
SIMOTION
Message Handling

Application Manual

11/2016

Preface
 1

Application description
 2

Application structure
 3

Integration
 4

Description of functions
 5

Alarm and error messages
 6

Application example
 7

Overview of the global
variables

 A

Interpretation of the raw data
 B

Contact
 C

 Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

Ⓟ 11/2016 Subject to change

Copyright © Siemens AG 2016.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Message Handling

Application Manual, 11/2016 3

Table of contents

1 Preface ... 7

1.1 General information ... 7

1.2 About this document .. 9

2 Application description ...11

2.1 Field of application .. 11
2.1.1 Description .. 11
2.1.2 Field of application .. 11

2.2 Objective ... 12
2.2.1 Task .. 12
2.2.2 Benefits ... 12

2.3 Concept... 13
2.3.1 Illustration of the concept ... 13

2.4 System overview (example) ... 17
2.4.1 Automation overview (example) ... 17
2.4.2 Hardware structure .. 18
2.4.3 System requirements ... 18
2.4.4 Scope of delivery ... 18

3 Application structure ..19

3.1 Structure of the libraries... 19
3.1.1 Overview of the libraries .. 19
3.1.2 Structure of the LMsgHdl library... 20

3.2 Structure of the units in the SIMOTION project .. 20

3.3 Constants .. 22
3.3.1 Public constants .. 22
3.3.2 Changeable public constants ... 24

3.4 Core functions and components .. 25
3.4.1 Overview of the core functions and required components of the message handling............ 25
3.4.2 Description of the core functions and required components.. 26
3.4.2.1 Buffer management ... 26
3.4.2.2 Description of the buffers ... 26
3.4.2.3 Functions for entering user-defined messages ... 29
3.4.2.4 AlarmS .. 30
3.4.2.5 Message bit handling ... 30
3.4.2.6 Response to execution faults in programs.. 30
3.4.2.7 Message handling startup .. 31
3.4.2.8 Acknowledgement of the active messages... 32
3.4.2.9 Filtering messages to an HMI / SIMOTION IT .. 32
3.4.2.10 Modular machine ... 34
3.4.2.11 DO safety messages ... 38
3.4.2.12 Saving of the ShutdownTask buffer ... 39

Table of contents

 Message Handling

4 Application Manual, 11/2016

3.4.2.13 Saving the current message log in the SIMOTION device ...39
3.4.2.14 Loading the language from the storage medium of the SIMOTION device...........................41
3.4.2.15 Single acknowledgement ..43
3.4.2.16 Common buffer for incoming/outgoing messages ...49

4 Integration ... 51

4.1 Required technology objects...51

4.2 Integration in the SIMOTION project ...51
4.2.1 Integration of the application into a SIMOTION project ..51
4.2.2 Suppressing messages ..55
4.2.3 Creating user-defined messages ..57
4.2.4 Embedding of the AlarmS handling or message bit handling ...59
4.2.5 Defining machine error classes ...62

4.3 Displaying messages via SIMOTION IT ..64

4.4 Important, frequently used variables ...66

5 Description of functions.. 69

5.1 General information on the description of functions ...69

5.2 FBLMsgHdlActiveMsgSgToHMI function block ...69
5.2.1 General information on the function block ...69
5.2.2 Schematic representation in LAD/FBD ..70
5.2.3 Input and output parameters of the function block ...71
5.2.4 Structure for parameter transfer ..72

5.3 FBLMsgHdlMsgLogSgToHMI function block ...73
5.3.1 General information on the function block ...73
5.3.2 Schematic representation in LAD/FBD ..74
5.3.3 Input and output parameters of the function block ...74
5.3.4 Structure for parameter transfer ..76

5.4 FBLMsgHdlActiveMsgBaseDataToHMI function block ..77
5.4.1 General information on the function block ...77
5.4.2 Schematic representation in LAD/FBD ..77
5.4.3 Input and output parameters of the function block ...78
5.4.4 Structure for parameter transfer ..79

5.5 FBLMsgHdlMsgLogBaseDataToHMI function block ..81
5.5.1 General information on the function block ...81
5.5.2 Schematic representation in LAD/FBD ..81
5.5.3 Input and output parameters of the function block ...82
5.5.4 Structure for parameter transfer ..83

5.6 FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer
functions ..85

5.6.1 General information on the functions ..85
5.6.2 Schematic representation in LAD/FBD ..86
5.6.3 Input and output parameters of the functions ..87

5.7 Structure for message log as raw data ..89

5.8 Structure for message log in STRING format ..90

6 Alarm and error messages ... 91

 Table of contents

Message Handling

Application Manual, 11/2016 5

6.1 General information on the error handling .. 91

6.2 Buffer overflow .. 91

6.3 Overflow of AlarmS messages ... 91

6.4 Error during startup.. 92

6.5 Messages by I/O modules ... 92

6.6 DO safety messages ... 92

6.7 User-defined messages ... 93

6.8 Error during data exchange with DOs .. 93

6.9 Particularity for alarms on drive objects .. 93

6.10 Particularity for peripheral messages ... 94

6.11 Reaction to internal errors ... 94

7 Application example ...99

7.1 Defining machine error classes (example) ... 99

7.2 Editing user-defined messages ...102

7.3 Adapting constants in the cPublic library unit ..103

7.4 Function call ...104

7.5 Display of the data from the message handling in the symbol browser of SIMOTION
SCOUT ..105

A Overview of the global variables... 107

A.1 Variables ..107

B Interpretation of the raw data ... 115

B.1 Structure ..115

B.2 Common information of all messages ...118

B.3 Messages of the technology object ...120

B.4 Errors on the drive object ..121

B.5 Warnings on the drive object ..124

B.6 Messages on the I/O ..124

B.7 TimeFault messages ..125

B.8 ExecutionFault messages ...125

B.9 Messages through startup of the SIMOTION device..125

B.10 User-defined messages ..126

B.11 User-defined messages for FB/FC and FB units ...126

B.12 Messages through message handling ...126

C Contact .. 129

C.1 Contacts ...129

Table of contents

 Message Handling

6 Application Manual, 11/2016

C.2 Internet addresses.. 130

Message Handling

Application Manual, 11/2016 7

 Preface 1
1.1 General information

 Note

The standard applications are not binding and do not claim to be complete regarding
configuration, equipment or any eventuality which may arise. The standard applications do
not represent specific customer solutions, but are only intended to provide support for typical
tasks. You are responsible for the proper operation of the described products. These
standard applications do not relieve you of your responsibility regarding the safe handling
when using, installing operating and maintaining the equipment. By using these standard
applications, you agree that Siemens cannot be made liable for possible damage beyond the
mentioned liability clause. We reserve the right to make changes and revisions to these
standard applications at any time without prior notice. In the case of any differences between
the suggestions made in these standard applications and other publications from Siemens,
such as catalogs, the contents of the other documentation have priority.

Warranty conditions, liability, and support
If the application has been made available free of charge, the following applies:

We do not provide a warranty for any of the information contained in this document.

All other rights and claims against Siemens AG irrespective of legal basis are excluded. In
particular claims for damages against Siemens AG in the case of product outage, downtime,
loss of profit, either directly, indirectly or consequential damage are excluded.

This does not apply when liability is compulsory by law, e. g. in the case of the Product
Liability Act, premeditation, an act of gross negligence by superiors and managerial staff of
Siemens AG or in cases of fraudulent concealment of defects.

This limitation of liability also applies to sub-contractors, suppliers, delegates, superiors and
managerial staff of Siemens AG.

German law shall apply to this agreement for customers with head offices in Germany; Swiss
law for customers with head offices outside Germany. Application of the United Nations
Convention on Contracts for the International Sale of Goods as of 11.04.1980 (CISG) is
excluded.

Preface
1.1 General information

 Message Handling

8 Application Manual, 11/2016

If the application has been made available against payment, the appropriate alternative
applies for the respective business transaction:
● Alternative 1: (Internal business)

If nothing else has been negotiated, then the "Conditions for the supply and services in
Siemens internal business" applies in the version that is valid at the time that the equipment
is purchased.
● Alternative 2: (Domestic business of Siemens AG)

If nothing else was negotiated, the "General License Conditions for Software for Automation
and Drives for Customers with a Registered Office in Germany" valid at the time of sale are
applicable.

● Alternative 3: (Direct export business of Siemens AG)

If nothing else has been negotiated, then the "General License Conditions for Software
Products for Automation and Drives for Customers with a Seat or Registered Office outside
Germany", valid at the time of sale, are applicable.

It is not permitted to distribute or duplicate these application examples in any form including
excerpts thereof without the express consent of Siemens Industry Sector.

Notice regarding export identification codes
AL: N

ECCN: N

 Preface
 1.2 About this document

Message Handling

Application Manual, 11/2016 9

1.2 About this document

Objective
This document is intended to help the reader integrate the Message Handling application for
the management of messages into the existing SIMOTION SCOUT project. The library
called LMsgHdl provides basic functions for the display and management of messages.
Previous knowledge in using the SIMOTION SCOUT engineering system is required.

 Note

This document does not claim to contain all details on devices in any version or to take all
conceivable operational cases and applications into account.

Should you require further information or encounter specific problems not covered in enough
detail for your field of application, please contact your local Siemens office.

Target group
This document is intended for programmers, commissioning and application engineers who
create applications for SIMOTION.

Restriction
In message handling, information is read from SINAMICS drives. A description of this data
exchange is not part of this documentation.

Siemens Industry Online Support
This article originates from the Siemens Industry Online Support. The following link takes
you directly to the download page for this document:

http://support.automation.siemens.com/WW/view/en/48955585
(http://support.automation.siemens.com/WW/view/en/48955585)

http://support.automation.siemens.com/WW/view/en/48955585

Preface
1.2 About this document

 Message Handling

10 Application Manual, 11/2016

Message Handling

Application Manual, 11/2016 11

 Application description 2
2.1 Field of application

2.1.1 Description
Information, faults, alarms, warnings, messages as well as user-defined messages occur in
every SIMOTION application. The term messages is used generically in this document.
Messages can occur because of external influences; e.g. changing of the status or faults on
peripheral devices or drives. Messages can also be triggered in the SIMOTION
motion control system. For example, system errors or technology object errors (technological
alarms).

All messages are collected in a buffer (log). The user can display the current pending
messages or a message log. This information can be forwarded to a higher-level controller
or a control system. The message log can be sent as a file to a system specialist for a
remote diagnostics, for example, when faults occur on the machine.

2.1.2 Field of application
The Message Handling application can be used universally for arbitrary applications. The
CAM technology package is a minimum requirement.

Application description
2.2 Objective

 Message Handling

12 Application Manual, 11/2016

2.2 Objective

2.2.1 Task
The objective of the message handling is to collect messages from various sources of the
SIMOTION system and provide these to the user. A distinction is made between current
pending messages and a message log.

The programmer of a SIMOTION application can further process the collected messages by
either forwarding them to a higher-level system or displaying them on an HMI.

A configuration script is to be used to integrate the message handling in the SIMOTION
application, by adapting programs and constants to the existing application. The message
handling has a modular structure. When the configuration script is called, the user can
decide which parts are to be inserted.

2.2.2 Benefits
This message handling significantly reduces the time required to create an error and
message handling, which should be contained in every SIMOTION application.

The use of a configuration script for the integration in the SIMOTION application avoids the
error-prone insertion of software components. The configuration script reads the project
information and configures the message handling accordingly.

The message handling collects messages from the following sources:
● SIMOTION system messages

– Technological messages of SIMOTION

– Messages about SIMOTION system errors

– Peripheral fault messages

● SINAMICS drive messages

– DO safety messages

– DO messages

● User-defined messages

The messages are stored in buffers that the users can access with their applications. These
are:
● Buffer for memory-optimized data that has to be processed by the user for further use

● String-based buffers that are easy to read, but require a large amount of memory

The AlarmS handling and message bit handling can also be used.

In addition to the collection of messages, the user can also program for user-defined
messages and peripheral fault messages, what effect a message has on the functioning of
the machine. Depending on the severity of the message, the user can program a machine
reaction.

 Application description
 2.3 Concept

Message Handling

Application Manual, 11/2016 13

2.3 Concept

2.3.1 Illustration of the concept

Collecting and displaying messages
The concept of collecting all messages from different sources in a uniform format was used
for the message handling. In this way, all messages of the SIMOTION system can be
displayed on an HMI or sent to a higher-level controller. The user can also access a uniform
interface for further processing.

The following figure shows how the messages are collected from the various sources. All
messages are read in by a message collector and converted to a uniform format.

Figure 2-1 Collecting messages

 Note

SIMOTION system messages include messages that are generated by timeouts in the
TimeFaultTasks as well as messages generated by errors when processing a program in the
ExecutionFaultTask.

The message collector writes the messages to two buffers.
● One for the current pending messages and

● One buffer with the message log

When the messages are acknowledged by the message handling, the buffer with the active
messages is emptied. The messages in the message log are marked as message gone
(time stamp when acknowledged). When the message log buffer is full, the oldest message
is overwritten.

Application description
2.3 Concept

 Message Handling

14 Application Manual, 11/2016

The storage format of these two buffers is called raw data in the following, as these two
buffers are optimized for the greatest possible storage efficiency. The message information
is coded with numerical values for the raw data buffers. The buffer for the message log is
stored in the retentive data area (RETAIN), so that it is also available after a power failure.

Two further buffers can be integrated so that the coded numerical value of the raw data is
easier to read. These contain the message information in STRING format and can be
created optionally by the message handling. Corresponding to the raw data buffers, there is
one STRING buffer for the active messages and one buffer for the message log. These
buffers in STRING format require significantly more memory than the raw data buffers.

Figure 2-2 Writing messages to buffers

The AlarmS handling and the message bit handling can also be used for the display of user-
defined messages on the HMI.

The user can access the buffers. Arbitrary sections of the buffers can be displayed directly
on the HMI via function blocks that are also provided. When using the raw data buffers, the
HMI must generate comprehensible error texts from the raw data. The texts from the
STRING buffers can be used directly for the display. The buffers can also be transferred to a
higher-level controller, e.g. via TCP/IP.

Remote diagnostics are facilitated when the user saves the buffer with the message log to
the storage medium of the SIMOTION device when a machine fails and sends this data to a
system specialist.

 Note

HMI screens for the display of messages in STRING format and SIMOTION programs for the
transmission to a higher-level controller are not part of the message handling. The user is
responsible for this.

As the message handling has a modular structure, the user can choose whether the entire
message handling or only parts thereof are to be taken into the application. The user can
therefore choose from which sources the messages are to be collected, which buffers are to
be used and in which way the messages are to be displayed.

 Application description
 2.3 Concept

Message Handling

Application Manual, 11/2016 15

Figure 2-3 Overview of the message handling

Reaction to messages
Up to now, it has been described how messages are collected and displayed. However,
most messages also require a reaction from the machine. This reaction depends on the type
and source of the message. The failure of an important equipment module (machine
module), e.g. when a following error occurs on the axis of an equipment module operating
synchronously, requires a different reaction to that of the failure of an equipment module for
filling a material storage unit. In the first case, an emergency stop of the machine would be
necessary, in the second case production could continue as long as material is still available.

 Note

Reactions to technological alarms and drive errors are set in the SIMOTION SCOUT
engineering system and are not part of the message handling.

Each message from the user-defined messages and the peripheral fault messages can be
assigned to a machine error class. These machine error classes determine the reaction of
the machine when messages occur. If several messages occur simultaneously, the error

Application description
2.3 Concept

 Message Handling

16 Application Manual, 11/2016

class with the highest priority determines the machine error class. For a more detailed
description, see Section Defining machine error classes (Page 62).

 Note

The reactions for the machine error classes must be programmed by the user. The message
handling only provides a variable for the machine error class with the highest priority. All the
currently active machine error classes are displayed in a variable.

 Application description
 2.4 System overview (example)

Message Handling

Application Manual, 11/2016 17

2.4 System overview (example)

2.4.1 Automation overview (example)
The message handling collects messages from the peripheral devices connected to the
SIMOTION device. The following figure shows an automation solution with a SIMOTION D
device. Messages from the peripheral devices (an ET200M, an ET200S and a SINAMICS
S120 CU320 in the figure) connected via PROFIBUS or PROFINET are forwarded to the
message handling.

With SINAMICS drives, the messages from drive objects (DOs) can also be accessed. The
SINAMICS drive can be connected via the integrated PROFIBUS (for SIMOTION D, this is
the SINAMICS Integrated) and also via PROFIBUS or PROFINET. Data exchange is
performed via acyclic services. In this way, it is possible to perform a detailed search for
errors in SINAMICS drives.

Figure 2-4 Example of an automation solution

Application description
2.4 System overview (example)

 Message Handling

18 Application Manual, 11/2016

2.4.2 Hardware structure
The message handling has been created for the SIMOTION motion control system and
requires a controller of this type. It can be used for all versions of SIMOTION devices
(SIMOTION D, C and P). In principle, the drive type is irrelevant when using a PROFIdrive
standard telegram for a SINAMICS S120 drive, however, the status word of the drive is
addressed directly, which may not function when the interface has been defined differently.

2.4.3 System requirements
The message handling has been created and tested for the software version as of
SIMOTION SCOUT V4.1 SP4 with SINAMICS 2.5 and 2.6. The CAM technology package is
a minimum requirement.

2.4.4 Scope of delivery
You will find the following data on the supplied medium:

● The LDPV1 and LMsgHdl libraries in XML format

● The program units of the message handling in XML format

● SIMOTION IT pages

● Files in XML format for the language selection of the message texts in German, English,
French and Italian.

Message Handling

Application Manual, 11/2016 19

 Application structure 3
3.1 Structure of the libraries

3.1.1 Overview of the libraries
The following libraries are used for the message handling:

● LDPV1 library for the acyclic data exchange with SINAMICS drives.
The descriptions of the blocks and functionalities of this library can be found on the
Utilities & Applications storage medium, which is part of SIMOTION SCOUT.

● LMsgHdl library for the functionalities of the message handling. The library is split into
various units. The LMsgHdl library has been created for the message handling and is
described in this document.

Figure 3-1 Overview of the libraries for the message handling

Application structure
3.2 Structure of the units in the SIMOTION project

 Message Handling

20 Application Manual, 11/2016

3.1.2 Structure of the LMsgHdl library
The following table lists the units of the LMsgHdl library. The user has access to two units of
the library, all other units have know-how protection. Only the units without know-how
protection are described.

The aVersion unit is used to identify the version history of the library. No source code is
contained in this unit.

The constants of the cPublic unit are described in Section Constants (Page 22).

Table 3- 1 Structure of the LMsgHdl library

Unit name Use Know-how protection
aVersion Unit of the version overview, change list No
cProtected Unit of the definition of the protected constants Yes
cPublic Unit of the definition of the constants that can be changed

by the user
No

dProtected Unit of the protected data Yes
dStringGlob Unit for texts of the string-based buffers in German, English,

French and Italian.
Yes

fMsgGlob Unit for functions of the string-based buffers Yes
fMsgHdl Unit for functions of the message handling Yes
fSysTasks Unit for functions to read out messages from SIMOTION

fault tasks
Yes

3.2 Structure of the units in the SIMOTION project

Units of the message handling
Units are created in the SIMOTION application when the configuration script of the message
handling is executed. The interfaces for the operation of the message handling as well as the
message buffers are defined in global variables. The following units are available in the
application of the message handling:

Table 3- 2 Units of the message handling in the SIMOTION application

Unit Use Know-how protection
fLMsgHdlInit Functions that have to be adapted by the configuration

script or the user in the specific project
No

fLMsgHdl Functions for the message handling Yes
pLMsgHdl Unit for programs of the message handling Yes
dLMsgHdl Alternative message variant (not activated by default) No

 Application structure
 3.3 Constants

Message Handling

Application Manual, 11/2016 21

 Note

The global variables declared in the program units can be used in the user application and
monitored via the symbol browser. A description of the global variables can be found in
Overview of the global variables (Page 107).

Programs in the message handling
The pLMsgHdl unit contains programs that are assigned to the execution system by the
configuration script. These are used for the initialization, to collect messages and to process
messages in the buffers. The unit has know-how protection and the user cannot make any
changes.

Table 3- 3 Programs in the pLMsgHdl unit

Name of the program Task level Use
pLMsgHdlStartupMessageHandling StartupTask • Initialization of the data

• Assignment of the TO references, the DO
addresses and the I/O addresses

• Setting the machine error classes

pLMsgHdlTechnologicalMessage TechnologicalFaultTask Reading in technological messages
pLMsgHdlPeripheralMessage PeripheralFaultTask Reading in peripheral messages
pLMsgHdlTimeFaultMessage TimeFaultTask Reading in timeout messages
pLMsgHdlTimeFaultBackgroundMessage TimeFaultBackgroundTask Reading in timeout messages in the Back-

groundTask
pLMsgHdlExecutionFaultMessage ExecutionFaultTask Reading in messages when executing the

SystemFaultTask
pLMsgHdlMain BackgroundTask Call of all message handling programs in the

BackgroundTask

Application structure
3.3 Constants

 Message Handling

22 Application Manual, 11/2016

3.3 Constants

3.3.1 Public constants
The following constants are preset by the configuration script and should not be changed by
the user.

 Note

The constants in the cPublic unit for the number of TOs and DOs in the project are written by
the configuration script to their correct values. These constants may not be changed by the
user. If the project configuration changes, the configuration script must be called again. The
message log in the retentive data area (RETAIN) is then reinitialized when the SIMOTION
device is restarted.

Table 3- 4 Public constants in the cPublic unit of the LMsgHdl library (preset by the configuration script)

Name Value Use
LMSGHDL_LENGTH_OF_MESSAGE_LOG 200 Length of the buffer for the message log

(applies for raw data and STRING buffers)
LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES 100 Length of the buffer for active message

(applies for raw data and STRING buffers)
LMSGHDL_LANGUAGE_FOR_MESSAGE_STRING 9 Setting of the language (default setting 9 =

English) (STEP 7 notation)
LMSGHDL_NUMBER_OF_AXES 1 Number of axes in the project (real and

virtual)
LMSGHDL_NUMBER_OF_EXTERNAL_ENCODERS 1 Number of external encoders in the project
LMSGHDL_NUMBER_OF_MEASURING_INPUTS 1 Number of measuring inputs in the project
LMSGHDL_NUMBER_OF_OUTPUT_CAMS 1 Number of output cams in the project
LMSGHDL_NUMBER_OF_CAM_TRACKS 1 Number of cam tracks in the project
LMSGHDL_NUMBER_OF_CAMS 1 Number of cams in the project
LMSGHDL_NUMBER_OF_FOLLOWING_OBJECTS 1 Number of following objects in the project
LMSGHDL_NUMBER_OF_PATH_OBJECTS 1 Number of path objects in the project
LMSGHDL_NUMBER_OF_FIXED_GEARS 1 Number of fixed gears in the project
LMSGHDL_NUMBER_OF_ADDITION_OBJECTS 1 Number of addition objects in the project
LMSGHDL_NUMBER_OF_FORMULA_OBJECTS 1 Number of formula objects in the project
LMSGHDL_NUMBER_OF_SENSORS 1 Number of sensor objects in the project
LMSGHDL_NUMBER_OF_CONTROLLER_OBJECTS 1 Number of controller objects in the project
LMSGHDL_NUMBER_OF_TEMPERATURE_CONTROLLERS 1 Number of temperature controllers in the

project
LMSGHDL_NUMBER_OF_TOS_WITH_DO 1 Number of DOs with technology object

(electric axes)

 Application structure
 3.3 Constants

Message Handling

Application Manual, 11/2016 23

Name Value Use
LMSGHDL_NUMBER_OF_CYCLIC_DOS 1 Number of DOs with cyclic data exchange

(without DOs that are connected to TO
axes)

LMSGHDL_NUMBER_OF_ACYCLIC_DOS 1 Number of DOs with acyclic data exchange
(no configured telegram)

LMSGHDL_NUMBER_OF_PERIPHERAL_DEVICES 1 Number of peripheral devices
LMSGHDL_MAX_NUMBER_OF_SYSTEM_TASKS 53 Number of existing tasks in the execution

system of the SIMOTION project

Non-editable constants that can be used by the user
The following constants can be used by the user to edit the user-defined message texts.
These constants may not be changed by the user.

Table 3- 5 Public constants in the cPublic unit of the LMsgHdl library (that can be used by the user)

Name Value Use
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_1 1 Can be used to transfer additional value 1

(additionalValue1) for a user-defined mes-
sage.

LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_2 2 Can be used to transfer additional value 2
(additionalValue1) for a user-defined mes-
sage.

LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_FB_ID 3 Can be used to transfer additional value FB-
ID (functionBlockId) for a user-defined mes-
sage.

LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_ERROR_
CODE

4 Can be used to transfer additional value error
code (errorCode) for a user-defined message.

LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_REAL 5 Can be used to transfer additional value
REAL (additionalValueReal) for a user-
defined message.

LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT 0 Can be used to transfer data type DINT for
the output of a user-defined message.

LMSGHDL_USER_MESSAGE_VALUE_TYPE_HEX 1 Can be used to transfer data type HEX for the
output of a user-defined message.

LMSGHDL_USER_MESSAGE_VALUE_TYPE_REAL 2 Can be used to transfer data type REAL for
the output of an additional value of a user-
defined message.

Application structure
3.3 Constants

 Message Handling

24 Application Manual, 11/2016

3.3.2 Changeable public constants
The following constants are not preset by the configuration script and must be changed by
the user as required.

 Note

The value of the constants must be at least 1 (one). The value 0 (zero) is not permitted.

Table 3- 6 Changeable public constants in the cPublic unit of the LMsgHdl library

Name Value Use
LMSGHDL_NUMBER_OF_STRING_MESSAGES_PER_CYCLE_IN_STARTUP
 3 Number of messages in STRING format that are generated in the initialization during

startup. The startup time of the message handling can be reduced via this constant. If the
value selected is too large however, this can result in a timeout in the BackgroundTask.

LMSGHDL_MAX_NUMBER_OF_NEW_MESSAGES_PER_CYCLE
 1 Number of new messages that can be taken into the message buffer in one background

cycle. The default value should be retained here, if possible.
LMSGHDL_AUTO_SAVE_MESSAGE_BUFFER_TO_STORAGE_MEDIUM
 FALSE Activation/deactivation of the automatic saving of the message buffer to the storage medium

of the SIMOTION device function
LMSGHDL_MAX_NUMBER_OF_DATASETS_ON_STORAGE_MEDIUM
 5 Number of files that are created with AutoSave = TRUE
LMSGHDL_NUMBER_OF_EXECUTION_FAULT_MESSAGES
 2 Size of the buffer to collect messages for program execution errors during runtime. The

buffer can be enlarged if there is an overflow.
LMSGHDL_NUMBER_OF_TECH_FAULT_MESSAGES
 100 Size of the buffer to collect the technology messages. The buffer can be enlarged if there is

an overflow.
LMSGHDL_NUMBER_OF_PERIPHERAL_FAULT_MESSAGES
 50 Size of the buffer to collect the peripheral fault messages. The buffer can be enlarged if

there is an overflow.
LMSGHDL_NUMBER_OF_TIME_FAULT_MESSAGES
 5 Size of the buffer to collect the timeout messages. The buffer can be enlarged if there is an

overflow.
LMSGHDL_NUMBER_OF_APPLICATION_MESSAGES
 20 Size of the buffer to collect the user-defined messages within a task. The buffer can be en-

larged if there is an overflow.
LMSGHDL_NUMBER_OF_DO_FAULT_MESSAGES
 50 Size of the buffer to collect the fault messages on drive objects. The buffer can be enlarged

if there is an overflow.
LMSGHDL_NUMBER_OF_DO_ALARM_MESSAGES
 50 Size of the buffer to collect the alarm messages on drive objects. The buffer can be enlarged

if there is an overflow.
LMSGHDL_NUMBER_OF_DO_SAFETY_MESSAGES

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 25

Name Value Use
 50 Size of the buffer to collect the safety messages on drive objects. The buffer can be en-

larged if there is an overflow.
LMSGHDL_ALARM_S_USER_MESSAGES
 FALSE TRUE: Use of AlarmS for the message display on the HMI.

