SIEMENS

SIMOTION
Message Handling

Application Manual

11/2016

Preface

Application description

Application structure

Integration

Description of functions

Alarm and error messages

Application example

Overview of the global
variables

Interpretation of the raw data

Contact

O W >» N o o | b 0N




Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert

symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

/\DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

/\WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

/\CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

/\WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the

information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Siemens AG

Division Digital Factory ® 11/2016 Subject to change
Postfach 48 48

90026 NURNBERG

GERMANY

Copyright © Siemens AG 2016.
All rights reserved




Table of contents

1 g (=] =T = PPN 7
1.1 GENEral INTOMMATION ... .uiiiiiiiiiie e e e e e e e e e e e a e e e e e a e e e e s 7
1.2 ADOUL thisS dOCUMENT ... e e e e 9

2 ApPPlication deSCHPLION .......c..iiei e e 11
2.1 =1 (o o) =T o) o] o= 4o o KU 11
2.1.1 [ Yol 4 o] 4 o] o [T 11
2.1.2 =1 (o o =T o] o] L= 4 (oo HPU P 11
2.2 (007 1= o2 1Y/ U SPRRRR 12
221 LI P PPUPPPPPPPPPPRPPN 12
222 LY = 1 £ 12
2.3 [©70] o Ter=Y o] APPSR 13
2.31 lllustration of the CONCEPL.........eiiiiii e 13
24 System OVErVIEW (EXAMPIE)..... ... ittt e e e e e e e e e e e e e e e eaaeeaaanns 17
2.4.1 Automation OVErview (EXamMPIE)........ciiieiiiiiiici e 17
242 HardWare STUCKIUIE .........oiiiiiiiiiiiiiieeeeeeeeee ettt bbb e eeeeesenenrnnnne 18
243 SYSIEM FEQUIFEMENTS......eiiiii ittt e e e e e e e et e e e e e e e e e e anenrenaeaaeaeaanns 18
244 SCOPE OF AEIIVEIY ... e e e e e e et e e e e e e e a s 18

3 WY oT o] [Tz L1 To) Tt (U Lo (1 (= 19
3.1 Structure of the libraries.............cc 19
3.1.1 Overview of the lIDraries ... 19
3.1.2 Structure of the LMsgHAI IDrary...........oooiiiiie e 20
3.2 Structure of the units in the SIMOTION project ... 20
3.3 (@70 0] £= ) - 22
3.3.1 [0 o] [ ToR oo ] ] = o (= 22
3.3.2 Changeable public CONSIANTS.........ccoiiiii e 24
3.4 Core functions and COMPONENLS .........couuiiiiiii e e e e e aaaenes 25
3.4.1 Overview of the core functions and required components of the message handling............ 25
3.4.2 Description of the core functions and required components...........cc..ocoovvviiiiee e, 26
3.4.21 BUffer ManagemeEnt..........cooo i e 26
3.4.2.2 Description of the DUFfErs...........ooo e 26
3.4.2.3 Functions for entering user-defined MeSSages..........couvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeees 29
3.4.24 AlaIMS . 30
3.4.2.5 Message Dit NANAING........oiiiiiiiii e 30
3.4.2.6 Response to execution faults in Programs..............oeiiviiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeaeeees 30
3.4.2.7 Message handling STArTUPD........ooiiiiiiiiiiiiiei ettt eeeeeneereeeee 31
3.4.2.8 Acknowledgement of the active messages. ... 32
3.4.29 Filtering messages to an HMI / SIMOTION IT .......uiiiiiiiiiiiiiiie e 32
3.4.2.10 1V ToTo (U1 F= Yol 4 F= ez 1] o L= 34
3.4.2.11 DO Safety MESSAGES ...eeiiiiiiiiiiiiiiiiiiiiiee ettt ettt ettt e et e e ettt eeabbeeeeenbeeanne 38
3.4.2.12 Saving of the ShutdownTask buffer ... 39

Message Handling
Application Manual, 11/2016 3



Table of contents

3.4.2.13 Saving the current message log in the SIMOTION devViCe........c.ccooviiiiiiiiiiiiiiiiiiiieeeeeeen 39
3.4.2.14 Loading the language from the storage medium of the SIMOTION device...............cccouvnee... 41
3.4.2.15 Single acknoWIEdgEMENT . ........ooii e e e 43
3.4.2.16 Common buffer for incoming/outgoing MESSAGES ........cceiiiiuiiiiiiiiee i 49
4 191 =To ] = 1T o P 51
4.1 Required technology ODJECtS. ... 51
4.2 Integration in the SIMOTION ProjeCt.........ooueiiiiiiiie e a e 51
4.2.1 Integration of the application into a SIMOTION Project.........ccccoovvvviiiiiiiiii e 51
4.2.2 SUPPIESSING MESSAGES ... -uetteieiiaaeetaauttiiieeeaeaeaaaueeeeeeeaaaeeaaanneeeeeaaaaeeaaansseneeaaaeasaaanssnnneeaaens 55
4.2.3 Creating user-defined MESSAgES ... .. ..uuuiiiiieei it e e e e e e e e eeaaaens 57
4.2.4 Embedding of the AlarmS handling or message bit handling.................cccccciviiei e, 59
4.2.5 Defining machine error Classes. ... 62
4.3 Displaying messages via SIMOTION IT......ooouiiiiiiiie e 64
4.4 Important, frequently used variables ..............ooouiiiiii i 66
Description Of FUNGHIONS. .........iiuii e e e et et e e e e ee e e e e e enee i een 69
5.1 General information on the description of functions.............ccccccceei i 69
5.2 FBLMsgHdIActiveMsgSgToHMI function bIOCK .............ueiiiiiiiiiiice e, 69
5.21 General information on the function bIOCK ...............oooiiiiiiiiiiiiii s 69
5.2.2 Schematic representation in LAD/FBD........cooiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeeeees 70
523 Input and output parameters of the function block.................ccccoeeeii 71
524 Structure for parameter tranSfer...........ooiiiiiiiiiiiieeeeeeeee e 72
5.3 FBLMsgHdIMsgLogSgToHMI function BIOCK............ooeiiiiiiiiee e, 73
5.31 General information on the function bIOCK ..............oooiiiiiiiiiiiiiiiees 73
5.3.2 Schematic representation iN LAD/FBD...........c.oiiuuiiiiiiaa e a e 74
5.3.3 Input and output parameters of the function block..............ccccoiiiiii e 74
5.34 Structure for parameter tranSfer...........ooouii i 76
54 FBLMsgHdIActiveMsgBaseDataToHMI function blocK ................veeiiiiiiiiiiiiiei e 77
5.4.1 General information on the function block ... 77
54.2 Schematic representation iN LAD/FBD...........cooiiuuiiiiiiaa e e e e e 77
54.3 Input and output parameters of the function block................c..ooi 78
544 Structure for parameter transfer....... ... 79
55 FBLMsgHdIMsgLogBaseDataToHMI function block..............ccoooeiei 81
5.5.1 General information on the function blocK ... 81
5.5.2 Schematic representation in LAD/FBD..........oouiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 81
553 Input and output parameters of the function block............cccccoiii i 82
554 Structure for parameter transfer........ ..o 83
5.6 FCLMsgHdIWriteUserMessageToBuffer and FCLMsgHdIWriteFBFCMessageToBuffer
FUNCHIONS <. 85
5.6.1 General information on the fUNCHIONS .......ouveii i 85
5.6.2 Schematic representation in LAD/FBD........ccoouiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee 86
5.6.3 Input and output parameters of the fUNCLONS ................ooiiiiiiii e, 87
5.7 Structure for message [0g as raw data............oooveiiiiiiiiiiiiiiiiiiiieeee 89
5.8 Structure for message log in STRING format............covviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeees 90
Alarm aNd EITOr MESSAGES .. ... eueueuerreuie e areaereneraeerenteenrenresenasanaeasensaanaensensennenrensennennns 91
Message Handling
Application Manual, 11/2016



Table of contents

6.1 General information on the error handling............oocuviiiiiiiiii e 91
6.2 BUFFEr OVEITIOW ... e e e e e e e e e e 91
6.3 Overflow Of AlarmMS MESSAGES. ... .uueiiieeei it e et e e e e e e e e e e e e e e e e e s s nneeeeeaaaaeaaaanns 91
6.4 Error during StartUD. ......ooeeiiiiiiiiiiiiiiieei ettt 92
6.5 Messages by 1/O MOTUIES ........ooiiii it e e e e e e e e e 92
6.6 DO Safely MESSAgES ..o eiiiiiiiiie ettt e e e e e et e e e e e e e e e e e e e e e e eeees 92
6.7 UsSer-defiNed MESSAgES. ... . i iiiiiiiie ittt ettt e e e e e et e e e e e e e e e s eeeeeeaaeeeeaanneenees 93
6.8 Error during data exchange With DOS ...........ooiiiiiiiiii e 93
6.9 Particularity for alarms on drive ObJECES..........ooiiiiii e 93
6.10 Particularity for peripheral MeSSages .........couiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeee e 94
6.11 Reaction 10 INTErNal €ITOIS .......ooiiiiiiiiiiiiiiiiii ettt eeeeaenees 94
7 PN oT o] [Tz LiTo A=Y - Ty o) =S 99
71 Defining machine error classes (EXamPI) ........iiiuuiiiiiiiiea e 99
7.2 Editing user-defined MEeSSAgES. ........oouiiiiiiiiee e 102
7.3 Adapting constants in the cPublic library unit ... 103
7.4 FUNCHION Call...coiiiiiiiiiiiiie ettt bbbbbbbbneee 104
7.5 Display of the data from the message handling in the symbol browser of SIMOTION
10 @ U PRSP URUPPPRTPRRN 105
A Overview of the global variables................coo e 107
A.1 VAMADIES ... 107
B Interpretation of the raw data. ..o 115
B.1 SHUCKUIE ...t e e e e e s et e e e e s s e e e e e e e e 115
B.2 Common information of all MESSAGES .......coiiieiiieiiie e e e 118
B.3 Messages of the technology ObJECE............vveiiii i 120
B.4 Errors on the drive ODJECE.........oouii e 121
B.5 Warnings on the drive ObJECE ........vveiii i 124
B.6 oSS TTo =Y e o T (1= 1 124
B.7 TIMEF AU MESSAGES ....vvviiii it e e e et e e e e e e e e 125
B.8 EXeCUtiONFaUIt MESSAQES. ......coviiiiii e 125
B.9 Messages through startup of the SIMOTION devViCe...........ccovviiiiiiiiiiieiicecee e, 125
B.10 User-defined MESSAGES. .....ccciiiiiiiii ittt e e e e e et e e e e e e 126
B.11 User-defined messages for FB/FC and FB UNItS ............ooovviiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee 126
B.12 Messages through message handling...........cccooooiiiiiiii e 126
C L07e] o1 ¢V S TP UR 129
CA1 (670111 1= Tox £ TP PPPPPPPPPPPP 129

Message Handling

Application Manual, 11/2016 5



Table of contents

C.2 [9] (S g T A= Lo (o T =TTt TP 130

Message Handling
6 Application Manual, 11/2016



Preface

1.1

General information

Note

The standard applications are not binding and do not claim to be complete regarding
configuration, equipment or any eventuality which may arise. The standard applications do
not represent specific customer solutions, but are only intended to provide support for typical
tasks. You are responsible for the proper operation of the described products. These
standard applications do not relieve you of your responsibility regarding the safe handling
when using, installing operating and maintaining the equipment. By using these standard
applications, you agree that Siemens cannot be made liable for possible damage beyond the
mentioned liability clause. We reserve the right to make changes and revisions to these
standard applications at any time without prior notice. In the case of any differences between
the suggestions made in these standard applications and other publications from Siemens,
such as catalogs, the contents of the other documentation have priority.

Warranty conditions, liability, and support

Message Handling

Application Manual, 11/2016

If the application has been made available free of charge, the following applies:
We do not provide a warranty for any of the information contained in this document.

All other rights and claims against Siemens AG irrespective of legal basis are excluded. In
particular claims for damages against Siemens AG in the case of product outage, downtime,
loss of profit, either directly, indirectly or consequential damage are excluded.

This does not apply when liability is compulsory by law, e. g. in the case of the Product
Liability Act, premeditation, an act of gross negligence by superiors and managerial staff of
Siemens AG or in cases of fraudulent concealment of defects.

This limitation of liability also applies to sub-contractors, suppliers, delegates, superiors and
managerial staff of Siemens AG.

German law shall apply to this agreement for customers with head offices in Germany; Swiss
law for customers with head offices outside Germany. Application of the United Nations
Convention on Contracts for the International Sale of Goods as of 11.04.1980 (CISG) is
excluded.



Preface

1.1 General information

If the application has been made available against payment, the appropriate alternative
applies for the respective business transaction:

e Alternative 1: (Internal business)

If nothing else has been negotiated, then the "Conditions for the supply and services in
Siemens interal business" applies in the version that is valid at the time that the equipment
is purchased.

® Alternative 2: (Domestic business of Siemens AG)

If nothing else was negotiated, the "General License Conditions for Software for Automation
and Drives for Customers with a Registered Office in Germany" valid at the time of sale are
applicable.

e Alternative 3: (Direct export business of Siemens AG)

If nothing else has been negotiated, then the "General License Conditions for Software
Products for Automation and Drives for Customers with a Seat or Registered Office outside
Germany", valid at the time of sale, are applicable.

It is not permitted to distribute or duplicate these application examples in any form including
excerpts thereof without the express consent of Siemens Industry Sector.

Notice regarding export identification codes

AL:N
ECCN: N

Message Handling
Application Manual, 11/2016



Preface
1.2 About this document

1.2 About this document

Objective

This document is intended to help the reader integrate the Message Handling application for
the management of messages into the existing SIMOTION SCOUT project. The library
called LMsgHdI provides basic functions for the display and management of messages.
Previous knowledge in using the SIMOTION SCOUT engineering system is required.

Note

This document does not claim to contain all details on devices in any version or to take all
conceivable operational cases and applications into account.

Should you require further information or encounter specific problems not covered in enough
detail for your field of application, please contact your local Siemens office.

Target group

This document is intended for programmers, commissioning and application engineers who
create applications for SIMOTION.

Restriction

In message handling, information is read from SINAMICS drives. A description of this data
exchange is not part of this documentation.

Siemens Industry Online Support

This article originates from the Siemens Industry Online Support. The following link takes
you directly to the download page for this document:

http://support.automation.siemens.com/WW/view/en/48955585
(http://support.automation.siemens.com/WW/view/en/48955585)

Message Handling

Application Manual, 11/2016 9


http://support.automation.siemens.com/WW/view/en/48955585

Preface

1.2 About this document

Message Handling
10 Application Manual, 11/2016



Application description 2

2.1 Field of application

2.1.1 Description

Information, faults, alarms, warnings, messages as well as user-defined messages occur in
every SIMOTION application. The term messages is used generically in this document.
Messages can occur because of external influences; e.g. changing of the status or faults on
peripheral devices or drives. Messages can also be triggered in the SIMOTION

motion control system. For example, system errors or technology object errors (technological
alarms).

All messages are collected in a buffer (log). The user can display the current pending
messages or a message log. This information can be forwarded to a higher-level controller
or a control system. The message log can be sent as a file to a system specialist for a
remote diagnostics, for example, when faults occur on the machine.

2.1.2 Field of application

The Message Handling application can be used universally for arbitrary applications. The
CAM technology package is a minimum requirement.

Message Handling
Application Manual, 11/2016 11



Application description

2.2 Objective

2.2

2.2.1

222

12

Objective

Task

The objective of the message handling is to collect messages from various sources of the
SIMOTION system and provide these to the user. A distinction is made between current
pending messages and a message log.

The programmer of a SIMOTION application can further process the collected messages by
either forwarding them to a higher-level system or displaying them on an HMI.

A configuration script is to be used to integrate the message handling in the SIMOTION
application, by adapting programs and constants to the existing application. The message
handling has a modular structure. When the configuration script is called, the user can
decide which parts are to be inserted.

Benefits

This message handling significantly reduces the time required to create an error and
message handling, which should be contained in every SIMOTION application.

The use of a configuration script for the integration in the SIMOTION application avoids the
error-prone insertion of software components. The configuration script reads the project
information and configures the message handling accordingly.

The message handling collects messages from the following sources:
¢ SIMOTION system messages
— Technological messages of SIMOTION
— Messages about SIMOTION system errors
— Peripheral fault messages
e SINAMICS drive messages
— DO safety messages
— DO messages
e User-defined messages

The messages are stored in buffers that the users can access with their applications. These
are:

e Buffer for memory-optimized data that has to be processed by the user for further use
e String-based buffers that are easy to read, but require a large amount of memory
The AlarmS handling and message bit handling can also be used.

In addition to the collection of messages, the user can also program for user-defined
messages and peripheral fault messages, what effect a message has on the functioning of
the machine. Depending on the severity of the message, the user can program a machine
reaction.

Message Handling
Application Manual, 11/2016



Application description
2.3 Concept

2.3 Concept

2.3.1 lllustration of the concept

Collecting and displaying messages

The concept of collecting all messages from different sources in a uniform format was used
for the message handling. In this way, all messages of the SIMOTION system can be
displayed on an HMI or sent to a higher-level controller. The user can also access a uniform
interface for further processing.

The following figure shows how the messages are collected from the various sources. All
messages are read in by a message collector and converted to a uniform format.

SIMOTION TO messages

SIMOTION system messages

SINAMICS DO messages

DO safety messages

Message collector

I/O messages

User-defined messages

Figure 2-1 Collecting messages

Note

SIMOTION system messages include messages that are generated by timeouts in the
TimeFaultTasks as well as messages generated by errors when processing a program in the
ExecutionFaultTask.

The message collector writes the messages to two buffers.
® One for the current pending messages and
® One buffer with the message log

When the messages are acknowledged by the message handling, the buffer with the active
messages is emptied. The messages in the message log are marked as message gone
(time stamp when acknowledged). When the message log buffer is full, the oldest message
is overwritten.

Message Handling
Application Manual, 11/2016 13



Application description

2.3 Concept

14

The storage format of these two buffers is called raw data in the following, as these two
buffers are optimized for the greatest possible storage efficiency. The message information
is coded with numerical values for the raw data buffers. The buffer for the message log is
stored in the retentive data area (RETAIN), so that it is also available after a power failure.

Two further buffers can be integrated so that the coded numerical value of the raw data is
easier to read. These contain the message information in STRING format and can be
created optionally by the message handling. Corresponding to the raw data buffers, there is
one STRING buffer for the active messages and one buffer for the message log. These
buffers in STRING format require significantly more memory than the raw data buffers.

Writing of the messages to two buffers

Raw data format (memory efficient) STRING format (memory intensive)

Conversion of the

. messages from raw data to .
Buffer for active STRING format Buffer for active

messages messages

|::> Buffer for |:>
Buffer for

message log
(protected against message log
power failure)

Message collector

Figure 2-2  Writing messages to buffers

The AlarmS handling and the message bit handling can also be used for the display of user-
defined messages on the HMI.

The user can access the buffers. Arbitrary sections of the buffers can be displayed directly
on the HMI via function blocks that are also provided. When using the raw data buffers, the
HMI must generate comprehensible error texts from the raw data. The texts from the
STRING buffers can be used directly for the display. The buffers can also be transferred to a
higher-level controller, e.g. via TCP/IP.

Remote diagnostics are facilitated when the user saves the buffer with the message log to
the storage medium of the SIMOTION device when a machine fails and sends this data to a
system specialist.

Note

HMI screens for the display of messages in STRING format and SIMOTION programs for the
transmission to a higher-level controller are not part of the message handling. The user is
responsible for this.

As the message handling has a modular structure, the user can choose whether the entire
message handling or only parts thereof are to be taken into the application. The user can
therefore choose from which sources the messages are to be collected, which buffers are to
be used and in which way the messages are to be displayed.

Message Handling
Application Manual, 11/2016



Application description

2.3 Concept
SIMOTION TO messages Writing of the messages to two buffers

SIMOTION system messages

S

°© Raw data format (memory-efficient) String format (memory-intensive)
SINAMICS DO messages 2

3 Conversion of the

o Buffer for active messages from Buffer for active

] messages raw data format to messages
DO safety messages ® STRING format

=

\:> Buffer for [> Buffer for
message log message log
1/0 messages (non-volatile)
User-defined messages Possible further processing of the buffer
— g

~

Display of the user-defined messages on an HMI via
ALARM_S or bit message procedure

Display of the active messages and message log on an
HMI

Sending of the data to a higher-level controller *

Saving of the message log to the storage medium of the SIMOTION
device and forwarding to experts for the diagnostics

* Not part of the message handling

Figure 2-3  Overview of the message handling

Reaction to messages

Up to now, it has been described how messages are collected and displayed. However,
most messages also require a reaction from the machine. This reaction depends on the type
and source of the message. The failure of an important equipment module (machine
module), e.g. when a following error occurs on the axis of an equipment module operating
synchronously, requires a different reaction to that of the failure of an equipment module for
filing a material storage unit. In the first case, an emergency stop of the machine would be
necessary, in the second case production could continue as long as material is still available.

Note

Reactions to technological alarms and drive errors are set in the SIMOTION SCOUT
engineering system and are not part of the message handling.

Each message from the user-defined messages and the peripheral fault messages can be
assigned to a machine error class. These machine error classes determine the reaction of
the machine when messages occur. If several messages occur simultaneously, the error

Message Handling
Application Manual, 11/2016 15



Application description

2.3 Concept

class with the highest priority determines the machine error class. For a more detailed
description, see Section Defining machine error classes (Page 62).

Note

The reactions for the machine error classes must be programmed by the user. The message
handling only provides a variable for the machine error class with the highest priority. All the
currently active machine error classes are displayed in a variable.

Message Handling
16 Application Manual, 11/2016



Application description
2.4 System overview (example)

24 System overview (example)

241 Automation overview (example)

The message handling collects messages from the peripheral devices connected to the
SIMOTION device. The following figure shows an automation solution with a SIMOTION D
device. Messages from the peripheral devices (an ET200M, an ET200S and a SINAMICS
S120 CU320 in the figure) connected via PROFIBUS or PROFINET are forwarded to the
message handling.

With SINAMICS drives, the messages from drive objects (DOs) can also be accessed. The
SINAMICS drive can be connected via the integrated PROFIBUS (for SIMOTION D, this is
the SINAMICS Integrated) and also via PROFIBUS or PROFINET. Data exchange is
performed via acyclic services. In this way, it is possible to perform a detailed search for
errors in SINAMICS drives.

SINAMICS CU320

SINAMICS DOs via acyclic
communication (PROFIBUS
integrated or
PROFIBUS/PROFINET)

B |/O for PROFIBUS

BT

ET200M

B |/O for PROFINET

ET200S PN

SIMOTION D

Figure 2-4  Example of an automation solution

Message Handling
Application Manual, 11/2016 17



Application description

2.4 System overview (example)

242

243

244

18

Hardware structure

The message handling has been created for the SIMOTION motion control system and
requires a controller of this type. It can be used for all versions of SIMOTION devices
(SIMOTION D, C and P). In principle, the drive type is irrelevant when using a PROFIdrive
standard telegram for a SINAMICS S120 drive, however, the status word of the drive is
addressed directly, which may not function when the interface has been defined differently.

System requirements

The message handling has been created and tested for the software version as of
SIMOTION SCOUT V4.1 SP4 with SINAMICS 2.5 and 2.6. The CAM technology package is
a minimum requirement.

Scope of delivery
You will find the following data on the supplied medium:
e The LDPV1 and LMsgHdlI libraries in XML format
® The program units of the message handling in XML format

e SIMOTION IT pages

® Files in XML format for the language selection of the message texts in German, English,
French and Italian.

Message Handling
Application Manual, 11/2016



Application structure

3.1 Structure of the libraries

311 Overview of the libraries

The following libraries are used for the message handling:

Message Handling
Application Manual, 11/2016

LDPVA1 library for the acyclic data exchange with SINAMICS drives.
The descriptions of the blocks and functionalities of this library can be found on the
Utilities & Applications storage medium, which is part of SIMOTION SCOUT.

LMsgHdl library for the functionalities of the message handling. The library is split into
various units. The LMsgHdl library has been created for the message handling and is
described in this document.

_
=8 Msghd|_2
| Neues Gerat anlegen
*_| Einzelantriebsgerit einfligen
+- [ D435
+ -l D45
-1 __] BIBLIOTHEKEM
® | Bibliothek einfigen
® | DCC Bibliothek. einfagen
- & LDPY1
) sT-Quelle einfiigen
® ) MCC-Quelle einfigen
) KOP{FUP-Quelle einfiigen
By aversion

cPublic

2 O O e = =

FPFrFrFrPrrrrrFrFF

= [& LMsgHdl

) sT-Quelle einfiigen

® ) MCC-Quelle einfigen

) KOPJFUP-Quelle einfiigen
By aversion

£}

By cPublic

+
4
4
+
4
4
+
4

Frrr@

+1-_] BEQBACHTEN

Projekt | Befehlsbiblinthek

Figure 3-1 Overview of the libraries for the message handling

19



Application structure
3.2 Structure of the units in the SIMOTION project

3.1.2 Structure of the LMsgHdl library

The following table lists the units of the LMsgHdl library. The user has access to two units of
the library, all other units have know-how protection. Only the units without know-how
protection are described.

The aVersion unit is used to identify the version history of the library. No source code is
contained in this unit.

The constants of the cPublic unit are described in Section Constants (Page 22).

Table 3- 1 Structure of the LMsgHdl library

Unit name Use Know-how protection
aVersion Unit of the version overview, change list No
cProtected Unit of the definition of the protected constants Yes
cPublic Unit of the definition of the constants that can be changed No
by the user
dProtected Unit of the protected data Yes

dStringGlob Unit for texts of the string-based buffers in German, English, | Yes
French and ltalian.

fMsgGlob Unit for functions of the string-based buffers Yes
fMsgHdI Unit for functions of the message handling Yes
fSysTasks Unit for functions to read out messages from SIMOTION Yes
fault tasks
3.2 Structure of the units in the SIMOTION project

Units of the message handling

Units are created in the SIMOTION application when the configuration script of the message
handling is executed. The interfaces for the operation of the message handling as well as the
message buffers are defined in global variables. The following units are available in the
application of the message handling:

Table 3- 2 Units of the message handling in the SIMOTION application

Unit Use Know-how protection
fLMsgHdlInit Functions that have to be adapted by the configuration No
script or the user in the specific project
fLMsgHdI Functions for the message handling Yes
pLMsgHdI Unit for programs of the message handling Yes
dLMsgHdI Alternative message variant (not activated by default) No

Message Handling
20 Application Manual, 11/2016



Application structure
3.3 Constants

Note

The global variables declared in the program units can be used in the user application and
monitored via the symbol browser. A description of the global variables can be found in
Overview of the global variables (Page 107).

Programs in the message handling

The pLMsgHdI unit contains programs that are assigned to the execution system by the
configuration script. These are used for the initialization, to collect messages and to process
messages in the buffers. The unit has know-how protection and the user cannot make any
changes.

Table 3- 3 Programs in the pLMsgHdI unit

Name of the program Task level Use
pLMsgHdIStartupMessageHandling StartupTask e Initialization of the data

e Assignment of the TO references, the DO
addresses and the 1/0 addresses

e Setting the machine error classes

pLMsgHdITechnologicalMessage TechnologicalFaultTask Reading in technological messages

pLMsgHdIPeripheralMessage PeripheralFaultTask Reading in peripheral messages

pLMsgHdITimeFaultMessage TimeFaultTask Reading in timeout messages

pLMsgHdITimeFaultBackgroundMessage TimeFaultBackgroundTask | Reading in timeout messages in the Back-
groundTask

pLMsgHdIExecutionFaultMessage ExecutionFaultTask Reading in messages when executing the
SystemFaultTask

pLMsgHdIMain BackgroundTask Call of all message handling programs in the
BackgroundTask

Message Handling
Application Manual, 11/2016 21



Application structure

3.3 Constants
3.3 Constants
3.3.1 Public constants
The following constants are preset by the configuration script and should not be changed by
the user.
Note
The constants in the cPublic unit for the number of TOs and DOs in the project are written by
the configuration script to their correct values. These constants may not be changed by the
user. If the project configuration changes, the configuration script must be called again. The
message log in the retentive data area (RETAIN) is then reinitialized when the SIMOTION
device is restarted.
Table 3- 4 Public constants in the cPublic unit of the LMsgHdI library (preset by the configuration script)
Name Value Use
LMSGHDL_LENGTH_OF_MESSAGE_LOG 200 Length of the buffer for the message log
(applies for raw data and STRING buffers)
LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES 100 Length of the buffer for active message
(applies for raw data and STRING buffers)
LMSGHDL_LANGUAGE_FOR_MESSAGE_STRING 9 Setting of the language (default setting 9 =
English) (STEP 7 notation)
LMSGHDL_NUMBER_OF_AXES 1 Number of axes in the project (real and
virtual)
LMSGHDL_NUMBER_OF_EXTERNAL_ENCODERS 1 Number of external encoders in the project
LMSGHDL_NUMBER_OF_MEASURING_INPUTS 1 Number of measuring inputs in the project
LMSGHDL_NUMBER_OF_OUTPUT_CAMS 1 Number of output cams in the project
LMSGHDL_NUMBER_OF_CAM_TRACKS 1 Number of cam tracks in the project
LMSGHDL_NUMBER_OF_CAMS 1 Number of cams in the project
LMSGHDL_NUMBER_OF_FOLLOWING_OBJECTS 1 Number of following objects in the project
LMSGHDL_NUMBER_OF_PATH_OBJECTS 1 Number of path objects in the project
LMSGHDL_NUMBER_OF_FIXED_GEARS 1 Number of fixed gears in the project
LMSGHDL_NUMBER_OF_ADDITION_OBJECTS 1 Number of addition objects in the project
LMSGHDL_NUMBER_OF_FORMULA_OBJECTS 1 Number of formula objects in the project
LMSGHDL_NUMBER_OF_SENSORS 1 Number of sensor objects in the project
LMSGHDL_NUMBER_OF_CONTROLLER_OBJECTS 1 Number of controller objects in the project
LMSGHDL_NUMBER_OF_TEMPERATURE_CONTROLLERS 1 Number of temperature controllers in the

project

LMSGHDL_NUMBER_OF_TOS_WITH_DO

Number of DOs with technology object
(electric axes)

22

Message Handling
Application Manual, 11/2016



Application structure

3.3 Constants

Name Value Use
LMSGHDL_NUMBER_OF_CYCLIC_DOS 1 Number of DOs with cyclic data exchange

(without DOs that are connected to TO

axes)
LMSGHDL_NUMBER_OF_ACYCLIC_DOS 1 Number of DOs with acyclic data exchange

(no configured telegram)
LMSGHDL_NUMBER_OF_PERIPHERAL_DEVICES 1 Number of peripheral devices
LMSGHDL_MAX_NUMBER_OF_SYSTEM_TASKS 53 Number of existing tasks in the execution

system of the SIMOTION project

Non-editable constants that can be used by the user

The following constants can be used by the user to edit the user-defined message texts.
These constants may not be changed by the user.

