## SIEMENS <br> SINAMICS V90, SIMOTICS S-1FL6 <br> PROFINET (PN) interface <br> Getting Started <br> Compact Operating Instructions

## Table of contents

1 Fundamental safety instructions ..... 2
1.1 General safety instructions ..... 2
1.2 Handling electrostatic sensitive devices (ESD) ..... 6
1.3 Industrial security ..... 6
1.4 Residual risks of power drive systems. ..... 7
2 General information ..... 7
2.1 Deliverables ..... 8
2.1.1 Drive components. ..... 8
2.1.2 Motor components ..... 11
2.2 Device combination ..... 13
2.3 Accessories ..... 15
2.4 Function list ..... 16
2.5 Technical data ..... 17
2.5.1 Technical data - servo drives. ..... 17
2.5.2 Technical data - servo motors ..... 19
2.5.3 Address of CE-authorized manufacturer ..... 22
3 Mounting ..... 22
3.1 Mounting the drive ..... 22
3.2 Mounting the motor. ..... 26
4 Connecting ..... 31
4.1 System connection ..... 31
4.2 Main circuit wirings ..... 36
4.2.1 Line supply - L1, L2, L3 ..... 36
4.2.2 Motor power - U, V, W ..... 38
4.3 Control/Status interface - X8 ..... 39
4.3.1 Interface definition ..... 39
4.3.2 Standard wiring ..... 40
4.4 24 V power supply/STO ..... 42
4.5 Encoder interface - X9 ..... 43
4.6 External braking resistor - DCP, R1 ..... 45
4.7 Motor holding brake ..... 46
4.8 PROFINET interface - X150 ..... 46
5 Commissioning ..... 47
5.1 Introduction to the BOP ..... 48
5.2 Initial commissioning in JOG mode ..... 53
5.3 Commissioning in basic positioner mode (EPOS) ..... 55
5.4 Commissioning in speed control mode (S) ..... 56
5.5 Commissioning control functions ..... 57
5.5.1 Speed limit ..... 57
5.5.2 Torque limit ..... 57
5.5.3 EJOG ..... 58
6 PROFINET communication ..... 59
6.1 Supported telegrams ..... 59
6.2 Control word STW and status word ZSW ..... 61
6.2.1 Definition of the control word STW ..... 61
6.2.2 Definition of the status word ZSW ..... 67
7 Parameters ..... 70
7.1 Overview ..... 70
7.2 Parameter list ..... 71
8 Diagnostics ..... 100
8.1 Overview ..... 100
8.2 List of faults and alarms ..... 103

## 1 Fundamental safety instructions

### 1.1 General safety instructions

## DANGER

Danger to life due to live parts and other energy sources
Death or serious injury can result when live parts are touched.

- Only work on electrical devices when you are qualified for this job.
- Always observe the country-specific safety rules.

Generally, six steps apply when establishing safety:

1. Prepare for shutdown and notify all those who will be affected by the procedure.
2. Disconnect the machine from the supply.

- Switch off the machine.
- Wait until the discharge time specified on the warning labels has elapsed.
- Check that it really is in a no-voltage condition, from phase conductor to phase conductor and phase conductor to protective conductor.
- Check whether the existing auxiliary supply circuits are de-energized.
- Ensure that the motors cannot move.

3. Identify all other dangerous energy sources, e.g. compressed air, hydraulic systems, or water.
4. Isolate or neutralize all hazardous energy sources by closing switches, grounding or short-circuiting or closing valves, for example.
5. Secure the energy sources against switching on again.
6. Ensure that the correct machine is completely interlocked.

After you have completed the work, restore the operational readiness in the inverse sequence.

## WARNING

Danger to life through a hazardous voltage when connecting an unsuitable power supply
Touching live components can result in death or severe injury.

- Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV- (Protective Extra Low Voltage) output voltages for all connections and terminals of the electronics modules.


## WARNING

## Danger to life when live parts are touched on damaged motors/devices

Improper handling of motors/devices can damage them.
For damaged motors/devices, hazardous voltages can be present at the enclosure or at exposed components.

- Ensure compliance with the limit values specified in the technical data during transport, storage and operation.
- Do not use any damaged motors/devices.



## WARNING

Danger to life through electric shock due to unconnected cable shields
Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields.

- As a minimum, connect cable shields and the cores of cables that are not used at one end at the grounded housing potential.



## WARNING

Danger to life due to electric shock when not grounded
For missing or incorrectly implemented protective conductor connection for devices with protection class I, high voltages can be present at open, exposed parts, which when touched, can result in death or severe injury.

- Ground the device in compliance with the applicable regulations.



## WARNING

Danger to life due to electric shock when opening plug connections in operation
When opening plug connections in operation, arcs can result in severe injury or death.

- Only open plug connections when the equipment is in a no-voltage state, unless it has been explicitly stated that they can be opened in operation.


## NOTICE

## Material damage due to loose power connections

Insufficient tightening torques or vibrations can result in loose electrical connections. This can result in damage due to fire, device defects or malfunctions.

- Tighten all power connections with the specified tightening torques, e.g. line supply connection, motor connection, DC link connections.
- Check all power connections at regular intervals. This applies in particular after transport.


## WARNING

## Danger to life due to fire spreading if housing is inadequate

Fire and smoke development can cause severe personal injury or material damage.

- Install devices without a protective housing in a metal control cabinet (or protect the device by another equivalent measure) in such a way that contact with fire is prevented.
- Ensure that smoke can only escape via controlled and monitored paths.


## A warning <br> Danger to life through unexpected movement of machines when using mobile wireless devices or mobile phones <br> Using mobile wireless devices or mobile phones with a transmit power > 1 W closer than approx. 2 m to the components may cause the devices to malfunction, influence the functional safety of machines therefore putting people at risk or causing material damage.

- Switch the wireless devices or mobile phones off in the immediate vicinity of the components.


## Danger to life due to the motor catching fire in the event of insulation overload

There is higher stress on the motor insulation through a ground fault in an IT system. If the insulation fails, it is possible that death or severe injury can occur as a result of smoke and fire.

- Use a monitoring device that signals an insulation fault.
- Correct the fault as quickly as possible so the motor insulation is not overloaded.


## WARNING

Danger to life due to fire if overheating occurs because of insufficient ventilation clearances
Inadequate ventilation clearances can cause overheating of components with subsequent fire and smoke. This can cause severe injury or even death. This can also result in increased downtime and reduced service lives for devices/systems.

- Ensure compliance with the specified minimum clearance as ventilation clearance for the respective component.
WARNING
Danger of an accident occurring due to missing or illegible warning labels
Missing or illegible warning labels can result in accidents involving death or serious injury.
- Check that the warning labels are complete based on the documentation.
- Attach any missing warning labels to the components, in the national language if necessary.
- Replace illegible warning labels.


## NOTICE

## Device damage caused by incorrect voltage/insulation tests

Incorrect voltage/insulation tests can damage the device.

- Before carrying out a voltage/insulation check of the system/machine, disconnect the devices as all converters and motors have been subject to a high voltage test by the manufacturer, and therefore it is not necessary to perform an additional test within the system/machine.


## 1 WARNING

## Danger to life when safety functions are inactive

Safety functions that are inactive or that have not been adjusted accordingly can cause operational faults on machines that could lead to serious injury or death.

- Observe the information in the appropriate product documentation before commissioning.
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety-related components.
- Ensure that the safety functions used in your drives and automation tasks are adjusted and activated through appropriate parameterizing.
- Perform a function test.
- Only put your plant into live operation once you have guaranteed that the functions relevant to safety are running correctly.


## Note

## Important safety notices for Safety Integrated functions

If you want to use Safety Integrated functions, you must observe the safety notices in the Safety Integrated manuals.

## WARNING

## Danger to life or malfunctions of the machine as a result of incorrect or changed parameterization

As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization (parameter assignments) against unauthorized access.
- Respond to possible malfunctions by applying suitable measures (e.g. EMERGENCY STOP or EMERGENCY OFF).


## WARNING

## Danger to life from permanent magnet fields

Even when switched off, electric motors with permanent magnets represent a potential risk for persons with heart pacemakers or implants if they are close to converters/motors.

- If you are such a person (with heart pacemaker or implant) then keep a minimum distance of 2 m .
- When transporting or storing permanent magnet motors always use the original packing materials with the warning labels attached.
- Clearly mark the storage locations with the appropriate warning labels.
- IATA regulations must be observed when transported by air.


## WARNING

Injury caused by moving parts or those that are flung out
Touching moving motor parts or drive output elements and loose motor parts that are flung out (e.g. feather keys) in operation can result in severe injury or death.

- Remove any loose parts or secure them so that they cannot be flung out.
- Do not touch any moving parts.
- Safeguard all moving parts using the appropriate safety guards.


## WARNING

Danger to life due to fire if overheating occurs because of insufficient cooling
Inadequate cooling can cause overheating resulting in death or severe injury as a result of smoke and fire. This can also result in increased failures and reduced service lives of motors.

- Comply with the specified coolant requirements for the motor.


## WARNING

## Danger to life due to fire as a result of overheating caused by incorrect operation

When incorrectly operated and in the case of a fault, the motor can overheat resulting in fire and smoke. This can result in severe injury or death. Further, excessively high temperatures destroy motor components and result in increased failures as well as shorter service lives of motors.

- Operate the motor according to the relevant specifications.
- Only operate the motors in conjunction with effective temperature monitoring.
- Immediately switch off the motor if excessively high temperatures occur.



## CAUTION

## Risk of injury due to touching hot surfaces

In operation, the motor can reach high temperatures, which can cause burns if touched.

- Mount the motor so that it is not accessible in operation.

When maintenance is required

- allow the motor to cool down before starting any work.
- Use the appropriate personnel protection equipment, e.g. gloves.


## WARNING

Danger to life from electromagnetic fields
Electromagnetic fields (EMF) are generated by the operation of electrical power equipment such as transformers, converters or motors.
People with pacemakers or implants are at a special risk in the immediate vicinity of these devices/systems.

- Ensure that the persons involved are the necessary distance away (minimum 2 m ).


### 1.2 Handling electrostatic sensitive devices (ESD)

Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge.

## NOTICE

## Damage through electric fields or electrostatic discharge

Electric fields or electrostatic discharge can cause malfunctions through damaged individual components, integrated circuits, modules or devices.

- Only pack, store, transport and send electronic components, modules or devices in their original packaging or in other suitable materials, e.g conductive foam rubber of aluminum foil.
- Only touch components, modules and devices when you are grounded by one of the following methods:
- Wearing an ESD wrist strap
- Wearing ESD shoes or ESD grounding straps in ESD areas with conductive flooring
- Only place electronic components, modules or devices on conductive surfaces (table with ESD surface, conductive ESD foam, ESD packaging, ESD transport container).


### 1.3 Industrial security

## Note

## Industrial security

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, solutions, machines, equipment and/or networks. They are important components in a holistic industrial security concept. With this in mind, Siemens' products and solutions undergo continuous development. Siemens recommends strongly that you regularly check for product updates.
For the secure operation of Siemens products and solutions, it is necessary to take suitable preventive action (e.g. cell protection concept) and integrate each component into a holistic, state-of-the-art industrial security concept. Third-party products that may be in use should also be considered. For more information about industrial security, visit this address (http://www.siemens.com/industrialsecurity).
To stay informed about product updates as they occur, sign up for a product-specific newsletter. For more information, visit this address (http://support.automation.siemens.com).

## WARNING

Danger as a result of unsafe operating states resulting from software manipulation
Software manipulation (e.g. by viruses, Trojan horses, malware, worms) can cause unsafe operating states to develop in your installation which can result in death, severe injuries and/or material damage.

- Keep the software up to date.

You will find relevant information and newsletters at this address (http://support.automation.siemens.com).

- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
You will find further information at this address (http://www.siemens.com/industrialsecurity).
- Make sure that you include all installed products into the holistic industrial security concept.


## WARNING

## Danger to life due to software manipulation when using exchangeable storage media

Storing files onto exchangeable storage media amounts to an increased risk of infection, e.g. with viruses and malware. As a result of incorrect parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect files stored on exchangeable storage media from malicious software by taking suitable protection measures, e.g. virus scanners.


### 1.4 Residual risks of power drive systems

When assessing the machine- or system-related risk in accordance with the respective local regulations (e.g., EC Machinery Directive), the machine manufacturer or system installer must take into account the following residual risks emanating from the control and drive components of a drive system:

1. Unintentional movements of driven machine or system components during commissioning, operation, maintenance, and repairs caused by, for example,

- Hardware and/or software errors in the sensors, control system, actuators, and cables and connections
- Response times of the control system and of the drive
- Operation and/or environmental conditions outside the specification
- Condensation/conductive contamination
- Parameterization, programming, cabling, and installation errors
- Use of wireless devices/mobile phones in the immediate vicinity of electronic components
- External influences/damage
- X-ray, ionizing radiation and cosmic radiation

2. Unusually high temperatures, including open flames, as well as emissions of light, noise, particles, gases, etc., can occur inside and outside the components under fault conditions caused by, for example:

- Component failure
- Software errors
- Operation and/or environmental conditions outside the specification
- External influences/damage

3. Hazardous shock voltages caused by, for example:

- Component failure
- Influence during electrostatic charging
- Induction of voltages in moving motors
- Operation and/or environmental conditions outside the specification
- Condensation/conductive contamination
- External influences/damage

4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc., if they are too close
5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly
For more information about the residual risks of the drive system components, see the relevant sections in the technical user documentation.

## 2 General information

The SINAMICS V90 drives with the PROFINET interface (referred to as SINAMICS V90 PN) are available in two variants, 400 V variant and 200 V variant.
The 200 V variant is available in three frame sizes: FSB, FSC, and FSD. Frame sizes B, and C are used on the single phase or three phase power network while frame size $D$ is used on the three phase power network only.

The 400 V variant is available in four frame sizes: FSAA, FSA, FSB, and FSC. All the frame sizes are used on three phase power network only.

### 2.1 Deliverables

### 2.1.1 Drive components

## Components in the SINAMICS V90 PN 200 V variant drive package

| Component | Illustration | Rated power (kW) | Outline dimension (Width $x$ Height $x$ Depth, mm) | Frame size | Order number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SINAMICS V90 PN, single/three-phase, 200 V |  | 0.1/0.2/0.4 | $55 \times 170 \times 170$ | FSB | 6SL3210-5FB10-1UF0 |
|  |  |  |  |  | 6SL3210-5FB10-2UF0 |
|  |  |  |  |  | 6SL3210-5FB10-4UF1 |
|  |  | 0.75 | $80 \times 170 \times 195$ | FSC | 6SL3210-5FB10-8UF0 |
| SINAMICS V90 PN, three-phase, 200 V |  | 1.0/1.5/2.0 | $95 \times 170 \times 195$ | FSD | 6SL3210-5FB11-0UF1 |
|  |  |  |  |  | 6SL3210-5FB11-5UF0 |
|  |  |  |  |  | 6SL3210-5FB12-0UF0 |
| Connectors |  | For FSB |  |  | 6SL3200-0WT02-0AA0 |
|  |  | For FSC and FSD |  |  | 6SL3200-0WT03-0AA0 |
| Shielding plate |  | For FSB |  |  |  |
|  |  | For FSC and FSD |  |  |  |
| User documentation | Information Guide | English-Chinese bilingual version |  |  |  |

Components in the SINAMICS V90 PN 400 V variant drive package

| Component | Illustration | Rated power (kW) | Outline dimension <br> (Width x Height x Depth, mm) | Frame size | Order number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SINAMICS V90 PN, three-phase, 400 V |  | 0.4 | $60 \times 180 \times 200$ | FSAA | 6SL3210-5FE10-4UF0 |
|  |  | 0.75/1.0 | $80 \times 180 \times 200$ | FSA | 6SL3210-5FE10-8UF0 |
|  |  |  |  |  | 6SL3210-5FE11-0UF0 |
|  |  | 1.5/2.0 | $100 \times 180 \times 220$ | FSB | 6SL3210-5FE11-5UF0 |
|  |  |  |  |  | 6SL3210-5FE12-0UF0 |
|  |  | 3.5/5.0/7.0 | $140 \times 260 \times 240$ | FSC | 6SL3210-5FE13-5UF0 |
|  |  |  |  |  | 6SL3210-5FE15-0UF0 |
|  |  |  |  |  | 6SL3210-5FE17-0UF0 |
| Connectors |  | For FSAA |  |  | 6SL3200-0WT00-0AA0 |
|  |  | For FSA |  |  | 6SL3200-0WT01-0AA0 |
|  |  | For FSB and FSC * |  |  |  |
| Shielding plate |  | For FSAA and FSA |  |  |  |
|  | $\left\{\begin{array}{l} \boxed{00} \\ \square \square 8 \end{array}\right.$ | For FSB and FSC |  |  |  |
| User documentation | Information Guide | English-Chinese bilingual version |  |  |  |

* You can obtain the connectors for SINAMICS V90 PN 400V servo drives of FSB and FSC from the connector kits for SINAMICS V90 PN 400V servo drives of FSAA or FSA.

Drive rating plate (example)


| $(1)$ | Drive name | ⑤ | Order number |
| :--- | :--- | :--- | :--- |
| $(2)$ | Power input | $(6)$ | MAC address |
| $(3)$ | Power output | $(7)$ | Product serial number |
| $(4)$ | Rated motor power | $(8)$ | Part number |

### 2.1.2 Motor components

Components in the SIMOTICS S-1FL6 low inertia motor package

| Component | Illustration | Rated power (kW) | Shaft height (mm) | Order number |
| :---: | :---: | :---: | :---: | :---: |
| SIMOTICS S-1FL6, low inertia |  | 0.05/0.1 | 20 | 1FL6022-2AF21-1]D1 |
|  |  |  |  | 1FL6024-2AF21-1]D1 |
|  |  | 0.2/0.4 | 30 | 1FL6032-2AF21-1]D1 |
|  |  |  |  | 1FL6034-2AF21-1]a1 |
|  |  | 0.75/1.0 | 40 | 1FL6042-2AF21-1]a1 |
|  |  |  |  |  |
|  |  | 1.5/2.0 | 50 | 1FL6052-2AF21-0]a1 |
|  |  |  |  | 1FL6054-2AF21-0]D1 |
| User documentation | SIMOTICS S-1FL6 Servo Motors Installation Guide |  |  |  |

Components in the SIMOTICS S-1FL6 high inertia motor package

| Component | Illustration | Rated power (kW) | Shaft height (mm) | Order number |
| :---: | :---: | :---: | :---: | :---: |
| SIMOTICS S-1FL6, high inertia |  | 0.4/0.75 | 45 | 1FL6042-1AF61-0]D1 |
|  |  |  |  | 1FL6044-1AF61-0]口1 |
|  |  | 0.75/1.0/1.5/1.75/2.0 | 65 | 1FL6061-1AC61-0]D1 |
|  |  |  |  | 1FL6062-1AC61-0]1 |
|  |  |  |  | 1FL6064-1AC61-0]1 |
|  |  |  |  | 1FL6066-1AC61-0]D1 |
|  |  |  |  | 1FL6067-1AC61-0]D1 |
|  |  | 2.5/3.5/5.0/7.0 | 90 | 1FL6090-1AC61-0]D1 |
|  |  |  |  | 1FL6092-1AC61-0]D1 |
|  |  |  |  | 1FL6094-1AC61-0]D1 |
|  |  |  |  | 1FL6096-1AC61-0] 1 |
| User documentation | SIMOTICS S-1FL6 Servo Motors Installation Guide |  |  |  |

Motor rating plate (example)


G: Plain shaft, without brake
H: Plain shaft, with brake
05: 50 mm

Rated torque
Low inertia:
2: $0.16 \mathrm{Nm}, \mathrm{SH} 20$ $0.64 \mathrm{Nm}, \mathrm{SH} 30$ $2.39 \mathrm{Nm}, \mathrm{SH} 40$ 4.78 Nm , SH50

4: $0.32 \mathrm{Nm}, \mathrm{SH} 20$ $1.27 \mathrm{Nm}, \mathrm{SH} 30$ 3.18 Nm, SH40 6.37 Nm, SH50

High inertia:
0: 11.9 Nm , SH90
1: 3.58 Nm , SH65
2: $1.27 \mathrm{Nm}, \mathrm{SH} 45$
4.78 Nm, SH65
16.7 Nm, SH90

4: $2.39 \mathrm{Nm}, \mathrm{SH} 45$
7.16 Nm, SH65
23.9 Nm, SH90

6: 8.36 Nm, SH65
33.4 Nm , SH90

7: 9.55 Nm, SH65

A: Shaft with key (half-key balancing), without brake
B: Shaft with key (half-key balancing), with brake

Encoder type
A: Incremental encoder TTL 2500 ppr
M: Absolute encoder single-turn 21-bit
L: Absolute encoder 20-bit + 12-bit multi-turn
1: High inertia
2: Low inertia

Connection type
0 : Straight connectors with fixed outlet direction
1: Cable outlet

| $(1)$ | Motor type | $(7)$ | Rated power | (13) | Rated current |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(2)$ | Order number | 8 | Encoder type and resolution | (14) | Holding brake |
| $(3)$ | Serial number | $(9)$ | Thermal class | (15) | Motor ID |
| (4) | Rated torque | $(10)$ | Degree of protection | (16) | Weight |
| $(5)$ | Stall torque | $(11)$ | Motor operating mode | (17) | Maximum speed |
| (6) | Rated voltage | $(12)$ | Stall current | $(18)$ | Rated speed |

## 2．2 Device combination

V90 PN 200 V servo system

| SIMOTICS S－1FL6 low inertia servo motors |  |  |  |  |  |  | SINAMICS V90 PN 200 V servo drives |  | MOTION－CONNECT 300 pre－assembled cables |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Power cable <br> Order number 6FX3002－5 | Brake cable Order number 6FX3002－5 | Encoder cable |  |
| Rated torque （Nm） | Rated power （kW） | Rated speed （rpm） | Shaft height （mm） | Order number1FL60 |  |  |  |  | Order number 6SL3210－5 | Frame size | $\begin{aligned} & \hline \text { Orde } \\ & \text { numb } \\ & 6 \text { FX3 } \\ & \hline \end{aligned}$ | 3002-2 |
| 0.16 | 0.05 | 3000 | 20 | 22－2AF21－1 | $\square$ | －1 | FB10－1UF0 | FSB | $\begin{aligned} & \text { CK01-1AD0 } \\ & (3 \mathrm{~m}) \\ & \text { CK01-1AF0 } \\ & (5 \mathrm{~m}) \end{aligned}$ | $\begin{aligned} & \text { BK02-1ADO } \\ & (3 \mathrm{~m}) \end{aligned}$ | $\square$ | $\begin{aligned} & \text { 20-1ADO } \\ & (3 \mathrm{~m}) \end{aligned}$ |
| 0.32 | 0.1 | 3000 |  | 24－2AF21－1 | 口 | $\square 1$ |  |  |  |  |  |  |
| 0.64 | 0.2 | 3000 | 30 | 32－2AF21－1 | $\square$ | 01 | FB10－2UF0 |  |  | $\begin{aligned} & \text { BK02-1AFO } \\ & (5 \mathrm{~m}) \end{aligned}$ |  | $\begin{array}{\|l} \begin{array}{l} 20-1 \mathrm{AFO} \\ (5 \mathrm{~m}) \end{array} \end{array}$ |
| 1.27 | 0.4 | 3000 |  | 34－2AF21－1 | 口 | 01 | FB10－4UF1 |  |  |  |  |  |
| 2.39 | 0.75 | 3000 | 40 | 42－2AF21－1 | 口 | －1 | FB10－8UF0 | FSC | $\begin{aligned} & \text { CK01-1BAO } \\ & (10 \mathrm{~m}) \end{aligned}$ | $\begin{aligned} & \text { BK02-1BAO } \\ & (10 \mathrm{~m}) \end{aligned}$ |  | $\begin{array}{\|l} \begin{array}{l} 20-1 \mathrm{BAO} \\ (10 \mathrm{~m}) \end{array} \\ \hline \end{array}$ |
| 3.18 | 1 | 3000 |  | 44－2AF21－1 | $\square$ | $\square 1$ | FB11－0UF1 | FSD | $\begin{aligned} & \text { CK01-1CAO } \\ & (20 \mathrm{~m}) \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \begin{array}{l} \text { BK02-1CAO } \\ (20 \mathrm{~m}) \end{array} \\ \hline \end{array}$ |  | $\begin{array}{\|l} \hline \begin{array}{l} 20-1 \mathrm{CAO} \\ (20 \mathrm{~m}) \end{array} \\ \hline \end{array}$ |
| 4.78 | 1.5 | 3000 | 50 | 52－2AF21－0 | 口 | $\square 1$ | FB11－5UF0 |  | $\begin{aligned} & \text { CK31-1AD0 } \\ & (3 \mathrm{~m}) \end{aligned}$ | $\begin{aligned} & \text { BL02-1AD0 } \\ & (3 \mathrm{~m}) \end{aligned}$ | － | $\begin{aligned} & \text { 10-1AD0 } \\ & (3 \mathrm{~m}) \end{aligned}$ |
| 6.37 | 2 | 3000 |  | 54－2AF21－0 | $\square$ | $\square 1$ | FB12－0UF0 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { CK31-1AF0 } \\ & (5 \mathrm{~m}) \end{aligned}$ | $\begin{aligned} & \text { BL02-1AFO } \\ & (5 \mathrm{~m}) \end{aligned}$ |  | $\begin{aligned} & \text { 10-1AFO } \\ & (5 \mathrm{~m}) \end{aligned}$ |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { CK31-1BAO } \\ & (10 \mathrm{~m}) \end{aligned}$ | $\begin{aligned} & \text { BL02-1BAO } \\ & (10 \mathrm{~m}) \end{aligned}$ |  | $\begin{aligned} & \text { 10-1BAO } \\ & (10 \mathrm{~m}) \end{aligned}$ |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { CK31-1CA0 } \\ & (20 \mathrm{~m}) \end{aligned}$ | $\begin{array}{\|l} \begin{array}{l} \text { BL02-1CAO } \\ (20 \mathrm{~m}) \end{array} \\ \hline \end{array}$ |  | $\begin{array}{\|l} \hline \begin{array}{l} \text { 10-1CAO } \\ (20 \mathrm{~m}) \end{array} \\ \hline \end{array}$ |
| Incremental encoder TTL 2500 ppr |  |  |  |  | A |  |  |  | Incremental encoder TTL 2500 ppr |  | CT |  |
| Absolute encoder single－turn 21－bit |  |  |  |  | M |  |  |  | Absolute encoder single－ turn 21－bit |  | DB |  |

V90 PN 400 V servo system


### 2.3 Accessories

## Fuse/Type-E combination motor controller

A fuse/type-E combination motor controller/circuit breaker can be used to protect the system. Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes. Refer to the following table for the selection of fuses, type-E combination motor controllers, and circuit breakers:

SINAMICS V90 PN 200 V variant

| SINAMICS V90 PN |  |  | Recommended fuse |  | Type-E combination motor controller 1) |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Power <br> supply |  |  |  |  |  |  |  |

${ }^{1)}$ The above types for type-E combination motor controllers are listed in compliance with both CE and UL/cUL standards.
SINAMICS V90 PN 400 V variant

| SINAMICS V90 PN |  |  | Recommended fuse type |  | Type-E combination motor controller ${ }^{1)}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply | Frame size | Rated power (kW) | CE-compliant | UL/cULcompliant listed (JDDZ) fuse | Rated current (A) | Rated voltage (VAC) | Rated power (hp) | Order number |
| 3-phase, | FSAA | 0.4 | 3NA3 801-6 (6 A) | 10 A | 2.2 to 3.2 | 380/480 | 0.5 | 3RV 2021-1DA10 |
| 380 VAC to | FSA | 0.75 | 3NA3 801-6 (6 A) | 10 A | 2.8 to 4 | 380/480 | 1 | 3RV 2021-1EA10 |
|  |  | 1.0 | 3NA3 803-6 (10 A) | 10 A | 3.5 to 5 | 380/480 | 1.34 | 3RV 2021-1FA10 |
|  | FSB | 1.5 | 3NA3 803-6 (10 A) | 15 A | 5.5 to 8 | 380/480 | 2 | 3RV 2021-1HA10 |
|  |  | 2.0 | 3NA3 805-6 (16 A) | 15 A | 11 to 16 | 380/480 | 2.68 | 3RV 2021-4AA10 |
|  | FSC | 3.5 | 3NA3 807-6 (20 A) | 25 A | 14 to 20 | 380/480 | 4.7 | 3RV 2021-4BA10 |
|  |  | 5.0 | 3NA3 807-6 (20 A) | 25 A | 14 to 20 | 380/480 | 6.7 | 3RV 2021-4BA10 |
|  |  | 7.0 | 3NA3 810-6 (25 A) | 25 A | 20 to 25 | 380/480 | 9.4 | 3RV 2021-4DA10 |

1) The above types for Type-E combination motor controllers are listed in compliance with both CE and UL/cUL standards.

For more information about the accessories, refer to SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions.

