Safety Guidelines: Warning notices must be observed to ensure personal safety as well as that of others, and to protect the product and the connected equipment. These warning notices are accompanied by a clarification of the level of caution to be observed.

Qualified Personnel: This device/system may only be set up and operated in conjunction with this manual. Qualified personnel are only authorized to install and operate this equipment in accordance with established safety practices and standards.

Unit Repair and Excluded Liability:
- The user is responsible for all changes and repairs made to the device by the user or the user’s agent.
- All new components are to be provided by Siemens Milltronics Process Instruments Inc.
- Restrict repair to faulty components only.
- Do not reuse faulty components.

Warning: Cardboard shipping package provides limited humidity and moisture protection. This product can only function properly and safely if it is correctly transported, stored, installed, set up, operated, and maintained.

This product is intended for use in industrial areas. Operation of this equipment in a residential area may cause interference to several frequency based communications.

Note: Always use product in accordance with specifications.

Copyright Siemens Milltronics Process Instruments Inc. 2009. All Rights Reserved

Disclaimer of Liability

This document is available in bound version and in electronic version. We encourage users to purchase authorized bound manuals, or to view electronic versions as designed and authored by Siemens Milltronics Process Instruments Inc. Siemens Milltronics Process Instruments Inc. will not be responsible for the contents of partial or whole reproductions of either bound or electronic versions.

While we have verified the contents of this manual for agreement with the instrumentation described, variations remain possible. Thus we cannot guarantee full agreement. The contents of this manual are regularly reviewed and corrections are included in subsequent editions. Please check the website shown below for the latest manual revisions. We welcome all suggestions for improvement.

Technical data subject to change.

MILLTRONICS® is a registered trademark of Siemens Milltronics Process Instruments Inc.

Contact SMPI Technical Publications at the following address:
Technical Publications
Siemens Milltronics Process Instruments Inc.
1954 Technology Drive, P.O. Box 4225
Peterborough, Ontario, Canada, K9J 7B1
Email: techpubs.smpi@siemens.com

European Authorized Representative

Siemens AG
Industry Sector
76181 Karlsruhe
Deutschland

- For a selection of Siemens Milltronics level measurement manuals, go to: www.siemens.com/processautomation Under Process Instrumentation, select Level Measurement and then go to the manual archive listed under the product family.
- For a selection of Siemens Milltronics weighing manuals, go to: www.siemens.com/processautomation Under Weighing Technology, select Continuous Weighing Systems and then go to the manual archive listed under the product family.

© Siemens Milltronics Process Instruments Inc. 2009
Table of Contents

Milltronics BW500 ...1
Milltronics BW500 features ..1
Safety Notes ...2
The Manual ..2

Specifications ..3

Installation ..6
Dimensions ...6
Layout ...7
Optional Plug-ins ..8
 SmartLinx® Module ..8
 mA I/O board ...8
Interconnection ..10
 System Diagram ...10
 Scale – One Load Cell ...11
 Scale – Two Load Cell ...12
 Scale – Four Load Cell ..13
 Scale – Six Load Cell ..14
 Scale – LVDT ..15
Speed ...16
 Constant Speed (No Sensor) ..16
 Main Speed Sensor ...16
 Auxiliary Speed Sensor ..17
Auxiliary Inputs ..18
Auto Zero ...18
RS-232 Port 1 ..18
Printers ...18
Computers and Modems ...19
Remote Totalizer ...19
mA Output 1 ...19
Relay Output ...20
RS-485 Port 2 ...20
 Daisy Chain ..20
 Terminal Device ..20
RS-232 Port 3 ...21
Power Connections ...21
mA I/O Board ...22
Installing/Replacing the Memory Back-up Battery ...22

Start Up ..23
Orientation ..23
 Display and Keypad ...23
PROGRAM Mode ...24
 PROGRAM Mode Display ...24
 To enter the PROGRAM mode ...24
RUN Mode ...26
Initial Start Up ..26
Table of Contents

- Power Up ... 26
- Programming ... 26
- Load Cell Balancing ... 29
- Typical two load cell belt scale .. 30
- Zero Calibration .. 33
- RUN Mode ... 34

Recalibration ... 35

- Belt Speed Compensation .. 35
- Material Tests ... 36
 - % Change .. 36
 - Material Test .. 38
- Design Changes ... 38
 - Recalibration .. 39
 - Routine Zero .. 39
 - Initial Zero ... 40
 - Direct Zero .. 40
 - Auto Zero .. 41
 - Routine Span .. 42
 - Initial Span .. 43
 - Direct Span .. 44
 - Multispans ... 44
- On-line Calibration ... 47
- Factoring .. 51
- Linearization ... 52

Operation .. 55

- Load Sensing ... 55
- Speed Sensing ... 55
- Differential Speed Detection ... 55
- Moisture Compensation ... 56
- Incline Compensation .. 56
- Modes of Operation .. 57
 - Damping .. 58
 - mA I/O (0/4-20 mA) .. 58
 - Output ... 58
 - Input ... 58
 - Relay Output ... 59
 - Totalization ... 60

PID Control ... 62

- Hardware ... 62
- Connections ... 62
 - Setpoint Controller – Rate Control 63
 - Setpoint Controller – Load Control 63
 - Setpoint Controller – Master/Slave Control 64
 - Setpoint Controller – Rate and Load Control 65
- Setup and Tuning ... 66
 - Proportional Control (Gain), P .. 65
 - Integral Control (Automatic Reset), I 66
 - Derivative Control (Pre-Act or Rate), D 67
 - Feed Forward Control, F ... 67
PID Setup and Tuning ... 68
Initial Start-Up ... 68
Programming ... 71

Batching .. 74
Connections ... 74
Typical Ladder Logic ... 74
Programming ... 75
Operation ... 76
Pre-act Function ... 76

Communications ... 77
BW500 and SmartLinx © .. 78
Connection ... 78
Wiring Guidelines ... 78
Configuring Communication Ports .. 79
P770 Serial protocols ... 79
P771 Protocol address ... 80
P772 Baud Rate ... 80
P773 Parity ... 80
P774 Data bits ... 81
P775 Stop bits ... 81
P778 Modem attached .. 81
P779 Modem idle time ... 82
P780 RS-232 Transmission interval .. 82
P781 Data message ... 83
P789 Communications Control ... 83
Dolphin Protocol ... 84
Dolphin Plus Screen Shot .. 84
Modbus RTU/ASCII Protocol ... 85
How Modbus Works .. 85
Modbus RTU vs. ASCII .. 86
Modbus Format ... 86
Modbus Register Map ... 86
Modbus Register Map (cont’d) .. 89
Modems .. 89
Error Handling ... 101

Parameters .. 103
Start Up (P001 to P017) ... 103
Relay/Alarm Function (P100 - P117) .. 107
mA I/O Parameters (P200 - P220) ... 110
Calibration Parameters (P295 – 360) .. 115
On-line Calibration Options (P355 to P358) 116
Linearization Parameters (P390 - P392) 118
Proportional Integral Derivative (PID) Control Parameters (P400 – P419) .. 119
Batch Control (P560 – P568) ... 122
Totalization (P619 - P648) .. 124
ECal Parameters (P693 – P698) .. 128
Communication (P750 - P799) .. 130
SmartLinx Hardware Testing ... 130
Test and Diagnostic (P900 - P951) ... 131
Milltronics BW500

Introduction

The Milltronics BW500 is a full-featured integrator for use with belt scales and weigh feeders. The speed and load signals from the conveyor and scale, respectively, are processed to derive rate of material flow, and totalization. The primary values of speed and load, and the derived values of rate and total are available for display on the local LCD, or as output in the form of analog mA, alarm relay and remote totalization.

BW500 supports Siemens Milltronics Dolphin Plus software and Modbus protocol on the two RS-232 ports and the RS-485 port for communication to customer PLC or computer. BW500 also supports Siemens SmartLinx® for communication with popular industrial communication systems.

Milltronics BW500 features

Reliable and robust user interface
- multi-field LCD display
- local keypad

Instrumentation I/O
- two remote totalizer contacts
- five programmable relays
- five programmable discrete inputs
- two programmable isolated mA input, for PID* control
- three programmable isolated mA output for rate, load, speed or PID* control

Popular Windows® and Industrial communications
- two RS-232 ports
- one RS-485 port

Individual port configuration for:
- Dolphin
- Modbus ASCII
- Modbus RTU
- Printer
- SmartLinx® compatible

Note:
- The Milltronics BW500 is to be used only in the manner outlined in this instruction manual.
- This product is intended for use in industrial areas. Operation of this equipment in a residential area may cause interference to several frequency based communications.
Controls and operation functions

- load linearization
- auto zero
- PID control*
- batch control
- multispan operation
- moisture compensation*
- incline compensation*
- differential speed detection

*PID control, Moisture and Incline Compensation requires the optional mA I/O board.

Safety Notes

Special attention must be paid to warnings and notes highlighted from the rest of the text by grey boxes.

WARNING means that failure to observe the necessary precautions can result in death, serious injury, and/or considerable material damage.

Note: means important information about the product or that part of the operating manual.

The Manual

It is essential that this manual be referred to for proper installation and operation of your BW500 belt scale integrator. As BW500 must be connected to a belt scale, and optionally a speed sensor, refer to their manuals as well.

The manual is designed to help you get the most out of your BW500, and it provides information on the following:

- How to install the unit
- How to program the unit
- How to operate the keypad and read the display
- How to do an initial Start Up
- How to optimize and maintain accurate operation of the unit
- Outline diagrams
- Wiring diagrams
- Parameter values
- Parameter uses
- MODBUS register mapping
- Modem configuration

If you have any questions, comments, or suggestions about the manual contents, please email us at techpubs.smpi@siemens.com.

For the complete library of Siemens manuals, go to www.siemens.com/processautomation.
Specifications

Power
- 100/115/200/230 V AC ±15%, 50/60 Hz, 31 VA
- fuse, FU1 2AG, Slo Blo, 2 A, 250 V or equivalent

Application
- compatible with Siemens belt scales or equivalent 1, 2 or 4 load cell scales
- compatible with LVDT equipped scales, with use of optional interface board

Accuracy
- 0.1% of full scale

Resolution
- 0.02% of full scale

Environmental
- location: indoor / outdoor
- altitude: 2000 m max
- ambient temperature: -20 to 50 °C (-5 to 122 °F)
- relative humidity: suitable for outdoor (Type 4X / NEMA 4X /IP 65 enclosure)
- Installation category: II
- pollution degree: 4

Enclosure
- Type 4X / NEMA 4X / IP 65
- 285 mm W x 209 mm H x 92 mm D (11.2” W x 8.2” H x 3.6” D)
- polycarbonate

Programming
- via local keypad and/or Dolphin Plus interface

Display
- illuminated 5 x 7 dot matrix liquid crystal display with 2 lines of 40 characters each

Memory
- program stored in non-volatile FLASH ROM, upgradable via Dolphin Plus interface
- parameters stored in battery backed RAM, battery P/N PBD-2020035 or use equivalent 3V Lithium battery, 5 year life
Specifications

Inputs
- **load cell**: 0 - 45 mV DC per load cell
- **speed sensor**: pulse train 0 V low, 5-15 V high, 1 to 3000 Hz, or open collector switch, or relay dry contact
- **auto zero**: dry contact from external device
- **mA**: see optional mA I/O board
- **auxiliary**: 5 discrete inputs for external contacts, each programmable for either display scrolling, totalizer 1 reset, zero, span, multispans, print, batch reset, or PID function.

Outputs
- **mA**: - 1 programmable 0/4 - 20 mA, for rate, load and speed output
 - optically isolated
 - 0.1% of 20 mA resolution
 - 750 Ω load max
 - see optional mA I/O board
- **load cell**: 10 V DC compensated excitation for strain gauge type, 4 cells max, 150 mA max
- **speed sensor**: 12 V DC, 150 mA max excitation for each speed sensor
- **remote totalizer 1**: - contact closure 10 - 300 ms duration
 - open collector switch rated 30 V DC, 100 mA max
- **remote totalizer 2**: - contact closure 10 - 300 ms duration
 - open collector switch rated 240 V AC/DC, 100 mA max
- **relay output**: 5 alarm/control relays, 1 form ‘A’ SPST relay contact per relay, rated 5 A at 250 V AC, non-inductive

Communications
- two RS-232 ports
- one RS-485 port
- SmartLinx compatible (see Options below)

Cable
- one load cell:
 - non-sensing: Belden 8404, 4 wire shielded, 20 AWG or equivalent, 150 m (500 ft.) max
 - sensing: Belden 9260, 6 wire shielded, 20 AWG or equivalent, 300 m (1000 ft.) max
- two / four* load cells:
 - non-sensing: Belden 9260, 6 wire shielded, 20 AWG or equivalent, 150 m (500 ft.) max
Specifications

- **sensing:** Belden 8418, 8 wire shielded, 20 AWG or equivalent, 300 m (1000 ft.) max

 for four load cell scale, run two separate cables of two load cell configuration

- **speed sensor:** Belden 8770, 3 wire shielded, 18 AWG or equivalent, 300 m (1000 ft.)

- **auto zero:** Belden 8760, 1 pair, twisted/shielded, 18 AWG, 300 m (1000 ft.) max

- **remote total:** Belden 8760, 1 pair, twisted/shielded, 18 AWG, 300 m (1000 ft.) max

Options

- **Speed Sensor:** Siemens MD-36 / 36A / 25B or 2000A, or RBSS, or compatible

- **Dolphin Plus:** Siemens Windows® based software interface (refer to associated product documentation)

- **SmartLinx® Modules:** protocol specific modules for interface with popular industrial communications systems (refer to associated product documentation)

- **Siemens Milltronics Incline Compensator:** for load cell excitation compensation on variable incline conveyors

- **mA I/O board:**
 - 2 programmable 0/4 – 20 mA for PID, control
 - optically isolated
 - 0.1% of 20 mA resolution
 - 200 Ω input impedance

- **outputs:**
 - 2 programmable 0/4 – 20 mA for PID control, rate, load and speed output
 - optically isolated
 - 0.1% of 20 mA resolution
 - 750 Ω load max

- **output supply:** isolated 24 V DC at 50 mA, short circuit protected

- **LVDT interface card:** for interface with LVDT based scales

Weight

- 2.6 kg (5.7 lb.)

Approvals

- CE®, CSA US/C, C-TICK
- Legal for Canadian Trade - Measurement Canada approved
- Legal for US Trade - NTEP approved
- Legal for European Trade - MID approved
- Legal for International Trade - OIML approved

EMC performance available upon request
Installation

Notes:
- Installation shall only be performed by qualified personnel and in accordance with local governing regulations.
- This product is susceptible to electrostatic shock. Follow proper grounding procedures.

Dimensions

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>285 mm</td>
<td>(11.2")</td>
</tr>
<tr>
<td>267 mm</td>
<td>(10.5")</td>
</tr>
<tr>
<td>92 mm</td>
<td>(3.6")</td>
</tr>
<tr>
<td>172 mm</td>
<td>(6.8")</td>
</tr>
<tr>
<td>209 mm</td>
<td>(8.2")</td>
</tr>
<tr>
<td>16 mm</td>
<td>(0.6")</td>
</tr>
<tr>
<td>16 mm</td>
<td>(0.6")</td>
</tr>
</tbody>
</table>

Conduit entry area. Recommend drilling the enclosure with a hole saw and the use of suitable cable glands to maintain ingress rating.

Note: Non metallic enclosure does not provide grounding between connections. Use grounding type bushings and jumpers.
*To reduce communication interference, route SmartLinx® cable along right side of enclosure wall.

WARNING:
- All field wiring must have insulation suitable for at least 250 V.
- dc terminals shall be supplied from SELV source in accordance with IEC 1010-1 Annex H.
- Relay contact terminals are for use with equipment having no accessible live parts and wiring having insulation suitable for at least 250 V.
- The maximum allowable working voltage between adjacent relay contact shall be 250 V.
Optional Plug-ins

SmartLinx® Module

The BW500 is software/hardware ready to accept the optional Siemens SmartLinx® communications module that provides an interface to one of several popular industrial communications systems.

Your BW500 may be shipped to you without a SmartLinx® module, for installation at a later date.

If you are ready to install your SmartLinx® module, or want to change it, please follow the instructions as outlined.

Installation

1. Isolate power and voltages applied to the BW500.
2. Open the lid.
3. Install the module by mating the connectors and secure in place using the two screws provided.
4. Route communication cable to SmartLinx® module along the right side of the enclosure wall. This route will reduce communication.

Note: Refer to the SmartLinx® module documentation for any required hardware settings prior to closing the lid.

5. Close the lid.
6. Apply power and voltage to the BW500.

Refer to:

- SmartLinx® Module in the Specifications section on page 3,
- P750 – P769 SmartLinx® Module Specific Parameters on page 130 in this manual,
- the SmartLinx® manual for wiring.

mA I/O board

The BW500 is software/hardware ready to accept the optional mA I/O board. The mA I/O board provides 2 programmable 0/4-20 mA outputs, 2 programmable 0/4-20 mA inputs and a nominal 24V DC supply for loop powered devices.

Your BW500 may be shipped to you without an mA I/O board, for installation at a later date.

If you are ready to install your mA I/O board, please follow the instructions as outlined.
Installation

1. Isolate power and voltages applies to the BW500.
2. Open the lid.
3. Install the board by mating the connectors and secure the card in place using the 3 screws provided.
4. Close the lid.
5. Apply power and voltage to the BW500.

Refer to:

- Specifications on page 3
- mA I/O board on page 22
- mA I/O Parameters (P200 - P220) on page 110
- mA I/O (0/4-20 mA) in the Operation section on page 58
Interconnection

Note: Wiring may be run via common conduit. However these may not be run in the same conduit as high voltage contact or power wiring. Ground shield at one point only. Insulate at junctions to prevent inadvertent grounding.

System Diagram

Note: Typical system capability. Not all components or their maximum quantity may be required.
Scale – One Load Cell

*Where separation between the BW500 and belt scale exceeds 150 m (500 ft.), or legal for trade certification:

1. remove the jumpers from BW500 terminal 11/12 and 13/14
2. run additional conductors from:
 - BW500 terminal 12 to scale ‘red’
 - BW500 terminal 13 to scale ‘blk’

If the load cell wiring colours vary from those shown, or if extra wires are provided, consult Siemens.

Note: Colour code for load cells used on Siemens weighfeeders may be different than shown. Please refer to the weighfeeder wiring diagram.
Scale – Two Load Cell

Note: Colour code for load cells used on Siemens weighfeeders may be different than shown. Please refer to the weighfeeder wiring diagram.

Where separation between the BW500 and belt scale exceeds 150 m (500 ft.), or legal for trade certification:

1. remove the jumpers from BW500 terminal 11/12 and 13/14
2. run additional conductors from:
 - BW500 terminal 12 to scale 'red'
 - BW500 terminal 13 to scale 'blk'

If the load cell wiring colours vary from those shown, or if extra wires are provided, consult Siemens.
Scale – Four Load Cell

Where separation between the BW500 and belt scale exceeds 150 m (500 ft.), or legal for trade certification:

1. remove the jumpers from BW500 terminal 11/12 and 13/14
2. run additional conductors from:
 BW500 terminal 12 to scale ‘red’
 BW500 terminal 13 to scale ‘blk’

If the load cell wiring colours vary from those shown, or if extra wires are provided, consult Siemens.
Scale – Six Load Cell

Where separation between the BW500 and belt scale exceeds 150 m (500 ft.), or legal for trade certification:

1. remove the jumpers from BW500 terminal 11/12 and 13/14
2. run additional conductors from:
 - BW500 terminal 12 to scale ‘red’
 - BW500 terminal 13 to scale ‘blk’

If the load cell wiring colours vary from those shown, or if extra wires are provided, consult Siemens.
Scale – LVDT

Where separation between the BW500 and LVDT conditioner exceeds 150 m (500 ft.):

1. remove the jumpers from BW500 terminal 11/12 and 13/14
2. run additional conductors from:
 BW500 terminal 12 to integrator terminal block ‘+EXC’
 BW500 terminal 13 to integrator terminal block ‘-EXC’

For further connection information on specific LVDT’s consult Siemens.
Speed

Constant Speed (No Sensor)

If a speed sensor is not used, a jumper or contact closure must be connected across the BW500 terminals 17 / 18 when the conveyor is running. If a speed sensor is used, insure that the jumper is removed.

Note: With contact closed or jumpered when the conveyor is idle, the integrator will continue totalizing.

Main Speed Sensor

- Shields are common, but not grounded to chassis. Run cable shields through SHLD terminals and ground at BW500 only.

 Connect the BW500 terminal 16 to speed sensor terminal:
 - ’2’ for clockwise speed sensor shaft rotation
 - ’3’ for counter-clockwise speed sensor shaft rotation.

 Speed sensor shaft rotation is viewed from the front cover of the speed sensor enclosure.

 Input device in the form of open collector transistor or dry contact across BW500 terminals 16 / 17 will also serve as a suitable speed signal.

 If a speed sensor other than the models shown is supplied, consult with Siemens for details.

 A second speed sensor input can be added using the Auxiliary inputs: the second speed input allows calculation of Differential Speed. For more information, see *Auxiliary Inputs (P270)* on page 113.
Auxiliary Speed Sensor

- Shields are common, but not grounded to chassis. Run cable shields through SHLD terminals and ground at BW500 only.

Connect the BW500 terminal 24-28 to speed sensor terminal:

- '2' for clockwise speed sensor shaft rotation
- '3' for counter-clockwise speed sensor shaft rotation.

Speed sensor shaft rotation is viewed from the front cover of the speed sensor enclosure.

Input device in the form of open collector transistor or dry contact across BW500 terminals 24-28 will also serve as a suitable speed signal.

If a speed sensor other than the models shown is supplied, consult with Siemens for details.
Auxiliary Inputs

Customer dry contacts, or open collector transistor output supplied as required

Refer to P270 on page 113 for programming details.

Auto Zero

Prefeed activated dry contact

Refer to Auto Zero on page 41.

RS-232 Port 1

Printers
Computers and Modems

For connection to a PC compatible computer or modem, using no flow control, typical configurations are:

Remote Totalizer

mA Output 1
Relay Output

Relays shown in de-energized state, contacts normally open, rated 5 A at 250 V non-inductive.

RS-485 Port 2

Daisy Chain

Terminal Device
RS-232 Port 3

Note: Jumper pins 4-6 and 7-8 when using hardware flow control. Otherwise, leave them open.

Power Connections

Notes:
1. The equipment must be protected by a 15 A fuse or a circuit breaker in the building installation.
2. A circuit breaker or switch in the building installation, marked as the disconnect switch, shall be in close proximity to the equipment and within easy reach of the operator.

Select voltage via switch:
- 100 / 115 / 200 / 230V
- 50 / 60 Hz
Installing/Replacing the Memory Back-up Battery

The memory battery (see Specifications, page 3) should be replaced every 5 years to insure memory back up during lengthy power outages. An on board capacitor provides 20 minutes of charge to preserve the memory while the battery is being changed.

Notes:
- Do not install the memory backup battery until the BW500 is installed, as it begins operation immediately.
- The unit is supplied with one battery (battery P/N PBD-2020035 or use equivalent 3V Lithium battery). Insert the battery into the holder as shown in the following diagram before using the BW500.

