

Foreword

Brief description
 1

Detailed description
 2

Boundary conditions
 3

Signal Descriptions
 4

Examples
 5

Data lists
 6

Appendix
 A

SINUMERIK

SINUMERIK
840D sl/840Di sl/840D/840Di/810D
Synchronized actions

Function Manual

11/2006
6FC5397-5BP10-2BA0

Valid for

Control
SINUMERIK 840D sl/840DE sl
SINUMERIK 840Di sl/840DiE sl
SINUMERIK 840D powerline/840DE powerline
SINUMERIK 840Di powerline/840DiE powerline
SINUMERIK 810D powerline/810DE powerline

Software Version
NCU system software for 840D sl/840DE sl 1.4
NCU system software for 840D sl/DiE sl 1.0
NCU system software for 840D/840DE 7.4
NCU system software for 840Di/840DiE 3.3
NCU system software for 810D/810DE 7.4

 Safety Guidelines
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

Danger

indicates that death or severe personal injury will result if proper precautions are not taken.

Warning

indicates that death or severe personal injury may result if proper precautions are not taken.

Caution

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

 Caution

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

 Notice

indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The device/system may only be set up and used in conjunction with this documentation. Commissioning and
operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes
in this documentation qualified persons are defined as persons who are authorized to commission, ground and
label devices, systems and circuits in accordance with established safety practices and standards.

Prescribed Usage
Note the following:

Warning

This device may only be used for the applications described in the catalog or the technical description and only in
connection with devices or components from other manufacturers which have been approved or recommended by
Siemens. Correct, reliable operation of the product requires proper transport, storage, positioning and assembly
as well as careful operation and maintenance.

Trademarks
All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Automation and Drives
Postfach 48 48
90437 NÜRNBERG
GERMANY

Order No.: 6FC5397-5BP10-2BA0
Ⓟ 11/2006

Copyright © Siemens AG 2006.
Technical data subject to change

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 3

Foreword

SINUMERIK® Documentation
The SINUMERIK documentation is organized in 3 parts:
• General documentation
• User documentation
• Manufacturer/service documentation

A monthly updated publications overview with respective available languages can be found
in the Internet under:
http://www.siemens.com/motioncontrol
Select the menu items "Support" → "Technical Documentation" → "Overview of
Publications".
The Internet version of DOConCD (DOConWEB) is available under:
http://www.automation.siemens.com/doconweb
Information about training courses and FAQs (Frequently Asked Questions) can be found
in internet under::
http://www.siemens.com/motioncontrol under menu option "Support"

Target group
This publication is intended for:
• Project engineers
• Technologists (from machine manufacturers)
• System startup engineers (Systems/Machines)
• Programmers

Benefits
The function manual describes the functions so that the target group knows them and can
select them. It provides the target group with the information required to implement the
functions.

http://www.siemens.com/motioncontrol
http://www.automation.siemens.com/doconweb
http://www.siemens.com/motioncontrol

Foreword

 Synchronized actions
4 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Standard version
This documentation only describes the functionality of the standard version. Extensions or
changes made by the machine tool manufacturer are documented by the machine tool
manufacturer.
Other functions not described in this documentation might be executable in the control. This
does not, however, represent an obligation to supply such functions with a new control or
when servicing.
Further, for the sake of simplicity, this documentation does not contain all detailed
information about all types of the product and cannot cover every conceivable case of
installation, operation or maintenance.

Technical Support
If you have any technical questions, please contact our hotline:

 Europe / Africa Asia / Australia America
Phone +49 180 5050 222 +86 1064 719 990 +1 423 262 2522
Fax +49 180 5050 223 +86 1064 747 474 +1 423 262 2289
Internet http://www.siemens.com/automation/support-request
E-Mail mailto:adsupport@siemens.com

 Note
Country specific telephone numbers for technical support are provided under the following
Internet address:
http://www.siemens.com/automation/service&support

Questions about the manual
If you have any queries (suggestions, corrections) in relation to this documentation, please
send a fax or e-mail to the following address:

Fax: +49 (0) 9131 / 98 - 63315
Email: mailto:docu.motioncontrol@siemens.com

A fax form is available at the end of this document.

http://www.siemens.com/automation/support-request
mailto:adsupport@siemens.com
http://www.siemens.com/automation/service&support
mailto:docu.motioncontrol@siemens.com

 Foreword

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 5

SINUMERIK Internet address
http://www.siemens.com/sinumerik

EC declaration of conformity
The EC Declaration of Conformity for the EMC Directive can be found/obtained
• in the internet:

http://www.ad.siemens.de/csinfo
under product/order no. 15257461

• with the relevant branch office of the A&D MC group of Siemens AG.

http://www.siemens.com/sinumerik

Foreword

 Synchronized actions
6 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 7

Table of contents
 Foreword ... 3
1 Brief description... 11
2 Detailed description ... 13

2.1 Components of synchronized actions..13
2.1.1 Definition of motion-synchronous actions ..20
2.1.2 Execution of synchronized actions ..20
2.1.3 List of possible actions...20
2.2 Real-time evaluations and calculations ...22
2.3 Special real-time variables for synchronized actions...28
2.3.1 Marker/counter variables ...29
2.3.2 Timers ..30
2.3.3 Synchronized action parameters ...31
2.3.4 R parameters ...32
2.3.5 Machine and setting data...32
2.3.6 FIFO variables (circulating memory)..34
2.3.7 System variables saved in SRAM (SW 6.3 and later) ...36
2.3.8 Determining the path tangent in synchronized actions..37
2.3.9 Determining the current override ...38
2.3.10 Capacity evaluation using time requirement for synchronized actions..39
2.3.11 List of system variables relevant to synchronized actions...41
2.4 Actions in synchronized actions...42
2.4.1 Output of M, S and H auxiliary functions to the PLC ...44
2.4.2 Setting (writing) and reading of real-time variables ...47
2.4.3 Changing of SW cam positions and times (setting data)...48
2.4.4 FCTDEF...49
2.4.5 Polynomial evaluation SYNFCT...51
2.4.6 Overlaid movements $AA_OFF settable (SW 6 and later) ..56
2.4.7 Online tool offset FTOC ...59
2.4.8 Online tool length offset $AA_TOFF[Index] ...61
2.4.9 RDISABLE ...66
2.4.10 STOPREOF ...66
2.4.11 DELDTG...67
2.4.12 Disabling a programmed axis motion ..68
2.4.13 Starting command axes ...69
2.4.14 Axial feedrate from synchronized actions ..73
2.4.15 Starting/Stopping axes from synchronized actions..74
2.4.16 Axis replacement from synchronized actions ..75
2.4.17 Spindle motions from synchronized actions ..81
2.4.18 Setting actual values from synchronized actions...85
2.4.19 Activating/deactivating coupled motions and couplings ..86
2.4.20 Measurements from synchronized actions ..93
2.4.21 Setting and deleting wait markers for channel synchronization...97
2.4.22 Set alarm/error reactions ...98
2.4.23 Evaluating data for machine maintenance...99

Table of contents

 Synchronized actions
8 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.5 Call of Technology Cycles... 101
2.5.1 Coordination of synchronized actions, technology cycles, part program (and PLC) 104
2.6 Control and protection of synchronized actions.. 106
2.6.1 Control via PLC ... 106
2.6.2 Protected synchronized actions .. 108
2.7 Control system response for synchronized actions in specific operational states.................... 111
2.7.1 Power On .. 111
2.7.2 RESET .. 111
2.7.3 NC STOP .. 112
2.7.4 Mode change .. 113
2.7.5 End of program ... 113
2.7.6 Response of active synchronized actions to end of program and change in operating

mode ... 114
2.7.7 Block search.. 114
2.7.8 Program interruption by ASUB.. 115
2.7.9 REPOS.. 115
2.7.10 Response to alarms .. 115
2.8 Configuration... 116
2.8.1 Configurability ... 116
2.9 Diagnostics (only with HMI Advanced) ... 119
2.9.1 Displaying status of synchronized actions .. 120
2.9.2 Displaying main run variables ... 121
2.9.3 Logging main run variables... 121

3 Boundary conditions .. 125
4 Signal Descriptions .. 129
5 Examples... 131

5.1 Examples of conditions in synchronized actions... 131
5.2 Reading and writing of SD/MD from synchronized actions... 132
5.3 Examples of adaptive control .. 134
5.3.1 Clearance control with variable upper limit ... 135
5.3.2 Feedrate control .. 136
5.3.3 Control velocity as a function of normalized path ... 137
5.4 Monitoring a safety clearance between two axes ... 138
5.5 Store execution times in R parameters... 139
5.6 "Centering" with continuous measurement ... 139
5.7 Axis couplings via synchronized actions... 143
5.7.1 Coupling to leading axis .. 143
5.7.2 Non-circular grinding via master value coupling ... 144
5.7.3 On-the-fly parting .. 148
5.8 Technology cycles position spindle... 149
5.9 Synchronized actions in the TC/MC area ... 151

6 Data lists.. 155
6.1 Machine data... 155
6.1.1 General machine data... 155
6.1.2 Channelspecific machine data .. 155
6.1.3 Axis-specific machine data.. 156

 Table of contents

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 9

6.2 Setting data ..156
6.2.1 Axis/spindle-specific setting data...156
6.3 Signals ...157
6.3.1 Signals from channel ...157

A Appendix.. 159
A.1 Publication-specific information ...159
A.1.1 Correction sheet - fax template..159
A.1.2 Overview ..161

 Index.. 163

Table of contents

 Synchronized actions
10 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 11

Brief description 1
Definition of synchronized actions

Motion-synchronous actions (or "synchronized actions" for short) are instructions
programmed by the user, which are evaluated in the interpolation cycle of the NCK in
synchronization with the execution of the part program. If the condition programmed in the
synchronized action is fulfilled or if none is specified, then actions assigned to the instruction
are activated in synchronism with the remainder of the part program run.

Applications
The following selection from the wide range of possibilities indicates how actions
programmed in synchronized actions can be usefully employed.
• Output of auxiliary functions to PLC
• Writing and reading of main run variables
• Positioning of axes and spindles
• Activation of synchronous procedures, such as:

– Read-in disable
– Deletion of distance-to-go
– End preprocessing stop

• Activation of technology cycles
• Online calculation of function values
• Online tool offsets
• Activation/deactivation of couplings/coupled motion
• Take measurements
• Enabling/disabling of synchronized actions
All possible applications of this function are described in the "Detailed Description" chapter.

Brief description

 Synchronized actions
12 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Figure 1-1 Schematic diagram of synchronized actions

For details of how to program synchronized actions, please see:
References:
/PGA/Programming Manual Advanced
The following chapters describe:
• functional relationships for synchronized actions in the Chapter "Detailed Description",
• Application examples in the Chapter "Examples".

 Note
This description encompasses the functionality of the current software version. The
synchronized actions available in SW version 3 and earlier are described in:
References:
/FB2/ Function Manual, Extended Functions; Synchronized Actions (S5).

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 13

Detailed description 2
2.1 Components of synchronized actions

Structure of a synchronized action

Component: Validity,

identification
number

Frequency G code for cond.
and action

Condition Action
code word
(fixed)

G code for
action

Action or
Tech-no-lo-
gy-cy-cle

Example IDS=1 EVERY G70 $AAA_IM[B]
> 15

DO G71 POS[X]=100

The components of the synchronous actions are explained below individually:
• Validity:

– With identification number
– Without identification number

• Frequency
• G code for condition and action (SW 5 and later)
• Condition
• G code for actions (SW 5 and later)
• Action(s)/Technology cycle

Validity ID number
There are three possible ways for defining the scope of validity of a synchronized action:
1. No specification
2. ID
3. IDS

Detailed description
2.1 Components of synchronized actions

 Synchronized actions
14 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

No data
Synchronized actions that have no specified validity have a non-modal action, i.e. they apply
only to the next block.
Non-modal synchronized actions are operative only in AUTOMATIC mode.
From SW 6.1 and later, non-modal synchronized actions are active modally for all
preprocessing stop blocks (incl. implicitly generated ones) and for implicitly generated
intermediate blocks.

ID
Synchronized actions with validity identifier ID act modally in the subsequently programmed
blocks. They are operative only in AUTOMATIC mode.
Limitation:
• ID actions remain operative only until another synchronized action with the same

identification number is programmed
• till deletion, CANCEL(i), see Chapter "Coordinations between synchronized actions,

Technology cycles, Part program (and PLC)".

IDS
Statically effective synchronized actions that are programmed with the keyword "IDS", are
active in all operating modes. They are also referred to as static synchronized actions.
Option.
Synchronized actions programmed with ID or IDS are deleted from the part program.

Identification numbers
For modal synchronized actions (ID, IDS) identification numbers between 1 and 255 are
allocated. They are important for the functions of mutual coordination of synchronized
actions. See Chapter "Coordination of synchronized actions, technology cycles, part program
(and PLC)".
Modal/static synchronized actions with identification numbers between 1 and 64 can be
disabled and enabled from the PLC. See Chapter "Control via PLC".
Unique identification numbers must be allocated in the channel.
Applications for static synchronized actions:
• AC-grinding also active in the JOG mode
• Logic operations for Safety Integrated
• Monitoring functions, responses to machine states in all modes
• Ooptimization of the tool change
• Cyclic machines
Examples:
IDS=1 EVERY $A_IN[1]==1 DO POS[X]=100: all modes
ID=2 EVERY $A_IN[1]==0 DO POS[X]=0: AUTOMATIC

 Detailed description
 2.1 Components of synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 15

 Note
The following actions are operative only in AUTOMATIC mode when the program is running:
STOPREOF
DELDTG

Frequency
Keywords (see table) are programmed to indicate how often the subsequently specified
condition must be scanned and the associated action executed if the condition is fulfilled.
These keywords are an integral component of the synchronized action condition.

Table 2-1 Effect of frequency keywords

Keyword Scanning frequency
None If no scanning frequency is programmed, then the action is executed cyclically in every interpolation

cycle.
WHENEVER The associated action/technology cycle is executed cyclically in every interpolation cycle provided that

the condition is fulfilled.
FROM If the condition has been fulfilled once, the action/technology cycle is executed cyclically in every

interpolation cycle for as long as the synchronized action remains active.
WHEN As soon as the condition has been fulfilled, the action/technology cycle is executed once. Once the

action has been executed a single time, the condition is no longer checked.
EVERY The action/technology cycle is activated once if the condition is fulfilled. The action/technology cycle is

executed every time the condition changes from the FALSE to the TRUE state.
In contrast to keyword WHEN, checking of the condition continues after execution of the action/cycle
until the synchronized action is deleted or disabled.

Details of technology cycles are given in the Chapter "Call of technology cycles".

Deleting with CANCEL
If an active synchronized action is cancelled (deleted) with CANCELfrom the part program,
then the active action is not affected. Positioning motions are completed as programmed.
With the command CANCEL a modal or a statically active synchronized action can be
deleted.
If a synchronized action is deleted while the positioning axis motion it has initiated is still in
progress, the positioning motion continues until properly executed. A channel stop also
cancels the positioning movement from synchronized actions/technology cycles.

G code for condition and action
Starting from SW-version 5 the G-codes can be programmed in synchronized actions. This
allows defined settings to exist for the evaluation of the condition and the action/technology
cycle to be executed, independent of the current parts program status. It is necessary to
separate the synchronized actions from the program environment, because synchronized
actions are required to execute their actions at any time from a defined initial state as a
result of fulfilled trigger conditions.

Detailed description
2.1 Components of synchronized actions

 Synchronized actions
16 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Applications:
Definition of the measurement systems for condition evaluation and action through G codes
G70, G71, G700, G710.

 Note
Only one G-code of the G-code group may be programmed for each part of the condition. A
G-code specified for the condition is valid for the evaluation of the condition and for the
action, if no separate G-code is specified for the action. A G code specified for the condition
is valid for the evaluation of the condition and for the action if no separate G code is
specified for the action.

Conditions
The execution of actions / technology cycles can be made dependent upon a condition
(logical expression).
The condition is checked in the interpolation cycle. If no condition is programmed, the action
is performed once in every IPO cycle.
Possible components include:
• Comparison of main run variables such as digital or analog inputs/outputs
• Boolean gating of comparison results
• Computation of real-time expressions
• Time/distance from beginning of block
• Measured values, measurement results
• Servo values
• Velocities, axis status
In SW version 3 and earlier, two conditions are permitted, i.e. the comparison of a main run
variable with an expression calculated during preprocessing or the comparison of two main
run variables.
Examples:
WHENEVER $AA_IM[X] > 10.5*SIN(45) DO ...
or
WHENEVER $AA_IM[X] > $$AA_IM[X1] DO ...
Additional comparisons using Boolean gating can also be interlinked. Boolean operators of
the NC language may be used for this purpose:
NOT, AND, OR, XOR, B_OR, B_AND, B_XOR, B_NOT.

 Detailed description
 2.1 Components of synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 17

Examples:
WHENEVER ($A_IN[1]==1) OR ($A_IN[3]==0) DO ...
; while input 1 is applied or input 3 is not applied ...
Two or more real-time expressions may be compared with one another within one condition.
Comparisons may be made between variables of the same type or between partial
expressions.
Examples:
Example
WHEN $AA_IM[X2] <= $AA_IM[X1] +.5 DO $AA_OVR[X1]=0
; Stop, when the safety clearance is exceeded.
Further examples of conditions can be found in Chapter 6.1. The calculations of real-time
expressions are described in the Chapter "Evaluations and calculations in real time".
All system variables whose data are read or written by the NC via synchronized actions can
be addressed in conditions. So can all machine data and setting data where the value is
read in the main run:
Machine data, e.g. $$MN_..., $$MC_..., $$MA_...
Setting data, e.g. $$SN_..., $$SC_..., $$SA_...

 Note
GUD variables cannot be used
R-parameters are addressed with $R... .
Setting data and machine data, whose value may vary during machining, must be
programmed with $$S._.../$$M._... .
More examples of conditions are given in the Chapter "Examples for conditions in
synchronized actions".

G code for the action
The G code may specify a different G code from the condition for all actions in the block and
technology cycles. If technology cycles are contained in the action part, the G code remains
modally active for all actions until the next G code, even after the technology cycle has been
completed.
Only one G code of the G code group may be programmed for each action part.

Detailed description
2.1 Components of synchronized actions

 Synchronized actions
18 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Actions

Every synchronized action contains one or more programmed actions or one technology
cycle. These are executed when the appropriate condition is fulfilled. If several actions are
programmed in one synchronized action, they are executed within the same interpolation
cycle.
Example
WHEN $AA_IM[Y] >= 35.7 DO M135 $A_OUT[1]=1
If the actual value of the Y axis is greater than or equal to 35.7, then M135 is output at PLC
and at the same time the output 1 is set.

Program/technology cycle
A program (name) can also be specified as an action. This program may contain any of the
actions, which can be programmed individually in synchronized actions. These programs are
also referred to as technology cycles below. A technology cycle is a sequence of actions that
are processed sequentially in the interpolation cycle, see
Chapter 2.5. "Call of Technology Cycles".
Application: Single axis programs, cyclic machines.

Machining process
The blocks of a part program are prepared at the program preprocessing stage, stored and
then executed sequentially at the interpolation level (main run). Variables are accessed
during block preparation. When main-run variables (e.g., actual values) are used, block
preparation is interrupted to allow current real-time values up to the preceding block to be
supplied.
Synchronized actions are transported to the interpolator in preprocessed form together with
the prepared block. The main run variables used are evaluated in the interpolation cycle.
Block preparation is not interrupted.
Part program blocks without traversing motion (zero blocks) are normally eliminated by the
interpreter. However, if synchronous actions are active, this zero block is included and also
executed. Here, an exact stop corresponding to the active function (e.g. G601) is triggered.
This allows the synchronous action to also switch.
Examples of zero blocks:

N1000 G91 X0 Y0 Z0

...

N10 G90 G64 X100 Y100 Z100

N15 Z100

...

Blocks without traversing motion can also be generated using program jumps.

 Detailed description
 2.1 Components of synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 19

Figure 2-1 Schematic diagram illustrating processing of synchronized actions

Processing of synchronized actions
Synchronized actions are checked in the interpolation cycle to determine whether they
contain actions to be activated.
Action(s) are executed in synchronism with path control if the preconditions programmed on
the left of the action(s) are fulfilled.

Order of execution

Within an interpolation cycle, modal synchronized action instructions are processed in order
of their ID number (i.e. block with ID number 1 before block with ID number 2, etc.). Once the
modal synchronized action instructions have been executed, non-modal synchronized action
instructions are processed in the order in which they are programmed.

Detailed description
2.1 Components of synchronized actions

 Synchronized actions
20 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.1.1 Definition of motion-synchronous actions

Defining programs

Motion-synchronous actions can be defined as follows:
• In the part program
• Static synchronized actions in an asynchronous subprogram activated by the PLC

2.1.2 Execution of synchronized actions

Conditions for execution

The actions programmed in motion-synchronous actions are executed, when:
• the synchronized action exists and has not been deselected with CANCEL(ID).
• the synchronous action is not locked, no LOCK(ID), see Chapter 2.5.1 "Coordination of

synchronized actions, technology cycles, part programs and PLC".
• evaluation of the action is due as a result of the programmed frequency keyword or
• the appropriate condition is fulfilled.
• For further details, please see the following subsections.

2.1.3 List of possible actions
• Output of M, S and H auxiliary functions to the PLC
• Setting (writing) of main run variables enables the following:

– Overlaid movement ($AA_OFF), option.
– Applied tool length offsets ($AA_TOFF), option.
– Feedrate control ($AC_OVR, $AA_OVR), disabling of a programmed axis motion
– Allocate Servo–data–values $V...=
– Reading or writing arithmetic variable $R[n]=
– Writing the SD value in the main run $$SD

• Reading the MD value for the interpretation time $MD...=
• Changing of SW cam positions and times (setting data)
• Modification of coefficients and limits from FCTDEF
• Polynomial evaluation SYNFCT
• Online tool offset FTOC

 Detailed description
 2.1 Components of synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 21

• Read-in disable RDISABLE
• Preprocessing stop cancellation STOPREOF
• Delete distance-to-go DELDTG
• Calculation of curve table values
• Axial feedrate from synchronized actions
• Axial frame
• Moving/positioning axes/spindles from synchronized actions
• Axis replacement from synchronized actions
• Spindle motions from synchronized actions
• Actual-value setting from synchronized actions (Preset)
• Activation/deactivation of couplings and coupled motion
• Activation/deactivation of coupling modules of the generic coupling
• Measurements from synchronized actions
• Setting and deleting wait markers for channel synchronization
• Set alarm/error reactions
• Travel to fixed stop FXS (FXST, FXSW)
• Travel with restricted moment FOC (FOCON/FOCOF)
• Extended stopping and retraction (Description of Functions M3)
• Reading and, if tagged accordingly, writing of system variables, see /PGA1/ Parameter

Manual System Variables.
These actions are described in detail in Section 2.4.

Detailed description
2.2 Real -time evaluations and calculations

 Synchronized actions
22 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.2 Real-time evaluations and calculations

Restriction

Calculations carried out in real time represent a subset of those calculations that can be
performed in the NC language. It is restricted to data types REAL, INT, CHAR and BOOL.
Implicit type conversions between REAL, INT, and BOOL in both directions are possible in
synchronized actions. During value assignments and parameter transfers, variables of
different data types can be assigned or transferred.

Scope of application
The term "Real-time expression" refers below to all calculations that can be carried out in the
interpolation cycle. Real-time expressions are used in conditions and in assignments to NC
addresses and variables.

Main run variables
All main-run variables are evaluated (read) in the interpolation cycle and can be written as
part of an action.
The system variables available in synchronized actions during the main run are identified
with a field provided for this purpose in the "List of System Variables" in /LHB/ Manual of
System Variables.

Identification of main-run variables
Real-time variables are all variables that begin with:
$A... ,current main-run variable
$V... , Servo values
$R... , R parameters.
NC–machines– and setting data in the main run are interpreted with
$$M...
$$S...
in synchronized actions.

 Note
You can read the machine– and setting data values during the main run, they are addressed
for an online access with $$S... or $$M... and evaluated during the main run, while MD– or
SD–values are read with a $–character at the time the synchronized action is interpreted.
Setting data and machine data from the synchronized action are addressed with the $ sign
and evaluated at the time of preprocessing.

 Detailed description
 2.2 Real -time evaluations and calculations

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 23

Data type:
Within an expression in the synchronized actions only the main-run variables of a data type
may be linked logically. However, in order to process various types of data, you can use the
conversion routines provided for type matching (SW 5.2, see conversion routines). In
contrast to full expression in the NC language, the calculation is performed in the data type
of the main run variables.

... DO $R10 = $AC_PARAM[0] ; Permissible REAL, REAL
... DO $R10 = $AC_MARKER[0] ; not permitted REAL, INT

The following examples of real-time evaluations were already available in SW version 3.2
(they employ only real-time variables of this SW version):

Conversion routines in SW 5.3 and higher
The user can explicitly call two conversion routines RTOI() and ITOR() for the type
conversion in the synchronized action implicitTypeconversion from REAL to INT, and vice
versa. These functions are intended for software versions in which an internal type
conversion of values was not yet possible. Both conversion routines can be called
• in the part program, and
• from the synchronized action.
can be called.

Conversion routines (SW 5.2)
In the synchronized action there is no implicit type conversion from REAL to INT and vice
versa. However, the user may explicitly call two conversion routines RTOI() and ITOR() for
the type conversion. The functions can be called as follows:
• in the part program, and
• from the synchronized action.

ITOR
REAL ITOR(INT) - Converting integer to real
The function converts the integer value transferred to a real value and returns this value. The
transferred variable is not changed.
Example
$AC_MARKER[1]=561
ID=1 WHEN TRUE DO $AC_PARAM[1] = ITOR($AC_MARKER[1])

Detailed description
2.2 Real -time evaluations and calculations

 Synchronized actions
24 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

RTOI
INT RTOI(REAL) - Converting from real to integer
The function RTOI() converts the transferred Real value in a rounded INT value and returns
this integer value. If the value transferred lies outside the range that can be unambiguously
represented as an integer value, alarm 20145 "Motion-synchronous action: Arithmetic error"
is output and no conversion is performed. The transferred variable is not changed.

 Note
The function RTOI() does not produce an unambiguous result when inverted, i.e. it is not
possible to determine the original Real value from the value returned, as the decimal places
are lost during conversion!

Example RTOI:

$AC_PARAM[1] = 561.4378

ID=1 WHEN TRUE DO $AC_MARKER[1] =
RTOI($AC_PARAM[1])

; Result: 561

...