## Requirements for United States/Canadian installations (UL/cUL)

Suitable for use on a circuit capable of delivering not more than 65000 rms Symmetrical Amperes, 480 VAC maximum for 400 V variants of drives or 240 VAC maximum for 200 V variant drives, when protected by UL/cUL listed (JDDZ) fuse or type $E$ combination motor controller. For each frame size $A A, A, B, C$ and $D$, use $75^{\circ} \mathrm{C}$ copper wire only.
This equipment is capable of providing internal motor overload protection according to UL508C.
For Canadian (cUL) installations the drive mains supply must be fitted with any external recommended suppressor with the following features:

- Surge-protective devices; device shall be a Listed Surge-protective device (Category code VZCA and VZCA7)
- Rated nominal voltage $480 / 277$ VAC, $50 / 60 \mathrm{~Hz}$, 3-phase
- Clamping voltage VPR $=2000 \mathrm{~V}, \mathrm{IN}=3 \mathrm{kA}$ min, $\mathrm{MCOV}=508 \mathrm{VAC}, \mathrm{SCCR}=65 \mathrm{kA}$
- Suitable for Type 2 SPD application
- Clamping shall be provided between phases and also between phase and ground.


## Product maintenance

The components are subject to continuous further development within the scope of product maintenance (improvements to robustness, discontinuations of components, etc).
These further developments are "spare parts-compatible" and do not change the article number.
In the scope of such spare parts-compatible further developments, connector positions are sometimes changed slightly. This does not cause any problems with proper use of the components. Please take this fact into consideration in special installation situations (e.g. allow sufficient clearance for the cable length).

## Use of third-party products

This document contains recommendations relating to third-party products. Siemens accepts the fundamental suitability of these third-party products.

You can use equivalent products from other manufacturers.
Siemens does not accept any warranty for the properties of third-party products.

### 2.4 Function list

| Function | Description | Control mode |
| :--- | :--- | :--- |
| Basic positioner (EPOS) | Positions axes in absolute/relative terms with a motor en- <br> coder | EPOS |
| Speed control (S) | Flexibly controls motor speed and direction through <br> PROFINET communication port | S |
| Safe Torque Off (STO) | Safely disconnects torque-generating motor power supply <br> to prevent an unintentional motor restart | EPOS, S |
| One-button auto tuning | Estimates the machine characteristic and sets the closed <br> loop control parameters (speed loop gain, speed integral <br> compensation, filter if necessary, etc.) without any user <br> intervention | EPOS, S |
| Real-time auto tuning | Estimates the machine characteristic and sets the closed <br> loop control parameters (speed loop gain, speed integral <br> compensation, filter if necessary, etc.) continuously in real <br> time without any user intervention | EPOS, S |
| Resonance suppression | Suppresses the mechanical resonance, such as workpiece <br> vibration and base shake | EPOS, S |
| Low frequency vibration suppres- <br> sion | Suppresses the low frequency vibration in the machine <br> system | EPOS |
| Speed limit | Limits motor speed through internal speed limit commands <br> (two groups) | EPOS, S |
| Torque limit | Limits motor torque through internal torque limit commands <br> (two groups) | EPOS, S |


| Function | Description | Control mode |
| :--- | :--- | :--- |
| Basic operator panel (BOP) | Displays servo status on a 6-digit 7-segment LED display | EPOS, S |
| External braking resistor - DCP, R1 | An external braking resistor can be used when the internal <br> braking resistor is insufficient for regenerative energy | EPOS, S |
| Digital inputs/outputs (DIs/Dos) | Control signals and status signals can be assigned to four <br> programmable digital inputs and two digital outputs | EPOS, S |
| PROFINET communication | Supports communication between the SINAMICS V90 PN <br> servo drive and PLC with PROFINET communication proto- <br> col | EPOS, S |
| SINAMICS V-ASSISTANT | You can perform parameter settings, test operation, ad- <br> justment and other operations with a PC | EPOS, S |

### 2.5 Technical data

### 2.5.1 Technical data - servo drives

## General technical data

| Parameter |  |  | Description |
| :---: | :---: | :---: | :---: |
| 24 VDC power supply | Voltage (V) |  | 24 (-15\% to +20\%) ${ }^{1)}$ |
|  | Maximum current (A) |  | 1.5 A (when using a motor without a brake) <br> 3.5 A (when using a motor with a brake) |
| Overload capability |  |  | 300\% |
| Control system |  |  | Servo control |
| Dynamic brake |  |  | Built-in |
| Protective functions |  |  | Earthing fault protection, output short-circuit protection ${ }^{2}$, overvoltage/undervoltage protection ${ }^{3),} \mathrm{I}^{2}$ t inverter, $\mathrm{I}^{2}$ t motor, IGBT overtemperature protection ${ }^{4)}$ |
| Speed control mode | Speed control range |  | Analog speed command 1:2000, internal speed command 1:5000 |
|  | Analog speed command input |  | -10 VDC to +10 VDC/rated speed |
|  | Torque limit |  | Set through a parameter or the analog input command (0 VDC to +10 VDC/max. torque) |
| Environmental conditions | Surrounding air temperature | Operation | $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ : without power derating $45^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ : with power derating |
|  |  | Storage | $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
|  | Ambient humidity | Operation | < 90\% (non-condensing) |
|  |  | Storage | 90\% (non-condensing) |
|  | Operating environment |  | Indoors (without direct sunlight), free from corrosive gas, combustible gas, oil gas, or dust |
|  | Altitude |  | $\leq 1000 \mathrm{~m}$ (without power derating) |
|  | Degree of protection |  | IP 20 |
|  | Degree of pollution |  | Class 2 |
| Vibration | Operation | Shock | Operational area II <br> Peak acceleration: $5 \mathrm{~g}, 30 \mathrm{~ms}$ and $15 \mathrm{~g}, 11 \mathrm{~ms}$ <br> Quantity of shocks: 3 per direction $\times 6$ directions <br> Duration of shock: 1 s |
|  |  | Vibration | Operational area II <br> 10 Hz to $58 \mathrm{~Hz}: 0.075 \mathrm{~mm}$ deflection <br> 58 Hz to $200 \mathrm{~Hz}: 1 \mathrm{~g}$ vibration |


| Parameter |  | Description |  |
| :--- | :--- | :--- | :--- |
|  | Product packag- <br> ing | Vibration | 2 Hz to $9 \mathrm{~Hz}: 3.5 \mathrm{~mm}$ deflection <br> 9 Hz to $200 \mathrm{Hz:} 1 \mathrm{~g}$ vibration <br> Quantity of cycles: 10 per axis <br> Sweep seed: 1 octave/min |
| Certifica- <br> tions | UL, CE, KC, C-Tick, EAC |  |  |

1) When SINAMICS V90 PN works with a motor with a brake, the voltage tolerance of 24 VDC power supply must be $-10 \%$ to $+10 \%$ to meet the voltage requirement of the brake.
2) Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.
${ }^{3)}$ The V90 PN 200 V servo drive has an overvoltage threshold of 410 VDC and an undervoltage threshold of 150 VDC ; the V90 PN 400 V servo drive has an overvoltage threshold of 820 VDC and an undervoltage threshold of 320 VDC.
3) SINAMICS V90 PN does not support motor overtemperature protection. Motor overtemperature is calculated by $\mathrm{l}^{2} \mathrm{t}$ and protected by the output current from the drive.

## Specific technical data

## SINAMICS V90 PN 200V variant

| Order No. | 6SL3210-5FB... |  | 10-1UF0 | 10-2UF0 | 10-4UF1 | 10-8UF0 | 11-0UF1 | 11-5UF0 | 12-0UF0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size |  |  | FSB | FSB | FSB | FSC | FSD | FSD | FSD |
| Rated output current (A) |  |  | 1.2 | 1.4 | 2.6 | 4.7 | 6.3 | 10.6 | 11.6 |
| Max. output current (A) |  |  | 3.6 | 4.2 | 7.8 | 14.1 | 18.9 | 31.8 | 34.8 |
| Max. supported motor power (kW) |  |  | 0.1 | 0.2 | 0.4 | 0.75 | 1.0 | 1.5 | 2.0 |
| Power loss ${ }^{1)}$ | Main circuit (W) |  | 8 | 15 | 33 | 48 | 65 | 105 | 113 |
|  | Regenerative resistor <br> (W) |  | 5 | 5 | 7 | 9 | 13 | 25 | 25 |
|  | Control circuit (W) |  | 16 | 16 | 16 | 16 | 16 | 18 | 18 |
|  | Total (W) |  | 29 | 36 | 56 | 73 | 94 | 148 | 156 |
| Output frequency (Hz) |  |  | 0 to 330 |  |  |  |  |  |  |
| Power supply | Voltage/frequency |  | FSB and FSC: single phase/three phase 200 VAC to 240 VAC, $50 / 60 \mathrm{~Hz}$ FSD: three phase 200 VAC to 240 VAC, $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |
|  | Permissible voltage fluctuation |  | -15\% to +10\% |  |  |  |  |  |  |
|  | Permissible frequency fluctuation |  | -10\% to $+10 \%$ |  |  |  |  |  |  |
|  | Rated input current (A) | 1-phase | 2.5 | 3.0 | 5.0 | 10.4 | - | - | - |
|  |  | 3-phase | 1.5 | 1.8 | 3.0 | 5.0 | 7.0 | 11.0 | 12.0 |
|  | Power supply capacity(kVA) | 1-phase | 0.5 | 0.7 | 1.2 | 2.0 | - | - | - |
|  |  | 3-phase | 0.5 | 0.7 | 1.1 | 1.9 | 2.7 | 4.2 | 4.6 |
|  | Inrush current (A) |  | 8.0 |  |  |  |  |  |  |
| Cooling method |  |  | Self-cooled |  |  |  | Fan-cooled |  |  |
| Mechanical design | Outline dimensions ( W x H x D, mm) |  | $50 \times 170 \times 170$ |  |  | $\begin{aligned} & 80 \times 170 \\ & \times 195 \end{aligned}$ | $95 \times 170 \times 195$ |  |  |
| Weight (kg) |  |  | 1.25 |  |  | 1.95 | 2.3 | 2.4 |  |

[^0]SINAMICS V90 PN 400V variant

| Order No. | 6SL3210-5FE... | $\begin{aligned} & \hline \text { 10- } \\ & \text { 4UFO } \end{aligned}$ | $\begin{aligned} & \hline 10- \\ & \text { 8UFO } \end{aligned}$ | 11OUFO | $\begin{aligned} & \hline 11- \\ & \text { 5UFO } \end{aligned}$ | $\begin{aligned} & \hline 12- \\ & \text { OUFO } \end{aligned}$ | $\begin{aligned} & \hline 13- \\ & \text { 5UFO } \end{aligned}$ | $\begin{aligned} & \hline 15- \\ & \text { OUFO } \end{aligned}$ | 17OUFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size |  | FSAA | FSA | FSA | FSB | FSB | FSC | FSC | FSC |
| Rated output current (A) |  | 1.2 | 2.1 | 3.0 | 5.3 | 7.8 | 11.0 | 12.6 | 13.2 |
| Max. output current (A) |  | 3.6 | 6.3 | 9.0 | 13.8 | 23.4 | 33.0 | 37.8 | 39.6 |
| Max. supported motor power (kW) |  | 0.4 | 0.75 | 1.0 | 1.75 | 2.5 | 3.5 | 5.0 | 7.0 |
| Power loss ${ }^{1)}$ | Main circuit (W) | 12 | 29 | 32 | 84 | 96 | 92 | 115 | 138 |
|  | Regenerative resistor (W) | 17 | 57 | 57 | 131 | 131 | 339 | 339 | 339 |
|  | Control circuit (W) | 32 | 32 | 35 | 35 | 35 | 36 | 36 | 36 |
|  | Total (W) | 61 | 118 | 124 | 250 | 262 | 467 | 490 | 513 |
| Output frequency ( Hz ) |  | 0 to 330 |  |  |  |  |  |  |  |
| Power supply | Voltage/frequency | Three phase 380 VAC to 480 VAC, $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |
|  | Permissible voltage fluctuation | -15\% to $+10 \%$ |  |  |  |  |  |  |  |
|  | Permissible frequency fluctuation | -10\% to $+10 \%$ |  |  |  |  |  |  |  |
|  | Rated input current (A) | 1.5 | 2.6 | 3.8 | 6.6 | 9.8 | 13.8 | 15.8 | 16.5 |
|  | Power supply capacity (kVA) | 1.7 | 3.0 | 4.3 | 7.6 | 11.1 | 15.7 | 18.0 | 18.9 |
|  | Inrush current (A) | 8.0 | 8.0 | 8.0 | 4.0 | 4.0 | 2.5 | 2.5 | 2.5 |
| Cooling method |  | Self-cooled |  |  | Fan-cooled |  |  |  |  |
| Mechanical design | Outline dimensions ( $\mathrm{W} x$ HxD, mm) | $\begin{array}{\|l\|} \hline 60 x \\ 180 x \\ 200 \\ \hline \end{array}$ | $80 \times 180 \times 200$ |  | $100 \times 180 \times 220$ |  | $140 \times 260 \times 240$ |  |  |
| Weight (kg) |  | 1.5 | 1.9 | 1.9 | 2.5 | 2.5 | 5.0 | 5.5 | 5.75 |

1) The values here are calculated at rated load.

### 2.5.2 Technical data - servo motors

General technical data

| Parameter | Description |
| :--- | :--- |
| Type of motor | Permanent-magnet synchronous motor |
| Cooling | Self-cooled |
| Relative humidity $[\mathrm{RH}]$ | $90 \%$ (non-condensing at $30^{\circ} \mathrm{C}$ ) |
| Installation altitude $[\mathrm{m}]$ | $\leq 1000$ (without power derating) |
| Thermal class | B |
| Vibration severity grade | A (according to IEC $60034-14$ ) |
| Shock resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ | 25 (continuous in axial direction); 50 (continuous in radial direction); 250 <br> (in a short time of 6 ms$)$ |
| Bearing lifetime $[\mathrm{h}]$ | $>20000{ }^{1}$ ) |
| Paint finish | Black |
| Protection degree of shaft | IP 65, with shaft oil seal |
| Type of construction | IM B5, IM V1, and IM V3 |
| Positive rotation | Clockwise (default setting in servo drives) |
| Certification | CE, EAC |

[^1]
## Specific technical data

## SIMOTICS S-1FL6, low inertia servo motor

| Order No. | 1FL60... | 22 | 24 | 32 | 34 | 42 | 44 | 52 | 54 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated power [kW] |  | 0.05 | 0.1 | 0.2 | 0.4 | 0.75 | 1 | 1.5 | 2 |
| Rated torque [ Nm ] |  | 0.16 | 0.32 | 0.64 | 1.27 | 2.39 | 3.18 | 4.78 | 6.37 |
| Maximum torque [ Nm ] |  | 0.48 | 0.96 | 1.91 | 3.82 | 7.2 | 9.54 | 14.3 | 19.1 |
| Rated speed [rpm] |  | 3000 |  |  |  |  |  |  |  |
| Maximum speed [rpm] |  | 5000 |  |  |  |  |  |  |  |
| Rated frequency [Hz] |  | 200 |  |  |  |  |  |  |  |
| Rated current [A] |  | 1.2 | 1.2 | 1.4 | 2.6 | 4.7 | 6.3 | 10.6 | 11.6 |
| Maximum current [A] |  | 3.6 | 3.6 | 4.2 | 7.8 | 14.2 | 18.9 | 31.8 | 34.8 |
| Moment of inertia [10-4 $\mathrm{kgm}^{2}$ ] |  | 0.031 | 0.052 | 0.214 | 0.351 | 0.897 | 1.15 | 2.04 | 2.62 |
| Moment of inertia (with brake) $\left[10^{-4} \mathrm{kgm}^{2}\right]$ |  | 0.038 | 0.059 | 0.245 | 0.381 | 1.06 | 1.31 | 2.24 | 2.82 |
| Recommended load to motor inertia ratio |  | Max. 30x |  |  |  | Max. 20x |  | Max. 15x |  |
| Operating temperature $\left[{ }^{\circ} \mathrm{C}\right]$ |  | 1FL602D, 1FL603D and 1FL604D: 0 to 40 (without power derating) 1FL605]: 0 to 30 (without power derating) ${ }^{1)}$ |  |  |  |  |  |  |  |
| Storage temperature [ ${ }^{\circ} \mathrm{C}$ ] |  | -20 to +65 |  |  |  |  |  |  |  |
| Maximum noise level [dB] |  | 60 |  |  |  |  |  |  |  |
| Holding brake | Rated voltage (V) | $24 \pm 10 \%$ |  |  |  |  |  |  |  |
|  | Rated current (A) | 0.25 |  | 0.3 |  | 0.35 |  | 0.57 |  |
|  | Holding brake torque [ Nm ] | 0.32 |  | 1.27 |  | 3.18 |  | 6.37 |  |
|  | Maximum brake opening time [ms] | 35 |  | 75 |  | 105 |  | 90 |  |
|  | Maximum brake closing time [ms] | 10 |  | 10 |  | 15 |  | 35 |  |
|  | Maximum number of emergency stops | $2000{ }^{\text {2) }}$ |  |  |  |  |  |  |  |
| Oil seal lifetime [h] |  | 3000 to 5000 |  |  |  |  |  |  |  |
| Encoder lifetime [h] |  | > $20000{ }^{\text {3) }}$ |  |  |  |  |  |  |  |
| Protection degree of motor body |  | IP 65 |  |  |  |  |  |  |  |
| Protection degree of cable end connector |  | IP20 |  |  |  |  |  | - |  |
| Weight [kg] | With brake | 0.70 | 0.86 | 1.48 | 1.92 | 3.68 | 4.20 | 6.76 | 8.00 |
|  | Without brake | 0.47 | 0.63 | 1.02 | 1.46 | 2.80 | 3.39 | 5.35 | 6.56 |

1) When the surrounding temperature is between $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, the 1 FL605 motor will have a power derating of $10 \%$.
${ }^{2)}$ Restricted emergency stop operation is permissible. Up to 2000 braking operations for the motors of 0.05 kW to 1 kW , and 200 braking operations for the motors of 1.5 kW to 2 kW can be executed with $300 \%$ rotor moment of inertia as external moment of inertia from a speed of 3000 rpm without the brake being subject to an inadmissible amount of wear.
${ }^{3)}$ This lifetime is only for reference. When a motor keeps running at $80 \%$ rated value and the surrounding temperature is $30^{\circ} \mathrm{C}$, the encoder lifetime can be ensured.

## Note

The data of rated torque, rated power, maximum torque in the above table allows a tolerance of $10 \%$.

SIMOTICS S-1FL6, high inertia servo motor

| Order No. | 1FL60... | 42 | 44 | 61 | 62 | 64 | 66 | 67 | 90 | 92 | 94 | 96 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated power [kW] |  | 0.40 | 0.75 | 0.75 | 1.00 | 1.50 | 1.75 | 2.00 | 2.5 | 3.5 | 5.0 | $7.0{ }^{1)}$ |
| Rated torque [ Nm ] |  | 1.27 | 2.39 | 3.58 | 4.78 | 7.16 | 8.36 | 9.55 | 11.9 | 16.7 | 23.9 | 33.4 |
| Maximum torque [ Nm ] |  | 3.8 | 7.2 | 10.7 | 14.3 | 21.5 | 25.1 | 28.7 | 35.7 | 50.0 | 70.0 | 90.0 |
| Rated speed [rpm] |  | 3000 |  | 2000 |  |  |  |  | 2000 |  |  |  |
| Maximum speed [rpm] |  | 4000 |  | 3000 |  |  |  |  | 3000 |  | 2500 | 2000 |
| Rated frequency [ Hz ] |  | 200 |  | 133 |  |  |  |  | 133 |  |  |  |
| Rated current [A] |  | 1.2 | 2.1 | 2.5 | 3.0 | 4.6 | 5.3 | 5.9 | 7.8 | 11.0 | 12.6 | 13.2 |
| Maximum current [ A ] |  | 3.6 | 6.3 | 7.5 | 9.0 | 13.8 | 15.9 | 17.7 | 23.4 | 33.0 | 36.9 | 35.6 |
| Moment of inertia [10-4 $\mathrm{kgm}^{2}$ ] |  | 2.7 | 5.2 | 8.0 | 15.3 | 15.3 | 22.6 | 29.9 | 47.4 | 69.1 | 90.8 | 134.3 |
| Moment of inertia (with brake) [ $10^{-4} \mathrm{kgm}^{2}$ ] |  | 3.2 | 5.7 | 9.1 | 16.4 | 16.4 | 23.7 | 31.0 | 56.3 | 77.9 | 99.7 | 143.2 |
| Recommended load to motor inertia ratio |  | Max. 10x |  | Max. 5x |  |  |  |  | Max. 5x |  |  |  |
| Operating temperature [ ${ }^{\circ} \mathrm{C}$ ] |  | 0 to 40 (without power derating) |  |  |  |  |  |  |  |  |  |  |
| Storage temperature [ $\left.{ }^{\mathrm{C}}\right]$ |  | -15 to +65 |  |  |  |  |  |  |  |  |  |  |
| Maximum noise level [dB] |  | 65 |  | 70 |  |  |  |  | 70 |  |  |  |
| Holding brake | Rated voltage (V) | $24 \pm 10 \%$ |  |  |  |  |  |  |  |  |  |  |
|  | Rated current (A) | 0.88 |  | 1.44 |  |  |  |  | 1.88 |  |  |  |
|  | Holding brake torque [ Nm ] | 3.5 |  | 12 |  |  |  |  | 30 |  |  |  |
|  | Maximum brake opening time [ms] | 60 |  | 180 |  |  |  |  | 220 |  |  |  |
|  | Maximum brake closing time [ms] | 45 |  | 60 |  |  |  |  | 115 |  |  |  |
|  | Maximum number of emergency stops | $2000{ }^{\text {2) }}$ |  |  |  |  |  |  |  |  |  |  |
| Oil seal lifetime [h] |  | 5000 |  |  |  |  |  |  |  |  |  |  |
| Encoder lifetime [h] |  | > $20000{ }^{\text {3) }}$ |  |  |  |  |  |  |  |  |  |  |
| Degree of protection |  | IP65, with shaft oil seal |  |  |  |  |  |  |  |  |  |  |
| Weight of incremental encoder motor [kg] | With brake | 4.6 | 6.4 | 8.6 | 11.3 | 11.3 | 14.0 | 16.6 | 21.3 | 25.7 | 30.3 | 39.1 |
|  | Without brake | 3.3 | 5.1 | 5.6 | 8.3 | 8.3 | 11.0 | 13.6 | 15.3 | 19.7 | 24.3 | 33.2 |
| Weight of absolute encoder motor [kg] | With brake | 4.4 | 6.2 | 8.3 | 11.0 | 11.0 | 13.6 | 16.3 | 20.9 | 25.3 | 29.9 | 38.7 |
|  | Without brake | 3.1 | 4.9 | 5.3 | 8.0 | 8.0 | 10.7 | 13.3 | 14.8 | 19.3 | 23.9 | 32.7 |

1) When the surrounding temperature is higher than $30^{\circ} \mathrm{C}$, the 1 FL 6096 motors with brake will have a power derating of 10\%.
2) Restricted emergency stop operation is permissible. Up to 2000 braking operations can be executed with $300 \%$ rotor moment of inertia as external moment of inertia from a speed of 3000 rpm without the brake being subject to an inadmissible amount of wear.
${ }^{3)}$ This lifetime is only for reference. When a motor keeps running at $80 \%$ rated value and the surrounding temperature is $30^{\circ} \mathrm{C}$, the encoder lifetime can be ensured.

## Note

The data of rated torque, rated power, and maximum torque in the above table allows a tolerance of $10 \%$.

## Power derating

For deviating conditions (surrounding temperature $>40^{\circ} \mathrm{C}$ or installation altitude $>1000 \mathrm{~m}$ above sea level) the permissible torque/power must be determined from the following table. Surrounding temperatures and installation altitudes are rounded off to $5^{\circ} \mathrm{C}$ and 500 m respectively.

Power derating as a function of the installation altitude and ambient temperature

| Installation altitude above sea <br> level $(\mathrm{m})$ | Surrounding temperature in ${ }^{\circ} \mathrm{C}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $<\mathbf{3 0}$ | $\mathbf{3 0}$ to $\mathbf{4 0}$ | $\mathbf{4 5}$ | 50 | 55 |
| 1000 | 1.07 | 1.00 | 0.96 | 0.92 | 0.87 |
| 1500 | 1.04 | 0.97 | 0.93 | 0.89 | 0.84 |
| 2000 | 1.00 | 0.94 | 0.90 | 0.86 | 0.82 |
| 2500 | 0.96 | 0.90 | 0.86 | 0.83 | 0.78 |
| 3000 | 0.92 | 0.86 | 0.82 | 0.79 | 0.75 |
| 3500 | 0.88 | 0.82 | 0.79 | 0.75 | 0.71 |
| 4000 | 0.82 | 0.77 | 0.74 | 0.71 | 0.67 |

### 2.5.3 Address of CE-authorized manufacturer

The address of CE-authorized manufacturer is as follows:
Siemens AG
Digital Factory
Motion Control
Frauenauracher Straße 80
DE-91056 Erlangen
Germany

## 3 Mounting

### 3.1 Mounting the drive

## Protection against the spread of fire

The inverter may be operated only in closed housings or in higher-level control cabinets with protective covers that are closed, and when all of the protective devices are used. The installation of the inverter in a metal control cabinet or the protection with another equivalent measure must prevent the spread of fire and emissions outside the control cabinet.

## Protection against condensation or electrically conductive contamination

Protect the inverter, e.g. by installing it in a control cabinet with degree of protection IP54 according to IEC 60529 or NEMA 12. Further measures may be necessary for particularly critical operating conditions.

If condensation or conductive pollution can be excluded at the installation site, a lower degree of control cabinet protection may be permitted.

## WARNING

## Death or severe personal injury from harsh installation environment

A harsh installation environment will jeopardize personal safety and equipment. Therefore,

- Do not install the drive and the motor in an area subject to inflammables or combustibles, water or corrosion hazards.
- Do not install the drive and the motor in an area where it is likely to be exposed to constant vibrations or physical shocks.
- Do not keep the drive exposed to strong electro-magnetic interference.


## A CAUTION

Hot surface
During operation and for a short time after switching-off the drive, the surfaces of the drive can reach a high temperature. Avoid coming into direct contact with the drive surface.

For mounting conditions, see Technical data - servo drives (Page 17)

## Mounting orientation and clearance

Mount the drive vertically in a shielded cabinet and observe the mounting clearances specified in the illustration below:


## Note

The drive must be derated to $80 \%$ when the following conditions are satisfied:

- The surrounding temperature is $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$, and the mounting clearance is less than 10 mm . In this case, the minimum mounting clearance should not be less than 5 mm .
- The surrounding temperature is $45^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. In this case, the minimum mounting clearance should not be less than 20 mm .


## SINAMICS V90 PN 200V variant (unit: mm)



Getting Started
A5E37208904-002, 09/2016


SINAMICS V90 PN 400V variant (unit: mm)



Getting Started
A5E37208904-002, 09/2016

## Mounting the drive

For V90 PN 200 V variant, use two M5 screws to mount the FSB drives and four M5 screws to mount the FSC, and FSD drives.

For V90 PN 400 V variant, use two M5 screws to mount the FSAA drive and four M5 screws to mount the FSA, FSB, and FSC drives.

The recommended tightening torque is 2.0 Nm .

## Note

## EMC instructions

- To comply with the EMC standards, all cables connected with the SINAMICS V90 PN drive system must be shielded cables, which include cables from the line supply to the line filter and from the line filter to the drive.
- The SINAMICS V90 PN drives have been tested in accordance with the emission requirements of the category of C2 (domestic) environment. The conductive emissions and radiated emissions are in compliance with the standard of EN 55011 and reached Class A.
- In a residential environment, this product can cause high-frequency interferences that may necessitate suppression measures.
- For a radiated emission test, an external AC filter (between the mains supply and the drive) will be used to meet the EMC requirement and the drive will be installed inside the shielded metallic chamber, other parts of the motion control system (including the PLC, DC power supply, motor) will be put inside the shielded chamber.
- For a conductive emission test, an external AC filter (between the mains supply and the drive) will be used to meet the EMC requirement.
- For the radiated emission and conductive emission test, the length of the line supply cable between the line filter and the drive must be shorter than 1 m .
- The harmonic current value of SINAMICS V90 PN drive exceeds the class A limit of IEC 61000-3-2, but the SINAMICS V90 PN drive system installed within the Category C2 First Environment require supply authority acceptance for connection to the public low-voltage power supply network. Please contact your local supply network provider.


## Note

## Screw tightening

Make sure you fix the screw to the terminal door of the drive after you have completed the installation work.

### 3.2 Mounting the motor

## NOTICE

Damage to the encoder


Do not exert any shock at the shaft end; otherwise, the encoder may be damaged.
For mounting conditions, see Technical data - servo motors (Page 19).

## Mounting orientation

SIMOTICS S-1FL6 supports flange mounting only and three types of constructions, so it can be installed in three orientations as shown in the following figure.


## Note

When configuring the IM V3 type of construction, pay particular attention to the permissible axial force (weight force of the drive elements) and the necessary degree of protection.

