
© Siemens 2019

In situ continuous process gas analysis

_	

2/2	Introduction
2/3	SITRANS SL
2/3	In situ O ₂ gas analyzer
2/22	Documentation
2/23	LDS 6
2/23	General information
2/30	19" central unit
2/42	Cross-duct sensor CD 6
2/52	Documentation

2/52 Suggestions for spare parts

Overview

Process gas analyzers are used for continuous determination of the concentrations of one or more gases in a gas mixture. Determination of the concentration of gases in a process is used to control and monitor process flows, and is therefore decisive for the automation and optimization of processes and ensuring product quality. In addition, process gas analyzers are used to check emissions, thus making an important contribution to environmental protection, as well as for ensuring compliance with statutory directives.

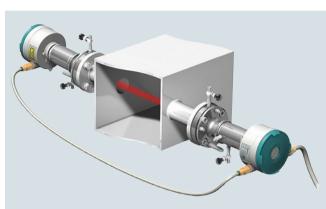
In-situ analytical procedures feature physical measurements in the flow of process gas directly in the actual process gas line. In contrast to extractive gas analysis, a sample is not taken and routed on to the analyzer via a sample line and sample preparation. Only in exceptional cases, the process conditions make it necessary to condition the sample gas stream in a bypass line with respect to process temperature, pressure and/or optical path length. Further conditioning of the process gas, such as drying or dust precipitation, is unnecessary. The analyzer carrying out in-situ measurements must always take into account changing process conditions (if these occur) and be able to automatically process them in the calibration model. Computed temperature and pressure compensation is frequently required for this. In addition, the analyzer must be extremely rugged since its sensors have direct contact with the process gas. The fast and non-contact measurement of gas concentrations directly in the process is the domain of in-situ diode laser gas analyzers.

The gas analyzer LDS 6 combines the compact and servicefriendly design, simple operation and network capability of the Series 6 analyzers with the well-known exceptional performance data of in-situ gas analysis - namely high ruggedness and availability as well as low maintenance - by using diode laser technology and fiber-optics. Up to three CD 6 in-situ cross-duct sensors (which are also optionally available in an intrinsically-safe version for operation in hazardous areas) can be combined with an LDS 6 analyzer in the compact 19" rack unit enclosure. The distance between the analyzer's control unit - typically in an existing instrument room or the process plant's control room - and the max. three measuring points can be up to 700 m in each case. The SITRANS SL gas analyzer for highly sensitive measurement of oxygen has a more integrated design without fiber-optic cables and with only one pair of cross-ducts sensors - a transmitter unit and a detector unit. In this case the receiver has a local user interface (LUI) which is controlled using IR remote control.

A maintenance-free reference gas cell integrated in both analyzers drastically reduces the need for recalibration (SITRANS SL) or even makes its superfluous (LDS 6). Remote scanning and diagnostics of the analyzers is possible using the Ethernet interface present as standard.

The list of gas components measurable using NIR diode laser technology already comprises:

- For the LDS 6 analyzer:
 - NH₃, HCI, HF, H₂O, CO, CO₂
 - More gas components on request
- For the SITRANS SL analyzer:


- O₂

Gas measurements with diode lasers feature exceptional selectivity and flexibility. Neither high process temperatures nor high and varying concentrations of particles in the gas have an influence on the quality of the result within wide ranges. For example, it is possible with the LDS 6 to determine trace concentrations of NH₃, HCl or HF directly in moist process gases even before any gas purification stage.

These features together with fast measurements free of dead times mean that diode laser gas analysis with the LDS 6 or the SITRANS SL is an extremely interesting alternative to established extractive analyses.

In situ O2 gas analyzer

Overview

SITRANS SL

SITRANS SL is a diode laser gas analyzer with a measuring principle based on the specific light absorption of different gas components. SITRANS SL is suitable for fast, non-contact measurement of gas concentrations in process or flue gases. An analyzer consisting of transmitter and receiver units (sensors) is used for each measuring point. The hardware for further processing of the measured signal into a concentration value, as well as the monitoring, control and communication functions, are integrated in these two main modules. The sensors are designed for operation under harsh environmental conditions.

Benefits

The in-situ SITRANS SL gas analyzer features high operational availability, unique analytical selectivity, and a wide range of possible applications. SITRANS SL permits measurement of a gas component directly in the process:

- With high dust load
- · In hot, humid, corrosive, explosive, or toxic gases
- In applications showing strong varying gas compositions
- Under harsh environmental conditions at the measuring point
- · Highly selective, i.e. mostly without cross-sensitivities
- Special features of the SITRANS SL:
- · Little installation effort
- Minimum maintenance requirements
- Extremely rugged design
- High long-term stability through built-in, maintenance-free reference gas cell
- Real-time measurements

Moreover, the analyzer provides warning and error messages:

- When maintenance is required
 - With large variations in the reference signal
 - With poor signal quality
- If the transmission violates an upper or lower limit

Application

Applications

- Control of combustion processes
- Process optimization
- Plant and operator safety
- Process measurements in all types of power and combustion plants
- Process control
- Explosion protection
- · Measurements in corrosive and toxic gases
- Quality control

Sectors

- · Chemical and petrochemical plants
- Power plants
- Waste incinerators
- · Iron and steel industry

In situ O2 gas analyzer

Design

The SITRANS SL gas analyzer consists of a pair of cross-duct sensors, a transmitter unit and a detector unit, both with the same dimensions. The complete analyzer is integrated in these two enclosures. The transmitter unit contains the laser source whose light is transmitted to the receiver through the measurement path. The detector unit contains a photodetector including electronics as well as a reference cell. The detector unit is connected to the transmitter unit by means of a sensor cable. A further cable on the receiver is used to connect the power supply and the communication interfaces. The receiver enclosure contains a local user interface (LUI) with an LC display which can be read through a window in the cover. The LUI is operated by remote-control.

Transmitter and detector units

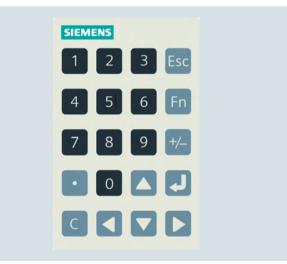
Special features of the transmitter and detector units:

- In-situ cross-duct sensors, designed as transmitter and detector units, connected via sensor cable
- · Powder-coated aluminium; stainless steel
- Degree of protection IP65
- Adjustable process connection plates
- Flange sizes (provided by customer): DN50/PN25, ANSI 4"/ 150 lbs
- Purging gas connections (see "Purging")
- Optional: Explosion-protected version in accordance with
 Ex II 2G Ex de op is IIC T6 Ex II 2D Ex tD A21 IP65 T85°C

SITRANS SL, detector unit

Parts in contact with the process gas

Only the stainless steel flange of the sensor with borosilicate window and FFKM seal comes in contact with the process gas. This has optional connections for purging the process gas side with an appropriate gaseous medium.


Display and control panel

Special features of the detector unit:

- Display for simultaneous output of result and device status
- LED backlighting of display
- Remote control with infrared interface for simplified configuration and operation for safe implementation in hazardous areas
- Menu-driven operation for parameterization and diagnostics

Local user interface (LUI) of SITRANS SL in the detector unit (display of measured value)

Remote control keypad for SITRANS SL

Connection cables

SITRANS SL is supplied as standard without connecting cables. These must be provided by the customer or are available as accessories. Exception: The standard ATEX version is supplied with pre-installed cabling.

The sensor cable connects together the transmitter and detector units of the analyzer.

The sensor connecting cable available as a cable set for the ATEX version as standard, and for non-Ex applications optionally, is offered in lengths of 5, 10 or 25 m. This (optional) cable set also enables permanent installation of an Ethernet cable used for service and maintenance purposes.

A rugged cable sleeve should be used as UV protection for installations in open cable ducts or channel systems.

The statutory directives must be observed in the event of installation in hazardous areas.

For the ATEX version of SITRANS SL, the sensor connecting cable must be connected between the two Ex-e terminal boxes secured on the transmitter and receiver units.

Note:

NOTICE:

In situ continuous process gas analysis SITRANS SL

In contrast to the other interfaces, the Ethernet plug-in connector

on standard non-Ex devices is only accessible following removal of the detector unit cover. With the help of the sensor cable set

(optional with non-Ex devices), an Ethernet cable can be permanently installed via the terminal box of the sensor connecting ca-

ble. The Ethernet connection via the sensor cable can also only

In an Ex environment, Ethernet connections may only be made

be used for temporary service and maintenance purposes.

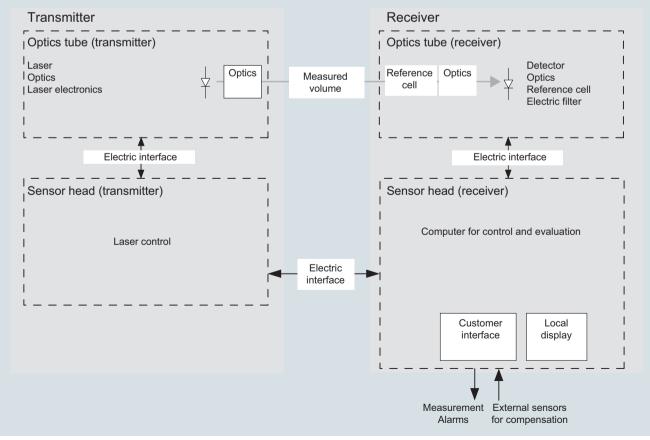
or removed with the permission of the plant operator!

In situ O2 gas analyzer

Inputs/outputs

- 2 analog inputs (4 to 20 mA) for process gas temperature and pressure
- 2 analog outputs (4 to 20 mA) for gas concentration or for concentration and transmission
- 1 configurable digital input
- 2 configurable digital outputs (display of faults, maintenance requirement, function monitoring, alarms for limit violations of measured value or transmission)
- 1 Ethernet 10Base-TX port, only for servicing and maintenance

Optional

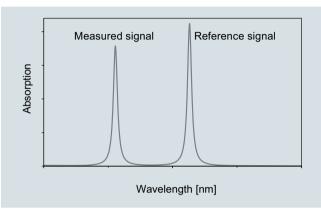

- 1 Modbus interface with
 - Output of concentration as cyclic data
- Alarm output, alarm classification
- Input for temperature and/or pressure data for compensation
- 1 PROFIBUS DP interface with:
 - Output of concentration as cyclic data
 - Alarm output, alarm classification
 - Input for temperature and/or pressure data for compensation

The PROFIBUS DP protocol provides DPV0, cyclic data. Measured values are provided with additional quality data.

Function

Operating principle

SITRANS SL is a gas analyzer employing single-line molecular absorption spectroscopy. A diode laser emits a beam of infrared light which passes through the process gas and is received by a detector unit. The wavelength of the laser diode output is tuned to a gas-specific absorption line. The laser continuously scans this single absorption line with a very high spectral resolution. The degree of absorption and the line shape are used for the evaluation.



Basic design of the SITRANS SL

In situ O2 gas analyzer

The field design of the SITRANS SL in-situ gas analyzer consists of a transmitter unit and a detector unit. The light which is not absorbed by the sample is detected in the receiver. The concentration of the gas component is determined from the absorption.

The SITRANS SL analyzer measures a single gas component by means of the absorption capacity of a single fully resolved molecular absorption line.

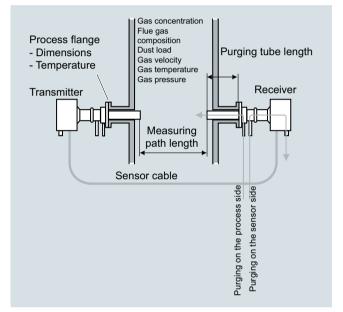
Absorption spectrum of measured signal and reference signal with SITRANS SL

SITRANS SL is designed for measuring oxygen (O_2) with high sensitivity.

Typical application specifications:

Oxygen concentration	0 100 vol %
Process pressure/temperature conditions (with O_2 application)	700 5 000 hPa (absolute)/ 0 200 °C
	900 1 100 hPa (absolute)/ 0 600 °C

The measuring performance of the SITRANS SL depends, among others, on the actual, individual process conditions with regard to concentration ranges, pressure and temperature.


An internal reference cell is used to constantly check the stability of the spectrometer.

The self-calibration of the analyzer is therefore valid for one year without the need for external recalibration using calibration gases.

Configuration

A feature of the in-situ analytical procedure is that the physical measurement takes place directly in the stream of process gas and directly in the actual process gas line. All process parameters such as gas matrix, pressure, temperature, moisture, dust load, flow velocity and mounting orientation can influence the measuring properties of the SITRANS SL and must therefore be investigated for each new application.

The standard applications listed in the ordering data for the SITRANS SL are distinguished in that the typical process conditions are adequately well-known and documented. If you cannot find your application among the standard applications, please contact Siemens. We will be pleased to check your possible individual application of the SITRANS SL. You can find an application questionnaire on the website for the SITRANS SL: http://www.siemens.com/insituquestionnaire

Typical cross-duct arrangement of the SITRANS SL

The SITRANS SL can be optionally purged on the process side using appropriate purging gases to prevent contamination of the sensor optics on the process side. Purging tubes on the sensor heads, which slightly extend into the process gas stream, define the effective measuring path length.

Influences on the measurement

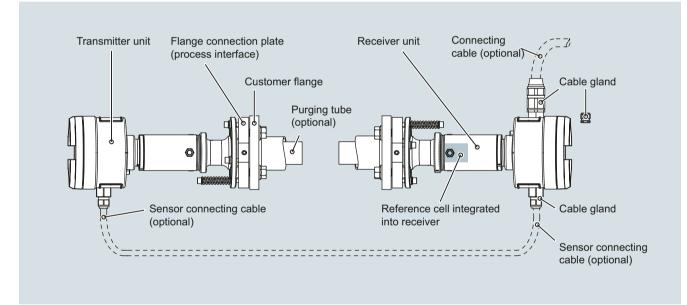
Dust load

As long as the laser beam is able to generate a suitable detector signal, the dust load in the process gas does not influence the analytical result. By applying a dynamic background correction, measurements can be carried out without any negative impact. Under optimal conditions, the SITRANS SL can cope with dust loads up to 20 g/Nm³ and up to a measured path length of 8 m. The influence of a high dust load is extremely complex, and depends on the optical path length and particle size. The optical attenuation increases exponentially at longer path lengths. Smaller particles also have a very large influence on the optical attenuation. With high dust load, long path length and small particle size, the technical support at Siemens should be consulted.

Temperature

The influence of temperature on the absorption line is compensated by a correction file. A temperature signal can be fed into the instrument from an external temperature sensor. The signal is then used for mathematical correction of the influence of the temperature on the concentration strength. If the process gas temperature remains constant, a static correction can be carried out as an alternative. Without temperature compensation, the relative error caused by changes in the gas temperature has an extensive effect on the measurement (e.g. up to 0.24 %/K with the O_2 application). An external temperature signal is therefore recommended in most cases.