$AC_PARAM[1] = -63.867

ID=1 WHEN TRUE DO $AC_MARKER[1] =
RTOI($AC_PARAM[1])

; Result: -64

$AC_MARKER[1]=10

$AC_PARAM[1] = -6386798797.29

; Result: Alarm 20145 ID=1 WHEN TRUE DO $AC_MARKER[1] =
RTOI($AC_PARAM[1]) ; $AC_MARKER[1] = 10 (unchanged due to alarm)

Implicit type conversion (SW 6.4)
In SW 6.4 and later, variables of various data types can be assigned to one another in
synchronized actions without having to call the RTOI or ITOR function, e.g. REAL to INT and
vice versa.
If values outside of the interval [INT_MIN, INT_MAX] would result from the conversion from
REAL to INTEGER, alarm 20145 "Motion-synchronous action: Arithmetic error" is output and
no conversion is performed.

 Detailed description
 2.2 Real -time evaluations and calculations

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 25

Examples:
previously

$AC_MARKER[1]=561

ID=1 WHEN TRUE DO $AC_PARAM[1] = ITOR($AC_MARKER[1])

As of SW 6.4

$AC_MARKER[1]=561

ID=1 WHEN TRUE DO $AC_PARAM[1] = $AC_MARKER[1]

previously

$AC_PARAM[1] = 561.4378

ID=1 WHEN TRUE DO $AC_MARKER[1] = RTOI($AC_PARAM[1]) ; 561
As of SW 6.4

$AC_PARAM[1] = 561.4378

ID=1 WHEN TRUE DO $AC_MARKER[1] = $AC_PARAM[1] : 561

Internal type conversion of values in SW 7.4 and higher
Without the call of the RTOI and ITOR function, type conversions can be triggered for value
assignments and parameter transfers of multiple implicit type conversions. The following
data type conversions are possible:
• REAL to BOOL
• INT to BOOL
• BOOL to REAL or INT
Examples:
implicit conversion from INTEGER to BOOLen
$AC_MARKER[1]=561
ID=1 WHEN $A_IN[1] == TRUE DO $A_OUT[0]=$AC_MARKER[1]
implicit conversion from REAL to BOOLen
R401 = 100.542
WHEN $A_IN[0] == TRUE DO $A_OUT[2]=$R401
implicit conversion from BOOLen to INTEGER
ID=1 WHEN $A_IN[2] == TRUE DO $AC_MARKER[4] = $A_OUT[1]
implicit conversion from BOOLen to REAL
R401 = 100.542
WHEN $A_IN[3] == TRUE DO $R10 = $A_OUT[3]
For type conversions from REAL to INT, a fractional value < 0.5 is rounded off. Otherwise,
the value is rounded down as with the ROUND function. Alarm 20145 is output if values are
exceeded.
References:
/PGA/ Programming Manual Work Preparation, Motion-Synchronous Actions, Chapter "Main-
Run Variables for Synchronized Actions"

Detailed description
2.2 Real -time evaluations and calculations

 Synchronized actions
26 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Basic arithmetic operations
Real-time variables of the type REAL and INT can be linked logically by the following basic
arithematic operations:
• Addition
• Subtraction
• Multiplication
• Division
• Integer division
• Modulo division.
Only variables of the same type may be linked by these operations.

Expressions
Expressions from basic arithmetic operations can be put in brackets and nested. See
priorities for operators on the next page.

Comparisons
The following relational operators may be used:

== Equal to
> Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Boolean operators
The following Boolean operators may be used:
NOT NOT
AND AND
OR OR
XOR Exclusive OR

Bit operators
The following bit operators may be used:
B_OR bit OR
B_AND bit AND
B_XOR bit-serial exclusive OR
B_NOT bit negation

Operands are variables and constants of the INT type.

 Detailed description
 2.2 Real -time evaluations and calculations

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 27

Priority of operators
In order to produce the desired logical result in multiple expressions, the following operator
priorities should be observed in calculations and conditions:

1. NOT, B_NOT Negation, bit-serial negation
2. *, /, DIV, MOD Multiplication, division
3. +, - Addition, subtraction
4. B_AND bit AND
5. B_XOR bit-serial exclusive OR
6. B_OR bit OR
7. AND AND
8. XOR Exclusive OR
9. OR OR
10. not used
11. Relational operators
 == Equal to
 <> Not equal to
 < Greater than
 > Less than
 >= Greater than or equal to
 <= Less than or equal to

and parentheses should be used where necessary. The logic operation result for a condition
must be a BOOL data type.
Example of a multiple expression:
WHEN ($AA_IM[X] > VALUE) AND ($AA_IM[Y] > VALUE1) DO ...

Functions
A main-run variable of the REAL type can be used to create function values sine, cosine, etc.
The following functions are possible:
SIN, COS, ABS, ASIN, ACOS, TAN, ATAN2, TRUNC, ROUND, LN, EXP, ATAN,
POT, SQRT, CTAB, CTABINV
Example
... DO $AC_PARAM[3]=COS($AA_IM[X])
For a description of how to use these functions, please see:
References:
/PG/ Programming Manual Fundamentals
/PGA/Programming Manual Advanced

Detailed description
2.3 Special real-time variables for synchronized actions

 Synchronized actions
28 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Indexing
The index of a main-run field variable can in turn be a real-time variable.
Example
WHEN ... DO $AC_PARAM[$AC_MARKER[1]] = 3
The index $AC_MARKER[1] is evaluated currently in the interpolation cycle.
Constraints:
• It is not permissible to nest indices with real-time variables.
• A real-time index cannot be generated by a variable that is not generated itself in real

time. The following programming would lead to errors:
$AC_PARAM[1]=$P_EP[$AC_MARKER[0]

2.3 Special real-time variables for synchronized actions
For a complete list of the system variables that can be addressed, see references:
/PGA1/ Parameter Manual, System Variables.
The system variables that can be addressed in synchronous actions are in the field SA:
identified as "Can be used in synchronized actions". A system variable that is updated during
the main run is also synchronized in the main run if this is selected in the HL Sync field and
then confirmed.
The characteristics of a few special main run variables are described below:
• Marker/counter variables

– Channel-specific markers
• Timers
• Synchronized action parameters
• R parameters
• Machine and setting data
• FIFO variables (circulating memory)

SW 4
The special real-time variables: Timers, R parameters, machine and setting data and FIFO
variables are available in SW 4 and later.

 Detailed description
 2.3 Special real-time variables for synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 29

2.3.1 Marker/counter variables

Channel-specific markers
The array variable $AC_MARKER[n] is used as a marker or counter and can be read and
written in synchronized actions.
Data type: INTEGER
n: Field index of the marker: 0–n
The number of markers per channel is set using machine data
MD28256 $MC_NUM_AC_MARKER.
In the machine data 28256: $MC_NUM_AC_MARKER the
maximum value that can be specified is 20000.
One element requires 4 bytes. You must ensure that sufficient memory of the correct type is
available. These markers exist once in each channel under the same name. The memory
location for $AC_MARKER[n] can be selected with the machine data
MD28257 $MC_MM_BUFFERED_AC_MARKER with
0: in the dynamic memory (active file system)
1: in the static memory (passive file system)
can be selected.
Markers stored in the static memory can be included in the data backup.
front panel. See 2.3.7
On Power On, NC Reset, and End of Program, the markers are set to 0.
This ensures the same start conditions for every program run.
General procedure

In addition, for SW 6.3 and higher
It is possible to select the memory location for $AC_MARKER[n] between DRAM and SRAM
with the following machine data:
MD28257 $MC_MM_BUFFERED_AC_MARKER ($AC_MARKER[] is saved in SRAM)
0: dynamic memory DRAM, (default)
1: static memory SRAM
20000 can be specified as the highest value in the machine data:
MD28256 $MC_NUM_AC_MARKER (dimension of $AC_MARKER)
One element requires 4 bytes. You must ensure that sufficient memory of the correct type is
available.
Markers saved in SRAM can be included in the data backup. See Chapter "System variables
saved in SRAM (SW 6.3 and later)"

Detailed description
2.3 Special real-time variables for synchronized actions

 Synchronized actions
30 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.3.2 Timers
The system variable $AC_TIMER[n] permits actions to be started after
defined periods of delay.

Definition
Data type: REAL
n: Number of timer variable
Unit: Second
The number of available timer variables is determined via the machine data
MD28258 $MC_MM_NUM_AC_TIMER.

Setting timers
The incrementing of a timer variable is started by means of value assignment:
$AC_TIMER[n]=value
n: Number of time variable
value: Start value (normally 0)

Stopping timers
Incrementation of a timer variable can be stopped by assigning a negative value:
$AC_TIMER[n]=-1

Reading timers
The current timer value can be read whether the timer variable is running or has been
stopped. After a timer variable has been stopped through the assignment of -1, the current
time value remains stored and can be read.

Example
Output of an actual value via analog output 500 ms after detection of a digital input:

WHEN $A_IN[1]==1 DO $AC_TIMER[1]=0 ; Reset and start timer
WHEN $AC_TIMER[1]>=0.5 DO $A_OUTA[3]=$AA_IM[X] $AC_TIMER[1]=-1

 Detailed description
 2.3 Special real-time variables for synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 31

2.3.3 Synchronized action parameters

Meaning
The variables $AC_PARAM[n] are used for calculations and also as intermediate memory
and can be read and written in synchronized actions.

Definition
Data type: REAL
n: Number of parameters 0 - n
The number of available AC parameter variables for each channel is determined via the
Machine data
MD28254 $MC_MM_NUM_AC_PARAM
fixed.
These parameters exist once in each channel under the same name. $AC_PARAM
parameters are stored in the dynamic memory.
In MD28255 $MC_NUM_AC_PARAM, the maximum value that can be specified is 20000.
One element requires 4 bytes. You must ensure that sufficient memory of the correct type is
available. The memory location for $AC_PARAM[n] can be selected with the machine data
MD28255 $MC_MM_BUFFERED_AC_PARAM with
0: in the dynamic memory (active file system, default)
1: in the static memory (passive file system)
can be selected.
Synchronized action parameters stored in the static memory can be included in the
data backup. See 2.3.7 The parameters are set to 0 on Power On, NC Reset, and End of
Program, . identical start conditions for every part program run.

In addition, for SW 6.3 and higher
In software version 6.3 and later, it is possible to select the memory location for
$AC_PARAM[n] between DRAM and SRAM using the machine data:
MD28255 $MC_MM_BUFFERED_AC_PARAM ($AC_PARAM[] is saved in SRAM)
0: dynamic memory DRAM, (default)
1: static memory SRAM
2000 can be specified as the highest value in the machine data MD28255.
One element requires 8 bytes. You must ensure that sufficient memory of the correct type is
available.
Synchronization parameters saved in SRAM can be included in the data backup. See
Chapter "System variables saved in SRAM (SW 6.3 and later)"

Detailed description
2.3 Special real-time variables for synchronized actions

 Synchronized actions
32 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.3.4 R parameters

Application in synchronized actions
By programming the $ sign in front of R parameters, they can also be used in synchronized
actions. The field variables $R[n] or $Rn are used for calculations in synchronized actions
R[n] or Rn is used for calculations in part program, which are stored battery-backed in the
static memory. Therefore, R parameters retain their values after end of program, RESET, or
POWER ON.
Example
Import measured value in the R-parameter
WHEN $AC_MEA== 1 DO $R10= $AA_MM[Y]
; if valid measurement is present, import measured value in R-parameter.

Definition
Data type REAL
n: Number of the field variable

Example
Evaluation of the R-parameter
WHEN $A_IN[1] == 1 DO $R10 = $AA_IM[Y]
G1 X100 F150
STOPRE
IF R10 > 50 ; Evaluation of the R-parameter.

2.3.5 Machine and setting data

Reading and writing MD, SD
It is also possible to read and write machine data and setting data from synchronized
actions.
possible. Access must be differentiated according to the following criteria:
 MD, SD that remain unchanged during machining and
 MD, SD, whose settings change during machining.

 Detailed description
 2.3 Special real-time variables for synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 33

Reading at the time of preprocessing
Unchangeable machine and setting data are addressed from the synchronized action
as in the normal part program commands. They are introduced with
a $-sign.
Example
ID=2 WHENEVER $AA_IM[z]< $SA_OSCILL_REVERSE_POS2[Z]–6 DO
$AA_OVR[X]=0
; Here the reversal range 2 assumed as unchanging during the processing
; is addressed for oscillation
A complete example for oscillation with setting in the reversal range is given in
section 6.2 and:
References:
/FB2/Function Manual, Expanded Functions; Oscillation (P5).

Reading at the time of the main run
Machine data and setting data which change during the processing
are addressed from the synchronized action introduced with $$-sign.
Example
ID=1 WHENEVER $AA_IM[z]< $$SA_OSCILL_REVERSE_POS2[Z]–6 DO
$AA_OVR[X]=0
In this context, it is assumed that the reversal position
can be changed any time during the operation.

Writing at the time of the main run
Requirement:
The currently set access authorization level must allow write access. It is only useful to write
MD and SD from the synchronized action when this takes immediate effect. The
effectiveness for all machine data and setting data is specified in:
References:
/LIS1/ Lists (Book 1), Section "MD-/SD Lists".
Addressing:
Machine and setting data to be written must be addressed preceded by the $$ sign.
Example
ID=1 WHEN $AA_IW[X]>10 DO $$SN_SW_CAM_PLUS_POS_TAB_1[0]=20
$$SN_SW_CAM_MINUS_POS_TAB_1[0]=30
; Changing the switching positions of SW-cams from 20 to 30

Detailed description
2.3 Special real-time variables for synchronized actions

 Synchronized actions
34 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.3.6 FIFO variables (circulating memory)

Application
Up to 10 FIFO variables are provided to allow storage of related data sequences:
$AC_FIFO1[n] to $AC_FIFO10[n].

Structure
The memory structure of a FIFO-variable is shown in the figure: Example of FIFO variable

Amount
The number of the available AC FIFO variable is specified in machine data
MD28260 $MC_NUM_AC_FIFO

Size
The number of values that can be stored in a FIFO variable is defined via machine data
MD28264 $MC_LEN_AC_FIFO
All FIFO variables have the same length.

Data type:
Values in the FIFO-variables have the data type REAL.

Meaning of index
Index n:
Indices 0 to 5 have special meanings:
n=0: When writing with index 0 a new value is stored in the FIFO. When reading with index 0
the oldest element is read and deleted from the FIFO.
n=1: Access to oldest stored element
n=2: Access to latest stored element
n=3: Sum of all FIFO elements
The MD28266 $MC_MODE_AC_FIFO determines the mode
the summation:
Bit 0 = 1 sum upon each writing
Updating
Bit 0 = 0 no summation possible. n=4: Number of elements available in FIFO. Read and
write access can be assigned to each element of the FIFO.
FIFO variables are reset by resetting the number of elements, e.g. for the first FIFO variable:
$AC_FIFO1[0]=0

 Detailed description
 2.3 Special real-time variables for synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 35

n=5: Current write index relative to beginning of FIFO
n= 6 to 6+nmax: Access to the nth FIFO-element:

 Note
The FIFO access is a special form of R parameter access: (see below)
The FIFO-values are stored in the R-parameter range.
The FIFO values are stored in the static storage area. They are not deleted by end of
program, RESET or POWER ON.
The FIFO values are stored simultaneously when R parameters are archived.

Machine data
MD28262 $MC_START_AC_FIFO
defines the number of the R parameter, which marks the beginning of FIFO variables
storage in the R parameter area.
The actual number of R parameters in a channel is programmed in machine data
MD28050 $MC_MM_NUM_R_PARAM
is defined. The following two diagrams show a schematic representation of part lengths of
parts on a belt that have been stored in FIFO variables.

Figure 2-2 Product lengths of sequence of parts on conveyor belt

Detailed description
2.3 Special real-time variables for synchronized actions

 Synchronized actions
36 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Figure 2-3 FIFO variable

2.3.7 System variables saved in SRAM (SW 6.3 and later)

RESET response
The system variables $AC_MARKER and $AC_PARAM saved in SRAM retain their existing
values after RESET and Power On.

 Note
In the case of part programs and synchronized actions that work with system variables
saved in SRAM, you must make sure that the variables are not initialized to 0 after RESET.
This may require some adaptation if system variables saved in DRAM have been used
previously.

 Detailed description
 2.3 Special real-time variables for synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 37

Data Backup
System variables $AC_MARKER and $AC_PARAM saved in SRAM can be included in the
data backup.
The following backup modules are present for each channel:

_N_CHi_ACM for $AC_MARKER values and
_N_CHi_ACP for $AC_PARAM values.
i denotes the relevant channel number.

Sequence
The saved modules are entered in the full backup file _N_INITIAL_INI according to R
parameters.
References:
/IAD/ Commissioning Manual; NCU 840D and CCU 810D.

2.3.8 Determining the path tangent in synchronized actions

$AC_TANEB
The system variable $AC_TANEB (Tangent ANgle at End of Block), which can be read in
synchronized actions, calculates the angle between the path tangent at the end of the
current block and the path tangent at the start of the programmed following block.
The tangent angle is always output positive in the range 0.0 to 180.0 degrees. If there is no
following block in the main run, the angle -180.0 degrees is output.
The system variable $AC_TANEB should not be read for blocks generated by the system
(intermediate blocks). The system variable $AC_BLOCKTYPE is used to tell whether it is a
programmed block (main block).
Programming example:
ID=2 EVERY $AC_BLOCKTYPE==0 DO $R1 = $AC_TANEB;

Detailed description
2.3 Special real-time variables for synchronized actions

 Synchronized actions
38 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.3.9 Determining the current override

Current override

The current override (NC-part) can be read and written in the synchronized actions with the
following system variables:
$AA_OVR Axial override
$AC_OVR Path override

PLC override

The override defined by the PLC is provided for synchronized actions for reading in the
following system variables:
$AA_PLC_OVR Axial override
$AC_PLC_OVR Path override

Resulting override

The resulting override is provided for synchronized actions for reading in the following
system variables:
$AA_TOTAL_OVR Axial override
$AC_TOTAL_OVR Path override

The resulting override is calculated as follows:
$AA_OVR * $AA_PLC_OVR or
$AC_OVR * $AC_PLC_OVR

 Detailed description
 2.3 Special real-time variables for synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 39

2.3.10 Capacity evaluation using time requirement for synchronized actions

Description
In a interpolation cycle, synchronized actions have to be both interpreted and motions
calculated by the NC. The system variables presented below provide synchronized actions
with information about the current time shares that synchronized actions have of the
interpolation cycle and about the computation time of the position controllers.
The variables have valid values only when the machine data
MD11510 $MN_IPO_MAX_LOAD is greater than 0. Otherwise the variables for both
SINUMERIK powerline and solution line systems always specify the net computing time
during which the interrupts caused by HMI are no longer taken into account. The net
computing time results from:
• synchronized action time,
• position control time and
• remaining IPO-computing time without interrupts caused by HMI
The variables always contain the values of the
previous IPO cycle.

Figure 2-4 Time components of the synchronized actions in the IPO cycle

System variables Description
$AN_IPO_ACT_LOAD current IPO computing time (incl. synchronized actions of all

channels)
$AN_IPO_MAX_LOAD longest IPO computing time (incl. synchronized actions of all

channels)
$AN_IPO_MIN_LOAD shortest IPO computing time (incl. synchronized actions of all

channels)
$AN_IPO_LOAD_PERCENT current IPO computing time as percentage of IPO cycle (%)

Detailed description
2.3 Special real-time variables for synchronized actions

 Synchronized actions
40 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

System variables Description
$AN_SYNC_ACT_LOAD current computing time for synchronized actions over all

channels
$AN_SYNC_MAX_LOAD longest computing time for synchronized actions over all

channels
$AN_SYNC_TO_IPO percentage share that the synchronized actions have of the

complete IPO computer time (over all channels)
$AC_SYNC_ACT_LOAD current computing time for synchronized actions in the channel
$AC_SYNC_MAX_LOAD longest computing time for synchronized actions in the channel
$AC_SYNC_AVERAGE_LOAD average computing time for synchronized actions in the channel
$AN_SERVO_ACT_LOAD current computing time of the position controller
$AN_SERVO_MAX_LOAD longest computing time of the position controller
$AN_SERVO_MIN_LOAD shortest computing time of the position controller

Overload information
MD11510 $MN_IPO_MAX_LOAD is used to set the net IPO computing time (in % of IPO
cycle) starting from which the system variable $AN_IPO_LOAD_LIMIT is to be set to TRUE.
If the current load falls below this limit, the variable is again set to FALSE.
If the MD is 0, the entire diagnostic function is deactivated. The user can evaluate
$AN_IPO_LOAD_LIMIT to define a specific strategy for avoiding plane overflow.

Writeable system variables
The system variables described above can be written from synchronized actions:

System variables Description
$AN_SERVO_MAX_LOAD longest computing time of the position controller
$AN_SERVO_MIN_LOAD shortest computing time of the position controller
$AN_IPO_MAX_LOAD longest IPO computing time (incl. synchronized

actions of all channels)
$AN_IPO_MIN_LOAD shortest IPO computing time (incl. synchronized

actions of all channels)
$AN_SYNC_MAX_LOAD longest computing time for synchronized actions

over all channels
$AC_SYNC_MAX_LOAD longest computing time for synchronized actions

in the channel

On every write access, these variables are reset to the current load, regardless of the value
written.

 Detailed description
 2.3 Special real-time variables for synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 41

Programming example

$MN_IPO_MAX_LOAD = 80 ; MD: Time use limit for IPO cycle
 ; As soon as $AN_IPO_LOAD_PERCENT > 80 %,
 ; $AN_IPO_LOAD_LIMIT is set to TRUE.

N01 $AN_SERVO_MAX_LOAD=0

N02 $AN_SERVO_MIN_LOAD=0

N03 $AN_IPO_MAX_LOAD=0

N04 $AN_IPO_MIN_LOAD=0

N05 $AN_SYNC_MAX_LOAD=0

N06 $AC_SYNC_MAX_LOAD=0

N10 IDS=1 WHENEVER $AN_IPO_LOAD_LIMIT == TRUE DO M4711 SETAL(63111)

N20 IDS=2 WHENEVER $AN_SYNC_TO_IPO > 30 DO SETAL(63222)

N30 G0 X0 Y0 Z0

...

N999 M30

The first synchronized action generates an auxiliary function output and an alarm, if the
entire time use limit is exceeded.
The second synchronized action generates an alarm if the share that the synchronized
action has of the IPO computing time (over all channels) exceeds 30%.

2.3.11 List of system variables relevant to synchronized actions

 Note
The system variables listed previously, which can be addressed from synchronized actions
are given in the independent print version starting from SW-version 7.1:
/PGA1/ Parameter Manual, System Variables.
All system variables with the corresponding identifier X can be used (read/written) by
synchronized actions (SA). For further explanations on the properties of the system variables
in the main run, see Section 2.3 "Special main run variables for synchronized actions".

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
42 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.4 Actions in synchronized actions

Actions
Each synchronized action contains after the action code DO ... one or more (max. 16)
actions or a technology cycle, which are executed when the condition is fulfilled. (Actions will
now be used as a generic term.).

Several actions
Several actions contained in a synchronized action are activated in the same interpolation
cycle if the appropriate condition is fulfilled.

List of possible actions
The following actions can be programmed in the "Action" section of synchronized actions:

Table 2-2 Actions in synchronized actions

... DO ... Description Reference
Mxx
Sxx
Hxx

Output of auxiliary functions to PLC 2.4.1

SETAL(no.) Set alarm, error reactions
$V... = ...
$A...= ...
$AA_OFF =
$AC_OVR =
$AA_OVR =
$AC_VC =
$AA_VC =
$$SN_SW_CAM_ ...
$AC_FCT...
$AA_TOFF =

Assign variable (Servo-value)
Assign variable (main-run variable)
– Superimposed motion
– Velocity control:
Path velocity
Axis velocity
add. path-feed offset
add. offset value of the axis
Changing the SW-cam positions
(Setting data) and all other SD
Overwriting of FCTDEF parameters
– applied tool length offsets

2.4.2

2.4.3

2.4.4

2.4.8

RDISABLE
STOPREOF
DELDTG
FTOC
SYNFCT
ZYKL_T1 (e.g.)

Synchronized action procedures:
Activate read-in disable
End preprocessing stop
Delete distance-to-go
Online tool offset
Polynomial evaluation
Call of Technology Cycles

2.4.9
2.4.10
2.4.11
2.4.7
2.4.5
2.5

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 43

... DO ... Description Reference

$AA_OVR[x]= 0
ACHSE_X (e.g.)
POS[u]= ...
FA[u]= ...

MOV[u]= >0
MOV[u] = <0
MOV[u] = =0
AXTOCHAN
GET[axis]
RELEASE(axis)

Control positioning axes:
Disabling an axis motion
Calling an axis program
Position
Determine axis feed rate
Move command axis continuously:
- forwards
- backwards
- stopping
Axis replacement from a synchronized action
Get axis for axis replacement
Release axis for axis replacement

2.4.12
2.4.13
2.4.13
2.4.14
2.4.15
"
"
"
2.4.16
"
"

SPOS
M3, M4, M5, S =
$AA_OVR[S1]= 0

Spindles:
Position
Direction of rotation, halt, RPM
Disabling the spindle motion

2.4.18

PRESETON(,) Preset actual-value memory 2.4.19
 Coupled motion and couplings 2.4.20

LEADON
LEADOF
TRAILON
TRAILOF

Activate/deactivate couplings:
Couple following axis with leading axis
Disable coupling
Asynchr. Coupled motion on
Asynchr. coupled motion off

2.4.20

MEAWA
MEAC

Measurement without deletion of distance-to-go
Cyclical measurement

2.4.21

SETM
CLEARM

Channel synchronization:
Setting a wait mark
Deleting a wait mark

2.4.22

LOCK
UNLOCK
RESET

Coordination of synchronized actions:
- Disable synchronized action/technology cycle
- Release synchronized action/technology cycle
- Reset technology cycle

2.5.1

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
44 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.4.1 Output of M, S and H auxiliary functions to the PLC
For general information about auxiliary function outputs, please see:
References:
/FB1/ Function Manual Basic Functions; Auxiliary Function Output to PLC (H2)

Examples
The advantage of implementing auxiliary function outputs in synchronized actions is
illustrated by the following example: Switch on coolant at a specific position
Solution without synchronized action: 3 blocks
N10 G1 X10 F150
N20 M07
N30 X20

Solution with synchronized action: 1 set
N10 WHEN $AA_IM[X] >= 10 DO M07
N20 G1 X20 F150

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 45

Auxiliary function output to the PLC
M, S or H auxiliary functions can be output to the PLC as synchronized actions. The output
takes place immediately (like an interrupt on the PLC) in the interpolation cycle if the
condition is fulfilled.
Output time becomes ineffective, if possibly defined in one of the following machine data:
• MD11110 $MN_AUXFU_GROUP_SPEC (auxiliary function group specification)
• MD22200 $MC_AUXFU_M_SYNC_TYPE (output time of M functions)
• MD22210 $MC_AUXFU_S_SYNC_TYPE (Output time of the S functions)
• MD22230 $MC_AUXFU_H_SYNC_TYPE (Output time of the H functions)

Programming
Auxiliary functions may be programmed with only frequency keywords WHEN or EVERY in
synchronized actions.