Disconnect power before installing or replacing the battery.

Installation Steps
1. Open the enclosure lid.
2. Slide the battery into the holder. Be sure to align the + and – terminals correctly.
3. Close and secure enclosure lid.
Start Up

Note: For successful start up, ensure that all related system components such as the belt scale and speed sensor are properly installed and connected.

Orientation

Display and Keypad

- **Program**
 - Edit Mode: numerical and arithmetical keys
 - Press to enter RUN mode
- **Run**
 - Press to enter PROGRAM mode
 - Press to scroll through RUN displays
 - Press to reset totalizer
 - Press to change PID local setpoint values
 - Press to initiate calibration
 - PID auto/manual switch
 - Print
- **View mode:** press to scroll through parameter list
- **ALT**
 - Press to alternate between view and edit modes, and enter parameter values
 - Press to initiate calibration
- **TOTAL**
- **ZERO**
- **CLEAR**
- **SPAN**
- **ENTER**
- **ALT**
- **ADD**
- **DEL**
- **INPUT**

Press to initiate calibration
The BW500 operates under two modes: RUN and PROGRAM. When the unit is initially powered, it starts in the PROGRAM mode.

PROGRAM Mode

The PROGRAM parameters define the calibration and operation of the BW500.

By entering the PROGRAM mode, the user can view the parameter values or edit them to suit the application.

PROGRAM Mode Display

VIEW

P001 Language
1-Eng 1

EDIT

P001 Language
1-Eng 1

To enter the PROGRAM mode

Press **[F4]**

To select a parameter

Scroll:

Press **[4]** to move up,

P002 Test Reference Selection
1-Weight, 2-Chain, 3-Ecal 1

e.g. scrolls up from P001 to P002.

Press **[6]** to move down.

P001 Language
1-Eng 1

e.g. scrolls up from P001 to P002.

The default of previous parameter view is displayed.
e.g. P001 is the default parameter for initial start up.
To access a parameter directly:

Press `PAB`

View/Edit Parameter
Enter Parameter Number

Press 0 1 1 ENTER in sequence.

P011 Design Rate: V
Enter Rate 100.00 kg/h
e.g. access P011, design rate

Or press 9 4 0 2 ENTER For direct access to index parameters
e.g. access P940-2, load cell B mV signal

P940-2 Load Cell mV Signal Test V
mV reading for B 6.78

To change a parameter value

Press ENTER

P011 Design Rate: E
Enter Rate 100.00 kg/h

If edit mode is not enabled after pressing ENTER, Security is locked. Refer to Parameters | Security Lock (P000) on page 103 for instructions on disabling

Press 2 0 0 ENTER For P001 to P017, ENTER effects the change and scrolls to the next required parameter.

P014 Design Speed V
Enter Speed 0.08 m/S

To reset a parameter value

Press ENTER

P011 Design Rate: E
Enter Rate 100.00 kg/h

from the edit mode

Press CLEAR ENTER Enter the clear function

P011 Design Rate: V
Enter Rate 0.00 kg/h

Value is reset to factory value.
e.g. 0.00 kg/h
RUN Mode

To operate the BW500 in the RUN mode, the unit must undergo an initial programming to set up the base operating parameters.

Attempting to enter the RUN mode without satisfying the program requirements forces the program routine to the first missing item.

Initial Start Up

Initial start up of the BW500 consists of several stages, and assumes that the physical and electrical installation of the belt scale and speed sensor, if used, is complete:

- power up
- programming
- load cell balancing
- zero and span calibration

Power Up

Upon initial power up, the BW500 displays:

<table>
<thead>
<tr>
<th>P001 Language</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Eng</td>
<td>1</td>
</tr>
</tbody>
</table>

The initial display prompts the user to select the preferred language.

Note: This manual only lists English as a choice of language. However, your BW500 will list additional languages.

Programming

Press 4

The BW500 then scrolls sequentially through the start up program as parameters P001 through P017 are addressed.

<table>
<thead>
<tr>
<th>P002 Test Reference Selection</th>
<th>V</th>
<th>e.g. Accept 'weight' (supplied with scale) as the test reference.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 1-Weight, 2-Chain, 3-Ecal</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Press 4

<table>
<thead>
<tr>
<th>P003 Number of Load Cells</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Number of Load Cells</td>
<td>2</td>
</tr>
</tbody>
</table>
Start Up

Press 4

P004 Rate Measurement System V
Select 1-Imperial, 2-Metric 2
e.g. Accept '2' for measurements in metric.

Press 4

P005 Design Rate Units: V
Select: 1-t/h, 2-kg/h, 3-kg/min 1
e.g. Accept '1' for units in t/h

Note: t/h equals metric tonnes per hour

Press 4

P008 Date: V
Enter YYY-MM-DD 1999-03-19
default date

Press Enter

P008 Date: E
Enter YYY-MM-DD 1999-03-19
e.g. enter current date of October 19, 1999

Press 1 9 9 9 -M 1 0 -M 1 9 ENTER

P009 Time: V
Enter HH-MM-SS 00-00-00
factory set time 24 hour clock

Press Enter

P009 Time: E
Enter HH-MM-SS 00-00-00
e.g. enter current time of 14:41

Press 1 4 4 -M 4 -M 0 0 ENTER

P011 Design Rate: V
Enter Rate 0.00 t/h
calculator design rate

Press Enter

P011 Design Rate: E
Enter Rate 0.00 t/h
e.g. rate of 100 t/h

Press 1 0 0 -M ENTER

P014 Design Speed V
Enter Speed 0.00 m/s
calculator design speed
Start Up

Press [ENTER]

P014 Design Speed
Enter Speed 0.00 m/s

Press [] [] [] [ENTER] e.g. speed of 0.8 m/s

P015-01 Speed Constant
Pulses/m 0.0000

If the speed input is configured for constant speed, display value reads ‘Jumpered’ press [] to advance.

Press [ENTER]

select:
1-calculated value, the program returns to P015. Calculate the value per Parameter P690.

P690-01 Speed Constant Entry
1-Calculated, 2-Sensor Data 1

select
2-sensor date, the program advances through parameters P691 and P692 prompting entry from the sensor nameplate. From this data, the speed constant is calculated and automatically entered into P015.

P691-01 Step 1: Drive Pully
Diameter: Diameter 0.00 mm

P692-01 Step 2: Pulses per sensor
Rev.
Enter Pulses 0.00

Press [ENTER]

P015-01 Speed Constant
Pulses/m 0.0000

Press [1] [0] [0] [3] [ENTER] e.g. speed constant of 100.3 pulses per meter

This value is calculated. For manual or automatic calculation, refer to P690 on page 127. To program Differential Speed (P015-02), follow steps above for P015-01.

P016 Belt Length
Enter Length 0.000 m factory set length

Press [ENTER]
If P002 Test Load Reference had been set for 2-Chain, the display would read:

![Display: P017 Test Load: Chain MS 1 Enter test load](image)

or if ECal

![Display: P017 Test Load: ECal MS 1 Enter test load](image)

This value is calculated based on test weight and idler spacing. For manual or automatic calculation, refer to P017 on page 106.

The test load value should be less than the design load (P952). If not, contact Siemens.

The initial programming requirements are now satisfied. To ensure proper entry of all critical parameter values, return to P002 and review parameters through to P017.

Load Cell Balancing

Load cell balancing is not required if the selected test reference is ECal (P002 = 3). In the case of ECal, the load cells are balanced by the ECal procedure.

If you are operating a two or four load cell belt scale, it is recommended that the load cells be balanced electronically prior to initial programming and calibration, or after either or both load cells have been reinstalled or replaced.

Unbalanced load cells adversely affect the performance of your belt conveyor weighing system.

With the conveyor stopped and locked out, lift the belt off the weighing idlers.
Typical two load cell belt scale

![Diagram of a typical two load cell belt scale](image)

Access P295

<table>
<thead>
<tr>
<th>P295 Load Cell Balancing:</th>
<th>E</th>
<th>Option '2' enabled only if P003, number of load cells is 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select: 1-A&B, 2-C&D</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Press **1** ENTER

Load Cell Balancing A & B

Place weight at cell B and press ENTER

![Diagram showing weight placement](image)
Press \[\text{ENTER} \]

Load Cell Balancing A & B
Place weight at cell A and press ENTER

Balancing the load cells requires a subsequent zero and span calibration

if four load cell scale, press \[\text{ENTER} \] to continue

P295 Load Cell Balancing:
Select: 1-A&B, 2-C&D
1

Press \[\text{ENTER} \]

P295 Load Cell Balancing:
Select: 1-A&B, 2-C&D
1

Press 2 \[\text{ENTER} \]

Load Cell Balancing C & D
Place weight at cell D and press ENTER.
Balancing of the load cells is now complete, and is followed by a zero and span calibration.

Press [ENTER]

Load Cell Balancing C & D
Place weight at cell C and press ENTER.

Press [ENTER]

Load Cell Balancing C & D
Load cells are now balanced.

Balancing the load cells requires a subsequent zero and span recalibration.

Balancing of the load cells is now complete, and is followed by a zero and span calibration.
Zero Calibration

Note: To obtain an accurate and successful calibration, ensure that the required criteria are met. Refer to *Calibration Criteria* on page 141.

Press [ZERO]

Zero Calibration: Current Zero

0

Clear belt. Press ENTER to Start

Press [ENTER]

Initial Zero Calibration. In progress

Current Reading: ####

The duration of the Zero calibration is dependent upon speed (P014), length (P016) and revolutions (P360) of the belt.

Press [ENTER]

Calibration Complete. Deviation

0.00

Press ENTER to accept value: 551205

Press [ENTER]

Zero Calibration. Current Zero

551205

Clear belt. Press ENTER to Start

Accepting the Zero returns to start of Zero. A new Zero can be performed, or continue to Span.

Note: The moisture meter is ignored during calibration. If Inclinometer is used, then calibration is adjusted based on incline angle.

Span Calibration

When performing a Span Calibration where the test reference is ECal (P002 = 3), the supplied test weight or test chain must not be applied, and the conveyor must be run empty.

Note: To obtain an accurate and successful calibration, ensure that the required criteria are met. Refer to *Calibration Criteria* on page 141.

With the conveyor stopped and locked out, apply the test weight or chain to the scale as instructed in the associate manuals; Then start the conveyor.

Press [SPAN]

Span Calibration. Current Span

0

Setup test. Press ENTER to Start

—the current span count
The duration of the Span calibration is dependent upon speed (P014), length (P016) and revolutions (P360) of the belt.

If

Span Count too Low.
Press CLEAR to continue.

Press ENTER

Calibration Complete. Deviation 0.00
Press ENTER to accept value: 36790

Press ENTER

Span Calibration. Current Span 36790
Setup test. Press ENTER to Start

Accepting the Span returns to start of Span. A new Span can be performed, or enter RUN mode. If calibrating with a test weight or test chain, remove it from the scale and store in a secure place before returning to RUN mode.

Note: The moisture meter is ignored during calibration. If the Inclinometer is used, then calibration is adjusted based on incline angle.

RUN Mode

Proper programming and successful zero and span calibration allow entry into the RUN mode. Otherwise, entry is denied and the first missing item of programming or calibration is displayed.

Press RUN

Rate 0.00 kg/h
Total 1 0.00 kg

Once the initial programming is complete and the BW500 is operating in the RUN mode, you may now put the belt conveyor into normal service. The BW500 is functioning under its initial program and calibration, reporting rate of material flow and totalizing.

If the initial entry and operation in the RUN mode is successful, recalibrate the weighing system by performing a series of material tests. Material tests verify that the BW500 reporting accurately. Where inaccuracies exist, correct the system through a manual span adjustment (P019).

Perform recalibration of the zero and span routine to maintain accurate reporting of rate and total. Refer to Recalibration, page 35.
Recalibration

Belt Speed Compensation

To achieve optimum accuracy in the rate computation, the belt speed displayed must equal that of the actual belt speed. As the speeds are likely to differ, a belt speed compensation should be performed.

Run the conveyor with the belt empty.

View the belt speed.

Access P018 and enter EDIT mode

Stop the conveyor and measure a length of the belt; marking the forward end (start time) and the back end (stop time). Use the belt scale as the stationary reference.

Run the belt and measure the time for the belt length to pass over the scale.

\[
\text{speed} = \frac{\text{belt length}}{\text{time}} \quad \text{m/s or \ ft/min}
\]

Refer to the Start Up section on page 23 for instructions on parameter selection and changing values.

Press \(\text{Enter} \)

Stop the conveyor and measure a length of the belt; marking the forward end (start time) and the back end (stop time). Use the belt scale as the stationary reference.

Run the belt and measure the time for the belt length to pass over the scale.

\[
\text{speed} = \frac{\text{belt length}}{\text{time}} \quad \text{m/s or \ ft/min}
\]

Refer to the Start Up section on page 23 for instructions on parameter selection and changing values.

Press \(\text{Enter} \)

The displayed speed (used in the rate computation) now equals the actual speed.
Material Tests

Perform material tests to verify the accuracy of the span calibration and compensate for material flow. If the material tests indicate a repeatable deviation exists, a manual span adjust (P019) is then performed. This procedure automatically alters the span calibration and adjusts the test load (P017) value, yielding more accurate span recalibrations.

If the span adjust value is within the accuracy requirements of the weighing system, the material test was successful. Resume normal operation.

If the span adjust value is not acceptable, repeat the material test to verify repeatability. If the result of the second material test differs considerably, consult Siemens or their agent.

If the span adjust values are significant and repeatable, perform a manual span adjust.

Note: Test weights are NOT used during material tests.

There are two methods of executing the manual span adjust: % Change and Material Test

- % Change: based on the material test, the difference between the actual weight of material and the weight reported by the BW500 is calculated and entered into P019 as % change.
- Material Test: based on material test, the actual weight of material is entered into P019

The method of execution is a matter of preference or convenience, and either way yields the same result.

% Change

To run a %Change material test:

1. Run the belt empty.
2. Perform a zero calibration.
3. Put the BW500 into RUN mode
4. Record the BW500 total as the start value __ __ __ __ __ __ __ __
5. Run material at a minimum of 50% of design rate over the belt scale for a minimum of 5 minutes.
6. Stop the material feed and run the conveyor empty.
7. Record the BW500 total as the stop value __ __ __ __ __ __ __ __
8. Subtract the start value from the stop value to determine the BW500 total
9. Weigh the material sample if not already known.

BW500 total = __ __ __ __ __ __ __ __
material sample weight = __ __ __ __ __ __ __ __

Calculate the span adjust value:

% span adjust =
\[
\frac{\text{BW500} - \text{material sample weight}}{\text{material sample weight}} \times 100
\]
Recalibration

Access P019 and enter EDIT mode

P019 Manual Span Adjust E
Select 1-% Change 2-Material Test 0

Press 1 ENTER

P598 Span Adjust Percentage V
Enter Calculated +/- error 0.00

Press ENTER

P598 Span Adjust Percentage E
Enter Calculated +/- error 0.00

Press ▼ ▼ 3 ENTER

if % change is negative, remember to enter the minus sign, e.g. -1.3

P017 Test Load Weight: MS1 V
Enter Test Load 56.78 e.g. the new test load value is displayed
Material Test

Access P019 and enter EDIT mode

<table>
<thead>
<tr>
<th>P019 Manual Span Adjust</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 1-% Change 2-Material Test</td>
<td>0</td>
</tr>
</tbody>
</table>

Press **2 ENTER**

Material Test
Add to Totalizer 0-No, 1-Yes

Press **0 ENTER**

Material Test
Press ENTER to start

Press **ENTER**

Material Test
Press ENTER key to stop

Press **ENTER**

Material Test
Enter actual amount

Press **9 7 5 6 3 3 ENTER**

Material Test Deviation
Accept 0-No, 1-Yes

Press **1 ENTER**

P017 Test Load Weight: MS1
Enter Test Load

Verify the results of the span adjust by material test or return to normal operation.

Design Changes

Where parameters have been changed with a resultant impact on the calibration, they do not take effect until a recalibration is done.

If significant changes have been made, an initial zero (P377) and/or initial span (P388) may be required (see page 118).
Recalibration

To maintain the accuracy of the weighing system, periodic zero and span recalibration is required. Recalibration requirements are highly dependent upon the severity of the application. Perform frequent checks initially, then as time and experience dictate, the frequency of these checks may be reduced. Record deviations for reference.

The displayed deviations are referenced to the previous zero or span calibration. Deviations are continuously tallied for successive zero and span calibrations, and when exceed their limit, indicate an error messages that the deviation or calibration is out of range.

Routine Zero

Note: To obtain an accurate and successful calibration, ensure that the required criteria are met. Refer to Calibration Criteria on page 141.

Press [ZERO]

Zero Calibration. Current Zero. 551205
Clear belt. Press ENTER to start

Press [ENTER]

Zero Calibration in progress
Current Reading: 0.01 kg/m

Calibration complete. Deviation 0.02
Press ENTER to accept value 551418

If unacceptable, press CLEAR to restart

This indicates that the mechanical system is errant. Use P377, initial zero, should be used judiciously and only after a thorough mechanical investigation has been exercised.

The cause of the increased deviation must be found and rectified. A zero recalibration as previously described can then be retried.

If the operator deems this deviation to be acceptable, set P377 to 1 to invoke an initial zero calibration. Further deviation limits are now based on this new initial zero.

Press [ENTER]

Zero Calibration. Current Zero 551418
Clear belt. Press ENTER to start

e.g. zero calibration is accepted and displayed as the current zero
Recalibration

Initial Zero

Perform an initial zero if necessary when a calibration is out of range message is shown.

Access P377 and enter EDIT mode

<table>
<thead>
<tr>
<th>P377 Initial Zero</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter 1 to start initial Zero</td>
<td>0</td>
</tr>
</tbody>
</table>

Press \[1\] \[enter\]

Zero Calibration. Current Zero 530650
Clear belt. Press ENTER to start

Press \[enter\]

Initial Zero Calibration in progress
Current Reading: #######

Calibration complete. Deviation 0.00
Press ENTER to accept value 551413

Press \[enter\]

Zero Calibration. Current Zero 551413
Clear belt. Press ENTER to start

Note: This is the end of zero calibration. Proceed with span recalibration or return to RUN.

Direct Zero

Use direct zero entry (P367) when replacing software or hardware, if it is not convenient to perform an initial zero. A record of the last valid zero count is required.

Access P367 and enter EDIT mode

<table>
<thead>
<tr>
<th>P367 Direct Zero Entry</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Zero Count</td>
<td>0</td>
</tr>
</tbody>
</table>
Auto Zero

The Auto Zero function is useful in outdoor applications where there are fluctuations in temperature, causing the zero to change throughout the day.

Auto Zero provides automatic zero calibration in the RUN mode under the following conditions.

- the auto zero input (terminals 29/30) is in a closed state; jumper or remote contact
- the load on the belt is less than ± 2% of the design load (P952)
- the terminal and load status coincide for at least one belt revolution

The rate display is interrupted by the Auto Zero routine.

The duration of the auto zero is one or more belt revolutions (P360). If either condition is interrupted during that period, the auto zero is aborted and the RUN display is resumed.

If material feed resumes during an auto zero function, the totalizing function is maintained.
Routine Span

Note: To obtain an accurate and successful calibration, ensure that the required criteria are met. Refer to Calibration Criteria on page 141.

Press Span

Span Calibration. Current Span 41285
Setup test. Press ENTER to start

e.g. the current span count

if

Zero should be done prior to Span
Setup test. Press ENTER to start.
do a zero calibration or press CLEAR

Press ENTER

Span Calibration in progress
Current Reading: 55.56 kg/m

the load reported while calibration is in progress.

Calibration complete. Deviation 0.03
Press ENTER to accept value 41440

e.g. the deviation from the previous span
e.g. the new span count, if accepted

if unacceptable, press CLEAR to restart

Span Count too Low.
Press CLEAR to continue.
signal from load cell too low, insure proper test weight or chain is applied during span
check for proper load cell wiring

Calibration aborted
Belt speed is too low:

Calibration is out of range
Deviation Error:

This indicates that the mechanical system is errant. The use of P388, initial span, should be used judiciously and only after a thorough mechanical investigation has been exercised.

Find and rectify the cause of the increased or decreased deviation. Then re-try a span recalibration.

If this deviation is still unacceptable, set P388 to 1 to invoke an initial span calibration. Further deviation limits are now based on this new initial span.
Initial Span

Note: Perform an initial span if a **calibration out of range** message appears.

A zero calibration should be performed prior to performing a span calibration.

Access P388 and enter EDIT mode

<table>
<thead>
<tr>
<th>P388-01 Initial Span</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter 1 to start Initial Span</td>
<td>0</td>
</tr>
</tbody>
</table>

Press **1 ENTER**

Span Calibration. Current Span

- 4144

Setup test. Press ENTER to start

If

- Zero should be done prior to Span Setup test. Press ENTER to start

Press **ENTER**

Initial Span Calibration in progress

Current Reading: ####

Calibration complete. Deviation 0.00

Press ENTER to accept value 41900

Press **ENTER**

Span Calibration. Current Span

- 41900

Setup test. Press ENTER to start

Note: End of span calibration. Remove the test weight and return to RUN.
Direct Span

Direct span entry (P368) is intended for use when replacing software or hardware, and when it is not convenient to perform an initial span. A record of the last valid span count is required.

Access P368 and enter EDIT mode

<table>
<thead>
<tr>
<th>P368 Direct Span Entry</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Span Count</td>
<td>0</td>
</tr>
</tbody>
</table>

Press 4 1 9 0 0 ENTER e.g. the last valid span count

<table>
<thead>
<tr>
<th>P368 Direct Span Entry</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Span Count</td>
<td>4190</td>
</tr>
</tbody>
</table>

Multispan

The BW500 offers a multispan function, which allows the BW500 to be calibrated for up to eight different feed conditions that would produce varying load characteristics. Different feed conditions are typically related to the running of different materials or multiple feed locations. The varying load characteristic often has a bearing on the belt tension, and is observed especially when in close proximity to the scale. To accommodate such scale applications, a span correction can be made by selecting and applying the appropriate span.

Since every material has its own unique physical properties, and may load the belt differently, a span calibration may be required for each material to realize maximum accuracy.

In the case of different feeder locations, a span calibration may be required to match each feedpoint or combination of feedpoints.

Each time one of the eight conditions is in effect, the corresponding multispan is selected prior to putting the BW500 into the RUN mode. The selection is made by either changing the multispan operation number, accessed via P365, or by external contacts connected to the Auxiliary input, and programmed via P270.

To enable multispan operation, the following must be addressed:

- connections
- programming
- calibration
- operation
Connections

If the span selection is to be done by remote contact, the following connections would apply. Otherwise, no additional connections to the BW500 are required.

*Remote contact can be from relay or open collector switch.

Programming

Access P365 and enter EDIT mode

<table>
<thead>
<tr>
<th>P365 Multispans</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select [1-8]</td>
<td>0</td>
</tr>
</tbody>
</table>

Span 1 will have already been set as part of the Start Up and initial calibration. Therefore, select 2.