Motor dimensions (unit: mm)
Low inertia servo motor, shaft-height: $\mathbf{2 0 ~ m m}, \mathbf{3 0} \mathrm{mm}$, and 40 mm


Low inertia servo motor, shaft-height: 50 mm

| Version with feather key |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | 1FL6022 | 1FL6024 | 1FL6032 | 1FL6034 | 1FL6042 | 1FL6044 | 1FL6052 | 1FL6054 |
| Shaft height | 20 |  | 30 |  | 40 |  | 50 |  |
| LC | 40 |  | 60 |  | 80 |  | 100 |  |
| LA | 46 |  | 70 |  | 90 |  | 115 |  |
| LZ | 4.5 |  | 5.5 |  | 7 |  | 9 |  |
| LB | 30 |  | 50 |  | 70 |  | 95 |  |
| LH | 40 |  | 50 |  | 60 |  | - |  |
| LR | 25 |  | 31 |  | 35 |  | 45 |  |
| T | 2.5 |  | 3 |  | 3 |  | 3 |  |
| LG | 6 |  | 8 |  | 8 |  | 12 |  |
| D | 8 |  | 14 |  | 19 |  | 19 |  |
| DB | M $3 \times 8$ |  | M4×15 |  | M6×16 |  | M6×16 |  |
| E | 22 |  | 26 |  | 30 |  | 40 |  |
| QK | 17.5 |  | 22.5 |  | 28 |  | 28 |  |
| GA | 9 |  | 16 |  | 21.5 |  | 21.5 |  |


| Type |  | 1FL6022 | 1FL6024 | 1FL6032 | 1FL6034 | 1FL6042 | 1FL6044 | 1FL6052 | 1FL6054 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F |  | 3 |  | 5 |  | 6 |  | 6 |  |
| Without brake | LL | 86 | 106 | 98 | 123 | 139 | 158.8 | 192 | 216 |
|  | KB1 | - | - | - | - | - | - | 143.5 | 167.5 |
| With brake | LL | 119 | 139 | 132.5 | 157.5 | 178.3 | 198.1 | 226 | 250 |
|  | KB1 | - | - | - | - | - | - | 177.5 | 201.5 |
|  | KB2 | - | - | - | - | - | - | 32.5 | 32.5 |
| KL1 |  | - | - | - | - | - | - | 135 | 135 |
| KL2 |  | - | - | - | - | - | - | 80 | 80 |

- (1)-Power cable connector, (2)-Incremental encoder cable connector, (3)-Brake cable connector. These connectors should be ordered separately. For the ordering information refer to Operating Instructions.
- The boundary dimension of encoder connector-(2) and brake connector-(3) are the same.

High inertia servo motor, with incremental encoder


| Type |  | $\begin{aligned} & \text { 1FL60 } \\ & 42 \end{aligned}$ | $\begin{aligned} & \text { 1FL60 } \\ & 44 \end{aligned}$ | $\begin{aligned} & \text { 1FL60 } \\ & 61 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 62 \end{array}$ | $\begin{aligned} & \text { 1FL60 } \\ & 64 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { 1FL60 } \\ & 66 \end{aligned}$ | $\begin{aligned} & \text { 1FL60 } \\ & 67 \end{aligned}$ | $\begin{aligned} & \text { 1FL60 } \\ & 90 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 1FL60 } \\ & 92 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 1FL60 } \\ & 94 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 1FL60 } \\ & 96 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| With brake | LL | 201 | 248 | 202.5 | 235.5 | 235.5 | 268.5 | 301.5 | 255 | 281 | 307 | 359 |
|  | KB1 | 140 | 187 | 140 | 173 | 173 | 206 | 239 | 206 | 232 | 258 | 310 |
|  | KB2 | 31.5 |  | 39.5 |  |  |  |  | 44.5 |  |  |  |
| KL1 |  | 136 |  | 158 |  |  |  |  | 184 |  |  |  |
| KL2 |  | 92 |  | 115 |  |  |  |  | 149 |  |  |  |
| KL3 |  | - |  | 23 |  |  |  |  | 34 |  |  |  |
| KL4 |  | - |  | 22 |  |  |  |  | 34 |  |  |  |

- (1)-Power cable connector, (2)-Incremental encoder cable connector, (3)-Brake cable connector. These connectors should be ordered separately. For the ordering information refer to Operating Instructions.
- The boundary dimension of encoder connector-(2) and brake connector-(3) are the same.
- Shaft height 90 mm motor has two M8 screws hole for eyebolts

High inertia servo motor, with absolute encoder

| Version w | feath |  |  |  | KB1 |  |  | Oi |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 42 \\ \hline \end{array}$ | $\begin{aligned} & \text { 1FL60 } \\ & 44 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 61 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline \text { 1FL60 } \\ 62 \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 64 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 66 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 67 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 90 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 92 \\ \hline \end{array}$ | $\begin{aligned} & \text { 1FL60 } \\ & 94 \end{aligned}$ | $\begin{aligned} & \text { 1FL60 } \\ & 96 \end{aligned}$ |
| Shaft heig |  | 45 |  | 65 |  |  |  |  | 90 |  |  |  |
| LC |  | 90 |  | 130 |  |  |  |  | 180 |  |  |  |
| LA |  | 100 |  | 145 |  |  |  |  | 200 |  |  |  |
| LZ |  | 7 |  | 9 |  |  |  |  | 13.5 |  |  |  |
| LB |  | 80 |  | 110 |  |  |  |  | 114.3 |  |  |  |
| LR |  | 35 |  | 58 |  |  |  |  | 80 |  |  |  |
| T |  | 4 |  | 6 |  |  |  |  | 3 |  |  |  |
| LG |  | 10 |  | 12 |  |  |  |  | 18 |  |  |  |
| D |  | 19 |  | 22 |  |  |  |  | 35 |  |  |  |
| DB |  | M6x16 |  | M8x16 |  |  |  |  | M12x25 |  |  |  |
| E |  | 30 |  | 50 |  |  |  |  | 75 |  |  |  |
| QK |  | 25 |  | 44 |  |  |  |  | 60 |  |  |  |
| GA |  | 21.5 |  | 25 |  |  |  |  | 38 |  |  |  |
| F |  | 6-0.03 |  | 8-0.036 |  |  |  |  | 10-0.036 |  |  |  |
| Without brake | LL | 157 | 204 | 151 | 184 | 184 | 217 | 250 | 197 | 223 | 249 | 301 |
|  | KB1 | 100 | 147 | 92 | 125 | 125 | 158 | 191 | 135 | 161 | 187 | 239 |


| Type |  | $\begin{aligned} & \text { 1FL60 } \\ & 4 ? \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 44 \end{array}$ | $\begin{aligned} & \text { 1FL60 } \\ & 61 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 62 \\ \hline \end{array}$ | $\begin{aligned} & \text { 1FL60 } \\ & 64 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 66 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 67 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 90 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 92 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 94 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1FL60 } \\ 96 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | KB2 | - |  | - |  |  |  |  |  |  |  |  |
| With brake | LL | 203.5 | 250.5 | 205.5 | 238.5 | 238.5 | 271.5 | 304.5 | 263 | 289 | 315 | 367 |
|  | KB1 | 147 | 194 | 147 | 180 | 180 | 213 | 246 | 201 | 227 | 253 | 305 |
|  | KB2 | 31.5 |  | 39.5 |  |  |  |  | 44.5 |  |  |  |
| KL1 |  | 136 |  | 158 |  |  |  |  | 184 |  |  |  |
| KL2 |  | 60 |  | 60 |  |  |  |  | 60 |  |  |  |
| KL3 |  | - |  | - |  |  |  |  |  |  |  |  |
| KL4 |  | - |  | - |  |  |  |  | - |  |  |  |
| - (1)-Power cable connector, (2)-Absolute encoder cable connector, (3)-Brake cable connector. These connectors should be ordered separately. For the ordering information refer to Operating Instructions. <br> - The boundary dimension of encoder connector-(2) and brake connector-(3) are the same. <br> - Shaft height 90 mm motor has two M8 screws hole for eyebolts |  |  |  |  |  |  |  |  |  |  |  |  |

## Mounting the motor

## WARNING <br> Personal injury and material damage

Some motors, especially the 1FL609] are heavy. The excessive weight of the motor should be considered and any necessary assistance required for mounting should be sought.
Otherwise, the motor can fall down during mounting. This can result in serious personal injury or material damage.

## NOTICE

## Damage to the motor

If the liquid enters the motor, the motor may be damaged
During motor installation or operation, make sure that no liquid (water, oil, etc.) can penetrate into the motor. Besides, when installing the motor horizontally, make sure that the cable outlet faces downward to protect the motor from ingress of oil or water.

## NOTICE

Magnetic interference to the absolute encoder from the magnetic field
To avoid magnetic interference to the absolute encoder, keep the servo motor with an absolute encoder at least 15 mm away from the devices that produce a magnetic field stronger than 10 mT .

## Note

## Using the eyebolts

The 1FL609] motor ( 90 mm shaft height) has two M8 screw holes for screwing in two eyebolts. Lift the 1FL609] motor only at the eyebolts.
Eyebolts that have been screwed in must be either tightened or removed after mounting.
To ensure better heat dissipation, install a flange between the machine and the motor. You can install the motor onto the flange with 4 screws as shown in the following figure.

The information about the screws and the flange is as follows:


SIMOTICS S-1FL6 low inertia servo motors

| Motor | Screw | Recommended flange size | Tightening torque | Flange material |
| :--- | :--- | :--- | :--- | :--- |
| 1FL602 | $2 \times$ M4 | $120 \times 100 \times 40(\mathrm{~mm})$ | 2.4 Nm | Aluminum alloy |
| 1FL603口 | $4 \times$ M5 | $120 \times 100 \times 40(\mathrm{~mm})$ | 4.7 Nm |  |
| 1FL604口 | $4 \times$ M6 | $120 \times 100 \times 40(\mathrm{~mm})$ | 8 Nm |  |
| 1FL605 | $4 \times$ M8 | $120 \times 100 \times 40(\mathrm{~mm})$ | 20 Nm |  |

## SIMOTICS S-1FL6 high inertia servo motors

| Motor | Screw | Recommended flange size | Tightening torque | Flange material |
| :--- | :--- | :--- | :--- | :--- |
| 1FL604D | $4 \times$ M6 | $270 \times 270 \times 10(\mathrm{~mm})$ | 8 Nm | Aluminum alloy |
| 1FL606 | $4 \times$ M8 | $390 \times 390 \times 15(\mathrm{~mm})$ | 20 Nm |  |
| 1FL609 | $4 \times$ M12 | $420 \times 420 \times 20(\mathrm{~mm})$ | 85 Nm |  |

## 4 Connecting

### 4.1 System connection

The following illustrations show the examples of the SINAMICS V90 PN servo system connection.


Connection diagram for FSD on the three phase power network:


## DANGER

Danger to life when PE connectors are touched
When the equipment is working, hazardous touch current can be present at the PE connectors; if touched, this can result in death or severe personal injury.

- Do not touch the PE connector during operation or within a certain period since power disconnection.


## WARNING

Personal injury and damage to property from improper connections
Improper connections have high risks of electrical shock and short circuit, which will jeopardize personal safety and equipment.

- The drive must be directly connected with the motor. It is not permissible to connect a capacitor, inductor or filter between them.
- The line supply voltage must be within the allowable range (refer to the drive rating plate). Never connect the line supply cable to the motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ or connect the motor power cable to the line input terminals L1, L2, L3.
- Never wire up the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals in an interchanged phase sequence.
- If the CE marking for cables is mandatory in some cases, the motor power cable, line supply cable and brake cable used must all be shielded cables.
- For terminal connection, make sure that the clearances in air between non-insulated live parts are at least 5.5 mm .
- Route signal cables and power cables separately in different cable conduits. The signal cables shall be at least 10 cm away from the power cables.
- Cables connected may not come into contact with rotating mechanical parts.


## CAUTION

Personal injury and damage to property from inadequate protection
Inadequate protection may cause minor personal injury or damage to property.

- Route a second PE conductor with the cross section of the supply system lead in parallel to the protective earth via separate terminals or use a copper protective earth conductor with a cross section of $10 \mathrm{~mm}^{2}$.
- Terminals for equipotential bondings that exist in addition to terminals for PE conductors must not be used for loopingthrough the PE conductors.
- To ensure protective separation, an isolating transformer must be used for the 220 VAC/380 VAC line supply system.


## NOTICE

## Important wiring information

In order to meet EMC requirements, all cables must be shielded cables.
The cable shields of shielded twisted-pair cables should be connected to the shielding plate or the cable clamp of the servo drive.

## NOTICE

Drive damage caused by short-circuiting between the shielding wire and the unused pin on the PROFINET I/O connector The shielding wire may inadvertently be short-circuited to the unused pin on the to-be-assembled PROFINET I/O connector. This can cause damage to the drive.
Exercise caution when connecting the shielding cable to the PROFINET I/O connector.
For the detailed assembly method of the connector, see Section "Assembly of cable terminals on the drive side" in the SINAMICS V90, SIMOTICS S- 1FL6 Operating Instructions.

## Note

Low Voltage Directive complied
Our products comply with EN61800-5-1: 2007 standards and Low Voltage Directive (Low Voltage Directive 2006/95/EC).

## Note

For low inertia motors of shaft heights $20 \mathrm{~mm}, 30 \mathrm{~mm}$ and 40 mm , the encoder cable connectors may only be accessible to electrically skilled personnel.

## Note

The mini-USB interface of the SINAMICS V90 PN is used for fast commissioning and diagnostics with SINAMICS VASSISTANT installed in the PC. Do not use it for long monitoring.

## Connecting the cable shields with the shielding plate

To achieve EMC-compliant installation of the drive, use the shielding plate that is shipped with the drive to connect the cable shields. See the following example for steps of connecting cable shields with the shielding plate:


## DANGER

Death or severe personal injury from electrical shock
The earth leakage current for the drive can be greater than AC 3.5 mA , which may cause death or severe personal injury due to electrical shock.
A fixed earth connection is required to eliminate the dangerous leakage current. In addition, the minimum size of the protective earth conductor shall comply with the local safety regulations for high leakage current equipment.

## Adjusting cable orientations from the motor side

For the low inertia motors of shaft height 50 mm and high inertia motors, you can adjust the orientation of the power cable, encoder cable, and brake cable from motor side to facilitate cable connection.


## Note

Rotating the connectors
You can rotate all the three motor-side connectors only within $360^{\circ}$.

### 4.2 Main circuit wirings

### 4.2.1 Line supply - L1, L2, L3

## SINAMICS V90 PN 200 V variant

Recommended minimum cable cross-section:
When used on the single phase power network:
FSB ( 0.1 kW to 0.2 kW ): $0.33 \mathrm{~mm}^{2}$
FSB ( 0.4 kW ): $0.52 \mathrm{~mm}^{2}$
FSC: $1.31 \mathrm{~mm}^{2}$
When used on the three phase power network:
FSB: $0.33 \mathrm{~mm}^{2}$
FSC: $0.52 \mathrm{~mm}^{2}$
FSD (1 kW): $0.82 \mathrm{~mm}^{2}$
FSD (1.5 kW to 2 kW ): $2.08 \mathrm{~mm}^{2}$

## SINAMICS V90 PN 400 V variant

Recommended minimum cable cross-section:
FSAA and FSA: $1.5 \mathrm{~mm}^{2}$
FSB and FSC: $2.5 \mathrm{~mm}^{2}$

## Note

For 200 V variant, when using the FSB and FSC on the single phase power network, you can connect the power supply to any two connectors of L1, L2, and L3.

## Assembling the line supply cable terminals

The procedure of assembling a line supply cable terminal is the same as that for a power cable terminal on the drive side.
For more information, see the SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions.

## Attaching the line supply cable

## CAUTION

Risk of injury due to improper cable connection
When attaching the line supply cable to a line supply connector that has not been fixed on the drive, you can injure your fingers.

- Make sure you first fix the line supply connector on the drive, and then attach the cable to the connector.


## 200 V variant

- For FSB

- For FSC and FSD



## 400 V variant

- For FSAA and FSA

You can attach the line supply cable with the same method for 200 V variant drives of frame sizes FSC and FSD.

- For FSB and FSC

The FSB and FSC servo drives are equipped with barrier terminals for line supply connection. You can fix the line supply cable on the servo drives by using the M 4 screws with a tightening torque of 2.25 Nm ( $19.91 \mathrm{lb} . \mathrm{in}$ ).

Getting Started
A5E37208904-002, 09/2016

### 4.2.2 Motor power - U, V, W

Motor output - drive side

## SINAMICS V90 PN 200 V variant

Recommended minimum cable cross-section:
FSB: $0.75 \mathrm{~mm}^{2}$
FSC and FSD (1 kW): $0.75 \mathrm{~mm}^{2}$
FSD ( 1.5 kW to 2 kW ): $2.5 \mathrm{~mm}^{2}$
SINAMICS V90 PN 400 V variant
Recommended minimum cable cross-section:
FSAA and FSA: $1.5 \mathrm{~mm}^{2}$
FSB and FSC: $2.5 \mathrm{~mm}^{2}$
Wiring


Attaching the motor power cable

## CAUTION

Risk of injury due to improper cable connection
When attaching the motor power cable to a motor power connector that has not been fixed on the drive, you can injure your fingers.

- Make sure you first fix the motor power connector on the drive, and then attach the cable to the connector.


## 200 V variant

- For FSB
(1)

(2)

- For FSC and FSD
M2.5: 0.5 Nm (4.43 lb.in)



## 400 V variant

- For FSAA and FSA

You can attach the motor power cable with the same method for 200 V variant drives of frame sizes FSC and FSD.

- For FSB and FSC

The FSB and FSC servo drives are equipped with barrier terminals for motor power connection. You can fix the motor power cable on the servo drives by using the M 4 screws with a tightening torque of 2.25 Nm ( $19.91 \mathrm{lb} . \mathrm{in}$ ).

### 4.3 Control/Status interface - X8

### 4.3.1 Interface definition

| Pin | Signal | Description | Pin | Signal |
| :--- | :--- | :--- | :--- | :--- | Description

Type: 20-pin MDR socket

## Digital inputs/outputs

| 1 | DI1 | Digital input 1 | 11 | DO1+ | Digital output 1, positive |
| :---: | :---: | :--- | :---: | :---: | :--- |
| 2 | DI2 | Digital input 2 | 12 | DO1- | Digital output 1, negative |
| 3 | DI3 | Digital input 3 | 13 | DO2+ | Digital output 2, positive |
| 4 | DI4 | Digital input 4 | 14 | DO2- | Digital output 2, negative |
| 6 | DI_COM | Common terminal for digital <br> inputs | $17^{*}$ | BK+ | Motor holding brake control sig- <br> nal, positive |
| 7 | DI_COM | Common terminal for digital <br> inputs | $18^{*}$ | BK- | Motor holding brake control sig- <br> nal, negative |
| None |  |  |  |  |  |
| 5 | - | Reserved | 15 | - | Reserved |
| 8 | - | Reserved | 16 | - | Reserved |
| 9 | - | Reserved | 19 | - | Reserved |
| 10 | - | Reserved | 20 | - | Reserved |

* The pins are used to connect the brake control signals for 200 V variant drive only.


### 4.3.2 Standard wiring

Example 1

() $\quad$ Shielded cable
$\triangle \times \subset$ Twisted-pair wires

## Example 2


( $)$ Shielded cable
$\neg \subset \subset$ Twisted-pair wires

* Digital inputs, supporting both PNP and NPN types.
** The pins are used to connect the brake control signals for 200 V variant drive only. Refer to the section "Motor holding brake" in SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions for the detailed connections.


## $4.4 \quad 24 \mathrm{~V}$ power supply/STO

The pin assignment for the 24 V power supply/STO interface is shown as follows:

| Interface | Signal name | Description |
| :---: | :---: | :---: |
|  | STO 1 | Safe torque off channel 1 |
|  | STO + | Specific power supply for safe torque off |
|  | STO 2 | Safe torque off channel 2 |
|  | +24V | Power supply, 24 VDC |
|  | M | Power supply, 0 VDC |
|  | Maximum conduct | ss-section: 1.5 mm² |

## Wiring

## WARNING

Material damages and personal injuries by the drop of a hanging axis
When the servo system is used as a hanging axis, the axis will drop if the positive and negative poles of the 24 V power supply are connected inversely. Unexpected drop of the hanging axis may cause material damages and personal injuries. Make sure that the 24 V power supply is correctly connected.

## WARNING <br> Material damages and personal injuries by the drop of a hanging axis <br> It is not allowed to use the STO with a hanging axis because the axis may drop. Unexpected drop of the hanging axis may cause material damages and personal injuries.

## Note

## Using the STO function

The STO1, STO+ and STO2 are short connected at the factory setting.
When the STO function is to be used, you must remove the short-circuit stick before connecting the STO interfaces. The safety function of the servo drive is SIL 2 (EN61800-5-2). If you do not need to use it any more, you must reinsert the shortcircuit stick; otherwise, the motor will not run.
For detailed information about the STO function, refer to chapter "Safety Integrated basic functions" of SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions.


## Assembling the 24 V power supply and STO cable terminals

The procedure of assembling a 24 V power cable terminal or an STO cable terminal is the same as that for a power cable terminal on the drive side of the V90 PN 200 V servo drives.
For more information, see the SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions.

## Plugging the 24 V power supply and STO cables

(1) Plugging:

(2) Unplugging:


### 4.5 Encoder interface - X9

The SINAMICS V90 PN 200V variant servo drive supports two kinds of encoders:

- Incremental encoder TTL 2500 ppr
- Absolute encoder single-turn 21-bit

The SINAMICS V90 PN 400V variant servo drive supports two kinds of encoders:

- Incremental encoder TTL 2500 ppr
- Absolute encoder 20-bit + 12-bit multi-turn


## NOTICE

## Cable shielding

The encoder cable must be shielded to meet the EMC requirements.

## NOTICE

Drive damage caused by short-circuiting between the shielding wire and the unused pin on the encoder connector
The shielding wire may inadvertently be short-circuited to the unused pin on the to-be-assembled encoder connector. This can cause damage to the drive.
Exercise caution when connecting the shielding cable to the encoder connector.
For more information, see Section "Assembly of cable terminals on the drive side" in the SINAMICS V90, SIMOTICS S1FL6 Operating Instructions.

Encoder interface - drive side

| Illustration | Pin No. | Signal name | Description |
| :---: | :---: | :---: | :---: |
|  | 1 | Biss_DataP | Absolute encoder data signal, positive |
|  | 2 | Biss_DataN | Absolute encoder data signal, negative |
|  | 3 | Biss_ClockN | Absolute encoder clock signal, negative |
|  | 4 | Biss_ClockP | Absolute encoder clock signal, positive |
|  | 5 | P5V | Encoder power supply, 5 V |
|  | 6 | P5V | Encoder power supply, 5 V |
|  | 7 | M | Encoder power supply, grounding |
|  | 8 | M | Encoder power supply, grounding |
|  | 9 | Rp | Encoder R phase positive signal |
|  | 10 | Rn | Encoder R phase negative signal |
|  | 11 | Bn | Encoder B phase negative signal |
|  | 12 | Bp | Encoder B phase positive signal |
|  | 13 | An | Encoder A phase negative signal |
|  | 14 | Ap | Encoder A phase positive signal |
|  | Screw ty <br> Tighteni | e: UNC 4-40 (pl torque: 0.5 Nm | in terminal block) . 6 Nm |

Encoder connector - motor side

| Illustration | Pin No. | Incremental encoder TTL 2500 ppr |  | Illustration | Absolute encoder single-turn 21-bit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Signal | Description |  | Signal | Description |
| Low inertia motor, shaft height: $20 \mathrm{~mm}, 30 \mathrm{~mm}$ and 40 mm |  |  |  |  |  |  |
|  | 1 | P_Supply | Power supply 5 V |  | P_Supply | Power supply 5 V |
|  | 2 | M | Power supply 0 V |  | M | Power supply 0 V |
|  | 3 | A+ | Phase A+ |  | Clock_P | Clock |
|  | 4 | B+ | Phase B+ |  | Data_P | Data |
|  | 5 | R+ | Phase R+ |  | n. c. | Not connected |
|  | 6 | n. c. | Not connected |  | P_Supply | Power supply 5 V |
|  | 7 | P_Supply | Power supply 5 V |  | M | Power supply 0 V |
|  | 8 | M | Power supply 0 V |  | Clock_N | Inverted clock |
|  | 9 | A- | Phase A- |  | Data_N | Inverted data |
|  | 10 | B- | Phase B- |  | Shielding | Grounding |
|  | 11 | R - | Phase R- |  | - | Null |
|  | 12 | Shielding | Grounding |  | - | Null |


| Illustration | Pin <br> No. | Incremental encoder TTL 2500 ppr |  | Absolute encoder single-turn 21-bit <br> Absolute encoder 20-bit + 12-bit multi-turn |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Signal | Description | Signal | Description |

Low inertia motor, shaft height: 50 mm
High inertia motor, shaft height: $45 \mathrm{~mm}, 65 \mathrm{~mm}$, and 90 mm

|  | 1 | P_Supply | Power supply 5 V | P_Supply | Power supply 5 V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1007 | 2 | M | Power supply 0 V | M | Power supply 0 V |
| $\left(\begin{array}{cc}20 & 8 \\ 30 \\ 30 & 06\end{array}\right.$ | 3 | A+ | Phase A+ | n. c. | Not connected |
| ${ }^{30}{ }^{0}$ | 4 | A- | Phase A- | Clock_N | Inverted clock |
|  | 5 | B+ | Phase B+ | Data_P | Data |
|  | 6 | B- | Phase B- | Clock_P | Clock |
|  | 7 | R+ | Phase R+ | n. c. | Not connected |
|  | 8 | R- | Phase R- | Data_N | Inverted data |

## Wiring

Low inertia motor, shaft height: $20 \mathrm{~mm}, 30 \mathrm{~mm}$ and 40 mm



Absolute encoder single-turn 21-bit

[^2]
## Low inertia motor, shaft height: 50 mm




## Grounding

To ensure better EMC effects, you are recommended to strip the encoder cable and connect the cable shield to earth, as shown in the following figure:


### 4.6 External braking resistor - DCP, R1

The SINAMICS V90 PN has been designed with an internal braking resistor to absorb regenerative energy from the motor. When the internal braking resistor cannot meet the braking requirements (e.g. the alarm A52901 is generated), you can connect an external braking resistor. For the selection of braking resistors, refer to chapter accessories of the SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions.

## Connecting an external braking resistor

## WARNING

## Damage to the drive

Before connecting an external resistor to DCP and R1, remove the short-circuit stick on the connectors. Otherwise, the drive may be damaged

For the connection of the external braking resistor, refer to Connecting (Page 31).

### 4.7 Motor holding brake

You can connect the SINAMICS V90 PN servo drive to a servo motor with brake to use the function of motor holding brake.

## NOTICE

## Shortening the service life of motor brake

The motor brake is used for holding purpose only. Frequent emergency stops with the motor brake will shorten its service life.

Unless absolutely necessary, do not apply the motor brake as an emergency stop or deceleration mechanism.

### 4.8 PROFINET interface - X150

## PROFINET interface

PROFINET devices from the SINAMICS family have a PROFINET interface (Ethernet-controller/interface) with two ports (physical connection possibilities).

Every PROFINET device on the network is uniquely identified via its PROFINET interface. For this purpose, each PROFINET interface has:

- A MAC address (factory default)
- An IP address
- A device name (name of the station)

| Illustration | Pin | PROFINET communication port 1-P1 |  | PROFINET communication port 2 - P2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Signal | Description | Signal | Description |
|  | 1 | P1RXP | Port 1 receive data + | P2RXP | Port 2 receive data + |
|  | 2 | P1RXN | Port 1 receive data - | P2RXN | Port 2 receive data - |
|  | 3 | P1TXP | Port 1 transmit data + | P2TXP | Port 2 transmit data + |
|  | 4 | PE terminal | Protective earthing | PE terminal | Protective earthing |
|  | 5 | PE terminal | Protective earthing | PE terminal | Protective earthing |
|  | 6 | P1TXN | Port 1 transmit data - | P2TXN | Port 2 transmit data - |
|  | 7 | PE terminal | Protective earthing | PE terminal | Protective earthing |
|  | 8 | PE terminal | Protective earthing | PE terminal | Protective earthing |

## LED displays

For diagnostic purposes, the RJ45 sockets are each equipped with a green and an orange LED. This allows the following status information about the respective PROFINET port to be displayed:

| Name | Color | Status | Meaning |
| :--- | :--- | :--- | :--- |
| Link | Green | lit | Transfer rate $100 \mathrm{Mbit} / \mathrm{s}$ |
|  |  | off | No or faulty connection |
| Activity | Orange | lit | Data exchange |
|  |  | off | No data exchange |

## Wiring

The maximum length of cables between stations ( L 1 to Ln ) is 100 m . For a long cable, you are recommended to fix it on the cabinet to prevent the connector damage caused by dragging.


## Note

When connecting the ports P1 and P2, you need to make sure that the physical input and output connections are the same with the connections in the topology.

## 5 Commissioning

Prior to commissioning, read 'Introduction to the BOP (Page 48)' for more information about the BOP operations. In case of any faults or alarms during commissioning, refer to Chapter 'Diagnostics (Page 100)" for detailed description.

## CAUTION

## Carefully read the safety instructions

Before your commissioning or operation, read the safety instructions in Chapter "Fundamental safety instructions (Page 2)" carefully. Failure to observe the instructions may cause serious effects.

## WARNING

## Material damages and personal injuries by the drop of a hanging axis

When the servo system is used as a hanging axis, the axis will drop if the positive and negative poles of the 24 V power supply are connected inversely. Unexpected drop of the hanging axis may cause material damages and personal injuries. Before commissioning, a crosstie must be used to hold the hanging axis in prevention of an unexpected drop. In addition, make sure that the 24 V power supply is correctly connected.

## NOTICE

## Firmware damage due to drive power-off during data transfer

Switching off the 24 V power supply for the drive during data transfer from the micro SD card/SD card to the drive can cause damage to the drive firmware.