Table 3-5 Public constants in the cPublic unit of the LMsgHdl library (that can be used by the user)

Name Value |Use
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_1 1 Can be used to transfer additional value 1
(additionalValue1) for a user-defined mes-
sage.
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_2 2 Can be used to transfer additional value 2
(additionalValue1) for a user-defined mes-
sage.
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_FB_ID 3 Can be used to transfer additional value FB-
ID (functionBlockld) for a user-defined mes-
sage.
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_ERROR_ |4 Can be used to transfer additional value error
CODE code (errorCode) for a user-defined message.
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_REAL 5 Can be used to transfer additional value

REAL (additionalValueReal) for a user-
defined message.

LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT 0 Can be used to transfer data type DINT for
the output of a user-defined message.

LMSGHDL_USER_MESSAGE_VALUE_TYPE_HEX 1 Can be used to transfer data type HEX for the
output of a user-defined message.

LMSGHDL_USER_MESSAGE_VALUE_TYPE_REAL 2 Can be used to transfer data type REAL for

the output of an additional value of a user-
defined message.

Message Handling
Application Manual, 11/2016 23



Application structure

3.3 Constants

3.3.2 Changea

ble public constants

The following constants are not preset by the configuration script and must be changed by
the user as required.

Note

The value of the constants must be at least 1 (one). The value 0 (zero) is not permitted.

Table 3-6  Changeable public constants in the cPublic unit of the LMsgHdl library

Name Value

Use

LMSGHDL_NUMBER_OF_STRING_MESSAGES_PER_CYCLE_IN_STARTUP

3

Number of messages in STRING format that are generated in the initialization during
startup. The startup time of the message handling can be reduced via this constant. If the
value selected is too large however, this can result in a timeout in the BackgroundTask.

LMSGHDL_MAX_NUMBER_

OF_NEW_MESSAGES_PER_CYCLE

1

Number of new messages that can be taken into the message buffer in one background
cycle. The default value should be retained here, if possible.

LMSGHDL_AUTO_SAVE_MESSAGE_BUFFER_TO_STORAGE_MEDIUM

FALSE

Activation/deactivation of the automatic saving of the message buffer to the storage medium
of the SIMOTION device function

LMSGHDL_MAX_NUMBER_

OF_DATASETS_ON_STORAGE_MEDIUM

5

Number of files that are created with AutoSave = TRUE

LMSGHDL_NUMBER_OF_EXECUTION_FAULT_MESSAGES

2

Size of the buffer to collect messages for program execution errors during runtime. The
buffer can be enlarged if there is an overflow.

LMSGHDL_NUMBER_OF_TECH_FAULT_MESSAGES

100

Size of the buffer to collect the technology messages. The buffer can be enlarged if there is
an overflow.

LMSGHDL_NUMBER_OF_PERIPHERAL_FAULT_MESSAGES

50

Size of the buffer to collect the peripheral fault messages. The buffer can be enlarged if
there is an overflow.

LMSGHDL_NUMBER_OF_TI

ME_FAULT_MESSAGES

5

Size of the buffer to collect the timeout messages. The buffer can be enlarged if there is an
overflow.

LMSGHDL_NUMBER_OF_APPLICATION_MESSAGES

20

Size of the buffer to collect the user-defined messages within a task. The buffer can be en-
larged if there is an overflow.

LMSGHDL_NUMBER_OF_DO_FAULT_MESSAGES

50

Size of the buffer to collect the fault messages on drive objects. The buffer can be enlarged
if there is an overflow.

LMSGHDL_NUMBER_OF_DO_ALARM_MESSAGES

50

Size of the buffer to collect the alarm messages on drive objects. The buffer can be enlarged
if there is an overflow.

LMSGHDL_NUMBER_OF_DO_SAFETY_MESSAGES

24

Message Handling
Application Manual, 11/2016



Application structure

3.4 Core functions and components

Name

Value Use

50 Size of the buffer to collect the safety messages on drive objects. The buffer can be en-
larged if there is an overflow.

LMSGHDL_ALARM_S_USER_MESSAGES

FALSE TRUE: Use of AlarmS for the message display on the HMI.
FALSE: No use of AlarmS.

LMSGHDL_MESSAGE_BIT_USER_MESSAGES

FALSE TRUE: Use of message bit handling for the message display on the HMI.
FALSE: No use of the message bit handling.

LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI

10 Maximum number of lines for the display of a message buffer (actual number is transferred
separately for the message log and display of the active errors).

LMSGHDL_MAX_STRING_LENGTH_OF_MESSAGE_TEXTS_TO_HMI

80 Maximum number of characters for message texts in the STRING format that can be trans-
ferred via the internal function blocks to an HMI or SIMOTION IT.

LMSGHDL_NUMBER_OF_USER_DEFINED_EVENTS

10 Number of user-defined messages.

LMSGHDL_NUMBER_OF_FUNCTION_BLOCK_IDS

1 Number of user-defined messages through FBs/FCs. These FB/FC messages are part of
the total number of messages in the
LMSGHDL_MAX_NUMBER_OF_USER_DEFINED_EVENTS constant.

LMSGHDL_MACHINE_ERROR_CLASS_ERROR_IN_MESSAGEHANDLING

0 Specifies the message class that sets the messages, which have been issued by the mes-
sage handling itself, in the message handling.

3.4

3.4.1

Message Handling

Core functions and components

Overview of the core functions and required components of the message
handling

The message handling has the following core functions:

® Managing and displaying messages

® Using the AlarmS handling or message bit handling

® Acknowledging active messages

® Saving current messages to the storage medium of the SIMOTION device
e Setting the language of the message texts

Other components required in the message handling:

e Buffer management for acyclic DP-V1 data exchange services

e Startup check of the SIMOTION device

Application Manual, 11/2016 25



Application structure

3.4 Core functions and components

3.4.2 Description of the core functions and required components

3.4.2.1 Buffer management

Buffer management for acyclic DP-V1 data exchange services

The message handling uses the acyclic DPV1 data exchange service to determine
information on SINAMICS modules. To avoid a collision of the individual data exchange jobs,
the message handling uses the global buffer management (pGlobalBufferManager program)
of the LDPV1 library. This procedure is required as only one acyclic data exchange job can
be processed simultaneously for each SINAMICS device.

Therefore, when using the message handling it is essential to check that in the entire
application all further acyclic data exchange jobs are also issued via the global buffer
management of the LDPV1 library. The message handling uses the buffer with the identifier
zero (0) for all drive units, i.e. no other buffers may be used in applications in which acyclic
data exchange is used, in order to coordinate accesses. For more detailed information, refer
to the documentation on the LDPV1 library.

The functions and function blocks of the LDPV1 library should be used instead of system
commands for the data exchange in the drive in order to avoid collisions in the data
exchange. These blocks are already configured for the use of the buffer management.

Note

You must ensure that the pGlobalBufferManager program is available in the project and
assigned to the BackgroundTask. The program is supplied with the LDPV1 library.

3.4.2.2 Description of the buffers

General

Four buffers are created in the message handling. Depending on the setting in the
configuration script, either only the buffers for the raw data or all four buffers are supplied
with data:

e Buffer for message log as raw data (message history)
e Buffer for active messages, raw data
e Buffer for message log as strings (message history, strings), optional

e Buffer for active messages, strings, optional

Message Handling
26 Application Manual, 11/2016



Application structure
3.4 Core functions and components

These buffers are described in the following sections. For the interpretation of messages in
raw data format, see Section Interpretation of the raw data (Page 115).

Note

The message log is saved as soon as the buffer is full with the AufoSave function. All
messages that do not have a gorne time stamp at this time are saved without this time stamp.

Buffer for message log as raw data (message history)

All the messages that have occurred are displayed in the form of raw data in the buffer for
the entire message log. This data is stored as global data in the retentive area (RETAIN):

e Data of the buffer for active messages
e Time stamp Message gone

If the memory requirement of the message log is greater than the RETAIN data area, the
data area for the SIMOTION device can be switched from RETAIN to NON-RETAIN. To do
this, the preprocessor definition LMSGHDL_NO_RETAIN_BUFFER must be set in the
fLMsgHdI program unit, see Suppressing messages (Page 55).

As the message-specific information differs greatly depending on the source, this information
is collected in a generally defined structure. The result is that not all elements of this
structure are always filled.

To be able to evaluate this message information, it must be known how the individual
messages from the various sources are to be interpreted.

As the buffer for the message log can be transferred to an HMI, the structure in STRUCT OF
ARRAY is used for the buffer. A higher performance is achieved in this way. This buffer is in
the fLMsgHdl program unit and is called grsL MsgHdIMessagelogBaseData.

® 64 bytes are required per message in the buffer for the entire message log.

® The length of the storage area for the entire message log can be set via the
LMSGHDL_LENGTH_OF_MESSAGE_LOG constant. The default setting is for
200 entries.
The entire message log therefore requires approx. 12 KB memory in the retentive data
area (RETAIN).
The SIMOTION D410 is an exception, the default setting is for 150 entries.

The buffer for the message log as raw data is designed as a ring buffer.

Buffer for active messages, raw data

All the messages that have not been acknowledged or cannot be acknowledged are
displayed in the buffer for active messages. This data is stored as global data.

The following information is stored for each message:
e |dentifier for the message source
® [ evel of the message (error, fault, alarm)

® Type of acknowledgement for the message, e.g. some DO messages require Power On
as acknowledgement

Message Handling
Application Manual, 11/2016 27



Application structure

3.4 Core functions and components

® Message class
® Message information as raw data, as it occurs in the application
e Time stamp when message occurred

The structure and use of the data is identical to that of the message log in raw data format.
Only the time stamp Message gone is missing.

This buffer is in the pLMsgHdIl program unit and is called
gsLMsgHdlActiveMessagesBaseData.

® 51 bytes are required per message in the buffer for the active messages.

® The length of the storage area for the active messages can be set via the
LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES constant. The default setting is for
100 entries.
The entire message log for active messages as raw data therefore requires
approx. 5.1 KB memory in the global data area.

The buffer for active messages is not a ring buffer and is written successively with the entries
found in the message log. If more messages are active than the length of the buffer, the
remaining active messages are not displayed in the list. A separate message is displayed for
this.

Buffer for message log as strings (message history, strings)

All the messages that have occurred are displayed in STRING format in the buffer for the
message log. This data is stored as global data. Its use is optional and can be selected or
deselected during the configuration.

The string texts are stored either in German, English, French or Italian on the controller.
Other languages (only ASCII character code) are possible and can be loaded from the
storage medium of the SIMOTION device to the system. For more detailed information, see
Section Loading the language from the storage medium of the SIMOTION device (Page 41).

The following information is stored for each message:

® |nformation of the active message

e Time stamp Message gone

This buffer is in the fLMsgHdI program unit and is called gs. MsgHdIMessagel ogString.
® 314 bytes are required per message in the buffer for the entire string message log.

® The length of the storage area for the entire string message log can be set via the
LMSGHDL_LENGTH_OF_MESSAGE_LOG constant. The default setting is for
200 entries.
The entire string message log therefore requires approx. 62.8 KB memory in the global
data area.
The SIMOTION D410 is an exception, the default setting is for 150 entries.

The buffer for the message log as raw data is designed as a ring buffer.

Message Handling
28 Application Manual, 11/2016



Application structure
3.4 Core functions and components

Buffer for active messages, strings

All the messages that have not been acknowledged or cannot be acknowledged are
displayed in the buffer for active messages. This data is stored as global data. Its use is
optional and can be selected or deselected during the configuration.

The string texts are available either in German, English, French or Italian. Other languages
(only ASCII character code) are possible and can be loaded from the storage medium of the
SIMOTION device to the system. For more detailed information, see Section Loading the
language from the storage medium of the SIMOTION device (Page 41).

The following information is stored for each message:
e |dentifier for the message source
e | evel of the message (error, fault, alarm)

e Type of acknowledgement for the message, e.g. some DO messages require Power On
as acknowledgement

® | anguage-dependent message text including additional information
This achieves that all messages from all sources have the same form of message despite
different information.

e (Category of message

e Time stamp when message occurred

This buffer is in the pLMsgHdI program unit and is called gsL MsgHdlActiveMessageString.
® 291 bytes are required per message in the buffer for the active messages.

® The length of the storage area for the active messages can be set via the
LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES constant. The default setting is for
100 entries.
The entire message log for active messages as raw data therefore requires
approx. 29.1 KB memory in the global data area.

The buffer for active messages is not a ring buffer and is written successively with the entries
found in the message log. If more messages are active than the length of the buffer, the
remaining active messages are not displayed in the list. A relevant message is also not
generated.

3.4.23 Functions for entering user-defined messages

The FCLMsgHdIWriteUserMessageToBuffer and FCLMsgHdIWriteFBFCMessageToBuffer
functions are used to transfer the user-defined messages to the message handling and take
over the associated message class. With the aid of these functions, the corresponding
message is also issued in the system when the AlarmS handling or message bit handling is
selected. The functions can be called in all tasks of the execution system.

The AlarmS messages and also the appropriate bits for the message bit handling, are set by
these functions.

Message Handling
Application Manual, 11/2016 29



Application structure

3.4 Core functions and components

See also

3424

3.4.25

3.4.2.6

30

The texts for the user-defined messages must be created by the user in all the required
languages. The functioning and handling of the various languages is the same as for the
system messages.

Note

Each user-defined message can only be active once in the system. If a message is active
and transferred again to the message handling, it is not entered. Only after a user-defined
message has been acknowledged, can it be issued again.

There are two different types of user-defined messages:
e User-defined messages of the application

e User-defined messages of functions and function blocks

FCLMsgHdIWriteUserMessageToBuffer and FCLMsgHdIWriteFBFCMessageToBuffer
functions (Page 85)

AlarmS

AlarmS is a built-in system function and can be used by the Message Handling application.
To do this, the user activates the AlarmS handling in the SIMOTION project. When AlarmS is
activated, the appropriately configured AlarmS message is issued for each user-defined
message. For more detailed information, see Section Embedding of the AlarmS handling or
message bit handling (Page 59).

Message bit handling

The message bit handling is an available function and can be used by the Message Handling
application. To do this, the user activates the message bit handling in the SIMOTION project.
For more detailed information, see Section Embedding of the AlarmS handling or message
bit handling (Page 59).

Response to execution faults in programs

The response to program faults is set by the configuration script for all tasks on the
ExecutionFaultTask. If a program fault occurs in a sequential task, e.g. access outside of the
array limits, the ExecutionFaultTask is started. The task, in which this fault has occurred, is
aborted, the SIMOTION device remains in RUN mode. When the ExecutionFaultTask is run
through, the message information that is output is stored in a buffer of the message
handling. This buffer is in the retentive data area (RETAIN). As the SIMOTION device then
automatically goes into STOP mode, this message can no longer be entered in the message
buffer. If the SIMOTION device is set again to RUN mode, the message is taken into the
message buffer and appears in the message log and the active messages. This message
can be acknowledged in the message handling.

Message Handling
Application Manual, 11/2016



Application structure

3.4 Core functions and components

3.4.2.7 Message handling startup

The following actions are performed in the Message Handling library when the message
handling starts up:

Initialization of the message buffer for the message log in raw data format. All messages
that were active when the machine was shut down are automatically acknowledged
during startup.

After the configuration script is run through, the message log in raw data format is always
deleted in the retentive data area (RETAIN). If changes are made in the project, the
configuration script must be run through again. After the configuration script has been
completed, it is not certain that the configured information determined by the
configuration script matches the information already available in the raw data message
log.

If available on the storage medium of the SIMOTION device, loading of the language
stored in the message handling. This action is only performed when the STRING format
has been selected in the message handling.

Generation of a new message for the restart of the SIMOTION device.

Monitoring of the startup of all the devices configured on the SIMOTION device. If a
configured device is missing or not ready, a message is entered in the message handling.

Determination of special information about all the configured drive objects on SINAMICS
modules.

Reading out of the names of drive objects for the message handling in STRING format.

Time synchronization of all SINAMICS modules to RTC (Real Time Clock) of SIMOTION
(only with selected time synchronization and when using standard telegram 39x on the
control unit of a SINAMICS object).

The message buffers are generated when the message log in STRING format has been
selected in the message handling.

If an error occurs in the buffer management during startup of the message handling, the
startup may never be completed (variable bo/nitDriveReady = TRUE). For this reason,
the startup check is immediately terminated when the buffer management signals an
error. This error is transferred to the message handling and can therefore be output.

Note

If the buffer management in the STRING format is used with a large buffer for the
message log, the generation of the STRING buffer during startup can take a long time. To
accelerate this process, the
LMSGHDL_NUMBER_OF_STRING_MESSAGES_PER_CYCLE_IN_STARTUP constant
has been created in the cPublic unit of the LMsgHdlI library. Depending on its value,
several strings are copied in succession in each cycle in the BackgroundTask. This
significantly reduces the startup time.

No old messages may be active after a restart of the SIMOTION device. All messages that
were not gone before startup are automatically acknowledged during startup. After all
messages have been acknowledged, a new message for the startup of the SIMOTION
device is entered in the message log. This entry receives the time stamp time occurred =
time gone = current value of the RTC.

Message Handling

Application Manual, 11/2016 31



Application structure

3.4 Core functions and components

3.4.2.8

3429

General

Acknowledgement of the active messages

The global acknowledgement of all messages is performed via the global variable

gbol MsgHdIMsgHdIGlobalAcknowledge in the pLMsgHdI program unit. The variable must
be set to TRUE by the application. The rising edge triggers a global acknowledgement of all
active messages in the message handling. After acknowledgement, the variable is
automatically reset to FALSE. Acknowledgement by the message handling acknowledges all
the active faults and messages on SIMOTION and SINAMICS. If the AlarmS handling or
message bit handling is active, these active messages are also acknowledged in the system.
All active messages (except for alarms on drive objects) are reset in the message handling.
If faults and messages are still present after the acknowledgement, these are taken into the
message handling again.

Note

All faults and messages that occur in the controller or are displayed in the message
handling, may only be acknowledged via the message handling. If an acknowledgement is
triggered that bypasses the message handling, this cannot be detected by the message
handling. The display in the message handling would then be incorrect.

Filtering messages to an HMI / SIMOTION IT

The filters are used on the output interface to an HMI / SIMOTION IT. For this purpose, the
implementation within the FBLMsgHdIActiveMsgBaseDataToHMI,

FBLMsgHdIMsgl ogBaseDataToHMI, FBLMsgHdIActiveMsgSgToHMI and
FBLMsgHdIMsgl.ogSgToHMI function blocks is executed. All messages are entered in the
respective global buffer. This means that within the output on HMI / SIMOTION IT it is
possible to select which message sources are to be displayed and which are not.

Message sources

32

A distinction is made between the following message sources:

® Messages from technology objects
If selected, all messages (active or message log) that have been generated by
technology objects would be output to an HMI or SIMOTION IT.

e DO alarm
If selected, all alarms (active or message log) that have been generated by drive objects
would be output to an HMI or SIMOTION IT.

e DO warnings
If selected, all warnings (active or message log) that have been generated by drive
objects would be output to an HMI or SIMOTION IT.

e DO safety messages
If selected, all safety messages (active or message log) that have been generated by
drive objects would be output to an HMI or SIMOTION IT.

Message Handling
Application Manual, 11/2016



Application structure

3.4 Core functions and components

® Messages from I/O modules
If selected, all messages (active or message log) that have been generated by I/O
modules would be output to an HMI or SIMOTION IT.

e User-defined messages
If selected, all messages (active or message log) that have been generated by the user
would be output to an HMI or SIMOTION IT.

e System messages
If selected, all messages (active or message log) that have been generated by the
system would be output to an HMI or SIMOTION IT. This includes TimeFault messages,
TimeFault messages of the BackgroundTask and ExecutionFault messages.

® Messages by message handling
If selected, all messages (active or message log) that have been generated by the
message handling would be output to an HMI or SIMOTION IT.

If one of the sources described here is deselected, the message is still entered in the
corresponding buffer, but does not appear at the output of the function blocks described
above for output to an HMI or SIMOTION IT. These messages are only filtered out for the
output.

The filters are selected in the gsL MsgHdlFilterToHM] variable of the pLMsgHd| program unit.
This variable transfers the filter criteria to all output function blocks for an HMI or
SIMOTION IT.

Structure of the gsLMsgHdIFilterToHMI variable

The gsLMsgHdlFilterToHMI/ variable is of the sLMsgHdIFilterToHMIType type and has the
following structure. The gsL MsgHd|FilterToHM/ variable can be transferred to the already
existing HMI FBLMsgHdIActiveMsgSgToHMI, FBLMsgHdIMsgLogSgToHMI,
FBLMsgHdIActiveMsgBaseDataToHMI and FBLMsgHdIMsglLogBaseDataToHMI function
blocks. The outputs resulting there are taken into account with the relevant filter information.

Table 3-7 Structure of sLMsgHdIFilterToHMIType

Parameter Data type | Initial value | Description

boShowTOMessages BOOL TRUE With TRUE, all messages of all TOs are
displayed, with FALSE, they are filtered
out.

boShowDOWarnings BOOL TRUE With TRUE, all warnings of all DOs are
displayed, with FALSE, they are filtered
out.

boShowDOAlarms BOOL TRUE With TRUE, all alarms of all DOs are
displayed, with FALSE, they are filtered
out.

boShowDOSafetyMessages BOOL TRUE With TRUE, all safety messages of all

DOs are displayed, with FALSE, they are
filtered out.

boShowPeripheralMessages BOOL TRUE With TRUE, all messages of all /O mod-
ules are displayed, with FALSE, they are
filtered out.

Message Handling
Application Manual, 11/2016 33



Application structure

3.4 Core functions and components

3.4.2.10

General

Example 1

Example 2

Parameter Data type | Initial value | Description

boShowSystemMessages BOOL TRUE With TRUE, all system messages are
displayed, with FALSE, they are filtered
out.

boShowUserDefinedMessages | BOOL TRUE With TRUE, all user-defined messages
are displayed, with FALSE, they are
filtered out.
boShowMessagesFromMsgHdl | BOOL TRUE With TRUE, all messages generated by
the message handling are displayed,
with FALSE, they are filtered out.

Modular machine

With the message handling, it is possible to suppress message entries in the message buffer
for specific objects.

The motor of a conveyor belt is defective. If the TO or DO fails, errors of this axis or drive are
entered in the message handling. As the drive is not essential for the operation of the
machine, it should be deselected from the message handling and from the customer
application. After setting the property, no more errors from these objects are entered in the
message handling.

Partial commissioning of a machine

The hardware of a machine is not complete at the start of commissioning, e.g. a motor and
an I/O node are missing. Entries for these objects are to be suppressed in the message
handling.

Suppressible messages on objects

34

The following objects can be suppressed:
® Technology objects

® Drive objects

e |/O modules

Each object is assigned a setting in which you define whether the message handling should
monitor the object or not. These settings are saved retentively by the message handling and
are therefore still present after Power OFF/ON.

Message Handling
Application Manual, 11/2016



Application structure
3.4 Core functions and components

There are two ways to specify the objects that are to be monitored.

e First of all, a basic specification can be set in the source code of the message handling.
This is performed in the fLMsgHdIInit program unit in the FCLMsgHdlIInitProjectinfo
function.

® |n addition, this basic setting can be changed or adapted by the user during runtime. The
setting changed during runtime overwrites the basic setting and is then valid at each
restart. The basic settings are taken over by the message handling either when the
configuration script is run through again, or when the user increments the global constant
LMSGHDL_SCRIPT_COUNTER in the source code of the fLMsgHdlIInit program unit,
recompiles and downloads the project to the SIMOTION device.

Basic settings in the source code
The basic settings in the source code are made as follows:

® TO axis with DO
If the TO is to be monitored, this is transferred in fLMsgHdlInit in the
FCLMsgHdlInitProjectinfo function via
gasL MsgHdlaxesnumberOrAxis].bo ToUsedInProject .= TRUE. The associated DO is
transferred via gasL MsgHdlaxes[numberOfAxis].boRelatedDoUsed = TRUE.

® All other TOs
Within the transfer structure of all TO types there is a setting with which the monitoring
can be switched on or off for each TO, e.g.
gasLMsgHdIExternalEncoders{numberOfTO].boToUsedInProject := TRUE.

e DO with cyclic data exchange
Within the transfer structure of all DOs with cyclic data exchange there is a setting with
which the monitoring can be switched on or off for each DO, e.g.
gasLMsgHdIDOs Cyclic/numberOfCyclicDOJ.boDoUsedInProject := TRUE.

e DO without cyclic data exchange
Within the transfer structure of all DOs without cyclic data exchange there is a setting with
which the monitoring can be switched on or off for each DO, e.g.
gasLMsgHdIDOsACyclic/numberOfCyclicDO].boDoUsedInProject := TRUE.

® |/O modules
Within the transfer structure of all I/O modules there is a setting with which the monitoring
can be switched on or off for each I/O module, e.g.
gasLMsgHdIPeripheralDevicesfnumberOfDevice]. boUsedInProject .= TRUE. If
boUsedInProject := FALSE is set for an I/O module, it is essential that the module also
does not actually exist. If it is present however, an error is output by the message
handling. When deselecting a SINAMICS 1/0 module, no time synchronization is
performed on this module.

Note

If an 1/0 module of the SINAMICS type is not available, all objects belonging to the device
must be deselected. This means that the corresponding property must be set to FALSE
for all TOs, all DOs and the I/0O modules themselves. If this is not performed, error
messages are output by the message handling.

Message Handling
Application Manual, 11/2016 35



Application structure

3.4 Core functions and components

Settings during runtime

36

The settings during runtime are performed as follows:

The settings described here are stored within the pLMsgHdI program unit in the retain data.

TO axis with DO

The gsLMsgHdIMoMa TOAxis variable is of the sLMsgHdIMoMa TOAxis Type type and is
in the pLMsgHdl program unit. This means that the settings for modular machines can
also be made via the symbol browser.

The information, as to which entries belong to which technology object, is transferred by
the message handling.

The data type is defined as follows:

Table 3-8 Structure of sLMsgHdIMoMaTOAXxisType

Parameter Data type Initial value | Description

toReference ANYOBJECT | TO#NIL The axis reference is set from the execution
software of the message handling.

sgToName STRING Name of the axis

boRelatedDOUsed BOOL TRUE With FALSE, the DO belonging to the TO is

not monitored by the message handling.

boTOUsedInProject BOOL TRUE With FALSE, the TO is not monitored by the

message handling.

All other TOs

The gsLMsgHdIMoMaxxx variables (type of the TO) are of the sLMsgHdIMoMaTOType
type and are in the pLMsgHdl program unit. This means that the settings for modular
machines can also be made via the symbol browser.

The information, as to which entries belong to which technology object, is transferred by
the message handling.

The following variables are available depending on the active technology package:

— gasLMsgHdIMoMaExternalEncoders for external encoders
— gasLMsgHdIMoMaMeasuring/nputs for measuring inputs
— gasLMSGHDLMoMaOutoutCams for output cams

— gasLMsgHdIMoMaCamTracks for cam tracks

— gasLMsgHdIMoMaCams for cams

— gaslLMsgHdIMoMaFollowingObjects for following objects
— gasLMsgHdIMoMaPathObjects for path objects

— gaslLMsgHdIMoMaFixedGears for fixed gears

— gaslLMsgHdIMoMaAdditionObjects for addition objects

— gaslLMsgHdIMoMaFormulaObjects for formula objects

— gasLMsgHdIMoMaSensors for sensors

— gaslLMsgHdIMoMaConftrollerObjects for controller objects

— gasLMsgHdIMoMaTemperature Controllers for temperature controllers

Message Handling
Application Manual, 11/2016



Application structure

3.4 Core functions and components

The data type is defined as follows:

Table 3-9 Structure of sLMsgHdIMoMaTOType

Parameter Data type Initial value | Description

toReference ANYOBJECT | TO#NIL The axis reference is set from the execution
software of the message handling.

sgToName STRING Name of the axis

boTOUsedInProject BOOL TRUE With FALSE, the TO is not monitored by the
message handling.

e DO with cyclic data exchange
The gaslL MsgHdIMoMaDosCyclic variable is of the sLMsgHdIMoMaDOsCyclicType type
and is in the pLMsgHdl program unit. This means that the settings for modular machines
can also be made via the symbol browser.
The information, as to which entries belong to which drive object, is transferred by the
message handling.

The data type is defined as follows:

Table 3- 10  Structure of sLMsgHdIMoMaDOsCyclicType

Parameter Data type Initial Description
value
sgDoName STRING Name of the DO
i32LogAddress DINT 0 Logical address of the DO
elold enumloldType INPUT Data direction of the logical address
boDOUsedInProject BOOL TRUE With FALSE, the DO is not monitored by the
message handling.

e DO without cyclic data exchange
The gaslL MsgHdIMoMaDosAcyclic variable is of the sLMsgHdIMoMaDOsACyclicType
type and is in the pLMsgHdl program unit. This means that the settings for modular
machines can also be made via the symbol browser. The information, as to which entries
belong to which drive object, is transferred by the message handling.

The data type is defined as follows:

Table 3- 11 Structure of sLMsgHdIMoMaDOsACyclicType

Parameter Data type Initial Description
value
sgDoName STRING Name of the DO
i32LogAddress DINT 0 Logical address of the DO
elold enumloldType INPUT Data direction of the logical address
u8DoNumber USINT 0 DO number
boDOUsedInProject BOOL TRUE With FALSE, the DO is not monitored by the
message handling.

® |/O modules
The gasL MsgHdIMoMaPeripheralDevices variable is of the

Message Handling
Application Manual, 11/2016 37



Application structure

3.4 Core functions and components

3.4.2.11

General

38

sLMsgHdIMoMaPerijpheralDevices Type type and is in the pLMsgHdI program unit. This
means that the settings for modular machines can also be made via the symbol browser.
The information, as to which entries belong to which /O module, is transferred by the
message handling.

The data type is defined as follows:

Table 3- 12  Structure of sLMsgHdIMoMaPeripheralDevicesType

Parameter Data type Initial Description
value

sgDeviceName STRING Name of the 1/0 module

u32MasterSystemld UDINT 0 masterSystemld of the bus system on which
the 1/0 module has been configured.

u32SlaveAddress UDINT 0 Slave address of the I/O module

boUsedInProject BOOL TRUE With FALSE, the I/O module is not monitored
by the message handling. It must not be pre-
sent and is not time-synchronized (SINAMICS
module).

