select any address in the address space from 1A to 31A and 1B to 31B. Thus a maximum of 62 nodes are possible in one AS-Interface network.

Addressing the slaves

You can set the slave address in different ways:

- Offline with the addressing unit at the AS-i connection.
 Recommended if you want to assign addresses for the entire system. The direct connection between the slave (motor starter) and addressing unit ensures that the slaves are not mixed up.

- Online by the AS-i master or in the PLC configuration software.
 Recommended if you want to assign addresses to individual slaves if an addressing unit is not available.

Before assigning addresses, you must ensure that each address exists only once in the AS-i network, that is, several new, additional modules (with address 0 in as-delivered condition) must not be connected to the AS-i cable.

⚠️ CAUTION

As soon as you have assigned a valid address outputs can be set or inputs read that result in follow-up switching operations. To prevent a hazardous condition switch off the voltage U_{AUX}.

Offline addressing with the addressing unit

The motor starter is addressed via the AS-i connection socket.

Note

When assigning the address via the addressing unit, unscrew the encoders (sensors) from the digital inputs to prevent the addressing unit from being overloaded by their power consumption.

If the older version of the addressing unit (3RK1904-2AB00) is used, a special addressing cable (3RK1901-3RA00) is required to connect the module to the addressing unit.
4.2 Connection

1. Connect the motor starter to the addressing unit (3RK1904-2AB02) using a standard M12 connection cable (2 or 3-pin) (e.g. 3RK1902-4PB15-3AA0). (4 or 5-pin connection cables must not be used for addressing purposes.)

2. Assign an address to the module.
 - Set the selector switch to **ADDR**.
 - Press \(\rightarrow \). The address of the connected module is read and displayed.
 - Select the address by choosing \(\downarrow \). \(\uparrow \).
 - To transfer the address to the module, choose \(\rightarrow \).

3. Unplug the addressing cable and reconnect the motor starter using the AS-i cable.

Online addressing with the AS-i master and in the PLC configuration software

For instructions on how to address the motor starter using the AS-i master or in the configuration software, refer to the manual for the AS-i master you are using.

More connection technology products can be found in "Siemens Solution Partners" www.siemens.com/automation/partnerfinder under "Distributed Field Installation System".
4.2.1 Required components/cables

Selecting the power cables

DANGER

Hazardous Voltage
Can Cause Death, Serious Injury, or Property Damage

Before starting work, disconnect the system and devices from the power supply.

The cross-section of the power cables must be suitable for the prevailing ambient conditions. The following factors determine the cross-section:

- The current set on the device
- The cable installation type
- The ambient temperature
- The type of material (PVC, rubber)

The following maximum current-carrying capacities apply for PVC power cables when installed, for example, in the cable duct (depending on the ambient temperature):

<table>
<thead>
<tr>
<th>Cross-section</th>
<th>$T_u = 30 , ^\circ C$</th>
<th>$T_u = 40 , ^\circ C$</th>
<th>$T_u = 45 , ^\circ C$</th>
<th>$T_u = 50 , ^\circ C$</th>
<th>$T_u = 55 , ^\circ C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 mm2</td>
<td>14 A</td>
<td>12.2 A</td>
<td>11.1 A</td>
<td>9.9 A</td>
<td>8.5 A</td>
</tr>
<tr>
<td>2.5 mm2</td>
<td>19 A</td>
<td>16.5 A</td>
<td>15.0 A</td>
<td>13.5 A</td>
<td>11.6 A</td>
</tr>
<tr>
<td>4.0 mm2</td>
<td>26 A</td>
<td>22.6 A</td>
<td>20.5 A</td>
<td>18.5 A</td>
<td>15.9 A</td>
</tr>
<tr>
<td>6.0 mm2</td>
<td>33 A</td>
<td>28.7 A</td>
<td>26.1 A</td>
<td>23.4 A</td>
<td>18.2 A</td>
</tr>
</tbody>
</table>

Note

Unused connections

Seal unused connections by means of the sealing caps enclosed since this is the only way to ensure degree of protection IP65.

The sealing caps are also available as accessories:

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealing cap M12</td>
<td>10 pieces</td>
<td>3RK1901-1KA00</td>
</tr>
</tbody>
</table>
4.2 Connection

4.2.2 Prefabricating power cables

To prefabricate power cables, you require the following:

- A crimping tool for attaching the sockets and pins on the individual wires
- For infeed on motor starters
 Assignment of X1: see section [Power terminal (Page 60)]:
 - A flexible Cu cable with 4 x 2.5 mm² / 4 mm² / 6 mm² (3 wire + PE)
 (for motor starters with 230 V AC brake output: 5-core cable; 3 wire + N + PE)
 - Han Q4/2 socket power connector

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact socket 2.5 mm², for Han Q4/2 sockets</td>
<td>5</td>
<td>3RK1911-2BE50</td>
</tr>
<tr>
<td>Contact socket 4 mm², for Han Q4/2 sockets</td>
<td>5</td>
<td>3RK1911-2BE10</td>
</tr>
<tr>
<td>Contact socket 6 mm², for Han Q4/2 sockets</td>
<td>5</td>
<td>3RK1911-2BE30</td>
</tr>
<tr>
<td>Crimping tool 4 / 6 mm²</td>
<td>1</td>
<td>3RK1902-0CW00</td>
</tr>
</tbody>
</table>

Consumer connection on the motor starter

For the assignment of X2, see [Power terminal (Page 60)]:

- A flexible Cu cable with 1.5 mm² or 2.5 mm²
 - Without brake control: 3 wire + PE
 - With brake control: 5 wire + PE
 - With temperature sensor: 2 additional wires
 - Han Q8/0 pin power connector

<table>
<thead>
<tr>
<th>Item</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector set, 8 X 1.5 mm², 9 pin, complete with PG16 cable entry</td>
<td>3RK1902-0CE00</td>
</tr>
<tr>
<td>Connector set, 8 X 2.5 mm², 9 pin, complete with PG16 cable entry</td>
<td>3RK1902-0CC00</td>
</tr>
</tbody>
</table>
4.2.3 Installing and wiring power connectors

DANGER
Hazardous voltage
Can Cause Death, Serious Injury, or Property Damage
Before starting work, disconnect the system and devices from the power supply.

Install and wire the power connectors as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Route the cable through the cable gland, sealing insert (enclosed), and the connector housing. The sealing insert is available in the following gradings:</td>
</tr>
<tr>
<td></td>
<td>Permissible external diameter of the cable</td>
</tr>
<tr>
<td></td>
<td>7.0 to 10.5 mm</td>
</tr>
<tr>
<td></td>
<td>9.0 to 13.0 mm</td>
</tr>
<tr>
<td></td>
<td>11.5 to 15.5 mm</td>
</tr>
<tr>
<td>2</td>
<td>Strip the cable over a length of 20 mm.</td>
</tr>
<tr>
<td>3</td>
<td>Strip the cores over a length of 8 mm.</td>
</tr>
<tr>
<td>4</td>
<td>Secure the contact sockets/pins on the cores by crimping or soldering them.</td>
</tr>
<tr>
<td>5</td>
<td>Sort the contact sockets/pins in the socket/pin insert in accordance with the assignments (see section Power terminal (Page 60)). The contact sockets/pins should not engage yet. Make sure that they are correctly assigned. Push the contact sockets/pins into the socket/pin insert until they engage. Use a suitable tool to remove contact sockets/pins that have already been installed (Han Q4/2: 3RK1902-0AB00, Han Q8/0: 3RK1902-0AJ00).</td>
</tr>
<tr>
<td>6</td>
<td>Make sure that the position of the coding is correct, pull the cable back, and secure the socket/pin insert in the connector housing using the cross-recessed screws enclosed.</td>
</tr>
<tr>
<td>7</td>
<td>Secure the cable gland. When doing so, make sure that the cable is not twisted against the connector housing.</td>
</tr>
</tbody>
</table>
4.2.4 Power terminal

Wiring X1 (power supply) and X2 (motor connection)

The supply voltage is fed via power connector X1.
The motor is supplied via power connector X2.

Note
When inserting the pin/female contact insert into the connector housing, make sure that the coding is positioned correctly.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connector X1</th>
<th>Socket X2 without brake</th>
<th>Socket X2 with 400 V / 230 V AC brake</th>
<th>Socket X2 with 180 V DC brake</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phase L1</td>
<td>L1 out</td>
<td>L1 out</td>
<td>L1 out</td>
</tr>
<tr>
<td>2</td>
<td>Phase L2</td>
<td>---</td>
<td>N (for 230 V AC brake)</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Phase L3</td>
<td>L3 out</td>
<td>L3 out</td>
<td>L3 out</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>---</td>
<td>Brake L1 (switched)</td>
<td>Brake L1 (switched) "-"</td>
</tr>
<tr>
<td>5</td>
<td>---</td>
<td>2)</td>
<td>2)</td>
<td>2)</td>
</tr>
<tr>
<td>6</td>
<td>---</td>
<td>---</td>
<td>Brake L3 (direct, for 400 V AC brake)</td>
<td>Brake L3 (direct) "+"</td>
</tr>
<tr>
<td>7</td>
<td>---</td>
<td>L2 out</td>
<td>L2 out</td>
<td>L2 out</td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td>2)</td>
<td>2)</td>
<td>2)</td>
</tr>
<tr>
<td>11</td>
<td>1)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>1)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

1) Connector monitoring
2) Temperature sensor
Power supply: Han Q4/2 socket (connection for X1)

<table>
<thead>
<tr>
<th>Socket</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phase L1</td>
</tr>
<tr>
<td>2</td>
<td>Phase L2</td>
</tr>
<tr>
<td>3</td>
<td>Phase L3</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
</tr>
<tr>
<td>11</td>
<td>Connector monitoring</td>
</tr>
<tr>
<td>12</td>
<td>Connector monitoring</td>
</tr>
</tbody>
</table>

PE (yellow/green)

Note
When you use the "connector monitoring" function, you have to connect pin 11 to pin 12 in the connector.

