

Motors

Low-Voltage Motors SIMOTICS SD – 1LE5

355 - 1000 kW

Catalog Add-on D 81.1 AO

Edition 03/2018

www.siemens.com/simotics

© Siemens AG 2018 Low-Voltage Motors SIMOTICS SD – 1LE5

Motors

Introduction

General Information regarding efficiency in accordance with International Efficiency, Guide to selection and ordering the motors, General technical specifications

SIMOTICS SD Stndard Motors next generation 1LE5

For reasons of readability, the chapter Introduction generally refers to motors and does not mention the MLFB fuselage. In this catalogue Add-on D81.1 AO the term motors refers to SIMOTICS SD next generation, Series 1LE5 frame sizes 400 and 450.

The products and systems described in this catalog are manufactured/distributed under application of a certified quality management system in accordance with EN ISO 9001 Certified Registration No. DE-000357 QM) The certificate is recognized by all IQNet countries. 2

1/2	Guide to selecting and ordering motors
1/3	Catalog orientation and drive selection
1/4	General information
1/4	Colors and paint finish
1/7	Electrical design
1/7	Rating plate and additional rating plates
1/8	Converter operation
1/9	Windings and insulation
1/11	Coolant temperature and installation altitude
1/12	Heating and ventilation
1/13	Connection, circuit, and terminal boxes
1/16	Mechanical design
1/16	Types of construction
1/16	Flange dimensions
1/17	Bearings and lubrication

Overview

Steps for drive selection

01			
Step 1	Orientation and general technical in		
Technical requirements for the motor	Rated frequency and rated voltage	50/60 Hz 3 AC, 380 690 V	
	Duty type		ious duty S1 according to EN 60034-1)
		, (
	Degree of protection	IP	
	Rated speed	<i>n</i> = rpm	
	Rated power	<i>P</i> = kW	
	Rated torque	$M = P \cdot 9550/n = \dots$	Nm
	Type of construction	IM	
Step 2	Preselection in accordance with the	e application	
Determination of the	Ambient temperature	\leq 40 °C	> 40 °C
installation conditions and definition of the application, if	Installation altitude	≤ 1000 m	> 1000 m
necessary	Factors for derating	None	Determine the factor for derating (for reduction factor, see "Coolant temperature and installation altitude" on Page 1/11)
Cross-reference to other motors	Motors for special requirements in exp standard.	losion protection and ap	oplications or motors according to the NEMA
Step 3	Preliminary selection of the motor		
Determination of the range of possible motors	Select the frame size and therefore the protection, rated power, rated speed a <u>Note:</u> The standard temperature range	ind rated torque range.	e basis of the following parameters: cooling method, degree of 20 to +40 °C.

Layout of the selection and ordering tables and description of the columns of the table headers

Powe tempe	r, frame erature (e size, class		Opera	ting val	ues at ra	ted power											Article add. da	No., ita	
Table	heade	r – Mea	aning																	
<i>P</i> rated, 50 Hz	Prated, 60 Hz	Prated, 60 Hz	Frame size	<i>n</i> rated, 50 Hz	<i>T</i> rated, 50 Hz	IE class	CC No. CC032A	η <i>rated,</i> 50 Hz, 4/4	η <i>rated,</i> 50 Hz, 3/4	η <i>rated,</i> 50 Hz, 2/4	cosφrate 50 Hz, 4/4	d, <i>l</i> rated, 50 Hz, 400 V	TLR/ Trated	ILR/ Irated	<i>Т</i> в/ <i>T</i> rated	LpfA, 50 Hz	<i>L</i> wa, 50 Hz	Article No.	<i>т</i> IM В3	J
kW	kW	hp	FS	rpm	Nm			%	%	%		A				dB (A)	dB (A)		kg	kgm ²
Rated power at 50 Hz	Rated power at 60 Hz	Rated power at 60 Hz	Frame size	Rated speed at 50 Hz	Rated torque at 50 Hz	Efficiency class according to IEC 60034-30-1	CC No. CC032A	Efficiency at 50 Hz, 4/4-load	Efficiency at 50 Hz, 3/4-load	Efficiency at 50 Hz, 2/4-load	Power factor at 50 Hz, 4/4-load	Rated current at 400 V, 50 Hz	Locked-rotor torque at direct switch-on as a multiple of the rated torque	Locked-rotor current at direct switch-on as a multiple of the rated current	Breakdown torque on direct switch-on as a multiple of the rated torque	Measuring-surface sound pressure level at 50 Hz	Sound power level at 50 Hz	Article number	Weight for IM B3 type of construction, approx.	Moment of inertia

Legend:

Primary key	
Standard values for all motors	
Specially for NEMA Energy Efficient MG1 motors, Table 12-11 or NEMA Premium Efficient MG1 motors, Table 12-12	

Note on pole-changing motors: The operating values are specified here for the rated power for the two different pole numbers.

•	0	•	· · ·
Step 4			Detailed selection of the motor in the selection and ordering data tables
Determining basic Article	the No. of the mot	tor	Determine the motor Article No. according to the following parameters: rated power, rated speed, rated torque and rated current from the "Selection and ordering data" for the motors that have already been identified as possibilities.
Step 5			Selection of the special versions or options
Completing t Article No.	he motor		Determine special versions and the associated order codes (e.g. special voltages and types of construction, motor protection and degrees of protection, windings and insulation, colors and paint finish, mountings and mounting technology, etc.).
Step 6			Additional information for motor selection
Checking the dimensions	e required		The dimensions are specified in each catalog section under the heading of "Dimensions".
Selection of t	the frequency required		For the Article No. of the converter and how to select it, see Catalogs D 11, D 18.1, D 21.3, D 31, and DA 51.2.

Catalog orientation and drive selection

Overview (continued)

Steps for drive selection in the catalog

1LE5 standard motors - next generation

Motor version	Efficiency class	Rated power at	Frame size – Motor type 400 450	Page
SIMOTIC	S SD Add cast-iron housing			
IEC	IE4 Super Premium Efficiency	355 … 1000 kW	1LE5534	2/9
	IE3 Premium Efficiency	355 … 1000 kW	1LE5533	2/11
SIMOTIC	S SD Pro cast-iron housing			
IEC	IE3 Premium Efficiency	335 … 980 kW	1LE5583	2/13

Overview (continued)

To protect the drives against corrosion and external influences, high-quality paint systems are available in various colors.

	Additional ident	ification code -Z with	h order code				
Standard version	S00	S01	S02	S03	S04	S05	S06
Paint finish, suitability	y of paint finish f	or climate group in	accordance with	IEC 60721-2-1			
Standard paint finish C2	Unpainted, but unfinished cast-iron surfaces are primed	Unpainted, motor primed	Special paint finish C3	Special paint finish system "sea air resistant" C4	Special paint finish system "offshore" C5	Interior paint finish, all bare internal components primed with rust inhibitor ¹⁾	Polyurethane- based top coat, standard version
Use							
Moderate (extended) for indoor and outdoor installation under a roof not directly exposed to weather conditions.	The motors can be supplied unpainted on request.	The motors can be supplied with just a primer coat on request.	Worldwide (global) for outdoor installation in direct sunlight and/or exposed to weather conditions.	Recommended for indoor or outdoor installation directly exposed to weather conditions, industrial climate with moderate SO ₂ exposure, VIK requirements, coastal ocean climate, e.g. for crane drives and for the paper industry.	Recommended for outdoor installation directly exposed to weather conditions, industrial climate with moderate SO ₂ exposure and offshore ocean climate, e.g. for crane drives.	The motors can be supplied with internal paint finish on request. Recommended when there is a risk of heavy condensate formation.	Direct sunlight (ultraviolet light) can change the color of the paint When color stability is a requirement, a polyurethane- based paint system is recommended for the top coat (RAL 7030). Other colors are available on request.
Test requirements acc	cording to EN ISC	D 12944-5 Corrosiv	ity Category				
C2	-	-	C3	C4	C5	-	-
Total film thickness –	nominal film thic	kness in µm ^{2) 3)}					
Motors in cast-iron vers							
Water-b. 2K polyurethane	Resin primer	Water-b. 2K polyurethane primer	Water-b. 2K polyurethane	Water-b. 2K polyurethane	Water-b. 2K polyurethane	2K epoxy resin/ 2K polyurethane primer	Water-b. 2K polyurethane
120	60	120	180	240	320	60	Film thickness similar to S03/S0
Resistance							
			For corrosive atmospheres up to 1 % acid and alkali concentration or permanent dampness in sheltered rooms.	Chemical exposure up to 5 % acid and alkali concentration.	Chemical exposure up to 5 % acid and alkali concentration.		Sunlight
Temperature range							
Up to 120 °C for brief periods Up to 100 °C continuously	-	-	Briefly up to 140 °C Continuously up to 120 °C	–40 … 140 °C	–40 … 140 °C		
Rel. air humidity at (te	emperature)						
60 % (40 °C)	-	-	100 % (40 °C)	75 % (50 °C)	75 % (60 °C)		

Table continues on the next page.

Colors and paint finish

Overview (continued)

	Additional ider	ntification code	-Z with order	code			
Standard version	S00	S01	S02	S03	S04	S05	S06
Suitability for recoating ⁷⁾							
	Can be recoa	ted within 1 w	eek				
Pre-treatment of parts							
	All parts clear	ned and degre	ased, steel and	d cast-iron parts sa	andblasted		
Drying							
	All layers ove	n-dried					
Top coat colors							
Standard version	RAL 7030 (st	one gray)					
Available colors	text of the rec available RAL	uired RAL nui _ numbers/RA	mber (see table	es for order codes			specification in plain e for selection of
Treatment of bare metal areas of shaft extensions and flanges							
	Coated with a	anti-corrosion a	agent that repe	ls water and palm	sweat		

Note:

For transport, the bare parts are coated with anti-corrosion paint that will last for a limited length of time.

Increased corrosion protection for exterior components (H90)

The corrosion protection of the motor can be expanded with the H90 option for exterior components. In conjunction with options for special paints (S00-S06) or other materials such as bolts made of stainless steel (H07), the corrosion protection can be adapted to special ambient conditions.

When the H90 option is ordered, the motor is as follows:

- Surfaces not visible from outside are painted with the film thickness ordered (S01-S04)
- · Bearing sealing with increased corrosion resistance
- Air inlet grille made of stainless steel
- For optional externally mounted components: cable installation in protective tubes with increased corrosion resistance

Depending on the level of salinity at the installation location, the following options may have to be ordered:

- 1) Machined laminated rotor core, shaft, inner diameter of cast-iron housing, interior surfaces of cast-iron bearing plates.
- 2) Total film thickness:
- The specified film thickness represents average values for the external motor surfaces
- Unpainted or one layer of paint (60 $\mu m)$ less beneath the fan cover
- The film thickness may differ at inaccessible locations (pockets/recesses or bases of ribs)
 The film thickness specified for aluminum/cast-iron versions refers not only to motors, but also to components such as the bearing plate and housing. Motors in a mixed aluminum/castiron version are also available.

- 1.Location with high salinity or areas with almost continuous condensation (corrosivity category C5-M / C5-I)
 - H90 Increased corrosion protection for exterior components
 - R53 Undrilled removable entry plate
 - H07 Rust-resistant screws (externally)
 - S04 Special paint for use offshore
 - S05 Internal coating

2.Location with moderate salinity (corrosivity category C4)

- H90 Increased corrosion protection for exterior components
- H07 Rust-resistant screws (externally)
- S03 Special paint finish sea air resistant
- S05 Internal coating

3.Location with low salinity (corrosivity category C3):

- H90 Increased corrosion protection for exterior components
- H07 Rust-resistant screws (externally)
- S02 Special paint finish C3
- S05 Internal coating

7) Primers, water-based 2K epoxy resin paints and polyurethane-based paints can be painted over with paints of the same kind if the motors are in the original packaging and are still covered by the warranty. A suitability test should be conducted before any recoating work is undertaken if the customer intends to use a coating of a different kind to overpaint the motor. Alternatively, a test in accordance with EN ISO 16927 "Determination of the overcoatability and recoatability of a coating" can be requested and ordered.

³⁾ n.a.

⁴⁾ n.a.

⁵⁾ n.a.

⁶⁾ n.a.

Colors and paint finish

Overview (continued)

Finish in other standard RAL colors – Order code Y53 (plain-text specification of the RAL number required)

RAL No.	Color name	RAL No.	Color name
3007	Black red	7000	Squirrel gray
5002	Ultramarine blue	7001	Silver gray
5007	Brilliant blue	7004	Signal gray
5009	Azure blue	7011	Iron gray
5010	Gentian blue	7016	Anthracite gray
5015	Sky blue	7022	Umbra gray
5017	Traffic blue	7031	Blue gray
5018	Turquoise blue	7032	Pebble gray
5019	Capri blue	7033	Cement gray
6011	Reseda green	7035	Light gray
6021	Pale green	9005	Jet black

The following weakly covering paints must be applied at least twice owing to their poor opacity. The standard finish for these colors is not possible and must be ordered with **S02**, **S03** or **S04**.

RAL No.	Color name
1002	Sand yellow
1013	Oyster white
1015	Light ivory
1019	Gray beige
2003	Pastel orange
2004	Pure orange
3000	Flame red
5012	Light blue
6019	Pastel green
9001	Cream white
9002	Gray white

Paint finish in special RAL colors – Order code Y56 (plain-text specification of the RAL number required)

RAL No.	Color name	RAL No.	Color name
3004	Purple red	6034	Pastel turquoise
3011	Brown red	6034	Pastel turquoise
3015	Light pink	7005	Mouse gray
3020	Traffic red	7009	Green gray
4005	Blue lilac	7012	Basalt gray
5000	Violet blue	7015	Slate gray
5001	Green blue	7023	Concrete gray
5003	Sapphire blue	7036	Platinum gray
5005	Signal blue	7037	Dusty gray
5011	Steel blue	7038	Agate gray
5013	Cobalt blue	7039	Quartz gray
5014	Pigeon blue	7040	Window gray
5020	Ocean blue	7042	Traffic gray A
5021	Water blue	7044	Silk gray
5022	Night blue	7045	Telegray 1
5023	Distant blue	7046	Telegray 2
6000	Patina green	7047	Telegray 4
6001	Emerald green	8012	Red brown
6002	Leaf green	8025	Pale brown
6005	Moss green	8028	Terra brown
6009	Fir green	9003	Signal white
6010	Grass green	9004	Signal black
6016	Turquoise green	9006	White aluminum
6017	May green	9007	Gray aluminum
6018	Yellow green	9010	Pure white
6024	Traffic green	9011	Graphite black
6026	Opal green	9016	Traffic white
6029	Mint green	9017	Traffic black
6032	Signal green		

The following weakly covering paints must be applied at least twice owing to their poor opacity. The standard finish for these colors is not possible and must be ordered with **S02**, **S03** or **S04**.

RAL No.	Color name
1003	Signal yellow
1004	Golden yellow
1006	Maize yellow
1007	Daffodil yellow
1012	Lemon yellow
1014	lvory
1018	Zinc yellow
1021	Rape yellow
1023	Traffic yellow
1028	Melon yellow
1032	Broom yellow
1033	Dahlia yellow
2008	Bright red orange
2009	Traffic orange
2010	Signal orange
3002	Carmine red
5024	Pastel blue
6027	Light green

Coating structure and colors not specified in the catalog are available on request.

Rating plate and additional rating plates

Overview (continued)

EN 60034-1 specifies that, for all motors, the approximate total weight be indicated on the rating plate.

Supplementary data (maximum of 20 characters) can be indicated on the rating plate or additional rating plate and on the packaging label.

Order code Y84.

An additional rating plate for customer specifications is also possible, additional text: 9 lines of 40 characters each. Order code **Y82.**

An additional rating plate with deviating rating plate data can also be ordered (only for ratings such as voltage, power, speed).

Örder code Y80.

An "additional rating plate for voltage tolerance" can also be ordered.

Can be ordered for 400 V Δ /690 VY (voltage code "34"). Order code **B07.**

The number of rating plates and/or the material quality of the rating plate including additional rating plates can be ordered using order codes Y82, Y84 and Y80. Does not apply to order code B07, rotational direction arrows, PTC thermistor plates, other notices.

- Additional (rating) plate(s),
- Order code M10.

• Plate(s) with resistance to scratches, heat, cold, and acid, Order code **M11** (standard version).

In the standard version, the rating plate is available in international format or in German/English.

The language for the rating plate can be ordered by specifying in plain text. An overview of the languages that can be ordered is provided in the table below.