- Do not switch off the drive power supply when the data transfer from the micro SD card/SD card to the drive is in process.


## NOTICE

Existing setting data may be overwritten by the setting data on the micro SD card/SD card during startup.

- When a drive is switched on with a micro SD card/SD card containing user setting data, the existing setting data on the drive will be overwritten.
- When a drive is switched on with a micro SD card/SD card containing no user setting data, the drive will automatically save the existing user setting data onto the micro SD card/SD card.
Before starting up the drive with a micro SD card/SD card, check whether the micro SD card/SD card contains user setting data. Otherwise, the existing data on the drive may be overwritten.


## Note

Plugging or unplugging the micro SD card/SD card will cause startup failure.
Do not plug or unplug the micro SD card/SD card during startup; otherwise, the drive will fail to start up.

## Note

In S control mode, if the motor shaft is blocked, the blocked torque is the current effective torque. Long time shaft blocking can cause damage to the motor.

## Engineering tool - SINAMICS V-ASSISTANT

You can use the engineering tool SINAMICS V-ASSISTANT to perform the trial operation.
SINAMICS V-ASSISTANT is a software tool that can be installed on a PC and runs on the Windows operating system. It communicates with the SINAMICS V90 PN servo drive with a USB cable (To ensure the stability of online commissioning, Siemens recommends you to use a shielded USB cable of no longer than 3 m with ferrite cores on both ends.). With SINAMICS V-ASSISTANT, you can change drive parameters and monitor drive working states in online mode.

For more information, refer to SINAMICS V-ASSISTANT Online Help. You can search and download SINAMICS VASSISTANT from Technical support website (https://support.industry.siemens.com/cs/ww/en/).

### 5.1 Introduction to the BOP

The SINAMICS V90 PN servo drive is designed with a Basic Operator Panel (BOP) on the front panel of the servo drive:


You can use the BOP for the following operations:

- Standalone commissioning
- Diagnosis
- Parameter access
- Parameter settings
- Micro SD card/SD card operations
- Drive restart

| Button | Description | Functions |
| :---: | :---: | :---: |
| M | M button | - Exits from the current menu <br> - Switches between operating modes in the top level menu |
| OK | OK button | Short-pressing: <br> - Confirms selection or input <br> - Enters sub menu <br> - Acknowledges faults <br> Long-pressing: <br> Activates auxiliary functions <br> - Sets Drive Bus address <br> - JOG <br> - Saves parameter set in drive (RAM to ROM) <br> - Sets parameter set to default <br> - Transfers data (drive to micro SD card/SD card) <br> - Transfers data (micro SD card/SD card to drive) <br> - Updates firmware |
| , | UP button | - Navigates to the next item <br> - Increases a value <br> - JOG in CW (clockwise) |
| $\nabla$ | DOWN button | - Navigates to the previous item <br> - Decreases a value <br> - JOG in CCW (counter-clockwise) |
|  | SHIFT button | Moves the cursor from digit to digit for single digit editing, including the digit of positive/negative sign <br> Note: <br> When the sign is edited, "_" indicates positive and "-" indicates negative. |
| $\mathrm{OK}+\mathrm{M}$ | Press the key combination for four seconds to restart the drive |  |
| $\Delta+$ | Moves current display to the left page when ${ }^{\Gamma}$ is displayed at the upper right corner, for <br>  |  |
| $\nabla+$ | Moves current display to the right page when $\lrcorner$ is displayed at the lower right corner, for example7 |  |

## Menu structure

The overall parameter structure of SINAMICS V90 PN BOP is designed as follows:


BOP displays

| Display | Example | Description |
| :---: | :---: | :---: |
| 8.8.8.8.8.8. | 8.8.8.8.8.8. | Drive is in startup state |
| ----- |  | Drive is busy |
| Fxxxxx | $F \quad 7985$ | Fault code, in the case of a single fault |
| F.xxxxx. | F. 7985 | Fault code of the first fault, in the case of multiple faults |
| Fxxxxx. | $F \quad 7985$ | Fault code, in the case of multiple faults |
| Axxxxx | 标 3085 | Alarm code, in the case of a single alarm |
| A. $x$ xxxx. | 9.300 75. | Alarm code of the first alarm, in the case of multiple alarms |
| Axxxxx. | 935045. | Alarm code, in the case of multiple alarms |
| Rxxxxx | $r 003 t$ | Parameter number, read-only parameter |
| Pxxxxx | 98849 | Parameter number, editable parameter |
| P.xxxxx | ค. 8849 | Parameter number, editable parameter; the dot means that at least one parameter has been changed |
| $\ln \mathrm{xxx}$ | 行 080 | Indexed parameter <br> Figure after " In " indicates the number of indices. <br> For example, "In 001" means that this indexed parameter is 1. |
| xxx.xxx | $-23.345$ | Negative parameter value |
| xxx.xx<> | - 21005 | Current display can be moved to left or right |
| xxxx.xx> | 451 | Current display can be moved to right |
| xxxx.xx< | $95400^{5}$ | Current display can be moved to left |
| S Off | 5 oFF | Operating display: servo off |
| Para | 09\% | Editable parameter group |


| Display | Example | Description |
| :---: | :---: | :---: |
| P xxxx | $p \quad 8 p p$ | Parameter group <br> Five groups are available: <br> 1. P APP: application <br> 2. P BASE: basic <br> 3. P CON: communication <br> 4. P EPOS: basic positioner <br> 5. P ALL: all parameters |
| Data | dht | Read-only parameter group |
| Func | Fint | Function group |
| JOG | 109 | JOG function |
| Save | 5RuE | Save data in drive |
| defu | dEFí | Restore drive to default settings |
| dr--sd | dr- $5 d$ | Save data from drive to micro SD card/SD card |
| sd--dr | $5 d-d r$ | Upload data from micro SD card/SD card to drive |
| Update | UPdRtE | Update firmware |
| ABS | 965 | The zero position has not been set |
| A.B.S. | 9.土.5. | The zero position has been set |
| rxxx | $r \quad 40$ | Actual speed (positive direction) |
| r-xxx | $r \quad-40$ | Actual speed (negative direction) |
| T x.x | $t \quad 0.4$ | Actual torque (positive direction) |
| T-x.x | $t \quad-0.4$ | Actual torque (negative direction) |
| xxxxxx | 134279 | Actual position (positive direction) |
| xxxxxx. | 134279. | Actual position (negative direction) |


| Display | Example | Description |
| :---: | :---: | :---: |
| DCxxx.x | dic549.0 | Actual DC link voltage |
| Exxxxx | [1853 | Position following error |
| run | rín | The motor is running |
| Con | E0\% | The communication between the commissioning tool SINAMICS VASSISTANT and the servo drive is established. In this case, the BOP is protected from any operations except clearing alarms and acknowledging faults. |

### 5.2 Initial commissioning in JOG mode

## Prerequisites

- The servo drive is connected to the servo motor without load
- The servo drive is not in servo on status


## Operating sequence

## Note

Set bit 0 of parameter p29108 to 1, and then save the parameter setting and restart the drive, to enable the JOG function; otherwise, you cannot access the function related parameter p1058.
If you have assigned digital signal EMGS, keep it at a high level (1) to ensure normal operation.

| Step | Description | Remarks |
| :---: | :---: | :---: |
| 1 | Connect necessary units and check wiring. | It is necessary to connect the following cables: <br> - Power cable <br> - Encoder cable <br> - Brake cable <br> - Line supply cable <br> - 24 VDC cable |
| 2 | Switch on the 24 VDC power supply. |  |
| 3 | Check the servo motor type. <br> - If the servo motor has an incremental encoder, input motor ID (p29000). <br> - If the servo motor has an absolute encoder, the servo drive can identify the servo motor automatically. | Fault F52984 occurs when the servo motor is not identified. <br> You can find the motor ID from the motor rating plate. Go to "Motor components (Page 11)" for detailed descriptions about motor rating plate. |
| 4 | Check the direction of motor rotation. <br> The default direction of rotation is CW (clockwise). You can change it by setting the parameter p29001 if necessary. | $\begin{aligned} & \text { p29001=0: CW } \\ & \text { p29001=1: CCW } \end{aligned}$ |


|  |  |  |
| :---: | :---: | :---: |
|  | Setting a parameter without index (example) |  |
| 5 |  |  |
| 6 |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| Step | Description | Remarks |
| :---: | :---: | :---: |
|  | JOG in speed (example) <br> JOG in torque (example) |  |

### 5.3 Commissioning in basic positioner control mode (EPOS)

The following takes the EJOG function for example to describe the commissioning in EPOS mode.

| Step | Description | Remarks |
| :---: | :---: | :---: |
| 1 | Switch off the main line supply. |  |
| 2 | Power off the servo drive and connect it to the controller (for example, SIMATIC S7-1500) with the PROFINET cable and signal cable. | If any one of digital signals EMGS, CWL, and CCWL is not assigned to a DI, it will be set to a high level (1) automatically. <br> If you have assigned any one of digital signals EMGS, CWL, and CCWL to a DI, keep it at a high level (1). |
| 3 | Switch on the 24 VDC power supply. |  |
| 4 | Check the servo motor type. <br> - If the servo motor has an incremental encoder, input the motor ID (p29000). <br> - If the servo motor has an absolute encoder, the servo drive can identify the servo motor automatically. | Fault F52984 occurs when the servo motor is not identified. <br> You can find the motor ID from the motor rating plate. For the detailed information of the motor rating plate, see Section 'Motor components (Page 11)". |
| 5 | Switch to the basic positioner control mode by setting parameter p29003 = 1 . | - p29003 = 1: basic positioner control (EPOS) <br> - $\mathrm{p} 29003=2$ : speed control (S) |
| 6 | Save the parameter and restart the servo drive to apply the setting of the basic positioner control mode. |  |
| 7 | Set the mechanical gear ratio with parameters p29247, p29248 and p29249. | - p29247: LU per load revolution <br> - p29248: load revolutions <br> - p29249: motor revolutions |


| Step | Description | Remarks |
| :---: | :--- | :--- |
| 8 | Select the axis type by setting parameter p29245. If you use <br> the modular axis, you need to define the modular range by <br> setting parameter p29246. | $\bullet$ p29245 = 0: linear axis <br> $\bullet$ p29245 = 1: modular axis |
| 9 | Setting jogging setpoints with the appropriate parameters. <br> • Velocity (p2585, p2586) <br> - Incremental (p2587, p2588) | Refer to 'EJOG (Page 58)". |
| 10 | Switch on the main line supply. |  |
| 11 | Set up the PROFINET configuration with TIA Portal. |  |
| 12 | Select the telegram for PROFINET communication with <br> parameter p0922. |  |

### 5.4 Commissioning in speed control mode (S)

| Step | Description | Remarks |
| :---: | :---: | :---: |
| 1 | Switch off the main line supply. |  |
| 2 | Power off the servo drive and connect it to the controller (for example, SIMATIC S7-1500) with the PROFINET cable and signal cable. | If any one of digital signals EMGS, CWL, and CCWL is not assigned to a DI, it will be set to a high level (1) automatically. <br> If you have assigned any one of digital signals EMGS, CWL, and CCWL to a DI, keep it at a high level (1). |
| 3 | Switch on the 24 VDC power supply. |  |
| 4 | Check the servo motor type. <br> - If the servo motor has an incremental encoder, input motor ID (p29000). <br> - If the servo motor has an absolute encoder, the servo drive can identify the servo motor automatically. | Fault F52984 occurs when the servo motor is not identified. <br> You can find the motor ID from the motor rating plate. Go to 'Motor components (Page 11)" for detailed descriptions about motor rating plate. |
| 5 | Set up the PROFINET configuration with TIA Portal. |  |
| 6 | Select the telegram for PROFINET communication with parameter p0922. |  |
| 7 | Set the IP address for the station with parameters p8921, p8923. |  |
| 8 | Set the device name for the station with parameter p8920. | The device name must be unique within the PROFINET network. |
| 9 | Active the IP configuration and device name with parameter p8925. |  |
| 10 | Set the torque limitation and speed limitation. | Refer to 'Torque limit (Page 57)" and 'Speed limit (Page 57)". |
| 11 | Configure necessary digital input signals by setting the following parameters: <br> - p29301: DI1 <br> - p29302: DI2 <br> - p29303: DI3 <br> - p29304: D14 | The factory settings are: <br> - p29301: 2 (RESET) <br> - p29302: 11 (TLIM) <br> - p29303: 0 <br> - p29304: 0 |
| 12 | Save parameters with the BOP and restart the drive. |  |
| 13 | Switch on the main line supply. |  |
| 14 | Clear faults and alarms. | Refer to 'Diagnostics (Page 100)". |
| 15 | Send and receive the process data (PZD) with TIA Portal. | The actual speed of the servo motor can be viewed from the BOP operating display. <br> The default display is the actual speed. |

### 5.5 Commissioning control functions

### 5.5.1 Speed limit

Two sources in total are available for the speed limit. You can select one of them via the digital input signal SLIM:

| Digital signal (SLIM) |  |
| :---: | :--- |
| 0 | Internal speed limit 1 |
| 1 | Internal speed limit 2 |

## Note

The bit 0 of parameter p29108 must be set to 1 to enable the speed limit function.

## Note

You can switch between the two sources and modify their values when the servo drive is running.

## Note

Fault F7901 occurs when the actual speed exceeds the positive speed limit + hysteresis speed (p2162) or the negative speed limit - hysteresis speed (p2162).

## Overall speed limit

Besides the above two channels, an overall speed limit is also available.
You can configure the overall speed limit by setting the following parameters:

| Parameter | Value range | Default | Unit | Description |
| :---: | :---: | :---: | :---: | :--- |
| p1083 | 0 to 210000 | 210000 | rpm | Overall speed limit (positive) |
| p1086 | -210000 to 0 | -210000 | rpm | Overall speed limit (negative) |

## Internal speed limit

Select an internal speed limit by setting the following parameters:

| Parameter | Value range | Default | Unit | Description | Digital input (SLIM) |
| :---: | :---: | :---: | :---: | :--- | :---: |
| $\mathrm{p} 29070[0]$ | 0 to 210000 | 210000 | rpm | Internal speed limit 1 (posi- <br> tive) | 0 |
| $\mathrm{p} 29070[1]$ | 0 to 210000 | 210000 | rpm | Internal speed limit 2 (posi- <br> tive) | 1 |
| $\mathrm{p} 29071[0]$ | -210000 to 0 | -210000 | rpm | Internal speed limit 1 (nega- <br> tive) | 0 |
| $\mathrm{p} 29071[1]$ | -210000 to 0 | -210000 | rpm | Internal speed limit 2 (nega- <br> tive) | 1 |

## Note

After the motor is commissioned, p1082, p1083, p1086, p29070 and p29071 are set to the maximum speed of the motor automatically.

### 5.5.2 Torque limit

Two sources in total are available for the torque limit. You can select one of them via the digital input signal TLIM:

| Digital input (TLIM) | Torque limit |
| :---: | :--- |
| 0 | Internal torque limit 1 |
| 1 | Internal torque limit 2 |

When the torque setpoint reaches torque limit, the torque is limited to the value selected by TLIM.

## Note

You can switch between the two sources and modify their values when the servo drive is running.

## Overall torque limit

Besides the above two sources, an overall torque limit is also available. The overall torque limit takes effect when an emergency stop (OFF3) happens. In this case, the servo drive brakes with a maximum torque.

You can configure the overall torque limit by setting the following parameters:

| Parameter | Value range | Default | Unit |  |
| :---: | :---: | :---: | :---: | :--- |
| p1520 | -1000000.00 to 20000000.00 | 0 | Nm | Overall torque limit (positive) |
| p1521 | -20000000.00 to 1000000.00 | 0 | Nm | Overall torque limit (negative) |

## Internal torque limit

Select an internal torque limit by setting the following parameters:

| Parameter | Value range | Default | Unit | Description | Digital input (TLIM) |
| :---: | :---: | :---: | :---: | :--- | :---: |
| p29050[0] | -150 to 300 | 300 | $\%$ | Internal torque limit 1 (positive) | 0 |
| p29050[1] | -150 to 300 | 300 | $\%$ | Internal torque limit 2 (positive) | 1 |
| p29051[0] | -300 to 150 | -300 | $\%$ | Internal torque limit 1 (negative) | 0 |
| p29051[1] | -300 to 150 | -300 | $\%$ | Internal torque limit 2 (negative) | 1 |

The following diagram shows how the internal torque limit functions:


## Torque limit reached (TLR)

When the generated torque has nearly (internal hysteresis) reached the value of the positive torque limit or negative torque limit, the signal TLR is output.

### 5.5.3 EJOG

When telegrams 7, 9, 110, and 111 are used, select a jogging channel with the PROFINET control words STW1.8 and STW1.9:

| Control word | Setting | Description |
| :---: | :---: | :--- |
| STW1.8 | 0 | No jogging channel activated. |
|  | 1 | Jog 1 signal source rising edge activated. |
|  | 2 | Jog 2 signal source rising edge activated. |
|  | 3 | Reserved. |

## Features

## Selecting a jogging mode

When telegram 110 is used, select a jogging mode with the PROFINET control word POS_STW.5:

| Control word | Setting | Description |
| :--- | :---: | :--- |
| POS_STW.5 | 1 | Jogging, incremental active. |
|  | 0 | Jogging, velocity active. |

When telegram 111 is used, select a jogging mode with the PROFINET control word POS_STW2.5:

| Control word | Setting | Description |
| :---: | :---: | :--- |
| POS_STW2.5 | 1 | Jogging, incremental active. |
|  | 0 | Jogging, velocity active. |

## Note

When telegrams 7 and 9 are used, endless jogging is fixed.

## Setting jogging setpoints

When telegrams 7 and 9 are used, set the following jogging setpoint with the appropriate parameters:

- Velocity (p2585, p2586)

When telegrams 110, and 111 are used, set the following jogging setpoints with the appropriate parameters:

- Velocity (p2585, p2586)
- Incremental (p2587, p2588)


## Overview of important parameters

- p2585

EPOS jog 1 setpoint velocity

- p2586

EPOS jog 2 setpoint velocity

- p2587

EPOS jog 1 travel distance

- p2588 EPOS jog 2 travel distance

For more information about the parameters above, see Section

## 6 PROFINET communication

PROFINET IO is a real time protocol based on Ethernet. It is used as high level network for industrial automation applications. PROFINET IO focuses on the data exchange for a programmable controller. A PROFINET IO network consists of the following devices:

- IO controller: typically, it is the PLC, which controls the whole application
- IO device: a decentralized IO device (for example, encoder, sensor), which is controlled by the IO controller
- IO supervisor: HMI (human machine interface) or PC for diagnostic purposes or commissioning

PROFINET supplies two kinds of real time communication, that is, PROFINET IO RT (Real Time) and PROFINET IO IRT (Isochronous Real Time). The real time channel is used for IO data and alarm mechanism.

In PROFINET IO RT, the RT data is transferred via a prioritized Ethernet frame. No special hardware is required. Due to this prioritization a cycle time of 4 ms can be achieved. PROFINET IO IRT is used for more precise timing requirements. Cycle time of 2 ms is possible, but also special hardware for IO devices and switches are required.

All diagnostic and configuration data is transferred via the non-real time channel (NRT). For this purpose the common TCP/IP protocol is used. Anyhow, no timing can be guaranteed and typically the cycle times can be more than 100 ms .

### 6.1 Supported telegrams

SINAMICS V90 PN supports standard telegrams and Siemens telegrams for speed control mode and basic positioner mode. You can select the desired telegram with parameter p0922. See the following table for details.

From the perspective of the drive unit, the received process data represents the receive words and the process data to be sent represents the send words.

| Telegram | Maximum number of PZD |  | Description |
| :--- | :---: | :---: | :--- |
|  | Receive word | Send word |  |
| Standard telegram 1 | 2 | 2 | $\mathrm{p} 0922=1$ |
| Standard telegram 2 | 4 | 4 | $\mathrm{p} 0922=2$ |
| Standard telegram 3 | 5 | 9 | $\mathrm{p} 0922=3$ |
| Standard telegram 5 | 9 | 9 | $\mathrm{p} 0922=5$ |
| Standard telegram 7 | 2 | 2 | $\mathrm{p} 0922=7$ |
| Standard telegram 9 | 10 | 5 | $\mathrm{p} 0922=9$ |
| Siemens telegram 102 | 6 | 10 | $\mathrm{p} 0922=102$ |
| Siemens telegram 105 | 10 | 10 | $\mathrm{p} 0922=105$ |
| Standard telegram 110 | 12 | 7 | $\mathrm{p} 0922=110$ |
| Standard telegram 111 | 12 | 12 | $\mathrm{p} 0922=111$ |

One PZD = one word
The telegram 5 and telegram 105 can only be used when the V90 PN connects to the SIMATICS S7-1500.

## Telegrams used for speed control mode

| Telegram | 1 |  | 2 |  | 3 |  | 5 |  | 102 |  | 105 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Appl. class | 1 |  | 1 |  | 1, 4 |  | 4 |  | 1, 4 |  | 4 |  |
| PZD1 | STW1 | ZSW1 |
| PZD2 | $\begin{aligned} & \text { NSOLL } \\ & \text { _A } \end{aligned}$ | NIST_A | $\begin{aligned} & \text { NSOLL } \\ & \text { _B } \end{aligned}$ | NIST_B | $\begin{aligned} & \text { NSOLL } \\ & \text { _B } \end{aligned}$ | NIST_B | $\begin{aligned} & \text { NSOLL } \\ & \text { _B } \end{aligned}$ | NIST_B | $\begin{aligned} & \text { NSOLL } \\ & \text { _B } \end{aligned}$ | NIST_B | $\begin{aligned} & \text { NSOLL } \\ & \text { _B } \end{aligned}$ | $\begin{aligned} & \text { NIST_ } \\ & \text { B } \end{aligned}$ |
| PZD3 |  | $\sqrt{v}$ |  |  |  |  |  |  |  |  |  |  |
| PZD4 |  |  | STW2 | ZSW2 |
| PZD5 |  |  |  |  | $\begin{aligned} & \text { G1_ST } \\ & \text { W } \end{aligned}$ | $\begin{aligned} & \text { G1_ZS } \\ & \text { W } \end{aligned}$ | $\begin{aligned} & \text { G1_ST } \\ & \text { W } \end{aligned}$ | $\begin{aligned} & \text { G1_ZS } \\ & \text { W } \end{aligned}$ | $\begin{aligned} & \text { MOMR } \\ & \text { ED } \end{aligned}$ | $\begin{aligned} & \text { MELD } \\ & \text { W } \end{aligned}$ | MOMR <br> ED | $\begin{aligned} & \text { MELD } \\ & \mathrm{W} \end{aligned}$ |
| PZD6 |  |  |  |  |  | $\begin{aligned} & \hline \text { G1_XIS } \\ & \text { T1 } \end{aligned}$ | XERR | $\begin{aligned} & \text { G1_XIS } \\ & \text { T1 } \end{aligned}$ | $\begin{aligned} & \text { G1_ST } \\ & \text { W } \end{aligned}$ | $\begin{aligned} & \text { G1_ZS } \\ & \text { W } \end{aligned}$ | $\begin{aligned} & \text { G1_ST } \\ & \text { W_ } \end{aligned}$ | $\begin{aligned} & \text { G1_ZS } \\ & \text { W } \end{aligned}$ |
| PZD7 |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { G1_XIS } \\ & \text { T1 } \end{aligned}$ | XERR | $\begin{aligned} & \text { G1_XI } \\ & \text { ST1 } \end{aligned}$ |
| PZD8 |  |  |  |  |  | $\begin{aligned} & \text { G1_XIS } \\ & \text { T2 } \end{aligned}$ | KPC | $\begin{aligned} & \text { G1_XIS } \\ & \text { T2 } \end{aligned}$ |  |  |  |  |
| PZD9 |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { G1_XIS } \\ & \text { T2 } \end{aligned}$ | KPC | $\begin{aligned} & \text { G1_XI } \\ & \text { ST2 } \end{aligned}$ |
| PZD10 |  |  |  |  |  |  |  |  |  |  |  |  |

Telegrams used for basic positioner control mode

| Telegram | 7 |  | 9 |  | 110 |  | 111 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Appl. class | 3 |  | 3 |  | 3 |  | 3 |  |
| PZD1 | STW1 | ZSW1 | STW1 | ZSW1 | STW1 | ZSW1 | STW1 | ZSW1 |
| PZD2 | SATZANW | AKTSATZ | SATZANW | AKTSATZ | SATZANW | AKTSATZ | POS_STW 1 | $\begin{aligned} & \text { POS_ZSW } \\ & 1 \end{aligned}$ |
| PZD3 |  | $\sqrt{v}$ | STW2 | ZSW2 | POS_STW | POS_ZSW | $\begin{aligned} & \text { POS_STW } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { POS_ZSW } \\ & 2 \end{aligned}$ |
| PZD4 |  |  | MDI TARPOS | XIST_A | STW2 | ZSW2 | STW2 | ZSW2 |
| PZD5 |  |  |  |  | OVERRIDE | MELDW | OVERRIDE | MELDW |
| PZD6 |  |  | $\begin{aligned} & \text { MDI_ } \\ & \text { VELOCITY } \end{aligned}$ |  | $\begin{aligned} & \text { MDI_TAR } \\ & \text { POS } \end{aligned}$ | XIST_A | $\begin{aligned} & \text { MDI_TAR } \\ & \text { POS } \end{aligned}$ | XIST_A |
| PZD7 |  |  |  |  |  |  |  |  |
| PZD8 |  |  | MDI_ACC |  | MDI_VELO CITY |  | MDI_VELO CITY | NIST_B |
| PZD9 |  |  | MDI_DEC |  |  |  |  |  |
| PZD10 |  |  | MDI_MOD |  | MDI_ACC |  | MDI_ACC | $\begin{aligned} & \text { FAULT_CO } \\ & \text { DE } \end{aligned}$ |
| PZD11 |  |  |  |  | MDI_DEC |  | MDI_DEC | WARN_CO DE |
| PZD12 |  |  |  |  | MDI_MODE |  | user ${ }^{1)}$ | user ${ }^{1)}$ |

1) PZD12 of telegram 111 is used to configure the user-defined function.

### 6.2 Control word STW and status word ZSW

### 6.2.1 Definition of the control word STW

Control words when telegrams 1, 2, 3, and 5 are used

## Note

When p29108.0 $=0$, STW1.11 is disabled.

## Note

When telegram 5 is used, STW1.4, STW1.5, and STW1.6 are disabled.

- Control word STW1

| Signal | Description |
| :--- | :--- |
| STW1.0 | $\boldsymbol{F}=$ ON (pulses can be enabled) <br> $0=$ OFF1 (braking with ramp-function generator, then pulse suppression and ready for switching <br> on) |
| STW1.1 | $1=$ No OFF2 (enable is possible) <br> $0=$ OFF2 (immediate pulse suppression and switching on inhibited) |
| STW1.2 | $1=$ No OFF3 (enable is possible) <br> $0=$ OFF3 (braking with the OFF3 ramp p1135, then pulse suppression and switching on inhibited) |
| STW1.3 | $1=$ Enable operation (pulses can be enabled) <br> $0=$ Inhibit operation (suppress pulses) |
| STW1.4 | $1=$ Operating condition (the ramp-function generator can be enabled) <br> $0=$ Inhibit ramp-function generator (set the ramp-function generator output to zero) |
| STW1.5 | $1=$ Continue ramp-function generator <br> $0=$ Freeze ramp-function generator (freeze the ramp-function generator output) |
| STW1.6 | $1=$ Enable setpoint <br> $0=$ Inhibit setpoint (set the ramp-function generator input to zero) |

Getting Started
A5E37208904-002, 09/2016

| Signal | Description |
| :--- | :--- |
| STW1.7 | $\boldsymbol{\Gamma}=1$. Acknowledge faults |
| STW1.8 | Reserved |
| STW1.9 | Reserved |
| STW1.10 | $1=$ Control via PLC |
| STW1.11 | $1=$ Setpoint inversion |
| STW1.12 | Reserved |
| STW1.13 | Reserved |
| STW1.14 | Reserved |
| STW1.15 | Reserved |

## Note

STW1.10 must be set to 1 to allow the PLC to control the drive.

- Control word STW2

| Signal | Description |
| :--- | :--- |
| STW2.0 | Reserved |
| STW2.1 | Reserved |
| STW2.2 | Reserved |
| STW2.3 | Reserved |
| STW2.4 | Reserved |
| STW2.5 | Reserved |
| STW2.6 | Reserved |
| STW2.7 | Reserved |
| STW2.8 | 1 = Traverse to fixed endstop |
| STW2.9 | Reserved |
| STW2.10 | Reserved |
| STW2.11 | Reserved |
| STW2.12 | Master sign-of-life, bit 0 |
| STW2.13 | Master sign-of-life, bit 1 |
| STW2.14 | Master sign-of-life, bit 2 |
| STW2.15 | Master sign-of-life, bit 3 |

Control words when telegrams 102, and 105 are used

## Note

When p29108.0 $=0$, STW2.4 is disabled.

## Note

When telegram 105 is used, STW1.4, STW1.5, and STW1.6 are disabled.