Motor connection Han Q8/0 pin (connection for X2)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1 out</td>
</tr>
<tr>
<td>2</td>
<td>N<sup>1</sup></td>
</tr>
<tr>
<td>3</td>
<td>L3 out</td>
</tr>
<tr>
<td>4</td>
<td>Brake L1 (switched)<sup>1)</sup></td>
</tr>
<tr>
<td>5</td>
<td>Temperature sensor</td>
</tr>
<tr>
<td>6</td>
<td>Brake L3 (direct)<sup>1</sup></td>
</tr>
<tr>
<td>7</td>
<td>L2 out</td>
</tr>
<tr>
<td>8</td>
<td>Temperature sensor</td>
</tr>
</tbody>
</table>

PE (yellow/green)

<sup>1</sup) See brake variants
4.2 Connection

Brake variants

<table>
<thead>
<tr>
<th>400 V AC</th>
<th>230 V AC</th>
<th>180 V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

Please note the different pin assignment in the case of the operating voltages of the brake.

4.2.5 Brake output

M200D motor starters can be equipped with an optional electronic brake control (order variant). The brake control is suitable for externally-supplied brakes with the coil voltages shown below:

- **400 V AC / 230 V**

 The brake rectifier must be installed in the motor. The rectifier input is controlled via the motor starter.

- **180 V DC**

 A rectifier is not required for the brake in the motor because the 180 V DC is provided by the motor starter. In this way, brake coils for 180 V DC can be switched directly.
The brake output for the M200D motor starter

The brake voltage is fed to the motor together with the motor infeed via a joint cable (e.g. 6 x 1.5 mm²).

WARNING

Hazardous Voltage

Can Cause Death or Serious Injury.

The brake is only switched in a single phase. This therefore means that voltage can be applied at pin 6 even when the system is switched off.
4.2.6 Digital inputs/outputs

Socket assignment

The digital inputs and output are equipped with standard 5-pin M12 sockets (A coding):

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Pin</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>+ 24 V (PWR+)</td>
<td>N/C</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0 V (PWR-)</td>
<td>0 V (PWR AUX-)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Input signal (IN x)</td>
<td>Output signal (OUT 1)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Functional ground (FE)</td>
<td>Functional ground (FE)</td>
</tr>
</tbody>
</table>

Note

Potential transfer

With AS-i, digital inputs must not be connected to digital outputs because this can establish an impermissible connection between the U_{AS-i} and U_{AUX} voltages.
4.2.6.1 Digital inputs

The motor starters are equipped with four digital inputs, which you can connect directly to sensors (PNP) (2 and 3-wire system).

Connectors (M12, 5-pin, A-coded) are used for this purpose. The motor starter is equipped with a range of sockets.

Note

Short-circuit hazard

Do not use an external power supply since this can result in a short-circuit.

Pin assignment

The following diagrams show examples of circuits (2 and 3-wire system):

<table>
<thead>
<tr>
<th>2-wire system</th>
<th>3-wire system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

The supply voltage for the digital inputs is short-circuit proof. The current is limited to max. 200 mA. If a short-circuit or overload situation occurs in the sensor supply, the switching element (motor) and brake output are shut down and a group fault is output. You must acknowledge this fault with a trip reset.
4.2.6.2 Digital output

The motor starter is equipped with a digital output, which you can connect directly to an actuator. The output is active when a group fault is present.

The output can be loaded to max. 0.5 A and protected electronically against short-circuits.

A connector (M12, 4 or 5-pin, A-coded) is used for establishing the connection. The motor starter is equipped with a range of sockets.

| Example: Connecting the digital output |

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U\textsubscript{AS+}</td>
</tr>
<tr>
<td>2</td>
<td>PWR-AUX -</td>
</tr>
<tr>
<td>3</td>
<td>U\textsubscript{AS-}</td>
</tr>
<tr>
<td>4</td>
<td>PWR-AUX +</td>
</tr>
</tbody>
</table>

4.2.7 AS-Interface

Pin assignment
4.2.8 Connection options for AS-Interface

The different methods of connecting the motor starter to the AS-Interface bus cable and the 24 V DC auxiliary voltage are shown in the following table:

<table>
<thead>
<tr>
<th>Motor starter</th>
<th>AS-i connection with U_{AUX}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus M12 branch with integral cable</td>
<td>3RK1901-1NR21 (1 m) 3RK1901-1NR22 (2 m)</td>
</tr>
<tr>
<td>Plus M12 branch with socket plus separate M12 cable ¹</td>
<td>3RK1901-1NR20</td>
</tr>
<tr>
<td>Plus 4 x M12 branch plus separate M12 cable ¹</td>
<td>3RK1901-1NR00</td>
</tr>
</tbody>
</table>

¹ These cables can be assembled from:
3RK1902-4GB50-4AA0 control cable, prepared at one end, M12 socket, angled with 5 m cable, max. 4 A
3RK1902-4CA00-4AA0 M12 socket, angled for screw-type connection, 4-pin, max. 0.75 mm², A-coded, max. 4 A

The cables can be replaced by:
3RK1902-4GB50-4AA0 control cable, prepared at one end, M12 socket, 5 m and
3RK1902-4CA00-4AA0 M12 socket, angled for screw-type connection, 4-pin, max. 0.75 mm², A-coded, max. 4 A

Connection examples for motor starters

The installation guidelines for AS-Interface must always be observed:

- The maximum permissible current for all M12 connection cables is restricted to 4 A.
 The cross-section of these cables is just 0.34 mm². To connect the motor starter, you can use the M12 connection cables mentioned above as spur lines.

- The voltage drop induced by the ohmic resistance (approx. 0.11 Ω/m) must be taken into account.

- The following maximum lengths apply to round cable connections in which AS-i and U_{AUX} are routed in the same cable:
 - For each spur line from the branch to the module: max. 5 m
 - Total of round cable components in one AS-Interface network: max. 20 m
4.2 Connection

AS-Interface M12 branches and distributor

Closed

Open

Note
If you are using a non-angled connector, you are advised to install the safety bars (accessories) to protect the AS-i connection against mechanical damage (refer to the Installing the safety bars).

See also
Installing the protection guards (Page 52)
5.1 Configuration

Configuration involves integrating the motor starter in the overall system by assigning addresses and parameters.

Master requirements

The M200D AS-i Basic motor starter requires at least one AS-i master to AS-i spec. 2.1 with master profile M3.

5.1.1 ID1 code

You can use the ID1 code to set the bit DI 1 assignment for the process image input (PII).

<table>
<thead>
<tr>
<th>ID1 code</th>
<th>Meaning</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (default)</td>
<td>Motor on</td>
<td>0: OFF \ 1: ON (CW/CCW)</td>
</tr>
<tr>
<td>6</td>
<td>Automatic</td>
<td>0: Starter in "Manual" mode \ 1: Starter in "Automatic" mode</td>
</tr>
<tr>
<td>5</td>
<td>Group fault</td>
<td>0: No fault \ 1: Fault</td>
</tr>
</tbody>
</table>

You can change the ID1 code using the addressing unit.

Note

Please note that the ID1 values set in the configuration software and on the device must match, otherwise the motor starter will not start up.

Note

If the ID1 code is changed, the new setting will only take effect once the motor starter has been restarted.
5.2 Configuration on the AS-i master CP 343-2

Requirement

The CP 343-2 communications processor has already been configured.

Procedure

1. Double-click CP 343-2 DP. The Properties window is displayed.

2. Choose the Slave Configuration tab. Open the object properties by double-clicking the address (in this case, row 1A) to which the M200D AS-i Basic motor starter is to be configured.
3. Choose the **Configuration** tab. When you click **Selection...**, the slave selection dialog is displayed.

5. Enter the following values for the AS-i profile:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO code:</td>
<td>7 (B B B B)</td>
</tr>
<tr>
<td>ID code:</td>
<td>A</td>
</tr>
<tr>
<td>ID1 code:</td>
<td>7 (F), or 6 or 5 depending on the PII setting</td>
</tr>
<tr>
<td>ID2 code:</td>
<td>E</td>
</tr>
</tbody>
</table>

6. This completes the process of configuring the M200D AS-i Basic motor starter on the CP 343-2 DP.
5.3 Parameterization

5.3.1 Parameterization

The parameters for the motor starter can be assigned using the following:

- Rotary coding switch for:
 - Setting the rated operating current \(I_e \)
 - Deactivating the thermal motor model (class OFF)

Note

We recommend the use of a thermistor as motor overload protection in the case of a deactivated thermal motor model (CLASS OFF).

- DIP switch
 - To (de)activate the temperature sensor
 - To set the temperature sensor type
 - To (de)activate connector monitoring
 - To set the shutdown response of thermal motor protection
5.3.2 Parameterization via local setting

Setting the current limit value

The rotary coding switch for setting the operating current I_e (0.15 … 2 A, 1.5 … 9 A or 1.5 … 12 A depending on the device version) is located under the cover on the front of the starter.

![Rotary coding switch with 2 A scale]

Before commissioning the motor starter, set the operating current I_e for the overload trip:

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open the transparent cover at the top of the housing for the motor starter.</td>
</tr>
<tr>
<td>2</td>
<td>Use a screwdriver to set the operating current I_e on the scale of the rotary coding switch.</td>
</tr>
<tr>
<td>3</td>
<td>Close the transparent cover.</td>
</tr>
</tbody>
</table>

Note

In the delivery condition, the minimum current limit is set.

Changes to the position of the rotary coding switch require approx. 500 ms to take effect.
Setting the device parameters on the DIP switch

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Switch</th>
<th>Function</th>
<th>Setting</th>
</tr>
</thead>
</table>
| | 1 | Temperature sensor | 0: deactivated
| | | 1: activated | |
| | 2 | Temperature sensor | 0: PTC type A
| | | 1: Thermoclick | |
| | 3 | Line-side connector monitoring | 0: deactivated
| | | 1: activated | |
| | 4 | Shutdown response of thermal motor protection | 0: with restart (= autoreset)
| | | 1: no restart | |

Figure 5-2 DIP switch labeling

5.4 Process images

Definition of process image

The process image is a component of the AS-i master system memory.

At the start of the cyclic program, the signal states of the inputs are transferred to the process image of inputs.

At the end of the cyclic program, the process image of the output is transferred to the slave as a signal state.
Input process image (PII)

The PII assignment may change depending on the ID1 code.