FALSE: No use of AlarmS.
LMSGHDL_MESSAGE_BIT_USER_MESSAGES
 FALSE TRUE: Use of message bit handling for the message display on the HMI.

FALSE: No use of the message bit handling.
LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI
 10 Maximum number of lines for the display of a message buffer (actual number is transferred

separately for the message log and display of the active errors).
LMSGHDL_MAX_STRING_LENGTH_OF_MESSAGE_TEXTS_TO_HMI
 80 Maximum number of characters for message texts in the STRING format that can be trans-

ferred via the internal function blocks to an HMI or SIMOTION IT.
LMSGHDL_NUMBER_OF_USER_DEFINED_EVENTS
 10 Number of user-defined messages.
LMSGHDL_NUMBER_OF_FUNCTION_BLOCK_IDS
 1 Number of user-defined messages through FBs/FCs. These FB/FC messages are part of

the total number of messages in the
LMSGHDL_MAX_NUMBER_OF_USER_DEFINED_EVENTS constant.

LMSGHDL_MACHINE_ERROR_CLASS_ERROR_IN_MESSAGEHANDLING
 0 Specifies the message class that sets the messages, which have been issued by the mes-

sage handling itself, in the message handling.

3.4 Core functions and components

3.4.1 Overview of the core functions and required components of the message
handling

The message handling has the following core functions:
● Managing and displaying messages

● Using the AlarmS handling or message bit handling

● Acknowledging active messages

● Saving current messages to the storage medium of the SIMOTION device

● Setting the language of the message texts

Other components required in the message handling:
● Buffer management for acyclic DP-V1 data exchange services

● Startup check of the SIMOTION device

Application structure
3.4 Core functions and components

 Message Handling

26 Application Manual, 11/2016

3.4.2 Description of the core functions and required components

3.4.2.1 Buffer management

Buffer management for acyclic DP-V1 data exchange services
The message handling uses the acyclic DPV1 data exchange service to determine
information on SINAMICS modules. To avoid a collision of the individual data exchange jobs,
the message handling uses the global buffer management (pGlobalBufferManager program)
of the LDPV1 library. This procedure is required as only one acyclic data exchange job can
be processed simultaneously for each SINAMICS device.

Therefore, when using the message handling it is essential to check that in the entire
application all further acyclic data exchange jobs are also issued via the global buffer
management of the LDPV1 library. The message handling uses the buffer with the identifier
zero (0) for all drive units, i.e. no other buffers may be used in applications in which acyclic
data exchange is used, in order to coordinate accesses. For more detailed information, refer
to the documentation on the LDPV1 library.

The functions and function blocks of the LDPV1 library should be used instead of system
commands for the data exchange in the drive in order to avoid collisions in the data
exchange. These blocks are already configured for the use of the buffer management.

 Note

You must ensure that the pGlobalBufferManager program is available in the project and
assigned to the BackgroundTask. The program is supplied with the LDPV1 library.

3.4.2.2 Description of the buffers

General
Four buffers are created in the message handling. Depending on the setting in the
configuration script, either only the buffers for the raw data or all four buffers are supplied
with data:
● Buffer for message log as raw data (message history)

● Buffer for active messages, raw data

● Buffer for message log as strings (message history, strings), optional

● Buffer for active messages, strings, optional

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 27

These buffers are described in the following sections. For the interpretation of messages in
raw data format, see Section Interpretation of the raw data (Page 115).

 Note

The message log is saved as soon as the buffer is full with the AutoSave function. All
messages that do not have a gone time stamp at this time are saved without this time stamp.

Buffer for message log as raw data (message history)
All the messages that have occurred are displayed in the form of raw data in the buffer for
the entire message log. This data is stored as global data in the retentive area (RETAIN):

● Data of the buffer for active messages

● Time stamp Message gone

If the memory requirement of the message log is greater than the RETAIN data area, the
data area for the SIMOTION device can be switched from RETAIN to NON-RETAIN. To do
this, the preprocessor definition LMSGHDL_NO_RETAIN_BUFFER must be set in the
fLMsgHdl program unit, see Suppressing messages (Page 55).

As the message-specific information differs greatly depending on the source, this information
is collected in a generally defined structure. The result is that not all elements of this
structure are always filled.

To be able to evaluate this message information, it must be known how the individual
messages from the various sources are to be interpreted.

As the buffer for the message log can be transferred to an HMI, the structure in STRUCT OF
ARRAY is used for the buffer. A higher performance is achieved in this way. This buffer is in
the fLMsgHdl program unit and is called grsLMsgHdlMessageLogBaseData.
● 64 bytes are required per message in the buffer for the entire message log.

● The length of the storage area for the entire message log can be set via the
LMSGHDL_LENGTH_OF_MESSAGE_LOG constant. The default setting is for
200 entries.
The entire message log therefore requires approx. 12 KB memory in the retentive data
area (RETAIN).
The SIMOTION D410 is an exception, the default setting is for 150 entries.

The buffer for the message log as raw data is designed as a ring buffer.

Buffer for active messages, raw data
All the messages that have not been acknowledged or cannot be acknowledged are
displayed in the buffer for active messages. This data is stored as global data.

The following information is stored for each message:
● Identifier for the message source

● Level of the message (error, fault, alarm)

● Type of acknowledgement for the message, e.g. some DO messages require Power On
as acknowledgement

Application structure
3.4 Core functions and components

 Message Handling

28 Application Manual, 11/2016

● Message class

● Message information as raw data, as it occurs in the application

● Time stamp when message occurred

The structure and use of the data is identical to that of the message log in raw data format.
Only the time stamp Message gone is missing.

This buffer is in the pLMsgHdl program unit and is called
gsLMsgHdlActiveMessagesBaseData.

● 51 bytes are required per message in the buffer for the active messages.

● The length of the storage area for the active messages can be set via the
LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES constant. The default setting is for
100 entries.
The entire message log for active messages as raw data therefore requires
approx. 5.1 KB memory in the global data area.

The buffer for active messages is not a ring buffer and is written successively with the entries
found in the message log. If more messages are active than the length of the buffer, the
remaining active messages are not displayed in the list. A separate message is displayed for
this.

Buffer for message log as strings (message history, strings)
All the messages that have occurred are displayed in STRING format in the buffer for the
message log. This data is stored as global data. Its use is optional and can be selected or
deselected during the configuration.

The string texts are stored either in German, English, French or Italian on the controller.
Other languages (only ASCII character code) are possible and can be loaded from the
storage medium of the SIMOTION device to the system. For more detailed information, see
Section Loading the language from the storage medium of the SIMOTION device (Page 41).

The following information is stored for each message:
● Information of the active message

● Time stamp Message gone

This buffer is in the fLMsgHdl program unit and is called gsLMsgHdlMessageLogString.

● 314 bytes are required per message in the buffer for the entire string message log.

● The length of the storage area for the entire string message log can be set via the
LMSGHDL_LENGTH_OF_MESSAGE_LOG constant. The default setting is for
200 entries.
The entire string message log therefore requires approx. 62.8 KB memory in the global
data area.
The SIMOTION D410 is an exception, the default setting is for 150 entries.

The buffer for the message log as raw data is designed as a ring buffer.

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 29

Buffer for active messages, strings
All the messages that have not been acknowledged or cannot be acknowledged are
displayed in the buffer for active messages. This data is stored as global data. Its use is
optional and can be selected or deselected during the configuration.

The string texts are available either in German, English, French or Italian. Other languages
(only ASCII character code) are possible and can be loaded from the storage medium of the
SIMOTION device to the system. For more detailed information, see Section Loading the
language from the storage medium of the SIMOTION device (Page 41).

The following information is stored for each message:
● Identifier for the message source

● Level of the message (error, fault, alarm)

● Type of acknowledgement for the message, e.g. some DO messages require Power On
as acknowledgement

● Language-dependent message text including additional information
This achieves that all messages from all sources have the same form of message despite
different information.

● Category of message

● Time stamp when message occurred

This buffer is in the pLMsgHdl program unit and is called gsLMsgHdlActiveMessageString.

● 291 bytes are required per message in the buffer for the active messages.

● The length of the storage area for the active messages can be set via the
LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES constant. The default setting is for
100 entries.
The entire message log for active messages as raw data therefore requires
approx. 29.1 KB memory in the global data area.

The buffer for active messages is not a ring buffer and is written successively with the entries
found in the message log. If more messages are active than the length of the buffer, the
remaining active messages are not displayed in the list. A relevant message is also not
generated.

3.4.2.3 Functions for entering user-defined messages
The FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer
functions are used to transfer the user-defined messages to the message handling and take
over the associated message class. With the aid of these functions, the corresponding
message is also issued in the system when the AlarmS handling or message bit handling is
selected. The functions can be called in all tasks of the execution system.

The AlarmS messages and also the appropriate bits for the message bit handling, are set by
these functions.

Application structure
3.4 Core functions and components

 Message Handling

30 Application Manual, 11/2016

The texts for the user-defined messages must be created by the user in all the required
languages. The functioning and handling of the various languages is the same as for the
system messages.

 Note

Each user-defined message can only be active once in the system. If a message is active
and transferred again to the message handling, it is not entered. Only after a user-defined
message has been acknowledged, can it be issued again.

There are two different types of user-defined messages:
● User-defined messages of the application

● User-defined messages of functions and function blocks

See also
FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer
functions (Page 85)

3.4.2.4 AlarmS
AlarmS is a built-in system function and can be used by the Message Handling application.
To do this, the user activates the AlarmS handling in the SIMOTION project. When AlarmS is
activated, the appropriately configured AlarmS message is issued for each user-defined
message. For more detailed information, see Section Embedding of the AlarmS handling or
message bit handling (Page 59).

3.4.2.5 Message bit handling
The message bit handling is an available function and can be used by the Message Handling
application. To do this, the user activates the message bit handling in the SIMOTION project.
For more detailed information, see Section Embedding of the AlarmS handling or message
bit handling (Page 59).

3.4.2.6 Response to execution faults in programs
The response to program faults is set by the configuration script for all tasks on the
ExecutionFaultTask. If a program fault occurs in a sequential task, e.g. access outside of the
array limits, the ExecutionFaultTask is started. The task, in which this fault has occurred, is
aborted, the SIMOTION device remains in RUN mode. When the ExecutionFaultTask is run
through, the message information that is output is stored in a buffer of the message
handling. This buffer is in the retentive data area (RETAIN). As the SIMOTION device then
automatically goes into STOP mode, this message can no longer be entered in the message
buffer. If the SIMOTION device is set again to RUN mode, the message is taken into the
message buffer and appears in the message log and the active messages. This message
can be acknowledged in the message handling.

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 31

3.4.2.7 Message handling startup
The following actions are performed in the Message Handling library when the message
handling starts up:

● Initialization of the message buffer for the message log in raw data format. All messages
that were active when the machine was shut down are automatically acknowledged
during startup.

● After the configuration script is run through, the message log in raw data format is always
deleted in the retentive data area (RETAIN). If changes are made in the project, the
configuration script must be run through again. After the configuration script has been
completed, it is not certain that the configured information determined by the
configuration script matches the information already available in the raw data message
log.

● If available on the storage medium of the SIMOTION device, loading of the language
stored in the message handling. This action is only performed when the STRING format
has been selected in the message handling.

● Generation of a new message for the restart of the SIMOTION device.

● Monitoring of the startup of all the devices configured on the SIMOTION device. If a
configured device is missing or not ready, a message is entered in the message handling.

● Determination of special information about all the configured drive objects on SINAMICS
modules.

● Reading out of the names of drive objects for the message handling in STRING format.

● Time synchronization of all SINAMICS modules to RTC (Real Time Clock) of SIMOTION
(only with selected time synchronization and when using standard telegram 39x on the
control unit of a SINAMICS object).

● The message buffers are generated when the message log in STRING format has been
selected in the message handling.

● If an error occurs in the buffer management during startup of the message handling, the
startup may never be completed (variable boInitDriveReady = TRUE). For this reason,
the startup check is immediately terminated when the buffer management signals an
error. This error is transferred to the message handling and can therefore be output.

 Note

If the buffer management in the STRING format is used with a large buffer for the
message log, the generation of the STRING buffer during startup can take a long time. To
accelerate this process, the
LMSGHDL_NUMBER_OF_STRING_MESSAGES_PER_CYCLE_IN_STARTUP constant
has been created in the cPublic unit of the LMsgHdl library. Depending on its value,
several strings are copied in succession in each cycle in the BackgroundTask. This
significantly reduces the startup time.

No old messages may be active after a restart of the SIMOTION device. All messages that
were not gone before startup are automatically acknowledged during startup. After all
messages have been acknowledged, a new message for the startup of the SIMOTION
device is entered in the message log. This entry receives the time stamp time occurred =
time gone = current value of the RTC.

Application structure
3.4 Core functions and components

 Message Handling

32 Application Manual, 11/2016

3.4.2.8 Acknowledgement of the active messages
The global acknowledgement of all messages is performed via the global variable
gboLMsgHdlMsgHdlGlobalAcknowledge in the pLMsgHdl program unit. The variable must
be set to TRUE by the application. The rising edge triggers a global acknowledgement of all
active messages in the message handling. After acknowledgement, the variable is
automatically reset to FALSE. Acknowledgement by the message handling acknowledges all
the active faults and messages on SIMOTION and SINAMICS. If the AlarmS handling or
message bit handling is active, these active messages are also acknowledged in the system.
All active messages (except for alarms on drive objects) are reset in the message handling.
If faults and messages are still present after the acknowledgement, these are taken into the
message handling again.

 Note

All faults and messages that occur in the controller or are displayed in the message
handling, may only be acknowledged via the message handling. If an acknowledgement is
triggered that bypasses the message handling, this cannot be detected by the message
handling. The display in the message handling would then be incorrect.

3.4.2.9 Filtering messages to an HMI / SIMOTION IT

General
The filters are used on the output interface to an HMI / SIMOTION IT. For this purpose, the
implementation within the FBLMsgHdlActiveMsgBaseDataToHMI,
FBLMsgHdlMsgLogBaseDataToHMI, FBLMsgHdlActiveMsgSgToHMI and
FBLMsgHdlMsgLogSgToHMI function blocks is executed. All messages are entered in the
respective global buffer. This means that within the output on HMI / SIMOTION IT it is
possible to select which message sources are to be displayed and which are not.

Message sources
A distinction is made between the following message sources:

● Messages from technology objects
If selected, all messages (active or message log) that have been generated by
technology objects would be output to an HMI or SIMOTION IT.

● DO alarm
If selected, all alarms (active or message log) that have been generated by drive objects
would be output to an HMI or SIMOTION IT.

● DO warnings
If selected, all warnings (active or message log) that have been generated by drive
objects would be output to an HMI or SIMOTION IT.

● DO safety messages
If selected, all safety messages (active or message log) that have been generated by
drive objects would be output to an HMI or SIMOTION IT.

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 33

● Messages from I/O modules
If selected, all messages (active or message log) that have been generated by I/O
modules would be output to an HMI or SIMOTION IT.

● User-defined messages
If selected, all messages (active or message log) that have been generated by the user
would be output to an HMI or SIMOTION IT.

● System messages
If selected, all messages (active or message log) that have been generated by the
system would be output to an HMI or SIMOTION IT. This includes TimeFault messages,
TimeFault messages of the BackgroundTask and ExecutionFault messages.

● Messages by message handling
If selected, all messages (active or message log) that have been generated by the
message handling would be output to an HMI or SIMOTION IT.

If one of the sources described here is deselected, the message is still entered in the
corresponding buffer, but does not appear at the output of the function blocks described
above for output to an HMI or SIMOTION IT. These messages are only filtered out for the
output.

The filters are selected in the gsLMsgHdlFilterToHMI variable of the pLMsgHdl program unit.
This variable transfers the filter criteria to all output function blocks for an HMI or
SIMOTION IT.

Structure of the gsLMsgHdlFilterToHMI variable
The gsLMsgHdlFilterToHMI variable is of the sLMsgHdlFilterToHMIType type and has the
following structure. The gsLMsgHdlFilterToHMI variable can be transferred to the already
existing HMI FBLMsgHdlActiveMsgSgToHMI, FBLMsgHdlMsgLogSgToHMI,
FBLMsgHdlActiveMsgBaseDataToHMI and FBLMsgHdlMsgLogBaseDataToHMI function
blocks. The outputs resulting there are taken into account with the relevant filter information.

Table 3- 7 Structure of sLMsgHdlFilterToHMIType

Parameter Data type Initial value Description
boShowTOMessages BOOL TRUE With TRUE, all messages of all TOs are

displayed, with FALSE, they are filtered
out.

boShowDOWarnings BOOL TRUE With TRUE, all warnings of all DOs are
displayed, with FALSE, they are filtered
out.

boShowDOAlarms BOOL TRUE With TRUE, all alarms of all DOs are
displayed, with FALSE, they are filtered
out.

boShowDOSafetyMessages BOOL TRUE With TRUE, all safety messages of all
DOs are displayed, with FALSE, they are
filtered out.

boShowPeripheralMessages BOOL TRUE With TRUE, all messages of all I/O mod-
ules are displayed, with FALSE, they are
filtered out.

Application structure
3.4 Core functions and components

 Message Handling

34 Application Manual, 11/2016

Parameter Data type Initial value Description
boShowSystemMessages BOOL TRUE With TRUE, all system messages are

displayed, with FALSE, they are filtered
out.

boShowUserDefinedMessages BOOL TRUE With TRUE, all user-defined messages
are displayed, with FALSE, they are
filtered out.

boShowMessagesFromMsgHdl BOOL TRUE With TRUE, all messages generated by
the message handling are displayed,
with FALSE, they are filtered out.

3.4.2.10 Modular machine

General
With the message handling, it is possible to suppress message entries in the message buffer
for specific objects.

Example 1
The motor of a conveyor belt is defective. If the TO or DO fails, errors of this axis or drive are
entered in the message handling. As the drive is not essential for the operation of the
machine, it should be deselected from the message handling and from the customer
application. After setting the property, no more errors from these objects are entered in the
message handling.

Example 2
Partial commissioning of a machine

The hardware of a machine is not complete at the start of commissioning, e.g. a motor and
an I/O node are missing. Entries for these objects are to be suppressed in the message
handling.

Suppressible messages on objects
The following objects can be suppressed:
● Technology objects

● Drive objects

● I/O modules

Each object is assigned a setting in which you define whether the message handling should
monitor the object or not. These settings are saved retentively by the message handling and
are therefore still present after Power OFF/ON.

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 35

There are two ways to specify the objects that are to be monitored.

● First of all, a basic specification can be set in the source code of the message handling.
This is performed in the fLMsgHdlInit program unit in the FCLMsgHdlInitProjectInfo
function.

● In addition, this basic setting can be changed or adapted by the user during runtime. The
setting changed during runtime overwrites the basic setting and is then valid at each
restart. The basic settings are taken over by the message handling either when the
configuration script is run through again, or when the user increments the global constant
LMSGHDL_SCRIPT_COUNTER in the source code of the fLMsgHdlInit program unit,
recompiles and downloads the project to the SIMOTION device.

Basic settings in the source code
The basic settings in the source code are made as follows:

● TO axis with DO
If the TO is to be monitored, this is transferred in fLMsgHdlInit in the
FCLMsgHdlInitProjectInfo function via
gasLMsgHdlaxes[numberOfAxis].boToUsedInProject := TRUE. The associated DO is
transferred via gasLMsgHdlaxes[numberOfAxis].boRelatedDoUsed := TRUE.

● All other TOs
Within the transfer structure of all TO types there is a setting with which the monitoring
can be switched on or off for each TO, e.g.
gasLMsgHdlExternalEncoders[numberOfTO].boToUsedInProject := TRUE.

● DO with cyclic data exchange
Within the transfer structure of all DOs with cyclic data exchange there is a setting with
which the monitoring can be switched on or off for each DO, e.g.
gasLMsgHdlDOsCyclic[numberOfCyclicDO].boDoUsedInProject := TRUE.

● DO without cyclic data exchange
Within the transfer structure of all DOs without cyclic data exchange there is a setting with
which the monitoring can be switched on or off for each DO, e.g.
gasLMsgHdlDOsACyclic[numberOfCyclicDO].boDoUsedInProject := TRUE.

● I/O modules
Within the transfer structure of all I/O modules there is a setting with which the monitoring
can be switched on or off for each I/O module, e.g.
gasLMsgHdlPeripheralDevices[numberOfDevice].boUsedInProject := TRUE. If
boUsedInProject := FALSE is set for an I/O module, it is essential that the module also
does not actually exist. If it is present however, an error is output by the message
handling. When deselecting a SINAMICS I/O module, no time synchronization is
performed on this module.

 Note

If an I/O module of the SINAMICS type is not available, all objects belonging to the device
must be deselected. This means that the corresponding property must be set to FALSE
for all TOs, all DOs and the I/O modules themselves. If this is not performed, error
messages are output by the message handling.

Application structure
3.4 Core functions and components

 Message Handling

36 Application Manual, 11/2016

Settings during runtime
The settings during runtime are performed as follows:

The settings described here are stored within the pLMsgHdl program unit in the retain data.

● TO axis with DO
The gsLMsgHdlMoMaTOAxis variable is of the sLMsgHdlMoMaTOAxisType type and is
in the pLMsgHdl program unit. This means that the settings for modular machines can
also be made via the symbol browser.
The information, as to which entries belong to which technology object, is transferred by
the message handling.

The data type is defined as follows:

Table 3- 8 Structure of sLMsgHdlMoMaTOAxisType

Parameter Data type Initial value Description
toReference ANYOBJECT TO#NIL The axis reference is set from the execution

software of the message handling.
sgToName STRING Name of the axis
boRelatedDOUsed BOOL TRUE With FALSE, the DO belonging to the TO is

not monitored by the message handling.
boTOUsedInProject BOOL TRUE With FALSE, the TO is not monitored by the

message handling.

● All other TOs
The gsLMsgHdlMoMaxxx variables (type of the TO) are of the sLMsgHdlMoMaTOType
type and are in the pLMsgHdl program unit. This means that the settings for modular
machines can also be made via the symbol browser.
The information, as to which entries belong to which technology object, is transferred by
the message handling.
The following variables are available depending on the active technology package:

– gasLMsgHdlMoMaExternalEncoders for external encoders

– gasLMsgHdlMoMaMeasuringInputs for measuring inputs

– gasLMSGHDLMoMaOutputCams for output cams

– gasLMsgHdlMoMaCamTracks for cam tracks

– gasLMsgHdlMoMaCams for cams

– gasLMsgHdlMoMaFollowingObjects for following objects

– gasLMsgHdlMoMaPathObjects for path objects

– gasLMsgHdlMoMaFixedGears for fixed gears

– gasLMsgHdlMoMaAdditionObjects for addition objects

– gasLMsgHdlMoMaFormulaObjects for formula objects

– gasLMsgHdlMoMaSensors for sensors

– gasLMsgHdlMoMaControllerObjects for controller objects

– gasLMsgHdlMoMaTemperatureControllers for temperature controllers

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 37

The data type is defined as follows:

Table 3- 9 Structure of sLMsgHdlMoMaTOType

Parameter Data type Initial value Description
toReference ANYOBJECT TO#NIL The axis reference is set from the execution

software of the message handling.
sgToName STRING Name of the axis
boTOUsedInProject BOOL TRUE With FALSE, the TO is not monitored by the

message handling.

● DO with cyclic data exchange
The gasLMsgHdlMoMaDosCyclic variable is of the sLMsgHdlMoMaDOsCyclicType type
and is in the pLMsgHdl program unit. This means that the settings for modular machines
can also be made via the symbol browser.
The information, as to which entries belong to which drive object, is transferred by the
message handling.

The data type is defined as follows:

Table 3- 10 Structure of sLMsgHdlMoMaDOsCyclicType

Parameter Data type Initial
value

Description

sgDoName STRING Name of the DO
i32LogAddress DINT 0 Logical address of the DO
eIoId enumIoIdType INPUT Data direction of the logical address
boDOUsedInProject BOOL TRUE With FALSE, the DO is not monitored by the

message handling.

● DO without cyclic data exchange
The gasLMsgHdlMoMaDosAcyclic variable is of the sLMsgHdlMoMaDOsACyclicType
type and is in the pLMsgHdl program unit. This means that the settings for modular
machines can also be made via the symbol browser. The information, as to which entries
belong to which drive object, is transferred by the message handling.

The data type is defined as follows:

Table 3- 11 Structure of sLMsgHdlMoMaDOsACyclicType

Parameter Data type Initial
value

Description

sgDoName STRING Name of the DO
i32LogAddress DINT 0 Logical address of the DO
eIoId enumIoIdType INPUT Data direction of the logical address
u8DoNumber USINT 0 DO number
boDOUsedInProject BOOL TRUE With FALSE, the DO is not monitored by the

message handling.

● I/O modules
The gasLMsgHdlMoMaPeripheralDevices variable is of the

Application structure
3.4 Core functions and components

 Message Handling

38 Application Manual, 11/2016

sLMsgHdlMoMaPeripheralDevicesType type and is in the pLMsgHdl program unit. This
means that the settings for modular machines can also be made via the symbol browser.
The information, as to which entries belong to which I/O module, is transferred by the
message handling.

The data type is defined as follows:

Table 3- 12 Structure of sLMsgHdlMoMaPeripheralDevicesType

Parameter Data type Initial
value

Description

sgDeviceName STRING Name of the I/O module
u32MasterSystemId UDINT 0 masterSystemId of the bus system on which

the I/O module has been configured.
u32SlaveAddress UDINT 0 Slave address of the I/O module
boUsedInProject BOOL TRUE With FALSE, the I/O module is not monitored

by the message handling. It must not be pre-
sent and is not time-synchronized (SINAMICS
module).

The transfer or validity of this information is performed by setting
gboLMsgHdlActivateNewMoMaData in the pLMsgHdl program unit. After the transfer, the
setting gboLMsgHdlActivateNewMoMaData is removed automatically. This setting is then
valid after each Power OFF/ON restart.

3.4.2.11 DO safety messages

General
With the message handling, it is possible to also display active safety messages for the DO
errors and warnings in the message handling. So that the safety messages can be read out
at a DO, the eCheckSIMessages additional information must be supplied with the value
BY_DO_ADDRESS in the fLMsgHdlInit unit for each DO with active safety configuration. As
presently there is no bit for active safety messages in the cyclic data exchange, it must be
read out directly via the acyclic data exchange in a DO with active safety whether safety
messages are active or not. As to whether safety messages are active or not has to be read
out acyclically each time, eCheckSIMessages should only be set for those DOs on which
safety messages can occur. DISABLED should be set for all other DOs (default).