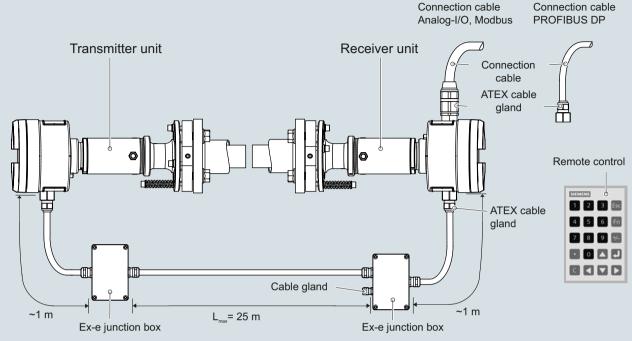
Pressure

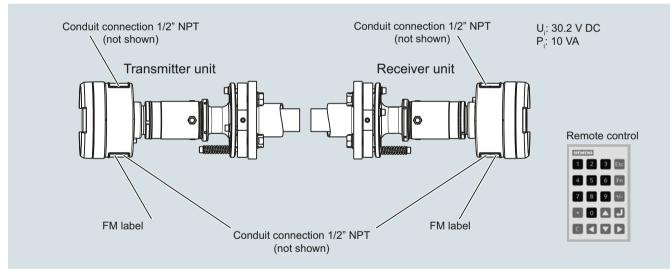

In addition to the temperature signal, an external pressure signal can be fed to the instrument to provide complete mathematical compensation for the pressure influence including the density effect. Without compensation, the relative error caused by changes in the process gas pressure is approx. 0.1 %/hPa. An external pressure signal is therefore recommended in most cases.

Effective optical path length

As a result of Beer-Lambert's law, the absorption of laser light depends on the optical path length within the sample gas. Therefore the precision of the effective optical path length measurement can have an effect on the precision of the total measurement.

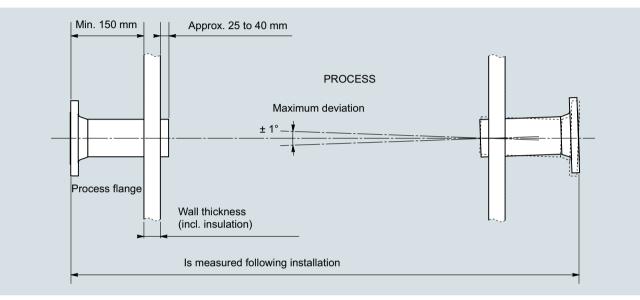
Since the sensor optics on the process side usually has to be purged to keep it clean for a longer period, the extent of the mixed zone between the purging medium and the process gas as well as the latter's concentration distribution must be considered. In a typical in-situ installation with an optical path length of several meters, the influence of the purging gas on the effective path length can be ignored.


The maximum possible path length and dust load mutually affect each other: the higher the dust load in the process, the shorter the max. possible path length.


Design of the SITRANS SL system in non-Ex version

Siemens AP 01 · 2018

Design of the SITRANS SL system in ATEX version

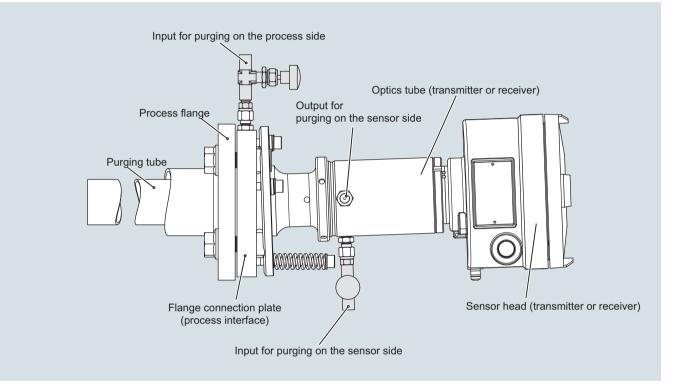


Design of the SITRANS SL system in FM version

The transmitter and detector units are mounted on process flanges provided by the customer. Correct alignment of these flanges must be guaranteed, e.g. by using the optional sensor alignment kit.

Adjustment of the pair of sensors

The flange connection plates (process interface) of the SITRANS SL to the process flanges on the customer side must be correctly aligned so that the laser beam generated by the transmitter hits the photodetector in the detector unit This is guaranteed in that the transmitter and detector units have a curved surface integrated in the connection plates. The adjustment is carried out by shifting the flanges on these surfaces, through which the symmetry axis is aligned. The axis can be offset by ± 1 degree, which means that the process flanges must be welded onto the process wall with at least this accuracy - see following figure.


Installation/adjustment requirements for the pair of cross-duct sensors

In situ O2 gas analyzer

Purging

The easiest way to avoid condensation and dust deposits on the sensor windows or excessively high thermal load of the windows and the sealing material as well as the sensor electronics is to purge them (with O_2 application: nitrogen). Purging must be selected depending on the application. The transmitted-light sensors can therefore be configured for the respective situation. The application reference table provides recommendations for suitable purging for the standard applications.

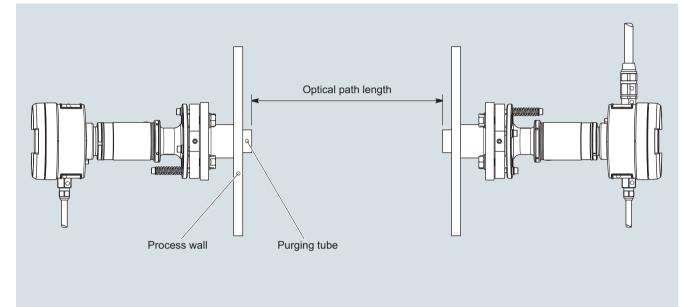
If oxygen is to be measured with the SITRANS SL - which is also present in measurable quantities in the ambient air - oxygen-free purging gases must be used, such as nitrogen. It is equally necessary to purge the inside of the sensor heads, since the ambient air must also be displaced here out of the laser beam path. A differentiation is therefore made between purging on the process side and purging on the sensor side.

Arrangement for purging on the sensor side of the SITRANS SL

Purging on process side

For purging on the process side, the flow of purging gas can be adjusted between 0 and approx. 50 l/min at each sensor head using a needle valve (included in delivery).

Purging on sensor side


This can be combined with the purging on the process side, if required. Purging with nitrogen on the sensor side is almost always necessary for O_2 applications to avoid an offset caused by the oxygen of the air present in the unit. The cells in the sensor head are then continuously purged with nitrogen. Particularly when (re)starting the SITRANS SL O_2 , a sufficiently high flow of purging gas of approx. 3 to 5 l/min must be provided for several minutes to ensure that all residues of oxygen are removed. The flow of sensor purging gas can subsequently be set to a lower value using the needle valve (included in delivery).

Note:

With purging on the process side, it may be necessary to use non-return valves to ensure no process gas can enter the purging gas line in the event of failure of the purging gas supply. This applies especially in the case of cascaded process and sensor purging where there is otherwise the danger that, for example, corrosive process gases could enter the sensor enclosure.

Purging tubes

The purging media used on the process side flow through purging tubes into the process gas stream. The tubes extend into the process area by a few centimeters, usually perpendicular to the process gas stream. This means that an exactly defined optical path length is defined through the sample gas. The effective measuring path in the process gas is therefore defined as the distance between the ends of the two purging tubes. The standard length of the purging tubes is 340 mm. To achieve sufficient calibration of the transmitter and receiver, the process wall should be max. 150 mm thick.

Measurement of the optical path length between the ends of the purging gas tubes

Maintenance and fault messages

The SITRANS SL carries out continuous self-monitoring, and outputs alarms and warnings to indicate maintenance requirements or a system fault. The information is output as plain text on the LUI display, where symbols identify the category and the severity of the fault.

Alarm categories:

- Maintenance (system must be cleaned or repaired)
- Process value (problem with external sensor, or process conditions outside the permissible range for SITRANS SL)
- Configuration (SITRANS SL is not correctly configured)
 Severity:
- Fault (measurements could not be carried out)
- Warning (measurements may be inaccurate, or the system will soon shut down measuring mode if an intervention is not made)
- Advanced warning/information (measurements are carried out)

The two binary (relay) outputs can be configured freely for the alarm output.

The response of the analog outputs in the event of an alarm is configurable; possible actions are:

- Off (current measured value is displayed)
- Last measured value (freezing of last value displayed)
- Standard level (setting to predefined value)
- 3 mA (NAMUR NE43 fault status)

In addition, the transmission is available as an output variable.

Note

Specific requirements for the measuring point can make the utilization of special sensor equipment necessary. The possibilities for adapting the sensors are:

- Special materials for purging tubes (on request)
- · Various types/sizes of sensor flanges
- · Explosion-protected sensor configurations

Essential characteristics

- Long-term stabilization by using an internal reference cell; for calibration interval of at least one year
- Dynamic background correction for varying dust loads
- Isolated signal outputs of 4 to 20 mA
- User-friendly, menu-driven operation
- Selectable time constants (response time)
- Password-protected user interface
- I/O operation in accordance with NAMUR recommendations
- Monitoring of overall optical transmission
- · Sensor enclosure resistant to wear and corrosion
- Simple local operation using remote-control unit with numeric keypad and menu prompting

In situ O2 gas analyzer

Standard applications

The following table lists the measuring conditions for standard applications. The listed values for the measuring range and detection limit are only approximate values. The exact values at the respective measuring point depend on the totality of all influencing variables and can be determined by Siemens for the specific

case. Note that the values for the detection limit and the maximum measuring range are based on a path length of 1 m. Longer path lengths will improve the detection limit, but not linearly. This is due to limiting effects such as dust load. The maximum applicable measuring ranges can only be used if permitted by the process conditions such as dust load.

Standard application Effective optical path length: 0.3 8 m Dust load ²⁾ : < 50 g/Nm ³		Process gas temperature T _{min} T _{max}	pressure p _{min} p _{max}	suring range (with 1 m eff. opt. path	Max. measuring range (also dependent on eff. opt. path length: see fol- lowing column)	suring range x path length	DL x path length (under standard conditions ¹⁾ without cross- interference of other gases)		Purging gas medium	
Sample gas component	Gas code	Appl. code								
02	А	В	0 600 °C	900 1 100 hPa	0 1 vol%	0 100 vol%	75 vol%*m	200 ppmv*m	2%	N ₂
0 ₂	А	С	0 200 °C	700 5 000 hPa	0 1 vol%	0 100 vol%	75 vol%*m	200 ppmv*m	2%	N ₂

Reference table: Standard applications. The specified pressures are absolute.

DL = detection limit

The specification applies at 20 °C and 1013 hPa in a nitrogen atmosphere. In rare cases, a deviating process gas matrix or process conditions can have a negative effect on performance. Contact Siemens to determine the exact performance under your process conditions. 2)

With 0.3 m effective optical path length

Average diameter of the dust particles: 15 µm Specific weight of the dust particles: 650 kg/m³ The influence of dust load is extremely complex and depends on the path length and particle size. The optical attenuation increases exponentially at longer path lengths. Smaller particles also have a very large influence on the optical attenuation. With high dust load, long path length and small particle size, the technical support at Siemens should be consulted.

³⁾ Based on measuring range. With stable or externally measured and software-compensated process gas temperature and pressure conditions

Special applications

In addition to the standard applications, special applications are available upon request. If the process conditions deviate from the specifications of the standard applications, special applications are also possible on request.

· Complete the application questionnaire which can be found on the Internet at

http://www.siemens.com/insituquestionnaire:

Anian (Insention: A manual and a manual
Bender Resistance
Researcher and PATE Microsofter Researcher and PATE Micro
weeks (b) E following parents: Destinguished and an theory (4.5, dos Starama, 1993) 200 propring starsproam (mark and the stars) (2.5, Contexpo, (5.6, London) (2.6, Lond

In situ O2 gas analyzer

Technical specifications

Analytical performance	
Measuring range	Internally adjustable
Detection limit at standardized condi- tions:	O ₂ : 200 ppmv
25 °C gas temperature, 1 000 hPa, 1 m effective optical path length, 3 s integration time and constant ambi- ent conditions.	
Linearity (under standard conditions)	Better than 1%
Repeatability (under standard condi- tions)	O_2 : 1% of the measuring range
General information	
Design	Transmitter and detector units, con- nected by a sensor cable
Materials	 Sensor enclosure: Treated alumi- num/stainless steel (1.4305/303) Process interface: Acid-resistant stainless steel (1.4404/316L) Window: hardened borosilicate glass Compressible gaskets: FKM, FF, EPDM (holder for reference cell) Flat gaskets: Graphite
Parts wetted by the process gases	 Purging tubes, flanges, window ring, process purging: acid-resis- tant stainless steel Window: Borosilicate Gasket in window: FFKM Flat gasket between customer flange and process flange: Graphite
Installation	In-situ or bypass
Concentration units	ppm, vol.%, mg/Nm ³
Display	Digital concentration display (4 digits with floating decimal point)
Laser protection class	Class 1, safe to the eye
Explosion protection	Optionally, according to • ATEX II 2G Ex de op is IIC T6 ATEX II 2D Ex tD A21 IP65 T85 °C • FM Class I, II, III Div 1 Groups A, B, C, D, E, F, G T6 FM Class II, Zn 1, AEx d IIC T6 FM Class II, Zn 21, AEx td T85 °C • XP Class I, II, III Div 1 Groups C, D T6 Ta = 55 °C; DIP Class II, III Div 1 Groups E, F, G T6 Ta = 55 °C; Class I, Zn 1, Ex d IIC T6 Ta = 55 °C; Zn 21, Ex tD T85 °C Ta = 55 °C
Design, enclosure	
Degree of protection	IP65 according to EN 60529
Purging tube	Length: 340 mmOuter diameter: 48 mmInside diameter: 44 mm
Purging tube	Length, outer diameter, inner diame- ter: 340, 48, 44 mm
Weights • Detector unit • Transmitter unit • Process interface	6.0 kg 5.2 kg
- for DN50/PN25 - for ANSI4''/150 lbs	5.3 kg Approx. 12 kg
Connection dimension customer	DN 50/PN 25, DN 50/PN 40 or

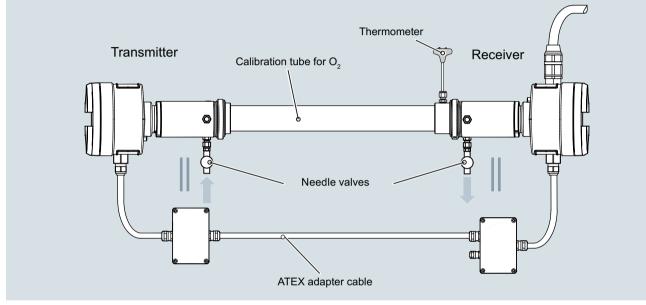
Electrical characteristics	
Electrical characteristics	24 \/ DC pominal (19 - 30.2 \/ DC)
Auxiliary power	24 V DC nominal (18 30.2 V DC)
Power consumption, maximum EMC	10 VA In accordance with EN 61326-1
Electrical safety	In accordance with EN 61010-1
Fuse specifications	T1.6L250V
	11.022300
Dynamic performance	
Warm-up time at 20 °C ambient tem- perature	Approx. 15 min
Response time (T90)	Approx. 2 s, depends on application
Integration time	0 100 s, selectable
Influencing variables	
Variations in ambient temperature	< 0.5%/10 K of the measuring range
Process gas temperature	With compensation: < 1%/100 K of the measuring range
Variations in atmospheric pressure	Negligible
Process gas pressure	O ₂ : With compensation: < 1%/ 4 000 hPa of the measuring range
Variations in supply voltage	Negligible
Electrical inputs and outputs	
Number of measurement channels	1
Analog outputs	2 outputs, 4 20 mA, floating, ohmic resistance max. 660 Ω . External isolating power supplies may have to be provided by the customer.
Analog inputs	2 inputs, designed for 4 20 mA, 120 Ω
Digital outputs	2 outputs, with switchover contacts, configurable, 24 V/0.5 A, floating, sin gle pole double throw (SPDT)
Digital input	1 input, designed for 24 V, floating, configurable
Service port	Ethernet 10BaseT (RJ-45)
RS 485 PROFIBUS DPV0 version	Two-wire interface, up to 3 Mbps, - 7 12 V
RS 485 Modbus version	Two-wire interface, up to 115 200 bit/ s, -7 \ldots 12 V
Connection cable to customer inter- face	Not included in standard delivery, permanently installed for ATEX or optional for standard
Analog connection cable (only supplied cables may be used for ATEX configuration!)	10 x 2, with shielding in twisted-pair configuration (depending on type and number of I/Os used)
PROFIBUS DP connection cable (with ATEX configuration: only sup- plied cables may be used!)	1 x 2 + 4 (PROFIBUS DP hybrid cable)
Modbus connection cable (with ATEX configuration: only sup- plied cables may be used!)	1 x 2 + 3, with shielding in twisted- pair configuration
Cable length for ATEX configuration	3 m
	Min. 0.34 mm ²
Conductor cross-section	
Conductor cross-section Cable diameter	8 12 mm or 13 18 mm