Access P017 and enter EDIT mode

<table>
<thead>
<tr>
<th>P017 Test Load: Weight MS2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter test load</td>
<td>0</td>
</tr>
</tbody>
</table>

Enter the test load value, and press \(\text{span} \) to do a span calibration.

To do a span calibration for another condition, (i.e. span 3 or 4 etc.), access P365 and repeat these steps for each condition. As with any initial span, follow the span calibration for each multispan with a material test and factoring.

To use remote span selection, auxiliary Inputs, 1 and/or 2 or 3, are programmed to read the contact state as the span selection. Remote selection overrides the keypad (or Dolphin Plus) selection. The auxiliary inputs override the keypad selection.
Access P270 and enter EDIT mode

<table>
<thead>
<tr>
<th>P270-01 Auxiliary Input Function</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Function [0-13]</td>
<td>0</td>
</tr>
</tbody>
</table>

Enter 6. This programs Auxiliary Input 1 (terminal 24) to read the contact state for span selections: 1 or 2.

If spans 3 and/or 4 are to be used:

Access P270 and enter EDIT mode (when using spans 3 and/or 4)

<table>
<thead>
<tr>
<th>P270-02 Auxiliary Input Function</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Function [0-13]</td>
<td>0</td>
</tr>
</tbody>
</table>

Enter 6. This programs Auxiliary Input 2 (terminal 25), in conjunction with Auxiliary input 1 to read the contact state for span selections 3 and 4.

If spans 5, 6, 7, and/or 8 are to be used:

Access P270 and enter EDIT mode (when using spans 5 to 8)

<table>
<thead>
<tr>
<th>P270-03 Auxiliary Input Function</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Function [0-13]</td>
<td>0</td>
</tr>
</tbody>
</table>

Enter 6. This programs Auxiliary Input 3 (terminal 26), in conjunction with Auxiliary input 1 and Auxiliary input 2 to read the contact state for span selections 5, 6, 7, and 8.

Remote selection of a span is not enabled until a span calibration has been done. Initial span selection must be done via the Multispan parameter, P365.

Initial multispan calibration or span selection is made via the Multispan parameter (P365).

Operation

When span calibration is done, press \text{RUN} to revert to the RUN mode.

<table>
<thead>
<tr>
<th>Rate kg/h</th>
<th>0.00 kg/h</th>
<th>MS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1:</td>
<td>0.00 kg</td>
<td></td>
</tr>
</tbody>
</table>

E.g., if there is no material on the belt and the conveyor is running. The current rate is 0 and no material has been totalized.

When the material to be run on the belt changes, the multispan is changed to the corresponding span. This is completed either by changing the span value entered in P365, or by closing the appropriate contacts connected to the programmed Auxiliary inputs.
Recalibration

It may be required to reset or note the totalizer value, as the process materials being conveyed change. Refer to Operation on page 55.

Linearization applies concurrently to spans.

On-line Calibration

The On-line Calibration feature may be used to routinely check, and if necessary adjust, the Span calibration in RUN mode, without interrupting the material flow.

<table>
<thead>
<tr>
<th>Span</th>
<th>Auxiliary Input</th>
<th>Multispan Selection</th>
<th>Multispan Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1 -</td>
<td>-1 -</td>
<td>-1 -</td>
</tr>
<tr>
<td>2</td>
<td>-1 -</td>
<td>-1 -</td>
<td>-1 -</td>
</tr>
<tr>
<td>3</td>
<td>-1 -</td>
<td>-1 -</td>
<td>-1 -</td>
</tr>
<tr>
<td>4</td>
<td>-1 -</td>
<td>-1 -</td>
<td>-1 -</td>
</tr>
<tr>
<td>5</td>
<td>-1 -</td>
<td>-1 -</td>
<td>-1 -</td>
</tr>
<tr>
<td>6</td>
<td>-1 -</td>
<td>-1 -</td>
<td>-1 -</td>
</tr>
<tr>
<td>7</td>
<td>-1 -</td>
<td>-1 -</td>
<td>-1 -</td>
</tr>
<tr>
<td>8</td>
<td>-1 -</td>
<td>-1 -</td>
<td>-1 -</td>
</tr>
</tbody>
</table>

Install a weigh bin, (bin or silo equipped to provide a 4 to 20 mA output proportional to weight), preceding the material infeed.

Connect the weigh bin to one of the mA inputs on the optional mA I/O board of the Milltronics BW500: either mA input 1, terminals 5 and 6; or mA input 2, terminals 7 and 8.

Install a material feed control device, preceding the weigh bin.

Note:

- Press twice, to enter a parameter number directly.
- Whenever you wish to change a value, press to enable the EDIT mode.
Recalibration

Select the On-line Calibration feature:

Access

<table>
<thead>
<tr>
<th>P355 On-line Calibration Feature</th>
<th>Value is accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select: 0-Off, 1-On</td>
<td>0</td>
</tr>
</tbody>
</table>

Press **1 ENTER**

Enter the weigh bin reference weight, (the amount of material the bin holds between the High and Low levels), in units selected in P005.

Access

<table>
<thead>
<tr>
<th>P356 On-line Calibration</th>
<th>Value can be changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Reference Weight</td>
<td>10.000</td>
</tr>
</tbody>
</table>

Press **1 0 ENTER**

Enter the Max., High, and Low limit setpoints as a percentage in parameter 357.

Access

<table>
<thead>
<tr>
<th>P357-01 On-line Calibration Limits</th>
<th>Limit as a percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX Limit:</td>
<td>90.0</td>
</tr>
</tbody>
</table>

Press **9 0 ENTER**

Access

<table>
<thead>
<tr>
<th>P357-02 On-line Calibration Limits</th>
<th>Limit as a percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH Limit:</td>
<td>70.0</td>
</tr>
</tbody>
</table>

Press **7 0 ENTER**

Access

<table>
<thead>
<tr>
<th>P357-03 On-line Calibration Limits</th>
<th>Limit as a percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW Limit:</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Press **3 0 ENTER**

Calibrate the mA inputs on the BW500 to the 4 and 20 mA levels of the weigh bin. 4 mA is calibrated with the weigh bin empty, using P261-01 or –02. 20 mA is calibrated with the weigh bin full, using P262-01 and P262-02.

Assign one of the mA inputs for the On-line Calibration function.
Recalibration

Access

Press 3 ENTER

Assign one of the 5 relays, P100-01 to P100-05, to the On-line Calibration function.

Access

Press 9 ENTER

Program the assigned relay using P118, relay logic, so that when you connect the assigned relay to the weigh bin material feed control device, the weigh bin material feed stops when the On-Line relay is energized.

Activate On-line Calibration.

Access

Press 1 ENTER

Note: For remote access, On-line Calibration can also be activated using one of the Auxiliary inputs (refer to P270 on page 113).

When the On-line Calibration is activated, normal operation continues until the weigh bin fills to the maximum level, (90% in the example shown). During the filling stage, the current level is displayed as a percentage.

On-line Calibration - LOW > 19%
Wait for LEVEL > MAX RLY
current level displayed as percentage

When the maximum limit is reached, the relay assigned to the On-line Calibration function energizes to stop the weigh bin material feed.

On-line Calibration - 94% > MAX
Wait for LEVEL < HIGH RLY 1

Material continues to be discharged from the weigh bin, and when the level drops to the High limit (70% in the example) the On-Line totalizer is automatically activated.

On-line Calibration - TOTAL 3.71 tonnes
Calibration in progress RLY 1
running total

When the Low limit (30%) is reached, the totalizer is deactivated and the assigned relay is de-energized, which reopens the material feed to the weigh bin.
Recalibration

The BW500 On-line material total, the amount of material totalized between the High and Low limits, is compared to the value entered in P356. The deviation percentage between these values and the new Span count value is displayed.

| On-line Calibration - Deviation | 2.51% deviation percent |
| Press ENTER to accept | New span 22280 new Span count value |

Press ENTER to accept the results.

| On-line Calibration Complete |
| Press ENTER to accept | New span 22280 |

Note:
- Deviation must be no greater than ± 12% of the initial span or it will not be accepted.
- For remote access, On-line Calibration can be accepted using one of the Auxiliary inputs: refer to P270 on page 113.

If you want to reject the results and return to RUN mode, press RUN.

| Rate | 0.00 t/h |
| Total 1: | 10.15 t |

Note: t/h equals metric tonnes per hour

Note: For remote access, to return to RUN mode, program one of the Auxiliary inputs: refer to P270 on page 113.

If you want to reject the results and perform another on-line calibration, press PAN to return to P358.

Access

| P358 On-line Calibration Features |
| V |
| 0-OFF, 1-ACTIVE | 1 |

Press 1 ENTER

If the deviation is greater than ± 12%:

Calibration is out of range
Deviation Error:
Recalibration

1. Rerun on-line calibration to verify the deviation: press \[\text{PAR} \] to return to P358.
2. Verify the mechanics of the belt scale: carry out material tests to ensure the readings are correct. (See page 36.)
3. If the mechanics are functioning correctly, perform an initial span using P388. (See page 43.)

Factoring

Note: For optimum accuracy in the factoring results, a routine zero calibration is recommended.

To calculate the value of a new or unknown test weight to the current span, the factoring procedure is used.

With the conveyor stopped and the belt empty:

Access P359 in VIEW mode

<table>
<thead>
<tr>
<th>P359 Factoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 1-Weight, 2-Chain</td>
</tr>
</tbody>
</table>

Press 1 \[\text{ENTER} \]

Factoring Weight

Place weight and press ENTER.

Press \[\text{ENTER} \]

Factoring Weight

Factoring in progress \[##.## \text{ kg/m} \]

Press \[\text{ENTER} \]

Factoring Weight

Press ENTER to accept value \[45.25 \]

Press \[\text{ENTER} \]

P017 Test Load Weight: \[45.25 \]

Note: If multispan function is used, the test load value is stored for the current multispan only.
Linearization

Conveyor applications where the ideal belt scale location has been compromised, or where there is a high degree of variation in belt tension, typically cause the belt scale to report load non-linearly. The BW500 provides a linearizing function (P390 - P392) to correct for the deficiency in the weighing system and to provide an accurate report of the actual process.

To verify that the cause of the non-linearity is not mechanical:

- Run the conveyor belt empty and stop it.
- Lift the belt off of the scale and suspend various test weights to the scale to verify mechanical linearity. If the load reported by the BW500 at these tests is non-linear, a mechanical problem is indicated. Refer to the belt scale manual to resolve the non-linearity by improved installation or repair.

If it is determined that the non-linearity is due to the weighing application, and not the actual belt scale, apply linearization by performing the following:

- zero calibration
- span calibration at 90 to 100% of design rate
- material tests at 90 to 100% of design rate
- manual span adjust if required
- material tests at 1 to 5 intermediary flow rates where compensation is required.

Note: Compensation points must be at least 10% of the design load apart.

- calculate the percentage compensation for each flow rate tested.

\[
\% \text{ compensation} = \frac{\text{actual weight} - \text{totalized weight}}{\text{totalized weight}} \times 100
\]

where:
- actual weight = material test
- totalized weight = BW500 total

Note:
- After the compensation has been programmed into the BW500, a material test should be run to verify the effect of linearization.
- If additional compensation is required, it must be based on new material tests performed with the linearization turned off (P390 = 0).
Example:

A non-linearity with respect to the ideal response exists in a belt scale application with design rate of 200 t/h. It is decided to do material tests at 15, 30, 45, 60 and 75% of the design load. After performing a zero and a span calibration at 100% of the design load, followed by material tests and manual span adjust, five material tests were performed at 30, 60, 90, 120 and 150 t/h, as indicated by the BW500. The following data was tabulated. (This example is exaggerated for emphasis).

The material tests should be run at same belt speed, representative of normal operation; in this case 1.2 m/s. For each rate, record the corresponding load value by scrolling to the BW500 load display during running conditions or by calculation.

\[
\text{load} = \frac{\text{rate}}{\text{speed}}
\]

<table>
<thead>
<tr>
<th>BW500 load kg/m</th>
<th>material test tonnes</th>
<th>BW500 total tonnes</th>
<th>compensation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.94</td>
<td>2.5</td>
<td>2.8</td>
<td>-10.7</td>
</tr>
<tr>
<td>13.89</td>
<td>5.0</td>
<td>4.5</td>
<td>11.1</td>
</tr>
<tr>
<td>20.83</td>
<td>7.5</td>
<td>7.9</td>
<td>-5.1</td>
</tr>
<tr>
<td>27.78</td>
<td>10.0</td>
<td>9.2</td>
<td>8.7</td>
</tr>
<tr>
<td>34.72</td>
<td>12.5</td>
<td>13.3</td>
<td>-6.0</td>
</tr>
</tbody>
</table>

*calculation example: \(\text{% compensation} = \frac{2.5 - 2.8 \times 100}{2.8} = -10.7 \)
Program the BW500 as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P390 = 1</td>
<td>linearization – on</td>
</tr>
<tr>
<td>P391-01 = 6.94</td>
<td>point 1, load</td>
</tr>
<tr>
<td>P391-02 = 13.89</td>
<td>point 2, load</td>
</tr>
<tr>
<td>P391-03 = 20.83</td>
<td>point 3, load</td>
</tr>
<tr>
<td>P391-04 = 27.78</td>
<td>point 4, load</td>
</tr>
<tr>
<td>P391-05 = 34.72</td>
<td>point 5, load</td>
</tr>
<tr>
<td>P392-01 = -10.7</td>
<td>point 1, compensation</td>
</tr>
<tr>
<td>P392-02 = 11.1</td>
<td>point 2, compensation</td>
</tr>
<tr>
<td>P392-03 = -5.1</td>
<td>point 3, compensation</td>
</tr>
<tr>
<td>P392-04 = 8.7</td>
<td>point 4, compensation</td>
</tr>
<tr>
<td>P392-05 = -6.0</td>
<td>point 5, compensation</td>
</tr>
</tbody>
</table>

Note: Often only one point of compensation is required, usually at a low load value. In the prior example, if compensation was only required at 6.94 kg/m, the programming could be as follows. Compensation is optimized by establishing the next load value that agrees with the material test, hence where compensation is zero and entering it as the next compensation point.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P390 = 1</td>
<td>linearization on</td>
</tr>
<tr>
<td>P391-01 = 6.94</td>
<td>point 1, load</td>
</tr>
<tr>
<td>P391-02 = 20.00</td>
<td>point 2, load</td>
</tr>
<tr>
<td>P392-01 = -10.7</td>
<td>point 1, compensation</td>
</tr>
<tr>
<td>P392-02 = 0</td>
<td>point 2, compensation</td>
</tr>
</tbody>
</table>

For Parameter reference, go to Parameters on page 103.
Operation

Load Sensing

For the BW500 to calculate rate and totalize material flow along the belt conveyor, a load signal representative of weight of material on the belt is required. The load signal is provided by the belt scale. The BW500 is compatible with belt scales fitted with one, two, or four strain gauge type load cells. To function with LVDT type load cells, an optional LVDT conditioning card is required.

Refer to Specifications on page 3, and Installation on page 6 for belt scale requirements and connection.

Speed Sensing

For the BW500 to calculate rate and totalize material flow along the belt conveyor, a speed signal representative of belt speed is required. For optimum accuracy of the weighing system, and both constant and variable speed applications, a speed sensor is required. The design speed (P014) and speed constant (P015) need to be programmed.

In constant speed applications (no speed sensor), the BW500 can be programmed to provide an internal speed signal. This is achieved by entering the design speed (P014) and providing a contact closure across speed input terminals (17/18). The speed constant (P015) defaults to ‘jumpered.’ This contact should change to open when the conveyor is idle to prevent errant totalization.

In applications with two speed sensors, the BW500 can be programmed to provide differential speed. % slip can be calculated, using the difference between the two speed signals with reference to the first speed.

Refer to Specifications on page 3 and Installation on page 6 for speed sensor requirements and connection.

Differential Speed Detection

Dual point speed sensing is used for monitoring speed at two points in the system where a difference in speed can be detrimental to the equipment or its operation. The two speed sensors are typically applied on belt conveyors to give an alarm if excessive slip between the head pulley and tail pulley is detected. The secondary speed sensor is especially useful on variable speed conveyors, and may also be used to detect a malfunction in the primary speed sensor.

The BW500 provides a 12 Vdc, 150 mA maximum, regulated power supply for both speed sensors. The primary speed sensor is used for all “Run” display integration, and is the reference value for differential speed detection. The primary speed sensor is generally reserved for the driven device (tail pulley). The second speed sensor is generally reserved for the driving device (head pulley), and is used for comparison to the primary speed sensor, for differential speed detection only.
The second speed signal is compared to the primary speed signal, and will initiate an alarm condition if the second speed signal is outside the programmed high and low alarm setpoints.

Connect the second speed sensor as shown in the Installation section (refer to Auxiliary Speed Sensor on page 17), and program the second speed sensor as described in the following steps:

1. Program one of the Auxiliary Inputs as a Speed Sensor input $P270-01$ to $05 = 16$ (Speed Sensor).
2. Program second speed sensors speed constant $P015-02 = \text{pulses per meter or foot}$ (Refer to Start Up on page 23, for speed sensor programming).
3. Program one of the alarms for Differential Speed Detection alarm $P100-01$ to $05 = 10$ (Speed Differential).
4. Program the High Alarm setpoint $P101-01$ to $05 = 110\%$ (default).
5. Program the Low Alarm setpoint $P102-01$ to $05 = 90\%$ (default).

Moisture Compensation

Moisture Compensation is used to compensate for the moisture component of the material being weighed. It factors out the moisture component of load, rate and total for all multispan selected. The factored value is meant to report the dry mean values of the material being conveyed.

The BW500 receives the static load cell signal, and adjusts the value of the load being displayed and integrated by the moisture percentage. The mA I/O card is required to accept the mA signal from the Moisture Meter. This mA signal can represent 0 to 100% moisture. The moisture percentage is displayed in $P398-01$. Using $P398-02$, the moisture percentage can be represented as a percentage of mass to be deducted from the total mass.

Example:

Setting $P398-02 = 30\%$ will allow the 4 - 20 mA input to correspond to 0 - 30% moisture.

The Zero and Span calibration is not affected by the presence of a moisture meter. It is understood that the calibrations are performed using dry static weights.

The Moisture Meter must be connected to the appropriate mA input and programmed as described in the following steps:

1. Enable mA input function for moisture compensation $P255-01$ or $02 = 4$ (moisture compensation).
2. Set appropriate mA input range $P250-01$ or $02 = 2$ (default is 4 - 20 mA).
3. Set mA input moisture ratio $P398-02 = 100\%$ (default).

Incline Compensation

Incline compensation is used to compensate for the varying vertical force component applied to the belt scale due to varying inclination of the conveyor. The BW500 receives
the static load cell signal, and adjusts the load displayed and integrated, by a factor of COSINE of the angle of incline.

The Inclinometer should be mounted to the conveyor stringer, parallel to the center of the belt scale. The mA I/O card is required to accept the mA signal from the Inclinometer. This mA signal must represent -30 ° to 30 °. The incline angle is displayed in P399.

The dynamic load cell signal will vary with the incline of the conveyor. The BW500 load display and integration values will remain constant for the given load on the belt scale through the specified range of inclination.

The Zero and Span calibrations of the BW500 will be adjusted based on the angle of incline of the conveyor. The Zero and Span calibration can be performed at any angle. However, if incline compensation will be used, it must be enabled for all Zero and Span calibrations.

The Inclinometer must be connected to the appropriate mA input and programmed as described in the following steps:

1. Enable mA input function for incline compensation P255-01 or 02 = 5 (Incline compensation).
2. Set appropriate mA input range P250-01 or 02 = 2 (default is 4 - 20 mA).
3. Observe incline angle using P399.

Modes of Operation

RUN is the normal or reference mode of operation. It continuously processes the load and speed signals from the belt scale to produce internal load, speed and rate signals, which are in turn used as the basis for totalization, mA output, relay control, and communication data. The **RUN** display is programmed (P081) to scroll through rate, totalization (P647), load and speed; either manually by pressing the enter key, or automatically.

If the BW500 is programmed for batch control, the batch display is added to the display scroll. Refer to **Batch Control** on page 122 for more information.

From the **RUN** mode, access to the **PROGRAM** mode, and zero and span calibration is made.

The **PROGRAM** mode allows viewing and, with security permission (P000), editing parameter values. During **PROGRAM** mode functions are still active, i.e.: rate, relay, mA output and totalization.

If the **PROGRAM** mode is left idle for a period of ten minutes, it automatically reverts to **RUN** mode.

Zero and span calibrations effectively halt the **RUN** mode while they are in progress. During this time, totalization ceases, and all mA outputs, except for PID, fall to zero.
Damping

Damping (P080) provides control over the speed at which the displayed readings and output functions respond to changes in their respective input function: load, speed and the internal rate signals. Changes in the displayed rate of material flow, material loading and belt speed are controlled by the damping. Relay alarm functions based on input functions of rate, load and speed, respond to the damped value.

Damping consists of a first order filter applied to the signal (reading or output value).

If mA damping (P220) is enabled (value other than 0), then the damping (P080) as it pertains to the mA function is overridden, and responds independently at the specified mA output damping rate (P220).

Note: Damping (P080 or P220) is not applicable to the mA output when programmed for PID function (P201 = 4).

mA I/O (0/4-20 mA)

Output

The standard BW500 provides one isolated mA output. The output can be assigned (P201) to represent rate, load or speed. The output range can be set to 0 - 20 mA or 4 - 20 mA (P200). The 0 or 4 mA value corresponds to empty or zero condition, whereas the 20 mA value corresponds to the associated design value: rate (P011), load (P952) or speed (P014). The mA output can be limited for over range levels of 0 mA minimum and 22 mA maximum (P212 and P213 respectively). The output 4 and 20 mA levels can also be trimmed (P214 and P215 respectively) to agree with a milliammeter or other external mA device.

The mA output value can be tested to output a prescribed value using parameter P911. Refer to P911 on page 132.

The optional mA I/O board provides two additional mA outputs, programmable as outputs 2 and 3, using the same parameters as the standard output (1). If programmed for PID control, output 2 is assigned to PID control loop 1 and output 3 is assigned to PID control loop 2.

Input

The optional mA I/O board provides two mA inputs, programmable as inputs 1 and 2. If programmed for PID control, generally, input 1 is assigned to PID control loop 1 and input 2 is assigned to PID control loop 2.

The input range can be set to 0-20 mA or 4-20 mA (P250), and assigned a function (P255), e.g. PID setpoint. The 4 and 20 mA levels can be trimmed (P261 and P262) to agree with an external device. The external device could be a moisture sensor, or an inclinometer.
Relay Output

The BW500 offers five single pole single throw (SPST) relays that can be assigned (P100) to one of the following alarm functions:

- **rate**: relay alarms on high and/or low material flow rate.
- **load**: relay alarms on high and/or low belt load.
- **speed**: relay alarms on high and/or low belt speed.
- **differential speed**: relay alarms if second speed signal outside high and/or low alarm setpoints.
- **diagnostic**: relay alarms on any error condition as it is reported. Refer to *Troubleshooting* on page 134.
- **PID**: PID control setpoint deviation*
- **batch pre-warn**
- **batch setpoint**

*is offered only if the PID system (P400) is enabled.