Example
WHEN $AA_IM[X] > 50 DO H15 S3000 M03
; if actual value of the X axis is greater than 50, the output is H15, set new spindle speed,
new direction of rotation

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
46 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Restrictions
No more than 10 auxiliary functions may be output simultaneously (i.e. in an OB 40 cycle of
the PLC). The total number of auxiliary function outputs from part programs and
synchronized actions must never exceed 10 at any point in time.
Maximum number of auxiliary functions per synchronized action block or technology cycle
block:
• 5 M functions
• 3 S functions
• 3 H functions
Predefined M functions cannot be programmed by means of synchronized actions. They will
be rejected by an alarm.
WHEN ... DO M0 ;Alarm
However, the spindle-M-functions are allowed: M3, M4, M5 and M17 may be programmed as
the end of a technology cycle.

Message acknowledgment
Technology cycle blocks (see Chapter "Call of technology cycles") containing auxiliary
function outputs are not completely processed until all auxiliary functions in the block have
been acknowledged by the PLC. The next block in the technology cycle is not processed
until all auxiliary functions in the preceding block have been acknowledged by the PLC.
The acknowledgement behavior has been expanded to include other variants:
• Output of auxiliary functions without block change delay

High-speed auxiliary functions (QUICK) first, as a parallel process in the PLC, then
auxiliary function output with anticipated acknowledgment.

The user can choose between INT and REAL as the data type for H auxiliary functions. The
PLC user program must interpret the values in accordance with the definition. The INT value
range for H auxiliary functions has been increased to: -2 147 483 648 to 2 147 483 647.
References:
/FB1/ Function Manual Basic Functions; Auxiliary Function Output to PLC (H2)

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 47

2.4.2 Setting (writing) and reading of real-time variables

Write
In synchronized actions the real-time variables can be written in actions, which are marked in
the list of the system variables in the 8th row in the field "write:" with an X. The following
machine and setting data are also written in the main run:
• Machine and setting data, e.g. $$MN_..., $$MC_..., $$MA_...

or $$SN_..., $$SC_..., $$SA_...

 Note
Machine data and setting data that are to be written in the main run must be programmed
with $$.._... .

Efficiency
Machine data written from synchronized actions must be coded for IMMEDIATE
effectiveness. The modified value will not otherwise be available for the remainder of the
processing run. Details about the effectiveness of new machine data values after
modification can be found in:
References:
/LIS/ Lists (Book1)
Examples:
... DO $$MN_MD_FILE_STYLE = 3;Set machine data
... DO $$SA_OSCILL_REVERSE_POS1 = 10;Set setting data
... DO $A_OUT[1]=1;Set digital output
... DO $A_OUTA[1]= 25; Output analog value

Read
In synchronized actions, the system variables can be read as main run variables in actions
that are labeled with X in the "read" field in the 7th line of the list of synchronous variables.
The following machine and setting data are also read:
• Machine data, setting data, e.g. $$SN_..., $$SC_..., $$SA_...

 Note
Machine and setting data that must be addressed online in the main run must be
programmed with $$.._... . In the case of variables whose content remains unchanged during
the main run, it is sufficient to add a $ sign in front of the identifier.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
48 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Examples:
WHEN $AC_DTEB < 5 DO ... ;Read distance from block end in condition
DO $R5= $A_INA[2] ;Read value of the analog input 2 and assign arithmetic variable

2.4.3 Changing of SW cam positions and times (setting data)

Introduction
The "Software cams" function allows position-dependent cam signals to be sent to the PLC
or NCK I/Os.
References:
/FB2/ Function Manual for Extended Functions, Software Cams, Position-Switching Signals
(N3)

Function
Synchronized actions can be programmed to alter cam positions at which signal outputs are
set. Existing setting data are written to change these positions.
The following setting data can be modified via synchronized actions:
$$SN_SW_CAM_MINUS_POS_TAB_1[0..7] ;Positions of the minus cams
$$SN_SW_CAM_MINUS_POS_TAB_2[0..7] ;Positions of the minus cams
$$SN_SW_CAM_PLUS_POS_TAB_1[0..7] ;Positions of the plus cams
$$SN_SW_CAM_PLUS_POS_TAB_2[0..7] ;Positions of the plus cams

Example 1
Alteration of a cam position:
ID=1 WHEN $AA_IW[x] > 0 DO $$SN_SW_CAM_MINUS_POS_TAB_1[0] = 50.0
Lead or delay times can be changed via the following setting data:
$$SN_SW_CAM_MINUS_TIME_TAB_1[0..7]
; Lead or delay time on minus cams
$$SN_SW_CAM_MINUS_TIME_TAB_2[0..7]
; Lead or delay time on minus cams
$$SN_SW_CAM_PLUS_TIME_TAB_1[0..7]
; Lead or delay time on plus cams
$$SN_SW_CAM_PLUS_TIME_TAB_2[0..7]
; Lead or delay time on plus cams

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 49

Example 2
Alteration of a lead/delay time:
ID=1 WHEN $AA_IW[x] > 0
DO $$SN_SW_CAM_MINUS_TIME_TAB_1[0] = 1.0

 Note
Software cams must not be set as a function of velocity via synchronized actions
immediately in front of a cam. At least 2-3 interpolation cycles must be available between the
setting and the relevant cam position.

2.4.4 FCTDEF

Application
The actions of online tool offset FTOC and polynomial evaluation SYNFCT described in the
subsections given below require an interrelationship between an input quantity and an output
quantity to be defined in the form of an polynomial. FCTDEF defines polynomials of this type.
For special examples of polynomial application for online dressing of a grinding wheel,
please see Subsection "Online tool offset FTOC". For examples of load-dependent feedrates
and clearance control via polynomials, please see Subsection "Polynonmial evaluation
SYNFCT".

Characteristics of polynomials
The polynomials defined by means of FCTDEF have the following characteristics:
• They are generated through a FCTDEF call in the part program.
• The parameters of defined polynomials are real-time variables.
• Individual polynomial parameters can be overwritten using the same method used to

write real-time variables. Permissible generally in part program and in action section of
synchronized actions. See Chapter "Setting (writing) and reading of real-time variables".

 Note

Validity limits and coefficients of existing polynomials can also be changed from
synchronized actions.
Example WHEN ... DO $AC_FCT1[1]= 0.5

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
50 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Number of polynomials
The number of polynomials that can be defined simultaneously is specified by the following
machine data:
MD28252 $MC_MM_NUM_FCTDEF_ELEMENTS (number of FCTDEF elements)

Block-synchronous polynomial definition

FCTDEF(
 Polynomial No.
 Low limit,
 High limit,
 a0,
 a1,
 a2,
 a3)

The relationship between the output variable y and the input variable x is as follows:
y= a0+ a1x+ a2x2+ a3x3
The parameters specified in the function are stored in the following system variables:

$AC_FCTLL[n]: Lower limit, n: Polynomial number
$AC_FCTUL[n]: Upper limit, n: Polynomial number
$AC_FCT0[n]: a0-coefficient, n: Polynomial number
$AC_FCT1[n]: a1-coefficient, n: Polynomial number
$AC_FCT2[n]: a2-coefficient, n: Polynomial number
$AC_FCT3[n]: a3-coefficient, n: Polynomial number

On the basis of this relationship, it is also possible to write or modify polynomials directly via
the relevant system variables. The validity range of a polynomial is defined via limits
$AC_FCTLL[n] and $AC_FCTUL[n].

Call of polynomial evaluation
Stored polynomials can be used in conjunction with the following functions:
• Online tool offset, FTOC()
• Polynomial evaluation, SYNFCT().
References:
/PG/ Programming Manual Fundamentals
/PGA/Programming Manual Advanced
/FB2/ Function Manual Extended Functions; Grinding (W4).

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 51

2.4.5 Polynomial evaluation SYNFCT

Application
By applying an evaluation function in the action section of a synchronized action, it is
possible to read a variable, evaluate it with a polynomial and write the result to another
variable in synchronism with the machining process. This functionality can be used, for
example, to perform the following tasks:
• Feedrate as a function of drive load
• Position as a function of a sensor signal
• Laser power as a function of path velocity

...

SYNFCT() evaluation function
The function has the following parameters:

SYNFCT(Polynomial number,
 Real-time variable output,
 Real-time variable input)
For definition of a polynomial, please see Chapter "FCTDEF".

Operating principle of SYNFCT
The polynomial identified by "Polynomial number" is evaluated with the value of the "Real-
time variable input". The result is then limited by maximum and minimum limits and assigned
to the "Real-time variable output".
Example

FCTDEF(1,0,100,0,0.8,0,0) ; Definition of polynomial 1 is done
...

Synchronized action:

ID=1 DO SYNFCT(1,$AA_VC[U1], $A_INA[2]) ; the additive offset value of the axis U1 is
calculated in each interpolation cycle from
the analog input value 2 via polynomial 1

For the 'Real-time variable output', it is possible to select variables that are included in the
machining process as follows:
• as an additive control factor (e.g. feedrate),
• as a multiplicative control factor (e.g. override),
• as a position offset
• directly

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
52 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Additive feedrate control
In case of additive control, the programmed value (F word with respect to Adaptive Control)
is compensated by an additive factor. Factive = Fprogrammed+ FAC
The following are set, for instance, as 'real-time variable output':

$AC_VC additive path-feed offset,
$AA_VC[axis] additive axial feedrate override

Example of additive control of path feedrate
The programmed feedrate (axial- or path-related) must be subject to additive control by the
(positive) X axis current (e.g. infeed torque). The operating point is set to 5 A. The feedrate
may be altered by ±100 mm/min. The magnitude of the axial current deviation may be ±1 A.

Figure 2-5 Example of additive control

Determination of the coefficients, see also Chapter "FCTDEF":
y = f(x) = a0 + a1x +a2x2 + a3x3
a1 = 100mm / (1min*A)
a1 = -100 → Control constant
a0 = -(-100)*5 =500
a2 = 0 (not a square component)
a3 = 0 (not a cubic component)
Upper limit = 100
Lower limit = -100
The polynomial to be defined (no. 1) is thus as follows:
FCTDEF(1, -100, 100, 500, -100, 0, 0)
This function completely describes the Figure "Example of additive control".

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 53

The adaptive control function is activated with the following synchronized action:

ID = 1 DO SYNFCT(1, $AC_VC[x],
$AA_LOAD[x])

; the additive offset value for the feedrate of the x axis is
calculated in each interpolation cycle from the percentage
utilization value of the drive via the polynomial 1

Multiplicative control
In case of the multiplicative control, the F Word is multiplied with a factor (override in case of
adaptive control). Factive = Fprogrammed _ FactorAC
Variable $AC_OVR that acts as a multiplicative factor on the machining process is used as
the real-time variable output.

Example of multiplicative control
The programmed feedrate (axial- or path-related) must be subject to multiplicative control as
a function of the drive load. The operating point is set to 100% at 30% drive load. The
axis(axes) must stop at 80% drive load. An excessive velocity corresponding to the
programmed value +20% is permissible.

Figure 2-6 Example of multiplicative control

Determination of the coefficients, see also Chapter "FCTDEF":
y = f(x) = a0 + a1x +a2x2 + a3x3
a1 = - 100% / (80% -30%) = -2
a0 = 100+ (2 * 30) = 160
a2 = 0 (not a square component)
a3 = 0 (not a square component)
Upper limit = 120

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
54 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Lower limit = 0
The polynomial (no. 2) can therefore be defined as follows:
FCTDEF(2, 0, 120, 160, -2, 0, 0)
This function completely describes the Figure "Example of multiplicative control".
The associated synchronized action can be programmed as follows:

ID = 1 DO SYNFCT(2, $AC_OVR,
$AA_LOAD[x])

; the path override is calculated in each interpolation cycle
from the percentage drive load for the x axis via the
polynomial 2

Position offset with limitation
The system variable $AA_OFF controls an axis-specific override that takes immediate effect
(basic coordinate system). The type of override is defined by the machine data:
MD36750 $MA_AA_OFF_MODE (Effect of value assignment for axial override in case of
synchronized actions)
0: Proportional evaluation
1: integral evaluation
In SW 4 and later, it is possible to limit the value to be compensated absolutely (main-run
variable output) to the value stored in the setting data:
SD43350 $SA_AA_OFF_LIMIT (Upper limit of the offset value $AA_OFF in case of
clearance control)
Axis-specific system variables can be evaluated in another synchronized action to establish
whether the limitation has been reached.
$AA_OFF_LIMIT[axis]
Value -1: Limit of offset value reached in the negative direction.
Value 1: Limit of offset value reached in the positive direction.
Value 0: The offset value is not within the limit range.
Application:
The SYNFCT function can be used in conjunction with system variable $AA_OFF to
implement clearance control in laser machining operations. See below.

Example
Task:
Clearance control as function of a sensor signal in case of laser machining.
The offset value is limited in the negative Z direction to ensure that the laser head is
retracted reliably from finished metal blanks. When the limiting value is reached, the user
can trigger the reactions such as Stop axis (by means of override 0, see Chapter "Disabling
a programmed axis motion") or set alarm (see Chapter "Set alarms / error reactions").

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 55

Boundary conditions:
Integral evaluation of the input quantity of sensor $A_INA[3]. The offset value is applied in
the basic coordinate system, i.e. prior to kinematic transformation. A programmed frame
(TOFRAME) has no effect, i.e. the function cannot be used for 3D clearance control in the
direction of orientation. The "clearance control" function can be used to implement a
clearance control system with high dynamic response or a 3D clearance control system.
See:
References:
/FB3/ Function Manual Special Functions; Clearance Control (TE1)
/PG/ Programming Manual Fundamentals
The interdependency between input quantity and output quantity is assured through the
relationship illustrated in the following diagram.

Further examples
Please see section "Clearance control with variable upper limit" for an example illustrating
dynamic adaptation of a polynomial limit in conjunction with Adaptive Control (clearance
control). The chapter "Controlling the feedrate" contains an example of adaptive control of
the path feedrate.

Clearance control
The clearance value is calculated by integrating with the machine data:
MD36750 $MA_AA_OFF_MODE[V]=1 (Effect of value assignment for axial override in case
of synchronized actions)
It works in the basic coordinate system, i.e. before transformation. This means that it can be
used for clearance control in the orientation direction (after frame selection with TOFRAME).

Figure 2-7 Clearance control

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
56 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

%_N_AON_SPF

PROC AON ; Subroutine for clearance control ON
FCTDEF(1, 0.2, 0.5, 0.35, 1.5 EX-5) ; Polynomial definition: The offset is applied in

the range 0.2 to 0.5
ID = 1 DO SYNFCT(1,$AA_OFF[Z], $A_INA[3]) ; Clearance control active
ID = 2 WHENEVER $AA_OFF_LIMIT[Z]<>0 DO
$AA_OVR[X] = 0

; Disable axis X when limit value is overshot

RET

ENDPROC

%_N_AOFF_SPF

PROC AOFF ; Subroutine for clearance control OFF
CANCEL(1) ; Cancel clearance control synchronized action
CANCEL(2) ; Cancel limit range check
RET

ENDPROC

%_N_MAIN_MPF ; Main program
 ; MD36750 is set to 1 before Power On for

integrating machining
$SA_AA_OFF_LIMIT[Z]= 1 ; Limiting value for the offset:
AON ; Clearance control ON
...

G1 X100 F1000

AOFF ; Clearance control OFF
M30

2.4.6 Overlaid movements $AA_OFF settable (SW 6 and later)

Overlaid movements up to SW 5.3
Whatever the current tool and processing level, an overlaid movement is possible for each
axis of the channel via the system variable $AA_OFF. The offset is retracted immediately,
whether the axis is programmed or not. This allows a clearance control to be implemented.
The type of calculation is defined with the axial machine data as follows:
MD36750 $MA_AA_OFF_MODE (Effect of value assignment for axial override in case of
synchronized actions)
Bit0 = 0: proportional calculation (absolute value)
Bit0 = 1: integrating calculation (incremental value)

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 57

$AC_VACTB and $AC_VACTW as input variable for synchronized actions and output are
disabled via the options bit ("Feedrate-dependent analog value control" → laser power
control)!
$AA_OFF, position offset as output variable for synchronized actions for clearance control is
disabled via the options bit!
Velocity control with the machine data:
MD32070 $MA_CORR_VELO (axis velocity for override)

Response of $AA_OFF in SW 6 and later
After RESET the position offset can still be retained
Previously, during a RESET the position offset of $AA_OFF was deselected. In the case of
static synchronized actions IDS = <Number> DO $AA_OFF = <Value>, this behavior leads to
an immediate renewed overlaid movement with the interpolation of a position offset, the
behavior of RESET can be set with the following machine data:
MD36750 $MA_AA_OFF_MODE (Effect of value assignment for axial override in case of
synchronized actions)
Bit1 = 0: $AA_OFF is deselected in case of RESET
Bit1 = 1: $AA_OFF iis maintained after RESET

Overlaid movement in the modeJOG
Also in JOG mode, if $AA_OFF changes, an interpolation of the position offset can be set as
an overlaid movement via the following machine data:
MD36750 $MA_AA_OFF_MODE (Effect of value assignment for axial override in case of
synchronized actions)
Bit2 = 0: no overlaid movement owing to $AA_OFF
Bit2 = 1: an overlaid movement owing to $AA_OFF
If a position offset is interpolated on the basis of $AA_OFF, a mode change can only occur
after JOG once the interpolation of the position offset is complete. Otherwise, alarm 16907 is
signaled.

Activation/Deactivation
The programmed conditions of the current motion-synchronous actions are recorded in
interpolation time, until the conditions are met or the end of the subsequent block is reached
with the machine in operation.
In software version 3.2 and later, the introduction of an $$ main variable approved for
synchronized actions results in a comparison of the synchronization conditions in
interpolation time in the main run.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
58 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Boundary conditions
• Interrupt routines/asynchronous subroutines

When an interrupt routine is activated, modal motion-synchronous actions are retained
and are also effective in the asynchronous subroutine. If the subroutine return is not
made with REPOS, the modal synchronized actions changed in the asynchronous
subroutine continue to be effective in the main program.

• REPOS
In the remainder of the block, the synchronized actions are treated in the same way as in
an interruption block. Modifications to modal synchronized actions in the asynchronous
subprogram are not effective in the interrupted program. Polynomial coefficients
programmed with FCTDEF are not affected by ASUB and REPOS.
The coefficients from the call program are applied in the asynchronous subprogram. The
coefficients from the asynchronous subprogram continue to be applied in the call
program.

• End of program
Polynomial coefficients programmed with FCTDEF remain active after the end of program.

• Block search
During block search with calculation, these polynomial coefficients are collected, i.e.
written to the setting data.

CORROF
• The part program command CORROF with DRFOF is also collected during block search

and output in an action block. In the last block handled by the search run with CORROF or
DROF, all the deselected DRF offsets are collected for reasons of compatibility.
A CORROF with AA_OFF is not collected during a block search and is lost. If a user wishes
to continue to use this search run, this is possible by means of block search via
"SERUPRO" program testing. More detailed information about these block searches can
be found in:

References:
/FB1/ Function Manual, Basic Functions; Mode Group, Channel, Program Operation Mode
(K1),
• DRF-axis-specific offsets withCORROF deselected

WithCORROF the DRF-offsets are possible for the individual axes only from the part
program.

• Deselection of the position offset in case of synchronized actions
Alarm 21660 is output if a synchronized action is active when the position offset is
deselected via parts program command CORROF(axis,"AA_OFF"). $AA_OFF is
deselected simultaneously and not set again. If the synchronized action becomes active
later in the block after CORROF, $AA_OFF remains set and a position offset is
interpolated.

References:
/PG/ Programming Manual Fundamentals

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 59

 Note
The coordinate system (BCS or WCS) in which a real-time variable is defined determines
whether frames will or will not be included.
Distances are always calculated in the set basic system (metric or inch). A change with G70
or G71 has no effect.
DRF offsets, zero offsets external, etc., are only taken into consideration in the case of real-
time variables that are defined in the machine coordinate system.

2.4.7 Online tool offset FTOC

Online tool offset
Machining of the workpiece and dressing of the grinding wheel for grinding applications can
be implemented either in the same or in different channels (machining and dressing
channel).

Figure 2-8 Dressing during machining using a dressing roller

References:
/FB2/ Function Manual Extended Functions; Grinding (W4).

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
60 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Boundary condition
The synchronized action FTOC is available in Software-version 3.2 and later.
An online offset allows an overlaid movement to be implemented for a geometry axis
according to a polynomial programmed with FCTDEF (see Subsection "FCTDEF") as a
function of a reference value (e.g. actual value of an axis).
The coefficient a0 of the function definition FCTDEF() is evaluated for FTOC. Upper and lower
limit are dependent on a0.

Programming of FTOC
The online offset is specified as follows:

(Polynomial No.

Real-main variable_read, ; Ref_value
Length 1_2_3,

Channel number,

FTOC

Spindle number)

Parameter

Polynomial No.: Number of the function parameterized earlier with FCTDEF.
Real-main variable_read: All main variables of the type REAL listed in the chapter "List of

system variables relevant for synchronized actions" are
permitted.

Length 1_2_3: Wear parameter into which the tool offset value is added.
Channel number: Target channel in which the offset must be applied. This

enables simultaneous dressing from a parallel channel. If the
channel number is missing, the offset is effective in the active
channel. Online offset with FTOCON must be activated in the
target channel.

Spindle number: The spindle number is programmed if a non-active grinding
wheel needs to be dressed. "Constant peripheral speed" or
"tool monitoring" must be active for this purpose. If no spindle
number is programmed, then the active tool is compensated.

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 61

Example
Compensate length of an active grinding wheel

%_N_DRESS_MPF

FCTDEF(1,-1000,1000,-$AA_IW[V],1) ; Definition of the function
ID=1 DO FTOC(1,$AA_IW[V],3,1) ; Select online tool offset:

Derived from the motion of the V axis, the length 3 of
the active grinding wheel is compensated in channel 1.

WAITM(1,1,2) ; Synchronization with machining channel
G1 V-0.05 F0.01, G91

G1 V -...

...

CANCEL(1) ; Deselect online offset
...

 Note
No frequency keyword nor any condition is programmed in the synchronized action. The
FTOC action is therefore active in every interpolation cycle with no dependencies other than
$AA_IW[V].

2.4.8 Online tool length offset $AA_TOFF[Index]

Function
In conjunction with an active orientation transformer or an active tool carrier, tool length
offsets can be applied during processing/machining in real time. Changing the effective tool
length using online tool length offset produces changes in the compensatory movements of
the axes involved in the transformation in the event of changes in orientation. The resulting
velocities can be higher or lower depending on machine kinematics and the current axis
position.
The velocity at which the tool length offset is applied in the appropriate direction via
$AA_TOFF[], can be set using machine data:
MD21194 $MC_TOFF_VELO (speed online tool offset)
The acceleration can accordingly be modified via machine data:
MD21196 $MC_TOFF_ACCEL (acceleration online tool offset)

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
62 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

 Note
Online tool length offset is an option and must be enabled beforehand.
For further information regarding the activation of the function in the part program, see:
References:
/PGA/Programming Manual Work Preparation; Chapter Transformations "TOFFON,
TOFFOF"

Applications in synchronized actions
The tool length offsets are included via a synchronized action variable $AA_TOFF[]. This
variable is 3 dimensional corresponding to the three tool axes.
The three geometrical axis labels (tags) X, Y, Z are used as index. This defines the number
of active directions of compensation by the geometry axes active at the same time. All
offsets can be active at the same time.
For an active orientation transformation or for an active tool carrier that can be oriented,
these offsets are effective in the particular tool axes. Before switching on or switching off a
transformation, an overlaid motion must be switched out using TOFFOF().
Once the "online tool length offset" has been deselected for a tool direction, the value of
system variable $AA_TOFF[] or $AA_TOFF_VAL[] is zero for this tool direction.

Mode of operation of the offset in the tool axis
The tool length offsets do not change the tool parameters, but are taken into account within
the transformation or the tool carrier that can be orientated, so that offsets are obtained in
the tool coordinate system. Machine data MD 21190 MC_TOFF_MODE (mode of operation
of offset in the tool axis) and bits 1 to 3 can be used to specify whether the contents of the
three components of the synchronized action variable $AA_TOFF[]
• Bits 1 to 3 = 0: are to be applied as an absolute value, or whether
• Bits 1 to 3 = 1: an integrating behavior is to occur.
The integrating behavior of $AA_TOFF[] allows 3D remote control. The value that has been
reached, integrating, can be read using variable $AA_TOFF_VAL[].

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 63

Example
Selecting the online tool length offset
Setting the machine data for online tool length offset:

MD21190 $MC_TOFF_MODE = 1 ; Absolute values are approached
MD21194 $MC_TOFF_VEL[0] = 10000

MD21194 $MC_TOFF_VEL[1] = 10000

MD21194 $MC_TOFF_VEL[2] = 10000

MD21196 $MC_TOFF_ACC[0] = 1

MD21196 $MC_TOFF_ACC[1] = 1

MD21196 $MC_TOFF_ACC[2] = 1

Activate online tool length offsets in the part program:

N5 DEF REAL XOFFSET

N10 TRAORI ; Activate orientation transformation
N20 TOFFON(Z) ; Activating the function for the
 ; Z-tool axis

Query in synchronized action ; for the Z-tool axis a
N30 WHEN TRUE DO $AA_TOFF[Z] = 10 ; Tool length offset = 10
G4 F5 ; interpolated
…

Static synchronized action ; for the Z-tool axis a
N50 ID=1 DO $AA_TOFF[X] = $AA_IW[X2] ; offset as a function of the
G4 F5 ; position of one axis X2 is executed
… ; current offset
N100 XOFFSET = $AA_TOFF_VAL[X] ; points tool in X direction
N120 TOFFON(X, -XOFFSET) ; for the X-tool axis a
G4 F5 ; tool length offset is reset again to 0

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
64 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Example
De-selecting the online tool length offset

N10 TRAORI ; Activate orientation transformation
N20 TOFFON(X) ; Activating the function for the
N30 WHEN TRUE DO $AA_TOFF[X] = 10 ; X-tool axis a
G4 F5 ; Tool length offset = 10 is interpolated
…

; Positional offset of the X tool direction is deleted:
; ... $AA_TOFF[X] = 0 no axis is traveled,
; for the current position in WKS the position offset

N80 TOFFOF(X)

; is calculated according to the current orientation.
N90 TRAFOOF

Activating and de-activating in the part program
The online tool length offset is activated in the part program with TOFFON() and deactivated
with TOFFOF(). When activating for the particular offset direction, an offset value can be
specified, e.g. TOFFON(Z, 25), which is then immediately moved through.
During a compensatory movement, the VDI signal NCK → PLC NST "TOFF- motion active" is
set to 1:
DB21, ... DBX318.3 (TOFF movement active)
After de-selection, the NST "TOFF active" is set to 0:
DB21, ... DBX318.2 (TOFF active).