The transfer or validity of this information is performed by setting

gbol MsgHdlActivateNewMoMaData in the pLMsgHdI program unit. After the transfer, the
setting gbol MsgHdIActivateNewMoMaData is removed automatically. This setting is then
valid after each Power OFF/ON restart.

DO safety messages

With the message handling, it is possible to also display active safety messages for the DO
errors and wamings in the message handling. So that the safety messages can be read out
at a DO, the eCheckSIMessages additional information must be supplied with the value
BY_DO_ADDRESS in the fLMsgHdllnit unit for each DO with active safety configuration. As
presently there is no bit for active safety messages in the cyclic data exchange, it must be
read out directly via the acyclic data exchange in a DO with active safety whether safety
messages are active or not. As to whether safety messages are active or not has to be read
out acyclically each time, eCheckSIMessages should only be set for those DOs on which
safety messages can occur. DISABLED should be set for all other DOs (default).

If a safety message occurs on a DO, it is entered in the message buffer. Safety messages
have approximately the same behavior as warnings on the DO. This means that safety
messages cannot be acknowledged via the message handling. When a safety message is
no longer active on the DO, this is detected by the message handling and automatically
acknowledged with the corresponding time stamp in the message handling.

The information as to whether safety messages are to be monitored on a DO can be
activated with the three different DO types at the following locations:

DO with TO
gasLMsgHdlaxes[..] -eCheckSIMessages := BY_DO_ADDRESS;

DO with cyclic data exchange

Message Handling
Application Manual, 11/2016




Application structure
3.4 Core functions and components

gasLMsgHdIDOsCyclic[..] -eCheckSIMessages := BY_DO_ADDRESS;
DO without cyclic data exchange

gasLMsgHdIDOsAcyclic[..]-eCheckSIMessages := BY_DO_ADDRESS;

Table 3- 13 Enum for eLDPV1CheckSIMessagesType

Enum identifier Description
DISABLED (0) Check of safety messages switched off on the DO
BY_DO_ADDRESS (2) Check whether safety messages are active via acyclic read job

Note

When using safety, the messages are automatically acquired by the message handling.
You do not have to make the settings described here.

BY_DO_ADDRESS is preset.

3.4.2.12 Saving of the ShutdownTask buffer

In the message handling, the buffer for user-defined messages within the ShutdownTask is
non-volatile. In this way, user-defined messages of the ShutdownTask are displayed in the
message handling when the machine is restarted.

3.4213 Saving the current message log in the SIMOTION device

Saving of the message log

There are two different ways to save the message log to the storage medium of the
SIMOTION device. Both options can be used together.

Note

The message log is saved as soon as the buffer is full with the AufoSave function. All
messages that do not have a gorne time stamp at this time are saved without this time stamp.

Message Handling
Application Manual, 11/2016 39



Application structure

3.4 Core functions and components

Option 1

Option 2

40

It is possible to save the current buffer in raw data format and STRING format to the storage
medium of the SIMOTION device. To save the buffer, the global variable

gbol MsgHd|IStartWrite CompleteMessagel og ToStorageMedium must be set to TRUE in the
pLMsgHdI program unit. The name of the file in which the information is written, is set via the
gu32L MsgHdlDataSetNoForExportMessagel og variable (default is 0). The rising edge saves
the current message buffer to the storage medium of the SIMOTION device. All the
information that is required to be able to interpret the message log in raw data format is also
contained in the file. After saving, the global variable is reset to FALSE. After this action, the
data of the buffer is on the storage medium of the SIMOTION device in the following
directory:

[ % SIMOTION D (03]
) ADDON
£3) HsTALL
) KEYS
£ cEm
£5) SIEMEMS
= [ USER
B [5) SIMaTIoN
) HMI
£ HMICFG
) RT_DIR
) RT_PRIV
C3) RT_PRIVM
[ |C5) USER _DIR
= ) uep
B [ UNITDS

_} Hrn:gh-:ll

) Arnsghdlint
) pLM=gHdI
05) samMICs

Figure 3-2  fLMsgHdl directory

In the fLMsgHdl directory, the file with the buffer images is called dsxxxxxx.dat, whereby
xxxxxx corresponds to the number in gu32L MsgHdIDatasetNoForExportMessagelLog. A
diagnosis is possible based on this file.

The error history can be saved permanently to the storage medium of the SIMOTION device.
Saving is performed automatically when the log buffer in the SIMOTION device is full.

The number of data sets for backing up the data is specified by the user via the constant in
front of LMSGHDL_MAX_NUMBER_OF_DATASETS_ON_STORAGE_MEDIUM in the
cPublic unit. The data sets are created according to the principle of a ring buffer. The
functionality can be switched on or off via
LMSGHDL_AUTO_SAVE_MESSAGE_BUFFER_TO_STORAGE_MEDIUM in the cPublic
unit.

Properties of the functionality:

The automatic saving is activated via message handling constants in the cPublic unit. The
user also specifies the number of data sets or the size of the ring buffer in the cPublic unit,
e.g. 3.

Message Handling
Application Manual, 11/2016



Application structure
3.4 Core functions and components

If an overflow occurs in the ring buffer of the message handling, the buffer data is saved
consistently to the storage medium of the SIMOTION device. The information stored there is
assigned the data set numbers 1000/1001/1002 etc. When the maximum number of data
sets has been reached, the first data set is overwritten in the ring buffer operation.

3.42.14 Loading the language from the storage medium of the SIMOTION device
Proceed as follows to load different languages:

The value set in the constant LMSGHDL_LANGUAGE_FOR_MESSAGE_STRING in the
cPublic unit of the LMsgHdlI library specifies with which language the message handling
starts after startup. The value of the respective language corresponds to the language ID
from the STEP 7 notation. German, English, French and Italian are currently integrated.
Other languages must be created and loaded by the user. Each time the SIMOTION device
is started, the message handling loads the appropriate language files for the system
messages and user-defined messages from the storage medium of the SIMOTION device to
the message handling. If these language files are not available, the language (German or
English) set via the configuration script is used by the message handling.

During message handling operation, the language selection can be changed as desired
between the languages stored on the storage medium of the SIMOTION device. This is
performed via the variables gu8L MsgHdlActiveLanguage and

gbol MsgHd/StartChangel anguage from the pLMsgHdI unit. The language to be used is
transferred as language ID to the gu8L MsgHdIActiveLanguage variable and exchanged with
a rising edge in the gbol MsgHdlIStartChangelLanguage variable. If the appropriate language
files are available on the storage medium of the SIMOTION device, all message buffers in
the STRING format are recreated after loading the language messages. The message
buffers are then output directly in the changed language. If an error occurs during loading,
e.g. the selected language is not available on the storage medium of the SIMOTION device,
a message is entered in the message handling.

The files with the system messages in the various languages must be stored on the storage
medium of the SIMOTION device in the following directory:
USER/SIMOTION/USER_DIR/UPP/UNITDS/pLMsgHdI

o] e SIMOTION D (O1)
C3) ADDON
) IMSTALL
03 KEYS
05) cEM
) SIEMENS
B ) user
=) SIMOTION
£5) 1w
£3) HMICFG
=) RT_DIR
C3) RT_PRIV
) RT_PRIWM
[=1 [ USER_DIR
=) uee
B (3 uNITDS
) Arnsghd
) Arnsghdlinit

5 E

£ SIMaMICS

Figure 3-3  Directory for language files

Message Handling
Application Manual, 11/2016 41



Application structure

3.4 Core functions and components

42

Marne = | Gardlie | Tvp
|14] dsponooz dat 177 KE  DAT-Datsi
|14 dsooonos.dat F4KE DAT-Datel

Figure 3-4 Language files

The file names of the various languages are formed from the abbreviation ds together with
the language ID from the STEP 7 notation for the respective language. Consequently, the
ds000007.dat file shown above in the pLMsgHdI directory contains all the system message
texts in German.

The files with the user-defined messages in the various languages must be stored on the
storage medium of the SIMOTION device in the following directory:
USER/SIMOTION/USER_DIR/UPP/UNITDS/fLMsgHdIInit

2] % SIMOTION D (00)
[5) ADDon
|Z) IMSTALL
) kEYS
) oEM
|Z) SIEMEMS
[ 5 USER
= 3 SIMOTION
|5 HMI
[C3) HMICFS
| RT_DIR
) RT_PRIV
|) RT_PRIWM
=1 ) USER_DIR
= ) ure
= [C5) unITES
|Z) Arnzghdl
] Arnsghdlinit
|2) pLMzgHdl

[T SIMAMICS

Figure 3-5 Directory for languages of the user-defined messages

Mame = I Grifie I Twp I
|14 dsooooo7 dat LKE DAT-Datei
|14 dsooonos.dat 1KE DAT-Datei

Figure 3-6 Files for languages of the user-defined messages

The file names of the various languages are also formed from the abbreviation ds and the
language ID from the STEP 7 notation for the respective language. Consequently, the
ds000007.dat file shown above in the fLMsgHdlInit directory contains all the user-defined
message texts in German.

Table 3- 14  Used language codes according to the STEP 7 notation (language ID)

Language Value [USINT]
No message log in STRING format 0
German 7
English 9

Message Handling
Application Manual, 11/2016



Application structure

3.4.2.15

3.4 Core functions and components

Language Value [USINT]
Spanish 10
French 12
Italian 16

Single acknowledgement

Single acknowledgement of messages

General

In addition to the global acknowledgement of all active messages, all active messages of
one source or even single messages can be acknowledged, depending on the message
source.

In the pLMsgHdI program unit, the gi32L MsgHdINumberOfMessagelnL og variable informs
the message handling which message is to be acknowledged. The acknowledgement itself is
started via gbol MsgHdIGlobalAcknowledge as for the global acknowledgement.

If all active messages are to be acknowledged globally, a -1 must be entered in
gi32L MsgHdINumberOfMessagelnLog (default).

With single acknowledgement, the number of the message to be acknowledged results from
the number of the message in the buffer for active messages. This means that if the first
active message from the message buffer is to be acknowledged, the number 1 must be
entered before starting the acknowledgement in gi32L MsgHdINumberOfMessagelnLog. After
the acknowledgement, the contents of this variable is again set to -1 and

gbol MsgHdIGlobalAcknowledge reset to FALSE.

Single acknowledgement for the message sources

Message Handling

® TO messages
Single acknowledgement of a TO message broken down to an entire TO, at which errors
are pending, e.g. _resetAxisError(ALL_ERRORS). All the pending messages are
acknowledged for the selected TO.

® DO messages
Only DO errors can be acknowledged. DO warnings or safety messages cannot be
acknowledged, but disappear automatically as soon as the reason for the message no
longer applies. If an error is to be acknowledged on a DO, a single acknowledgement of
the relevant DO is triggered. All other errors belonging to this DO are therefore also
acknowledged. If the errors are still pending after acknowledgement, they are entered
again in the message handling.

® |/O messages
Only the selected I/0 message is acknowledged. The I/O messages with the identifiers
202, 204, 210 and 215 cannot be acknowledged. These messages are automatically
acknowledged with the appropriate counter-message.

e TimeFault messages
Only the selected TimeFault message is acknowledged.

Application Manual, 11/2016 43



Application structure

3.4 Core functions and components

® Messages by message handling
Only the message selected by the message handling is acknowledged.

® User-defined messages
Each user-defined message is individually acknowledged. The single acknowledgement
also influences the bit message procedure and ALARM_S.

Selection of the message to be acknowledged via SIMOTION IT

On the SIMOTION IT page, the user can select single, active messages that are to be
acknowledged. The use of buttons for the single acknowledgement ensures that only a
single message or message source is actually acknowledged. After the selection has been
made, this selection is transferred to the message handling when the Acknowledge button
belonging to the message is clicked. The message handling then performs the single
acknowledgement. The information required by the message handling is available in
ai32NumberOfiMessagelnLog/LinelnHMI - 1]in the gsL MsgHdlActiveMsg ToHM/ variable of
the pLMsgHdI unit. This information is transferred for single acknowledgement to

gi32L MsgHdINumberOfMessagelnLog of the pLMsgHdI unit. At the same time

gbol MsgHdIGlobalAcknowledge is assigned a rising edge by SIMOTION IT.

User-defined message based on the message number

44

To be able to acknowledge a "single" user-defined message, a new global variable for
transfer of the message number has been inserted in the pLMsgHdI program unit.

The variable for the transfer of the number is gi32L MsgHdINumberOfUserMessage.

To acknowledge a specific user-defined message, the number of the message must be
entered in this variable. The acknowledgement is then made with the rising edge at
gbol MsgHdIGlobalAcknowledge.

Since the user-defined messages also support the bit message procedure and Alarm$S
procedure, the messages of these procedures are also acknowledged during the single
acknowledgement.

By specifying the message number, it is thus possible to "specifically" acknowledge user-
defined messages, user-defined messages of FBs/FCs, and messages by the message
handling itself.

Since the user-defined message with the message number 0 may be active several times,
make sure that only the first entry found with the identifier 0 is acknowledged with the single
acknowledgement. However, if all alarms with the identifier O are to be acknowledged
simultaneously, the acknowledgement procedure described in 1.2 should be used.

Note

It is recommended that other single acknowledgement mechanisms (Page 45) are used
since shifts in the buffer can occur between selection of the message number and issuing of
the acknowledgement in the procedure described here, which may result in the wrong
message being acknowledged.

Message Handling
Application Manual, 11/2016



Application structure

3.4 Core functions and components

Group acknowledgement of certain sources

In order to be able to acknowledge all messages of a certain source, e.g. of a certain DO,
the gsL MsgHdIAcknMessagelnifo variable of the sLMsgHdlAcknMessageinfoType type has
been inserted in the pLMsgHdI program unit. In this way, it is possible to acknowledge all
messages that satisfy the possible criteria at the same time.

The options of this type of acknowledgement are described below in more detail.

Table 3- 15 Elements of the sLMsgHdlAcknMessagelnfoType structure

Element Data type Initialization value Meaning
u8MessageSource | USINT 0 Source of messages to be acknowledged in the message han-

dling
u16Parameter1 UINT 0 Value to identify message 1 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)
i16Parameter2 INT 0 Value to identify message 2 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)
b32Parameter3 REAL 16#FFFF_FFFF Value to identify message 3 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)
b32Parameter4 REAL 255 Value to identify message 4 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)
b32Parameter10 REAL 0 Value to identify message 10 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)

The elements of the structure for transfer of the acknowledgement information correspond to
the data entered by the different message types in the raw data buffer of the message
handling. For more detailed information, refer to Appendix B. 1 of the documentation for the
message handling.

Note

The acknowledgement procedure described here works in principle according to the method
that the information requested in the acknowledgement structure is taken 1:1 from the raw
data buffer.

Messages from technology objects

Message Handling

All the active errors of an individual technology object can be acknowledged here. If the
technology object is an axis with a real drive, the subordinate drive object is also
acknowledged.

In order to acknowledge a specific technology object, the following data must be transferred
to gsL MsgHdlAcknMessagelinio .

gsLMsgHdIAcknMessagelnfo.au8MessageSource =1;
gsLMsgHdIAcknMessagelnfo.u16Parameter1 := identifier of the corresponding TO
type
gsLMsgHdIAcknMessagelnfo.i16Parameter2 := TO number
gsLMsgHdIAcknMessagelnfo.b32Parameter3 := not relevant

Application Manual, 11/2016 45



Application structure

3.4 Core functions and components

gsLMsgHdIAcknMessagelnfo.b32Parameter4 := not relevant
gsLMsgHdIAcknMessagelnfo.b32Parameter10 := not relevant

The TO number corresponds to the respective subindex under which the technology object
has been entered by the script in fLMsgHdlInit .

The respective identifiers for the TO types are listed in the Appendix (Page 120).

Errors on drive objects

46

All the active errors of an individual drive object (DO) can be acknowledged here.

In order to acknowledge a specific drive object, the following data must be transferred to
gsLMsgHdlIAcknMessagelnfo .

gsLMsgHdIAcknMessageln- =2;

fo.au8MessageSource

gsLMsgHdIAcknMessagelnfo.u16Parameter1 := TO number (for DO with TO)
gsLMsgHdIAcknMessagelnfo.i16Parameter2 :=lold (INPUT/OUTPUT)
gsLMsgHdIAcknMessagelnfo.b32Parameter3 := logical address for the DO
gsLMsgHdIAcknMessagelnfo.b32Parameter4 := DO number

gsLMsgHdIAcknMessagelnfo.b32Parameter10  := not relevant

The following must be taken into account:

If the drive object is a real drive that is assigned to an axis, the subindex of the axis must first
be entered in parameter 1. Parameters 2-4 must be set to their default values. Parameter 10
is not relevant.

Example:

Acknowledgement of the drive object for the axis
gasLMsgHdIAxes[1].toReference := film take-off;
gsLMsgHdIAcknMessagelnfo.au8MessageSource =2;
gsLMsgHdIAcknMessagelnfo.u16Parameter1 =1
gsLMsgHdIAcknMessagelnfo.i16Parameter2 =0
gsLMsgHdIAcknMessagelnfo.b32Parameter3 = 16#FFFF_FFFF
gsLMsgHdIAcknMessagelnfo.b32Parameter4 =255
gsLMsgHdIAcknMessagelnfo.b32Parameter10 := not relevant

If the drive object is a DO with cyclic data exchange, default value 0 must be set in
parameter 1. Parameters 2-3 must be assigned the values for the lold and the associated
logical address of the telegram. Parameter 4 has the DO number 255 and parameter 10 is
not relevant.

Example:
Acknowledgement of the CU with telegram 390

Message Handling
Application Manual, 11/2016



Application structure

3.4 Core functions and components

gasLMsgHdIDOsCyclic[0].i32LogAddress .= 256;
gasLMsgHdIDOsCyclic[0].elOID := OUTPUT;
gsLMsgHdIAcknMessagelnfo.au8MessageSource =2;
gsLMsgHdIAcknMessagelnfo.u16Parameter1 =0
gsLMsgHdIAcknMessagelnfo.i16Parameter2 :=1 (0 input/ 1 output)
gsLMsgHdIAcknMessagelnfo.b32Parameter3 =256
gsLMsgHdIAcknMessagelnfo.b32Parameter4 =255
gsLMsgHdIAcknMessagelnfo.b32Parameter10 := not relevant

If the drive object is a DO without cyclic data exchange, default value 0 must be set in
parameter 1. Parameters 2-4 must be assigned the values for the lold, an associated logical
address and the DO number. Parameter 10 is not relevant.

Example:

Acknowledgement of the DO of the TB30 without its
own telegram

gasLMsgHdIDOsAcyclic[0].i32LogAddress := 16380; // diagnostic address
gasLMsgHdIDOsAcyclic[0].elOID := INPUT;
gasLMsgHdIDOsAcyclic[0].u8DoNumber =4;
gsLMsgHdIAcknMessagelnfo.au8MessageSource =2;
gsLMsgHdIAcknMessagelnfo.u16Parameter1 =0
gsLMsgHdIAcknMessagelnfo.i16Parameter2 :=0 (0 input / 1 output)
gsLMsgHdIAcknMessagelnfo.b32Parameter3 :=16380
gsLMsgHdIAcknMessagelnfo.b32Parameter4 =4
gsLMsgHdIAcknMessagelnfo.b32Parameter10 := not relevant

Messages from 1/O modules

With the transfer of gsL MsgHdlAcknMessagelnfo.au8MessageSource = 4
all active messages through I/O modules that can be acknowledged are canceled.

The messages from I/O modules with interrupt IDs 202, 204, 210 and 215 cannot be
acknowledged. They "disappear" automatically as soon as the associated 1/0 message that
the error is no longer pending has been detected.

Messages through timeouts

With the transfer of gsL MsgHdlAcknMessagelnfo.au8MessageSource := 5
all active messages generated through timeouts in timer tasks or the background task are
acknowledged.

Message Handling
Application Manual, 11/2016 47



Application structure

3.4 Core functions and components

Messages of the execution fault task after restart of the controller

With the transfer of gsL. MsgHdIAcknMessagelnfo.au8MessageSource = 6
all active messages generated through the call of the execution fault task are acknowledged.

User-defined messages

User-defined messages can be acknowledged individually as follows:

gsLMsgHdIAcknMessageln- =9;

fo.au8MessageSource

gsLMsgHdIAcknMessagelnfo.u16Parameter1 := not relevant
gsLMsgHdIAcknMessagelnfo.i16Parameter2 := not relevant
gsLMsgHdIAcknMessagelnfo.b32Parameter3 := message number to be acknowledged
gsLMsgHdIAcknMessagelnfo.b32Parameter4 := not relevant

gsLMsgHdIAcknMessagelnfo.b32Parameter10  := not relevant

If message number 0 is transferred in parameter 3, all the active messages with message
number 0 are acknowledged.

With the acknowledgement of user-defined messages, the associated bit messages and
AlarmS messages are also acknowledged, if used.

Messages from FBs/FCs

48

User-defined messages from FBs/FCs can be acknowledged individually as follows.

gsLMsgHdIAcknMessageln- :=8;
fo.au8MessageSource
gsLMsgHdIAcknMessagelnfo.u16Parameter1 := not relevant

not relevant
message number to be acknowledged
not relevant

gsLMsgHdIAcknMessagelnfo.i16Parameter2
gsLMsgHdIAcknMessagelnfo.b32Parameter3
gsLMsgHdIAcknMessagelnfo.b32Parameter4
gsLMsgHdIAcknMessagelnfo.b32Parameter10  := not relevant

With the acknowledgement of user-defined messages, the associated bit messages and
AlarmS messages are also acknowledged, if used.

In addition, it is also still possible to acknowledge all active messages from FBs/FCs with the
same function block ID at the same time. In this case, all messages, regardless of the
message number, are acknowledged in transfer parameter 10 depending on the function
block ID.

gsLMsgHdIAcknMessageln- =8;
fo.au8MessageSource
gsLMsgHdIAcknMessagelnfo.u16Parameter1 := not relevant
gsLMsgHdIAcknMessagelnfo.i16Parameter2 := not relevant
gsLMsgHdIAcknMessagelnfo.b32Parameter3 := not relevant

Message Handling
Application Manual, 11/2016



Application structure

3.4 Core functions and components

gsLMsgHdIAcknMessagelnfo.b32Parameter4 := not relevant
gsLMsgHdIAcknMessagelnfo.b32Parameter10 =5

In this way, all messages through FBs/FCs with identifier 5 in parameter 10 (functionBlockld)
would be acknowledged simultaneously.

Messages through the message handling

3.4.2.16

Functionality

With the transfer of gsL MsgHdlAcknMessagelnfo.au8MessageSource := 10
all active messages generated by the message handling itself are acknowledged.

Common buffer for incoming/outgoing messages

In order to be able to use the new buffer in raw data format, the dLMsgHdl program unit must
first be imported into the SIMOTION project. At present, this import is not supported by the
script and must be performed separately via the XML import of a program unit.

After the import, the LMSGHDL_BUFFER_FOR_MESSAGES_GONE_AND_OCCURRED
define commented out, still has to be commented in in dLMsgHdI. This define must also be
commented in in the cPublic library unit of the LMsgHdl library.

Only after the define has been commented in in both units and the project recompiled, is the
new message buffer active and can be used.

In the fLMsgHdlIlnit program unit, the USES dL MsgHd/ code line also has to be commented
in and the USEL/B LMsgHd/code line commented out.

The LMSGHDL_LENGTH_OF_MESSAGE_LOG_GONE_OCCURRED constant determines
how many entries can be included in the buffer. Since this buffer is a ring buffer, the oldest
message is overwritten in the event of an overflow.

The constant is in the cPublic library unit and must be set by the user to the required value.
The default value of the constant is 200.

If this buffer is to be accessed by means of the HMI, also ensure that the size of the buffer
does not exceed 64k.

Structure of the buffer

Table 3- 16  Elements of the sLMsgHdIMessagel ogBaseDataGoneAndOccurredType structure

Element

Data type Meaning

i16Actuallndex

INT Current index in the global message
log for raw data

au8MessageSource ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about the source
LOG_GONE_OCCURED - 1] OF USINT of the message
au8Messagelevel ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about the level of
LOG_GONE_OCCURED - 1] OF USINT the message (fault, alarm, error, infor-
mation)

Message Handling

Application Manual, 11/2016 49



Application structure

3.4 Core functions and components

Element

Data type

Meaning

au8AcknowledgeClass

ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF USINT

Array for information about the type of
acknowledgement for the message

au8ErrorClass

ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF USINT

Array for information about the error
class of a message

aboOccuredMessage ARRAYI0..LMSGHDL_LENGTH_OF_MESSAGE _ | Array for information about whether the
LOG_GONE_OCCURED - 1] OF BOOL message is an incoming or outgoing
message
TRUE indicates that it is an incoming
message
au16Parameter1 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 1 of

LOG_GONE_OCCURED - 1] OF UINT

the respective message type

ai16Parameter2

ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF INT

Array for information about variable 2 of
the respective message type

ab32Parameter3 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 3 of
LOG_GONE_OCCURED - 1] OF DWORD the respective message type
ab32Parameter4 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 4 of
LOG_GONE_OCCURED - 1] OF DWORD the respective message type
ab32Parameter5 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 5 of
LOG_GONE_OCCURED - 1] OF DWORD the respective message type
ab32Parameter6 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 6 of
LOG_GONE_OCCURED - 1] OF DWORD the respective message type
ab32Parameter7 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 7 of
LOG_GONE_OCCURED - 1] OF DWORD the respective message type
ab32Parameter8 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 8 of
LOG_GONE_OCCURED - 1] OF DWORD the respective message type
ab32Parameter9 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 9 of
LOG_GONE_OCCURED - 1] OF DWORD the respective message type
ab32Parameter10 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_ | Array for information about variable 10

LOG_GONE_OCCURED - 1] OF DWORD

of the respective message type

ab32Parameter11

ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 11
of the respective message type

adtMessageGoneOccured

ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DT

Time stamp when the relevant mes-
sage has occurred or has gone

dLMsgHdI LMSGHDL_BUFFER_FOR_MESSAGES_GONE_ | Alternative message variant (not acti-
AND_OCCURRED vated by default)
The LMSGHDL_LENGTH_OF_MESSAGE_LOG_GONE_OCCURRED constant determines
how many entries can be included in the buffer. Since this buffer is a ring buffer, the oldest
message is overwritten in the event of an overflow.
The constant is in the cPublic library unit and must be set by the user to the required value.
The default value of the constant is 200.
If this buffer is to be accessed by means of the HMI, also ensure that the size of the buffer
does not exceed 64Kk.
Message Handling
50 Application Manual, 11/2016



Integration 4

4.1 Required technology objects

The CAM technology package is a minimum requirement for the message handling.
Depending on the technology objects used, the message handling can also be operated with
the TP Path, TP Cam_ext and TControl.

4.2 Integration in the SIMOTION project

4.21 Integration of the application into a SIMOTION project

The LDPV1 and LMsgHdlI libraries can be integrated into the existing project via the
ProjectGenerator which is part of the scope of delivery of SIMOTION SCOUT (on the Utilities
& Applications storage medium).

Proceed as follows to execute the ProjectGenerator:
1. Close SMOTION SCOUT.
2. Double-click the ProjectGenerator.exe file.

3. Confirm the disclaimer of liability and select the Create a new project option.

S SIMATIC/SIMOTION Project Genarsbor V1.1 =i

= SIEMENS

Crisls & now PROj6Ct OF 0PN BN BG8tng Projec

Help

.

Figure 4-1 Creating or selecting a project

Message Handling
Application Manual, 11/2016 51



Integration

4.2 Integration in the SIMOTION project

52

4. If you have selected Create a new project, enter a project name and the storage location

of the project (the path can also be selected via Browse path) and click Next.

ST SIMATIC/SIMOTIOM Projoct Gonorsbos 41,1

B\-l—lﬁj SIEMENS

| _—_ Hew projact

Fleass seloct & path and name for the now praject

Froject path oy

Froject name: [Frojact

Euit Browia peth I e I

Figure 4-2  Project name and storage path for the project

The SIMATIC/SIMOTION project data - device selection window is opened.

. Inthe SIMATIC/SIMOTION project data - device selection window, at Select device

category, select which device or devices should be integrated into the project:

ST SIMATIC/SIMOTIOM Projoct Gonorsbos 41,1

B\-l—lﬁj SIEMENS

- SIMATICISIMOTION projact déta - devics salection

o will b canfigurad bafars & function black call wil
o0, Plosse seloct & device from the list, Press the 'Nes'

ClFmajec
g‘:; Devices
[Devics neme [Devicerpe | e
D435 SIMOTION_[435 ; ey v
D445_2 SIMOTION D452 ek e e
[z g

Ty of the device

IGIP'JT\DN Dass2
Add néw device I
Back Dalete dece
Halp
Ext Hext I

Figure 4-3  Creating or selecting a device

Depending on the software installation, you can select either only SIMATIC devices or
mixed SIMOTION and SIMATIC devices, one after the other.

If a device has not been created yet, you can create a new device on the right-hand side
of the window. To do this, enter the Device name, the Versionand the Type name of the
device and click Add new device. The new device is taken into the Devices list.

If you want to create a further device, repeat the procedure.

. In the Devices list, select the device you want to configure and click Next.

The SIMATIC/SIMOTION project data - equipment module selection window opens.

Message Handling
Application Manual, 11/2016



Integration

4.2 Integration in the SIMOTION project

7. Inthe SIMATIC/SIMOTION project data - equjpment module selection window, select the
standard module or modules that you want to integrate into the selected device, in this
case Message Handling, and click Next.

SIMATIC/SIMOTION proisct deta - squipment madls selaction

I tha fallowing the selactad madules wil e configured

I Use ‘Froject Template’ for this device

I Use beginner's ssmple
= OFmject
T Usa module Axs FR
C0aas_2 r I e modute Canarer

T Use Exharnat Communicahon LCom

T Use moduls Intedligent Beh

T s Interdace Generalor for OMAC PackTags
[ Uso Maching Energy Acquisition

F e Message Handling
T U CMAC W 0 mode and state mannger
T 10 Startup Check

[EEEE [BEE

Eat T Impon o sanndned seripts to the projact et I

Figure 4-4 Module selection

Click the INFO button to open the documentation for the respective standard module.
For some standard modules, you can enter the number of modules on the left.

8. In the Message Handling - Configuration window, configure the call of the function block
with the required data blocks and data exchange parameters and click Next.

Muossane Handling - Configuration

Configura tha fallowing seflings and prass 'Hewt to add Massage Hending 10 the selactad

davice.
Size of active messages list o
Size of message archive [ED
= [IPraject
T F DANE OBJECT disgnostics
- F Time synchearaoat ¥Th
F Mossage archie in STRING farmat
& English
€ Dautsch
P Lise SIMOTION T page of Message Handing
F Trensfar SIMOTION IT page to storage medium via FTP
P pazsanz Tost
Help

.