For rate, load, and speed alarm functions, the high and low alarm setpoints (P101 and P102 respectively) are required and must be entered in the appropriate units. The high alarm setpoint acts as the setpoint deviation alarm for relays programmed for PID setpoint deviation.

The on/off actuation at both high and low setpoints is buffered by the damping (P080) and the programmable dead band (P117), to prevent relay chatter due to fluctuations. The relay is normally energized; holding the normally open (n.o.) contact closed (can be programmed for reverse operation, P118). Upon an alarm condition, the relay is de-energized and the relay contact is opened. Once in alarm, the relay remains in alarm state until the alarm condition is removed.

Example:

P014 = 2m/s, design speed
P100 = 3, belt speed
P101 = 100% (2 m/s)
P102 = 20% (0.4 m/s)
P117 = 2% (0.04 m/s)

2 m/s

[Diagram showing high 100% alarm 'on' is with relay de-energized]

0.4 m/s

[Diagram showing low 20% alarm 'off' = 22% 'on' = 20%]
Totalization

The totalization function is based on the internal rate (mass per unit time) signal proportional to belt speed and load on the associated belt scale. It is not affected by the damping function (P080). The rate signal is sampled several times a second to accurately count the mass of material conveyed. The count is held in the master totalizer used to increment the internal totalizers and to produce a pulse signal for the remote totalizers.

The BW500 provides several separate totalizer functions:

Internal totalizers

- local display (totalizers 1 and 2)
- verification totalizer (totalizer 3)
- material test totalizer (totalizer 4)
- batch total (totalizer 5)

External totalizers

- totalizer outputs (remote totalizers 1 and 2)

To avoid totalizing material at flow rates below the low flow rate limit, the totalizer drop out limit (P619) is set to a percentage of the design load. Below this limit, totalization stops. When material flow returns to a rate above the drop out limit, totalization resumes.

Totalizer resolution or count value is set by the respective internal (P631) and external (P638) totalizer* resolution parameters.

*If the resolution selected causes the totalizer to lag behind the count rate, the next possible resolution is automatically entered.

Example:

Internal totalizer 1

Given: P005 = 1 (t/h)
 P631 = 4

Then: totalizer count increments by 10 for each 10 metric tonnes registered

External totalizer 1

Given: P005 = 1 (t/h)
 P638 = 5

Then: contact closure occurs once for every 10 metric tonnes registered

For remote totalization, the contact closure duration (P643) is automatically calculated upon entry of the design rate (P011) and remote totalizer (P638) parameters, so that the duration of contact closure allows the relay response to track the total up to 150% of the design rate. The value can be changed to suit specific contact closure requirements, such as in the case of programmable logic controllers. If the duration selected is inappropriate, the next possible duration is automatically entered.
External Totalizer Calculation Example:

Design Rate = 50 t/h (P011)
External Totalizer Resolution Selected = 0.001 (P638 = 1)
External Totalizer Contact Closure Time selected = 30 msec (P643 = 30)
External Totalizer Cycle Time = 60 msec (External Totalizer Contact Closure Time X 2)

1. Calculate the maximum number of pulses per second for the Contact Closure Time selected (P643).
 Maximum Number of pulses per second
 \[\frac{1}{\text{External Totalizer Cycle Time}} \]
 \[\frac{1}{0.060} \]
 = 16.6 (which is rounded to a whole number of 16 in the BW500)

2. Calculate the pulses per second required for the External Totalizer Resolution selected (P638).
 \[\text{Pulses Per Second} = \frac{\text{Design Rate X 150\%}}{\text{External Totalizer Resolution X 3600}} \]
 \[= \frac{50 \text{ t/h X 150\%}}{0.001 \times 3600} \]
 \[= 20.83 \]
 Because the required 20.83 pulses per second is greater than the maximum 16 pulses per second, the External Totalizer Resolution of 0.001 will not allow the External Totalizer to track up to 150% of the design rate. The External Totalizer Resolution will have to be increased to 0.01 or the External Totalizer Contact Closure Time will have to be decreased.

The totalizers are reset through the master reset (P999), the totalizer reset (P648) or through the keypad.

- master reset: the reset of all totalizer functions is included in the master reset.
- totalizer reset: totalizer reset can be used to reset internal totalizers 1 and 2, or totalizer 2 independently. Resetting the internal totalizers 1 and 2 resets the internal registers for external totalizers 1 and 2.
- keypad: pressing while in the RUN mode resets internal totalizer 1

Placing the internal totalizers on to the display scroll of the RUN mode is controlled by the totalizer display parameter (P647); displaying either one or both totalizers.
PID Control

The PID control algorithm in the BW500 is designed specifically to work for feed rate control applications. It is based on motor control type algorithms and includes several anti-wind up provisions.

One way to prevent wind up is to monitor the input speed frequency from the weighfeeder. If the input frequency drops below 5 Hz, the PID control output freezes at its current value. Otherwise, the output winds up to 100% if the feeder is shut off while there is still a set point greater than zero. When the feeder is turned back on, there would be a surge of product flow until the system regains stability. With anti-wind up, the feeder can be stopped and started with minimal disruption to the controlled flow rate.

To operate the BW500 as a controller, address the following:

- hardware
- connections
- setup and tuning
- programming

Hardware

For the BW500 to operate as a controller, install the optional mA I/O board. Refer to Installation on page 6.

Connections

Connections to process instruments, in addition to standard operating connections, must be made.

Refer to:

- Installation on page 6, specifically:
- Relay Output on page 20, for relay connections
- mA I/O board on page 8, for mA input and output connections
- Auxiliary Inputs on page 18, for optional remote control

Connect the BW500 as either a:
1. setpoint controller – load control
2. setpoint controller – rate control
3. setpoint controller – rate and load control
4. setpoint controller – external process variable with or without rate and load control

<table>
<thead>
<tr>
<th>PID loop</th>
<th>mA output</th>
<th>terminals (mA I/O)</th>
<th>mA input</th>
<th>terminal (mA I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1 & 2</td>
<td>1</td>
<td>5 & 6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3 & 4</td>
<td>2</td>
<td>7 & 8</td>
</tr>
</tbody>
</table>
Setpoint Controller – Rate Control

Shearing weighfeeder

Belt scale

Speed sensor

Speed

PID 1 process value source - rate
(P402-01 = 1)

Control output
(P201-02 = 4)

Optional remote setpoint - rate
(P255-01 = 1)

Motor speed controller

Setpoint Controller – Load Control

Shearing weighfeeder

Belt scale

Speed sensor

Speed

PID 1 process value source - load
(P402-01 = 2)

Control output
(P201-02 = 4)

Optional remote setpoint - rate
(P255-01 = 1)

Motor speed controller
Setpoint Controller – Master/Slave Control

*P201-03 = 1 also applicable
Setpoint Controller – Rate and Load Control

Before proceeding, it would be beneficial to qualify and quantify the terms you will encounter in the setup and tuning of the control system.

Proportional Control (Gain), P

The P term on the BW500 adjusts the control output based on the difference between the set point and the measured flow rate. A higher P term makes the BW500 more sensitive and faster to react to changes or disturbances. If set too high, the BW500 becomes less stable, and more susceptible to oscillations in the control output.

- allowable input range: 0.000 to 2.000
- typical operating range: 0.300 to 0.600
- default value: 0.400
The control output cannot reach the setpoint using only the P term. Since the P term acts on the difference between the setpoint and process variable, a small difference between these two always exist and the difference is never zero. A small P term can get the process very close to setpoint, but it would take a very long time. At the very least, an I term is required to eliminate the offset created by the P term.

Integral Control (Automatic Reset), I

The I term on the BW500 is used to increase or reduce the amount of control output to eliminate the offset caused by the P term. The I term acts on the accumulation of the error over small increments of time. As the process reaches setpoint and the error becomes small, the effect of the I term decreases. A higher I term makes the BW500 faster to react to changes, but can also make it less stable.

- allowable input range: 0.000 to 2.000
- typical operating range: 0.100 to 0.300
- default value: 0.200

The P and I terms together can make a suitable control algorithm and for many applications, they work fine. However, if faster response to changes is desired, it is necessary to use larger P and I terms. Unfortunately, larger terms can make the system unstable. A derivative term is needed to influence the control output as the process variable approaches the setpoint.
Derivative Control (Pre-Act or Rate), D

The D term on the BW500 influences the control output based on changes in the magnitude and direction of the change in error. If there is a constant error, the D term has no effect. As the error gets larger, the D term combines with the P term to make the BW500 control output respond faster. When the error is getting smaller, the D term acts to reduce the amount of control output to help prevent overshooting the set point. In general, a higher P term will require a larger D term.

- allowable input range: 0.000 to 1.000
- typical operating range: 0.010 to 0.100
- default value: 0.050

The result of the derivative action is that it can make a system more responsive and more stable at the same time.

Feed Forward Control, F

On the BW500, the F term is used to adjust the control output based on a setpoint change. The use of this term can make the system reach the new setpoint faster. If the term is not used, the system responds using the P, I, and D terms only. The difference between the new setpoint and the process variable is the error and the control algorithm responds to eliminate this new error.

When the F term is used and a new setpoint is entered, a proportion of the difference between the new setpoint and the process variable is automatically added on to the control output. This shifts the process variable closer to the new setpoint faster than using the P, I, and D terms alone. This is done on a one time basis.

- allowable input range: 0.000 to 1.000
- typical operating range: 0.250 to 0.550
- default value: 0.300
The PID control function of the BW500 can be configured to operate in several modes.

- controller output: direct acting
- feedback: rate, load or external
- control: local or remote (ratio) setpoint

PID Setup and Tuning

Proper tuning of the control PID terms is essential to system operation and optimum performance from the feeder. The recommended procedures for tuning the PID control terms at initial start-up are described in this section.

Initial Start-Up

Although the default values of the P, I, D and F terms will suit the majority of applications, shearing weigh feeders in particular, some tuning will be necessary nonetheless.

There are several techniques and procedures for tuning conventional PID controllers, some work better depending upon the application. We recommend using “closed-loop cycling” for the BW500 integrator/controller for feed rate control. This technique focuses on tuning the P term first while disabling the I and D terms. This is followed by adding and tuning the I term, then the D term. To outline this procedure:

1. With the P term set to its default value of 0.400, disable the I, D and F terms by setting them to 0.000.
2. Enter a feed rate setpoint that is 30% of the designed maximum flow rate.
3. Having applied the test weights or chain provided, start the feeder and observe the time it takes the feeder to reach setpoint, also observe the oscillation around setpoint.
4. Adjust the P term accordingly for consistent oscillation and error. Progressively decrease the P term value if there is too much oscillation and error. Likewise, increase the value if the error is not consistent and oscillating around the setpoint. Refer to fig 1, 2, & 3 below.

Figure 1

![Graph showing PID control tuning](image)
5. Once the P term value is set to give the control output of the BW500 consistent oscillation and the error is at its minimum, turn the feeder off.

6. The I term value can now be set. Begin by entering the default value of 0.2.

7. Restart the feeder (test weights or chains still applied) and feed rate setpoint entered.

8. Again observe the oscillation of the control output. Compare results to the figures 4, 5 and 6 below.
9. The D term is not critical in typical shearing type weigh feeder applications. The purpose of the D term is to anticipate where the process is heading by looking at the time rate and direction of change of the process variable. The D term becomes very useful in applications where the material control point is far away from the measuring point. An example of this would be a weigh belt or conveyor with a belt scale (constant speed) being fed from a pre-feeder some distance or more than a few seconds process time from the scale. A properly set D term will make the initial oscillations around the setpoint smaller, as in figure 6. A D term set too high induces high oscillations, as in figure 4. Omission of the D term, or set too low, shows no effect on the system.

10. The above closed loop cycling procedure allows ease in start up, but final adjustments may be necessary in actual process operation.
Programming

The BW500 is software ready, however the controller function must be specifically programmed in addition to programming of parameters P001 through P017.

The BW500 offers programming for two separate PID controls, 1 and 2. The controller being programmed is identified by the suffix to the parameter number. e.g. P400-01 indicates that PID for control system 1 is accessed.

Note: All programming should be done in the PID manual mode.

Access

<table>
<thead>
<tr>
<th>P400-01 PID System</th>
<th>E</th>
<th>Select: 0-Off, 1-Manual, 2-Auto</th>
<th>0</th>
</tr>
</thead>
</table>

Off disables the PID parameter set, P401 to P418. They are not accessible.

Manual: the control output is the manual output P410.

Auto: engages the PID controller function. This can also be done using the key.

Note:

For the mA input:
- mA output 2 (P201-02) is normally reserved for controller 1. The signal is output at terminals 1 and 2 on the mA I/O board.
- mA output 3 (P201-03) is normally reserved for controller 2. The signal is output at terminals 3 and 4 on the mA I/O board.

P201-02 mA Output Function

| E | Select: 1-Rate, 2-Load, 3-Speed, 4-PID | 1 |

Select the PID function.

Note:

For the mA input:
- mA input 1 is an external signal normally reserved for controller 1. The signal is input at terminals 5 and 6 on the mA I/O board.
- mA input 2 is an external signal normally reserved for controller 2. The signal is input at terminals 7 and 8 on the mA I/O board.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P250-01 mA Input Range</td>
<td></td>
<td>Select the appropriate range for the mA input signal</td>
</tr>
<tr>
<td>Select 1- 0 to 20, 2-4 to 20</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P255-01 mA Input Function</td>
<td></td>
<td>Assign either:</td>
</tr>
<tr>
<td>Select 0, 1-PID SP, 2-PID PV</td>
<td>0</td>
<td>1. PID setpoint, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. process variable as the function of the mA input</td>
</tr>
<tr>
<td>P401-01 PID Update Time</td>
<td></td>
<td>Enter the value, e.g. nominal value of 1</td>
</tr>
<tr>
<td>Readings between PID Updates</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P402 Process Variable Source</td>
<td></td>
<td>Select the source. Rate and load are internal values.</td>
</tr>
<tr>
<td>1-Rate, 2-Load, 3-mA In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P405-01 Proportional Term</td>
<td></td>
<td>Enter the value for the proportional term, e.g. nominal value of 0.4</td>
</tr>
<tr>
<td>Enter</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>P406-01 Integral Term</td>
<td></td>
<td>Enter the value for the integral term, e.g. nominal value of 0.2</td>
</tr>
<tr>
<td>Select 1- 0 to 20, 2-4 to 20</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>P407-01 Derivative Term</td>
<td></td>
<td>Enter the value for the derivative term, e.g. nominal value of 0.05</td>
</tr>
<tr>
<td>Enter</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>P408-01 Feed Forward Term</td>
<td></td>
<td>Enter the value for the feed forward term, e.g. nominal value of 0.3</td>
</tr>
<tr>
<td>Enter</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>P410-01 Manual Mode Output</td>
<td></td>
<td>% value of output during manual operation, P400 = 1</td>
</tr>
<tr>
<td>Current Output Value</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P414-01 Setpoint Configuration</td>
<td></td>
<td>Selection of setpoint source:</td>
</tr>
<tr>
<td>0-Local, 1mA In</td>
<td>0</td>
<td>0 = local (keypad or Dolphin Plus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = mA input</td>
</tr>
</tbody>
</table>

Local: the setpoint is the value entered into P415.

mA Input 1: the setpoint is the mA value on input 1, terminals 5 and 6 on the mA I/O board.

mA Input 2: the setpoint is the mA value on input 2, terminals 7 and 8 on the mA I/O board.

Enter Setpoint | 0 | Enter the setpoint value in engineering units. |
| | | Not applicable if P414 = 1 |
PID Control

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P416-01 External Setpoint</td>
<td>Current setpoint value in engineering units, obtained from the mA input</td>
</tr>
<tr>
<td>P418-01 Remote Setpoint Ratio</td>
<td>Increase or decrease to scale input setpoint, if desired.</td>
</tr>
<tr>
<td>P250-01 mA Input Range</td>
<td>Select the appropriate range for the mA input signal</td>
</tr>
<tr>
<td>P255-01 mA Input Function</td>
<td>Assign either: 1, PID setpoint, or 2, process variable as the function of the mA input</td>
</tr>
</tbody>
</table>

Note: The PID setpoint can be modified while in RUN mode using the up/down arrow keys.
Batching

The batching process, as it relates to the BW500 operation, can be defined as the transfer of a predetermined quantity of material.

The process supports a count up operation (P560), in that the total (totalizer 5) begins at zero and increments up to the programmed setpoint (P564). A relay (RL1 through 5) programmed as the batch setpoint function (P100 = 8) is actuated when the material total reaches the setpoint. The relay contact acts as an interlock to the material feed to end the batch.

Another relay can be programmed as a pre-warn alarm (P100 = 7), to alert the process that batch end is near. The relay is actuated when the material total reaches the pre-warn setpoint (P567) at some practical value below the batch setpoint. The pre-warn function is enabled / disabled from the batch process through P566.

For batch operations, the following must be addressed.

- connections
- programming
- operation

Connections

Typical Ladder Logic

* Typical relay assignment. Relays 1-5 are available for batch setpoint or pre-warm alarm function.

* Typical auxiliary input assignment. Inputs 1-5 are available for batch reset.
Programming

The pre-warn function is optional.

The setpoint associated with the pre-warn relay is entered in P564, batch setpoint.

The setpoint associated with the batch relay is entered in P567, batch pre-warn setpoint.

<table>
<thead>
<tr>
<th>Batch Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>access P100, relay function</td>
</tr>
<tr>
<td>Access P560 Batch Mode Control</td>
</tr>
<tr>
<td>if batch pre-warn is selected</td>
</tr>
<tr>
<td>access P567, batch pre-warn setpoint</td>
</tr>
<tr>
<td>Access P568 Batch Pre-act</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access P100, Relay Function</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Operation

Once the BW500 relays are connected to the process logic, and it is programmed, the BW500 is ready for totalizing the batch and stopping the process when the batch setpoint is reached. The batch operation: start, pause, resume, and cancel are controlled externally by the process control (e.g. PLC).

Place the unit in the RUN mode.

Press ALT DISP until the batch screen is displayed.

Start running the batch.

The display will show the rate of material flow and the batch total, as well as the batch setpoint. If pre-warn is used, relay contact is open.

When the batch total reaches the pre-warn setpoint, if programmed, the alarm event is removed and the assigned relay contact is closed.

The process continues, and when the batch total reaches the batch setpoint, the alarm event is displayed and the assigned relay is actuated (contact opened). Typically the relay contact would be integrated into the batch control logic to end the process.

When the next batch is to be run, pressing and then on the local keypad, or providing a momentary contact closure across an auxiliary input (programmed as batch reset, P270 = 8), sets the alarm display and resets the batch total to zero, and the relay contact to its closed state.

Pre-act Function

If repetitive batches are being run, the pre-act function (P568) can be enabled to automatically trip the setpoint relay before or after the batch setpoint is reached to assure best batch accuracy.

Notes:
- The batch totalizer can be viewed as a read-only parameter (931-05), using single Parameter access through any programmed communication port.
- The batch setpoint can be modified in RUN mode using the up/down arrow keys.
Communications

The BW500 is a sophisticated belt scale integrator that can communicate status back to a SCADA system using a serial device such as radio modems, leased lines, or dial-up modems.

The BW500 supports two protocols: Dolphin and Modbus. Dolphin is a proprietary Siemens Miltronics protocol designed to be used with Dolphin Plus. Modbus is an industry standard protocol used by popular SCADA and HMI systems.
BW500 and SmartLinx®

In addition to three onboard communication ports, the BW500 is compatible with Siemens’ SmartLinx® communication modules which provide an interface to popular industrial communication systems.

This section only describes the onboard communications. For more information on SmartLinx®, please consult the appropriate SmartLinx® manual.

Connection

WARNING: When a SmartLinx® card is installed and P799 = 1, the parameters that the SmartLinx® card is writing to the BW500 will be continuously updated. Therefore, if you connect a SmartLinx® card to the BW500, set P799 = 1 and not write anything to the SmartLinx® card, your setpoints will be 0.

There are three serial communication ports on the BW500:

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS-232, Terminals 31 to 34</td>
</tr>
<tr>
<td>2</td>
<td>RS-485, terminals 41 to 46</td>
</tr>
<tr>
<td>3</td>
<td>RS-232, RJ-11 modular telephone jack</td>
</tr>
</tbody>
</table>

Refer to the Installation on page 6 for wiring diagrams specific to each port.

Wiring Guidelines

Improper wiring and choice of cables are the most common sources of communication problems. Listed below are some suggested guidelines:

- 15 meters (50 feet) for RS-232
- 1200 meters (4000 feet) for RS-485
- Ensure that communication cable is run separately from power and control cables (i.e. do not tie wrap your RS-232 cable to the power cable or have them in the same conduit).
- cable is shielded and connected to ground at one end only
- 24 AWG (minimum)
- follow proper grounding guidelines for all devices on the bus
- use good quality communication grade (shielded twisted pairs) cable that is recommended for RS-232.
Configuring Communication Ports

The BW500 communications ports are set up by a series of parameters (P770 – P789) which are indexed by port.

The communication parameters are indexed to the following:

<table>
<thead>
<tr>
<th>Port</th>
<th>Serial Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS-232, Terminals 31 to 33</td>
</tr>
<tr>
<td>2</td>
<td>RS-485, Terminals 41 to 45</td>
</tr>
<tr>
<td>3</td>
<td>RS-232, RJ-11 Modular Telephone</td>
</tr>
</tbody>
</table>

*indicates the factory setting.

Note: Changes to these parameters are not effected until the power to the unit is turned off and then back on.

P770 Serial protocols

The communications protocol used between the BW500 and other devices for the selected port, ports 1 to 3 (P770-01 to –03).

The BW500 supports Siemens Milltronics’ proprietary “Dolphin” data format plus the internationally recognized Modbus standard in both ASCII and RTU formats. It also supports direct connection of a printer.

The Siemens Milltronics protocol is compatible with the Dolphin Plus configuration program. See the Siemens web site for information on this PC product (http://www.siemens.com/processautomation).

The Modbus protocol is an open standard developed by AEG Schneider Automation Inc. Specifications are available from their web site (http://www.modicon.com/).

Other protocols are available with optional SmartLinx® cards.

Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Communications disabled</td>
</tr>
<tr>
<td>1</td>
<td>Siemens Milltronics “Dolphin” protocol</td>
</tr>
<tr>
<td>2</td>
<td>Modbus ASCII slave serial protocol</td>
</tr>
<tr>
<td>3</td>
<td>Modbus RTU slave serial protocol</td>
</tr>
<tr>
<td>4</td>
<td>Printer</td>
</tr>
</tbody>
</table>

Note: BW500 must be in **RUN** mode to allow for the print operation.
P771 Protocol address

Note: Applicable only to ports programmed for Modbus RTU or Modbus ASCII (Parameter 770).

The unique identifier of the BW500 on the network for the selected port, ports 1 to 3 (P771-01 to -03).

For devices connected with the Siemens Milltronics protocol this parameter is ignored.

For devices connected with a serial Modbus protocol this parameter is a number from 1-247. It is up to the network administrator to ensure that all devices on the network have unique addresses.

Do not use the value “0” for Modbus communications as this is the broadcast address and is inappropriate for a slave device.