In situ O2 gas analyzer

Sensor cable	Not included in standard delivery,
	permanently installed for ATEX or optional for standard
Sensor cable type configuration	4 x 2, with shielding, in twisted-pair configuration
Conductor cross-section	Min. 0.34 mm ²
Cable sheath	PUR (polyurethane)
Dimensions	Diameter: 11 mmLength: up to 25 m
Minimum bending radius	ATEX: 85 mm
Climatic conditions	
Ambient temperature range	 Note The display on the receiver side must not be exposed to direct solar radiation. -20 +55 °C during operation (additional solar radiation not permissible!) -40 +70 °C during transport and storage
Temperature range on the sensor side of the process interface (connection plate)	-20 +70 °C
Atmospheric pressure	800 1100 hPa (for ATEX and FM version)
Humidity	< 100% rel. humidity
Measuring conditions	
Measurement path	0.3 8 m (other lengths: please contact Siemens)
Process gas pressure, temperature	• O ₂ : 900 1 100 hPa, 0 600 °C • O ₂ : 700 5 000 hPa, 0 200 °C
Dust load	The influence of a high dust load is complex, and depends on the optical path length and particle size distribution.
Purging	
Purging gas • Quality • Dew point	Nitrogen (for O_2 applications) O_2 application: Purity better than 99.7% in order to achieve full perfor- mance. For oxygen measurements, an O_2 content < 0.01 vol.% in the purging gas is recommended. < -10 °C, condensation on the optics
	must be avoided
Sensor purgingMax. overpressure in the sensorPurging gas temperature on sensor side	500 hPa 0 +55 ℃
• Flow	O ₂ application: When commissioning a sensor enclosure previously filled with air: 3 5 l/min (for at least 15 min), subsequently: at least 0.25 l/ min
Purging on the process side (optional) • Pressure at purging gas inlet • Flow	2 000 8 000 hPa Dependent on process gas pressure, process gas velocity, dust load, mois- ture, etc. up to max. 50 l/min

Accessories

SITRANS SL sensor alignment kit


The SITRANS SL sensor alignment kit includes a battery-operated lamp, a centering aid with cross-hairs and two hook spanners for loosening the sensors from the flange connection plates.

Please note:

The SITRANS SL sensor alignment kit is not explosion-protected! Therefore it must never be used in a hazardous area without approval by the plant operator!

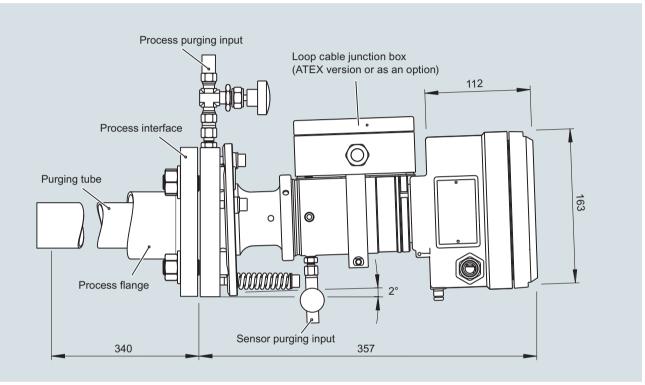
Calibration test kit

The SITRANS SL has already been factory-calibrated. If it is desirable or necessary to check the calibration, this can be performed using an external calibration test kit following removal of the transmitter and detector units. This procedure has no influence on the optical adjustment of the unit since the flange connection plates remain mounted on the customer flange. The calibration test kit for O₂ consists of a stainless steel calibration tube and a thermometer. To carry out the calibration, it is mounted between the transmitter and receiver. The calibration tube for O₂ can then be filled with air or a calibration gas.

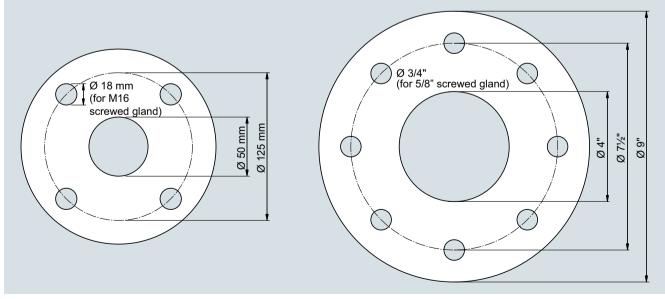
Calibration validation setup of SITRANS SL O2

Additional accessories

You can find more accessories and spare parts in our PIA Life Cycle Portal product selector: http://www.pia-portal.automation.siemens.com


In situ O2 gas analyzer

Dimensional drawings


Note

The SITRANS SL sensors must be accessible from the side. A space of at least 60 cm must be provided next to the SITRANS SL transmitter and detector units in order to facilitate maintenance and servicing.

To fulfill the safety requirements, a clearance of at least 10 cm must be provided around the SITRANS SL to maintain cooling.

SITRANS SL, transmitter/detector unit (same housing for DN50/PN25 process interface version), dimensions in mm

Connection dimensions of process flanges provided by customer DN50/PN25 and ANSI 4"/150 lbs

In situ O2 gas analyzer

Circuit diagrams

Electrical connections

Non-hazardous area version connection cable - customer interface

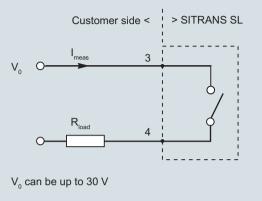
Terminal bl	lock in the receiver enclosure	Function/voltage	Ethernet cable
1	+	Power supply	
2	-	- 19 30.2 V, 10 VA ¹⁾	
3	Normally closed under power ⁴⁾	Digital output 0 (relay) 30 V, 0.5 A ³⁾	
1		30 V, 0.5 A ³⁾	
5	Normally closed under power ⁴⁾	Digital output 1 (relay)	
6		30 V, 0.5 A ³⁾	
7	+	Digital input 0	
3	-	- 0 30 V ²⁾	
9	+	Analog output 0 (measurement)	
10	-	- 30 V, 24 mA ³⁾	
11	+	Analog output 1 (measurement)	
12	-	- 30 V, 24 mA ³⁾	
13	PROFIBUS A line (RxD/TxD_N - data inverted) Modbus D1 (RxD/TxD_N - data inverted)	RS 485 (PROFIBUS/Modbus)	
14	PROFIBUS B line (RxD/TxD_P - data not inverted) Modbus D0 (RxD/TxD_P - data not inverted)	-7 +12 V DC	
15	PROFIBUS/Modbus shield	-	
6	T _x +	Ethernet ⁵⁾	White/orange
17	T _x -	-	Orange
18	R _x +	-	White/green
19	R _x -	-	Green
20	+	Analog input 0 (temperature)	
21	-	-0 3Ŏ mĂ ²⁾ , 120 Ω΄	
22	+	Analog input 1 (pressure)	
23	-	-0 3Ŏ mĂ ²⁾ , 120 Ω	
24		Grounding	
25		Grounding	
Ground		Grounding	
Ground		Grounding	Shielding

1) This is the maximum power consumption of the SITRANS SL

²⁾ These are the maximum input values

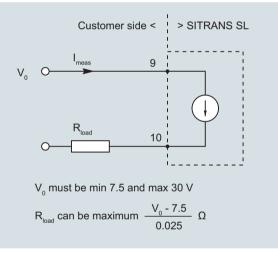
³⁾ These are the maximum output values

4) Note:
 "Normal operation" stands for normal operation of the analyzer. The system is connected to the voltage source and is running without problems; no error message generated or displayed.
 "Normal under power" refers to the status of the relay under the above-named normal operation. The relay contact of the alarm signal is closed.


We recommend that the Ethernet connection is not made via the cable to the Ethernet terminals in the detector unit. Instead, the Ethernet connection should be made via the sensor cable connection set which is optionally available for the detector unit.

In situ O2 gas analyzer

Examples of digital output and analog output


Caution

Please note that an external isolating power supply may be required!

 $R_{_{load}}$ must be at least 60 Ω (max. 0.5 mA in relay)

Example of digital output 0

Example of an analog output 0

Sensor cable terminal box on the receiver side (ATEX version)

Terminal str	ip in terminal box	Function	Color code
1	+	24 V DC voltage supply	Red
2	-	for transmitter unit	Blue
3	Com +	Communication with trans-	Pink
4	Com -	- mitter	Gray
5	Sync +	Synchronization with trans-	White
6	Sync -	- mitter	Brown
7	NC	Not used	-
8	Tx+	Ethernet	Gray/pink
9	Tx-	_	Red/blue
10	Rx+	_	Black
11	Rx-		Violet
PE terminal	-	Grounding	Green
PE terminal		Grounding	Yellow
Gland		Grounding	Shielding

In situ O2 gas analyzer

Only others and and arises date		Autiala Na			
Selection and ordering data			Article No.		
SITRANS SL in-situ gas analy		/MB6221-		Cannot be combined	
	ne online configuration in the PIA Life Cycle Portal.				
Explosion protection ¹⁾					
Without			0	0	
Ex II 2 G Ex de op is IIC T6 Ex II 2 D Ex tD A21 IP65 T85°C			1		
FM USA:			2	2 2	
XP Class I, II, III Div 1 Groups / DIP Class II, III DIV 1 Group EFC	A, B, C, D T6 Ta = 55°C F Ta = 55°C				
Class I, Zn 1, AEx d IIC T6 Ta =	55°C				
Zn 21, AEx tD T85°C Ta = 55°C FM Canada:					
XP Class I, II, III Div 1 Groups C	2, D T6 Ta = 55°C				
DIP Class II,III DIV 1 Group EFC Class I, Zn 1, Ex d IIC T6 Ta =5					
Class II, III Zn 21, Ex t IIIC T85°					
Measured component					
O ₂			A	A	
Application examples ²⁾					
Control of combustion processe	es		В	В	
Process control, safety monitori	ing in appropriate plant concepts		С		
Communication interface					
2x analog I/O, 1x DI, 2x DO			0		
PROFIBUS DP			1		
Modbus			2		
Purging tubes, material	Length				
No purging tubes			0		
Stainless steel	340 mm		1		
Purging: Process side	Purging: Sensor side				
No purging	No purging		0		
No purging	3 5 l/min		1		
0 50 l/min	No purging		2	2	
0 50 l/min	3 5 l/min		3		
Process connection ³⁾					
Stainless steel flange (1.4404/3 connection dimensions ANSI 4	16L), '/150 lbs, MAWP (PS) at 20 °C: 232 psi		В		
Stainless steel flange (1.4404/3	16L),		с		
	PN25, MAWP (PS) at 20 °C: 2.5 MPa				
Stainless steel flange (1.4404/3 connection dimensions DN50/P	206L), 2N40, MAWP (PS) at 20 °C: 4.0 MPa		E	E	
Without process connection			x		
Sensor cable					
With brass bushing					
• 5 m			A	A A	
• 10 m			В	ВВ	
• 25 m			С	C C	
With stainless steel gland					
• 5 m • 10 m			DE	D D E E	
• 10 m • 25 m			F	F F	
Without cable			x		
Documentation language			^		
German			o		
English			1		
French			2		
Spanish			3		
Italian			4		

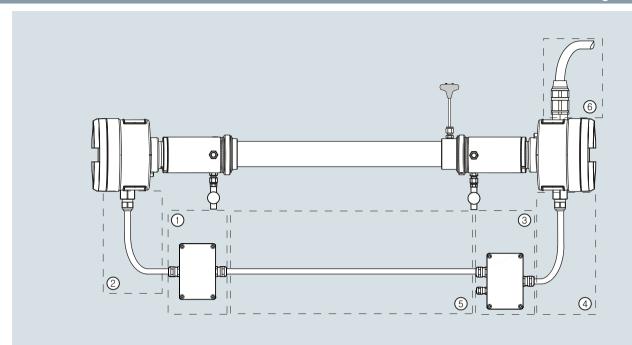
¹⁾ Complete and consistent implementation of the safety concept by the plant operator must be ensured during the commissioning and operation of the in-situ laser spectrometer SITRANS SL in hazardous atmospheres.

²⁾ The examples shown represent possible applications where appropriately configured SITRANS SL solutions can be used. The user is responsible for the prevailing conditions (plant concept (possibly redundant), application of appropriate components required in addition, compliance with possible directives, etc.).

³⁾ MAWP: Maximum Allowable Working Pressure.