 Note
The online tool length offset remains inactive until it is re-selected using the instruction
TOFFON() in the part program.

Tool length offset at RESET and POWER ON
The behavior in case of RESET with Bit 0 can be set using the machine data:
MD21190 $MC_TOFF_MODE (operation of tool offset in tool axis)
The tool length offset $AA_TOFF[] is for MD 21190
• Bit 0 = 0: either deselected, or else is
• Bit 0 = 1: retained after RESET.
This is always necessary in case of synchronized actions IDS=number DO $AA_TOFF[n]=
value, as otherwise there would be an immediate tool length offset.
Similarly, a transformation or a die carrier with orientation capability can be deselected
afterRESET via the machine data:
MD20110 $MC_RESET_MODE_MASK (definition of initial control system settings after
RESET/TP-End)

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 65

Also in this case, the tool length offset must be cleared.
If a tool length offset is to remain active extending beyond a RESET, and a transformation
change of the tool carrier that can be oriented takes place, then Alarm 21665 "channel %1
$AA_TOFF[] reset" is output. In this case, the tool length offset is set to 0.
After POWER ON, all tool length offsets are set to 0.0.
The function is de-activated after POWER ON.

Behavior for the operating mode change and REPOS
The tool length offset remains active even when the operating mode is changed. The offset
can be executed in all modes - with the exception of JOG and REF.
If a tool length offset is interpolated on account of $AA_TOFF[] during mode change, the
mode change cannot take place until the interpolation of the tool length offset has been
completed. Alarm 16907 "Channel %1 action %2 <ALNX> possible only in stop state" is
output.
The tool length offset is also active during REPOS.

Boundary conditions
For an existing tool length offset, to avoid Alarm 21670 "Channel %1 block %2 inadmissible
change to the tool direction because $AA_TOFF active", then the following should be
observed:
• Deactivate transformation TROFOOF

A tool length offset must be cancelled before a transformation in the part program with
TOFFOF().

• Change CP after PTP and PTP-travel in the mode JOG
When changing over from CP to PTP a transformation is deactivated. A tool length offset
must be cleared before the changeover. If, when changing over to axis-specific manual
traverse in the JOG mode, a tool length offset is active, then a change to PTP is not
executed and alarm 21670 is issued. CP remains active until the tool length offset was
cleared using TOFFOF.

• Geometry axis change and change of plane
In case of geo-axis replacement, a tool length offset in the direction of the geometry axis
must be cleared beforehand via TOFFOF().
If a tool length offset is available when a plane is changed, then this must be cleared
beforehand via TOFFOF().

• Block search
The instructions TOFFON() and TOFFOF() are not collected and output in an action block
during block search.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
66 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.4.9 RDISABLE

Programmed read-in disable RDISABLE
The RDISABLE command in the active section causes block processing to be stopped when
the relevant condition is fulfilled. Processing of programmed motion-synchronous actions still
continues. The read-in disable is canceled again as soon as the condition for the RDISABLE
is no longer fulfilled.
An exact stop is initiated at the end of the block containing RDISABLE irrespective of
whether or not the read-in disable is still active.
The exact stop is also triggered, when there is control of the continuous-path mode (G64,
G641, G642, G643, G644). RDISABLE can be programmed with reference to the block or
also modal (ID=, IDS=)!
Application: This method can be used, for instance, to start the program in the interpolation
cycle as a function of external inputs.

Example RDISABLE
Programmed read-in disable

WHENEVER $A_INA[2]<7000 DO RDISABLE

...

N10 G01 X10 ; RDISABLE acts at the end of N10, when
the condition is fulfilled during its
processing.

N20 Y20

Program processing is halted if the voltage at input 2 drops to below 7 V (assuming that the
value 1000 corresponds to 1 V).
Application of this solution, for instance, read-in disable till the obstacle is removed.

2.4.10 STOPREOF

End of preprocessing stop with STOPREOF
A motion-synchronous action containing an STOPREOF command cancels the existing
preprocessing stop if the condition is fulfilled.
STOPREOF must always be programmed with keyword `WHEN' and as a non-modal
command.
Application: Fast program branching at the end of a block.

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 67

Example STOPREOF
Program branches
WHEN $AC_DTEB<5 DO STOPREOF
G01 X100
IF $A_INA[7]>5000 GOTOF Label 1
If the distance to the end of the block is less than 5 mm, end preprocessing stop. If the
voltage at input 7 drops below 5V, jump forwards to label 1 (assuming that the value 1000
corresponds to 1 V).

2.4.11 DELDTG

Deletion of distance-to-go
Synchronized actions can be used to activate deletion of distance-to-go for the path and for
specified axes as a function of a condition.
• High-speed prepared deletion of distance-to-go

High-speed, prepared DDTG
High-speed/prepared deletion of distance-to-go is used in time-critical applications:
• if the time between deletion of distance-to-go and start of next block needs to be very

short,
• if there is a high probability that deletion of distance-to-go will be activated.

DELDTG
Deletion of distance-to-go is programmed with synchronized action DELDTG.
After the distance-to-go has been deleted, the remaining path distance is stored in the
system variable $AC_DELT. Continuous-path mode is thus interrupted at the end of the
block with high-speed deletion of distance-to-go.
Constraints:
Deletion of distance-to-go for the path may only be programmed as a non-modal
synchronized action.
If tool radius compensation is active, fast deletion of distance-to-go cannot be used.
Commands:
MOVE=1:Works on indexing axes with and without Hirth tooth system MOV=0: Same function
for both: approaches the next position. Command: DELDTG: In the case of indexing axes
without Hirth tooth system: Axis stops immediately. In the case of indexing axes with Hirth
tooth system: Axis traverses to next position.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
68 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Example DELDTG
... DO DELDTG
N100 G01 X100 Y100 F1000
N110 G01 X...
IF $AC_DELT > 50
...

High-speed, prepared DDTG for axes
High-speed, prepared deletion of distance-to-go for axes must be programmed as a non-
modal action.
Application:
A positioning motion programmed in the part program is halted by means of axial deletion of
distance-to-go. Several axes can be stopped simultaneously with one command.
... DO DELDTG(axis1, axis2, ...)

Examples of DELDTG(axis)

; if the voltage at input 2
; falls below 8 V, distance to go

WHEN $A_INA[2]>8000 DO DELDTG(X1)

; deletion for axis X1
POS[X1] = 100 ; Next position
R10 = $AA_DELT[X 1] ; Import axial distance-to-go in R10

After successful deletion of distance-to-go the variable $AA_DELT[axis] contains the axial
distance to go.
(Assumption: the value 1000 corresponds to 1 V).

2.4.12 Disabling a programmed axis motion

Task
The axis is programmed within a machining routine and, in particular circumstances, must
not be started at the beginning of a block.

Solution
For each synchronized action the override is maintained at 0 until the starting instant.
Example
WHENEVER $A_IN[1]==0 DO $AA_OVR[W]=0

G01 X10 Y25 F750 POS[W]=1500 FA[W]=1000 ; The positioning axis is started
asynchronous

 ; to the path processing;
 ; the clearance is done via a digital input

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 69

 Note

Axis motion disable can also be programmed for PLC axes (e.g. magazine axis).

2.4.13 Starting command axes

Introduction
Axes can be positioned, started and stopped completely asynchronously to the part program
from synchronized actions. This type of programming is advisable for cyclic sequences or
sequences that are strongly dependent on events. Axes started from synchronized actions
are called command axes.

Control from the PLC
Autonomous singleaxis operations
A command axis interpolated from the main run (started by static synchronized actions)
reacts independently of the NC program in the event of NC Stop, alarm handling, end of
program, program control and RESET, when control of the command axis has been taken
over from the PLC.
The control of the command axis is done via the axial VDI interface (PLC→NCK) by means of
the NST:
DB 31, ... DBX28.7 == 1 (PLC controls axis/P5)
For more information about the precise sequence of operations of the various steps for
transferring control of the command axis to the PLC, please see:
References:
/FB2/ Function Manual, Extended Functions; Positioning Axes (P2)

Boundary condition
An axis cannot be moved from the part program and from synchronized actions
simultaneously. but may be moved from these two sources successively.
Delays may occur if an axis has been moved first from a synchronized action and then
programmed again in the part program.

 Note
MD 30450 $MA_IS_CONCURRENT_POS_AX indicates whether the axis is primarily
intended as a command axis or for programming by the part program:
0: no competing axis
1: competing axis (command axis)

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
70 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Example 1
...
ID=1 EVERY $A_IN[1]==1 DO POS[X]=100
...

Example 2
An axis motion can be triggered as technology cycle. (See Chapter "Call of technology
cycles")
Main program:
...
ID=2 EVERY $A_IN[1]==1 DO AXIS_X
...
Axis program:
AXIS_X:
M100
POS[X]=100
M17

Programming
Positioning axis motions are programmed in synchronized actions as they are from the part
program:
ID = 1 EVERY $AA_IM[B] > 75 DO POS[U]=100
The programmed position is evaluated in inches or in the metric system depending on
whether setting G70 or G71 is active in the current part program block.
G70/G71 and G700/G710 can also be programmed directly in synchronized actions.
This allows the inch/metric evaluation of a command axis movement to be defined
independent of programming in the part program.
ID = 1 WHENEVER $A_OUT[1] ==1 DO G710 POS[X]=10
ID = 2 EVERY G710 $AA_IM[Z] >100 DO G700 POS[Z2]=10

 Note
Only G70, G71, G700, G710 can be programmed in synchronized actions!
See Section 2.1
G functions, which are programmed in the synchronized action block, are only effective for
the synchronized action or within the technology cycle. They have no effect on subsequent
blocks in the part program.

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 71

References:
/PG/ Programming Manual Fundamentals; Position data

Absolute/Incremental end position
The end position can be programmed either absolutely or incrementally. The position is
approached absolutely or incrementally depending on whether G90 or G91 is active in the
main program block currently being processed.
It is possible to explicitly program whether the value must be interpreted as an absolute or
incremental setting:
IC: incremental
AC: absolute
DC: direct i.e. position rotary axis via shortest route
ACN: Position modulo rotary axis absolutely in negative direction of motion
ACP: Position modulo rotary axis absolutely in positive direction of motion
CAC: Traverse axis to coded position absolutely
CIC: Traverseaxis to coded position incrementally
CDC: Traverse rotary axis to coded position via shortest route
CACN: Traverse modulo rotary axis to coded position in negative direction
CACP: Traverse modulo rotary axis to coded position in positive direction
Coded positions are settings stored in machine data.

Example 1 fixed value

ID = 1 EVERY $AA_IM[B] > 75 DO POS[U]=IC(10) ; When event occurs, position U-axis
further by 10

Example 2 current value
The traversing path is generated in real time from a real-time variable:
ID = 1 EVERY $AA_IM[B] > 75 DO POS[U]=$AA_MW[V]-$AA_IM[W] + 13.5

Axial frame
The response of synchronized actions and axial frames is explained in the sections below:

Activation
When positioning motions are executed from synchronized actions, the axial offsets, scaling
and mirroring functions of the programmable and settable frames (G54 etc.) as well as tool
length compensations are all operative.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
72 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Whichever frame is operative in the current block takes effect. If a rotation is active in the
current block, then an alarm is output to reject a positioning motion initiated from a
positioning motion.

Example

TRANS X20

IDS= 1 EVERY $A_IN==1 DO POS[X]=40

G1 Y100 ; When the input is set, X is positioned to
60

…

TRANS X-10

G1 Y10 ; When the input is set, X is positioned to
30

Suppression
The effectiveness of frames and tool lengths can be suppressed with the machine data:
MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED (Frame or HL-offset are not
permitted)

Suppressing axial frames
Axial frames that travel incrementally to indexing positions have no effect on a command
axis. For this reason, bit 9 = 1 is set and the command axis is positioned with JOG in the
following machine data:
MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED[AX4] (Frame or HL-offset are not
permitted)

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 73

Example

RANS A=0,001

POS[A]=CAC(2) ; Axis travels to position 180.001 degrees

; The axial frame is not effective for the
command axis

; MD32074
$MA_FRAME_OR_CORRPOS_NOTALL
OWED[AX4] = 'H0020'

WHEN TRUE DO POS[A]=CIC(-1) ; Axis travels to position 180.000 degrees

 Note
If a command axis travels to indexing positions incrementally, axial frames usually have no
effect on this command axis.

2.4.14 Axial feedrate from synchronized actions

Feedrates
An axial feedrate can be programmed in addition to the end position:
ID = 1 EVERY $AA_IM[B] > 75 DO POS[U]=100 FA[U]=990
The axial feed for command axes acts modal. It is programmed under address FA. The
default value is allocated via the axial machine data:
MD32060 $MA_POS_AX_VELO (initial setting for positioning axis velocity)
The feedrate value is either preset to a fixed quantity or generated in real time from real-time
variables:

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
74 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Example of calculated feedrate
ID = 1 EVERY $AA_IM[B] > 75 DO POS[U]=100 FA[U]=$AA_VACTM[W]+100
The feedrate value is either programmed as a linear or rotational feed:
The feedrate type is determined by setting data:
SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE(revolutional feed rate for position
axes/spindles)
This data can be altered by an operator input, from the PLC or from the part program. In
synchronization with the part program context, the feedrate type can be switched over using
the NC commands FPRAON, FPRAOF. See also:
References:
/FB1/Function Manual Basic Functions; Feedrates (V1)

Feedrate change
To apply a modified feedrate for command axes, you only have to specify the end point
again. You do not have to change it.
Example
IDS=1 WHENEVER $A_IN[1] 00 1 DO POS[X] = 100 FA[X] = $R1
Explanation:
Whenever the analog input changes to 1, position 100 is specified and the feedrate from the
R parameter 1 is simultaneously applied. This applies even if an approach to position 100 is
already active for command axis X.

 Note
The axial feedrate from motion-synchronous actions is not output as an auxiliary function to
the PLC. Parallel axial technology cycles would otherwise block one another.

2.4.15 Starting/Stopping axes from synchronized actions

Starting/stopping
Command axes can be stopped from synchronized actions even when no end position has
been specified. In this case, the axis is traversed in the programmed direction until another
motion is set by means of a new motion or positioning command or until the axis is halted by
a stop command. This method can be used, for example, to program an endlessly turning
rotary axis.
Starting and stopping are programmed using the same method as positioning motions.
MOV[axis] = value
The data type for the value is INTEGER.

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 75

The sign of the value determines the direction of movement:
>0: Axis motion in the positive direction
<0: Axis motion in the negative direction
==0: Stop axis motion
If a moving indexing axis is halted by command MOV[axis]=0, then the next indexing position
is approached in the same way as in JOG mode.
The feedrate for the motion can be programmed with FA[axis]=value (see above). If no axial
feedrate is programmed, the feedrate value is derived from an axis motion that may already
be activated from synchronized actions or from the axis velocity set via the machine data:
MD32060 $MA_POS_AX_VELO (initial setting for positioning axis velocity)

Example

... DO MOV[U]=0 ; Stop axis motion when the condition is fulfilled.

2.4.16 Axis replacement from synchronized actions

Application

For a tool change, the corresponding command axes can be requested as an action of a
synchronized action using GET(axis). If the tool has been changed, these command axes
can be released again for the channel from the synchronized action using RELEASE(axis).

Request axis
An axis can be requested with GET[axis] as action of a synchronized action.

Release axis
An axis can be released for replacement with RELEASE[axis] as action of a synchronized
action

 Note
Each axis must be assigned to the channel via machine data.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
76 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Axis type and axis status regarding axis replacement
The currently valid axis type and axis status, at the activation instant of synchronized action,
can be interrogated using $AA_AXCHANGE_TYP or $AA_AXCHANGE_STAT. Dependent
on the channel that has the actual interpolation right of this axis presently has, and from the
actual status of the permissible axis replacement, a different sequence is obtained from the
synchronized action.
From a synchronized action, an axis can be requested at the request instant with GET[axis] ,
if
• Another channel has the write or interpolation authorization for the axis.
• The requested axis is already assigned the requested channel.
• The axis in the neutral axis state is controlled by the PLC.
• The axis is a command axis, oscillating axis, or concurrent PLC axis.
• The axis is already assigned to the NC program of the channel.

 Note
Condition:An axis controlled exclusively by the PLC cannot be assigned to the NC
program. This is also the case for a permanently assigned PLC axis.

From a synchronized action, an axis can be released for axis replacement with
RELEASE[axis], if the axis:
• Was previously assigned to the NC program of the channel.
• Is already in the neutral axis state.
• another channel already has the interpolation rights of this axis

Request axis from another channel
If, when the GET action is activated, another channelhas the interpolation authorization for
the axis $AA_AXCHANGE_TYP[axis] == 2, axis replacement is used to fetch the axis from
this channel $AA_AXCHANGE_TYP[axis] == 6 and assign it to the requesting channel as
soon as possible. The axis then becomes the neutral axis
($AA_AXCHANGE_TYP[<axis>]==3).
The state change to a neutral axis does not result in reorganization in the requesting
channel.
Requested axis was already requested as neutral axis:
$AA_AXCHANGE_TYP[axis]==6, the axis is required for the NC program
$AA_AXCHANGE_TYP[axis] == 5 and assigned as soon as possible to the NC program of
the channel $AA_AXCHANGE_TYP[axis] == 0.

 Note
This assignments results in a reorganization.

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 77

Axis is already assigned to the requested channel
If the requested axis has already been assigned to this channelat the point of activation, and
its status is that of a neutral axis not controlled by the PLC $AA_AXCHANGE_TYP[axis]==3,
it is assigned to the NC program $AA_AXCHANGE_TYP[axis]==0.
This results in a reorganization procedure.

Axis in the state of the neutral axis is controlled from the PLC
If the axis in neutral axis status is controlled by the PLC$AA_AXCHANGE_TYP[axis]==4),
the axis is requested as a neutral axis $AA_AXCHANGE_TYP[axis] == 8. This disables the
axis for automatic axis replacement between channels (Bit 0 == 0) in accordance with the
value of bit 0 in machine data:
MD10722 $MN_AXCHANGE_MASK (Parametring the axis replacement behavior)
This corresponds to $AA_AXCHANGE_STAT[axis] == 1.

Axis is active as command axis / assigned to the PLC
If the axis is active as command axis or oscillating axis or concurrent positining axis (PLC-
axis) $AA_AXCHANGE_TYP[axis]==1, then the axis is requested as neutral axis
$AA_AXCHANGE_TYP[axis] == 8. This locks the axis for automatic axis replacement
between channels (Bit 0 == 0) in accordance with the value of bit 0 in machine data:
MD10722 $MN_AXCHANGE_MASK (Parametring the axis replacement behavior)
This corresponds to $AA_AXCHANGE_STAT[axis] == 1.
A new GET action will request the axis for the NC program $AA_AXCHANGE_TYP[axis]
changes to == 7.

Axis already assigned to the NC program of the channel
If the axis is already assigned to the NC-program of the channel
$AA_AXCHANGE_TYP[axis]==0 or if this assignment is requested, e.g., axis replacement
triggered by NC program $AA_AXCHANGE_TYP[axis]==5 or $AA_AXCHANGE_TYP[axis]
== 7, then there is nostate change.

Release axis for axis replacement RELEASE(Axis)
If the axis is already assigned the NC program of the channel $AA_AXCHANGE_TYP[axis]
== 0, then it is transitioned into the status of a neutral axis $AA_AXCHANGE_TYP[axis] == 3
and if required, released for axis replacement in another channel.
This results in a reorganization procedure.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
78 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Axis to be released is already a neutral axis:
If the axis is already in the state of a neutral axis
$AA_AXCHANGE_TYP[<Axis>] == 3 or as command or oscillating axis active or assigned to
the PLC for traveling, PLC-Axis == concurrent positioning axis, $AA_AXCHANGE_TYP[Axis]
== 1, then the axis is released for an automatic axis interchange between channels. The
state of $AA_AXCHANGE_STAT[axis] is reset from 1 to 0 if there is no other reason to link
the axis to the channel.
An axis link is involved, e.g. for an axis coupling, active fast lift-off, active transformation,
JOG request, rotating frame with possible PLC, command or oscillating axis motion.

Another channel already has write authorization
If another channel already has the write authorization or interpolation authorization (rights)
$AA_AXCHANGE_TYP[axis] == 2, then there is no state change. This also means that
waiting for an axis (initiated by NC program $AA_AXCHANGE_TYP[axis] == 5) or through a
previous request GET(axis) from synchronized action $AA_AXCHANGE_TYP[axis] == 6
cannot be interrupted by a RELEASE(axis) from a synchronized action.

Constraints, GET, RELEASE
If several GET and RELEASE tasks for an axis have been issued in a synchronized action or
in a line of a technology cycle, then these tasks mutually cancel one another. Only the last
task remains.
Example

GET(X,Y) RELEASE(Y,Z) GET(Z) results in GET(X) RELEASE(Y) GET(Z).

Within the actions of a synchronized action, the system does not wait for a GET or RELEASE
request to be fulfilled. This means that GET[axis] POS[axis] can result in an alarm
message if the axis presently cannot be accessed for the command axis motion.
For a technology cycle, for a sub-division to several lines, the system waits. This means that
the system only advances to the next line from line with GET(axis), if the axis - e.g. as
neutral axis - was accepted from another channel; refer to the subsequent example, GET,
RELEASE in the technology cycle.

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 79

Example
GET, RELEASE using synchronized actions
Z axis has been declared in the first and second channels.
Program sequence in the first channel:

WHEN TRUE DO RELEASE(Z) ; Z axis becomes neutral
WHENEVER $AA_TYP[Z] == 1 DO RDISABLE ; Read-in disable as long as
 ; Z axis is program axis
N110 G4 F0.1 ;

WHEN TRUE DO GET(Z) ; Z axis becomes again
 ; NC program axis
WHENEVER($AA_TYP[Z]<>1) DO RDISABLE ; Read-in disable as long as
 ; Z axis is program axis
N120 G4 F0.1 ;

WHEN TRUE DO RELEASE(Z) ; Z axis becomes neutral
WHENEVER $AA_TYP[Z] == 1 DO RDISABLE ; Read-in disable as long as
 ; Z axis is program axis
N130 G4 F0.1 ;

N140 START(2) ; 2. Start channel

Program sequence in the second channel:

WHEN TRUE DO GET(Z) ; ; Move Z axis to second channel (neutral)
WHENEVER $AA_TYP[Z] == 0 DO RDISABLE ; Read-in disable as long as
 ; Z axis is in another channel
N210 G4 F0.1 ;

WHEN TRUE DO GET(Z) ; Z axis becomes NC program axis
WHENEVER($AA_TYP[Z]<>1) DO RDISABLE ; Read-in disable till
 ; Z axis is program axis
N220 G4 F0.1 ;

WHEN TRUE DO RELEASE(Z) ; Z axis in second channel is neutral axis
WHENEVER $AA_TYP[Z] == 1 DO RDISABLE ; Read-in disable as long as
 ; Z axis is program axis
N230 G4 F0.1 ;

N250 WAITM(10,1,2) ; Synchronize with channel 1
N999 M30 ;

Program sequence in the first channel continues:

N250 WAITM(10,1,2) ; Synchronize with channel 2
WHEN TRUE DO GET(Z) ; Move Z axis to this channel
WHENEVER $AA_TYP[Z] == 0 DO RDISABLE ; Read-in disable as long as
 ; Z axis is in another channel
N160 G4 F0.1 ;

N199 WAITE(2) ; Wait for end of program in channel 2
N999 M30 ;

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
80 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Example
GET, RELEASE in the technology cycle
It has been declared in first and second channel: The axis U, machine data:
MD30552 $MA_AUTO_GET_TYPE = 2 (get automatic GET for axis)
Currently, channel 1 has the interpolation right and the following technology cycle is started
in channel 2:

GET(U) ; Move U axis to channel
POS[U]=100 ; U axis is to be moved to position 100

The command-axis-movement line (POS ...) is not executed until the U axis has been
fetched to channel 2.

AXTOCHAN Move axis to another channel
From a synchronous action, an axis for a specific channel can be requested with the NC-
language command AXTOCHAN (Axis, channel number)[axis, channel
number[, ...]])
This does not have to be its own channel, that currently has the interpolation authorization
for the axis. This means that it is possible to shift and axis into another channel.
If the axis is already assigned to the NC program of the requested channel
$AA_AXCHANGE_TYP[axis] == 0, then there is nostate change.
In the event of an axis being requested for the same channel, AXTOCHAN from the
synchronized action is mapped to a GET from a synchronized action. For the
1. first request for the own channel, the axis is assigned to the neutral axis.
2. second request assigned to the NC program, which is the case for an GET in the NC

program.

Constraints AXTOCHAN
A PLC controlled corresponds to a "competing positioning axis" where special constraints
must be carefully observed.
Traversing using static synchronized actions: Stage 2 is necessary.
References:
/FB2/ Function Manual, Extended Functions; Positioning Axes (P2)

 Note
A PLC axis cannot replace the channel. This is also not possible using an entry from the VDI
interface.
An axis controlled exclusively by the PLC cannot be assigned to the NC program.

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 81

2.4.17 Spindle motions from synchronized actions

General
Analogously to positioning axes, it is also possible to start, position and stop spindles from
synchronized actions. Spindle movements can be started at defined points in time by
blocking a spindle motion programmed in the part program or by controlling the axis motion
from synchronized actions.

Starting/stopping
The use of these functions is recommended for cyclic operations or for operations that are
predominantly event-controlled.