Overview of languages on the rating plate

Motor type	Frame size	Rating plate in German (de)	English (en)
1LE5	400 450		0

Standard version

Without additional charge

Other languages on request

		25	17 4	30		2 22		2	23	
	SIE	1			D)'		R NE			
				-	71	.			3 H	C 6+
1-	Made in Ge 3~Mot. 1			D-90441 E10231				10842 001		
4-	- IEC/EN 6				IP55-			Brake		_
5-		Th.Cl.				B<=45°C	2000	M 2LM8	040-5NA10	_
1-	RINA	B	earing	U	NIREX	N3		230V	AC 50/60Hz	1.25A
6-			209-2ZC			TERVAL:	2000h	TH.CI	155(F) 40N	m
3-	10	NE 6	209 ¹ 2ZC	SO				5 <u>9</u> .		\circ
4-		ration	B 60H	Iz: SF	-		MG1 1		C DESA	25.0 HP
- 00	V	Hz	A	kW	PF	NOM.EFF	rpm	IE-CL		CL
6-	-400 A	50	32.0	18.5	0.90	92.4	2955	IE3		M
7-	-690 Y	50	18.6	18.5	0.90	92.4	2955	IE3		M
8-	- 460 A	60	32.0	21.3	0.91	91.7	3550	IE3		M
9-	-460 A	60	28.0	18.5	0.90	91.7 No. 123456	3560	IE3	a Usatas 22	N
	KUNO.	123450	010999	111	MAI	123450	0	Space	ce Heater 23	EN 00891
	6	Ż	8	9	10	11	12	13	0_000	
1	Machine	e tvo	e [.] Th	ree-n	hase	20	Ins	tallation	altitude	(only
۰.	low-volt				11430	~			er than 1	
2	Article		motor			2			data (opt	
	Factory		al nur	nhor		22	1 1 2 3 3 3 7 1			e YYMM
9						6.6			inactu	
				num	ner)	23			alancing	
А	(Identr	no., s	serial		ber)	23	B Hal	f-key ba	alancing	
	(Identr Type of	no., s cons	serial structi	ion	ber)	24	Hal	lf-key ba de lette	r "CL"	(MT)
5	(Identr Type of Degree	no., s cons of pr	serial structi rotect	ion ion		24 25	Hal Co Mo	f-key ba de letter tor type	r "CL" number	
5	(Identr Type of Degree Rated v	no., s cons of pr oltag	serial structi rotect ge [V]	ion ion		24 25	Hall Con Mo E IEC	f-key ba de lette tor type standa	r "CL" number ard serie	s, power
5	(Identr Type of Degree Rated v connect	no., s cons of pr oltag tions	serial structi rotect ge [V]	ion ion		24 25 ing 20	Hal Con Mo E IEC 50	If-key ba de letter tor type standa Hz (P50	number ard series 0/50 Hz)	s, power 400Δ
567	(Identr Type of Degree Rated v connect	no., s cons of pr oltag tions ncy [l	serial structi rotect ge [V] Hz]	ion ion		24 25	Hal Con Mo E E S0 F IEC	f-key ba de letter tor type standa Hz (P50 standa	r "CL" number ard series 0/50 Hz) ard series	s, power 400 ∆ s, power
5 6 7 8	(Identr Type of Degree Rated v connect Frequer Rated of	no., s cons of pr oltag tions ncy [l	serial structi rotect ge [V] Hz] nt [A]	ion ion and		24 25 ing 26 27	 Hal Con Mo Mo IEC 50 IEC 50 	If-key ba de letter tor type standa Hz (P50 standa Hz (P50	r "CL" number ard series 0/50 Hz) ard series 0/50 Hz)	s, power 400 ∆ s, power 690 ∆
56789	(Identr Type of Degree Rated v connect Frequer Rated c Rated p	no., s cons of pr voltag tions ncy [l curren	serial structi rotect ge [V] Hz] nt [A] r [kW	ion ion and		24 25 ing 20	 Hall Control Mode IEC 50 IEC 50 Equal 	f-key ba de letter tor type standa Hz (P50 standa Hz (P50 uivalent	r "CL" number ard series 0/50 Hz) ard series 0/50 Hz) power 6	s, power 400Δ s, power 690Δ 60 Hz at
5 6 7 8 9	(Identr Type of Degree Rated v connect Frequer Rated of Rated p Power f	no., s cons of pr oltag tions ncy [l curren owe factor	serial structi rotect ge [V] Hz] nt [A] r [kW	ion ion and		24 25 ing 26 27	Hal Con Mo E E Con E C Con E C Con E C Con E C Con E C Con E C Con E C C Con E C Con E C C Con E C C C C C C C C C C C C C C C C C C	If-key ba de letter tor type Standa Hz (P50 Standa Hz (P50 uivalent same u	r "CL" number ard series 0/50 Hz) ard series 0/50 Hz) power 6 utilization	s, power 400Δ s, power 690Δ 50 Hz at as IEC
5 6 7 8 9 0	(Identr Type of Degree Rated v connect Frequer Rated o Rated p Power f Efficient	no., s cons of pr oltag tions ncy [l curren owe factor cy	serial structi rotect ge [V] Hz] nt [A] r [kW r (cos	ion ion and] φ)		24 25 20 21 21	Hal Con Mo File So Fi So File So File So File So File So File So File So File So File	If-key ba de letter tor type Standa Hz (P50 Standa Hz (P50 uivalent same u ndard s	r "CL" and series 0/50 Hz) ard series 0/50 Hz) power 6 utilization eries 50	s, power 400Δ s, power 690Δ 60 Hz at as IEC Hz
5 6 7 8 9 0 1 2	(Identr Type of Degree Rated v connect Frequer Rated o Rated p Power f Efficient Rated s	no., s of pr oltag tions ncy [l curren oowe factor cy	serial structi rotect ge [V] Hz] nt [A] r [kW r (cos	ion ion and] φ)		24 25 ing 26 27	Hal Con Mo Mo E S0 F IEC 50 F IEC 50 E qu the sta IEC	If-key ba de letter tor type Standa Hz (P50 Standa Hz (P50 Juivalent same u ndard s Standa	r "CL" number ard serie: 0/50 Hz) ard serie: 0/50 Hz) power 6 utilization eries 50 ard serie:	s, power 400Δ s, power 690Δ 60 Hz at as IEC Hz
0 1 2 3	(Ident Type of Degree Rated v connect Frequer Rated of Rated p Power f Efficient Rated s IE efficient	no., s cons of pr oltag tions ncy [l curren bowe factor cy speed ency	serial structi rotect ge [V] Hz] nt [A] r [kW r (cos d [rpm class	ion ion and] φ)] s	wind	24 25 26 27 28 28	Hal Con Mo E E E C 50 F E C 50 E Q the sta E C 60	If-key ba de letter tor type standa Hz (P50 standa Hz (P50 uivalent same u ndard s standa Hz (P50	r "CL" number ard serie: 0/50 Hz) ard serie: 0/50 Hz) power 6 utilization eries 50 ard serie: 0/60 Hz)	s, power 400Δ s, power 690Δ 50 Hz at as IEC Hz s power
5 6 7 8 9 0 1 2 3 4	(Ident1 Type of Degree Rated v connect Frequer Rated of Rated p Power f Efficient Rated s IE efficient Standar	no., s cons of pr voltag tions ncy [l curren bowe factor cy ency rds a	serial structi rotect ge [V] Hz] nt [A] r [kW r (cos d [rpm class nd sp	ion ion and] φ)] s pecific	wind	24 25 26 27 28 28 28 28 28	Hal Con Mo Mo E S0 F E C S0 E C S0 E C S0 E C S0 E C S0 E C S0 E C S0 S E C S0 S E C S0 S S0 S	If-key ba de letter tor type Standa Hz (P50 Standa Hz (P50 uivalent same u ndard s Standa Hz (P50 nufactu	r "CL" number ard series 0/50 Hz) ard series 0/50 Hz) power 6 utilization eries 50 ard series 0/60 Hz) rer's add	s, power 400Δ s, power 690Δ 50 Hz at as IEC Hz s power
56 789012345	(Ident1 Type of Degree Rated v connect Frequer Rated c Rated p Power f Efficient IE efficient Standar Weight	no., s cons of pr oltag tions ncy [l curren owe factor cy speed ency rds a of m	serial structi rotect ge [V] Hz] nt [A] r [kW r (cos d [rpm class nd sp achin	ion ion and] ;φ)] ; s pecific e [kg	wind	24 25 26 27 28 28 28 28 28 31 31 31	Hai Con Mo E So F So F So So F So So So E So So So So So So So So So So So So So	If-key ba de lette tor type standa Hz (P50 standa Hz (P50 uivalent same u ndard s standa Hz (P50 nufactu rine cer	r "CL" number ard serie: 0/50 Hz) ard serie: 0/50 Hz) power 6 utilization eries 50 ard serie: 0/60 Hz) rer's add tificates	s, power 400Δ s, power 690Δ 60 Hz at as IEC Hz s power tress
56 78901234	(Ident1 Type of Degree Rated v connect Frequer Rated of Rated p Power f Efficient Rated s IE efficient Standar	no., s cons of pr oltag tions ncy [l curren owe factor cy ency rds a of m ature	serial structi rotect ge [V] Hz] nt [A] r [kW r (cos d [rpm class nd sp achin	ion ion and] ;φ)] ; s pecific e [kg	wind	24 25 26 27 28 28 28 28 28	Hai Hai Hai Hai Hai Hai Hai Hai Hai Hai	If-key ba de lette tor type standa Hz (P50 standa Hz (P50 uivalent same u ndard s standa Hz (P50 nufactu rine cer	r "CL" number ard serie: 0/50 Hz) ard serie: 0/50 Hz) power 6 utilization eries 50 ard serie: 3/60 Hz) rer's add tificates formatio	s, power 400Δ s, power 690Δ 60 Hz at as IEC Hz s power tress

19 Operating temperature range (only if it deviates from

standard)

Converter operation

Overview (continued)

All motors in the SIMOTICS generation are equipped with innovative insulation systems, consisting of high-quality enamel wires and insulating sheet materials in conjunction with highly temperature-resistant impregnations.

The motors can be operated with SINAMICS G and SINAMICS S converters (controlled and uncontrolled infeed) while adhering to the admissible voltage peaks in accordance with the table below.

Continuous operation while fully utilizing the admissible voltage tolerances must be avoided and is not recommended in accordance with IEC 60034-1 2011 Chapter 7.3.

The preferred supply system configurations are TT systems and TN systems with neutral-point grounding. We do not recommend operation in corner-grounded TN systems because of the higher voltage load.

Operation on non-grounded IT systems is also possible. However, when a ground fault occurs, the insulation is excessively stressed. In the case of a ground fault, the process should be terminated as quickly as possible (t < 2 h), and the fault resolved.

For motors with protruding connection cables (order codes **R21**, **R23**, and **R24**), please inquire in the case of converter operation.

Impulse Voltage Insulation Class (IVIC) – category C (strong)

The insulation system of SIMOTICS motors

significantly exceeds the requirements of stress category C (IVIC C = high stress). If voltage peaks higher than those specified according to IVIC C can occur, observe the data in the following table.

- For a line voltage (converter input voltage) up to max. 500 V and operation connected to a SINAMICS G/SINAMICS S converter with uncontrolled infeed (BLM, SLM), the relevant guidelines for the motor and converter configuration must be observed.
- For a line voltage (converter input voltage) up to max. 480 V and operation connected to a SINAMICS S converter with controlled infeed (ALM), the relevant guidelines for the motor and converter configuration must be observed.
- For line voltages (converter input voltages) higher than those stated above (max. 690 V), motors that are ordered for converter operation must have a suitable insulation system.
- For operation of a converter of another manufacturer, the permissible voltage peaks according to IEC 60034-18-41 in accordance with stress category C (see table below) must be observed, depending on the particular line voltage (converter input voltage) and the motor insulation system.

		Line voltage U _{rated} 400 V 480 V 500 V						
		400 V	/	480 \	480 V		1	
Standard		IVIC (C Sieme	ns IVIC (C Sieme	ns IVIC C	Siemens	
Uphase-to-ground	Vpk/pk	1680	2200	2016	2200	2100	2200	
\hat{U} phase-to-ground	Vpk	840	1100	1008	1100	1050	1100	
Ûphase-to-ground Uphase-to-phase	Vpk Vpk/pk	840 2360	1100 3000	1008 2832	1100 3000	1050 2950	1100 3000	

The following applies for the voltage rise time: $T_a > 0.3 \ \mu s$

The voltages according to EN 60034-18-41/IVIC C are specified as peak-to-peak values (Vpk/pk). For information, the conventional peak values (Vpk) are also stated.

Insulation systems for converter operation > 480 V/500 V

The SIMOTICS motors can be operated in their standard version on SINAMICS converters without an additional filter up to a maximum converter input voltage of 500 V 3 AC on uncontrolled infeeds (SINAMICS G/S/V, BLM/SLM) and up to 480 V 3 AC on controlled infeeds (SINAMICS S, ALM). The specific configuration guidelines for motors and converters must be observed.

For higher converter input voltages, > 480 V/500 V 3 AC, a special insulation system of the motor (PREMIUM) is required. This is available for converter motors, such as SIMOTICS GP/SD VSD10, SIMOTICS DP crane motors, SIMOTICS FD, and the converter-capable SIMOTICS SD Pro motors.

For IE3 standard motors as of frame size 225, the PREMIUM insulation system is available on request.

Bearing insulation/shaft grounding brushes for converter operation

To avoid damage to bearings caused by bearing currents, we recommend bearing insulation at the non-drive end (NDE) for frame size 225 and larger (order code **L51**).

For frame size 315 and larger, bearing insulation at the nondrive end (NDE) is always provided (order code **L51**).

When rotary encoders are used, it must be ensured that these do not bypass the bearing insulation. The rotary encoders in this catalog meet this requirement except for type 1XP8.

In most cases, NDE bearing insulation provides sufficient protection against damage to bearings due to bearing currents.

In rare cases, depending on the application and system, it may be necessary to take further measures on the converter or motor. On the motor side, bearing insulation is available on the non-drive end (NDE) (order code L51) and shaft grounding brushes (order code L52).

When NDE bearing insulation is used together with DE bearing insulation, the option "shaft grounding brush" must additionally be selected to keep the shaft at a defined potential. In this constellation, to avoid damage to the bearings of the driven machine due to bearing currents, it is also necessary to insulate the coupling between the motor and the driven machine.

The EMC guidelines must always be complied with when the drive system is installed.

Thermal utilization of the motor

When motors are operated on a converter, additional losses occur due to the harmonics in the motor currents, which, depending on the permissible winding temperature, can make it necessary to reduce the torque. For operation on SINAMICS converters, the permissible torque values can be obtained from the SIZER engineering tool.

For operation on SINAMICS converters with the power ratings specified in the catalog, the motors are used according to temperature class 155 (F), i.e. in this case neither a service factor > 1 nor an increased coolant temperature is possible (order codes **N02** and **N03** cannot be ordered).

Overview (continued)

DURIGNIT IR 2000 insulation

The DURIGNIT IR 2000 insulating system consists of highquality enamel wires and insulating sheet materials in conjunction with temperature-resistant resin impregnation.

This ensures that these motors will have a high mechanical and electrical strength, high service value, and a long service life. The insulating system protects the winding to a large degree against aggressive gases, vapors, dust, oil, and increased air humidity. It can withstand the usual vibration stressing. The insulation is suitable up to an absolute air humidity of 30 g water per m³ of air. Moisture condensation should be prevented from forming on the winding.

For higher values, the **N30** and **N31** options are available – see page 1/10.

Please inquire about extreme applications.

Winding and insulation version with regard to temperature class

At rated power in line operation, the motors can be utilized in the following temperature class:

- For Simotics SD Add: temperature class 130 (B)
- For Simotics SD Pro: temperature class 155 (F)

Temperature class 155 (F), utilized acc. to 155 (F),

with service factor (SF)

All motors with frame sizes 400 and 450 have a service factor of 1.05 at rated power in line operation. Order code **N01**

Temperature class 155 (F), utilized acc. to 155 (F), for higher power

When utilized in line operation according to temperature class 155 (F), the rated power specified in the selection and ordering data can be increased by 5 %. In this case, the service factor is 1.0. Order code **N02**

Temperature class 155 (F), utilized acc. to 155 (F), with increased coolant temperature

In line operation, with power as defined in the catalog, the coolant temperature is permitted to rise to 45 $^{\circ}$ C. In this case, the service factor is 1.0. Order code **N03**

In the case of converter-fed operation at the power specified in the catalog, the motors are utilized according to temperature class 155 (F). Order codes **N02** and **N03** are not possible.

Temperature class 155 (F), utilized acc. to 130 (B), coolant temperature 45 °C, derating approx. 4 %

The Simotics SD Add motor series can be ordered according to temperature class 155 (F) for utilization according to temperature class 130 (B) and a maximum coolant temperature of 45 °C with derating of 4 %. Order code **N05**

Temperature class 155 (F), utilized acc. to 130 (B), coolant temperature 50 °C, derating approx. 8 %

The Simotics SD Add motor series can be ordered according to temperature class 155 (F) for utilization according to temperature class 130 (B) and a maximum coolant temperature of 50 °C with derating of 8 %. Order code **N06**

Temperature class 155 (F), utilized acc. to 130 (B), coolant temperature 55 °C, derating approx. 13 %

The Simotics SD Add motor series can be ordered according to temperature class 155 (F) for utilization according to temperature class 130 (B) and a maximum coolant temperature of 55 °C with derating of 13 %.

Order code N07

Temperature class 155 (F), utilized acc. to 130 (B), coolant temperature 60 °C, derating approx. 18 %

The Simotics SD Add motor series can be ordered according to temperature class 155 (F) for utilization according to temperature class 130 (B) and a maximum coolant temperature of 60 °C with derating of 18 %. Order code **N08**

Temperature class 180 (H)

With the motor, utilization according to temperature class 180 (H) is permitted. The rated power is increased by 5 %. Rating plate data for

- direct-on-line (DOL) operation: P_{rated} 1.05 + SF 1.05
- operation on converter (VSD): $P_{\text{rated}} \cdot 1.05$

Order code N10

Temperature class 180 (H) at rated power and max. CT 60 °C

Utilization according to temperature class 180 (H) at rated power and a maximum coolant temperature of 60 °C is possible on request for the motors. Order code **N11**.

Temperature class 155 (F) utilized acc. to 130 (B), with higher coolant temperature and/or installation altitude

The motors can be ordered according to temperature class 155 (F) for utilization according to temperature class 130 (B) with other customized requirements if they are specified in plain text in the order.

Order code Y50

Temperature class 155 (F), utilized acc. to 155 (F), other requirements

The motors can be ordered according to temperature class 155 (F) for utilization according to temperature class 155 (F) with other customized requirements if they are specified in plain text in the order.

Order code Y52

Temperature class 180 (H), utilized acc. to 155 (F)

The motors can be ordered according to temperature class 180 (H) for utilization according to temperature class 155 (F) with other customized requirements if they are specified in plain text in the order.

Order code Y75

Windings and insulation

Overview (continued)

Increased air humidity/temperature with 30 to 60 g water per m³ of air

The motors are available in a version designed for increased air humidity in the range between 30 and 60 g water per m³ air as a function of the temperature, as shown in the table below. Order code N30 (includes order code H03, closed condensation drain holes, **M11**, rating plate stainless steel version and **S02** standard/special paint finish for Performance Line cast-iron motors). Use of non-rusting bolts is recommended.

You must contact us if order code N30 is to be combined with mountings (e.g. rotary pulse encoders or brakes).

Increased air humidity/temperature with over 60 to 100 g water per m³ of air

The motors are available in a version designed for increased air humidity of over 60 to 100 g water per m³ of air as a function of the temperature, as shown in the table below. This version contains condensation drain holes (closed), order code **N31** (includes order code **H03**, closed condensation drain holes, **W14**, store order the temperature and store order **S02**. M11, rating plate stainless steel version and S02 standard/special paint finish or S03 "special paint sea air resistant" for Performance Line cast-iron motors). Use of nonrusting bolts is recommended.

You must contact us if order code N31 is to be combined with mountings (e.g. rotary pulse encoders or brakes).

Absolute/relative	conversion	of	air	humidity

Relative humidity	Temperature							
	up to 20 °C	up to 30 °C	up to 40 °C	up to 50 °C	up to 60 °C	up to 70 °C	up to 80 °C	up to 90 °C
10 %	2	3	5	8	13	20	29	42
15 %	3	5	8	12	19	30	44	63
20 %	3	6	10	17	26	39	58	84
25 %	4	8	13	21	32	49	73	105
30 %	5	9	15	25	39	59	87	126
35 %	6	11	18	29	45	69	102	146
40 %	7	12	20	33	52	79	116	167
45 %	8	14	23	37	58	89	131	188
50 %	9	15	26	41	65	98	145	209
55 %	10	17	28	46	71	108	160	230
60 %	10	19	31	50	78	118	174	251
65 %	11	20	33	54	84	128	189	272
70 %	12	21	36	58	91	138	203	293
75 %	13	23	38	62	97	148	218	314
80 %	14	24	41	66	104	157	233	335
85 %	15	26	43	70	110	167	247	356
90 %	16	27	46	74	117	177	262	377
95 %	16	29	49	79	123	187	276	398
100 %	17	30	51	83	130	197	291	419

The values in the table with a blue background are covered by the standard version (up to < 30 g water per m^3 of air).

The values in the table with a light gray background are covered by order code **N30** (30 to 60 g of water per m³ of air).

The values in the table with a dark gray background are covered by order code N31

(60 to < 100 g of water per m^3 of air)

Please contact us regarding requirements exceeding 100 g water per m³ of air.