Figure 4-5 Message handling configuration

Message Handling
Application Manual, 11/2016 53



Integration

4.2 Integration in the SIMOTION project

54

9. Configure all the other devices following the above example by clicking the Configure

another device button.

Fully configured devices are shown in green with a checkmark on the outer left beneath
the project name, while devices that have not yet been configured are red, and devices

being worked on are orange.

ST SIMATIC/SIMOTIOM Projoct Gonorsbos 41,1 Wi

SIEMENS

=
==

Click thee ‘Genarate’ button 16 genorats the projed

Configure anather dmvice

Eu SRl [
Figure 4-6  Generating the project

10.If you do not want to configure another device (Configure another device) and want to
complete the project, you have the following options:

— If you would like to save the configuration of the devices, but generate the project at a
later time, click Save Config and enter the storage path in Explorer.

— If you do not wish to configure any other devices and would like to generate the

project, click Generate.

The project is generated. The duration depends on the type of configuration and is

shown using a progress bar.

When the project has been completely generated, the message Generation finished

appears in the window.

11.Click the Exit button to close the ProjectGenerator.

The ProjectGenerator has been completed and retumns the following result:

Table 4- 1

Result after execution of the configuration script

Result

Remark

Libraries LDPV1 and LMsgHdl have been | A version check was performed automatically. If the ver-
imported into the SIMOTION project

sions do not match, a message is generated and the user
can decide whether the libraries are to be replaced or
not.

ST units have been created in the
SIMOTION project:

fLMsgHdlInit

fLMsgHdI

pLMsgHdI
pGlobalBufferManager

Configuration of the TOs, drives, I1/0 modules, etc.

Message Handling
Application Manual, 11/2016



Integration

4.2 Integration in the SIMOTION project

Result Remark

ST units were assigned to various execu- | StartupTask: pLMsgHdIStartupMessagehandling

tion system tasks of the SIMOTION pro- | BackgroundTask: pLMsgHdIMain, pGlobalBufferManager
Ject TimeFaultTasks: pLMsgHdITimeFaultMessage

TimeFaultBackgroundTask: pLMsgHdITimeFaultBack-
groundMessage

TechnologicalFaultTask: pLMsgHdITechnologi-
calMessage

PeripheralFaultTask: pLMsgHdIPeripheralMessage
ExecutionFaultTask: pLMsgHdIExecutionFaultMessage

A compilable project has been saved

Data for the use of the control panel via Depending on the selection, either on the PC or on the
SIMOTION IT has been saved storage medium of the SIMOTION device.

The ProjectGenerator automates various actions in the SIMOTION project and simplifies the
commissioning of the message handling. The adaptations of the properties of the task
system are changed by the ProjectGenerator. The libraries can also be integrated via the
Import library SIMOTION SCOUT function. In this case, the user must perform all the
required actions individually so that the message handling can be used.

Subsequent transfer of the SIMOTION IT page to the storage medium of the SIMOTION device

If the Transfer SIMOTION IT web page to storage medium via FTP function has not been
selected when running through the ProjectGenerator, the data is saved in the following path
in the project directory: C:\Documents and Settings\<Login name>\Local
Settings\Temp\LMsgHdI_Files_for HMI\PGEN_Data_Files\CardFiles. To be able to use this
data, it must be saved to the storage medium of the SIMOTION device.

As of Version 1.3.0 of the ProjectGenerator, in addition to the previous possibility of
transferring SIMOTION IT pages via FTP to a controller during the generation, it is now
possible to transfer only the SIMOTION IT pages of an existing project to a controller,
without having to regenerate the project A detailed description of the subsequent transfer of
the SIMOTION IT pages can be found in Section 7ransfer of SIMOTION IT pages in the
SIMATIC/SIMOTION ProjectGenerator Application Manual.

4.2.2 Suppressing messages

Variance in the message handling by setting defines

By setting preprocessor definitions (defines) in the properties of the pLMsgHd| and fLMsgHdI
program units, it is possible to suppress certain functionalities in the message handling
outside of the variance performed by the script.

The defines can be entered via the context menu (right-click) on the unit pLMsgHdI ->
Properties in the Further settings tab. As the unit is write-protected, a window is displayed for
the password query. Click the Cancel button. The ST Source File Properties window opens.
Detailed information about this function can also be found in the SIMOTION online help at
Preprocessor -> Changing properties of an ST source file.

Message Handling
Application Manual, 11/2016 55



Integration

4.2 Integration in the SIMOTION project

56

General] Compiler  Additional settings Compilation] Object address]

Preprocessar definitions: (e.q. _TEST. start=5, "res= 3 + 5"
[LMSGHDL_NO_TIME_SYNC. LMSGHDL_NO_DO_MESSAGES

Compiler options:

45T = off -Copesym -C preproc -Clang_ext -C prog_once -0 ~
LMSGHDL_MO_TIME_S¥MC -D LMSGHDL_MO_DO_MESSAGES

Cancel | Help

Figure 4-7  Suppressing messages (example)

After preprocessor definitions have been set, the program unit must be recompiled.

The following selection options are available in the pLMsgHdI program unit:

LMSGHDL_NO_TECH_FAULT_MESSAGES
No messages through technology objects are evaluated in the TechnologicalFaultTask by
the message handling.

LMSGHDL_NO_PERIPHERAL_MESSAGES
No messages through 1/0 modules are evaluated in the PeripheralFaultTask by the
message handling.

LMSGHDL_NO_TIME_FAULT_MESSAGES
No messages through timeouts are evaluated in the TimeFaultTask and the
TimeFaultBackgroundTask by the message handling.

LMSGHDL_NO_EXECUTION_FAULT_MESSAGES
No messages through program faults are evaluated in the ExecutionFaultTask by the
message handling.

LMSGHDL_NO_DO_MESSAGES
No messages on drive objects on all SINAMICS modules are evaluated by the message
handling.

LMSGHDL_NO_TIME_SYNC
The time synchronization of the SINAMICS modules is not carried out.

LMSGHDL_NO_HMI_FBS
The program to transfer the message buffers to the HMI / SIMOTION IT is not called.

LMSGHDL_NO_STRING_MESSAGES
The program to transfer the message buffers to the HMI / SIMOTION IT transfers the
information of the raw data buffer.

Message Handling
Application Manual, 11/2016



Integration

4.2 Integration in the SIMOTION project

The following selection option is available in the fLMsgHdI program unit:
e [ MSGHDL_NO_RETAIN_BUFFER

Change of the message log data area of the SIMOTION device from RETAIN to NON-
RETAIN.

The following selection option is available in the dLMsgHdI program unit:
¢ [ MSGHDL_BUFFER_FOR_MESSAGES_GONE_AND_OCCURRED

Alternative message variant

4.2.3 Creating user-defined messages

Integrating user-defined messages in the STRING format into the message handling

Users can issue user-defined messages from their own application, which are entered in the
buffers of the message handling. These messages are treated the same as messages from
the system. In order to be able to correctly assign the messages, the message is allocated a
defined identification number (ID) by the user. The messages can also be allocated a
machine error class, see also Section Defining machine error classes (Page 62).

The messages defined by the user are entered in the fLMsgHdlInit unit. The rules for
generating the messages are explained in the following:

All user-defined messages are transferred to the gasL MsgHd/UserDefinedMessages
global variable in the FCLMsgHdIUserDefinedinfoForMessageHandling function of the
fLMsgHdlInit unit.

The number of user-defined messages is in the range from 1 to 99.999. The messages
start with the subindex 0.

Because of a faster runtime when generating the message texts in STRING format, the
message texts are split up when additional values are used. The method is used whereby
a text must be specified from additional value to additional value and then the used
additional value with type information.

The maximum length of a user-defined message is 160 characters. The user must ensure
that the total length is not exceeded. If this happens, the last characters are truncated.

An ARRAY OF structure is used for the area of user-defined messages.

User-defined messages can contain up to four additional values.
For this reason, messages that transfer additional values to the message handling, must
be split up according to the following structure.

Table 4-2  Structure for user-defined messages in STRING format sLMsgHd/UserMessages Type

Parameter

Data type Description

sgLMsgHdITextPart1

STRING[160] First part of the message in STRING format up to
additional value 1.

ab8LMsgHdIAdditionalValue1 sLMsgHdIAdditionalValueType Number and format of the additional value to be

used.

sgLMsgHdITextPart2

STRING[90] Second part of the message in STRING format from
additional value 1 to additional value 2.

Message Handling

Application Manual, 11/2016 57



Integration

4.2 Integration in the SIMOTION project

Parameter

Data type

Description

ab8LMsgHdIAdditionalValue2

sLMsgHdIAdditionalValueType Number and format of the additional value to be

used.

sgLMsgHdITextPart3

STRING[50]

Third part of the message in STRING format from
additional value 2 to additional value 3.

ab8LMsgHdlIAdditionalValue3

sLMsgHdIAdditionalValueType Number and format of the additional value to be

used.

sgLMsgHdITextPart4

STRING[50]

Fourth part of the message in STRING format from
additional value 3 to additional value 4.

ab8LMsgHdIAdditionalValue4

sLMsgHdIAdditionalValueType Number and format of the additional value to be

used.

Table 4-3  Structure for additional values sLMsgHdIAdditionalValue Type

Parameter Data type Initial value Description
b8ValueNumber BYTE 1 The following values can be transferred here:
0: No additional value at this position (b8ValueType then has no
significance)
1: additionalValue1
2: additionalValue2
3: functionBlockld
4: errorCode
5: additionalValueREAL
b8ValueType BYTE 0 The following values can be transferred here:
0: Decimal display format \%d
1: Hexadecimal display format \%X
2: Floating-point display format \%lIf
Example of a user-defined message with four additional values:
Table 4- 4 Extract from the cPublic program unit
//
// Constants for definition of user-defined message texts
//
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_1 : BYTE = 1;
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_2 : BYTE := 2;
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_FB_ID : BYTE := 3;
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_ERROR_CODE : BYTE := 4;
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_REAL : BYTE := 5;
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT : BYTE := O;
LMSGHDL_USER_MESSAGE_VALUE_TYPE_HEX : BYTE = 1;
LMSGHDL_USER_MESSAGE_VALUE_TYPE_REAL : BYTE := 2;
'User-defined message 8. FB/FC:/3/%d. AddInfo1:/1/%d, AddInfo2:/2/%d, ErrorCode:/4/%X'
Message Handling
58 Application Manual, 11/2016



Integration
4.2 Integration in the SIMOTION project

This message must be entered as follows in the message handling:

Table 4- 5 Example

// Display of functionBlock Id

userDefinedMessages[7] -sgLMsgHdITextPartl := "User-defined message 8.
FB/FC: " ;

userDefinedMessages[7] -ab8LMsgHdIAdditionalValuel.b8ValueNumber :=
userDefinedMessages[7] -ab8LMsgHdIAdditionalValuel._b8ValueType := 0O;
// Display of additionalValuel

userDefinedMessages[7] -sgLMsgHdITextPart2 := ". Additional info 1:7;
userDefinedMessages[7] -ab8LMsgHdIAdditionalValue2_b8ValueNumber := 1;
userDefinedMessages[7] -ab8LMsgHdl1AdditionalValue2_b8ValueType := 0O;
// Display of additionalVvalue2

userDefinedMessages[7] -sgLMsgHdITextPart3 := ", Additional info 2:°7;
userDefinedMessages[7] -ab8LMsgHdIAdditionalValue3.b8ValueNumber := 2;
userDefinedMessages[7] -ab8LMsgHdIAdditionalValue3.b8ValueType :=
// Display of errorCode

userDefinedMessages[7] -sgLMsgHdITextPart4 := ", Error code:";
userDefinedMessages[7] -ab8LMsgHdIAdditionalValue4.b8ValueNumber := 4;
userDefinedMessages[7] -ab8LMsgHdIAdditionalValue4_b8ValueType := 1;

3;

o

If a user-defined message does not transfer any additional values, the message text is
entered in the element sgLMsgHd/TextPart1. The other parts of the structure do not have to
be filled. The sum of all the messages defined by the user must be entered in the
LMSGHDL_NUMBER_OF_USER_DEFINED_EVENTS constant in the cPublic unit. The
number of messages from the FBs/FCs is set in the
LMSGHDL_NUMBER_OF_FUNCTION_BLOCK_IDS constant in the cPublic unit. The
message texts that are to be generated for a message from FBs/FCs are part of the user-
defined messages and must not be entered separately. The count of the user-defined
messages must always start at 1 (one), up to the number of the respective type.

If a REAL value is to be output in one of the previous additionalValues1 or 2, this can be
done as follows:

additionalValue1DINT := DWORD_TO_DINT(REAL_TO_DWORD(2.45286))

424 Embedding of the AlarmS handling or message bit handling

Alarm$S handling

AlarmS can be activated by the user by setting the
LMSGHDL_ALARM_S_USER_MESSAGES constant in the cPublic unit of the LMsgHdI
library to TRUE.

When AlarmS is activated, the associated AlarmS message is issued for each user-defined
message. This is performed within the call of the FCLMsgHdIWriteUserMessageToBuffer
and FCLMsgHdIWriteFBFCMessageToBuffer functions for the transfer of user-defined
messages.

It is not mandatory that each user-defined message be assigned an AlarmS message.
Transfer of STRUCTALARMID#NIL in the alarmSinfo array in the fMsgHdIInit program unit

Message Handling
Application Manual, 11/2016 59



Integration

4.2 Integration in the SIMOTION project

60

of the FCLMsgHdIUserDefinedInfoForMessageHandling function informs the message
handling that an AlarmS message is not to be generated here. The system
acknowledgement of the active AlarmS messages is performed by acknowledgement of all
the active messages by the message handling.

The message configuration is performed in SIMOTION SCOUT. After selecting the project,
click Messages -> Configure in the context menu (right-click). The Message Configuration
window opens. After the user-defined AlarmS messages have been edited or imported into
the project, they must be announced in the message handling. Detailed information on the
message configuration in SIMOTION SCOUT can be found in the online help at the index
entry Message configuration.

= Message configuration [Alarm_5S)

& Alam. S Canfiguration lanhguage: |Deutsch [Deutschland)
Diagnastics buffer entries
[uzer-defined] Hexadecimal dizplay [
Sumbal | Mo, | Message text |
uzer_1 1 uzer defined meszage Mo, 1
uzer_2 2 uzer defined meszage Mo, 2
MHew Edit | Delete | Cloze | Help
< >

Figure 4-8  AlarmS messages (example)
The AlarmS messages are parameterized by the user in the fLMsgHdlInit program unit in the

FCLMsgHdlUserDefinedIinfoForMessageHandling function. The two messages in the above
figure are transferred to the gasL MsgHdIAlarmSinfo global variable.

Table 4-6  Extract from the FCLMsgHdIUserDefinedIinfoForMessageHandling function

alarmSinfo[0] -sAlarmld = _alarm.user_1;
alarmSInfo[0] .boMessageRequiresAck := TRUE;
alarmSinfo[1] .sAlarmld := _alarm.user_2;
alarmSInfo[1] -boMessageRequiresAck := FALSE;

The symbol of the message and the type of message must be transferred by the user for
each AlarmS message. The symbol must be specified with the name space for AlarmS

Message Handling
Application Manual, 11/2016



Integration

4.2 Integration in the SIMOTION project

_Alarm following by a dot. The type of message specifies whether the alarm has to be
acknowledged or not. AlarmSQ must be acknowledged by the HMI, AlarmS only by the
system.

Note

When AlarmSQ messages are acknowledged by the message handling, the AlarmSQ
messages are only acknowledged there. The display of these messages in the HMI must be
acknowledged separately by the user.

The message issued with active AlarmS handling is determined by the event number
(number of the user-defined message), which is transferred to the
FCLMsgHdIWriteUserMessageToBuffer and FCLMsgHdIWriteFBF CMessageToBuffer
functions. The event number corresponds to the subindex -1 in gasL MsgHdIAlarmS/nfo. The
AlarmS is therefore issued as follows:

gasLMsgHdIAlarmSInfo[0] -sAlarmid = _alarm.user_1;

This allows the appropriate AlarmS to be assigned to a certain user-defined message
without both messages requiring the same number in the message handling. If a user-
defined message is not to trigger an AlarmS, a value is not assigned to the relevant sA/armid
(STRUCTALARMID#NIL). Also note that each AlarmS message can only be active once.
Therefore, an active AlarmS message can only be issued again after it has been
acknowledged. The system acknowledgement of the active AlarmS messages is also
performed by acknowledgement of all the active messages by the message handling. The
SIMOTION SCOUT online help provides additional information on AlarmS.

Message bit handling

The message bit handling can be activated by setting the
LMSGHDL_MESSAGE_BIT_USER_MESSAGES constant in the cPublic unit of the LMsgHdI
library to TRUE. The active messages are transferred to the message bit handling in the
gab 16L MsgHdIEventFiag array from the fLMsgHdI program unit. If a user-defined message
is set through the call of the FCLMsgHdIWriteUserMessageToBuffer and
FCLMsgHdIWriteFBF CMessage ToBuffer functions, the appropriate bit is also set in
gab16LMsgHdIEventFiag. The set bit corresponds to message number -1 of the user-
defined message. The message bits are set in an array of the WORD type. This results in
the bit to be set from the message number:

gabl6LMsgHdIEventFlag[132EventNumber-1/16] . (i32EventNumber-1 MOD 16) :=
TRUE

The relevant bit for the issued message is set in the gab76L MsgHdIEventFiag variable. It is
displayed, or transferred, whether the appropriate message bit has been or has to be
acknowledged.

Note that when creating the messages, the index of the message always starts with 1 (one).
A 0 (zero) is not permitted.

Message Handling
Application Manual, 11/2016 61



Integration

4.2 Integration in the SIMOTION project

425

Predefined machine error classes

Defining machine error classes

Note

All entries or changes that have been made by the user are restored from the configuration

when this has to be started again by the user.

The following machine error classes are already predefined in the fLMsgHdIlInit program unit.

Table 4-7 Predefined machine error classes in the cPublic unit

//
//

Defines for machine error classes

/7

LMSGHDL_NO_MACHINE_ERROR_CLASS
LMSGHDL_MACHINE_ERROR_CLASSO :

LMSGHDL_MACHINE_ERROR_CLASS1
LMSGHDL_MACHINE_ERROR_CLASS2
LMSGHDL_MACHINE_ERROR_CLASS3

LMSGHDL_MACHINE_ERROR_CLASS4 :

- SINT :=

SINT

= SINT
- SINT
: SINT

SINT

There are three different sources from which a machine error class can be set:

® Machine error class through user-defined messages
® Machine error class through peripheral fault messages

® Machine error class through user-defined FBs/FCs

These are described below.

Machine error class through user-defined messages

62

Each message is assigned an event number when a user-defined message is issued. The
machine error class corresponding to an event number is entered in a table.

Table 4- 8 Assignment of the event number to the machine error class - example

Event number

Machine error class

1

Machine error class 4

Machine error class 3

Machine error class 1

Machine error class 1

A |WIN

Machine error class 2

This table is provided by the global array ga/8L MsgHdIUserDefinedMachineErrors in the
message handling and must be adapted by the user. The initialization of the user-defined

message can be performed in the fLMsgHdlInit program unit in the

Message Handling
Application Manual, 11/2016




Integration

4.2 Integration in the SIMOTION project

FCLMsgHdIUserDefinedInfoForMessageHandling function. Whereby the subindex in
userDefinedMachineErrors corresponds to event number -1 of the appropriate user-defined
message.

userDefinedMachineErrors[0]
userDefinedMachineErrors[1]
userDefinedMachineErrors[2]

LMSGHDL_MACHINE_ERROR_CLASS4;
LMSGHDL_MACHINE_ERROR_CLASS3;
LMSGHDL_MACHINE_ERROR_CLASS1;

Machine error class through peripheral fault messages

Peripheral fault messages can also be assigned a machine error class. A machine error
class is assigned to each peripheral device. A machine error class is only set when a
negative message is present, e.g station failure, but not for a station recovery.

The machine error classes for peripheral fault messages are set in the fLMsgHdllInit program
unit in the FCLMsgHdIUserDefinedInfoForMessageHandling function. The transfer of the
machine error class for the failure of a peripheral fault message is performed in the
gasLMsgHdIPeripheralDevices global variable. The message class is set here in the variable
peripheralDevices[0].i8MachineErrorClass. The subindex belonging to the peripheral module
for setting the machine error class can be found in the fLMsgHdlInit program unit in the
FCLMsgHdlInitProjectinfo function. The information for the peripheral modules is
automatically set by the script there.

Table 4-9 Assignment of the peripheral device to the machine error class - example

Peripherals
Peripheral device 0

Machine error class
Machine error class 4

Peripheral device 1 Machine error class 3

Machine error class 2

Peripheral device 2

peripheralDevices[0].i8MachineErrorClass :
peripheralDevices[1].-i8MachineErrorClass :
peripheralDevices[2].i8MachineErrorClass :

LMSGHDL_MACHINE_ERROR_CLASS4;
LMSGHDL_MACHINE_ERROR_CLASS3;
LMSGHDL_MACHINE_ERROR_CLASS2;

Machine error class through user-defined FBs/FCs

As errors with different severity can occur in a function block or function defined by the user,
a corresponding machine error class can be set here depending on the error class. With the
aid of a matrix, the machine error class is generated from the function block error classes.

Table 4- 10  Assignment of the FBs/FCs to the machine error classes (machine EC)

ID FB/FC Error class 0 Error class 1 Error class 2 Error class 3

ID FB/FC 1 Machine EC 1 Machine EC 1 Machine EC 2 Machine EC 2
ID FB/FC 2 Machine EC 1 Machine EC 2 Machine EC 3 Machine EC 4
ID FB/FC 3 Machine EC 1 Machine EC 2 Machine EC 3 Machine EC 4
ID FB/FC 4 Machine EC 1 Machine EC 2 Machine EC 3 Machine EC 4
ID FB/FC 5 Machine EC 1 Machine EC 1 Machine EC 2 Machine EC 3

Message Handling
Application Manual, 11/2016

63



Integration

4.3 Displaying messages via SIMOTION IT

Each function block / function can trigger up to four different machine error classes, 0 to 3.
The matrix can be used to parameterize how relevant an error is for the overall machine
operation. In the above example, it can be seen that errors on FBs/FCs 1 and 5 trigger lower
machine error classes as errors on the other FBs/FCs.

The configuration of this matrix is performed in the fLMsgHdllInit program unit in the
FCLMsgHdlUserDefinedIinfoForMessageHandling function. The matrix is transferred in the
gasLMsgHdIFBF CMachineErrorClasses global variable.

fBFCMachineErrorClasses[0] -ai8ErrorClass[0] :
LMSGHDL_MACHINE_ERROR_CLASS1;
fBFCMachineErrorClasses[0] -ai8ErrorClass[1] :
LMSGHDL_MACHINE_ERROR_CLASS1;
fBFCMachineErrorClasses[0] -ai8ErrorClass[2] :
LMSGHDL_MACHINE_ERROR_CLASS2;
fBFCMachineErrorClasses[0] -ai8ErrorClass[3] :
LMSGHDL_MACHINE_ERROR_CLASS2;

The currently active machine error classes are transferred to two variables by the message
handling. These variables are declared in the fLMsgHdI program unit.

® gi8L MsgHdIMachineErrorClass: The currently highest machine error class that is active in
the application is displayed here.

®  gb32L MsgHdIMachineErrorClasses. All the currently active machine error classes are
displayed with bit code here. As this variable is of the DWORD type, there can be only 32
machine error classes in the message handling (0 to 31). Each of these machine error
classes is displayed via the appropriate bit in the variable.

4.3 Displaying messages via SIMOTION IT

Functionality
The active messages can be displayed via the SIMOTION IT page.

System requirements
e As of SIMOTION firmware V4.1 SP4

® As of Internet Explorer 6 or Mozilla Firefox 3.5

Message Handling
64 Application Manual, 11/2016



Integration

4.4 Important, frequently used variables

Displaying messages via SIMOTION IT

Message Handling

1. To start the connection to the SIMOTION device, enter the IP address in the address line

of the browser.

2. Open the User's Area page.

3. Open the Messages page.

) SIMDTION D435 - Microsoft Internet Exploser

Dasi Desbemen Ansicht Faworten Eavsr 7 |.\¢
Qzuiet - O - (] (@) ] e pmeam @[50 = -G B

Aukessn [ 8] bitp /1152 168 218 1INDER WCS.

] [ westesi ||.-n‘“:

SIMOTION User's Are:
D435 el Refresh

active messages mussag: archive \i,)

10 meeages F 00 tmite F 005 ety mesrages ¥ sytem meseage: ‘ B\J’-
W pmiphecd mmsoges B DO alais PR — ¥ e gpes lion Messagsiarding m
[0 [Twwe [ Tomce I message [ occmed [ ack
T [ [ [ f il
F T [ [ [ f |
F T [ [ [ f |
ol ] I ] | it
i T I T | it
3l I I T I i
[l I I I I el
7l I I I I el
F0 [ [ [ [ |
ol I T I ! I
cataset po
A | - ‘ > | < v o -g <F e‘
&l ey [T N ol et

Figure 4-9  Message handling control panel start page

Application Manual, 11/2016 65



Integration

4.4 Important, frequently used variables

4.4

Important, frequently used variables

List of frequently used variables

66

The message handling is a complex application with numerous variables. As not all variables
are always used by the user, the following table provides an overview of the most important

variables.
Table 4- 11 Important, frequently used variables in the message handling
Unit Variable Meaning
fLMsgHdlI gb32LMsgHdIMachineErrorClasses All the currently active machine error clas-
ses are displayed with bit code here. The
maximum number is 32 (0 to 31).
gi8LMsgHdIMachineErrorClass Display of the active machine error class
with the highest priority.
gab16LMsgHdIEventFlag Bits for message bit handling.
Bit array for display of the active user-
defined messages for the message bit
handling.
gsLMsgHdIActiveMessageTypes Bit array for the message sources of active
messages.
gsLMsgHdIMessagel ogString Message log in STRING format.
pLMsgHdI gboLMsgHdlInitDriveReady Shows that the initialization software of the

message handling has been run through in
the BackgroundTask and that the message
handling is active.

gboLMsgHdlActivateNewMoMaData

With TRUE, the information transferred
during runtime for modular machines is
activated. After activation, the flag is re-
moved by the message handling.

gboLMsgHdIGlobalAcknowledge

Global acknowledgement of all active er-
rors, with rising edge.

gi32LMsgHdINumberOfMessagelnLog

Transfer of the number of the message to
be acknowledged (only with single
acknowledgement).

gboLMsgHdlStartChangelLanguage

With TRUE, start of the language selection.
Is automatically reset by the message
handling.

gu8LMsgHdIActiveLanguage

Transfer of the language to be loaded

gboLMsgHdIStartWriteComplete
MessagelLogToStorageMedium

With TRUE, start of the storage of the cur-
rent message log on the storage medium of
the SIMOTION device. Is automatically
reset by the message handling.

gu32LMsgHdIDatasetNoForExport
Messagelog

Name of the file in which the current mes-
sage log is to be saved

gboLMsgHdIUpdateHMI

Update of the displayed active messages.

gboLMsgHdlUpdateHMILog

Update of the displayed active message
log.

Message Handling
Application Manual, 11/2016



Integration

4.4 Important, frequently used variables

Unit Variable Meaning

gboLMsgHdIScrollIDown Scroll down in the list of active messages
with rising edge.

gboLMsgHdIScrollDown1 Scroll down one line in the list of active
messages with rising edge.

gboLMsgHdIScrollUp Scroll up.

gboLMsgHdIScrollUp1 Scroll up one line in the list of active mes-
sages with rising edge.

gboLMsgHdIGoToTop Jump to the start of the active messages.

gboLMsgHdIGoToEnd Jump to the end of the active messages.

gbol.MsgHdIScrollDownLog Scroll down in the message log.

gboLMsgHdIScrollDown1Log Scroll down one line.

gboLMsgHdIScrollUpLog Scroll up.

gboLMsgHdIScrollUp1Log Scroll up one line.

gboLMsgHdIGoToTopLog Jump to the start of the message log.

gboLMsgHdIGoToEndLog Jump to the end of the message history.

gu8LMsgHdIScrollStep Number of lines to scroll down or scroll up.

gu8LMsgHdINumberOfLinesForHMI Number of messages that can be displayed
on the HMI.

gsLMsgHdIActiveMessageString List of the active messages in STRING
format.

gsLMsgHdIActiveMsgToHMI List of the active messages that are to be
output on the HMI.

gsLMsgHdILogMsgToHMI List of the message log that is to be output
on the HMI.

fLMsgHdlInit | gasLMsgHdIUserDefinedMessages Description of the user-defined messages.

Message Handling
Application Manual, 11/2016

67



Integration

4.4 Important, frequently used variables

Message Handling
68 Application Manual, 11/2016



Description of functions 5

5.1 General information on the description of functions

The following FBs and FCs relevant for the user are integrated into the message handling:

FBLMsgHdIActiveMsgSgToHMI function block (fMsgHdI unit in LMsgHdl)
FBLMsgHdIMsgl ogSgToHMI function block (fMsgHdI unit in LMsgHdl)
FBLMsgHdIActiveMsgBaseDataToHMI function block (fMsgHdI unit in LMsgHdlI)
FBLMsgHdIMsglLogBaseDataToHMI function block (fMsgHdlI unit in LMsgHdlI)
FCLMsgHdIWriteUserMessageToBuffer function (fLMsgHdI unit)
FCLMsgHdIWriteFBFCMessageToBuffer function (fLMsgHdI unit)

These are described in the following sections.

5.2 FBLMsgHdIActiveMsgSgToHMI function block
5.21 General information on the function block
Note

Only strings of length 80 can be processed in WinCC flexible. For this reason, the message
texts from the active messages must be split into two substrings. However, the data length
can be changed via the
LMSGHDL_MAX_STRING_LENGTH_OF_MESSAGE_TEXTS_TO_HMI constant in cPublic
of the LMsgHdlI library when another HMI is used.

The FBLMsgHdIActiveMsgSgToHMI function block is used to display message texts of the
global buffer for active messages in STRING format on an HMI.

The function block completes its processing in a processing cycle of the task in which it is
called. The FB should preferably be called in the BackgroundTask. It only responds to falling
edges at the relevant inputs. If several inputs are set at a call, only the first function is
executed. The logical sequence for evaluating the input signals is:

Message Handling

updateHMI
scrollDown1
scrollDown
scrollUp1

scrollUp

Application Manual, 11/2016 69



Description of functions

5.2 FBLMsgHdlActiveMsgSg ToHMI function block

® goToTop
® goToEnd

As only part of the entire buffer for active messages can be displayed on the HMI, the
function block checks independently whether the appropriate end of the buffer for all active
messages is reached or not when scrolling up or down. When an end is reached, further
movement in the relevant direction has no effect in the function block.

