
 

 
 

Programming style 

guide for JavaScript in 

SIMATIC WinCC Unified 

 
SIMATIC WinCC Unified V16 
SIMATIC HMI Unified Comfort Panels 
 

https://support.industry.siemens.com/cs/ww/en/view/109758536 

 
 

Siemens 

Industry 

Online 

Support 

https://support.industry.siemens.com/cs/ww/en/view/109758536


Legal information 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  2 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

Legal information 
Use of application examples 

Application examples illustrate the solution of automation tasks through an interaction of several 
components in the form of text, graphics and/or software modules. The application examples are 
a free service by Siemens AG and/or a subsidiary of Siemens AG ("Siemens"). They are 
non-binding and make no claim to completeness or functionality regarding configuration and 
equipment. The application examples merely offer help with typical tasks; they do not constitute 
customer-specific solutions. You yourself are responsible for the proper and safe operation of the 
products in accordance with applicable regulations and must also check the function of the 
respective application example and customize it for your system. 
Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the 
application examples used by technically trained personnel. Any change to the application 
examples is your responsibility. Sharing the application examples with third parties or copying the 
application examples or excerpts thereof is permitted only in combination with your own products. 
The application examples are not required to undergo the customary tests and quality inspections 
of a chargeable product; they may have functional and performance defects as well as errors. It is 
your responsibility to use them in such a manner that any malfunctions that may occur do not 
result in property damage or injury to persons. 
 

Disclaimer of liability 
Siemens shall not assume any liability, for any legal reason whatsoever, including, without 
limitation, liability for the usability, availability, completeness and freedom from defects of the 
application examples as well as for related information, configuration and performance data and 
any damage caused thereby. This shall not apply in cases of mandatory liability, for example 
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of 
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent 
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for 
damages arising from a breach of material contractual obligations shall however be limited to the 
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross 
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions 
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens 
against existing or future claims of third parties in this connection except where Siemens is 
mandatorily liable. 
By using the application examples you acknowledge that Siemens cannot be held liable for any 
damage beyond the liability provisions described. 
 

Other information 
Siemens reserves the right to make changes to the application examples at any time without 
notice. In case of discrepancies between the suggestions in the application examples and other 
Siemens publications such as catalogs, the content of the other documentation shall have 
precedence.  
The Siemens terms of use (https://support.industry.siemens.com) shall also apply.  
 

Security information 
Siemens provides products and solutions with Industrial Security functions that support the secure 
operation of plants, systems, machines and networks. 
In order to protect plants, systems, machines and networks against cyber threats, it is necessary 
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. 
Siemens’ products and solutions constitute one element of such a concept. 
Customers are responsible for preventing unauthorized access to their plants, systems, machines 
and networks. Such systems, machines and components should only be connected to an 
enterprise network or the Internet if and to the extent such a connection is necessary and only 
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.  
For additional information on industrial security measures that may be implemented, please visit 
https://www.siemens.com/industrialsecurity. 
Siemens’ products and solutions undergo continuous development to make them more secure. 
Siemens strongly recommends that product updates are applied as soon as they are available 
and that the latest product versions are used. Use of product versions that are no longer 
supported, and failure to apply the latest updates may increase customer’s exposure to cyber 
threats. 
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed 
at: https://www.siemens.com/industrialsecurity. 

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity


Table of contents 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  3 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

Table of contents 
Legal information ......................................................................................................... 2 

1 Introduction ........................................................................................................ 6 

1.1 Objectives ............................................................................................. 6 
1.2 Advantages of a uniform programming style........................................ 7 
1.3 Applies to .............................................................................................. 7 
1.4 Delimitation ........................................................................................... 7 
1.5 Deviations from the rules, other specifications..................................... 7 

2 Definition of terms ............................................................................................. 8 

2.1 Rules/recommendations....................................................................... 8 
2.2 Numbering of rules ............................................................................... 8 
2.3 Terms (block, function and parameter) ................................................ 9 

3 Settings in TIA Portal ...................................................................................... 10 

ES001 rule: User interface language "English" .................................. 10 
ES002 rule: "International" mnemonics .............................................. 10 

4 General rules .................................................................................................... 11 

GR001 rule: Curly brackets for multi-line instructions ........................ 11 
GR002 rule: Use valid regular expressions ........................................ 11 
GR003 rule: Use more typical equal-to operators .............................. 11 
GR004 recommendation: Avoid assignment operators with multiple 

meanings in conditional instructions ................................... 11 
GR005 recommendation: Avoid empty instructions ........................... 11 
GR006 recommendation: Use single quotes ..................................... 11 
GR007 recommendation: Avoid commas with an expected expression12 

5 Stylistic rules ................................................................................................... 13 

SR001 rule: Two spaces for code structuring .................................... 13 
SR002 rule: Maximum of two empty lines in the code ....................... 13 
SR003 rule: Spaces after every sentence punctuation mark ............. 13 
SR004 rule: End code line with semicolon (";") .................................. 13 
SR005 rule: Surround key words with spaces ................................... 14 
SR006 recommendation: Space before every instruction block ........ 14 
SR007 recommendation: Space between operands ......................... 14 
SR008 recommendation: Avoid comma at line start .......................... 15 
SR009 recommendation: No spaces at line end ................................ 15 
SR010 recommendation: No empty lines at block starts and classes 15 
SR011 recommendation: Avoid space between function and identifier15 
SR012 recommendation: Space before function brackets ................. 16 
SR013 recommendation: Begin comments with space ..................... 16 
SR014 recommendation: Use normal tabs and spaces ..................... 16 
SR015 recommendation: Limit strings to one line ............................. 16 

6 Script variables, arrays and structures ......................................................... 17 

6.1 General rules for script variables ....................................................... 17 
ST001 rule: Use "camelCase" notation .............................................. 17 
ST002 rule: Unique variable naming .................................................. 17 
ST003 rule: Use dot notation ............................................................. 17 
ST004 rule: Do not use key words for functions or variables ............. 17 
ST005 rule: Do not create any new primitive wrappers ..................... 17 
ST006 recommendation: Prohibit octal escape sequence in string 

literals .................................................................................. 18 
ST007 recommendation: Avoid unnecessary Boolean operations .... 18 



