In addition to polyethylene, one of the most common plastics is polypropylene. The relatively high melting point of polypropylene makes it a good material for the medical industry since it can withstand the heat of sterilization. The stiffness qualities of polypropylene make it an ideal polymer to make synthetic fibers (carpets), injection molded items (toys), and blow molded items (squeezed bottles).

As with other polymers, polypropylene is often a mixture of propylene plus a second compound called a comonomer. The actual chemical used for the comonomer varies depending on the desired properties, but can range from a simple chemical like ethylene to more complex butenes and hexenes. A number of polypropylene plant designs are available in the industry. The example given here is a two stage slurry reactor design.

Polymer-grade propylene enters the first reactor along with diluents, hydrogen, and catalyst. The reaction components are continuously fed into the first reactor. Hydrogen is added to control the size of the polymer molecule and sets the overall melting point of the final product. To keep everything as a slurry, an inert diluent compound such as hexane or butane is added. The diluent also helps absorb the heat that is generated in the reaction.

The mixture leaves the first reactor, and recycled comonomer is added to the stream. It then enters the second reactor where fresh propylene and comonomer are added to finish the reaction process. The finished polymer leaves the second reactor, along with the diluent and unreacted components, and enters a flash tank. Due to the flash tank’s lower pressure, the unreacted monomers and the diluent vaporize and exit the top of the vessel. The polymer settles out of the bottom to be extruded into plastic sheets or pellets.

The vapors leaving the top of the flash tank enter a diluent recovery system to separate the diluent from unreacted monomers as well as to filter out polymer dust that might have carried over. The diluent recycles back to the feed of the reactor. The unreacted propylene and comonomer enter a stripper where they are separated from each other. The propylene recycles to the feed of the first reactor and the comonomer recycles to the feed of the second reactor.

Typical GC Measurements
A variety of process gas chromatograph measurements are made to provide the compositional data needed for optimum plant operation:

1. **Propylene Feed** – monitors the propylene purity of the feed to the slurry reactor.
2. **Diluent Feed** – monitors the diluents for hydrocarbon impurities that are fed to the slurry reactor.
3. **Comonomer Reactor Feed** – ensures the fresh propylene to comonomer ratio is set for maximum efficiency as well as monitors for impurities in the feed to the comonomer reactor.
4. **Flash Tank Off-Gas** – measures the off-gas for the concentrations of the unreacted compounds to help control the severity of the reactions occurring in the reactor. The measurement can be difficult due to the presence of large amounts of polymer dust. Special sample probes are used to filter out the polymer dust using self-cleaning filter designs.
5. **Diluent Recycle** - monitors the diluents recycle stream for hydrocarbon impurities.
6. **Propylene Recycle** – monitors the propylene recycle stream for hydrogen and comonomer impurities.
<table>
<thead>
<tr>
<th>Analyzer No.</th>
<th>Stream</th>
<th>Components Measured</th>
<th>Measurement Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Propylene Feed</td>
<td>CO₂, C₂, C₃, MA, PD</td>
<td>Monitors the impurities in the propylene feed stream</td>
</tr>
<tr>
<td>2</td>
<td>Diluent Feed</td>
<td>Hydrocarbon impurities</td>
<td>Monitors the impurities in the diluent feed stream</td>
</tr>
<tr>
<td>3</td>
<td>Comonomer Reactor Feed</td>
<td>CO₂, C₂, C₃</td>
<td>Monitors the impurities in the comonomer reactor feed stream</td>
</tr>
<tr>
<td>4</td>
<td>Flash Tank Off-Gas</td>
<td>H₂, C₃+, Comonomer</td>
<td>Provides feedback on reaction severity</td>
</tr>
<tr>
<td>5</td>
<td>Diluent Recycle</td>
<td>Hydrocarbon impurities</td>
<td>Monitors the impurities in the recycled diluent stream</td>
</tr>
<tr>
<td>6</td>
<td>Propylene Recycle</td>
<td>CO₂, C₂, C₃</td>
<td>Monitors the impurities of the recycled propylene stream</td>
</tr>
</tbody>
</table>

For more information please contact:
5980 West Sam Houston Parkway North
Suite 500
Houston, TX 77041
713-939-7400
ProcessAnalyticsSales.industry@siemens.com

Published by
Siemens Industry, Inc.
Process Automation
Process Industries and Drives
100 Technology Drive,
Alpharetta, GA 30005
1-800-964-4114
info.us@siemens.com

Subject to change without prior notice
Order No.: PIAAP-00004-0118
Printed in USA
All rights reserved
© 2018 Siemens Industry, Inc.

The technical data presented in this document is based on an actual case or on as-designed parameters, and therefore should not be relied upon for any specific application and does not constitute a performance guarantee for any projects. Actual results are dependent on variable conditions. Accordingly, Siemens does not make representations, warranties, or assurances as to the accuracy, currency or completeness of the content contained herein. If requested, we will provide specific technical data or specifications with respect to any customer’s particular applications. Our company is constantly involved in engineering and development. For that reason, we reserve the right to modify, at any time, the technology and product specifications contained herein.