If a safety message occurs on a DO, it is entered in the message buffer. Safety messages
have approximately the same behavior as warnings on the DO. This means that safety
messages cannot be acknowledged via the message handling. When a safety message is
no longer active on the DO, this is detected by the message handling and automatically
acknowledged with the corresponding time stamp in the message handling.

The information as to whether safety messages are to be monitored on a DO can be
activated with the three different DO types at the following locations:

DO with TO

gasLMsgHdlaxes[…].eCheckSIMessages := BY_DO_ADDRESS;

DO with cyclic data exchange

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 39

gasLMsgHdlDOsCyclic[…].eCheckSIMessages := BY_DO_ADDRESS;

DO without cyclic data exchange

gasLMsgHdlDOsAcyclic[…].eCheckSIMessages := BY_DO_ADDRESS;

Table 3- 13 Enum for eLDPV1CheckSIMessagesType

Enum identifier Description
DISABLED (0) Check of safety messages switched off on the DO
BY_DO_ADDRESS (2) Check whether safety messages are active via acyclic read job

 Note

When using safety, the messages are automatically acquired by the message handling.

You do not have to make the settings described here.

BY_DO_ADDRESS is preset.

3.4.2.12 Saving of the ShutdownTask buffer
In the message handling, the buffer for user-defined messages within the ShutdownTask is
non-volatile. In this way, user-defined messages of the ShutdownTask are displayed in the
message handling when the machine is restarted.

3.4.2.13 Saving the current message log in the SIMOTION device

Saving of the message log
There are two different ways to save the message log to the storage medium of the
SIMOTION device. Both options can be used together.

 Note

The message log is saved as soon as the buffer is full with the AutoSave function. All
messages that do not have a gone time stamp at this time are saved without this time stamp.

Application structure
3.4 Core functions and components

 Message Handling

40 Application Manual, 11/2016

Option 1
It is possible to save the current buffer in raw data format and STRING format to the storage
medium of the SIMOTION device. To save the buffer, the global variable
gboLMsgHdlStartWriteCompleteMessageLogToStorageMedium must be set to TRUE in the
pLMsgHdl program unit. The name of the file in which the information is written, is set via the
gu32LMsgHdlDataSetNoForExportMessageLog variable (default is 0). The rising edge saves
the current message buffer to the storage medium of the SIMOTION device. All the
information that is required to be able to interpret the message log in raw data format is also
contained in the file. After saving, the global variable is reset to FALSE. After this action, the
data of the buffer is on the storage medium of the SIMOTION device in the following
directory:

Figure 3-2 fLMsgHdl directory

In the fLMsgHdl directory, the file with the buffer images is called dsxxxxxx.dat, whereby
xxxxxx corresponds to the number in gu32LMsgHdlDatasetNoForExportMessageLog. A
diagnosis is possible based on this file.

Option 2
The error history can be saved permanently to the storage medium of the SIMOTION device.
Saving is performed automatically when the log buffer in the SIMOTION device is full.

The number of data sets for backing up the data is specified by the user via the constant in
front of LMSGHDL_MAX_NUMBER_OF_DATASETS_ON_STORAGE_MEDIUM in the
cPublic unit. The data sets are created according to the principle of a ring buffer. The
functionality can be switched on or off via
LMSGHDL_AUTO_SAVE_MESSAGE_BUFFER_TO_STORAGE_MEDIUM in the cPublic
unit.

Properties of the functionality:

The automatic saving is activated via message handling constants in the cPublic unit. The
user also specifies the number of data sets or the size of the ring buffer in the cPublic unit,
e.g. 3.

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 41

If an overflow occurs in the ring buffer of the message handling, the buffer data is saved
consistently to the storage medium of the SIMOTION device. The information stored there is
assigned the data set numbers 1000/1001/1002 etc. When the maximum number of data
sets has been reached, the first data set is overwritten in the ring buffer operation.

3.4.2.14 Loading the language from the storage medium of the SIMOTION device
Proceed as follows to load different languages:

The value set in the constant LMSGHDL_LANGUAGE_FOR_MESSAGE_STRING in the
cPublic unit of the LMsgHdl library specifies with which language the message handling
starts after startup. The value of the respective language corresponds to the language ID
from the STEP 7 notation. German, English, French and Italian are currently integrated.
Other languages must be created and loaded by the user. Each time the SIMOTION device
is started, the message handling loads the appropriate language files for the system
messages and user-defined messages from the storage medium of the SIMOTION device to
the message handling. If these language files are not available, the language (German or
English) set via the configuration script is used by the message handling.

During message handling operation, the language selection can be changed as desired
between the languages stored on the storage medium of the SIMOTION device. This is
performed via the variables gu8LMsgHdlActiveLanguage and
gboLMsgHdlStartChangeLanguage from the pLMsgHdl unit. The language to be used is
transferred as language ID to the gu8LMsgHdlActiveLanguage variable and exchanged with
a rising edge in the gboLMsgHdlStartChangeLanguage variable. If the appropriate language
files are available on the storage medium of the SIMOTION device, all message buffers in
the STRING format are recreated after loading the language messages. The message
buffers are then output directly in the changed language. If an error occurs during loading,
e.g. the selected language is not available on the storage medium of the SIMOTION device,
a message is entered in the message handling.

The files with the system messages in the various languages must be stored on the storage
medium of the SIMOTION device in the following directory:
USER/SIMOTION/USER_DIR/UPP/UNITDS/pLMsgHdl

Figure 3-3 Directory for language files

Application structure
3.4 Core functions and components

 Message Handling

42 Application Manual, 11/2016

Figure 3-4 Language files

The file names of the various languages are formed from the abbreviation ds together with
the language ID from the STEP 7 notation for the respective language. Consequently, the
ds000007.dat file shown above in the pLMsgHdl directory contains all the system message
texts in German.

The files with the user-defined messages in the various languages must be stored on the
storage medium of the SIMOTION device in the following directory:
USER/SIMOTION/USER_DIR/UPP/UNITDS/fLMsgHdlInit

Figure 3-5 Directory for languages of the user-defined messages

Figure 3-6 Files for languages of the user-defined messages

The file names of the various languages are also formed from the abbreviation ds and the
language ID from the STEP 7 notation for the respective language. Consequently, the
ds000007.dat file shown above in the fLMsgHdlInit directory contains all the user-defined
message texts in German.

Table 3- 14 Used language codes according to the STEP 7 notation (language ID)

Language Value [USINT]
No message log in STRING format 0
German 7
English 9

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 43

Language Value [USINT]
Spanish 10
French 12
Italian 16

3.4.2.15 Single acknowledgement

Single acknowledgement of messages

General
In addition to the global acknowledgement of all active messages, all active messages of
one source or even single messages can be acknowledged, depending on the message
source.

In the pLMsgHdl program unit, the gi32LMsgHdlNumberOfMessageInLog variable informs
the message handling which message is to be acknowledged. The acknowledgement itself is
started via gboLMsgHdlGlobalAcknowledge as for the global acknowledgement.

If all active messages are to be acknowledged globally, a -1 must be entered in
gi32LMsgHdlNumberOfMessageInLog (default).

With single acknowledgement, the number of the message to be acknowledged results from
the number of the message in the buffer for active messages. This means that if the first
active message from the message buffer is to be acknowledged, the number 1 must be
entered before starting the acknowledgement in gi32LMsgHdlNumberOfMessageInLog. After
the acknowledgement, the contents of this variable is again set to -1 and
gboLMsgHdlGlobalAcknowledge reset to FALSE.

Single acknowledgement for the message sources
● TO messages

Single acknowledgement of a TO message broken down to an entire TO, at which errors
are pending, e.g. _resetAxisError(ALL_ERRORS). All the pending messages are
acknowledged for the selected TO.

● DO messages
Only DO errors can be acknowledged. DO warnings or safety messages cannot be
acknowledged, but disappear automatically as soon as the reason for the message no
longer applies. If an error is to be acknowledged on a DO, a single acknowledgement of
the relevant DO is triggered. All other errors belonging to this DO are therefore also
acknowledged. If the errors are still pending after acknowledgement, they are entered
again in the message handling.

● I/O messages
Only the selected I/O message is acknowledged. The I/O messages with the identifiers
202, 204, 210 and 215 cannot be acknowledged. These messages are automatically
acknowledged with the appropriate counter-message.

● TimeFault messages
Only the selected TimeFault message is acknowledged.

Application structure
3.4 Core functions and components

 Message Handling

44 Application Manual, 11/2016

● Messages by message handling
Only the message selected by the message handling is acknowledged.

● User-defined messages
Each user-defined message is individually acknowledged. The single acknowledgement
also influences the bit message procedure and ALARM_S.

Selection of the message to be acknowledged via SIMOTION IT
On the SIMOTION IT page, the user can select single, active messages that are to be
acknowledged. The use of buttons for the single acknowledgement ensures that only a
single message or message source is actually acknowledged. After the selection has been
made, this selection is transferred to the message handling when the Acknowledge button
belonging to the message is clicked. The message handling then performs the single
acknowledgement. The information required by the message handling is available in
ai32NumberOfMessageInLog[LineInHMI - 1] in the gsLMsgHdlActiveMsgToHMI variable of
the pLMsgHdl unit. This information is transferred for single acknowledgement to
gi32LMsgHdlNumberOfMessageInLog of the pLMsgHdl unit. At the same time
gboLMsgHdlGlobalAcknowledge is assigned a rising edge by SIMOTION IT.

User-defined message based on the message number
To be able to acknowledge a "single" user-defined message, a new global variable for
transfer of the message number has been inserted in the pLMsgHdl program unit.

The variable for the transfer of the number is gi32LMsgHdlNumberOfUserMessage.

To acknowledge a specific user-defined message, the number of the message must be
entered in this variable. The acknowledgement is then made with the rising edge at
gboLMsgHdlGlobalAcknowledge.

Since the user-defined messages also support the bit message procedure and AlarmS
procedure, the messages of these procedures are also acknowledged during the single
acknowledgement.

By specifying the message number, it is thus possible to "specifically" acknowledge user-
defined messages, user-defined messages of FBs/FCs, and messages by the message
handling itself.

Since the user-defined message with the message number 0 may be active several times,
make sure that only the first entry found with the identifier 0 is acknowledged with the single
acknowledgement. However, if all alarms with the identifier 0 are to be acknowledged
simultaneously, the acknowledgement procedure described in 1.2 should be used.

 Note

It is recommended that other single acknowledgement mechanisms (Page 45) are used
since shifts in the buffer can occur between selection of the message number and issuing of
the acknowledgement in the procedure described here, which may result in the wrong
message being acknowledged.

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 45

Group acknowledgement of certain sources
In order to be able to acknowledge all messages of a certain source, e.g. of a certain DO,
the gsLMsgHdlAcknMessageInfo variable of the sLMsgHdlAcknMessageInfoType type has
been inserted in the pLMsgHdl program unit. In this way, it is possible to acknowledge all
messages that satisfy the possible criteria at the same time.

The options of this type of acknowledgement are described below in more detail.

Table 3- 15 Elements of the sLMsgHdlAcknMessageInfoType structure

Element Data type Initialization value Meaning
u8MessageSource USINT 0 Source of messages to be acknowledged in the message han-

dling
u16Parameter1 UINT 0 Value to identify message 1 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)
i16Parameter2 INT 0 Value to identify message 2 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)
b32Parameter3 REAL 16#FFFF_FFFF Value to identify message 3 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)
b32Parameter4 REAL 255 Value to identify message 4 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)
b32Parameter10 REAL 0 Value to identify message 10 to be acknowledged.

(See Appendix B. 1 for the interpretation of the raw data)

The elements of the structure for transfer of the acknowledgement information correspond to
the data entered by the different message types in the raw data buffer of the message
handling. For more detailed information, refer to Appendix B. 1 of the documentation for the
message handling.

 Note

The acknowledgement procedure described here works in principle according to the method
that the information requested in the acknowledgement structure is taken 1:1 from the raw
data buffer.

Messages from technology objects
All the active errors of an individual technology object can be acknowledged here. If the
technology object is an axis with a real drive, the subordinate drive object is also
acknowledged.

In order to acknowledge a specific technology object, the following data must be transferred
to gsLMsgHdlAcknMessageInfo .

gsLMsgHdlAcknMessageInfo.au8MessageSource := 1;
gsLMsgHdlAcknMessageInfo.u16Parameter1 := identifier of the corresponding TO

type
gsLMsgHdlAcknMessageInfo.i16Parameter2 := TO number
gsLMsgHdlAcknMessageInfo.b32Parameter3 := not relevant

Application structure
3.4 Core functions and components

 Message Handling

46 Application Manual, 11/2016

gsLMsgHdlAcknMessageInfo.b32Parameter4 := not relevant
gsLMsgHdlAcknMessageInfo.b32Parameter10 := not relevant

The TO number corresponds to the respective subindex under which the technology object
has been entered by the script in fLMsgHdlInit .

The respective identifiers for the TO types are listed in the Appendix (Page 120).

Errors on drive objects
All the active errors of an individual drive object (DO) can be acknowledged here.

In order to acknowledge a specific drive object, the following data must be transferred to
gsLMsgHdlAcknMessageInfo .

gsLMsgHdlAcknMessageIn-
fo.au8MessageSource

:= 2;

gsLMsgHdlAcknMessageInfo.u16Parameter1 := TO number (for DO with TO)
gsLMsgHdlAcknMessageInfo.i16Parameter2 := IoId (INPUT/OUTPUT)
gsLMsgHdlAcknMessageInfo.b32Parameter3 := logical address for the DO
gsLMsgHdlAcknMessageInfo.b32Parameter4 := DO number
gsLMsgHdlAcknMessageInfo.b32Parameter10 := not relevant

The following must be taken into account:

If the drive object is a real drive that is assigned to an axis, the subindex of the axis must first
be entered in parameter 1. Parameters 2-4 must be set to their default values. Parameter 10
is not relevant.

Example:
Acknowledgement of the drive object for the axis
gasLMsgHdlAxes[1].toReference := film take-off;

gsLMsgHdlAcknMessageInfo.au8MessageSource := 2;
gsLMsgHdlAcknMessageInfo.u16Parameter1 := 1
gsLMsgHdlAcknMessageInfo.i16Parameter2 := 0
gsLMsgHdlAcknMessageInfo.b32Parameter3 := 16#FFFF_FFFF
gsLMsgHdlAcknMessageInfo.b32Parameter4 := 255
gsLMsgHdlAcknMessageInfo.b32Parameter10 := not relevant

If the drive object is a DO with cyclic data exchange, default value 0 must be set in
parameter 1. Parameters 2-3 must be assigned the values for the IoId and the associated
logical address of the telegram. Parameter 4 has the DO number 255 and parameter 10 is
not relevant.

Example:
Acknowledgement of the CU with telegram 390

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 47

gasLMsgHdlDOsCyclic[0].i32LogAddress := 256;
gasLMsgHdlDOsCyclic[0].eIOID := OUTPUT;

gsLMsgHdlAcknMessageInfo.au8MessageSource := 2;
gsLMsgHdlAcknMessageInfo.u16Parameter1 := 0
gsLMsgHdlAcknMessageInfo.i16Parameter2 := 1 (0 input / 1 output)
gsLMsgHdlAcknMessageInfo.b32Parameter3 := 256
gsLMsgHdlAcknMessageInfo.b32Parameter4 := 255
gsLMsgHdlAcknMessageInfo.b32Parameter10 := not relevant

If the drive object is a DO without cyclic data exchange, default value 0 must be set in
parameter 1. Parameters 2-4 must be assigned the values for the IoId, an associated logical
address and the DO number. Parameter 10 is not relevant.

Example:
Acknowledgement of the DO of the TB30 without its
own telegram

gasLMsgHdlDOsAcyclic[0].i32LogAddress := 16380; // diagnostic address
gasLMsgHdlDOsAcyclic[0].eIOID := INPUT;
gasLMsgHdlDOsAcyclic[0].u8DoNumber := 4;

gsLMsgHdlAcknMessageInfo.au8MessageSource := 2;
gsLMsgHdlAcknMessageInfo.u16Parameter1 := 0
gsLMsgHdlAcknMessageInfo.i16Parameter2 := 0 (0 input / 1 output)
gsLMsgHdlAcknMessageInfo.b32Parameter3 := 16380
gsLMsgHdlAcknMessageInfo.b32Parameter4 := 4
gsLMsgHdlAcknMessageInfo.b32Parameter10 := not relevant

Messages from I/O modules
With the transfer of gsLMsgHdlAcknMessageInfo.au8MessageSource := 4
all active messages through I/O modules that can be acknowledged are canceled.

The messages from I/O modules with interrupt IDs 202, 204, 210 and 215 cannot be
acknowledged. They "disappear" automatically as soon as the associated I/O message that
the error is no longer pending has been detected.

Messages through timeouts
With the transfer of gsLMsgHdlAcknMessageInfo.au8MessageSource := 5
all active messages generated through timeouts in timer tasks or the background task are
acknowledged.

Application structure
3.4 Core functions and components

 Message Handling

48 Application Manual, 11/2016

Messages of the execution fault task after restart of the controller
With the transfer of gsLMsgHdlAcknMessageInfo.au8MessageSource := 6
all active messages generated through the call of the execution fault task are acknowledged.

User-defined messages
User-defined messages can be acknowledged individually as follows:

gsLMsgHdlAcknMessageIn-
fo.au8MessageSource

:= 9;

gsLMsgHdlAcknMessageInfo.u16Parameter1 := not relevant
gsLMsgHdlAcknMessageInfo.i16Parameter2 := not relevant
gsLMsgHdlAcknMessageInfo.b32Parameter3 := message number to be acknowledged
gsLMsgHdlAcknMessageInfo.b32Parameter4 := not relevant
gsLMsgHdlAcknMessageInfo.b32Parameter10 := not relevant

If message number 0 is transferred in parameter 3, all the active messages with message
number 0 are acknowledged.

With the acknowledgement of user-defined messages, the associated bit messages and
AlarmS messages are also acknowledged, if used.

Messages from FBs/FCs
User-defined messages from FBs/FCs can be acknowledged individually as follows.

gsLMsgHdlAcknMessageIn-
fo.au8MessageSource

:= 8;

gsLMsgHdlAcknMessageInfo.u16Parameter1 := not relevant
gsLMsgHdlAcknMessageInfo.i16Parameter2 := not relevant
gsLMsgHdlAcknMessageInfo.b32Parameter3 := message number to be acknowledged
gsLMsgHdlAcknMessageInfo.b32Parameter4 := not relevant
gsLMsgHdlAcknMessageInfo.b32Parameter10 := not relevant

With the acknowledgement of user-defined messages, the associated bit messages and
AlarmS messages are also acknowledged, if used.

In addition, it is also still possible to acknowledge all active messages from FBs/FCs with the
same function block ID at the same time. In this case, all messages, regardless of the
message number, are acknowledged in transfer parameter 10 depending on the function
block ID.

gsLMsgHdlAcknMessageIn-
fo.au8MessageSource

:= 8;

gsLMsgHdlAcknMessageInfo.u16Parameter1 := not relevant
gsLMsgHdlAcknMessageInfo.i16Parameter2 := not relevant
gsLMsgHdlAcknMessageInfo.b32Parameter3 := not relevant

 Application structure
 3.4 Core functions and components

Message Handling

Application Manual, 11/2016 49

gsLMsgHdlAcknMessageInfo.b32Parameter4 := not relevant
gsLMsgHdlAcknMessageInfo.b32Parameter10 := 5

In this way, all messages through FBs/FCs with identifier 5 in parameter 10 (functionBlockId)
would be acknowledged simultaneously.

Messages through the message handling
With the transfer of gsLMsgHdlAcknMessageInfo.au8MessageSource := 10
all active messages generated by the message handling itself are acknowledged.

3.4.2.16 Common buffer for incoming/outgoing messages

Functionality
In order to be able to use the new buffer in raw data format, the dLMsgHdl program unit must
first be imported into the SIMOTION project. At present, this import is not supported by the
script and must be performed separately via the XML import of a program unit.

After the import, the LMSGHDL_BUFFER_FOR_MESSAGES_GONE_AND_OCCURRED
define commented out, still has to be commented in in dLMsgHdl. This define must also be
commented in in the cPublic library unit of the LMsgHdl library.

Only after the define has been commented in in both units and the project recompiled, is the
new message buffer active and can be used.

In the fLMsgHdlInit program unit, the USES dLMsgHdl code line also has to be commented
in and the USELIB LMsgHdl code line commented out.

The LMSGHDL_LENGTH_OF_MESSAGE_LOG_GONE_OCCURRED constant determines
how many entries can be included in the buffer. Since this buffer is a ring buffer, the oldest
message is overwritten in the event of an overflow.

The constant is in the cPublic library unit and must be set by the user to the required value.
The default value of the constant is 200.

If this buffer is to be accessed by means of the HMI, also ensure that the size of the buffer
does not exceed 64k.

Structure of the buffer

Table 3- 16 Elements of the sLMsgHdlMessageLogBaseDataGoneAndOccurredType structure

Element Data type Meaning
i16ActualIndex INT Current index in the global message

log for raw data
au8MessageSource ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_

LOG_GONE_OCCURED - 1] OF USINT
Array for information about the source
of the message

au8MessageLevel ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF USINT

Array for information about the level of
the message (fault, alarm, error, infor-
mation)

Application structure
3.4 Core functions and components

 Message Handling

50 Application Manual, 11/2016

Element Data type Meaning
au8AcknowledgeClass ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_

LOG_GONE_OCCURED - 1] OF USINT
Array for information about the type of
acknowledgement for the message

au8ErrorClass ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF USINT

Array for information about the error
class of a message

aboOccuredMessage ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF BOOL

Array for information about whether the
message is an incoming or outgoing
message
TRUE indicates that it is an incoming
message

au16Parameter1 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF UINT

Array for information about variable 1 of
the respective message type

ai16Parameter2 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF INT

Array for information about variable 2 of
the respective message type

ab32Parameter3 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 3 of
the respective message type

ab32Parameter4 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 4 of
the respective message type

ab32Parameter5 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 5 of
the respective message type

ab32Parameter6 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 6 of
the respective message type

ab32Parameter7 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 7 of
the respective message type

ab32Parameter8 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 8 of
the respective message type

ab32Parameter9 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 9 of
the respective message type

ab32Parameter10 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 10
of the respective message type

ab32Parameter11 ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DWORD

Array for information about variable 11
of the respective message type

adtMessageGoneOccured ARRAY[0..LMSGHDL_LENGTH_OF_MESSAGE_
LOG_GONE_OCCURED - 1] OF DT

Time stamp when the relevant mes-
sage has occurred or has gone

dLMsgHdl LMSGHDL_BUFFER_FOR_MESSAGES_GONE_
AND_OCCURRED

Alternative message variant (not acti-
vated by default)

The LMSGHDL_LENGTH_OF_MESSAGE_LOG_GONE_OCCURRED constant determines
how many entries can be included in the buffer. Since this buffer is a ring buffer, the oldest
message is overwritten in the event of an overflow.

The constant is in the cPublic library unit and must be set by the user to the required value.
The default value of the constant is 200.

If this buffer is to be accessed by means of the HMI, also ensure that the size of the buffer
does not exceed 64k.

Message Handling

Application Manual, 11/2016 51

 Integration 4
4.1 Required technology objects

The CAM technology package is a minimum requirement for the message handling.
Depending on the technology objects used, the message handling can also be operated with
the TP Path, TP Cam_ext and TControl.

4.2 Integration in the SIMOTION project

4.2.1 Integration of the application into a SIMOTION project
The LDPV1 and LMsgHdl libraries can be integrated into the existing project via the
ProjectGenerator which is part of the scope of delivery of SIMOTION SCOUT (on the Utilities
& Applications storage medium).

Proceed as follows to execute the ProjectGenerator:
1. Close SMOTION SCOUT.

2. Double-click the ProjectGenerator.exe file.

3. Confirm the disclaimer of liability and select the Create a new project option.

Figure 4-1 Creating or selecting a project

Integration
4.2 Integration in the SIMOTION project

 Message Handling

52 Application Manual, 11/2016

4. If you have selected Create a new project, enter a project name and the storage location
of the project (the path can also be selected via Browse path) and click Next.

Figure 4-2 Project name and storage path for the project

The SIMATIC/SIMOTION project data - device selection window is opened.

5. In the SIMATIC/SIMOTION project data - device selection window, at Select device
category, select which device or devices should be integrated into the project:

Figure 4-3 Creating or selecting a device

Depending on the software installation, you can select either only SIMATIC devices or
mixed SIMOTION and SIMATIC devices, one after the other.
If a device has not been created yet, you can create a new device on the right-hand side
of the window. To do this, enter the Device name, the Version and the Type name of the
device and click Add new device. The new device is taken into the Devices list.
If you want to create a further device, repeat the procedure.

6. In the Devices list, select the device you want to configure and click Next.
The SIMATIC/SIMOTION project data - equipment module selection window opens.

 Integration
 4.2 Integration in the SIMOTION project

Message Handling

Application Manual, 11/2016 53

7. In the SIMATIC/SIMOTION project data - equipment module selection window, select the
standard module or modules that you want to integrate into the selected device, in this
case Message Handling, and click Next.

Figure 4-4 Module selection

Click the INFO button to open the documentation for the respective standard module.
For some standard modules, you can enter the number of modules on the left.

8. In the Message Handling - Configuration window, configure the call of the function block
with the required data blocks and data exchange parameters and click Next.

Figure 4-5 Message handling configuration

Integration
4.2 Integration in the SIMOTION project

 Message Handling

54 Application Manual, 11/2016

9. Configure all the other devices following the above example by clicking the Configure
another device button.

Fully configured devices are shown in green with a checkmark on the outer left beneath
the project name, while devices that have not yet been configured are red, and devices
being worked on are orange.

Figure 4-6 Generating the project

10.If you do not want to configure another device (Configure another device) and want to
complete the project, you have the following options:

– If you would like to save the configuration of the devices, but generate the project at a
later time, click Save Config and enter the storage path in Explorer.

– If you do not wish to configure any other devices and would like to generate the
project, click Generate.
The project is generated. The duration depends on the type of configuration and is
shown using a progress bar.
When the project has been completely generated, the message Generation finished
appears in the window.

11.Click the Exit button to close the ProjectGenerator.

The ProjectGenerator has been completed and returns the following result:

Table 4- 1 Result after execution of the configuration script

Result Remark
Libraries LDPV1 and LMsgHdl have been
imported into the SIMOTION project

A version check was performed automatically. If the ver-
sions do not match, a message is generated and the user
can decide whether the libraries are to be replaced or
not.

ST units have been created in the
SIMOTION project:

• fLMsgHdlInit
• fLMsgHdl
• pLMsgHdl
• pGlobalBufferManager

Configuration of the TOs, drives, I/O modules, etc.

 Integration
 4.2 Integration in the SIMOTION project

Message Handling

Application Manual, 11/2016 55

Result Remark
ST units were assigned to various execu-
tion system tasks of the SIMOTION pro-
ject

StartupTask: pLMsgHdlStartupMessagehandling
BackgroundTask: pLMsgHdlMain, pGlobalBufferManager
TimeFaultTasks: pLMsgHdlTimeFaultMessage
TimeFaultBackgroundTask: pLMsgHdlTimeFaultBack-
groundMessage
TechnologicalFaultTask: pLMsgHdlTechnologi-
calMessage
PeripheralFaultTask: pLMsgHdlPeripheralMessage
ExecutionFaultTask: pLMsgHdlExecutionFaultMessage

A compilable project has been saved
Data for the use of the control panel via
SIMOTION IT has been saved

Depending on the selection, either on the PC or on the
storage medium of the SIMOTION device.