Table of contents 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  4 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

6.2 Declaring and using variables ............................................................ 19 
ST008 rule: Declare variables (block validity ranges) ........................ 19 
ST009 rule: Declare variables at the start of a code block ................ 19 
ST010 rule: Use "var" declared script variables in defined code block19 
ST011 rule: One line per variable declaration .................................... 20 
ST012 recommendation: Avoid unnecessary variable declarations .. 20 
ST013 recommendation: Avoid "var" declaration in sub-

functions/instructions .......................................................... 20 

6.3 Comparing variables .......................................................................... 21 
ST014 rule: Do not compare a variable with itself ............................. 21 
ST015 rule: Checking a number for whether it is not a number ........ 21 
ST016 rule: Specify output format (radix argument) with parseInt() 

function ............................................................................... 21 

6.4 Entering numbers ............................................................................... 22 
ST017 rule: Fully specify floating point numbers ............................... 22 
ST018 rule: Do not begin numbers with "0" ....................................... 22 

6.5 Arrays and structures ......................................................................... 23 
ST019 rule: Commas between structure and array elements............ 23 
ST020 recommendation: Avoid empty array elements ...................... 23 

7 Functions and objects ..................................................................................... 24 

7.1 Functions ............................................................................................ 24 
FO001 rule: Do not redefine functions ............................................... 24 
FO002 rule: Define return value ......................................................... 24 
FO003 rule: Do not overwrite call parameters ................................... 24 
FO004 rule: Function call with declaration in brackets ...................... 24 
FO005 rule: Do not write instructions to a string ................................ 25 
FO006 rule: Create function without "new" ........................................ 25 
FO007 rule: Do not use global object properties as function ............. 25 
FO008 recommendation: Avoid single-line code blocks .................... 25 
FO009 recommendation: Avoid "eval()" function ............................... 25 
FO010 recommendation: Avoid unnecessary function binding ......... 25 

7.2 Objects ............................................................................................... 26 
FO011 rule: Save new objects in variables ........................................ 26 
FO012 rule: Begin object names with capital letters .......................... 26 
FO013 rule: No duplicate property declarations for objects ............... 26 
FO014 rule: Do not modify native objects .......................................... 26 
FO015 recommendation: Avoid object constructor when creating 

object................................................................................... 27 

8 Conditional instructions, branches and loops ............................................. 28 

IL001 rule: "if": With "return", "else" is superfluous ............................ 28 
IL002 rule: Do not use constants alone in conditions ........................ 28 
IL003 rule: "for…in": First check properties before working with them28 
IL004 rule: Define "default" in "for"/"switch" instructions .................... 28 
IL005 rule: No double "case" instructions .......................................... 29 
IL006 rule: Every "case" has a "break" .............................................. 29 
IL007 recommendation: Avoid nested ternary operations ................. 29 

9 Expressions to avoid ....................................................................................... 30 

EA001 rule: Avoid "with" expression .................................................. 30 
EA002 rule: Avoid "arguments.caller" and "arguments.callee" 

expression ........................................................................... 30 
EA003 rule: Avoid "_proto_" property ................................................ 30 



Table of contents 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  5 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

10 Diagnostics and debugging ........................................................................... 31 

DD001 rule: Trace() function for diagnostics...................................... 31 

11 Appendix .......................................................................................................... 32 

11.1 Service and support ........................................................................... 32 
11.2 Links and literature ............................................................................. 33 
11.3 Change documentation ...................................................................... 33 

 



1 Introduction 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  6 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

1 Introduction 
When writing JavaScript code, the task of the programmer is to make the user 
program as clear and readable as possible.  

Each programmer uses his/her own strategy, for example in naming variables or 
functions, or in writing comments. 

The various approaches of programmers result in wildly different user programs, 
which frequently can only be interpreted by their own creators. 

Note The programming style guide for SIMATIC S7-1200/S7-1500 serves as a basis 
for this document.  

https://support.industry.siemens.com/cs/ww/en/view/109478084 

 

1.1 Objectives 

The rules and recommendations described here will help you create more 
consistent code which can be better maintained and reused.  

If multiple programmers are working on the same program, it is therefore 
recommended to define terminology for the whole project, and to adhere to a 
mutually agreed-upon programming style. In this way, errors can be recognized 
and/or prevented as early as possible. 

For the maintainability and clarity of the source code, it is first of all necessary to 
maintain a certain surface form. Visual effects do not significantly improve the 
quality of the software. It is much more important, for example, to define rules that 
support the developer in the following way: 

• Avoid typos and careless mistakes which are then misinterpreted by the 
compiler. 

Objective: The compiler should detect as many errors as possible. 

• Support the programmer when diagnosing program errors, e.g. inadvertent 
reuse of a temporary variable beyond one cycle. 

Objective: The identifier quickly indicates problems. 

• Standardization of default applications and default libraries  

Objective: It should be easy to learn, and the reusability of program code 
should be increased. 

• Simple maintenance; simplification of development 

Objective: Changes to program code at individual points of use, scripts on 
screen objects and in global modules should have minimal impact on the 
overall configuration. It should be possible for different programmers to make 
changes to program code in individual modules. 

Note Ensure that the rules and recommendations described in this document are self-
consistent and build on each other. 

 

  

https://support.industry.siemens.com/cs/ww/en/view/109478084


1 Introduction 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  7 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

1.2 Advantages of a uniform programming style 

• Integrated, uniform style 

• Easy to read and understand 

• Simple maintenance and reusability 

• Simple and fast error identification and correction 

• Efficient collaboration between multiple programmers 

 

1.3 Applies to 

This document applies to projects and libraries in TIA Portal in connection with the 
JavaScript scripting environment as per the ECMAScript Language Specification.  

Google V8 is used as a script engine, which largely implements ECMAScript 2015, 
6th Edition from June 2015 (ECMAScript 6). 