Values

0 to 9999 (f = 1)

P772 Baud Rate

The communication rate with the master device for the selected port, ports 1 to 3 (P772-01 to -03).

The baud rate chosen should reflect the speed of the connected hardware and protocol used.

Values

1 4800 baud
2 9600 baud
3 19,200 baud
4 38,400 baud

P773 Parity

The serial port parity for the selected port, ports 1 to 3 (P773-01 to -03).

Ensure that the communications parameters are identical between the BW500 and all connected devices.

For example many modems default to N-8-1 which is No parity, 8 data bits, and 1 stop bit.

Values

0 none
1 even
2 odd
P774 Data bits

The number of data bits per character for the selected port, ports 1 to 3 (P774-01 to –03):

<table>
<thead>
<tr>
<th>Protocol</th>
<th>P744 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus RTU</td>
<td>8</td>
</tr>
<tr>
<td>Modbus ASCII</td>
<td>7 or 8</td>
</tr>
<tr>
<td>Dolphin Plus</td>
<td>7 or 8</td>
</tr>
</tbody>
</table>

Note: If using port 2, 8 data bits must be used.

Values
5 to 8 (\(f=8\))

P775 Stop bits

The number of bits between the data bits for the selected port, ports 1 to 3 (P775-01 to -03).

Values
1 or 2 (\(f=1\))

P778 Modem attached

Sets port 1 (P778-01) to use an external modem.

Any connected modem must be set up to auto-answer incoming calls. The BW500 does not automatically configure the modem.

Autobaud (enabled by P778=1)

When the BW500 is powered up or the P779 Modem Inactivity Timeout expires three carriage returns are sent to the modem to allow it to set its serial connection to P772 Baud Rate.

If a connection is made with the modem at a different baud rate the BW500 will attempt to use that rate instead of the P772 value. For troubleshooting purposes the baud rate on the modem can be hard-coded to the rate set on the BW500. See your modem documentation for information on fixing the baud rate.

Values
0 *no modem connected
1 modem connected
P779 Modem idle time

Sets the time in seconds that the BW500 will keep the modem connected even though no activity is happening.

To use this parameter ensure that P778=1.

This parameter allows for reconnection to the BW500 unit after an unexpected disconnect. Ensure that the value is low enough to avoid unnecessary delays when an unexpected disconnect occurs but long enough to avoid timeout while you are still legitimately connected.

Hanging Up

If the line is idle and the P779 Modem Inactivity Timeout expires then the modem is directed to hang up the line. This is done with the Hayes commands:

- two second delay
- +++
- two second delay
- ATH

Ensure that P779 is set longer than the standard polling time of the connected master device.

0 disables the inactivity timer.

Values

0-9999: 0 (f = 1)

P780 RS-232 Transmission interval

Note: Applicable only to ports programmed for printer communication (parameter 770).

Sets the interval between transmissions to be applied to the selected port, ports 1 to 3 (P780-01 to –03).

Enter the period in minutes. (f = 0)
P781 Data message

Note: Applicable only to ports programmed for printer communication (parameter 770).

Sets the data message to be delivered via the selected port, ports 1 to 3 (P781-01 to -03).

All messages and printouts include time and date.

Entry:

0 = no message
1 = rate
2 = total*
3 = load
4 = speed
5 = rate, total*, load and speed
6 = rate and total*
7 = batch total (totalizer 5)
8 = rate and speed
9 = quick start parameters (P001 – P017)
10 = all parameters

*totalizer 1 and/or 2 as set by P647, Totalizer Display

P799 Communications Control

Assigns programming control either locally through the keypad or Dolphin Plus (P770 = 1), or remotely through Modbus protocol (P770 = 2 or 3) or SmartLinx®.

Entry:

0 = local
1 = remote

WARNING: When a SmartLinx® card is installed and P799 = 1, the parameters that the SmartLinx® card is writing to the BW500 will be continuously updated. Therefore, if you connect a SmartLinx® card to the BW500, set P799 = 1 and not write anything to the SmartLinx® card, your setpoints will be 0.
Dolphin Protocol

The protocol is available on all communications ports on all units. This protocol is not available for third party use.

The primary use of this protocol is to connect the BW500 to Siemens Milltronics’ Dolphin Plus configuration software.

Dolphin Plus Screen Shot

Tabs show groups of parameters

Parameters have roll-overs which show number

Parameters can be tracked while the BW500 is running

The attached device can be programmed, debugged, and monitored from Dolphin Plus

The status bar informs you of program actions and data transfer status
Modbus RTU/ASCII Protocol

Modbus is an industry standard protocol owned by Schneider Automation Inc.¹ and is used throughout process control industries for communication between devices. Modbus RTU and Modbus ASCII are both master-slave type protocols. BW500’s Modbus is a slave unit.

BW500 supports both the RTU and ASCII version of Modbus and attempts to automatically detect the type when a connection is made.

A brief description of Modbus RTU and Modbus ASCII is given in this manual. For a full description of the Modbus protocol, contact your local Schneider representative. Also you may try their web site at:

http://www.modicon.com

At the time of publication of this manual, the Modbus Protocol was located under products / technical publications / communications products / Modbus protocol.

Note: Siemens does not own the Modbus RTU protocol. All information regarding that protocol is subject to change without notice.

How Modbus Works

As mentioned above, Modbus is a master-slave type protocol. This can also be referred to as a query-response protocol. What both of these terms mean is that on the network, there is one master which requests information from multiple slave devices. The slave devices are not permitted to talk unless they have been asked for information. When responding, the slaves will either give the information that the master has requested or give an error code consisting of why it can not give the information or that it did not understand the request. Refer to Error Handling on page 101.

All BW500 information is mapped into the Modbus holding registers so that Modbus function code 03 can read from them and Modbus function code 06 and 16 can write to them.

¹ Modicon is a registered trademark of Groupe Schneider.
Modbus RTU vs. ASCII

There are two main differences between Modbus RTU and Modbus ASCII. The first is that Modbus RTU encodes the message in 8-bit binary, while ASCII encodes the message in ASCII characters. Therefore, one byte of information would be encoded into 8 bits for RTU and into two ASCII characters for ASCII (which would be two 7-bit units). The second difference is that the error checking method is different (see below).

Modbus RTU has the advantage that it has a much greater data throughput than ASCII. Modbus ASCII has the advantage that it allows time intervals of up to one second to occur between characters without causing an error. Either protocol works with the BW500.

Modbus Format

<table>
<thead>
<tr>
<th>Station address</th>
<th>Function code</th>
<th>Information</th>
<th>Error check</th>
</tr>
</thead>
</table>

Note: When using a commercial Modbus driver all of the message details are handled for you.

To give you a better idea of how a Modbus message works, a master on network would send a message in a format similar to this:

Where:
- **Station address**: the network address of the slave being accessed
- **Function Code**: number that represent a Modbus command, either:
 - 03 read function
 - 06, 16 write functions
- **Information**: depends on function code
- **Error Check**: Cyclic Redundancy Check (CRC) for RTU and Longitudinal Redundancy Check (LRC) for ASCII

There is more to the frame than is described above, this is shown to give the user a general idea of what is going on. For a full description, refer to the Modbus specifications.

Modbus Register Map

The memory map of the BW500 occupies the Modbus holding registers (R40,001 and up).

The BW500 was designed to make it easy for users to get useful information via Modbus. The following chart gives an overview of the different sections.
Register Map for BW500:

<table>
<thead>
<tr>
<th>Map Legend</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Arbitrary classification of registers.</td>
</tr>
<tr>
<td>Description:</td>
<td>Brief description or title of associated register.</td>
</tr>
<tr>
<td>Start:</td>
<td>Provides the starting address for the register(s) where the parameter values are to be read from or written to.</td>
</tr>
<tr>
<td>Number R:</td>
<td>The number of registers required to read or write the complete parameter value. Where the number of registers (6) are addressed in incrementing sequence from the start register.</td>
</tr>
<tr>
<td>Parameter Values:</td>
<td>Refer to Parameter Values, page 97.</td>
</tr>
<tr>
<td>Read:</td>
<td>Identifies the read / write capability for the register being addressed.</td>
</tr>
<tr>
<td>Reference:</td>
<td>Provides reference documentation for the register being addressed.</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Format</td>
<td>Format Word for 32 bit variables</td>
</tr>
<tr>
<td>ID</td>
<td>Device Identifier</td>
</tr>
<tr>
<td>Handshaking Area (Parameter Access)</td>
<td>Parameter</td>
</tr>
<tr>
<td></td>
<td>Primary Index</td>
</tr>
<tr>
<td></td>
<td>Secondary Index</td>
</tr>
<tr>
<td></td>
<td>Format Word</td>
</tr>
<tr>
<td></td>
<td>Read Value (word 1)</td>
</tr>
<tr>
<td></td>
<td>Write Value (word 1)</td>
</tr>
<tr>
<td>Date and Time</td>
<td>yyyy</td>
</tr>
<tr>
<td></td>
<td>MM</td>
</tr>
<tr>
<td></td>
<td>DD</td>
</tr>
<tr>
<td></td>
<td>hh</td>
</tr>
<tr>
<td></td>
<td>ss</td>
</tr>
<tr>
<td></td>
<td>Time Zone</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Values</td>
<td>Rate</td>
</tr>
<tr>
<td></td>
<td>Load</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
</tr>
<tr>
<td></td>
<td>Total 1</td>
</tr>
<tr>
<td></td>
<td>Total 2</td>
</tr>
<tr>
<td></td>
<td>Device State</td>
</tr>
<tr>
<td></td>
<td>Command Control</td>
</tr>
<tr>
<td></td>
<td>Multi-Span Selection</td>
</tr>
<tr>
<td></td>
<td>Total 1 decimal places</td>
</tr>
<tr>
<td></td>
<td>Total 2 decimal places</td>
</tr>
<tr>
<td></td>
<td>PID 1 Setpoint</td>
</tr>
<tr>
<td></td>
<td>PID 2 Setpoint</td>
</tr>
<tr>
<td></td>
<td>Batch Setpoint</td>
</tr>
<tr>
<td></td>
<td>Batch Prewarn Setpoint</td>
</tr>
<tr>
<td>I/O</td>
<td>Discrete Input</td>
</tr>
<tr>
<td></td>
<td>Relay Outputs</td>
</tr>
<tr>
<td></td>
<td>mA Inputs</td>
</tr>
<tr>
<td></td>
<td>mA Outputs</td>
</tr>
<tr>
<td></td>
<td>Diagnostic</td>
</tr>
</tbody>
</table>
Communications

Modbus Register Map (cont’d)

Format (R40,062)

This value determines the format of all unsigned, double-register integers (UINT32), except for those in the direct parameter access.

0 indicates that the most significant byte (MSB) is given first
1 indicates that the least significant byte (LSB) is given first

For more information on this data format see page 97

Device Identifier (R40,064)

This value identifies the Siemens Milltronics device type and is “2” for the BW500.

Handshaking Area (Parameter Access)

Built into BW500 is an advanced handshaking area that can be used to read and write 32 bit parameters.

Mapping

Parameter Read and Write (40,090 – 40,095) is a series of six registers that are used for reading and writing parameter values to and from the BW500. The first three registers are always unsigned integers representing parameters and index values. The second three registers are the format and value(s) of the parameter.
All parameters normally accessed through the hand-held programmer are available through these registers:

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,090</td>
<td>Parameter (integer)</td>
</tr>
<tr>
<td>40,091</td>
<td>Primary Index (integer)</td>
</tr>
<tr>
<td>40,092</td>
<td>Secondary Index (integer)</td>
</tr>
<tr>
<td>40,093</td>
<td>Format word (bit mapped)</td>
</tr>
<tr>
<td>40,094</td>
<td>Read value, word 1</td>
</tr>
<tr>
<td>40,095</td>
<td>Read value, word 2</td>
</tr>
<tr>
<td>40,096</td>
<td>Write value, word 1</td>
</tr>
<tr>
<td>40,097</td>
<td>Write value, word 2</td>
</tr>
</tbody>
</table>

Reading Parameters

To read parameters through Modbus follow these steps:

1. Send the parameter, its primary index, and its secondary index (usually 0) and format to registers 40,090, to 40,093.
2. Wait until you can read the above values from the registers (40,090 to 40,093).
3. Read the value from registers 40,094 and 40,095.

Writing Parameters

To set parameters through Modbus follow these steps:

1. Send the parameter, its primary index, and its secondary index (usually 0) to registers 40,090, 40,091, and 40,092.
2. Write the value to registers 40,096 and 40,097
3. Write the desired format word to register 40.093 to enable the BW500 to interpret the value correctly.
Format Register:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>0-2</td>
<td>Error Code</td>
</tr>
<tr>
<td>9-11</td>
<td>0-7</td>
<td>decimal offset*</td>
</tr>
<tr>
<td>12</td>
<td>0/1</td>
<td>decimal shift*, Right (0) or Left (1)</td>
</tr>
<tr>
<td>13</td>
<td>0/1</td>
<td>Numeric format: Fixed (0) or Float (1)</td>
</tr>
<tr>
<td>14</td>
<td>0/1</td>
<td>Read or Write of data, Read (0), Write (1)</td>
</tr>
<tr>
<td>15</td>
<td>0/1</td>
<td>Word order: Most Significant word first (0), Least Significant Word first (1)</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Reserved</td>
</tr>
</tbody>
</table>

The bits listed above are in order from least to most significant:

```
16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1
```

For example, to format the level reading so that it is shown in percent with two decimal places shifted left the format bits would look like this:

```
16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1
0  0  0  1  0  0  1  0  0  0  0  0  0  0  0  0
```

The value sent to the BW500 is 0001001000000000 binary or 4608 decimal. The value 4608 is sent as an integer to register 40,093 to format the output words 40,094 and 40,095 accordingly.

If the numeric data type is set for integer and the value contains decimal places they are ignored. In this situation use the decimal offset to ensure that you have an integer value and then write your code to recognize and handle the decimal offset. Bits 9 to 11 indicate the number of place by which the decimal is to be shifted. Bit 12 indicates the direction by which the decimal point is shifted, left or right. For example, if the decimal offset (value of bits 9 to 11) is '2' and the shift (value of bit 12 is '0'), then the decimal point is shifted two places to the right.
Error Codes

The error codes returned in the format area are 8-bit integers found in the lowest 8 bits of the format word. This allows for 256 potential error codes.

Currently the BW500 has two error codes available:

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>1</td>
<td>Data not available as percent (available as units)</td>
</tr>
<tr>
<td>2-255</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Date and Time (R41,000 – 41,006)

The date and time can be read or written in registers 41,000 to 41,006 as defined in the table above.

Example: If you are located in Toronto, Canada and would like to set the date and time to February 14, 1999, 1:30 p.m. and 42 seconds, you would write the following:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R41,000</td>
<td>1999</td>
</tr>
<tr>
<td>R41,001</td>
<td>2</td>
</tr>
<tr>
<td>R41,002</td>
<td>14</td>
</tr>
<tr>
<td>R41,003</td>
<td>13</td>
</tr>
<tr>
<td>R41,004</td>
<td>30</td>
</tr>
<tr>
<td>R41,005</td>
<td>42</td>
</tr>
<tr>
<td>R41,006</td>
<td>-5</td>
</tr>
</tbody>
</table>

Note: The time zone register is used only as a reference and does not affect the operation of the BW500.
Process Values (R41,010 – R41,048)

Rate, Load, Speed and Total (R41,010 – R41,019)

The associated registers provide the readings of rate, load, and speed. Totalizer 1 and Totalizer 2 in engineering units as displayed in the local BW500 display.

Device State (41,020 – 41,020)

The Device State word is used to feedback the current operating state of the product. Each bit gives the state of different parts of the product, some mutually exclusive, others are not. The state should be checked to verify any device commands.

<table>
<thead>
<tr>
<th>Bit #</th>
<th>Description</th>
<th>Bit Clear</th>
<th>Bit Set (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PID 1 Mode</td>
<td>Manual</td>
<td>Auto</td>
</tr>
<tr>
<td>2</td>
<td>PID 1 Freeze</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>PID 1 Setpoint Source</td>
<td>Local</td>
<td>Remote</td>
</tr>
<tr>
<td>4</td>
<td>PID 2 Mode</td>
<td>Manual</td>
<td>Auto</td>
</tr>
<tr>
<td>5</td>
<td>PID 2 Freeze</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>PID 2 Setpoint Source</td>
<td>Local</td>
<td>Remote</td>
</tr>
<tr>
<td>7</td>
<td>Zero</td>
<td>No</td>
<td>In progress</td>
</tr>
<tr>
<td>8</td>
<td>Span</td>
<td>No</td>
<td>In progress</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Write Privileges</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>System Configured</td>
<td>Not Configured</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>Mode</td>
<td>Calibration Mode</td>
<td>RUN Mode</td>
</tr>
<tr>
<td>16</td>
<td>Totalizing</td>
<td>Not Totalizing</td>
<td>Totalizing</td>
</tr>
</tbody>
</table>
Command Controls (41,022 – 41,022)

The command control word is used to control the unit. Each bit gives access to a command or state as if the operator was using the keypad.

Bits initiating a command (7-12) must change state to cause the command the begin. For example, to reset totalizer 1, Bit 9 must be set to 0, then changed to 1. It can stay set or clear for any period:

<table>
<thead>
<tr>
<th>Bit #</th>
<th>Description</th>
<th>Bit Clear</th>
<th>Bit Set (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PID 1 Mode</td>
<td>Manual</td>
<td>Auto</td>
</tr>
<tr>
<td>2</td>
<td>PID 1 Freeze</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>PID 1 Setpoint Source</td>
<td>Local</td>
<td>Remote</td>
</tr>
<tr>
<td>4</td>
<td>PID 2 Mode</td>
<td>Manual</td>
<td>Auto</td>
</tr>
<tr>
<td>5</td>
<td>PID 2 Freeze</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>PID 2 Setpoint Source</td>
<td>Local</td>
<td>Remote</td>
</tr>
<tr>
<td>7</td>
<td>Zero</td>
<td>No change</td>
<td>Start</td>
</tr>
<tr>
<td>8</td>
<td>Span</td>
<td>No change</td>
<td>Start</td>
</tr>
<tr>
<td>9</td>
<td>Reset Totalizer 1</td>
<td>No change</td>
<td>Reset</td>
</tr>
<tr>
<td>10</td>
<td>Reset Totalizer 2</td>
<td>No change</td>
<td>Reset</td>
</tr>
<tr>
<td>11</td>
<td>Reset Batch Totalizer</td>
<td>No change</td>
<td>Reset</td>
</tr>
<tr>
<td>12</td>
<td>Print</td>
<td>-</td>
<td>Print</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

WARNING: Before the BW500 can be commanded remotely, parameter P799 must be set for remote control.
Read/Write (R41,025 – R41,026) Total Decimal Places

Sets the number of decimal places (0-3) being read for Total 1, (words 41,016 and 41,017) and Total 2, (words 41,018 and 41,019).

With 3 decimal places, the largest value that can be read is 2,147,483.648.
With 2 decimal places, the largest value that can be read is 21,474,836.48.
With 1 or 0 decimal places, the largest value that can be read is 100,000,000.

Example: R41,025

Bits 0 and 1 are used to indicate the number of decimal places being read in Total 1, Words 7 and 8.

Bit 15 is used to indicate if the decimal place is too large to read the total value correctly.

If three decimal places are being read in Total 1:

<table>
<thead>
<tr>
<th>Bits</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

If three decimal places are being read in Total 1, and the value is too large to be read with three decimal places:

<table>
<thead>
<tr>
<th>Bits</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
I/O (R41,070 – 41,116)

The BW500 provides I/O in the form of:

- discrete inputs
- relay outputs
- mA inputs*
- mA outputs*

* The standard BW500 provides only one mA output (0/4 – 20 mA). The inclusion of an optional mA I/O card provides two mA inputs (0/4 – 20 mA) and two additional mA outputs.

For the I/O, the assigned registers represent the logic status (e.g. open or closed) of the I/O as configured. Discrete inputs are configured via P270, auxiliary input function; while relay outputs are configured via P100, relay function.

The I/O are mapped into the respective input and output registers, R41,070 and R41,080, as follows:

<table>
<thead>
<tr>
<th>Input</th>
<th>Bit</th>
<th>Output</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

For the mA I/O, the assigned registers represent the mA level (e.g. 0 to 20 mA) of the I/O as registered in P911 and P914, mA output test (output value) and mA input value.

The mA I/O are mapped into the respective input and output registers:

<table>
<thead>
<tr>
<th>Input</th>
<th>Register</th>
<th>Output</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R41,090</td>
<td>1</td>
<td>R41,110</td>
</tr>
<tr>
<td>2</td>
<td>R41,091</td>
<td>2</td>
<td>R41,111</td>
</tr>
</tbody>
</table>

For 0 to 20 mA I/O, the register value ranges from 0 to 20,000. For 4 to 20 mA I/O, the register value ranges from 4,000 to 20,000. If the 4 or 20 mA values have been trimmed, then the register value is adjusted accordingly, e.g. an I/O value of 22 mA would be registered as 22,000.

Diagnostic (R41,200)

Refer to Troubleshooting on page 134.
PID Tuning (R41,400 – R41,419)

For BW500 set up for PID control, several registers have been provided for tuning. Refer to PID Control on page 62 and the associated parameters as listed in the register map.

Note: Before you can change any of the setpoints, P799 must be set for remote control.

Parameter Values

Bit Mapped

Bits are packed into registers in groups of 16 bits (1 word). In this manual we number the bits from 1 to 16, with bit 1 being the least significant bit and bit 16 referring to the most significant bit.

```
<table>
<thead>
<tr>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB</td>
<td></td>
</tr>
</tbody>
</table>
```

32 Bit

Large numbers are put into unsigned 32 bit integers with a fixed decimal place of three. For example, a value of '7345' represents a value in the BW500 '7.345'. The default word order is that the first word is the most significant word (MSW) and the second word (register) is the least significant word (LSW).

For example, if we read R41,431 as a 32-bit, the 32 bits would look like the following:

<table>
<thead>
<tr>
<th>R41,431</th>
<th>R41,432</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>MSB</td>
<td>LSB</td>
</tr>
<tr>
<td>32</td>
<td>32-bit integer value (UINT32)</td>
</tr>
</tbody>
</table>

The whole is read as a 32-bit integer.