Note:

- The coolant temperature and installation altitude can be found from page 1/11 onwards.
- · The metal fan cover is available in combination with order code F74 (not standard). The metal fan cover for castiron motors of the Performance Line (1LE16 frame sizes 315-355) and for 1LE5 frame sizes 400 and 450 always standard.
- In case of increased thermal stress, please combine with the order codes N05 to N08.
- In conjunction with more stringent requirements for the paint finish or corrosion protection stress (offshore, sea air, etc.), the corresponding order codes S02, S03, S04, and potentially H07, must be combined.
- Order code N31 requires additional specifications for the ambient temperature CT 50 °C to CT 90 °C.

Unit

kW

kW

Coolant temperature and installation altitude

If the admissible motor power is no longer adequate for the

drive, it should be checked whether the motor with the next

Factor for abnormal coolant temperature and/or installation altitude

The motors are designed for temperature class 155 (F) and

operating conditions, if they are to be used in this class, the

admissible power rating must be determined from the table

utilized in temperature class 130 (B). Under non-standard

higher rated power fulfills the requirements.

Admissible motor power

Description

Rated power

Overview (continued)

The specified rated power is applicable for continuous duty in accordance with IEC 60034-1 at a frequency of 50 Hz, a coolant temperature (CT) or ambient temperature of 40 °C and an installation altitude (IA) up to 1000 m above sea level. The motors for ambient temperatures exceeding > 40 °C are equipped with various types of seal. Mountings such as brake, terminal box at NDE, type of construction IM V1, type of construction IM V3 can sometimes exceed utilization in accordance with temperature class 130 (B).

For higher coolant temperatures and/or installation altitudes greater than 1000 m above sea level, the specified motor power must be reduced using the factor $k_{\mbox{\tiny HT}}$.

Depending on the frame size of the motor or the number of poles, special windings may be added to the motors for the different operating conditions.

This results in an admissible motor power of:

Padm = Prated $\cdot k_{HT}$

Reduction factor k_{HT} for different installation altitudes and/or coolant temperatures

Installation altitude above sea level	Coolant tempe	Coolant temperature								
m	< 30 °C	30 40 °C	45 °C	50 °C	55	60 °C				
1000	1.07	1.00	0.96	0.92	0.87	0.82				
1500	1.04	0.97	0.93	0.89	0.84	0.79				
2000	1.00	0.94	0.90	0.86	0.82	0.77				
2500	0.96	0.90	0.86	0.83	0.78	0.74				
3000	0.92	0.86	0.82	0.79	0.75	0.70				
3500	0.88	0.82	0.79	0.75	0.71	0.67				
4000	0.82	0.77	0.74	0.71	0.67	0.63				

Code

Padm

Prated

below.

 k_{HT}

Coolant temperature and installation altitude are rounded to 5 °C and 500 m respectively.

For details of derating for utilization in temperature class 155 (F), see "DURIGNIT IR 2000 insulation system".

Motors for coolant temperatures other than 40 °C or installation altitudes higher than 1000 m above sea level for utilization in temperature class 130 (B) must always be ordered with the additional identification code "-Z" and plain text. In the case of extreme derating, the operating data for the motors, i.e. efficiency and power factor, will also be less favorable due to partial utilization.

The following special versions are possible for motors:

- Motors for coolant temperatures from -50 to +40 °C Order code D02
- Motors for coolant temperatures from -40 to +40 °C Order code D03
- Motors for coolant temperatures from -30 to +40 °C Order code D04

When ordering with order codes **D03** or **D04** in combination with mountings, the respective technical specifications have to be observed and it is necessary to inquire.

For order codes for utilization according to temperature class 155 (F), see "DURIGNIT IR 2000 insulation system" under "Windings and insulation" on page 1/9.

Ambient temperature:

All motors can be used in the standard version at ambient temperatures between -20 and +40 °C. Exposure to direct sunlight can result in uncontrollable rises in motor temperature. To prevent this, appropriate shading measures, such as a sun canopy, are recommended.

Utilization according to temperature class 155 (F) up to 40 $^{\circ}$ C occurs with a service factor of 1.05, i.e. the motor can be continuously overloaded with 5 % of the rated power.

When motors are used in temperature class 130 (B) for higher ambient temperatures and/or installation altitudes, derating occurs in accordance with the Table "Reduction factor $k_{\rm HT}$ for different installation altitudes and/or coolant temperatures". For motors ex stock, the service factor is indicated on the rating plate.

For other temperatures, special measures are necessary. When brakes are to be mounted on motors intended for operation at temperatures below freezing, please contact your local Siemens office.

Heating and ventilation

Overview (continued)

Anti-condensation heater

Supply voltage 230 V (1 AC) Order code **Q02**

Supply voltage 115 V (1 AC) Order code **Q03**

Supply voltage 400 V (1 AC) Order code **Q06**

For motors with windings at risk of condensation due to the climatic conditions, e.g. inactive motors in humid atmospheres or motors that are subjected to widely fluctuating temperatures, anticondensation heaters must be used.

An additional cable entry is provided for the connecting cable in the terminal box.

Motor series	Frame size	Cable entry
Cast-iron motors (SD)	400 450	$2\times M20\times 1.5$

Anti-condensation heating must not be switched on during operation.

Frame size	Heat output of the anti-condensation heating Supply voltage at						
	230 V	115 V (110 V)	400 V				
	Order code Q02	Order code Q03	Order code Q06				
	W	W	W				
Motors 1LE5							
400 450	240	240	370				

Instead of an anti-condensation heater, another possibility is the connection of a voltage that is approximately 4 to 10 % of the rated motor voltage to stator terminals U1 and V1. 20 to 30 % of the motor rated current is normally sufficient to provide adequate heating.

Fans/separately driven fans

All motors with 4 or more poles have radial-flow fans in the standard version (with the exception of option **F90** – version "Forced-air cooled motors without external fan and fan cover") that cool regardless of the direction of rotation of the

Necessary minimum cooling air flow for forced-air cooled motors in standard duty

The cooling air flow specified in the selection table applies to continuous duty according to EN 60034-1 at a coolant temperature (CT) or ambient temperature of 40 °C respectively and an installation altitude (IA) up to 1000 m above sea level.

For the motors without an external fan and without

motor (cooling method IC411 acc. to EN 60034-6). 1LE5 motors with 2 poles are cooled with axial fans specific to the direction of rotation. The air flow is forced from the non-drive-end (NDE) to the drive end (DE) in all motors.

Supply voltage of separately driven fan for motors: The supply voltage tolerance of the separately driven fan is ± 5 %. In confined spaces, it must be ensured that the minimum spacing is maintained between the fan cover and the wall. This also applies to adjacent parts, such as large handwheels and flywheels on the second shaft extension.

Clearance from wall/fan grilles

Size	mm	
400	150	
450	150	

For version of the fan and the fan cover, see the table below.

Motor series	Frame size	Number of poles	Fan material	Fan cover material
1LE55	400 450	4, 6, 8 2	Plastic Metal	Metal

Metal external fan impeller

The standard fan impeller made of plastic can be replaced with a fan impeller made of metal. This version is available for the motors (with the exception of 1LE1 with option **F90** – version "Forced-air cooled motors without external fan and fan cover").

A metal external fan is already included for the low-noise version.

For 2-pole versions with frame sizes 400 and 450, the metal external fan impeller is made of aluminum. Order code **F76**

Sheet metal fan cover

For motor series 1LE5 (with the exception of 1LE5 with option **F90** – version "Forced-air cooled motors without external fan and fan cover"), the sheet metal fan cover is provided as standard.

fan cover, order code **F90**, the motor is located in the air flow of the driven fan that must drive the minimum cooling air flow over the motor housing. The minimum air flow must pass closely over the housing (comparable to self-ventilation of the motor). Otherwise higher air flows are required to comply with admissible motor heating levels.

Frame size	Required cooling air flow for number of poles								
		2	4	1 -	6		8	3	
				IE	3/IE4				
	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	
	m³/min	m³/min	m³/min	m³/min	m³/min	m³/min	m³/min	m³/min	
400	1.2	1.4	1.3	1.6	1.7	2.0	1.3	1.6	
450	1.5	1.8	1.6	2.2	1.5	1.8	1.2	1.4	

Connection, circuit and terminal boxes

Overview (continued)

Terminal box position

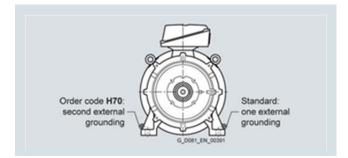
The terminal box of the motor can be mounted in four different locations or positions (see from page 2/5).

The position of the terminal box is coded using the 16th position of the motor Article No.

When defining the position of the terminal box, please observe the following:

- Motors with feet must always be viewed looking onto the drive end with the shaft in the horizontal position. The feet are then always at "6 o'clock". This is especially important with construction types IM B6, IM B7, and IM B8, and also applies to combined construction types such as IM B35.
- Flange-mounting motors (e.g. IM B5) whose drive-end flange has a condensation drainage hole must always be viewed looking onto the drive end with the shaft in the horizontal position. The condensation drainage hole is then always at "6 o'clock".

The number of winding ends depends on the winding design. Three-phase motors are connected to the three phase conductors L1, L2 and L3 of a three-phase system. The rated voltage of the motor in the running connection must match the phase conductor voltages of the network.


When the three phases are operating in a time sequence and are connected to the terminals of the motor in alphabetical order U1, V1 and W1, clockwise rotation of the motor shaft is established as viewed onto the drive end. The direction of rotation of the motor can be changed to counterclockwise if two connecting leads are interchanged.

Labeled terminals are provided to connect the protective conductor.

A PE terminal is provided in the terminal box for grounding.

External grounding terminal/external grounding is standard for 1LE5 motors with frame size 400 to 450.

A second external grounding connection can also be ordered. Order code $\ensuremath{\text{H70}}$

If a brake control system or thermal protection is installed, the connections will also be in the terminal box. The motors are suitable for direct connection to the line supply.

Design of the terminal box

The number of terminals and the size of the terminal box are designed for standard requirements.

For special requirements, or on customer request, the largest terminal box 1XB7750 can be supplied.

Larger terminal box:

Order code R50

When the terminal box is located on the left or right-hand side in conjunction with cable entry not aligned toward the housing feet, it must be noted that collisions between the motor connection cables and the foundations may occur. This must be taken into account during configuration.

If the necessary installation angle of the motor would cause machine components to collide with the terminal box, the terminal box can be moved from the drive end (DE) to the non-drive end (NDE). Dimensional drawings can be requested via the DT Configurator. Order code **H08**

Motor connection

Line feeder cables

The line feeder cables must be dimensioned acc. to DIN VDE 0298. The number of required feeder cables, if necessary in parallel, is defined by:

- · The max. cable cross-section that can be connected
- The cable type
- Cable routing
- Ambient temperature and the corresponding admissible current in accordance with DIN VDE 0298

For motors with auxiliary terminals (e.g. 15th position of the Article No. letter B), additional cable entry holes are provided (M16 × 1.5 or M20 × 1.5 depending on frame size). For further details, see the data sheet function in the DT Configurator.

The terminal box is located on the housing and bolted in place. The terminal box can optionally be subsequently rotated.

Order code R09

You will find information on rotating the terminal box in the Operating Instructions.

Connection, circuit and terminal boxes

Overview (continued)

Parallel feeders

Some motors must be fitted with parallel feeders due to the maximum permissible current per terminal. These motors are indicated in the selection and ordering data in the respective chapter.

The temperature rises in the terminal box must be taken into account when selecting the connection cable or individual connections.

These approximate temperature rises are as follows:

- Range of ambient temperature (T_{amb}) +50 K for motors with temperature class Th.Cl.155 (F).
- Range of ambient temperature (Tamb) +60 K for motors with temperature class Th.Cl.180 (F).
- Without any specifications in field 19 (Tamb) on the rating plate, Tamb is equal to 40 °C.

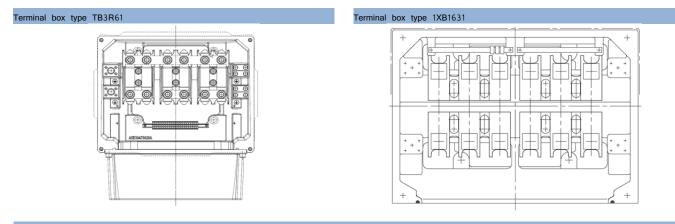
The terminal box can be rotated on the base of the motor housing such that the cable entry is located in the positions given below:

- Toward the drive end (DE) (rotation of terminal box through 90°, entry from DE) for flange motors (IM B5, IM B35, and IM V1) only possible with order code H08!
- Toward the fan end (NDE) (rotation of terminal box through 90°, entry from NDE) Order code R11
- Opposite the standard position 0° (rotation of terminal box by 180°, entry opposite the standard position 0°) Order code R12

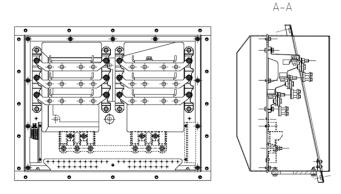
The dimensions of the terminal box are listed in the section "Dimensions" on pages 2/32 and 2/33 in accordance with the frame size and the "Dimensional drawings". If the position of the terminal box (right-hand side, left-hand side, or top) is changed, the position of the cable entry must be checked and, if necessary, ordered with the corresponding order codes (**R10**, **R11**, and **R12**). Restrictions may result depending on the terminal box type,

type of construction, terminal box position, and direction of cable entry. You will find more information on page 1/17.

Location of the cable entries with the corresponding order codes


Motor	Frame size	Terminal box	Term	inal box p	osition								
			top	top	45°	45°	90°	90°	bottom	-90°	+90°	180°	can be
			left	right	left	right	right	left					converted subsequently
				16th position of Article No. and Article No. with -Z Order code									
Туре		Туре	0	1	2	3	5	6	9	R10 ²⁾	R11	R12	
1LE5	400	TB3R61	~	~	~	~	~	~	~	~	~	~	no ¹⁾
	450	TB3R61	~	~	~	~	~	~	~	~	~	~	no ¹⁾
4													

¹⁾ Only possible with order code R09


2) Only possible for flange with order code H08

Connection, circuit and terminal boxes

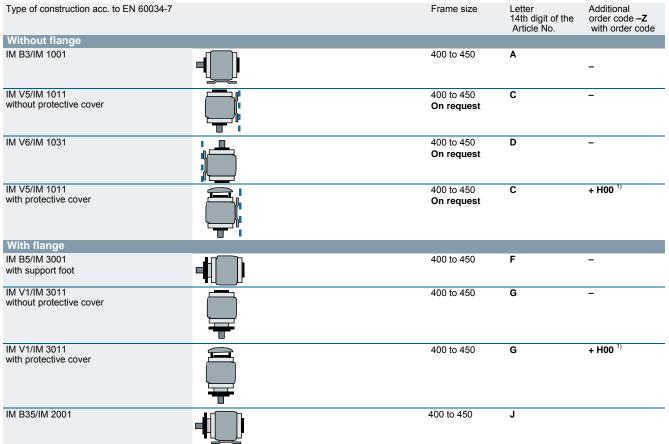
Overview (continued)

Terminal box type 1XB7750

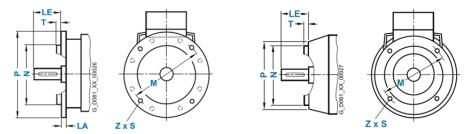
Technical specifications for terminal boxes for motors

Frame size	Terminal box ¹⁾ Standard/larger (order code R50)	Number of terminals	Contact screw thread	Max. connectable cable mm ²	Outer cable diameter (sealing range) mm	Cable entry ²⁾
1LE55		-				
400 450	TB3R61/1XB7750	12	M16	240	56 64.5	4 × M80 × 2
400 450	1XB1631/1XB7750	12	M16	300	56 64.5	4 × M80 × 2
400 450	-/1XB7750	48	M12	300	41 57	8 × M72 × 2

Terminal connection


The terminal board accommodates the terminals that are connected to the leads to the motor windings.

The terminals are designed so that the external (line) connections can be established with cable lugs, or optionally without cable lugs. Order code **R19**.


 For ordering spare parts and repair parts, in addition to the exact part designation, always specify the machine type and the serial number. 2) Designed for cable glands with O-ring.

Overview (continued)

1) Standard cylindrical shaft extension (second shaft extension) L05 is not possible.

In IEC 60072-2, the flange FF and, in DIN 42948, the flange A with through holes are assigned to frame sizes. The dimensions of the flanges conform to DIN 42948. Difference from IEC 60072-2: The dimension S is 28 mm in each case. See the assignment table below (**Z** = the number of retaining holes)

Frame size	Type of construction	Flange type	Flange with through	holes (FF/ A)	Dim	ensior	n desigi	nation a	icc. to I	EC		
			acc. to IEC 60072-2	acc. to DIN 42948	LA	LE	М	Ν	Ρ	s	Т	z
400 for 1LE5	5											
2-pole	IM B5, IM B35, IM V1	Flange	FF940	A 1000	28	170	940	880	1000	22	6	8
4-pole						210						
6-pole												
8-pole		_			_							
450 for 1LE5	5											
2-pole	IM B5, IM B35, IM V1	Flange	FF1080	A 1150	30	170	1080	1000	1150	26	6	8
4-pole						210						
6-pole												
8-pole												

Overview (continued)

Bearing lifetime (nominal lifetime)

The nominal bearing lifetime is defined according to standardized calculation procedures (ISO 281) and is reached or even exceeded for 90 % of the bearings when the motors are operated in compliance with the data provided in the catalog.

Generally, the bearing lifetime is defined by the bearing size, the bearing load, the operating conditions, the speed and the grease lifetime. A bearing lifetime calculation is possible on request.

Bearing system

The bearing lifetime of motors with horizontal mounting is 40,000 hours if there is no additional axial loading at the coupling output and 20,000 hours when utilized according to the maximum admissible load. This assumes that the motor is operated at 50 Hz. The nominal bearing lifetime is reduced for converter operation at higher frequencies.

To achieve the calculated lifetime in continuous duty, for the admissible vibration values measured at the bearing plate, evaluation zones A and B specified in ISO 10816 are applicable. If higher vibration speeds will occur under the operating conditions, special measures will be necessary (please inquire).

Due to their physical characteristics, variable-speed motors have a different bearing lifetime under the same load conditions. This relationship is linear, i.e. if the frequency increases by 20 % from 50 Hz to 60 Hz, the lifetime decreases by 20 % from 20,000 to 16,000 hours under the load conditions specified in the catalog. If the frequency falls by 20 % from 50 Hz to 40 Hz, the lifetime rises by 20 % from 20,000 to 24,000 hours under the load conditions specified in the catalog.

It should be observed that, for types of construction IM V5 and IM V6, the belt tension is only permitted to be exerted parallel to the mounting plane or toward the mounting plane and the feet must be supported. Both feet must be secured for foot-mounting types of construction.

In the basic bearing system, the located bearing is situated at the drive end (DE) and the floating bearing is situated at the non-drive end (NDE).

The bearing system is axially preloaded with a spring element at the non-drive end (NDE) to ensure smooth running of the motor without play (see Fig. 1 in the diagrams of bearings on page 1/19)

If required, the located bearing can be fitted at the non-drive end (NDE).