Stop until event occurs
Application:
A spindle is programmed within a machining routine, but must not be started at the beginning
of the block in particular circumstances. A synchronized action is used to maintain a 0
override until the spindle is to start.
Example

ID=1 WHENEVER $A_IN[1]==0 DO
$AA_OVR[S1]=0

G01 X100 F1000 M3 S1=1000 ; The spindle is started asynchronous
 ; to the path processing;
 ; the start is done via a digital input

Auxiliary functions, speed, position
These functions are programmed in the action section of the synchronized action by exactly
the same method as used in the part program.
Commands: S= ..., M3, M4, M5, SPOS= ...
Example
ID = 1 EVERY $A_IN[1]==1 DO M3 S1000
ID = 2 EVERY $A_IN[2]==1 DO SPOS=270
Without numeric extension the commands for the master spindle apply. By specifying a
numeric extension, it is possible to activate each spindle individually:
ID = 1 EVERY $A_IN[1]==1 DO M1=3 S1=1000 SPOS[2]=90
For programming the type of positioning the same rules are applicable as for the positioning
axes (see above)
If concurrent commands are input via simultaneously active synchronized actions for an
axis/spindle, then the commands are applied in the chronological sequence in which they are
programmed.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
82 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Example

ID=1 EVERY $A_IN[1]==1 DO M3 S300 ; Speed and direction of rotation
ID = 2 EVERY $A_IN[2]==1 DO M4 S500 ; Speed and direction of rotation
ID=3 EVERY $A_IN[3]==1 DO S1000 ; New speed specification
 ; for active spindle rotation
ID=4 EVERY ($A_IN[4]==1) AND
($A_IN[1]==0) DO SPOS=0

; Position spindle

Feed
The feedrate for "Position spindles" can be programmed from a synchronized action with:
FA[Sn]= ...

 Note
Only a modal data item is available for the feedrate of synchronized actions for spindle mode
and axis mode. FA[S] and FA[C] are supplied in the same way.

SW limit switches, working area limitations
The restrictions imposed by SW limit switches and working area limitations also apply to
axis/spindle movements activated from synchronized actions.

Influence of limitations on movements from synchronized actions
Working area limitations programmed with G25/G26 are taken into account as a function of
setting data:
SD43400 $SA_WORKAREA_PLUS_ENABLE (Working-area limitation active in the positive
direction)
Activation and deactivation of working area limitations by G functions WALIMON/WALIMOFin
the part program does not affect command axes.

Correcting acceleration
The acceleration specified in the following machine data can be changed in the range from
0% to 200% with ACC[Axis]=0..200 (ACC[Axis]=<Value> (acts in the part program and in
synchronized actions)):
MD32300 $MA_MAX_AX_ACCEL (axis acceleration)

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 83

Axis coordination
If a positioning command (POS, MOV) is started from synchronized actions for an axis that
is already operating as a path or PLC axis, then processing is aborted with an alarm.

Axis movement by PP and SA alternately
In typical cases, an axis is either moved from the part program (PP) in motion blocks or as a
positioning axis from a synchronized action (SA). However, if the same axis must be
traversed alternately from the part program as a path axis or positioning axis and from
synchronized actions, then a coordinated transfer takes place between both axis motions.

Example
; traverse X axis alternately from part program and from synchronized actions

N10 G01 X100 Y200 F1000 ; X axis programmed in part program
...

N20 ID=1 WHEN $A_IN[1]==1 DO POS[X]=100 FA[X]=200

 ; Start positioning from synchronized action,
 ; when digital input is present
...

CANCEL(1) ; Select synchronized action
...

N100 G01 X100 Y200 F1000 ; X: Path axis
 ; Period of delay before motion, when digital
 ; input was 1 and hence X from
 ; Synchronized action was positioned

On-the-fly transitions
Transitions can be made between command axes and spindles.

Starting point
Since several synchronized actions can be active simultaneously, the situation may arise
where an axis motion is started when the axis is already active.

Response
In this case, the most recently activated motion is applicable. POS- and MOV motions can be
activated alternately.
When a reversal in the direction of motion is forced in this manner, the axis is first
decelerated and then positioned in the opposite direction.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
84 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Examples:
ID=1 EVERY $AC_TIMER[1] >= 5 DO POS[V]=100 FA[V]=560
ID=2 EVERY $AC_TIMER[1] >= 7 DO POS[V]=$AA_IM[V] + 2 FA[V]=790
; Owing to the programming with $AC_TIMER[1] the synchronization with ID=2 is the most
recently activated, its specifications become effective and release the specifications of ID=1
... .
The end position and feedrate for a command axis can therefore be adjusted while the axis
is in motion.

Example Activation by signal

ID=1 EVERY $A_IN[1]==1 DO POS[U]=$AA_IM[U]+$AA_IM[V]*.5
 FA[U]=$AA_VACTM[U]+10

Legal transitions

in
↓

To
→

POS MOV=1
MOV = -1

MOV=0 SPOS M3
M4

M5 LEADON TRAIL ON

Axis stationary
Axis mode x x x x x x x x
Position-controlled spindle x x x x x x
Speed-controlled spindle x x x
Axis in motion
Axis mode x x x x x
Position-controlled spindle
Speed-controlled spindle x x x

Transitions marked with x are permitted: Transitions not marked with an x are rejected with
an alarm.
Example: Legal transition

N10 WHEN $AA_IM[Y] >= 5 DO MOV[Y]=-1 ; At position +5 axis in
 ; Negative direction
 ; start
N20 WHEN TRUE DO POS[Y]=20 FA[Y]=500 ; start Y axis, when
 ; Block is changed

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 85

On-the-fly transitions in case of axis couplings
Positioning axis motions and movements resulting from axis couplings programmed via
synchronized actions can be activated alternately.
See Subsection 2.4.02 "Activating and Deactivating Couple Motions and Couplings" and:
References:
/FB3/ Function Manual, Special Functions; Coupled axes and ESR (M3)
Legal transitions in master value couplings are marked with LEADON in the above table.
Legal transitions in coupled motions are marked with TRAILON.

2.4.18 Setting actual values from synchronized actions

Application
The PRESETON function can be used to redefine the control zero in the machine coordinate
system.

Function
When Preset is applied, the axis is not moved. A new position value is merely entered for the
current axis position.

Programming
The value for one axis can be programmed in each synchronized action.
Example
WHEN $AA_IM[a] >= 89.5 DO PRESETON(a, 10.5)
with PRESETON (axis, value)
Axis: Axis of which the control zero is to be changed
Value: The value by which the control zero is to be changed.

Permissible applications
PRESETON from synchronized actions can be programmed for:
• modulo rotary axes that have been started from the parts program and
• all command axes that have been started from a synchronized action

Restrictions
PRESETON cannot be programmed for axes, which are involved in a transformation.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
86 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Example
You can find an example of how to use PRESETON in conjunction with an "On-the-fly parting"
application in the sub-section "On-the-fly parting".

 Note
Setting of actual values PRESETON may only be done with the key words WHEN or EVERY.

2.4.19 Activating/deactivating coupled motions and couplings

Introduction
References:
/FB3/ Function Manual, Special Functions; Coupled axes and ESR (M3)
The following functions are described in detail in the functional description given above.
• Coupled motion

Slave axis(axes) is(are) linked to a master axis via a coupling factor.
• Curve tables

Curve tables represent a (complex) relationship between the master and slave values.
The following may be applied as master values:
– Setpoints generated by the control
– Actual values measured by encoders
– Externally specified quantities

Situations, where a following axis is linked to a leading axis by means of a curve table
are particularly relevant with respect to synchronized actions.

• Master value coupling
The following axis master value couplings from the following master value couplings
possible for the part programs are available:
– axis master value coupling
– path master value coupling,

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 87

• Electronic gearbox
With the help of the "Electronic gearbox" the movement of a following axis FA can be
interpolated dependent on up to five leading axes LA. From the parts program a gearbox
group can be:
– is defined.
– Switched-in
– Switched off
– Deleted

be.
• Generic coupling

With the help of a coupling module, the motion of one axis, (_FA following axis), can be
interpolated depending on other (_leading) axes. Coupling modules can also be created
and activated in the part program and implicit synchronized actions. The coupling
modules created and activated in synchronized actions are designated as main run
couplings. The relationships between leading axis/values and the following axis are
defined for each leading axis/value by a coupling rule, either a coupling factor or a curve
table.
Each coupling property of the generic coupling can be programmed using keywords. The
following keywords are available in synchronized actions:
– CPLON Switching-on a leading axis of a coupling module
– CPLOF Switching-off a leading axis of a coupling module
– CPOF Switching-off a coupling module
– CPLNUM Counter of the coupling factor
– CPLDEN Denominator of the coupling factor
– CPLCTID Number of the curve table
– CPSETTYPE Coupling type of the existing coupling modes

 Note
When programming, attention must be paid that the utilized CP key words within a
synchronized action are processed from left to right.
That is, unlike the programming in the part program, the effect of the various key words
depends on their order in the synchronized action.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
88 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

TRAILON - Coupled motion from a synchronized action
From a synchronized action it is possible to define and simultaneously activate the
assignment of a following axis to a leading axis using a coupling factor:

... DO TRAILON(FA, LA, Kf)
where:
FA Following axis
LA Leading axis
Kf Coupling factor
The commands for separating the coupled-axis grouping are as follows:
... DO TRAILOF(FA, LA, LA2) or
... DO TRAILOF(FA) in short form
where:
FA Following axis
LA Leading axis
LA2 Leading axis 2, optional

Curve tables
The relationship between a master quantity and a slave quantity stored in curve tables can
be utilized in synchronized actions in the same way as other REAL functions (e.g. SIN,
COS).

Calculate slave value
The slave value calculated from a master value on the basis of curve table n must be
assigned to an arithmetic variable.
Example

... DO $R17=CTAB(LW, n, degree)
where:
LW Master value
n Number of curve table
degrees Pitch parameters, result
 2 more options parameters for scaling:
 - Following axis
 - Leading axis

Example
DEF REAL GRADIENT
...
WHEN $A_IN[1] == 1 DO $R17 = CTAB(75.0, 2, GRADIENT)

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 89

Calculating master value
From a synchronized action it is possible to calculate a concrete master value for a slave
value on the basis of a curve table.
Example

... DO $R18=CTABINV(FW, aprLW, n, degree)
where:
FW Slave value
aprLW approximated master value, with which a unique LW can be determined in

case of multi-valued inverse function of the curve table
n Number of curve table
degrees Pitch parameters, result:
 2 more options parameters for scaling:
 - Following axis
 - Leading axis

The functions CTAB and CTABINV can be programmed both in conditions and in the action
section of synchronized actions.

LEADON Axis master value coupling from synchronized actions
The coupling between following axis FA and leading axis LA based on the stored curve table
with number NR is called in the action section of synchronized actions as follows:

... DO LEADON(FA; LA, NR)
where:
FA Following axis
LA Leading axis
NR Number of curve table

LEADOF Deactivate axis coupling from synchronized action
If the axis master value coupling must be canceled again on the fulfillment of another
condition, then the action is:
... DO LEADOF(FA, LA) or
... DO LEADOF(FA) in abbreviated form

System variables
The system variables of the master value coupling as specified in the list of system variables
can be read/written from the part program and synchronized actions.
References:
/PGA1/ Parameter Manual, System Variables

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
90 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Detection of synchronism
System variable $AA_SYNC[ax] can be read from the parts program and synchronous action
and indicates whether and in what manner the following axis FA is synchronized:
0: Not synchronized
1: Coarse synchronism (according to MD37200 $MA_COUPLE_POS_TOL_COARSE)
2: Fine synchronism (according to MD37210 $MA_COUPLE_POS_TOL_FINE)

Definition of application
Couplings directly activated in the part program are activated at block limits. With the
additional option of activating couplings from synchronized actions, it is possible to
implement event-controlled, differential activation, e.g.
• from block beginning for specific axis path
• up to block end for specific distance-to-go
• appearance of digital input signals or
• combinations of these.

See Chapter "Components of synchronized actions", Conditions
For more information about programming coupling functions and curve tables, please see:
References:
/PGA/Programming Manual Advanced

 Note
Axes, which might be in any given motional state at the instant they are coupled via
synchronized actions, are synchronized by the control system. You can find details about
this in /FB3/ Function Manual Special Functions; Axis Couplings and ESR (M3).

Examples
You can find an example of axis coupling using curve tables in Subsection 6.7.3 "On-the-Fly
Parting".
• Generic coupling - activate coupling module in synchronized actions

It is possible to program keywords in synchronized actions. In this way, coupling modules
can also be used in synchronized actions. When the coupling module is activated in a
synchronized action, the following axis must already be active in the channel and be in
the state “neutral axis ” or “axis already assigned to the NC-program of the channel”.
When required, this axis state must be provided before the activation of the coupling
module. This can also be done in synchronized actions with the help of the command
GET [Axis].

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 91

• Cross-channel coupling, axis replacement
For axis replacement, the following and leading axes must be known to the calling
channel. Axis replacement of leading axes can be performed independently of the state
of the coupling. A defined or active coupling does not produce any other boundary
conditions.

 Note
With the activation of the coupling, the following axis becomes the main run axis and is
not available for an axis replacement. The following axis is thus logged out of the
channel. With this type of coupling, an overlaid movement is therefore not possible.

For additional information on axis replacement in synchronized actions, see Subsection
2.4.16 Axis replacement from Synchronized Actions; GET/RELEASE[axis]

• Activating/deactivating a coupling
The CP keywords are processed in synchronized actions directly by the coupling module.
This means that a CP keyword takes effect immediately. Activation of the coupling of a
leading axis to a following axis:
CPLON[Fax]=<Leading axis or Leading spindle>
Deactivation of the coupling of a leading axis to a following axis:
CPLON[Fax]=<Leading axis or Leading spindle>
With the following keyword, all the leading axes for slave axes in synchronized actions
are deactivated.
SPOF=<FAx>

• Coupling factor
When programming a coupling factor, a previously activated non-linear coupling
relationship (e.g., a curve table) is deactivated. Determining the numerator of the coupling
factor in synchronized actions:
CPLNUM[FAx,LAx]= <value>
Determining the denominator of the coupling factor in synchronized actions:
CPLNUM[FAx,LAx]= <value>

• Curve table
When programming a table number, a previously activated non-linear coupling
relationship e.g., a curve table is deactivated. In synchronized actions, the leading
axis/spindle-specific coupling component is calculated for the master value of the leading
axis/spindle using the specified curve table:
CPLCTID[FAx,LAx]= <value>

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
92 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

• Example
Programming with keywords in synchronized actions:
Example 1:
Definition of an axis coupling with a leading axis
DO CPDEF=YCPLDEF[Y]=X CPLNUM[Y,X]=1.5
Example 2:
N10 WHEN TRUE DO CPLON[X]=X CPLNUM[X,Y]=2; OK
N20 WHEN TRUE DO CPLNUM [A,B]=" CPLON [A=B] ; Alarm
The order in the N20 block is not permitted since CPLNUM is to be set before the
coupling module has been created in the part program with CPDEF.
Example 3:
N10 WEHN TRUE DO CPLON [X]=Y CPLNUM[X,Y]=3
N15 Y= 100 F100
N20= WHEN TRUE DO CPOF=X CPLON[X]=YCPLNUM[X,Y]=3
In this example, the coupling module active in N10 is recreated and reactivated and is
also re-synchronized.
Example 4:
N10 WHEN TRUE DO CPLON[X]=Y CPLNUM[X,Y]
N15 Y=100 F100
N20 WHEN TRUE DO CPOF0X MOV[X]=1
In the N20 block, the coupling module is switched off and deleted with CPOF. The
following axis is thus again available for the MOV command.

• Use previous coupling types - Existing coupling types TRAII, LEAD, EG and Coup
If a presetting of the existing coupling types such as coupled motion, master value
coupling, electronic gearing, or synchronized spindles is desired, the following key word
is also permitted when creating or defining the coupling module
CPSETTYPE[FAx]=<value>
Permitted in synchronized actions.
The following value range is possible:
– "CP" Can be user-programmed (default value)
– "TRAIL" Coupling type "Coupled motion"
– "LEAD" Coupling type "Master value coupling"
– "EG" Coupling type "Electronic gear"
– "COUP" Coupling type "Synchronized spindle"

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 93

2.4.20 Measurements from synchronized actions

Introduction
Measurement functions available for the part programs:
MEAS, MEAW, MEASA, MEAWA, MEAC
References:
/PGA/Programming Manual Advanced
/FB2/ Function Manual, Extended Functions; Measurements (M5).
Only the following may be used in synchronized actions:
• MEAWA Axial measurement without deletion of distance-to-go
• MEAC Axial, continuous measurement
While measuring functions are limited to one block at a time in part program motion blocks,
they can be activated and deactivated any number of times from synchronized actions:

 Note
With static synchronized actions, measurements are also available in JOG mode.

Programming

MEAWA[Axis]= (Mode, Trigger event_1, Trigger event_2, Trigger event_3, Trigger event_4)
 ; activate axial measurement without deletion of distance-to-go
MEAC[Axis]= (Mode, Measurement memory, Trigger event_1, Trigger event_2, Trigger

event_3, Trigger event_4)
 ; axial, activate continuous measurement
Axis: Axis for which measurement is taken

Table 2-3 Mode meanings:

Tens decade Units decade Description
 0 Cancel measuring job
 1 Up to 4 trigger events can be activatedsimultaneously
 2 Up to 4 trigger events can be activated consecutively
 3 Up to 4 trigger events can be activated consecutively, but with no

monitoring of trigger event 1 on START
0 active measuring system
1 1. Measuring system
2 2. Measuring system
3 Both measuring systems

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
94 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Trigger_event_1 to trigger_event_4:

 1: rising edge, probe 1
- 1: falling edge, probe 1 Optional
 2: rising edge, probe 2 Optional
- 2: falling edge, probe 2 Optional
Measurement
memory:

Number of a FIFO variable

Measured values are supplied exclusively for the machine coordinate system.

MEAWA
... DO MEAWA[Axis]=(, , , ,) ; axial measurement without deletion of distance-
to-go
If needed, deletion of distance-to-go can be called explicitly in synchronized actions. See
Chapter "DELDTG" and the example given below.
GEO axes and axes involved in transformations can be programmed individually.
Programming:
The programming method is identical to that used in the part program

 Note
System variable $AC_MEA does not supply any useful information about the validity of a
measurement called from a synchronized action.
Only one measurement job at a time may be active for an axis.

System variables:
$AA_MEAACT[Axis] returns the current measurement status of an axis.
 1 Measurement active
 0 Measurement not active
$A_PROBE[Probe] returns the instantaneous status of the probe.
 1 Probe switched, high signal
 0 Probe not switched, low signal
Measured values in machine coordinate system with 2 probes (encoders):
 $AA_MM1[axis] Trigger event 1, encoder 1
 $AA_MM2[axis] Trigger event 1, encoder 2
 $AA_MM3[axis] Trigger event 2, encoder 1
 $AA_MM4[axis] Trigger event 2, encoder 2

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 95

MEAC
... DO MEAC[axis]=(mode, No_FIFO, trigger events)
The variables $AC_FIFO (see Chapter "FIFO-variables (circulating memory)".) are provided
for the purpose of storing measured values from cyclic measuring processes. Mode and
trigger event see above

Examples:
Two FIFOs have been set up in machine data for the following examples.
Machine data:

MD28050 $MC_MM_NUM_R_PARAM = 300

MD28258 $MC_MM_NUM_AC_TIMER = 1

MD28260 $MC_NUM_AC_FIFO = 2 ; 2 FIFOs
MD28262 $MC_START_AC_FIFO = 100 ; first FIFO starts from R100
MD28264 $MC_LEN_AC_FIFO = 22 ; each FIFO can take up 22 values
MD28266 $MC_MODE_AC_FIFO = 0 ; No summation

Example 1:
All rising edges of probe 1 must be recorded on a path between X0 and X100. It is assumed
that no more than 22 edges will occur.
Program 1:

DEF INT NUMBER

DEF INT INDEX_R

N0 G0 X0 ; Mode = 1, simultaneous
; No-FIFO = 1 N1 MEAC[X]=(1, 1, 1) POS[X]=100
;
;

Trigger event 1 = rising edge,
Probe 1

OC2 STOPRE ; Stop preprocessing
N3 MEAC[X]=(0) ; Abort continuous measurement
N4 NUMBER = $AC_FIFO1[4] ;

;
Number of measured values received in
of the FIFO variables

N5 NUMBER = NUMBER - 1
N6 FOR INDEX_R= 0 TO NUMBER

N7 R[INDEX_R]= $AC_FIFO1[0] ; Enter FIFO content in R0 - ...
N8 ENDFOR ; After reading the FIFO variable is empty

Example 2:
All rising and falling edges of probe 1 must be recorded on a path between X0 and X100.
The number of trigger events that may occur is unknown. This means: The measured values
must be fetched and stored in ascending and descending order in R1 as a parallel operation
in a synchronized action. The number of stored measured values is entered in R0.

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
96 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Program 2:

N0 G0 X0 ; Rapid traverse to the starting position
N1 $AC_MARKER[1]=1 ; Marker 1 as index for arithmetic variable R[..]
OC2 ID=1 WHENEVER $AC_FIFO1[4]>=1

DO $R[$AC_MARKER[1]]= $AC_FIFO1[0]
$AC_MARKER[1]=$AC_MARKER[1]+1

; Synchronized action as check:

 ; when 1 or more measured values are present in FIFO variable
 ; read the oldest value from FIFO and store in current R[..]
 ; increment index for R by 1
N3 MEAC[X]=(1, 1, 1, -1) POS[X]=100 ;

;
Activate continuous measurement, motion
to X = 100

 ; Mode = 1, simultaneous
 ;

;
No_FIFO = 1; trigger event 1= 1,
rising edge probe 1

 ; Trigger event 2= -1, falling edge probe 1
N4 MEAC[X]=(0) ; Deselect measurement
N5 STOPRE ; Stop preprocessing
N6 R0 = $AC_MARKER[1] ; Number of values recorded in R0

Example 3:
Continuous measurement with explicit deletion of distance-to-go after 10 measurements
Program 3:

; Final condition as synchronized action:
;
;

When 10 or more measured values are present
in
FIFO variable

; are present,
; deselct continuous measurement and

N1 WHEN $AC_FIFO1[4]>=10
DO MEAC[X]=(0) DELDTG(X)

; Delete distance-to-go
;
;

continuous measurement active from the
part program.

; Mode = 1, simultaneous
; No_FIFO = 1, FIFO-Variable 1
;
;

Trigger event 1= 1, rising edge,
Probe 1

OC2 MEAC[X]=(1,1,1,-1) G01 X100 F500

;
;

Trigger event 2= -1, falling edge
probe 1

N3 MEAC[X]=(0) ; Deselect continuous measurement
N4 R0= $AC_FIFO1[4] ; actual number of measurement values

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 97

Priority with more than one measurement
Only one measurement task can be active for an axis at any given time.
If a measurement job for the same axis is started, the trigger events are reactivated and the
measurement results reset. The system does not react in any special way if Deactivate
measurement job (mode 0) is programmed when no measurement job has been activated
beforehand. Measurement jobs started from the part program cannot be influenced from
synchronized actions. An alarm is generated if a measurement job is started for an axis from
a synchronized action when a measurement job from the part program is already active for
the same axis. If a measurement job is already in progress from a synchronized action, a
measurement job from the part program cannot be started at the same time.

Measurement tasks and state changes
When a measurement task has been executed from a synchronized action, the control
system responds in the following way:

Status Response
Mode change A measurement job activated by a modal synchronized action is not

affected by a change in operating mode. It remains active beyond block
limits.

RESET The measurement task is aborted
Block search Measurement tasks are collected, but not activated until the programmed

condition is fulfilled.
REPOS Activated measurement tasks are not affected.
End of program Measurement tasks started from static synchronized actions remain active.

2.4.21 Setting and deleting wait markers for channel synchronization

Introduction
The coordination of operational sequences in channels is described in:
References:
/FB1/ Function Manual, Basic Functions; Mode Group, Channel, Program Operation Mode
(K1)
The following of the functions described in this document, may be legally used in
synchronized actions:

Set wait marker
The command SETM (marker number) can be programmed in the part program and the
action section of a synchronized action. It sets the marker (marker number) for the channel
in which the command is applied (own channel).

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
98 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Delete wait marker
The command CLEARM (marker number) can be programmed in the part program and the
action section of a synchronized action. It deletes the marker (marker number) for the
channel in which the command is applied (own channel).

2.4.22 Set alarm/error reactions

Fault situations
Setting an alarm is one way of reacting to error states.
Application:
The SETAL command can be programmed to set cycle alarms from synchronized actions.
The following reactions can also be programmed as a response to errors:
• For stopping the axis, refer to Subsection 2.4.12 "Disabling a Programmed Axis

Movement"
• For setting the output, refer to Subsection 2.4.2 "Setting (Writing) and Reading of real-

time variables"
• Other actions listed in Section 2.4 "Actions in Synchronized Actions"

Example set alarm

D=67 WHENEVER $AA_IM[X1] - $AA_IM[X2] < 4.567 DO SETAL(61000)

 ; Set alarm, when distance (actual value of the axis X1 - actual value of the axis X2)
 ; falls short of the critical value 4.567.

Cycles and cycle alarms
For information about cycles and cycle alarms, please see
References:
/PGZ/Programming Manual Cycles

 Detailed description
 2.4 Actions in synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 99

2.4.23 Evaluating data for machine maintenance

Function
Machine operators are able to use system variables in part programs, synchronized actions
and via the BTSS interface (even from a PLC or HMI) to access information about the use of
the machine.
Maintenance measures can then be taken directly or requested on the basis of the values
read out.

Saving
The system variables for machine maintenance are stored in SRAM. This means that they
are retained after POWER ON.

 Note
In contrast, the lubricant signal is only ever set if an axis path stored in a machine data has
been exceeded since POWER ON. See:
References:
/FB1/ Function Manual Basic Functions; Various NC/PLC-Interface signals and functions
(A2), Chapters "Signals from Axis/Spindle".

