

Analytical Products and Solutions

Refining Industry Isomerization Unit

Process Gas Chromatograph Application Note

usa.siemens.com/processanalytics

Light straight run (LSR) gasoline, which is mostly pentanes and hexanes, can have its octane number improved by the isomerization process which converts normal paraffins into their isomers. This results in a significant octane increase as normal pentane (nC_5) has an octane number of 61.7, while its isomer, isopentane (iC_5), has an octane number of 92.3. In a single-pass isomerization, the octane number of LSR gasoline can be increased from 70 to 84.

The isomerization process begins with the C_5 and C_6 feed mixing with the pentane recycle stream. The combined streams enter a deisopentanizer, which sends the i C_5 overhead to the gasoline blending pool. i C_5 is separated out immediately because it is nC_5 and nC_6 that isomerizes. i C_5 is already an isomer of nC_5 and does not isomerize. The i C_5 would only lower unit's capacity. The bottoms of the deisopentanizer containing nC_5 and C_6 's are dried and hydrogenated. The bottoms stream is dried because HCl is present, which is used for maximum catalyst activity, and hydrogen is added to minimize carbon deposits of the catalyst.

This stream is passed through the reactor to isomerize the hydrocarbons. After the reactor effluent has the hydrogen removed, it enters a stabilizer where the propane and lighter hydrocarbons are removed to be used as fuel gas. Finally, the reactor effluent enters a C_5/C_6 splitter that sends the iC_5 produced and the unreacted nC_5 back to the feed of the deisopentanizer. The bottoms product contains the C_6 's and is sent to the blending pool. Occasionally, the C_6 's are sent to an additional fractionator that separates the iC_6 from the nC_6 and the nC_6 is recycled to the front of the unit. This will increase the octane number by four.

Typical GC Measurements

The gas chromatographs used in this unit monitor the separation in the distillation towers and the reactor efficiency:

- 1. Reactor Effluent monitors iC_5 and nC_5 to minimize losses of nC_5 . This will maximize the conversion of nC_5 to iC_5 .
- 2. Deisopentanizer measures nC_5 so that reactor conditions can be adjusted to minimize nC_5 impurity in the product.
- 3. Stabilizer Tower Overhead monitors iC_5 in order to minimize losses of iC_5 .
- 4. C_5/C_6 Splitter Bottoms monitors nC_5 in order to minimize losses of nC_5 .

Analyzer No.	Stream	Components Measured	Measurement Objective
1	Reactor Effluent	iC₅, nC₅	Maximize nC_s conversion to iC_s
2	Deisopentanizer Overhead	nC₅	Minimize nC _s impurity in the product stream
3	Stabilizer Tower Overhead	iC₅	Minimize losses of iC_s
4	C ₅ / C ₆ Splitter Bottoms	nC₅	Minimize losses of nC ₅

For more information please contact:

5980 West Sam Houston Parkway North Suite 500 Houston, TX 77041 713-939-7400 ProcessAnalyticsSales.industry@siemens.com

Published by

Siemens Industry, Inc. Process Automation Process Industries and Drives 100 Technology Drive, Alpharetta, GA 30005

1-800-964-4114 info.us@siemens.com

Subject to change without prior notice Order No.: PIAAP-00009-0118 Printed in USA All rights reserved © 2018 Siemens Industry, Inc.

The technical data presented in this document is based on an actual case or on as-designed parameters, and therefore should not be relied upon for any specific application and does not constitute a performance guarantee for any projects. Actual results are dependent on variable conditions. Accordingly, Siemens does not make representations, warranties, or assurances as to the accuracy, currency or completeness of the content contained herein. If requested, we will provide specific technical data or specifications with respect to any customer's particular applications. Our company is constantly involved in engineering and development. For that reason, we reserve the right to modify, at any time, the technology and product specifications contained herein.