Order code L21

For increased cantilever forces (e.g. belt drives), reinforced bearings can be used at the drive end (DE). The versions with cylindrical roller bearings are not axially preloaded and must always run under adequate radial loads (motors must not be operated on a test bed without additional radial loads). The located bearing is positioned at the non-drive end (NDE). Order code L22

The 1LE5 motors can be supplied with reinforced bearings (size range 03) at both ends.

In this case, the bearing plates are made of cast iron. Order code L25

A measuring nipple for SPM shock pulse measurement can be mounted to check bearing vibration. The motors have an M8 tapped hole for each bearing plate and a measuring nipple with a protective cap. If a second tapped hole is provided, it is fitted with a sealing cap.

Order code Q01

Bearing insulation

To prevent damage caused by bearing currents, insulated bearings are absolutely necessary for frame sizes 400 to 450 in converter operation.

- L50 (bearing insulation DE)
 L51 (bearing insulation NDE)
- L50 + L51 (DE and NDE bearings insulated)
- Combination of order codes L50 or L51 or L50 + L51 with L22 (bearing version for increased cantilever forces)

It is up to the user in the case of DE bearing insulation (order code L50) + NDE bearing insulation (order code L51) to ensure grounding of the rotor.

The rotor grounding can be implemented either in the system via the coupled driven machine or in the motor via a grounding brush.

The grounding brush (order code L52) must always be provided when the driven machine is connected to the motor via an insulating coupling or an insulating belt output shaft.

Relubrication

For motors that can be regreased at defined regreasing intervals, the bearing lifetime can be extended and/or unfavorable factors such as temperature, mounting conditions, speed, bearing size, and mechanical load can be compensated.

For frame sizes 400 to 450, a regreasing device with a flat lubricating nipple DIN3404-AM10x1-5.8-A is standard.

For frame sizes 400 to 450, a regreasing device with a tapered lubricating nipple DIN71412-AM10x1-5.8 can be ordered. Order code L19

In the case of motors equipped with regreasing device, information regarding regreasing intervals, quantity of grease, type of grease and any additional data is provided on the lubrication plate or rating plate. For regreasing intervals for the basic version, see the Table "Grease lifetime and regreasing intervals for horizontal installation".

Mechanical stress and grease service life

High speeds that exceed the rated speed with converter operation and the resulting increased vibrations alter the mechanical smooth running operation and the bearings are subject to increased mechanical stress. This reduces the grease lifetime and the bearing lifetime (please inquire where applicable).

The use of rigid couplings should be avoided as far as possible. For converter operation in particular, compliance with the mechanical limit speeds n_{max} at maximum supply frequency f_{max} is essential, see the following table "Mechanical limit speeds n_{max} at maximum supply frequency fmax".

Introduction Mechanical design

Bearings and lubrication

Overview (continued)

Frame size	Туре	Type 2-pole		4-pole		6-pole		8-pole	8-pole	
		n _{max} rpm	f _{max} Hz	n _{max} rpm	f _{max} Hz	n _{max} rpm	f _{max} Hz	n _{max} rpm	f _{max} Hz	
1LE5 – basic v	ersion									
	1LE55									
400	1LE55 4A IM B3	3600	60	2200	74	2200	110	2200	147	
		3600 3600 ²⁾	60 50	2200 2100	74 70	2200 2100	110 105	2200 2100	147 140	
400 450 400	4A IM B3						-			

The specified limit speeds are applicable to motors without additional mountings, such as brakes or rotary encoders. In such applications, the characteristics of the respective mounting parts must be taken into account.

Grease lifetime and regreasing intervals for horizontal installation

Motor series	Frame size	No. of poles	
Regreasing ¹⁾			
			CT≤40 °C
1LE5	400	2 4 8	4000 h 6000 h
	450	2 4 8	3000 h 6000 h

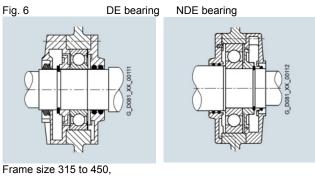
Bearing selection table for motors - basic version

The bearing selection tables are only intended for planning purposes. Authoritative information on the actual type of bearings fitted in motors already supplied can be obtained from the factory by quoting the serial number or can be read from the rating plate.

Bearing selection table for motors (basic version)

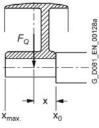
Frame size	No. of poles	Ū.		Non-drive end NDE Horizontal and verti	•	Fig. no. on page 1/19
1LE5						
400	2	6218 C3	7218 B + 6218 C3	6218 C3	6218 C3	Fig. 6 and Fig. 7
	4, 6, 8	6224 C3	7224 B + 6224 C3	6224 C3	6224 C3	Fig. 6 and Fig. 7
450	2	6220 C3	-	6220 C3	-	Fig. 6
	4, 6, 8	6226 C3	7226 B + 6226 C3	6226 C3	6226 C3	Fig. 6 and Fig. 7

Bearing selection table for motors (bearings reinforced at both ends - order code L25)


Frame size	No. of poles	0		Non-drive end NDE Horizontal and verti	•	Fig. no. on page 1/19
1LE5						
400	2	0.R.	0.R.	0.R.	0.R.	Fig. 6 and Fig. 7
	4, 6, 8	6326 C3	0.R.	6326 C3	0.R.	Fig. 6 and Fig. 7
450	2	0.R.	-	0.R.	-	Fig. 6
	4, 6, 8	6326 C3	0.R.	6326 C3	0.R.	Fig. 6 and Fig. 7

If the coolant temperature is increased by 10 K, the grease lifetime and 1) regreasing interval are halved. Version only possible with steel bearing plates. Order on request

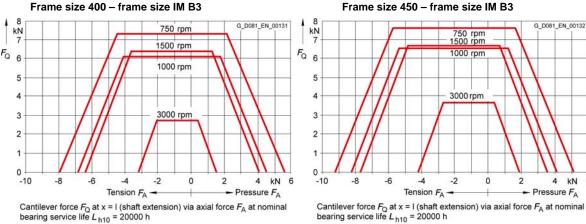
2) with additional charge.

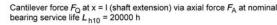

Overview (continued)

Diagrams of bearings

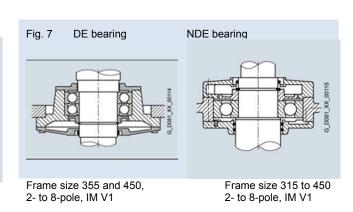
2- to 8-pole, IM B3

Admissible cantilever forces


In order to calculate the admissible cantilever forces for a radial load, the line of force (i.e. the centerline of the pulley) of the cantilever force $F_Q(N)$ must be within the free shaft extension (dimension x).


Dimension x (mm) is the distance between the point of application of the force F_Q and the shaft shoulder. The dimension x_{max} corresponds to the length of the shaft extension.

Total cantilever force $F_Q = c \cdot F_u$


Permissible cantilever forces for the basic 50 Hz version

For the motors in horizontal type of construction, the maximum cantilever forces are specified with regard to the axial forces. See diagrams.

Permissible cantilever forces at 50 Hz - Bearings for increased cantilever forces - Order code L22 For all motors of frame size 400 and 450 in the horizontal and vertical type of construction on request. Please specify cantilever force and lever arm.

The pre-tension factor c is a value gained from experience from the belt manufacturer. The following approximate value can be assumed:

For normal flat leather belts with an idler pulley c = 2; for V-belts c = 2 to 2.5;

for special synthetic belts (depending on the type of load and type of belt) c = 2 to 2.5.

The circumferential force $F_{u}(N)$ is calculated using the following equation

$$F_u = 2 \cdot 10^7 \frac{P}{n \cdot D}$$

circumferential force in N F_u P

- rated motor power (transmitted power) in kW
- n rated motor speed in rpm
- D pulley diameter in mm

6

Bearings and Iubrication

Overview (continued)

Admissible axial load

Motors in a vertical type of construction, basic version

For motors in vertical type of construction, the maximum cantilever forces are specified with regard to the axial forces, see page 1/20. The values shown do not assume a cantilever force on the shaft extension. The permissible loads are valid for operation at 50 Hz; please inquire for 60 Hz.

The calculation of the admissible axial load was based on the drive with generally available coupling. For suppliers, see the section "Accessories" in the respective section of the catalog.

Please inquire if the load direction alternates.

	2-pole 6-pole Load		4-pole <i>8-pole</i>	
	downward	upward	downward	upward
	downward	upward	downward	upward
	N	N	N	N
1LE5				
403	8200	11600	5500	15900
	3200	19200	4100	20400
405	7800	12000	5200	16300
	2600	20000	3300	21200
407	7400	12400	4700	17100
	2300	20900	2400	22100
453	6500	13300	7400	20100
	5200	23300	6200	24600
455	6200	13700	7000	20800
	4800	24300	5300	25500
457	5700	14200	6200	21600
	4100	25400	4300	26600

Separately driven fan

The use of a separately driven fan is recommended to increase motor utilization at low speeds and to limit noise generation at speeds significantly higher than the synchronous speed. Both of these results can only be achieved with converter operation. Please inquire about traction and vibratory operation.

The separately driven fan can be supplied already fitted, order code **F70**. There is no automatic adjustment of the voltage for the separately driven fan when ordering a "special voltage" for the motor. This must be specified in addition using the **Y81** option.

It can also be ordered separately and retrofitted. For selection information and article numbers, see the section "Accessories" (available soon). A rating plate listing all the important data is fitted to the separately driven fan. Please note the direction of rotation of the separately driven fan (axial-flow fan) when connecting it. Admissible coolant temperatures CT_{min}-25 °C, CT_{max} +40 °C, lower/higher coolant temperatures are available on request. When the separately driven fan is mounted, the length of the motor increases by ΔI .

The degree of protection of the motors with modular technology is IP55. Higher degrees of protection on request.

Technical specifications of forced ventilation (according to tolerances
of EN 60034-1)

of El (0003+-1)								
Frame size	Rated voltage	range	Freque	ency P _{max}	I _{max}			
400	3 AC	200 to 240 Δ	50	2.2	2.00			
2, 4, 6, 8-	3 AC	380 to 420 Y	50	2.2	1.15			
pole	3 AC	440 to 480 Y	60	2.54	1.05			
450	3 AC	200 to 240 Δ	50	4.0	14.0			
2, 4, 6, 8-	3 AC	380 to 420 Y	50	4.0	8.0			
pole	3 AC	440 to 480 Y	60	4.55	7.9			

SIMOTICS SD standard motors next generation

0/0	Orientetien
2/2 2/2 2/4 2/7 2/8	Orientation Overview, benefits, application, configuration, technical specifications, more information <u>Article No. code</u>
2/9	Motors with IE4 Super Premium Efficiency
2/9	Self-ventilated or forced-air cooled motors SIMOTICS SD Add cast-iron series • 1LE5534
2/11	Motors with IE3 Premium Efficiency
2/11	Self-ventilated or forced-air cooled motors SIMOTICS SD Add cast-iron series • 1LE5533
2/13	SIMOTICS SD Pro cast-iron series • 1LE5583
2/15	Article No. supplements and special versions
2/15 2/16 2/18 2/19 2/20	<u>Voltages</u> <u>Types of construction</u> <u>Motor protection</u> <u>Terminal box position</u> <u>Options</u>
2/32	Dimensions
2/32	SIMOTICS SD Add self-ventilated motors – cast-iron series • 1LE5534 • 1LE5533
2/32	SIMOTICS SD Pro self-ventilated motors – cast-iron series • 1LE5583

SIMOTICS SD standard motors next generation Orientation

Overview

The SIMOTICS SD next generation is a new scalable generation of low-voltage motors.

With their impressive performance and the additional versatility in their range of applications, this new motor series offers entry into a future-proof drive technology.

In addition to the future topics of digitalization and energy efficiency, this motor generation was developed with the focus on design optimization, which has resulted in a very compact motor design with a high power density. A standardized option range and the variable terminal box concept also enable flexible use of the motors in different system configurations and applications. The fact that the motors can run either on the line or on a converter is part of their versatility. The following versions are available in the new 1LE5 motor series, differentiated by their performance features and functionality:

SIMOTICS SD Add

The characteristic product feature of the SIMOTICS SD Add are the low starting currents. These not only meet industry-specific specifications, above all in process industries, but also have a positive impact on the operating quality (higher power system stability, lower thermal load, increased motor lifetime). Through the availability of country-specific certificates, these motors can be used in all the important global regions and markets.

SIMOTICS SD Pro

The SIMOTICS SD Pro range is characterized by its extremely flexible concept, which makes it universally deployable in any plant, in any country in the world. Line and converter operation are generally possible up to 690 V; all important global, country and sector-specific certificates have been obtained. Moreover, combinations are available that further increase flexibility, depending on the frame size. For SIMOTICS SD Pro frame sizes 315 - 355, which are above all used in series business and are characterized by high starting and breakaway torques, this flexibility is manifested particularly through multi-voltage capability and efficiency stability irrespective of the line frequency 50 Hz/60 Hz. For SIMOTICS SD Pro in frame sizes 400 -450, the starting currents are low. This version is focused more on project business and is primarily used in this power range for converter operation up to 690 V.

One decisive advantage of the motors of the SIMOTICS SD next generation series is the possibility of digital communication. This results in many advantages not just for engineering but throughout the product lifecycle.

SIMOTICS Digital Data App – Access to motor data at any time

The freely available SIMOTICS Digital Data App with frame sizes 315 and 355 already enables access to all motor-specific data and documents (electrical and mechanical data, dimensional drawings, operating instructions, spare part information, etc.) by reading in the data matrix codes present on every motor as standard. This increases transparency and makes commissioning and servicing easier.

SIMOTICS SD Next Generation – The first motors to have an interface with the digital world

The SIMOTICS SD next generation motors with frame sizes 315 and 355 will be the first low-voltage motors to support cloud-based condition data analysis via MindSphere and MindApp with SIMOTICS CONNECT in the near future. The motors are therefore ready for preventive maintenance and fast servicing, which further increases the availability and productivity of your system.

SIMOTICS SD standard motors next generation Orientation

Benefits

- Rugged design in cast-iron housing increases reliability and availability.
- Compact dimensions/high power density enable use even in confined space conditions.
- High energy efficiency on the line (IE3, IE4) and on a converter (IES2) enable energy-saving operation.
- A standardized range of options and a variable terminal box concept increase flexible adaptation to the requirements of the application.
- · Support of line and converter operation reduces variety.
- Provision of comprehensive CAD data simplifies the design and engineering phase.

Application

SIMOTICS SD next generation motors are ideal for use in a large number of standard applications, such as

- · Pumps, fans, compressors
- Conveyors
- Winders
- Mixers
- Extruders
- Cranes
- They are preferably used in industries such as
- · Mining, cement
- Chemical
- · Oil and gas
- Steel
- · Water, waste water
- Heating, ventilation, and air-conditioning (HVAC)
- Pulp and paper
- Marine engineering

Technical specifications

Converter operation

The motors are suitable for line operation and optionally for converter operation (bearing insulation NDE, order code **L51**). The values specified in the selection tables apply to sinusoidal feeding.

Rated voltage

For the rated voltage, the tolerance according to EN 60034-1 always applies. A rated voltage range is not specified.

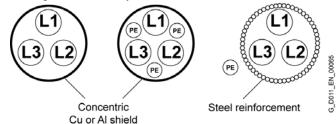
Motor protection

A motor protection function can be implemented using the I^2t sensing circuit implemented in the converter software.

If required, more precise motor protection can be provided by direct temperature measurement using KTY84 sensors, Pt100/Pt1000 resistance thermometers or PTC thermistors in the motor winding. Some converters from Siemens determine the motor temperature using the resistance of the temperature sensor. They can be set to a required temperature for alarming and tripping.

Bearings

To avoid damage caused by bearing currents, the insulated bearing (L51) must be ordered.

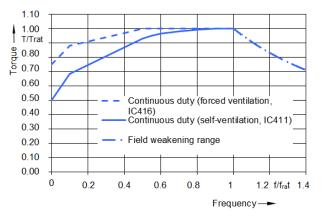

When operating multiphase induction machines on a converter, an electrical bearing stress results from a capacitive induced voltage via the bearing lubricating film, depending on the principle being used. The physical cause of this is the common-mode voltage at the converter output that is inherent in the control method for a converter: the sum of the 3 phase voltages is - unlike in pure line operation - not equal to zero at every point in time. The high-frequency, pulsed common-mode voltage results in a residual current that forms a circuit back to the converter's DC link via the machine's internal capacitances, the machine housing and the grounding circuit. The machine's internal capacitances include the main insulation winding capacitance, the geometric capacitance between the rotor and stator, the lubricating film capacitance and the capacitance of any bearing insulation that may be present. The current flowing through the internal capacitances is proportional to the gradient, i.e. the voltage change of the common-mode voltage (i(t) = $C \cdot du/dt$).

In order to apply currents to the motor that are as sinusoidal as possible (smooth running, oscillation torques, stray losses), a high clock frequency is required for the converter's output voltage. The related (very steep) switching edges of the converter output voltage (and also, therefore, of the common-mode voltage) cause correspondingly high capacitive currents and voltages on the machine's internal capacitances.

In the worst-case scenario, the capacitive voltage induced via the bearing can lead to random arcing through the bearing lubricating film, thus causing premature bearing aging or damage. (The current pulses caused by the puncture in the lubricating film are referred to as EDM (Electrostatic Discharge Machining) currents in the literature.)

This physical effect, which occurs sporadically, has mostly been observed in large motors. EMC-compliant installation of the drive system is a basic prerequisite for preventing premature bearing damage as a result of bearing currents. The most important measures for reducing bearing damage.

- Insulated bearing at the non-drive end NDE (order code L51)
- · Using cables with a symmetrical cable cross-section.

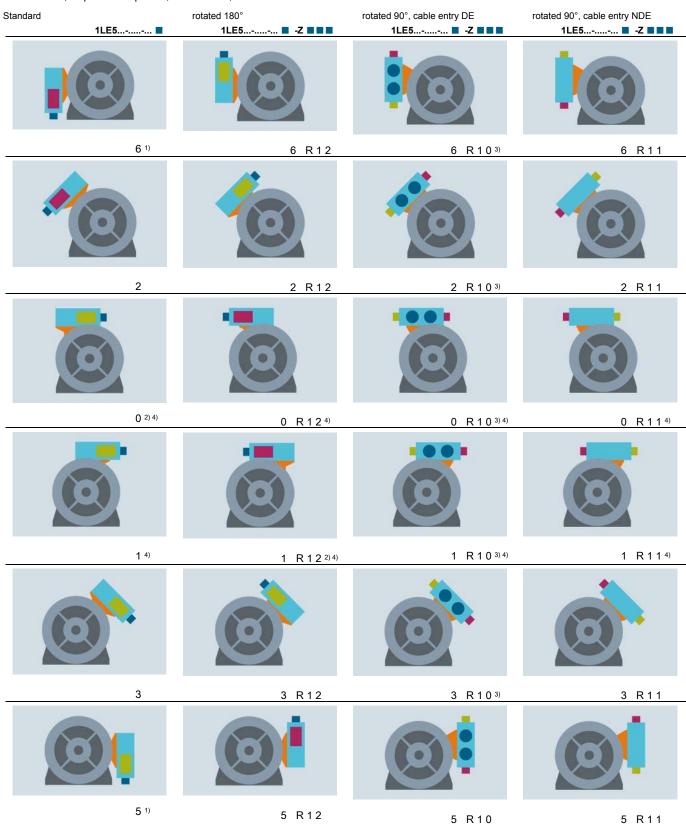


- Preference given to a line supply with isolated neutral point (IT system)
- Using grounding cables with low impedance over a wide frequency range (DC up to approximately 70 MHz): for example, braided copper ribbon cables, HF finely stranded wires
- Separate HF equipotential-bonding cable between motor housing and driven machine
- Separate HF equipotential-bonding cable between motor housing and converter PE busbar
- 360° HF contact of the cable shield at the motor housing and the converter PE busbar. This can be achieved using EMC screwed glands on the motor end and EMC shield clips at the converter, for example
- · Using motor reactors at the converter
- · Common-mode filters at the converter output

Thermal torque limits

In the case of self-ventilated motors, the thermally admissible load torques are reduced for continuous operation for speeds below the rated speed. This must be taken into account in those applications in particular that are not subjected to a load torque that is dependent on the square of the speed. Also in the case of forced-air cooled motors (order code F70), the maximum load torques are reduced slightly for high speed ranges.