The tables below contain process data and a process image of inputs DI 0 to DI 3:

Process image for ID1 = 7:

<table>
<thead>
<tr>
<th>Byte/bit</th>
<th>Process image</th>
<th>Signal: 1 = HIGH, 0 = LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI 0</td>
<td>Ready (automatic)</td>
<td>0: Starter not ready for host/PLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Starter ready to be operated via host</td>
</tr>
<tr>
<td>DI 1</td>
<td>Motor on</td>
<td>0: OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: ON (CW/CCW)</td>
</tr>
<tr>
<td>DI 2</td>
<td>Input 1 (input action: quickstop)</td>
<td>0: Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Active</td>
</tr>
<tr>
<td>DI 3</td>
<td>Input 2 (no action)</td>
<td>0: Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Active</td>
</tr>
</tbody>
</table>

Process image for ID1 = 6:

<table>
<thead>
<tr>
<th>Byte/bit</th>
<th>Process image</th>
<th>Signal: 1 = HIGH, 0 = LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI 0</td>
<td>Ready (automatic)</td>
<td>0: Starter not ready for host/PLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Starter ready to be operated via host</td>
</tr>
<tr>
<td>DI 1</td>
<td>Automatic</td>
<td>0: Starter in "Manual" mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Starter in "Automatic" mode</td>
</tr>
<tr>
<td>DI 2</td>
<td>Input 1 (input action: quickstop)</td>
<td>0: Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Active</td>
</tr>
<tr>
<td>DI 3</td>
<td>Input 2 (no action)</td>
<td>0: Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Active</td>
</tr>
</tbody>
</table>
Process image for ID1 = 5:

<table>
<thead>
<tr>
<th>Byte/bit</th>
<th>Process image</th>
<th>Signal: 1 = HIGH, 0 = LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI 0</td>
<td>Ready (automatic)</td>
<td>0: Starter not ready for host/PLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Starter ready to be operated via host</td>
</tr>
<tr>
<td>DI 1</td>
<td>Group fault</td>
<td>0: No fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Fault</td>
</tr>
<tr>
<td>DI 2</td>
<td>Input 1 (input action: quickstop)</td>
<td>0: Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Active</td>
</tr>
<tr>
<td>DI 3</td>
<td>Input 2 (no action)</td>
<td>0: Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Active</td>
</tr>
</tbody>
</table>

Note
The allocation/assignment of the cyclic process data depends on the ID1 code.
You can change the ID1 code using the addressing unit.
If the ID1 code is changed, the new setting will only take effect following a restart.

Output process image (PIO)

The following table contains process data and a process image of outputs DO 0 to DO 3:

<table>
<thead>
<tr>
<th>Byte/bit</th>
<th>Process image</th>
<th>Signal: 1 = HIGH, 0 = LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO 0</td>
<td>Motor CW</td>
<td>0: Motor off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Motor on</td>
</tr>
<tr>
<td>DO 1</td>
<td>Motor CCW</td>
<td>0: Motor off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Motor on</td>
</tr>
<tr>
<td>DO 2</td>
<td>Quickstop disable</td>
<td>0: Not activated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Activated</td>
</tr>
<tr>
<td>DO 3</td>
<td>Reserved (A/B switchover)</td>
<td>-</td>
</tr>
</tbody>
</table>

Reference
Configuration / parameterization

5.4 Process images
6.1 Prerequisites

Software requirements

<table>
<thead>
<tr>
<th>Configuration software used</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration software for the AS-i master used</td>
<td>See the manual for the AS-i master</td>
</tr>
</tbody>
</table>

Commissioning requirements

<table>
<thead>
<tr>
<th>Prior activity</th>
<th>For more information, see ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motor starter installed</td>
<td>“Installation”</td>
</tr>
<tr>
<td>2. Address set on motor starter</td>
<td>“Installation”</td>
</tr>
<tr>
<td>3. Supply voltage for motor starter switched on</td>
<td>—</td>
</tr>
<tr>
<td>4. Supply voltage for load switched on (if necessary)</td>
<td>See manual for motor</td>
</tr>
<tr>
<td>5. Motor starter configured (configured and parameterized)</td>
<td>“Configuration / parameterization”</td>
</tr>
<tr>
<td>6. Supply voltage for AS-i master switched on</td>
<td>—</td>
</tr>
<tr>
<td>7. AS-i master switched to RUN mode</td>
<td>Manual for AS-i master</td>
</tr>
</tbody>
</table>
6.2 M200D AS-i components

Minimum configuration

The overview shows the components you need for operation:

![Diagram showing the minimum configuration of a motor controller]

Required components

For this example, you need the following components:

- A higher-level controller (e.g. S7 series)
- A suitable AS-i master to AS-i spec. 2.1, profile M3
- The motor starter
- Power supply units for the AS-i bus (U_{AS-i}) and the AS-i auxiliary voltage (U_{AUX})
- Connection material:
 - PLC ⇒ AS-i link
 - AS-i branch M12 with a yellow AS-i cable and black auxiliary voltage cable or AS-i round cable M12 (with auxiliary voltage supply)
 - Power connection cable (X1)
 - Motor connection cable (X2)
6.3 Procedure

Commissioning procedure

The following chart shows a logical, step-by-step commissioning procedure.

1. Addressing
2. Installation
 Assembly
 Connection:
 AS-i cable
 Sensors/actuators
 Power supply
 Motor
3. Parameterization, programming

Figure 6-2 Commissioning procedure
Commissioning

6.3 Procedure
7.1 Diagnostics

Diagnostics data can be read from the motor starter in a number of different ways:

- Diagnostics on the device:
 - Status LEDs
- Diagnostics via AS-Interface
 - S1 bit in the AS-i status register
 - Parameter echo after AS-i command "Write_Parameter"
 P0 = 0 → messages, alarms
 P0 = 1 → fault messages
- Further diagnostics options:
 - Addressing and diagnostic unit
 - AS-Interface analyzer

7.2 Diagnostics with LED

7.2.1 Statuses of the individual LEDs

The following LEDs indicate the status of the motor starter:
SF LED (possible colors: Red/OFF)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No error</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Device detects error</td>
<td>Device error:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Current flowing with no ON command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Self-test error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device detects system fault:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Residual current detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No UAUX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• External encoder supply short-circuit</td>
</tr>
</tbody>
</table>

DEVICE LED (possible colors: Red/green/yellow/Off)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Device not ready</td>
<td>System error: No supply voltage for electronics or power supply is < 18 V</td>
</tr>
<tr>
<td>Green</td>
<td>Device ready</td>
<td>—</td>
</tr>
<tr>
<td>Flashing green</td>
<td>Device not starting up</td>
<td>Device not initialized in factory or no startup parameters received (parameter bits from master)</td>
</tr>
<tr>
<td>Yellow</td>
<td>Internal tripping</td>
<td>—</td>
</tr>
<tr>
<td>Flashing yellow</td>
<td>Group warning</td>
<td>The device has detected a system fault and issues a group warning due to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prewarning limit of thermal motor model being exceeded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Incorrect parameter value: therm. motor model + temperature sensor deactivated (motor protection deactivation rule)</td>
</tr>
<tr>
<td>Red</td>
<td>Device defective</td>
<td>A device defect was detected during the self-test.</td>
</tr>
</tbody>
</table>
Diagnostics

7.2 Diagnostics with LED

AS-i/fault LED (possible colors: Red/green/OFF)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Device not ready</td>
<td>• No supply voltage for electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hardware fault in AS-i slave</td>
</tr>
<tr>
<td>Green</td>
<td>Device ready</td>
<td>Communication active, normal operation</td>
</tr>
<tr>
<td>Flashing red/yellow</td>
<td>Slave address = 0</td>
<td>—</td>
</tr>
<tr>
<td>Flashing red/green</td>
<td>I/O fault</td>
<td>S1 bit set</td>
</tr>
<tr>
<td>Flashing red</td>
<td>Serious I/O fault</td>
<td>• Hardware fault in AS-i slave</td>
</tr>
<tr>
<td>Red</td>
<td>No data exchange</td>
<td>• Master in stop mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slave not entered in LPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slave has wrong IO/ID code</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slave in reset status</td>
</tr>
</tbody>
</table>

STATE LED (possible colors: Red/green/yellow/OFF)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No control</td>
<td>Switching element OFF</td>
</tr>
<tr>
<td>Green</td>
<td>Control</td>
<td>Switching element ON by means of controller or hand-held device</td>
</tr>
<tr>
<td>Flickering green</td>
<td>Manual mode local input controls</td>
<td>Switching element ON by means of input action</td>
</tr>
<tr>
<td>Flashing yellow</td>
<td>Mode fault</td>
<td>Switching element OFF Manual mode connection abort without reset to automatic mode</td>
</tr>
<tr>
<td>Flickering yellow</td>
<td>Manual mode local input controls</td>
<td>Switching element OFF by means of input control function (e.g. quickstop)</td>
</tr>
<tr>
<td>Red</td>
<td>Switching element defective</td>
<td>Switching status ≠ switching command</td>
</tr>
</tbody>
</table>

PWR LED (possible colors: Green/OFF)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No U<sub>AS-i</sub></td>
<td>No AS-i voltage</td>
</tr>
<tr>
<td>Green</td>
<td>U<sub>AS-i</sub> present</td>
<td>AS-i voltage present</td>
</tr>
</tbody>
</table>

PWR-AUX LED (possible colors: Green/OFF)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No U<sub>AUX</sub></td>
<td>No auxiliary voltage</td>
</tr>
<tr>
<td>Green</td>
<td>U<sub>AUX</sub> present</td>
<td>Auxiliary voltage present</td>
</tr>
</tbody>
</table>
7.2 Diagnostics with LED

Input LEDs IN1 to IN4 (possible colors: Green/OFF)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No 24 V DC</td>
<td>No input signal</td>
</tr>
<tr>
<td>Green</td>
<td>24 V DC present</td>
<td>Input signal present</td>
</tr>
</tbody>
</table>

Output LED OUT1 (possible colors: Green/OFF)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No 24 V DC</td>
<td>No output signal</td>
</tr>
<tr>
<td>Green</td>
<td>24 V DC present</td>
<td>Output signal present</td>
</tr>
</tbody>
</table>

7.2.2 LED display combinations

You can define certain faults more accurately by looking at the combination of indicator statuses.

Device status/mode

<table>
<thead>
<tr>
<th>SF LED</th>
<th>STATE LED</th>
<th>DEVICE LED</th>
<th>Device status/mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Green</td>
<td>Green</td>
<td>Motor ON; no fault/error</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Green</td>
<td>Motor OFF; no fault</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing yellow</td>
<td>Green</td>
<td>Manual mode connection abort without reset to automatic mode</td>
</tr>
<tr>
<td>Off</td>
<td>Flickering yellow</td>
<td>Green</td>
<td>Tripping by means of input control function (e.g. quickstop)</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Flashing green</td>
<td>Device not initialized in factory or no startup parameters received (parameter bits from master)</td>
</tr>
</tbody>
</table>
Device error

Note

Acknowledging device errors

A device error can only be acknowledged by switching the power off and then on again. If the error occurs again, however, the motor starter will need to be replaced.