- Control word STW1

| Signal | Description |
| :--- | :--- |
| STW1.0 | $\Gamma=$ ON (pulses can be enabled) <br> $0=$ OFF1 (braking with ramp-function generator, then pulse suppression and ready for switching <br> on) |
| STW1.1 | $1=$ No OFF2 (enable is possible) <br> $0=$ OFF2 (immediate pulse suppression and switching on inhibited) |


| Signal | Description |
| :--- | :--- |
| STW1.2 | $1=$ No OFF3 (enable is possible) <br> $0=$ OFF3 (braking with the OFF3 ramp p1135, then pulse suppression and switching on inhibited) |
| STW1.3 | $1=$ Enable operation (pulses can be enabled) <br> $0=$ Inhibit operation (suppress pulses) |
| STW1.4 | $1=$ Operating condition (the ramp-function generator can be enabled) <br> $0=$ Inhibit ramp-function generator (set the ramp-function generator output to zero) <br> $1=$ Continue ramp-function generator <br> $0=$ Freeze ramp-function generator (freeze the ramp-function generator output) |
| STW1.5 | $1=$ Enable setpoint <br> $0=$ Inhibit setpoint (set the ramp-function generator input to zero) |
| STW1.6 | R 1. Acknowledge faults <br> STW1.7 |
| STW1.8 | Reserved |
| STW1.9 | $1=$ Control via PLC |
| STW1.10 | $1=$ Ramp-function generator active |
| STW1.11 | $1=$ Unconditionally open the holding brake |
| STW1.12 | Reserved |
| STW1.13 | Reserved |
| STW1.14 | Reserved |
| STW1.15 |  |

## Note

STW1. 10 must be set to 1 to allow PLC to control the drive.

- Control word STW2

| Signal | Description |
| :--- | :--- |
| STW2.0 | Reserved |
| STW2.1 | Reserved |
| STW2.2 | Reserved |
| STW2.3 | Reserved |
| STW2.4 | 1 = Bypass ramp-function generator |
| STW2.5 | Reserved |
| STW2.6 | 1 = Integrator inhibit, speed controller |
| STW2.7 | Reserved |
| STW2.8 | 1 = Traverse to fixed endstop |
| STW2.9 | Reserved |
| STW2.10 | Reserved |
| STW2.11 | Reserved |
| STW2.12 | Master sign-of-life, bit 0 |
| STW2.13 | Master sign-of-life, bit 1 |
| STW2.14 | Master sign-of-life, bit 2 |
| STW2.15 | Master sign-of-life, bit 3 |

Control words when telegrams 7, 9, 110, and 111 are used

- Control word STW1

| Signal | Description |
| :---: | :---: |
| STW1.0 | $\boldsymbol{\Sigma}=\mathrm{ON}$ (pulses can be enabled) <br> $0=$ OFF1 (braking with ramp-function generator, then pulse suppression and ready for switching on) |
| STW1.1 | 1 = No OFF2 (enable is possible) <br> $0=$ OFF2 (immediate pulse suppression and switching on inhibited) |
| STW1.2 | 1 = No OFF3 (enable is possible) <br> $0=$ OFF3 (braking with the OFF3 ramp p1135, then pulse suppression and switching on inhibited) |
| STW1.3 | 1 = Enable operation (pulses can be enabled) <br> $0=$ Inhibit operation (suppress pulses) |
| STW1.4 | 1 = Do not reject traversing task <br> $0=$ Reject traversing task (ramp-down with the maximum deceleration) |
| STW1.5 | $\begin{aligned} & 1=\text { No intermediate stop } \\ & 0=\text { Intermediate stop } \end{aligned}$ |
| STW1.6 | $\boldsymbol{\Psi}$ = Activate traversing task |
| STW1.7 | $\boldsymbol{\Psi}=$ Acknowledge faults |
| STW1.8 | 1 = Jog 1 signal source |
| STW1.9 | 1 = Jog 2 signal source |
| STW1.10 | 1 = Control via PLC |
| STW1.11 | $\begin{aligned} & 1=\text { Start referencing } \\ & 0=\text { Stop referencing } \end{aligned}$ |
| STW1.12 | Reserved |
| STW1.13 | $\boldsymbol{\Psi}=$ External block change |
| STW1.14 | Reserved |
| STW1.15 | Reserved |

## Note

STW1.10 must be set to 1 to allow the PLC to control the drive.

Control words when telegrams 7, 9, and 110 are used

- Control word SATZANW

| Signal | Description |
| :--- | :--- |
| SATZANW.0 | $1=$ Traversing block selection, bit 0 |
| SATZANW.1 | $1=$ Traversing block selection, bit 1 |
| SATZANW.2 | $1=$ Traversing block selection, bit 2 |
| SATZANW.3 | $1=$ Traversing block selection, bit 3 |
| SATZANW.4 | $1=$ Traversing block selection, bit 4 |
| SATZANW.5 | $1=$ Traversing block selection, bit 5 |
| SATZANW.6 | Reserved |
| SATZANW. 7 | Reserved |
| SATZANW.8 | Reserved |
| SATZANW.9 | Reserved |
| SATZANW.10 | Reserved |
| SATZANW.11 | Reserved |


| Signal | Description |
| :--- | :--- |
| SATZANW.12 | Reserved |
| SATZANW.13 | Reserved |
| SATZANW. 14 | Reserved |
| SATZANW. 15 | $1=$ Activate MDI <br> $0=$ Deactivate MDI |

Control words when telegram 9 is used

- Control word MDI_MOD

| Signal | Description |
| :--- | :--- |
| MDI_MOD.0 | $1=$ Absolute positioning is selected <br> $0=$ Relative positioning is selected |
| MDI_MOD.1 | $0=$ Absolute positioning through the shortest distance <br> $1=$ Absolute positioning in the positive direction <br> $2=$ Absolute positioning in the negative direction <br> $3=$ Absolute positioning through the shortest distance |
| MDI_MOD.2 | Reserved |
| MDI_MOD.3 | Reserved |
| MDI_MOD.4 | Reserved |
| MDI_MOD.5 | Reserved |
| MDI_MOD.6 | Reserved |
| MDI_MOD. 7 | Reserved |
| MDI_MOD.8 | Reserved |
| MDI_MOD. 9 | Reserved |
| MDI_MOD.10 | Reserved |
| MDI_MOD.11 | Reserved |
| MDI_MOD.12 | Reserved |
| MDI_MOD.13 | Reserved |
| MDI_MOD.14 | Reserved |
| MDI_MOD. 15 |  |

Control words when telegram 110 is used

- Control word POS_STW

| Signal | Description |
| :--- | :--- |
| POS_STW.0 | $1=$ Tracking mode active <br> $0=$ No tracking mode active |
| POS_STW.1 | $1=$ Set reference point <br> $0=$ Do not set reference point |
| POS_STW.2 | $1=$ Reference cam active |
| POS_STW.3 | Reserved |
| POS_STW.4 | Reserved |
| POS_STW.5 | $1=$ Jogging, incremental active <br> $0=$ Jogging, velocity active |
| POS_STW.6 | Reserved |
| POS_STW.7 | Reserved |
| POS_STW.8 | Reserved |
| POS_STW.9 | Reserved |
| POS_STW.10 | Reserved |


| Signal | Description |
| :--- | :--- |
| POS_STW.11 | Reserved |
| POS_STW.12 | Reserved |
| POS_STW.13 | Reserved |
| POS_STW.14 | Reserved |
| POS_STW.15 | Reserved |

Control words when telegram 111 is used

- Control word POS_STW1

| Signal | Description |
| :---: | :---: |
| POS_STW1.0 | Traversing block selection, bit 0 |
| POS_STW1.1 | Traversing block selection, bit 1 |
| POS_STW1.2 | Traversing block selection, bit 2 |
| POS_STW1.3 | Traversing block selection, bit 3 |
| POS_STW1.4 | Traversing block selection, bit 4 |
| POS_STW1.5 | Traversing block selection, bit 5 |
| POS_STW1.6 | Reserved |
| POS_STW1.7 | Reserved |
| POS_STW1.8 | 1 = Absolute positioning is selected <br> $0=$ Relative positioning is selected |
| POS_STW1.9 | $0=$ Absolute positioning through the shortest distance |
| POS_STW1.10 | 1 = Absolute positioning/MDI direction selection, positive <br> $2=$ Absolute positioning/MDI direction selection, negative <br> 3 = Absolute positioning through the shortest distance |
| POS_STW1.11 | Reserved |
| POS_STW1.12 | $\begin{aligned} & 1 \text { = Continuous transfer } \\ & 0=\text { Activate MDI block change with } \boldsymbol{\Sigma} \text { of a traversing task (STW1.6) } \end{aligned}$ |
| POS_STW1.13 | Reserved |
| POS_STW1.14 | 1 = Signal setting-up selected <br> $0=$ Signal positioning selected |
| POS_STW1.15 | 1 = MDI selection |

- Control word POS_STW2

| Signal | Description |
| :--- | :--- |
| POS_STW2.0 | $1=$ Tracking mode active |
| POS_STW2.1 | 1 = Set reference point |
| POS_STW2.2 | 1 = Reference cam active |
| POS_STW2.3 | Reserved |
| POS_STW2.4 | Reserved |
| POS_STW2.5 | 1 = Jogging, incremental active <br> $0=$ Jogging, velocity active |
| POS_STW2.6 | Reserved |
| POS_STW2.7 | Reserved |
| POS_STW2.8 | Reserved |
| POS_STW2.9 | $1=$ Start the search for reference in the negative direction <br> $0=$ Start the search for reference in the positive direction |
| POS_STW2.10 | Reserved |


| Signal | Description |
| :--- | :--- |
| POS_STW2.11 | Reserved |
| POS_STW2.12 | Reserved |
| POS_STW2.13 | Reserved |
| POS_STW2.14 | 1 = Software limit switch activation |
| POS_STW2.15 | 1 = STOP cam active |

### 6.2.2 Definition of the status word ZSW

## Status words when telegrams 1,2,3, and 5 are used

- Status word ZSW1

| Signal | Description |
| :---: | :---: |
| ZSW1.0 | 1 = Ready for servo on |
| ZSW1.1 | 1 = Ready for operation |
| ZSW1.2 | 1 = Operation enabled |
| ZSW1.3 | 1 = Fault present |
| ZSW1.4 | 1 = No coast down active (OFF2 inactive) |
| ZSW1.5 | 1 = No fast stop active (OFF3 inactive) |
| ZSW1.6 | 1 = Switching on inhibited active |
| ZSW1.7 | 1 = Alarm present |
| ZSW1.8 | 1 = Speed setpoint - actual value deviation within tolerance t_off |
| ZSW1.9 | 1 = Control requested |
| ZSW1.10 | $1=\mathrm{f}$ or n comparison value reached/exceeded |
| ZSW1.11 | $1=1, M$, or P limit reached |
| ZSW1.12 | 1 = Open the holding brake |
| ZSW1.13 | 1 = No motor overtemperature alarm |
| ZSW1.14 | $\begin{aligned} & 1=\text { Motor rotates forwards }\left(n \_ \text {act } \geq 0\right) \\ & 0=\text { Motor rotates backwards }\left(n \_ \text {act }<0\right) \end{aligned}$ |
| ZSW1.15 | 1 = No alarm, thermal overload, power unit |

- Status word ZSW2

| Signal | Description |
| :--- | :--- |
| ZSW2.0 | Reserved |
| ZSW2.1 | Reserved |
| ZSW2.2 | Reserved |
| ZSW2.3 | Reserved |
| ZSW2.4 | Reserved |
| ZSW2.5 | 1 = Alarm class bit 0 |
| ZSW2.6 | 1 = Alarm class bit 1 |
| ZSW2.7 | Reserved |
| ZSW2.8 | 1 = Traverse to fixed endstop |
| ZSW2.9 | Reserved |
| ZSW2.10 | 1 = Pulses enabled |
| ZSW2.11 | Reserved |
| ZSW2.12 | Slave sign-of-life, bit 0 |
| ZSW2.13 | Slave sign-of-life, bit 1 |
| ZSW2.14 | Slave sign-of-life, bit 2 |
| ZSW2.15 | Slave sign-of-life, bit 3 |

## Status words when telegrams 102 and 105 are used

- Status word ZSW1

| Signal | Description |
| :--- | :--- |
| ZSW1.0 | 1 = Ready for servo on |
| ZSW1.1 | 1 = Ready for operation |
| ZSW1.2 | 1 = Operation enabled |
| ZSW1.3 | 1 = Fault present |
| ZSW1.4 | $1=$ No coast down active (OFF2 inactive) |
| ZSW1.5 | $1=$ No fast stop active (OFF3 inactive) |
| ZSW1.6 | $1=$ Switching on inhibited active |
| ZSW1.7 | $1=$ Alarm present |
| ZSW1.8 | $1=$ Speed setpoint - actual value deviation within tolerance t_off |
| ZSW1.9 | $1=$ Control requested |
| ZSW1.10 | $1=$ f or n comparison value reached/exceeded |
| ZSW1.11 | $1=$ Alarm class bit 0 |
| ZSW1.12 | $1=$ Alarm class bit 1 |
| ZSW1.13 | Reserved |
| ZSW1.14 | $1=$ Closed-loop torque control active |
| ZSW1.15 | Reserved |

- Status word ZSW2

| Signal | Description |
| :--- | :--- |
| ZSW2.0 | Reserved |
| ZSW2.1 | Reserved |
| ZSW2.2 | Reserved |
| ZSW2.3 | Reserved |
| ZSW2.4 | 1 = Ramp-function generator inactive |
| ZSW2.5 | 1 = Open the holding brake |
| ZSW2.6 | 1 = Integrator inhibit, speed controller |
| ZSW2.7 | Reserved |
| ZSW2.8 | $1=$ Traverse to fixed endstop |
| ZSW2.9 | Reserved |
| ZSW2.10 | Reserved |
| ZSW2.11 | Reserved |
| ZSW2.12 | Slave sign-of-life, bit 0 |
| ZSW2.13 | Slave sign-of-life, bit 1 |
| ZSW2.14 | Slave sign-of-life, bit 2 |
| ZSW2.15 | Slave sign-of-life, bit 3 |

Status words when telegrams 7, 9, 110, and 111 are used

- Status word ZSW1

| Signal | Description |
| :--- | :--- |
| ZSW1.0 | 1 = Ready for switching on |
| ZSW1.1 | 1 = Ready for operation (DC link loaded, pulses blocked) |
| ZSW1.2 | 1 = Operation enabled (drive follows n_set) |
| ZSW1.3 | 1 = Fault present |
| ZSW1.4 | $1=$ No coast down active (OFF2 inactive) |


| Signal | Description |
| :---: | :---: |
| ZSW1.5 | 1 = No fast stop active (OFF3 inactive) |
| ZSW1.6 | 1 = Switching on inhibited active |
| ZSW1.7 | 1 = Alarm present |
| ZSW1.8 | 1 = Following error within tolerance |
| ZSW1.9 | 1 = Control requested |
| ZSW1.10 | 1 = Target position reached |
| ZSW1.11 | 1 = Reference point set |
| ZSW1.12 | $\boldsymbol{\Psi}$ = Acknowledgement traversing block activated |
| ZSW1.13 | 1 = \|v_act| < velocity threshold value 3 |
| ZSW1.14 | 1 = Axis accelerated |
| ZSW1.15 | 1 = Axis decelerated |

## Status words when telegram 111 is used

- Status word POS_ZSW1

| Signal | Description |
| :--- | :--- |
| POS_ZSW1.0 | Active Traversing Block Bit $0\left(2^{0}\right)$ |
| POS_ZSW1.1 | Active Traversing Block Bit $0\left(2^{1}\right)$ |
| POS_ZSW1.2 | Active Traversing Block Bit $0\left(2^{2}\right)$ |
| POS_ZSW1.3 | Active Traversing Block Bit $0\left(2^{3}\right)$ |
| POS_ZSW1.4 | Active Traversing Block Bit $0\left(2^{4}\right)$ |
| POS_ZSW1.5 | Active Traversing Block Bit $0\left(2^{5}\right)$ |
| POS_ZSW1.6 | Reserved |
| POS_ZSW1.7 | Reserved |
| POS_ZSW1.8 | $1=$ STOP cam minus active |
| POS_ZSW1.9 | $1=$ STOP cam plus active |
| POS_ZSW1.10 | $1=$ Jogging active |
| POS_ZSW1.11 | $1=$ Reference point approach active |
| POS_ZSW1.12 | $1=$ Flying referencing active |
| POS_ZSW1.13 | $1=$ Traversing Block active |
| POS_ZSW1.14 | $1=$ Set-up active |
| POS_ZSW1.15 | $1=$ MDI active <br> $0=$ MDI inactive |

- Status word POS_ZSW2

| Signal | Description |
| :--- | :--- |
| POS_ZSW2.0 | 1 = Tracking mode active |
| POS_ZSW2.1 | 1 = Velocity limiting active |
| POS_ZSW2.2 | 1 = Setpoint available |
| POS_ZSW2.3 | 1 = Printing mark outside outer window |
| POS_ZSW2.4 | 1 = Axis moves forward |
| POS_ZSW2.5 | 1 = Axis moves backwards |
| POS_ZSW2.6 | 1 = Software limit switch minus reached |
| POS_ZSW2.7 | 1 = Software limit switch plus reached |
| POS_ZSW2.8 | $1=$ Position actual value $\leq$ cam switching position 1 |
| POS_ZSW2.9 | $1=$ Position actual value $\leq$ cam switching position 2 |
| POS_ZSW2.10 | $1=$ Direct output 1 via traversing block |


| Signal | Description |
| :--- | :--- |
| POS_ZSW2.11 | 1 = Direct output 2 via traversing block |
| POS_ZSW2.12 | 1 = Fixed stop reached |
| POS_ZSW2.13 | 1 = Fixed stop clamping torque reached |
| POS_ZSW2.14 | $1=$ Travel to fixed stop active |
| POS_ZSW2.15 | $1=$ Traversing command active |

For more information about the PROFINET communication, refer to SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions.

## 7 Parameters

### 7.1 Overview

The section below lists all the parameters of the SINAMICS V90 PN servo drive.

## Parameter number

Numbers prefixed with an " $r$ " indicate that parameter is a read-only parameter.
Numbers prefixed with a " p " indicate that the parameter is an editable parameter.

## Effective

Indicates the conditions for making parameterization effective. Two conditions are possible:

- IM (Immediately): Parameter value becomes effective immediately after changing.
- RE (Reset): Parameter value becomes effective after repower-on.


## Can be changed

This indicates when the parameter can be changed. Two states are possible:

- U (Run): Can be changed in the "Running" state when the drive is in "servo on" state. The "RDY" LED lights up green.
- T (Ready to run): Can be changed in the "Ready" state when the drive is in "servo off" state. The "RDY" LED lights up red.


## Note

When judging the state of the drive according to the "RDY" LED, ensure that no faults or alarms exist.

Data type

| Date type | Abbreviation | Description |
| :--- | :--- | :--- |
| Integer16 | I16 | 16-bit integer |
| Integer32 | I32 | 32-bit integer |
| Unsigned8 | U8 | 8-bit unsigned integer |
| Unsigned16 | U16 | 16-bit unsigned integer |
| Unsigned32 | U32 | 32-bit unsigned integer |
| FloatingPoint32 | Float | 32-bit floating point number |

## Parameter groups

The SINAMICS V90 PN parameters are divided into the following groups:

| Parameter group | Available parameters | Parameter group display on the BOP |
| :---: | :---: | :---: |
| Basic parameters | p07xx, p10xx to p16xx, p21xx | $0695 E$ |
| Application parameters | p29xxx | 0 日月0 |
| Communication parameters | p09xx, p89xx | 0 [0त |
| Basic positioner parameters | p25xx, p26xx | 95985 |
| Status monitoring parameters | All read-only parameters | OGLR |

### 7.2 Parameter list

## Editable parameters

The values of the parameters marked with an asterisk (*) may be changed after commissioning. Make sure you back up the parameters first as required if you desire to replace the motor. The default values of the parameters marked with two asterisks $\left(^{* *}\right)$ are motor dependent. They may have different default values when the drive connects to different motors.

| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p0748 | CU invert digital outputs | - | - | 0 | - | U32 | IM | T, U |
|  | Description: Inverts the signals at the digital outputs. <br> - Bit 0: inverts signal DO 1 <br> - Bit $0=0$ : not inverted <br> - Bit $0=1$ : inverted <br> - Bit 1 : inverts signal DO 2 <br> - Bit $1=0$ : not inverted <br> - Bit 1 = 1: inverted |  |  |  |  |  |  |  |
| p0922 | PROFIdrive: PZD telegram selection | 1 | 111 | 105 | - | U16 | IM | T |
|  | Description: Sets the send and receive telegram. For speed control mode: <br> - 1: Standard telegram 1, PZD-2/2 <br> - 2: Standard telegram 2, PZD-4/4 <br> - 3: Standard telegram 3, PZD-5/9 <br> - 5: Standard telegram 5, PZD-9/9 <br> - 102: SIEMENS telegram 102, PZD-6/10 <br> - 105: SIEMENS telegram 105, PZD-10/10 <br> For basic positioner control mode: <br> - 7: Standard telegram 7, PZD-2/2 <br> - 9: Standard telegram 9, PZD-10/5 <br> - 110: SIEMENS telegram 110, PZD-12/7 <br> - 111: SIEMENS telegram 111, PZD-12/12 |  |  |  |  |  |  |  |
| p0925 | PROFIdrive: Synchronous sign-of-life tolerance | 0 | 65535 | 1 | - | U16 | IM | T, U |