When motors are operated at speeds above their rated speed (in the field-weakening range), the maximum load torque is also reduced.



SIMOTICS SD standard motors next generation Orientation

Configuration

Terminal box positions

Standard DE, all positions optional, also at NDE; order code H08

For footnotes, see next page.

SIMOTICS SD standard motors next generation Orientation

	positions								
Standard	1LE5		rotated 180° 1LE5	- 7 -		41 E E	🔳 -Z 🔳 🔳 🔳	41 55	🔳 -Z 🔳 🔳
	ILE9		TLE3	2		TLE5		TLE5	2
ļ				i					
Terminal box l	eft	6	Terminal box right	9 F	R 6 R	Terminal box left	9 R7L	Terminal box right	9 R 7
	0								
Terminal box r	ight	5	Terminal box left	9 I	R 5 L				
Types of con IM B3 / IM B3	57 IM V57 IM V	'6	IM B5 / IM V1						
Legend									
	-		Auxiliary terminal b	ov 1 (3) ⁴	5)				
	-		Auxiliary terminal b						
			Terminal box	(-)					
			Adapter						
			Cable entry						

Technical specifications

Overview of technical specifications

This table lists the most important technical specifications. For more information and details, see catalog section 1 "Introduction".

Motor type	SIMOTICS SD 1LE5 IEC low-voltage motors
Connection types	Star/delta connection The connection type to be used can be established from the Article No. supplements for the required motor.
Number of poles	2, 4, 6, 8
Frame sizes	400 450
Rated power	355 1000 kW
Frequencies	50 Hz and 60 Hz
Versions	IE3 (Premium Efficiency) IE4 (Super Premium Efficiency)
Marking	IEC 60034-30-1 IE3, IE4: 2, 4, 6 and 8-pole
Rated speed (synchronous speed)	750 3600 rpm
Rated torque	1600 8100 Nm
Insulation of the stator winding in accordance with EN 60034-1 (IEC 60034-1)	SD Add: Temperature class 155 (F), utilized to temperature class 130 (B) DURIGNIT IR 2000 insulation system SD Pro: Temperature class 155 (F), utilized to temperature class 155 (F) DURIGNIT IR 2000 insulation system
Degree of protection according to EN 60034-5 (IEC 60034-5)	IP55 as standard
Cooling according to EN 60034-6 (IEC 60034-6)	 Self-ventilated (IC411) Forced-air cooled motors w/o ext. fan/fan cover (IC418) Forced-air cooled (IC416)
Permissible coolant temperature and installation altitude	-20 +40 °C as standard, installation altitude up to 1000 m above sea level. See "Coolant temperature and installation altitude" in Catalog Section 1 "Introduction".
Standard voltages according to EN 60038 (IEC 60038)	50 Hz: 400 V, 500 V, 690 V The voltage to be used can be found in the "Selection and ordering data" for the required motor.
Type of construction according to EN 60034-7 (IEC 60034-7)	Without flange: IM B3, IM V5 (on request), IM V6 (on request) With flange: IM B5 with support foot, IM V1, IM B35
Paint finish Suitability of paint finish for climate group according to IEC 60721, Part 2-1	As standard: Color RAL 7030 stone gray See "Paint finish" in Catalog Section 1 "Introduction".
Vibration severity grade according to EN 60034-14 (IEC 60034-14)	Grade A (normal – without special vibration requirements) Optionally: Grade B (with special vibration requirements) See "Balance and vibration quantity" in Catalog Section 1 "Introduction".
Shaft extension according to DIN 748 (IEC 60072)	Balancing type: half-key balancing as standard See "Balance and vibration severity" in Catalog Section 1 "Introduction".
Sound pressure level according to EN ISO 1680 (tolerance +3 dB)	The sound pressure level is listed in the selection and ordering data for the required motor.
Weights	The weight is listed in the selection and ordering data for the required motor.
Modular mounting concept	Rotary pulse encoder, brake, separately driven fan or prepared for mountings
Consistent series concept	 Terminal box obliquely partitioned and optionally rotatable through 4 x 90° Bearings at DE and NDE are of identical design, reinforced bearings available as an option
Options	See Article No. supplements and special versions

More information

For more information, please get in touch with your Siemens contact in the Regions or use the DT Configurator.

Contacts: <u>www.siemens.com/automation/partner</u> DT Configurator: <u>www.siemens.com/dt-configurator</u>

You can find out about certain technologies through Siemens contact partners worldwide. Wherever possible, you will find a local contact for:

- Technical support
- Spare parts/repairs
- Service
- Training
- Marketing & Sales
- Technical consultation/engineering
- You start by selecting a:
- country
- product or
- sector

Selection and ordering data

The article number consists of a combination of digits and letters and is divided into three hyphenated blocks to provide a better overview, e.g. **1LE5534-4AB33-4AA2-Z**

H00

The first block (positions 1 to 7) identifies the motor type. The second block (positions 8 to 12) defines the motor frame size and length, the number of poles and in some cases the frequency/voltage. In the third block (positions 13 to 16), the frequency/voltage, type of construction and further design features are encoded. For deviations in the second and third block from the catalog codes, either Z or 90 should be used as appropriate.

Ordering data:

- · Complete Article No. and order code(s) or plain text
- If a quotation has been requested, please specify the quotation number in addition to the Article No.
- When ordering a complete motor as a spare part, please specify the factory serial no. for the previously supplied motor as well as the Article No.

Structure of the A	rticle No.:	Position:	1	2	3	4	5	6	7	-	8	9	10	11	12	-	13	14	15	16
1st to 4th position: Digit, letter, letter, digit	 Self-ventilated by fan mounted on the rotor Forced-air cooled by air flow from driven with option extension F90 	-	1	L	E	5														
5th position: Digit	Cast-iron housing						5													
6th to 7th position: 2 digits	SIMOTICS SD Add motors with IE3 SIMOTICS SD Pro motors with IE3 I SIMOTICS SD Add motors with IE4	Premium Efficien	cy	ienc	y			3 8 3	3 3 4											
<u>8th, 9th</u> and <u>11th</u> position: Digit, letter, digit	Motor frame size (frame size as a combination of shaf	t height and over	all le	engtl	n, en	code	ed)				4	А В		3 7						
<u>10th position:</u> Letter	No. of poles A: 2-pole B: 4-pole C: 6-pole D: 8-pole												A B C D							
<u>12th and 13th</u> position: 2 digits	Voltage, circuit and frequency (encoded with two digits, 9-0 require	s order code M	(e.g	. M1	Y))								-	-	0 9		0 7			
<u>14th position</u> : Letter	Type of construction (encoded with A V)														•	•		A V		
<u>15th position</u> : Letter	Motor protection (encoded with A Z; Z requires ord	er code Q (e.g.	Q3A	A))															A ïž	
<u>16th position</u> : Digit	Terminal box position Terminal box base left with terminal Terminal box base right with terminal Terminal box base left with terminal Terminal box base right with termina Terminal box on right-hand side Terminal box on left-hand side	l box at the top box 45°																		0 1 2 3 5 6
	Special order versions: encoded – additional order code req not encoded – additional plain text re																			

Ordering example

Selection criteria	Requirement	Structure of the Article No.
Motor type 1LE5	Standard motor with IE4 Premium Efficiency, self- ventilated, degree of protection IP55, cast-iron version	1LE5534-
Motor frame size / no. of poles / speed	400 / overall length 3 / 4-pole / 1500 rpm	1LE5534-4AB3
Rated power	560 kW	_
Voltage and frequency	400 VΔ / 690 VY, 50 Hz	1LE5534-4AB33-4
Type of construction with special version	IM V5 with protective cover ¹⁾	1LE5534-4AB33-4C ■ -Z H00
Motor protection	1 or 3 PTC thermistors – for tripping (2 terminals)	1LE5534-4AB33-4CB■- Z H00
Terminal box position	Terminal box base left with terminal box 45°	1LE5534-4AB33-4CB2- Z H00

 Standard without protective cover – the protective cover is defined with order code H00 and must be ordered in addition to the Article No. with –Z and this order code. 3

SIMOTICS SD standard motors next generation SIMOTICS SD Add motors IE4 Super Premium Efficiency

Self-ventilated or forced-air cooled motors, cast-iron series 1LE5534

	Jele	ction	and	orderin	ng dat	а														
					ting valu		ated po	wer								ast-iron series				
Prated 50 Hz		Frame size	n _{rated}	\mathcal{T}_{rated}	η _{rated,} 4/4	η _{rated,} 3/4	η _{rated,} 2/4	$\cos \varphi_{\text{rated},}$ 4/4	<i>I</i> _{rated∆}		l _{LR} / d <i>I</i> rated	T _B ∕/ T _{rate}		L _{WA}	IE IE	E5534 <i>4 version acc.</i> <i>C 60034-30-1</i> ticle No.	to	<i>т</i> _{IM ВЗ}	J	Torque class
kW		FS	rpm	Nm	%	%	%		А				dB(A)	dB(A)		New		kg	kgm ²	CL
		elf-venti IF4 Sui		IC411) emium E	fficiency	, servi	ce facto	or with si	nusoid	al fee	adina (SF) 1	.05							
 Insul 	ation:	Therma	al class	s 155 (te	mperati	ire clas	s F), IF	55 degr	ee of p	rotec	tion, u	tilizat	ion with	sinuso	idal	feeding in acc	ordance with the	ermal cl	ass 130	(temperation
	class E		for co	nverter	operatio	n with i	ineulate	d bearii	og (l 51) for	l ₈ <4	80 V	·	500 V· I	lpo\$	<720 V - IVIC	C advanced ins	ulation	evetem	
					operatio		moulate	Ja beam	ig (Loi) 101		00 V,	Omotor=	000 V, (alation	system	
		rpm at																		
	3)		2988	1790	97.0	96.9	96.5	0.89	940		7.3	3.1	74	90	A					10
	3)		2988	2000	97.0	97.1	96.8	0.90	1040	1.6	7.3	3.0	74	90	A				9.8	10
	4)		2988	2250	97.1	97.2	96.9	0.90	680	1.7	7.3	2.9	74	90	_	1LE5 534-4			10.8	10
			2990	2550	97.4	97.4	97.1	0.87	790	1.2	7.7	3.3	75	91	A	1LE5 534-4		_	12.3	7
			2988	2900	97.4	97.5	97.4	0.89	870	1.2	7.2	3.0	75	91	_	1LE5 534-4		4250	13.5	7
1000 [:] 4-pole		450 rpm at	2988 50 Hz	3200	97.4	97.6	97.6	0.90	950	1.2	7.0	2.7	75	91		1LE5 534-4	BA7	4450	14.7	7
	3)		1493	3600	96.9	97.0	96.6	0.86	970	2.2	7.5	3.1	72	88		1LE5 534-4	AB3	3050	14.9	13
	3)		1492	4050	96.8	96.9	96.6	0.87	1080	2.2	6.9	2.8	74	90			AB5		15.6	13
	4)	400	1492	4550	97.0	97.0	96.8	0.87	700	2.2	7.2	2.0	74	90			AB3		16.9	13
	4)	450	1492	4330 5100	96.9	97.0 97.1	96.9	0.87	790	1.4	6.5	2.9	79	90 95			BB3		24.0	10
	4)		1492	5800	97.0	97.2	97.0	0.88	880	1.4	6.5	2.4	79	95			BB5		24.0	10
900 1000 :		450	1492	6400	97.0	97.2	97.0	0.88	980	1.4	6.8	2.5	79	95 95			BB7		25.4	10
		rpm at			31.1	51.2	31.1	0.00	300	1.0	0.0	2.0	13	30		TED 0 04-4		4000	20.0	10
	. 1000				00.0	00.0	00.4	0.05	700	0.0	7.0	0.7	70	00		4155 504 4	100	2400	05 F	40
450			994	4300	96.6	96.8	96.4	0.85	790	2.2	7.2	2.7	70	86					25.5	16
500			994	4800	96.7	96.8	96.5	0.85	880	2.3	7.3	2.8	70	86	_				27.4	16
560	2)		994	5400	96.7	96.8	96.4	0.84	1000	2.4	7.5	2.9	70	86	A	· · · ·			28.6	16
	3)	450	995	6000	96.8	97.0	96.7	0.83	1130	2.0	7.0	2.8	72	88	A		BC3		38.6	13
			994	6800	96.8	97.0	96.9	0.84	730	1.8	6.6	2.5	72	88	A		BC5	4200	41.0	13
	4)		994	7700	96.8	97.0	96.8	0.84	820	1.8	6.6	2.4	74	90		1LE5 534-4	BC7	4300	43.3	13
8-pole	: 750 ŋ	pm at 5	50 HZ																	
355			744	4550	95.8	96.1	95.8	0.80	670	2.0	6.5	2.6	64	80		1LE5 534-4	AD3	_	21.9	13
400		400	744	5100	96.0	96.2	95.9	0.80	750	2.1	6.8	2.7	64	80		1LE5 534-4	AD5	3050	24.5	13
450			744	5800	96.0	96.3	96.0	0.80	850	2.1	6.8	2.7	64	80			AD7	3250	27.5	13
500			745	6400	96.2	96.4	96.1	0.79	950	2.0	6.8	2.5	67	83			BD3	_	34.0	13
560			745	7200	96.3	96.5	96.1	0.79	1060	2.0	6.9	2.6	67	83		1LE5 534-4	BD5	4000	38.0	13
630		450	745	8100	96.4	96.6	96.3	0.80	1180	2.0	6.9	2.5	67	83		1LE5 534-4	BD7	4250	42.5	13
Voltag	es															Version		Ord	der code	(s)
50 Hz		400 V/	۵/690 ۱	٧Y	60 Hz	46	0 VΔ									Standard	34	-		
50 Hz		500 V/	2		60 Hz	57	5 VΔ							W	ithou	ut additional ch	narge 4 0	-		
50 Hz		690 V/	2											W	ithou	ut additional ch	narge 4 7	-		
For oth	ner vol	tages a	and mo	re inform	mation, s	see fror	m page	2/15												
Types	of con	structio	on													Version		Ord	der code	(s)
Withou	ut flang	je		IM B3 ²	2)											Standard	A	-		
With fl	ange			IM B5 ²	2)										Wit	th additional ch	narge F	-		
			onstrue	ction and	d more i	nforma	tion, se	e from p	age 2/	16										
Motor	protec	tion														Version		Ord	der code	(s)
Withou	ut															Standard	A	-		
PTC th	nermist	tor with	3 tem	perature	e sensor	s									Wit	th additional ch	narge B	-		
For oth	ner mo	tor pro	tection	and mo	re inforr	nation,	see fro	m page	2/18											
Fermi r	nal box	positio	on													Version		Ord	er code(s)
Termir	nal box	base l	eft with	n termina	al box 4	5°										Without addit	ional charge 2	-		
Termir	nal box	base i	right wi	ith termiı	nal box 4	45°										Standard	3	-		
For oth	ner teri	minal b	ox pos	itions ar	nd more	inform	ation, s	ee from	page 2	2/19										
Specia	al versi	ons																Orc	ler code	(s)
Forced	d-air co	oled m	notors v	w/o ext.	fan/fan o	cover (I	IC418)							1L	E55	534		-Z F9	0++.	+
Forced	d-air co	oled (I	C416)											1L	E55	534		-Z F7	0++.	
			mpage	2/20										11	E55	534		-z+	.	+
	tions, s	see tro	in paye	5 2120														-		

1) n.a. 2) n.a. 3) Terminal box 1XB1631.

or 60 Hz / 575 V (voltage code 4-0). 5) n_{max} =3000 rpm. For higher speeds, the motor must have steel bearing plates. Order on request with additional charge.