ESLint rules 

This document uses ESLint rules as a basis. The rules listed here sometimes differ 
slightly from the ESLint rules, as the primary goal is to achieve consistency in the 
TIA Portal configuration (interplay with programming style guide for SIMATIC S7-
1200/S7-1500).  

 

1.4 Delimitation  

This document does not provide a description of:  

• HMI configuration in TIA Portal  

• Commissioning HMI projects  

Sufficient experience in these topics is required in order to sensibly interpret and 
apply the rules and recommendations. This document is not a replacement for 
expertise in software development, but rather serves as a reference.  

 

1.5 Deviations from the rules, other specifications  

For customer projects, the required standards as well as customer- or industry-
specific standards on the customer's side (or the technology used) must be 
observed and take priority over this style guide or parts thereof.  

When combining customer specifications with this style guide, attention must be 
paid to the integrity of said combination and of the project as a whole. Deviating 
from the rules must be justified at the corresponding point in the user program, and 
must be documented. The rules defined by the customer must be documented in a 
suitable form. 

 



2 Definition of terms 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  8 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

2 Definition of terms  

2.1 Rules/recommendations  

The stipulations in this document are divided into recommendations and rules:  

• Rules are obligatory and must be observed. They are imperative for reusable, 
well-performing code. Rules may also be broken in exceptions. But this must 
be documented appropriately.  

• Recommendations are specifications that firstly serve for the uniformity of the 
code, and secondly which are intended as support and information. 
Recommendations should be observed in principle, but there can certainly be 
cases in which a recommendation is not followed. Reasons for doing this may 
be higher efficiency or better readability. 

 

2.2 Numbering of rules  

For a unique assignment of rules between various categories, the rules and 
recommendations are labeled with a prefix according to their category (two 
characters), and then numbered (3 numbers).  

If a rule is missing, the number is not reassigned. If you define additional rules, you 
can use numbering between 901 and 999. 

Table 2-1 

Prefix Category 

ES Engineering system (Programming environment) 

GR General rules 

SR Stylistic rules 

ST Script variables 

FO Functions and objects 

IL Instruction and loops 

EA Expressions to avoid 

DD Diagnostics and debugging 

 

  



2 Definition of terms 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  9 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

2.3 Terms (block, function and parameter)  

Some of the rules in this programming style guide make reference to functions, 
function parameters, and blocks.  

The following descriptions provide a brief explanation of these terms for 
clarification. This clarification is necessary for a shared understanding of the terms 
in use moving forward. 

Function and parameter   

When you create a function in JavaScript or use that function, then you can also 
pass values to the function. You can do this with the help of "parameters". 
"Parameters" are often also called "arguments", but the meaning is the identical. 

const tagValue1, tagValue2;

function doSomething(parameter1, parameter2) {

// …function code

}

// …code

doSomething(tagValue1, tagValue2);

 

Block  

A block, or an instruction block, is used to group one or more instructions. A block 
is identified by the curly brackets that contain it. 

The following example shows a block using the example of an If instruction. 

 

if (a > 2) { 

  tagValue = a * 6; 

  HMIRuntime.Trace(a);  

} 

 

 

 

 



3 Settings in TIA Portal 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  10 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

3 Settings in TIA Portal 
This chapter describes the rules and recommendations for basic settings in the TIA 
Portal programming environment. 

Note The following settings have no direct impact on the JavaScript script editor. 
However, they are recommended for the sake of consistency with other style 
guides. 

ES001 rule: User interface language "English"  

The user interface language in TIA Portal is set to "English". This means that all 
newly created projects will be automatically created in the editing and reference 
language, and the system constants will be created in "English". 

Reason: The user interface language must be set consistently so that the system 
constants in all projects are in the same language. 

Figure 3-1 

 

 

ES002 rule: "International" mnemonics 

The mnemonics (language setting for programming language) is set to 
"International". 

Reason: All system languages and system parameters are thus clear and 
language-independent. This ensures smooth collaboration in teams. 

Figure 3-2 

 



4 General rules 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  11 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

4 General rules 

GR001 rule: Curly brackets for multi-line instructions   

If you have instructions (e.g. if, while, function) that extend over multiple lines, 
always use curly brackets. 

Additional information: http://eslint.org/docs/rules/curly 

 

GR002 rule: Use valid regular expressions 

Only use valid regular expressions in your JavaScript code. You can use the 
following website for this:  https://regexr.com/  

Additional information: http://eslint.org/docs/rules/no-invalid-regexp 

 

GR003 rule: Use more typical equal-to operators 

When comparing values, always use the more typical equality operators (e.g. 
"===", "!==") rather than the counterparts "==" and "!=".  

Additional information: http://eslint.org/docs/rules/eqeqeq 

You should use the more typical equality operators especially if you wish to 
compare an instruction with "null".  

Additional information: http://eslint.org/docs/rules/no-eq-null 

 

GR004 recommendation: Avoid assignment operators with multiple meanings in 

conditional instructions 

In conditional instructions (e.g. if, for, while instruction), avoid assignment operators 
with multiple meanings (=). Instead, use more typical equality operators. 

Additional information: http://eslint.org/docs/rules/no-cond-assign 

 

// Allowed: 

if (x === 0) { 

  const b = 1; 

} 

 

// Disallowed: 

if (x = 0) { 

  const b = 1; 

} 

 

 

GR005 recommendation: Avoid empty instructions 

Avoid instructions and functions with no content, as they can cause confusion while 
reading. 

Additional information: http://eslint.org/docs/rules/no-empty 

 

GR006 recommendation: Use single quotes 

JavaScript allows you to define strings in one of three ways:  

• Double quotes ("),  

http://eslint.org/docs/rules/curly
https://regexr.com/
http://eslint.org/docs/rules/no-invalid-regexp
http://eslint.org/docs/rules/eqeqeq
http://eslint.org/docs/rules/no-eq-null
http://eslint.org/docs/rules/no-cond-assign
http://eslint.org/docs/rules/no-empty


4 General rules 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  12 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

• Single quotes (') and  

• Backticks (`) 

In WinCC Unified, it is recommended by default to use single quotes for strings. If 
you need additional quote marks in a string, use double quotes.  