<table>
<thead>
<tr>
<th>SF LED</th>
<th>STATE LED</th>
<th>DEVICE LED</th>
<th>Device error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>Current flowing with no ON command (e.g.: contactor welded, thyristor fused)</td>
</tr>
<tr>
<td>Red</td>
<td>Off</td>
<td>Red</td>
<td>Electronics defective, self-test error</td>
</tr>
<tr>
<td>Red</td>
<td>Off</td>
<td>Off</td>
<td>No connection with AS-i</td>
</tr>
</tbody>
</table>

System error/Warning

<table>
<thead>
<tr>
<th>SF LED</th>
<th>STATE LED</th>
<th>DEVICE LED</th>
<th>System error/Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Off</td>
<td>Yellow</td>
<td>• Current not flowing despite ON command (residual current detected)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Internal tripping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Connector monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Circuit breaker tripped / shut down</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• No switching element supply voltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• External encoder supply short-circuit</td>
</tr>
<tr>
<td>Off</td>
<td>Green</td>
<td>Flashing yellow</td>
<td>Group warning due to:</td>
</tr>
<tr>
<td></td>
<td>(when switching element is ON)</td>
<td></td>
<td>• Thermal motor model overload</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Temperature sensor overload</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Asymmetry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Invalid parameter value</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>No supply voltage for electronics</td>
</tr>
</tbody>
</table>

Group fault

<table>
<thead>
<tr>
<th>SF LED</th>
<th>STATE LED</th>
<th>DEVICE LED</th>
<th>Group fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Off</td>
<td>Off</td>
<td>Device diagnostics available</td>
</tr>
</tbody>
</table>
7.3 Diagnostics via parameter channel (parameter echo)

Diagnostics (diagnostic message and diagnostic read procedure)

In the PLC, you can tell whether a fault has occurred by looking at the "I/O fault bit" (S1) on the slave status tab. The AS-i master enters the S1 value in the list of I/O faults (LPF) that have been signaled. The PLC can read this list via the "GET_LPF" command and then signal a specific diagnostic value from the slave.

Slave diagnostics echo (parameter echo)

Bit P0 defines whether a fault diagnosis (P0 = 1) or warning/message diagnosis (P0 = 0) is returned to the master as a slave response.

The parameter value (P0 = 0/1) is sent to the master via the "Write_Parameter" command. The value set in P1 and P2 is not important here since these bits are not evaluated by the system. P3 is set automatically by the system for A/B switchover.

Output of messages/alarms in order of priority

In the parameter echo, only one fault or message is output at any one time; this is always the one with the highest priority. No further messages/faults can be output while this message/fault is present.

Call (AS-i master to motor starter M200D):

<table>
<thead>
<tr>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B switchover(^1)</td>
<td>x (any state)</td>
<td>x (any state)</td>
<td>0</td>
</tr>
</tbody>
</table>

1) automatically set by the system

Feedback (motor starter M200D to AS-i master):

<table>
<thead>
<tr>
<th>Parameter echo – warnings (A) / messages (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Diagnostics

7.3 Diagnostics via parameter channel (parameter echo)

Call (motor starter M200D to AS-i master):

<table>
<thead>
<tr>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B</td>
<td>x (any state)</td>
<td>x (any state)</td>
<td>1</td>
</tr>
</tbody>
</table>

Feedback (motor starter M200D to AS-i master):
Parameter echo – faults (F)

<table>
<thead>
<tr>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P0</th>
<th>Decimal</th>
<th>Fault</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00</td>
<td>No fault</td>
<td>16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>02</td>
<td>(F) Main circuit breaker OFF</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>03</td>
<td>(F) Residual current tripping</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>04</td>
<td>(F) Overload</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>05</td>
<td>(F) Device error</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>06</td>
<td>(F) No switching element supply voltage</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>09</td>
<td>(F) Connector removed on line side</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>(F) Electronics supply voltage too low</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>(F) Short-circuit trip</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>(F) Asymmetry tripping</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>(F) Invalid parameter value</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>(F) Group fault</td>
<td>11</td>
</tr>
</tbody>
</table>

Sample program

Sample program: Slave diagnostics echo (parameter echo). The standard function ASi_3422 (FC7) of the AS-i master (PROFIBUS-ASI) is used for this purpose.

Alternatively, you can use an ASI_Control function block (FB19) for this task. You can find this block on the Siemens Service & Support page [http://support.automation.siemens.com/WW/view/de/51678777].

For a description of the block, please refer to the manual for the AS-i master (DP-ASI Link, CP343-2). This also describes the call interfaces and commands.

Block ASi_3422 must be called up once when the system is restarted (OB100).

Call in OB100:

```plaintext
CALL "ASi_3422"

ACT :=FALSE
ACT :=FALSE          // not required
STARTUP:=TRUE
LADDR :=W#16#14      // I/O address AS-i master
SEND := P#M 4.0 BYTE 1 // irrelevant
RECV := P#M 4.0 BYTE 1 // irrelevant
DONE :=M19.2
ERROR :=M19.3
STATUS :=MD24
```
To read the parameter echo, the "Write_Parameter" command must be sent to the M200D AS-i Basic motor starter.

Structure of the "Write_Parameter" command:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AS-i command for "Write Parameter" (command number: 02H)</td>
</tr>
<tr>
<td>1</td>
<td>Slave address (AS-i address that is to be read out of the diagnostics)</td>
</tr>
<tr>
<td>2</td>
<td>AS-i parameter bits P 0 ... P3</td>
</tr>
</tbody>
</table>

With this command, however, all four parameter bits (P0 ... P3) must be sent to the starter.

Sample program:

```plaintext
// Parameters in memory byte MB4
SET
    R  M  4.0 // read messages/warnings from starter
    #: Bit P0 = 0
// or
SET
    S  M  4.0 // read faults from starter: Bit P0 = 1
// trigger parameter echo
// command for SEND buffer
L  2 // "Write_Parameter" command
T  MB 2 // slave address of starter
L  2
T  MB 3
// job parameters are in MB4
// write parameters to starter: "Write_Parameter_Value"
// create job for SEND buffer:
CALL "ASI_3422"
ACT  :=M10.4 // trigger for writing parameters
STARTUP:=FALSE // not required in cycle
LADDR :=W$16$14 // address of AS-i master
SEND :=P$M 2.0 BYTE 3 // command data range
RECV :=P$M 6.0 BYTE 1 // range for response
DONE :=M10.5
ERROR :=M10.6
STATUS :=MD16
// parameter echo stored in MB6
```
7.4 Diagnostics with the addressing and diagnostics unit

Diagnostics functions

The addressing and diagnostics unit (order no.: 3RK1904-2AB02) features a range of diagnostics functions, such as:

- Detecting incorrect polarity or overload
- Measuring the AS-i supply voltage
- Detecting faults (with comments)
- Displaying I/O faults

For more information, refer to the operating instructions for the addressing and diagnostics unit.

7.5 Troubleshooting

7.5.1 Response to faults

Description

In some cases, the device can be set in such a way that it responds to faults by either issuing an alarm or by shutting down. Examples: "Response to asymmetry", "response to temperature sensor overload".

The following table shows how the motor starter responds (depending on how it has been parameterized):

<table>
<thead>
<tr>
<th>Fault</th>
<th>Response 1</th>
<th>Response 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response:</td>
<td>Alarm</td>
<td>Shutdown</td>
</tr>
<tr>
<td>Message bit:</td>
<td>Group alarm set</td>
<td>Group fault set</td>
</tr>
<tr>
<td>LED display:</td>
<td>DEVICE flashes yellow</td>
<td>DEVICE lights up yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF lights up red</td>
</tr>
<tr>
<td>Motor and brake:</td>
<td>Not shut down</td>
<td>Shut down</td>
</tr>
</tbody>
</table>

Note

With certain faults (e.g. "process mapping error" or device faults, such as "Contact block defective"), however, the device always responds by shutting down. This response cannot be changed.
7.5.2 Acknowledging faults

Restart after device-internal shutdown

If the motor starter shuts down the contact blocks automatically, it does not restart until:

- The fault has been rectified
- The fault has been acknowledged

Acknowledgement

You can acknowledge faults as follows:

- With "trip reset"
 - DO0 and DO1 simultaneously (motor CW and motor CCW)
 - Key-operated switch (order variant) in position O
- Parameterized "shutdown with restart" (autoreset)
- With the opposite command, e.g. "motor OFF" (process mapping errors only)

Note

Trip reset is edge-triggered.
If trip reset is present permanently, acknowledgement is only triggered once.
Technical specifications

8.1 General technical specifications

<table>
<thead>
<tr>
<th>Location</th>
<th>In the plant</th>
<th>Wall mounted (near motor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible mounting positions</td>
<td>Vertical, horizontal, flat</td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP65 Type 12</td>
<td>According to IEC 529 (DIN 40050) According to UL</td>
</tr>
<tr>
<td>Protection class</td>
<td>1</td>
<td>IEC 60364-4-41 (DIN VDE 0100-410)</td>
</tr>
<tr>
<td>Touch protection</td>
<td>Finger-safe</td>
<td></td>
</tr>
<tr>
<td>Degree of pollution</td>
<td>3</td>
<td>To IEC 60664</td>
</tr>
<tr>
<td>Cooling</td>
<td>Convection</td>
<td>No additional cooling required</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>–25°C to + 40°C max. 55°C</td>
<td>With reduction of Ie (see "Derating")</td>
</tr>
<tr>
<td>Transport and storage temperature</td>
<td>–40°C to + 70°C</td>
<td>—</td>
</tr>
<tr>
<td>Air humidity</td>
<td>10 % to 95 %</td>
<td>Condensation must not be allowed to form</td>
</tr>
<tr>
<td>Max. temperature change</td>
<td>1 K / min</td>
<td>IEC 60068, Part 2-14</td>
</tr>
<tr>
<td>Chemical environment conditions</td>
<td>3C3 conforming to IEC 60721-3-3</td>
<td>conforming to IEC 60721-3-3</td>
</tr>
<tr>
<td>Installation altitude</td>
<td>1000 m</td>
<td>No restrictions With restrictions (reduction of Ie by 1 % every 100 m up to 2000 m)</td>
</tr>
<tr>
<td>2000 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>2 g</td>
<td>To IEC 60 068, Part 2-6</td>
</tr>
<tr>
<td>Shock</td>
<td>12 g with 11 ms without influencing point of contact: 9.8 g / 5 ms or 5.9 g / 10 ms</td>
<td>To IEC 60 068, Part 2-27 half-sine</td>
</tr>
<tr>
<td>Free fall</td>
<td>0.6 m</td>
<td>In product packaging</td>
</tr>
<tr>
<td>ESD</td>
<td>8 kV air discharge</td>
<td>IEC 61000-4-2 Severity grade 3</td>
</tr>
<tr>
<td>4 kV contact discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic fields</td>
<td>10 V/m</td>
<td>IEC 61000-4-3 Severity grade 3</td>
</tr>
<tr>
<td>BURST</td>
<td>2 kV / 5 kHz supply voltage</td>
<td>IEC 61000-4-4 Severity grade 3</td>
</tr>
<tr>
<td>2 kV / 5 kHz data cables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 kV / 5 kHz process cables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURGE Installation class 1 to 3</td>
<td>1 / 2 kV</td>
<td>IEC 61000-4-5 Severity grade 3</td>
</tr>
<tr>
<td>Emitted interference</td>
<td>Limit value class A</td>
<td>EN 55011</td>
</tr>
</tbody>
</table>