The user can jump directly to the start of the end of the list via go7o7op and goToEnd.

If, for example, scroll up ten messages is requested, but there are only three messages in
the buffer up to the end, the list in the HMI is also only moved up three messages.

The LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI constant of the cPublic unit
specifies the maximum number of messages that can be transferred to an HMI. The
numberOfLinesForHM/ input informs the function block how many messages it should
actually provide at the output in the activeMsgToHMI structure. In this way, it is possible to
supply different HMIs with different numbers of message texts via separate instances of the
function block. The maximum number of lines in the
LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI constant must not be
exceeded. The number of lines to be scrolled when the scro//lUp and scrollDown inputs are
actuated is specified in the numberOfLines ToScrollinput variable.

The active messages in STRING format are output on an HMI at the activeMsg ToHM/

output.

5.2.2

Schematic representation in LAD/FBD

FBLMsgHdIActiveMsgSgToHMI

BOOL —

BOOL —

BOOL —

BOOL —

BOOL —

BOOL —

BOOL —

BOOL —

UINT —

UINT —

sLMsgHdIFilterToHMIType —

ARRAY[0..LMSGHDL_LENGTH_OF_ ]
ACTIVE_MESSAGES - 1] OF USINT

sLMsgHdIActiveMessagesStringType —

valid

error

errorld
activeMsgSgToHMI

enable
updateHMI
scrollup1
scrollUp
scrollDown1
scrollDown
goToTop

goToEnd
numberOfLinesToScroll

numberOfLinesForHMI

filterToHMI
messageSource

— BOOL

— BOOL

— DWORD

— sLMsgHdIHMIActiveMsgSgType

ARRAY[0.LMSGHDL_LENGTH_OF_
| ACTIVE_MESSAGES -1] OF USINT

— sLMsgHdIActiveMessagesStringType

Figure 5-1

70

Schematic representation in LAD/FBD

Message Handling
Application Manual, 11/2016



Description of functions

5.2 FBLMsgHdlActiveMsgSg ToHMI function block

5.2.3 Input and output parameters of the function block
The FBLMsgHdIActiveMsgSgToHMI function block has the following input and output
parameters:
Table 5-1 Input and output parameters
Name Type " Data type M/O 2 | Initial value Description
enable IN BOOL M FALSE Function block enable.
updateHMI IN BOOL 0] FALSE The currently output data area is updated on
the HMI with a rising edge.
scrollUp1 IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved up one message with a rising edge.
scrollUp IN BOOL 0] FALSE The data area to be displayed on the HMI is
moved up by the value transferred in the
numberOfLines ToScrol/variable with a rising
edge.
scrollDown1 IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved down one message with a rising edge.
scrollDown IN BOOL 0] FALSE The data area to be displayed on the HMI is
moved down by the value transferred in the
numberOfLines ToScroll variable with a rising
edge.
goToTop IN BOOL o FALSE The data area to be displayed on the HMI is
moved with the top line on the latest entry
with a rising edge.
goToEnd IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved with the bottom line on the oldest entry
with a rising edge.
numberOf IN UINT 0] 1 Value that specifies how many lines the dis-
LinesToScroll play area is to be moved when scro//Up or
scrollDown is activated.
numberOf IN UINT (0] 1 Specifies the number of lines (messages) that
LinesForHMI are to be output for the HMI.
filterToHMI IN sLMsgHdl M Bit structure for the transfer of filter infor-
FilterToHMIType mation for output on the HMI
messageSource IN/OUT ARRAY M The respective message source is transferred
[0..LMSGHDL to the FB here for the filtering of the messag-
_LENGTH_OF_ es. This is generated automatically by the
ACTIVE_ message handling in pLMsgHdI-
MESSAGES - 1] gau8LMsgHdlActMessageStringMessageSour
OF USINT ce.
Active IN/OUT | sLMsgHdI M - Transfer of the current message buffer in
MessagesString ActiveMessages STRING format.
StringType
valid ouT BOOL - FALSE Display of the validity of the values at the
outputs.
error ouT BOOL - FALSE Displays whether an error has occurred while
processing the FB.
Message Handling
Application Manual, 11/2016 71



Description of functions

5.2 FBLMsgHdlActiveMsgSg ToHMI function block

Name Type 1) Data type M/O 2 | Initial value Description
errorld ouT DWORD - 16#00000000 | Returns the number of the error that has oc-
curred.
activeMsgToHMI | OUT sLMsgHdIHMI- | - - Return of the active messages in STRING
ActiveMsg format for display on an HMI.
SgType

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2 Parameter type: M = mandatory parameter, O = optional parameter

Table 5- 2 Error messages

Error number Description

[HEX]

0 Error-free

9997 The number of lines (messages) to be displayed on the HMI in the numberOfLi-

nesForHM/ parameter is greater than the maximum number of lines for the HMI
(LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI in cPublic unit)

9998 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHM/ parameter is greater than the maximum length of the transferred
buffer LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES or
LMSGHDL_LENGTH_OF_MESSAGE_LOG in cPublic unit)

524 Structure for parameter transfer
sLMsgHdIHMIActiveMsg Type has the following structure.

Table 5-3  Structure for active messages in STRING format on an HMI

Parameter Data type Initial value Description

ai16NumberOfMessage ARRAY[0..LMSGHDL_MAX_NUMBE |0 Array for information about which
R_OF_LINES_FOR_HMI - 1] OF number the relevant message has in
DINT the buffer for active messages

asgMessagelevel ARRAY[0..LMSGHDL_MAX_NUMBE | Empty string | Array for information about the level of
R_OF_LINES_FOR_HMI - 1] OF the message (fault, alarm, error, in-
STRING[11] formation)

asgMessageSource ARRAY[0..LMSGHDL_MAX_NUMBE | Empty string | Array for information about the source
R_OF_LINES_FOR_HMI - 1] OF of the message
STRING[64]

asgMessageText1 ARRAY[0..LMSGHDL_MAX_NUMBE | Empty string | Array for language-dependent mes-
R_OF_LINES_FOR_HMI - 1] OF sage text, section 1
STRING[LMDGHDL_MAX_STRING_ (a message may only be maximum
LENGTH_OF_MESSAGE_TEXTS_T 160 characters long)
O_HMI]

Message Handling
72 Application Manual, 11/2016



Description of functions

5.3 FBLMsgHdIMsglogSg ToHMI function block

Parameter Data type Initial value Description

asgMessageText2 ARRAY[0..LMSGHDL_MAX_ Empty string | Array for language-dependent mes-
NUMBER_OF_LINES_FOR_HMI - 1] sage text, section 2
OF (a message may only be maximum
STRING[LMDGHDL_MAX_STRING_ 160 characters long)
LENGTH_OF_MESSAGE_TEXTS_
TO_HMI]

asgMessageOccured ARRAYI0..LMSGHDL_NUMBER_OF_ | Empty string | Time stamp when the relevant mes-
LINES_MAX_FOR_HMI - 1] OF sage occurred.
STRING[23]

asgAcknowledgeClass ARRAY[0..LMSGHDL_MAX_ Empty string | Array for information about the type of
NUMBER_OF_LINES_FOR_HMI - 1] acknowledgement for the message
OF STRING[17]

5.3 FBLMsgHdIMsgLogSgToHMI function block

5.3.1 General information on the function block

Note

Only strings of length 80 can be processed in WinCC flexible. For this reason, the message
texts from the active messages must be split into two substrings. However, the data length

can be changed via the
LMSGHDL_MAX_STRING_LENGTH_OF_MESSAGE_TEXTS_TO_HMI constant in cPublic
of the LMsgHdl library when another HMI is used.

The FBLMsgHdIMsgLogSgToHMI function block is used to display message texts of the
global buffer for the message log in STRING format on an HMI.

Response as described in FBLMsgHdIActiveMsgSgToHMI function block (Page 69).

Message Handling
Application Manual, 11/2016

73



Description of functions

5.3 FBLMsgHdIMsglogSg ToHMI function block

5.3.2 Schematic representation in LAD/FBD
FBLMsgHdIMsgLogSgToHMI
BOOL — enable valid — BOOL
BOOL — updateHMI error — BOOL
BOOL — scrollUp1 errorld — DWORD
BOOL — scrollUp msglLogSgToHMI |— sLMsgHdIHMIMsgLogSgType
BOOL — scroliDown1
BOOL — scrollDown
UINT — numberOfLinesToScroll
UINT — numberOfLinesForHMI
sLMsgHdIFilterToHMIType —] filterToHMI
BOOL —{ goToTop
BOOL —{ goToEnd
ARRAY[0..LMSGHDL_LENGTH messageSource ARRAY[0..LMSGHDL_LENGTH
OG-1]OFUSINT_________:_St__ _____ [ OG- 1] OF USINT
sLMsgHdIMessagesLogStringType — — — — — — messageoeea. _ _ — - — sLMsgHdIMessageslLogStringType
Figure 5-2  Schematic representation in LAD/FBD
5.3.3 Input and output parameters of the function block
The FBLMsgHdIMsgLogSgToHMI function block has the following input and output
parameters:
Table 5- 4 Input and output parameters
Name Type " Data type M/O 2 | Initial value Description
enable IN BOOL M FALSE Function block enable.
updateHMI IN BOOL 0] FALSE The currently output data area is updated on
the HMI with a rising edge.
scrollUp1 IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved up one message with a rising edge.
scrollUp IN BOOL 0] FALSE The data area to be displayed on the HMI is
moved up by the value transferred in num-
berOfLines ToScroll with a rising edge.
scroliDown1 IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved down one message with a rising edge.
scrollDown IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved down by the value transferred in num-
berOfLines ToScroll with a rising edge.
goToTop IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved with the top line on the latest entry
with a rising edge.
Message Handling
74 Application Manual, 11/2016



Description of functions

5.3 FBLMsgHdIMsglogSg ToHMI function block

Name Type " Data type M/O 2 | Initial value Description
goToEnd IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved with the bottom line on the oldest entry
with a rising edge.
numberOfLines- IN UINT 0] 1 Value that specifies how many lines the dis-
ToScroll play area is moved when scro//Up or scroll-
Down is activated.
numberOf IN UINT 0] 1 Specifies the number of lines (messages) that
LinesForHMI are to be output for the HMI.
filterToHMI IN sLMsgHdIFilter- | O The information as to which message sources
ToHMIType are to be displayed or not at the output of the
FB is transferred here. If the use of
SIMOTION IT is selected in the message
handling, this information is provided in
gsLMsgHdlFilterToHM/ of the pLMsgHdI unit
and should be transferred to the FB as
VAR_IN_OUT.
messageSource IN/OUT ARRAY M The message sources belonging to the mes-
[0..LMSGHDL _ sages must be transferred to the FB here in
LENGTH_OF -1] USINT format. The message sources in
OF UINT USINT format are created by the message
handling and are in
gau8LMsgHdIMessagelogStringMessageSou
rce of the pLMsgHdl unit. This variable must
be transferred here as VAR_IN_OUT.
messagelog IN/OUT | sLMsgHdI M - Transfers the message log buffer in STRING
String Messagelog format.
StringType
valid ouT BOOL - FALSE Displays the validity of the values at the out-
puts.
error ouT BOOL - FALSE Displays whether an error has occurred while
processing the FB.
errorld ouT DWORD - 16#00000000 | Returns the number of the error that has oc-
curred.
msgLogToHMI ouT sLMsgHd - - Returns the messages from the message log
IHMIMsg in STRING format for display on the HMI.
LogSgType

) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters

2) Parameter type: M = mandatory parameter, O = optional parameter

Message Handling

Application Manual, 11/2016

75



Description of functions

5.3 FBLMsgHdIMsglogSg ToHMI function block

Table 5- 5 Error messages

Error number Description

[HEX]

0 Error-free

9997 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHM/ parameter is greater than the maximum number of lines for the HMI
(LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI in cPublic unit)

9998 The number of lines (messages) to be displayed on the HMI in the numberOfLi-

nesForHM/ parameter is greater than the maximum length of the transferred
buffer LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES or
LMSGHDL_LENGTH_OF_MESSAGE_LOG in cPublic unit)

5.3.4 Structure for parameter transfer
sL.MsgHdIHMIMsglLogSg Type has the following structure.
Table 5-6  Structure for messages in the message log in STRING format on an HMI
Parameter Data type Initial value Description
ai16NumberOfMessage ARRAY[0..LMSGHDL_MAX_ 0 Array for information about which
NUMBER_OF_LINES_FOR_HMI - 1] number the relevant message has in
OF DINT the buffer for the message log.
asgMessagelevel ARRAY[0..LMSGHDL_MAX_ Empty string | Array for information about the level of
NUMBER_OF_LINES_FOR_HMI - 1] the message (fault, alarm, error, in-
OF STRING[11] formation).
asgMessageSource ARRAY[0..LMSGHDL_MAX_ Empty string | Array for information about the source
NUMBER_OF_LINES_FOR_HMI - 1] of the message.
OF STRING[64]
asgMessageText1 ARRAY[0..LMSGHDL_MAX_ Empty string | Array for language-dependent mes-
NUMBER_OF_LINES_FOR_HMI - 1] sage text, section 1
OF (a message may only be maximum
STRING[LMDGHDL_MAX_STRING_ 160 characters long).
LENGTH_OF_MESSAGE_TEXTS_
TO_HMI]
asgMessageText2 ARRAY[0..LMSGHDL_MAX_ Empty string | Array for language-dependent mes-
NUMBER_OF_LINES_FOR_HMI - 1] sage text, section 2
OF STRING[LMDGHDL_MAX (a message may only be maximum
_STRING_LENGTH_OF_MESSAGE_ 160 characters long).
TEXTS_TO_HMI]
asgMessageOccured ARRAY[0..LMSGHDL_NUMBER_OF_ | Empty string | Time stamp when the relevant mes-
LINES_MAX_FOR_HMI - 1] OF sage occurred.
STRING[23]
asgAcknowledgeClass ARRAY[0..LMSGHDL_MAX_ Empty string | Array for information about the type of
NUMBER_OF_LINES_FOR_HMI - 1] acknowledgement for the message.
OF STRING[17]
asgMessageGone ARRAY[0..LMSGHDL_MAX _ Empty string | Time stamp when the relevant mes-
NUMBER_OF_LINES_FOR_HMI - 1] sage has gone.
OF STRING[23]
Message Handling
76 Application Manual, 11/2016




Description of functions

5.4 FBLMsgHdlActiveMsgBaseDataToHM| function block

For an overview of the user constants and structures, see Section Public constants

(Page 22).

5.4

54.1

General information on the function block

FBLMsgHdIActiveMsgBaseDataToHMI function block

The FBLMsgHdIActiveMsgBaseDataToHMI function block is used to display messages of
the global buffer for active messages in raw data format on an HMI.

Response as described in FBLMsgHdIActiveMsgSgToHMI function block (Page 69).

See also

Interpretation of the raw data (Page 115)

5.4.2

Schematic representation in LAD/FBD

FBLMsgHdlActiveMsgBaseDataToHMI

BOOL —
BOOL —
BOOL —
BOOL —
BOOL —
BOOL —
BOOL —

BOOL —
UINT —

UINT —
sLMsgHdIFilterToHMIType —
sLMsgHdIActiveMessagesBaseDataType —

vaild
error

enable
updateHMI
scrollUp1 errorld
scrollUp activeMsgToHMI
scrollDown

scrollDown

goToTop
goToEnd

numberOfLinesToScroll
numberOfLinesForHMI
filterToHMI
activeMessagesBaseData

— BOOL

— BOOL

— DWORD

— sLMsgHdIHMIActiveMsgBaseDataType

Figure 5-3

Message Handling
Application Manual, 11/2016

Schematic representation in LAD/FBD

77



Description of functions

5.4 FBLMsgHdlActiveMsgBaseData ToHMI function block

54.3 Input and output parameters of the function block
The FBLMsgHdIActiveMsgBaseDataToHMI function block has the following input and output
parameters:
Table 5-7 Input and output parameters
Name Type Data type M/O 2 | Initial value Description
enable IN BOOL M FALSE Function block enable.
updateHMI IN BOOL 0] FALSE The currently output data area is updated on
the HMI with a rising edge.
scrollUp1 IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved up one message with a rising edge.
scrollUp IN BOOL O FALSE The data area to be displayed on the HMI is
moved up by the value transferred in the
numberOfLines ToScrol/variable with a rising
edge.
scroliDown1 IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved down one message with a rising edge.
scroliDown IN BOOL O FALSE The data area to be displayed on the HMI is
moved down by the value transferred in the
numberOfLines ToScrol/variable with a rising
edge.
goToTop IN BOOL 0] FALSE The data area to be displayed on the HMI is
moved with the top line on the latest entry
with a rising edge.
goToEnd IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved with the bottom line on the oldest entry
with a rising edge.
numberOfLines- IN UINT 0] 1 Value that specifies how many lines the dis-
ToScroll play area is to be moved when scro//Up or
scrollDown is activated.
numberOfLines IN UINT (0] 1 Specifies the number of lines (messages) that
ForHMI are to be output for the HMI.
filterToHMI IN sLMsgHdIFilter- | O The information as to which message sources
ToHMIType are to be displayed or not at the output of the
FB is transferred here. If the use of
SIMOTION IT is selected in the message
handling, this information is provided in
gsLMsgHdlFilterToHMI/ of the pLMsgHdI unit
and should be transferred to the FB as
VAR_IN_OUT.
activeMessages IN_OUT |sLMsgHdI M - Transfers the current message log in raw data
BaseData Active format.
MessagesBase
DataType
valid ouT BOOL - FALSE Displays the validity of the values at the out-
puts.
error ouT BOOL - FALSE Displays whether an error has occurred while
processing the FB.
Message Handling
78 Application Manual, 11/2016



Description of functions

5.4 FBLMsgHdlActiveMsgBaseDataToHM| function block

Name Type " Data type M/O 2 | Initial value Description
errorld ouT DWORD - 16#00000000 | Returns the number of the error that has oc-
curred.
activeMsgToHMI | OUT sLMsgHdIHMI- | - - Returns the active messages in raw data
ActiveMsg format for display on an HMI.
BaseDataType

1 Parameter types: IN = input parameter, OUT = output parameter, IN_OUT = in/out parameter

2 Parameter type: M = mandatory parameter, O = optional parameter

Table 5- 8 Error messages

Error number Description

[HEX]

0 Error-free

9997 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHM/ parameter is greater than the maximum number of lines for the HMI
(LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI in cPublic unit)

9998 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHM|/ parameter is greater than the maximum length of the transferred
buffer LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES or
LMSGHDL_LENGTH_OF_MESSAGE_LOG in cPublic unit)

544 Structure for parameter transfer
sLMsgHdIHMIActiveMsgSgType has the following structure.
Table 5-9  Structure for active messages in STRING format on an HMI
Parameter Data type Initial Description
value

adtMessageOccured ARRAY[0..LMSGHDL_MAX_ DT#0001 | Array for information about the active
NUMBER_OF_VISIBLE_LINES_FOR |-01-01- messages occurred time stamp
_HMI -1] OF DT 0:0:0

ab32Parameter3 ARRAYI0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 3
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter4 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 4
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter5 ARRAYI0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 5
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter6 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 6
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

Message Handling

Application Manual, 11/2016 79



Description of functions

5.4 FBLMsgHdlActiveMsgBaseData ToHMI function block

Parameter Data type Initial
value

ab32Parameter7 ARRAY[0..LMSGHDL_MAX _ 16#0000 | Array for information in parameter 7
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter8 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 8
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter9 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 9
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter10 ARRAY[0..LMSGHDL_MAX _ 16#0000 | Array for information in parameter 10
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter11 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 11
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ai16NumberOfMessage ARRAY[0..LMSGHDL_MAX _ 0 Array for information about which number
NUMBER_OF_LINES_FOR_HMI - 1] the relevant message has in the message
OF DINT buffer for active messages

ai16Parameter2 ARRAY[0..LMSGHDL_MAX_ 0 Array for information in parameter 2
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF INT

au8MessageSource ARRAY[0..LMSGHDL_MAX_ 0 Array for information about the message
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

au8Messagelevel ARRAY[0..LMSGHDL_MAX_ 0 Array for information about the message
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

au8AcknowledgeClass ARRAY[0..LMSGHDL_MAX_ 0 Array for information about the type of
NUMBER_OF_VISIBLE_LINES_FOR acknowledgement
_HMI -1] OF USINT

au8ErrorClass ARRAY[0..LMSGHDL_MAX_ 0 Array for information about the error class
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

au16Parameter1 ARRAY[0..LMSGHDL_MAX_ 0 Array for information in parameter 1
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF UINT

Message Handling
80 Application Manual, 11/2016



Description of functions

5.5 FBLMsgHdIMsgl ogBaseData ToHM| function block

5.5 FBLMsgHdIMsgLogBaseDataToHMI function block

551 General information on the function block

The FBLMsgHdIMsgLogBaseDataToHMI function block is used to display message texts of
the global buffer for the message log in raw data format on an HMI.

Response as described in FBLMsgHdIActiveMsgToHMI function block (Page 69).

See also

Interpretation of the raw data (Page 115)

5.5.2 Schematic representation in LAD/FBD

FBLMsgHdIMsgLogBaseDataToHMI

BOOL —1 enable valid |— BOOL

BOOL — updateHMI error |— BOOL

BOOL — scrollUp1 errorld — DWORD

BOOL — scrollUp msglLogToHMI |— sLMsgHdIHMIMsgLogBaseDataType

BOOL —— scroliIDown1
BOOL — scroliDown
BOOL —{ goToTop
BOOL — goToEnd
UINT — numberOfLinesToScroll
UINT — numberOfLinesForHMI
sLMsgHdIFilterToHMIType — filterToHMI
sLMsgHdIMessagelLogBaseDataType — messagelLogBaseData

Figure 5-4  Schematic representation in LAD/FBD

Message Handling
Application Manual, 11/2016 81



Description of functions

5.5 FBLMsgHdIMsgl ogBaseData ToHM| function block

5.5.3 Input and output parameters of the function block

The FBLMsgHdIMsgLogBaseDataToHMI function block has the following input and output
parameters:

Table 5- 10  Input and output parameters

Name Type " Data type M/O 2 | Initial value Description

enable IN BOOL M FALSE Function block enable.

updateHMI IN BOOL 0] FALSE The currently output data area is updated on
the HMI with a rising edge.

scrollUp1 IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved up one message with a rising edge.

scrollUp IN BOOL 0] FALSE The data area to be displayed on the HMI is

moved up by the value transferred in num-
berOfLines ToScroll with a rising edge.

scroliDown1 IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved down one message with a rising edge.
scrollDown IN BOOL (0] FALSE The data area to be displayed on the HMI is

moved down by the value transferred in num-
berOfLines ToScroll with a rising edge.

goToTop IN BOOL (0] FALSE The data area to be displayed on the HMI is
moved with the top line on the latest entry
with a rising edge.

goToEnd IN BOOL 0] FALSE The data area to be displayed on the HMI is

moved with the bottom line on the oldest entry
with a rising edge.

numberOfLines- IN UINT (0] 1 Value that specifies how many lines the dis-
ToScroll play area is moved when scrol/Up or scroll-
Down is activated.
numberOf IN UINT 0] 1 Specifies the number of lines (messages) that
LinesForHMI are to be output for the HMI.
filterToHMI IN sLMsgHdI (0] The information as to which message sources
FilterToHMIType are to be displayed or not at the output of the

FB is transferred here. If the use of
SIMOTION IT is selected in the message
handling, this information is provided in
gsLMsgHdlFilterToHMI of the pLMsgHdI unit
and should be transferred to the FB as

VAR_IN_OUT.
Message IN_OUT |sLMsgHd M - Transfers the current message log in raw data
LogBaseData Messagelog- format.
BaseDataType
valid ouT BOOL - FALSE Displays the validity of the values at the out-
puts.
error ouT BOOL - FALSE Displays whether an error has occurred while

processing the FB.

Message Handling
82 Application Manual, 11/2016



Description of functions

5.5 FBLMsgHdIMsgl ogBaseData ToHM| function block

Name Type " Data type M/O 2 | Initial value Description
errorld ouT DWORD - 16#00000000 | Returns the number of the error that has oc-
curred.
msgLogToHMI ouT sLMsg - - Returns the messages in raw data format for
HdIHMIMsglLog- display on an HMI.
glog-
BaseDataType

1 Parameter types: IN = input parameter, OUT = output parameter, IN_OUT = in/out parameter

2) Parameter type: M = mandatory parameter, O = optional parameter

Table 5- 11 Error messages

Error number Description

[HEX]

0 Error-free

9997 The number of lines (messages) to be displayed on the HMI in the numberOfLi-

nesForHM/ parameter is greater than the maximum number of lines for the HMI
(LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI in cPublic unit)

9998 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHM/ parameter is greater than the maximum length of the transferred
buffer LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES or
LMSGHDL_LENGTH_OF_MESSAGE_LOG in cPublic unit)

554 Structure for parameter transfer
sLMsgHdIHMIMsglLogBaseDataType has the following structure.

Table 5- 12 Structure for the message log in STRING format on an HMI

Parameter Data type Initial Description
value

ai16NumberOfMessage ARRAY[0..LMSGHDL_MAX_ 0 Array for information about which number
NUMBER_OF_LINES_FOR_HMI - 1] the relevant message has in the message
OF DINT buffer for active messages

au8MessageSource ARRAYI0..LMSGHDL_MAX_ 0 Array for information about the message
NUMBER_OF_VISIBLE_LINES_FOR source
_HMI -1] OF USINT

au8Messagelevel ARRAY[0..LMSGHDL_MAX_ 0 Array for information about the message
NUMBER_OF_VISIBLE_LINES_FOR level
_HMI -1] OF USINT

au8AcknowledgeClass ARRAY[0..LMSGHDL_MAX_ 0 Array for information about the type of
NUMBER_OF_VISIBLE_LINES_FOR acknowledgement
_HMI -1] OF USINT

au8ErrorClass ARRAY[0..LMSGHDL_MAX_ 0 Array for information about the error class
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

Message Handling
Application Manual, 11/2016 83



Description of functions

5.5 FBLMsgHdIMsgl ogBaseData ToHM| function block

Parameter Data type Initial Description
value

au16Parameter1 ARRAY[0..LMSGHDL_MAX _ 0 Array for information in parameter 1
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF UINT

ai16Parameter2 ARRAY[0..LMSGHDL_MAX_ 0 Array for information in parameter 2
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF INT

ab32Parameter3 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 3
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter4 ARRAY[0..LMSGHDL_MAX _ 16#0000 | Array for information in parameter 4
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter5 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 5
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter6 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 6
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter7 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 7
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter8 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 8
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter9 ARRAY[0..LMSGHDL_MAX _ 16#0000 | Array for information in parameter 9
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter10 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 10
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

ab32Parameter11 ARRAY[0..LMSGHDL_MAX_ 16#0000 | Array for information in parameter 11
NUMBER_OF_VISIBLE_LINES_FOR | 0000
_HMI -1] OF DWORD

adtMessageOccured ARRAY[0..LMSGHDL_MAX_ DT#0001 | Array for information about the active
NUMBER_OF_VISIBLE_LINES_FOR | -01-01- messages occurred time stamp
_HMI -1] OF DT 0:0:0

adtMessageGone ARRAY[0..LMSGHDL_MAX_ DT#0001 | Array for information about message gone
NUMBER_OF_VISIBLE_LINES_FOR | -01-01-
_HMI -1] OF DT 0:0:0

Message Handling
84 Application Manual, 11/2016




Description of functions

5.6 FCLMsgHdIWriteUserMessage ToBuffer and FCLMsgHdIWriteFBFCMessage ToBuffer functions

5.6 FCLMsgHdIWriteUserMessageToBuffer and
FCLMsgHdIWriteFBFCMessageToBuffer functions

5.6.1 General information on the functions

User-defined messages are transferred to the message handling when the
FCLMsgHdIWriteUserMessageToBuffer or FCLMsgHdIWriteFBFCMessageToBuffer function
is called. These messages are generated from the application. This function must be called
once for each new message. For messages that are already active or have not been
acknowledged yet, no new message is entered in the buffer, or a message is issued via the
message bit handling or AlarmS handling.

Message is determined in the
application

Y

Transfer of the information
to the function
FCLMsgHdIWriteUserMessageToBuffer

Y

Entry in array for message Issuing of an AlarmS
bit handling message

v r
0T O

Figure 5-5  Entry of user-defined messages

Entry in message buffers

A message is specified via its unique message number. The entered messages can be
processed in three different ways for forwarding to the operator.

® Entry in the message buffer:
The message is entered in the message buffers. When using the string-based buffers,
the user must ensure that a message text is stored in the controller, see Section
Integration of the application into a SIMOTION project (Page 51)

e Use of the message bit handling:
When the message bit handling is selected by setting the
LMSGHDL_MESSAGE_BIT_USER_MESSAGES constant to TRUE, the bit
corresponding to the message number in the gab 76L MsgHIdE ventFlag global WORD
array is set in the fLMsgHdl unit. The message texts are stored in the HMI.

e Use of AlarmS:
When the AlarmS message procedure is selected by setting the
LMSGHDL_ALARM_S_USER_MESSAGES constant to TRUE, an AlarmS message
corresponding to the bit number is generated. The message texts must be entered by the
user in SIMOTION SCOUT.

Message Handling
Application Manual, 11/2016 85



Description of functions

5.6 FCLMsgHdIWriteUserMessage ToBuffer and FCLMsgHdIWriteFBFCMessage ToBuffer functions

5.6.2

Call example

FCLMagHd IWr i teFCFBMessageToBuffer (eventNumber =8
,errorClass =2
,errorCode = 16#fFfFff8082
,FunctionBlockld =1

,additionalValuelDINT := 512
,additionalValue2DINT := 4711);

The eventNumberdetermines the user-defined message that is output in the message
handling. At the same time, the appropriate message is set when the AlarmS handling or
message bit handling is active. If an additional functionBlockld is not set, the message class
belonging to the event number is issued.

The functionBlockld is set if the user-defined message is from a function or function block. In
this case, the message class is not generated from the event number, but from the
appropriate specification of the gasL MsgHdIFBF CMachineErrorClasses variable. The value

for the machine error class is read out as follows and taken into the message handling:
gasLMsgHdIFBFCMachineErrorClasses|[0] -ai8ErrorClass[2]

Schematic representation in LAD/FBD

FCLMsgHdIWriteUserMessageToBuffer function

86

FCLMsgHdIWriteUserMessageToBuffer

DINT — eventNumber
USINT — messagelLevel
USINT — acknowledgeClass

DINT — additionalValue1DINT
DINT —] additionalValue2DINT
REAL — additionalValueREAL

DINT — messageOccuredExternal

Figure 5-6  Schematic representation in LAD/FBD

Message Handling
Application Manual, 11/2016



Description of functions

5.6 FCLMsgHdIWriteUserMessage ToBuffer and FCLMsgHdIWriteFBFCMessage ToBuffer functions

FCLMsgHdIWriteFBF CMessageToBuffer function

FCLMsgHdIWriteFBFCMessageToBuffer
DINT — eventNumber
USINT — messagelLevel
USINT — acknowledgeClass
USINT — errorClass
DWORD — errorCode
DINT — functionBlockld
DINT — additionalValue1DINT
DINT — additionalValue2DINT
REAL — additionalValueREAL
DINT — messageQOccuredExternal
Figure 5-7  Schematic representation in LAD/FBD
5.6.3 Input and output parameters of the functions

The user must start with 1 (one) for the message numbers, 0 (zero) is not permitted.