Additional information: http://eslint.org/docs/rules/quotes 

 

// Allowed: 

const value = 'myValue'; 

const string = 'a string containing "double" quotes'; 

 

// Disallowed: 

const value = "myValue"; 

const string = "a string containing "double" quotes"; 

 

Note You can also use backticks (`) as so-called template strings. In this way, you can 
connect text and variable with each other in one expression. In this case, the 
variables are specified with Dollar signs and curly brackets "${Variable}". 

  // Allowed: 

  const value = 'myValue'; 

  const string = `The tag value is ${value}`; 

 

GR007 recommendation: Avoid commas with an expected expression  

Avoid commas if only one expression is expected.  

The comma operator encompasses multiple expressions, while only one is 
expected. It evaluates every operand from left to right and returns the value of the 
last operator. However, this often hides unwanted side-effects, and its use is often 
by mistake.  

Additional information:  http://eslint.org/docs/rules/no-sequences 

 

http://eslint.org/docs/rules/quotes
http://eslint.org/docs/rules/no-sequences


5 Stylistic rules 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  13 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

5 Stylistic rules 

SR001 rule: Two spaces for code structuring 

In order to better structure your JavaScript code, it is recommended to use two 
spaces to indent content in WinCC Unified. This helps the traceability and 
readability of the code. 

Additional information: http://eslint.org/docs/rules/indent 

 

// Allowed: 

if (x === 0) { 

∙∙const b = 1; 

} 

 

// Disallowed: 

if (x === 0) { 

const b = 1; 

} 

 

 

SR002 rule: Maximum of two empty lines in the code 

In order to structure your code, you can use empty lines, e.g. to logically and 
visually set off if instructions. It also improves the readability of the code. 

It is recommended to use a maximum of two empty spaces between blocks of 
code. 

Additional information: http://eslint.org/docs/rules/no-multiple-empty-lines 

 

SR003 rule: Spaces after every sentence punctuation mark  

The following punctuation marks are important elements when creating code in 
JavaScript: 

• Comma (",") 

• Colon (":") 

• Semicolon (";") 

If you use one of these punctuation marks in your code, no spaces should appear 
before it. A sentence punctuation mark should however have a space after it.
  

Additional information: 

• Comma (","):  http://eslint.org/docs/rules/comma-spacing 

• Colon (":"):   http://eslint.org/docs/rules/key-spacing 

• Semicolon (";"):  http://eslint.org/docs/rules/semi-spacing 

 

SR004 rule: End code line with semicolon (";") 

Every line of code in JavaScript must end with a semicolon, otherwise it will cause 
an error. 

Additional information: http://eslint.org/docs/rules/semi 

However, try not to use too many semicolons, as this can cause confusion. 

Additional information: http://eslint.org/docs/rules/no-extra-semi 

http://eslint.org/docs/rules/indent
http://eslint.org/docs/rules/no-multiple-empty-lines
http://eslint.org/docs/rules/comma-spacing
http://eslint.org/docs/rules/key-spacing
http://eslint.org/docs/rules/semi-spacing
http://eslint.org/docs/rules/semi
http://eslint.org/docs/rules/no-extra-semi


5 Stylistic rules 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  14 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

SR005 rule: Surround key words with spaces 

If you use key words (e.g. "if", "else", "switch") in your JavaScript, they should be 
surrounded by spaces (i.e. there should be a space before and after the key word). 

Additional information: http://eslint.org/docs/rules/keyword-spacing 

 

// Allowed: 

if (true) { 

  //... 

} else { 

  //... 

}  

 

// Disallowed: 

if (true) { 

  //... 

}else{ 

  //... 

} 

 

 

SR006 recommendation: Space before every instruction block 

If you start an instruction block, for instance after an if instruction, you should insert 
a space.  

Additional information: http://eslint.org/docs/rules/space-before-blocks 

 

// Allowed: 

if (true) { 

  //... 

}  

 

// Disallowed: 

if (true){ 

  //... 

} 

 

 

SR007 recommendation: Space between operands 

If you have a mathematical calculation in your code, then every operand and every 
operator should be followed by a space. 

Additional information: http://eslint.org/docs/rules/space-infix-ops 

 

// Allowed: 

a = b + c;  

 

// Disallowed: 

a=b+c; 

 

 

http://eslint.org/docs/rules/keyword-spacing
http://eslint.org/docs/rules/space-before-blocks
http://eslint.org/docs/rules/space-infix-ops


5 Stylistic rules 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  15 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

SR008 recommendation: Avoid comma at line start  

It is recommended to use commas (",") at the end of a line rather than at the line 
start. 

Additional information: http://eslint.org/docs/rules/comma-style 

 

// Allowed: 

const foo = 1, bar = 2;  

const value1 = 1, 

    value2 = 2; 

 

// Disallowed: 

const foo = 1 

, bar = 2; 

const value1 = 1 

  , value2 = 2; 

 

 

SR009 recommendation: No spaces at line end 

When you are writing and commenting your code, you should make sure not to end 
the line with a space.  

This is not an error in general, but can lead to misinterpretation. 

Additional information: http://eslint.org/docs/rules/no-trailing-spaces 

 

// Allowed: 

const foo = 1, bar = 2; //comment 

 

// Disallowed: 

const foo = 1, bar = 2; //comment... 

//... 

 

 

SR010 recommendation: No empty lines at block starts and classes   

Avoid an empty line at the start of a block or class.  

Additional information: http://eslint.org/docs/rules/padded-blocks 

 

SR011 recommendation: Avoid space between function and identifier  

Ensure that you do not place a space between the function and the identifier.  