Availability
The values for machine maintenance are available if the global NCK machine data is set:
MD18860 $MN_MM_MAINTENANCE_MON (Activate recording of maintenance data)
And when axis-specific machine data has been used to indicate which data should be
provided for each axis involved.
The following machine data is used to activate the function of and prepare the memory for
the values indicated in the axis-specific MD. Changes of the following machine data become
effective with Power On.
MD18860 $MC_MM_MAINTENANCE_MON
Axis-specific values:
The following can be specified in MD33060 $MA_MAINTENANCE_DATA using bit coding:

Bit 0: Total travel distance, total travel time and travel count of the axis
Bit 1: Total travel distance, total travel time and travel count at high speeds of the axis High

speeds are = 80% of the maximum axis speed
Bit 2: Total axis jerk, travel time with jerk and travel count with jerk
Bits 3 - 15: Reserved

Detailed description
2.4 Actions in synchronized actions

 Synchronized actions
100 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Configuration example
MD18860 $MN_MM_MAINTENANCE_MON = TRUE (Activate recording of maintenance
data)
MD33060 $MA_MAINTENANCE_DATA[0]=1 (Config. of the recording of maintenance data)
MD33060 $MA_MAINTENANCE_DATA[1]=1
MD33060 $MA_MAINTENANCE_DATA[2]=1
... Activates the system variables for total travel distance, total travel time and travel count for
the first 3 axes

System variables
The following system variables can be read from the part program and from synchronized
actions:

$AA_TRAVEL_DIST Total travel distance in mm or degrees
$AA_TRAVEL_TIME Total travel time in seconds
$AA_TRAVEL_COUNT Total travel count
$AA_TRAVEL_DIST_HS Total travel distance at high speeds in mm or degrees
$AA_TRAVEL_TIME_HS Total travel time in seconds at high speeds
$AA_TRAVEL_COUNT_H
S

Total travel count at high speeds

$AA_JERK_TOT Total axis jerk in m/s3
$AA_JERK_TIME Axis travel time with jerk in seconds
$AA_JERK_COUNT Axis travel count with jerk

Example Distance during part program processing
Repeat read-outs can be used for example to determine the total travel distance of an axis
within an area of a part program.

; Start of processing area in part program

R1 = $AA_TRAVEL_DIST[X]

…

… ; End of processing area
R2 = $AA_TRAVEL_DIST[X]

R3 = R2 -R1 ; Total traverse path of the X axis
 ; during the processing of the
 ; processing area in part program

 Detailed description
 2.5 Call of Technology Cycles

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 101

2.5 Call of Technology Cycles

Definition
A technology cycle is a sequence of actions that are executed sequentially in the
interpolation cycle. The actions listed in the Chapter "Actions in synchronized actions" can
be grouped together to programs. From the user's point of view, these programs are
subprograms without parameters.

Parallel processing in channel
Several technology cycles or actions can be processed simultaneously in the same channel.
These cycles and actions are processed in parallel in the channel in one interpolation cycle.

Various processing methods
With respect to processing sequence, the user must select the most suitable method from
the following options:
• Several actions in one synchronized action:

All actions are executed simultaneously in the interpolation cycle in which the condition is
fulfilled.

• Actions are grouped together to form a technology cycle:
The actions in the technology cycle are processed sequentially in the interpolation cycle.
One block is processed in each interpolation cycle. A distinction must be made between
single-cycle and multi-cycle actions. A technology cycle is ended when its last action has
been executed (generally after several interpolation cycles have passed).

Commands such as variable assignments in technology cycles are processed in one
interpolation cycle. Other commands (e.g. motion of a command axis, see Chapter "Starting
of command axes") last for several interpolation cycles. If the function is completed (e.g.
exact stop on positioning of axis), the next block is executed in the following interpolation
cycle.
Each block requires at least one interpolation cycle. If a block contains several single-cycle
actions, then these are all processed in one interpolation cycle. Fig. "Multiple technology
cycles" provides examples to indicate which actions are single-cycle and which are multi-
cycle.

Application
One possible application of technology cycles is to move each axis using a separate axis
program.

Programming
A technology cycle can be activated as a function of a condition in a modal/static
synchronized action.
End of program is programmed with M02 / M17 / M30 / RET.

Detailed description
2.5 Call of Technology Cycles

 Synchronized actions
102 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Search path
The call search path is the same as for subprograms and cycles.
Example

…

ID=1 EVERY $AA_IM[Y]>=10 DO AX_X ; AX_X Sub-program-
 ; name for axis program for X axis

AX_X: ; Axis program:
POS[X]=$R[7] FA[X]=377

$A_OUT[1] = 1

POS[X]=R10

POS[X]=-90

M30

 Note
If the condition is fulfilled again while the technology cycle is being processed, the cycle is
not restarted. If a technology cycle has been activated from a synchronized action of the
WHENEVER type and the relevant condition is still fulfilled at the end of the cycle, then the
technology cycle will be restarted.

 Detailed description
 2.5 Call of Technology Cycles

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 103

Figure 2-9 Several technology cycles

Example (2) for coordinated axis motions:
Different axis programs can be started by setting digital NC inputs.
Main program:
...
ID=1 WHEN $A_IN[1]==1 DO AXIS_X
ID=2 WHEN $A_IN[2]==1 DO AXIS_Y
ID=3 WHEN $A_IN[3]==1 DO AA_OVR[Y]=0
ID=4 WHEN $A_IN[4]==1 DO AXIS_Z
M30
Axis programs:
AXIS_X:
$AA_OVR[Y]=0
M100
POS[X]=100
M17
AXIS_Y:
POS[Y]=10
POS[Y]=-10

Detailed description
2.5 Call of Technology Cycles

 Synchronized actions
104 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

M17
AXIS_Z:
$AA_OVR[X]=0
POS[Z]=90
POS[Z]=-90
M17

2.5.1 Coordination of synchronized actions, technology cycles, part program (and PLC)

Control of technology cycles
Technology cycles/synchronized actions are controlled via the identification number of the
synchronized action in which they are programmed as an action:

Means of coordination

Keyword Description TP SA
 Call permitted in the part program

Call permitted in Synchr. action/technology cycle
+ +

LOCK(ID) Disable technology cycle.
An active action is interrupted.

 +

UNLOCK(ID) UNLOCK continues the technology cycle at the point of interruption.
An interrupted positioning operation is continued.

 +

RESET(ID) Abort technology cycle. Active positioning operations are aborted. If
the technology cycle is restarted, then it is processed from the 1st
block in the cycle.
Depending on the type of synchronized action, actions are executed
once more when the condition is fulfilled again. Already executed
synchronized actions of the WHEN type are not processed again after
RESET.

 +

CANCEL(ID) Synchronized action is deleted. +

• LOCK(ID), UNLOCK(ID) by PLC, see Subsection 2.6.1 "Control of PLC".

 Note
A synchronized action contains a technology cycle call. No further actions may be
programmed in the same block This ensures that the assignment between ID number
and relevant technology cycle is unambiguous.

 Detailed description
 2.5 Call of Technology Cycles

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 105

Synchronized action

synchronized actions

Figure 2-10 Setting up/locking modal synchronized actions/deleting

Detailed description
2.6 Control and protection of synchronized actions

 Synchronized actions
106 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.6 Control and protection of synchronized actions

2.6.1 Control via PLC

Function
Modal synchronized actions (ID, IDS) can be locked or enabled from the PLC.
• Disabling of all modal synchronized actions
• Selective disabling of individual synchronized actions

Sphere of influence
The PLC can control maximum up to the first 64 modal synchronized actions by applying
disables (ID, IDS 1-64). The synchronized actions, that can be inhibited by the PLC are
designated by the NC with 1 in the 64-bit field of the following interface:
DB21, … DBB308-315
Protected synchronized actions are never tagged as being possible to disable. See Chapter
2.6.2 "Protected synchronized actions".

Disable all synchronized actions
The PLC-application program can exclude all modal synchronized actions defined and saved
in the NC from activation by setting the NC/PLC-interface:
DB21, … DBX1.2 (synchronized action off)
Protected synchronized actions are an exception. Please see Subsection "Protected
synchronized actions".
PLC cancels the total disabling again by setting the NC/PLC-interface to 0:
DB21, … DBX1.2.

Application of selective disabling
One bit is reserved for each of first 64 IDs (1-64) in the PLC interface:
DB21, … DBX300.0 (disable synchronized action No. 1)
to
DB21, … DBX307.7 (disable synchronized action No. 63)
These functions are enabled by default (bits = 0). When the allocated bit is set, evaluation of
the condition and execution of the associated function are disabled in the NCK.

 Detailed description
 2.6 Control and protection of synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 107

Cancellation of selective disabling
A previously disabled syncronized action is cleared again by the PLC by setting the ID-, IDS-
number of the corresponding bit to 0 in the interface:
DB21, … DBX300.0 (disable synchronized action No. 1)
to
DB21, … DBX307.7 (disable synchronized action No. 64)

Updating the selective disabling
If the PLC-application program has made changes in the range from DB21-30,DBB 300. Bit
0 to DB21-30 BB307 Bit 7, it must activate them with:
DB21, … DBX280.1

Selective disabling status signal
If selective disablings are activated by the NCK, it is signalled in the interface:
DB21, … DBX.281.1 (disable synchronized action)
References:
/LIS2/ Lists (Volume 2); Interface solution line or power line.

Figure 2-11 Axis programs/technology cycles

Detailed description
2.6 Control and protection of synchronized actions

 Synchronized actions
108 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Reading/writing of PLC data
PLC data can also be read and written from the part program by transferring parameters
between the NCK and PLC via the VDI interface. This is an option: PLC variables.
References:
/FB1/ Function Manual, Basic Functions, Basic PLC Program (P3)
Parameters can also be accessed from synchronized actions, thus allowing PLC data to be
transferred to the NCK for parameterization before an axis function is initiated. The system
variables to be addressed can be found in
References:
/PGA1/ Parameter Manual, System Variables

2.6.2 Protected synchronized actions

Global protection
An area of write-protected synchronized actions can be defined via the machine data:
MD11500 $MN_PREVENT_SYNACT_LOCK (protected synchronized action)
Synchronized actions with ID numbers within the protected area, once they are defined, can
no longer be:
• Overwritten
• Deleted (CANCEL) or
• Disabled (LOCK).
Protected synchronized actions cannot be disabled via the PLC either. They are indicated to
the PLC as non-lockable in the interface. See Chapter "Control via PLC".

 Note
The functionality is also used for Safety Integrated systems.

Applications
The end customer must be prevented from modifying reactions to certain states defined by
the machine manufacturer.
The machine is commissioned by the manufacturer without protection. This enables the
gating logic to be defined and tested. However, the manufacturer declares the range of
synchronized actions he has used as protected before the system is delivered to the end
customer, thus preventing the end customer from defining his own synchronized actions
within this protected area.

 Detailed description
 2.6 Control and protection of synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 109

Notation of the machine data: MD11500 $MN_PREVENT_SYNACT_LOCK

MD11500 $MN_$MN_PREVENT_SYNACT_LOCK[0]=
i

; i number of the 1st ID to be disabled

MD11500 $MN_PREVENT_SYNACT_LOCK[1]= j ; i number of the last ID to be disabled

ID i and j can also be inverted.
If i = 0 and j = 0, no synchronized actions are protected.

Channel-specific protection
An area of write-protected synchronized actions can be defined for the channel via the
channel-specific machine data:
MD21240 $MN_PREVENT_SYNACT_LOCK (protected synchronized action)
Synchronized actions with ID numbers within the protected area, once they are defined, can
no longer be:
• Overwritten
• Deleted (CANCEL) or
• Disabled (LOCK).
Protected synchronized actions cannot be disabled via the PLC either. They are indicated to
the PLC as non-lockable in the interface. See Chapter "Control via PLC".

Application
See above.

Notation of the MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN

CHANDATA(C) ; with C channel number
MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN[0]=
k

; k number of the first ID to be disabled for the
channel

MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN[1]=
l

; l number of the last ID to be disabled for the
channel ID

k and l can also be inverted.
If k = 0 and l = 0, no synchronized actions are protected.
When k = -1 and l = -1, this specifies that the global range of protected synchronized actions
should be applicable for the channel and should be defined with the following machine data:
MD11500 MN_PREVENT_SYNACT_LOCK (protected synchronized action)

Detailed description
2.6 Control and protection of synchronized actions

 Synchronized actions
110 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

 Note
Protection for synchronized actions must be cancelled while protected static synchronized
actions are being defined, otherwise POWER ON will have to be executed for every
alteration to allow redefinition of the logic.

The effectiveness of the disable is identical, regardless of whether it is specified as:
• global disabling or
• channel-specific disabling.

Example
In a system with 2 channels, synchronized actions should be protected as follows:
IDs 20 to 30 should be protected in the first channel and IDs 25 to 35 in the second. A
combination of global and channel-specific specifications can be used.

MD11500 $MN_PREVENT_SYNACT_LOCK[0] = 25 ; global specification
MD11500 $MN_PREVENT_SYNACT_LOCK[1] = 35 ; global specification
CHANDATA(1)

MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN[0] = 20

 ; in 1st channel only the channel-specific (first ID number to be protected) is effective
in the first channel

MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN1] = 30

 ; in 1st channel only the channel-specific MD (last ID number to be protected) is
effective in the first channel

CHANDATA(2)

MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN[0] = -1

 ; in 2nd channel the global machine data MD11500 is effective
 ; $MN_PREVENT_SYNACT_LOCK!
MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN[1] = -1

...

 Detailed description
 2.7 Control system response for synchronized actions in specific operational states

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 111

2.7 Control system response for synchronized actions in specific
operational states

2.7.1 Power On
No synchronized actions are active during POWER ON. Static synchronized actions that are
required to be active immediately after POWER ON must be activated within an ASUB
started by the PLC.
References:
/FB1/ Function Manual, Basic Functions; Basic PLC Program
/FB1/ Function Manual, Basic Functions; Mode Group, Channel, Program Operation Mode
(K1)
This requires ASUB functionality in all operating modes.
Examples:
• Adaptive control
• Safety Integrated, gating logic formulated by means of synchronized actions

2.7.2 RESET

In case of motion of positioning axis
All positioning motions initiated by synchronized actions are aborted on NC reset. Active
technology cycles are reset.

ID
Synchronized actions programmed locally (i.e. with ID=...) are deselected on NC reset.

IDS
Static synchronized actions (programmed with IDS = ...) remain active after NC reset.
Motions can be restarted from static actions after NC reset.

Detailed description
2.7 Control system response for synchronized actions in specific operational states

 Synchronized actions
112 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Other reactions, dependent on actions
RESET continued

Synchronized
action/
technology cycle

Modal and non-modal active action is aborted,
synchronized actions are cancelled

Static (IDS)
Active action is aborted, technology cycle
is reset

Axis/
positioning spindle

Motion is aborted Motion is aborted

Speed-controlled
spindle

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET==
TRUE:

Spindle remains active
MD35040
$MA_SPIND_ACTIVE_AFTER_RESET==FALSE:

Spindle stops.

MD35040
$MA_SPIND_ACTIVE_AFTER_RESET==
TRUE:
Spindle remains active
MD35040
$MA_SPIND_ACTIVE_AFTER_RESET==F
ALSE:
Spindle stops.

Master value
coupling

MD20110 $MC_RESET_MODE_MASK, Bit13 == 1:
Master value coupling remains active
MD20110 $MC_RESET_MODE_MASK, Bit13 == 0:
Master value coupling is separated

MD20110 $MC_RESET_MODE_MASK,
Bit13 == 1:
Master value coupling remains active
MD20110 $MC_RESET_MODE_MASK,
Bit13 == 0:
Master value coupling is separated

Measuring
operations

Measuring operations started from synchronized
actions are aborted

Measuring operations started from static
synchronized actions are aborted

2.7.3 NC STOP

Motion start from static synchronized actions
Motions that have been started from static synchronized actions remain active in spite of an
NC STOP.
Response of a command axis in SW 6.3 and later:

 Note
In SW 6.3 and later, it is possible to convert a command axis started by a static synchronized
action to a PLC-controlled axis. VDI interface:
DB 31, ... DBX28.7 (PLC controls axis/P5)
Such an axis is no longer stopped through NC-STOP , but instead through an axial STOP.

 Detailed description
 2.7 Control system response for synchronized actions in specific operational states

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 113

Motion start from non-modal and modal synchronized actions
Axis motions started from non-modal and modal actions are interrupted and then restarted
by NC START. Speed-controlled spindles remain active.
Synchronized actions programmed in the current block remain active.
Example
Set output: ... DO $A_OUT[1] = 1

2.7.4 Mode change
The response differs depending on whether the relevant synchronized action is static or
programmed locally. Synchronized actions activated by keyword IDS remain active after a
change in operating mode. All other synchronized actions are deactivated in response to a
mode change and reactivated on switchover to AUTO mode for repositioning.
Example

N10 WHEN $A_IN[1]==1 DO DELDTG

N20 G1 X10 Y 200 F150 POS[U]=350

Block N20 contains a STOP command. The operating mode is switched to JOG. If deletion
of distance-to-go was not active prior to the interruption, then the synchronized action
programmed in block N10 is reactivated when AUTO mode is selected again and the
program continued.

2.7.5 End of program
Static synchronized actions remain active after the end of program. Modal and non-modal
synchronized actions are aborted. Static and modal synchronized actions programmed in
M30 blocks remain active. They can be aborted with CANCEL before the M30 block.
Polynomial coefficients programmed with FCTDEF remain active after the end of program.

Detailed description
2.7 Control system response for synchronized actions in specific operational states

 Synchronized actions
114 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.7.6 Response of active synchronized actions to end of program and change in
operating mode

See Chapter 2.7.4 "Change of operation mode" and Chapter 2.7.5 "Program end".

Synchronized action/
technology cycle

Modal and non-modal actions are aborted Static actions (IDS) remain active

Axis/positioning spindle M30 is delayed until the axis/spindle is stationary. Motion continues
Speed-controlled spindle End of program:

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET==
TRUE:
Spindle remains active
MD35040
$MA_SPIND_ACTIVE_AFTER_RESET==FALSE:
Spindle stops.
Spindle remains active when the operation mode is
changed

Spindle remains active

Master value coupling MD20110 $MC_RESET_MODE_MASK, Bit13 == 1:
Master value coupling remains active
MD20110 $MC_RESET_MODE_MASK, Bit13 == 0:
Master value coupling is separated

A coupling started from a static
synchronized action remains active

Measuring operations Measuring operations started from synchronized
actions are aborted

Measuring operations started from
static synchronized actions remain
active

2.7.7 Block search

General
Synchronized actions in the program, which have been interpreted during the block search,
are collected but their conditions are not evaluated. No actions are executed. Processing of
synchronized actions does not commence until NC Start.

IDS
Synchronized actions that are programmed with keyword IDS and are already active remain
operative during the block search.

Polynomial coefficient
Polynomial coefficients programmed with FCTDEF are collected with calculation during a
block search, i.e. they are written to system variables.

 Detailed description
 2.7 Control system response for synchronized actions in specific operational states

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 115

2.7.8 Program interruption by ASUB

ASUB start
Modal and static motion-synchronous actions remain active and are also operative in the
asynchronous subprogram.

ASUB end
If the asynchronous subprogram is not continued with REPOS, then modal and static motion-
synchronous actions modified in the subprogram remain operative in the main program.
Positioning motions started from synchronized actions respond in the same way as to
operating mode switchover:
Motions started from non-modal and modal actions are stopped and continued with REPOS (if
programmed). Motions started from static synchronized actions continue uninterrupted.

2.7.9 REPOS
In the remainder of the block, the synchronized actions are treated in the same way as in an
interruption block.
Modifications to modal synchronized actions in the asynchronous subprogram are not
effective in the interrupted program.
Polynomial coefficients programmed with FCTDEF are not affected by ASUB and REPOS.
The coefficients from the call program are applied in the asynchronous subprogram. The
coefficients from the asynchronous subprogram continue to be applied in the call program.
If positioning motions started from synchronized actions are interrupted by the operating
mode change or start of the interrupt routine, then they are continued with REPOS.

2.7.10 Response to alarms
Axis and spindle motions started by means of synchronized actions are decelerated in
response to an alarm involving a motion stop instruction. All other actions (such as Set
output) continue to be executed.
If an alarm is activated by a synchronized action, then the action is no longer processed in
the next interpolation cycle, i.e. the alarm is output only once. Alarms that respond with an
interpreter stop only take effect once the precoded blocks have been processed.
Processing of all other actions continues as normal.
If a technology cycle generates an alarm with motion stop, then processing of the relevant
cycle ceases.

Detailed description
2.8 Configuration

 Synchronized actions
116 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.8 Configuration

2.8.1 Configurability

Number of synchronized action elements
The number of programmable synchronized action blocks depends entirely on the
configurable number of synchronized action elements. The number of storage elements for
motion-synchronous actions (synchronized action elements) is defined via the machine data:
MD28250 $MC_MM_NUM_SYNC_ELEMENTS (Number of elements for expressions in
synchronized actions)
This data can be set irrespective of the number of blocks available in the control system,
thus enabling the complexity of expressions evaluated in real time as well as the number of
actions to be set flexibly.

Use of elements
Each one synchronized action element is needed for:
• A comparison expression in a condition
• An elementary action
• the synchronized action block
Example
A total of four elements is needed for the synchronized action block below.

WHENEVER ($AA_IM[x] > 10.5) OR ($A_IN[1]==1) DO
|________| |_________________| |_______________|
Element 1 Element 2 Element 3
$AC_PARAM[0]=$AA_im[y]+1
|_________________________|
Element 4

The default value of the following machine data is selected such that it is possible to activate
the maximum presetting of max. 16 synchronized actions for SW 3 and earlier.
MD28250 $MC_MM_NUM_SYNC_ELEMENTS (Number of elements for expressions in
synchronized actions)

 Detailed description
 2.8 Configuration

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 117

 Note
If the user does not wish to program any synchronized actions, then he can reset the value
to 0 in the machine data:
MD28250 $MC_MM_NUM_SYNC_ELEMENTS
In this way, around 16 kByte of DRAM memory can be saved.

Display
The status display for synchronized actions (see Section 2.9 "Diagnostics only with HMI
Advanced") indicates how much of the memory provided for synchronized actions is still
available. This status can also be read from synchronized actions in variable
$AC_SYNA_MEM.

Alarm
An alarm is generated if all available elements are used up during program execution. The
user can respond by increasing the number of synchronized action elements or by modifying
his program accordingly.

Number of FCTDEF functions
The number of programmable FCTDEF functions for each block can be configured via the
following machine data:
MD28252 $MC_MM_NUM_FCTDEF_ELEMENTS (number of FCTDEF elements)
The default value for all types of control is 3. The control-specific maximum value can be
found in:
References:
/LIS1/ Lists (Book 1); "MD/SD Lists".

Interpolation cycle
The time required on the interpolation level increases with the number of synchronized
actions programmed. It may be necessary for the start-up engineer to lengthen the
interpolation cycle accordingly.

Detailed description
2.8 Configuration

 Synchronized actions
118 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Guide values for lengthening interpolation cycle
As a guide, individual times required to perform operations within synchronized actions
(measured on an 840D with NCU 573.x) are given below:
Times may be different for other control types.

NC language Time

requirement

 Total Text in bold print
Base load for a synchronized action, if the condition is not fulfilled:WHENEVER
FALSE DO $AC_MARKER[0]=0

10 µs ~10 µs

Read variable: WHENEVER $AA_IM[Y]>10 DO $AC_MARKER[0]=1 11 µs ~1 µs
Write variable: DO $R2=1 11-12 µs ~1-2 µs
Read/write setting data:
DO$$SN_SW_CAM_MINUS_POS_TAB_1[0]=20

24 µs ~14 µs

Basic arithematic operation, e.g. multiplication: DO $R2=$R2*2 22 µs ~12 µs
Trigonometric functions (e.g. cos): DO $R2=COS($R2) 23 µs ~13 µs
Start positioning axis movement: WHEN TRUE DO POS[z]=10 83 µs ~73 µs

 Detailed description
 2.9 Diagnostics (only with HMI Advanced)

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 119

2.9 Diagnostics (only with HMI Advanced)

Diagnostic functionality
The following special test tools are provided for diagnosing synchronized actions:
• Status display of synchronized actions in the machine operator area
• System variables display parameters in the operating range

The current values of all synchronized action variables can be displayed (displaying main
run variables)

• System variables log parameters in the operating range
Characteristics of variables can be recorded in the interpolation cycle grid (logging main
run variables)

This functionality is structured in the operator interface in the following way:

Figure 2-12 Functionality of test tools for synchronized actions

For a description of how to use these functions, please see:
References:
/BAD/ Operator's Guide HMI Advanced.

Detailed description
2.9 Diagnostics (only with HMI Advanced)

 Synchronized actions
120 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

2.9.1 Displaying status of synchronized actions

Status display
The status display shows:
• Current extract of selected program
All programmed synchronized actions according to:
• Line number
• Code denoting synchronized action type
• ID number of synchronized action (for modal actions)
• Status

Synchronized action type
The following types of auxiliary function are available:

ID Modal synchronized action
IDS Static modal synchronized action
 Non-modal synchronized action for next executable block (in AUTOMATIC mode

only)

Status
The following status conditions might be displayed:

No status: The condition is checked in the interpolation cycle
Blocked LOCK has been set for the synchronized action
Active Action currently being executed. If the action consists of a technology

cycle, the current line number in the cycle is also displayed.

Complete synchronized actions
A search function can be used to display the originally programmed line in NC language for
each displayed synchronized action.

 Detailed description
 2.9 Diagnostics (only with HMI Advanced)

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 121

2.9.2 Displaying main run variables

Description
System variables can be monitored for the purpose of monitoring synchronized actions.
Variables, which may be used in this way are listed for selection by the user.
A complete list of individual system variables with ID code W for write access and R for read
access for synchronized actions can be found in:
References:
/PGA1/ Parameter Manual, System Variables

Views
"Views" are provided to allow the user to define the values, which are relevant for a specific
machining situation and to determine how (in lines and columns, with what text) these values
must be displayed. Several views can be arranged in groups and stored in correspondingly
named files.

Managing views
A view defined by the user can be stored under a name of his choice and then called again.
Variables included in a view can still be modified (Edit View).

Displaying main run variable of a view
The values assigned to a view are displayed by calling the corresponding user-defined view.

2.9.3 Logging main run variables

Starting point
To be able to trace events exactly in synchronized actions, it is necessary to monitor the
action status in the interpolation cycle.

Method
The values defined in a log definition are written to a log file of defined size in the specified
cycle. Special functions for displaying the contents of log files are provided.

Detailed description
2.9 Diagnostics (only with HMI Advanced)

 Synchronized actions
122 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Figure 2-13 Schematic representation of Log main run variables process

Operation
For information about operating the logging function, please see:
References:
/BAD/ Operator's Guide HMI Advanced.

Log definition
The log definition can contain up to 6 specified variables. The values of these variables are
written to the log file in the specified cycle. A list of variables, which may be selected for
logging purposes, is displayed. The cycle can be selected in multiples of the interpolation
cycle. The file size can be selected in Kbytes. A log definition must be initialized before it can
be activated on the NCK for the purpose of acquiring the necessary values.

Log file size
Values between 3 KB (minimum) and 50 KB (maximum) can be selected as the log file size.

 Detailed description
 2.9 Diagnostics (only with HMI Advanced)

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 123

Storage method
When the effective log file size has been exceeded, the oldest entries are overwritten, i.e.
the file works on the circular buffer principle.