1) If the starter is used in installation class 3 (increased overvoltage due to parallel cable installation), an overvoltage protection module (3RK1901-1GA00 and 3RG9030-0AA00) must be used.
8.2 Motor starter

Note
This product is designed for environment A (industrial environments). In household environments, this device can cause unwanted radio interference. The user may be required to implement appropriate measures in this case.

8.2 Motor starter

<table>
<thead>
<tr>
<th>Motor starter version</th>
<th>DSte/RSte</th>
<th>sDSte / sRSte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation dimensions in mm</td>
<td>Width</td>
<td>294 (320)</td>
</tr>
<tr>
<td>(in parentheses: with safety bars)</td>
<td>Height</td>
<td>215 (228)</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>159 (230)</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>2880 g/3130 g</td>
<td>3220 g / 3420 g</td>
</tr>
</tbody>
</table>

Control circuit (AS-i interface)

Slave type	A/B slave
Suitable for AS-i master to spec... (or higher)	AS-i Spec. 2.1 (M3)
AS-i slave profile IO.ID.ID2	7.A.E
ID1 code (factory setting)	7
Operating voltage U_{AS-i}	26.5 to 31.6 V DC
Auxiliary voltage U_{AUX}	20.4 to 28.8 V DC

Total power consumption from AS-i

Without connected sensors	max. 100 mA
With connected sensors	max. 300 mA
(total sensor power consumption < 200mA)	

Current consumption from U_{AUX} at 24 V (without digital output)

| | Max. 155 mA | Max. 15 mA / 175 mA |
| | Typ. 75 mA | Typ. 10 mA / 75 mA |

Main circuit

| Max. power of three-phase motors at 400 V | 5.5 kW |
| Max. rated operating current I_o | 4 kW |

AC-1 / 2 / 3	At 400 V	12 A
At 500 V	9 A	
AC-4	At 400 V	4 A
At 400 V	—	
AC-53a (8 h operation)		
At 400 V	—	
Rated operating current		
- Certification to EN 60947-1 Appendix N	400 V AC, 50 / 60 Hz	
- Certification to UL508 and CSA C22.2 No. 14	400 V AC, 50 / 60 Hz	
—		
—	600 V AC, 50 / 60 Hz	
—	480 V AC, 50 / 60 Hz	

Product category according to UL

| NLDX | NMFT |
Technical specifications

8.2 Motor starter

<table>
<thead>
<tr>
<th>Motor starter version</th>
<th>DSte/RSte</th>
<th>sDSte / sRSte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor ratings according to UL / CSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3RK13.5-.K (2 A)</td>
<td>for 460/480 V AC 3/4 hp / 1.6 A</td>
<td>3/4 hp / 1.6 A</td>
</tr>
<tr>
<td>power (3ph/hp) / max. FLA</td>
<td>for 575/600 V AC 1 hp / 1.7 A</td>
<td>—</td>
</tr>
<tr>
<td>3RK13.5-.L (12 A)</td>
<td>for 230/240 V AC 3 hp / 9.6 A</td>
<td>2 hp / 6.8 A</td>
</tr>
<tr>
<td>power (3ph/hp) / max. FLA</td>
<td>for 460/480 V AC 7.5 hp / 11 A</td>
<td>5 hp / 7.6 A</td>
</tr>
<tr>
<td></td>
<td>for 575/600 V AC 10 hp / 11 A</td>
<td>—</td>
</tr>
</tbody>
</table>

| Typical switching times incl. internal signal processing at 0.85 to 1.1 x Ue | - Closing delay 50 to 85 ms | 65 to 105 ms¹⁾ |
| - Opening delay 40 to 65 ms | 35 to 35 ms |

| Mechanical service life of contactor | 10 million |
| Electrical service life of contactor | See diagram |

| B10 value | 1000000²⁾ |

| Permissible switching frequency | — | See diagram or separate section |

Isolation stability

- **Rated impulse withstand voltage** U_{imp} 6 kV
- **Rated insulation voltage** U_i 500 V
- **Safe isolation between main and control circuits** to IEC 60947-1 Appendix N 400 V

Short-circuit protection

- **Instantaneous overcurrent release**
 - $I_{e \text{ max}} = 2$ A
 - $I_{e \text{ max}} = 9/12$ A 26 A 208 A

- **Rated short-circuit-breaking capacity** I_{CU} at 400 V in accordance with IEC 60947
 - at 400 V 50 kA 50 kA
 - at 500 V 50 kA 20 kA

- **Short circuit ratings according to UL / CSA**
 - 65 kA / 480 V / Any circuit breaker or any fuse 5 kA / 480 V / Fuse: 60 A class J
 - 10 kA / 600 V / Any circuit breaker or any fuse 10 kA / 600 V / Fuse: 45 A class J

Group installation

- **Suitable for Group installation**

- **Suitable as motor disconnect**

¹⁾ incl. 40 ms negative braking delay time

²⁾ This specification refers exclusively to the mechanical switching element under its reference conditions.

Note

To reverse the direction of rotation, a mechanically-switching reversing contactor is integrated in reversing starters with electronic switching. The preferred position of this contactor is "CW rotation". When the direction is changed to "CCW rotation", the reversing contactor is activated first, followed by the electronic contacts after an 80 ms delay.
8.3 Brake control

<table>
<thead>
<tr>
<th>Brake version</th>
<th>400 V AC / 230 V</th>
<th>180 V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated operating voltage</td>
<td>AC 220 ... 600 V (-10% / +5%), 50 / 60 Hz</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>-</td>
<td>0.45 x Ue e. g.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 V DC at 400 V AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>215 V DC at 480 V AC</td>
</tr>
<tr>
<td>Shutdown delay</td>
<td>-</td>
<td>50 ms</td>
</tr>
<tr>
<td>Continuous current</td>
<td>< 0.5 A</td>
<td>< 0.8 A</td>
</tr>
<tr>
<td>Voltage drop during continuous current</td>
<td>7 V</td>
<td>3.5 V</td>
</tr>
<tr>
<td>Inrush current at t < 120 ms</td>
<td>< 5 A</td>
<td>< 5 A</td>
</tr>
<tr>
<td>Switching capacity to IEC60947-5-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- AC 15, at 400 V AC</td>
<td>0.4 A</td>
<td>-</td>
</tr>
<tr>
<td>- DC 13, at 180 V DC</td>
<td>-</td>
<td>0.8 A</td>
</tr>
<tr>
<td>Fault message with non-controlled brake</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Protective measures
- Short-circuit protection: Yes, 1 A melting fuse
- Inductive interference protection: Integrated varistors
- Max. energy absorption of switching voltage limit: > 43 J (for 2 ms)

8.4 Inputs

<table>
<thead>
<tr>
<th>Input characteristic to IEC60947-1 Appendix S and IEC61131-2</th>
<th>Type 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>- Rated value</td>
</tr>
<tr>
<td></td>
<td>- for signal "0"</td>
</tr>
<tr>
<td></td>
<td>- for signal "1"</td>
</tr>
<tr>
<td>Input current for signal "1"</td>
<td>7 mA, typ.</td>
</tr>
<tr>
<td>Connection of 2-wire BEROS</td>
<td>Possible</td>
</tr>
<tr>
<td>Permissible residual current</td>
<td>1.5 mA, max.</td>
</tr>
<tr>
<td>Input signal delay</td>
<td>10 ms fixed setting</td>
</tr>
<tr>
<td>Supply from UAS+i</td>
<td>Short-circuit and overload proof</td>
</tr>
<tr>
<td>Sensor supply</td>
<td>16.5 to 30 V DC</td>
</tr>
<tr>
<td>Total current sensor supply</td>
<td>Max. 200 mA (sensor supply is short-circuit proof)</td>
</tr>
<tr>
<td>Connection</td>
<td>M12 connectors</td>
</tr>
</tbody>
</table>

Assignment of inputs
- IN1: Input 1 (PII DI2)
- IN2: Input 2 (PII DI3)
- IN3: Input 3
- IN4: Input 4
8.5 Output