SIMOTICS SD standard motors next generation SIMOTICS SD Add motors IE4 Super Premium Efficiency

Self-ventilated or forced-air cooled motors, cast-iron series 1LE5534

			Operati	ing valu										11	E5534					
ated Hz	Fram size	9 <i>N</i> rated	Trated	η rated, 4/4	η rated, 3/4	η rated, 2/4	cos $\varphi_{\rm rated,}$ 4/4	<i>I</i> rated∆		I _{LR} / d / _{rated}		L _{pfA,}	Lwa	IE IE	4 versi	on acc. to 34-30-1 5.		<i>т</i> ім вз	J	Torque class
N	FS	rpm	Nm	%	%	%		А				dB(A)	dB(A)		New			kg	kgm ²	CL
Cooling: So Efficiency:				fficiency	, conii	oo factu	or with e	inueoid	al fee	dina ('SE\ 1	05								
nsulation:	Therm	al class	5 155 (te	mperatu	ire clas	s F), IF	P55 degi	ree of p	protec	tion, u	itilizat	tion with	i sinuso	idal	feeding	j in accordar	nce with the	ermal c	ass 130	(temper
	suitab			operatio	n with i	insulate	ed beariı	ng (L51) for l	U _{line} ≤4	80 V;	; U _{motor} ≤	500 V; I	U _{DC} ≤	5720 V	- IVIC C adv	vanced ins	ulation	system	
oole: 3600 6 ³⁾	rpm a 400	t 60 Hz 3588	1640	96.8	96.7	96.2	0.89	900	1.6	7.4	3.1	78	94		1I E5	5 34-4AA3		2850	8.9	10
3 ³⁾	400	3588	1840	97.0	96.9	96.4	0.90	1000	1.6	7.4	3.0	78	94			5 34-4AA5		_	9.8	10
1 3) 4)	400	3590	2100	97.1	97.0	96.5	0.89	910	1.8	7.5	3.2	78	94			5 34-4AA7		_	10.8	10
0 3) 4) 5)	450	3590	2450	97.3	97.3	96.8	0.88	1080	1.1	7.6	3.2	79	95		1LE5	5 34-4BA3		4000	12.3	7
40 3) 4) 5)	450	3588	2750	97.4	97.4	97.0	0.89	1200	1.2	7.2	3.0	79	95		1LE5	5 34-4BA5		4250	13.5	7
	450	3586	3000	97.4	97.6	97.3	0.90	1280	1.2	6.9	2.6	79	95		1LE5	5 34-4BA7		4450	14.7	7
ole: 1800				00.0	00.0	00.4	0.07	000	0.4	7.5	0.0	70	00		41.55	504 44 50	_	0050	44.0	40
4 ³⁾ 5 ³⁾	400 400	1793 1792	3450 3850	96.9 96.8	96.9 96.8	96.4 96.4	0.87	960 1080	2.1 2.1	7.5 6.9	3.0 2.7	76 78	92 94			5 34-4AB3 5 34-4AB5		_	14.9 15.6	13 13
7 ⁴⁾	400	1792	4350	96.9	90.0	96.7	0.88	960	1.9	6.8	2.7	78	94			5 34-4AB5			16.9	13
0 3) 4)	450	1792	4900	96.9	97.0	96.6	0.87	1100	1.3	6.3	2.3	83	99			5 34-4BB3			24.0	10
40 ^{3) 4)}	450	1793	5500	97.1	97.1	96.7	0.87	1240	1.4	6.8	2.6	83	99			5 34-4BB5			25.4	10
50 ^{3) 4)}	450	1792		97.1	97.2	96.9	0.88	1350	1.4	6.7	2.4	83	99			5 34-4BB7		_	28.0	10
ole: 1200	rpm a	it 60 Hz																		
8	400	1194	4150	96.7	96.8	96.4	0.86	780	2.1	7.3	2.6	73	89		1LE5	5 34-4AC3		3100	25.5	16
5	400	1194	4600	96.8	96.9	96.5	0.86	870	2.2	7.4	2.7	73	89		1LE5	5 34-4AC5		3250	27.4	16
4	400	1194	5200	96.8	96.8	96.4	0.85	980	2.3	7.6	2.8	73	89			5 34-4AC7			28.6	16
5 ³⁾	450	1195	5800	96.9	97.0	96.7	0.84	1120	1.9	7.0	2.6	75	91	A		5 34-4BC3			38.6	13
7 ⁴⁾	450	1194	6500	96.9	97.1	96.9	0.84	1010	1.7	6.6	2.3	75	91			5 34-4BC5		_	41.0	13
) ^{3) 4)} ole: 900 r	450 rom at	1194 60 Hz	7400	96.9	97.0	96.7	0.84	1130	1.8	6.6	2.4	77	93		1LE5	5 34-4BC7		4300	43.3	13
B	400	894	4350	95.9	96.1	95.8	0.81	660	1.9	6.5	2.5	67	83		1LE5	5 34-4AD3		2850	21.9	13
0	400	894	4900	96.1	96.2	95.8	0.81	740	1.9	6.8	2.6	67	83			5 34-4AD5		_	24.5	13
8	400	894	5500	96.2	96.3	96.0	0.81	830	2.0	6.8	2.7	67	83		1LE5	5 34-4AD7		3250	27.5	13
5	450	895	6100	96.3	96.4	96.0	0.80	940	1.9	6.8	2.4	70	86		1LE5	5 34-4BD3		3800	34.0	13
4	450	895	6900	96.4	96.5	96.1	0.80	1050	1.9	6.9	2.5	70	86		1LE5	5 34-4BD5		4000	38.0	13
5	450	895	7700	96.5	96.6	96.3	0.81	1160	1.9	6.9	2.4	70	86		1LE5	5 34-4BD7		4250	42.5	13
Itages															Versio			Ore	der code	(s)
Hz		′Δ/690 \ 	Λλ	60 Hz		460 VΔ									Stand		3 4	-		
Hz	500 V			60 Hz	<u>z</u> 5	575 VΔ										ional charge		-		
Hz	690 V						0/45						VV	ιτησι	ut addii	ional charge	4 7	-		
r other vol			re mom	iation, s	see nor	n page	2/15								Versio					()
pes of cor		Ion)														Ore	der code	(S)
thout flang	je		IM B32											14/:4	Stand		A F			
th flange			IM B5 ²		-f	tion of			16					vvit	n addii	ional charge		-		
r other typ		Jonstru	Juon and	more II	norma	uon, se		age 2/	10						Vorsi	n			dor or d	(0)
otor protect	aon														Version Stand			Ore	der code	(5)
thout C thermis	tor wit	h 3 tom	noratura	00000										۱۸/i+		aro ional charge	B	-		
r other mo			•			and fre		2/10						vvit	ii auun	ional charge				
			anu moi		nation,	see inc	in page	2/10							Versi					-)
rminal box			. to realized	hey 1	-0											out additiona	Lebargo 0		er code(s)
rminal box rminal box															Stand		3 charge	_		
r other ter	minal		itions an	d more	inform	ation s	ee from	page 2	2/19											
ecial vers		00x p05	alons di	amore	morrin			page 2	., 10									Or	ler code	(s)
orced-air co		notors	w/o ext. f	an/fan d	cover (I	C418)							1L	.E55	34				0++.	• /
		IC416)			- (.,									34				0++.	
		- /																		

3) Terminal box 1XB1631.

5) Version only possible with steel bearing plates. Order on request with additional charge.

SIMOTICS SD standard motors next generation SIMOTICS SD Add motors **IE3** Premium Efficiency

Self-ventilated or forced-air cooled motors, cast-iron series 1LE5533

	Sele	ction	and o	orderin	g data															
				Operat	ing valu	es at ra	ated por	ver								n series				
Prated 0 Hz		Frame size	<i>N</i> rated	\mathcal{T}_{rated}	η _{rated,} 4/4	η _{rated,} 3/4	η _{rated,} 2/4	cosφ _{rated,} 4/4	I _{rated∆}		' I _{LR} / ed <i>I</i> rated		L _{pfA,}	L _{WA}		<i>sion acc. to</i> 034-30-1		<i>т</i> _{IM ВЗ}	J	Torque class
w		FS	rpm	Nm	%	%	%		А				dB(A)	dB(A)	A New			kg	kgm ²	CL
Efficie	ng: Se encv: F	elf-ventil Premiun	ated (I n Effici	C411) ency IE3	. service	e facto	r with si	nusoida	ıl feedir	na (SF	•) 1.05	5								
Insula	ation:	Therma	class	155 (ten	peratur	e class	; F), IP	55 degre	e of pr	otecti	ón, uti	lizatio	n with s	sinusoid	al feeding	g in accordanc	ce with the	ermal c	lass 130	(tempera
ture c Optio	nally s	suitable	for cor	verter o	peration	with ir	sulated	l bearin	g (L51)	for U	_{ine} ≤48	0 V; U	_{motor} ≤5(00 V; Uı	oc≤720 V	- IVIC C adva	anced ins	ulation	system	
		rpm at \$													_					
60 ³			2986	1790	96.6	96.7	96.3	0.90	930	1.6	7.0	2.8	74	90		5 33-4AA3			8.9	10
30 ³			2986	2000	96.6	96.7	96.6	0.91	1030	1.6	7.0	2.8	74	90	1LE5				9.8	10
10 ⁴			2986	2250	96.8	96.9	96.7	0.91	670	1.7	7.0	2.8	74	90	1LE5				10.8	10 7
			2988 2986	2550 2900	97.0 97.0	97.0 97.1	96.6 96.9	0.88	780 860	1.1 1.1	7.5 7.0	3.1 2.8	75 75	91 91	1LE5			_	12.3 13.5	7
00 °			2980	3200	97.0	97.1	90.9	0.90	950	1.1	6.8	2.6	75	91	1LE5				14.7	7
		rpm at \$		0200	57.0	57.1	57.0	0.01	550	1.1	0.0	2.0	10	51	TEEO	000-4641		4400	14.7	,
60		400	1492	3600	96.2	96.3	95.8	0.87	970	1.8	6.5	2.7	78	94	1LE5	5 33-4AB3		2800	12.8	13
30 ³	i)	400	1492	4050	96.4	96.5	95.9	0.87	1080	1.9	6.8	2.7	78	94	1LE5	5 33-4AB5		3000	14.4	13
10 4)	400	1492	4550	96.5	96.6	96.2	0.88	700	1.9	6.8	2.7	78	94	1LE5	5 33-4AB7		3200	16.5	13
00 4)	450	1492	5100	96.5	96.6	96.1	0.88	790	1.6	7.0	2.6	81	97	1LE5	5 33-4BB3		3850	22.2	10
00 4			1492	5800	96.6	96.7	96.2	0.87	900	1.5	7.0	2.6	81	97	1LE5			4100	24.8	10
000 ³			1492	6400	96.6	96.7	96.3	0.89	970	1.7	7.0	2.6	81	97	1LE5	5 33-4BB7		4300	27.4	10
		rpm at \$		4050	00.0	00.4	05.0	0.00	700	0.4	0.5	0.7	70	00		5 00 44 00		0000	00.0	40
50			992	4350	96.0	96.1	95.8	0.86	790	2.1	6.5	2.7	72	88	1LE5				22.0	13
)0 30			992 992	4800 5400	96.0	96.1 96.3	95.8	0.86	870	2.2	6.5	2.7	72 72	88	1LE5	5 33-4AC5		_	24.7	13 13
30 ³			992 993	6100	96.2 96.3	96.3 96.4	96.0 96.2	0.86	980 1110	2.2	6.5 6.5	2.7	74	88 90	1LE5				27.8 34.4	13
0 4			993	6800	96.3	96.4	96.4	0.85	730	2.0	6.5	2.5	74	90	▲ 1LE5				38.5	13
)0 4			993	7700	96.5	96.7	96.5	0.85	820	2.0	6.5	2.5	74	90	1220	5 33-4BC7			43.1	13
		pm at 50		1100	00.0	00.1	00.0	0.00	020	2.0	0.0	2.0		00	TLEO	000 4001		1000	10.1	10
55		400	742	4550	95.6	95.7	95.5	0.81	660	1.9	6.2	2.5	64	80	1LE5	5 33-4AD3		2850	21.9	13
00		400	742	5100	95.7	95.8	95.5	0.81	740	2.0	6.5	2.6	64	80	1LE5	5 33-4AD5		3050	24.5	13
50		400	742	5800	95.8	95.9	95.8	0.81	840	2.0	6.5	2.6	64	80	1LE5	5 33-4AD7		3250	27.5	13
00		450	744	6400	95.9	96.0	95.7	0.80	940	1.9	6.5	2.4	67	83	1LE5			_	34.0	13
60			744	7200	96.0	96.1	95.8	0.80	1050	1.9	6.5	2.4	67	83		5 33-4BD5		_	38.0	13
30		450	744	8100	96.1	96.2	95.9	0.81	1170	1.9	6.5	2.4	67	83	1LE5	5 33-4BD7		4250	42.5	13
oltage	9S														Versi	on		Or	der code	e(s)
) Hz		400 V∆		Ϋ́Υ	60 Hz		160 VΔ								Stand		34	-		
) Hz		500 V∆			60 Hz	<u>z</u> 5	575 VΔ									0	4 0	-		
) Hz		690 VA		a informa	ation of									VVit	nout add	tional charge	4 7	-		
		struction		e inform	alion, se		page 2	./15							Versi	on		 Or	der code	(s)
	t flang			IM B3 ²)										Stand		A	-		(3)
/ith fla				IM B5 ²										,		tional charge	F	_		
	•	es of co	nstruct	tion and	more in	formati	on, see	from pa	age 2/1	6										
lotor p	orotect	tion													Versi	on		Ord	der code	(s)
/ithou	t														Stand	lard	A	-		
TC th	ermist	tor with	3 temp	erature	sensors									,	With add	tional charge	в	-		
or oth	er mo	tor prote	ection a	and more	e inform	ation, s	see fron	n page 2	2/18											
ərmin	al box	positio	n												Versi	on		Ord	der code	(s)
ermin	al box	base le	ft with	terminal	box 45°	þ									With	out additional	charge 2	-		
ermin	al box	base ri	ght wit	h termina	al box 4	5°									Stand	lard	3	-		
or oth	er terr	minal bo	x posi	tions and	d more i	nforma	tion, se	e from p	bage 2/	19										
pecial	l versi	ons																Ord	der code	(s)
				/o ext. fa	an/fan co	over (IC	C418)										•			
		oled (IC															•			
or opt	ions, s	see from	n page	2/20								4) (tondo	d vere:					HH	+
	n.a.															Iz / 690 V (vol e code 4-0).	lage code	; 4-/)		

2) n.a. 3) Terminal box 1XB1631. or 60 Hz / 575 V (voltage code 4-0).
5) n_{max}=3000 rpm. For higher speeds, the motor must have steel bearing plates. Order on request with additional charge.

SIMOTICS SD standard motors next generation SIMOTICS SD Add motors IE3 Premium Efficiency

Self-ventilated or forced-air cooled motors, cast-iron series 1LE5533

			rdering Operat	ing valu	es at ra	ated po	wer									series						
7 rated)Hz	Fram size	9 <i>N</i> rated	\mathcal{T}_{rated}	η rated, 4/4	η rated, 3/4	η rated, 2/4	COS <i>φ</i> _{rated,} 4/4	<i>I</i> _{rated∆}		I _{LR} / d / _{rated}		L _{pfA,}	Lwa	IE3 IEC		<i>ion acc. to</i> 34-30-1			m	вз Ј		Torque class
w	FS	rpm	Nm	%	%	%		А				dB(A)	dB(A)	▲ N	lew				kg	kgn	1 ²	CL
Cooling: S Efficiency:	Self-ven Premiu	tilated (I ım Effici	C411) iencv IE3	. servic	e facto	r with si	inusoida	l feedin	ia (SF) 1.05												
Insulation	: Therm	al class	155 (ten	peratur	e class	s F), IPt	55 degre	e of pro	otectio	ón, util	izatio	n with s	sinusoid	lal fee	eding	in accorda	nce	with	therma	l class 1	30 (tempera
ture class Optionally		e for coi	nverter o	peratior	with i	nsulated	d bearing	g (L51)	for U _l	_{ine} ≤48	0 V; U	_{motor} ≤5(00 V; U	_{DC} ≤72	20 V -	- IVIC C ad	van	ced ir	nsulatio	on syster	n	
-pole: 360	0 rpm a	t 60 Hz																				
16 ³⁾	400	3586	1640	96.5	96.4	95.8	0.90	890	1.6	7.2	2.8	78	94	<mark>▲</mark> 1I	LE5	5 33-4AA3		- = = =	285	0 8.9		10
93 ³⁾	400	3586	1850	96.5	96.5	96.2	0.91	990	1.6	7.1	2.8	78	94	<mark>▲</mark> 1I	LE5	5 33-4AA5			300	0 9.8		10
81 ^{3) 4)}	400	3588	2100	96.8	96.8	96.3	0.90	900	1.8	7.3	3.1	78	94	<mark>≜ 1</mark>	LE5	5 33-4AA7			320	0 10.8		10
20 3) 4) 5)	450	3588	2450	96.9	96.9	96.5	0.89	1070	1.0	7.5	3.0	79	95	<mark>≜</mark> 1∣	LE5	5 33-4BA3			400	0 12.3		7
040 3) 4) 5)		3586	2750	97.0	97.0	96.6	0.90	1200	1.1	7.0	2.8	79	95			5 33-4BA5		· · · · ·				7
1 20 ^{3) 4) 5)} -pole: 180(450 0 rpm a	3584 t 60 Hz	3000	97.0	97.1	96.9	0.91	1270	1.1	6.8	2.5	79	95	▲ 1I	LE5	5 33-4BA7		-	445	0 14.7		7
44	400	1791	3450	96.2	96.3	95.5	0.88	950	1.7	6.4	2.5	82	98	<mark>▲</mark> 1I	LE5	5 33-4AB3			280	0 12.8		13
25 ³⁾	400	1792	3850	96.4	96.3	95.7	0.88	1070	1.8	6.8	2.7	82	98	-		5 33-4AB5			300	0 14.4		13
17 ⁴⁾	400	1792	4350	96.5	96.4	95.9	0.89	960	1.8	6.8	2.5	82	98	-	LE5	5 33-4AB7						13
20 ^{3) 4)}	450	1791	4900	96.3	96.3	95.8	0.89	1080	1.3	6.5	2.3	85	101		LE5	5 33-4BB3						10
040 ^{3) 4)}	450	1791	5500	96.5	96.5	95.9	0.88	1230	1.4	6.8	2.5	85	101		LE5	5 33-4BB5						10
1 50 ³⁾⁴⁾ -pole: 120	450	1791 t 60 Hz	6100	96.6	96.6	96.1	0.90	1330	1.6	6.8	2.5	85	101	1	LE5	5 33-4BB7		-	430	0 27.4		10
18	400	1193	4150	96.0	96.1	95.7	0.86	790	2.0	6.4	2.6	75	91	A 1	LE5	5 33-4AC3			290	0 22.0		13
75	400	1193	4600	96.0	96.1	95.8	0.86	870	2.1	6.5	2.6	75	91			5 33-4AC5						13
14	400	1193	5200	96.2	96.4	96.0	0.86	980	2.1	6.5	2.6	75	91	_		5 33-4AC7						13
25 ³⁾	450	1194	5800	96.3	96.3	96.1	0.85	1110	1.9	6.4	2.4	77	93			5 33-4BC3						13
17 ⁴⁾	450	1193	6500	96.3	96.4	96.4	0.85	1000	2.0	6.6	2.6	77	93	▲ 1I	LE5	5 33-4BC5	;		405	0 38.5		13
20 ^{3) 4)}	450	1193	7400	96.5	96.7	96.4	0.85	1130	1.9	6.6	2.4	77	93	1	LE5	5 33-4BC7	•	- = = =	430	0 43.1		13
-pole: 900	rpm at																					
08	400	892	4350	95.7	95.8	95.5	0.82	650	1.8	6.2	2.4	67	83			5 33-4AD3						13
60	400	892	4900	95.8	95.9	95.6	0.82	730	1.9	6.5	2.5	67	83			5 33-4AD5						13
18	400	892	5500	95.9	96.0	95.8	0.82	830	1.9	6.5	2.6	67	83			5 33-4AD7						13
75 44	450 450	894 894	6100 6900	96.0 96.1	96.1 96.2	95.7 95.8	0.81 0.81	930 1040	1.8 1.8	6.5 6.5	2.3 2.4	70 70	86 86			5 33-4BD3 5 33-4BD5						13 13
44 25	450	894 894	7700	96.2	90.2 96.4	95.8	0.82		1.8	6.5	2.4	70	86			5 33-4BD7						13
oltages	400	094	1100	90.2	90.4	90.0	0.02	1150	1.0	0.5	2.4	10	00		/ersio		Ē		420	Order co		-
) Hz	400 V	′Δ/690 V	N	60 Hz	7	460 VA									stand		3	4			Juci	3)
) Hz	400 V 500 V		· 1	60 Hz		400 VΔ 575 VΔ							\\/it			ional charge				_		
0 Hz	690 V			00112		010 14										ional charge				_		
or other vo			re inform	ation, se	e from	n page 2	2/15															
ypes of co	nstructi	on												V	/ersio	n				Order co	de(s	;)
vithout flan	nge		IM B3 ²)										S	stand	ard		Α		-		
Vith flange			IM B5 ²)									١	With a	addit	ional charge	Э	F		-		
or other ty	pes of o	construc	tion and	more in	formati	on, see	from pa	ge 2/10	6											••		
lotor prote	ction														'ersio					Order co	de(s	;)
/ithout TC thermi:	stor with	n 3 temr	erature	sensors									,	-	stand: addit	ard ional charge	_		A - 3 -	-		
or other m						see fror	n page 2	2/18							aduit	.ena ona g						
erminal bo														V	/ersio	n				Order co	de(s	;)
erminal bo			terminal	box 45	0									W	Vitho	ut additiona	l ch	arge	2	-		
erminal bo	ox base	right wit	th termina	al box 4	5°										stand			0.	3 -	_		
or other te						tion, se	e from p	age 2/	19													
pecial vers	sions																			Order co	de(s	;)
orced-air o	cooled r	notors w	/o ext. fa	an/fan c	over (I	C418)								1	LE55	533		•	-Z	F90+	+	.+
orced-air o	cooled (IC416)												1	LE55	534		•	-Z	F70+	+	+
or options		,	2/20											1	LE55	33		•	-Z	++.	+	

1) n.a.