[^3]A5E37208904-002, 09/2016

| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description: Sets the number of tolerated consecutive sign-of-life errors of the clock-cycle synchronous master. The sign-of-life signal is normally received in PZD4 (control word 2) from the master. |  |  |  |  |  |  |  |
| p0972 | Drive unit reset | 0 | 2 | 0 |  | U16 | IM | T, U |
|  | Description: Sets the required procedure to execute a hardware reset for the drive unit. <br> - 0: Inactive <br> - 1: Hardware reset immediate <br> - 2: Hardware reset preparation |  |  |  |  |  |  |  |
|  | Danger: It must be absolutely ensured that the system is in a safe condition. The memory card/device memory of the Control Unit must not be accessed. |  |  |  |  |  |  |  |
|  | Note: If value = 1: <br> Reset is immediately executed and communications interrupted. <br> If value $=2$ : <br> Help to check the reset operation. <br> Firstly, set p0972 = 2 and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted. <br> After the drive unit has been restarted and communications have been established, read p0972 and check the following: <br> p0972 $=0$ ? $\rightarrow$ The reset was successfully executed. <br> p0972 $>0$ ? $\rightarrow$ The reset was not executed. |  |  |  |  |  |  |  |
| p0977 | Save all parameters | 0 | 1 | 0 |  | U16 | IM | T, U |
|  | Description: Saves all parameters of the drive system to the non-volatile memory. <br> When saving, only the adjustable parameters intended to be saved are taken into account. <br> - Value = 0: Inactive <br> - Value = 1: Save in non-volatile memory - downloaded at POWER ON |  |  |  |  |  |  |  |
|  | Notice: The Control Unit power supply may only be powered down after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0 ). <br> Writing to parameters is inhibited while saving. |  |  |  |  |  |  |  |
| p1058 | JOG 1 speed setpoint | 0.00 | 210000.000 | 100.00 | rpm | Float | IM | T |
|  | Description: Sets the speed/velocity for JOG 1. Jogging is level-triggered and allows the motor to be incrementally moved. |  |  |  |  |  |  |  |
|  | Note: The parameter values displayed on the BOP are integers. |  |  |  |  |  |  |  |
| p1082 * | Maximum speed | 0.000 | 210000.000 | 1500.00 <br> 0 | rpm | Float | IM | T |
|  | Description: Sets the highest possible speed. |  |  |  |  |  |  |  |
|  | Notice: After the value has been modified, no further parameter modifications can be made. |  |  |  |  |  |  |  |
|  | Note: The parameter values displayed on the BOP are integers. <br> The parameter applies for both motor directions. <br> The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator and motor potentiometer). <br> The range of the parameter is different when connect with different motors. |  |  |  |  |  |  |  |
| p1083 * | Speed limit in positive direction of rotation | 0.000 | 210000.000 | $\begin{array}{\|l\|} \hline 210000 . \\ 000 \\ \hline \end{array}$ | rpm | Float | IM | T, U |
|  | Description: Sets the maximum speed for the positive direction. |  |  |  |  |  |  |  |
|  | Note: The parameter values displayed on the BOP are integers. |  |  |  |  |  |  |  |
| p1086 * | Speed limit in negative direction of rotation | -210000.000 | 0.000 | 210000. 000 | rpm | Float | IM | T, U |
|  | Description: Sets the speed limit for the negative direction. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Note: The parameter values displayed on the BOP are integers. |  |  |  |  |  |  |  |
| p1115 | Ramp-function generator selection | 0 | 1 | 0 | - | I16 | IM | T |
|  | Description: Sets the ramp-function generator type. |  |  |  |  |  |  |  |
|  | Note: Another ramp-function generator type can only be selected when the motor is at a standstill. |  |  |  |  |  |  |  |
| p1120 | Ramp-function generator ramp-up time | 0.000 | 999999.000 | 1 | s | Float | IM | T, U |
|  | Description: The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$ ) up to the maximum speed ( p 1082 ) in this time. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1082 |  |  |  |  |  |  |  |
| p1121 | Ramp-function generator ramp-down time | 0.000 | 999999.000 | 1 | s | Float | IM | T, U |
|  | Description: Sets the ramp-down time for the ramp-function generator. <br> The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$ ) in this time. <br> Further, the ramp-down time is always effective for OFF1. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1082 |  |  |  |  |  |  |  |
| p1130 | Ramp-function generator initial rounding-off time | 0.000 | 30.000 | 0.000 | s | Float | IM | T, U |
|  | Description: Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. |  |  |  |  |  |  |  |
|  | Note: Rounding-off times avoid an abrupt response and prevent damage to the mechanical system. |  |  |  |  |  |  |  |
| p1131 | Ramp-function generator final rounding-off time | 0.000 | 30.000 | 0.000 | s | Float | IM | T, U |
|  | Description: Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. |  |  |  |  |  |  |  |
|  | Note: Rounding-off times avoid an abrupt response and prevent damage to the mechanical system. |  |  |  |  |  |  |  |
| p1135 | OFF3 ramp-down time | 0 | 600 | 0 | s | Float | IM | T, U |
|  | Description: Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command. |  |  |  |  |  |  |  |
|  | Note: This time can be exceeded if the DC link voltage reaches its maximum value. |  |  |  |  |  |  |  |
| p1215 * | Motor holding brake configuration | 0 | 2 | 0 | - | 116 | IM | T |
|  | Description: Sets the holding brake configuration. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1216, p1217, p1226, p1227, p1228 |  |  |  |  |  |  |  |
|  | Caution: For the setting p1215 $=0$, if a brake is used, it remains closed. If the motor moves, this will destroy the brake. |  |  |  |  |  |  |  |
|  | Notice: If p 1215 was set to 1 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. |  |  |  |  |  |  |  |
|  | Note: The parameter can only be set to zero when the pulses are inhibited. |  |  |  |  |  |  |  |
| p1216 * | Motor holding brake opening time | 0 | 10000 | 100 | ms | Float | IM | T, U |
|  | Description: Sets the time to open the motor holding brake. <br> After controlling the holding brake (opens), the speed/velocity setpoint remains at zero for this time. After this, the speed/velocity setpoint is enabled. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1215, p1217 |  |  |  |  |  |  |  |
|  | Note: For a motor with integrated brake, this time is pre-assigned the value saved in the motor. For p1216 $=0 \mathrm{~ms}$, the monitoring and the message A7931 "Brake does not open" are deactivated. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p1217* | Motor holding brake closing time | 0 | 10000 | 100 | ms | Float | IM | T, U |
|  | Description: Sets the time to apply the motor holding brake. <br> After OFF1 or OFF3 and the holding brake is controlled (the brake closes), then the drive remains closed-loop controlled for this time stationary with a speed setpoint/velocity setpoint of zero. The pulses are suppressed when the time expires. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1215, p121 |  |  |  |  |  |  |  |
|  | Note: For a motor with integrated brake, this time is pre-assigned the value saved in the motor. For p1217 $=0 \mathrm{~ms}$, the monitoring and the message A07932 "Brake does not close" are deactivated. |  |  |  |  |  |  |  |
| p1226 | Threshold for zero speed detection | 0.00 | 210000.00 | 20.00 | rpm | Float | M | , U |
|  | Description: Sets the speed threshold for the standstill identification. <br> Acts on the actual value and setpoint monitoring. When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified. <br> The following applies when the brake control is activated: <br> When the threshold is undershot, the brake control is started and the system waits for the brake closing time in p 1217 . The pulses are then suppressed. <br> If the brake control is not activated, the following applies: <br> When the threshold is undershot, the pulses are suppressed and the drive coasts down. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1215, p1216, p1217, p1227 |  |  |  |  |  |  |  |
|  | Notice: For reasons relating to the compatibility to earlier firmware versions, a parameter value of zero in indices 1 to 31 is overwritten with the parameter value in index 0 when the drive boots. |  |  |  |  |  |  |  |
|  | Note: Standstill is identified in the following cases: <br> - The speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired. <br> - The speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired. <br> The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the speed threshold is too low. |  |  |  |  |  |  |  |
| p1227 | Zero speed detection monitoring time | 0.000 | 300.000 | 300.000 | S | Float | M | T, U |
|  | Description: Sets the monitoring time for the standstill identification. <br> When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226. <br> After this, the brake control is started, the system waits for the closing time in p1217 and then the pulses are suppressed. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1215, p1216, p1217, p1226 |  |  |  |  |  |  |  |
|  | Notice: The setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not suppressed.. |  |  |  |  |  |  |  |
|  | Note: Standstill is identified in the following cases: <br> - The speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired. <br> - The speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired. <br> For p1227 $=300.000$ s, the following applies: <br> Monitoring is de-activated. <br> For p1227 $=0.000$ s, the following applies: <br> With OFF1 or OFF3 and a ramp-down time $=0$, the pulses are immediately suppressed and the motor "coasts" down. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p1228 | Pulse suppression delay time | 0.000 | 299.000 | 0.000 | s | Float | IM | T, U |
|  | Description: Sets the delay time for pulse suppression. After OFF1 or OFF3, the pulses are canceled, if at least one of the following conditions is fulfilled: <br> - The speed actual value falls below the threshold in p1226 and the time started after this in p1228 has expired. <br> - The speed setpoint falls below the threshold in p1226 and the time started after this in p1227 has expired. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1226, p1227 |  |  |  |  |  |  |  |
|  | Notice: When the motor holding brake is activated, pulse cancellation is additionally delayed by the brake closing time (p1217). |  |  |  |  |  |  |  |
| p1414 | Speed setpoint filter activation |  |  | $\begin{aligned} & \hline 0000 \\ & \text { bin } \end{aligned}$ |  | U16 | IM | T, U |
|  | Description: Setting for activating/de-activating the speed setpoint filter. <br> - Bit 0: Activate filter 1 <br> - Bit $0=0$ : Deactivated <br> - Bit $0=1$ : Activated <br> - Bit 1: Activate filter 2 <br> - Bit $1=0$ : Deactivated <br> - Bit 1 = 1: Activated |  |  |  |  |  |  |  |
|  | Dependency: The individual speed setpoint filters are parameterized as of p1415. |  |  |  |  |  |  |  |
|  | Note: The drive unit displays the value in hex format. To know the logic (high/low) assignment to each bit, you must convert the hex number to the binary number, for example, FF (hex) = 11111111 (bin). |  |  |  |  |  |  |  |
| p1415 | Speed setpoint filter 1 type |  | 2 | 0 | - | 116 | IM | T, U |
|  | Description: Sets the type for speed setpoint filter 1. |  |  |  |  |  |  |  |
|  | Dependency: <br> PT1 low pass: p1416 <br> PT2 low pass: p1417, p1418 <br> General filter: p1417 ... p1420 |  |  |  |  |  |  |  |
| p1416 | Speed setpoint filter 1 time constant | 0.00 | 5000.00 | 0.00 | ms | Float | IM | T, U |
|  | Description: Sets the time constant for the speed setpoint filter 1 (PT1). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1415 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the filter is set as a PT1 low pass. |  |  |  |  |  |  |  |
| p1417 | Speed setpoint filter 1 denominator natural frequency | 0.5 | 16000.0 | 1999.0 | Hz | Float | IM | T, U |
|  | Description: Sets the denominator natural frequency for speed setpoint filter 1(PT2, general filter). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1415 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. <br> The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |  |  |  |  |  |
| p1418 | Speed setpoint filter 1 denominator damping | 0.001 | 10.000 | 0.700 | - | Float | IM | T, U |
|  | Description: Sets the denominator damping for speed setpoint filter 1 (PT2, general filter). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1415 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p1419 | Speed setpoint filter 1 numerator natural frequency | 0.5 | 16000.0 | 1999.0 | Hz | Float | IM | T, U |
|  | Description: Sets the numerator natural frequency for speed setpoint filter 1 (general filter). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1415 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the speed filter is set as a general filter. The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |  |  |  |  |  |
| p1420 | Speed setpoint filter 1 numerator damping | 0.001 | 10.000 | 0.700 | - | Float | IM | T, U |
|  | Description: Sets the numerator damping for speed setpoint filter 1 (general filter). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1415 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the speed filter is set as a general filter. |  |  |  |  |  |  |  |
| p1421 | Speed setpoint filter 2 type | 0 | 2 | 0 | - | 116 | IM | T, U |
|  | Description: Sets the type for speed setpoint filter 2. |  |  |  |  |  |  |  |
|  | Dependency: <br> PT1 low pass: p1422 <br> PT2 low pass: p1423, p1424 <br> General filter: p1423 ... p1426 |  |  |  |  |  |  |  |
| p1422 | Speed setpoint filter 2 time constant | 0.00 | 5000.00 | 0.00 | ms | Float | IM | T, U |
|  | Description: Sets the time constant for the speed setpoint filter 2 (PT1). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1421 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the speed filter is set as a PT1 low pass. |  |  |  |  |  |  |  |
| p1423 | Speed setpoint filter 2 denominator natural frequency | 0.5 | 16000.0 | 1999.0 | Hz | Float | IM | T, U |
|  | Description: Sets the denominator natural frequency for speed setpoint filter 2 (PT2, general filter). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1421 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. <br> The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |  |  |  |  |  |
| p1424 | Speed setpoint filter 2 denominator damping | 0.001 | 10.000 | 0.700 | - | Float | IM | T, U |
|  | Description: Sets the denominator damping for speed setpoint filter 2 (PT2, general filter). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1421 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the speed filter is parameterized as a PT2 low pass or as general filter. |  |  |  |  |  |  |  |
| p1425 | Speed setpoint filter 2 numerator natural frequency | 0.5 | 16000.0 | 1999.0 | Hz | Float | IM | T, U |
|  | Description: Sets the numerator natural frequency for speed setpoint filter 2 (general filter). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1421 |  |  |  |  |  |  |  |
|  | Note: This parameter is only effective if the speed filter is set as a general filter. <br> The filter is only effective if the natural frequency is less than half of the sampling frequency. |  |  |  |  |  |  |  |
| p1426 | Speed setpoint filter 2 numerator damping | 0.000 | 10.000 | 0.700 | - | Float | IM | T, U |
|  | Description: Sets the numerator damping for speed setpoint filter 2 (general filter). |  |  |  |  |  |  |  |
|  | Dependency: Refer to p1414, p1421 |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Note: This parameter is only effective if the speed filter is set as a general filter. |  |  |  |  |  |  |  |
| p1441 | Actual speed smoothing time | 0.00 | 50.00 | 0.00 | ms | Float | IM | T, U |
|  | Description: Sets the smoothing time constant (PT1) for the speed actual value. |  |  |  |  |  |  |  |
|  | Note: The speed actual value should be smoothed for increment encoders with a low pulse number. After this parameter has been changed, we recommend that the speed controller is adapted and/or the speed controller settings checked Kp (p29120) and Tn (p29121). |  |  |  |  |  |  |  |
| p1520 * | Torque limit upper | -1000000.00 | $\begin{aligned} & 20000000.0 \\ & 0 \end{aligned}$ | 0.00 | Nm | Float | IM | T, U |
|  | Description: Sets the fixed upper torque limit. |  |  |  |  |  |  |  |
|  | Danger: Negative values when setting the upper torque limit (p1520<0) can result in the motor accelerating in an uncontrollable fashion. |  |  |  |  |  |  |  |
|  | Notice: The maximum value depends on the maximum torque of the connected motor. |  |  |  |  |  |  |  |
| p1521 * | Torque limit lower | -20000000.00 | 1000000.00 | 0.00 | Nm | Float | IM | T, U |
|  | Description: Sets the fixed lower torque limit. |  |  |  |  |  |  |  |
|  | Danger: Positive values when setting the lower torque limit (p1521 > 0) can result in the motor accelerating in an uncontrollable fashion. |  |  |  |  |  |  |  |
|  | Notice: The maximum value depends on the maximum torque of the connected motor. |  |  |  |  |  |  |  |
| p1656 * | Activates current setpoint filter |  |  | $\begin{aligned} & \hline 0001 \\ & \text { bin } \end{aligned}$ |  | U16 | IM | T, U |
|  | Description: Setting for activating/de-activating the current setpoint filter. <br> - Bit 0: Activate filter 1 <br> - Bit $0=0$ : Deactivated <br> - Bit $0=1$ : Activated <br> - Bit 1: Activate filter 2 <br> - Bit $1=0$ : Deactivated <br> - Bit 1 = 1: Activated <br> - Bit 2: Activate filter 3 <br> - Bit $2=0$ : Deactivated <br> - Bit $2=1$ : Activated <br> - Bit 3: Activate filter 4 <br> - Bit $3=0$ : Deactivated <br> - Bit 3=1: Activated |  |  |  |  |  |  |  |
|  | Dependency: The individual current setpoint filters are parameterized as of p1658. |  |  |  |  |  |  |  |
|  | Note: If not all of the filters are required, then the filters should be used consecutively starting from filter 1. The drive unit displays the value in hex format. To know the logic (high/low) assignment to each bit, you must convert the hex number to the binary number, for example, FF (hex) = 11111111 (bin). |  |  |  |  |  |  |  |
| p1658 * | Current setpoint filter 1 denominator natural frequency | 0.5 | 16000.0 | 1999.0 | Hz | Float | IM | T, U |
|  | Description: Sets the denominator natural frequency for current setpoint filter 1 (PT2, general filter). |  |  |  |  |  |  |  |
|  | Dependency: The current setpoint filter 1 is activated via p1656.0 and parameterized via p1658 ... p1659. |  |  |  |  |  |  |  |
| p1659 * | Current setpoint filter 1 denominator damping | 0.001 | 10.000 | 0.700 | - | Float | IM | T, U |
|  | Description: Sets the denominator damping for current setpoint filter 1. |  |  |  |  |  |  |  |
|  | Dependency: The current setpoint filter 1 is activated via p1656.0 and parameterized via p1658 ... p1659. |  |  |  |  |  |  |  |
| p1663 | Current setpoint filter 2 denominator natural frequency | 0.5 | 16000.0 | 1000.0 | Hz | Float | IM | T, U |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description: Sets the denominator natural frequency for current setpoint filter 2 (PT2, general filter). |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 2 is activated via p1656.1 and parameterized via p1663 ... p1666. |  |  |  |  |  |  |  |
| p1664 | Current setpoint filter 2 denominator damping | 0.001 | 10.000 | 0.300 | - | Float | IM | T, U |
|  | Description: Sets the denominator damping for current setpoint filter 2. |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 2 is activated via p1656.1 and parameterized via p1663 ... p1666. |  |  |  |  |  |  |  |
| p1665 | Current setpoint filter 2 numerator natural frequency | 0.5 | 16000.0 | 1000.0 | Hz | Float | IM | T, U |
|  | Description: Sets the numerator natural frequency for current setpoint filter 2 (general filter). |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666. |  |  |  |  |  |  |  |
| p1666 | Current setpoint filter 2 numerator damping | 0.000 | 10.000 | 0.010 | - | Float | IM | T, U |
|  | Description: Sets the numerator damping for current setpoint filter 2. |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 2 is activated via p1656.1 and parameterized via p1663 ... p1666. |  |  |  |  |  |  |  |
| p1668 | Current setpoint filter 3 denominator natural frequency | 0.5 | 16000.0 | 1000.0 | Hz | Float | IM | T, U |
|  | Description: Sets the denominator natural frequency for current setpoint filter 3 (PT2, general filter). |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 3 is activated via p1656.2 and parameterized via p1668 ... p1671. |  |  |  |  |  |  |  |
| p1669 | Current setpoint filter 3 denominator damping | 0.001 | 10.000 | 0.300 | - | Float | IM | T, U |
|  | Description: Sets the denominator damping for current setpoint filter 3. |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 3 is activated via p1656.2 and parameterized via p1668 ... p1671. |  |  |  |  |  |  |  |
| p1670 | Current setpoint filter 3 numerator natural frequency | 0.5 | 16000.0 | 1000.0 | Hz | Float | IM | T, U |
|  | Description: Sets the numerator natural frequency for current setpoint filter 3 (general filter). |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 3 is activated via p1656.2 and parameterized via p1668 ... p1671. |  |  |  |  |  |  |  |
| p1671 | Current setpoint filter 3 numerator damping | 0.000 | 10.000 | 0.010 | - | Float | IM | T, U |
|  | Description: Sets the numerator damping for current setpoint filter 3. |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 3 is activated via p1656.2 and parameterized via p1668 ... p1671. |  |  |  |  |  |  |  |
| p1673 | Current setpoint filter 4 denominator natural frequency | 0.5 | 16000.0 | 1000.0 | Hz | Float | IM | T, U |
|  | Description: Sets the denominator natural frequency for current setpoint filter 4 (PT2, general filter). |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 4 is activated via p1656.3 and parameterized via p1673 ... p1675. |  |  |  |  |  |  |  |
| p1674 | Current setpoint filter 4 denominator damping | 0.001 | 10.000 | 0.300 | - | Float | IM | T, U |
|  | Description: Sets the denominator damping for current setpoint filter 4. |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 4 is activated via p1656.3 and parameterized via p1673 ... p1675. |  |  |  |  |  |  |  |
| p1675 | Current setpoint filter 4 numerator natural frequency | 0.5 | 16000.0 | 1000.0 | Hz | Float | IM | T, U |
|  | Description: Sets the numerator natural frequency for current setpoint filter 4 (general filter). |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 4 is activated via p1656.3 and parameterized via p1673 ... p1675. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p1676 | Current setpoint filter 4 numerator damping | 0.000 | 10.000 | 0.010 | - | Float | IM | T, U |
|  | Description: Sets the numerator damping for current setpoint filter 4. |  |  |  |  |  |  |  |
|  | Dependency: Current setpoint filter 4 is activated via p1656.3 and parameterized via p1673 ... p1675. |  |  |  |  |  |  |  |
| p2000 | Reference speed | 6.00 | 210000.00 | 3000.00 | rpm | Float | IM | T |
|  | Description: Sets the reference quantity for speed and frequency. <br> All speeds or frequencies specified as relative value are referred to this reference quantity. <br> The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2003 |  |  |  |  |  |  |  |
| p2002 | Reference current | 0.10 | 100000.00 | 100.00 | Arm <br> s | Float | IM | T |
|  | Description: Sets the reference quantity for currents. <br> All currents specified as relative value are referred to this reference quantity. <br> The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |  |  |  |  |  |  |  |
|  | Notice: If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor should be taken into account (e.g. for trace records). <br> Example: $\mathrm{p} 2002=100 \mathrm{~A}$ <br> Reference quantity 100 A corresponds to 100 \% |  |  |  |  |  |  |  |
| p2003 | Reference torque | 0.01 | $\begin{aligned} & 20000000.0 \\ & 0 \end{aligned}$ | 1.00 | Nm | Float | IM | T |
|  | Description: Sets the referene quantity for torque. <br> All torques specified as relative value are referred to this reference quantity. <br> The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word). |  |  |  |  |  |  |  |
| p2153 | Speed actual value filter time constant | 0 | 1000000 | 0 | ms | Float | IM | T, U |
|  | Description: Sets the time constant of the PT1 element to smooth the speed/velocity actual value. <br> The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals. |  |  |  |  |  |  |  |
| p2161 * | Speed threshold 3 | 0.00 | 210000.00 | 10.00 | rpm | Float | IM | T, U |
|  | Description: Sets the speed threshold value for the signal that indicates the axis is stationary. |  |  |  |  |  |  |  |
| p2162 * | Hysteresis speed n_act > n_max | 0.00 | 60000.00 | 0.00 | rpm | Float | IM | T, U |
|  | Description: Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max". |  |  |  |  |  |  |  |
|  | Note: <br> For a negative speed limit, the hysteresis is effective below the limit value and for a positive speed limit above the limit value. <br> If significant overshoot occurs in the maximum speed range (for example, due to load shedding), you are advised to increase the dynamic response of the speed controller (if possible). If this is insufficient, the hysteresis p2162 can be increased, but its value must not be greater than the value calculated by the formula below when the motor maximum speed is sufficiently greater than the maximum speed p1082. <br> p2162 $\leq 1.05 \times$ motor maximum speed - maximum speed (p1082) <br> The range of the parameter is different when connect with different motors. |  |  |  |  |  |  |  |
| p2175 * | Motor blocked speed threshold | 0.00 | 210000.00 | $\begin{aligned} & 210000 . \\ & 00 \\ & \hline \end{aligned}$ | rpm | Float | IM | T, U |
|  | Description: Sets the speed threshold for the message "Motor blocked". |  |  |  |  |  |  |  |
|  | Dependency: Refer to p2177. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p2177 * | Motor blocked delay time | 0.000 | 65.000 | 0.500 | s | Float | IM | T, U |
|  | Description: Sets the delay time for the message "Motor blocked". |  |  |  |  |  |  |  |
|  | Dependency: Refer to p2175. |  |  |  |  |  |  |  |
| p2525 | LR encoder adjustment offset | 0 | $\begin{aligned} & 429496729 \\ & 5 \end{aligned}$ | 0 | LU | U32 | IM | T |
|  | Description: Position offset when adjusting the absolute encoder. |  |  |  |  |  |  |  |
|  | Note: The position offset is only relevant for absolute encoders. The drive determines the value when adjusting the absolute encoder and the user should not change it. |  |  |  |  |  |  |  |
| p2533 | LR position setpoint filter time constant | 0.00 | 1000.00 | 0.00 | ms | Float | IM | T, U |
|  | Description: Sets the time constant for the position setpoint filter (PT1). |  |  |  |  |  |  |  |
|  | Note: The effective Kv factor (position loop gain) is reduced with the filter. <br> This allows a softer control behavior with improved tolerance with respect to noise/disturbances. <br> Applications: <br> - Reduces the pre-control dynamic response. <br> - Jerk limiting. |  |  |  |  |  |  |  |
| p2542 * | LR standstill window | 0 | $\begin{aligned} & 214748364 \\ & 7 \end{aligned}$ | 1000 | LU | U32 | IM | T, U |
|  | Description: Sets the standstill window for the standstill monitoring function. <br> After the standstill monitoring time expires, it is cyclically checked whether the difference between the setpoint and actual position is located within the standstill window and, if required, an appropriate fault is output. Value $=0$ : The standstill monitoring is deactivated. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2543, p2544, and F07450 |  |  |  |  |  |  |  |
|  | Note: The following applies for the setting of the standstill and positioning window: Standstill window (p2542) $\geq$ positioning window (p2544) |  |  |  |  |  |  |  |
| p2543 * | LR standstill monitoring time | 0.00 | 100000.00 | 200.00 | ms | Float | IM | T, U |
|  | Description: Sets the standstill monitoring time for the standstill monitoring function. <br> After the standstill monitoring time expires, it is cyclically checked whether the difference between the setpoint and actual position is located within the standstill window and, if required, an appropriate fault is output. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2542, p2545, and F07450 |  |  |  |  |  |  |  |
|  | Note: The following applies for the setting of the standstill and positioning monitoring time: Standstill monitoring time (p2543) $\leq$ positioning monitoring time (p2545) |  |  |  |  |  |  |  |
| p2544 * | LR positioning window | 0 | $\begin{array}{\|l\|} \hline 214748364 \\ 7 \end{array}$ | 40 | LU | U32 | IM | T, U |
|  | Description: Sets the positioning window for the positioning monitoring function. <br> After the positioning monitoring time expires, it is checked once as to whether the difference between the setpoint and actual position lies within the positioning window and if required an appropriate fault is output. Value $=0$ : The positioning monitoring function is de-activated. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2542, p2545, and F07451 |  |  |  |  |  |  |  |
|  | Note: The following applies for the setting of the standstill and positioning window: <br> Standstill window (p2542) $\geq$ positioning window (p2544) |  |  |  |  |  |  |  |
| p2545 * | LR positioning monitoring time | 0.00 | 100000.00 | 1000.00 | ms | Float | IM | T, U |
|  | Description: Sets the positioning monitoring time for the positioning monitoring. <br> After the positioning monitoring time expires, it is checked once as to whether the difference between the setpoint and actual position lies within the positioning window and if required an appropriate fault is output. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dependency: The range of p2545 depends on p2543. <br> Refer to: p2543, p2544, and F07451 |  |  |  |  |  |  |  |
|  | Note: The following applies for the setting of the standstill and positioning monitoring time: Standstill monitoring time (p2543) $\leq$ positioning monitoring time (p2545) |  |  |  |  |  |  |  |
| p2546 * | LR dynamic following error monitoring tolerance | 0 | $\begin{aligned} & 214748364 \\ & 7 \end{aligned}$ | 1000 | LU | U32 | IM | T, U |
|  | Description: Sets the tolerance for the dynamic following error monitoring. <br> If the dynamic following error (r2563) exceeds the selected tolerance, then an appropriate fault is output. Value $=0$ : The dynamic following error monitoring is deactivated. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: r2563, F07452 |  |  |  |  |  |  |  |
|  | Note: The tolerance bandwidth is intended to prevent the dynamic following error monitoring incorrectly responding due to operational control sequences (e.g. during load surges). |  |  |  |  |  |  |  |
| p2571 | IPos maximum velocity | 1 | 40000000 | 30000 | 100 <br> 0 <br> LU/ <br> min | U32 | IM | T, U |
|  | Description: Sets the maximum velocity for the "basic positioner" function (EPOS). |  |  |  |  |  |  |  |
|  | Note: The maximum velocity is active in all of the operating modes of the basic positioner. <br> The maximum velocity for the basic positioner should be aligned with the maximum speed/velocity of the speed/velocity controller: p2571[1000 LU/min] = max_speed[rpm] x p29248/p29249 x p29247/1000 |  |  |  |  |  |  |  |
| p2572 ** | EPOS maximum acceleration | 1 | 200000 |  | 100 <br> 0 <br> LU/s <br> 2$\|$ | U32 | IM | T |
|  | Description: Sets the maximum acceleration for the "basic positioner" function (EPOS). |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2619 |  |  |  |  |  |  |  |
|  | Note: The maximum acceleration appears to exhibit jumps (without jerk). <br> "Traversing blocks" operating mode: <br> The programmed acceleration override (p2619) acts on the maximum acceleration. <br> "Direct setpoint input/MDI" mode: <br> The acceleration override is effective (p2644, 4000 hex = 100\%). <br> "Jog" and "search for reference" modes: <br> No acceleration override is active. The axis starts with the maximum acceleration. |  |  |  |  |  |  |  |
| p2573 ** | EPOS maximum deceleration | 1 | 2000000 | 100 | 100 <br> 0 <br> LU/s <br> 2 | U32 | IM | T |
|  | Description: Sets the maximum deceleration for the "basic positioner" function (EPOS). |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2620 |  |  |  |  |  |  |  |
|  | Note: The maximum deceleration appears to exhibit jumps (without jerk). <br> "Traversing blocks" operating mode: <br> The programmed deceleration override (p2620) acts on the maximum deceleration. <br> "Direct setpoint input/MDI" mode: <br> The deceleration override is effective (p2645, 4000 hex $=100 \%$ ). <br> "Jog" and "search for reference" modes: <br> No deceleration override is effective. The axis brakes with the maximum deceleration. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p2574 ** | EPOS jerk limiting | 1 | 100000000 | $\begin{aligned} & 200000 \\ & 0 \end{aligned}$ | $\begin{array}{\|l} 100 \\ 0 \\ \text { LU/s } \\ 3 \end{array}$ | U32 | IM | T, U |
|  | Description: Sets the jerk limiting. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p2572, p2573, and p2575 |  |  |  |  |  |  |  |
|  | Note: The jerk limiting is internally converted into a jerk time as follows: Jerk time $\mathrm{Tr}=\max (\mathrm{p} 2572, \mathrm{p} 2573) / \mathrm{p} 2574$ |  |  |  |  |  |  |  |
| p2575 | EPOS jerk limiting activation | 0 | 1 | 1 | - | U32 | IM | T |
|  | Description: Activates the jerk limiting. <br> - 0 : The jerk limiting is deactivated. <br> - 1: The jerk limiting is activated. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p2574 |  |  |  |  |  |  |  |
| p2580 | EPOS software limit switch minus | -2147482648 | $\begin{aligned} & 214748264 \\ & 7 \end{aligned}$ | 214748 <br> 2648 | LU | 132 | IM | T, U |
|  | Description: Sets the software limit switch in the negative direction of travel. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p2581, p2582 |  |  |  |  |  |  |  |
| p2581 | EPOS software limit switch plus | -2147482648 | $\begin{aligned} & 214748264 \\ & 7 \end{aligned}$ | $\begin{aligned} & 214748 \\ & 2647 \end{aligned}$ | LU | 132 | IM | T, U |
|  | Description: Sets the software limit switch in the positive direction of travel. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p2580, p2582 |  |  |  |  |  |  |  |
| p2582 | EPOS software limit switch activation |  |  | 0 |  | U32/Bina ry | IM | T |
|  | Description: Sets the signal source to activate the "software limit switch". |  |  |  |  |  |  |  |
|  | Dependency: Refer to p2580, p2581 |  |  |  |  |  |  |  |
|  | Caution: Software limit switch effective: <br> - Axis is referenced. <br> Software limit switch ineffective: <br> - Modulo correction active. <br> - Search for reference is executed. |  |  |  |  |  |  |  |
|  | Notice: Target position for relative positioning outside software limit switch: <br> The traversing block is started and the axis comes to a standstill at the software limit switch. An appropriate alarm is output and the traversing block is interrupted. Traversing blocks with valid position can be activated. <br> Target position for absolute positioning outside software limit switch: <br> In the "traversing blocks" mode, the traversing block is not started and an appropriate fault is output. <br> Axis outside the valid traversing range: <br> If the axis is already outside the valid traversing range, then an appropriate fault is output. The fault can be acknowledged at standstill. Traversing blocks with valid position can be activated. |  |  |  |  |  |  |  |
|  | Note: The traversing range can also be limited using STOP cams. |  |  |  |  |  |  |  |
| p2583 | EPOS backlash compensation | -200000 | 200000 | 0 | LU | 132 | IM | T, U |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description: Sets the amount of play (backlash) for positive or negative play. <br> - = 0: The backlash compensation is deactivated. <br> - >0: Positive backlash (normal case) <br> When the direction is reversed, the encoder actual value leads the actual value. <br> - < 0: Negative backlash <br> When the direction is reversed, the actual value leads the encoder actual value. |  |  |  |  |  |  |  |
|  | Dependency: If a stationary axis is referenced by setting the reference point, or an adjusted with absolute encoder is powered up, then the setting of p2604 is relevant for entering the compensation value. p2604 = 1: <br> Traveling in the positive direction -> A compensation value is immediately entered. <br> Traveling in the negative direction -> A compensation value is not entered p2604 = 0: <br> Traveling in the positive direction -> A compensation value is not entered <br> Traveling in the negative direction -> A compensation value is immediately entered. <br> When again setting the reference point (a referenced axis) or for "flying referencing", p2604 is not relevant but instead the history of the axis. <br> Refer to: p2604 |  |  |  |  |  |  |  |
| p2585 | EPOS jog 1 setpoint velocity | -40000000 | 40000000 | -300 | 100 <br> 0 L <br> $\mathrm{U} / \mathrm{mi}$ <br> n | 132 | IM | T, U |
|  | Description: Sets the setpoint speed for jog 1. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2587 |  |  |  |  |  |  |  |
| p2586 | EPOS jog 2 setpoint velocity | -40000000 | 40000000 | 300 | 100 <br> 0 L <br> $\mathrm{U} / \mathrm{mi}$ <br> n | 132 | IM | T, U |
|  | Description: Sets the setpoint speed for jog 2. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2588 |  |  |  |  |  |  |  |
| p2587 | EPOS jog 1 traversing distance | 0 | $\begin{aligned} & 214748264 \\ & 7 \end{aligned}$ | 1000 | LU | U32 | IM | T, U |
|  | Description: Sets the traversing distance for incremental jog 1. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2585 |  |  |  |  |  |  |  |
| p2588 | EPOS jog 2 traversing distance | 0 | $\begin{aligned} & 214748264 \\ & 7 \end{aligned}$ | 1000 | LU | U32 | IM | T, U |
|  | Description: Sets the traversing distance for incremental jog 2. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2586 |  |  |  |  |  |  |  |
| p2599 | EPOS reference point coordinate value | $-2147482648$ | $\begin{aligned} & 214748264 \\ & 7 \\ & \hline \end{aligned}$ | 0 | LU | 132 | IM | T, U |
|  | Description: Sets the position value for the reference point coordinate. This value is set as the actual axis position after referencing or adjustment. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2525 |  |  |  |  |  |  |  |
| p2600 | EPOS search for reference point offset | $-2147482648$ | $\begin{aligned} & 214748264 \\ & 7 \\ & \hline \end{aligned}$ | 0 | LU | 132 | IM | T, U |
|  | Description: Sets the reference point offset for search for reference. |  |  |  |  |  |  |  |
| p2604 | EPOS search for reference start direction | - | - | 0 | - | U32/Bina ry | IM | T |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description: Sets the signal sources for the start direction of the search for reference. <br> - 1 signal: Start in the negative direction. <br> - 0 signal: Start in the positive direction. |  |  |  |  |  |  |  |
|  | Dependency: Refer to p2583 |  |  |  |  |  |  |  |
| p2605 | EPOS search for reference approach velocity reference cam | 1 | 40000000 | $5000$ | 100 <br> 0 L <br> $\mathrm{U} / \mathrm{mi}$ <br> n | U32 | IM | T, U |
|  | Description: Sets the approach velocity to the reference cam for the search for reference. |  |  |  |  |  |  |  |
|  | Dependency: The search for reference only starts with the approach velocity to the reference cam when there is a reference cam. <br> Refer to: p2604, p2606 |  |  |  |  |  |  |  |
|  | Note: When traversing to the reference cam, the velocity override is effective. If, at the start of the search for reference, the axis is already at the reference cam, then the axis immediately starts to traverse to the zero mark. |  |  |  |  |  |  |  |
| p2606 | EPOS search for reference reference cam maximum distance | 0 | $\begin{aligned} & 214748264 \\ & 7 \end{aligned}$ | $\begin{aligned} & 214748 \\ & 2647 \end{aligned}$ | LU | U32 | IM | T, U |
|  | Description: Sets the maximum distance after the start of the search for reference when traversing to the reference cam. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2604, p2605, and F07458 |  |  |  |  |  |  |  |
|  | Note: When using a reversing cam, the maximum distance must be set appropriately long. |  |  |  |  |  |  |  |
| p2608 | EPOS search for reference approach velocity zero mark | 1 | 40000000 |  | $\begin{array}{\|l} 100 \\ 0 \mathrm{~L} \\ \mathrm{U} / \mathrm{mi} \\ \mathrm{n} \end{array}$ | U32 | IM | T, U |
|  | Description: Sets the approach velocity after detecting the reference cam to search for the zero mark for the search for reference. |  |  |  |  |  |  |  |
|  | Dependency: If there is no reference cam, the search for reference immediately starts with the axis traversing to the zero mark. <br> Refer to: p2604, p2609 |  |  |  |  |  |  |  |
|  | Caution: If the reference cam is not adjusted so that at each search for reference the same zero mark for synchronization is detected, then an "incorrect" axis reference point is obtained. <br> After the reference cam has been left, the search for the zero mark is activated with a time delay due to internal factors. This is the reason that the reference cam should be adjusted in this center between two zero marks and the approach velocity should be adapted to the distance between two zero marks. |  |  |  |  |  |  |  |
|  | Note: The velocity override is not effective when traversing to the zero mark. |  |  |  |  |  |  |  |
| p2609 | EPOS search for reference max. distance ref. cam and zero mark | 0 | $\begin{aligned} & 214748264 \\ & 7 \end{aligned}$ | 20000 | LU | U32 | IM | T, U |
|  | Description: Sets the maximum distance after leaving the reference cam when traversing to the zero mark. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2604, p2608, and F07459 |  |  |  |  |  |  |  |
| p2611 | EPOS search for reference approach velocity reference point | 1 | 40000000 | 300 | 100 <br> 0 L <br> $\mathrm{U} / \mathrm{mi}$ <br> n | U32 | IM | T, U |
|  | Description: Sets the approach velocity after detecting the zero mark to approach the reference point. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2604, p2609 |  |  |  |  |  |  |  |
|  | Note: When traversing to the reference point, the velocity override is not effective. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | $\begin{array}{\|l} \hline \text { Data } \\ \text { type } \\ \hline \end{array}$ | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { p2617[0... } \\ & \text { 15] } \end{aligned}$ | EPOS traversing block position | -2147482648 | $\begin{aligned} & 214748264 \\ & 7 \\ & \hline \end{aligned}$ | 0 | LU | I32 | IM | T, U |
|  | Description: Sets the target position for the traversing block. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2618, p2619, p2620, p2621, p2622, p2623 |  |  |  |  |  |  |  |
|  | Note: The target position is approached in either relative or absolute terms depending on p2623. |  |  |  |  |  |  |  |
| $\begin{array}{\|l\|} \hline \text { p2618[0... } \\ 15] \end{array}$ | EPOS traversing block velocity | 1 | 40000000 | 600 | $\begin{aligned} & \hline 100 \\ & 0 \mathrm{~L} \\ & \mathrm{U} / \mathrm{mi} \\ & \mathrm{n} \\ & \hline \end{aligned}$ | I32 | IM | T, U |
|  | Description: Sets the velocity for the traversing block. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2617, p2619, p2620, p2621, p2622, p2623 |  |  |  |  |  |  |  |
|  | Note: The velocity can be influenced using the velocity override. |  |  |  |  |  |  |  |
| $\begin{array}{\|l} \hline \text { p2619[0... } \\ 15] \end{array}$ | EPOS traversing block acceleration override | 1.0 | 100.0 | 100.0 | \% | Float | IM | T, U |
|  | Description: Sets the acceleration override for the traversing block. The override refers to the maximum acceleration (p2572). |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2572, p2617, p2618, p2620, p2621, p2622, p2623 |  |  |  |  |  |  |  |
| $\begin{array}{\|l} \hline \text { p2620[0... } \\ 15] \end{array}$ | EPOS traversing deceleration override | 1.0 | 100.0 | 100.0 | \% | Float | IM | T, U |
|  | Description: Sets the deceleration override for the traversing block. The override refers to the maximum deceleration (p2573). |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2573, p2617, p2618, p2619, p2621, p2622, p2623 |  |  |  |  |  |  |  |
| $\begin{array}{\|l} \text { p2621[0... } \\ \text { 15] } \end{array}$ | EPOS traversing block task |  | 9 | 1 | \% | - | IM | T, U |
|  | Description: Sets the required task for the traversing block. <br> - 1: POSITIONING <br> - 2: FIXED STOP <br> - 3: ENDLESS_POS <br> - 4: ENDLESS_NEG <br> - 5: WAITING <br> - 6: GOTO <br> - 7: SET_O <br> - 8: RESET_O <br> - 9: JERK |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2617, p2618, p2619, p2620, p2622, p2623 |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { p2622[0... } \\ & 15] \end{aligned}$ | EPOS traversing block task parameter | -2147483648 | $\begin{aligned} & 214748364 \\ & 7 \end{aligned}$ | 0 | - | 132 | IM | T, U |
|  | Description: Sets additional information/data of the appropriate task for the traversing block. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2617, p2618, p2619, p2620, p2621, p2623 |  |  |  |  |  |  |  |
|  | Note: The following should be set depending on the task: <br> FIXED STOP: Clamping torque and clamping force (rotary 0... 65536 [ 0.01 Nm ], linear 0... 65536 [N]) <br> WAIT: Delay time [ms] <br> GOTO: Block number <br> SET_O: 1, 2 or 3 - set direct output 1, 2 or 3 (both) <br> RESET_O: 1, 2 or 3 - reset direct output 1, 2 or 3 (both) <br> JERK: 0 - deactivate, 1 - activate |  |  |  |  |  |  |  |
| $\begin{array}{\|l} \hline \text { p2623[0... } \\ \text { 15] } \\ \hline \end{array}$ | EPOS traversing block task mode | 0 | 65535 | 0 | - | U16 | IM | T, U |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description: Sets the influence of the task for the traversing block. <br> Value $=0000$ cccc bbbb aaaa <br> cccc: Positioning mode <br> cccc = 0000: ABSOLUTE <br> cccc $=0001:$ RELATIVE <br> cccc $=0010$ : ABS_POS (only for a rotary axis with modulo correction) <br> cccc $=0011$ : ABS_NEG (only for a rotary axis with modulo correction) <br> bbbb: Progression condition <br> bbbb = 0000: END <br> bbbb $=0001$ : CONTINUE WITH STOP <br> bbbb $=0010$ : CONTINUE FLYING <br> bbbb $=0011:$ CONTINUE EXTERNAL <br> bbbb $=0100$ : CONTINUE EXTERNAL WAIT <br> bbbb = 0101: CONTINUE EXTERNAL ALARM <br> aaaa: IDs <br> aaaa $=000 x$ : show/hide block ( $x=0$ : show; $x=1$ : hide) |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2617, p2618, p2619, p2620, p2621, p2622 |  |  |  |  |  |  |  |
| p2634 | EPOS fixed stop maximum following error | 0 | $\begin{aligned} & 214748264 \\ & 7 \end{aligned}$ | 1000 | LU | U32 | IM | T, U |
|  | Description: Sets the following error to detect the "fixed stop reached" state. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2621 |  |  |  |  |  |  |  |
|  | Note: The state "fixed stop reached" is detected if the following error exceeds the theoretically calculated following error value by p2634. |  |  |  |  |  |  |  |
| p2635 | EPOS fixed stop monitoring window | 0 | $\begin{aligned} & 214748264 \\ & 7 \end{aligned}$ | 100 | LU | U32 | IM | T, U |
|  | Description: Sets the monitoring window of the actual position after the fixed stop is reached. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: F07484 |  |  |  |  |  |  |  |
|  | Note: If, after the fixed stop is reached, the end stop shifts in either the positive or negative direction by more than the value set here, an appropriate message is output. |  |  |  |  |  |  |  |
| p2690 | MDI position fixed setpoint | -2147482648 | $\begin{aligned} & 214748264 \\ & 7 \\ & \hline \end{aligned}$ | 0 | - | 132 | IM | T, U |
|  | Description: Sets a fixed setpoint for the position. |  |  |  |  |  |  |  |
| p2691 | MDI velocity fixed setpoint | 1 | 40000000 | 600 | $\begin{array}{\|l} 100 \\ 0 \mathrm{~L} \\ \mathrm{U} / \mathrm{mi} \\ \mathrm{n} \\ \hline \end{array}$ | U32 | IM | T, U |
|  | Description: Sets a fixed setpoint for the speed. |  |  |  |  |  |  |  |
| p2692 | MDI acceleration override, fixed setpoint | 0.100 | 100.000 | 100.000 | \% | Float | IM | T, U |
|  | Description: Sets a fixed setpoint for the acceleration override. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2572 |  |  |  |  |  |  |  |
|  | Note: The percentage value refers to the maximum acceleration (p2572). |  |  |  |  |  |  |  |
| p2693 | MDI deceleration override, fixed setpoint | 0.100 | 100.000 | 100.000 | \% | Float | IM | T, U |
|  | Description: Sets a fixed setpoint for the deceleration override. |  |  |  |  |  |  |  |
|  | Dependency: Refer to: p2572 |  |  |  |  |  |  |  |
|  | Note: The percentage value refers to the maximum deceleration (p2573). |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \text { p8920[0... } \\ \text { 239] } \end{array}$ | PROFIdrive: Name of station | - | - | - | - | U8 | IM | T, U |
|  | Description: Sets the station name for the onboard PROFINET interface on the Control Unit. The active station name is displayed in r 8930 . |  |  |  |  |  |  |  |
|  | Note: The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting. |  |  |  |  |  |  |  |
| $\begin{array}{\|l} \text { p8921[0... } \\ \text { 3] } \end{array}$ | PROFIdrive: IP address of station | 0 | 255 | 0 | - | U8 | IM | T, U |
|  | Description: Sets the IP address for the onboard PROFINET interface on the Control Unit. The active IP address is displyed in r8931. |  |  |  |  |  |  |  |
|  | Note: The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting. |  |  |  |  |  |  |  |
| $\begin{array}{\|l} \text { p8922[0... } \\ \text { 3] } \end{array}$ | PROFIdrive: Default gateway of station | 0 | 255 | 0 | - | U8 | IM | T, U |
|  | Description: Sets the default gateway for the onboard PROFINET interface on the Control Unit. The active default gateway is displayed in r8932. |  |  |  |  |  |  |  |
|  | Note: The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting. |  |  |  |  |  |  |  |
| $\begin{aligned} & \mathrm{p} 8923[0 \ldots \\ & 3] \end{aligned}$ | PROFIdrive: Subnet mask of station | 0 | 255 | 0 | - | U8 | IM | T, U |
|  | Description: Sets the subnet mask for the onboard PROFINET interface on the Control Unit. The active subnet mask is displayed in r8933. |  |  |  |  |  |  |  |
|  | Note: The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting. |  |  |  |  |  |  |  |
| p8925 | PROFIdrive: Interface configuration | 0 | 3 | 0 | - | U8 | IM | T, U |
|  | Description: Setting to activate the interface configuration for the onboard PROFINET interface on the Control Unit. <br> p8925 is automatically set to 0 at the end of the operation. <br> - p8925 = 0: No function <br> - p8925 = 2: Save and activate configuration <br> The interface configuration (p8920 and following) is saved and activated after the next POWER ON. |  |  |  |  |  |  |  |
| p29000 * | Motor ID | 0 | 65535 | 0 | - | U16 | IM | T |
|  | Description: Motor type number is printed on the motor rating plate as motor ID. <br> For a motor with an incremental encoder, users need to manually input the parameter value. The range of high inertia motor is 18 to 39 ; the range of low inertia motor is 42 to 71 . <br> For a motor with an absolute encoder, the drive automatically reads the parameter value. The range of high inertia motor with multi-turn encoder is 10009 to 10048. |  |  |  |  |  |  |  |
| p29001 | Reversal of motor direction | 0 |  | 0 |  | 116 | IM | T |
|  | Description: Reversal of motor running direction. By default, CW is the positive direction while CCW the negative direction. After changing of p29001, reference point will lost, A7461 will remind user to referencing again. <br> - 0: No reversal <br> - 1: Reverse |  |  |  |  |  |  |  |
| p29002 | BOP display selection | 0 | 4 | 0 | - | 116 | IM | T, U |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description: Selection of BOP operating display. <br> - 0: Actual speed (default) <br> - 1: DC voltage <br> - 2: Actual torque <br> - 3: Actual position <br> - 4: Position following error |  |  |  |  |  |  |  |
| p29003 | Control mode | 1 | 2 | 2 | - | I16 | IM | T |
|  | Description: Selection of control mode. <br> - 1: Basic positioner control mode (EPOS) <br> - 2: Speed control mode (S) |  |  |  |  |  |  |  |
| p29005 | Braking resistor capacity percentage alarm threshold | 1 | 100 | 100 | \% | Float | IM | T |
|  | Description: Alarm triggering threshold for the capacity of the internal braking resistor. Alarm number: A52901 |  |  |  |  |  |  |  |
| p29006 | Line supply voltage | 200 | 480 | 400/230 | V | U16 | IM | T |
|  | Description: Nominal Line supply voltage, effective value of line to line voltage. Drive can operate within $-15 \%$ to $+10 \%$ error. <br> For 400 V variant servo drive, the value range is 380 V to 480 V , default value is 400 V . <br> For 200 V variant servo drive, the value range is 200 V to 240 V , default value is 230 V . |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { p29020[0.. } \\ & .1] \end{aligned}$ | Tuning: Dynamic factor | 1 | 35 | 18 | - | U16 | IM | T, U |
|  | Description: The dynamic factor of auto tuning. 35 dynamic factors in total are available. |  |  |  |  |  |  |  |
|  | Index: <br> - [0]: Dynamic factor for one-button auto tuning <br> - [1]: Dynamic factor for real-time auto tuning |  |  |  |  |  |  |  |
| p29021 | Tuning: Mode selection | 0 | 5 | 0 | - | I16 | IM | T |
|  | Description: Selection of a tuning mode. <br> - 0: Disabled <br> - 1: One-button auto tuning <br> - 3: Real-time auto tuning <br> - 5: Disable with default controller parameters |  |  |  |  |  |  |  |
| p29022 | Tuning: Ratio of total inertia moment to motor inertia moment | 1.00 | 10000.00 | 1.00 | - | Float | IM | T, U |
|  | Description: Ratio of total inertia moment to servo motor inertia moment. |  |  |  |  |  |  |  |
| p29023 | Tuning: One-button auto tuning configuration | - | - | 0x0007 | - | U16 | IM | T |
|  | Description: One-button auto tuning configuration. <br> - Bit 0: The speed controller gain is determined and set using a noise signal. <br> - Bit 1: Possible required current setpoint filters are determined and set using a noise signal. As a consequence, a higher dynamic performance can be achieved in the speed control loop. <br> - Bit 2: The inertia moment ratio (p29022) can be measured after this function is running. If not set, the inertia moment ratio must be set manually with p29022. <br> - Bit 7: With this bit set, multi-axes are adapted to the dynamic response set in p29028. This is necessary for interpolating axes. The time in p29028 should be set according to the axis with the lowest dynamic response. |  |  |  |  |  |  |  |
| p29024 | Tuning: Real-time auto tuning configuration | - | - | 0x004c | - | U16 | IM | T |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description: Real-time auto tuning configuration. <br> - Bit 2: The inertia moment ratio (p29022) is estimated while the motor is running, if not set, the inertia moment ratio must be set manually with p29022. <br> - Bit 3: If not set, the inertia moment ratio (p29022) is estimated only once and the inertia estimator is deactivated automatically after the estimation is completed. If the bit is set to 1 , the inertia moment ratio is estimated in real time and the controller adapts the parameters continuously. You are recommended to save the parameters when the estimation result is satisfied. After that, when you power on the drive next time, the controller will be started with the optimized parameters. <br> - Bit 6: The adaption of current setpoint filter. This adaption may be necessary if a mechanical resonance frequency changes in operation. It can also be used to dampen a fixed resonance frequency. Once the control loop has stabilized, this bit should be deactivated and to save parameters in a non-volatile memory. <br> - Bit 7: With this bit set, multi-axes are adapted to the dynamic response set in p29028. This is necessary for interpolating axes. The time in p29028 should be set according to the axis with the lowest dynamic response. |  |  |  |  |  |  |  |
| p29025 | Tuning: Configuration overall |  |  | 0x0004 |  | U16 | IM | T |
|  | Description: Overall configuration of auto tuning, apply for both one-button and real-time auto tuning. <br> - Bit 0: For significant differences between the motor and load moment of inertia, or for low dynamic performance of the controller, then the P controller becomes a PD controller in the position control loop. As a consequence, the dynamic performance of the position controller is increased. This function should only be set when the speed pre-control (bit $3=1$ ) or the torque pre-control (bit $4=1$ ) is active. <br> - Bit 1: At low speeds, the controller gain factors are automatically reduced in order to avoid noise and oscillation at standstill. This setting is recommended for incremental encoders. <br> - Bit 2: The estimated load moment of inertia is taken into account for the speed controller gain. <br> - Bit 3: Activates the speed pre-control for the position controller. <br> - Bit 4: Activates the torque pre-control for the position controller. <br> - Bit 5: Adapts acceleration limit. |  |  |  |  |  |  |  |
| p29026 | Tuning: Test signal duration | 0 | 5000 | 2000 | ms | U32 | IM | T |
|  | Description: The duration time of the one-button auto tuning test signal. |  |  |  |  |  |  |  |
| p29027 | Tuning: Limit rotation of motor | 0 | 30000 | 0 |  | U32 | IM | T |
|  | Description: The limit position with motor rotations during one-button auto tuning. The traversing range is limited within +/- p29027 degrees (motor run one revolution is 360 degree). |  |  |  |  |  |  |  |
| p29028 | Tuning: Pre-control time constant | 0.0 | 60.0 | 7.5 | ms | Float | IM | T, U |
|  | Description: Sets the time constant for the pre-control symmetrization for auto tuning. As a consequence, the drive is allocated a defined, dynamic response via its pre-control. For drives, which must interpolate with one another, the same value must be entered. The higher this time constant is, the smoother the drive will follow the position set point. Note: This time constant is only effective when multi-axis interpolation is selected (bit 7 of p29023 and p29024). |  |  |  |  |  |  |  |
| p29035 | VIBSUP activation | 0 | 1 | 0 | - | 116 | IM | T |
|  | Description: Select the VIBSUP ON/OFF. <br> Position setpoint filter can be activated (p29035) for EPOS control mode. <br> - 0: Disable <br> Filter is not activated. <br> - 1: Enable <br> Filter is activated. |  |  |  |  |  |  |  |
| p29050[0.. | Torque limit upper | -150 | 300 | 300 | \% | Float | IM | T, U |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .1] | Description: Positive torque limit. <br> Two internal torque limits in total are available. <br> You can select the internal parameters as the source of the torque limit with the digital input signals TLIM. |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { p29051[0.. } \\ & .1] \end{aligned}$ | Torque limit lower | -300 | 150 | -300 | \% | Float | IM | T, U |
|  | Description: Negative torque limit. <br> Two internal torque limits in total are available. <br> You can select the internal parameters as the source of the torque limit with the digital input signals TLIM. |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { p29070[0.. } \\ & .1]^{*} \end{aligned}$ | Speed limit positive | 0 | 210000 | 210000 | rpm | Float | IM | T, U |
|  | Description: Positive speed limit. <br> Two internal speed limits in total are available. <br> You can select the internal parameters as the source of the speed limit with the digital input signals SLIM. |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { p29071[0.. } \\ & .1]^{*} \end{aligned}$ | Speed limit negative | -210000 | 0 | $210000$ | rpm | Float | IM | T, U |
|  | Description: Negative speed limit. <br> Two internal speed limits in total are available. <br> You can select the internal parameters as the source of the speed limit with the digital input signals SLIM. |  |  |  |  |  |  |  |
| p29080 | Overload threshold for output signal triggering | 10 | 300 | 100 | \% | Float | IM | T |
|  | Description: Overload threshold for the output power. |  |  |  |  |  |  |  |
| p29108 | Function module activate | 0 | 0xfffffff | 0 | - | U32 | RE | T |
|  | Description: Bit 0: activate extended setpoint channel including ramp-function generator (RFG), speed limit (SLIM), and JOG. <br> - Bit $0=0$ : Deactivate <br> - Bit $0=1$ : Activate |  |  |  |  |  |  |  |
|  | Note: Changes only become effective after save and repower-on. Currently, you can set bit 0 only. |  |  |  |  |  |  |  |
| p29110 ** | Position loop gain | 0.000 | 300.000 | 1.800 | 100 <br> $0 / \mathrm{mi}$ <br> n | Float | IM | T, U |
|  | Description: Position loop gain. <br> Two position loop gains in total are available. You can switch between these two gains by configuring the digital input signal G-CHANGE or setting relevant condition parameters. <br> The first position loop gain is the default setting. |  |  |  |  |  |  |  |
|  | Dependency: The parameter value will be set to default after configuring a new motor ID (p29000). |  |  |  |  |  |  |  |
| p29111 | Speed pre-control factor (feed forward) | 0.00 | 200.00 | 0.00 | \% | Float | IM | T, U |
|  | Description: Setting to activate and weight the speed pre-control value. Value $=0 \%$ : The pre-control is deactivated. |  |  |  |  |  |  |  |
| p29120** | Speed loop gain | 0.00 | 999999.00 | Motor dependent | Nms /rad | Float | IM | T, U |
|  | Description: Speed loop gain. |  |  |  |  |  |  |  |
|  | Dependency: The parameter value will be set to default after configuring a new motor ID (p29000). |  |  |  |  |  |  |  |
| p29121* | Speed loop integral time | 0.00 | 100000.00 | 15 | ms | Float | IM | T, U |
|  | Description: Speed loop integral time. |  |  |  |  |  |  |  |
|  | Dependency: The parameter value will be set to default after configuring a new motor ID (p29000). |  |  |  |  |  |  |  |
| p29150 | User PZD receive | 0 | 2 | 0 | - | 116 | IM | T |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description: Select the function of control PZD12 when using telegram 111. <br> - 0: No function <br> - 1: Additional torque setpoint <br> - 2: Additional speed setpoint |  |  |  |  |  |  |  |
| p29151 | User PZD send | 0 | 3 | 0 | - | 116 | IM | T |
|  | Description: Select the function of status PZD12 when using telegram 111. <br> - 0: No function <br> - 1: Actual torque <br> - 2: Actual absolute current <br> - 3: DI status |  |  |  |  |  |  |  |
| p29230 | MDI direction selection | 0 | 2 | 0 | - | 116 | IM | T |
|  | Description: MDI direction selection: <br> - 0 : Absolute positioning through the shortest distance <br> - 1: Absolute positioning in the positive direction <br> - 2: Absolute positioning in the negative direction |  |  |  |  |  |  |  |
|  | Dependency: This parameter is only valid for modulo axis (p29245 = 1). |  |  |  |  |  |  |  |
| p29231 | MDI positioning type | 0 | 1 | 0 | - | 116 | IM | T |
|  | Description: MDI positioning type: <br> - 0: Relative positioning <br> - 1: Absolute positioning |  |  |  |  |  |  |  |
|  | Dependency: This parameter is only valid for modulo axis (p29245 = 1). |  |  |  |  |  |  |  |
| p29240 | Select referencing mode | 0 | 2 | 1 | - | 116 | IM | T |
|  | Description: Selects referencing mode. <br> - 0: Referencing with external signal REF <br> - 1: Referencing with external reference cam (signal REF) <br> - 2: Referencing with zero mark only |  |  |  |  |  |  |  |
| p29243 | Positioning tracking activate | 0 | 1 | 0 | - | 116 | IM | T |
|  | Description: Activation of position tracking. <br> - 0: Deactivated <br> - 1: Activated |  |  |  |  |  |  |  |
| p29244 | Absolute encoder virtual rotary revolutions | 0 | 4096 | 0 | - | U32 | IM | T |
|  | Description: Sets the number of rotations that can be resolved for an encoder with activated position tracking function (p29243 = 1). |  |  |  |  |  |  |  |
| p29245 | Axis mode state | 0 | 1 | 0 | - | U32 | IM | T |
|  | Description: Linear/modulo mode: <br> - 0: Linear axis <br> - 1: Modulo axis |  |  |  |  |  |  |  |
| p29246 * | Modulo correction range | 1 | $\begin{array}{\|l} \hline 214748264 \\ 7 \\ \hline \end{array}$ | 360000 | - | U32 | IM | T |
|  | Description: Modulo number, effective on modulo mode (P29245=1) |  |  |  |  |  |  |  |
| p29247 * | Mechanical gear: LU per revolution | 1 | $\begin{aligned} & 214748364 \\ & 7 \end{aligned}$ | 10000 | - | U32 | IM | T |
|  | Description: LU per load revolution. |  |  |  |  |  |  |  |
| p29248 * | Mechanical gear: Numerator | 1 | 1048576 | 1 | - | U32 | IM | T |
|  | Description: (Load/Motor) Load revolutions. |  |  |  |  |  |  |  |