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of digital outputs</td>
<td>1</td>
</tr>
<tr>
<td>Switching capacity</td>
<td>0.5 A continuous current</td>
</tr>
<tr>
<td>Cable length</td>
<td>Shielded</td>
</tr>
<tr>
<td></td>
<td>Unshielded</td>
</tr>
<tr>
<td></td>
<td>30 m, max.</td>
</tr>
<tr>
<td>Short-circuit protection</td>
<td>Electronic</td>
</tr>
<tr>
<td>Response threshold</td>
<td>> 0.7 A, typ.</td>
</tr>
<tr>
<td>Limiting of inductive shutdown voltage</td>
<td>Integrated free-wheeling diode</td>
</tr>
<tr>
<td>Lamp load</td>
<td>5 W, max.</td>
</tr>
<tr>
<td>Sets an AS-i digital input</td>
<td>Not permissible</td>
</tr>
<tr>
<td>Voltage drop</td>
<td>For signal 1</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{ AUX }} + (-0.8 , \text{V})), min.</td>
</tr>
<tr>
<td>Residual current</td>
<td>For signal 0</td>
</tr>
<tr>
<td></td>
<td>0.5 mA max.</td>
</tr>
</tbody>
</table>

| Assignment of output | |
| OUT1 | Output 1 |

8.6 Thermistor motor protection

<table>
<thead>
<tr>
<th>Temperature sensor</th>
<th>PTC</th>
<th>Thermoclick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation characteristic to IEC 60947-8</td>
<td>Type A</td>
<td>—</td>
</tr>
<tr>
<td>Summation cold resistance sensor circuit</td>
<td>(< 1.5 , \text{kΩ})</td>
<td></td>
</tr>
<tr>
<td>No-load voltage of sensor circuit</td>
<td>(< 30 , \text{V})</td>
<td></td>
</tr>
<tr>
<td>Short-circuit current sensor circuit</td>
<td>(< 1.2 , \text{mA})</td>
<td></td>
</tr>
<tr>
<td>Trip level</td>
<td>(3.4 \ldots 3.8 , \text{kΩ})</td>
<td></td>
</tr>
<tr>
<td>Reset level</td>
<td>(1.5 \ldots 1.65 , \text{kΩ})</td>
<td></td>
</tr>
<tr>
<td>Short-circuit detection</td>
<td>(< 30 , \text{Ω})</td>
<td>No</td>
</tr>
<tr>
<td>Electrical isolation vis-à-vis</td>
<td>Main circuit</td>
<td>Yes ((U_i = 400 , \text{V}))</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{AS-i}})</td>
<td>Yes ((U_i = 400 , \text{V}))</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{PWR}})</td>
<td>Yes ((U_i = 400 , \text{V}))</td>
</tr>
</tbody>
</table>
8.7 Switching frequency

If motors are switched too often, this causes the thermal motor model to respond. The maximum permissible switching frequency depends on the following operating data:

ON period (ED)

The relative ON period (ED) in % is the ratio between load duration and cycle duration for loads that are often switched on and off.

The ON period (ED) can be calculated using the following formula:

\[ED = \frac{t_s + t_b}{t_s + t_b + t_p} \]

<table>
<thead>
<tr>
<th>ED</th>
<th>ON period [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_s)</td>
<td>Start time [s]</td>
</tr>
<tr>
<td>(t_b)</td>
<td>Operating time [s]</td>
</tr>
<tr>
<td>(t_p)</td>
<td>Pause interval [s]</td>
</tr>
</tbody>
</table>

Graphics-based representation:

Figure 8-1 ON period (ED)
Direct and reversing starters, electronic (sDSte / sRSte) up to 4 kW

3RK1315-6KS71-.AA. (0.15 A to 2 A)

<table>
<thead>
<tr>
<th>Mounting position</th>
<th>Vertical</th>
<th>Horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated current Ie</td>
<td>2 A</td>
<td>2 A</td>
</tr>
<tr>
<td>Operating cycles/hour for Class 10</td>
<td>40 °C</td>
<td>50 °C</td>
</tr>
<tr>
<td>Motor protection</td>
<td>1)</td>
<td>2)</td>
</tr>
<tr>
<td>ED=30 % (8 x Ie) / 0.1 s</td>
<td>600</td>
<td>3600</td>
</tr>
<tr>
<td>ED=70 % (8 x Ie) / 0.1 s</td>
<td>360</td>
<td>2000</td>
</tr>
<tr>
<td>ED=30 % (8 x Ie) / 0.2 s</td>
<td>300</td>
<td>2000</td>
</tr>
<tr>
<td>ED=70 % (8 x Ie) / 0.2 s</td>
<td>180</td>
<td>1000</td>
</tr>
<tr>
<td>ED=30 % (8 x Ie) / 0.4 s</td>
<td>150</td>
<td>1000</td>
</tr>
<tr>
<td>ED=70 % (8 x Ie) / 0.4 s</td>
<td>90</td>
<td>500</td>
</tr>
<tr>
<td>ED=30 % (8 x Ie) / 0.8 s</td>
<td>75</td>
<td>490</td>
</tr>
<tr>
<td>ED=70 % (8 x Ie) / 0.8 s</td>
<td>45</td>
<td>250</td>
</tr>
</tbody>
</table>

1) Duty cycle current rms value = 1.15 x Ie → motor protection
2) Duty cycle limit for motor starter. The motor should be protected against overload here by means of a thermistor.

3RK1315-6NS71-.AA. (1.5 A to 9 A)

<table>
<thead>
<tr>
<th>Mounting position</th>
<th>Vertical</th>
<th>Horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated current Ie</td>
<td>5 A</td>
<td>5 A</td>
</tr>
<tr>
<td>Operating cycles/hour for Class 10</td>
<td>40 °C</td>
<td>50 °C</td>
</tr>
<tr>
<td>Motor protection</td>
<td>1)</td>
<td>2)</td>
</tr>
<tr>
<td>ED=30 % (8 x Ie) / 0.25 s</td>
<td>240</td>
<td>1300</td>
</tr>
<tr>
<td>ED=70 % (8 x Ie) / 0.25 s</td>
<td>160</td>
<td>760</td>
</tr>
<tr>
<td>ED=30 % (8 x Ie) / 0.5 s</td>
<td>120</td>
<td>700</td>
</tr>
<tr>
<td>ED=70 % (8 x Ie) / 0.5 s</td>
<td>70</td>
<td>400</td>
</tr>
<tr>
<td>ED=30 % (8 x Ie) / 1 s</td>
<td>60</td>
<td>350</td>
</tr>
<tr>
<td>ED=70 % (8 x Ie) / 1 s</td>
<td>37</td>
<td>190</td>
</tr>
</tbody>
</table>

1) Duty cycle current rms value = 1.15 x Ie → motor protection
2) Duty cycle limit for motor starter. The motor should be protected against overload here by means of a thermistor.
Technical specifications

8.7 Switching frequency

<table>
<thead>
<tr>
<th>3RK1315-6NS71-AA. (1.5 A to 9 A)</th>
<th>Operating cycles/hour for Class 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mounting position</td>
</tr>
<tr>
<td>Rated current I_e</td>
<td>7 A</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>Motor protection</td>
<td>1) 2)</td>
</tr>
<tr>
<td>ED = 30%, start 4 x I_e/2 s</td>
<td>120</td>
</tr>
<tr>
<td>ED = 70 %, start 4 x I_e/2 s</td>
<td>70</td>
</tr>
<tr>
<td>ED = 30%, start 4 x I_e/4 s</td>
<td>60</td>
</tr>
<tr>
<td>ED = 70 %, start 4 x I_e/4 s</td>
<td>37</td>
</tr>
</tbody>
</table>

1) Duty cycle current rms value = 1.15 x I_e → motor protection

2) Duty cycle limit for motor starter. The motor should be protected against overload here by means of a thermistor.

<table>
<thead>
<tr>
<th>3RK1315-6NS71-AA. (1.5 A to 9 A)</th>
<th>Operating cycles/hour for Class 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mounting position</td>
</tr>
<tr>
<td>Rated current I_e</td>
<td>9 A</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>Motor protection</td>
<td>1) 2)</td>
</tr>
<tr>
<td>ED = 30%, start 4 x I_e/2 s</td>
<td>120</td>
</tr>
<tr>
<td>ED = 70 %, start 4 x I_e/2 s</td>
<td>70</td>
</tr>
<tr>
<td>ED = 30%, start 4 x I_e/4 s</td>
<td>60</td>
</tr>
<tr>
<td>ED = 70 %, start 4 x I_e/4 s</td>
<td>38</td>
</tr>
</tbody>
</table>

1) Duty cycle current rms value = 1.15 x I_e → motor protection

2) Duty cycle limit for motor starter. The motor should be protected against overload here by means of a thermistor.
8.8 **Electrical service life of contactor**

Service life of main contacts (DSte / RSte) to 5.5 kW

The curves show the contact service life of contactors when switching ohmic and inductive three-phase loads (AC-1/AC-3) as a function of breaking current and rated operating voltage. The prerequisite for this are command devices that switch at random, i.e. not synchronously to the phase angle of the line.

The rated operating current I_e in accordance with utilization category AC-4 (breaking of 6 times the rated operating current) is determined for a contact service life of at least 200,000 operating cycles.

If a smaller contact service life is sufficient, the rated operating current I_e/AC-4 can be increased.

If **mixed operation** is available, i.e. if normal switching operation (breaking of rated operating current in accordance with utilization category AC-3) is mixed with occasional inching (breaking of the multiple rated operating current in accordance with utilization category AC-4), the service life of the contacts can be calculated approximately with the following formula:

$$X = \frac{A}{1 + \frac{C}{100} + \left(\frac{A}{B} - 1\right)}$$

- X Contact service life for mixed operation in operating cycles
- A Contact service life for normal operation ($I_a = I_e$) in operating cycles
- B Contact service life for inching ($I_a = \text{multiple of } I_e$) in operating cycles
- C Proportion of inching operations in the total operations as a percentage
8.8 Electrical service life of contactor

Operating cycles for

\(P_N \)	Rated power of three-phase motors at 400 V
\(I_a \)	Breaking current
\(I_e \)	Rated operating current

Figure 8-2 Service life of main contacts for contactor 3RT1017
8.9 Dimension drawing

Figure 8-3 M200D AS-i motor starter without protection guard

Figure 8-4 M200D AS-i motor starter with protection guard
Appendix

A.1 Order numbers

A.1.1 M200D AS-i motor starter

<table>
<thead>
<tr>
<th>Position</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 7</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>3RK1315</td>
<td>6</td>
</tr>
<tr>
<td>L</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Reversing starter without OCM, 1.5 - 12.0 A, electronic, with brake output 400 V AC / 230 V AC</td>
</tr>
</tbody>
</table>

You can combine the key numbers/letters to create the MLFB of the required motor starter:
A.1.2 Spare parts/accessories