The ProjectGenerator automates various actions in the SIMOTION project and simplifies the
commissioning of the message handling. The adaptations of the properties of the task
system are changed by the ProjectGenerator. The libraries can also be integrated via the
Import library SIMOTION SCOUT function. In this case, the user must perform all the
required actions individually so that the message handling can be used.

Subsequent transfer of the SIMOTION IT page to the storage medium of the SIMOTION device
If the Transfer SIMOTION IT web page to storage medium via FTP function has not been
selected when running through the ProjectGenerator, the data is saved in the following path
in the project directory: C:\Documents and Settings\<Login name>\Local
Settings\Temp\LMsgHdl_Files_for_HMI\PGEN_Data_Files\CardFiles. To be able to use this
data, it must be saved to the storage medium of the SIMOTION device.

As of Version 1.3.0 of the ProjectGenerator, in addition to the previous possibility of
transferring SIMOTION IT pages via FTP to a controller during the generation, it is now
possible to transfer only the SIMOTION IT pages of an existing project to a controller,
without having to regenerate the project A detailed description of the subsequent transfer of
the SIMOTION IT pages can be found in Section Transfer of SIMOTION IT pages in the
SIMATIC/SIMOTION ProjectGenerator Application Manual.

4.2.2 Suppressing messages

Variance in the message handling by setting defines
By setting preprocessor definitions (defines) in the properties of the pLMsgHdl and fLMsgHdl
program units, it is possible to suppress certain functionalities in the message handling
outside of the variance performed by the script.

The defines can be entered via the context menu (right-click) on the unit pLMsgHdl ->
Properties in the Further settings tab. As the unit is write-protected, a window is displayed for
the password query. Click the Cancel button. The ST Source File Properties window opens.
Detailed information about this function can also be found in the SIMOTION online help at
Preprocessor -> Changing properties of an ST source file.

Integration
4.2 Integration in the SIMOTION project

 Message Handling

56 Application Manual, 11/2016

Figure 4-7 Suppressing messages (example)

After preprocessor definitions have been set, the program unit must be recompiled.

The following selection options are available in the pLMsgHdl program unit:

● LMSGHDL_NO_TECH_FAULT_MESSAGES
No messages through technology objects are evaluated in the TechnologicalFaultTask by
the message handling.

● LMSGHDL_NO_PERIPHERAL_MESSAGES
No messages through I/O modules are evaluated in the PeripheralFaultTask by the
message handling.

● LMSGHDL_NO_TIME_FAULT_MESSAGES
No messages through timeouts are evaluated in the TimeFaultTask and the
TimeFaultBackgroundTask by the message handling.

● LMSGHDL_NO_EXECUTION_FAULT_MESSAGES
No messages through program faults are evaluated in the ExecutionFaultTask by the
message handling.

● LMSGHDL_NO_DO_MESSAGES
No messages on drive objects on all SINAMICS modules are evaluated by the message
handling.

● LMSGHDL_NO_TIME_SYNC
The time synchronization of the SINAMICS modules is not carried out.

● LMSGHDL_NO_HMI_FBS
The program to transfer the message buffers to the HMI / SIMOTION IT is not called.

● LMSGHDL_NO_STRING_MESSAGES
The program to transfer the message buffers to the HMI / SIMOTION IT transfers the
information of the raw data buffer.

 Integration
 4.2 Integration in the SIMOTION project

Message Handling

Application Manual, 11/2016 57

The following selection option is available in the fLMsgHdl program unit:

● LMSGHDL_NO_RETAIN_BUFFER
Change of the message log data area of the SIMOTION device from RETAIN to NON-
RETAIN.

The following selection option is available in the dLMsgHdl program unit:

● LMSGHDL_BUFFER_FOR_MESSAGES_GONE_AND_OCCURRED
Alternative message variant

4.2.3 Creating user-defined messages

Integrating user-defined messages in the STRING format into the message handling
Users can issue user-defined messages from their own application, which are entered in the
buffers of the message handling. These messages are treated the same as messages from
the system. In order to be able to correctly assign the messages, the message is allocated a
defined identification number (ID) by the user. The messages can also be allocated a
machine error class, see also Section Defining machine error classes (Page 62).

The messages defined by the user are entered in the fLMsgHdlInit unit. The rules for
generating the messages are explained in the following:

● All user-defined messages are transferred to the gasLMsgHdlUserDefinedMessages
global variable in the FCLMsgHdlUserDefinedInfoForMessageHandling function of the
fLMsgHdlInit unit.

● The number of user-defined messages is in the range from 1 to 99.999. The messages
start with the subindex 0.

● Because of a faster runtime when generating the message texts in STRING format, the
message texts are split up when additional values are used. The method is used whereby
a text must be specified from additional value to additional value and then the used
additional value with type information.

● The maximum length of a user-defined message is 160 characters. The user must ensure
that the total length is not exceeded. If this happens, the last characters are truncated.

● An ARRAY OF structure is used for the area of user-defined messages.

● User-defined messages can contain up to four additional values.
For this reason, messages that transfer additional values to the message handling, must
be split up according to the following structure.

Table 4- 2 Structure for user-defined messages in STRING format sLMsgHdlUserMessagesType

Parameter Data type Description
sgLMsgHdlTextPart1 STRING[160] First part of the message in STRING format up to

additional value 1.
ab8LMsgHdlAdditionalValue1 sLMsgHdlAdditionalValueType Number and format of the additional value to be

used.
sgLMsgHdlTextPart2 STRING[90] Second part of the message in STRING format from

additional value 1 to additional value 2.

Integration
4.2 Integration in the SIMOTION project

 Message Handling

58 Application Manual, 11/2016

Parameter Data type Description
ab8LMsgHdlAdditionalValue2 sLMsgHdlAdditionalValueType Number and format of the additional value to be

used.
sgLMsgHdlTextPart3 STRING[50] Third part of the message in STRING format from

additional value 2 to additional value 3.
ab8LMsgHdlAdditionalValue3 sLMsgHdlAdditionalValueType Number and format of the additional value to be

used.
sgLMsgHdlTextPart4 STRING[50] Fourth part of the message in STRING format from

additional value 3 to additional value 4.
ab8LMsgHdlAdditionalValue4 sLMsgHdlAdditionalValueType Number and format of the additional value to be

used.

Table 4- 3 Structure for additional values sLMsgHdlAdditionalValueType

Parameter Data type Initial value Description
b8ValueNumber BYTE 1 The following values can be transferred here:

0: No additional value at this position (b8ValueType then has no
significance)
1: additionalValue1
2: additionalValue2
3: functionBlockId
4: errorCode
5: additionalValueREAL

b8ValueType BYTE 0 The following values can be transferred here:
0: Decimal display format \%d
1: Hexadecimal display format \%X
2: Floating-point display format \%lf

Example of a user-defined message with four additional values:

Table 4- 4 Extract from the cPublic program unit

//===
// Constants for definition of user-defined message texts
//===
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_1 : BYTE := 1;
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_2 : BYTE := 2;
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_FB_ID : BYTE := 3;
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_ERROR_CODE : BYTE := 4;
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_REAL : BYTE := 5;

LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT : BYTE := 0;
LMSGHDL_USER_MESSAGE_VALUE_TYPE_HEX : BYTE := 1;
LMSGHDL_USER_MESSAGE_VALUE_TYPE_REAL : BYTE := 2;

'User-defined message 8. FB/FC:/3/%d. AddInfo1:/1/%d, AddInfo2:/2/%d, ErrorCode:/4/%X'

 Integration
 4.2 Integration in the SIMOTION project

Message Handling

Application Manual, 11/2016 59

This message must be entered as follows in the message handling:

Table 4- 5 Example

// Display of functionBlock Id
userDefinedMessages[7].sgLMsgHdlTextPart1 := 'User-defined message 8.
FB/FC:';
userDefinedMessages[7].ab8LMsgHdlAdditionalValue1.b8ValueNumber := 3;
userDefinedMessages[7].ab8LMsgHdlAdditionalValue1.b8ValueType := 0;
// Display of additionalValue1
userDefinedMessages[7].sgLMsgHdlTextPart2 := '. Additional info 1:';
userDefinedMessages[7].ab8LMsgHdlAdditionalValue2.b8ValueNumber := 1;
userDefinedMessages[7].ab8LMsgHdlAdditionalValue2.b8ValueType := 0;
// Display of additionalValue2
userDefinedMessages[7].sgLMsgHdlTextPart3 := ', Additional info 2:';
userDefinedMessages[7].ab8LMsgHdlAdditionalValue3.b8ValueNumber := 2;
userDefinedMessages[7].ab8LMsgHdlAdditionalValue3.b8ValueType := 0;
// Display of errorCode
userDefinedMessages[7].sgLMsgHdlTextPart4 := ', Error code:';
userDefinedMessages[7].ab8LMsgHdlAdditionalValue4.b8ValueNumber := 4;
userDefinedMessages[7].ab8LMsgHdlAdditionalValue4.b8ValueType := 1;

If a user-defined message does not transfer any additional values, the message text is
entered in the element sgLMsgHdlTextPart1. The other parts of the structure do not have to
be filled. The sum of all the messages defined by the user must be entered in the
LMSGHDL_NUMBER_OF_USER_DEFINED_EVENTS constant in the cPublic unit. The
number of messages from the FBs/FCs is set in the
LMSGHDL_NUMBER_OF_FUNCTION_BLOCK_IDS constant in the cPublic unit. The
message texts that are to be generated for a message from FBs/FCs are part of the user-
defined messages and must not be entered separately. The count of the user-defined
messages must always start at 1 (one), up to the number of the respective type.

If a REAL value is to be output in one of the previous additionalValues1 or 2, this can be
done as follows:

additionalValue1DINT := DWORD_TO_DINT(REAL_TO_DWORD(2.45286))

4.2.4 Embedding of the AlarmS handling or message bit handling

AlarmS handling
AlarmS can be activated by the user by setting the
LMSGHDL_ALARM_S_USER_MESSAGES constant in the cPublic unit of the LMsgHdl
library to TRUE.

When AlarmS is activated, the associated AlarmS message is issued for each user-defined
message. This is performed within the call of the FCLMsgHdlWriteUserMessageToBuffer
and FCLMsgHdlWriteFBFCMessageToBuffer functions for the transfer of user-defined
messages.

It is not mandatory that each user-defined message be assigned an AlarmS message.
Transfer of STRUCTALARMID#NIL in the alarmSInfo array in the fMsgHdlInit program unit

Integration
4.2 Integration in the SIMOTION project

 Message Handling

60 Application Manual, 11/2016

of the FCLMsgHdlUserDefinedInfoForMessageHandling function informs the message
handling that an AlarmS message is not to be generated here. The system
acknowledgement of the active AlarmS messages is performed by acknowledgement of all
the active messages by the message handling.

The message configuration is performed in SIMOTION SCOUT. After selecting the project,
click Messages -> Configure in the context menu (right-click). The Message Configuration
window opens. After the user-defined AlarmS messages have been edited or imported into
the project, they must be announced in the message handling. Detailed information on the
message configuration in SIMOTION SCOUT can be found in the online help at the index
entry Message configuration.

Figure 4-8 AlarmS messages (example)

The AlarmS messages are parameterized by the user in the fLMsgHdlInit program unit in the
FCLMsgHdlUserDefinedInfoForMessageHandling function. The two messages in the above
figure are transferred to the gasLMsgHdlAlarmSInfo global variable.

Table 4- 6 Extract from the FCLMsgHdlUserDefinedInfoForMessageHandling function

alarmSInfo[0].sAlarmId := _alarm.user_1;
alarmSInfo[0].boMessageRequiresAck := TRUE;
alarmSInfo[1].sAlarmId := _alarm.user_2;
alarmSInfo[1].boMessageRequiresAck := FALSE;

The symbol of the message and the type of message must be transferred by the user for
each AlarmS message. The symbol must be specified with the name space for AlarmS

 Integration
 4.2 Integration in the SIMOTION project

Message Handling

Application Manual, 11/2016 61

_Alarm following by a dot. The type of message specifies whether the alarm has to be
acknowledged or not. AlarmSQ must be acknowledged by the HMI, AlarmS only by the
system.

 Note

When AlarmSQ messages are acknowledged by the message handling, the AlarmSQ
messages are only acknowledged there. The display of these messages in the HMI must be
acknowledged separately by the user.

The message issued with active AlarmS handling is determined by the event number
(number of the user-defined message), which is transferred to the
FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer
functions. The event number corresponds to the subindex -1 in gasLMsgHdlAlarmSInfo. The
AlarmS is therefore issued as follows:

gasLMsgHdlAlarmSInfo[0].sAlarmId := _alarm.user_1;

This allows the appropriate AlarmS to be assigned to a certain user-defined message
without both messages requiring the same number in the message handling. If a user-
defined message is not to trigger an AlarmS, a value is not assigned to the relevant sAlarmId
(STRUCTALARMID#NIL). Also note that each AlarmS message can only be active once.
Therefore, an active AlarmS message can only be issued again after it has been
acknowledged. The system acknowledgement of the active AlarmS messages is also
performed by acknowledgement of all the active messages by the message handling. The
SIMOTION SCOUT online help provides additional information on AlarmS.

Message bit handling
The message bit handling can be activated by setting the
LMSGHDL_MESSAGE_BIT_USER_MESSAGES constant in the cPublic unit of the LMsgHdl
library to TRUE. The active messages are transferred to the message bit handling in the
gab16LMsgHdlEventFlag array from the fLMsgHdl program unit. If a user-defined message
is set through the call of the FCLMsgHdlWriteUserMessageToBuffer and
FCLMsgHdlWriteFBFCMessageToBuffer functions, the appropriate bit is also set in
gab16LMsgHdlEventFlag. The set bit corresponds to message number -1 of the user-
defined message. The message bits are set in an array of the WORD type. This results in
the bit to be set from the message number:

gab16LMsgHdlEventFlag[i32EventNumber-1/16].(i32EventNumber-1 MOD 16) :=
TRUE

The relevant bit for the issued message is set in the gab16LMsgHdlEventFlag variable. It is
displayed, or transferred, whether the appropriate message bit has been or has to be
acknowledged.

Note that when creating the messages, the index of the message always starts with 1 (one).
A 0 (zero) is not permitted.

Integration
4.2 Integration in the SIMOTION project

 Message Handling

62 Application Manual, 11/2016

4.2.5 Defining machine error classes

Predefined machine error classes

 Note

All entries or changes that have been made by the user are restored from the configuration
when this has to be started again by the user.

The following machine error classes are already predefined in the fLMsgHdlInit program unit.

Table 4- 7 Predefined machine error classes in the cPublic unit

//===
// Defines for machine error classes
//===
LMSGHDL_NO_MACHINE_ERROR_CLASS : SINT :=-1;
LMSGHDL_MACHINE_ERROR_CLASS0 : SINT :=0;
LMSGHDL_MACHINE_ERROR_CLASS1 : SINT :=1;
LMSGHDL_MACHINE_ERROR_CLASS2 : SINT :=2;
LMSGHDL_MACHINE_ERROR_CLASS3 : SINT :=3;
LMSGHDL_MACHINE_ERROR_CLASS4 : SINT :=4;

There are three different sources from which a machine error class can be set:
● Machine error class through user-defined messages

● Machine error class through peripheral fault messages

● Machine error class through user-defined FBs/FCs

These are described below.

Machine error class through user-defined messages
Each message is assigned an event number when a user-defined message is issued. The
machine error class corresponding to an event number is entered in a table.

Table 4- 8 Assignment of the event number to the machine error class - example

Event number Machine error class
1 Machine error class 4
2 Machine error class 3
3 Machine error class 1
4 Machine error class 1
5 Machine error class 2
... ...

This table is provided by the global array gai8LMsgHdlUserDefinedMachineErrors in the
message handling and must be adapted by the user. The initialization of the user-defined
message can be performed in the fLMsgHdlInit program unit in the

 Integration
 4.2 Integration in the SIMOTION project

Message Handling

Application Manual, 11/2016 63

FCLMsgHdlUserDefinedInfoForMessageHandling function. Whereby the subindex in
userDefinedMachineErrors corresponds to event number -1 of the appropriate user-defined
message.

userDefinedMachineErrors[0] := LMSGHDL_MACHINE_ERROR_CLASS4;
userDefinedMachineErrors[1] := LMSGHDL_MACHINE_ERROR_CLASS3;
userDefinedMachineErrors[2] := LMSGHDL_MACHINE_ERROR_CLASS1;

Machine error class through peripheral fault messages
Peripheral fault messages can also be assigned a machine error class. A machine error
class is assigned to each peripheral device. A machine error class is only set when a
negative message is present, e.g station failure, but not for a station recovery.

The machine error classes for peripheral fault messages are set in the fLMsgHdlInit program
unit in the FCLMsgHdlUserDefinedInfoForMessageHandling function. The transfer of the
machine error class for the failure of a peripheral fault message is performed in the
gasLMsgHdlPeripheralDevices global variable. The message class is set here in the variable
peripheralDevices[0].i8MachineErrorClass. The subindex belonging to the peripheral module
for setting the machine error class can be found in the fLMsgHdlInit program unit in the
FCLMsgHdlInitProjectInfo function. The information for the peripheral modules is
automatically set by the script there.

Table 4- 9 Assignment of the peripheral device to the machine error class - example

Peripherals Machine error class
Peripheral device 0 Machine error class 4
Peripheral device 1 Machine error class 3
Peripheral device 2 Machine error class 2

peripheralDevices[0].i8MachineErrorClass := LMSGHDL_MACHINE_ERROR_CLASS4;
peripheralDevices[1].i8MachineErrorClass := LMSGHDL_MACHINE_ERROR_CLASS3;
peripheralDevices[2].i8MachineErrorClass := LMSGHDL_MACHINE_ERROR_CLASS2;

Machine error class through user-defined FBs/FCs
As errors with different severity can occur in a function block or function defined by the user,
a corresponding machine error class can be set here depending on the error class. With the
aid of a matrix, the machine error class is generated from the function block error classes.

Table 4- 10 Assignment of the FBs/FCs to the machine error classes (machine EC)

ID FB/FC Error class 0 Error class 1 Error class 2 Error class 3
ID FB/FC 1 Machine EC 1 Machine EC 1 Machine EC 2 Machine EC 2
ID FB/FC 2 Machine EC 1 Machine EC 2 Machine EC 3 Machine EC 4
ID FB/FC 3 Machine EC 1 Machine EC 2 Machine EC 3 Machine EC 4
ID FB/FC 4 Machine EC 1 Machine EC 2 Machine EC 3 Machine EC 4
ID FB/FC 5 Machine EC 1 Machine EC 1 Machine EC 2 Machine EC 3

Integration
4.3 Displaying messages via SIMOTION IT

 Message Handling

64 Application Manual, 11/2016

Each function block / function can trigger up to four different machine error classes, 0 to 3.
The matrix can be used to parameterize how relevant an error is for the overall machine
operation. In the above example, it can be seen that errors on FBs/FCs 1 and 5 trigger lower
machine error classes as errors on the other FBs/FCs.

The configuration of this matrix is performed in the fLMsgHdlInit program unit in the
FCLMsgHdlUserDefinedInfoForMessageHandling function. The matrix is transferred in the
gasLMsgHdlFBFCMachineErrorClasses global variable.

fBFCMachineErrorClasses[0].ai8ErrorClass[0] :=
LMSGHDL_MACHINE_ERROR_CLASS1;
fBFCMachineErrorClasses[0].ai8ErrorClass[1] :=
LMSGHDL_MACHINE_ERROR_CLASS1;
fBFCMachineErrorClasses[0].ai8ErrorClass[2] :=
LMSGHDL_MACHINE_ERROR_CLASS2;
fBFCMachineErrorClasses[0].ai8ErrorClass[3] :=
LMSGHDL_MACHINE_ERROR_CLASS2;

The currently active machine error classes are transferred to two variables by the message
handling. These variables are declared in the fLMsgHdl program unit.

● gi8LMsgHdlMachineErrorClass: The currently highest machine error class that is active in
the application is displayed here.

● gb32LMsgHdlMachineErrorClasses: All the currently active machine error classes are
displayed with bit code here. As this variable is of the DWORD type, there can be only 32
machine error classes in the message handling (0 to 31). Each of these machine error
classes is displayed via the appropriate bit in the variable.

4.3 Displaying messages via SIMOTION IT

Functionality
The active messages can be displayed via the SIMOTION IT page.

System requirements
● As of SIMOTION firmware V4.1 SP4

● As of Internet Explorer 6 or Mozilla Firefox 3.5

 Integration
 4.4 Important, frequently used variables

Message Handling

Application Manual, 11/2016 65

Displaying messages via SIMOTION IT
1. To start the connection to the SIMOTION device, enter the IP address in the address line

of the browser.

2. Open the User's Area page.

3. Open the Messages page.

Figure 4-9 Message handling control panel start page

Integration
4.4 Important, frequently used variables

 Message Handling

66 Application Manual, 11/2016

4.4 Important, frequently used variables

List of frequently used variables
The message handling is a complex application with numerous variables. As not all variables
are always used by the user, the following table provides an overview of the most important
variables.

Table 4- 11 Important, frequently used variables in the message handling

Unit Variable Meaning
fLMsgHdl gb32LMsgHdlMachineErrorClasses All the currently active machine error clas-

ses are displayed with bit code here. The
maximum number is 32 (0 to 31).

 gi8LMsgHdlMachineErrorClass Display of the active machine error class
with the highest priority.

 gab16LMsgHdlEventFlag Bits for message bit handling.
Bit array for display of the active user-
defined messages for the message bit
handling.

 gsLMsgHdlActiveMessageTypes Bit array for the message sources of active
messages.

 gsLMsgHdlMessageLogString Message log in STRING format.
pLMsgHdl gboLMsgHdlInitDriveReady Shows that the initialization software of the

message handling has been run through in
the BackgroundTask and that the message
handling is active.

 gboLMsgHdlActivateNewMoMaData With TRUE, the information transferred
during runtime for modular machines is
activated. After activation, the flag is re-
moved by the message handling.

 gboLMsgHdlGlobalAcknowledge Global acknowledgement of all active er-
rors, with rising edge.

 gi32LMsgHdlNumberOfMessageInLog Transfer of the number of the message to
be acknowledged (only with single
acknowledgement).

 gboLMsgHdlStartChangeLanguage With TRUE, start of the language selection.
Is automatically reset by the message
handling.

 gu8LMsgHdlActiveLanguage Transfer of the language to be loaded
 gboLMsgHdlStartWriteComplete

MessageLogToStorageMedium
With TRUE, start of the storage of the cur-
rent message log on the storage medium of
the SIMOTION device. Is automatically
reset by the message handling.

 gu32LMsgHdlDatasetNoForExport
MessageLog

Name of the file in which the current mes-
sage log is to be saved

 gboLMsgHdlUpdateHMI Update of the displayed active messages.
 gboLMsgHdlUpdateHMILog Update of the displayed active message

log.

 Integration
 4.4 Important, frequently used variables

Message Handling

Application Manual, 11/2016 67

Unit Variable Meaning
 gboLMsgHdlScrollDown Scroll down in the list of active messages

with rising edge.
 gboLMsgHdlScrollDown1 Scroll down one line in the list of active

messages with rising edge.
 gboLMsgHdlScrollUp Scroll up.
 gboLMsgHdlScrollUp1 Scroll up one line in the list of active mes-

sages with rising edge.
 gboLMsgHdlGoToTop Jump to the start of the active messages.
 gboLMsgHdlGoToEnd Jump to the end of the active messages.
 gboLMsgHdlScrollDownLog Scroll down in the message log.
 gboLMsgHdlScrollDown1Log Scroll down one line.
 gboLMsgHdlScrollUpLog Scroll up.
 gboLMsgHdlScrollUp1Log Scroll up one line.
 gboLMsgHdlGoToTopLog Jump to the start of the message log.
 gboLMsgHdlGoToEndLog Jump to the end of the message history.
 gu8LMsgHdlScrollStep Number of lines to scroll down or scroll up.
 gu8LMsgHdlNumberOfLinesForHMI Number of messages that can be displayed

on the HMI.
 gsLMsgHdlActiveMessageString List of the active messages in STRING

format.
 gsLMsgHdlActiveMsgToHMI List of the active messages that are to be

output on the HMI.
 gsLMsgHdlLogMsgToHMI List of the message log that is to be output

on the HMI.
fLMsgHdlInit gasLMsgHdlUserDefinedMessages Description of the user-defined messages.

Integration
4.4 Important, frequently used variables

 Message Handling

68 Application Manual, 11/2016

Message Handling

Application Manual, 11/2016 69

 Description of functions 5
5.1 General information on the description of functions

The following FBs and FCs relevant for the user are integrated into the message handling:
● FBLMsgHdlActiveMsgSgToHMI function block (fMsgHdl unit in LMsgHdl)

● FBLMsgHdlMsgLogSgToHMI function block (fMsgHdl unit in LMsgHdl)

● FBLMsgHdlActiveMsgBaseDataToHMI function block (fMsgHdl unit in LMsgHdl)

● FBLMsgHdlMsgLogBaseDataToHMI function block (fMsgHdl unit in LMsgHdl)

● FCLMsgHdlWriteUserMessageToBuffer function (fLMsgHdl unit)

● FCLMsgHdlWriteFBFCMessageToBuffer function (fLMsgHdl unit)

These are described in the following sections.

5.2 FBLMsgHdlActiveMsgSgToHMI function block

5.2.1 General information on the function block

 Note

Only strings of length 80 can be processed in WinCC flexible. For this reason, the message
texts from the active messages must be split into two substrings. However, the data length
can be changed via the
LMSGHDL_MAX_STRING_LENGTH_OF_MESSAGE_TEXTS_TO_HMI constant in cPublic
of the LMsgHdl library when another HMI is used.

The FBLMsgHdlActiveMsgSgToHMI function block is used to display message texts of the
global buffer for active messages in STRING format on an HMI.

The function block completes its processing in a processing cycle of the task in which it is
called. The FB should preferably be called in the BackgroundTask. It only responds to falling
edges at the relevant inputs. If several inputs are set at a call, only the first function is
executed. The logical sequence for evaluating the input signals is:
● updateHMI

● scrollDown1

● scrollDown

● scrollUp1

● scrollUp

Description of functions
5.2 FBLMsgHdlActiveMsgSgToHMI function block

 Message Handling

70 Application Manual, 11/2016

● goToTop

● goToEnd

As only part of the entire buffer for active messages can be displayed on the HMI, the
function block checks independently whether the appropriate end of the buffer for all active
messages is reached or not when scrolling up or down. When an end is reached, further
movement in the relevant direction has no effect in the function block.

The user can jump directly to the start of the end of the list via goToTop and goToEnd.

If, for example, scroll up ten messages is requested, but there are only three messages in
the buffer up to the end, the list in the HMI is also only moved up three messages.

The LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI constant of the cPublic unit
specifies the maximum number of messages that can be transferred to an HMI. The
numberOfLinesForHMI input informs the function block how many messages it should
actually provide at the output in the activeMsgToHMI structure. In this way, it is possible to
supply different HMIs with different numbers of message texts via separate instances of the
function block. The maximum number of lines in the
LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI constant must not be
exceeded. The number of lines to be scrolled when the scrollUp and scrollDown inputs are
actuated is specified in the numberOfLinesToScroll input variable.