2) n.a.

3) Terminal box 1XB1631.

4) Standard version is 50 Hz / 690 V (voltage code 4-7)

or 60 Hz / 575 V (voltage code 4-0).

5) Version only possible with steel bearing plates. Order on request with additional charge.

SIMOTICS SD standard motors next generation SIMOTICS SD Pro motors IE3 Premium Efficiency

Self-ventilated or forced-air cooled motors, cast-iron series 1LE5583

	Sele	scuon	anu	orderin	•		to-l								0	iron oorloo				
				Operati	ng valu	es at ra	ated pov	wer							11 E5	-iron series 5583				
Prated 50 Hz		Frame size	<i>N</i> rated	\mathcal{T}_{rated}	η _{rated,} 4/4	$\eta_{ m rated,}$ 3/4	η _{rated,} 2/4	cosφ _{rated,} 4/4	/ _{rated∆}		I _{LR} / d <i>I</i> rated		L _{pfA,} d	Lwa	IE3 v 30-1	version acc. to IEC 60	034- 1	<i>т</i> і _{М ВЗ}	J	Torque class
w		FS	rpm	Nm	%	%	%		А				dB(A)	dB(A)	≜ Ne	ew	k	g	kgm ²	CL
		elf-vent		IC411) iency IE3	a servic	e facto	r with c	inusoid	al foodi	na (SI	=) 1 0	5								
													on with	sinusoid	idal fee	ding in accordance w	ith the	rmal c	lass 155	(temper
	class onally		e for co	nverter o	peratio	n with i	nsulate	d bearin	ig (L51)	for U	_{line} ≤69	90 V -		; premiu	um insı	ulation system				
) rpm at										<u> </u>	- 4		• •					10
	3)	400	2988	1740	96.9	96.9	96.4	0.90	900	1.6	7.3	3.1	74	90		E5 583-4AA3			8.9	10
	3)	400 400	2988 2988	1950 2150	97.0 97.0	97.0 97.1	96.7 96.8	0.91	1000 640	1.6	7.3 7.3	3.1 3	74 74	90 90		E5 583-4AA5			9.8 10.8	10 10
••	3) 4) 5)	400	2900	2500	97.0	97.1	90.0	0.91	760	1.7 1.2	7.7	3.4	75	90		E5 583-4BA3			12.3	7
	3) 4) 5)		2988	2800	97.4	97.5	97.3	0.90	840	1.2	7.2	3	75	91	_	E5 583-4BA5			13.5	7
	3) 4) 5)	450	2986	3100	97.4	97.5	97.4	0.91	920	1.2	7.0	2.8	75	91		E5 583-4BA7			14.7	7
-pole	: 1500) rpm at	50 Hz		-						-			-						
45		400	1492	3500	96.4	96.4	96.0	0.87	940	1.8	6.7	2.7	78	94	🔺 1L	E5 583-4AB3	2	2800	12.8	13
15		400	1492	3950	96.6	96.6	96.2	0.87	1060	1.9	6.9	2.8	78	94	▲ 1L	E5 583-4AB5	3	3000	14.4	13
••	4)	400	1492	4400	96.6	96.7	96.4	0.88	680	2.0	7.0	2.7	78	94		E5 583-4AB7			16.5	13
	4)	450	1492	5000	96.6	96.6	96.1	0.88	770	1.6	7.2	2.7	81	97		E5 583-4BB3			22.2	10
	4)	450	1492	5600	96.8	96.8	96.3	0.87	870	1.5	7.2	2.6	81	97		E5 583-4BB5			24.8	10
	4) • 1000	450) rpm at	1492	6300	96.9	96.9	96.5	0.89	950	1.7	7.1	2.6	81	97	▲ 1L	E5 583-4BB7	4	1300	27.4	10
35	. 1000	400	993	4200	96.2	96.3	96.0	0.85	770	2.1	6.7	2.8	72	88	1	.E5 583-4AC3		2000	22.0	13
85		400	993	4650	96.2	96.4	96.1	0.86	850	2.1	6.7	2.8	72	88		E5 583-4AC5			24.7	13
45		400	993	5200	96.3	96.5	96.2	0.86	950	2.2	6.7	2.7	72	88	_	E5 583-4AC7			27.8	13
15		450	993	5900	96.5	96.7	96.4	0.84	1100	2.1	6.6	2.7	74	90	-	E5 583-4BC3			34.4	13
	4)	450	993	6600	96.6	96.8	96.6	0.85	700	2.0	6.8	2.5	74	90		E5 583-4BC5			38.5	13
	4)	450	993	7500	96.7	96.9	96.7	0.85	790	2.0	6.7	2.6	74	90	-	E5 583-4BC7			43.1	13
-pole	: 750	rpm at 5	50 Hz																	
35		400	744	4300	95.8	96.0	95.6	0.80	630	2.0	6.9	2.6	64	80	▲ 1L	E5 583-4AD3	2	2850	21.9	13
75		400	744	4800	95.9	96.1	95.7	0.80	710	2.1	7.2	2.8	64	80		E5 583-4AD5			24.5	13
25		400	744	5500	96.1	96.2	95.8	0.80	800	2.1	7.2	2.7	64	80	-	E5 583-4AD7			27.5	13
85		450	745	6200	96.1	96.2	95.9	0.79	920	2.0	7.0	2.6	67	83		E5 583-4BD3			34.0	13
45 00		450 450	745 745	7000 7700	96.2 96.3	96.4 96.5	96.0 96.1	0.79	1040 1120	2.0 2.1	7.0 7.3	2.6 2.6	67 67	83 83		E5 583-4BD5 E5 583-4BD7		1000 1250	38.0 42.5	13 13
		400	745	1100	90.5	90.5	90.1	0.80	1120	2.1	1.5	2.0	07	03		ersion			der code	
′oltag 0 Hz) VΔ/69			60 Hz	. /	460 VΔ									andard 3 4		-		(0)
0 Hz) VΔ) VΔ	0 1		60 Hz		575 VΔ							\\/i+k		dditional charge 4 0		_		
50 Hz					00112		<i>15</i> VA									dditional charge 4 7		_		
			and mo	re inform	ation. s	ee fron	n page	2/15							u					
ypes	of co	nstructio	on												Ve	ersion		Ord	der code	(s)
Vitho	ut flan	ge		IM B	32)										St	andard	A	-		
Nith f	ange			IM B	5 ²⁾									\	With a	dditional charge	F	-		
or ot	her typ	pes of c	onstruc	ction and	more in	format	ion, se	e from p	age 2/1	6										
	protec	ction														ersion		Ord	der code	(s)
Vitho			0.4											,		andard	A	-		
				perature and mor			soo fro	m naga	2/18					1	with a	dditional charge	B	-		
		x positio		and mor	e iniom	lation,	300 IIO	in page	2/10						Ve	ersion			der code	(s)
		-		n termina	l hoy 15	0										ithout additional charg	je 2	_		(-)
				th termin												andard	Je 2 3	_		
				itions and			ation. se	e from	page 2	19					00			-		
	al vers		5. 000					5 OIII	2090 2/										Orde	er code(s
•			notors v	v/o ext. fa	an/fan c	over (I	C418)								1L	.E5583 ■·■	-	Z F9	0++.	
		ooled (I				(.	.,												0++.	
		see fro	-	e 2/20											1L					
)n.a.																ersion is 50 Hz / 690 \		age co	de 4-7)	
)n.a.																75 V (voltage code 4- rpm. For higher speed		matar		

3) Terminal box 1XB1631.

 f) n_{max}=3000 rpm. For higher speeds, the motor must have steel bearing plates. Order on request with additional charge.

Article No. supplements and special versions

Standard motors SIMOTICS SD next generation

Types of construction

	Sele	ectior	n and	orderiı	•																
				Operat	ing valu	es at r	ated po	ower								t-iron s	eries				
Prated 30 Hz		Frame size	<i>n</i> rated	\mathcal{T}_{rated}	η rated, 4/4	η rated, 3/4	η rated, 2/4	$\cos \varphi_{\text{rated,}}$ 4/4	<i>I</i> rated∆		I _{LR} / / _{rated}		L _{pfA,}	Lwa	IE3 IEC	5583 <i>versiol</i> 60034 cle No.	n acc. to -30-1		<i>Т</i> ім вз	J	Torque class
w		FS	rpm	Nm	%	%	%		А				dB(A)	dB(A) 🔺	New			kg	kgm ²	CL
Effici Insul	ency:	Premiu Therm	um Effic	(IC411) ciency IE s 155 (te									ition wi	th sinu	usoidal	feedin	g in accordan	ce with th	ermal c	lass 155	(tempera
Optic	onally	suitabl			operatio	on with	insulat	ted bear	ing (L5	1) for	U _{line} ≤	690 V	' – IVIC	C pre	emium	insulat	ion system				
2-pole) rpm a	t 60 Hz	2																	
500	3)	400	3588	1600	96.8	96.6	95.9	0.90	860	1.6	7.5	3.1	78	94	A		5 83-4AA3			8.9	10
670	3)	400	3588	1780	96.9	96.8	96.2	0.91	950	1.6	7.4	3.1	78	94	A		5 83-4AA5			9.8	10
<u>′50</u>	3) 4)	400	3590	1990	97.0	96.9	96.4	0.90	860	1.8	7.5	3.2	78	94	▲ ▲		5 83-4AA7			10.8	10
00	3) 4) 5)	100	3590	2400	97.3	97.3	96.8	0.89		1.1	7.7	3.2	79	95			5 83-4BA3			12.3	7
005	3) 4) 5) 3) 4) 5)		3588		97.3	97.4	97.1	0.91	1140		7.3	3.0	79	95	•		5 83-4BA5			13.5	7
085 -pole			3586 t 60 Hz		97.3	97.4	97.3	0.91	1230	1.2	7.0	2.7	79	95		ILEO	5 83-4BA7		4450	14.7	7
25		400	1791	3350	96.3	96.3	95.6	0.88	930	1.7	6.5	2.6	82	98		1LE5	5 83-4AB3		2800	12.8	13
10		400	1792	3800	96.6	96.5	95.9	0.88	1050		6.9	2.7	82	98			5 83-4AB5			14.4	13
'95	4)	400	1792	4250	96.7	96.7	96.2	0.89	930	1.9	7.0	2.6	82	98			5 83-4AB7			16.5	13
905	3) 4)	450	1791	4850	96.5	96.4	95.7	0.89	1060		6.6	2.4	85	101			5 83-4BB3			22.2	10
	3) 4)	450	1791	5400	96.7	96.6	95.9	0.88	1190		7.0	2.5	85	101			5 83-4BB5			24.8	10
1125	3) 4)	450	1791	6000	96.8	96.7	96.2	0.90	1300	1.6	7.0	2.6	85	101		1LE5	5 83-4BB7		4300	27.4	10
6-pole	: 1200) rpm a	t 60 Hz	2																	
500		400	1193	4000	96.2	96.3	95.8	0.85	770	2.0	6.6	2.7	75	91	A	1LE5	5 83-4AC3		2900	22.0	13
560		400	1193	4500	96.2	96.4	96.0	0.86	850	2.1	6.7	2.7	75	91	A	1LE5	5 83-4AC5		3050	24.7	13
625		400	1193	5000	96.4	96.5	96.1	0.86	950	2.1	6.7	2.6	75	91	A	1LE5	5 83-4AC7		3250	27.8	13
705		450	1194	5600	96.6	96.7	96.2	0.84		2.0	6.5	2.5	77	93	A		5 83-4BC3		_	34.4	13
795	4)	450	1193	6400	96.6	96.7	96.5	0.85	970	2.0	6.8	2.6	77	93	A		5 83-4BC5			38.5	13
395	4)	450	1193	7200	96.8	96.9	96.6	0.85	1090	1.9	6.8	2.5	77	93	A	1LE5	5 83-4BC7		4300	43.1	13
	: 900	rpm at		4400	05.0	00.0	05.5	0.04	000	1.0	~ ^	0.5	07	00		41.55	E 00 44 D0	-	0050	04.0	40
385		400	894	4100	95.9	96.0	95.5	0.81	620	1.9	6.9	2.5	67	83			5 83-4AD3		_	21.9	13
430		400	894	4600	96.0	96.1	95.6	0.81	690	2.0	7.3	2.7	67	83			5 83-4AD5			24.5	13
490 560		400 450	894 895	5200 6000	96.2 96.3	96.2 96.4	95.8 95.9	0.81	790 910	2.0 1.9	7.1 7.0	2.7 2.5	67 70	83 86	-		5 83-4AD7 5 83-4BD3			27.5 34.0	13 13
625		450	895	6700	96.3	96.4	96.0	0.80		1.9	7.1	2.5	70	86			5 83-4BD5		_	34.0	13
690		450	895	7400	96.4	96.5	96.1	0.81		1.9	7.2	2.5	70	86			5 83-4BD7			42.5	13
Voltag	06	400	000	7400	50.4	50.5	50.1	0.01	1110	1.0	1.2	2.0	10	00		Versio				der cod	
50 Hz			690 VY	/	60 H	4-7	460 V	Δ								Stand		34	-		0(0)
50 Hz		00 VΔ/ 00 VΔ	090 VI		60 F		400 V 575 V								Witho						
50 Hz		00 VΔ 90 VΔ			00 F	12	575 V	Δ									•	40 47			
			and mo	ore inforr	nation	see fro	m naq	≥ 2/15							VVILIO	ut auui	tional charge				
		nstructi			nation,	000 110	in page	5 2/10								Versio	n			· der cod	e(s)
Nithou				IM	B3 ²⁾											Stand		A	-		· · /
With fl					B5 ²⁾										With		onal charge	F	-		
	0	bes of o	constru	ction and	d more i	informa	ation, s	ee from	page 2	2/16											
Motor	protec	ction														Versi	on		0	rder cod	e(s)
Withou	ut															Stand	dard	A	-		
PTC th	nermis	stor wit	h 3 tem	perature	e sensoi	'S									W	ith add	itional charge	В	-		
For oth	ner me	otor pro	otection	and mo	re infor	mation	, see fr	om pag	e 2/18									-			
Termir	nal bo	x positi	ion													Versi	on		0	rder cod	e(s)
				h termina													out additional		2 –		
				ith termi												Stand	dard		3 –		
			oox pos	sitions ar	nd more	inform	nation,	see fron	n page	2/19									~	rdon 1	a (a)
Specia																				rder cod	. ,
Forced	l-air c	ooled r	notors	w/o ext.	fan/fan	cover	(IC418))								1LE5	583		Z F	90++	+
orceo	l-air c	ooled (IC416)													1LE5	534		-Z F	70++	+
or op	tions,	see fro	om pag	e 2/20												1LE5	583		-Z	++	.+
																	on is 50 Hz / (

1) n.a.

2) n.a. 3) Terminal box 1XB1631.

4) Standard version is 50 Hz / 690 V (voltage code 4-7)

or 60 Hz / 575 V (voltage code 4-0). 5) Version only possible with steel bearing plates. Order on request with additional charge.

Standard motors SIMOTICS SD next generation

Voltages

Selection and or	deri	Selection and ordering data						
Voltages								
Cast-iron serie	s 1	LE	55					
Voltages			NrErga	änzung				
	12th pos	h an	ge code Additional identifi- and 13th cation code with on of the order code and plain		P50Hz ≤630 kW 1LE5534 ADD 1LE5533 ADD	1LE5534 ADD		IE4 IE3
1LE5		-	•		1LE5583 PRO		i	
Voltage at 50 Hz or 60) Hz	2						
50 Hz 400 VΔ/690 VY, 60 Hz 460 VΔ	3		4	-		0.R.		
50 Hz 500 V∆	4		0		0	0		
60 Hz 575 V∆					0	D ²⁾		
50 Hz 690 V∆	4		7	-	✓			
50 Hz 380 VΔ/660 VY, 60 Hz 440 VΔ	3		3	-	√	0.R.		
50 Hz 415 VΔ, 60 Hz 480 VΔ	3		5	-	√	0.R.		
50 Hz 600 VΔ, 60 Hz 690 VΔ	4		4	-	√	\checkmark		
50 Hz 660 V∆	4		6	-	✓	✓ ²⁾		
Voltage at 60 Hz and	req	uire	ed powe	∍r				
440 VΔ; 60-Hz-Leistung	9		0	M1D	√	0.R.		
460 V∆; 60-Hz-Leistung	9		0	M 1F	V	0.R.		
575 V∆; 60-Hz-Leistung	9		0	M 1H	V	√ ²⁾		
400 V∆/690 VY; 60-Hz-Leistung	9		0	M1J	0.R.	0.R.		
480 V∆; 60-Hz-Leistung	9		0	M1L	√	0.R.		
440 VΔ; 50-Hz-power	9		0	M2D	√	0.R.		
460 V∆; 50-Hz-power	9		0	M2F	✓	0.R.		
575 V∆; 50-Hz-power	9		0	M2H	√	√ ²⁾		
400 V∆/690 VY; 50-Hz-power	9		0	M2J	0.R.	0.R.		
480 V∆; 50-Hz-power	9		0	M2L	√	0.R.		
Non-standard voltage	an	d/or	freque	encies				
Non-standard winding ¹⁾	9		0	M1Y • and customer specifica- tions	V	✓ ²⁾		

Standard version
 With additional charge
 Without additional charge
 This order code only determines the price of the version – Additional plain text is required.

Plain text must be specified in the order: Voltage between 380 and 690 V (voltages outside this range are available on request), frequency, circuit, for 60 Hz additionally required rated power in kW.
 2) 2-pole execution in shaft height 450 for 60 Hz operation on inquiry.