Example 

 

// Allowed: 

myFunction();  

 

// Disallowed: 

myFunction ();  

 

Additional information: http://eslint.org/docs/rules/no-spaced-func 

http://eslint.org/docs/rules/comma-style
http://eslint.org/docs/rules/no-trailing-spaces
http://eslint.org/docs/rules/padded-blocks
http://eslint.org/docs/rules/no-spaced-func


5 Stylistic rules 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  16 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

SR012 recommendation: Space before function brackets  

Always leave a space between the function and the curly function brackets.  

Additional information:  http://eslint.org/docs/rules/space-before-function-paren 

 

// Allowed: 

myFunction(a) {};  

 

// Disallowed: 

myFunction(a){};  

 

 

SR013 recommendation: Begin comments with space  

When you comment a line of code, then insert a space before you begin the 
comment text.  

This rule does not apply to structuring lines ("//*********") for visually separating 
code lines from one another.  

Additional information: http://eslint.org/docs/rules/spaced-comment 

 

// Allowed: 

// This is an example comment 

/* This is an example comment */ 

//******************************* 

 

// Disallowed: 

//This is an example comment 

/*This is an example comment*/ 

 

 

SR014 recommendation: Use normal tabs and spaces 

Only use the Tab or Space key to insert spaces.  

Additional information: http://eslint.org/docs/rules/no-irregular-whitespace 

 

SR015 recommendation: Limit strings to one line 

Do not enter strings in your code that are longer than a line. If you nevertheless 
need multi-line strings, then you can implement this with a line break "\n".  

Additional information:  http://eslint.org/docs/rules/no-multi-str 

 

// Allowed: 

const x = "Line 1\n" + 

        "Line 2"; 

 

// Disallowed: 

const x = "Line 1 \   

        Line 2"; 

 

 

http://eslint.org/docs/rules/space-before-function-paren
http://eslint.org/docs/rules/spaced-comment
http://eslint.org/docs/rules/no-irregular-whitespace
http://eslint.org/docs/rules/no-multi-str


6 Script variables, arrays and structures 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  17 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

6 Script variables, arrays and structures 

6.1 General rules for script variables 

ST001 rule: Use "camelCase" notation 

Use the camelCase notation for writing variables. 

Additional information:  http://eslint.org/docs/rules/camelcase 

 

// Allowed: 

let machineState; 

let standardValue;  

 

// Disallowed: 

let machine_State; 

let StandardValue;  

 

 

ST002 rule: Unique variable naming 

When you define variables, ensure that they have unique names and are only used 
once.  

Additional information:  http://eslint.org/docs/rules/no-redeclare 

Within a function, variables should likewise be unique and not overlap with global 
variables. 

Additional information:  http://eslint.org/docs/rules/no-shadow 
 

ST003 rule: Use dot notation 

Use dot notation to access properties of objects and elements.  

Additional information:  http://eslint.org/docs/rules/dot-notation 

 

Screen.Items('Rectangle1').BackColor = 0xFF00FF00; 

 

 

ST004 rule: Do not use key words for functions or variables 

Do not use native key words or object names (e.g. "length", "top", "undefined", 
"NaN", "Infinity", "eval" or "arguments") as the name of a function or a variable. 
This can cause confusion and hinders traceability of the code. 

Additional information:  http://eslint.org/docs/rules/no-native-reassign 

http://eslint.org/docs/rules/no-shadow-restricted-names 
 

ST005 rule: Do not create any new primitive wrappers 

In JavaScript, there are three primitive data types which have wrapper objects: 

• String 

• Numbers 

• Boolean. 

http://eslint.org/docs/rules/camelcase
http://eslint.org/docs/rules/no-redeclare
http://eslint.org/docs/rules/no-shadow
http://eslint.org/docs/rules/dot-notation
http://eslint.org/docs/rules/no-native-reassign
http://eslint.org/docs/rules/no-shadow-restricted-names


6 Script variables, arrays and structures 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  18 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

Avoid creating your own manual wrapper instances, even if JavaScript allows it.
  

Additional information:  http://eslint.org/docs/rules/no-new-wrappers 
 

ST006 recommendation: Prohibit octal escape sequence in string literals 

Since JavaScript version ECMAScript 5 specification, octal escape sequences in 
string literals are obsolete and should no longer be used. Instead, Unicode escape 
sequences should be used. 

Additional information:  http://eslint.org/docs/rules/no-octal-escape 
 

ST007 recommendation: Avoid unnecessary Boolean operations 

With comparisons or assignments, avoid unnecessary Boolean operations, such as 
double negation. 

Additional information:  http://eslint.org/docs/rules/no-extra-boolean-cast 

  

http://eslint.org/docs/rules/no-new-wrappers
http://eslint.org/docs/rules/no-octal-escape
http://eslint.org/docs/rules/no-extra-boolean-cast


6 Script variables, arrays and structures 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  19 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

6.2 Declaring and using variables 

ST008 rule: Declare variables (block validity ranges) 

In order to use variables in your script, you first have to declare them.  

A basic distinction is made between the types of declaration: 

Table 6-1 

Declaration Explanation 

var Declares a variable, has no block validity range. 

let Declares a variable with validity in the current block. 

const Declares a constant with validity in the current block.  

An error will occur if an attempt is made to overwrite the variable. 
 

Note The "var" declaration is outdated and should be avoided for new JavaScript 
scripts. 

A rule of thumb for declaring variables:  

• By default, use the variable declaration "const". 

• If the value or object of the variable changes during the script, the declaration 
type "const" will be replaced by "let". 

 

var a = 5; 

let b = 50;  

const c = 500; 

 

if (a > 2) { 

  a = 6; 

  let b = 60;     //only in the block visible 

  HMIRuntime.Trace(a); //Trace output: 6 

  HMIRuntime.Trace(b); //Trace output: 60 

  HMIRuntime.Trace(c); //Trace output: 500 

} 

 

HMIRuntime.Trace(a);  //Trace output: 6 

HMIRuntime.Trace(b);  //Trace output: 50 

HMIRuntime.Trace(c);  //Trace output: 500 

 

 

ST009 rule: Declare variables at the start of a code block   

When writing code, make sure to declare the variables at the beginning of a block 
of code. 