The active messages in STRING format are output on an HMI at the activeMsgToHMI
output.

5.2.2 Schematic representation in LAD/FBD

Figure 5-1 Schematic representation in LAD/FBD

 Description of functions
 5.2 FBLMsgHdlActiveMsgSgToHMI function block

Message Handling

Application Manual, 11/2016 71

5.2.3 Input and output parameters of the function block
The FBLMsgHdlActiveMsgSgToHMI function block has the following input and output
parameters:

Table 5- 1 Input and output parameters

Name Type 1) Data type M/O 2) Initial value Description
enable IN BOOL M FALSE Function block enable.
updateHMI IN BOOL O FALSE The currently output data area is updated on

the HMI with a rising edge.
scrollUp1 IN BOOL O FALSE The data area to be displayed on the HMI is

moved up one message with a rising edge.
scrollUp IN BOOL O FALSE The data area to be displayed on the HMI is

moved up by the value transferred in the
numberOfLinesToScroll variable with a rising
edge.

scrollDown1 IN BOOL O FALSE The data area to be displayed on the HMI is
moved down one message with a rising edge.

scrollDown IN BOOL O FALSE The data area to be displayed on the HMI is
moved down by the value transferred in the
numberOfLinesToScroll variable with a rising
edge.

goToTop IN BOOL O FALSE The data area to be displayed on the HMI is
moved with the top line on the latest entry
with a rising edge.

goToEnd IN BOOL O FALSE The data area to be displayed on the HMI is
moved with the bottom line on the oldest entry
with a rising edge.

numberOf
LinesToScroll

IN UINT O 1 Value that specifies how many lines the dis-
play area is to be moved when scrollUp or
scrollDown is activated.

numberOf
LinesForHMI

IN UINT O 1 Specifies the number of lines (messages) that
are to be output for the HMI.

filterToHMI IN sLMsgHdl
FilterToHMIType

M Bit structure for the transfer of filter infor-
mation for output on the HMI

messageSource IN/OUT ARRAY
[0..LMSGHDL
_LENGTH_OF_
ACTIVE_
MESSAGES - 1]
OF USINT

M The respective message source is transferred
to the FB here for the filtering of the messag-
es. This is generated automatically by the
message handling in pLMsgHdl-
gau8LMsgHdlActMessageStringMessageSour
ce.

Active
MessagesString

IN/OUT sLMsgHdl
ActiveMessages
StringType

M - Transfer of the current message buffer in
STRING format.

valid OUT BOOL - FALSE Display of the validity of the values at the
outputs.

error OUT BOOL - FALSE Displays whether an error has occurred while
processing the FB.

Description of functions
5.2 FBLMsgHdlActiveMsgSgToHMI function block

 Message Handling

72 Application Manual, 11/2016

Name Type 1) Data type M/O 2) Initial value Description
errorId OUT DWORD - 16#00000000 Returns the number of the error that has oc-

curred.
activeMsgToHMI OUT sLMsgHdlHMI-

ActiveMsg
SgType

- - Return of the active messages in STRING
format for display on an HMI.

 1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Parameter type: M = mandatory parameter, O = optional parameter

Table 5- 2 Error messages

Error number
[HEX]

Description

0 Error-free
9997 The number of lines (messages) to be displayed on the HMI in the numberOfLi-

nesForHMI parameter is greater than the maximum number of lines for the HMI
(LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI in cPublic unit)

9998 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHMI parameter is greater than the maximum length of the transferred
buffer (LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES or
LMSGHDL_LENGTH_OF_MESSAGE_LOG in cPublic unit)

5.2.4 Structure for parameter transfer
sLMsgHdlHMIActiveMsgType has the following structure.

Table 5- 3 Structure for active messages in STRING format on an HMI

Parameter Data type Initial value Description
ai16NumberOfMessage ARRAY[0..LMSGHDL_MAX_NUMBE

R_OF_LINES_FOR_HMI - 1] OF
DINT

0 Array for information about which
number the relevant message has in
the buffer for active messages

asgMessageLevel ARRAY[0..LMSGHDL_MAX_NUMBE
R_OF_LINES_FOR_HMI - 1] OF
STRING[11]

Empty string Array for information about the level of
the message (fault, alarm, error, in-
formation)

asgMessageSource ARRAY[0..LMSGHDL_MAX_NUMBE
R_OF_LINES_FOR_HMI - 1] OF
STRING[64]

Empty string Array for information about the source
of the message

asgMessageText1 ARRAY[0..LMSGHDL_MAX_NUMBE
R_OF_LINES_FOR_HMI - 1] OF
STRING[LMDGHDL_MAX_STRING_
LENGTH_OF_MESSAGE_TEXTS_T
O_HMI]

Empty string Array for language-dependent mes-
sage text, section 1
(a message may only be maximum
160 characters long)

 Description of functions
 5.3 FBLMsgHdlMsgLogSgToHMI function block

Message Handling

Application Manual, 11/2016 73

Parameter Data type Initial value Description
asgMessageText2 ARRAY[0..LMSGHDL_MAX_

NUMBER_OF_LINES_FOR_HMI - 1]
OF
STRING[LMDGHDL_MAX_STRING_
LENGTH_OF_MESSAGE_TEXTS_
TO_HMI]

Empty string Array for language-dependent mes-
sage text, section 2
(a message may only be maximum
160 characters long)

asgMessageOccured ARRAY[0..LMSGHDL_NUMBER_OF_
LINES_MAX_FOR_HMI - 1] OF
STRING[23]

Empty string Time stamp when the relevant mes-
sage occurred.

asgAcknowledgeClass ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF STRING[17]

Empty string Array for information about the type of
acknowledgement for the message

5.3 FBLMsgHdlMsgLogSgToHMI function block

5.3.1 General information on the function block

 Note

Only strings of length 80 can be processed in WinCC flexible. For this reason, the message
texts from the active messages must be split into two substrings. However, the data length
can be changed via the
LMSGHDL_MAX_STRING_LENGTH_OF_MESSAGE_TEXTS_TO_HMI constant in cPublic
of the LMsgHdl library when another HMI is used.

The FBLMsgHdlMsgLogSgToHMI function block is used to display message texts of the
global buffer for the message log in STRING format on an HMI.

Response as described in FBLMsgHdlActiveMsgSgToHMI function block (Page 69).

Description of functions
5.3 FBLMsgHdlMsgLogSgToHMI function block

 Message Handling

74 Application Manual, 11/2016

5.3.2 Schematic representation in LAD/FBD

Figure 5-2 Schematic representation in LAD/FBD

5.3.3 Input and output parameters of the function block
The FBLMsgHdlMsgLogSgToHMI function block has the following input and output
parameters:

Table 5- 4 Input and output parameters

Name Type 1) Data type M/O 2) Initial value Description
enable IN BOOL M FALSE Function block enable.
updateHMI IN BOOL O FALSE The currently output data area is updated on

the HMI with a rising edge.
scrollUp1 IN BOOL O FALSE The data area to be displayed on the HMI is

moved up one message with a rising edge.
scrollUp IN BOOL O FALSE The data area to be displayed on the HMI is

moved up by the value transferred in num-
berOfLinesToScroll with a rising edge.

scrollDown1 IN BOOL O FALSE The data area to be displayed on the HMI is
moved down one message with a rising edge.

scrollDown IN BOOL O FALSE The data area to be displayed on the HMI is
moved down by the value transferred in num-
berOfLinesToScroll with a rising edge.

goToTop IN BOOL O FALSE The data area to be displayed on the HMI is
moved with the top line on the latest entry
with a rising edge.

 Description of functions
 5.3 FBLMsgHdlMsgLogSgToHMI function block

Message Handling

Application Manual, 11/2016 75

Name Type 1) Data type M/O 2) Initial value Description
goToEnd IN BOOL O FALSE The data area to be displayed on the HMI is

moved with the bottom line on the oldest entry
with a rising edge.

numberOfLines-
ToScroll

IN UINT O 1 Value that specifies how many lines the dis-
play area is moved when scrollUp or scroll-
Down is activated.

numberOf
LinesForHMI

IN UINT O 1 Specifies the number of lines (messages) that
are to be output for the HMI.

filterToHMI IN sLMsgHdlFilter-
ToHMIType

O The information as to which message sources
are to be displayed or not at the output of the
FB is transferred here. If the use of
SIMOTION IT is selected in the message
handling, this information is provided in
gsLMsgHdlFilterToHMI of the pLMsgHdl unit
and should be transferred to the FB as
VAR_IN_OUT.

messageSource IN/OUT ARRAY
[0..LMSGHDL_
LENGTH_OF -1]
OF UINT

M The message sources belonging to the mes-
sages must be transferred to the FB here in
USINT format. The message sources in
USINT format are created by the message
handling and are in
gau8LMsgHdlMessageLogStringMessageSou
rce of the pLMsgHdl unit. This variable must
be transferred here as VAR_IN_OUT.

messageLog
String

IN/OUT sLMsgHdl
MessageLog
StringType

M - Transfers the message log buffer in STRING
format.

valid OUT BOOL - FALSE Displays the validity of the values at the out-
puts.

error OUT BOOL - FALSE Displays whether an error has occurred while
processing the FB.

errorId OUT DWORD - 16#00000000 Returns the number of the error that has oc-
curred.

msgLogToHMI OUT sLMsgHd
lHMIMsg
LogSgType

- - Returns the messages from the message log
in STRING format for display on the HMI.

 1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out parameters
2) Parameter type: M = mandatory parameter, O = optional parameter

Description of functions
5.3 FBLMsgHdlMsgLogSgToHMI function block

 Message Handling

76 Application Manual, 11/2016

Table 5- 5 Error messages

Error number
[HEX]

Description

0 Error-free
9997 The number of lines (messages) to be displayed on the HMI in the numberOfLi-

nesForHMI parameter is greater than the maximum number of lines for the HMI
(LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI in cPublic unit)

9998 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHMI parameter is greater than the maximum length of the transferred
buffer (LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES or
LMSGHDL_LENGTH_OF_MESSAGE_LOG in cPublic unit)

5.3.4 Structure for parameter transfer
sLMsgHdlHMIMsgLogSgType has the following structure.

Table 5- 6 Structure for messages in the message log in STRING format on an HMI

Parameter Data type Initial value Description
ai16NumberOfMessage ARRAY[0..LMSGHDL_MAX_

NUMBER_OF_LINES_FOR_HMI - 1]
OF DINT

0 Array for information about which
number the relevant message has in
the buffer for the message log.

asgMessageLevel ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF STRING[11]

Empty string Array for information about the level of
the message (fault, alarm, error, in-
formation).

asgMessageSource ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF STRING[64]

Empty string Array for information about the source
of the message.

asgMessageText1 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF
STRING[LMDGHDL_MAX_STRING_
LENGTH_OF_MESSAGE_TEXTS_
TO_HMI]

Empty string Array for language-dependent mes-
sage text, section 1
(a message may only be maximum
160 characters long).

asgMessageText2 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF STRING[LMDGHDL_MAX
_STRING_LENGTH_OF_MESSAGE_
TEXTS_TO_HMI]

Empty string Array for language-dependent mes-
sage text, section 2
(a message may only be maximum
160 characters long).

asgMessageOccured ARRAY[0..LMSGHDL_NUMBER_OF_
LINES_MAX_FOR_HMI - 1] OF
STRING[23]

Empty string Time stamp when the relevant mes-
sage occurred.

asgAcknowledgeClass ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF STRING[17]

Empty string Array for information about the type of
acknowledgement for the message.

asgMessageGone ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF STRING[23]

Empty string Time stamp when the relevant mes-
sage has gone.

 Description of functions
 5.4 FBLMsgHdlActiveMsgBaseDataToHMI function block

Message Handling

Application Manual, 11/2016 77

For an overview of the user constants and structures, see Section Public constants
(Page 22).

5.4 FBLMsgHdlActiveMsgBaseDataToHMI function block

5.4.1 General information on the function block
The FBLMsgHdlActiveMsgBaseDataToHMI function block is used to display messages of
the global buffer for active messages in raw data format on an HMI.

Response as described in FBLMsgHdlActiveMsgSgToHMI function block (Page 69).

See also
Interpretation of the raw data (Page 115)

5.4.2 Schematic representation in LAD/FBD

Figure 5-3 Schematic representation in LAD/FBD

Description of functions
5.4 FBLMsgHdlActiveMsgBaseDataToHMI function block

 Message Handling

78 Application Manual, 11/2016

5.4.3 Input and output parameters of the function block
The FBLMsgHdlActiveMsgBaseDataToHMI function block has the following input and output
parameters:

Table 5- 7 Input and output parameters

Name Type 1) Data type M/O 2) Initial value Description
enable IN BOOL M FALSE Function block enable.
updateHMI IN BOOL O FALSE The currently output data area is updated on

the HMI with a rising edge.
scrollUp1 IN BOOL O FALSE The data area to be displayed on the HMI is

moved up one message with a rising edge.
scrollUp IN BOOL O FALSE The data area to be displayed on the HMI is

moved up by the value transferred in the
numberOfLinesToScroll variable with a rising
edge.

scrollDown1 IN BOOL O FALSE The data area to be displayed on the HMI is
moved down one message with a rising edge.

scrollDown IN BOOL O FALSE The data area to be displayed on the HMI is
moved down by the value transferred in the
numberOfLinesToScroll variable with a rising
edge.

goToTop IN BOOL O FALSE The data area to be displayed on the HMI is
moved with the top line on the latest entry
with a rising edge.

goToEnd IN BOOL O FALSE The data area to be displayed on the HMI is
moved with the bottom line on the oldest entry
with a rising edge.

numberOfLines-
ToScroll

IN UINT O 1 Value that specifies how many lines the dis-
play area is to be moved when scrollUp or
scrollDown is activated.

numberOfLines
ForHMI

IN UINT O 1 Specifies the number of lines (messages) that
are to be output for the HMI.

filterToHMI IN sLMsgHdlFilter-
ToHMIType

O The information as to which message sources
are to be displayed or not at the output of the
FB is transferred here. If the use of
SIMOTION IT is selected in the message
handling, this information is provided in
gsLMsgHdlFilterToHMI of the pLMsgHdl unit
and should be transferred to the FB as
VAR_IN_OUT.

activeMessages
BaseData

IN_OUT sLMsgHdl
Active
MessagesBase
DataType

M - Transfers the current message log in raw data
format.

valid OUT BOOL - FALSE Displays the validity of the values at the out-
puts.

error OUT BOOL - FALSE Displays whether an error has occurred while
processing the FB.

 Description of functions
 5.4 FBLMsgHdlActiveMsgBaseDataToHMI function block

Message Handling

Application Manual, 11/2016 79

Name Type 1) Data type M/O 2) Initial value Description
errorId OUT DWORD - 16#00000000 Returns the number of the error that has oc-

curred.
activeMsgToHMI OUT sLMsgHdlHMI-

ActiveMsg
BaseDataType

- - Returns the active messages in raw data
format for display on an HMI.

 1) Parameter types: IN = input parameter, OUT = output parameter, IN_OUT = in/out parameter
2) Parameter type: M = mandatory parameter, O = optional parameter

Table 5- 8 Error messages

Error number
[HEX]

Description

0 Error-free
9997 The number of lines (messages) to be displayed on the HMI in the numberOfLi-

nesForHMI parameter is greater than the maximum number of lines for the HMI
(LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI in cPublic unit)

9998 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHMI parameter is greater than the maximum length of the transferred
buffer (LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES or
LMSGHDL_LENGTH_OF_MESSAGE_LOG in cPublic unit)

5.4.4 Structure for parameter transfer
sLMsgHdlHMIActiveMsgSgType has the following structure.

Table 5- 9 Structure for active messages in STRING format on an HMI

Parameter Data type Initial
value

Description

adtMessageOccured ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DT

DT#0001
-01-01-
0:0:0

Array for information about the active
messages occurred time stamp

ab32Parameter3 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 3

ab32Parameter4 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 4

ab32Parameter5 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 5

ab32Parameter6 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 6

Description of functions
5.4 FBLMsgHdlActiveMsgBaseDataToHMI function block

 Message Handling

80 Application Manual, 11/2016

Parameter Data type Initial
value

Description

ab32Parameter7 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 7

ab32Parameter8 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 8

ab32Parameter9 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 9

ab32Parameter10 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 10

ab32Parameter11 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 11

ai16NumberOfMessage ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF DINT

0 Array for information about which number
the relevant message has in the message
buffer for active messages

ai16Parameter2 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF INT

0 Array for information in parameter 2

au8MessageSource ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

0 Array for information about the message
source

au8MessageLevel ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

0 Array for information about the message
level

au8AcknowledgeClass ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

0 Array for information about the type of
acknowledgement

au8ErrorClass ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

0 Array for information about the error class

au16Parameter1 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF UINT

0 Array for information in parameter 1

 Description of functions
 5.5 FBLMsgHdlMsgLogBaseDataToHMI function block

Message Handling

Application Manual, 11/2016 81

5.5 FBLMsgHdlMsgLogBaseDataToHMI function block

5.5.1 General information on the function block
The FBLMsgHdlMsgLogBaseDataToHMI function block is used to display message texts of
the global buffer for the message log in raw data format on an HMI.

Response as described in FBLMsgHdlActiveMsgToHMI function block (Page 69).

See also
Interpretation of the raw data (Page 115)

5.5.2 Schematic representation in LAD/FBD

Figure 5-4 Schematic representation in LAD/FBD

Description of functions
5.5 FBLMsgHdlMsgLogBaseDataToHMI function block

 Message Handling

82 Application Manual, 11/2016

5.5.3 Input and output parameters of the function block
The FBLMsgHdlMsgLogBaseDataToHMI function block has the following input and output
parameters:

Table 5- 10 Input and output parameters

Name Type 1) Data type M/O 2) Initial value Description
enable IN BOOL M FALSE Function block enable.
updateHMI IN BOOL O FALSE The currently output data area is updated on

the HMI with a rising edge.
scrollUp1 IN BOOL O FALSE The data area to be displayed on the HMI is

moved up one message with a rising edge.
scrollUp IN BOOL O FALSE The data area to be displayed on the HMI is

moved up by the value transferred in num-
berOfLinesToScroll with a rising edge.

scrollDown1 IN BOOL O FALSE The data area to be displayed on the HMI is
moved down one message with a rising edge.

scrollDown IN BOOL O FALSE The data area to be displayed on the HMI is
moved down by the value transferred in num-
berOfLinesToScroll with a rising edge.

goToTop IN BOOL O FALSE The data area to be displayed on the HMI is
moved with the top line on the latest entry
with a rising edge.

goToEnd IN BOOL O FALSE The data area to be displayed on the HMI is
moved with the bottom line on the oldest entry
with a rising edge.

numberOfLines-
ToScroll

IN UINT O 1 Value that specifies how many lines the dis-
play area is moved when scrollUp or scroll-
Down is activated.

numberOf
LinesForHMI

IN UINT O 1 Specifies the number of lines (messages) that
are to be output for the HMI.

filterToHMI IN sLMsgHdl
FilterToHMIType

O The information as to which message sources
are to be displayed or not at the output of the
FB is transferred here. If the use of
SIMOTION IT is selected in the message
handling, this information is provided in
gsLMsgHdlFilterToHMI of the pLMsgHdl unit
and should be transferred to the FB as
VAR_IN_OUT.

Message
LogBaseData

IN_OUT sLMsgHdl
MessageLog-
BaseDataType

M - Transfers the current message log in raw data
format.

valid OUT BOOL - FALSE Displays the validity of the values at the out-
puts.

error OUT BOOL - FALSE Displays whether an error has occurred while
processing the FB.

 Description of functions
 5.5 FBLMsgHdlMsgLogBaseDataToHMI function block

Message Handling

Application Manual, 11/2016 83

Name Type 1) Data type M/O 2) Initial value Description
errorId OUT DWORD - 16#00000000 Returns the number of the error that has oc-

curred.
msgLogToHMI OUT sLMsg

HdlHMIMsgLog-
gLog-
BaseDataType

- - Returns the messages in raw data format for
display on an HMI.

 1) Parameter types: IN = input parameter, OUT = output parameter, IN_OUT = in/out parameter
2) Parameter type: M = mandatory parameter, O = optional parameter

Table 5- 11 Error messages

Error number
[HEX]

Description

0 Error-free
9997 The number of lines (messages) to be displayed on the HMI in the numberOfLi-

nesForHMI parameter is greater than the maximum number of lines for the HMI
(LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI in cPublic unit)

9998 The number of lines (messages) to be displayed on the HMI in the numberOfLi-
nesForHMI parameter is greater than the maximum length of the transferred
buffer (LMSGHDL_LENGTH_OF_ACTIVE_MESSAGES or
LMSGHDL_LENGTH_OF_MESSAGE_LOG in cPublic unit)

5.5.4 Structure for parameter transfer
sLMsgHdlHMIMsgLogBaseDataType has the following structure.

Table 5- 12 Structure for the message log in STRING format on an HMI

Parameter Data type Initial
value

Description

ai16NumberOfMessage ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_LINES_FOR_HMI - 1]
OF DINT

0 Array for information about which number
the relevant message has in the message
buffer for active messages

au8MessageSource ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

0 Array for information about the message
source

au8MessageLevel ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

0 Array for information about the message
level

au8AcknowledgeClass ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

0 Array for information about the type of
acknowledgement

au8ErrorClass ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF USINT

0 Array for information about the error class

Description of functions
5.5 FBLMsgHdlMsgLogBaseDataToHMI function block

 Message Handling

84 Application Manual, 11/2016

Parameter Data type Initial
value

Description

au16Parameter1 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF UINT

0 Array for information in parameter 1

ai16Parameter2 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF INT

0 Array for information in parameter 2

ab32Parameter3 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 3

ab32Parameter4 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 4

ab32Parameter5 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 5

ab32Parameter6 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 6

ab32Parameter7 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 7

ab32Parameter8 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 8

ab32Parameter9 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 9

ab32Parameter10 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 10

ab32Parameter11 ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DWORD

16#0000
0000

Array for information in parameter 11

adtMessageOccured ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DT

DT#0001
-01-01-
0:0:0

Array for information about the active
messages occurred time stamp

adtMessageGone ARRAY[0..LMSGHDL_MAX_
NUMBER_OF_VISIBLE_LINES_FOR
_HMI -1] OF DT

DT#0001
-01-01-
0:0:0

Array for information about message gone

 Description of functions
 5.6 FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer functions

Message Handling

Application Manual, 11/2016 85

5.6 FCLMsgHdlWriteUserMessageToBuffer and
FCLMsgHdlWriteFBFCMessageToBuffer functions

5.6.1 General information on the functions
User-defined messages are transferred to the message handling when the
FCLMsgHdlWriteUserMessageToBuffer or FCLMsgHdlWriteFBFCMessageToBuffer function
is called. These messages are generated from the application. This function must be called
once for each new message. For messages that are already active or have not been
acknowledged yet, no new message is entered in the buffer, or a message is issued via the
message bit handling or AlarmS handling.

Figure 5-5 Entry of user-defined messages

A message is specified via its unique message number. The entered messages can be
processed in three different ways for forwarding to the operator.

● Entry in the message buffer:
The message is entered in the message buffers. When using the string-based buffers,
the user must ensure that a message text is stored in the controller, see Section
Integration of the application into a SIMOTION project (Page 51)

● Use of the message bit handling:
When the message bit handling is selected by setting the
LMSGHDL_MESSAGE_BIT_USER_MESSAGES constant to TRUE, the bit
corresponding to the message number in the gab16LMsgHldEventFlag global WORD
array is set in the fLMsgHdl unit. The message texts are stored in the HMI.

● Use of AlarmS:
When the AlarmS message procedure is selected by setting the
LMSGHDL_ALARM_S_USER_MESSAGES constant to TRUE, an AlarmS message
corresponding to the bit number is generated. The message texts must be entered by the
user in SIMOTION SCOUT.

Description of functions
5.6 FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer functions

 Message Handling

86 Application Manual, 11/2016

Call example
FCLMagHdlWriteFCFBMessageToBuffer(eventNumber := 8
 ,errorClass := 2
 ,errorCode := 16#ffff8082
 ,functionBlockId := 1
 ,additionalValue1DINT := 512
 ,additionalValue2DINT := 4711);

The eventNumber determines the user-defined message that is output in the message
handling. At the same time, the appropriate message is set when the AlarmS handling or
message bit handling is active. If an additional functionBlockId is not set, the message class
belonging to the event number is issued.

The functionBlockId is set if the user-defined message is from a function or function block. In
this case, the message class is not generated from the event number, but from the
appropriate specification of the gasLMsgHdlFBFCMachineErrorClasses variable. The value
for the machine error class is read out as follows and taken into the message handling:
gasLMsgHdlFBFCMachineErrorClasses[0].ai8ErrorClass[2]

5.6.2 Schematic representation in LAD/FBD

FCLMsgHdlWriteUserMessageToBuffer function

Figure 5-6 Schematic representation in LAD/FBD

 Description of functions
 5.6 FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer functions

Message Handling

Application Manual, 11/2016 87

FCLMsgHdlWriteFBFCMessageToBuffer function

Figure 5-7 Schematic representation in LAD/FBD

5.6.3 Input and output parameters of the functions
The user must start with 1 (one) for the message numbers, 0 (zero) is not permitted.

Input and output parameters of the FCLMsgHdlWriteUserMessageToBuffer function
The FCLMsgHdlWriteUserMessageToBuffer function has the following input and output
parameters:

Table 5- 13 Input and output parameters

Element P type 1) Data type M/O 2) Initial value Meaning
eventNumber IN DINT M 0 Message number
messageLevel IN USINT O 2 Transfer of the message level of the message

(default is 2 -> error)
acknowledgeClass IN USINT O 2 Transfer of the acknowledgement type (de-

fault is 2 -> direct)
additionalValue1DINT IN DINT O 0 Additional value for the error in DINT format,

is transferred to AlarmS
additionalValue2DINT IN DINT O 0 Additional value for the error in DINT format
additionalValueREAL IN REAL O 0.0 Additional value to transfer errors in REAL

format

Description of functions
5.6 FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer functions

 Message Handling

88 Application Manual, 11/2016

Element P type 1) Data type M/O 2) Initial value Meaning
messageOccuredExternal IN DINT O 0 If this input is used, the value transferred

there is transferred to the message handling.
If no value is transferred via this input, the
system time of the SIMOTION device applies.
Default setting is the system time of the
SIMOTION device.

FCLMsgHdlWriteMessage
ToBuffer

OUT VOID - - No return code for the function

 1) Parameter types: IN = input parameter, OUT = output parameter
2) Parameter type: M = mandatory parameter, O = optional parameter

Input and output parameters of the FCLMsgHdlWriteFBFCMessageToBuffer function
The FCLMsgHdlWriteFBFCMessageToBuffer function has the following input and output
parameters:

Table 5- 14 Input and output parameters

Element P type 1) Data type M/O 2) Initial value Meaning
eventNumber IN DINT M 0 Message number
messageLevel IN USINT O 2 Transfer of the message level of the message

(default is 2 -> error)
acknowledgeClass IN USINT O 2 Transfer of the acknowledgement type (de-

fault is 2 -> direct)
errorClass IN USINT O 0 Error class of the message
errorCode IN DWORD O 16#000000

00
Error code (e.g. for error response from func-
tion blocks), is transferred to AlarmS

functionBlockId IN DINT O 0 ID of the function block triggering the mes-
sage

additionalValue1DINT IN DINT O 0 Additional value for the error in DINT format
additionalValue2DINT IN DINT O 0 Additional value for the error in DINT format
additionalValueREAL IN REAL O 0.0 Additional value to transfer errors in REAL

format
messageOccuredExternal IN DINT O 0 If this input is used, the value transferred

there is transferred to the message handling.
If no value is transferred via this input, the
system time of the SIMOTION device applies.
Default setting is the system time of the
SIMOTION device.