Input and output parameters of the FCLMsgHdIWriteUserMessageToBuffer function

The FCLMsgHdIWriteUserMessageToBuffer function has the following input and output
parameters:

Table 5- 13  Input and output parameters

Element Ptype ¥ | Data type | M/O 2 | Initial value | Meaning

eventNumber IN DINT M 0 Message number

messagelevel IN USINT (0] 2 Transfer of the message level of the message
(default is 2 -> error)

acknowledgeClass IN USINT (0] 2 Transfer of the acknowledgement type (de-
fault is 2 -> direct)

additionalValue1DINT IN DINT (6] 0 Additional value for the error in DINT format,
is transferred to AlarmS

additionalValue2DINT IN DINT (0] Additional value for the error in DINT format

additionalValueREAL IN REAL (0] 0.0 Additional value to transfer errors in REAL
format

Message Handling
Application Manual, 11/2016

87



Description of functions

5.6 FCLMsgHdIWriteUserMessage ToBuffer and FCLMsgHdIWriteFBFCMessage ToBuffer functions

Element P type 1 | Data type | M/O 2 | Initial value | Meaning

messageOccuredExternal IN DINT (0] 0 If this input is used, the value transferred
there is transferred to the message handling.
If no value is transferred via this input, the
system time of the SIMOTION device applies.
Default setting is the system time of the
SIMOTION device.

FCLMsgHdIWriteMessage | OUT VOID - - No return code for the function

ToBuffer

) Parameter types: IN = input parameter, OUT = output parameter

2 Parameter type: M = mandatory parameter, O = optional parameter

Input and output parameters of the FCLMsgHdIWriteF BFCMessageToBuffer function
The FCLMsgHdIWriteFBFCMessageToBuffer function has the following input and output

parameters:
Table 5- 14  Input and output parameters

Element P type V | Data type | M/O 2 | Initial value | Meaning

eventNumber IN DINT M 0 Message number

messagelevel IN USINT O 2 Transfer of the message level of the message
(default is 2 -> error)

acknowledgeClass IN USINT (0] 2 Transfer of the acknowledgement type (de-
fault is 2 -> direct)

errorClass IN USINT O 0 Error class of the message

errorCode IN DWORD | O 16#000000 | Error code (e.g. for error response from func-

00 tion blocks), is transferred to AlarmS

functionBlockld IN DINT (0] 0 ID of the function block triggering the mes-
sage

additionalValue 1DINT IN DINT 0] Additional value for the error in DINT format

additionalValue2DINT IN DINT 0] Additional value for the error in DINT format

additionalVValueREAL IN REAL 0] 0.0 Additional value to transfer errors in REAL
format

messageOccuredExternal IN DINT (0] 0 If this input is used, the value transferred
there is transferred to the message handling.
If no value is transferred via this input, the
system time of the SIMOTION device applies.
Default setting is the system time of the
SIMOTION device.

FCLMsgHdIWriteFCFB ouT VOID - - No return code for the function

MessageToBuffer

) Parameter types: IN = input parameter, OUT = output parameter

2)  Parameter type: M = mandatory parameter, O = optional parameter

88

Message Handling
Application Manual, 11/2016



Description of functions

5.7

5.7 Structure for message log as raw data

Structure for message log as raw data

Table 5- 15  Structure for message log as raw data sLMsgHdIMessagelLogBaseDataType

MESSAGE_LOG - 1] OF DWORD

Parameter Data type Initial value Description
i16Actualindex INT 0 Current index in the global mes-
sage log for raw data
i16NumberOfNew INT 0 Only for internal use by message
Messages handling
boChangeslinLog- BOOL FALSE Only for internal use by message
BaseData handling
boNewMessages BOOL FALSE Only for internal use by message
ForHMILogBase handling
boBuildNewString BOOL FALSE Only for internal use by message
Messages handling
au8MessageSource ARRAY[0..LMSGHDL_LENGTH_OF_ 0 Array for information about the
MESSAGE_LOG - 1] OF USINT source of the message
au8Messagelevel ARRAY[0..LMSGHDL_LENGTH_OF_ 0 Array for information about the
MESSAGE_LOG - 1] OF USINT level of the message (fault, alarm,
error, information)
au8AcknowledgeClass | ARRAY[0..LMSGHDL_LENGTH_OF_ 0 Array for information about the
MESSAGE_LOG - 1] OF USINT type of acknowledgement for the
message
au8ErrorClass ARRAY[0..LMSGHDL_LENGTH_OF_ 0 Array for information about the
MESSAGE_LOG - 1] OF USINT error class of a message
au16Parameter1 ARRAY[0..LMSGHDL_LENGTH_OF _ 0 Array for information about Varia-
MESSAGE_LOG - 1] OF UINT ble1 of the respective message
type
ai16Parameter2 ARRAY[0..LMSGHDL_LENGTH_OF_ 0 Array for information about Varia-
MESSAGE_LOG - 1] OF INT ble2 of the respective message
type
ab32Parameter3 ARRAY[0..LMSGHDL_LENGTH_OF_ 16#00000000 | Array for information about Varia-
MESSAGE_LOG - 1] OF DWORD ble3 of the respective message
type
ab32Parameter4 ARRAY[0..LMSGHDL_LENGTH_OF_ 16#00000000 | Array for information about Varia-
MESSAGE_LOG - 1] OF DWORD ble4 of the respective message
type
ab32Parameter5 ARRAY[0..LMSGHDL_LENGTH_OF_ 16#00000000 | Array for information about Varia-
MESSAGE_LOG - 1] OF DWORD ble5 of the respective message
type
ab32Parameter6 ARRAY[0..LMSGHDL_LENGTH_OF_ 16#00000000 | Array for information about Varia-
MESSAGE_LOG - 1] OF DWORD ble6 of the respective message
type
ab32Parameter7 ARRAY[0..LMSGHDL_LENGTH_OF_ 16#00000000 | Array for information about Varia-
MESSAGE_LOG - 1] OF DWORD ble7 of the respective message
type
ab32Parameter8 ARRAY[0..LMSGHDL_LENGTH_OF_ 16#00000000 | Array for information about Varia-

ble8 of the respective message
type

Message Handling
Application Manual, 11/2016

89




Description of functions

5.8 Structure for message log in STRING format

Parameter Data type Initial value Description
ab32Parameter9 ARRAY[0..LMSGHDL_LENGTH_OF_ 16#00000000 | Array for information about Varia-
MESSAGE_LOG - 1] OF DWORD ble9 of the respective message
type
ab32Parameter10 ARRAYI0..LMSGHDL_LENGTH_OF _ 16#00000000 | Array for information about Varia-
MESSAGE_LOG - 1] OF DWORD ble10 of the respective message
type
ab32Parameter11 ARRAY[0..LMSGHDL_LENGTH_OF_ 16#00000000 | Array for information about Varia-
MESSAGE_LOG - 1] OF DWORD ble11 of the respective message
type
adtMessageOccured ARRAY[0..LMSGHDL_LENGTH_OF_ DT#0001-01- | Time stamp when the relevant
MESSAGE_LOG - 1] OF DT 01-0:0:0:0 message occurred.
adtMessageGone ARRAY[0..LMSGHDL_LENGTH_OF_ DT#0001-01- | Time stamp when the relevant
MESSAGE_LOG - 1] OF DT 01-0:0:0:0 message has gone.
boNewMessage ARRAYI0..LMSGHDL_LENGTH_OF _ FALSE Shows whether the relevant mes-
MESSAGE_LOG - 1] BOOL sage is a new entry in the raw
data message log.
i16MessagelndexLastC | ARRAY[0..LMSGHDL_LENGTH_OF_ 0 Index of the message in the pre-
ycle MESSAGE_LOG - 1] INT vious background cycle. Auxiliary
variable for update of the mes-
sage log in STRING format.
5.8 Structure for message log in STRING format
Table 5- 16  Structure for message log in STRING format sLMsgHdIMessagel ogStrning Type
Parameter Data type Initial value | Description
i16Actualindex INT 0 Current index in the global message
log in STRING format
boChang- BOOL FALSE Only for internal use by message
esInLogStringData handling
boChang- BOOL FALSE Only for internal use by message
esInLogStringData- handling
ForHMI
asgMessagelevel ARRAYI0..LMSGHDL_LENGTH_OF _ Empty Array for information about the level
MESSAGE_LOG - 1] OF STRING[11] string of the message (fault, alarm, error,
information).
asgMessageSource ARRAY[0..LMSGHDL_LENGTH_OF_ Empty Array for information about the
MESSAGE_LOG - 1] OF STRING[64] string source of the message.
asgMessageText ARRAYI0..LMSGHDL_LENGTH_OF _ Empty Array for language-dependent mes-
MESSAGE_LOG - 1] OF STRING[160] string sage text.
asgMessageOccured ARRAYI0..LMSGHDL_LENGTH_OF _ Empty Time stamp when the relevant mes-
MESSAGE_LOG - 1] OF STRING[23] string sage occurred.
asgAcknowledgeClass | ARRAY[0..LMSGHDL_LENGTH_OF_ Empty Array for information about the type
MESSAGE_LOG - 1] OF STRING[17] string of acknowledgement for the mes-
sage.
asgMessageGone ARRAY[0.LMSGHDL_LENGTH_OF _ Empty Time stamp when the relevant mes-
MESSAGE_LOG- 1] OF STRING[23] string sage has gone.

Message Handling
90 Application Manual, 11/2016



Alarm and error messages 6

6.1 General information on the error handling

Errors can also occur during processing in the message handling. These are signaled when
errors occur during the processing in the message handling, e.g. data exchange failure with
drive objects of a SINAMICS drive.

6.2 Buffer overflow

The messages of the individual, possible message sources are first collected in buffers. This
guarantees the data consistency of the message information. These buffers are configured
as ring buffers and only release memory areas written by a new message when this
information has been entered in the global message buffers.

If several new messages occur at a message source in a short time, it may happen that a
buffer is written quicker than it can be read out. If this happens, a buffer may overflow. The
overflow of one of these buffers is signaled by an intemal error message to the message
handling.

If such a message is entered, there is no longer any guarantee that the information in the
message buffers is complete. All messages from a source that occur after an overflow are
not taken into the message buffers and are lost. Only after there has been an

acknowledgement via the message handling are new messages recognized again at the
source.

The relevant buffer can be increased via the respective constant in cPublic of the LMsgHdI
library. This value only takes effect however after recompilation and download of the project.

6.3 Overflow of AlarmS messages

When using AlarmS in the message handling, make sure that only 40 AlarmS messages can
be active simultaneously. If the next message is issued, this can no longer be processed by
the AlarmS handler and is lost. Despite this, the messages are still taken into the message
handling. At the same time, the internal error LMSGHDL_ALARM_S_ERROR (100002) is
triggered and entered in the message handling.

Message Handling
Application Manual, 11/2016 91



Alarm and error messages

6.4 Error during startup

6.4

6.5

6.6

92

Error during startup

The message handling monitors the startup of the machine and collects generic information
that is required later in the message handling. If all the configured modules are not available
on the controller, there is no guarantee that the message handling functions correctly. For
this reason, an internal message is signaled by the message handling as soon as a
configured module is not available or a different operating state as active is signaled
LMSGHDL_ERROR_CHECK_STARTUP_OK (100026).

The timeout expires when acyclic data exchange to the SINAMICS_Integrated is not possible
for a SIMOTION D.

After a station recovery message of an 1/0 module, the check as to whether the 1/0O module
is available again is started automatically.

If an error occurs during startup, the startup check is immediately terminated and the
message about the buffer management error transferred to the message handling. If the
buffer management signals an error, the message handling can only be used again after a
restart.

Messages by I/O modules

In the gasLMsgHdlPerjpheralDevices variable of the dProfected library unit, each /0 module
has a boStationConnected variable of the BOOL type which indicates whether the /O
module is available or not. The message handling sets this bit at a station failure or recovery.

DO safety messages

Safety messages are handled like errors on the drive object. Safety messages cannot be
acknowledged by the message handling. For this reason, the Message gone time stamp is
monitored. This means that each safety message when it occurs and when it is
acknowledged creates an entry in the buffer for safety messages on all of the drive objects.
In the message handling, make sure that active safety messages are automatically removed
from the buffer for active messages when acknowledged. In addition, in the global message
log, only the Message gone time stamp has to be added to an active safety message when it
disappears.

The buffering for safety messages from the previous detection is in the
gasLMsgHdlAuxiliaryBufferDOWith TOSafety variable. The newly found safety messages are
stored in the asL MsgHdIAuxiliaryBufferDOSafety array.

Message Handling
Application Manual, 11/2016



Alarm and error messages
6.7 User-defined messages

6.7 User-defined messages

In the message handling, it is possible to transfer an independently generated time stamp
when the message occurred for all user-defined messages. For this purpose, the
messageOccuredExternal input of the DT type is available on all FCs. If a value other than
the default value is transferred here, then this time stamp is transferred to the message
handling instead of the current system time. If this input is not filled or written with a default
value, the message handling takes over the current system time stamp.

It is possible to create the user-defined message with the Event/D = 0 variable. When this
variable is assigned as user-defined message, it is possible to create a message several
times. All other messages can only be active once. If the Eventld = Ois assigned, the
message is entered again in the message handling with the respective time stamp with each
new call. However, this message does not generate a message class or an associated
AlarmS and no bit in the message bit handling. The message text required for the STRING
output is available in the fLMsgHdlInit unit in the gasL MsgHd/UserDefinedMessageEvent0
variable. The user-defined message with Event/d = 0 can be created via the
FCLMsgHdIWriteFBF CMessageToBuffer function. It is thus possible to transfer this message
as additional values of an error code, a functionBlockld and two additional values. The user-
defined messages generated in this way can also be acknowledged individually.

6.8 Error during data exchange with DOs

If an error occurs during data exchange with at least one DO, an appropriate message is
transferred to the message handling. Data exchange with the relevant DO is then
interrupted. Data exchange with the DO is only restarted after a global acknowledgement by
the message handling. If the error in the data exchange occurs again, another message is
output.

The DO that causes the message, is transferred to the message handling either via the
number of the associated axis, the logical address or a logical address including the DO
number, depending on the type of DO.

6.9 Particularity for alarms on drive objects

Alarms on drive objects on SINAMICS modules cannot be acknowledged. When these
alarms occur, they remain present until the reason for the alarm no longer exists. As soon as
an active alarm is no longer present, it is automatically deleted from the message buffers for
active messages.

Message Handling
Application Manual, 11/2016 93



Alarm and error messages

6. 10 Particularity for peripheral messages

6.10

6.11

94

Particularity for peripheral messages

Messages through I/O modules have a different character in SIMOTION. There are negative
and positive peripheral messages. For example, the message Station failure is a negative
message. Whereas Station recoveryis a positive message. The collection of these
peripheral messages is therefore implemented as follows in the message handling.

If a negative peripheral message occurs on a machine, this is entered in the message log
and the message buffer for active messages. Positive messages are only entered in the
message log. At the same time, a search is made in the message buffer for active messages
to see whether a negative message belonging to the positive message is still active. If this is
the case, the appropriate message is acknowledged automatically and removed from the
active messages. If a negative active peripheral message is acknowledged before the
associated positive message occurs, it is also removed from the buffer for active messages.
The occurrence of all peripheral messages can therefore always be tracked in the log
memory of the message handling.

Table 6- 1 Associated positive and negative peripheral messages

Negative message Positive message

ID 202 Station failure ID 203 Station recovery

ID 204 Error when generating the process image | ID 206 Generation of the process image functions
again

ID 210 Multiple clock failure or PLL unlocked ID209 PLL locked in controlled operation

ID 215 Synchronization failed ID214 Synchronization reached

The peripheral messages with the interrupt IDs 200, 201, 205, 208, 211, 212, 213, 216 and
217 are also taken into the log memory and the message buffer for active messages.
However, these IDs have no complementary peripheral message and are not acknowledged
automatically. The meanings of the IDs listed here are described in the SIMOTION SCOUT
online help at Using task start information.

Reaction to internal errors

If an error occurs in the message handling, this is entered in the respective message buffers
via an appropriate message. A global machine error class is also set. This machine error
class is identical for all messages of the message handling and can be specified by the user
in the cPublic unit of the LMsgHdl library via the
LMSGHDL_MACHINE_ERROR_CLASS_ERROR_IN_MESSAGEHANDLING constant.

The messages generated by intemal errors can be reset via the global acknowledgement.
However, if the reason for the internal error has not been corrected at the time of the
acknowledgement, the message is entered in the message handling again. As the interal
errors in the message handling are application-specific messages, they are transferred to the
message handling in the same way as user-defined messages. To clearly distinguish these
messages from the user messages, the event numbers start at 100.000.

Message Handling
Application Manual, 11/2016



Alarm and error messages

6.11 Reaction to intemal errors

The following internal errors can occur in the message handling:

Table 6- 2 Internal error in the message handling

Name of the constant | Event Meaning
number
LMSGHDL_UNKNOWN_USER_EVENT

100.000

An unknown user-defined message has been transferred to the message handling.
The faulty message can be identified by the additional values. This message can only
be acknowledged.

LMSGHDL_EVENT_IN_UNKNOWN_

TASK

100.001

A user-defined message has been transferred to the message handling from an un-
known task. The execution system has been changed without recalling the script. The
configuration script should be run through again.

LMSGHDL_ALARM_S_ERROR

100.002

An error occurred while issuing an AlarmS message. The internally used _alarmSQ/d
and _alarmSl/d functions have generated an error. Remedy: See additional value
errorld. (Errors of the system functions). This message can be acknowledged imme-
diately.

LMSGHDL_OVERFLOW_BUFFER_EXECUTIONTASK_MESSAGES

100.003

The buffer to collect the ExecutionTask messages has overflowed. ExecutionFault
messages have occurred in two successive starts of the machine, without the mes-
sage handling being able to process the first message after the restart. Search for the
error and restart the machine. Triggering message could not be taken into the buffers.

LMSGHDL_OVERFLOW_BUFFER_APPLICATION_MESSAGES

100.004

The buffer to collect the user messages has overflowed. The constant
LMSGHDL_NUMBER_OF_APPLICATION_MESSAGES must be increased in cPub-
lic. An acknowledgement is possible. Triggering message could not be taken into the
buffers.

LMSGHDL_OVERFLOW_BUFFER_TECHFAULT_MESSAGES

100.005

The buffer to collect the TechnologicalFaultTask messages has overflowed. The
constant LMSGHDL_NUMBER_OF_PERIPHERAL_FAULT_MESSAGES must be
increased in cPublic. An acknowledgement is possible. Triggering message could not
be taken into the buffers.

LMSGHDL_OVERFLOW_BUFFER_PERIPHERAL_MESSAGES

100.006

The buffer to collect the PeripheralFaultTask messages has overflowed. The
LMSGHDL_NUMBER_OF_TECH_FAULT_MESSAGES constant must be increased
in cPublic. An acknowledgement is possible. Triggering message could not be insert-
ed into the buffers.

LMSGHDL_OVERFLOW_BUFFER_TIMEFAULT_MESSAGES

100.007

The buffer to collect the TimeFaultTask messages has overflowed, e.g. due to an
endless loop in the BackgroundTask. The
LMSGHDL_NUMBER_OF_TIME_FAULT_MESSAGES constant must be increased in
cPublic. An acknowledgement is possible. Triggering message could not be taken
into the buffers.

LMSGHDL_OVERFLOW_BUFFER_DOFAULT_MESSAGES

100.008

The buffer to collect the fault messages on all drive objects has overflowed. The
LMSGHDL_NUMBER_OF_DO_FAULT_MESSAGES constant must be increased in
cPublic. An acknowledgement is possible. Triggering message could not be taken
into the buffers.

Message Handling
Application Manual, 11/2016

95



Alarm and error messages

6.11 Reaction to intemal errors

Name of the constant

Event
number

Meaning

LMSGHDL_OVERFLOW_BUFFER_DOALARM_MESSAGES

100.009

The buffer to collect the alarm messages on all drive objects has overflowed. The
LMSGHDL_NUMBER_OF_DO_ALARM_MESSAGES constant must be increased in
cPublic. An acknowledgement is possible. Triggering message could not be taken
into the buffers.

LMSGHDL_ERROR_IN_|

BUFFER_MANAGER

100.010

An error occurred while using the buffer management. As the buffer management for
DP-V1 services has an error, the SINAMICS drive objects are no longer monitored. A
machine restart is required.

LMSGHDL_ERROR_IN_

CHECK_STARTUP

100.011 | An error has occurred for the startup check in the FBLDPV1CheckStartup function
block. Not all the configured I/O modules are available. The message handling cannot
provide all the required information. The machine must be checked and, if required,
restarted.

LMSGHDL_ERROR_ADD_TO
100.012 | An attempt was made to transfer a non-existing axis to the message handling. The

configuration script must be run through again.

LMSGHDL_ERROR_SEARCH_ALL _

DOS

100.013

An error has occurred in the internal assignment of technology objects to drive ob-
jects, caused by the FBLDPV1SearchAllDo function. See transfer parameter error/d
and DO-TO documentation in LDPV1. The message handling cannot provide all the
required information. The machine must be checked and, if required, restarted.

LMSGHDL_ERROR_CH

ECK_WRITE_ACCESS

100.014

An error has occurred while checking whether the parameters can be written in the
SINAMICS drive objects. See transfer parameter errorld and CheckStartup documen-
tation in LDPV1. The machine must be checked and, if required, restarted.

LMSGHDL_ERROR_TIME_SYNC

100.015

An error occurred during the time synchronization of a SINAMICS module. See trans-
fer parameter error/d and 7imeSync documentation in LDPV1. Messages and drive
objects may only have the time stamp of the SIMOTION RTC and cannot be as-
signed correctly. The machine must be checked and, if required, restarted.

LMSGHDL_ERROR_FB_

GET_DO_MESSAGES_AT_AXIS

100.016

An error has occurred while determining faults/alarms on a drive object that belongs
to a TO axis. See transfer parameter error/d and GetFault documentation in LDPV1.
A SINAMICS module might have failed completely. The machine must be checked.
An immediate acknowledgement is possible.

LMSGHDL_ERROR_FB_

GET_DO_MESSAGES_CYCLIC_DOS

100.017

An error has occurred while determining faults/alarms on a drive object with cyclic
data exchange. See transfer parameter error/d and GetFault documentation in
LDPV1. A SINAMICS module might have failed completely. The machine must be
checked. An immediate acknowledgement is possible.

LMSGHDL_ERROR_FB_

GET_DO_MESSAGES_ACYCLIC_DOS

100.018

An error has occurred while determining faults/alarms on a drive object without cyclic
data exchange. See transfer parameter error/d and GetFault documentation in
LDPV1. A SINAMICS module might have failed completely. The machine must be
checked. An immediate acknowledgement is possible.

LMSGHDL_ERROR_MESSAGE_BUFFER_MANAGER

96

Message Handling
Application Manual, 11/2016



Alarm and error messages

6.11 Reaction to intemal errors

Name of the constant | Event Meaning
number
100.019 | An error has occurred in the block to create the message buffer (acknowledgement of

the active messages). A SINAMICS module might have failed completely. The ma-
chine must be checked. An immediate acknowledgement is possible.

LMSGHDL_ERROR_GE

T_DO_NAME

100.020

Error occurred during automatic determination of the names of all configured drive
objects. The message handling cannot provide all the required information. A
SINAMICS module might have failed completely. The machine must be checked and,
if required, restarted.

LMSGHDL_ERROR_INIT_MESSAGELOG_STRING

100.021

Error occurred while creating the message information in the STRING format. The
texts stored in the system in STRING format must be checked.

LMSGHDL_ERROR_UP

DATE_HMI_ACTIVE_MESSAGES

100.022 | Error in the block for the output of the active messages in STRING format to the HMI
or SIMOTION IT. A check of the transfer parameters for the output to an HMI is nec-
essary. An immediate acknowledgement is possible.

LMSGHDL_ERROR_UPDATE_HMI_MESSAGE_LOG
100.023 | Error in the block for the output of the message log in STRING format to the HMI or

SIMOTION IT. A check of the transfer parameters for the output to an HMI is neces-
sary. An immediate acknowledgement is possible.

LMSGHDL_ERROR_CH

ANGE_LANGUAGE_SYSTEM

100.024

The file of the language selected for system messages is not available on the storage
medium of the SIMOTION device or is faulty. An immediate acknowledgement is
possible.

LMSGHDL_ERROR_CH

ANGE_LANGUAGE_USER

100.025

The file of the language selected for user-defined messages is not available on the
storage medium of the SIMOTION device or is faulty. An immediate acknowledge-
ment is possible.

LMSGHDL_ERROR_CH

ECK_STARTUP_OK

100.026

Not all the configured devices have been identified as ready. The message handling
cannot provide all the required information. An I/O module might have failed com-
pletely. The machine must be checked and, if required, restarted.

LMSGHDL_ERROR_CH

ANGE_LANGUAGE

100.027

Error occurred while changing the language for output of the messages in STRING
format. It is not necessary to check the language files on the storage medium. An
immediate acknowledgement is possible.

LMSGHDL_ERROR_WRITE_MESS

AGE_LOG_TO_STORAGE_MEDIUM

100.028

Error occurred while writing to the message log on the storage medium of the
SIMOTION device. There may not be sufficient system resources available. An im-
mediate acknowledgement is possible.

LMSGHDL_OVERFLOW_BUFFER_DOSAFETY_MESSAGES

100.029

The buffer to collect the safety messages on all drive objects has overflowed. The
LMSGHDL_NUMBER_OF_DO_SAFETY_MESSAGES constant must be increased in
the cPublic unit. An acknowledgement is possible. The triggering message could not
be taken over.

LMSGHDL_ILLEGAL_FUNCTION_BLOCK_ID

100.030

An illegal functionBlock/d was transferred when a user-defined message was called

by FBs/FCs. An immediate acknowledgement is possible.

Message Handling
Application Manual, 11/2016

97



Alarm and error messages

6.11 Reaction to intemal errors

Name of the constant | Event

number

Meaning

LMSGHDL_ILLEGAL_ERROR_CLASS

100.031

An illegal errorClass was transferred when a user-defined message was called by
FBs/FCs. An immediate acknowledgement is possible.

LMSGHDL_ERROR_IN_PERSITENT_DATA_POWER_MONITORING

100.032

An error has occurred with the voltage for the backup of the non-volatile data.

98

Message Handling
Application Manual, 11/2016




Application example

71 Defining machine error classes (example)

This application example shows the most important adaptations of a SIMOTION project. The
programming of the messages depends on the requirements of the user. This example can

therefore only show ideas for the implementation.

The following has been defined in this application example:
® Ten machine error classes

® Ten user-defined messages

® Messages for three FBs/FCs, each with four error classes

® Messages for two peripheral devices (SINAMICS Integrated drive and CU310 control
unit)

Editing machine error classes

The required error classes must be edited in the fLMsgHdlInit program unit.

Editing machine error classes for user-defined messages

Create the machine error classes as global constants. You can define a maximum of 31

machine error classes. Machine error classes can be defined for user-defined messages and

messages for peripheral devices.

Table 7- 1 Global constants

VAR_GLOBAL CONSTANT
// AUTOMATICALLY GENERATED CODE SEQUENCE - DO NOT CHANGE!
// <<** start label script counter**>>
LMSGHDL_SCRIPT_COUNTER : USINT := 6;
// <<** end label script counter **>>
// END OF AUTOMATICALLY GENERATED CODE SEQUENCE

//
// Defines for machine error classes

// Only for definition of user-defined messages (application or FB/FC)

// User-defined messages can use messageClass from O to 31

1/

LMSGHDL_NO_MACHINE_ERROR_CLASS : SINT :=-1;
LMSGHDL_MACHINE_ERROR_CLASSO : SINT :=0;
LMSGHDL_MACHINE_ERROR_CLASS1 : SINT :=1;
LMSGHDL_MACHINE_ERROR_CLASS2 : SINT :=2;
LMSGHDL_MACHINE_ERROR_CLASS3 : SINT :=3;
LMSGHDL_MACHINE_ERROR_CLASS4 : SINT :=4;
LMSGHDL_MACHINE_ERROR_CLASS5 : SINT :=5;
LMSGHDL_MACHINE_ERROR_CLASS6 : SINT :=6;

Message Handling
Application Manual, 11/2016

99



Application example

7.1 Defining machine error classes (example)

100

LMSGHDL_MACHINE_ERROR_CLASS7
LMSGHDL_MACHINE_ERROR_CLASS8
END_VAR

SINT :=7;
SINT :=8;

Comment out the initialization of the machine error classes and adapt the machine error

classes to the structure that you require.