Additional information:  http://eslint.org/docs/rules/vars-on-top  

 

ST010 rule: Use "var" declared script variables in defined code block 

Please avoid the "var" declaration type. If you nevertheless need "var", then always 
use the script variable that was declared with "var" inside the code block where you 
defined it, otherwise error messages may occur.  

Additional information: http://eslint.org/docs/rules/block-scoped-var 

http://eslint.org/docs/rules/vars-on-top
http://eslint.org/docs/rules/block-scoped-var


6 Script variables, arrays and structures 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  20 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

 

// Allowed: 

function doSomething() { 

  var result; 

 

  if (x > 10) { 

    result = true; 

  } else { 

    result = false; 

  } 

} 

 

// Disallowed: 

function doSomething() { 

  if (x > 10) { 

    var result = true; 

  } else { 

    var result = false; 

  } 

} 

 

 

ST011 rule: One line per variable declaration 

Use a separate line for every variable declaration. 

Additional information:  http://eslint.org/docs/rules/one-var 

 

ST012 recommendation: Avoid unnecessary variable declarations 

Only define as many variables as you need in your code. Too many defined 
variables easily give an impression of overcomplexity.  

Additional information:  http://eslint.org/docs/rules/no-unused-vars 

 

ST013 recommendation: Avoid "var" declaration in sub-functions/instructions  

Please avoid the "var" declaration type. If you nevertheless need "var", the always 
define variables and functions as "var" in the main part of a function and avoid 
defining them in nested sub-functions or instructions. 

Additional information:  http://eslint.org/docs/rules/no-inner-declarations 

 

 

 

 

 

 

 

http://eslint.org/docs/rules/one-var
http://eslint.org/docs/rules/no-unused-vars
http://eslint.org/docs/rules/no-inner-declarations


6 Script variables, arrays and structures 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  21 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

6.3 Comparing variables 

ST014 rule: Do not compare a variable with itself 

Never compare a variable with itself, as this will cause an error. An exception is 
checking for the function "isNaN()". 

Additional information:  http://eslint.org/docs/rules/no-self-compare 

 

ST015 rule: Checking a number for whether it is not a number 

If you are checking the value of a variable for whether it is not a number, then use 
the function "isNaN()" in place of the expression "NaN" (abbreviation for "Not a 
Number").  

Additional information:  http://eslint.org/docs/rules/use-isnan 

 

// Allowed: 

if (isNaN(x)) 

 

// Disallowed: 

if (x == NaN) 

 

 

ST016 rule: Specify output format (radix argument) with parseInt() function 

Besides the expression to be converted, the parseInt() function also has a second 
argument (the radix) for the output format of the expression to be converted. By 
default, the parseInt() function automatically detects whether this is an integer or a 
hexadecimal number (using the 0x prefix).  

However, in order to specify the arguments clearly, it is recommended to include 
the output format in the function.  

Additional information:  http://eslint.org/docs/rules/radix 

 

  

http://eslint.org/docs/rules/no-self-compare
http://eslint.org/docs/rules/use-isnan
http://eslint.org/docs/rules/radix


6 Script variables, arrays and structures 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  22 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

6.4 Entering numbers 

ST017 rule: Fully specify floating point numbers 

If you enter floating point numbers, always use the established number formats in 
order to obtain a clear representation as a decimal number. This prevents 
misinterpretations when reading the code.  

Additional information:  http://eslint.org/docs/rules/no-floating-decimal 

 

// Allowed: 

const x = -0.2; 

const y = 5.0; 

 

// Disallowed: 

const x = -.2; 

const y = 5.; 

 

 

ST018 rule: Do not begin numbers with "0" 

If you use numbers in your script code, then make sure to enter them without 
leading zeroes, otherwise they could be interpreted as octal numbers.  

Additional information: http://eslint.org/docs/rules/no-octal 

 

  

http://eslint.org/docs/rules/no-floating-decimal
http://eslint.org/docs/rules/no-octal


6 Script variables, arrays and structures 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  23 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

6.5 Arrays and structures 

ST019 rule: Commas between structure and array elements 

The enumeration of elements in an array is separated by commas. There must not 
be a comma after the final element.  

Additional information: http://eslint.org/docs/rules/comma-dangle 

 

ST020 recommendation: Avoid empty array elements 

When creating an array, make sure that you do not insert any empty array 
elements.  

Additional information:  http://eslint.org/docs/rules/no-sparse-arrays 

 

// Allowed: 

const colors = ['red','green','blue']; 

 

// Disallowed: 

const colors = ['red', ,'blue']; 

 

 

http://eslint.org/docs/rules/comma-dangle
http://eslint.org/docs/rules/no-sparse-arrays


7 Functions and objects 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  24 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

7 Functions and objects 

7.1 Functions 

FO001 rule: Do not redefine functions  

If you have declared functions, make sure not to redefine them in another place. 

Additional information:  http://eslint.org/docs/rules/no-func-assign 

 

// Disallowed: 

function multiply(x, y) { 

  return x * y; 

} 

multiply = 22; 

 

 

If, however, you assign an anonymous function to a variable, then you can 
overwrite the variable in another place.  

 

// Allowed: 

let multiply = function (x, y) { 

  return x * y; 

} 

multiply = 22; 

 

 

FO002 rule: Define return value  

In a function, define whether that function has a return value or not. If the function 
has a return value, then define what it is. 

Additional information:  http://eslint.org/docs/rules/consistent-return 

 

FO003 rule: Do not overwrite call parameters  

Make sure not to overwrite the call parameters of a function or within a function. 

Additional information:  http://eslint.org/docs/rules/no-ex-assign 
Additional information:  http://eslint.org/docs/rules/no-param-reassign 

 

FO004 rule: Function call with declaration in brackets  

If a declared function is to be invoked immediately, you must wrap it with brackets. 

Additional information:  http://eslint.org/docs/rules/wrap-iife 

 

 

 

 

http://eslint.org/docs/rules/no-func-assign
http://eslint.org/docs/rules/consistent-return
http://eslint.org/docs/rules/no-ex-assign
http://eslint.org/docs/rules/no-param-reassign
http://eslint.org/docs/rules/wrap-iife


7 Functions and objects 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  25 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

FO005 rule: Do not write instructions to a string  

Avoid assigning JavaScript instructions to a string, as this will cause an error. 