| Par. No. | Name | Min | Max | Factory Setting | Unit | Data type | Effective | Can be changed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p29249 * | Mechanical gear: Denominator | 1 | 1048576 | 1 | - | U32 | IM | T |
|  | Description: (Load/Motor) Motor revolutions. |  |  |  |  |  |  |  |
| p29301 | Digital input 1 assignment | 0 | 29 | 2 | - | 116 | IM | T |
|  | Description: Defines the function of digital input signa <br> - NA 0 <br> - RESET 2 <br> - CWL 3 <br> - CCWL 4 <br> - TLIMT 11 <br> - SLIMT 20 <br> - REF 24 <br> - EMGS 29 |  |  |  |  |  |  |  |
| p29302 | Digital input 2 assignment | 0 | 29 | 11 | - | 116 | IM | T |
|  | Description: Defines the function of digital input signal DI2 |  |  |  |  |  |  |  |
| p29303 | Digital input 3 assignment | 0 | 29 | 0 | - | 116 | IM | T |
|  | Description: Defines the function of digital input signal DI3 |  |  |  |  |  |  |  |
| p29304 | Digital input 4 assignment | 0 | 29 | 0 | - | 116 | IM | T |
|  | Description: Defines the function of digital input signal DI4 |  |  |  |  |  |  |  |
| p29330 | Digital output 1 assignment | 1 | 14 | 2 | - | 116 | IM | T |
|  | Description: Defines the function of digital output signal DO1 <br> - RDY 1 <br> - FAULT 2 <br> - INP 3 <br> - ZSP 4 <br> - TLR 6 <br> - MBR 8 <br> - OLL 9 <br> - REFOK 12 <br> - RDY_ON 14 |  |  |  |  |  |  |  |
| p29331 | Digital output 2 assignment | 1 | 14 | 9 | - | 116 | IM | T |
|  | Description: Defines the function of digital output signal DO2 |  |  |  |  |  |  |  |
| p31581 | VIBSUP filter type | 0 | 1 | 0 | - | 116 | IM | T |
|  | Description: Sets the filter type for VIBSUP. Depending on the selected filter type, the VIBSUP filter results in motion sequences that take somewhat longer. <br> - 0 : The rugged VIBSUP filter has a lower sensitivity to frequency offsets compared with the sensitive filter type, but results in a higher delay of the motion sequence. The total motion sequence is extended by the time period $T_{d}\left(T_{d}=1 / f_{d}\right)$. <br> - 1: The sensitive VIBSUP filter has a higher sensitivity to frequency offsets compared with the rugged filter type, but results in a lower delay of the motion sequence. The total motion sequence is extended by half the time period $T_{d} / 2\left(T_{d}=1 / f_{d}\right)$. |  |  |  |  |  |  |  |
| p31585 | VIBSUP filter frequency | 0.5 | 62.5 | 1 | Hz | Float | IM | T |
|  | Description: Sets the frequency of the damped natural vibration of the mechanical system. This frequency can be determined by making the appropriate measurements. |  |  |  |  |  |  |  |
|  | Note: The maximum frequency that can be set depends on the filter sampling time. |  |  |  |  |  |  |  |
| p31586 | VIBSUP filter damping | 0 | 0.99 | 0.03 | - | Float | IM | T |
|  | Description: Sets the value for the damping of the natural mechanical vibration to be filtered. Typically, the damping value is about 0.03 , and can be optimized by performing the appropriate positioning tests. |  |  |  |  |  |  |  |