Table 7- 2 Initializing machine error classes for user-defined messages

//

// Initialize machine error classes for user-defined messages
// The subindex is the eventNumber in FCLMsgHdIWriteMessageToBuffer if
// functionBlockld = 0 (no user-defined message from FB/FC)

/7

userDefinedMachineErrors[0]
userDefinedMachineErrors[1]
userDefinedMachineErrors[2]
userDefinedMachineErrors[3]
userDefinedMachineErrors[4]
userDefinedMachineErrors[5]
userDefinedMachineErrors[6]
userDefinedMachineErrors[7]
chine error class used

userDefinedMachineErrors[8]
userDefinedMachineErrors[9]

Assigning machine error classes for messages from FBs/FCs

= LMSGHDL_MACHINE_ERROR_CLASS1;
= LMSGHDL_MACHINE_ERROR_CLASS2;
= LMSGHDL_MACHINE_ERROR_CLASS3;
= LMSGHDL_MACHINE_ERROR_CLASS1;
= LMSGHDL_MACHINE_ERROR_CLASS1;
= LMSGHDL_MACHINE_ERROR_CLASS4;
= LMSGHDL_MACHINE_ERROR_CLASS5;
= LMSGHDL_NO_MACHINE_ERROR_CLASS; // No ma-

= LMSGHDL_MACHINE_ERROR_CLASS6;
LMSGHDL_MACHINE_ERROR_CLASS7;

Table 7- 3 Initializing machine error classes for messages from FBs/FCs

//

// Initialize machine error classes for FBs/FCs

// The subindex is the functionBlockld in FCLMsgHdIWriteMessageToBuffer

// You can use only four different error classes 0..3

/7

// LMSGHDL_FB/FC1

fBFCMachineErrorClasses[0] -ai8ErrorClass[0] :=

LMSGHDL_MACHINE_ERROR_CLASSO;
fBFCMachineErrorClasses[0] -ai8ErrorClass[1]
LMSGHDL_MACHINE_ERROR_CLASS1;
fBFCMachineErrorClasses[0] -ai8ErrorClass[2]
LMSGHDL_MACHINE_ERROR_CLASS2;
fBFCMachineErrorClasses[0] -ai8ErrorClass[3]
LMSGHDL_MACHINE_ERROR_CLASSS3;

// LMSGHDL_FB/FC2
fBFCMachineErrorClasses[1] -ai8ErrorClass[0]
LMSGHDL_MACHINE_ERROR_CLASS2;
fBFCMachineErrorClasses[1] -ai8ErrorClass[1]
LMSGHDL_MACHINE_ERROR_CLASS3;
fBFCMachineErrorClasses[1] -ai8ErrorClass[2]
LMSGHDL_MACHINE_ERROR_CLASS4;
fBFCMachineErrorClasses[1] -ai8ErrorClass[3]
LMSGHDL_MACHINE_ERROR_CLASS5;

Message Handling
Application Manual, 11/2016



Application example
7.1 Defining machine error classes (example)

// LMSGHDL_FB/FC3

fBFCMachineErrorClasses[2] .ai8ErrorClass[0] :=
LMSGHDL_MACHINE_ERROR_CLASS5;
fBFCMachineErrorClasses[2] -ai8ErrorClass[1] :=
LMSGHDL_MACHINE_ERROR_CLASS6;
fBFCMachineErrorClasses[2] -ai8ErrorClass[2] :=
LMSGHDL_MACHINE_ERROR_CLASS7;
fBFCMachineErrorClasses[2] .ai8ErrorClass[3] :=
LMSGHDL_MACHINE_ERROR_CLASSS;

Assigning machine error classes for messages from peripheral devices

If you want to assign the messages from peripheral devices to a machine error class, you
have to create it.

Table 7- 4 Initializing machine error classes for messages from peripheral devices

//

// Initialize message classes for peripheral devices
//

// SINAMICS Integrated

peripheralDevices[0].i8MachineErrorClass := LMSGHDL_MACHINE_ERROR_CLASS4;
// CU 310

peripheralDevices[1]-i8MachineErrorClass := LMSGHDL_MACHINE_ERROR_CLASS6;

Message Handling
Application Manual, 11/2016 101



Application example

7.2 Editing user-defined messages

7.2 Editing user-defined messages

This section contains two examples of the editing of user-defined messages. You must
define the user-defined messages in the fLMsgHdlInit program unit.

Table 7- 5 Example of a user-defined message no. 4 with four additional values

// User-defined message 4

// “User defined message 4. FB-ID: /1/%d, additional value 1: /2/%d, additional value 2:
/3/%d, error code: /4/%x"

userDefinedMessages[il16IndexCounter].sgLMsgHdITextPartl := "User defined message 4. FB-
ID:";

userDefinedMessages[i1161ndexCounter] .ab8LMsgHdIAdditionalValuel._b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_FB_ID;

userDefinedMessages[i116IndexCounter] .ab8LMsgHdIAdditionalValuel_b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[il6IndexCounter].sgLMsgHdITextPart2 := ", additional value 1:7;
userDefinedMessages[i1161ndexCounter] .ab8LMsgHdIAdditionalValue2 .b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_1;
userDefinedMessages[il6IndexCounter].ab8LMsgHdlAdditionalValue2.b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[il161IndexCounter].sgLMsgHdITextPart3 := *, additional value 2:%;
userDefinedMessages[il16IndexCounter] .ab8LMsgHdIAdditionalValue3.b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_2;

userDefinedMessages[i1161ndexCounter] .ab8LMsgHdIAdditionalValue3_b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;

userDefinedMessages[i16IndexCounter] .sgLMsgHdITextPart4 := ", error code:";
userDefinedMessages[1161ndexCounter] .ab8LMsgHdIAdditionalValue4 _b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_ERROR_CODE;
userDefinedMessages[i116IndexCounter] .ab8LMsgHdlAdditionalValue4 _b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_HEX;

il6IndexCounter := il6lndexCounter + 1;

Table 7-6  Example of a user-defined message no. 2 with two additional values

// User-defined message 2

// "User-defined message 2. additional value 1:/1/%d, additional value 2:/2/%d"
userDefinedMessages[il16IndexCounter] .sgLMsgHdITextPartl := "User-defined message 2. addi-
tional value 1:°;

userDefinedMessages[i16IndexCounter] .ab8LMsgHdIAdditionalValuel.b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_1;

userDefinedMessages[i116IndexCounter] .ab8LMsgHdlAdditionalValuel_b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[il161IndexCounter].sgLMsgHdITextPart2 := *, additional value 2:%;
userDefinedMessages[i1161ndexCounter] .ab8LMsgHdIAdditionalValue2 .b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_2;

userDefinedMessages[i116IndexCounter] .ab8LMsgHdIAdditionalValue2_b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[il6IndexCounter].sgLMsgHdITextPart3 := "*;
userDefinedMessages[i116IndexCounter] .ab8LMsgHdIAdditionalValue3.b8ValueNumber := 0;
userDefinedMessages[i1161ndexCounter] .ab8LMsgHdlAdditionalValue3_b8ValueType := O0;

Message Handling
102 Application Manual, 11/2016



Application example
7.3 Adapting constants in the cPublic library unit

userDefinedMessages[i161IndexCounter].sgLMsgHdITextPart4 := **;
userDefinedMessages[il16IndexCounter].ab8LMsgHdlAdditionalValue4.b8ValueNumber := 0;
userDefinedMessages[i161ndexCounter] .ab8LMsgHdlAdditionalValue4_b8ValueType := O;

il6IndexCounter := i1l1l6IndexCounter + 1;

7.3 Adapting constants in the cPublic library unit

Messages from three FBs/FCs are used in this application example. You must therefore
adapt the constants in the cPublic library unit.

Table 7-7  Adapting constants in cPublic

/7

// Defines for user messages
//

// If constant is TRUE AlarmS handling is active

LMSGHDL_ALARM_S_USER_MESSAGES : BOOL := TRUE;
// If constant is TRUE message bit handling is active
LMSGHDL_MESSAGE_BIT_USER_MESSAGES : BOOL := FALSE;

// Max. number of lines for HMI

LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI : USINT := 10;
// Max. length of strings for HMI
LMSGHDL_MAX_STRING_LENGTH_OF _MESSAGE_TEXTS_TO_HMI : INT  := 80;

// Number of user-defined application events in project (set by user)
LMSGHDL_NUMBER_OF_USER_DEFINED_EVENTS > INT = 20;

// Number of function block IDs for machine error classes
LMSGHDL_NUMBER_OF_FUNCTION_BLOCK_1DS : INT = 3;

After all the adaptations have been made in the units, you have to accept and compile them.
You must then save the project and load it to the SIMOTION device.

Message Handling
Application Manual, 11/2016 103



Application example

7.4 Function call

7.4 Function call

The function calls for user-defined messages and user-defined messages from FBs/FCs are
shown in this section.

You define the machine error class on the basis of the event number. You can transfer
additional information that is also to be output in the text in the two additional values.

Table 7- 8 Function call for user-defined messages of a function

//userdefined message

fcLMsgHdIWriteUserMessageToBuffer (eventnumber := gil6EventNo
,additionalValuelDINT := gi32AddValuel
,additionalValue2DINT := gi32AddValue?);

You can define a maximum of four error classes for user-defined messages from FBs/FCs.
They are transferred as parameters. You can assign a machine error class to each error
class.

Table 7-9 Function call for user-defined messages in FBs/FCs

//userdefined message from FB / FC
fcLMsgHdIWriteFbFcMessageToBuffer (eventnumber := gil6EventNo

,errorClass = gu8ErrorClass
,errorCode = gb32ErrorCode
,FunctionBlockld = gi32FBId

,additionalValuelDINT := gi32AddvValuel
,additionalValue2DINT := gi32AddvValue?);

Message Handling
104 Application Manual, 11/2016



Application example

7.5 Display of the data from the message handling in the symbol browser of SIMOTION SCOUT

7.5 Display of the data from the message handling in the symbol
browser of SIMOTION SCOUT

Display of messages

After the user has made all the adaptations in the SIMOTION project, the relevant messages
and the associated data are displayed in the symbol browser of SIMOTION SCOUT. An
example of the most important data is shown in this section. In the example, four system
errors and two user-defined messages are present in the project.

In the buffer for active messages, the pLMsgHdl program unit, the following variables are
displayed in the gL MsgHdlActiveMessageString structure:

® Message source in the asgMessageSource array

D435.pLMsgHdl:

Hame Data type Status value Display form:
38 | [ gsimsghdlacts ‘simagf
40 | [ gsimsgt ‘simsgt ingtype*
41 i Bactugindex INT 6 DEC
4z Fhochangesinactivestringdata BOCL FALSE [BOOL
43 asgmessagelevel Array
44 [T asgmessagesource Array
45 |-asomessagesource(n] STRING “User tiefined message: '
45 ell] STRING “User defined message: '
47 F-asomessagesource(2] STRING TO-Message: D435 Achse_rot
4 =e] STRING TO-Message: D435 Achse_blau’
43 | asomessagesource(d] STRING TO-Message: D435 Achse_blau’
50 es] STRING To-Message: D435 Achse_rot
51 Fasomessagesaurcels] STRING

Figure 7-1 Message source

® Message text in the asgMessage Text array

D435.pLMsgHdl:

Hame: Data type Status value |
42 Fhochangesinactivestringdata BOOL FALSE i
43 asgmessageizvel Array
44 Sagmessagesource Array
5 H-l asgmessagetest Array
6 0 STRING[50] ‘Evert 2 Uiser defined message 2. addftiona valus 1:20, addtiona valus 240
7 1 STRING{150] ‘Evert 1: Uiser defined message 1. addtiore valus 1:10, addtiore valus 220
] STRING{150] *30002: Cormmand ahortet! (reason: 5, command typs: 00001001)
5 STRING{150] *30002: Command ahorted (reason: 5, command typs: 00001001)
50 STRING{150] 40005: Wissing enablets) (parameter!: D00D0007ncorrect mode (parameter2: 2i%d)
51 [-asgmessagetexd(s) STRING{150] 40005 Wissing enhlets) (parameter]: DO0DO007ncorrect mode (parameterZ: 2i%d)
52 |-asomessageted(s] STRING{150]
53 |-asomessageted(7] STRING{150]

Figure 7-2  Message text

® Time stamp in the asgMessageOccured array

DA435.pLMsgHd:

Hame Data type Status value

42 Fhochangesinactivestringdata BOOL FALSE
43 H¥] a=zgmessagelevel Array

44 H+] asgmessagesource Array

45 H¥] asgmessagetext Array

46 H=1 %ngessageoccured Array

47 Fasgmessageoccuredi] STRIMG[Z3] 2010-02-24-09:06:32 631
48 Fasgmessageoccured]1] STRIMG[23] 2010-02-24-09:06:30.990
49 Fasgmessageoccured]2] STRIMG[Z3] 2010-02-24-09:06:17 721
a0 Fasgmessageoccured]3] STRIMG[Z3] 2010-02-24-09:06:17 721
21 Fasgmessageoccured4] STRIMG[Z3] 2010-02-24-09:06:17.712
52 Fasgmessageocoured]s] STRIMG[Z3] 2010-02-24-09:06:17.712
53 Fasgmessageocoured[f] STRIMG[Z3]

4 Famnmessanrnerrerl 71 STRIMGIZ31

Figure 7-3  Time stamp
In the fLMsgHdIl program unit, the message types are displayed in the
gsLMsgHdlActiveMessage Types structure.

Message Handling
Application Manual, 11/2016 105



Application example

7.5 Display of the data from the message handling in the symbol browser of SIMOTION SCOUT

D435.fLMsgHdl:

“hoactivespplicationfautmessage

Hame Data type Status value Display format
13 asgimsghdloutputcamnames Arraty
14 asgimsghdpathobjectnames Arraty
15 wdlsensomnames Array
16 ] gasgimsghdtemperaturecontrollernatnes Array
17 +] gasimsghdlacyclicdaintotorhmi Array
15 +] gasimsghdlcyclicdoinfoforhmi Array
13 gasimsghdlidoywithtoinfoforhmi Array
20 [#] gasimsghdmesssgethstcstorhmi Array
21 gh32imsghdimachineerrorclasses DWWORD 00000001 |HEx
22 giglmsghdimachineerrorclass SINT 0 |DEC
23 greimsghdimessageloghasedata ‘simsghdimessag
24 [ geimsghdlactivemessagetypes ‘simsghdlactivem
25 Fhoactivetechfauttmessagefault BOOL TRLE | BOOL
26 Fhoactivetechfaultmessagealarm BOOL FALSE |BOOL
27 Fhoactivetechfauttmessageinfo BOOL TRLE | BOOL
28 Hhoactivedofautmessage BOOL FALSE BOOL
29 Hhoactivedoalarmmessage BOOL FALSE BOOL
30 Fhoactiveperipheralfaulimessage BOOL FALSE |BOOL
31 Fhoactivetimefautmessage BOOL FALSE |BOOL
32 Fhoactivetimefautbackaroundmessage BOOL FALSE |BOOL
33 Fhoactiveexecutionfaultmessage BOOL FALSE |BOOL
34 BOOL TRLE |BOOL

Figure 7-4

106

Message types

Message Handling

Application Manual, 11/2016



Overview of the global variables

A.1 Variables

Global variables

The following global variables are defined in the message handling:

Table A-1  Global variables in the message handling

Name Data type Unit Use

gri1t6LMsgHdICounterTolniRetainBuffer INT pLMsgHdI A constant is incremented by the
script when changes are made in the
message handling. This variable is
used during startup to decide wheth-
er the raw data in the retentive data
area (RETAIN) has to be initialized.
Retain data is deleted.

gbolLMsgHdInitDriveReady BOOL pLMsgHdI Shows that the initialization software
of the message handling has been
run through in the BackgroundTask.
TRUE: The entire message handling
is active

FALSE: No messages can be ac-
cepted yet
gboLMsgHdIActivateNewMoMaData BOOL pLMsgHdI With TRUE, the information trans-
ferred during runtime for modular
machines is activated. After activa-
tion, the flag is removed by the mes-
sage handling.

gbolLMsgHdIGlobalAcknowledge BOOL pLMsgHdI A global acknowledgement of all
active errors in the message han-
dling is triggered with a rising edge.
After the acknowledgement, the
value is reset to FALSE.

gi32LMsgHdINumberOfMessagelnLog BOOL pLMsgHdI Transfer of the number of the mes-
sage to be acknowledged (only with
single acknowledgement).

gboLMsgHdIStartChangelLanguage BOOL pLMsgHdI Change of the active language for
the message handling in STRING
format. Start with rising edge. The
message handling resets the varia-
ble to FALSE after the action.

gu8LMsgHdIActiveLanguage USINT pLMsgHdI Setting of the active language for the
message handling. With TRUE, start
of the language selection. Is auto-
matically reset by the message han-
dling.

Message Handling
Application Manual, 11/2016 107



Overview of the global variables

A. 71 Variables

Name

Data type

Unit

Use

gboLMsgHdIStartWriteCompleteMessagelLogToStorageMedium

BOOL

pLMsgHdI

With a rising edge, the current mes-
sage log in raw data and STRING
format, as well as the information
required for the interpretation of the
raw data, is written to the storage
medium of the SIMOTION device.
The message handling resets the
variable to FALSE after the action.

gu32LMsgHdIDataSetNoForExportMessagelLog

UDINT

pLMsgHdI

Name of the file in which the current
message log is to be saved

Default: ds000000.dat

gu8LMsgHdIScrollStep

USINT

pLMsgHdI

The number of messages to be
scrolled up or down in the display in
SIMOTION IT or in the HMI, can be
set here.

Default:

LMSGHDL_MAX_NUMBER_OF_VIS
IBLE_LINES_FOR_HMI from cPublic

gu8LMsgHdINumberOfLinesForHMI

USINT

pLMsgHdI

The number of messages to be dis-
played in SIMOTION IT or HMI can
be set here.

Default:

LMSGHDL_MAX_NUMBER_OF_VIS
IBLE_LINES_FOR_HMI from cPublic

gboLMsgHdIUpdateHMI

BOOL

pLMsgHdI

Update of the active messages dis-
play on SIMOTION IT or HMI. Per-
formed with rising edge. This is then
reset by the message handling.

gboLMsgHdIScrollUp1

BOOL

pLMsgHdI

Scroll up one message in the list of
active messages. Performed with
rising edge. This is then reset by the
message handling.

gboLMsgHdIScrollUp

BOOL

pLMsgHdI

Scroll up gu8ScrollSteplines in the
list of active messages. Performed
with rising edge. This is then reset by
the message handling.

gboLMsgHdIScrollDown1

BOOL

pLMsgHdI

Scroll down one message in the list
of active messages.

gboLMsgHdIScrollDown

BOOL

pLMsgHdI

Scroll down gu8ScrollSteplines in
the list of active messages. Per-
formed with rising edge. This is then
reset by the message handling.

gboLMsgHdIGoToTop

BOOL

pLMsgHdI

Jump to the start of the active mes-
sages.

gboLMsgHdIGoToEnd

BOOL

pLMsgHdI

Jump to the end of the active mes-
sages.

108

Message Handling
Application Manual, 11/2016



Overview of the global variables

A. 1 Variables

Name Data type Unit Use
gsLMsgHdIActiveMsgToHMI sLMsgHdIHMIActive pLMsgHdI List of the active messages that are
MsgSgType / sLMsg to be output on SIMOTION IT or
HdIHMIActiveMsg HMIL.
BaseDataType
gboLMsgHdIUpdateHMILog BOOL pLMsgHdI Update of the active messages dis-
play on SIMOTION IT or HMI. Per-
formed with rising edge. This is then
reset by the message handling.
gbolLMsgHdIScrollUp1Log BOOL pLMsgHdI Scroll up 1 in the message log list.
Performed with rising edge. This is
then reset by the message handling.
gboLMsgHdIScrollUpLog BOOL pLMsgHdI Scroll up gu8ScrollSteplines in the
message log list. Performed with
rising edge. This is then reset by the
message handling.
gboLMsgHdIScrollDown1Log BOOL pLMsgHdI Scroll down 1 in the message log list.
Performed with rising edge. This is
then reset by the message handling.
gbolLLMsgHdIScrollDownLog BOOL pLMsgHdI Scroll down gu8ScrollSteplines in
the message log list. Performed with
rising edge. This is then reset by the
message handling.
gboLMsgHdIGoToTopLog BOOL pLMsgHdI Jump to the start of the message log.
gboLMsgHdIGoToEndLog BOOL pLMsgHdI Jump to the end of the message log.
gsLMsgHdILogMsgToHMI sLMsgHdIHMIMsg pLMsgHdI Message log list that is to be output
LogSgType/ sLMsg on SIMOTION IT or HMI.
HdIHMIActive
MsgBaseDataType
gsLMsgHdIActiveMessagesBaseData sLMsgHdlActive pLMsgHdI Active messages in raw data format.
MessagesBase
DataType
gi16LMsgHdINumberOfDOsInProject INT pLMsgHdI Number of drive objects really pre-
sent in the project.
gsgLMsgHdIMessagelLevel STRING[LMSGHDL _ pLMsgHdI Auxiliary variable for the decision as
STRING_LENGTH_OF to whether the language files have to
_MESSAGE_LEVEL] be loaded again from the storage
medium or not, after a restart of the
machine.
gsLMsgHdIDefaultMessages sLMsgHdIDefault pLMsgHdI List of the system messages current-
MessagesType ly used in the controller.
gasLMsgHdIToAxisMessages ARRAY[0..LMSGHDL_ | pLMsgHdI List of the TO messages for axes
NUMBER_OF_AXES_ currently used in the controller.
ALARM_MESSAGES -
1] OF sLMsg
HdITOMessagesType
gasLMsgHdIToFollowingObjects ARRAY[0..LMSGHDL_ | pLMsgHdI List of the TO messages for following
Messages NUMBER_OF_ objects currently used in the control-

FOLLOWING_OBJECT
_ALARM_MESSAGES-
1] OF sLMsg
HdITOMessagesType

ler.

Message Handling
Application Manual, 11/2016

109



Overview of the global variables

A. 71 Variables

Name

Data type

Unit

Use

gasLMsgHdIToCamsMessages

ARRAYT0..LMSGHDL_
NUMBER_OF_CAMS_
ALARM_MESSAGES -
1] OF sLMsg
HdITOMessagesType

pLMsgHdI

List of the TO messages for cams
currently used in the controller.

gasLMsgHdIToMeasuringlnputsMessages

ARRAY[0..LMSGHDL _
NUMBER_OF_MEASU
RING_INPUTS_ALAR
M_MESSAGES -1] OF
sLMsgHdl
TOMessagesType

pLMsgHdI

List of the TO messages for measur-
ing inputs currently used in the con-
troller.

gasLMsgHdIToOutputCamsMessages

ARRAYI[0..LMSGHDL _
NUMBER_OF_
OUTPUT_CAMS_
ALARM_MESSAGES -
1] OF sLMsg
HdITOMessagesType

pLMsgHdI

List of the TO messages for output
cams currently used in the controller.

gasLMsgHdIToExternalEncodersMessag-
es

ARRAYI[0..LMSGHDL _
NUMBER_OF_
EXTERNAL_
ENCODERS_ALARM_
MESSAGES - 1] OF
sLMsgHdITO
MessagesType

pLMsgHdI

List of the TO messages for external
encoders currently used in the con-
troller.

gasLMsgHdIToCamTracksMessages

ARRAY[0..LMSGHDL _
NUMBER_OF_CAM_
TRACKS_ALARM_
MESSAGES - 1] OF
sLMsgHdITO
MessagesType

pLMsgHdI

List of the TO messages for cam
tracks currently used in the control-
ler.

gasLMsgHdIToTemperatureControl-
lersMessages

ARRAYI[0..LMSGHDL _
NUMBER_OF_
TEMPERATURE_
CONTROLLERS_
ALARM_MESSAGES -
1] OF sLMsg
HdITOMessagesType

pLMsgHdI

List of the TO messages for tem-
perature controllers currently used in
the controller.

gasLMsgHdIToFixedGearsMessages

ARRAY[0..LMSGHDL _
NUMBER_OF_FIXED_
GEARS_ALARM_
MESSAGES - 1] OF
sLMsgHdITO
MessagesType

pLMsgHdI

List of the TO messages for fixed
gears currently used in the controller.

gasLMsgHdIToAdditionObjectMessages

ARRAYI[0..LMSGHDL _
NUMBER_OF_
ADDITION_OBJECT_
ALARM_MESSAGES -
1] OF sLMsgHdI
TOMessagesType

pLMsgHdI

List of the TO messages for addition
objects currently used in the control-
ler.

110

Message Handling
Application Manual, 11/2016



Overview of the global variables

A. 1 Variables

Name Data type Unit Use
gasLMsgHdIToFormulaObjectMessages | ARRAY[0..LMSGHDL_ | pLMsgHdlI List of the TO messages for formula
NUMBER_OF_ objects currently used in the control-
FORMULA_OBJECT_ ler.
ALARM_MESSAGES -
1] OF sLMsg
HdITOMessagesType
gasLMsgHdIToSensorsMessages ARRAYI0..LMSGHDL_ | pLMsgHdI List of the TO messages for sensors
NUMBER_OF_ currently used in the controller.
SENSORS_ALARM_
MESSAGES - 1] OF
sLMsgHdITO
MessagesType
gasLMsgHdIToControllerObjectMessages | ARRAY[0..LMSGHDL_ | pLMsgHdI List of the TO messages for control-
NUMBER_OF_ ler objects currently used in the con-
CONTROLLER _ troller.
OBJECT_ALARM_
MESSAGES - 1] OF
sLMsgHdITO
MessagesType
gasLMsgHdIToPathObjectMessages ARRAY[0..LMSGHDL_ | pLMsgHdI List of the TO messages for path
NUMBER_OF_PATH_ objects currently used in the control-
OBJECT_ALARM_ME ler.
SSAGES - 1] OF
sLMsgHdITO
MessagesType
gai16LMsgHdIDOMessagelndex ARRAY[1..LMSGHDL_ | pLMsgHdI List of the DO message indices cur-
MOST_SIGNIFICANT_ rently used in the controller.
DO_MESSAGE_
NUMBER] OF INT
gasgLMsgHdIDOMessages ARRAY[1..LMSGHDL_ | pLMsgHdI List of the DO messages currently
NUMBER_OF_ used in the controller.
DIFFERENT_DO_
MESSAGES] OF
STRING[LMSGHDL _
STRING_LENGTH_OF
_MESSAGE_TEXT]
gsLMsgHdISystemMessages sLMsgHdISys- pLMsgHdI List of the system messages current-
temMessagesType ly used in the controller.
gasgLMsgHdIAcknowledgeClass ARRAY OF STRING pLMsgHdI List of the messages for the type of
acknowledgement currently used in
the controller.
gasgLMsgHdIMessageClass ARRAY OF STRING pLMsgHdI List of the messages for the mes-
sage class currently used in the
controller.
gasLMsgHdIMessageFBsFCs ARRAY OF STRING pLMsgHdI List of the messages for message
handling messages currently used in
the controller.
gasLMsgHdIUserDefinedMessages ARRAY[0..LMSGHDL_ | fLMsgHdlInit | List of the user-defined messages

NUMBER_OF_USER_
DEFINED_EVENTS - 1
] OF sLMsgHdI
UserMessagesType

currently used in the controller.

Message Handling
Application Manual, 11/2016

111



Overview of the global variables

A. 71 Variables

Name Data type Unit Use
gsLMsgHdIActiveMessageTypes sLMsgHdIActive fLMsgHdI This structure displays from which
MessageTypesType message source messages are ac-
tive.
gb32L.MsgHdIMachineErrorClasses DWORD fLMsgHdI Display of the currently active ma-
chine error classes.
gi8LMsgHdIMachineErrorClass SINT fLMsgHdlI Display of the machine error class
currently with the highest priority.
gab16LMsgHdIEventflag ARRAYI0..(LMSGHDL_ | fLMsgHdI Array for display of the active user-
NUMBER_OF_USER_ defined messages for the message
DEFINED_EVENTS/16 bit handling.
)] OF WORD
gab16LMsgHdIAckFlag ARRAYI0..(LMSGHDL_ | fLMsgHdI Array for display of the user-defined
NUMBER_OF_USER_ message acknowledgement for the
DEFINED_EVENTS/16 message bit handling.
)] OF WORD
gasLMsgHdIMessageFBsFCsForHMI ARRAY[0..LMSGHDL_ | fLMsgHdI String texts used for internal mes-
NUMBER_OF_ sage handling messages. Required
INTERNAL_ in order to be able to interpret rele-
APPLICATION_ vant messages from buffers in raw
EVENTS - 1] OF data format in the HMI.
sLMsgHdIMessages
FromMessage
HandlingType
gasLMsgHdIDOWithTOInfoForHMI ARRAY[0..LMSGHDL_ | fLMsgHdI Names of the DOs with TO. Re-
NUMBER_OF_DOS_ quired in order to be able to interpret
WITH_TO - 1] OF relevant messages from buffers in
sLMsgHdIDOWith raw data format in the HMI.
TONameType
gasLMsgHdICyclicDOInfoForHMI ARRAY[0..LMSGHDL_ | fLMsgHdI Names of the DOs with cyclic data
NUMBER_OF_CYCLIC exchange. Required in order to be
_DOS - 1] OF sLMsg able to interpret relevant messages
HdICyclicDOName- from buffers in raw data format in the
Type HMI.
gasLMsgHdIAcyclicDOInfoForHMI ARRAY[0..LMSGHDL_ | fLMsgHdI Names of the DOs without cyclic
NUMBER_OF _ data exchange. Required in order to
ACYCLIC_DOS - 1] OF be able to interpret relevant messag-
sLMsgHdIAcyclic es from buffers in raw data format in
DONameType the HMI.
gasgLMsgHdIAxisNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured axes. Re-
NUMBER_OF_AXES- quired in order to be able to interpret
1] OF relevant messages from buffers in
STRING[LMSGHDL_ raw data format in the HMI.
STRING_LENGTH_OF
_TO_NAME]
gasgLMsgHdIExternalEncoderNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured external

NUMBER_OF_EXTER
NAL_ENCODERS-1]
OF
STRING[LMSGHDL._
STRING_LENGTH_OF
_TO_NAME]

encoders. Required in order to be
able to interpret relevant messages
from buffers in raw data format in the
HMI.

112

Message Handling
Application Manual, 11/2016



Overview of the global variables

A. 71 Variables

Name Data type Unit Use

gasgLMsgHdIMeasuringlnputNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured measuring
NUMBER_OF_ inputs. Required in order to be able
MEASURING_INPUTS to interpret relevant messages from
-1] OF buffers in raw data format in the HMI.
STRING[LMSGHDL _
STRING_LENGTH_OF
_TO_NAME]

gasgLMsgHdIOutputCamNames ARRAYI0..LMSGHDL_ | fLMsgHdI Names of all configured output cams.
NUMBER_OF_ Required in order to be able to inter-
OUTPUT_CAMS-1] OF pret relevant messages from buffers
STRING[LMSGHDL _ in raw data format in the HMI.
STRING_LENGTH_OF
_TO_NAME]

gasgLMsgHdICamTrackNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured cam tracks.
NUMBER_OF_CAM_ Required in order to be able to inter-
TRACKS-1] OF pret relevant messages from buffers
STRING[LMSGHDL _ in raw data format in the HMI.
STRING_LENGTH_OF
_TO_NAME]

gasgLMsgHdICamNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured cams. Re-
NUMBER_OF_CAMS- quired in order to be able to interpret
1] OF relevant messages from buffers in
STRING[LMSGHDL _ raw data format in the HMI.
STRING_LENGTH_OF
_TO_NAME]

gasgLMsgHdIFollowingObjectNames ARRAYI0..LMSGHDL_ | fLMsgHdI Names of all configured following
NUMBER_OF_ objects. Required in order to be able
FOLLOWING_OBJECT to interpret relevant messages from
-11 OF buffers in raw data format in the HMI.
STRING[LMSGHDL _
STRING_LENGTH_OF
_TO_NAME]

gasgLMsgHdIPathObjectNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured path objects.
NUMBER_OF_PATH_ Required in order to be able to inter-
OBJECT1] OF pret relevant messages from buffers
STRING[LMSGHDL _ in raw data format in the HMI. Only
STRING_LENGTH_OF when using the TP Path.
_TO_NAME]

gasgLMsgHdIFixedGearNames ARRAYI0..LMSGHDL_ | fLMsgHdI Names of all configured fixed gears.
NUMBER_OF_FIXED_ Required in order to be able to inter-
GEARS-1] OF pret relevant messages from buffers
STRING[LMSGHDL _ in raw data format in the HMI. Only
STRING_LENGTH_OF when using the TP Cam_ext.
_TO_NAME]

gasgLMsgHdIAdditionObjectNames ARRAYI0..LMSGHDL_ | fLMsgHdI Names of all configured addition

NUMBER_OF_
ADDITION_OBJECT-1]
OF
STRING[LMSGHDL _
STRING_LENGTH_OF
_TO_NAME]

objects. Required in order to be able
to interpret relevant messages from
buffers in raw data format in the HMI.
Only when using the TP Cam_ext.