FCLMsgHdlWriteFCFB
MessageToBuffer

OUT VOID - - No return code for the function

 1) Parameter types: IN = input parameter, OUT = output parameter
2) Parameter type: M = mandatory parameter, O = optional parameter

 Description of functions
 5.7 Structure for message log as raw data

Message Handling

Application Manual, 11/2016 89

5.7 Structure for message log as raw data

Table 5- 15 Structure for message log as raw data sLMsgHdlMessageLogBaseDataType

Parameter Data type Initial value Description
i16ActualIndex INT 0 Current index in the global mes-

sage log for raw data
i16NumberOfNew
Messages

INT 0 Only for internal use by message
handling

boChangesInLog-
BaseData

BOOL FALSE Only for internal use by message
handling

boNewMessages
ForHMILogBase

BOOL FALSE Only for internal use by message
handling

boBuildNewString
Messages

BOOL FALSE Only for internal use by message
handling

au8MessageSource ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF USINT

0 Array for information about the
source of the message

au8MessageLevel ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF USINT

0 Array for information about the
level of the message (fault, alarm,
error, information)

au8AcknowledgeClass ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF USINT

0 Array for information about the
type of acknowledgement for the
message

au8ErrorClass ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF USINT

0 Array for information about the
error class of a message

au16Parameter1 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF UINT

0 Array for information about Varia-
ble1 of the respective message
type

ai16Parameter2 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF INT

0 Array for information about Varia-
ble2 of the respective message
type

ab32Parameter3 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DWORD

16#00000000 Array for information about Varia-
ble3 of the respective message
type

ab32Parameter4 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DWORD

16#00000000 Array for information about Varia-
ble4 of the respective message
type

ab32Parameter5 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DWORD

16#00000000 Array for information about Varia-
ble5 of the respective message
type

ab32Parameter6 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DWORD

16#00000000 Array for information about Varia-
ble6 of the respective message
type

ab32Parameter7 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DWORD

16#00000000 Array for information about Varia-
ble7 of the respective message
type

ab32Parameter8 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DWORD

16#00000000 Array for information about Varia-
ble8 of the respective message
type

Description of functions
5.8 Structure for message log in STRING format

 Message Handling

90 Application Manual, 11/2016

Parameter Data type Initial value Description
ab32Parameter9 ARRAY[0..LMSGHDL_LENGTH_OF_

MESSAGE_LOG - 1] OF DWORD
16#00000000 Array for information about Varia-

ble9 of the respective message
type

ab32Parameter10 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DWORD

16#00000000 Array for information about Varia-
ble10 of the respective message
type

ab32Parameter11 ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DWORD

16#00000000 Array for information about Varia-
ble11 of the respective message
type

adtMessageOccured ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DT

DT#0001-01-
01-0:0:0:0

Time stamp when the relevant
message occurred.

adtMessageGone ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF DT

DT#0001-01-
01-0:0:0:0

Time stamp when the relevant
message has gone.

boNewMessage ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] BOOL

FALSE Shows whether the relevant mes-
sage is a new entry in the raw
data message log.

i16MessageIndexLastC
ycle

ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] INT

0 Index of the message in the pre-
vious background cycle. Auxiliary
variable for update of the mes-
sage log in STRING format.

5.8 Structure for message log in STRING format

Table 5- 16 Structure for message log in STRING format sLMsgHdlMessageLogStringType

Parameter Data type Initial value Description
i16ActualIndex INT 0 Current index in the global message

log in STRING format
boChang-
esInLogStringData

BOOL FALSE Only for internal use by message
handling

boChang-
esInLogStringData-
ForHMI

BOOL FALSE Only for internal use by message
handling

asgMessageLevel ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF STRING[11]

Empty
string

Array for information about the level
of the message (fault, alarm, error,
information).

asgMessageSource ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF STRING[64]

Empty
string

Array for information about the
source of the message.

asgMessageText ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF STRING[160]

Empty
string

Array for language-dependent mes-
sage text.

asgMessageOccured ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF STRING[23]

Empty
string

Time stamp when the relevant mes-
sage occurred.

asgAcknowledgeClass ARRAY[0..LMSGHDL_LENGTH_OF_
MESSAGE_LOG - 1] OF STRING[17]

Empty
string

Array for information about the type
of acknowledgement for the mes-
sage.

asgMessageGone ARRAY[0.LMSGHDL_LENGTH_OF_
MESSAGE_LOG- 1] OF STRING[23]

Empty
string

Time stamp when the relevant mes-
sage has gone.

Message Handling

Application Manual, 11/2016 91

 Alarm and error messages 6
6.1 General information on the error handling

Errors can also occur during processing in the message handling. These are signaled when
errors occur during the processing in the message handling, e.g. data exchange failure with
drive objects of a SINAMICS drive.

6.2 Buffer overflow
The messages of the individual, possible message sources are first collected in buffers. This
guarantees the data consistency of the message information. These buffers are configured
as ring buffers and only release memory areas written by a new message when this
information has been entered in the global message buffers.

If several new messages occur at a message source in a short time, it may happen that a
buffer is written quicker than it can be read out. If this happens, a buffer may overflow. The
overflow of one of these buffers is signaled by an internal error message to the message
handling.

If such a message is entered, there is no longer any guarantee that the information in the
message buffers is complete. All messages from a source that occur after an overflow are
not taken into the message buffers and are lost. Only after there has been an
acknowledgement via the message handling are new messages recognized again at the
source.

The relevant buffer can be increased via the respective constant in cPublic of the LMsgHdl
library. This value only takes effect however after recompilation and download of the project.

6.3 Overflow of AlarmS messages
When using AlarmS in the message handling, make sure that only 40 AlarmS messages can
be active simultaneously. If the next message is issued, this can no longer be processed by
the AlarmS handler and is lost. Despite this, the messages are still taken into the message
handling. At the same time, the internal error LMSGHDL_ALARM_S_ERROR (100002) is
triggered and entered in the message handling.

Alarm and error messages
6.4 Error during startup

 Message Handling

92 Application Manual, 11/2016

6.4 Error during startup
The message handling monitors the startup of the machine and collects generic information
that is required later in the message handling. If all the configured modules are not available
on the controller, there is no guarantee that the message handling functions correctly. For
this reason, an internal message is signaled by the message handling as soon as a
configured module is not available or a different operating state as active is signaled
LMSGHDL_ERROR_CHECK_STARTUP_OK (100026).

The timeout expires when acyclic data exchange to the SINAMICS_Integrated is not possible
for a SIMOTION D.

After a station recovery message of an I/O module, the check as to whether the I/O module
is available again is started automatically.

If an error occurs during startup, the startup check is immediately terminated and the
message about the buffer management error transferred to the message handling. If the
buffer management signals an error, the message handling can only be used again after a
restart.

6.5 Messages by I/O modules
In the gasLMsgHdlPeripheralDevices variable of the dProtected library unit, each I/O module
has a boStationConnected variable of the BOOL type which indicates whether the I/O
module is available or not. The message handling sets this bit at a station failure or recovery.

6.6 DO safety messages
Safety messages are handled like errors on the drive object. Safety messages cannot be
acknowledged by the message handling. For this reason, the Message gone time stamp is
monitored. This means that each safety message when it occurs and when it is
acknowledged creates an entry in the buffer for safety messages on all of the drive objects.
In the message handling, make sure that active safety messages are automatically removed
from the buffer for active messages when acknowledged. In addition, in the global message
log, only the Message gone time stamp has to be added to an active safety message when it
disappears.

The buffering for safety messages from the previous detection is in the
gasLMsgHdlAuxiliaryBufferDOWithTOSafety variable. The newly found safety messages are
stored in the asLMsgHdlAuxiliaryBufferDOSafety array.

 Alarm and error messages
 6.7 User-defined messages

Message Handling

Application Manual, 11/2016 93

6.7 User-defined messages
In the message handling, it is possible to transfer an independently generated time stamp
when the message occurred for all user-defined messages. For this purpose, the
messageOccuredExternal input of the DT type is available on all FCs. If a value other than
the default value is transferred here, then this time stamp is transferred to the message
handling instead of the current system time. If this input is not filled or written with a default
value, the message handling takes over the current system time stamp.

It is possible to create the user-defined message with the EventID = 0 variable. When this
variable is assigned as user-defined message, it is possible to create a message several
times. All other messages can only be active once. If the EventId = 0 is assigned, the
message is entered again in the message handling with the respective time stamp with each
new call. However, this message does not generate a message class or an associated
AlarmS and no bit in the message bit handling. The message text required for the STRING
output is available in the fLMsgHdlInit unit in the gasLMsgHdlUserDefinedMessageEvent0
variable. The user-defined message with EventId = 0 can be created via the
FCLMsgHdlWriteFBFCMessageToBuffer function. It is thus possible to transfer this message
as additional values of an error code, a functionBlockId and two additional values. The user-
defined messages generated in this way can also be acknowledged individually.

6.8 Error during data exchange with DOs
If an error occurs during data exchange with at least one DO, an appropriate message is
transferred to the message handling. Data exchange with the relevant DO is then
interrupted. Data exchange with the DO is only restarted after a global acknowledgement by
the message handling. If the error in the data exchange occurs again, another message is
output.

The DO that causes the message, is transferred to the message handling either via the
number of the associated axis, the logical address or a logical address including the DO
number, depending on the type of DO.

6.9 Particularity for alarms on drive objects
Alarms on drive objects on SINAMICS modules cannot be acknowledged. When these
alarms occur, they remain present until the reason for the alarm no longer exists. As soon as
an active alarm is no longer present, it is automatically deleted from the message buffers for
active messages.

Alarm and error messages
6.10 Particularity for peripheral messages

 Message Handling

94 Application Manual, 11/2016

6.10 Particularity for peripheral messages
Messages through I/O modules have a different character in SIMOTION. There are negative
and positive peripheral messages. For example, the message Station failure is a negative
message. Whereas Station recovery is a positive message. The collection of these
peripheral messages is therefore implemented as follows in the message handling.

If a negative peripheral message occurs on a machine, this is entered in the message log
and the message buffer for active messages. Positive messages are only entered in the
message log. At the same time, a search is made in the message buffer for active messages
to see whether a negative message belonging to the positive message is still active. If this is
the case, the appropriate message is acknowledged automatically and removed from the
active messages. If a negative active peripheral message is acknowledged before the
associated positive message occurs, it is also removed from the buffer for active messages.
The occurrence of all peripheral messages can therefore always be tracked in the log
memory of the message handling.

Table 6- 1 Associated positive and negative peripheral messages

Negative message Positive message
ID 202 Station failure ID 203 Station recovery
ID 204 Error when generating the process image ID 206 Generation of the process image functions

again
ID 210 Multiple clock failure or PLL unlocked ID209 PLL locked in controlled operation
ID 215 Synchronization failed ID214 Synchronization reached

The peripheral messages with the interrupt IDs 200, 201, 205, 208, 211, 212, 213, 216 and
217 are also taken into the log memory and the message buffer for active messages.
However, these IDs have no complementary peripheral message and are not acknowledged
automatically. The meanings of the IDs listed here are described in the SIMOTION SCOUT
online help at Using task start information.

6.11 Reaction to internal errors
If an error occurs in the message handling, this is entered in the respective message buffers
via an appropriate message. A global machine error class is also set. This machine error
class is identical for all messages of the message handling and can be specified by the user
in the cPublic unit of the LMsgHdl library via the
LMSGHDL_MACHINE_ERROR_CLASS_ERROR_IN_MESSAGEHANDLING constant.

The messages generated by internal errors can be reset via the global acknowledgement.
However, if the reason for the internal error has not been corrected at the time of the
acknowledgement, the message is entered in the message handling again. As the internal
errors in the message handling are application-specific messages, they are transferred to the
message handling in the same way as user-defined messages. To clearly distinguish these
messages from the user messages, the event numbers start at 100.000.

 Alarm and error messages
 6.11 Reaction to internal errors

Message Handling

Application Manual, 11/2016 95

The following internal errors can occur in the message handling:

Table 6- 2 Internal error in the message handling

Name of the constant Event
number

Meaning

LMSGHDL_UNKNOWN_USER_EVENT
 100.000 An unknown user-defined message has been transferred to the message handling.

The faulty message can be identified by the additional values. This message can only
be acknowledged.

LMSGHDL_EVENT_IN_UNKNOWN_TASK
 100.001 A user-defined message has been transferred to the message handling from an un-

known task. The execution system has been changed without recalling the script. The
configuration script should be run through again.

LMSGHDL_ALARM_S_ERROR
 100.002 An error occurred while issuing an AlarmS message. The internally used _alarmSQId

and _alarmSId functions have generated an error. Remedy: See additional value
errorId. (Errors of the system functions). This message can be acknowledged imme-
diately.

LMSGHDL_OVERFLOW_BUFFER_EXECUTIONTASK_MESSAGES
 100.003 The buffer to collect the ExecutionTask messages has overflowed. ExecutionFault

messages have occurred in two successive starts of the machine, without the mes-
sage handling being able to process the first message after the restart. Search for the
error and restart the machine. Triggering message could not be taken into the buffers.

LMSGHDL_OVERFLOW_BUFFER_APPLICATION_MESSAGES
 100.004 The buffer to collect the user messages has overflowed. The constant

LMSGHDL_NUMBER_OF_APPLICATION_MESSAGES must be increased in cPub-
lic. An acknowledgement is possible. Triggering message could not be taken into the
buffers.

LMSGHDL_OVERFLOW_BUFFER_TECHFAULT_MESSAGES
 100.005 The buffer to collect the TechnologicalFaultTask messages has overflowed. The

constant LMSGHDL_NUMBER_OF_PERIPHERAL_FAULT_MESSAGES must be
increased in cPublic. An acknowledgement is possible. Triggering message could not
be taken into the buffers.

LMSGHDL_OVERFLOW_BUFFER_PERIPHERAL_MESSAGES
 100.006 The buffer to collect the PeripheralFaultTask messages has overflowed. The

LMSGHDL_NUMBER_OF_TECH_FAULT_MESSAGES constant must be increased
in cPublic. An acknowledgement is possible. Triggering message could not be insert-
ed into the buffers.

LMSGHDL_OVERFLOW_BUFFER_TIMEFAULT_MESSAGES
 100.007 The buffer to collect the TimeFaultTask messages has overflowed, e.g. due to an

endless loop in the BackgroundTask. The
LMSGHDL_NUMBER_OF_TIME_FAULT_MESSAGES constant must be increased in
cPublic. An acknowledgement is possible. Triggering message could not be taken
into the buffers.

LMSGHDL_OVERFLOW_BUFFER_DOFAULT_MESSAGES
 100.008 The buffer to collect the fault messages on all drive objects has overflowed. The

LMSGHDL_NUMBER_OF_DO_FAULT_MESSAGES constant must be increased in
cPublic. An acknowledgement is possible. Triggering message could not be taken
into the buffers.

Alarm and error messages
6.11 Reaction to internal errors

 Message Handling

96 Application Manual, 11/2016

Name of the constant Event
number

Meaning

LMSGHDL_OVERFLOW_BUFFER_DOALARM_MESSAGES
 100.009 The buffer to collect the alarm messages on all drive objects has overflowed. The

LMSGHDL_NUMBER_OF_DO_ALARM_MESSAGES constant must be increased in
cPublic. An acknowledgement is possible. Triggering message could not be taken
into the buffers.

LMSGHDL_ERROR_IN_BUFFER_MANAGER
 100.010 An error occurred while using the buffer management. As the buffer management for

DP-V1 services has an error, the SINAMICS drive objects are no longer monitored. A
machine restart is required.

LMSGHDL_ERROR_IN_CHECK_STARTUP
 100.011 An error has occurred for the startup check in the FBLDPV1CheckStartup function

block. Not all the configured I/O modules are available. The message handling cannot
provide all the required information. The machine must be checked and, if required,
restarted.

LMSGHDL_ERROR_ADD_TO
 100.012 An attempt was made to transfer a non-existing axis to the message handling. The

configuration script must be run through again.
LMSGHDL_ERROR_SEARCH_ALL_DOS
 100.013 An error has occurred in the internal assignment of technology objects to drive ob-

jects, caused by the FBLDPV1SearchAllDo function. See transfer parameter errorId
and DO-TO documentation in LDPV1. The message handling cannot provide all the
required information. The machine must be checked and, if required, restarted.

LMSGHDL_ERROR_CHECK_WRITE_ACCESS
 100.014 An error has occurred while checking whether the parameters can be written in the

SINAMICS drive objects. See transfer parameter errorId and CheckStartup documen-
tation in LDPV1. The machine must be checked and, if required, restarted.

LMSGHDL_ERROR_TIME_SYNC
 100.015 An error occurred during the time synchronization of a SINAMICS module. See trans-

fer parameter errorId and TimeSync documentation in LDPV1. Messages and drive
objects may only have the time stamp of the SIMOTION RTC and cannot be as-
signed correctly. The machine must be checked and, if required, restarted.

LMSGHDL_ERROR_FB_GET_DO_MESSAGES_AT_AXIS
 100.016 An error has occurred while determining faults/alarms on a drive object that belongs

to a TO axis. See transfer parameter errorId and GetFault documentation in LDPV1.
A SINAMICS module might have failed completely. The machine must be checked.
An immediate acknowledgement is possible.

LMSGHDL_ERROR_FB_GET_DO_MESSAGES_CYCLIC_DOS
 100.017 An error has occurred while determining faults/alarms on a drive object with cyclic

data exchange. See transfer parameter errorId and GetFault documentation in
LDPV1. A SINAMICS module might have failed completely. The machine must be
checked. An immediate acknowledgement is possible.

LMSGHDL_ERROR_FB_GET_DO_MESSAGES_ACYCLIC_DOS
 100.018 An error has occurred while determining faults/alarms on a drive object without cyclic

data exchange. See transfer parameter errorId and GetFault documentation in
LDPV1. A SINAMICS module might have failed completely. The machine must be
checked. An immediate acknowledgement is possible.

LMSGHDL_ERROR_MESSAGE_BUFFER_MANAGER

 Alarm and error messages
 6.11 Reaction to internal errors

Message Handling

Application Manual, 11/2016 97

Name of the constant Event
number

Meaning

 100.019 An error has occurred in the block to create the message buffer (acknowledgement of
the active messages). A SINAMICS module might have failed completely. The ma-
chine must be checked. An immediate acknowledgement is possible.

LMSGHDL_ERROR_GET_DO_NAME
 100.020 Error occurred during automatic determination of the names of all configured drive

objects. The message handling cannot provide all the required information. A
SINAMICS module might have failed completely. The machine must be checked and,
if required, restarted.

LMSGHDL_ERROR_INIT_MESSAGELOG_STRING
 100.021 Error occurred while creating the message information in the STRING format. The

texts stored in the system in STRING format must be checked.
LMSGHDL_ERROR_UPDATE_HMI_ACTIVE_MESSAGES
 100.022 Error in the block for the output of the active messages in STRING format to the HMI

or SIMOTION IT. A check of the transfer parameters for the output to an HMI is nec-
essary. An immediate acknowledgement is possible.

LMSGHDL_ERROR_UPDATE_HMI_MESSAGE_LOG
 100.023 Error in the block for the output of the message log in STRING format to the HMI or

SIMOTION IT. A check of the transfer parameters for the output to an HMI is neces-
sary. An immediate acknowledgement is possible.

LMSGHDL_ERROR_CHANGE_LANGUAGE_SYSTEM
 100.024 The file of the language selected for system messages is not available on the storage

medium of the SIMOTION device or is faulty. An immediate acknowledgement is
possible.

LMSGHDL_ERROR_CHANGE_LANGUAGE_USER
 100.025 The file of the language selected for user-defined messages is not available on the

storage medium of the SIMOTION device or is faulty. An immediate acknowledge-
ment is possible.

LMSGHDL_ERROR_CHECK_STARTUP_OK
 100.026 Not all the configured devices have been identified as ready. The message handling

cannot provide all the required information. An I/O module might have failed com-
pletely. The machine must be checked and, if required, restarted.

LMSGHDL_ERROR_CHANGE_LANGUAGE
 100.027 Error occurred while changing the language for output of the messages in STRING

format. It is not necessary to check the language files on the storage medium. An
immediate acknowledgement is possible.

LMSGHDL_ERROR_WRITE_MESSAGE_LOG_TO_STORAGE_MEDIUM
 100.028 Error occurred while writing to the message log on the storage medium of the

SIMOTION device. There may not be sufficient system resources available. An im-
mediate acknowledgement is possible.

LMSGHDL_OVERFLOW_BUFFER_DOSAFETY_MESSAGES
 100.029 The buffer to collect the safety messages on all drive objects has overflowed. The

LMSGHDL_NUMBER_OF_DO_SAFETY_MESSAGES constant must be increased in
the cPublic unit. An acknowledgement is possible. The triggering message could not
be taken over.

LMSGHDL_ILLEGAL_FUNCTION_BLOCK_ID
 100.030 An illegal functionBlockId was transferred when a user-defined message was called

by FBs/FCs. An immediate acknowledgement is possible.

Alarm and error messages
6.11 Reaction to internal errors

 Message Handling

98 Application Manual, 11/2016

Name of the constant Event
number

Meaning

LMSGHDL_ILLEGAL_ERROR_CLASS
 100.031 An illegal errorClass was transferred when a user-defined message was called by

FBs/FCs. An immediate acknowledgement is possible.
LMSGHDL_ERROR_IN_PERSITENT_DATA_POWER_MONITORING
 100.032 An error has occurred with the voltage for the backup of the non-volatile data.

Message Handling

Application Manual, 11/2016 99

 Application example 7
7.1 Defining machine error classes (example)

This application example shows the most important adaptations of a SIMOTION project. The
programming of the messages depends on the requirements of the user. This example can
therefore only show ideas for the implementation.

The following has been defined in this application example:
● Ten machine error classes

● Ten user-defined messages

● Messages for three FBs/FCs, each with four error classes

● Messages for two peripheral devices (SINAMICS Integrated drive and CU310 control
unit)

Editing machine error classes
The required error classes must be edited in the fLMsgHdlInit program unit.

Editing machine error classes for user-defined messages

Create the machine error classes as global constants. You can define a maximum of 31
machine error classes. Machine error classes can be defined for user-defined messages and
messages for peripheral devices.

Table 7- 1 Global constants

VAR_GLOBAL CONSTANT
 // AUTOMATICALLY GENERATED CODE SEQUENCE - DO NOT CHANGE!
 // <<** start label script counter**>>
 LMSGHDL_SCRIPT_COUNTER : USINT := 6;
 // <<** end label script counter **>>
 // END OF AUTOMATICALLY GENERATED CODE SEQUENCE

 //===
 // Defines for machine error classes
 // Only for definition of user-defined messages (application or FB/FC)
 // User-defined messages can use messageClass from 0 to 31
 //===
 LMSGHDL_NO_MACHINE_ERROR_CLASS : SINT :=-1;
 LMSGHDL_MACHINE_ERROR_CLASS0 : SINT :=0;
 LMSGHDL_MACHINE_ERROR_CLASS1 : SINT :=1;
 LMSGHDL_MACHINE_ERROR_CLASS2 : SINT :=2;
 LMSGHDL_MACHINE_ERROR_CLASS3 : SINT :=3;
 LMSGHDL_MACHINE_ERROR_CLASS4 : SINT :=4;
 LMSGHDL_MACHINE_ERROR_CLASS5 : SINT :=5;
 LMSGHDL_MACHINE_ERROR_CLASS6 : SINT :=6;

Application example
7.1 Defining machine error classes (example)

 Message Handling

100 Application Manual, 11/2016

 LMSGHDL_MACHINE_ERROR_CLASS7 : SINT :=7;
 LMSGHDL_MACHINE_ERROR_CLASS8 : SINT :=8;
END_VAR

Comment out the initialization of the machine error classes and adapt the machine error
classes to the structure that you require.

Table 7- 2 Initializing machine error classes for user-defined messages

//===
// Initialize machine error classes for user-defined messages
// The subindex is the eventNumber in FCLMsgHdlWriteMessageToBuffer if
// functionBlockId = 0 (no user-defined message from FB/FC)
//===
userDefinedMachineErrors[0] := LMSGHDL_MACHINE_ERROR_CLASS1;
userDefinedMachineErrors[1] := LMSGHDL_MACHINE_ERROR_CLASS2;
userDefinedMachineErrors[2] := LMSGHDL_MACHINE_ERROR_CLASS3;
userDefinedMachineErrors[3] := LMSGHDL_MACHINE_ERROR_CLASS1;
userDefinedMachineErrors[4] := LMSGHDL_MACHINE_ERROR_CLASS1;
userDefinedMachineErrors[5] := LMSGHDL_MACHINE_ERROR_CLASS4;
userDefinedMachineErrors[6] := LMSGHDL_MACHINE_ERROR_CLASS5;
userDefinedMachineErrors[7] := LMSGHDL_NO_MACHINE_ERROR_CLASS; // No ma-
chine error class used
userDefinedMachineErrors[8] := LMSGHDL_MACHINE_ERROR_CLASS6;
userDefinedMachineErrors[9] := LMSGHDL_MACHINE_ERROR_CLASS7;

Assigning machine error classes for messages from FBs/FCs

Table 7- 3 Initializing machine error classes for messages from FBs/FCs

//===
// Initialize machine error classes for FBs/FCs
// The subindex is the functionBlockId in FCLMsgHdlWriteMessageToBuffer
// You can use only four different error classes 0..3
//===
// LMSGHDL_FB/FC1
fBFCMachineErrorClasses[0].ai8ErrorClass[0] :=
LMSGHDL_MACHINE_ERROR_CLASS0;
fBFCMachineErrorClasses[0].ai8ErrorClass[1] :=
LMSGHDL_MACHINE_ERROR_CLASS1;
fBFCMachineErrorClasses[0].ai8ErrorClass[2] :=
LMSGHDL_MACHINE_ERROR_CLASS2;
fBFCMachineErrorClasses[0].ai8ErrorClass[3] :=
LMSGHDL_MACHINE_ERROR_CLASS3;
// LMSGHDL_FB/FC2
fBFCMachineErrorClasses[1].ai8ErrorClass[0] :=
LMSGHDL_MACHINE_ERROR_CLASS2;
fBFCMachineErrorClasses[1].ai8ErrorClass[1] :=
LMSGHDL_MACHINE_ERROR_CLASS3;
fBFCMachineErrorClasses[1].ai8ErrorClass[2] :=
LMSGHDL_MACHINE_ERROR_CLASS4;
fBFCMachineErrorClasses[1].ai8ErrorClass[3] :=
LMSGHDL_MACHINE_ERROR_CLASS5;

 Application example
 7.1 Defining machine error classes (example)

Message Handling

Application Manual, 11/2016 101

// LMSGHDL_FB/FC3
fBFCMachineErrorClasses[2].ai8ErrorClass[0] :=
LMSGHDL_MACHINE_ERROR_CLASS5;
fBFCMachineErrorClasses[2].ai8ErrorClass[1] :=
LMSGHDL_MACHINE_ERROR_CLASS6;
fBFCMachineErrorClasses[2].ai8ErrorClass[2] :=
LMSGHDL_MACHINE_ERROR_CLASS7;
fBFCMachineErrorClasses[2].ai8ErrorClass[3] :=
LMSGHDL_MACHINE_ERROR_CLASS8;

Assigning machine error classes for messages from peripheral devices

If you want to assign the messages from peripheral devices to a machine error class, you
have to create it.