## Read-only parameters

| Par. No. | Name | Unit | Data type |
| :---: | :---: | :---: | :---: |
| r0020 | Speed setpoint smoothed | rpm | Float |
|  | Description: Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator). |  |  |
|  | Note: Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. The speed setpoint is available smoothed (r0020) and unsmoothed. |  |  |
| r0021 | Actual speed smoothed | rpm | Float |
|  | Description: Displays the smoothed actual value of the motor speed. |  |  |
|  | Note: Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. The speed actual value is available smoothed (r0021) and unsmoothed. |  |  |
| r0026 | DC link voltage smoothed | V | Float |
|  | Description: Displays the smoothed actual value of the DC link voltage. |  |  |
|  | Note: Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. The DC link voltage is available smoothed. |  |  |
| r0027 | Absolute actual current smoothed | Arms | Float |
|  | Description: Displays the smoothed absolute actual current value. |  |  |
|  | Notice: This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used. |  |  |
|  | Note: Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. The absolute current actual value is available smoothed (r0027) and unsmoothed. |  |  |
| r0029 | Current actual value field-generating smoothed | Arms | Float |
|  | Description: Displays the smoothed field-generating actual current. |  |  |
|  | Note: Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. The field-generating current actual value is available smoothed (r0029) and unsmoothed. |  |  |
| r0030 | Current actual value torque-generating smoothed | Arms | Float |
|  | Description: Displays the smoothed torque-generating actual current. |  |  |
|  | Note: Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. The torque-generating current actual value is available smoothed. |  |  |
| r0031 | Actual torque smoothed | Nm | Float |
|  | Description: Displays the smoothed torque actual value. |  |  |
|  | Note: Smoothing time constant $=100 \mathrm{~ms}$ <br> The signal is not suitable as a process quantity and may only be used as a display quantity. The torque actual value is available smoothed (r0031) and unsmoothed. |  |  |
| r0034 | Motor utilization thermal | \% | Float |
|  | Description: Displays the motor utilization from motor temperature model $1\left(\mathrm{l}^{2 t}\right)$ or 3. |  |  |
| r0037[0...19] | Power unit temperatures | ${ }^{\circ} \mathrm{C}$ | Float |
|  | Description: Displays the temperatures in the power unit. |  |  |


| Par. No. | Name | Unit | Data type |
| :---: | :---: | :---: | :---: |
|  | Index: <br> - [0]: Inverter maximum value <br> - [1]: Depletion layer maximum value <br> - [2]: Rectifier maximum value <br> - [3]: Air intake <br> - [4]: Interior of power unit <br> - [5]: Inverter 1 <br> - [6]: Inverter 2 <br> - [7]: Inverter 3 <br> - [8]: Inverter 4 <br> - [9]: Inverter 5 <br> - [10]: Inverter 6 <br> - [11]: Rectifier 1 <br> - [12]: Rectifier 2 <br> - [13]: Depletion layer 1 <br> - [14]: Depletion layer 2 <br> - [15]: Depletion layer 3 <br> - [16]: Depletion layer 4 <br> - [17]: Depletion layer 5 <br> - [18]: Depletion layer 6 <br> - [19]: Cooling unit liquid intake |  |  |
|  | Dependency: Refer to A01009 |  |  |
|  | Notice: Only for internal Siemens troubleshooting. |  |  |
|  | Note: The value of -200 indicates that there is no measuring signal. <br> - r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]). <br> - r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]). <br> - r0037[2]: Maximum value of the rectifier temperatures (r0037[11...12]). <br> The maximum value is the temperature of the hottest inverter, depletion layer, or rectifier. |  |  |
| $\begin{aligned} & \text { r0079[0... } 1 \\ & ] \end{aligned}$ | Torque setpoint total | Nm | Float |
|  | Description: Displays and connector output for the torque setpoint at the output of the speed controller (before clock cycle interpolation). |  |  |
|  | Index: <br> - [0]: Unsmoothed <br> - [1]: Smoothed |  |  |
| r0296 | DC link voltage undervoltage threshold | V | U16 |
|  | Description: Threshold to detect a DC link undervoltage. <br> If the DC link voltage falls below this threshold, the drive unit is tripped due to a DC link undervoltage condition. |  |  |
|  | Note: The value depends on the device type and the selected device rated voltage. |  |  |
| r0297 | DC link voltage overvoltage threshold | V | U16 |
|  | Description: If the DC link voltage exceeds the threshold specified here, the drive unit is tripped due to DC link overvoltage. |  |  |
|  | Dependency: Refer to F30002. |  |  |
| r0311 | Rated motor speed | rpm | Float |
|  | Description: Displays the rated motor speed (rating plate). |  |  |
| r0333 | Rated motor torque | Nm | Float |



| Par. No. | Name | Unit | Data type |
| :---: | :---: | :---: | :---: |
|  | Note: The buffer parameters are cyclically updated in the background. Fault buffer structure (general principle): r0945[0], r0949[0] $\rightarrow$ actual fault case, fault 1 <br> r0945[7], r0949[7] $\rightarrow$ actual fault case, fault 8 r0945[8], r0949[8] $\rightarrow$ 1st acknowledged fault case, fault 1 <br> r0945[15], r0949[15] $\rightarrow$ 1st acknowledged fault case, fault 8 r0945[56], r0949[56] $\rightarrow$ 7th acknowledged fault case, fault 1 <br> r0945[63], r0949[63] $\rightarrow$ 7th acknowledged fault case, fault 8 |  |  |
| $\begin{aligned} & \text { r0949[0... } 6 \\ & 3] \end{aligned}$ | Fault value |  | 132 |
|  | Description: Displays additional information about the fault that occurred (as integer number). |  |  |
|  | Dependency: Refer to r0945 |  |  |
|  | Note: The buffer parameters are cyclically updated in the background. <br> The structure of the fault buffer and the assignment of the indices is shown in r0945. |  |  |
| $\begin{aligned} & \mathrm{r} 0964[0 \ldots 6 \\ & ] \end{aligned}$ | Device identification |  | U16 |
|  | Description: Displays the device identification. |  |  |
|  | Index: <br> - [0]: Company (Siemens = 42) <br> - [1]: Device type <br> - [2]: Firmware version <br> - [3]: Firmware data (year) <br> - [4]: Firmware data (day/month) <br> - [5]: Number of drive objects <br> - [6]: Firmware patch/hot fix |  |  |
|  | Note: <br> Example: <br> r0964[0] $=42 \rightarrow$ SIEMENS <br> r0964[1] = Device type <br> r0964[2] $=403 \rightarrow$ First part of the firmware version V04.03 (for second part, refer to index 6) <br> r0964[3] = 2010 $\rightarrow$ Year 2010 <br> r0964[4] = 1705 $\rightarrow$ 17th of May <br> r0964[5] $=2 \rightarrow 2$ drive objects <br> r0964[6] $=200 \rightarrow$ Secnod part, firmware version (complete version: V04.03.02.00) |  |  |
| r0965 | PROFIdrive profile number | - | U16 |
|  | Description: Displays the PROFIdrive profile and profile version. <br> Constant value $=0329$ hex <br> Byte 1: Profile number $=03$ hex $=$ PROFIdrive profile <br> Byte 2: Profile version $=29$ hex $=$ Version 4.1 |  |  |
|  | Note: When the parameter is read via PROFIdrive, the Octet String 2 data type applies. |  |  |
| $\begin{aligned} & \mathrm{r0975}[0 \ldots 1 \\ & 0] \end{aligned}$ | Drive object identification | - | U16 |
|  | Description: Displays the identification of the drive object. |  |  |


| Par. No. | Name Unt | Unit | Data type |
| :---: | :---: | :---: | :---: |
|  | Index: <br> - [0]: Company (Siemens = 42) <br> - [1]: Drive object type <br> - [2]: Firmware version <br> - [3]: Firmware data (year) <br> - [4]: Firmware data (day/month) <br> - [5]: PROFIdrive drive object type class <br> - [6]: PROFIdrive drive object sub-type class 1 <br> - [7]: Drive object number <br> - [8]: Reserved <br> - [9]: Reserved <br> - [10]: Firmware patch/hot fix |  |  |
|  | Note: <br> Example: <br> r0975[0] $=42 \rightarrow$ SIEMENS <br> r0975[1] = SERVO drive object type <br> $\mathrm{r} 0975[2]=102 \rightarrow$ First part of the firmware version V01.02 (for second part, refer to index 10) <br> r0975[3] = $2003 \rightarrow$ Year 2003 <br> r0975[4] = 1401 $\rightarrow$ 14th of January <br> r0975[5] $=1 \rightarrow$ PROFIdrive drive object, type clase <br> r0975[6] $=9 \rightarrow$ PROFIdrive drive object sub-type class 1 <br> r0975[7] $=2 \rightarrow$ Drive object number $=2$ <br> r0975[8] = 0 (Reserved) <br> r0975[9] = 0 (Reserved) <br> r0975[10] $=600 \rightarrow$ Sencod part, firmware version (complete version: V01.02.06.00) |  |  |
| $\begin{aligned} & \text { r0979[0... } 3 \\ & 0] \end{aligned}$ | PROFIdrive encoder format | - | U32 |
|  | Description: Displays the actual position encoder used according to PROFIdrive. |  |  |
|  | Index: <br> - [0]: Header <br> - [1]: Type encoder 1 <br> - [2]: Resolution encoder 1 <br> - [3]: Shift factor G1_XIST1 <br> - [4]: Shift factor G1_XIST2 <br> - [5]: Distinguishable revolutions encoder 1 <br> - [6]...[30]: Reserved <br> Note: Information about the individual indices can be taken from the following literature: <br> PROFIdrive Profile Drive Technology |  |  |
|  |  |  |  |
| r2043.0... 2 | PROFIdrive: PZD state | - | U8 |
|  | Description: Displays the PROFIdrive PZD state. <br> Bit 0: Setpoint failure <br> - Value = 1: Yes <br> - Vaule = 0: No <br> Bit 1: Clock cycle synchronous operation active <br> - Vaule = 1: Yes <br> - Vaule = 0: No <br> Bit 2: Fieldbus operation <br> - Value = 1: Yes <br> - Vaule = 0: No |  |  |


| Par. No. | Name | Unit | Data type |
| :---: | :---: | :---: | :---: |
|  | Note: When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails. |  |  |
| r2050[0...1 <br> 9] | PROFIdrive: PZD receive word | - | 116 |
|  | Description: Displays the PZD (setpoints) with word format received from the fieldbus controller. |  |  |
|  | Dependency: Refer to r2060. |  |  |
|  | Index: <br> Index 0 to index 19 stand for PZD1 to PZD20 correspondingly. |  |  |
| $\begin{aligned} & \text { r2053[0...2 } \\ & 7] \end{aligned}$ | PROFIdrive: Diagnostics PZD send word | - | U16 |
|  | Description: Displays the PZD (actual values) with word format send to the fieldbus controller. |  |  |
|  | Index: <br> Index 0 to index 27 stand for PZD1 to PZD28 correspondingly. |  |  |
|  | Bit field: <br> For each PZD, it has 16 bits from bit 0 to bit 15 . For the control words, if the bit value equals to 0 , the function of the bit is OFF; if the bit vaule equals to 1 , the function of the bit is ON. |  |  |
| $\text { r2060[0... } 1$ <br> 8] | PROFIdrive: PZD receive double word | - | 132 |
|  | Description: Displays the PZD (setpoints) with double word format received from the fieldbus controller. |  |  |
|  | Dependency: Refer to r2050. |  |  |
|  | Index: <br> Index [n] = PZD[n+1] + $\mathrm{n}+2$ <br> In the formula, $\mathrm{n}=0 . . .18$. |  |  |
|  | Notice: A maximum of 4 indices of the "trace" function can be used. |  |  |
| r2063[0...2 <br> 6] | PROFIdrive: Diagnostics PZD send double word | - | U32 |
|  | Description: Displays the PZD (actual values) with double word format send to the fieldbus controller. |  |  |
|  | Index: <br> Index [n] = PZD[n+1] + n + 2 <br> In the formula, $\mathrm{n}=0 \ldots 26$. |  |  |
|  | Bit field: <br> For each PZD, it has 32 bits from bit 0 to bit 31 . For the control words, if the bit value equals to 0 , the function of the bit is OFF; if the bit vaule equals to 1, the function of the bit is ON. |  |  |
|  | Notice: A maximum of 4 indices of the "trace" function can be used. |  |  |
| $\begin{aligned} & \text { r2090.0... } \\ & 5 \end{aligned}$ | PROFIdrive: PZD1 receive bit-serial | - | U16 |
|  | Description: Bit-serial description of PZD1 (normally control word 1) received from the PROFIdrive controller. If the value of the bit equals to 0 , it means the function of this bit is deactivated. If the value of the bit equals to 1, it means the function of this bit is activated. |  |  |
| r2091 | PROFIdrive: PZD2 receive bit-serial | - | U16 |
|  | Description: Binector output for bit-serial interconnection of PZD2 received from the PROFIdrive controller. |  |  |
| r2092 | PROFIdrive: PZD3 receive bit-serial | - | U16 |
|  | Description: Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller. |  |  |
| $\begin{aligned} & \text { r2093.0... } 1 \\ & 5 \end{aligned}$ | PROFIdrive: PZD4 receive bit-serial | - | U16 |
|  | Description: Bit-serial description of PZD4 (normally control word 2) received from the PROFIdrive controller. If the value of the bit equals to 0 , it means the function of this bit is deactivated. If the value of the bit equals to 1, it means the function of this bit is activated. |  |  |
| r2094 | PROFIdrive: MDI_MOD receive bit-serial for telegram 9 | - | U16 |
|  | Description: Binector output for bit-serial onward interconnection of a PZD word received from the PROFIdrive controller. |  |  |
| $\begin{aligned} & \text { r2122[0... } 6 \\ & 3] \end{aligned}$ | Alarm code | - | U16 |
|  | Description: Displays the number of faults that have occurred. |  |  |


| Par. No. | Name | Unit | Data type |
| :---: | :---: | :---: | :---: |
|  | Dependency: Refer to r2124 |  |  |
|  | Note: The buffer parameters are cyclically updated in the background. <br> Alarm buffer structure (general principle): <br> r2122[0], r2124[0] $\rightarrow$ alarm 1 (the oldest) <br> r2122[7], r2124[7] $\rightarrow$ alarm 8 (the latest) <br> When the alarm buffer is full, the alarms that have gone are entered into the alarm history: r2122[8], r2124[8] $\rightarrow$ alarm 1 (the latest) <br> r2122[63], r2124[63] $\rightarrow$ alarm 1 (the oldest) |  |  |
| $\begin{aligned} & \text { r2124[0... } 6 \\ & 3] \end{aligned}$ | Alarm value |  | 132 |
|  | Description: Displays additional information about the active alarm (as integer number). |  |  |
|  | Dependency: Refer to r2122 |  |  |
|  | Note: The buffer parameters are cyclically updated in the background. <br> The structure of the alarm buffer and the assignment of the indices is shown in r2122. |  |  |
| $\begin{aligned} & \mathrm{r} 2521[0 \ldots 3 \\ & ] \end{aligned}$ | LR position actual value | LU | 132 |
|  | Description: Display and connector output for the actual position actual value determined by the position actual value preprocessing. |  |  |
|  | Index: <br> - [0]: Cl-loop position control <br> - [1]: Encoder 1 <br> - [2]: Encoder 2 <br> - [3]: Reserved |  |  |
| r2556 | LR position setpoint after setpoint smoothing | LU | 132 |
|  | Description: Display and connector output for the position setpoint after setpoint smoothing. |  |  |
| r2563 | LR following error dynamic model | LU | 132 |
|  | Description: Display and connector output for the dynamic following error. <br> This value is the deviation, corrected by the velocity-dependent component, between the position setpoint and the position actual value. |  |  |
| r2665 | EPOS position setpoint | LU | 132 |
|  | Description: Displays the actual absolute position setpoint. |  |  |
| r8909 | PROFIdrive: Device ID | - | U16 |
|  | Description: Displays the PROFINET device ID. <br> Every SINAMICS device type has its own PROFINET device ID and its own PROFINET GSD. |  |  |
| $\begin{aligned} & \text { r8930[0... } 2 \\ & 39] \end{aligned}$ | PROFIdrive: Active name of station | - | U8 |
|  | Description: Displays the active station name for the onboard PROFINET interface on the Control Unit. |  |  |
| $\begin{aligned} & \text { r8931[0... } 3 \\ & \text { ] } \\ & \hline \end{aligned}$ | PROFIdrive: Active IP address of station | - | U8 |
|  | Description: Displays the active IP address for the onboard PROFINET interface on the Control Unit. |  |  |
| $\begin{aligned} & \text { r8932[0... } 3 \\ & ] \end{aligned}$ | PROFIdrive: Active default gateway of station | - | U8 |
|  | Description: Displays the active default gateway for the onboard PROFINET interface on the Control Unit. |  |  |
| $\begin{aligned} & \text { r8933[0... } 3 \\ & \text { ] } \\ & \hline \end{aligned}$ | PROFIdrive: Active subnet mask of station | - | U8 |
|  | Description: Displays the active subnet mask for the onboard PROFINET interface on the Control Unit. |  |  |
| r8935 | PROFIdrive: MAC address of station | - | U8 |
|  | Description: Displays the MAC address for the onboard PROFINET interface on the Control Unit. |  |  |
| r8939 | PROFIdrive: Device access point (DAP) ID | - | U32 |
|  | Description: Displays the PROFINET device access point ID for the onboard PROFINET interface. The combination of device ID (r8909) and DAP ID uniquely identifies a PROFINET access point. |  |  |


| Par. No. | Name | Unit | Data type |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { r29018[0... } \\ & \text { 1] } \end{aligned}$ | OA version | - | Float |
|  | Description: Displays the OA version. |  |  |
|  | Index: <br> - [0]: Firmware version <br> - [1]: Build increment number |  |  |
| r29400 | Internal control signal status indicating | - | U32 |
|  | Description: Control signal status identifiers <br> The bits of the parameter are reseved except the following ones: <br> - Bit 1: RESET <br> - Bit 2: CWL <br> - Bit 3: CCWL <br> - Bit 10: TLIM <br> - Bit 19: SLIM <br> - Bit 23: REF <br> - Bit 28: EMGS |  |  |
| r29942 | DO signals status indicating | - | U32 |
|  | Description: Indicates the status of DO signals. <br> - Bit 0: RDY <br> - Bit 1: FAULT <br> - Bit 2: Reserved <br> - Bit 3: ZSP <br> - Bit 4: Reserved <br> - Bit 5: TLR <br> - Bit 6: Reserved <br> - Bit 7: MBR <br> - Bit 8: OLL <br> - Bit 9: Reserved <br> - Bit 10: Reserved <br> - Bit 11: Reserved <br> - Bit 12: Reserved <br> - Bit 13: RDY_ON |  |  |

## 8 Diagnostics

### 8.1 Overview

## General information about faults and alarms

The errors and states detected by the individual components of the drive system are indicated by messages.
The messages are categorized into faults and alarms.

## Properties of faults and alarms

- Faults
- Are identified by Fxxxxx.
- Can lead to a fault reaction.
- Must be acknowledged once the cause has been remedied.
- Status via control unit and LED RDY.
- Status via PROFINET status word ZSW1.3.
- Entry in the fault buffer.
- Alarms
- Are identified by Axxxxx.
- Have no further effect on the drive.
- The alarms are automatically reset once the cause has been remedied. No acknowledgement is required.
- Status via Control Unit and LED RDY.
- Status via PROFINET status word ZSW1.7.
- Entry in the alarm buffer.
- General properties of faults and alarms
- Triggering on selected messages possible.
- Contain the component number for identifying the affected SINAMICS component.
- Contain diagnostic information on the relevant message.


## Differences between faults and alarms

The differences between faults and alarms are shown as follows:

| Type | BOP display (example) |  | Status indicator |  | Reaction | Acknowledgement |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | RDY | COM |  |  |
| Fault | $F \quad 7985$ | Single fault | Slow flashing in red | - | - NONE: no reaction <br> - OFF1: servo motor ramps down <br> - OFF2: servo motor coasts down <br> - OFF3: servo motor stops quickly (emergency stop) <br> - ENOCDER: Encoder fault causes OFF2. | - POWER ON: re-power on the servo drive to clear a fault after eliminating its cause. <br> - IMMEDIATELY: the fault disappears immediately after eliminating its cause. <br> - PULSE INHIBIT: The fault can only be acknowledged with a pulse inhibit. The same options are available for acknowledging as described under acknowledgment with IMMEDIATELY. |
|  | F. 7985 | The first fault in the case of multiple faults |  |  |  |  |
|  | $F \quad 7985$ | Non-first fault in the case of multiple faults |  |  |  |  |
| Alarm | 930 015 | Single alarm | Slow flashing in red | - | - NONE: no reaction | Self-acknowledgement |
|  | 9.30星i6. | The first alarm in the case of multiple alarms |  |  |  |  |
|  | 930昗i5. | Non-first alarm in the case of multiple alarms |  |  |  |  |

## NOTICE

Faults have higher display priority than alarms
In the case that both faults and alarms occur, only faults are displayed until they have been acknowledged.

## BOP operations for faults and alarms

To view faults or alarms, proceed as follows:

- Faults

- Alarms


To exit from fault or alarm display, proceed as follows:

- Faults

No button operation for 5 seconds


- Alarms


To acknowledge faults, proceed as follows:


## Note

- If you do not eliminate the cause(s) of the fault, it can appear again after no button operation for five seconds. Make sure that you have eliminated the cause(s) of the fault.
- You can acknowledge faults using RESET signal. For details of the signal, refer to SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions.

Two LED status indicators (RDY and COM) are available to indicate drive status. Both LEDs are tricolor (green/red/yellow).


You can find detailed information about the status indications in the table below:

| Status indicator | Color | Status | Description |
| :---: | :---: | :---: | :---: |
| RDY | - | Off | 24 V control board power supply is missing |
|  | Green | Continuously lit | The drive is in "servo on" state |
|  | Red | Continuously lit | The drive is in "servo off" state or in the startup state |
|  |  | Flash at 1 Hz | Alarms or faults occurs |
|  | Green and yellow | Flash alternatively at 2 Hz | Drive identification |
| COM | Green | Continuously lit | PROFINET communication is working with IRT |
|  |  | Flash at 0.5 Hz | PROFINET communication is working with RT |
|  |  | Flash at 2 Hz | Micro SD card/SD card operating (read or write) |
|  | Red | Continuously lit | Communication error (always put the PROFINET communication error as the first consideration) |

### 8.2 List of faults and alarms

This section lists only common faults and alarms. To view the detailed information of all faults and alarms, call the online help for an active fault/alarm in the SINAMICS V-ASSISTANT engineering tool.

Fault list

| Fault | Description | Fault | Description |
| :--- | :--- | :--- | :--- |
| F1000 | Internal software error | F7493 | LR: Overflow of the value range for position <br> actual value |
| F1001 | Floating Point exception | F7575 | Drive: Motor encoder not ready |
| F1002 | Internal software error | F7599 | Encoder 1: Adjustment not possible |


| Fault | Description | Fault | Description |
| :---: | :---: | :---: | :---: |
| F1003 | Acknowledgment delay when accessing the memory | F7800 | Drive: No power unit present |
| F1015 | Internal software error | F7801 | Motor overcurrent |
| F1018 | Booting has been interrupted several times | F7802 | Infeed or power unit not ready |
| F1030 | Sign-of-life failure for master control | F7815 | Power unit has been changed |
| F1611 | SI CU: Defect detected | F7900 | Motor blocked/speed controller at its limit |
| F1910 | Fieldbus: Setpoint timeout | F7901 | Motor overspeed |
| F1911 | PROFIdrive: Clock cycle synchronous operation clock cycle failure | F7995 | Motor identification failure |
| F1912 | PROFIdrive: Clock cycle synchronous operation sign-of-life failture | F8501 | PROFIdrive: Setpoint timeout |
| F7011 | Motor overtemperature | F30001 | Power unit: Overcurrent |
| F7085 | Open-loop/closed-loop control parameters changed | F30002 | DC link voltage, overvoltage |
| F7090 | Drive: Upper torque limit less than the lower torque limit | F30003 | DC link voltage, undervoltage |
| F7093 | Test signal error | F30004 | Drive heat sink overtemperature |
| F7220 | Drive: Master control by the PLC missing | F30005 | Power unit: Overload $\mathrm{I}^{2} \mathrm{t}$ |
| F7403 | Lower DC link voltage threshold reached | F30005 | Power unit: Overload $\mathrm{I}^{2} \mathrm{t}$ |
| F7404 | Upper DC link voltage threshold reached | F30011 | Line phase failure in main circuit |
| F7410 | Current controller output limited | F30015 | Phase failure motor cable |
| F7412 | Commutation angle incorrect (motor model) | F30021 | Ground fault |
| F7442 | LR: Multiturn does not match the modulo range | F30027 | Precharging DC link time monitoring |
| F7443 | Reference point coordinate not in the permission range | F30036 | Internal overtemperature |
| F7450 | Standstill monitoring has responded | F30050 | 24 V supply overvoltage |
| F7451 | Position monitoring has responded | F31100 | Zero mark distance error |
| F7452 | Following error too high | F31101 | Zero mark failed |
| F7453 | Position actual value preprocessing error | F31110 | Serial communications error |
| F7458 | EPOS: Reference cam not found | F31111 | Encoder 1: Absolute encoder internal error |
| F7459 | Zero mark not detected | F31112 | Error bit set in the serial protocol |
| F7460 | EPOS: End of reference cam not found | F31117 | Inversion error signals A/B/R |
| F7464 | EPOS: Traversing block is inconsistent | F31130 | Zero mark and position error from the coarse synchronization |
| F7475 | EPOS: Target position < start of traversing range | F31150 | Initialization error |
| F7476 | EPOS: Target position > end of the traversing range | F52903 | Fault inconsistence between fault status and fault buffer |
| F7481 | EPOS: Axis position < software limit switch minus | F52904 | Control mode change |
| F7482 | EPOS: Axis position > software limit switch plus | F52980 | Absolute encoder motor changed |
| F7484 | EPOS: Fixed stop outside the monitoring window | F52981 | Absolute encoder motor mismatched |
| F7485 | EPOS: Fixed stop not reached | F52983 | No encoder detected |
| F7488 | EPOS: Relative positioning not possible | F52984 | Incremental encoder motor not configured |
| F7490 | Enable signal withdrawn while traversing | F52985 | Absolute encoder motor wrong |


| Fault | Description | Fault | Description |
| :--- | :--- | :--- | :--- |
| F7491 | STOP cam minus reached | F52987 | Absolute encoder replaced |
| F7492 | STOP cam plus reached |  |  |

Alarm list

| Alarm | Description | Alarm | Description |
| :---: | :---: | :---: | :---: |
| A1009 | Control module overtemperature | A7477 | EPOS: Target position < software limit switch minus |
| A1019 | Writing to the removable data medium unsuccessful | A7478 | EPOS: Target position > software limit switch plus |
| A1032 | All parameters must be saved | A7479 | EPOS: Software limit switch minus reached |
| A1045 | Configuring data invalid | A7480 | EPOS: Software limit switch plus reached |
| A1902 | PROFIdrive: Clock cycle synchronous operation parameterization not permissible | A7483 | EPOS: Travel to fixed stop clamping torque not reached |
| A1920 | Drive Bus: Receive setpoints after To | A7486 | EPOS: Intermediate stop missing |
| A1932 | Drive Bus clock cycle synchronization missing for DSC | A7487 | EPOS: Reject traversing task missing |
| A1940 | PROFIdrive: Clock cycle synchronism not reached | A7496 | EPOS: Enable not possible |
| A1944 | PROFIdrive: Sign-of-life synchronism not reached | A7530 | Drive: Drive Data Set DDS not present |
| A5000 | Drive heat sink overtemperature | A7565 | Drive: Encoder error in PROFIdrive encoder interface 1 |
| A7012 | Motor temperature model $1 / 3$ overtemperature | A7576 | Encoderless operation due to a fault active |
| A7441 | LR: Save the position offset of the absolute encoder adjustment | A7582 | Position actual value preprocessing error |
| A7454 | LR: Position value preprocessing does not have a valid encoder | A7805 | Power unit overload $\mathrm{I}^{2} \mathrm{t}$ |
| A7455 | EPOS: Maximum velocity limited | A7965 | Save required |
| A7456 | EPOS: Setpoint velocity limited | A7971 | Angular commutation offset determination activated |
| A7457 | EPOS: Combination of input signals illegal | A7991 | Motor data identification activated |
| A7461 | EPOS: Reference point not set | A8511 | PROFIdrive: Receive configuration data invalid |
| A7463 | EPOS: External block change not requested in the traversing block | A8565 | PROFIdrive: Consistency error affecting adjustable parameters |
| A7468 | EPOS: Traversing block jump destination does not exist | A30016 | Load supply switched off |
| A7469 | EPOS: Traversing block < target position < software limit switch minus | A30031 | Hardware current limiting in phase U |
| A7470 | EPOS: Traversing block> target position > software limit switch plus | A31411 | Absolute encoder signals internal alarms |
| A7471 | EPOS: Traversing block target position outside the modulo range | A31412 | Error bit set in the serial protocol |
| A7472 | EPOS: Traversing block ABS_POS/ABS_NEG not possible | A52900 | Failure during data copying |
| A7473 | EPOS: Beginning of traversing range reached | A52901 | Braking resistor reaches alarm threshold |
| A7474 | EPOS: End of traversing range reached | A52902 | Emergency missing |


[^0]:    1) The values here are calculated at rated load.
[^1]:    1) This lifetime is only for reference. When a motor keeps running at rated speed under rated load, replace its bearing after 20,000 to 30,000 hours of service time. Even if the time is not reached, the bearing must be replaced when unusual noise, vibration, or faults are found.
[^2]:    Incremental encoder TTL 2500 ppr

[^3]:    Getting Started