In situ O2 gas analyzer

Selection and ordering data		
Additional versions	Order code	
Add "-Z" to Article No. and specify Order code		
Acceptance test certificate 3.1 (leak test) in accordance with EN 10204	C12 ¹⁾	
Acceptance test certificate 3.1 (material certificate) in accordance with EN 10204	C13 ¹⁾	
SIL 1 conformity declaration in accordance with standards IEC 61508/IEC 61511 (for the measured component oxygen in combination with analog interfaces)	C20 ¹⁾	
TAG label, customized inscription	Y30	

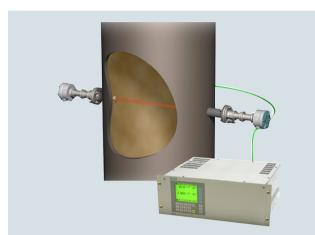

¹⁾ Together with explosion protection as per FM, on request

Additional units and spare parts	Article No.	Item no. (see graphic o page 2/21)
Additional units		
SITRANS SL, calibration test kit O ₂ ,	A5E01000694	
SITRANS SL, sensor alignment kit	A5E01000740	
SITRANS SL, connection box Ex-e for 25-pin connecting cable	A5E01267567	
SITRANS SL, connecting cable set analog (for non-Ex)	A5E03328474	
SITRANS SL, connecting cable set PROFIBUS DP (for non-Ex)	A5E03328473	
SITRANS SL, UV protective hose for outdoor use, ND = 48 mm per 30 m length	A5E01714061	
SITRANS SL, sensor cable set (non-Ex) with cable glands of nickel-plated brass, length: 5 m	A5E02509347	3+4+5
SITRANS SL, sensor cable set (non-Ex) with cable glands of nickel-plated brass, length: 10 m	A5E02528048	3+4+5
SITRANS SL, sensor cable set (non-Ex) with cable glands of nickel-plated brass, length: 25 m	A5E02528052	3+4+5
Spare parts		
SITRANS SL, process connection plate (1 unit) for customer flange size: DN 50/PN 10 40 including seal	A5E01009881	
SITRANS SL, gasket for DN 50/PN 10 40	A5E02522036	
SITRANS SL, process connection plate (1 unit) for customer flange size: ANSI 4*/150 lbs including seal	A5E01009883	
SITRANS SL, gasket for ANSI 4"/150 lbs	A5E02789535	
SITRANS SL, purging tube 340 mm incl. seal for DN 50/PN 10 40	A5E01009892	
SITRANS SL, window cover for detector unit	A5E01009897	
SITRANS SL, cover for transmitter unit	A5E02568437	
SITRANS SL, connecting cable for analog and Modbus (ATEX), cable gland of nickel-plated brass, for devices delivered after October 2009 (Version 1.1)	A5E02608597	6
SITRANS SL, connecting cable for analog and Modbus (ATEX), cable gland of stainless steel	A5E34834297	6
SITRANS SL, connecting cable for PROFIBUS DP (ATEX), cable gland of nickel-plated brass	A5E02608594	6
SITRANS SL, cable for transmitter (ATEX), cable gland of nickel-plated brass	A5E44678580	2
SITRANS SL, cable for detector (ATEX), cable gland of nickel-plated brass	A5E44678567	4
SITRANS SL, connecting cable for PROFIBUS DP (ATEX), cable gland of stainless steel	A5E34834296	6
SITRANS SL, connecting cable for transmitter (ATEX), cable gland of stainless steel	A5E34830928	2
SITRANS SL, connecting cable for detector (ATEX), cable gland of stainless steel	A5E34831050	4
SITRANS SL, terminal box and connecting cable for transmitter (ATEX), cable gland of stainless steel	A5E34831075	1
SITRANS SL, terminal box (ATEX), cable gland brass, nickel-plated	A5E02091532	1
SITRANS SL, terminal box and connecting cable for transmitter (ATEX), cable gland of nickel-plated brass	A5E02568463	1+2
SITRANS SL, sensor cable 5 m	A5E02571180	5
SITRANS SL, sensor cable 10 m	A5E02571184	5
SITRANS SL, sensor cable 25 m	A5E02571186	5
SITRANS SL, terminal box and connecting cable for detector (ATEX), cable gland of stainless steel	A5E34831078	3
SITRANS SL, terminal box and connecting cable for detector (ATEX), cable gland of nickel-plated brass	A5E02568465	3+4
SITRANS SL, cable gland for non-ex cables	A5E02568457	
SITRANS SL, screw cap	A5E01010033	
SITRANS SL, printed-circuit board for detector with LUI (Version 1.1)	A5E31503119	
SITRANS SL, remote control IS, CSA, FM, ATEX certifications	A5E02091214	
SITRANS SL, assembly kit for needle valve	A5E02569944	
SITRANS SL, assembly kit restrictor for sensor purging	A5E02183375	

Additional accessories

You can find more accessories and spare parts in our PIA Life Cycle Portal product selector: http://www.pia-portal.automation.siemens.com

In situ O2 gas analyzer


SITRANS SL spare parts, item numbers

Documentation

More information

The complete documentation is available in various languages for downloading free of charge: http://www.siemens.com/processanalytics/documentation

Overview

LDS 6, typical installation with transmitted-light sensors

LDS 6 is a diode laser gas analyzer with a measuring principle based on the specific light absorption of different gas components. LDS 6 is suitable for fast and non-contact measurement of gas concentrations in process or flue gases. One or two signals from up to three measuring points are processed simultaneously by the central analyzer unit. The in-situ cross-duct sensors at each measuring point can be separated up to 700 m from the central unit by using fiber-optic cables. The sensors are designed for operation under harsh environmental conditions and contain a minimum of electrical components.

Benefits

The in-situ gas analyzer LDS 6 is characterized by a high availability and unique analytical selectivity, and is optimally suitable for numerous applications. LDS 6 enables the measurement of one or two gas components or - if desired - the gas temperature directly in the process:

- · With high dust load
- In hot, humid, corrosive, explosive, or toxic gases
- In applications showing strong varying gas compositions
- · Under harsh environmental conditions at the measuring point
- · Highly selective, i.e. mostly without cross-sensitivities

LDS 6 properties:

- Little installation effort
- Minimum maintenance requirements
- Extremely rugged design
- High long-term stability through built-in, maintenance-free reference gas cell, field calibration is unnecessary
- Real-time measurements

Moreover, the instrument provides warning and failure messages upon:

- Need for maintenance
 - Erroneous reference function
 - Bad signal quality
- Violation of a lower or upper alarm level for the measured variable
- Transmitted amount of light violating an upper or lower limit

Application

Applications

- Process optimization
- Continuous emission monitoring for all kinds of fuels (oil, gas, coal, and others)
- Process measurements in power utilities and any kind of incinerator
- Process control
- Explosion protection
- · Measurements in corrosive and toxic gases
- Quality control
- Environmental protection
- · Plant and operator safety

Sectors

- Power plants
- Steel works
- Cement industry
- Chemical and petrochemical plants
- Automotive industry
- · Waste incinerators
- · Glass and ceramics production
- · Research and development
- Semiconductor and computer chip production

Special applications

In addition to the standard applications, special applications are available upon request. These contain both an expansion of the temperature and pressure range, as well as an expansion of the concentration measuring range. Furthermore, other gas species can be measured using special application.

In situ continuous process gas analysis LDS 6

General information

Design

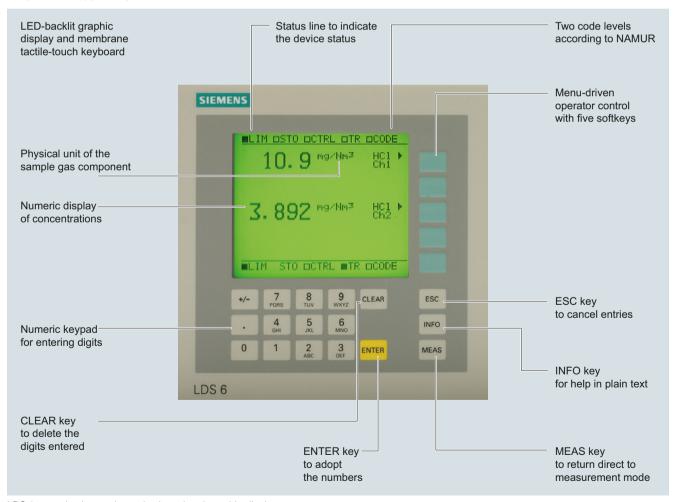
The gas analyzer LDS 6 consists of a central unit and up to three in-situ sensors. The connection between the central unit and the sensors is established by a so-called hybrid cable, which contains optical fibers and copper wires. An additional cable connects the transmitter and receiver parts of the cross-duct sensor.

Central unit

The central unit is housed in a 19" rack unit housing with 4 fixing points for mounting

- · in a hinged frame
- · in racks with or without telescopic rails

Display and operator panel


- Large LCD field for simultaneous display of measurement result and device status
- · Contrast of the LCD field is adjustable via the menu
- LED background illumination of the display with energysaving function
- · Easy-to-clean membrane touch pad with softkeys
- Menu-driven operation for parameterization and diagnostics
- Operation support in plain text

Inputs and outputs

- One to three measurement channels with hybrid connections for the sensors at the measuring points
- 2 analog inputs per channel for process gas temperature and pressure
- 2 analog outputs per channel for gas concentration(s). For selected versions, the transmission can be read out as an alternative.
- 6 freely configurable digital inputs per channel for signaling faults or maintenance requests from external temperature or pressure transducers or sensor purging failure.
- 6 freely configurable digital outputs per channel (signaling of fault, maintenance requirements, function control, transmission limit alarm, concentration limit alarm, store analog output)

Communication

Network connection: Ethernet (T-Base-10) for remote diagnostics and maintenance.

LDS 6 central unit, membrane keyboard and graphic display

In situ continuous process gas analysis LDS 6

Cross-duct sensors

Sensor CD 6, transmitter or detector unit

- In-situ cross-duct sensors, configured as transmitter and detector unit, connected via sensor cable
- Connection to the LDS 6 central unit via a so-called hybrid cable of max. 700 m length (total hybrid and sensor connecting cable length: max. 250 m in Ex Zone 0 and Ex Zone 1)
- · Stainless steel, some painted aluminum
- IP65 degree of protection for sensor
- Adjustable flanges with flange connection
- DN 65/PN 6, ANSI 4"/150 lbs
- Optional flameproof window flanges with dimensions: DN 65/ PN 6, DN 80/PN 16, ANSI 4"/150 lbs, other process interfaces available on request
- Purging facilities on the process and the sensor sides, configurable application with purging gas connections for:
 - Instrument air
 - Purging air blower
 - Steam
 - Nitrogen
 - Process gases to which the pressure equipment directive cat. 2 does not apply
- In combination with high-pressure window flanges, purging can be performed at the process end with instrument air or nitrogen
- Quick release fasteners for cleaning the measurement openings and the sensor window
- Optional: Version with explosion protection in accordance with ATEX / IEC Ex ia
- Sensor type CD 6 is compliant with the pressure equipment directive

Parts in contact with the process gas

The sensors normally do not come into contact with the process gas, since purging with a gaseous media is applied at the process side. Stainless steel purging gas tubes in front of the sensor windows are immersed slightly into the process gas and thus limit the purging volume. Special materials such as Hastelloy and plastics (PP) are available on request.

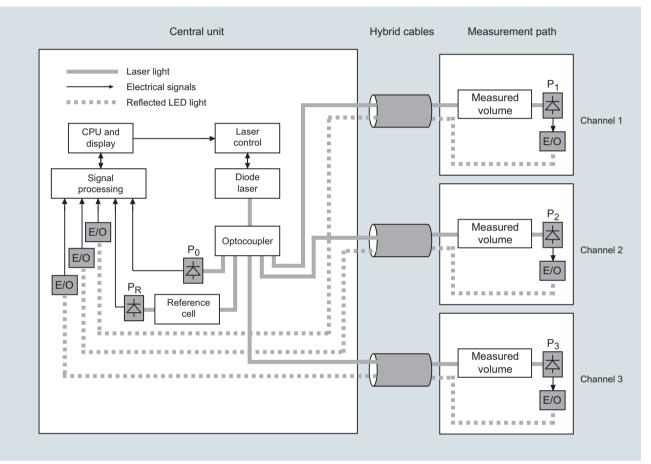
Hybrid and sensor cables

A combination of fiber-optic cables and twisted copper wires connects the sensors to the central unit. The hybrid cable connects the central unit with the detector unit of the sensor, the sensor cable connects the transmitter and receiver units of the sensor.

For installation in Ex-protected environments, the legislative regulations have to be complied with, such as the spatial separation of intrinsically-safe from non-intrinsically-safe cables.

In compliance with standard EN IEC 60079-14, systems with intrinsically-safe circuits must be installed such that their intrinsic safety is not impaired by electric or magnetic fields. Therefore the hybrid and sensor cables of the LDS 6 in an Ex application must be routed in such a way that they cannot generate electric or magnetic fields, e.g. by coiling them in more than one cable loop. To guarantee a good signal quality and to avoid impermissible inductance loops, the hybrid and sensor cables should be kept as short as possible.

- The distance between central unit and measuring point can be
 - up to 250 m for Ex units when used in Zone 0 and Zone 1 (total hybrid and sensor connecting cable length)
- up to 700 m for Ex units used in Zone 2 and for non-Ex units
 Hybrid and sensor cables
 - Multimode fiber-optic cable, provided with SMA connections for transmission of the measured signal
 - Two-wire copper cable, in twisted pair version, for +24 V supply of the detector electronics (+12 V in the case of Exsuitable instruments)
- Additionally for the hybrid cable:
 Single-mode fiber-optic cable, configured double-sided with E2000 connectors for transmission of laser light
- Rugged cable sheath for laying in open cable ducts or ductworks
- Sheath material: oil-resistant polyurethane

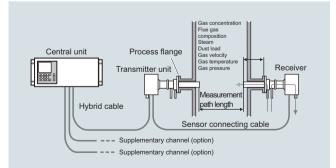

Connections of the hybrid cable

General information

Function

Operating principle

LDS 6 is a gas analyzer employing single-line molecular absorption spectroscopy. A diode laser emits a beam of near-infrared light, which passes through the process gas and is detected by a receiver unit. The wavelength of the laser diode output is tuned to a gas-specific absorption line. The laser continuously scans this single absorption line with a very high spectral resolution. The result is a fully resolved single molecular line which is analyzed in terms of absorption strength and line shape. The influence of cross-sensitivities on the measurement is negligible, since the quasi-monochromatic laser light is absorbed very selectively by only one specific molecular line in the scanned spectral range.

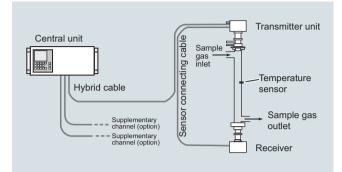


Basic design of the LDS 6

Configuration examples:

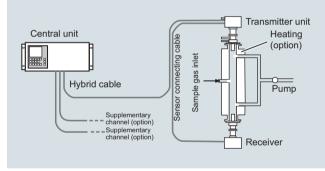
A feature of the in-situ analytical procedure is that the physical measurement takes place directly in the stream of process gas, and usually also directly in the actual process gas line. All process parameters such as gas matrix, pressure, temperature, moisture, dust load, flow velocity and mounting orientation can influence the measuring properties of the LDS 6 and must therefore be systematically investigated for each new application.

A feature of the standard applications defined in the ordering data of the LDS 6 is that the typical process conditions are wellknown, documented, and the guaranteed measuring properties can be proven by reference installations. If you cannot find your application among the standard applications, please contact Siemens. We will be pleased to check your possible individual application of the LDS 6. You can find an application questionnaire on the LDS 6 product pages on the Internet: www.siemens.com/insituguestionnaire


Typical transmitted light setup of LDS 6, in-situ

To avoid contamination of sensor optics on the process side, clean gaseous purging media such as instrument air, N_2 or steam are used. Purging air tubes on the sensor heads, which slightly penetrate into the process gas stream, define the effective measuring path length.

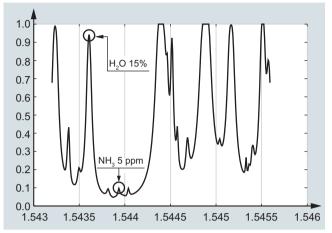
In situ continuous process gas analysis LDS 6


General information

The LDS 6 can measure in both the transverse and longitudinal directions of the process gas flow. In certain cases, the process conditions make it necessary to condition the sample gas stream in a bypass line with respect to process temperature, pressure and/or optical path length. Further treatment of the process gas, such as drying or dust precipitation, is usually unnecessary.

Typical transmitted light setup of LDS 6, in bypass

A flow cell is available by special application for the LDS 6 which has been specially optimized for use with the LDS 6 and its transmitted-light sensors with respect to handling and measuring performance. It is designed to reduce surface effects, and is therefore also highly suitable for polar gases like ammonia. This flow cell is available in heated and non-heated versions. Wheel mounted and wall mounted versions are available.



Measuring configuration of LDS 6 with heated flow cell

General information

LDS 6 is connected to the measuring points by fiber optics. The laser light is guided by a single-mode fiber from the central unit to the transmitter unit of the in-situ sensor. The sensor consists of a transmitter and a receiver; the distance between them defines the measurement path. In the receiver box, the light is focused onto a suitable detector. The detector signal is then converted into an optical signal and transmitted via a second optical fiber to the central unit, where the concentration of the gas component is determined from the detected absorption signal.