Table 7- 4 Initializing machine error classes for messages from peripheral devices

//===
// Initialize message classes for peripheral devices
//===
// SINAMICS Integrated
peripheralDevices[0].i8MachineErrorClass := LMSGHDL_MACHINE_ERROR_CLASS4;
// CU 310
peripheralDevices[1].i8MachineErrorClass := LMSGHDL_MACHINE_ERROR_CLASS6;

Application example
7.2 Editing user-defined messages

 Message Handling

102 Application Manual, 11/2016

7.2 Editing user-defined messages
This section contains two examples of the editing of user-defined messages. You must
define the user-defined messages in the fLMsgHdlInit program unit.

Table 7- 5 Example of a user-defined message no. 4 with four additional values

// User-defined message 4
// 'User defined message 4. FB-ID: /1/%d, additional value 1: /2/%d, additional value 2:
/3/%d, error code: /4/%x'
userDefinedMessages[i16IndexCounter].sgLMsgHdlTextPart1 := 'User defined message 4. FB-
ID:';
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue1.b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_FB_ID;
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue1.b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[i16IndexCounter].sgLMsgHdlTextPart2 := ', additional value 1:';
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue2.b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_1;
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue2.b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[i16IndexCounter].sgLMsgHdlTextPart3 := ', additional value 2:';
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue3.b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_2;
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue3.b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[i16IndexCounter].sgLMsgHdlTextPart4 := ', error code:';
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue4.b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_ERROR_CODE;
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue4.b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_HEX;
i16IndexCounter := i16IndexCounter + 1;

Table 7- 6 Example of a user-defined message no. 2 with two additional values

// User-defined message 2
// 'User-defined message 2. additional value 1:/1/%d, additional value 2:/2/%d'
userDefinedMessages[i16IndexCounter].sgLMsgHdlTextPart1 := 'User-defined message 2. addi-
tional value 1:';
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue1.b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_1;
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue1.b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[i16IndexCounter].sgLMsgHdlTextPart2 := ', additional value 2:';
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue2.b8ValueNumber :=
LMSGHDL_USER_MESSAGE_ADDITIONAL_VALUE_2;
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue2.b8ValueType :=
LMSGHDL_USER_MESSAGE_VALUE_TYPE_DINT;
userDefinedMessages[i16IndexCounter].sgLMsgHdlTextPart3 := '';
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue3.b8ValueNumber := 0;
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue3.b8ValueType := 0;

 Application example
 7.3 Adapting constants in the cPublic library unit

Message Handling

Application Manual, 11/2016 103

userDefinedMessages[i16IndexCounter].sgLMsgHdlTextPart4 := '';
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue4.b8ValueNumber := 0;
userDefinedMessages[i16IndexCounter].ab8LMsgHdlAdditionalValue4.b8ValueType := 0;
i16IndexCounter := i16IndexCounter + 1;

7.3 Adapting constants in the cPublic library unit
Messages from three FBs/FCs are used in this application example. You must therefore
adapt the constants in the cPublic library unit.

Table 7- 7 Adapting constants in cPublic

//===
// Defines for user messages
//===

// If constant is TRUE AlarmS handling is active
LMSGHDL_ALARM_S_USER_MESSAGES : BOOL := TRUE;
// If constant is TRUE message bit handling is active
LMSGHDL_MESSAGE_BIT_USER_MESSAGES : BOOL := FALSE;

// Max. number of lines for HMI
LMSGHDL_MAX_NUMBER_OF_VISIBLE_LINES_FOR_HMI : USINT := 10;
// Max. length of strings for HMI
LMSGHDL_MAX_STRING_LENGTH_OF_MESSAGE_TEXTS_TO_HMI : INT := 80;

// Number of user-defined application events in project (set by user)
LMSGHDL_NUMBER_OF_USER_DEFINED_EVENTS : INT := 20;

// Number of function block IDs for machine error classes
LMSGHDL_NUMBER_OF_FUNCTION_BLOCK_IDS : INT := 3;

After all the adaptations have been made in the units, you have to accept and compile them.
You must then save the project and load it to the SIMOTION device.

Application example
7.4 Function call

 Message Handling

104 Application Manual, 11/2016

7.4 Function call
The function calls for user-defined messages and user-defined messages from FBs/FCs are
shown in this section.

You define the machine error class on the basis of the event number. You can transfer
additional information that is also to be output in the text in the two additional values.

Table 7- 8 Function call for user-defined messages of a function

//userdefined message
fcLMsgHdlWriteUserMessageToBuffer (eventnumber := gi16EventNo
 ,additionalValue1DINT := gi32AddValue1
 ,additionalValue2DINT := gi32AddValue2);

You can define a maximum of four error classes for user-defined messages from FBs/FCs.
They are transferred as parameters. You can assign a machine error class to each error
class.

Table 7- 9 Function call for user-defined messages in FBs/FCs

//userdefined message from FB / FC
fcLMsgHdlWriteFbFcMessageToBuffer (eventnumber := gi16EventNo
 ,errorClass := gu8ErrorClass
 ,errorCode := gb32ErrorCode
 ,functionBlockId := gi32FBId
 ,additionalValue1DINT := gi32AddValue1
 ,additionalValue2DINT := gi32AddValue2);

 Application example
 7.5 Display of the data from the message handling in the symbol browser of SIMOTION SCOUT

Message Handling

Application Manual, 11/2016 105

7.5 Display of the data from the message handling in the symbol
browser of SIMOTION SCOUT

Display of messages
After the user has made all the adaptations in the SIMOTION project, the relevant messages
and the associated data are displayed in the symbol browser of SIMOTION SCOUT. An
example of the most important data is shown in this section. In the example, four system
errors and two user-defined messages are present in the project.

In the buffer for active messages, the pLMsgHdl program unit, the following variables are
displayed in the gLMsgHdlActiveMessageString structure:
● Message source in the asgMessageSource array

Figure 7-1 Message source

● Message text in the asgMessageText array

Figure 7-2 Message text

● Time stamp in the asgMessageOccured array

Figure 7-3 Time stamp

In the fLMsgHdl program unit, the message types are displayed in the
gsLMsgHdlActiveMessageTypes structure.

Application example
7.5 Display of the data from the message handling in the symbol browser of SIMOTION SCOUT

 Message Handling

106 Application Manual, 11/2016

Figure 7-4 Message types

Message Handling

Application Manual, 11/2016 107

 Overview of the global variables A
A.1 Variables

Global variables
The following global variables are defined in the message handling:

Table A- 1 Global variables in the message handling

Name Data type Unit Use
gri16LMsgHdlCounterToIniRetainBuffer INT pLMsgHdl A constant is incremented by the

script when changes are made in the
message handling. This variable is
used during startup to decide wheth-
er the raw data in the retentive data
area (RETAIN) has to be initialized.
Retain data is deleted.

gboLMsgHdInitDriveReady BOOL pLMsgHdl Shows that the initialization software
of the message handling has been
run through in the BackgroundTask.
TRUE: The entire message handling
is active
FALSE: No messages can be ac-
cepted yet

gboLMsgHdlActivateNewMoMaData BOOL pLMsgHdl With TRUE, the information trans-
ferred during runtime for modular
machines is activated. After activa-
tion, the flag is removed by the mes-
sage handling.

gboLMsgHdlGlobalAcknowledge BOOL pLMsgHdl A global acknowledgement of all
active errors in the message han-
dling is triggered with a rising edge.
After the acknowledgement, the
value is reset to FALSE.

gi32LMsgHdlNumberOfMessageInLog BOOL pLMsgHdl Transfer of the number of the mes-
sage to be acknowledged (only with
single acknowledgement).

gboLMsgHdlStartChangeLanguage BOOL pLMsgHdl Change of the active language for
the message handling in STRING
format. Start with rising edge. The
message handling resets the varia-
ble to FALSE after the action.

gu8LMsgHdlActiveLanguage USINT pLMsgHdl Setting of the active language for the
message handling. With TRUE, start
of the language selection. Is auto-
matically reset by the message han-
dling.

Overview of the global variables
A.1 Variables

 Message Handling

108 Application Manual, 11/2016

Name Data type Unit Use
gboLMsgHdlStartWriteCompleteMessageLogToStorageMedium
 BOOL pLMsgHdl With a rising edge, the current mes-

sage log in raw data and STRING
format, as well as the information
required for the interpretation of the
raw data, is written to the storage
medium of the SIMOTION device.
The message handling resets the
variable to FALSE after the action.

gu32LMsgHdlDataSetNoForExportMessageLog
 UDINT pLMsgHdl Name of the file in which the current

message log is to be saved
Default: ds000000.dat

gu8LMsgHdlScrollStep USINT pLMsgHdl The number of messages to be
scrolled up or down in the display in
SIMOTION IT or in the HMI, can be
set here.
Default:
LMSGHDL_MAX_NUMBER_OF_VIS
IBLE_LINES_FOR_HMI from cPublic

gu8LMsgHdlNumberOfLinesForHMI USINT pLMsgHdl The number of messages to be dis-
played in SIMOTION IT or HMI can
be set here.
Default:
LMSGHDL_MAX_NUMBER_OF_VIS
IBLE_LINES_FOR_HMI from cPublic

gboLMsgHdlUpdateHMI BOOL pLMsgHdl Update of the active messages dis-
play on SIMOTION IT or HMI. Per-
formed with rising edge. This is then
reset by the message handling.

gboLMsgHdlScrollUp1 BOOL pLMsgHdl Scroll up one message in the list of
active messages. Performed with
rising edge. This is then reset by the
message handling.

gboLMsgHdlScrollUp BOOL pLMsgHdl Scroll up gu8ScrollStep lines in the
list of active messages. Performed
with rising edge. This is then reset by
the message handling.

gboLMsgHdlScrollDown1 BOOL pLMsgHdl Scroll down one message in the list
of active messages.

gboLMsgHdlScrollDown BOOL pLMsgHdl Scroll down gu8ScrollStep lines in
the list of active messages. Per-
formed with rising edge. This is then
reset by the message handling.

gboLMsgHdlGoToTop BOOL pLMsgHdl Jump to the start of the active mes-
sages.

gboLMsgHdlGoToEnd BOOL pLMsgHdl Jump to the end of the active mes-
sages.

 Overview of the global variables
 A.1 Variables

Message Handling

Application Manual, 11/2016 109

Name Data type Unit Use
gsLMsgHdlActiveMsgToHMI sLMsgHdlHMIActive

MsgSgType / sLMsg
HdlHMIActiveMsg
BaseDataType

pLMsgHdl List of the active messages that are
to be output on SIMOTION IT or
HMI.

gboLMsgHdlUpdateHMILog BOOL pLMsgHdl Update of the active messages dis-
play on SIMOTION IT or HMI. Per-
formed with rising edge. This is then
reset by the message handling.

gboLMsgHdlScrollUp1Log BOOL pLMsgHdl Scroll up 1 in the message log list.
Performed with rising edge. This is
then reset by the message handling.

gboLMsgHdlScrollUpLog BOOL pLMsgHdl Scroll up gu8ScrollStep lines in the
message log list. Performed with
rising edge. This is then reset by the
message handling.

gboLMsgHdlScrollDown1Log BOOL pLMsgHdl Scroll down 1 in the message log list.
Performed with rising edge. This is
then reset by the message handling.

gboLMsgHdlScrollDownLog BOOL pLMsgHdl Scroll down gu8ScrollStep lines in
the message log list. Performed with
rising edge. This is then reset by the
message handling.

gboLMsgHdlGoToTopLog BOOL pLMsgHdl Jump to the start of the message log.
gboLMsgHdlGoToEndLog BOOL pLMsgHdl Jump to the end of the message log.
gsLMsgHdlLogMsgToHMI sLMsgHdlHMIMsg

LogSgType/ sLMsg
HdlHMIActive
MsgBaseDataType

pLMsgHdl Message log list that is to be output
on SIMOTION IT or HMI.

gsLMsgHdlActiveMessagesBaseData sLMsgHdlActive
MessagesBase
DataType

pLMsgHdl Active messages in raw data format.

gi16LMsgHdlNumberOfDOsInProject INT pLMsgHdl Number of drive objects really pre-
sent in the project.

gsgLMsgHdlMessageLevel STRING[LMSGHDL_
STRING_LENGTH_OF
_MESSAGE_LEVEL]

pLMsgHdl Auxiliary variable for the decision as
to whether the language files have to
be loaded again from the storage
medium or not, after a restart of the
machine.

gsLMsgHdlDefaultMessages sLMsgHdlDefault
MessagesType

pLMsgHdl List of the system messages current-
ly used in the controller.

gasLMsgHdlToAxisMessages ARRAY[0..LMSGHDL_
NUMBER_OF_AXES_
ALARM_MESSAGES -
1] OF sLMsg
HdlTOMessagesType

pLMsgHdl List of the TO messages for axes
currently used in the controller.

gasLMsgHdlToFollowingObjects
Messages

ARRAY[0..LMSGHDL_
NUMBER_OF_
FOLLOWING_OBJECT
_ALARM_MESSAGES-
1] OF sLMsg
HdlTOMessagesType

pLMsgHdl List of the TO messages for following
objects currently used in the control-
ler.

Overview of the global variables
A.1 Variables

 Message Handling

110 Application Manual, 11/2016

Name Data type Unit Use
gasLMsgHdlToCamsMessages ARRAY[0..LMSGHDL_

NUMBER_OF_CAMS_
ALARM_MESSAGES -
1] OF sLMsg
HdlTOMessagesType

pLMsgHdl List of the TO messages for cams
currently used in the controller.

gasLMsgHdlToMeasuringInputsMessages ARRAY[0..LMSGHDL_
NUMBER_OF_MEASU
RING_INPUTS_ALAR
M_MESSAGES -1] OF
sLMsgHdl
TOMessagesType

pLMsgHdl List of the TO messages for measur-
ing inputs currently used in the con-
troller.

gasLMsgHdlToOutputCamsMessages ARRAY[0..LMSGHDL_
NUMBER_OF_
OUTPUT_CAMS_
ALARM_MESSAGES -
1] OF sLMsg
HdlTOMessagesType

pLMsgHdl List of the TO messages for output
cams currently used in the controller.

gasLMsgHdlToExternalEncodersMessag-
es

ARRAY[0..LMSGHDL_
NUMBER_OF_
EXTERNAL_
ENCODERS_ALARM_
MESSAGES - 1] OF
sLMsgHdlTO
MessagesType

pLMsgHdl List of the TO messages for external
encoders currently used in the con-
troller.

gasLMsgHdlToCamTracksMessages ARRAY[0..LMSGHDL_
NUMBER_OF_CAM_
TRACKS_ALARM_
MESSAGES - 1] OF
sLMsgHdlTO
MessagesType

pLMsgHdl List of the TO messages for cam
tracks currently used in the control-
ler.

gasLMsgHdlToTemperatureControl-
lersMessages

ARRAY[0..LMSGHDL_
NUMBER_OF_
TEMPERATURE_
CONTROLLERS_
ALARM_MESSAGES -
1] OF sLMsg
HdlTOMessagesType

pLMsgHdl List of the TO messages for tem-
perature controllers currently used in
the controller.

gasLMsgHdlToFixedGearsMessages ARRAY[0..LMSGHDL_
NUMBER_OF_FIXED_
GEARS_ALARM_
MESSAGES - 1] OF
sLMsgHdlTO
MessagesType

pLMsgHdl List of the TO messages for fixed
gears currently used in the controller.

gasLMsgHdlToAdditionObjectMessages ARRAY[0..LMSGHDL_
NUMBER_OF_
ADDITION_OBJECT_
ALARM_MESSAGES -
1] OF sLMsgHdl
TOMessagesType

pLMsgHdl List of the TO messages for addition
objects currently used in the control-
ler.

 Overview of the global variables
 A.1 Variables

Message Handling

Application Manual, 11/2016 111

Name Data type Unit Use
gasLMsgHdlToFormulaObjectMessages ARRAY[0..LMSGHDL_

NUMBER_OF_
FORMULA_OBJECT_
ALARM_MESSAGES -
1] OF sLMsg
HdlTOMessagesType

pLMsgHdl List of the TO messages for formula
objects currently used in the control-
ler.

gasLMsgHdlToSensorsMessages ARRAY[0..LMSGHDL_
NUMBER_OF_
SENSORS_ALARM_
MESSAGES - 1] OF
sLMsgHdlTO
MessagesType

pLMsgHdl List of the TO messages for sensors
currently used in the controller.

gasLMsgHdlToControllerObjectMessages ARRAY[0..LMSGHDL_
NUMBER_OF_
CONTROLLER_
OBJECT_ALARM_
MESSAGES - 1] OF
sLMsgHdlTO
MessagesType

pLMsgHdl List of the TO messages for control-
ler objects currently used in the con-
troller.

gasLMsgHdlToPathObjectMessages ARRAY[0..LMSGHDL_
NUMBER_OF_PATH_
OBJECT_ALARM_ME
SSAGES - 1] OF
sLMsgHdlTO
MessagesType

pLMsgHdl List of the TO messages for path
objects currently used in the control-
ler.

gai16LMsgHdlDOMessageIndex ARRAY[1..LMSGHDL_
MOST_SIGNIFICANT_
DO_MESSAGE_
NUMBER] OF INT

pLMsgHdl List of the DO message indices cur-
rently used in the controller.

gasgLMsgHdlDOMessages ARRAY[1..LMSGHDL_
NUMBER_OF_
DIFFERENT_DO_
MESSAGES] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_MESSAGE_TEXT]

pLMsgHdl List of the DO messages currently
used in the controller.

gsLMsgHdlSystemMessages sLMsgHdlSys-
temMessagesType

pLMsgHdl List of the system messages current-
ly used in the controller.

gasgLMsgHdlAcknowledgeClass ARRAY OF STRING pLMsgHdl List of the messages for the type of
acknowledgement currently used in
the controller.

gasgLMsgHdlMessageClass ARRAY OF STRING pLMsgHdl List of the messages for the mes-
sage class currently used in the
controller.

gasLMsgHdlMessageFBsFCs ARRAY OF STRING pLMsgHdl List of the messages for message
handling messages currently used in
the controller.

gasLMsgHdlUserDefinedMessages ARRAY[0..LMSGHDL_
NUMBER_OF_USER_
DEFINED_EVENTS - 1
] OF sLMsgHdl
UserMessagesType

fLMsgHdlInit List of the user-defined messages
currently used in the controller.

Overview of the global variables
A.1 Variables

 Message Handling

112 Application Manual, 11/2016

Name Data type Unit Use
gsLMsgHdlActiveMessageTypes sLMsgHdlActive

MessageTypesType
fLMsgHdl This structure displays from which

message source messages are ac-
tive.

gb32LMsgHdlMachineErrorClasses DWORD fLMsgHdl Display of the currently active ma-
chine error classes.

gi8LMsgHdlMachineErrorClass SINT fLMsgHdl Display of the machine error class
currently with the highest priority.

gab16LMsgHdlEventflag ARRAY[0..(LMSGHDL_
NUMBER_OF_USER_
DEFINED_EVENTS/16
)] OF WORD

fLMsgHdl Array for display of the active user-
defined messages for the message
bit handling.

gab16LMsgHdlAckFlag ARRAY[0..(LMSGHDL_
NUMBER_OF_USER_
DEFINED_EVENTS/16
)] OF WORD

fLMsgHdl Array for display of the user-defined
message acknowledgement for the
message bit handling.

gasLMsgHdlMessageFBsFCsForHMI ARRAY[0..LMSGHDL_
NUMBER_OF_
INTERNAL_
APPLICATION_
EVENTS - 1] OF
sLMsgHdlMessages
FromMessage
HandlingType

fLMsgHdl String texts used for internal mes-
sage handling messages. Required
in order to be able to interpret rele-
vant messages from buffers in raw
data format in the HMI.

gasLMsgHdlDOWithTOInfoForHMI ARRAY[0..LMSGHDL_
NUMBER_OF_DOS_
WITH_TO - 1] OF
sLMsgHdlDOWith
TONameType

fLMsgHdl Names of the DOs with TO. Re-
quired in order to be able to interpret
relevant messages from buffers in
raw data format in the HMI.

gasLMsgHdlCyclicDOInfoForHMI ARRAY[0..LMSGHDL_
NUMBER_OF_CYCLIC
_DOS - 1] OF sLMsg
HdlCyclicDOName-
Type

fLMsgHdl Names of the DOs with cyclic data
exchange. Required in order to be
able to interpret relevant messages
from buffers in raw data format in the
HMI.

gasLMsgHdlAcyclicDOInfoForHMI ARRAY[0..LMSGHDL_
NUMBER_OF_
ACYCLIC_DOS - 1] OF
sLMsgHdlAcyclic
DONameType

fLMsgHdl Names of the DOs without cyclic
data exchange. Required in order to
be able to interpret relevant messag-
es from buffers in raw data format in
the HMI.

gasgLMsgHdlAxisNames ARRAY[0..LMSGHDL_
NUMBER_OF_AXES-
1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured axes. Re-
quired in order to be able to interpret
relevant messages from buffers in
raw data format in the HMI.

gasgLMsgHdlExternalEncoderNames ARRAY[0..LMSGHDL_
NUMBER_OF_EXTER
NAL_ENCODERS-1]
OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured external
encoders. Required in order to be
able to interpret relevant messages
from buffers in raw data format in the
HMI.

 Overview of the global variables
 A.1 Variables

Message Handling

Application Manual, 11/2016 113

Name Data type Unit Use
gasgLMsgHdlMeasuringInputNames ARRAY[0..LMSGHDL_

NUMBER_OF_
MEASURING_INPUTS
-1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured measuring
inputs. Required in order to be able
to interpret relevant messages from
buffers in raw data format in the HMI.

gasgLMsgHdlOutputCamNames ARRAY[0..LMSGHDL_
NUMBER_OF_
OUTPUT_CAMS-1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured output cams.
Required in order to be able to inter-
pret relevant messages from buffers
in raw data format in the HMI.

gasgLMsgHdlCamTrackNames ARRAY[0..LMSGHDL_
NUMBER_OF_CAM_
TRACKS-1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured cam tracks.
Required in order to be able to inter-
pret relevant messages from buffers
in raw data format in the HMI.

gasgLMsgHdlCamNames ARRAY[0..LMSGHDL_
NUMBER_OF_CAMS-
1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured cams. Re-
quired in order to be able to interpret
relevant messages from buffers in
raw data format in the HMI.

gasgLMsgHdlFollowingObjectNames ARRAY[0..LMSGHDL_
NUMBER_OF_
FOLLOWING_OBJECT
-1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured following
objects. Required in order to be able
to interpret relevant messages from
buffers in raw data format in the HMI.

gasgLMsgHdlPathObjectNames ARRAY[0..LMSGHDL_
NUMBER_OF_PATH_
OBJECT1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured path objects.
Required in order to be able to inter-
pret relevant messages from buffers
in raw data format in the HMI. Only
when using the TP Path.

gasgLMsgHdlFixedGearNames ARRAY[0..LMSGHDL_
NUMBER_OF_FIXED_
GEARS-1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured fixed gears.
Required in order to be able to inter-
pret relevant messages from buffers
in raw data format in the HMI. Only
when using the TP Cam_ext.

gasgLMsgHdlAdditionObjectNames ARRAY[0..LMSGHDL_
NUMBER_OF_
ADDITION_OBJECT-1]
OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured addition
objects. Required in order to be able
to interpret relevant messages from
buffers in raw data format in the HMI.
Only when using the TP Cam_ext.