Message Handling
Application Manual, 11/2016

113



Overview of the global variables

A. 71 Variables

Name Data type Unit Use

gasgLMsgHdIFormulaObjectNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured formula
NUMBER_OF _ objects. Required in order to be able
FORMULA_OBJECT-1] to interpret relevant messages from
OF buffers in raw data format in the HMI.
STRING[LMSGHDL_ Only when using the TP Cam_ext.
STRING_LENGTH_OF
_TO_NAME]

gasgLMsgHdISensorNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured sensors.
NUMBER_OF_ Required in order to be able to inter-
SENSORS-1] OF pret relevant messages from buffers
STRING[LMSGHDL _ in raw data format in the HMI. Only
STRING_LENGTH_OF when using the TP Cam_ext.
_TO_NAME]

gasgLMsgHdIControllerObjectNames ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured controller
NUMBER_OF _ objects. Required in order to be able
CONTROLLER_ to interpret relevant messages from
OBJECT-1] OF buffers in raw data format in the HMI.
STRING[LMSGHDL_ Only when using the TP Cam_ext.
STRING_LENGTH_OF
_TO_NAME]

gasgLMsgHdITemperatureControl- ARRAY[0..LMSGHDL_ | fLMsgHdI Names of all configured temperature

lerNames NUMBER_OF_ controllers. These are required in
TEMPERATURE_ order to be able to interpret relevant
CONTROLLERS-1] OF messages from the buffer in raw data
STRING[LMSGHDL _ format in the HMI. Only when using
STRING_LENGTH_OF TControl.
_TO_NAME]

gsLMsgHdIMessagel.ogString sLMsgHdIActive fLMsgHdlI Message log in STRING format. Only
MessageStringType when STRING format has been

selected by the script.

grsLMsgHdIMessagelLogBaseData sLMsgHdIMes- fLMsgHdI Message log in raw data format
sagelLogBaseDataType (RETAIN).

grsLMsgHdIMessagelLogBaseData- sLMsgHdIMes- dLMsgHdI Alternative message variant (not

GoneAndOccurred sagelLogBaseData- activated by default)
GoneAndOccurred
Type

Message Handling
114 Application Manual, 11/2016



Interpretation of the raw data

B.1 Structure
Table B-1  Table for the interpretation of the raw data in the message log and active messages, part 1
Message source TO messages DO messages DO messages /0
Error Alarm messages
au8MessageSource 1 2 3 4
[USINT]
au8Messagelevel Level Level Level Level
[USINT] [USINT] [USINT] [USINT] [USINT]
au8AcknowledgeClass | Type of acknowl- Type of acknowl- Type of acknowl- Type of acknowl-
[USINT] edgement edgement edgement edgement
[USINT] [USINT] [USINT] [USINT]
au8ErrorClass
[USINT]
au16Parameter1 TO type Axis reference as Axis reference as Event class
[UINT] number number
[USINT] [UINT] [UINT] [UINT]
ai16Parameter2 TO number 10_Id 10_Id Fault ID
[INT] [INT] [UINT] [UINT] [UINT]
ab32Parameter3 Message number Logical address of DO | Logical address of DO | Logical base address
[DWORD] [DINT] [DINT] [DINT] INPUT
[DINT]
ab32Parameter4 AddInfo1_DINT DO number DO number Logical base address
[DWORD] [DINT] [DINT] [DINT] OUTPUT
[DINT]
ab32Parameter5 AddInfo2_DINT Error info Alarm info Triggering
[DWORD] [DINT] [DINT] [DINT] interrupt
[UDINT]
ab32Parameter6 AddInfo3_DINT Error code Alarm code DP slave diagnostics
[DWORD] [DINT] [UINT] [UINT] address
[DINT]
ab32Parameter7 AddInfo4_DINT Type of DO Type of DO Detailed information
[DWORD] [DINT] [INT] [INT] [DWORD]
ab32Parameter8 AddInfo5_DINT Master system ID
[DWORD] [DINT] [UDINT]
ab32Parameter9 DP slave address
[DWORD] [UDINT]
ab32Parameter10 Slot number
[DWORD] [UDINT]

Message Handling

Application Manual, 11/2016

115



Interpretation of the raw data

B. 1 Structure

Message source TO messages DO messages DO messages /0
Error Alarm messages
ab32Parameter11 Sub-slot number
[DWORD] [UDINT]
adtMessageOccured Message occurred Message occurred Message occurred Message occurred
[DT] [DT] [DT] [DT] [DT]
adtMessageGone Message gone Message gone Message gone Message gone
[DT] [DT] [DT] [DT] [DT]
Table B-2  Table for the interpretation of the raw data in the message log and active messages, part 2
Message source TimeFault ExecutionFault Message Messages
messages messages restart FC/FB
au8MessageSource 5 6 7 8
[USINT]
au8Messagelevel Level Level Level Level
[USINT] [USINT] [USINT] [USINT] [USINT]
au8AcknowledgeClass | Type of acknowl- Type of acknowl- Type of acknowl- Type of acknowl-
[USINT] edgement edgement edgement edgement
[USINT] [USINT] [USINT] [USINT]
au8errorClass au8ErrorClass
[USINT] [USINT]
au16Parameter1 taskld taskld eventSource (startup) | au8toType
[UINT] [UINT] [UINT] [USINT] [USINT]
ai16Parameter2 ai16ToNumber
[INT] [INT]
ab32Parameter3 Triggering interrupt Type of processing eventNumber
[DWORD] [UDINT] error [INT]
[UDINT]
ab32Parameter4 ai32AdditionalValue1
[DWORD] [DINT]
ab32Parameter5 ai32AdditionalValue2
[DWORD] [DINT]
ab32Parameter6 ai32AdditionalValue3
[DWORD] [DINT]
ab32Parameter7 ai32AdditionalValue4
[DWORD] [DINT]
ab32Parameter8 ab32AdditionalValue5
[DWORD] [DWORD]
ab32Parameter9 ar32AdditionalValue6
[DWORD] [REAL]
ab32Parameter10 ai32FunctionBlockld
[DWORD] [DINT]
Message Handling
116 Application Manual, 11/2016



Interpretation of the raw data

B. 1 Structure

Message source TimeFault ExecutionFault Message Messages
messages messages restart FC/FB

ab32Parameter11 ab32ErrorCode

[DWORD] [DWORD]

adtMessageOccured Message occurred Message occurred Message occurred Message occurred

[DT] [DT] [DT] [DT] [DT]

adtMessageGone Message gone Message gone Message gone Message gone

[DT] [DT] [DT] [DT] [DT]
Table B-3  Table for the interpretation of the raw data in the message log and active messages, part 3

Message source User-defined mes- Messages through DO safety messages

sages message handling

au8MessageSource 9 10 11

[USINT]

au8Messagelevel Level Level Level

[USINT] [USINT] [USINT] [USINT]

au8AcknowledgeClass Type of acknowl- Type of acknowl- Type of acknowledgement

[USINT] edgement edgement [USINT]

[USINT] [USINT]

au8errorClass u8ErrorClass u8ErrorClass u8ErrorClass

[USINT] [USINT] [USINT] [USINT]

au16Parameter1 eventSource eventSource Axis reference as number

[UINT] [USINT] [USINT] [INT]

ai16Parameter2 10_Id

[INT] [UINT]

ab32Parameter3 eventNumber eventNumber Logical address of DO

[DWORD] [INT] [INT] [DINT]

ab32Parameter4 AddInfo1 AddInfo1 DO number

[DWORD] [DINT] [DINT] [DINT]

ab32Parameter5 AddInfo2 AddInfo2 Safety info

[DWORD] [DINT] [DINT] [DINT]

ab32Parameter6 Safety code

[DWORD] [UINT]

ab32Parameter7 Safety code

[DWORD] [UINT]

ab32Parameter8

[DWORD]

ab32Parameter9

[DWORD]

ab32Parameter10 ai32FunctionBlockld

[DWORD] [DINT]

ab32Parameter11 ab32ErrorCode

[DWORD] [DWORD]

Message Handling
Application Manual, 11/2016

117



Interpretation of the raw data

B.2 Common information of all messages

Message source User-defined mes- Messages through DO safety messages
sages message handling
adtMessageOccured Message occurred Message occurred Message occurred
[DT] [DT] [DT] [DT]
adtMessageGone Message gone Message gone Message gone
[DT] [DT] [DT] [DT]
B.2 Common information of all messages

General

Message source

118

The global data buffer of the message information in raw data format is in the
grsLMsgHdIMessagel ogBaseData structure in the fLMsgHdI program unit. This information
is stored in the retentive data area (RETAIN) and can be evaluated as follows.

The index in which the last entry in the buffer was stored by the message handling is stored
in grsL MsgHdIMessagelLogBaseData.i16Actuallndex. The buffer is a ring buffer that is
written by the message handling in ascending order. When the last entry in the message
buffer is filled, the next entry is written again at index 0. The buffer is always sorted
according to the time stamp when the message occurred starting at the latest entry.

Table B-4

Contents of the au8MessageSource[] cells

Message source

Value [USINT]

Unknown source

TO messages

DO error

DO alarm

Peripheral messages

TimeFault messages

ExecutionFault messages

Restart message

Messages from FBs/FCs

User-defined messages

© || Nl |dhWINI~|O

Messages through message handling

-
o

DO safety message

N
N

Message Handling
Application Manual, 11/2016




Interpretation of the raw data

Message level

B.2 Common information of all messages

Table B-5  Contents of the au8MessageLevelf] cells

Message level [STRING]

Value [USINT]

Unknown

Fault

Error

Alarm

Information

Safety message

ah®|IN|~|O

Acknowledge class

Table B-6  Contents of the au8AcknowledgeClass/] cells

Acknowledge class [STRING] Value [USINT]
Unknown 0
No acknowledgement 1
Immediately 2
Power On 3
Immediately / Power On 4

Error class

Table B-7  Contents of the au8ErrorClass/] cells

Error class [STRING] Value [USINT]
Class0 0
Class1 1
Class2 2
Class3 3

Is only written by the FCLMsgHdIWriteFBFCMessageToBuffer function.

Message Handling
Application Manual, 11/2016

119



Interpretation of the raw data

B.3 Messages of the technology object

B.3

TO messages

120

Messages of the technology object

The following cells are assigned values for messages from TOs

Table B-8  au16Parameter1 [UINT] = TO type [USINT]
TO type Value [USINT]
All types of axes 1
Following object 2
Cam 3
Measuring input 4
Output cam 5
External encoder 6
Cam track 7
Temperature controller 8
Fixed gear 9
Addition object 10
Formula object 11
Sensor 12
Controller object 13
Path object 14

Based on the TO type, the TO name in STRING format belonging to the TO number can be
read out of the appropriate area from the fLMsgHdI program unit. The TO number
corresponds to the array index in which the name of the TO is stored.

Table B-9  ai16Parameter2 [INT] = TO number [INT]

TO type Value [USINT] | Array with the name of the TO belonging to the

number of the TO in the pLMsgHdI program unit

All types of axes 1 gasgLMsgHdIAxisNames

Following object 2 gasgLMsgHdIFollowingObjectNames

Cam 3 gasgLMsgHdICamNames

Measuring input 4 gasgLMsgHdIMeasuringlnputNames

Output cam 5 gasgLMsgHdIOutputCamNames

External encoder 6 gasgLMsgHdIExternalEncoderNames

Cam track 7 gasgLMsgHdICamTrackNames

Temperature controller 8 gasgLMsgHdITemperatureControllerNames
Fixed gear 9 gasgLMsgHdIFixedGearNames

Addition object 10 gasgLMsgHdIAdditionObjectNames

Formula object 11 gasgLMsgHdIFormulaObjectNames

Sensor 12 gasgLMsgHdISensorNames

Message Handling
Application Manual, 11/2016




Interpretation of the raw data
B.4 Errors on the drive object

TO type Value [USINT] | Array with the name of the TO belonging to the
number of the TO in the pLMsgHdI program unit

Controller object 13 gasgLMsgHdIControllerObjectNames

Path object 14 gasgLMsgHdIPathObjectNames

Therefore, for example, the name of the TO type =2 with TO number =5 is stored in
gasglLMsgHdIFollowingObjectName/5]in STRING format.

The following variables contain the numbers of the message belonging to the technology
object as well as the possible additional values belonging to the message. This information is
required in order to independently combine the appropriate message text including the
additional values.

ab32Parameter3 [DWORD] = message number [DINT] (TSl#alarmNumber) number of the
technological message

ab32Parameter4 [DWORD] = additional value 1 [DINT] (TSI#alarmP1_DINT)
ab32Parameter5 [DWORD] = additional value 2 [DINT] (TSl#alarmP2_DINT)
ab32Parameter6 [DWORD] = additional value 3 [DINT] (TSl#alarmP3_DINT)
ab32Parameter7 [DWORD] = additional value 4 [DINT] (TSl#alarmP4_DINT)
ab32Parameter8 [DWORD] = additional value 5 [DINT] (TSk#alarmP5_DINT)

The maximum five additional values of the technological messages are automatically
provided by the system in each of the three data types DINT, UDINT and REAL. So that all
additional values do not have to be saved in all data types, the additional values are stored
as a bit pattern in a variable of the DWORD data type and have to be converted in the
message text depending on the required format. l.e. if a technological message requires that
additional value 1 be interpreted in decimal format, additional value 1 from the message log
of DWORD must be converted to decimal format before it is integrated in the message text.
This applies for all additional values of technological messages in all the possible data
formats.

adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

The other parameters are not assigned.

B.4 Errors on the drive object

Errors on the DO
There are three different types of drive objects (DOs) in the message handling:
® Drive objects with TO axis
® Drive objects with cyclic standard telegram
e Drive objects without cyclic standard telegram

To identify the individual DOs, different information is entered in the message buffer
depending on the type.

Message Handling
Application Manual, 11/2016 121



Interpretation of the raw data

B.4 Errors on the drive object

The required information is stored in the following parameters:

au16Parameter1 [UINT] = axis reference as number [UINT] (TO number of the axis)
ai16Parameter2 [INT] = |O-ID [UINT] (value 0 = input, 1 = output)
ab32Parameter3 [DWORD] = logical address of the DO [DINT]

ab32Parameter4 [DWORD] = DO number [DINT]

These parameters are assigned as follows for the various DO types:

DO with TO axis

au16Parameter1 = number of the axis to which the DO belongs (see TO messages)
ai16Parameter2 =-1 (no IO-ID)

ab32Parameter3 = -1 (no logical address transferred)

ab32Parameter4 = 255 (no DO number transferred)

DO with cyclic standard telegram

au16Parameter1 =0 (no TO axis assigned)

ai16Parameter2 = 0/1 (logical address is 0 = input or 1 = output)
ab32Parameter3 = logical address of the DO (logical address from HW Config)
ab32Parameter4 = 255 (no DO number transferred)

DO without cyclic standard telegram

au16Parameter1 =0 (no TO axis assigned)

ai16Parameter2 = 0/1 (logical address is 0 = input or 1 = output)

ab32Parameter3 = a logical address of the device at which the DO is located
ab32Parameter4 = DO number (drive object number from the properties of the DO)

The information specifying the individual DO is stored in the fLMsgHdI program unit in the
gasLMsgHdIDOWith TOInfoForHMI, gasL MsgHdICyclicDOInfoForHMI/ and
gasL.MsgHdlAcyclicDOInfoForHMI/ variables.

DO with TO axis

gasLMsgHdIDOWithTOInfoForHMI : ARRAY[O..LMSGHDL_NUMBER_OF_AXES - 1] OF
sLMsgHdIDOWithTONameType;

Message Handling
122 Application Manual, 11/2016



Interpretation of the raw data

B.4 Errors on the drive object

Table B- 10 sLMsgHdIDOWithTONameType

Parameter Data type Description
sgDOName STRING[25] Name of the drive object connected to an axis.
sgCUName STRING[25] Name of the control unit on which the DO is located.

DO with cyclic standard telegram

gasLMsgHdICyclicDOInfoForiMl : ARRAY[O..LMSGHDL_NUMBER_OF CYCLIC_DOS - 1]
OF sLMsgHdICyclicDONameType;

Table B- 11 sLMsgHdICyclicDONameType

Parameter Data type Description
i32LogAddress | DINT Logical address of the drive object.
i16lold INT 10-1D of the logical address.
0 = INPUT
1=0UTPUT
sgDOName STRING[25] Name of the drive object connected to an axis.
sgCUName STRING[25] Name of the control unit on which the DO is located.

DO without cyclic standard telegram

gasLMsgHdIAcyclicDOInfoForHMl : ARRAY[O..LMSGHDL_NUMBER_OF ACYCLIC_DOS -
1] OF sLMsgHdIAcyclicDONameType;

Table B- 12 sLMsgHdIAcyclicDONameType

Parameter Data type Description
i32LogAddress | DINT A logical address of the device at which the DO is located.
i16lold INT 10-ID of the logical address.

0 = INPUT

1=0UTPUT
u8DONumber | USINT DO number of the drive object.
sgDOName STRING[25] Name of the drive object connected to an axis.
sgCUName STRING[25] Name of the control unit on which the DO is located.

ab32Parameter5 [DWORD] = additional value for the error [DINT] (contents of parameter
DOx.r0949)

ab32Parameter6 [DWORD] = error code [UINT] (contents of parameter DOx.r0945)

ab32Parameter7 [DWORD] = type of the DO with error [INT] (contents of parameter
DOx.r0107)

Message Handling
Application Manual, 11/2016 123



Interpretation of the raw data

B.5 Warnings on the drive object

B.5

DO alarms

B.6

adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

Warnings on the drive object

The DO information for alarms on drive objects in the message handling is structured in the
same way as for DO errors.

ab32Parameter5 [DWORD] = additional value for the alarm [DINT] (contents of parameter

Peripheral messages

124

DOx.r2124)

ab32Parameter6 [DWORD] = number of the alarm [UINT] (contents of parameter
DOx.r2122)

ab32Parameter7 [DWORD] = type of the DO with alarm [INT] (contents of parameter
DOx.r0107)

adtMessageOccured[DT] = time when message occurred in DT format

adtMessageGone[DT] = time when message gone in DT format

Messages on the 1/O
au16Parameter1 [UINT] = event class [UINT] (TSkeventClass)
ai16Parameter2 [INT] = fault ID [UINT] (TSI#faultld)

ab32Parameter3 [DWORD] = logical base address of INPUT [DINT] (TSI#logBaseAdrin)

ab32Parameter4 [DWORD] = logical base address of OUTPUT [DINT]
(TSI#logBaseAdrOut)

ab32Parameter5 [DWORD] = triggering interrupt [UDINT] (TSl#interruptld)
ab32Parameter6 [DWORD] = DP slave diagnostics address [DINT] (TSI#logDiagAdr)
ab32Parameter7 [DWORD] = detailed information [DWORD] (TSl#details)

ab32Parameter8 [DWORD] = master system ID of the relevant I/O module [UDINT] (as in
HW Config)

ab32Parameter9 [DWORD] = DP slave address [UDINT] (as in HW Config)
ab32Parameter10 [DWORD]= slot number [UDINT] (as in HW Config)
ab32Parameter11 [DWORD]= sub-slot number [UDINT] (as in HW Config)
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

Message Handling
Application Manual, 11/2016



Interpretation of the raw data
B.7 TimeFault messages

B.7 TimeFault messages

TimeFault messages can only occur in the BackgroundTask or a TimerinterruptTask.

Therefore, the information for TimeFault messages is created as follows:

au16Parameter1 [UINT] = task ID [UINT]

au16Parameter1 =1 TimeFault in the BackgroundTask

au16Parameter1 = 2 TimeFault in a TimerlnterruptTask

ab32Parameter3 [DWORD] = triggering event [UDINT] (TSI#interruptid)

adtMessageOccured[DT] = time when message occurred in DT format

adtMessageGone[DT] = time when message gone in DT format
B.8 ExecutionFault messages

ExecutionFault messages are triggered for program faults. As the SIMOTION device goes
into STOP mode after a program fault in a cyclic task, these messages are only taken into
the message handling after a restart of the SIMOTION device. These active messages must
be acknowledged.

The information for ExecutionFault messages is created as follows:

au16Parameter1 [UINT] = task ID [UINT] (this value is not supported)
ab32Parameter3 [DWORD] = type of execution fault [UDINT] (TSl#executionFaultType)
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

B.9 Messages through startup of the SIMOTION device

The message generated by the message handling at every startup of the SIMOTION device
has the following constant assignment:

au8MessageSource =7 (message source is restart)

au8Messagelevel =4 (note)

au8AcknowledgeClass =1 (no acknowledgement required)
adtMessageOccured[DT] = time when message occurred in DT format (time of restart)
adtMessageGone[DT] = time when message gone in DT format (time of restart)

The messages for a startup of the SIMOTION device are only entered in the message log.
An active message is not generated.

Message Handling
Application Manual, 11/2016 125



Interpretation of the raw data

B. 10 User-defined messages

B.10

B.11

B.12

126

User-defined messages

These messages are generated by the user within the application by calling the
FCLMsgHdIWriteUserMessageToBuffer function.

ab32Parameter3 [DWORD] = number of the user-defined message [DINT]
ab32Parameter4 [DWORD] = Addinfo1 [DINT]

ab32Parameter5 [DWORD] = Addinfo2 [DINT]

adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

User-defined messages for FB/FC and FB units

User-defined messages for FBs/FCs are generated within the application by calling the
FCLMsgHdIWriteFBFCMessageToBuffer function.

The common information of a message should be interpreted as follows:

au8ErrorClass [USINT] = error class of the FB/FC, which determines the machine error
class, which is set by the FB/FC.

ab32Parameter3 [DWORD] = number of the user-defined message [DINT]
ab32Parameter4 [DWORD] = additional value 1 [DINT]
ab32Parameter5 [DWORD] = additional value 2 [DINT]

ab32Parameter10 [DWORD]= unique number of the FB/FC is assigned by the user (func-
tionBlockld [DINT])

ab32Parameter11 [DWORD]= error code of the FB/FC [DWORD]
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

Messages through message handling

If an error occurs while processing the message handling, a user-defined message of the
message handling is triggered. The messages through the message handling are transferred
to the message handling by the FCLMsgHdIWriteFBFCMessageToBuffer function. The
messages start with event number 100.000 and are numbered consecutively. The text of the
message with number 100.000 is then at subindex 0, etc.

The messages through the message handling in STRING format and their structure are
stored in the fLMsgHdI program unit in the gasgl MsgHdIMessageFBsFCsForHMI array.

The array is instantiated as follows:
gasglLMsgHd IMessageFBsFCsForHMI :

ARRAY[O. . LMSGHDL_NUMBER_OF_INTERNAL_APPLICATION_EVENTS - 1] OF sLMsgH-
dIMessagesFromMessageHandl ingType

Message Handling
Application Manual, 11/2016



Interpretation of the raw data

B. 12 Messages through message handling

sLMsgHdIMessagesFromMessageHandling Type has the following structure:

Table B- 13 sLMsgHdIMessagesFromMessageHandlingType

Parameter

Data type

Description

sgLMsgHdITextPart1

STRING[160]

First substring of the message through
the message handling

ab8LMsgHdIAdditionalValue1

ARRAY [0..1] OF BYTE

Specification of number and format of
the possible first additional value of the
message.

sgLMsgHdITextPart2

STRING[50]

Second substring of the message
through the message handling

ab8LMsgHdIAdditionalValue2

ARRAY [0..1] OF BYTE

Specification of number and format of
the possible second additional value of
the message.

sgLMsgHdITextPart3

STRINGI[50]

Third substring of the message
through the message handling

ab8LMsgHdIAdditionalValue3

ARRAY [0..1] OF BYTE

Specification of number and format of
the possible third additional value of
the message.

Message Handling
Application Manual, 11/2016

127



Interpretation of the raw data

B. 12 Messages through message handling

Message Handling
128 Application Manual, 11/2016



Contact C

C.1 Contacts
Siemens AG
Digital Factory
Factory Automation
Production Machines
DF FA PMA APC
Frauenauracher Strasse 80
D-91056 Erlangen, Germany
Fax.: +49 9131 98 1297

tech.team.motioncontrol@siemens.com

Message Handling
Application Manual, 11/2016 129



Contact

C.2 Internet addresses

C.2 Internet addresses

Additional information on various topics is provided on the following Internet pages.

See also

SIMOTION (www.siemens.com/simotion)

SINAMICS (www.siemens.com/sinamics)

Motion Control / Application Center (www.siemens.com/motioncontrol/apc)

Packaging (www.siemens.com/packaging)

SIMOTION Message Handling
(https://support.industry.siemens.com/cs/ww/en/view/48955585)

SIMATIC S7-1200/S7-1500 and SIMOTION: Acyclic Data Exchange
(https://support.industry.siemens.com/cs/ww/en/view/109479553)

SIMOTION easyProject (https://support.industry.siemens.com/cs/ww/en/view/51339107)
ProjectGenerator

Message Handling
130 Application Manual, 11/2016


http://www.siemens.com/simotion
http://www.siemens.com/sinamics
http://www.siemens.com/motioncontrol/apc
http://www.siemens.com/packaging
https://support.industry.siemens.com/cs/ww/en/view/48955585
https://support.industry.siemens.com/cs/ww/en/view/109479553
https://support.industry.siemens.com/cs/ww/en/view/51339107

	Table of contents
	1 Preface
	1.1 General information
	1.2 About this document
	2 Application description
	2.1 Field of application
	2.1.1 Description
	2.1.2 Field of application

	2.2 Objective
	2.2.1 Task
	2.2.2 Benefits

	2.3 Concept
	2.3.1 Illustration of the concept

	2.4 System overview (example)
	2.4.1 Automation overview (example)
	2.4.2 Hardware structure
	2.4.3 System requirements
	2.4.4 Scope of delivery

	3 Application structure
	3.1 Structure of the libraries
	3.1.1 Overview of the libraries
	3.1.2 Structure of the LMsgHdl library

	3.2 Structure of the units in the SIMOTION project
	3.3 Constants
	3.3.1 Public constants
	3.3.2 Changeable public constants

	3.4 Core functions and components
	3.4.1 Overview of the core functions and required components of the message handling
	3.4.2 Description of the core functions and required components
	3.4.2.1 Buffer management
	3.4.2.2 Description of the buffers
	3.4.2.3 Functions for entering user-defined messages
	3.4.2.4 AlarmS
	3.4.2.5 Message bit handling
	3.4.2.6 Response to execution faults in programs
	3.4.2.7 Message handling startup
	3.4.2.8 Acknowledgement of the active messages
	3.4.2.9 Filtering messages to an HMI / SIMOTION IT
	3.4.2.10 Modular machine
	3.4.2.11 DO safety messages
	3.4.2.12 Saving of the ShutdownTask buffer
	3.4.2.13 Saving the current message log in the SIMOTION device
	3.4.2.14 Loading the language from the storage medium of the SIMOTION device
	3.4.2.15 Single acknowledgement
	3.4.2.16 Common buffer for incoming/outgoing messages


	4 Integration
	4.1 Required technology objects
	4.2 Integration in the SIMOTION project
	4.2.1 Integration of the application into a SIMOTION project
	4.2.2 Suppressing messages
	4.2.3 Creating user-defined messages
	4.2.4 Embedding of the AlarmS handling or message bit handling
	4.2.5 Defining machine error classes

	4.3 Displaying messages via SIMOTION IT
	4.4 Important, frequently used variables
	5 Description of functions
	5.1 General information on the description of functions
	5.2 FBLMsgHdlActiveMsgSgToHMI function block
	5.2.1 General information on the function block
	5.2.2 Schematic representation in LAD/FBD
	5.2.3 Input and output parameters of the function block
	5.2.4 Structure for parameter transfer

	5.3 FBLMsgHdlMsgLogSgToHMI function block
	5.3.1 General information on the function block
	5.3.2 Schematic representation in LAD/FBD
	5.3.3 Input and output parameters of the function block
	5.3.4 Structure for parameter transfer

	5.4 FBLMsgHdlActiveMsgBaseDataToHMI function block
	5.4.1 General information on the function block
	5.4.2 Schematic representation in LAD/FBD
	5.4.3 Input and output parameters of the function block
	5.4.4 Structure for parameter transfer

	5.5 FBLMsgHdlMsgLogBaseDataToHMI function block
	5.5.1 General information on the function block
	5.5.2 Schematic representation in LAD/FBD
	5.5.3 Input and output parameters of the function block
	5.5.4 Structure for parameter transfer

	5.6 FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer functions
	5.6.1 General information on the functions
	5.6.2 Schematic representation in LAD/FBD
	5.6.3 Input and output parameters of the functions

	5.7 Structure for message log as raw data
	5.8 Structure for message log in STRING format
	6 Alarm and error messages
	6.1 General information on the error handling
	6.2 Buffer overflow
	6.3 Overflow of AlarmS messages
	6.4 Error during startup
	6.5 Messages by I/O modules
	6.6 DO safety messages
	6.7 User-defined messages
	6.8 Error during data exchange with DOs
	6.9 Particularity for alarms on drive objects
	6.10 Particularity for peripheral messages
	6.11 Reaction to internal errors
	7 Application example
	A Overview of the global variables
	B Interpretation of the raw data
	C Contact

	7.1 Defining machine error classes (example)
	7.2 Editing user-defined messages
	7.3 Adapting constants in the cPublic library unit
	7.4 Function call
	7.5 Display of the data from the message handling in the symbol browser of SIMOTION SCOUT
	A.1 Variables
	B.1 Structure
	B.2 Common information of all messages
	B.3 Messages of the technology object
	B.4 Errors on the drive object
	B.5 Warnings on the drive object
	B.6 Messages on the I/O
	B.7 TimeFault messages
	B.8 ExecutionFault messages
	B.9 Messages through startup of the SIMOTION device
	B.10 User-defined messages
	B.11 User-defined messages for FB/FC and FB units
	B.12 Messages through message handling
	C.1 Contacts
	C.2 Internet addresses