The most significant byte (MSB) and least significant byte (LSB) can be reversed to accommodate some Modbus drivers. See Format Word for BW500 on page 89 for details.
Text Messages

If a Siemens Milltronics device parameter returns a text message, that message is converted to a number and provided in the register. The numbers are shown in the table below:

<table>
<thead>
<tr>
<th>Number</th>
<th>Text Message as Displayed on LCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>22222</td>
<td>invalid value</td>
</tr>
<tr>
<td>30000</td>
<td>off</td>
</tr>
<tr>
<td>30001</td>
<td>on</td>
</tr>
<tr>
<td>30002</td>
<td>= = = = (parameter does not exist)</td>
</tr>
<tr>
<td>30003</td>
<td>(parameter does not exist)</td>
</tr>
<tr>
<td>30004</td>
<td>err</td>
</tr>
<tr>
<td>30005</td>
<td>err1</td>
</tr>
<tr>
<td>30006</td>
<td>open</td>
</tr>
<tr>
<td>30007</td>
<td>shrt</td>
</tr>
<tr>
<td>30008</td>
<td>pass</td>
</tr>
<tr>
<td>30009</td>
<td>fail</td>
</tr>
<tr>
<td>30010</td>
<td>hold</td>
</tr>
<tr>
<td>30012</td>
<td>hi</td>
</tr>
<tr>
<td>30013</td>
<td>de</td>
</tr>
<tr>
<td>30014</td>
<td>en</td>
</tr>
<tr>
<td>-32768</td>
<td>value is less than -20,000</td>
</tr>
<tr>
<td>32767</td>
<td>value is greater than 20,000</td>
</tr>
</tbody>
</table>
Modems

The BW500 has been successfully connected to several different modems. In general, the Modbus protocol is a very modem friendly protocol. This section gives some general guidelines on modems and their connection. For detailed information, see the modem documentation.

Picking Modems

There are several different types of modems; dial-up, leased line, radio-link, fiber-optic to name the most common.

Dial-up

uses a standard analog phone line and dials the number of the receiving modem.

Lease line

come in either 2 or 4 wire types and use special phone lines that are ‘leased’ from your phone company (or you) and do not require any dialing.

Radio-link

come in many different types, but all use radio frequencies for transmitting the information.

Fiber-optic

uses a fiber-optic line to connect the two modems.

Each type of modem and each model have various characteristics. Before purchasing the modem contact the modem manufacturer and ask if they have had experience using the modems with Modbus protocol with no flow control. If they have, ask them what settings were required.

Setting up the Modems

Modems can be configured using software, dip switches, jumpers or a combination.

Dip switches are normally located at the back of the modem, jumpers are normally located on the motherboard and require that you remove the cover. Software normally requires you to use a standard terminal program and to connect to the RS-232 port on the modem and send special commands. The most popular command set is called the AT, or Hayse, command set.

Your modem manual should give details on how to configure it.
Example Setup

For a typical dial-up modem, try the following setup as a first attempt:

Master

Modem
- auto answer off (dip switch?)
- load factory default (dip switch?)
- no flow control (dip switch?)
- baud rate = 9600
- 10 data bits (probably the default)

Modbus RTU Software
- baud rate = 9600
- 8 bit
- no parity
- 1 stop bit
- dial prefix: ATDT
- Initialization command: ATE0Q0V1X05=0512=100
- Reset command: ATZ
- Hang-up command: ATH0
- Command response delay: 5 seconds
- Answer Delay: 30 seconds
- Inter-character delay: 55 ms

Slave

Modem
- auto answer on (dip switch?)
- load factory default (dip switch?)
- no flow control (dip switch?)
- baud rate = 9600
- 10 data bits (probably the default)

BW500
- set P770, port 1, to the value 3 (Modbus RTU)
- set P771, port 1, to the value 1 (Network ID 1)
- set P772, port 1, to the value 3 (Baud rate of 9600)
- set P773, port 1, to the value 0 (No Parity)
- set P774, port 1, to the value 8 (8 Data Bits)
- set P775, port 1, to the value 1 (1 Stop Bit)
- set P778, port 1, to the value 1 (Communications through Modem)
- set P779, port 1, to the value 300 (Modem Inactivity of 300 seconds)

Note: Parameters are defined in the Installation section (page 6).
Error Handling

Modbus Responses

When polled by a Modbus Master, a slave device will do one of the following:

1. **Not reply.**
 Which would mean that something went wrong with the transmission of the message.

2. **Echo back the command with the correct response.**
 This is the normal response. (see the Modbus specifications for more details).

1. **Return an Exception Code.**
 This would reflect an error in the message.

BW500 uses the following exception codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Illegal Function</td>
<td>The function code received in the query is not an allowable action for the slave.</td>
</tr>
<tr>
<td>02</td>
<td>Illegal Data Address</td>
<td>The data address received in the query is not an allowable address for the slave.</td>
</tr>
<tr>
<td>03</td>
<td>Illegal Data Value</td>
<td>A value contained in the query data field is not an allowable value of the slave.</td>
</tr>
<tr>
<td>04</td>
<td>Slave Device Failure</td>
<td>An unrecoverable error occurred while the slave was attempting to perform the requested action.</td>
</tr>
<tr>
<td>05</td>
<td>Acknowledge</td>
<td>The slave has accepted a request and is processing it, but a long duration of time is required.</td>
</tr>
<tr>
<td>06</td>
<td>Slave Device Busy</td>
<td>The slave is processing a long-duration program command.</td>
</tr>
<tr>
<td>08</td>
<td>Memory Parity Error</td>
<td>The slave attempted to read extended memory, but detected a parity error in the memory. Service may be required on the slave.</td>
</tr>
</tbody>
</table>
Error Handling

Errors can be divided up into two general sources. Either:

1. There is an error in transmission
2. The user tries to do something that is not a valid action

In the first case, the BW500 will not respond and let the master wait for a 'response time out' error, which will cause the master to re-send the message.

In the second case, it depends on what the user tries to do. Listed below are various actions and what the expected outcome is. In general, BW500 will not give an error to the user request.

- If the user reads an invalid parameter, the user will get a number back.
- If the user writes an invalid parameter (a non-existing parameter or a read only parameter), the value will be ignored and no error response will be made. However, the current value will not reflect the desired new value.
- If the user writes a read only register, then the value will be ignored and no error response will be made. However, the current value will not reflect the desired new value.
- If the user attempts to write one or more registers that are out of range, an exception response code 2 will be generated.
- If using an unsupported function code, undocumented results may occur. The user is encouraged not to do this.
Parameters

/indicates factory set value

P000 Security Lock

Locks out the program editor so that parameter values for P001 through P999 cannot be changed. This however does not prevent the access to the parameters for viewing.

Programming is locked out if the value of P000 is other than 1954.

Entry:

1954 = unlocked
1954 = locked

Start Up (P001 to P017)

This is the minimum parameter programming required before attempting a calibration and successful entry into the RUN mode.

P001 Language

Selects the language for communication with the BW500

Entry:

1 = english

Note: This manual only lists English as a choice of language. However, your BW500 will list the additional languages of choice, as the translated software is made available.

P002 Test Reference Selection

Selects the type of test reference used to represent a material load: weight, chain or electronic.

weight: the weight that is supplied specific to the scale
chain: optional, sized specific to scale and conveyor
electronic: calibration based on automatic calculation of the mV span from the load

Entry:

1 = weight
2 = chain
3 = ECal
P003 Number of Load Cells

Siemens belt scales are available in models of one, two or four load cell design. Select the number of load cells corresponding to the belt scale connected.

If using the optional remote LVDT conditioner card, for LVDT based scales, select the “1” value.

Entry:
enter the number of load cells: 1, 2 or 4

P004 Rate Measurement System

Selects system of measurement used, either imperial or metric.

Entry:
1 = imperial
2 = metric

P005 Design Rate Units

Determines the units for programming and measurement.

<table>
<thead>
<tr>
<th>Entry</th>
<th>imperial - P004 = 1</th>
<th>metric - P004 = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T/h (tons / hour)</td>
<td>t/h (tonnes / hour)</td>
</tr>
<tr>
<td>2</td>
<td>LT/h (long tons / hour)</td>
<td>kg/h (kilograms / hour)</td>
</tr>
<tr>
<td>3</td>
<td>lb/h (pound / hour)</td>
<td>kg/min (kilograms / minute)</td>
</tr>
<tr>
<td>4</td>
<td>lb/min (pounds / minute)</td>
<td></td>
</tr>
</tbody>
</table>

Changing this parameter does not affect the rate (P011), belt speed (P014) or belt length (P016) parameters. These parameters should be re-entered for conformity in units.

t =1000 kg
LT=2240 lb.
T=2000 lb.

P008 Date

Enter the current date in yyyy-mm-dd format.

Where:

yyyy = year
mm=month, 01 –12
dd=day, 01 – 31

e.g. 1999-03-19 (March 19, 1999)
P009 Time

Enter the current time in hh-mm-ss 24 hour format.

Where:

hh=hour
mm=minute
ss=second

P011 Design Rate

Specifies the design rate of material flow for the belt scale. (f = 0.00)

Enter the design rate in the units selected (P005).

P014 Design Speed

Specifies the design speed for the conveyor belt. (f = 0.00)

Speed units are:

feet/min if the imperial system of measurement has been selected, P004 = 1
metres/s if the metric system of measurement has been selected, P004 = 2

P015 Speed Constant

Set the speed constant for the speed sensor selected (P015-01 or 02).

The value in P015-01 is used with the speed sensor frequency, to calculate the actual belt speed. (f = 0.000).

The value in P015-02 is used for differential speed detection.

Entry: If speed input is wired for constant speed (terminals 17/18 jumpered), value defaults to jumpered, and the second speed sensor is ignored.

If the speed input is connected to a speed sensor, press enter. P015 automatically jumps to P690. Refer to P690 on page 127 for speed constant entry.

P016 Belt Length

The length of the conveyor belt (one belt revolution). (f = 0.000)

Length units are:

feet: if the imperial system of measurement has been selected, P004 = 1
metres: if the metric system of measurement has been selected, P004 = 2

Enter the belt length.
P017 Test Load

The load to be referenced when performing a span. (f = 0.00)

Load units are:

lb/ft: if the imperial system of measurement has been selected, P004 = 1
kg/m: if the metric system of measurement has been selected, P004 = 2

The display indicates the test reference as selected by P002; either: 'weight,' 'chain' or 'ECal' and the multispan number MS, 1-8.

Enter the test load value.

In the case of ECal, pressing enter at P017 invokes P693 for data entry. ECal sets the value for P017 at 100% of design load (P952).

The value for P017 can be calculated as follows:

\[
\text{Test Load} = \frac{\text{Total weight of all test weights (kg or lb)}}{\text{idler spacing (m or ft)}}
\]

Example:

3 standard MSI test weights, 1.5 meter idler spacing

Test Load = \(\frac{24.6 \text{ kg (3x8.2 kg)}}{1.5 \text{ m}}\) = 16.4 kg/m

P018 Speed Adjust

This parameter allows adjustment to the speed constant for both speed sensors (P015-01 or P015-02). Initially, this parameter displays the dynamic speed of the belt. If the displayed speed is not equal to the actual speed, enter the actual belt speed. (f = 0.00)

For speed sensor applications, the value of P015 is automatically adjusted.

For constant speed (terminals 17/18 jumpered) the value of P014 is automatically adjusted.

P019 Manual Span Adjust

Provides a means for adjustment to the span calibration. (f = 0)

The adjustment value is determined by performing material tests and is subsequently entered either as a calculation of % change into P598, or as the weight of the material test.

Entry:

1 = % change
2 = material test

Refer to Recalibration on page 35.
P022 Minimum Speed Frequency

Sets the minimum frequency that the speed sensor can reliably read. Signals at low frequencies are erratic, adversely affecting the performance of the weighing system.

Entry:
1 = 1 Hz (at 1 Hz, it takes 1 s before defaulting to 0 speed)
2 = 2 Hz (at 2 Hz, it takes 0.5 s before defaulting to 0 speed)

P080 Damping Display

P080-01 Rate
P080-02 Load
P080-03 Speed

Sets the speed of response to which the displayed readings (rate, load and speed), and outputs (alarm and mA*) react to change.

Refer to Operation on page 55.

Note: Effect of damping (P080-01) on mA output* can be overridden by mA output damping (P220).

The higher the damping value, the slower the response.

Enter damping value, range 0.000 – 999

*Damping is not applicable to the mA output if programmed for PID function (P201 = 4).

P081 Display Scroll Mode

The RUN displays are scrolled either manually by pressing ALT DISP if the scroll mode is set to off, or automatically if the mode is set to on.

Entry:
0 = OFF
1 = ON

Relay/Alarm Function (P100 - P117)

These parameters are specific to the use of the relay/alarm function. Refer to Operation on page 55.
P100 Relay Function

Sets the relay function for the relay selected, relays 1 to 5 (P100 -01 to -05)

Note:
- To reset the Diagnostics relay, the BW500 must be cycled between PROGRAM and RUN mode
- To reset the Batch relays, the Batch totalizer must be reset.

Entry:

- 0 = OFF
- 1 = rate
- 2 = load
- 3 = speed
- 4 = diagnostic
- 5 = PID-01 setpoint deviation*
- 6 = PID-02 setpoint deviation*
- 7 = pre-warn
- 8 = setpoint
- 9 = on-line calibration**
- 10 = differential speed detection ***

* valid only if PID system (P400) is enabled.
** valid only if batch function (P560) is enabled.
*** valid only if Aux. input (P270) = 16 (differential speed detection).

P101 High Alarm / Deviation Alarm

High Alarm (f = 100)

For relay functions, P100 = 1, 2 and 3, this parameter sets the high alarm setpoint for the relay selected, relays 1 to 5 (P100 -01 to -05).

Enter the value in % of full scale.

Deviation Alarm (f = 10)

For relay functions, P100 = 5 and 6, this parameter sets the deviation setpoint for the relay selected, relays 1 to 5 (P100 -01 to -05).

Enter the value in % of setpoint.

Differential Speed (f = 110)

For differential speed functions, P100 = 10, this parameter sets the high alarm setpoint for the relay selected, relays 1 to 5 (P100 -01 to -05).
P102 Low Alarm

Sets the low alarm setpoint for relay selected, relays 1 to 5 (P100 - 01 to – 05). (f=20)

Enter the value in % of full scale

Note: Not applicable if P100 = 4, 5, 6, 7 or 8.

Differential Speed (f = 90)

For differential speed functions, P100 = 10, this parameter sets the low alarm setpoint for the relay selected, relays 1 to 5 (P100 -01 to -05).

P107 Relay Alarms

Sets the alarm mode for the relay selected, relays 1 to 5 (P100 - 01 to - 05).

Entry:
1 = high and low
2 = high only
3 = low only

Note: Not applicable if P100 = 4, 5, 6, 7 or 8.

P117 Relay Dead Band

Sets the dead band for the relay selected, relays 1 to 5 (P100 - 01 to – 05). The dead band prevents relay chatter due to fluctuations at the high or low setpoint. (f = 3.0)

Enter the value in % of full scale, or for deviation alarm enter % of setpoint.

Note: Not applicable if P100 = 4, 7 or 8.

P118 Relay Logic

Sets the logic applied to relays to determine their open or closed state.

Power Failure

The relays on the BW500 default to normally open under power loss.

Normal Operation

In software, all relays are programmed the same way; with ON setpoints always indicating relay action. This parameter allows the reversal of the operation. Normally, P118 = 2 for each relay.
Reverse Operation

When P118 = 3, the operation of the indexed relay is reverse from normal.

Values

<table>
<thead>
<tr>
<th>P118</th>
<th>Logic</th>
<th>Relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>positive</td>
<td>normally closed</td>
</tr>
<tr>
<td>3</td>
<td>negative</td>
<td>normally open</td>
</tr>
</tbody>
</table>

P119 Override

This function allows the user to simulate an alarm condition: ON or OFF, which will override normal operation until P119 setting is returned to normal.

Values

<table>
<thead>
<tr>
<th>P119</th>
<th>Condition</th>
<th>Display (alarm field)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>1</td>
<td>alarm on</td>
<td>ALM #</td>
</tr>
<tr>
<td>2</td>
<td>alarm off</td>
<td>blank</td>
</tr>
</tbody>
</table>

mA I/O Parameters (P200 - P220)

These parameters are specific to the use of the mA output. Refer to mA Output on page 58 for details.

- mA output 1 is physically located at terminals 21/22 on the main board
- mA outputs 2 and 3, and inputs 1 and 2 are physically located on the optional mA I/O board which is mounted onto the main board.

In the case of assigning mA input and output functions to PID control, the following correlation exist:

<table>
<thead>
<tr>
<th>mA input</th>
<th>mA output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID control 1</td>
<td>1</td>
</tr>
<tr>
<td>PID control 2</td>
<td>2</td>
</tr>
</tbody>
</table>

P200 mA Output Range

Sets the mA range for the output selected, outputs 1 to 3 (P200 - 01 to - 03).

Entry:

1 = 0 - 20 mA
2 = 4 - 20 mA

P201 mA Output Function

Assigns the mA output function for the output selected, outputs 1 to 3 (P201 - 01 to - 03)
Parameters

Entry:
1 = rate
2 = load
3 = speed
4 = PID control output*

* valid for outputs 2 and 3, only if PID system (P400) is enabled

P204 mA Output Average
Sets the averaging period, in seconds, for the rate output for output 1 only.
The instantaneous mA values are averaged for the set period, and then the average value
is output during the next period while a new average is being calculated.

Entry:
0 = OFF
1 – 999 = averaging period

P212 mA Output Minimum
Sets the minimum mA limit for the output selected, outputs 1 to 3 (P212 - 01 to - 03). The
limit sets the lower mA range (0 or 4 mA) to a minimum output value. (f = 3.80)
Enter limit value, range 0 - 22

P213 mA Output Maximum
Sets the maximum mA limit for the output selected, outputs 1 to 3 (P213 - 01 to - 03). The
limit sets the upper mA range (20 mA) to a maximum output value. (f = 22.00)
Enter limit value, range 0 - 22

P214 4 mA Output Trim
Trims the 4 mA output level for the output selected, outputs 1 to 3 (P214 - 01 to – 03). The
trim adjust the output to agree with a milliammeter or other external mA input device.
Scroll the trim value up or down

P215 20 mA Output Trim
Trims the 20 mA output level for the output selected, outputs 1 to 3 (P215 - 01 to - 03). The
trim adjust the output to agree with a milliammeter or other external mA input device.
Scroll the trim value up or down

P220 mA Output Damping
Sets the damping for the output selected, outputs 1 to 3 (P220 - 01 to - 03). Damping sets the speed at which the mA output reacts to change. The greater the damping value, the slower the response. If the value is 0, the mA output assumes the damping set in P080. \(f = 0.00 \)
Enter the damping value, range 0.001 – 999

P250 mA input range

Sets the mA range for the input selected, inputs 1 to 2 (P250 - 01 to - 02).

Entry:

1 = 0 - 20 mA
2 = 4 - 20 mA

P255 mA Input Function

Assigns the mA input function for the input selected, inputs 1 to 2 (P250 - 01 to - 02)

Entry:

0 = OFF
1 = PID setpoint
2 = PID process variable
3 = On-line calibration*
4 = Moisture compensation
5 = Incline compensation

* Valid only if On-line Calibration is turned on, \(P355 = 1 \).

P261 4 mA Input Trim

Trims the 4 mA input level for the input selected, inputs 1 to 2 (P250 - 01 to - 02). The trim adjusts the input to agree with an external 4 mA source.

Follow the BW500 on line instructions to trim the input.

P262 20 mA Input Trim

Trims the 20 mA input level for the input selected, inputs 1 to 2 (P250 - 01 to - 02). The trim adjusts the input to agree with an external 20 mA source.

Follow the BW500 on line instructions to trim the input.
P270 Auxiliary Input Function

Selects the auxiliary input function for the input selected; inputs 1 to 5 (P270 - 01 to - 15).

<table>
<thead>
<tr>
<th>Value</th>
<th>Function</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>off</td>
<td></td>
<td>momentary closure of the input contact</td>
</tr>
<tr>
<td>1</td>
<td>alternate display:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact causes the RUN display to scroll to the next display.</td>
</tr>
<tr>
<td>2</td>
<td>reset totalizer 1:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact resets the totalizer.</td>
</tr>
<tr>
<td>3</td>
<td>zero:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact initiates a zero calibration.</td>
</tr>
<tr>
<td>4</td>
<td>span:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact initiates a span calibration.</td>
</tr>
<tr>
<td>5</td>
<td>print:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact sends a print request.</td>
</tr>
<tr>
<td>6</td>
<td>multispan selection:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact states selects the multispan (P365)*.</td>
</tr>
<tr>
<td>7</td>
<td>reset batch:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact resets the batch totalizer to zero.</td>
</tr>
<tr>
<td>8</td>
<td>PID freeze:</td>
<td>![Symbol]</td>
<td>off closure suspends PID function in the auto mode freeze function in the auto mode and holds output at last value.</td>
</tr>
<tr>
<td>9</td>
<td>PID setpoint source:</td>
<td>![Symbol]</td>
<td>remote local</td>
</tr>
<tr>
<td>10</td>
<td>PID mode:</td>
<td>![Symbol]</td>
<td>auto manual</td>
</tr>
<tr>
<td>11</td>
<td>external alarm:</td>
<td>![Symbol]</td>
<td>the input contacts status is sensed off</td>
</tr>
<tr>
<td>12</td>
<td>remote communication write:</td>
<td>![Symbol]</td>
<td>keypad / Dolphin Plus write (program) enabled SmartLinx® / remote device write (program) enabled</td>
</tr>
<tr>
<td>13</td>
<td>initiate on-line calibration:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact initiates on-line calibration</td>
</tr>
<tr>
<td>14</td>
<td>accept new on-line calibration span:</td>
<td>![Symbol]</td>
<td>momentary closure of the input contact accepts the on-line calibration deviation</td>
</tr>
<tr>
<td>15</td>
<td>auxiliary speed sensor</td>
<td>![Symbol]</td>
<td>for differential speed detection</td>
</tr>
</tbody>
</table>
Parameters

Entry:
- 0 = OFF
- 1 = alternate display
- 2 = reset totalizer 1
- 3 = zero
- 4 = span
- 5 = print
- 6 = multispan selection*
- 7 = reserved
- 8 = reset batch
- 9 = PID freeze
- 10 = PID setpoint source
- 11 = PID mode
- 12 = external alarm
- 13 = remote communication write
- 14 = Initiate On-line Calibration
- 15 = Accept new on-line calibration span**
- 16 = Auxiliary speed sensor

* If the BW500 is programmed for multispan operation, the auxiliary input contact state determines the multispan number (equivalent to P365). Input 1 is reserved for multispan 1 and 2 selection. Input 2 is reserved for multispan 3 and 4 selection. Input 3 is reserved for multispan 5 to 8 selection.

** Enter 1 (existing – ALT_DSP) to reject the new on-line calibration span.

Note: Before you can use On-line Calibration, P100, P255, P355, P356, and P357 must be set up.

<table>
<thead>
<tr>
<th>multispan selection</th>
<th>Auxiliary Input</th>
<th>auxiliary input 2</th>
<th>auxiliary input 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>¬</td>
<td></td>
<td>¬</td>
</tr>
<tr>
<td>2</td>
<td>¬</td>
<td></td>
<td>¬</td>
</tr>
<tr>
<td>3</td>
<td>¬</td>
<td></td>
<td>¬</td>
</tr>
<tr>
<td>4</td>
<td>¬</td>
<td></td>
<td>¬</td>
</tr>
<tr>
<td>5</td>
<td>¬</td>
<td></td>
<td>¬</td>
</tr>
<tr>
<td>6</td>
<td>¬</td>
<td></td>
<td>¬</td>
</tr>
<tr>
<td>7</td>
<td>¬</td>
<td></td>
<td>¬</td>
</tr>
<tr>
<td>8</td>
<td>¬</td>
<td></td>
<td>¬</td>
</tr>
</tbody>
</table>
If an attempt is made to select a multispan that has not been zero and span calibrated, the selection request is ignored.