Power supply

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power outlet connector, connector set consisting of coupling housing for connection to T distributor, straight cable outlet (with clip), pin insert for HAN Q4/2, incl. cable gland</td>
<td></td>
</tr>
<tr>
<td>5 pins 2.5 mm²</td>
<td>3RK1911-2BS60</td>
</tr>
<tr>
<td>5 pins 6 mm²</td>
<td>3RK1911-2BS20</td>
</tr>
<tr>
<td>5 pins 4 mm²</td>
<td>3RK1911-2BS40</td>
</tr>
<tr>
<td>Power connector, connector set for connection to M200D motor starters, consisting of socket shell, angled outlet, socket insert for HAN Q4/2, incl. gland</td>
<td></td>
</tr>
<tr>
<td>5 socket contacts 2.5 mm², 2 socket contacts 0.5 mm²</td>
<td>3RK1911-2BE50</td>
</tr>
<tr>
<td>5 socket contacts 4 mm², 2 socket contacts 0.5 mm²</td>
<td>3RK1911-2BE10</td>
</tr>
<tr>
<td>5 socket contacts 6 mm², 2 socket contacts 0.5 mm²</td>
<td>3RK1911-2BE30</td>
</tr>
<tr>
<td>Power supply cable, one end prefabricated, with "N" und jumper pin 11 und 12 for connector monitoring, with HAN Q4/2, angled; one end open; 5 x 4 mm²</td>
<td></td>
</tr>
<tr>
<td>Length 1.5 m</td>
<td>3RK1911-0DC13</td>
</tr>
<tr>
<td>Length 5.0 m</td>
<td>3RK1911-0DC33</td>
</tr>
</tbody>
</table>

Motor cable

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor connector for connection to M200D motor starters, consisting of socket shell, angled outlet, pin insert for HAN Q8/0, incl. gland</td>
<td></td>
</tr>
<tr>
<td>8 pins 1.5 mm²</td>
<td>3RK1902-0CE00</td>
</tr>
<tr>
<td>6 pins 2.5 mm²</td>
<td>3RK1902-0CC00</td>
</tr>
<tr>
<td>Motor connector for connection to motor, consisting of socket shell, angled outlet, socket insert for HAN 10e, incl. neutral bridge, incl. gland</td>
<td></td>
</tr>
<tr>
<td>7 socket contacts 1.5 mm²</td>
<td>3RK1911-2BM21</td>
</tr>
<tr>
<td>7 socket contacts 2.5 mm²</td>
<td>3RK1911-2BM22</td>
</tr>
<tr>
<td>Motor cable, one end prefabricated, one end open, HAN Q8/0, angled, length 5 m</td>
<td></td>
</tr>
<tr>
<td>for motor without brake for M200D, 4x1.5 mm²</td>
<td>3RK1911-0EB31</td>
</tr>
<tr>
<td>for motor without brake for M200D with thermistor, 6x1.5 mm²</td>
<td>3RK1911-0EF31</td>
</tr>
<tr>
<td>for motor with brake 400 V AC/180 V DC, 6 x 1.5 mm²</td>
<td>3RK1911-0ED31</td>
</tr>
<tr>
<td>for motor with brake 400 V AC/180 V DC and thermistor, 8 x 1.5 mm²</td>
<td>3RK1911-0EG31</td>
</tr>
<tr>
<td>for motor with brake 230 V AC, 6 x 1.5 mm²</td>
<td>3RK1911-0EH31</td>
</tr>
<tr>
<td>for motor with brake 230 V AC and thermistor, 8 x 1.5 mm²</td>
<td>3RK1911-0EE31</td>
</tr>
</tbody>
</table>
Motor controller with AS-i communication

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control cable, one end prefabricated / open, M12 angled cable plugs for</td>
<td>3RK1902-4GB50-4AA0</td>
</tr>
<tr>
<td>screw mounting, degree of protection IP67, 4-pole, 4 x 0.34 mm²</td>
<td></td>
</tr>
<tr>
<td>Cable length 5 m</td>
<td></td>
</tr>
<tr>
<td>Coupling plug with connection space, prefabricated, M12 angled cable</td>
<td>3RK1902-4CA00-4AA0</td>
</tr>
<tr>
<td>plugs for screw mounting, degree of protection IP67, 4-pole, 4 x 0.34 mm²</td>
<td></td>
</tr>
<tr>
<td>AS-Interface M12 branch for flat cables AS-i / U_{aux}</td>
<td></td>
</tr>
<tr>
<td>cable end in branch not possible</td>
<td>3RK1901-1NR20</td>
</tr>
<tr>
<td>M12 socket</td>
<td>3RK1901-1NR21</td>
</tr>
<tr>
<td>M12 cable plug, cable length 1 m</td>
<td>3RK1901-1NR22</td>
</tr>
<tr>
<td>M12 cable plug, cable length 2 m</td>
<td></td>
</tr>
<tr>
<td>AS-Interface M12 screw caps for sealing unassigned input/output sockets</td>
<td>3RK1901-1KA00</td>
</tr>
<tr>
<td>(one set contains ten screw caps)</td>
<td></td>
</tr>
<tr>
<td>Cable end terminator for sealing open cable ends (AS-Interface shaped cable)</td>
<td>3RK1901-1MN00</td>
</tr>
<tr>
<td>with IP67</td>
<td></td>
</tr>
</tbody>
</table>

Motor controller with IO communication

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control cable, one end prefabricated / open, M12 angled cable connectors,</td>
<td>3RK1902-4HB50-5AA0</td>
</tr>
<tr>
<td>degree of protection IP67, 5 x 0.34 mm² (metal screw cap)</td>
<td>3RK1902-4HC01-5AA0</td>
</tr>
<tr>
<td>Cable length 5 m</td>
<td></td>
</tr>
<tr>
<td>cable length 10 m</td>
<td></td>
</tr>
<tr>
<td>M12 coupler plug, straight, screw-type connection max. 0.75 mm², 5-pin,</td>
<td>3RK1902-4BA00-5AA0</td>
</tr>
<tr>
<td>A-coded, max. 4 A</td>
<td></td>
</tr>
<tr>
<td>M12 coupler plug, angled, screw-type connection max. 0.75 mm², 5-pin, A-</td>
<td>3RK1902-4DA00-5AA0</td>
</tr>
<tr>
<td>coded, max. 4 A</td>
<td></td>
</tr>
</tbody>
</table>
Further options

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M200D protection guards</td>
<td>3RK1911-3BA00</td>
</tr>
<tr>
<td>RS 232 interface cable</td>
<td>3RK1922-2BP00</td>
</tr>
<tr>
<td>Hand-held device for motor starters for local control</td>
<td>3RK1922-3BA00</td>
</tr>
<tr>
<td>Serial interface cable must be ordered separately</td>
<td></td>
</tr>
<tr>
<td>AS-i addressing unit in accordance with AS-Interface version 2.1</td>
<td>3RK1904-2AB02</td>
</tr>
<tr>
<td>Scope of supply: Adressing unit, operating instructions, addressing</td>
<td></td>
</tr>
<tr>
<td>cable (1.5 m with jack plug)</td>
<td></td>
</tr>
<tr>
<td>M12 addressing cable for M12</td>
<td>3RK1902-4PB15-3AA0</td>
</tr>
<tr>
<td>for addressing slaves with M12 connection</td>
<td></td>
</tr>
<tr>
<td>Identification label 9 x 20, petrol (19 frames, 380 labels)</td>
<td>3RT1900-1SB50</td>
</tr>
<tr>
<td>Dismantling tool Han Q4/2</td>
<td>3RK1902-0AB00</td>
</tr>
<tr>
<td>Dismantling tool Han Q8/0</td>
<td>3RK1902-0AJ00</td>
</tr>
</tbody>
</table>
A.2 Bibliography

Documentation for M200D AS-i at a glance

All the documents in this overview are available for download at SIRIUS M200D Motor Starters [www.siemens.de/sirius-m200d].

Each document has an entry ID, which you can use to search for a specific document.

The following tables list a selection of available AS-i documents.

<table>
<thead>
<tr>
<th>Topic</th>
<th>AS-i master</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document title</td>
<td>AS-Interface system manual</td>
</tr>
<tr>
<td>Entry ID</td>
<td>26250840</td>
</tr>
<tr>
<td>For products</td>
<td>3RK11, 3RK12, 3RK14, 3RK21, 3RK22, 3RK24, 3RK3141, 3RX95, 6GK14, 6GK72, 6GK73</td>
</tr>
<tr>
<td>Document title</td>
<td>CP 343-2 / CP 343-2 P AS-Interface Master</td>
</tr>
<tr>
<td>Entry ID</td>
<td>5581657</td>
</tr>
<tr>
<td>For products</td>
<td>6GK7343-2AH00-0XA0; 6GK7343-2AH10-0XA0</td>
</tr>
<tr>
<td>Document title</td>
<td>Distributed I/O System DP/AS-I Link</td>
</tr>
<tr>
<td>Entry ID</td>
<td>1144898</td>
</tr>
<tr>
<td>For products</td>
<td>6GK1415-2AA00; 6GK1415-2AA01</td>
</tr>
<tr>
<td>Document title</td>
<td>ASISafe DP/AS-i F-Link</td>
</tr>
<tr>
<td>Entry ID</td>
<td>24196041</td>
</tr>
<tr>
<td>For products</td>
<td>3RK3141-1CD10; 3RK3141-2CD10</td>
</tr>
<tr>
<td>Document title</td>
<td>Manual DP/AS-Interface Link Advanced</td>
</tr>
<tr>
<td>Entry ID</td>
<td>22710305</td>
</tr>
<tr>
<td>For products</td>
<td>6GK1415-BA10; 6GK1415-2BA20</td>
</tr>
<tr>
<td>Document title</td>
<td>Manual DP/AS-Interface Link 20E</td>
</tr>
<tr>
<td>Entry ID</td>
<td>5281638</td>
</tr>
<tr>
<td>For products</td>
<td>6GK1415-2AA01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Addressing and analyzing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document title</td>
<td>Addressing and Diagnosis Instrument for AS-I Modules</td>
</tr>
<tr>
<td>Entry ID</td>
<td>48532283</td>
</tr>
<tr>
<td>For products</td>
<td>3RK1904-2AB02</td>
</tr>
<tr>
<td>Document title</td>
<td>AS-Interface Analyzer</td>
</tr>
<tr>
<td>Entry ID</td>
<td>26267998</td>
</tr>
<tr>
<td>For products</td>
<td>3RK1904-3AB01</td>
</tr>
</tbody>
</table>
A.2 Bibliography

<table>
<thead>
<tr>
<th>Topic</th>
<th>Control systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document title</td>
<td>S7-200 Automation System</td>
</tr>
<tr>
<td>Entry ID</td>
<td>1109582</td>
</tr>
<tr>
<td>For products</td>
<td>6ES7214; 6ES7221-1BF00-0XA0; 6ES7221-1EF00-0XA0; 6ES7221-1BF10-0XA0; 6ES7221-1JF00-0XA0; 6ES7222-1BF00-0XA0; 6ES7222-1HF00-0XA0; 6ES7222-1EF00-0XA0; 6ES7223-1BF00-0XA0; 6ES7215; 6ES7216; 6ES7223-1HF00-0XA0; 6ES7223-1EF00-0XA0; 6ES7223-1PH00-0XA0</td>
</tr>
</tbody>
</table>
Correction sheet

Have you noticed any errors while reading this manual? If so, please use this form to tell us about them. We welcome comments and suggestions for improvement.