Additional information:  http://eslint.org/docs/rules/no-implied-eval 

 

FO006 rule: Create function without "new"   

When creating a function, ensure that you create it without "new".  

Additional information:  http://eslint.org/docs/rules/no-new-func 

 

FO007 rule: Do not use global object properties as function 

Do not use global object properties as a function (Math, JSON,...). 

Additional information:  http://eslint.org/docs/rules/no-obj-calls 

 

FO008 recommendation: Avoid single-line code blocks 

Avoid one-line code blocks in your script, as they are easy to miss and difficult to 
trace. 

Additional information:  http://eslint.org/docs/rules/no-lone-blocks 

 

// Allowed: 

function doSomething () { 

  test(); 

} 

 

// Disallowed: 

function doSomething () { 

  { 

    test(); 

  } 

} 

 

 

FO009 recommendation: Avoid "eval()" function 

The "eval()" function evaluates JavaScript code and represents it as a string. This 
function is potentially dangerous and often misused. Avoid this function and use 
alternatives as described in the link.  

Additional information:  http://eslint.org/docs/rules/no-eval 

 

FO010 recommendation: Avoid unnecessary function binding 

Avoid unnecessary use of he "bind()" function.  

Additional information:  http://eslint.org/docs/rules/no-extra-bind 

 

 

 

http://eslint.org/docs/rules/no-implied-eval
http://eslint.org/docs/rules/no-new-func
http://eslint.org/docs/rules/no-obj-calls
http://eslint.org/docs/rules/no-lone-blocks
http://eslint.org/docs/rules/no-eval
http://eslint.org/docs/rules/no-extra-bind


7 Functions and objects 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  26 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

7.2 Objects 

FO011 rule: Save new objects in variables 

When you create a new object, then it is recommended to save it in a script 
variable.  

Additional information:  http://eslint.org/docs/rules/no-new 

 

// Allowed: 

const myObject = new Object(); 

myObject(); 

 

// Disallowed: 

new object(); 

 

 

FO012 rule: Begin object names with capital letters 

The object name after the "new" operator starts with an uppercase letter. 

Additional information:  http://eslint.org/docs/rules/new-cap 

 

// Allowed: 

const myObject = new Object(); 

 

// Disallowed: 

const myObject = new object(); 

 

 

FO013 rule: No duplicate property declarations for objects 

Do not assign values to a variable multiple times, as this can cause unexpected 
behavior. 

Additional information: http://eslint.org/docs/rules/no-dupe-keys 

 

// Allowed: 

const testObject = { 

  value1 = 'red', 

  value2 = 'green' 

}; 

 

// Disallowed: 

const testObject = { 

  value = 'red', 

  value = 'green' 

}; 

 

 

FO014 rule: Do not modify native objects 

JavaScript allows objects to be extended, including native objects. This can cause 
the behavior of the objects to change, which in turn can lead to irritation if you use 
the "native" object in another code block.  

Therefore, avoid modifying or extending "native" objects. 

Additional information:  http://eslint.org/docs/rules/no-extend-native 

http://eslint.org/docs/rules/no-new
http://eslint.org/docs/rules/new-cap
http://eslint.org/docs/rules/no-dupe-keys
http://eslint.org/docs/rules/no-extend-native


7 Functions and objects 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  27 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

FO015 recommendation: Avoid object constructor when creating object 

When you create a new object, you should make sure to prefer the object-literal 
syntax, meaning that the object constructor should be avoided.  

Additional information:  http://eslint.org/docs/rules/no-new-object 

 

// Allowed: 

const a = {}; 

 

// Disallowed: 

const a = new Object(); 

 

 

http://eslint.org/docs/rules/no-new-object


8 Conditional instructions, branches and loops 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  28 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

8 Conditional instructions, branches and 
loops  

IL001 rule: "if": With "return", "else" is superfluous 

If an "if" instruction contains a return instruction, the "else" block is superfluous. 
The content can thus be placed outside of the block. 

Additional information:  http://eslint.org/docs/rules/no-else-return 

 

IL002 rule: Do not use constants alone in conditions 

If you use an instruction with a condition, make sure that you always use a 
comparison, e.g. with a constant, with the condition.  

If you specify a constant without a comparison in a condition, then the instruction 
will either be executed always or never. 

This mainly affects the following instructions:  

• "if" instruction  

• "for" instruction 

• "while" instruction 

• "do...while" instruction 

Additional information: http://eslint.org/docs/rules/no-constant-condition 

 

// Allowed: 

if (value === 0) { 

  myFunction(); 

} 

 

// Disallowed: 

if (false) { 

  myFunction(); 

} 

 

 

IL003 rule: "for…in": First check properties before working with them  

First check in a "for...in" loop whether a property exists before you continue 
working with that property. 

Additional information:  http://eslint.org/docs/rules/guard-for-in 

 

IL004 rule: Define "default" in "for"/"switch" instructions 

To the extent possible, always define a "default" state in a "for" or "switch" 
instruction. 

If the application does not allow for it, then add an appropriate comment to the 
code, "// No Default".  

Additional information: http://eslint.org/docs/rules/default-case 

http://eslint.org/docs/rules/no-else-return
http://eslint.org/docs/rules/no-constant-condition
http://eslint.org/docs/rules/guard-for-in
http://eslint.org/docs/rules/default-case


8 Conditional instructions, branches and loops 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  29 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

IL005 rule: No double "case" instructions 

Make sure that you haven't duplicated a "case" condition in a "switch...case" 
instruction (e.g. due to a copy & paste error). 