Starting logging
Logging according to one of the initialized log definitions is started by:
• Operation
• Setting system variable $A_PROTO=1 from the part program
The starting instant must be selected such that the variables to be logged are not altered
until operations on the machine have been activated. The start point refers to the last log
definition to be initialized.

Stopping logging
This function terminates the acquisition of log data in the NCK. The file containing the logged
values is made available on the HMI for storage and evaluation (graphic log). Logging can
be stopped by:
• Operation
• Setting system variable $A_PROTO=0 from the part program

Graphic log function
The measured values (up to 6) of a log are represented graphically as a function of the
sampling time. The names of variables are specified in descending sequence according to
the characteristics of their values. The screen display is arranged automatically. Selected
areas of the graphic can be zoomed.

 Note
Graphic log representations are also available as text files on the HMI Advanced. An editor
can be used to read the exact values of a sampling instant (values with identical count index)
numerically.

Managing logs
Several log definitions can be stored under user-defined names. They can be called later for
initialization and start of recording or for modification and deletion.

Detailed description
2.9 Diagnostics (only with HMI Advanced)

 Synchronized actions
124 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 125

Boundary conditions 3
Availability/scope of performance

The scope of performance provided by the "Synchronized actions" function package
depends on the following:
• The type of SINUMERIK control system

– Hardware
– SW (export/standard versions)

• The availability of functions that can be initiated by "Actions":
– Standard functions
– Functions that are available as options

The performance of control systems and their variants as well as functions supplied as
options are described in catalogs specific to the SW version:
References:
/BU/ Ordering documentation, Catalog NC60 and NC61
/LIS1/ Lists (Book1)
/LIS2/ Lists (Book1)
Further, the functions of the synchronized actions depend on the list of synchronized actions
- system variables that can be read/changed - including machine and setting data (also
dependent on the SW release). System variables that may be used in conjunction with
specific SW versions are described in:
References:
/PGA1/ Parameter Manual System Variables (valid for the particular SW release)

Extensions in SW 4
The following extensions have been introduced with SW 4:
• Diagnostic facilities for synchronized actions
• Availability of additional real-time variables
• Complex conditions in synchronized actions

– Basic arithmetic operations
– Functions
– Indexing with real-time variables
– Access to setting and machine data
– Logic operators

Boundary conditions

 Synchronized actions
126 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

• Configurability
– Number of simultaneously active synchronized actions
– Number of special variables for synchronized actions

• Activate command axes/axis programs/technology cycles from synchronized actions
• PRESET from synchronized actions
• Couplings and coupled motions from synchronized actions

– Switch on
– Switch off
– Configuring

• Use of measuring functions from synchronized actions
• SW cams

– Redefinition of position
– Redefinition of lead times

• Deletion of distance-to-go without preprocessing stop
• Static synchronized actions (modes other than AUTO possible)
• Synchronized actions:

– Protection against overwriting and deletion
– Stopping, continuing, deleting
– Resetting technology cycles
– Parameterizing, enabling and disabling from PLC

• Overlaid movement/optimized clearance control
• Coordinating channels from synchronized actions
• Starting ASUBs from synchronized actions
• Non-modal auxiliary function output
• All necessary functions for Safety Integrated for formulation of requisite safety-oriented

logic operations, protected against changes.
• 16 synchronized actions are included in the basic version

 Boundary conditions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 127

Expansions in SW 5 and higher
From SW 5 to 7, the following services are additionally provided:
• Synchronized actions, which can be tagged for the PLC
• Availability of additional real-time variables
• Access to PLC I/O (option)
• 255 parallel synchronized actions per channel are possible with the option "Synchronized

actions step 2".
• Static synchronized actions IDS that are active beyond the program end and are effective

in all operating mode are possible using the option "Inter-mode group actions, ASUBs
and synchronized actions".

• Online calculations and online tool offsets (from SW 6).
• Axis replacement using synchronized actions and in the technology cycle (SW 7 onward).
• Creating of coupling modules for the generic coupling (SW 7.4 and higher).

Boundary conditions

 Synchronized actions
128 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 129

Signal Descriptions 4

Figure 4-1 PLC interface signals for synchronized actions

For the signals generated by the auxiliary function output from synchronized actions see:
References:
/FB1/ Function Manual Basic functions; Auxiliary function output to PLC (H2)

Signals to channel
With the following signals the PLC application program requests for disabling the assigned
synchronized actions:
DB21, … DBX300.0 (disable synchronized action No. 1)
to
DB21, … DBX307.7 (disable synchronized action No. 64)
where:

Signal Descriptions

 Synchronized actions
130 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

DBX300.0 of the first modal synchronized action (ID=1/IDS=1) and
DBX307.7 of the 64th modal synchronized action (ID=64/IDS=64).

 Note
Only the instance (NCK or PLC), which initiated a disable can cancel the disable again.

Signals from channel
With the following signals the channel shows the PLC application program for the
synchronized actions, which may be disabled by PLC:
DB21, … DBX308.0 (disable synchronized action No. 1)
to
DB21, … DBX315.7 (disable synchronized action No. 64)
where:
DBX308.0 of the first modal synchronized action (ID=1/IDS=1) and
DBX315.7 of the 64th modal synchronized action (ID=64/IDS=64).

Disable all synchronized actions
All modal/static synchronized actions, unless protected, are disabled by the global signal:
DB21, … DBX1.2 (synchronized action off)

Disable selected synchronized actions
DB21, … DBX280.1 (disable synchronized action)
Of the synchronized actions that can be disabled and that are marked in DB21, … DBX308.0
(disable synchronized actions No. 1) to DB21, … DBX315.7 (synchronized actions No. 64),
the actions identified in DB 21, … DBX300.0 (disable synchronized actions No. 1) to DB21,
… DBX307.7 (synchronized actions No. 64) by the set bit as the ones that can be disabled
should only be disabled.

Synchronized actions disabled
DB21, … DBX281.1 (disable synchronized action)
The required synchronized actions were confirmed by NCK as disabled.

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 131

Examples 5
5.1 Examples of conditions in synchronized actions

Path distance from end of block
Axial distance from block end: 10 mm or less (workpiece coordinate system):
... WHEN $AC_DTEW <= 10 DO ...
G1 X10 Y20

Axis distance from end of path
 ... WHEN $AA_DTEW[X]<= 10 DO ...
POS[X]=10

Path distance from start of block
Path 20 mm or more after start of block in basic coordinate system:
...WHEN $AC_PLTBB >= 20 DO ...

Condition with function in comparison
Actual value for axis Y in MCS greater than 10 x sine of value in R10:
... WHEN $AA_IM[y] > 10*SIN (R10) DO...

Step-by-step positioning
Every time input 1 is set, the axis position is advanced by one step. The input must be reset
again to allow a restart of the system.
G91
EVERY $A_IN[1]==1 DO POS[X]= 10

Examples
5.2 Reading and writing of SD/MD from synchronized actions

 Synchronized actions
132 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

OVR in every interpolation cycle
In order to selectively disable a path motion until a programmed signal arrives, $AC_OVR
must be set to zero in every interpolation cycle (keyword WHENEVER).
WHENEVER $A_IN[1]==0 DO $AC_OVR= 0

Other system variables
The list of the readable system variables in synchronized actions includes the full set of the
values that can be evaluated in the conditions of synchronized actions.
References:
/PGA1/ Parameter Manual, System Variables

5.2 Reading and writing of SD/MD from synchronized actions

Infeed and oscillation for grinding operations
Setting data, whose values remain unchanged during machining, are addressed in the part
program by their usual names.
Example: Oscillation from synchronized actions

NC language Comment

N610 ID=1 WHENEVER $AA_IM[Z]>$SA_OSCILL_REVERSE_POS1[Z]

DO $AC_MARKER[1]=0

 ; Always when the current position of the oscillating axis
 ; in the machine coordinate system
 ; Less

than
the start of reversal area 2

 ; Then set the axial override of the
 ; infeed axis to 0
N620 ID=2 WHENEVER $AA_IM[Z]<$SA_OSCILL_REVERSE_POS2[Z]-6

DO $AA_OVR[X]=0 $AC_MARKER[0]=0

 ;; Always when the current position of the oscillating axis
in the MCS is

 ; equal to the reversal position 1,
 ; Then set the axial override of the
 ; oscillating axis to 0
 ; and set the axial override of the
 ; infeed axis to 100% (so that the
 ; previous synchronized action
 ; is cancelled!)
N630 ID=3 WHENEVER $AA_IM[Z]==$SA_OSCILL_REVERSE_POS1[Z]

DO $AA_OVR[Z]=0 $AA_OVR[X]=100

 ; Always when the distance-to-go of the part infeed

 Examples
 5.2 Reading and writing of SD/MD from synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 133

NC language Comment

 ; Equal to 0,
 ; Then set the axial override of the oscillating
 ; axis to 100% (so that the previous
 ; synchronized action is cancelled!)
N640 ID=4 WHENEVER $AA_DTEPW[X]==0

DO $AA_OVR[Z]=100 $AC_MARKER[0]=1 $AC_MARKER[1]=1

N650 ID=5 WHENEVER $AC_MARKER[0]==1 DO $AA_OVR[X]=0

N660 ID=6 WHENEVER $AC_MARKER[1]==1 DO $AA_OVR[X]=0

 ; if the current position of the oscillating axis in the
 ; Workpiece coordinate system
 ; Equal to reversal position 1,
 ; Then set the axial override of the
 ; Oscillating axis to 100%
 ; and set the axial override of the
 ; infeed axis to 100% (so that the
 ; second synchronized action once
 ; is cancelled!)
N670 ID=7 WHEN $AA_IM[Z]==$SA_OSCILL_REVERSE_POS1[Z]

DO $AA_OVR[Z]=100 $AA_OVR[X]=0

 Setting data, whose value may change during machining
(e.g. through an operator input or synchronized action),
must be programmed with $$S...:

 Example: Oscillation from synchronized actions with
alteration of oscillation position via operator interface

N610 ID=1 WHENEVER $AA_IM[Z]>$$SA_OSCILL_REVERSE_POS1[Z]

DO $AC_MARKER[1]=0

 ; Always when the current position of the oscillating axis
 ; in the machine coordinate system
 ; Less

than
the start of reversal area 2

 ; Then set the axial override of the
 ; infeed axis to 0
N620 ID=2 WHENEVER $AA_IM[Z]<$$SA_OSCILL_REVERSE_POS2[Z]-6

DO $AA_OVR[X]=0 $AC_MARKER[0]=0

 ; Always when the current position of the oscillating axis
 ; in the machine coordinate system
 ; Equal to reversal position 1,
 ; Then set the axial override of the
 ; oscillating axis to 0
 ; and set the axial override of the
 ; infeed axis to 100% (so that the
 ; previous synchronized action
 ; is cancelled!)

Examples
5.3 Examples of adaptive control

 Synchronized actions
134 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

NC language Comment

N630 ID=3 WHENEVER $AA_IM[Z]==$$SA_OSCILL_REVERSE_POS1[Z]

DO $AA_OVR[Z]=0 $AA_OVR[X]=100

 ; Always when the distance-to-go of the part infeed
 ; Equal to 0,
 ; Then set the axial override of the
 ; oscillating axis to 100% (so that the
 ; previous synchronized action
 ; is cancelled!)
N640 ID=4 WHENEVER $AA_DTEPW[X]==0

DO $AA_OVR[Z]=100 $AC_MARKER[0]=1 $AC_MARKER[1]=1

N650 ID=5 WHENEVER $AC_MARKER[0]==1 DO $AA_OVR[X]=0

N660 ID=6 WHENEVER $AC_MARKER[1]==1 DO $AA_OVR[X]=0

 If the current position of the oscillating axis in
the

 Workpiece coordinate system
 Equal to reversal position 1,
 Then set the axial override of the
 Oscillating axis to 100%
 and set the axial override of the
 ; infeed axis to 100% (so that the
 ; second synchronized action once
 ; is cancelled!)
N670 ID=7 WHEN $AA_IM[Z]==$$SA_OSCILL_REVERSE_POS1[Z]

DO $AA_OVR[Z]=100 $AA_OVR[X]=0

5.3 Examples of adaptive control

General procedure
The following examples use the polynomial evaluation function SYNFCT().
1. Representation of relationship between input value and output value (real-time variables

in each case)
2. Definition of this relationship as polynomial with limitations
3. With position offset: Setting the MD and SD

– MD36750 $MA_AA_OFF_MODE (Effect of value assignment for axial override in case
of synchronized actions)

– SD43350 $SA_AA_OFF_LIMIT (optional) (Upper limit of the offset value $AA_OFF in
case of clearance control)

4. Activation of the control in a synchronized action

 Examples
 5.3 Examples of adaptive control

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 135

5.3.1 Clearance control with variable upper limit

Example of polynomial with dyn. upper limit
For the purpose of clearance control, the upper limit of the output ($AA_OFF, override value
in axis V) is varied as a function of the spindle override (analog input 1). The upper limit for
polynomial 1 is varied dynamically as a function of analog input 2.
Polynomial 1 is defined directly via system variables:

Figure 5-1 Clearance control with variable upper limit

$AC_FCTLL[1]=0.2 ; Lower limit
$AC_FCTUL[1]=0.5 ; Request Value of upper limit
$AC_FCT0[1]=0.35 ; Zero passage a0
$AC_FCT1[1]=1.5 EX-5 ; Pitch a1
STOPRE ; see following note
...

; Upper limit
; adjust dynamically via

ID=1 DO $AC_FCTUL[1]=$A_INA[2]*0.1+0.35

; Analog input 2, no condition
; Clearance control through override ID=2 DO SYNFCT(1, $AA_OFF[V], $A_INA[1])

; no conditions
...

Examples
5.3 Examples of adaptive control

 Synchronized actions
136 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

 Note
When system variables are used in the part program, STOPRE must be programmed to
ensure block-synchronous writing. The following is an equivalent notation for polynomial
definition:
FCTDEF(1, 0.2, 0.5, 0.35, 1.5EX-5).

5.3.2 Feedrate control

Example of adaptive control with an analog input voltage
A process quantity (measured via $A_INA[1]) must be regulated to 2 V through an additive
control factor implemented by a path (or axial) feedrate override. Feedrate override shall be
performed within the range of +100 [mm/min].

Figure 5-2 Diagram illustrating adaptive control

Determination of coefficients:
y = f(x) = a0 + a1x +a2x2 + a3x3
a1 = - 100mm / (1min * 1V)
a1 = - 100% regulation constants, pitch
a0 = - (-100) * 2 = 200
a2 = 0 (not a square component)

 Examples
 5.3 Examples of adaptive control

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 137

a3 = 0 (not a square component)
Upper limit = 100
Lower limit = -100

FCTDEF(Polynomial No.

 LLIMIT

 ULIMIT

 a0 ; y for x = 0
 a1 ; Lead
 a2 ; square component
 a3) ; cubic component

With the values determined above, the polynomial is defined as follows:
FCTDEF(1, -100, -100, 100, 200, 0, 0)
The following synchronized actions can be used to activate the adaptive control function
for the axis feedrate:
ID = 1 DO SYNFCT (1, $AA_VC[X], $A_INA[1])
or for the path feedrate:
ID = 2 DO SYNFCT(1, $AC_VC, $A_INA[1])

5.3.3 Control velocity as a function of normalized path

Multiplicative adaptation
The normalized path is applied as an input quantity: $AC_PATHN.
0: At block start
1: at block end
Variation quantity $AC_OVR must be controlled as a function of $AC_PATHN according to a
3rd order polynomial. The override must be reduced from 100 to 1% during the motion.

Examples
5.4 Monitoring a safety clearance between two axes

 Synchronized actions
138 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Figure 5-3 Regulate velocity continuously

Polynomial 2:
Lower limit: 1
Hi limit: 100
a0: 100
a1: -100
a2: -100
a3: not used
With these values, the polynomial definition is as follows:
FCTDEF(2, 1, 100, 100, -100, -100)
; Activation of the variable override as a function of the path:
ID= 1 DO SYNFCT (2, $AC_OVR, $AC_PATHN)
G01 X100 Y100 F1000

5.4 Monitoring a safety clearance between two axes

Task
The axes X1 and X2 operate two independently controlled transport devices used to load
and unload workpieces.
To prevent the axes from colliding, a safety clearance must be maintained between them.
If the safety clearance is violated, then axis X2 is decelerated. This interlock is applied until
axis X1 leaves the safety clearance area again.
If axis X1 continues to move towards axis X2, thereby crossing a closer safety barrier, then it
is traversed into a safe position.

 Examples
 5.5 Store execution times in R parameters

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 139

NC language Comment

ID=1 WHENEVER $AA_IM[X2] -
$AA_IM[X1] < 30 DO $AA_OVR[X2]=0

; Safety barrier

ID=2 EVERY $AA_IM[X2] - $AA_IM[X1]
< 15 DO POS[X1]=0

; Safe position

5.5 Store execution times in R parameters

Task
Store the execution time for part program blocks starting at R parameter 10.

Program Comment

 ;
;

The example is
as follows without symbolic programming:

IDS=1 EVERY $AC_TIMEC==0 DO
$AC_MARKER[0] = $AC_MARKER[0] + 1

;
;

Advance R parameter
pointer on block change

IDS=2 DO $R[10+$AC_MARKER[0]] =
$AC_TIME

;
;

Write current time
of block start in each case to R parameter

 ;
;

The example is
as follows with symbolic programming:

DEFINE INDEX AS $AC_MARKER[0] ;
;

Agreements for symbolic
programming

IDS=1 EVERY $AC_TIMEC==0 DO INDEX =
INDEX + 1

;
;

Advance R parameter
pointer on block change

IDS=2 DO $R[10+INDEX] = $AC_TIME ;
;

Write current time
of block start in each case to R parameter

5.6 "Centering" with continuous measurement

Introduction
The gaps between gear teeth are measured sequentially. The gap dimension is calculated
from the sum of all gaps and the number of teeth. The center position sought for continuation
of machining is the position of the first measuring point plus 1/2 the average gap size. The
speed for measurement is selected in order to enable one measured value to be reliably
acquired in each interpolation cycle.

Examples
5.6 "Centering" with continuous measurement

 Synchronized actions
140 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Figure 5-4 Diagrammatic representation of measurement of gaps between gear teeth

%_N_MEAC_MITTEN_MPF
;Measure using rotary axis B (BACH) with display of difference
;between measured values

;*** Define local user-defined variables ***

N1 DEF INT ZAEHNEZAHL ; Input number of gear teeth
N5 DEF REAL HYS_POS_FLANKE ; Hysteresis positive edge probe
N6 DEF REAL HYS_NEG_FLANKE ; Hysteresis negative edge probe
;*** Define short names for synchronized action markers ***

define M_ZAEHNE as $AC_MARKER[1] ; ID marker for calculation: neg/pos edge per tooth
define Z_MW as $AC_MARKER[2] ; Read ID counter MW FIFO
define Z_RW as $AC_MARKER[3] ; Calculate ID Counter MW tooth

 Examples
 5.6 "Centering" with continuous measurement

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 141

*** Input values for ZAHNRADMESSEN ***

N50 ZAEHNEZAHL=26 ; Enter number of gear teeth to be measured
N70 HYS_POS_FLANKE = 0.160 ; Hysteresis positive edge probe
N80 HYS_NEG_FLANKE = 0.140 ; Hysteresis negative edge probe

Start: ; *** Assign variables ***
R1=0 ; ID2 calculation result for gap dimension
R2=0 ; ID2 calculation result addition of all gaps
R3=0 ; Contents of the first element read
R4=0 ; R4 corresponds to a tooth distance
R5=0 ; Gap position calculated, final result
R6=1 ; Switch-on ID 3 BACH with MOV
R7=1 ; Switch-on ID 5 MEAC
M_ZAEHNE=ZAEHNEZAHL*2 ; Calculate ID neg./pos. edge of each teeth
Z_MW=0 ; Read ID counter MW FIFO till the number of teeth
Z_RW=2 ; Calculate ID counter difference of tooth gap
R13=HYS_POS_FLANKE ; Hysteresis in calculation register
R14=HYS_NEG_FLANKE ; Hysteresis in calculation register
;*** Travel, measure, calculate axis ***

N100 MEAC[BACH]=(0) ; Reset measurement job
;Resetting the FIFO[4] variables and ensuring a defined measurement trace

N105 $AC_FIFO1[4]=0 ; Reset FIFO1
STOPRE

; *** Read FIFO till tooth number reached ***
; if FIFO1 is not empty and all teeth are still not measured, save measured value from FIFO variable

in
; synchronization parameter and increment counter of measured values

ID=1 WHENEVER ($AC_FIFO1[4]>=1) AND (Z_MW<M_ZAEHNE)

 DO $AC_PARAM[0+Z_MW]=$AC_FIFO1[0] Z_MW=Z_MW+1
;if 2 measured values are present, start calculation, calculate ONLY gap dimension
; and gap sum, increment calculation value counter by 2

ID=2 WHENEVER (Z_MW>=Z_RW) AND (Z_RW<M_ZAEHNE)

 DO $R1=($AC_PARAM[-1+Z_RW]-$R13)-($AC_PARAM[-2+Z_RW]-$R14) Z_RW=Z_RW+2
$R2=$R2+$R1

;*** Switch-on the axis BACH as endless rotating rotary axis with MOV ***

WAITP(BACH)

ID=3 EVERY $R6==1 DO MOV[BACH]=1
FA[BACH]=1000

; Activate

ID=4 EVERY $R6==0 und
($AA_STAT[BACH]==1) DO MOV[BACH]=0

; Deactivate

Examples
5.6 "Centering" with continuous measurement

 Synchronized actions
142 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

; Measure sequentially, store in FIFO 1, MT2 neg, MT2 pos edge
;the distance between two teeth is measured
;falling edge-...-rising edge, probe 2

N310 ID=5 WHEN $R7==1 DO MEAC[BACH]=(2, 1, -2, 2)

N320 ID=6 WHEN (Z_MW>=M_ZAEHNE) DO
MEAC[BACH]=(0)

; Cancel measuring job

M00

STOPRE

;*** FIFO Fetch and save values ***

N400 R3=$AC_PARAM[0] ;
;
;

Contents of the first element read
;Reset the FIFO1[4] variable
;and ensure a defined measuring trace
;for the next measurement job

N500 $AC_FIFO1[4]=0

;*** Calculate difference between the individual teeth ***

N510 R4=R2/(ZAEHNEZAHL)/1000 ;
;
;

R4 corresponds to an average
tooth distance
Division "/1000" removed in later SW versions

;*** Calculate center position ***

N520 R3=R3/1000 ; First measurement position converted to degree
N530 R3=R3 MOD 360 ; first measurement point modulo
N540 R5=(R3-R14)+(R4/2) ; calculate gap position
M00

stopre

R6=0 ; Disable axis rotation from BACH
gotob start

M30

 Examples
 5.7 Axis couplings via synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 143

5.7 Axis couplings via synchronized actions

5.7.1 Coupling to leading axis

Task assignment
A cyclic curve table is defined by means of polynomial segments. Controlled by means of
arithmetic variables, the movement of the master axis and the coupling process between
master and slave (following) axes is activated/deactivated.
%_N_KOP_SINUS_MPF

N5 R1=1 ; ID 1, 2 activate/deactivate coupling: LEADON

(CACB, BACH)
N6 R2=1 ; ID 3, 4 Move leading axis on/off: MOV BACH
N7 R5=36000 ; BACH Feedrate/min
N8 STOPRE

;*** Define periodic table No. 4 through polynomial segments ***

N10 CTABDEF (YGEO,XGEO,4,1)

N16 G1 F1200 XGEO=0.000 YGEO=0.000 ; Go to basic position
N17 POLY PO[XGEO]=(79,944.30.420,00.210) PO[YGEO]=(24,634.00.871,-9,670)

N18 PO[XGEO]=(116.059,0.749,-0.656) PO[YGEO]=(22.429,-5.201,0.345)

N19 PO[XGEO]=(243.941,-17.234,11.489) PO[YGEO]=(-22.429,-58.844,39.229)

N20 PO[XGEO]=(280.056,1.220,-0.656) PO[YGEO]=(-24.634,4.165,0.345)

N21 PO[XGEO]=(360.000,-4.050,0.210) PO[YGEO]=(0.000,28.139,-9.670)

N22 CTABEND ; *** End of table definition ***

; Travel axis leading axis and coupled axis in quick motion in basic position

N80 G0 BACH=0 CACH=0 ; Channel axis names
N50 LEADOF(CACH,BACH) ; existing coupling OFF

N235 ;*** Switch-on the coupling movement for the axis CACH ***

N240 WAITP(CACH) ; Synchronize axis to channel
N245 ID=1 EVERY $R1==1 DO
LEADON(CACH, BACH, 4)

; Coupling via table 4

N250 ID=2 EVERY $R1==0 DO
LEADOF(CACH, BACH)

; Deactivate coupling

Examples
5.7 Axis couplings via synchronized actions

 Synchronized actions
144 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

N265 WAITP(BACH)

N270 ID=3 EVERY $R2==1 DO
MOV[BACH]=1 FA[BACH]=R5

; Rotate leading axis with feedrate endlessly in R5

N275 ID=4 EVERY $R2==0 DO
MOV[BACH]=0

; Stop leading axis

N280 M00

N285 STOPRE

N290 R1=0 ; Disable coupling condition
N295 R2=0 ; Disable condition for rotating leading axis
N300 R5=180 ; New feedrate for BACH
N305 M30

5.7.2 Non-circular grinding via master value coupling

Task assignment
A non-circular workpiece that is rotating on axis CACH must be machined by grinding. The
distance between the grinding wheel and workpiece is controlled by axis XACH and depends
on the angle of rotation of the workpiece. The interrelationship between angles of rotation
and assigned movements is defined in curve table 2. The workpiece must move at velocities
that are determined by the workpiece contour defined in curve table 1.

Solution
CACH is designated as the leading axis in a master value coupling. It controls:
• via table 2 the compensatory movement of the axis XACH
• via table 1 the "software axis" CASW.
The axis override of axis CACH is determined by the actual values of axis CASW, thus
providing the required contour-dependent velocity of axis CACH.