Fax response

From (please complete):

To
SIEMENS AG
I IA CE MK&ST 3
92220 Amberg / Germany

Fax: +49 (0)9621-80-3337

Manual title:

Table 8-1 Errors, comments, and suggestions for improvements

<table>
<thead>
<tr>
<th>Errors, comments, and suggestions for improvements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Glossary

24 V-NS DC
Electronics supply voltage

24 V-S DC
Switching element supply voltage

AS-Interface (AS-i)
The AS-Interface (or actuator/sensor interface; abbreviated to AS-i) is a connection system for the lowest process level in automation systems.

BO
Brake output

Combined Transaction Type 2 (CTT2)
Communication protocol on AS-Interface in accordance with Specification V3.0 for the transfer of large volumes of data (analog values, strings, etc.).

Degree of protection
The degree of protection of a device indicates the extent of protection. The extent of protection includes the safety of persons against coming in contact with live or rotating parts, and the protection of electric resources against the penetration of water, foreign bodies and dust.

The M200D has an IP65 degree of protection when all the unused connections are sealed.

DSte
Abbreviation for "direct starter, electromechanical"

ESD
Components sensitive to electrostatic charge
Electronic components (e.g. field effect transistors, integrated circuits) that may be destroyed by high voltages (for instance by electrically charged non-grounded persons)
Ground fault

Fault whereby an external conductor comes into contact with ground or the grounded neutral point.

GSD

Device master data

GSDML

The GSDML language is defined by the GSDML scheme. A GSDML scheme contains validity rules that allow you to check the syntax of a GSD file, for example. Manufacturers of IO devices can obtain GSDML schemes (in the form of scheme files) from PROFIBUS International.

HMI

Operator control and monitoring
With HMI components, process data can be visualized and systems can be operated.

Integrated manual local control

Integrated manual local control is an orer variant for the M200D and involves a key-operated switch and keypad.

IP

Degrees of protection to DIN EN 60529 (IEC 529/VDE 047 T1) (International Protection Classes)

LPS

List of configured slaves

MLFB

Machine-readable product designation

Motor Starter ES

The Motor Starter ES software is used for commissioning, parameterization, diagnostics, documentation, and preventive maintenance of the High Feature motor starters in the ranges:

- SIMATIC ET 200S (High Feature)
- ET 200pro
- ECOFAST (High Feature) and
- M200D (AS-i Standard, PROFIBUS, PROFINET)
N conductor (neutral conductor)

EN 60947-1: A conductor connected to the center point or neutral point of the system and designed to transfer electrical energy. EN 60050-141: Conductor in a multi-phase cable that is connected to the neutral point N of a multi-phase combination.

PE (protective conductor)

- EN 60947-1: Conductor required for certain measures to protect against electric shock to establish an electrical connection between the following components:
 - Components of the electrical equipment
 - External, conductive components
 - Main grounding terminal
 - Ground electrode
 - Grounded point in the current source or artificial neutral point
- EN 60050-195: Conductor for safety purposes (e.g. to protect against electric shock).

PII/PIO

Process input image/process output image

Process image

Image of the signal states of the digital inputs and outputs in the memory of a controller.

PROFIBUS

PROFIBUS stands for "process fieldbus". PROFIBUS is a manufacturer-independent standard to network the field devices (e.g. PLCs, actuators, final controlling elements and sensors). PROFIBUS is compatible with protocols such as DP (decentralized peripherals), FMS (fieldbus message specification) and PA (process automation).

PROFIEnergy

The PROFINET profile supports energy management systems in process plants by reading out measured values or by, for example, briefly shutting down the entire plant during breaks via standardized PROFIEnergy commands.

PROFINET

This is an open component-based industrial communication system based on Ethernet for distributed automation systems. Communications technology required by the PROFIBUS User Organization.
Reversing starter

Starting control function for the direction of rotation (CW / CCW).

RSte

Abbreviation for "reversing starter, electromechanical"

sDSSte

Abbreviation for "direct soft starter, electronic"

sDSte

Direct starter (electronic)

Soft starter

Function for starting/stopping motors smoothly.

sRSSte

Abbreviation for "reversing soft starter, electronic"

sRSte

Reversing starter (electronic)

Step 7

The basic STEP 7 software is the standard tool for the SIMATIC S7, SIMATIC C7 and SIMATIC WinAC automation systems.

Trip class (shutdown class)

The trip class defines the start time at a particular current before the trip occurs. Different classes exist (e.g. CLASS 10, 20, 30, etc.), whereby CLASS 30 is the longest permissible start time.
Index

A
Absolute current load, 48
Acknowledgment, 92
Addressing, 55
Addressing unit, 55, 91
Ambient temperature Ta, 48
AS-i / fault LED, 85
AS-i address setting, 55
AS-i profile, 72
AS-i status register, 83
AS-Interface, 11
Connection options, 67
Installation guidelines, 67
Pin assignment, 66
Assigning parameters, 73
Asymmetry, 30
Limit value, 31

B
Bibliography, 109
Blocking current, 20
Blocking current monitoring, 29
Blocking time, 30
Brake output, 23, 62

C
Cables, 57
Commissioning, 79, 81
Communication, 38
Data channels, 38
Message output, 39
Operating modes, 38
Configuration, 69
Connection, 56
Connector monitoring, 35
Motor connector, 37
Power connector, 35
Response when connector is unplugged, 36
Settings, 37
Control function: reversing starter,
Correction sheet, 111
CP 343-2 communications processor, 70

D
Deactivation rule, 26
Derating, 48
Diagrams, 49
Factors, 48
Device error, 87
Device functions, 19
DEVICE LED, 84
Device status, 86
Diagnostics, 83
Parameter channel, 88
Parameter echo, 88
Diagnostics unit, 91
Digital inputs
Pin assignment, 65
Digital inputs/outputs, 64
Socket assignment, 64
Digital output, 66
Dimension drawing, 103
DIP switch, 16, 73, 75
Direct starter (electromechanical), 13, 13
Direct starter (electronic), 13
Disconnecting means, 16
DSte, 13

E
EMC resistance, 54
Emergency start, 34

F
Fault, 89
faults, 91
FE, 54
Functional ground, 54

G
Group diagnosis, 22
Group fault, 22, 87
H
Han Q4/2 socket, 61
Han Q8/0 pin, 61

I
I/O fault (LPF), 88
ID1 code, 69, 76
Input
 Actions, 31
 n level, 33
 n signal, 32
 Quickstop, 33
Input process image (PII), 76
Installation, 47
 of the motor starter, 53
 Protection guard, 52
Installation position, 47
Installation rules, 47
Integrated manual local control, 16, 43
 Automatic mode, 43
 Clockwise rotation, 44
 Continuous operation / jog mode, 44
 Counterclockwise rotation, 44
 Key-operated switch, 43
 Keypad, 44
 Manual mode, 43
 OFF / Reset, 43
 Quick stop disable, 44

L
LED, 83, 83, 86
Local optical device interface,

M
Master requirements, 69
MLFB, 105
Mode, 86
Motor protection deactivation rule, 39
Motor protection shutdown response, 25
Motor starter
 Connection examples, 67
 Connection options, 67

O
Order numbers, 105
 Accessories, 106
 Spare parts, 106
Output, 35
Output process image (PIO), 77
Overload trip, 74

P
Parameter channel, 88
Parameter echo, 83, 88
Plausibility check, 39
Potential transfer, 31, 35, 64
Power cables, 57
Power connector, 35
Power connectors, 59
Power terminal
 Motor connection, 60
 Power supply, 60
Power terminals, 17
Prewarning limit for motor heating, 26
Process image, 75
Process mapping error, 92
Protection against voltage failure, 21
Protection guard, 52
PWR AUX LED, 85
PWR LED, 85

Q
Quickstop, 33

R
Rated operating current, 21
Recovery time, 26
Release delay, 24
Residual current detection
 Response to, 29
Reversing starter (electromechanical), 13
Reversing starter (electronic), 13
Rotary coding switch, 16, 73, 74
RSte, 13

S
Sample program
 Parameter echo, 89
sDSte, 13
Index

Self-test, 40
Service life
 Contactor, 101
SF LED, 84
Short-circuit protection
 Circuit breaker / disconnecting means, 37
 Circuit breakers, 37
 Response when circuit breaker is OFF, 37
Shutdown response
 Motor protection, 28
Siemens Solution Partner, 56
sRSte, 13
STATE LED, 85
Switching frequency, 98
System error, 87
System integration, 77

T
Technical data
 Digital inputs, 96
 Motor starter, 94
Technical specifications
 Brake control, 96
 Digital output, 97
 General, 93
 Thermistor motor protection, 97
Temperature sensor
 Monitoring, 28
 PTC type A, 27
 Thermoclick, 27
Thermal motor model, 25
Trip class, 25
Trip reset, 40, 92
Tripping
 Limit position CW/CCW, 34
 Restart, 34
Troubleshooting, 91

W
Warning, 87
Wiring, 56
 Power cables, 58
 Power connectors, 59
Service & Support

SIRIUS M200D
www.siemens.com/sirius-m200d

Download catalogs and information material:
www.siemens.com/sirius/information

Newsletter - always up to date:
www.siemens.com/sirius/newsletter

E-Business in the Industry Mall:
www.siemens.com/sirius/mall

Online-Support:
www.siemens.com/sirius/support

Contact for all technical information:
Technical Assistance
Tel.: +49 (911) 895-5900
e-mail: technical-assistance@siemens.com
www.siemens.com/sirius/technical-assistance

Siemens AG
Industry Sector
Postfach 23 55
90713 FUERTH
GERMANY

Subject to change without prior notice
3RK1702-2BB11-1A1
© Siemens AG 2009

www.siemens.com/automation