Additional information: http://eslint.org/docs/rules/no-duplicate-case 

 

// Allowed: 

switch (value) { 

  case 1: 

    break; 

  case 2: 

    break; 

  case 3:          

    break; 

  default: 

    break; 

} 

// Disallowed: 

switch (value) { 

  case 1: 

    break; 

  case 2: 

    break; 

  case 1:         // duplicate test expression 

    break; 

  default: 

    break; 

} 

 

 

IL006 rule: Every "case" has a "break" 

In a "switch" instruction, every case or "case" instruction should be given "break". 
This prevents a so-called "fall through" through all "case" instructions. If a fall 
through is desired, add the comment "//fall through".  

Additional information: http://eslint.org/docs/rules/no-fallthrough 

 

IL007 recommendation: Avoid nested ternary operations 

Avoid nested ternary operations within a line. Employ the "if" instruction as an 
alternative. 

Additional information:  http://eslint.org/docs/rules/no-nested-ternary 

 

// Allowed: 

const a = b ? 1 : c; 

 

// Disallowed: 

const a = b ? 1 : c ? 2 : 3; 

 

 

http://eslint.org/docs/rules/no-duplicate-case
http://eslint.org/docs/rules/no-fallthrough
http://eslint.org/docs/rules/no-nested-ternary


9 Expressions to avoid 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  30 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

9 Expressions to avoid 

EA001 rule: Avoid "with" expression 

Avoid the instruction "with()" because you are adding members of an object to the 
current range and this makes it impossible to recognize what a variable is actually 
referring to within the block.  

Additional information:  http://eslint.org/docs/rules/no-with 

 

EA002 rule: Avoid "arguments.caller" and "arguments.callee" expression 

Avoid obsolete and sub-optimal code such as "arguments.caller" and 
"arguments.callee".  

Additional information:  http://eslint.org/docs/rules/no-caller 

 

EA003 rule: Avoid "_proto_" property 

The "_proto_" property has been obsolete since ECMAScript 3.1 and should not be 
used in code anymore. Instead, use "Object.getPrototypeOf" and 
"Object.setPrototypeOf"  

Additional information:  http://eslint.org/docs/rules/no-proto 

http://eslint.org/docs/rules/no-with
http://eslint.org/docs/rules/no-caller
http://eslint.org/docs/rules/no-proto


10 Diagnostics and debugging 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  31 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

10 Diagnostics and debugging 

DD001 rule: Trace() function for diagnostics 

In order to debug your code and remedy any errors, use exclusively the SIMATIC 
WinCC Unified Trace() function.  

When finished, make sure to remove all unnecessary Trace() messages from your 
code, otherwise the code will quickly become confusing. 

Additional information:  http://eslint.org/docs/rules/no-unreachable 

http://eslint.org/docs/rules/no-console 

http://eslint.org/docs/rules/no-debugger 

http://eslint.org/docs/rules/no-unreachable
http://eslint.org/docs/rules/no-console
http://eslint.org/docs/rules/no-debugger


11 Appendix 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  32 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

11 Appendix 

11.1 Service and support  

Industry Online Support 

Do you have any questions or need assistance?  

Siemens Industry Online Support offers round the clock access to our entire 
service and support know-how and portfolio. 

The Industry Online Support is the central address for information about our 
products, solutions and services.  

Product information, manuals, downloads, FAQs, application examples and videos 
– all information is accessible with just a few mouse clicks:  

support.industry.siemens.com 

Technical Support 

The Technical Support of Siemens Industry provides you fast and competent 
support regarding all technical queries with numerous tailor-made offers  
– ranging from basic support to individual support contracts.  

Please send queries to Technical Support via Web form: 

support.industry.siemens.com/cs/my/src 

SITRAIN – Digital Industry Academy 

We support you with our globally available training courses for industry with 
practical experience, innovative learning methods and a concept that’s tailored to 
the customer’s specific needs. 

For more information on our offered trainings and courses, as well as their 
locations and dates, refer to our web page: 

siemens.com/sitrain  

Service offer 

Our range of services includes the following:  

• Plant data services 

• Spare parts services 

• Repair services 

• On-site and maintenance services 

• Retrofitting and modernization services 

• Service programs and contracts 

You can find detailed information on our range of services in the service catalog 
web page: 

support.industry.siemens.com/cs/sc 

Industry Online Support app 

You will receive optimum support wherever you are with the "Siemens Industry 
Online Support" app. The app is available for iOS and Android:  

support.industry.siemens.com/cs/ww/en/sc/2067 

 

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/my/src
https://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/sc
support.industry.siemens.com/cs/ww/en/sc/2067


11 Appendix 

 

Styleguide JavaScript 
Article ID: 109758536,    V1.0,    11/2020  33 
 

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll 
ri

g
h

ts
 r

e
s
e

rv
e

d
 

11.2 Links and literature  

Table 11-1 

No. Subject 

\1\ Siemens Industry Online Support 

https://support.industry.siemens.com 

\2\ Link to the article page of the application example  

https://support.industry.siemens.com/cs/ww/en/view/109758536 

\3\ Find and fix problems in your JavaScript code 

https://eslint.org/ 

  

 

 

11.3 Change documentation 

Table 11-2 

Version Date Change 

V1.0 11/2020  First edition 

   

 

 

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/109758536
https://eslint.org/

	Programming style guide for JavaScript in SIMATIC WinCC Unified
	Legal information
	1 Introduction
	1.1 Objectives
	1.2 Advantages of a uniform programming style
	1.3 Applies to
	1.4 Delimitation
	1.5 Deviations from the rules, other specifications

	2 Definition of terms
	2.1 Rules/recommendations
	2.2 Numbering of rules
	2.3 Terms (block, function and parameter)

	3 Settings in TIA Portal
	4 General rules
	5 Stylistic rules
	6 Script variables, arrays and structures
	6.1 General rules for script variables
	6.2 Declaring and using variables
	6.3 Comparing variables
	6.4 Entering numbers
	6.5 Arrays and structures

	7 Functions and objects
	7.1 Functions
	7.2 Objects

	8 Conditional instructions, branches and loops
	9 Expressions to avoid
	10 Diagnostics and debugging
	11 Appendix
	11.1 Service and support
	11.2 Links and literature
	11.3 Change documentation