Note:
- When performing a remote span, it will first perform a zero, then it will ask you to set up span test. Once loading is within ±2% of the design test weight, it will perform the span.
- For the print command to work, the BW500 must be in **RUN** mode.

Calibration Parameters (P295 – 360)

P295 Load Cell Balancing

Initiates an electronic balancing of the load cell input signals. Balancing is required for belt scale models of two or four load cell design.

Refer to *Start Up* on page 23 for requirements and execution.

P341 Days Of Service

The cumulative days that the application device has been in service. The time is recorded once daily in a non-resetable counter. Periods of less than 24 hours are not recorded, nor accumulated. ($f = 0$)

P350 Calibration Security

Provides additional security to the global lock (P000).

<table>
<thead>
<tr>
<th>entry:</th>
<th>zero</th>
<th>span</th>
<th>'Reset T'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = no additional security.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1 = in addition to P000 lock; no span.</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2 = in addition to P000; no zero, no span.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3 = in addition to P000; no zero, no span, no totalizer 1 (T1) reset.</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
On-line Calibration Options (P355 to P358)

Note: On-line calibration options must be enabled (P355 = 1) before they become available.

P355 On-line Calibration Feature

Enables On-line Calibration.

Entry:

0 = OFF
1 = ON

P356 On-line Calibration Reference Weight

Enter the weigh bin reference weight, (in units selected in P005), range 0.000 to 99999.

(f = 0.000)

P357 On-line Calibration Limits

Used to enter the weigh bin limit settings.

P357.1 MAX LIMIT, range 0.0 to 100.0 (f = 0%)
P357.2 HIGH LIMIT, range 0.0 to 100.0 (f = 0%)
P357.3 LOW LIMIT, range 0.0 to 100.0 (f = 0%)

P358 On-line Calibration Activation

Initiates on-line calibration.

Entry:

0 = OFF
1 = ON

P359 Factoring

Factoring is used as a method of calculating the value of the test load (P017) to a new test reference; either: weight, or chain. The task is performed only for the weight or chain relevant for the multispan selected, if applicable.

Entry:

1 = weight (f = 1)
2 = chain
Parameters

Refer to Recalibration on page 35 for execution of the factoring procedure.

Note: Totalization is halted during the factoring procedure, and resumed only upon return to the **RUN** mode.

P360 Calibration Duration

Sets the number of whole belt revolutions to be used during a zero or span calibration.

Enter number of belt revolutions, range 1 to – 99. (f = 1 which is approximately 20 seconds.)

P365 Multispan

Select the span reference to be applied for determination of rate and totalization.

Entry:

1 = multispan 1 (MS1), for product or condition A
2 = multispan 2 (MS2), for product or condition B
3 = multispan 3 (MS3), for product or condition C
4 = multispan 4 (MS4), for product or condition D
5 = multispan 5 (MS5), for product or condition E
6 = multispan 6 (MS6), for product or condition F
7 = multispan 7 (MS7), for product or condition G
8 = multispan 8 (MS8), for product or condition H

Refer to Multispan on page 44 and P270, Auxiliary Input Function (6) on page 113.

P367 Direct Zero Entry

Directly enters the zero reference count.

Direct entry is intended for use when replacing software or hardware and it is not convenient to perform an initial zero at that time. (f = 0)

Refer to Recalibration on page 35 for execution.

P368 Direct Span Entry

Directly enters the span reference count for the span selected, span 1 to 8 (P368-01 to -08).

Direct entry is intended for use when replacing software or hardware and it is not convenient to perform an initial span at that time. (f = 0)

Refer to Recalibration on page 35 for execution.
P370 Zero Limit Deviation %

Sets the zero calibration deviation limit (±) from the last initial zero. If the accumulated deviation of successive zero calibrations exceeds the limit, the zero calibration is aborted. (f = 12.5)

Note: If the legal for trade certification switch has been set, the zero limit is ±2%.

Enter the maximum allowable % deviation.

P377 Initial Zero

Resets the initial zero.

The initial zero is the reference zero to which all subsequent operator initiated zero calibrations are compared in determining whether they have deviated beyond the zero limit (P370). (f = 1)

Note: Refer to Initial Zero on page 40 for execution.

P388 Initial Span

Resets the initial span for the span selected, multispan 1 to 8 (P388-01 to –08).

The initial span is the reference to which all subsequent span calibrations are compared in determining whether they have deviated beyond an accumulated ±12.5% of the initial span. (f = 1)

Note: Refer to Initial Span on page 43 for execution.

Linearization Parameters (P390 - P392)

These parameters are used to compensate for non-linear response of the weighing system to the BW500. Refer to Linearization on page 52 for execution, and example on the use of these parameters.

Note: In the case of multispans operation, the linearizer is applied to all spans.

P390 Linearizer

Enables or disables the linearization function.

Entry:

0 = OFF
1 = ON
P391 **Linearizer Load Points**

Enters the load values, in units of P017, for the point selected, points 1 to 5 (P391-01 to – 05). \((f = 0.00)\)

P392 **Linearizer Compensation %**

Enters the compensation value, in percent, for the point selected, point 1 to 5 (P392-01 to – 05). \((f = 0.00)\)

P398-01 **Moisture Content**

Factors out moisture component of load, rate and total for all multispans selected. The factored values are meant to report the dry mean values of the material being conveyed. \((f = 0.00)\)

Enter the moisture content in % weight or mA Input Value.

P398-02 **Moisture Content**

Allows moisture content P398-01 to be scaled to maximum value.

Enter the moisture content in % weight (maximum value 20 mA).

P399 **Incline Sensing**

Factors out the varying vertical force components applied to the belt scale for all multispans selected. \((f = 0.00)\) The value is presented in degree angle \((0.0^\circ = \text{horizontal})\), with a range from -30 to 30 \(^\circ\).

The Parameter P399 can also be used for a constant angle if a mA input is not configured. Otherwise, P399 will contain the current value corresponding to the mA input.

Proportional Integral Derivative (PID) Control Parameters (P400 – P419)

Note:
- Changes to P401, P402, and P414 are not immediately effected while in auto mode. Change should be made in the manual mode and are effected upon return to the auto mode.
- The PID function does not control during any of the calibration functions (e.g. zero, span, factor, material test).
P400 PID System

Enables the selected PID system, systems 1 or 2 (P400 – 01 or – 02).

Entry:
0 = OFF
1 = manual
2 = auto

P401 PID Update Time

Sets the update time (P401 – 01 or -02) for the corresponding PID system (1 or 2).

Normally the controller is updated each time the process value is updated (every 300 ms). However in unstable or slow reacting systems the controller update can be programmed to update on a multiple of the process value update. A high value can introduce instability. (f = 1)

Entry:
1 = 300 ms
2 = 600 ms
3 = 900 ms
etc.

P402 PID Process Value Source

Determines the source of the process value (P402 – 01 or – 02) for the corresponding PID system (1 or 2).

The process value is the value that the controller is trying to match with the setpoint. (f = 1)

Enter:
1 = rate
2 = load
3 = mA input 1
4 = mA input 2

P405 Proportional Term

Sets the proportional term (P405-01 or -02) for the corresponding PID system (1 or 2). (f = 0.400)

The proportional term is the proportional gain. A gain of 1 is equivalent to a proportional band of 100%.

The proportional band is the range of deviation from the setpoint that corresponds to the full range or the control output.

Enter the proportional term 0.000 to 2.000.
P406 Integral Term

Sets the integral term (P406-01 or -02) for the corresponding PID system (1 or 2). (f = 0.200)

Enter the integral term 0.000 to 2.000.

P407 Derivative Term

Sets the derivative term (P407-01 or -02) for the corresponding PID system (1 or 2). (f = 0.050)

Enter the derivative term 0.000 to 1.000.

P408 Feed Forward Term

Sets the feed forward term (P408-01 or -02) for the corresponding PID system (1 or 2). (f = 0.300)

Enter the feed forward term 0.000 to 1.000.

P410 Manual Mode Output

Displays the percentage output value (P410-01 or -02) for the corresponding PID system (1 or 2).

When the PID system is in manual, this is the value output, providing bumpless transfer when switching from manual to auto. When switching from auto to manual, this parameter is loaded with the current controlled value.

P414 Setpoint Configuration

Configures the setpoint (P414-01 or -02) for the corresponding PID system (1 or 2).

Determines the source for the PID’s setpoint. If local, the setpoint value is entered into P415. The setpoint can be set from the mA input 1 or 2. The mA value is scaled to the full scale value of the process value (P402).

Entry:

0 = local
1 = mA input 1*
2 = mA input 2*
3 = % rate**
4 = % load**

* for PID-01, the setpoint source is mA input 1; for PID-02, the setpoint source is mA input 2.

** Options 3 and 4 are only available if P402 has been set for an external process value source. For option 3, the setpoint will be the current rate value displayed as a percentage: for option 4 it will be the current load value displayed as a percentage.
P415 Local Set point Value

Sets the local set point (P415-01 / 02), in engineering units, for the corresponding PID system (1 or 2) when in auto mode. For the external process variable, the set point is shown is %. (f= 0.000)

Note: The PID setpoint can be modified while in RUN mode using the up/down arrow keys.

P416 External Setpoint

Displays the external setpoint (P416-01 / 02), in engineering units, for the corresponding PID system (1 or 2). For the external process variable, the setpoint is shown is %.

If the setpoint is external (P414 = 1 or 2), then this parameter displays the setpoint value that is being input, either mA input 1 or 2.

P418 Remote Setpoint Ratio

Sets the remote setpoint ratio (P418 –01/02) for the corresponding PID system (1 or 2) when P414 = 1 or 2. (f= 100)

The remote setpoint ratio scales remote setpoint input by the set percentage. A value of 100 means that the setpoint is 100% of the mA input.

P419 PID Freeze Option

Note: If the input speed frequency drops below 5 Hz, the PID control output freezes at its current value.

Enables or disables the PID freeze option described in the note above.

Entry:
0 = OFF
1 = ON

Batch Control (P560 – P568)

The following parameters are specific to the use of the BW500 as a batch controller. P564-P568 is accessible only when Count Up (1) is selected.

P560 Batch Mode Control

Enables the batch control function. Batch control is count up.

Entry:
0 = OFF
1 = count up
P564 Batch Setpoint

Sets the batch total. When the amount of material delivered reaches this point, the batch relay contact opens (P100) to signal the end of the batch. (f = 0.000)

Enter the setpoint of the units of weight selected (P005).

Note: The batch setpoint can be modified while in RUN mode using the up/down arrow keys.

P566 Batch Pre-Warn

Enables or disables the pre-warn function associated with batch control, warning that the batch is nearing completion.

Entry:

0 = OFF
1 = ON

P567 Batch Pre-Warn Setpoint

Sets the setpoint for the pre-warn function (P566). When the batch reaches the setpoint, the relay contact associated with the pre-warn function (P100) closes. (f = 0.000)

Enter setpoint in units of weight selected (P005).

P568 Batch Pre-Act

Acts on the batch operation such that when the batch totalizer is reset, the batch total is compared to the setpoint (P564). The difference is then applied to pre-act on the setpoint for the next batch to improve the accuracy of the batch. The activity is internally limited to ±10% of the batch setpoint

Entry:

0 = OFF
1 = Auto
2 = Manual

e.g. For Auto Batch Pre-Act

<table>
<thead>
<tr>
<th></th>
<th>1st batch</th>
<th>2nd batch</th>
<th>3rd batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>setpoint</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>pre-act</td>
<td>1000</td>
<td>950</td>
<td>960</td>
</tr>
<tr>
<td>total</td>
<td>1050</td>
<td>980</td>
<td>1000</td>
</tr>
</tbody>
</table>
P569 **Manual Batch Pre-Act Amount**

Enter a value to make the setpoint relay change state at a known value lower than the setpoint (P564). This allows the feeding system to empty with each batch. The value of the manual pre-Act entry is generally reflective of the material that is left in the feeding system.

Example:
- Setpoint = 1000
- Manual Pre-Act = 50
The setpoint relay will activate when the batch totalizer reaches 950.

P598 **Span Adjust Percentage**

Accessible only through manual span adjust (P019), when percent change (1) is selected. Refer to % Change on page 36.

Totalization (P619 - P648)

The following parameters are specific to the use to the BW500 totalizers. Refer also to Operation / Totalization on page 60.

P619 **Totalling Dropout**

This parameter sets the limit, in percent of design load, below which material rates are not totalized. (f = 3.0)

The value of 0 is reserved to allow both negative and positive totalization.

Enter drop out value in % of design load.

P631 **Totalizer Resolution**

This parameter sets the resolution of the totalizer selected.

Totalizers are:
- 01, totalizer 1
- 02, totalizer 2
- 03, verification totalizer
- 04, material test totalizer
- 05, batch totalizer

Entry:
- 1 = 0.001 (one thousandth)
- 2 = 0.01 (one hundredth)
- 3 = 0.1 (one tenth)
- 4 = 1 (unit)\(^f\)
- 5 = 10 (x ten)
- 6 = 100 (x hundred)
- 7 = 1000 (x thousand)
P634 Communication Totalizer Resolution

Used to set the number of fixed decimal places for Total 1 and Total 2 for SmartLinx or Modbus communication.

Entry:

<table>
<thead>
<tr>
<th>P634 Index</th>
<th>Description</th>
<th>Value</th>
<th># of decimal places</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Index 1</td>
<td>Total 1 for SmartLinx communication</td>
<td>3'</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Primary Index 2</td>
<td>Total 2 for SmartLinx communication</td>
<td>3'</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

With 3 decimal places set, the largest readable value is 2,147,483.638. With 2 decimal places set, the largest readable value is 214,748,363.8. With 1 or 0 decimal places set, the largest readable value is 100,000,000.

Note: This parameter is only relevant if viewing the totalizer value using remote communications, such as SmartLinx or Modbus.

P635 Verification Totalizer

Enables a dedicated internal totalizer that totals the amount of material conveyed during a zero or span verification. It is used to verify the accuracy of the scale.

If a printer is connected to a port and the required programming is in order, a printout of the activity is automatically done on completion of the verification process.

Entry:

0 = off, verification totalizer disabled
1 = do not total, verification totalizer is enabled, but main totalizers* are disabled
2 = add total, verification totalizer is enabled as well as main totalizers*

*main totalizers consist of internal totalizers 1 and 2, and external totalizers 1 and 2.
P638 External Totalizer Resolution

Note: If the resolution selected would cause the totalizer to lag behind the count at 100% of design rate, the next possible resolution is automatically entered.

This parameter sets the resolution of the selected external totalizer.

Totalizers are:

P638-01, external totalizer 1 (T1), terminals 35/36
P638-02, external totalizer 2 (T2), terminals 38/39

Entry:

1 = 0.001 (one thousandth)
2 = 0.01 (one hundredth)
3 = 0.1 (one tenth)
4 = 1 (unit)
5 = 10 (x ten)
6 = 100 (x hundred)
7 = 1000 (x thousand)

P643 External Contact Closure

Sets the duration of the contact closure, in ms, for the external totalizer selected, totalizers 1 and 2 (P643-01 or -02). (f = 30)

Permissible values are in 10 ms increments from 0. The value is automatically calculated upon entry of P1 (design rate) and P638 (totalizer 1 resolution, external) so that the duration of contact closure allows the transistor switch response to track the total, up to 150% of the design rate. The value can be changed to suit specific contact closure requirements, such as in the case of programmable logic controllers.

Note: If the duration selected causes the totalizer to lag behind the count rate, the next possible duration is automatically entered.

P647 Totalizer Display

Selects the totalizer combination to be displayed, either manually through the scroll display key or automatically by control of the display mode (P081).

Entry:

1 = totalizer 1
2 = totalizer 2
3 = totalizer 1 and 2
P648 Totalizer Reset, Internal

Manual reset of the selected internal totalizer when the entry is made. \((F = 0)\)

Entry:

0 = no reset
1 = reset totalizer 2
2 = reset totalizers 1 and 2

Resetting the internal totalizers 1 and 2 resets the internal registers for external totalizers 1 and 2.

P690 Speed Constant Entry

Selects the method by which the speed constant is entered, for both speed sensor (P690-01 or 02).

1 = calculated, this selection returns the program to appropriate P015 for entry of speed constant

\[
\text{speed sensor pulses per revolution} \times \frac{\text{pulley circumference (m or ft)}}{\text{revolution}}
\]

Example:

MD-256 mounted on 6" Bend Pulley

\[256 \text{ pulses per revolution} = 534.694 \text{ pulses per meter or 162.975 pulses per feet}\]

0.478 meters per revolution

2 = sensor data, the selection forwards the program to P691 and P692 for entry of the required sensor data for automatic calculation. The calculated value is automatically entered into P015.

P691 Drive Pulley Diameter

For speed constant entry (P690 = 2), this parameter is enabled for entry of the drive pulley diameter (P691-01 or 02).

Enter the pulley diameter in the units requested, mm if P004 = 2 and inches if P004 = 1.

P692 Pulses Per Sensor Revolution

For speed constant entry (P690 = 2), this parameter is enabled for entry of the pulses per revolution that the speed sensor delivers (P692-01 or 02).

Enter the pulses per revolution from the speed sensor nameplate.
ECal Parameters (P693 – P698)

Accessible only through P017 for ECal test reference. After Ecal completion, only a zero
calibration is necessary to allow access to the RUN mode.

P693 Belt Scale Model

Selects the model of the belt scale connected to the BW500.

Entry:

1 = MUS
2 = MSIf
3 = MMI
4 = other*

*in the case of other, software jumps to P699 since data entry P694 through P698 are not
applicable if P693=4.

P694 ECal Load Cell Capacity

Enters the load cell's weighing capacity for the selected cell. (f = 1.0)

-01 = load cell A
-02 = load cell B
-03 = load cell C*
-04 = load cell D*

*applicable only if P693=3

Enter the value in the units corresponding to the scale selection, e.g. in kg if P
693 = 1, or lb. if P693 = 2 or 3.

P695 ECal Load Cell Sensitivity

Enters the load cell's sensitivity for the selected cell. (f = 1.0)

-01 = load cell A
-02 = load cell B
-03 = load cell C*
-04 = load cell D*

*applicable only if P693=3

Enter the value in mV/V obtained from load cell nameplate.

P696 ECal Load Cell Excitation

Determines the excitation applied to the load cells.

Nominally this value is 10 V. However, a measurement of the voltage at the load cell
provides the most accurate entry.

Enter the load cell excitation in volts dc.
P697 **ECal Idler Spacing**

Enters the measured distance between the weighing idlers. Refer to the associated belt scale instruction manual. \(f = 1.0 \)

Distance units are:
- feet: if the imperial system of measurement has been selected, \(P004 = 1 \)
- metres: if the metric system of measurement has been selected, \(P004 = 2 \)

Enter the distance to three decimal points.

P698 **ECal Conveyor Inclination**

Enters the inclination or declination angle of the conveyor at the point where the belt scale is installed. \(f = 0.0000 \)

Enter the inclination in degrees.

Upon entry, display jumps to P017 to display the design load value as the test load.

P699 **ECal mV Span**

Applicable only for Siemens belt scales not listed in P693, or scales other than Siemens (P693 = 4).

Enter the mV span corresponding to 0 to 100% full scale load.

Upon entry, display jumps to P017 to display the design load value as the test load.

P735 **Back Light**

Sets the intensity of the back light for the LCD. \(f = 10 \)

Entry:
- 0 = off
- 1 to 10 = low to high
P739 Time Zone

The offset from Greenwich mean time (GMT) of local time.

This parameter does not affect any timed events because all times are local. It can be accessed by a remote computer for synchronization purposes.

Enter local time zone –12 to 12

Communication (P750 - P799)

These parameters cover the various communications formats supported by the BW500: serial printer, Dolphin Plus, SmartLinx®, and Modbus.

P750 – P769 SmartLinx® Module Specific Parameters

These parameters are specific to the SmartLinx® module installed. Refer to the module documentation for a list and description of the specific parameter requirements.

P770 – P789 Local Port Parameters

These parameters are specific to programming of the BW500 communication ports. Refer to Communications on page 77 for a listing and description of these parameters.

SmartLinx Hardware Testing

These parameters are used to test and debug a SmartLinx card (if installed).

P790 Hardware Error

The results of ongoing hardware tests in the communications circuitry.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>* No errors</td>
</tr>
<tr>
<td>FAIL</td>
<td>Error occurred communicating with card; device will try to reinitialize communications with card. If message continues, record values in P791 and P792 and contact your local Siemens representative.</td>
</tr>
<tr>
<td>ERR1</td>
<td>No module installed, or module not supported; communications have been disabled</td>
</tr>
</tbody>
</table>

If **FAIL** or **ERR1** is displayed in P790 (Hardware Error), go to P791 (Hardware Error Code) and P792 (Hardware Error Count) for information about the error.
P791 Hardware Error Code

Indicates the precise cause of Fail or ERR1 condition from P790.

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No errors</td>
</tr>
<tr>
<td>Any other value</td>
<td>Error code; provide this code to your Siemens representative for troubleshooting</td>
</tr>
</tbody>
</table>

P792 Hardware Error Count

A count that increments by 1 each time Fail is reported in P790 (Hardware Error).

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range: 0 to 9999</td>
<td>Error count; provide this number to your Siemens representative for troubleshooting.</td>
</tr>
</tbody>
</table>

P794 SmartLinx Module Type

This parameter is used to identify the module type when SmartLinx is used. If you are not using SmartLinx, this parameter is not functional. Please see the associated SmartLinx instruction manual for a full description of this parameter.

P795 SmartLinx Protocol

This parameter is used to identify the protocol when SmartLinx is used. If you are not using SmartLinx, this parameter is not functional. Please see the associated SmartLinx instruction manual for a full description of this parameter.

P799 Communications Control

Assigns programming control through the local keypad (or Dolphin Plus, P770 = 1), or through a Modbus protocol (P770 = 2 or 3)

Entry:

0 = local
1 = modbus

Test and Diagnostic (P900 - P951)

Note: These parameters are used for test and diagnostic purposes.

P900 Software Revision

Displays the EPROM (Flash ROM) software revision level.
P901 Memory Test
Tests the memory. Test is initiated by scrolling to the parameter or repeated by ‘pressing enter’

Display:
PASS = normal
FAIL = consult Siemens.

P911 mA Output Test
Tests the mA output value for the output selected, outputs 1 to 3 (P911 -01 to -03)
Displays the value from the previous measurement. A test value can be entered and the displayed value is transmitted to the output. Upon returning to the RUN mode, the parameter assumes the actual mA output level. (f = 0)
Use the ▼ and ▲ to scroll the value

Note: Integrator must be programmed and zero and span calibrations must be completed and accepted for the mA output test to initiate.

P914 mA Input Value
Displays the current mA input value for the input selected, inputs 1 to 2 (P914 – 01 to -02).

Note: Not applicable if mA I/O board is not connected.

P918 Speed Input Frequency
Displays the frequency of the speed input signal in Hertz.

P940 Load Cell mV Signal Test
Displays the raw (unbalanced) mV signal input for the selected load cell, load cells A to D* (P940 – 01 to – 04)
Range 0.00 - 60.00 mV.
*depending on the number of load cells selected by P003, not all load cells may be in use.