LDS 6 usually measures a single gas component by means of the absorption capacity of a single fully resolved molecular absorption line. The absorption results from conversion of the radiation energy of the laser light into the internal energy of the molecule. In some specific cases, two components can be measured simultaneously if their absorption lines are so close to each other that they can be detected within the laser spectrum by one single scan (for example water (H_2O) and ammonia (NH_3)).

Absorption spectra of water and ammonia

Typical measurable gases for LDS 6 are:

- Oxygen (O₂) for low pressure range
- Hydrogen fluoride (HF) + water
- Hydrogen chloride (HCI) + water
- Ammonia (NH₃) + water
- Water vapor (H₂O)
- Carbon monoxide (CO)
- Carbon dioxide (CO₂)
- $CO + CO_2$

By using an internal reference cell normally filled with the gas measured, the stability of the spectrometer is permanently checked in a reference channel.

By doing so, the continuous validity of the calibration is ensured without the need to carry out external recalibration using bottled calibration gases or reference gas cells.

Typical spectral bandwidth of an absorption line compared to the bandwidth of the laser light.

In situ continuous process gas analysis LDS 6

General information

Influences on the measurement

Dust load

As long as the laser beam is able to generate a suitable detector signal, the dust load of the process gases does not influence the analytical result. By applying a dynamic background correction, measurements can be carried out without any negative impact. Under good conditions, particle densities up to 100 g/Nm³ (distance 1 m) can be handled by the LDS 6. Varying dust loads are compensated by scanning the laser over the gas absorption line and the current background.

The effect of a high dust load is complex and depends on the path length and particle size. The optical damping increases at longer path lengths. Smaller particles also have a very large influence on the optical attenuation. With a combination of high dust load, long path length and small particle size, the technical support at Siemens should be consulted.

Temperature

The effect of temperature on the absorption strength of the molecule line is compensated by a correction factor. A temperature signal can be fed into an analog instrument from an external temperature sensor. This signal is then used to correct the influence of the temperature on the observed line strength. If the temperature of the sample gas remains constant, it is alternatively possible to carry out a static correction using a preset value. At high process gas temperatures, generally from approximately

A thigh process gas temperatures, generally norm approximately 1 000 °C, there may be noticeable broadband IR radiation of gas and dust, or flames may occasionally occur in the measurement path. An additional optical bandpass filter for an LDS 6 measuring O₂ can be set upstream of the detector to protect it and prevent saturation by the strong background radiation.

Pressure

The effect of pressure on the absorption line, and consequently on the measured concentration, is compensated with a correction factor. The gas pressure can affect the line shape of the molecular absorption line. An analog pressure signal can be sent to the device from an external pressure sensor to fully compensate for the effect of the pressure including the density effect.

Optical path length

The absorption values analyzed by the LDS 6 are typically small. According to the Lambert-Beer law, the absorption of laser light depends on the optical path length within the gas, among other factors. Therefore, the precision in determining the effective optical path length in the process might limit the overall precision of the measurement.

As the sensor optics on the process side normally need to be purged to keep them clean over a long period of time, the thickness of the mixing zone between the purging medium and the process gas and its concentration distribution need to be considered. In a typical in-situ installation directly in the line and with some meters of path, the influence of the purging gas on the effective path length can be neglected.

Path length and dust load are mutually influencing: the higher the dust load in the process, the shorter the max. possible path length. For short path lengths in the range ≤ 0.3 m, contact Siemens Technical Support.

Maintenance and fault messages

LDS 6 outputs different warnings via relays:

- Need for maintenance (measured value is not influenced)
- Operating error (measured value might be influenced)

Note

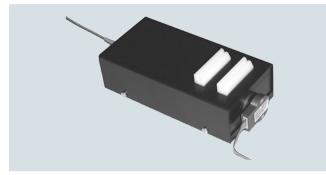
Individual requirements for the measuring point can make the utilization of special sensor equipment necessary. The possibilities for adapting the sensors are:

- Different purging media, such as instrument air, ambient air, nitrogen or steam
- Different purging modes on process and sensor sides
- Special materials of purging tubes and/or sensor flanges
- · Cooling or heating of the sensors
- · Explosion-protected sensor configurations

Essential characteristics

- Integrated calibration adjustment with an internal reference cell
- Negligible long-term drifts of zero and span
- Dynamic background correction for varying dust loads
- Isolated signal outputs, 4 to 20 mA
- User-friendly, menu-driven operation
- Selectable time constants (response time)
- Two user levels with individual access codes for prevention of unwanted and unauthorized operations
- Operation according to NAMUR recommendations
- · Monitoring of overall optical transmission
- Remote preventive maintenance and servicing via Ethernet/ modem
- Straightforward replacement of the central unit, since connections can easily be removed
- · Sensor and central unit housing free of wear and corrosion
- Easy operation with a numerical keypad and menu prompting

Certified versions for emission monitoring


The LDS 6 is available as certified instrument for emission monitoring of NH₃, NH₃/H₂O, H₂O, HCI, HCI/H₂O. The certificates are issued by TÜV for Germany and MCERTS for the United Kingdom. Test kits for ammonia, water and HCI should be used to conduct regular calibration and linearity checks on site. These kits can be ordered separately as instrument accessories. For new analyzer orders, the NH₃, NH₃/H₂O and H₂O kits named "Version 2" must be ordered. For analyzers already installed, contact Siemens Technical Support. for spotting the correct kit version, or consult the instrument manual.

2

Verification of calibration

Assembly with certified, maintenance-free calibration gas cell with connections for laser fiber-optic conductors and detector module of cross-duct sensor. These are used to rapidly verify the factory calibration in the field without compressed gas bottles or flow cell.

Calibration test kits are available for the following sample gases: O_2 , NH_3 , CO, CO_2 , CO/CO_2 . A "Zero gas test kit" is also available for individual applications (see Additional units).

Example of an assembly for verification of calibration

In situ continuous process gas analysis LDS 6

19" central unit

Technical specifications

Analytical performance		Electrical characteristics	
Measuring range	Depending on sample gas compo- nent: See table for standard applica- tions.	Power supply	100 240 V AC 50 60 Hz, auto- matically adapted by the system; with a 3-channel central unit, an additional external power supply +24 V DC, 50
Detection limit (DL): Calculated in accordance with	Depending on sample gas compo- nent: see table for standard applica- tions.		VA is included in the scope of delivery
VDI 2449, measured on every sup- plied analyzer during the temperature		Power consumption	50 W
test (between 5 45 °C) in accor- dance with VDI 4203.	accordance with the requirements of 17th and 27th BImSchV	EMC	According to EN 61326 and standard classification of NAMUR NE21
Smallest recommended measuring range (with 1 m path length)	Depending on sample gas compo- teresting of the standard applica-	Electrical safety	According to EN 61010-1, overvolt- age classification II
	tions.	Fuse specifications	100 240 V: T2.5L250V
The maximum applicable measuring ranges can be found in the table of		Time response	
standard combinations. These can only be applied if the individual pro- cess conditions allow it. Please con-		Warm-up time at 20 °C ambient tem- perature	Approx. 15 min
tact the Technical Support from		Response time	Min. of 1 s, depending on application
Siemens for checking the applicabil- ity.		Integration time	1 100 s, adjustable
Accuracy ¹⁾	2% / 5%, depending on sample gas	Influencing variables	
,	component and application letter. At	Ambient temperature	< 0.5%/10 K of the measured value
	best: detection limit. See table for standard applications.	Atmospheric pressure	Negligible
	For application letter ET and FT: in	Process gas pressure compensation	Recommended
	accordance with the requirements of 17th and 27th BImSchV	Process gas temperature compensa- tion	Recommended
Linearity	Better than 1%	Process gas pressure range	See table for standard applications
Repeatability	2% of the measured value or same amount as the detection limit (which- ever is larger) For application letter ET and FT: in	Power supply changes	< 1%/30 V
		Electrical inputs and outputs	
		Number of measurement channels	1 3, optional
	accordance with the requirements of 17th and 27th BImSchV	Analog output	2 per channel, 4 20 mA, floating, ohmic resistance max. 750 Ω
Calibration interval	No recalibration required thanks to internal reference cell	Analog inputs	2 per channel, designed for 4 20 mA, 50 Ω
General information	N/ 10/ 10/ 3	Digital outputs	6 per channel, with changeover con-
Concentration units Display	ppmv, Vol%, mg/Nm ³ Digital concentration display (5 digits		tacts, configurable, 24 V AC/DC/1 A, floating
	with floating decimal point)	Digital inputs	6 per channel, designed for 24 V, floating, configurable
Laser protection class	Class 1, safe to the eye	Communication interface	Ethernet 10BaseT (RJ-45)
Certificates	CE marking, TÜV, MCERTS		
Design, enclosure		Climatic conditions	E 45 °C during approxime 40
Degree of protection	IP20 according to EN 60529	Temperature range	5 45 °C during operation, -40 +70 °C during storage and transpor-
Dimensions	177 x 440 x 380 mm		tation
Weight	Approx. 13 kg	Atmospheric pressure	800 1 200 hPa
Mounting	Horizontal	Humidity	< 85% relative humidity, above dew point (in operation and storage)
		1)	

 $^{1)}\;$ The accuracy corresponds to intrinsic uncertainty according to IEC 61207 for 7MB6121-xKD00-0xxx.

In situ continuous process gas analysis LDS 6

19" central unit

Selection and ordering data		Article No.		
LDS 6 in-situ gas analyzer		7MB6121-	D 	Cannot be
19" rack unit for installation in cabinets	e configuration in the PIA Life Cycle Portal.			combined
Explosion protection ¹⁾	e configuration in the FIA Life Cycle Fortal.			
Without, not suitable for connection to Ex Without, suitable for connection to Ex s with II 1 G Ex ia op is IIC T4 Ga, II 1 D	ensors in accordance	0 1		111
Measured component	Possible with application code of the respective channel			
O ₂	B, C	A		
NH ₃ NH ₃ /H ₂ O	A, E, F, L, T A, E, F, L, T	C D		
HCI	А, Н, Т	E		
HCI/H ₂ O HF	А, Н, Т	F		
HF/H2O	A, H A, H	G H		
CO	C	J		
CO/CO ₂	D	к		
CO ₂ H ₂ O	А А, Т	L		
Application code of	Application examples channel 1 ¹⁾	-		
measured component channel 1				
A B	Emission monitoring, non-certified Combustion optimization	A B		
С	Safety monitoring with appropriate plant concept	с		
D	Process control	D		
E	SNCR-DeNOx SCR-DeNOx	E		
н	Filter optimization	н		
L	Automotive, for use according EU regulation No. 595/2009/EC from June 18, 2009 (EURO VI)	L		
Т	Emission measurement, device design in accordance with QAL1 certification acc. to EN 14181 and EN 15267. Notice: Only in combination with measuring component version C, D, M, E and F (NH3, NH ₃ /H ₂ O, H ₂ O, HCI, HCI/H ₂ O).	T		Т
CD 6, sensor alignment kit With		0		
Without		1		
Application code of measured component channel 2	Application examples channel 2 ¹⁾			
X	Channel 2 not used		X	
A B	Emission monitoring, non-certified Combustion optimization		A B	
С	Safety monitoring with appropriate plant concept		с	
D	Process control		D	
E F	SNCR-DeNOx SCR-DeNOx		E F	
н	Filter optimization		н	
L	Automotive, for use according EU regulation No. 595/2009/EC from June 18, 2009 (EURO VI)		L	
Т	Emission measurement, device design in accordance with QAL1 certification acc. to EN 14181 and EN 15267. Notice: Only in combination with measuring component version C, D, M, E and F (NH3, NH ₃ /H ₂ O, H ₂ O, HCI, HCI/ H ₂ O).		т	Ť
1)				

¹⁾ Complete and consistent implementation of the safety concept by the plant operator must be ensured during the commissioning and operation of the in-situ laser spectrometer LDS6 or the sensor CD 6 in hazardous atmospheres.

2) The examples shown represent possible applications where appropriately configured LDS 6 solutions can be used. The user is responsible for the prevailing conditions (plant concept (possibly redundant), application of appropriate components required in addition, compliance with possible directives, etc.). It is only possible to configure the same applications for multiple channels. If required, please contact Siemens for a special application (refer to page 2/41)

In situ continuous process gas analysis LDS 6

19" central unit

Selection and ordering data		Article No.	
LDS 6 in-situ gas analyzer 19" rack unit for installation in cabinets		7MB6121-	Cannot be combined
Application code of measured component channel 3	Application examples channel 3 ¹⁾ External 24 V DC power supply included in scope of delivery		
Х	Channel 3 not used	x	
A	Emission monitoring, non-certified	Α	
В	Combustion optimization	В	
С	Safety monitoring with appropriate plant concept	С	
D	Process control	D	
E	SNCR-DeNOx	E	
F	SCR-DeNOx	F	
Н	Filter optimization	н	
L	Automotive, for use according EU regulation No. 595/2009/EC from June 18, 2009 (EURO VI)	L	
т	Emission measurement, device design in accordance with QAL1 certification acc. to EN 14181 and EN 15267. Notice: Only in combination with measuring component version C, D, M, E and F (NH3, NH ₃ /H ₂ O, H ₂ O, HCI, HCI/ H ₂ O).	т	ł
Language (supplied documentation, German English French	software)	0 1 2	
Spanish Italian		3 4	

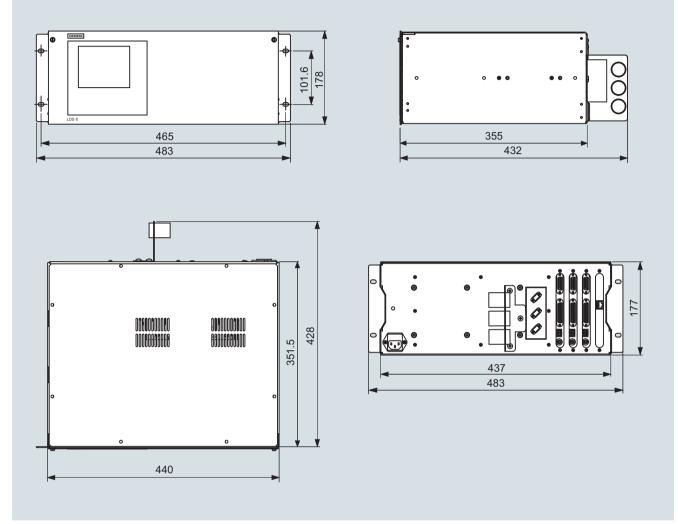
19" central unit

Selection and ordering data		
Additional versions	Order code	
Add "-Z" to Article No. and specify order codes.		
Telescopic rails (2 units)	A31	
Set of Torx tools	A32	
TAG label, customized inscription	Y30	
Additional units	Article No.	
LDS 6, optical bandpass filter for reducing infrarot background radiation (flame filter)	A5E00534668	
LDS 6, external power supply unit for 3 channels	A5E00854188	
LDS 6, linearity verification kit NH ₃ , Version 2	A5E01075594	
LDS 6, TÜV/MCERT linearity verification kit NH ₃ , Version 2; 2 cells	A5E00823339013	
LDS 6, TÜV/MCERT linearity verification kit NH ₃ /H ₂ O, Version 2; 3 cells	A5E00823339014	
LDS 6, TÜV/MCERT linearity verification kit $\rm H_2O$ (for $\rm H_2O$ single component analyzer), Version 2; 2 cells	A5E00823339015	
LDS 6, TÜV/MCERT linearity verification kit NH ₃ (version 1); 2 cells	A5E00534675	
LDS 6, TÜV/MCERT linearity verification kit NH ₃ /H ₂ O, Version 1; 3 cells	A5E00823339003	
LDS 6, TÜV/MCERT linearity verification kit H ₂ O, Version 1; 2 cells	A5E00823339004	
LDS 6, TÜV/MCERT linearity verification kit HCI; 2 cells	A5E00823339005	
LDS 6, TÜV/MCERT linearity verification kit H ₂ O; 3 cells	A5E00823339008	
LDS 6, TÜV/MCERT linearity verification kit H ₂ O, Version 1; 2 cells	A5E00823339009	
LDS 6, TÜV/MCERT linearity verification kit HCI; 2 cells	A5E00823339007	
LDS 6, TÜV/MCERT linearity verification kit H ₂ O; 3 cells	A5E00823339002	
LDS 6, TÜV/MCERT linearity verification kit H ₂ O (only for HCI/H ₂ O analyzers); 5 cells	A5E00823339012	
LDS 6, TÜV/MCERT linearity verification kit H_2O (only for NH_3/H_2O analyzers), Version 2; 5 cells	A5E00823339006	
LDS 6, TÜV/MCERT linearity verification kit HCI; 5 cells	A5E00823339001	
LDS 6, TÜV/MCERT linearity verification kit NH ₃ , Version 1; 5 cells	A5E00823339011	
LDS 6, linearity verification kit NH_3 , Version 2; 10 cells ²⁾	A5E03693426	
LDS 6, calibration test kit O2, Version 1	A5E01143755001	
LDS 6, calibration test kit CO Version 2	A5E01143755003	
LDS 6, calibration test kit CO ₂ , Version 2	A5E01143755004	
LDS 6, calibration test kit CO/CO ₂ , Version 2	A5E01143755006	

¹⁾ The examples shown represent possible applications where appropriately configured LDS 6 solutions can be used. The user is responsible for the prevailing conditions (plant design, possibly redundant, application of appropriate components required in addition, compliance with possible directives, etc.). It is only possible to configure the same applications for multiple channels. If needed, contact Siemens for a special application (refer to page 2/41).