Overview of the global variables
A.1 Variables

 Message Handling

114 Application Manual, 11/2016

Name Data type Unit Use
gasgLMsgHdlFormulaObjectNames ARRAY[0..LMSGHDL_

NUMBER_OF_
FORMULA_OBJECT-1]
OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured formula
objects. Required in order to be able
to interpret relevant messages from
buffers in raw data format in the HMI.
Only when using the TP Cam_ext.

gasgLMsgHdlSensorNames ARRAY[0..LMSGHDL_
NUMBER_OF_
SENSORS-1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured sensors.
Required in order to be able to inter-
pret relevant messages from buffers
in raw data format in the HMI. Only
when using the TP Cam_ext.

gasgLMsgHdlControllerObjectNames ARRAY[0..LMSGHDL_
NUMBER_OF_
CONTROLLER_
OBJECT-1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured controller
objects. Required in order to be able
to interpret relevant messages from
buffers in raw data format in the HMI.
Only when using the TP Cam_ext.

gasgLMsgHdlTemperatureControl-
lerNames

ARRAY[0..LMSGHDL_
NUMBER_OF_
TEMPERATURE_
CONTROLLERS-1] OF
STRING[LMSGHDL_
STRING_LENGTH_OF
_TO_NAME]

fLMsgHdl Names of all configured temperature
controllers. These are required in
order to be able to interpret relevant
messages from the buffer in raw data
format in the HMI. Only when using
TControl.

gsLMsgHdlMessageLogString sLMsgHdlActive
MessageStringType

fLMsgHdl Message log in STRING format. Only
when STRING format has been
selected by the script.

grsLMsgHdlMessageLogBaseData sLMsgHdlMes-
sageLogBaseDataType

fLMsgHdl Message log in raw data format
(RETAIN).

grsLMsgHdlMessageLogBaseData-
GoneAndOccurred

sLMsgHdlMes-
sageLogBaseData-
GoneAndOccurred
Type

dLMsgHdl Alternative message variant (not
activated by default)

Message Handling

Application Manual, 11/2016 115

 Interpretation of the raw data B
B.1 Structure

Table B- 1 Table for the interpretation of the raw data in the message log and active messages, part 1

Message source TO messages DO messages
Error

DO messages
Alarm

I/O
messages

au8MessageSource
[USINT]

1 2 3 4

au8MessageLevel
[USINT]

Level
[USINT]

Level
[USINT]

Level
[USINT]

Level
[USINT]

au8AcknowledgeClass
[USINT]

Type of acknowl-
edgement
[USINT]

Type of acknowl-
edgement
[USINT]

Type of acknowl-
edgement
[USINT]

Type of acknowl-
edgement
[USINT]

au8ErrorClass
[USINT]

au16Parameter1
[UINT]

TO type

[USINT]

Axis reference as
number
[UINT]

Axis reference as
number
[UINT]

Event class

[UINT]

ai16Parameter2
[INT]

TO number
[INT]

IO_Id
[UINT]

IO_Id
[UINT]

Fault ID
[UINT]

ab32Parameter3
[DWORD]

Message number
[DINT]

Logical address of DO
[DINT]

Logical address of DO
[DINT]

Logical base address
INPUT
[DINT]

ab32Parameter4
[DWORD]

AddInfo1_DINT
[DINT]

DO number
[DINT]

DO number
[DINT]

Logical base address
OUTPUT
[DINT]

ab32Parameter5
[DWORD]

AddInfo2_DINT
[DINT]

Error info
[DINT]

Alarm info
[DINT]

Triggering
interrupt
[UDINT]

ab32Parameter6
[DWORD]

AddInfo3_DINT
[DINT]

Error code
[UINT]

Alarm code
[UINT]

DP slave diagnostics
address
[DINT]

ab32Parameter7
[DWORD]

AddInfo4_DINT
[DINT]

Type of DO
[INT]

Type of DO
[INT]

Detailed information
[DWORD]

ab32Parameter8
[DWORD]

AddInfo5_DINT
[DINT]

 Master system ID
[UDINT]

ab32Parameter9
[DWORD]

 DP slave address
[UDINT]

ab32Parameter10
[DWORD]

 Slot number
[UDINT]

Interpretation of the raw data
B.1 Structure

 Message Handling

116 Application Manual, 11/2016

Message source TO messages DO messages
Error

DO messages
Alarm

I/O
messages

ab32Parameter11
[DWORD]

 Sub-slot number
[UDINT]

adtMessageOccured
[DT]

Message occurred
[DT]

Message occurred
[DT]

Message occurred
[DT]

Message occurred
[DT]

adtMessageGone
[DT]

Message gone
[DT]

Message gone
[DT]

Message gone
[DT]

Message gone
[DT]

Table B- 2 Table for the interpretation of the raw data in the message log and active messages, part 2

Message source TimeFault
messages

ExecutionFault
messages

Message
restart

Messages
FC/FB

au8MessageSource
[USINT]

5 6 7 8

au8MessageLevel
[USINT]

Level
[USINT]

Level
[USINT]

Level
[USINT]

Level
[USINT]

au8AcknowledgeClass
[USINT]

Type of acknowl-
edgement
[USINT]

Type of acknowl-
edgement
[USINT]

Type of acknowl-
edgement
[USINT]

Type of acknowl-
edgement
[USINT]

au8errorClass
[USINT]

 au8ErrorClass
[USINT]

au16Parameter1
[UINT]

taskId
[UINT]

taskId
[UINT]

eventSource (startup)
[USINT]

au8toType
[USINT]

ai16Parameter2
[INT]

 ai16ToNumber
[INT]

ab32Parameter3
[DWORD]

Triggering interrupt
[UDINT]

Type of processing
error
[UDINT]

 eventNumber
[INT]

ab32Parameter4
[DWORD]

 ai32AdditionalValue1
[DINT]

ab32Parameter5
[DWORD]

 ai32AdditionalValue2
[DINT]

ab32Parameter6
[DWORD]

 ai32AdditionalValue3
[DINT]

ab32Parameter7
[DWORD]

 ai32AdditionalValue4
[DINT]

ab32Parameter8
[DWORD]

 ab32AdditionalValue5
[DWORD]

ab32Parameter9
[DWORD]

 ar32AdditionalValue6
[REAL]

ab32Parameter10
[DWORD]

 ai32FunctionBlockId
[DINT]

 Interpretation of the raw data
 B.1 Structure

Message Handling

Application Manual, 11/2016 117

Message source TimeFault
messages

ExecutionFault
messages

Message
restart

Messages
FC/FB

ab32Parameter11
[DWORD]

 ab32ErrorCode
[DWORD]

adtMessageOccured
[DT]

Message occurred
[DT]

Message occurred
[DT]

Message occurred
[DT]

Message occurred
[DT]

adtMessageGone
[DT]

Message gone
[DT]

Message gone
[DT]

Message gone
[DT]

Message gone
[DT]

Table B- 3 Table for the interpretation of the raw data in the message log and active messages, part 3

Message source User-defined mes-
sages

Messages through
message handling

DO safety messages

au8MessageSource
[USINT]

9 10 11

au8MessageLevel
[USINT]

Level
[USINT]

Level
[USINT]

Level
[USINT]

au8AcknowledgeClass
[USINT]

Type of acknowl-
edgement
[USINT]

Type of acknowl-
edgement
[USINT]

Type of acknowledgement
[USINT]

au8errorClass
[USINT]

u8ErrorClass
[USINT]

u8ErrorClass
[USINT]

u8ErrorClass
[USINT]

au16Parameter1
[UINT]

eventSource
[USINT]

eventSource
[USINT]

Axis reference as number
[INT]

ai16Parameter2
[INT]

 IO_Id
[UINT]

ab32Parameter3
[DWORD]

eventNumber
[INT]

eventNumber
[INT]

Logical address of DO
[DINT]

ab32Parameter4
[DWORD]

AddInfo1
[DINT]

AddInfo1
[DINT]

DO number
[DINT]

ab32Parameter5
[DWORD]

AddInfo2
[DINT]

AddInfo2
[DINT]

Safety info
[DINT]

ab32Parameter6
[DWORD]

 Safety code
[UINT]

ab32Parameter7
[DWORD]

 Safety code
[UINT]

ab32Parameter8
[DWORD]

ab32Parameter9
[DWORD]

ab32Parameter10
[DWORD]

 ai32FunctionBlockId
[DINT]

ab32Parameter11
[DWORD]

 ab32ErrorCode
[DWORD]

Interpretation of the raw data
B.2 Common information of all messages

 Message Handling

118 Application Manual, 11/2016

Message source User-defined mes-
sages

Messages through
message handling

DO safety messages

adtMessageOccured
[DT]

Message occurred
[DT]

Message occurred
[DT]

Message occurred
[DT]

adtMessageGone
[DT]

Message gone
[DT]

Message gone
[DT]

Message gone
[DT]

B.2 Common information of all messages

General
The global data buffer of the message information in raw data format is in the
grsLMsgHdlMessageLogBaseData structure in the fLMsgHdl program unit. This information
is stored in the retentive data area (RETAIN) and can be evaluated as follows.

The index in which the last entry in the buffer was stored by the message handling is stored
in grsLMsgHdlMessageLogBaseData.i16ActualIndex. The buffer is a ring buffer that is
written by the message handling in ascending order. When the last entry in the message
buffer is filled, the next entry is written again at index 0. The buffer is always sorted
according to the time stamp when the message occurred starting at the latest entry.

Message source

Table B- 4 Contents of the au8MessageSource[] cells

Message source Value [USINT]
Unknown source 0
TO messages 1
DO error 2
DO alarm 3
Peripheral messages 4
TimeFault messages 5
ExecutionFault messages 6
Restart message 7
Messages from FBs/FCs 8
User-defined messages 9
Messages through message handling 10
DO safety message 11

 Interpretation of the raw data
 B.2 Common information of all messages

Message Handling

Application Manual, 11/2016 119

Message level

Table B- 5 Contents of the au8MessageLevel[] cells

Message level [STRING] Value [USINT]
Unknown 0
Fault 1
Error 2
Alarm 3
Information 4
Safety message 5

Acknowledge class

Table B- 6 Contents of the au8AcknowledgeClass[] cells

Acknowledge class [STRING] Value [USINT]
Unknown 0
No acknowledgement 1
Immediately 2
Power On 3
Immediately / Power On 4

Error class

Table B- 7 Contents of the au8ErrorClass[] cells

Error class [STRING] Value [USINT]
Class0 0
Class1 1
Class2 2
Class3 3

Is only written by the FCLMsgHdlWriteFBFCMessageToBuffer function.

Interpretation of the raw data
B.3 Messages of the technology object

 Message Handling

120 Application Manual, 11/2016

B.3 Messages of the technology object

TO messages
The following cells are assigned values for messages from TOs

Table B- 8 au16Parameter1 [UINT] = TO type [USINT]

TO type Value [USINT]
All types of axes 1
Following object 2
Cam 3
Measuring input 4
Output cam 5
External encoder 6
Cam track 7
Temperature controller 8
Fixed gear 9
Addition object 10
Formula object 11
Sensor 12
Controller object 13
Path object 14

Based on the TO type, the TO name in STRING format belonging to the TO number can be
read out of the appropriate area from the fLMsgHdl program unit. The TO number
corresponds to the array index in which the name of the TO is stored.

Table B- 9 ai16Parameter2 [INT] = TO number [INT]

TO type Value [USINT] Array with the name of the TO belonging to the
number of the TO in the pLMsgHdl program unit

All types of axes 1 gasgLMsgHdlAxisNames
Following object 2 gasgLMsgHdlFollowingObjectNames
Cam 3 gasgLMsgHdlCamNames
Measuring input 4 gasgLMsgHdlMeasuringInputNames
Output cam 5 gasgLMsgHdlOutputCamNames
External encoder 6 gasgLMsgHdlExternalEncoderNames
Cam track 7 gasgLMsgHdlCamTrackNames
Temperature controller 8 gasgLMsgHdlTemperatureControllerNames
Fixed gear 9 gasgLMsgHdlFixedGearNames
Addition object 10 gasgLMsgHdlAdditionObjectNames
Formula object 11 gasgLMsgHdlFormulaObjectNames
Sensor 12 gasgLMsgHdlSensorNames

 Interpretation of the raw data
 B.4 Errors on the drive object

Message Handling

Application Manual, 11/2016 121

TO type Value [USINT] Array with the name of the TO belonging to the
number of the TO in the pLMsgHdl program unit

Controller object 13 gasgLMsgHdlControllerObjectNames
Path object 14 gasgLMsgHdlPathObjectNames

Therefore, for example, the name of the TO type = 2 with TO number = 5 is stored in
gasgLMsgHdlFollowingObjectName[5] in STRING format.

The following variables contain the numbers of the message belonging to the technology
object as well as the possible additional values belonging to the message. This information is
required in order to independently combine the appropriate message text including the
additional values.

ab32Parameter3 [DWORD] = message number [DINT] (TSI#alarmNumber) number of the
technological message

ab32Parameter4 [DWORD] = additional value 1 [DINT] (TSI#alarmP1_DINT)

ab32Parameter5 [DWORD] = additional value 2 [DINT] (TSI#alarmP2_DINT)

ab32Parameter6 [DWORD] = additional value 3 [DINT] (TSI#alarmP3_DINT)

ab32Parameter7 [DWORD] = additional value 4 [DINT] (TSI#alarmP4_DINT)

ab32Parameter8 [DWORD] = additional value 5 [DINT] (TSI#alarmP5_DINT)

The maximum five additional values of the technological messages are automatically
provided by the system in each of the three data types DINT, UDINT and REAL. So that all
additional values do not have to be saved in all data types, the additional values are stored
as a bit pattern in a variable of the DWORD data type and have to be converted in the
message text depending on the required format. I.e. if a technological message requires that
additional value 1 be interpreted in decimal format, additional value 1 from the message log
of DWORD must be converted to decimal format before it is integrated in the message text.
This applies for all additional values of technological messages in all the possible data
formats.

adtMessageOccured[DT] = time when message occurred in DT format

adtMessageGone[DT] = time when message gone in DT format

The other parameters are not assigned.

B.4 Errors on the drive object

Errors on the DO
There are three different types of drive objects (DOs) in the message handling:
● Drive objects with TO axis

● Drive objects with cyclic standard telegram

● Drive objects without cyclic standard telegram

To identify the individual DOs, different information is entered in the message buffer
depending on the type.

Interpretation of the raw data
B.4 Errors on the drive object

 Message Handling

122 Application Manual, 11/2016

The required information is stored in the following parameters:

au16Parameter1 [UINT] = axis reference as number [UINT] (TO number of the axis)
ai16Parameter2 [INT] = IO-ID [UINT] (value 0 = input, 1 = output)
ab32Parameter3 [DWORD] = logical address of the DO [DINT]
ab32Parameter4 [DWORD] = DO number [DINT]

These parameters are assigned as follows for the various DO types:

DO with TO axis

au16Parameter1 = number of the axis to which the DO belongs (see TO messages)
ai16Parameter2 = -1 (no IO-ID)
ab32Parameter3 = -1 (no logical address transferred)
ab32Parameter4 = 255 (no DO number transferred)

DO with cyclic standard telegram

au16Parameter1 = 0 (no TO axis assigned)
ai16Parameter2 = 0/1 (logical address is 0 = input or 1 = output)
ab32Parameter3 = logical address of the DO (logical address from HW Config)
ab32Parameter4 = 255 (no DO number transferred)

DO without cyclic standard telegram

au16Parameter1 = 0 (no TO axis assigned)
ai16Parameter2 = 0/1 (logical address is 0 = input or 1 = output)
ab32Parameter3 = a logical address of the device at which the DO is located
ab32Parameter4 = DO number (drive object number from the properties of the DO)

The information specifying the individual DO is stored in the fLMsgHdl program unit in the
gasLMsgHdlDOWithTOInfoForHMI, gasLMsgHdlCyclicDOInfoForHMI and
gasLMsgHdlAcyclicDOInfoForHMI variables.

DO with TO axis

gasLMsgHdlDOWithTOInfoForHMI : ARRAY[0..LMSGHDL_NUMBER_OF_AXES - 1] OF
sLMsgHdlDOWithTONameType;

 Interpretation of the raw data
 B.4 Errors on the drive object

Message Handling

Application Manual, 11/2016 123

Table B- 10 sLMsgHdlDOWithTONameType

Parameter Data type Description
sgDOName STRING[25] Name of the drive object connected to an axis.
sgCUName STRING[25] Name of the control unit on which the DO is located.

DO with cyclic standard telegram

gasLMsgHdlCyclicDOInfoForHMI : ARRAY[0..LMSGHDL_NUMBER_OF_CYCLIC_DOS - 1]
OF sLMsgHdlCyclicDONameType;

Table B- 11 sLMsgHdlCyclicDONameType

Parameter Data type Description
i32LogAddress DINT Logical address of the drive object.
i16IoId INT IO-ID of the logical address.

0 = INPUT
1 = OUTPUT

sgDOName STRING[25] Name of the drive object connected to an axis.
sgCUName STRING[25] Name of the control unit on which the DO is located.

DO without cyclic standard telegram

gasLMsgHdlAcyclicDOInfoForHMI : ARRAY[0..LMSGHDL_NUMBER_OF_ACYCLIC_DOS -
1] OF sLMsgHdlAcyclicDONameType;

Table B- 12 sLMsgHdlAcyclicDONameType

Parameter Data type Description
i32LogAddress DINT A logical address of the device at which the DO is located.
i16IoId INT IO-ID of the logical address.

0 = INPUT
1 = OUTPUT

u8DONumber USINT DO number of the drive object.
sgDOName STRING[25] Name of the drive object connected to an axis.
sgCUName STRING[25] Name of the control unit on which the DO is located.

ab32Parameter5 [DWORD] = additional value for the error [DINT] (contents of parameter

DOx.r0949)
ab32Parameter6 [DWORD] = error code [UINT] (contents of parameter DOx.r0945)
ab32Parameter7 [DWORD] = type of the DO with error [INT] (contents of parameter

DOx.r0107)

Interpretation of the raw data
B.5 Warnings on the drive object

 Message Handling

124 Application Manual, 11/2016

adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

B.5 Warnings on the drive object

DO alarms
The DO information for alarms on drive objects in the message handling is structured in the
same way as for DO errors.

ab32Parameter5 [DWORD] = additional value for the alarm [DINT] (contents of parameter

DOx.r2124)
ab32Parameter6 [DWORD] = number of the alarm [UINT] (contents of parameter

DOx.r2122)
ab32Parameter7 [DWORD] = type of the DO with alarm [INT] (contents of parameter

DOx.r0107)
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

B.6 Messages on the I/O

Peripheral messages

au16Parameter1 [UINT] = event class [UINT] (TSI#eventClass)
ai16Parameter2 [INT] = fault ID [UINT] (TSI#faultId)
ab32Parameter3 [DWORD] = logical base address of INPUT [DINT] (TSI#logBaseAdrIn)
ab32Parameter4 [DWORD] = logical base address of OUTPUT [DINT]

(TSI#logBaseAdrOut)
ab32Parameter5 [DWORD] = triggering interrupt [UDINT] (TSI#interruptId)
ab32Parameter6 [DWORD] = DP slave diagnostics address [DINT] (TSI#logDiagAdr)
ab32Parameter7 [DWORD] = detailed information [DWORD] (TSI#details)
ab32Parameter8 [DWORD] = master system ID of the relevant I/O module [UDINT] (as in

HW Config)
ab32Parameter9 [DWORD] = DP slave address [UDINT] (as in HW Config)
ab32Parameter10 [DWORD] = slot number [UDINT] (as in HW Config)
ab32Parameter11 [DWORD] = sub-slot number [UDINT] (as in HW Config)
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

 Interpretation of the raw data
 B.7 TimeFault messages

Message Handling

Application Manual, 11/2016 125

B.7 TimeFault messages
TimeFault messages can only occur in the BackgroundTask or a TimerInterruptTask.

Therefore, the information for TimeFault messages is created as follows:

au16Parameter1 [UINT] = task ID [UINT]
au16Parameter1 = 1 TimeFault in the BackgroundTask
au16Parameter1 = 2 TimeFault in a TimerInterruptTask
ab32Parameter3 [DWORD] = triggering event [UDINT] (TSI#interruptId)
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

B.8 ExecutionFault messages
ExecutionFault messages are triggered for program faults. As the SIMOTION device goes
into STOP mode after a program fault in a cyclic task, these messages are only taken into
the message handling after a restart of the SIMOTION device. These active messages must
be acknowledged.

The information for ExecutionFault messages is created as follows:

au16Parameter1 [UINT] = task ID [UINT] (this value is not supported)
ab32Parameter3 [DWORD] = type of execution fault [UDINT] (TSI#executionFaultType)
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

B.9 Messages through startup of the SIMOTION device
The message generated by the message handling at every startup of the SIMOTION device
has the following constant assignment:

au8MessageSource = 7 (message source is restart)
au8MessageLevel = 4 (note)
au8AcknowledgeClass = 1 (no acknowledgement required)
adtMessageOccured[DT] = time when message occurred in DT format (time of restart)
adtMessageGone[DT] = time when message gone in DT format (time of restart)

The messages for a startup of the SIMOTION device are only entered in the message log.
An active message is not generated.

Interpretation of the raw data
B.10 User-defined messages

 Message Handling

126 Application Manual, 11/2016

B.10 User-defined messages
These messages are generated by the user within the application by calling the
FCLMsgHdlWriteUserMessageToBuffer function.

ab32Parameter3 [DWORD] = number of the user-defined message [DINT]
ab32Parameter4 [DWORD] = Addinfo1 [DINT]
ab32Parameter5 [DWORD] = Addinfo2 [DINT]
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

B.11 User-defined messages for FB/FC and FB units
User-defined messages for FBs/FCs are generated within the application by calling the
FCLMsgHdlWriteFBFCMessageToBuffer function.

The common information of a message should be interpreted as follows:

au8ErrorClass [USINT] = error class of the FB/FC, which determines the machine error

class, which is set by the FB/FC.
ab32Parameter3 [DWORD] = number of the user-defined message [DINT]
ab32Parameter4 [DWORD] = additional value 1 [DINT]
ab32Parameter5 [DWORD] = additional value 2 [DINT]
ab32Parameter10 [DWORD] = unique number of the FB/FC is assigned by the user (func-

tionBlockId [DINT])
ab32Parameter11 [DWORD] = error code of the FB/FC [DWORD]
adtMessageOccured[DT] = time when message occurred in DT format
adtMessageGone[DT] = time when message gone in DT format

B.12 Messages through message handling
If an error occurs while processing the message handling, a user-defined message of the
message handling is triggered. The messages through the message handling are transferred
to the message handling by the FCLMsgHdlWriteFBFCMessageToBuffer function. The
messages start with event number 100.000 and are numbered consecutively. The text of the
message with number 100.000 is then at subindex 0, etc.

The messages through the message handling in STRING format and their structure are
stored in the fLMsgHdl program unit in the gasgLMsgHdlMessageFBsFCsForHMI array.

The array is instantiated as follows:

gasgLMsgHdlMessageFBsFCsForHMI :
ARRAY[0..LMSGHDL_NUMBER_OF_INTERNAL_APPLICATION_EVENTS - 1] OF sLMsgH-
dlMessagesFromMessageHandlingType

 Interpretation of the raw data
 B.12 Messages through message handling

Message Handling

Application Manual, 11/2016 127

sLMsgHdlMessagesFromMessageHandlingType has the following structure:

Table B- 13 sLMsgHdlMessagesFromMessageHandlingType

Parameter Data type Description
sgLMsgHdlTextPart1 STRING[160] First substring of the message through

the message handling
ab8LMsgHdlAdditionalValue1 ARRAY [0..1] OF BYTE Specification of number and format of

the possible first additional value of the
message.

sgLMsgHdlTextPart2 STRING[50] Second substring of the message
through the message handling

ab8LMsgHdlAdditionalValue2 ARRAY [0..1] OF BYTE Specification of number and format of
the possible second additional value of
the message.

sgLMsgHdlTextPart3 STRING[50] Third substring of the message
through the message handling

ab8LMsgHdlAdditionalValue3 ARRAY [0..1] OF BYTE Specification of number and format of
the possible third additional value of
the message.

Interpretation of the raw data
B.12 Messages through message handling

 Message Handling

128 Application Manual, 11/2016

Message Handling

Application Manual, 11/2016 129

 Contact C
C.1 Contacts

Siemens AG

Digital Factory

Factory Automation

Production Machines

 DF FA PMA APC

Frauenauracher Strasse 80

D-91056 Erlangen, Germany

Fax.: +49 9131 98 1297

tech.team.motioncontrol@siemens.com

Contact
C.2 Internet addresses

 Message Handling

130 Application Manual, 11/2016

C.2 Internet addresses
Additional information on various topics is provided on the following Internet pages.

See also
SIMOTION (www.siemens.com/simotion)

SINAMICS (www.siemens.com/sinamics)

Motion Control / Application Center (www.siemens.com/motioncontrol/apc)

Packaging (www.siemens.com/packaging)

SIMOTION Message Handling
(https://support.industry.siemens.com/cs/ww/en/view/48955585)

SIMATIC S7-1200/S7-1500 and SIMOTION: Acyclic Data Exchange
(https://support.industry.siemens.com/cs/ww/en/view/109479553)

SIMOTION easyProject (https://support.industry.siemens.com/cs/ww/en/view/51339107)
ProjectGenerator

http://www.siemens.com/simotion
http://www.siemens.com/sinamics
http://www.siemens.com/motioncontrol/apc
http://www.siemens.com/packaging
https://support.industry.siemens.com/cs/ww/en/view/48955585
https://support.industry.siemens.com/cs/ww/en/view/109479553
https://support.industry.siemens.com/cs/ww/en/view/51339107

	Table of contents
	1 Preface
	1.1 General information
	1.2 About this document
	2 Application description
	2.1 Field of application
	2.1.1 Description
	2.1.2 Field of application

	2.2 Objective
	2.2.1 Task
	2.2.2 Benefits

	2.3 Concept
	2.3.1 Illustration of the concept

	2.4 System overview (example)
	2.4.1 Automation overview (example)
	2.4.2 Hardware structure
	2.4.3 System requirements
	2.4.4 Scope of delivery

	3 Application structure
	3.1 Structure of the libraries
	3.1.1 Overview of the libraries
	3.1.2 Structure of the LMsgHdl library

	3.2 Structure of the units in the SIMOTION project
	3.3 Constants
	3.3.1 Public constants
	3.3.2 Changeable public constants

	3.4 Core functions and components
	3.4.1 Overview of the core functions and required components of the message handling
	3.4.2 Description of the core functions and required components
	3.4.2.1 Buffer management
	3.4.2.2 Description of the buffers
	3.4.2.3 Functions for entering user-defined messages
	3.4.2.4 AlarmS
	3.4.2.5 Message bit handling
	3.4.2.6 Response to execution faults in programs
	3.4.2.7 Message handling startup
	3.4.2.8 Acknowledgement of the active messages
	3.4.2.9 Filtering messages to an HMI / SIMOTION IT
	3.4.2.10 Modular machine
	3.4.2.11 DO safety messages
	3.4.2.12 Saving of the ShutdownTask buffer
	3.4.2.13 Saving the current message log in the SIMOTION device
	3.4.2.14 Loading the language from the storage medium of the SIMOTION device
	3.4.2.15 Single acknowledgement
	3.4.2.16 Common buffer for incoming/outgoing messages

	4 Integration
	4.1 Required technology objects
	4.2 Integration in the SIMOTION project
	4.2.1 Integration of the application into a SIMOTION project
	4.2.2 Suppressing messages
	4.2.3 Creating user-defined messages
	4.2.4 Embedding of the AlarmS handling or message bit handling
	4.2.5 Defining machine error classes

	4.3 Displaying messages via SIMOTION IT
	4.4 Important, frequently used variables
	5 Description of functions
	5.1 General information on the description of functions
	5.2 FBLMsgHdlActiveMsgSgToHMI function block
	5.2.1 General information on the function block
	5.2.2 Schematic representation in LAD/FBD
	5.2.3 Input and output parameters of the function block
	5.2.4 Structure for parameter transfer

	5.3 FBLMsgHdlMsgLogSgToHMI function block
	5.3.1 General information on the function block
	5.3.2 Schematic representation in LAD/FBD
	5.3.3 Input and output parameters of the function block
	5.3.4 Structure for parameter transfer

	5.4 FBLMsgHdlActiveMsgBaseDataToHMI function block
	5.4.1 General information on the function block
	5.4.2 Schematic representation in LAD/FBD
	5.4.3 Input and output parameters of the function block
	5.4.4 Structure for parameter transfer

	5.5 FBLMsgHdlMsgLogBaseDataToHMI function block
	5.5.1 General information on the function block
	5.5.2 Schematic representation in LAD/FBD
	5.5.3 Input and output parameters of the function block
	5.5.4 Structure for parameter transfer

	5.6 FCLMsgHdlWriteUserMessageToBuffer and FCLMsgHdlWriteFBFCMessageToBuffer functions
	5.6.1 General information on the functions
	5.6.2 Schematic representation in LAD/FBD
	5.6.3 Input and output parameters of the functions

	5.7 Structure for message log as raw data
	5.8 Structure for message log in STRING format
	6 Alarm and error messages
	6.1 General information on the error handling
	6.2 Buffer overflow
	6.3 Overflow of AlarmS messages
	6.4 Error during startup
	6.5 Messages by I/O modules
	6.6 DO safety messages
	6.7 User-defined messages
	6.8 Error during data exchange with DOs
	6.9 Particularity for alarms on drive objects
	6.10 Particularity for peripheral messages
	6.11 Reaction to internal errors
	7 Application example
	A Overview of the global variables
	B Interpretation of the raw data
	C Contact

	7.1 Defining machine error classes (example)
	7.2 Editing user-defined messages
	7.3 Adapting constants in the cPublic library unit
	7.4 Function call
	7.5 Display of the data from the message handling in the symbol browser of SIMOTION SCOUT
	A.1 Variables
	B.1 Structure
	B.2 Common information of all messages
	B.3 Messages of the technology object
	B.4 Errors on the drive object
	B.5 Warnings on the drive object
	B.6 Messages on the I/O
	B.7 TimeFault messages
	B.8 ExecutionFault messages
	B.9 Messages through startup of the SIMOTION device
	B.10 User-defined messages
	B.11 User-defined messages for FB/FC and FB units
	B.12 Messages through message handling
	C.1 Contacts
	C.2 Internet addresses