 Examples
 5.7 Axis couplings via synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 145

Figure 5-5 Diagrammatic representation of non-circular contour grinding

%_N_CURV_TABS_SPF

PROC CURV_TABS

N160 ; *** Define table 1 override ***

N165 CTABDEF(CASW,CACH,1,1) ; Table 1 periodic
N170 CACH=0 CASW=10

N175 CACH=90 CASW=10

N180 CACH=180 CASW=100

N185 CACH=350 CASW=10

N190 CACH=359.999 CASW=10

N195 CTABEND

N160 ; *** Define table 2 linear compensatory movement of XACH ***

CTABDEF(YGEO,XGEO,2,1) ; Table 2 periodic
N16 XGEO=0.000 YGEO=0.000

N16 XGEO=0.001 YGEO=0.000

N17 POLY PO[XGEO]=(116.000,0.024,0.012) PO[YGEO]=(4.251,0.067,-0.828)

N18 PO[XGEO]=(244.000,0.072,-0.048) PO[YGEO]=(4.251,-2.937)

N19 PO[XGEO]=(359.999,-0.060,0.012) PO[YGEO]=(0.000,-2.415,0.828)

N16 XGEO=360.000 YGEO=0.000

N20 CTABEND

M17

Examples
5.7 Axis couplings via synchronized actions

 Synchronized actions
146 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

%_N_UNRUND_MPF
; Coupling group for a non-circular machining
; XACH is the infeed axis of the grinding disk
; CACH is the workpiece axis as rotary axis and master value axis
; Application: Grind non-circular contours
; Table 1 maps the override for axis CACH as function of the position of CACH
; Overlay of the XGEO axis with handwheel infeed for scratching

N100 DRFOF ; deselect handwheel overlay
N200 MSG(Select "DRF, (Handwheel 1 active) and Select INKREMENT.== Handwheel overlay
AKTIV")

N300 M00

N500 MSG() ; Reset message
N600 R2=1 ; LEADON Table 2, Activate with ID=3/4 CACH to

XACH
N700 R3=1 ; LEADON Table 1, Activate with ID=5/6 CACH to

CASW, override
N800 R4=1 ; Endless rotating axis CACH, start with ID=7/8
N900 R5=36000 ; FA[CACH] Endless rotating rotary axis speed

N1100 STOPRE

N1200 ; *** Set axis and leading axis to FA ***
 ;

;
Travel axis leading axis and slave axis
 in basic position

N1300 G0 XGEO=0 CASW=10 CACH=0

N1400 LEADOF(XACH,CACH) ; Coupling AUS XACH compensatory movement
N1500 LEADOF(CASW,CACH) ; Coupling AUS CASW override table
N1600 CURV_TABS ; Sub-program with definition of the tables

N1700 ; *** On-off switch of the LEADON compensatory
movement XACH ***

N1800 WAITP(XGEO) ; Synchronize axis to channel
N1900 ID=3 EVERY $R2==1 DO
LEADON(XACH,CACH,2)

N2000 ID=4 EVERY $R2==0 DO
LEADOF(XACH,CACH)

 Examples
 5.7 Axis couplings via synchronized actions

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 147

N2100 ;
;

*** On-off switch of the LEADON CASW
override table ***

N2200 WAITP(CASW)

N2300 ID=5 EVERY $R3==1 DO
LEADON(CASW,CACH,1)

; CTAB Coupling ON leading axis CACH

N2400 ID=6 EVERY $R3==0 DO
LEADOF(CASW,CACH)

; CTAB Coupling OFF leading axis CACH

N2500 ;
;

*** Control override of the CACH from position
CASW with ID 10 ***

N2700 ID=11 DO
$$AA_OVR[CACH]=$AA_IM[CASW]

; Assign "axis position" CASW to OVR CACH

N2900 WAITP(CACH)

N3000 ID=7 EVERY $R4==1 DO
MOV[CACH]=1 FA[CACH]=R5

; Start as endless rotating rotary axis

N3100 ID=8 EVERY $R4==0 DO
MOV[CACH]=0

; Stop as endless rotating rotary axis

N3200 STOPRE

N3300 R90=$AA_COUP_ACT[CASW] ; State of the coupling for CASW for checking
N3400 MSG("Override table CASW activated with LEADON "<<R90<<", further ENDE with
NC-START")

N3500 M00 ; *** NC HALT ***
N3600 MSG()

N3700 STOPRE ; Preprocessing stop
N3800 R1=0 ;

;
Stop with ID=2 CASW axis as
endless rotating rotary axis

N3900 R2=0 ;
;

LEADOF with ID=6 FA XACH
and leading axis CACH

N4000 R3=0 ;
;

LEADOF TAB1 CASW with ID=7/8 CACH
to CASW override table

N4100 R4=0 ;
;

Stop axis as endless rotating rotary axis
, ID=4 CACH

N4200 M30

Examples
5.7 Axis couplings via synchronized actions

 Synchronized actions
148 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Expansion options
The example above can be expanded by the following components:
• Introduction of a Z axis to move the grinding wheel or workpiece from one non-circular

operation to the next on the same shaft (cam shaft).
• Table switchovers, if the cams for inlet and outlet have diferent contours.

ID = ... <Condition> DO LEADOF(XACH, CACH) LEADON(XACH, CACH, <new
table number>)

• Dressing of grinding wheel by means of online tool offset acc. to Subsection "Online tool
offset FTOC".

5.7.3 On-the-fly parting

Task assignment
An extruded material which passes continuously through the operating area of a cutting tool
must be cut into parts of equal length.
X axis: Axis in which the extruded material moves, WKS
X1 axis: Machine axis of the extruded material, MKS
Y axis: Axis in which cutting tool "tracks" the extruded material
It is assumed that the infeed and control of the cutting tool are controlled via the PLC. The
signals at the PLC interface can be evaluated to determine whether the extruded material
and cutting tool are synchronized.

Actions
Activate coupling, LEADON
Deactivate coupling, LEADOF
Set actual values, PRESETON

NC program Comment

%_N_SCHERE1_MPF

;$PATH=/_N_WKS_DIR/_N_DEMOFBE_WPD

N100 R3=1500 ; Length of a part to be cut off
N200 R2=100000 R13=R2/300

N300 R4=100000

N400 R6=30 ; Start position Y axis
N500 R1=1 ; Start condition for conveyor axis
N600 LEADOF(Y,X) ; Delete any existing coupling
N700 CTABDEF(Y,X,1,0) ; Table definition
N800 X=30 Y=30 ; Value pairs
N900 X=R13 Y=R13

N1000 X=2*R13 Y=30

N1100 CTABEND ; End of table definition

 Examples
 5.8 Technology cycles position spindle

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 149

NC program Comment

N1200 PRESETON(X1,0) ; PRESET at beginning
N1300 Y=R6 G0 ; Start position Y axis
 ; Axis is linear
N1400 ID=1 EVERY $AA_IW[X]>$R3 DO
PRESETON(X1,0)

; PRESET according to length R3, PRESTON may

 ; be done only with WHEN and EVERY
 ; new start after parting
N1500 WAITP(Y)

N1800 ID=6 EVERY $AA_IM[X]<10 DO
LEADON(Y,X,1)

 ; Couple Y to X via table 1, for X < 10

N1900 ID=10 EVERY $AA_IM[X]>$R3-30
DO LEADOF(Y,X)

 ; > 30 before traversed parting distance, deactivate
coupling

N2000 WAITP(X)

N2100 ID=7 WHEN $R1==1 DO MOV[X]=1
FA[X]=$R4

 ; Set extruded material axis continuously in motion

N2200 M30

5.8 Technology cycles position spindle

Application
Interacting with the PLC program, the spindle which initiates a tool change should be:
• Traversed to an initial position,
• Positioned at a specific point at which the tool to be inserted is also located.
See chapter "Starting of command axes" and chapter "Control via PLC".

Coordination
The PLC and NCK are coordinated by means of the common data that are provided in SW
version 4 and later (see chapter "List of the system variables relevant for synchronized
actions")
• $A_DBB[0]: Take up basic position 1,
• $A_DBB[1]: Take up target position 1,
• $A_DBW[1]: value to be positioned +/- , PLC calculates the shortest route.

Examples
5.8 Technology cycles position spindle

 Synchronized actions
150 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Synchronized actions
%_N_MAIN_MPF

...

IDS=1 EVERY $A_DBB[0]==1 DO
NULL_POS

;
;

; when $A_DBB[0] set by PLC,
take up basic position

IDS=2 EVERY $A_DBB[1]==1 DO
ZIEL_POS

;
;
;

when $A_DBB[1] set by PLC,
position spindle to the value stored in
$A_DBW[1]

...

Technology cycle NULL_POS
%_N_NULL_POS_SPF

PROC NULL_POS

SPOS=0 ;
;

Bring drive for the tool change
in basic position

$A_DLB[0]=0 ; Basic position executed in NCK

Technology cycle ZIEL_POS
%_N_ZIEL_POS_SPF

PROC TARGET_POS

;
;

Position spindle to the value,
stored in $A_DBW[1]

SPOS=IC($A_DBW[1])

; stored by PLC, incremental dimension
$A_DBB[1]=0 ; Target position executed in NCK

 Examples
 5.9 Synchronized actions in the TC/MC area

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 151

5.9 Synchronized actions in the TC/MC area

Introduction
The following figure shows the schematic structure of a tool-changing cycle.

Figure 5-6 Schematic sequence for tool-changing cycle

Examples
5.9 Synchronized actions in the TC/MC area

 Synchronized actions
152 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Flowchart

Figure 5-7 Flowchart for tool-changing cycle

 Examples
 5.9 Synchronized actions in the TC/MC area

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 153

NC program Comment

%_N_WZW_SPF

;$PATH=/_N_SPF_DIR

N10 DEF INT WZPreselection,WZSpindle

N15 WHEN $AC_PATHN<10 DO $AC_MARKER[0]=0 $AC_MARKER[1]=0
$AC_MARKER[2]=0

N20 ID=3 WHENEVER $A_IN[9]==TRUE DO $AC_MARKER[1]=1

; Marker on = 1 when MagAxis traversed

N25 ID=4 WHENEVER $A_IN[10]==TRUE DO $AC_MARKER[2]=1 ; Marker on = 1 when MagAxis traversed
N30 IF $P_SEARCH GOTOF wzw_vorlauf

N35 SPOSA=0 D0

; Block search active ? ->

N40 GETSELT(WZPreselection) ; Read preselected T-No.
N45 WZSpindle=$TC_MPP6[9998,1]

N50 M06

N55 IF WZSpindle==WZPreselection GOTOF wz_in_spindle IF
WZPreselection==0 GOTOF store1 IF WZSpindle==0 GOTOF fetch1

; Read WZ in spindle

;*** Fetch and store tool***

store1fetch1:

N65 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[1]=1

N70 G01 G40 G53 G64 G90 X=Magazin1VPX Y=Magazin1VPY
Z=Magazin1ZGespannt F70000 M=QU(120) M=QU(123) M=QU(9)

; when MagAxis travels Marker = 1

N75 WHENEVER $AA_STAT[S1]<>4 DO $AC_OVR=0 ; Spindle in position
N80 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[1]=1 ; Query MagAxis travel
N85 WHENEVER $AC_MARKER[1]==0 DO $AC_OVR=0 ; Override=0 when axis not traversed
N90 WHENEVER $AA_STAT[C2]<>4 DO $AC_OVR=0 ;

;
Override=0 when MagAxis
not in position fine

N95 WHENEVER $AA_DTEB[C2]>0 DO $AC_OVR=0

N100 G53 G64 X=Magazin1ZP1X Y=Magazin1ZP1Y F60000

N105 G53 G64 X=Magazin1WPX Y=Magazin1WPY F60000

; Override=0 when distance-to-go MagAxis > 0

N110 M20

N115 G53 G64 Z=MR_Magazin1ZGeloest F40000

N120 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[2]=1;

N125 WHENEVER $AC_MARKER[2]==0 DO $AC_OVR=0

N130 WHENEVER $AA_STAT[C2]<>4 DO $AC_OVR=0

N135 WHENEVER $AA_DTEB[C2]>0 DO $AC_OVR=0

N140 G53 G64 Z=Magazin1ZGespannt F40000

; Release WZ

N145 M18 ; Clamp tool
N150 WHEN $AC_PATHN<10 DO M=QU(150) M=QU(121)

N155 G53 G64 X=Magazin1VPX Y=Magazin1VPY F60000 D1 M17

; Condition always fulfilled

;*** Store tool***

store1:

N160 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[1]=1

N165 G01 G40 G53 G64 G90 X=Magazin1VPX Y=Magazin1VPY
Z=Magazin1ZGespannt F70000 M=QU(120) M=QU(123) M=QU(9)

N170 WHENEVER $AA_STAT[S1]<>4 DO $AC_OVR=0

N175 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[1]=1

Examples
5.9 Synchronized actions in the TC/MC area

 Synchronized actions
154 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

NC program Comment

N180 WHENEVER $AC_MARKER[1]==0 DO $AC_OVR=0

N185 WHENEVER $AA_STAT[C2]<>4 DO $AC_OVR=0

N190 WHENEVER $AA_DTEB[C2]>0 DO $AC_OVR=0

N195 G53 G64 X=Magazin1ZP1X Y=Magazin1ZP1Y F60000

N200 G53 G64 X=Magazin1WPX Y=Magazin1WPY F60000

N205 M20

N210 G53 G64 Z=Magazin1ZGeloest F40000

N215 G53 G64 X=Magazin1VPX Y=Magazin1VPY F60000 M=QU(150)
M=QU(121) D0 M17

; Release tool

;*** Fetch tool***

fetch1:

N220 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[2]=1

N225 G01 G40 G53 G64 G90 X=Magazin1VPX Y=Magazin1VPY
Z=Magazin1ZGeloest F70000 M=QU(120) M=QU(123) M=QU(9)

N230 G53 G64 X=Magazin1WPX Y=Magazin1WPY F60000

N235 WHENEVER $AA_STAT[S1]<>4 DO $AC_OVR=0

N240 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[2]=1

N245 WHENEVER $AC_MARKER[2]==0 DO $AC_OVR=0

N250 WHENEVER $AA_STAT[C2]<>4 DO $AC_OVR=0

N255 WHENEVER $AA_DTEB[C2]>0 DO $AC_OVR=0

N260 G53 G64 Z=Magazin1ZGespannt F40000

N265 M18

N270 G53 G64 X=Magazin1VPX Y=Magazin1VPY F60000 M=QU(150)
M=QU(121) D1 M17

; Clamp tool

;***Tool in spindle***

wz_in_spindle:

N275 M=QU(121) D1 M17

;***Block search***

wzw_feed:

N280 STOPRE

N285 D0

N290 M06

N295 D1 M17

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 155

Data lists 6
6.1 Machine data

6.1.1 General machine data

Number Identifier: $MN_ Description
11110 AUXFU_GROUP_SPEC Auxiliary function group specification
11500 PREVENT_SYNACT_LOCK Protected synchronized actions
18860 MM_MAINTENANCE_MON Activate recording of maintenance data

6.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
21240 PREVENT_SYNACT_LOCK_CHAN Protected synchronized actions for channel
28250 MM_NUM_SYNC_ELEMENTS Number of elements for expressions in synchronized

actions
28252 MM_NUM_FCTDEF_ELEMENTS Number of FCTDEF elements
28254 MM_NUM_AC_PARAM Number of $AC_PARAM parameters
28255 MM_BUFFERED_AC_PARAM Storage location for $AC_PARAM (SW 6.3 and later)
28256 MM_NUM_AC_MARKER Number of $AC_MARKER markers
28257 MM_BUFFERED_AC_MARKER Storage location for $AC_MARKER (SW 6.3 and

later)
28258 MM_NUM_AC_TIMER Number of $AC_TIMER time variables
28260 NUM_AC_FIFO Number of $AC_FIFO1, $AC_FIFO2, ... variables
28262 START_AC_FIFO Store FIFO variables from R parameter
28264 LEN_AC_FIFO Length of $AC_FIFO ... FIFO variables
28266 MODE_AC_FIFO FIFO processing mode

Data lists
6.2 Setting data

 Synchronized actions
156 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

6.1.3 Axis-specific machine data

Number Identifier: $MA_ Description
30450 IS_CONCURRENT_POS_AX Concurrent positioning axis
32060 POS_AX_VELO Initial setting for positioning axis velocity
32070 CORR_VELO Axial velocity for handwheel, ext. ZO, cont. dressing,

clearance control (from SW3)
32074 FRAME_OR_CORRPOS_NOTALLOWED Effectiveness of frames and tool length offset
32920 AC_FILTER_TIME Filter smoothing time constant for Adaptive Control

(SW2 and later)
33060 MAINTENANCE_DATA Configuration, recording maintenance data
36750 AA_OFF_MODE Effect of value assignment for axial override for

synchronized actions (SW3 and later)
37200 COUPLE_POS_TOL_COARSE Threshold value for "Coarse synchronism"
37210 COUPLE_POS_TOL_FINE Threshold value for "Fine synchronism"

6.2 Setting data

6.2.1 Axis/spindle-specific setting data

Number Identifier: $SA_ Description
43300 ASSIGN_FEED_PER_REV_SOURCE Rotational feedrate for positioning axes/spindles
43350 AA_OFF_LIMIT Upper limit of offset value for $AA_OFF clearance

control
43400 WORKAREA_PLUS_ENABLE Working area limitation in pos. direction

 Data lists
 6.3 Signals

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 157

6.3 Signals

6.3.1 Signals from channel

DB number Byte.Bit Description
21, … 280.1 Disable modal synchronized actions acc. to DBX300.0-307.7
21, … 300.0 - Modal synchronized actions disabled acc. to DBX300.0-307.7, acknowledgment from

NCK
21, … 300.0 - Modal synchronized actions ID or IDS 1 -
21, … 307.7 Disable 64. Request to NCK channel
21, … 308.0 - Modal synchronized actions ID or IDS 1 -
21, … 315.7 64 can be disabled. Message from NCK.

Data lists
6.3 Signals

 Synchronized actions
158 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 159

Appendix A
A.1 Publication-specific information

A.1.1 Correction sheet - fax template
Should you come across any printing errors when reading this publication, please notify us
on this sheet. Suggestions for improvement are also welcome.

Appendix
A.1 Publication-specific information

 Synchronized actions
160 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

 Appendix
 A.1 Publication-specific information

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 161

A.1.2 Overview

Appendix
A.1 Publication-specific information

 Synchronized actions
162 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 163

Index

$
$AA_OFF, 56

A
Adaptive control, 134

Additive control, 52
Example, 136
Multiplicative control, 53

Axial feed, 73
Axis replacement from synchronized actions, 75

AXTOCHAN (axis, channel number)[axis, channel
number], 80
GET[axis], 75
RELEASE[axis], 75

B
Block search, 114
Boundary conditions, 125

C
Calculate slave value, 88
Calculating master value, 89
Command axes, 69
Configurability, 116
Configuration, 116
Control system response, 111
Conversion routines, 23
Coordination, 104
CORROF, 58
Coupled motion, 86
Couplings, 86

D
DB 21, ...

DBX300.0, 130
DB 31, ...

DBX28.7, 69, 112

DB21, ...
DBX318.2, 64
DBX318.3, 64

DB21, …
DBB308-315, 106
DBX.281.1, 107
DBX1.2, 106, 130
DBX280.1, 107, 130
DBX281.1, 130
DBX300.0, 106, 107, 129
DBX307.7, 106, 107, 129, 130
DBX308.0, 130
DBX315.7, 130

Detection of synchronism, 90
Diagnostics data, 119

E
End of program, 113
Extensions in SW 5, 127

F
FCTDEF, 49
FIFO variable, 34
FTOC

Online tool offset, 59

I
Identification number, 14
ITOR, 23

J
Jerk, 100

M
Machine maintenance, 99
Main run variables, 22

Log, 121
MD 37200, 90

Index

 Synchronized actions
164 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

MD 37210, 90
MD10722, 77
MD11110, 45
MD11500, 108, 109, 110
MD18860, 99, 100
MD20110, 64, 112, 114
MD21190, 62, 63, 64
MD21194, 61, 63
MD21196, 61, 63
MD21240, 109, 110
MD22200, 45
MD22210, 45
MD22230, 45
MD28050, 95
MD28250, 116
MD28252, 50, 117
MD28255, 31
MD28256, 29
MD28257, 29
MD28258, 95
MD28260, 95
MD28262, 95
MD28264, 95
MD28266, 95
MD30552, 80
MD32060, 73, 75
MD32070, 57
MD32074, 72, 73
MD32300, 82
MD33060, 99, 100
MD35040, 112, 114
MD36750, 54, 55, 56, 57, 134
Measurements from synchronized actions, 93
Mode change, 113

N
NC STOP, 112

O
Online tool offset, 59, 61
Output of M, S and H auxiliary functions, 44
Overlaid movements, 56
Overlaid movements up to SW 5.3, 56

P
Polynomial, 49
Polynomial evaluation, 51
Power On, 111

Preset actual-value memory, 85
Program interruption by ASUB, 115
Protected synchronized actions, 108

R
Real-time variables

Advertisements, 121
Read, 47
Write, 47

REPOS, 115
RESET, 111
Response to alarms, 115
RTOI, 24

S
SD43300, 74
SD43350, 54, 134
SD43400, 82
Set alarm, 98
Special real-time variables, 28
Spindle motions, 81
Starting/Stopping axes from synchronized actions, 74
Status of synchronized actions, 120
Synchronized action

Delete, 15
Synchronized actions

Actions, 18, 42
Additive adjustment via SYNFCT, 52
Alter setting data, 48
Area of Application, 13
Availability, 125
Channel control, 106
Components, 13
Conditions, 16
Control via PLC, 106
Definition, 20
Disable axis, 68
Example Adaptive control, 134
Example Conditions, 131
Example Control via dyn. override, 137
Example Path feedrate control, 136
Example Presses, coupled axes, 143
Examples: SD/MD, 132
Execution of synchronized actions, 20
Extensions in SW 4, 125
FIFO variable, 34
Introduction, 11
Multiplicative control via SYNFCT, 53
Order of execution, 19

 Index

Synchronized actions
Function Manual, 11/2006, 6FC5397-5BP10-2BA0 165

Real-time calculations, 22
Scanning frequency, 15
Scope of performance, 125

Synchronized actions (FBSY)|Data fields, lists, 157
Synchronized actions (FBSY)|Example, 131
Synchronized actions (FBSY)|Interface signals, 157
Synchronized actions (FBSY)|Supplementary
conditions, 125
Synchronous procedure

DELDTG, 67
RDISABLE, 66
STOPREOF, 66

SYNFCT
Examples, 134
Polynomial evaluation, 51

T
Technology cycle, 101
Technology cycles, 101

Call, 101
TOFFON

Online tool length offset, 61
Total travel count, 100
Total travel time, 100

At high speed, 100
Total traverse path, 100

At high speed, 100

W
Wait markers

Delete, 97
Setting, 97

Index

 Synchronized actions
166 Function Manual, 11/2006, 6FC5397-5BP10-2BA0

	Function Manual - Synchronized actions
	Foreword
	Table of contents
	1 Brief description
	2 Detailed description
	2.1 Components of synchronized actions
	2.1.1 Definition of motion-synchronous actions
	2.1.2 Execution of synchronized actions
	2.1.3 List of possible actions

	2.2 Real -time evaluations and calculations
	2.3 Special real-time variables for synchronized actions
	2.3.1 Marker/counter variables
	2.3.2 Timers
	2.3.3 Synchronized action parameters
	2.3.4 R parameters
	2.3.5 Machine and setting data
	2.3.6 FIFO variables (circulating memory)
	2.3.7 System variables saved in SRAM (SW 6.3 and later)
	2.3.8 Determining the path tangent in synchronized actions
	2.3.9 Determining the current override
	2.3.10 Capacity evaluation using time requirement for synchronized actions
	2.3.11 List of system variables relevant to synchronized actions

	2.4 Actions in synchronized actions
	2.4.1 Output of M, S and H auxiliary functions to the PLC
	2.4.2 Setting (writing) and reading of real-time variables
	2.4.3 Changing of SW cam positions and times (setting data)
	2.4.4 FCTDEF
	2.4.5 Polynomial evaluation SYNFCT
	2.4.6 Overlaid movements $AA_OFF settable (SW 6 and later)
	2.4.7 Online tool offset FTOC
	2.4.8 Online tool length offset $AA_TOFF[Index]
	2.4.9 RDISABLE
	2.4.10 STOPREOF
	2.4.11 DELDTG
	2.4.12 Disabling a programmed axis motion
	2.4.13 Starting command axes
	2.4.14 Axial feedrate from synchronized actions
	2.4.15 Starting/Stopping axes from synchronized actions
	2.4.16 Axis replacement from synchronized actions
	2.4.17 Spindle motions from synchronized actions
	2.4.18 Setting actual values from synchronized actions
	2.4.19 Activating/deactivating coupled motions and couplings
	2.4.20 Measurements from synchronized actions
	2.4.21 Setting and deleting wait markers for channel synchronization
	2.4.22 Set alarm/error reactions
	2.4.23 Evaluating data for machine maintenance

	2.5 Call of Technology Cycles
	2.5.1 Coordination of synchronized actions, technology cycles, part program (and PLC)

	2.6 Control and protection of synchronized actions
	2.6.1 Control via PLC
	2.6.2 Protected synchronized actions

	2.7 Control system response for synchronized actions in specific operational states
	2.7.1 Power On
	2.7.2 RESET
	2.7.3 NC STOP
	2.7.4 Mode change
	2.7.5 End of program
	2.7.6 Response of active synchronized actions to end of program and change in operating mode
	2.7.7 Block search
	2.7.8 Program interruption by ASUB
	2.7.9 REPOS
	2.7.10 Response to alarms

	2.8 Configuration
	2.8.1 Configurability

	2.9 Diagnostics (only with HMI Advanced)
	2.9.1 Displaying status of synchronized actions
	2.9.2 Displaying main run variables
	2.9.3 Logging main run variables

	3 Boundary conditions
	4 Signal Descriptions
	5 Examples
	5.1 Examples of conditions in synchronized actions
	5.2 Reading and writing of SD/MD from synchronized actions
	5.3 Examples of adaptive control
	5.3.1 Clearance control with variable upper limit
	5.3.2 Feedrate control
	5.3.3 Control velocity as a function of normalized path

	5.4 Monitoring a safety clearance between two axes
	5.5 Store execution times in R parameters
	5.6 "Centering" with continuous measurement
	5.7 Axis couplings via synchronized actions
	5.7.1 Coupling to leading axis
	5.7.2 Non-circular grinding via master value coupling
	5.7.3 On-the-fly parting

	5.8 Technology cycles position spindle
	5.9 Synchronized actions in the TC/MC area

	6 Data lists
	6.1 Machine data
	6.1.1 General machine data
	6.1.2 Channel specific machine data
	6.1.3 Axis-specific machine data

	6.2 Setting data
	6.2.1 Axis/spindle-specific setting data

	6.3 Signals
	6.3.1 Signals from channel

	 Index