²⁾ In combination with the CL/DL LDS 6 application, suitable for use to measure NH₃ according to the requirements of regulation 595/2009/EC "Implementing regulations on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (EURO VI)" from June 18, 2009 and its regulation for implementation of number 582/2011/EC from May 25, 2011 of the Commission of the European Union.

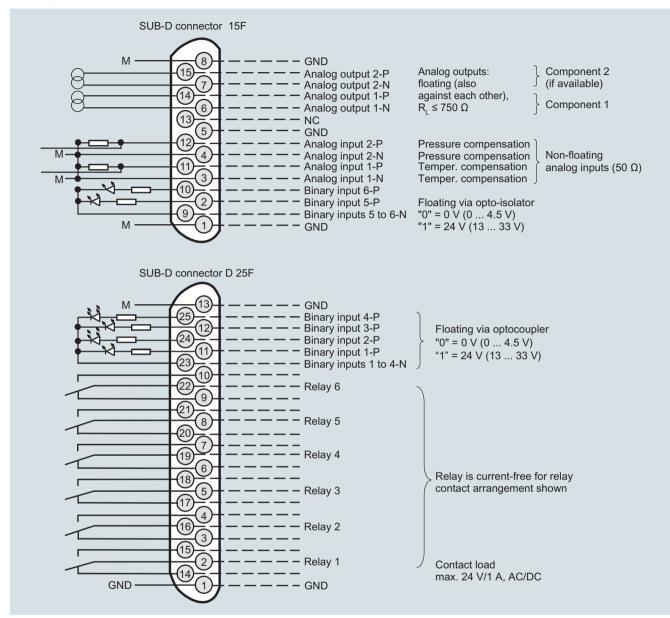
Additional accessories


You can find more accessories and spare parts in our PIA Life Cycle Portal product selector: http://www.pia-portal.automation.siemens.com

Update 07/2019

In situ continuous process gas analysis LDS 6

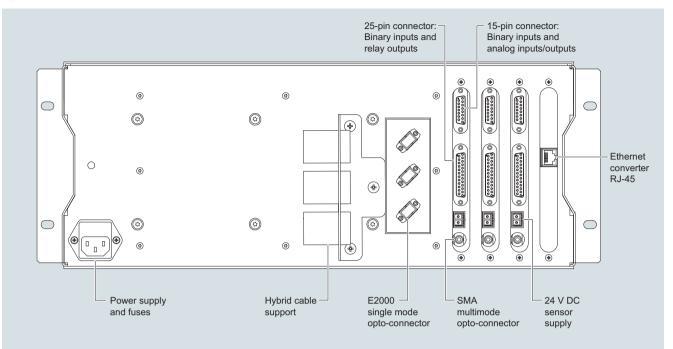
19" central unit


Dimensional drawings

LDS 6, 19" central unit, dimensions in mm

Circuit diagrams

Pin assignments



LDS 6, 19" central unit, pin assignments

In situ continuous process gas analysis LDS 6

19" central unit

Optical and electrical connections

LDS 6, three-channel 19" central unit, optical and electrical connections

More information

The following table lists the measuring conditions for standard applications. The listed values for the measuring range and detection limit (DL) are only approximate values. The exact values at the respective measuring point depend on the totality of all influencing variables and can be determined by Siemens for the specific case. Note that the values for the detection limit and the maximum measuring range are based on a path length of 1 m. Longer path lengths will improve the detection limit, but not linearly. This is due to restrictive effects such as dust load. The maximum applicable measuring ranges can only be used if permitted by the process conditions such as dust load.

In situ continuous process gas analysis LDS₆

19" central unit

Effecti	ard appl ve optic ength: 0. oad ²⁾ : /Nm ³	al	m	Process gas temperature T _{min} T _{max}	Process gas pressure p _{min} p _{max}	Min. measuring range (with 1 m eff. opt. path length)	Max. measuring range (also dependent on eff. opt. path length: see next column)	Max. measuring range x path length		interference	Accura- cy ³⁾
Gas 1	Gas 2	Gas code	Appl. code			Gas 1	Gas 1	Gas 1	Gas 1	Gas 1	Gas 1
0 ₂		А	С	0 600 °C	9501 050 hPa	0 5 vol%	0 100 vol%	75 vol%*m	0.1 vol%*m		2% ⁴⁾
NH ₃		С	A	0 150 °C	950 1 050 hPa	0 25 ppmv	0 500 ppmv	2 500 ppmv*m	0.5 ppmv*m	0.9 ppmv*m at 15 vol% H ₂ O, 55 °C	2%
			Т	0 150 °C	950 1 050 hPa	0 25 ppmv	0 500 ppmv	2 500 ppmv*m	0.5 ppmv*m	0.9 ppmv*m at 15 vol% H ₂ O, 55 °C	2%
			E	250 350 °C	950 1 050 hPa	0 45 ppmv	0 500 ppmv	2 500 ppmv*m	0.9 ppmv*m at 250 °C	1.4 ppmv*m at 15 vol% H ₂ O, 250 °C	2%
			F	300 400 °C	950 1 050 hPa	0 50 ppmv	0 500 ppmv	2 500 ppmv*m	1 ppmv*m at 300 °C	1.5 ppmv*m at 15 vol% H ₂ O, 300 °C	2%
			L ⁶⁾	0 400 °C ⁷⁾	920 1 120 hPa	0 15 ppmv	0 500 ppmv	2 500 ppmv*m	0.5 ppmv*m	1.4 ppmv*m at 15 vol% H ₂ O, 250 °C	2%
NH ₃	H ₂ O	D	A	0 150 °C	950 1 050 hPa	0 25 ppmv	0 100 ppmv	1 200 ppmv*m	0.5 ppmv*m	0.9 ppmv*m at 15 vol% H ₂ O, 55 °C	2%
			Т	0 150 °C	950 1 050 hPa	0 25 ppmv	0 100 ppmv	1 200 ppmv*m	0.5 ppmv*m	0.9 ppmv*m at 15 vol% H ₂ O, 55 °C	2%
			E	250 350 °C	950 1 050 hPa	0 45 ppmv	0 100 ppmv	1 200 ppmv*m	0.9 ppmv*m at 250 °C	1.4 ppmv*m at 15 vol% H ₂ O, 250 °C	2%
			F	300 400 °C	950 1 050 hPa	0 50 ppmv	0 100 ppmv	1 200 ppmv*m	1 ppmv*m at 300 °C	1.5 ppmv*m at 15 vol% H ₂ O, 300 °C	2%
			L ⁶⁾	0 400 °C ⁷⁾	920 1 120 hPa	0 15 ppmv	0 100 ppmv	1 200 ppmv*m	0.5 ppmv*m	1.4 ppmv*m at 15 vol% H ₂ O, 250 °C	2%
HCI		E	A	0 150 °C	950 1 050 hPa	0 30 ppmv	0 6 000 ppmv	1 200 ppmv*m	0.6 ppmv*m	2.2 ppmv*m at 15 % H ₂ O, 55 °C	5%
			Т	120 210 °C	950 1 050 hPa	0 10 ppmv	0 60 ppmv	720 ppmv*m			
			Н	150 250 °C	950 1 050 hPa	0 50 ppmv	0 6 000 ppmv	1 200 ppmv*m	1.0 ppmv*m At 150 °C	3.1 ppmv*m at 15 vol% H ₂ O, 150 °C	5%
нсі	H ₂ O	F	A	0 150 °C	950 1 050 hPa	0 30 ppmv	0 100 ppmv	1 200 ppmv*m	0.6 ppmv*m	2.2 ppmv*m at 15 % H ₂ O, 55 °C	5%
			Т	120 210 °C	950 1 050 hPa	0 10 ppmv	0 60 ppmv	720 ppmv*m			
			н	150 250 °C	950 1 050 hPa	0 50 ppmv	0 100 ppmv	1 200 ppmv*m	1.0 ppmv*m at 150 °C	3.1 ppmv*m at 15 vol% H ₂ O, 150 °C	5%

¹⁾ All technical specifications apply to an optical path distance of 1 m in a nitrogen atmosphere under standard conditions 25 °C (or T_{min}) and 1 013 hPa. The effective detection limit, the measuring range and the accuracy can be influenced by process parameters such as pressure, temperature and gas composition. Not all combinations of maximum pressure and temperature can be realized with the minimum measuring ranges. If the process conditions deviate from the specifications of the standard applications, special applications are also possible on request. Complete the application questionnaire which can be found on the Internet at http://www.siemens.com/insituquestionnaire .

2) With 0.3 m effective optical path length, average diameter of dust particles: 15 µm, specific weight of dust particles: 650 kg/m³

3) At least: Detection limit

4) Up to 200 °C, 5% above this

⁵⁾ Accuracy corresponds to intrinsic uncertainty acc. to IEC 61207: 2 % of MV (0 ... 200 °C); 2.5% of MV (0 ... 400 °C); at best 0.25 vol%*m.

⁶⁾ Suitable for use to measure NH₃ according to requirements of Directive 595/2009/EC "Implementing regulations on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (EURO VI)" from 18 June 2009 and its regulation for implementation of number 582/2011/EC from 25 May 2011 of the Commission of the European Union.

7) Device also able to operate above 400 °C to 1 000 °C. Due to decomposition of NH3 at higher temperatures, no specification can be given in these ranges.

											19" ce	entral unit
Effecti		al	m	Min. measuring range (with 1 m eff. opt. path length)	Max. measuring range (usually also dependent on eff. opt. path length: see next column)	Max. measur- ing range x path length	DL x path length (under stan- dard condi- tions ^{1) 2})	DL x path length (at 1 013 hPa with cross- interference from gas 1)	Accura- cy ⁴⁾	Purging ga	as mode	Purging gas medium
Gas 1	Gas 2	Gas code	Appl. code	Gas 2	Gas 2	Gas 2	Gas 2	Gas 2	Gas 2	Standard	Optional	
0 ₂		А	С							D	В	N ₂
NH ₃		С	А							С	G	Air
			Т							С	G	Air
			Е							E	G	Air
			F							E	G	Air
			L							С	D	Air
NH ₃	H ₂ O	D	А	0 5 vol%	0 30 vol%	240 vol%*m	0.1 vol%*m	0.1 vol%*m	5%	С	G	Air
			Т	0 5 vol%	0 30 vol%	240 vol%*m	0.1 vol%*m	0.1 vol%*m	5%	С	G	Air
			E	0 5 vol%	0 30 vol%	240 vol%*m	0.1 vol%*m at 250 °C	0.1 vol%*m at 250 °C	5%	E	G	Air
			F	0 5 vol%	0 30 vol%	240 vol%*m	0.1 vol%*m at 300 °C	0.1 vol%*m at 300 °C	5%	E	G	Air
			L	0 5 vol%	0 30 vol%	250 vol%*m	0.1 vol%*m at 250 °C	0.1 vol%*m at 250 °C	5%	С	D	Air
HCI		E	А							С	G	Air
			Т							С	G	Air
			н							E	G	Air
HCI	H ₂ O	F	А	0 5 vol%	0 30 vol%	360 vol%*m	0.1 vol%*m	0.1 vol%*m	5%	С	G	Air
			Т	0 5 vol%	0 30 vol%	360 vol%*m				С	G	Air
			н	0 5 vol%	0 30 vol%	360 vol%*m	0.1 vol%*m at 150 °C	0.1 vol%*m at 150 °C	5%	E	G	Air

¹⁾ At 20 °C, 1 013 hPa

²⁾ If the smallest permissible process gas temperature of application is $T_{min} > 20$ °C, the DL refers to T_{min} and standard pressure (1 013 hPa)

³⁾ At 0.3 m optical path length, average diameter of dust particles: 15 µm, specific weight of dust particles: 650 kg/m³

4) At least: Detection limit

⁵⁾ Accuracy corresponds to intrinsic uncertainty acc. to IEC 61207: 5% of MV; at best 0.5 vol%*m.

19" central unit

Effecti		al	m	Process gas temperature T _{min} T _{max}	Process gas pressure P _{min} P _{max}	Min. measuring range (with 1 m eff. opt. path length)	Max. measuring range (also dependent on eff. opt. path length: see next column)	Max. measuring range x path length	DL x path length (under stan- dard condi- tions ¹) without cross-interfer- ence from other gases)		Accura- cy ³⁾
Gas 1	Gas 2	Gas code	Appl. code			Gas 1	Gas 1	Gas 1	Gas 1	Gas 1	Gas 1
HF		G	A	0 150 °C	950 1 050 hPa	0 5 ppmv	0 1 500 ppmv	200 ppmv*m	0.1 ppmv*m	0.6 ppmv*m at 15 vol% H ₂ O, 55 °C	5%
			Н	150 250 °C	950 1 050 hPa	0 5 ppmv	0 1 500 ppmv	200 ppmv*m	0.11 ppmv*m at 150 °C	0.6 ppmv*m at 15 vol% H ₂ O, 150 °C	5%
HF	H ₂ O	Н	A	0 150 °C	950 1 050 hPa	0 5 ppmv	0 200 ppmv	200 ppmv*m	0.1 ppmv*m	0.6 ppmv*m at 15 vol% H ₂ O, 55 °C	5%
			Н	150 250 °C	950 1 050 hPa	0 5 ppmv	0 200 ppmv	200 ppmv*m	0.11 ppmv*m at 150 °C	0.6 ppmv*m at 15 vol% H ₂ O, 150 °C	5%
CO		J	С	0 600 °C	950 1 050 hPa	0 1.5 vol%	0 100 vol%	40 vol%*m	300 ppmv*m	1 000 ppmv* m at 50 vol% CO ₂ , 20 °C	2%
со	CO ₂	К	D	0 400 °C	8001 400 hPa	0 5 vol%	0 100 vol%	0 200 vol%* m	0.1 vol%*m	0.5 vol% at 50 vol% CO ₂ , 20 °C	2% ⁵⁾
CO ₂		L	А	0 150 °C	950 1 050 hPa	0 7.5 vol%	0 100 vol%	40 vol%*m	300 ppmv*m		2%
H ₂ O		М	А	0 150 °C	950 1 050 hPa	0 5 vol%	0 30 vol%	240 vol%*m	0.1 vol%*m		5%
			Т	0 150 °C	950 1 050 hPa	0 5 vol%	0 30 vol%	240 vol%*m	0.1 vol%*m		5%

¹⁾ All technical specifications apply to an optical path distance of 1 m in a nitrogen atmosphere under standard conditions 25 °C (or T_{min}) and 1 013 hPa. The effective detection limit, the measuring range and the accuracy can be influenced by process parameters such as pressure, temperature and gas composition. Not all combinations of maximum pressure and temperature can be realized with the minimum measuring ranges. If the process conditions deviate from the specifications of the standard applications, special applications are also possible on request. Complete the application questionnaire which can be found on the Internet at http://www.siemens.com/insituquestionnaire.