P943 Load Cell A/D Reference
Displays the A/D reference value for the selected load cells. These values are affected by load cell balancing (P295).
Load cells are:
- 01 = A and B
- 02 = C and D
- 03 = A and B plus C and D
- 04 = A
- 05 = B
- 06 = C
- 07 = D

P948 Error Log
Displays a log of the last 25 error or alarm events (P948 – 01 to – 25) that have occurred. Event 01 is the current error.

Display:
0 = no error
= error code; refer to Troubleshooting on page 134

P949 Diagnostic Error Testing
Enables or disables diagnostic error checking for memory, load cell and zero speed. (f = 0)

Entry:
0 = disable
1 = enable
Refer to Troubleshooting on page 134.

P950 Zero Register
Registers the number of zero calibrations that have been done since the last master reset. (f = 0)

P951 Span Register
Registers the number of span calibrations for the span selected, span 1 to 8 (P951 - 01 to - 08), that have been done since the last master reset. (f = 0)

P952 Design Load
Displays the value of the design load, which corresponds to the full scale value for alarm and mA output functions. The design load is calculated, based on the design rate and design speed. (f = 0.00)

P999 Master Reset
Resets parameters and totalizers to their factory setting. (f = 0)

Enter $ to execute the reset.
Troubleshooting

Generally

1. First check to see that:
 • There is power at the unit
 • The LCD is showing something
 • The device can be programmed using the fixed keypad.

2. Then, check the wiring pin outs and verify that the connection is correct.

3. Next, go over the setup parameter P770 to P779 and verify that these values match the settings in the computer that you are using to communicate with it.

4. Finally, if you should check that the port you are using on the computer. Sometimes trying a different Modbus driver will solve the problem. An easy stand-alone driver called ModScan32, is available from Win-Tech at www.win-tech.com. We have found that this driver has been very useful to test communications.

Specifically

Q1: I tried to set a Siemens Milltronics device parameter, but the parameter remains unchanged.

A1: a. Try setting the parameter from the keypad. If it can’t be set using the keypad, check the lock parameter (P000) and

 b. Check to ensure that the SW1 (certification switch) is not in the certification position.
Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Code Name</th>
<th>Message/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>No Speed</td>
<td>No speed registered during calibration. Check conveyor running or speed signal.</td>
</tr>
<tr>
<td>201</td>
<td>Error - Load Cell A & B</td>
<td>Reading between A & B > 20000, or no signal. Check wiring.</td>
</tr>
<tr>
<td>202</td>
<td>Error - Load Cell C & D</td>
<td>Reading between C & D > 20000, or no signal. Check wiring.</td>
</tr>
<tr>
<td>203</td>
<td>Err: 203</td>
<td>Memory failure test. Consult Siemens.</td>
</tr>
<tr>
<td>204</td>
<td>Integrator not configured</td>
<td>P002-P017 must be programmed.</td>
</tr>
<tr>
<td>205</td>
<td>Err: 205</td>
<td>Zero or span calibration required.</td>
</tr>
<tr>
<td>210</td>
<td>Remote Totalizer 1 exceeded</td>
<td>Increase resolution.</td>
</tr>
<tr>
<td>211</td>
<td>Remote Totalizer 2 exceeded</td>
<td>Increase resolution.</td>
</tr>
<tr>
<td>212</td>
<td>Maximum speed exceeded</td>
<td>Speed is > twice the design speed. Check design belt speed, actual belt speed, speed constant. Perform speed constant adjust (P018) if necessary.</td>
</tr>
<tr>
<td>213</td>
<td>Maximum rate exceeded</td>
<td>Rate is > three times the design rate. If no mechanical cause, check to see if re-rating the design rate is required.</td>
</tr>
<tr>
<td>220</td>
<td>Span too low</td>
<td>Span is < 1 mV. Insure proper test weight or chain is applied during span.</td>
</tr>
<tr>
<td>221</td>
<td>Span out of range</td>
<td>Span deviation > 12.5%. Consider an initial span (P388). Refer to “Initial Span” on page 43.</td>
</tr>
<tr>
<td>222</td>
<td>Zero out of range</td>
<td>Zero deviation > minimum limit. Consider an initial zero (P377). Refer to “Initial Zero” on page 40.</td>
</tr>
<tr>
<td>223</td>
<td>Security Violation</td>
<td>An attempt to run command / calibration that is not allowed under current security level.</td>
</tr>
<tr>
<td>224</td>
<td>Function not permitted</td>
<td>Function not allowed under current security level.</td>
</tr>
<tr>
<td>225</td>
<td>BF</td>
<td>Flashes in the bottom right corner of display when battery charge is too low.</td>
</tr>
<tr>
<td>226</td>
<td>Load Cell AD’s are not functioning</td>
<td>Consult Siemens.</td>
</tr>
<tr>
<td>227</td>
<td>Err: 227</td>
<td>No process data available. Consult Siemens.</td>
</tr>
<tr>
<td>228</td>
<td>Batch pre-act adjustment > 10%</td>
<td>Pre-act adjustment is ignored. Tune process to limit batch error.</td>
</tr>
<tr>
<td>240</td>
<td>Integrator not configured</td>
<td>P002-P017 must be programmed</td>
</tr>
<tr>
<td>241</td>
<td>No PID mA Input</td>
<td>PID Process Value Source (P402) or PID Setpoint (P414) has been programmed for a mA Input, however mA Input Function (P255) has not been programmed properly.</td>
</tr>
</tbody>
</table>
Troubleshooting

Error Code

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Code Name</th>
<th>Message/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>242</td>
<td>No PID mA Output</td>
<td>PID System (P400) has been turned on, but mA Output (P201) has not been programmed properly.</td>
</tr>
<tr>
<td>243</td>
<td>No batch setpoint relay</td>
<td>Batch has been set up, but no relay has been configured for a setpoint.</td>
</tr>
<tr>
<td>PF</td>
<td>Power Failure</td>
<td>Displayed at the bottom right corner of the display if power is interrupted after the integrator has been calibrated.</td>
</tr>
</tbody>
</table>
Certification

For installations requiring trade certification, the BW500 provides a certification compliance switch.

After certification of the installation has been obtained, the switch is set. The switch must be positioned to the left to enable trade certification compliance.

When the switch is set for certification, editing of the parameter values, span calibrations and totalizer resets are denied. The maximum acceptable deviation from one zero calibration to another is limited to an accumulated ± 2% of the zero value, and the totalizer dropout (P619) is limited to 3% or less, when the certification switch is set.

To set the certification switch, disconnect power before opening the enclosure lid.

- slide switch to the left position
- close the lid
- reconnect the power

Certification Printing

Certification printing is allowed if the following conditions are met:

- certification switch is set
- rate is below 2 %
- a communications port has been programmed for a printer

The printout must consist of the following:

- Date: YYYY-MM-DD
- Time: HH:MM:SS
- Instrument ID#: Belt Scale serial number
- Start Total: End total of previous print
- End Total: Accumulated totalizer including Start Total
- Net Total: End total minus Start Total

If a power failure occurs during totalization, power failure indicator “PF” will be printed in the middle of a new line, even if it has been cleared from the screen. “PF” will be cleared from the screen after printing.
Glossary

Auto Zero
Allows a zero calibration to be performed automatically in RUN mode when the load drops below 2% of design for 1 complete calibration period (P360).

Auxiliary Inputs
Can be programmed to allow the use of an external contact to provide the following functions, display scroll, totalizer 1 reset, Zero, Span, Multispan, Print, Batch reset, or PID functions.

Batching
The accumulation of a predetermined quantity of material.

Contacts
A junction of electrical conductors in open (not connected) or closed (connected) states.

Damping
Provides control over the speed at which the displayed rate, load, speed readings, and output functions are updated in response to changes in the internal rate signals.

Design Rate
This is the maximum material flow rate for this particular application (100% full scale).

Direct Span
If replacing software or hardware, this allows the entry of the previously recorded span value.

Differential Speed
Difference in speed at two points in a mechanical system.

Direct Zero
If replacing software or hardware, this allows the entry of the previously recorded zero value.

Factoring
Used to calculate the test load value of a new or unknown test weight using the current span as reference.

Inclinometer
Accepts incline information about conveyor or scale.

Initial Span
Usually the first span performed, it is used as reference for all other spans to determine whether they have deviated beyond the accumulated +/- 12.5%.

Initial Zero
Usually the first zero performed, it is used as reference for all other zeros to determine whether they have deviated beyond the Zero Limit (P370).

Input/Output Trim
Allows the 4 and 20 mA values to be adjusted and verified with an external source (meter).
Linearization
Compensates for non-linear output of the belt scale caused by varying load rates.

Load Cell
Strain Gauge type transducer that produces an electrical output proportional to force (load) applied.

LVDT
An electromechanical transducer that produces an electrical output proportional to the displacement of a separate movable core.

mA
A unit of measure for current flow, milliamperes.

Material Test
Material samples used to verify the accuracy of the span calibration.

Modbus
An industry standard protocol used by popular SCADA and HMI systems.

Moisture sensor
A mA input function to incorporate moisture reading from an external moisture sensor

Multispan
Since every material has its own unique physical properties, and may impact differently, a span calibration is required for each material to realize maximum accuracy.

PID
Proportional Integral Derivative control is used to control the feed rate to a setpoint, either internal to the BW500 or external.

RAM
Random Access Memory.

Random Access Memory
Memory that has both read and write capabilities.

Relay
An electromechanical device with contacts that can be closed or opened by energizing a coil.

Routine Span
Any operator initiated span calibration.

Routine Zero
Any operator initiated zero calibration.

Setpoint
A value that the integrator is trying to match.

SmartLinx
An interface to popular industrial communication systems.

SPA
Single Parameter Access, used to view or edit parameters through the available communication ports.
Span
This is a count value representing the mV signal provided by either the LVDT or Load Cell at 100% design load.

Span Register
This is the number of span calibrations that have been performed since the last master reset.

Test Weight
A calibrated weight which will represent a certain load on the scale.

Totalizer
An incremental counter that records the total of material that has been monitored.

Zero Register
Shows the number of zero calibrations that have been performed since the last master reset.
Appendix I

Memory Backup

The BW500 requires no maintenance or cleaning, other than a periodic replacement of the memory backup battery. Refer to Installing/Replacing the Memory Back-up Battery on page 22.

Software Updates

The software can be updated from a floppy disk by use of a PC (IBM Compatible) with Siemens Milltronics Dolphin Plus software.

It is recommended that the old software and parameters be saved to your PC before downloading the new software.

Once installed, a master reset (P999) must be done.

The parameters can then be reloaded, either manually or downloaded from the previously saved file. If downloading parameters via Dolphin+, confirm that BW500 is in PROGRAM mode. The zero and span values are included in the parameter file. However, new zero and span calibrations should be done regardless, and as soon as possible to insure operating accuracy.

Calibration Criteria

Zero

- belt must be empty
 * Run the conveyor for several minutes to limber the belt and ensure that it is empty.
- test weights or chain are not used during a zero calibration
- conveyor running at normal speed
- moisture input not used during a zero calibration
- inclination will be used if feature is activated

Span

- a zero must be done prior
- belt must be empty
- test weight or chain must be applied
- conveyor running at normal speed test reference (chain or weight applied)
- moisture input not used
- inclination will be used if feature is activated

PID Systems

- zero and span criteria must be met
- set controller (P400) to manual and adjust the output for 100% belt speed (using the 4 and 8 keys).
 * If the PID is not set to manual, the speed output will be the last value prior to starting the zero or span calibration
- shut off the prefeed to conveyor
 * In process where a prefeed device is included, it must be turned off to ensure that no material is fed onto the belt.
Appendix II: Software Revision History

<table>
<thead>
<tr>
<th>Software Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>April 30, 1999</td>
<td>• Original software release</td>
</tr>
<tr>
<td>2.01</td>
<td>July 20, 1999</td>
<td>• French language added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 38400 baud rate option removed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Span updated to reference current zero value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NTEP printout added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Totalizer rollover updated to 1,000,000 for all resolutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added units to verification totalizer printout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Error display updated to toggle between error and run mode</td>
</tr>
<tr>
<td>2.02</td>
<td>October 08, 1999</td>
<td>• Limited external contact closure to 300 msec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added software filter to speed signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Factoring now based on current zero value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Individual damping added for Rate, Load and Speed display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parameters saved permanently in Flash</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• German added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Devicenet added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Display only the load cells selected</td>
</tr>
<tr>
<td>2.03</td>
<td>May 16, 2000</td>
<td>• Allow proper startup if no RAM battery installed</td>
</tr>
<tr>
<td>2.04</td>
<td>June 30, 2000</td>
<td>• Larger flash added</td>
</tr>
<tr>
<td>2.05</td>
<td>February 07, 2001</td>
<td>• SmartLinx update time increased to 250 msec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Batch totalizer was made accessible using Modbus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New real time clock added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BW500 calibrations no longer affected by time out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Auto Zero alarm relay will now reset toggling from program to run mode</td>
</tr>
<tr>
<td>2.06</td>
<td>February 17, 2001</td>
<td>• Updated calibration error so that it will not display a negative 0 error, -0.00%</td>
</tr>
<tr>
<td>Software Revision</td>
<td>Date</td>
<td>Changes</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>3.00</td>
<td>April 27, 2001</td>
<td>• Added flowmeter option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parameters are no longer changeable with remote communications when</td>
</tr>
<tr>
<td></td>
<td></td>
<td>certification switch set</td>
</tr>
<tr>
<td>3.01</td>
<td>July 17, 2001</td>
<td>• Increased maximum idle time for SmartLinx to 9999 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fixed totalizer error when load is negative and totalizer drop out is 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Allowed access to P635 in certification mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Setting of certification switch changes totalizer dropout to 0.00</td>
</tr>
<tr>
<td>3.02</td>
<td>August 07, 2001</td>
<td>• Fixed bug in totalizer P619 totalizer dropout</td>
</tr>
<tr>
<td>3.03</td>
<td>February 20, 2002</td>
<td>• Fixed timing issue with interval printing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added %rate and %load to PID setpoint configuration, P414</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Auto Zero to allow run display to be seen, AZ now flashes in bottom right hand corner od display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated span adjust calculation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increased totalizer resolution to 100,000,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Improved error interruption on display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fixed zero and span calibration using remote communications</td>
</tr>
<tr>
<td>3.04</td>
<td>May 09, 2002</td>
<td>• Fixed SmartLinx error checking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fixed error with discrete inputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add P419 PID freeze enable/disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Update zero calibration when certification switch set, now references last operator initiated zero prior certification switch set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added power failure indicator on display, “PF”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• On-line calibration added</td>
</tr>
<tr>
<td>3.05</td>
<td>November 11, 2002</td>
<td>• SmartLinx memory map increased</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Improve external totalizer contact closure duration</td>
</tr>
</tbody>
</table>
Appendix II

Software Revision

<table>
<thead>
<tr>
<th>Software Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.06</td>
<td>July 23, 2003</td>
<td>• Updated PID control between remote/local setpoint
• Improve Dolphin Plus communications
• Batch setpoint now adjustable in "RUN" mode
• Slowed down the display when scroll key is held</td>
</tr>
<tr>
<td>3.08</td>
<td>March 1, 2006</td>
<td>• Remote zero and span calibrations fixed
• Differential speed detection added
• Moisture meter added
• Inclinometer feature added</td>
</tr>
<tr>
<td>3.09</td>
<td>August 8, 2006</td>
<td>• Remote totalizer exceeded error fixed
• Totalizer dropout (P619) now limited to 3% or less when certification switch enabled</td>
</tr>
<tr>
<td>3.11</td>
<td>March 31, 2009</td>
<td>• Second speed sensor accuracy at frequencies below 10 Hz fixed
• Parameter download using Dolphin Plus fixed (Dolphin Plus patch required)
• Electronic load cell balancing of C&D fixed
• Word order format with remote communication fixed
• Integrator serial number added to printout
• Power failure message added to printout</td>
</tr>
</tbody>
</table>
Index

A
alarm
 condition 59, 110
display 76
event 76
function 107
high 59
mode 109
autobaud 81
auxiliary
 input 45
B
balancing 29
baud rate 80, 100
belt
 speed compensation 35
bit values 97
C
communication
 configuring ports 79
 ports 78
 protocol 79
communications 77
 configuring ports 79
 ports 79
 protocol 79
communications
 ports 1
 configuring communication ports 79
control
 feed forward 67
 integral 66
 output 65
 PID 68, 110
 proportional 65
 rate 62
 system 65
controller
 function 71
 logic 60, 126
 PID 68, 71
 setpoint 62
D
data
 advanced access 89
 bits 81
 types 97
 date and time 92
deviation
 alarm 59
diagnostic 133
discrete
 input 1, 4, 96
Dolphin 1
 Plus 3, 77, 79
 protocol 77
Dolphin Plus 84
dolphin protocol 84
E
error
 check 86, 133
 codes 92
 errors
 handling 101, 102
 messages 98
 example modem setup 100
F
factoring 45, 51
format register 91, 93
function
 alarm 58
 output 58
 pre-act 76
I
initial startup 68
L
linearization 52
load cell 3, 29
LVDT 3
M
mA 4, 112
 analog 1
 I/O board 62, 71
 input 58, 71, 96, 111
 output 4, 58, 71, 96, 110
 output test 132
maximum separation 78
Modbus 78, 90
 protocol 77, 85
modbus
 how modbus works 85
 responses 101
Index

RTU/ASCII protocol 85
modem 77
modems 99
 available 81
 example setup 100
 hanging up 82
 inactivity timeout 82
 picking 99
 setting up 99
setup 99
modes 99
 run mode 36
multispan 51
N
network address 80, 82, 83, 86
P
P770 (IP) protocol 79
P771 (IP) network address 80, 82, 83
P772 (IP) baud rate 80
P773 (IP) parity 80
P774 (IP) data bits 81
P775 (IP) stop bits 81
P778 (IP) modem available 81
P779 (G) modem inactivity timeout 82
parameter 99
 P000 security lock 103, 115
 P001 language 103
 P002 test reference selection 103
 P003 number of load cells 104
 P004 rate measurement system 104
 P005 design rate units 104
 P008 date 104
 P009 time 105
 P011 design rate 58, 60, 105
 P014 design speed 105
 P015 speed constant 105
 P016 belt length 105
 P017 test rate 106, 116
 P019 manual span adjust 36, 106
 P022 minimum speed frequency 106
 P080 damping display 58, 107
 P081 display scroll mode 126
 P100 relay function 107, 109
 P101 high alarm/deviation alarm 59
 P102 low alarm 59, 108
 P107 relay alarms 109
 P117 relay dead band 59, 109
 P118 relay logic 59, 109
 P119 relay override 110
 P200 mA output range 58, 110
P201 mA output function 58, 71, 110
P204 mA output average 111
P212 mA output minimum 58, 111
P213 mA output maximum 58, 111
P214 mA output trim 58, 111
P215 20 mA output trim 111
P220 mA damping 58, 111
P250 mA input range 58, 112
P255 mA input function 58, 112
P261 4 mA input trim 111
P262 20 mA input trim 58, 112
P270 auxiliary input function 113
P341 days of service 115
P350 calibration security 115
P355 on-line calibration feature 116
P356 on-line calibration reference weight 116
P357 on-line calibration limits 116
P358 on-line calibration activation 116
P359 factoring 116
P360 calibration duration 117
P365 multispan 45, 117
P367 direct zero entry 40, 117
P368 direct span entry 44, 117
P370 zero limit deviation 118
P370 zero limit deviation % 118
P377 initial zero 118
P388 initial span 42, 43, 118
P390 linearizer 52, 118
P391 linearizer load points 119
P392 linearizer compensation % 52, 119
P398 moisture content 119
P400 PID system 59, 119, 120
P401 PID update time 71, 119, 120
P402 PID process variable source 119, 120
P405 proportional term 120
P406 integral term 121
P407 derivative term 121
P408 feed forward term 121
P410 manual mode 71
P414 setpoint configuration 119, 121, 122
P415 local setpoint value 72, 122
P416 external setpoint 122
P418 remote setpoint ratio 119, 122
P419 PID freeze option 122
P560 batch mode control 74, 75, 122
P564 batch setpoint 75, 123
P566 batch pre-warn 74, 123
Index

P567 batch pre-warn setpoint 74, 75, 123
P568 batch pre-act 76, 123, 125
P569 manual batch pre-act amount 124
P598 span adjust percentage 106, 124
P619 totalling dropout 60, 124
P631 totalizer resolution 124
P635 verification totalizer 125
P636 external totalizer resolution 60, 126
P643 external contact closure 60, 126
P647 totalizer display 61, 126
P648 totalizer reset, internal 61
P648 totalizer reset, internal 127
P690 speed constant entry 127
P691 drive pulley diameter 127
P692 pulses per sensor revolution 127
P693 belt scale model 128
P694 ecal load cell capacity 128
P695 ecal load cell sensitivity 128
P696 ecal idler spacing 129
P697 ecal conveyor inclination 129
P698 ecal mV span 129
P735 back light 129, 130
P750-P769 SmartLinx module-specific parameters 130
P770-P789 local port parameters 79, 130
P771 (IP) network address 80
P773 parity 80
P775 stop bits 81
P776 modem attached 81
P781 data message 83
P792 SmartLinx error count 130
P799 communications control 83, 131
P900 software revision 131
P901 memory test 132
P911 mA output test 96, 132
P914 mA input value 132
P918 speed input frequency 132
P940 load cell LVDT interface mV signal test 132
P943 load cell A/D reference 132
P948 error log 133
P949 diagnostic error testing 133
P952 design load 41
P999 master reset 61, 133

parameters
read and write 89
reading 90
SmartLinx hardware testing 130
values 97

writing 90
parity 80
PID 59, 68, 97
control 97
function 4, 58
manual mode 71
setpoint 58, 112
setup and tuning 65, 68
product ID 89
protocol 79
R
RAM 3
rate 62, 68
register map 86, 89
relay 62, 74, 75, 76, 109
alarm 59
batch 123
contacts 4
functions 108
setpoint 124
remote
setpoint 122
reset
master 61, 133
RS-232 21
S
s 130
SCADA 77
setpoint 123
batch 76
local 122
PID 112
rate 68
relay 124
remote 122
SmartLinx 78, 79
span 44, 117
adjust 36, 38
calibration 36, 39, 44, 45, 46, 52
correction 44
direct 44
initial 42, 43, 44, 45
manual 34, 36, 124
multispan 44, 45
mV 129
recalibration 34, 40, 42
remote 45
routine 42
verification 125
stop bits 81
T
term
 derivative 66, 121
 forward 121
 integral 121
 proportional 120
test
 load 36, 51, 116, 129
 material 34, 36, 54, 119
 value 132
text messages 98
totalizer 61, 126
 functions 60
 internal 125
 master 60
 remote 1
troubleshooting 134
U
UDINT 97
UINT32 order 89
unsigned double precision integer 97
W
web site 85
wiring
 9-pin to RJ-11 21
 guidelines 78
Z
zero 4
 auto 41
 calibration 33, 39, 51
 direct 40
 initial 39, 40
 recalibration 34, 40
 verification 125