²⁾ With 0.3 m effective optical path length, average diameter of dust particles: 15 µm, specific weight of dust particles: 650 kg/m³

3) At least: Detection limit

4) Up to 200 °C, 5% above this

5) Accuracy corresponds to intrinsic uncertainty acc. to IEC 61207: 2 % of MV (0 ... 200 °C); 2.5% of MV (0 ... 400 °C); at best 0.25 vol%*m.

⁶⁾ Suitable for use to measure NH₃ according to requirements of Directive 595/2009/EC "Implementing regulations on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (EURO VI)" from 18 June 2009 and its regulation for implementation of number 582/2011/EC from 25 May 2011 of the Commission of the European Union.

⁷⁾ Device also able to operate above 400 °C to 1 000 °C. Due to decomposition of NH₃ at higher temperatures, no specification can be given in these ranges.

Oll control uni

											19" cei	ntral unit
Effecti		al		Min. measuring range (with 1 m eff. opt. path length)	Max. measuring range (usually also dependent on eff. opt. path length: see next column)	Max. measuring range x path length	DL x path length (under stan- dard condi- tions ^{1) 2})	DL x path length (at 1 013 hPa with cross- interference from gas 1)	Accura- cy ⁴⁾	Purging g	as mode	Purging gas medium
Gas 1	Gas 2	Gas code	Appl. code	Gas 2	Gas 2	Gas 2	Gas 2	Gas 2	Gas 2	Standard	Optional	
HF		G	А							С	G	Air
			н							E	G	Air
HF	H ₂ O	Н	А	0 5 vol%	0 30 vol%	360 vol%*m	0.1 vol%*m	0.1 vol%*m	5%	С	G	Air
			н	0 5 vol%	0 30 vol%	360 vol%*m	300 ppmv*m at 200 °C	300 ppmv*m at 200 °C	5%	E	G	Air
со		J	С							E	G	Air, N ₂
со	CO ₂	K	D	0 10 vol%	0 100 vol%	0 200 vol%*m	0.2 vol%*m	1 vol% at 50 vol% CO, 20 °C	5% ⁵⁾	С	G	Air
CO ₂		L	А							С	G	Air
H ₂ O		Μ	А							С	G	Air
			Т							С	G	Air

¹⁾ At 20 °C, 1 013 hPa

²⁾ If the smallest permissible process gas temperature of application is $T_{min} > 20$ °C, the DL refers to T_{min} and standard pressure (1 013 hPa)

³⁾ At 0.3 m optical path length, average diameter of dust particles: 15 μm, specific weight of dust particles: 650 kg/m³

4) At least: Detection limit

⁵⁾ Accuracy corresponds to intrinsic uncertainty acc. to IEC 61207: 5% of MV; at best 0.5 vol%*m.

Special applications

If the process conditions deviate from the specifications of the standard applications, special applications are also possible on request.

Complete the application questionnaire which can be found on the Internet at

http://www.siemens.com/insituquestionnaire:

SIEMENS	Fragebogen für in-situ Prozessanalyse
Kunde	
Kunde:	
Anlage / Prozesstyp: Kontakteerson	
Adresse:	
Bevorzugte Sprache:	
Tel	
Fax	
Enal	1
Sieness	
Standort / Repräsentant:	
Datum: Antrage-Nr:	
Name:	
Advesse:	
Tel	
Fax	
Email	1
Projekt Mr: Kontaktperson PA TS: Machbarkeit der Messung:	avfüllen durch FA Tö-Mitarbeitert
	en stauthelen und möglichst erschüterungsheien Ort aufgeste werkeinhalt und dem Messonalt d.b. den Sanzonen under 7
LOG Annerhungen Die Jertwarten (1016 sollte an ein werten, Die Schwartig zeisland) zu Umgebragsteingesten san, Instanzensteinit der M2 obh Aufendumtwartenful der M2 obh Aufendumtwartenful der M2 obh Aufendumtwarten Der stehen Die reteine Loffendher uns kleiner Beinnere mas geschen die 16 für Beinnere mas geschen die 16 für Beinner und stehen Clobert	In machine und might and exhibition-gardeen. Of adjusted measurement and ann basesured, 4 is not beneaux, solar 10 and 5 - 47 S. benegati, Bay Managara, and S. S. S. S. Sangara, David S. S. Sangara, David S. Sangara, S. S. Sangara,
LOGE Annechanzen Die Zwissennet Unig putte als die Mater nich Bestrahmte. Die Ungebergetengester zwissenen zu Ungebergetengester mate zwisch instatistationen die Seinseren mass au Aufenduntmessen. Derei Instein Persenwur vin Ordhoffberten und stellen Bestrahmt. 2. Konschlichten sons teilen Seinsen nus peisehen 20 – 55 °C Bestrahmt. 1. die Stellen zu die Bestrahmt. 2. 10°C aufersteilt.	are standardized and the set of the comparison of a neglectrat set of the se
1035 Anorestworm in software with werden. Die Enterhung zwischen 26 Mater nicht Gestahnten. Die Jahren nicht Gestahnten. Die Jahren der Steinen eines zu einstellenzent die Steinene nuss zu sein Instrumententio der IR 20 M Aufwirtungen und Können und der Bitmit SJ. Annerkknicht Bitmit SJ. Bitmit SJ. Bitmit SJ. Bitmit SJ. Bitm	In Reaching out insplation examples in Charlowski with a second s
1032 Answerhungen Stein Christian (1) 6 seite aus eine werden. Die Erförmung zeiteiten 25 installeiden der Steiner im seine seiter instrumenterfahren (2006) Freisenun von Eröffolgen um eines Freisenun von Eröffolgen, um eines Berner ister answerhungen Der erötet auf der Steiner Berner Berner ister answerhungen Der erötet auf der Steiner Berner	In minimum una majorial escription grantes. Or Aprilation in minimum contraction of the contraction of the contra- tion of the contraction of the contraction of the contra- tion of the contraction of the contraction of the contraction in the contraction of the contraction o
12.62 Annual Park (1997) and 1997 an	In minimum una majorial escription grantes. Or Aprilation in minimum contraction of the contraction of the contra- tion of the contraction of the contraction of the contra- tion of the contraction of the contraction of the contraction in the contraction of the contraction o

Cross-duct sensor CD 6

Overview

Cross-duct sensors CD 6 and cables for non-Ex applications

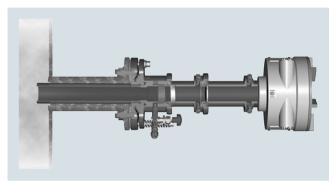
The standard cross-duct sensor consists of a transmitter unit and a detector unit with the same dimensions. The transmitter unit provides a connector for the fiber-optic cable. The laser light is transmitted through this cable. The receiver unit contains a photodetector and an electronics PCB, and is connected to the detector unit by a sensor cable.

The sensors are mounted onto flanges. The easiest way to avoid condensation and dust deposits on the sensor windows is to use a purging gas, e.g. with instrument air. Purging must be selected depending on the application. The cross-duct sensors can therefore be configured for the respective situation. The application reference table provides recommendations for suitable purging with standard applications.

If a component is to be measured which is also present in measurable quantities in the purging medium - such as oxygen or moisture - it is necessary to use purging gases such as nitrogen, superheated process steam or similar. In such cases it is usually also necessary to purge the sensor heads, since the ambient air must also be displaced here out of the laser beam path. A differentiation is therefore made between purging on the process side and purging on the sensor side.

Note: For measurement of O_2 at gas temperatures above 600 °C, it may also be possible to tolerate air as the purging medium since its influence on the measurement can be compensated.

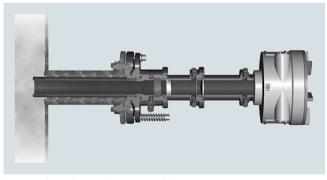
Applications with oxygen (high-pressure)


For oxygen measurements with a higher process gas pressure (1 to 5 bar), the sensor CD 6 can be used together with a highpressure window flange as the process connection. This window flange is also available in the standard sizes DN 65/PN 6, DN 80/ PN 16 or ANSI 4"/150 lbs. The optical surface to the process is made of borosilicate glass. High-pressure window flanges can be equipped with window purging, but without purging tubes. Possible purge modes for the window flanges are "A-C" (no purging or moderate purging on the process side). Window flanges are tested for leakage before delivery using overpressure, and show leakage rates of less than 10⁻⁵ mbar·l/s.

For ordering this application, the MLFB code of the central unit with the application code letter "P" must be selected. The process interface suitable for the sensors can be chosen by selection of the corresponding code in the 6th configurable position of the MLFB number.

The most important sensor purging configurations are presented below:

Purging on the process side with moderate flow


Selected for pure gas applications, emission monitoring, inertia monitoring, for example. The purging gas flow can be adjusted between 0 and approx. 120 l/min at each sensor head using a needle valve (included in delivery).

Moderate purging on the process side

Purging on the process side with increased flow

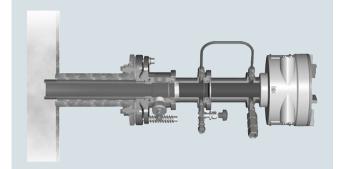
Through omission of needle valve. This type of purging is selected in crude gas applications with higher concentrations of particles and/or condensation as well as in non-purified flue gases in combustion plants. The purging gas flow is typically set between 200 and 500 l/min on each sensor head depending on the input pressure of the purging medium.

Increased purging on the process side

Purging on the process side with high flow

Through use of air blower or dry process steam. Connectors with hose adapters are included in the delivery. An additional Swagelok adapter must be ordered if a high flow of steam or instrument air purging is required (option A27). This type of purging is selected in crude gas applications with very high concentrations of particles and/or condensation such as in the furnaces of combustion plants. If instrument air is not available, an air blower is also an alternative for purging in applications with lower demands. On the process side, dry steam can be used as the inert purging gas instead of nitrogen (Tmax. 240 °C). The purging gas flow is automatically set between 500 and <1 000 l/min on each sensor head depending on the purging air blower or the steam pressure.

Cross-duct sensor CD 6


Increased purging on the process side, with hose connection adapter

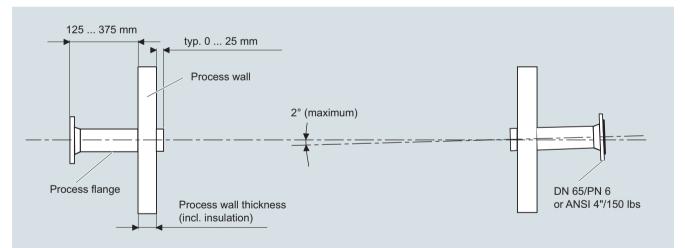
Purging on sensor side

Can be combined with any purging mode on the process side, and is always selected if the ambient air must never have an influence on the measurement. The volumes within the sensor head are then continuously purged with an O_2 -free gas (with H_2O -free gas in the case of moisture measurement).

Note

With purging on the process side, it may be necessary to use non-return valves to ensure no process gas can enter the purging gas line in the event of failure of the purging gas supply. This applies especially in the case of cascaded process and sensor purging where there is otherwise the danger that, for example, corrosive process gases could enter the sensor enclosure.

Sensor configuration with high purging on the process side, with 6 mm joint for use with steam, and with N_2 purging on the sensor side

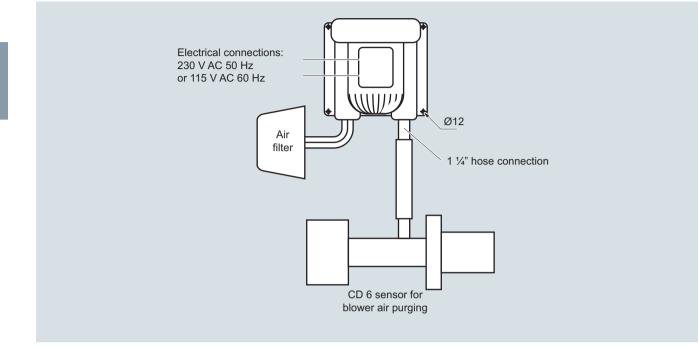

The purging media used on the process side flow through purging gas tubes into the process gas flow. The tubes extend a few centimeters into the process area, and usually receive a flow of process gas from the side. This results in a wedge being generated in the inlet zone of the purging gas. The effective measuring path in the process gas is therefore well-defined as the distance between the ends of the two purging gas inlet tubes.

Cross-duct sensor CD 6: Options and accessories

Sensor alignment kit

Includes a battery-operated visible light source, a centering aid with crosshair, and two hook spanners for opening the optics tube of the sensors.

Please note: the sensor alignment kit is not explosion protected.



Installation requirements for the cross-duct sensors CD 6, dimensions in mm

Cross-duct sensor CD 6

Purging air blower

Two purging air blowers are required to purge the sensor heads. Both 230 V AC and 115 V AC versions can be ordered.

Sensor configuration with purging air blower

Flow cell (available on special application)

For implementation of measuring configurations with bypass mode. The cell consists of a stainless steel tube with electropolished internal surfaces to minimize surface effects. With an effective measuring path of 1 m, the inner volume is only 1.2 l, and fast gas displacement times can therefore be achieved. The flow of sample gas can be from the ends or from the center of the tube, since appropriate 6 mm joints are present here. The flow cell can be ordered in four configurations:

- · Unheated, including assembly for wall mounting
- Unheated, including assembly for wall mounting and a 19" housing with an air jet pump with a delivery rate of max. 30 I/ min
- As above, but can be heated up to approx. 200 °C
- As above, but can be heated up to approx 200 °C and mounted on a rack with wheels and integrated 19" frame

Optical bandpass filter (only for O2-CD 6)

Serves to protect the light-sensitive detector in the receiver unit of the sensor from saturation by IR background radiation. Used with measurements in very hot process gases (T > 1 000 °C) or with unavoidable appearances of flames in the measurement path.

		Accessories	
General information		Purging	
Design	Transmitter and detector units, con- nected by a sensor cable	Nitrogen is permissible as the purging gas for the sensor side. Nitrogen,	
Materials	Stainless steel (1.4305/303), alumi- num	steam, air and gases which are not subject to the pressure equipment directive Cat. 2 are permissible as	
Installation	Vertical or parallel to the gas flow	purging gases for the process side.	
Laser protection class	Class 1, safe to the eye	Purging with instrument air, N_2	
Explosion protection	II 1 G Ex ia op to IIC T4 Ga II 1 D Ex ia op to IIIC T135 °C Da	 Max. overpressure in the sensor Quality 	< 500 hPa
	A defined leak rate can only be guar- anteed when using high-pressure window flanges. Otherwise, it may be necessary for the owner to carry out an evaluation in accordance with ATEX DEMKO 06 ATEX 139648X; IECEx UL 13.0029X	- Instrument air - Nitrogen	According to ISO 8573-1:2010 [2:3:3 Note: It is sufficient if the pressure condensation point is min. 10 K below the minimum ambient tempera- ture. Purity better than 99.7 %. For oxygen measurements, an O ₂ content < 0.01% in the purging gas.
Design, enclosure			Optical path length ≥ 1 m, min. 5%
Degree of protection	IP65	Maximum flow rate (process purg-	oxygen in the process gas. 500 l/min
Dimensions	Diameter: 163, L: 450 mm	ing)	
Purging gas tube in mm	400 (370 net) x 44 x 40 800 (770 net) x 54 x 40 1 200 (1 170 net) x 54 x 40	Dew point Blower purging	Benchmark: < -10 °C, condensation on the optics must be avoided
Weight	2 x approx. 11 kg	Maximum counter pressure	40 hPa
Mounting	DN 65/PN 6, DN 80/PN 16 or ANSI 4"/ 150 lbs	 Maximum flow rate Power consumption Degree of protection (fan) 	850 l/min 370 W IP54, cover required to protect
of assembly. Electrical characteristics		Maximum pressure	16 000 hPa, refers to a volume flow of approx. 1 100 l/min
Power supply	24 V DC, supply from central unit via hybrid cable		
Device a construction of the second s			
Power consumption	< 2 W with non-Ex configuration, max. 0.6 W with Ex configuration		
Power consumption Climatic conditions			
Climatic conditions			
Climatic conditions Sensor temperature			
	-20 +70 °C in operation -30 +70 °C during transport and		
Climatic conditions Sensor temperature Non-Ex Ex	 max. 0.6 W with Ex configuration -20 +70 °C in operation -30 +70 °C during transport and storage -20 +60 °C in operation -30 +70 °C during transport and 		
Climatic conditions Sensor temperature Non-Ex Ex Humidity	 max. 0.6 W with Ex configuration -20 +70 °C in operation -30 +70 °C during transport and storage -20 +60 °C in operation -30 +70 °C during transport and storage 		
Climatic conditions Sensor temperature Non-Ex	max. 0.6 W with Ex configuration -20 +70 °C in operation -30 +70 °C during transport and storage -20 +60 °C in operation -30 +70 °C during transport and storage < 95 % RH, above dew point 800 1 100 hPa		
Climatic conditions Sensor temperature Non-Ex Ex Humidity Pressure Temperature range on the sensor side of the process interface (connection	max. 0.6 W with Ex configuration -20 +70 °C in operation -30 +70 °C during transport and storage -20 +60 °C in operation -30 +70 °C during transport and storage < 95 % RH, above dew point 800 1 100 hPa		
Climatic conditions Sensor temperature Non-Ex Ex Humidity Pressure Temperature range on the sensor side of the process interface (connection plate)	max. 0.6 W with Ex configuration -20 +70 °C in operation -30 +70 °C during transport and storage -20 +60 °C in operation -30 +70 °C during transport and storage < 95 % RH, above dew point 800 1 100 hPa		

Siemens AP 01 · 2018 2/45

Cross-duct sensor CD 6

Hybrid and sensor cables

General information	
Configuration hybrid cable	Two optical fibers and two twisted copper wires in one cable for 24 V DC. Single-mode optical fiber fabri- cated at both ends with E2000 angle connectors. Multimode optical fiber configured at both ends with SMA connectors.
	Cable is flame-retardant, very good resistance to oil, gasoline, acids and alkalis, outer sheath UV-resistant
Cable sheath	Oil-resistant polyurethane
Dimensions	 An external power supply must be additionally ordered for > 500 m For installation in hazardous zones, non-intrinsically-safe cables have to be spatially separated from intrinsi- cally-safe lines
DiameterLength	 < 8.5 mm Use in non-hazardous and Ex Zone 2: Up to 700 m Use in Ex Zone 0 and Zone 1: Up to 250 m
Weight	75 kg/km
Maximum tensile force	200 N
Maximum lateral pressure	1 000 N/cm
Impact resistance	200 N/cm
Maximum tensile strength	500 N
Minimum bending radius	12 cm
Climatic conditions	
Ambient temperature	-40 \ldots +70 °C during transport, storage and operation
	-5 +50 °C during cable installation
Humidity	< 95% rel. humidity, above dew poin (in operation and storage)

Cross-duct sensor CD 6

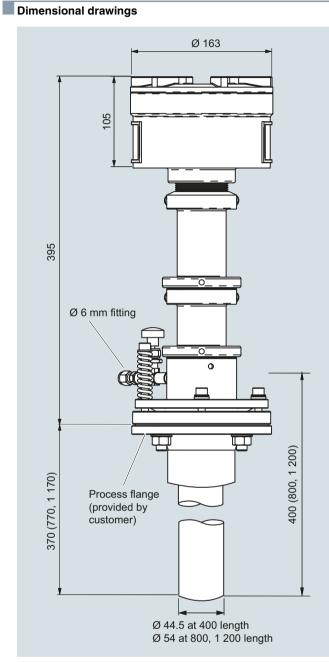
Selection and ordering data		Article No.	
LDS 6 in-situ gas analyzer Pair of sensors (cross-duct sensor)		7MB6122-	Cannot be combined
	configuration in the PIA Life Cycle Portal.		
Explosion protection ¹⁾	· · · · ·		
Without II 1 G Ex ia op is IIC T4 Ga, II 1 D Ex	ia op is IIIC T135 °C Da	0	
Sensor type	Measured component		
Standard cross-duct sensor	O_2 All gases except O_2	A W	
Purging, process side Without purging	Sensor side Without purging Air or N ₂ , 1 to 2 l/min; incl. needle valve, 6 mm Swagelok	AB	
Instrument air or N ₂ Reduced flow: 0 120 l/min incl. needle valve, 6 mm Swagelok	Without purging Air or N ₂ , 1 to 2 l/min;	C	
Air or N ₂	incl. needle valve, 6 mm Swagelok Without purging	E	
Increasēd flow: 200 500 l/min incl. 6 mm Swagelok	Air or N_2 , 1 to 2 l/min;	,	
	incl. needle valve, 6 mm Swagelok		
Air, fan or steam; high flow: > 500 l/min incl. 1¼" hose adapter	Without purging	G	G
	Air or N ₂ , 1 to 2 l/min; incl. needle valve, 6 mm Swagelok	н	н
Purging tubes, material			
No purging tubes		0	
Stainless steel, EN 1.4432/316L		1	
Purging tubes, length			
No purging tubes		0	
400 mm		1	
800 mm		2	
1 200 mm		3	
75 mm, e.g. for engine test rigs		4	
Process connection			
Stainless steel flange (1.4404/316L), connection dimension DN 65/PN 6, MA\ Stainless steel flange (1.4404/316L),	WP (PS) at 20 °C: 0.05 MPa	0	$0 \longrightarrow C12,$ 1 $\longrightarrow C12,$
connection dimension ANSI 4"/150 lbs,		2	2 → C12,
Stainless steel flange (1.4404/316L), connection dimension DN 65/PN 6, MAU incl. enclosed welding flanges, e.g. for d	engine test rigs		
Pressure-resistant window flange (1.440 connection dimension DN 65/PN 6, MAN Pressure-resistant window flange (1.440		3	3 3 3 4 4 4
connection dimension DN 80/PN 16, MA Pressure-resistant window flange (1.440	AWP (PS) at 20 °C: 1.6 MPa	5	5 5 5
connection dimension ANSI 4"/150 lbs, Hybrid cable	MAWP (PS) at 20 °C: 232 psi		
No hybrid cable		x	
Standard length			
• 5 m		A	
• 10 m		В	
• 25 m		E	
• 40 m		G	
• 50 m		н	
Customized length (specified in comple	ete meters)	Z	

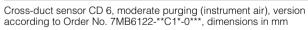
¹⁾ Complete and consistent implementation of the safety concept by the plant operator must be ensured during the commissioning and operation of the in-situ laser spectrometer LDS6 or the sensor CD 6 in hazardous atmospheres.

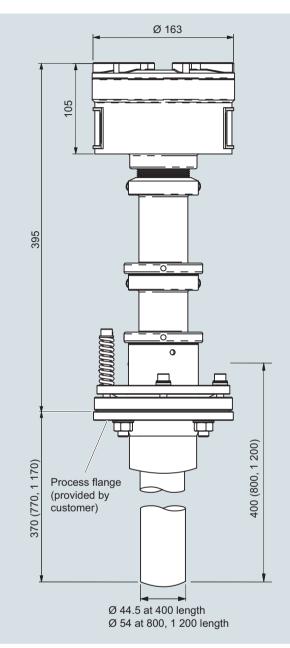
Cross-duct sensor CD 6

			A			
Selection and ordering data			Article No.			Occurrent la concentration of
LDS 6 in-situ gas analyzer Pair of sensors (cross-duct sensor)			/WB6122-			Cannot be combined
Sensor connecting cable						
No sensor connecting cable				х		
Standard length						
• 5 m				A		
• 10 m				В		
• 25 m				E		
Customer-specific length (specified in cor	mplete meters)			z		
Language (supplied documentation)						
German					0	
English					1	
French					2	
Spanish					3	
Italian					4	
Additional versions	Order code	Additional	units		Article	e No.
Add "-Z" to Article No. and specify order		CD 6, purg	jing air blower	⁻ 230 V / 50 Hz	A5E00	829151
codes.		CD 6, purg	ing air blower	115 V / 60 Hz	A5E00	829150
6 mm Swagelok adapter for purging with steam, purging modes G and H	A27	CD 6, sens	or alignment l	kit	A5E00	253142
Acceptance test certificate 3.1 (leak test) in accordance with EN 10204 (only in combination with flameproof window flanges)	C12	reducing in	ical bandpass hfrarot backgro r), only for O ₂	s filter for ound radiation	A5E00	9534668
Acceptance test certificate 3.1 (mate- rial certificate) in accordance with EN 10204 (only in combination with flameproof window flanges)	C13					

Sensor cable, customized length TAG label, customized inscription

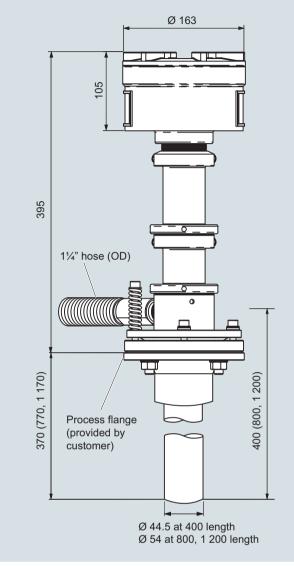

Hybrid cable, customized length

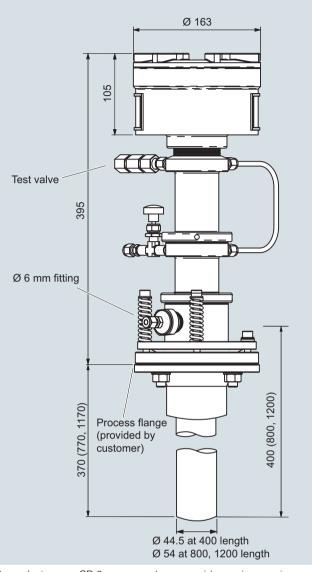

P1Y


Q1Y

Y30

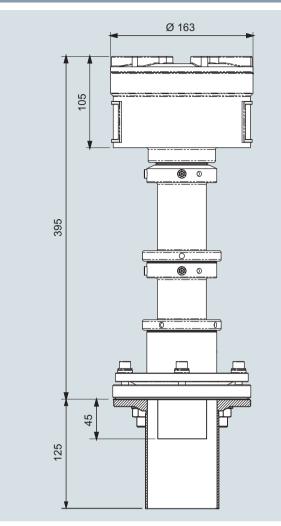
Cross-duct sensor CD 6

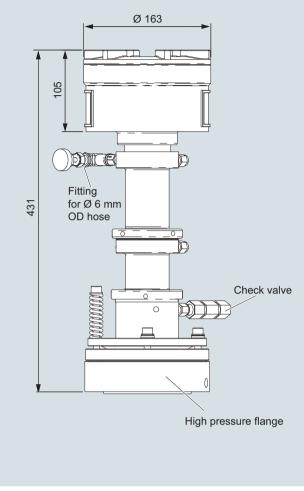




Cross-duct sensor CD 6, increased purging (instrument air), version according to Order No. 7MB6122-**E1*-0***, dimensions in mm

Cross-duct sensor CD 6





Cross-duct sensor CD 6, sensor and process side purging, version according to Order No. 7MB6122-**H1*-0***-Z A27, dimensions in mm

Cross-duct sensor CD 6

Cross-duct sensor CD 6, purged version according to Order No. 7MB6122-*WC14-2***, dimensions in mm

CD 6 high-pressure sensor for oxygen, dimensions in mm

Selection and ordering	ng data	More information
Manual	Article No.	The complete documentation is available in various languages
LDS 6 manual		for downloading free of charge:
• German	A5E00295893	http://www.siemens.com/processanalytics/documentation
• English	A5E00295894	
• French	A5E00295895	
• Italian	A5E00295896	
Spanish	A5E00362720	

Selection and ordering data

Description	Quantity for 2 years	Quantity for 5 years	Article No.
CD 6, window module, quartz	1	2	A5E00338487
CD 6, window module, engine test rig, no purging	1	2	A5E00338490
CD 6, high-pressure window flange (1.4404/316L), DN 65/PN 6	1	2	A5E00534662
CD 6, high-pressure window flange (1.4404/316L), DN 80/PN 16	1	2	A5E00534663
CD 6, high-pressure window flange (1.4404/316L), ANSI 4"/150 lbs	1	2	A5E00534664
Gasket for CD 6 hybrid cable	1	2	A5E00853911
CD 6, sensor electronics FO InGaAs (version 2)	1	1	A5E01090409
CD 6, sensor electronics FO Ge, only HCI (version 2)	1	1	A5E01090413
CD 6, sensor electronics SW, only O ₂	1	1	A5E00338533
CD 6, sensor electronics ATEX SW, only O2	1	1	A5E00338563
CD 6, sensor electronics ATEX HCI	1	1	A5E00853896
CD 6, sensor electronics ATEX NH_3 , CO, CO ₂ , HF, H ₂ O, low gain	1	1	A5E00338572
CD 6, purging tube 400 mm 1.4432/316L	1	2	A5E00253111
CD 6, purging tube 800 mm 1.4432/316L	1	2	A5E00253112
CD 6, purging tube 1200 mm 1.4432/316L	1	2	A5E00253113

More information

For demanding applications it is recommended to keep purging tubes, window modules and detector electronics in stock (quantities stated per measuring point, i.e. per pair of sensors).

For the suitability of different parts (version 1 or version 2) please consult the instrument manual or contact Siemens directly. In general, all new analyzers are compatible with spare parts of version 2.