Standard motors SIMOTICS SD next generation

Types of construction

Selection	Selection and ordering data							
	f constructio							
Cast-iro	n series 1LE							
		Artikel-NrErg	änzung		Frame size			
Types of cons	struction	Type of construction		Article No. with additional		450		
		letter 14th position of		identification code -Z	1LE5534 ADD		IEC	IE4
		the Article No			1LE5533 ADD			IE3
		Allicie No			1LE5583 PRO			
	LE5	•	••		400	450		
Without flar	ige				_			
IM B3	d	A		-		•		
IM V6		D		-	0.R.	O.R. 7)		
2)								
IM V5		С		-	0.R.	O.R. 7)		
without protective cover								
2)					0.0			
IM V5 with		С		H00	0.R.	O.R. 7)		
protective cover 2) 3) 4)								
With flange		Acc. to EN 5						
IM DE	•	Acc. to DIN	42948		1	,		
IM B5 2) 5)	4	F		-	✓	1		
IM V1		G		-	1	1		
without								
protective cover ²⁾	-							
IM V1		G		H00	1	1		
with protective								
COVER 2) 3) 4)	Ŧ							
IM B35 ³⁾	4	J		-	1	✓		

Standard version

With additional charge

O.R. on request

- 1) The types of construction IM B6/7/8, IM V6, and IM V5 with/without protective cover are also possible as long as no stamping of these types of construction on the rating plate is required. As standard the type of construction IM B3 is then stamped on the rating plate. With type of construction IM V5 with protective cover, the protective cover has to be additionally ordered with order code H00. The protective cover is not stamped on the rating plate.
- 2) The type of construction is stamped on the rating plate. If mounted in a different position, the position must be specified to ensure that

- The type of construction is stamped on the rating plate. If mounted in a different position, the position must be specified to ensure that the condensation drainage holes are positioned correctly.
 In combination with an encoder it is not necessary to order the protective cover (order code H00), as this is delivered as a protection for the encoder as standard. In this case the protective cover is standard design (without additional charge).
 The "Standard cylindrical shaft extension (second shaft extension)" option (order code L05) is not possible.
 The types of construction IM V3 and IM V1 with/without protective cover are also possible as long as no stamping of these types of construction on the rating plate is required. As standard the type of construction IM B5 is then stamped on the rating plate. With type of construction IM V1 with protective cover, the protective cover has to be additionally ordered with order code H00. The protective cover is not stamped on the rating plate.
 For IM B5 design, additionally support the machine with a support foot on the NDE side. Support foot is not part of the scope of delivery. Support foot with appropriate rigidity must be sufficiently dimensioned. Support foot must be can carry totaly motor weight.
 Not possible for 2-pole motor 1LE55..-4BA.

Standard motors SIMOTICS SD next generation

Selection and ordering data								
Motor protection	Motor protection							
Cast-iron series 1	LE55							
	Artikel-NrErg	jänzung	Frame size					
Motor protection	Motor pro- tection letter 15th position of the Article No.	Additional identification code with order code and plain text if required	400 1LE5534 Add 1LE5533 Add	450	IEC	IE4 IE3		
			1LE5583 Pro					
1LE5	• •		400	450				
Motor protection								
Without	Α	-		•				
1or 3 PTC thermistors – for tripping (2 terminals) ¹⁾	В	-	√	1				
2 or 6 PTC thermistors – for warning and tripping (4 terminals) ¹⁾	С	-	✓	✓				
1temperature sensor KTY84-130 (2 terminals) ¹⁾	F	-	✓	1				
2 temperature sensors KTY84-130 (4 terminals) ¹⁾	G	-	1	1				
3 Pt100 resistance thermometers – 2-wire input (6 terminals)	н	-	<i>✓</i>	1				
6 Pt100 resistance thermometers – 2-wire input (12 terminals)	J	-	1	1				
1Pt1000 resistance thermometer (2 terminals)	к	-	1	✓				
2 Pt1000 resistance thermometers (4 terminals)	L	-	1	1				
1Pt100 resistance thermometer – 2-wire input (2 terminals)	Ρ	-	1	1				
3 Pt100 resistance thermometers – 3-wire input (9 terminals)	Q	-	1	1				
6 Pt100 resistance thermometers – 3-wire input (18 terminals)	R	-	1	1				
3 bimetal sensors (NC contact) – for tripping (2 terminals) ¹⁾	Z	Q3A	V	1				
6 bimetal sensors (NC contact) for warning and tripping (4 terminals)) ¹⁾	Z	Q9A	1	/				

Standard version

✓ With additional charge

Note: Options are available specifically for bearing protection – for order codes and descriptions, see from page3/9.

1) Evaluation with appropriate tripping unit (see Catalog IC 10) is recommended.

Standard motors SIMOTICS SD next generation

Terminal box position

Selection and o	Selection and ordering data							
Terminal box p	Terminal box position							
Cast-iron series	Cast-iron series 1LE55							
	Artikel-NrErg	länzung	Frame size					
Terminal box position	Terminal box	Additional identification	400	450				
	16th position	code with order code and plain	1LE5534 Add		IEC	IE4		
	No.	text if required	1LE5533 Add			IE3		
			1LE5583 Pro					
1LE5	•		400	450				
Terminal box position								
Terminal box socket left- hand side with terminal box top ³⁾	0	-	4	✓				
Terminal box socket right- hand side with terminal box top ³⁾	• 1	-	4	1				
Terminal box socket left with terminal box 45°	2	-	0	0				
Terminal box socket right with terminal box 45°	3	-		0				
Anschlusskasten seitlich rechts ¹⁾	5	-	1	1				
Anschlusskasten seitlich links ¹⁾	6	-	√	1				
Anschlusskasten seitlich links (socket bottom) ²⁾	9	R5L	V	1				
Anschlusskasten seitlich rechts (socket bottom) ²⁾	9	R6R	1	1				
Terminal box bottom left	9	R7L	√	1				
Terminal box bottom right	9	R7R	✓	1				

□ Standard version

With additional charge
 Without addditional charge

For types of construction with feet and flange-mounted with feet, cast feet are standard.
 Only possible in comination with type of construction IM B5.
 Not possible for motors with verticle drive shaft (IM V1, IM V5, IM V6).

SIMOTICS SD standard motors next generation

Selection and ordering data						
Options						
Cast-iron series 1LE	55					
Special versions	Additional identification code	Frame size				
	-Z with order code	1LE5534 Add		IEC	IE4	
	and plain text if required	1LE5533 Add			IE3	
		1LE5583 Pro				
1LE5		400	450			
Motor protection						
1or 3 PTC thermistors – for tripping (2 terminals)) ¹⁾	Q11	✓	1			
2 or 6 PTC thermistors – for warning and tripping (4 terminals)	Q12	✓	1			
3 Heissleiter NTC - für Abschaltung (6 Klemmen)	Q21	0.R.	0.R.			
1KTY84-130 temperature sensor (2 terminals) ¹⁾	Q23	1	<i>√</i>			
2 KTY84-130 temperature sensors (4 terminals) ¹⁾	Q25	✓	V			
3 bimetal sensors (NC contacts) for tripping (2 terminals)	Q31	✓	V			
6 bimetal sensors (NC contacts) for warning and tripping (4	Q32	✓	V			
3 bimetal sensors (NC contacts) for tripping (6 terminals)	Q33	<i>✓</i>	1			
6 bimetal sensors (NC contacts) for warning and tripping (12	Q34	v	1			
1Pt1000 resistance thermometer (2 terminals)		<i>✓</i>	1			
(4 terminals)	Q36	✓	1			
6 Temperatursensor PT 1000 (12 Klemmen)	Q37	✓	1			
3 Pt100 resistance thermometers 2-wire input (6 terminals) ¹⁾	Q60	✓	1			
6 Pt100 resistance thermometers – 2-wire input (12 terminals) ¹⁾	Q61	✓	1			
1Pt100 resistance thermometer – 2- wire input (2 terminals)		✓	1			
3 Pt100 resistance thermometers – 3-wire input (9 terminals)		1	1			
6 Pt100 resistance thermometers – 3-wire input (18 terminals)	Q64	1	1			
basic configuration for bearings (2 terminals)	Q72	✓	1			
wire input, for bearings (6	Q78	1	1			
2 Pt100 double screw-in thermometers, 3-wire input, for bearings (12 terminals)	Q79	✓	1			

Standard motors SIMOTICS SD next generation

Selection and ordering	data				
Options					
Cast-iron series 1LE	55				
Special versions	Additional	Frame size			
	identification code -Z with order code	1LE5534 Add		IEC	IE4
	and plain text if	1LE5533 Add			IE3
	required	1LE5583 Pro			
1LE5		400	450		
Notor connection and termina	al box				
External grounding	H04				
Terminal box on NDE	H08	1	1		
Second external grounding	H70	1	1		
Subsequently rotatable main connection box	R09	✓	1		
Rotation of the terminal box hrough 90°, entry from DE ³⁸⁾	R10	✓	✓		
Rotation of the terminal box hrough 90°, entry from NDE	R11	1	V		
Rotation of the terminal box hrough 180°	R12	√	V		
EMC cable gland, maximum configuration	R16	√	V		
Metal cable gland, maximum configuration	R18	1	J		
Saddle terminal for connection without cable lug, accessories	R19	1	1		
3 cables protruding, 1.5 m long	R21	0.R.	0.R.		
cables protruding, 1.5 m long	R23	0.R.	0.R.		
cables protruding, 3 m long	R24	0.R.	0.R.		
arger terminal box 39)	R50	1	1		
Drilled removable entry plate	R52				
Jndrilled removable entry plate	R53	0	0		
Cast-iron auxiliary terminal box	R62	1	1		
Cast-iron auxiliary terminal box (big)	R63	1	1		
Stainless steelauxiliary terminal	R65	1	1		
Silicon-free version ³⁰⁾	R74	1	✓		
Non-standard threaded through nole (NPT or G thread) ²⁾	Y61 • and customer specifica- tions	✓	✓		
Windings and insulation					
Temperature class 155 (F), utilized acc. to 155 (F), with service factor (SF) ³³⁾	N01				
Temperature class 155 (F), utilized acc. to 155 (F), with increased power ³³⁾	N02	1	√		
Temperature class 155 (F), utilized acc. to 155 (F), with increased coolant temperature ³³⁾	N03	1	1		
Temperature class 155 (F), utilized acc. to 130 (B), coolant temperature 45 °C, derating approx. 4 % ⁴⁰⁾		1	1		

SIMOTICS SD standard motors next generation

Selection and ordering	data				
Options					
Cast-iron series 1LE	55				
Special versions	Additional	Frame size			
	identification code	1LE5534 Add		IEC	IE4
	-Z with order code and plain text if	1LE5533 Add		i	IE3
	required	1LE5583 Pro			
1LE5		400	450		
Temperature class 155 (F), utilized acc. to 130 (B), coolant temperature 50 °C, derating approx. 8 $\%^{40}$		1	/		
Temperature class 155 (F), utilized acc. to 130 (B), coolant temperature 55 °C, derating approx. 13 $\%$ ⁴⁰⁾		4	4		
Temperature class 155 (F), utilized acc. to 130 (B), coolant temperature 60 °C, derating approx. 18 $\%$ ⁴⁰⁾		✓	✓		
Temperature class 180 (H) ⁴¹⁾	N 10	✓	√		
T emperature class 180 (H) at rated power and max. CT 60 $^{\circ}\text{C}^{^{4)}}$		O.R.	O.R.		
Increased air humidity/temperature with 30 to 60	N30	✓	V		
Increased air humidity/temperature with 60 to	N31	1	✓		
Temperature class 155 (F), utilized acc. to 130 (B), with higher coolant temperature and/or installation altitude ³³⁾	spec. power, CT °C or IAm above sea level	1	1		
Temperature class 155 (F), utilized according to 155 (F), other requirements ⁴⁾³³⁾	Y52 • and spec. power, CT ℃ or IAm above sea level	/	/		
Temperature class 180 (H), utilized according to 155 (F) 33)	Y75 • and spec. power, CT °C or IAm above sea level	O.R.	O.R.		
Colors and paint finish					
Standard paint finish C2 in RAL 7030 stone gray			0		
Unpainted (only cast-iron parts primed)	S00	0	0		
Unpainted, only primed	S01	√	✓		
Special paint finish	S02	√	✓		
Special paint finish sea air	S03	√	✓		
Special paint finish for use	S04	1	✓		
Internal coating	S05	✓	✓		
Top coat polyurethane 27)	S06				

Standard motors SIMOTICS SD next generation

Selection and ordering	data			
Options				
Cast-iron series 1LE	55			
Special versions	Additional	Frame size		
	identification code -Z with order code	1LE5534 Add		IEC IE4
	and plain text if	1LE5533 Add		IE3
	required	1LE5583 Pro		
1LE5	VC2 and	400	450	
Paint finish in other standard RAL colors: RAL 1002, 1013, 1015, 1019, 2003, 2004, 3000, 3007, 5007, 5009, 5010, 5012, 5015, 5017, 5018, 5019, 6011, 6019, 6021, 7000, 7001, 7004, 7011, 7016, 7022, 7031, 7032, 7033, 7035, 9001, 9002, 9005 (see Catalog Section 1"Introduction")	paint finish RAL	1	7	
Paint finish in special RAL colors: For RAL colors, see "Special paint finish in special RAL colors" (see Catalog Section 1"Introduction")	paint finish RAL	1	1	
Modular technology – Basic v			0.0	
Mounting of holding brake (standard assignment) ^{6) 25) 26) 30)}	F01	O.R.	0.R.	
Mounting of separately driven fan	F70	√	√	
Modular technology – Additio	nal versions			
Brake supply voltage 230 V AC, 50/60 Hz	F11	O.R.	O.R.	
Brake supply voltage 400 V AC, 50/60 Hz	F 12	O.R.	0.R.	
Special technology ⁵)				
Mounting of LL 861900 220 rotary pulse encoder ⁹⁾		1	✓	
Mounting of HOG 9 D 1024 I rotary pulse encoder ⁹⁾		<i>✓</i>	<i>✓</i>	
Mounting of HOG 10 D 1024 I rotary pulse encoder ⁹⁾		<i>✓</i>	<i>✓</i>	
Mounting of HOG 10 DN 1024 I rotary pulse encoder, terminal box moisture protection	G15	1	1	
Mounting of HOG 10 DN 1024 I rotary pulse encoder, terminal box dust protection ⁵⁾	G16	✓	1	
HOG 10 DN 1024 I + FSL (integrated centrifugal switch, speed rpm), terminal box moisture protection	Y74 • and spec. speed Rpm		O.R.	
Mounting of rotary pulse encoder HOG 10 DN 1024 I + FSL, (integrated centrifugal switch, speed rpm), terminal box dust protection	speed Rpm		1	
Mounting of rotary pulse encoder HOG 10 DN 1024 I + ESL 93 (integrated electronic speed switch, speed rpm), terminal box dust protection	Y79 • and spec. speed (max. 3) Rpm		1	

SIMOTICS SD standard motors next generation

Selection and ordering	data				
Options					
Cast-iron series 1LE	55				
Special versions	Additional	Frame size			
	identification code	1LE5534 Add		IEC	IE4
	-Z with order code and plain text if	1LE5533 Add			IE3
	required	1LE5583 Pro			
1LE5		400	450		
Mechanical version and degr	ees of protection				
Low-noise version for 2-pole motors with clockwise direction of	F77	•	•		
Low-noise version for 2-pole motors with counter-clockwise direction of rotation	F78	0	0		
Prepared for mountings, center hole only	G40	•	0		
Prepared for mountings with D16 shaft	G42	✓	1		
Protective cover for encoder	G43	1	1		
Protective cover ^{7) 9) 11)}	H00	1	✓		
Condensation drainage holes	H03		0		
Rust-resistant screws (externally)	H07	1	✓		
IP65 degree of protection ¹³⁾	H20	1	1		
IP56 degree of protection ¹⁴⁾	H22	✓	✓		
Sealing ring made of fluororubber		1	✓		
Extended corrosion protection of external components	H90	V	√		
Grounding brush for converter operation ³²⁾	L52	✓	✓		
Coolant temperature and inst	allation altitude				
Coolant temperature –50 to +40 °C ^{15) 35)}	D02	✓	1		
Coolant temperature –40 to +40 °C ¹⁵⁾	D03	✓	1		
Coolant temperature –30 to +40 °C ¹⁵⁾	D04	1	1		
Versions in accordance with	standards and sp	ecifications			
Electrical according to NEMA MG1 12 ¹⁷⁾	- D30	•	•		
Version according to UL with "Recognition Mark" ¹⁷⁾	D31	•	0		
Canadian regulations (CSA) ¹⁶⁾	D40		0		
TR CU product safety certificate EAC for Eurasian customs union	D47	√	1		
Bearings and lubrication					
Regreasing device with M10 × 1 grease nipple according to DIN 71412-A	L 19	0	0		
Located bearing DE	L20	•	0		
Located bearing NDE 37)	L21	✓	✓		
Bearing design for increased cantilever forces ^{28) 29)}	L22	0.R.	0.R.		
Regreasing device	L23	•	0		
Outlet for old grease	L30	0.R.	0.R.		

Standard motors SIMOTICS SD next generation

Selection and ordering	data			
Options				
Cast-iron series 1LE	55			
Special versions	Additional	Frame size		
	identification code	1LE5534 Add		IEC IE4
	-Z with order code and plain text if	1LE5533 Add		IE3
	required	1LE5583 Pro		
1LE5		400	450	
Increased maximal speed	L37	0.R.	0.R.	
Bearing insulation DE ^{31) 32)}	L50	1	1	
Bearing insulation NDE 32)	L51	1	1	
Measuring nipple for SPM shock pulse measurement for bearing inspection	Q01	1	1	
Balance and vibration quantit	ty.			
Vibration quantity level A				
Vibration quantity level B ¹⁸⁾	L00	1	1	
Half-key balancing				
Balancing without feather key, feather key is supplied	L01	 Image: A start of the start of	 Image: A start of the start of	
Full-key balancing	L02	1	1	
Shaft and rotor				
Shaft extension with standard dimensions, without feather	L04	✓	✓	
Standard cylindrical shaft extension (second shaft end) NDE acc. to EN 50347	L05	1	1	
Concentricity of shaft extension in accordance with DIN 42955 Tolerance R	L07	1	/	
Concentricity of shaft extension, coaxiality, and linear movement in accordance with DIN 42955 Tolerance R for flange-mounting motors	L08	1	1	
Non-standard cylindrical shaft extension, DE ¹⁹⁾	Y58 • and customer specifica- tions	/	<i>✓</i>	
Non-standard cylindrical shaft extension, NDE ¹⁹⁾	Y59 • and customer specifica- tions	 Image: A start of the start of	×	
Special shaft steel as requested by customer	Y60 • and customer specifica- tions	O.R.	O.R.	
Heating and ventilation				
Sheet metal fan cover	F74			
Metal external fan	F76	1	1	
Without external fan and without fan cover	F90	✓	✓	
Anti-condensation heating for 230 V (2 terminals)	Q02	✓	1	
Anti-condensation heating for 115 V (2 terminals)	Q03	✓	1	

SIMOTICS SD standard motors next generation

Selection and ordering	data				
Options					
Cast-iron series 1LE	55				
Special versions	Additional	Frame size			
	identification code -Z with order code	1LE5534 Add		IEC	IE4
	and plain text if	1LE5533 Add			IE3
	required	1LE5583 Pro			
1LE5		400	450		
Anti-condensation heating for 400 V (2 terminals)		1	1		
Separately driven fan with non- standard voltage and/or frequency	Y81 • and customer specifica- tions	✓	1		
Rating plate and additional ra	ating plates				
Additional rating plate for voltage tolerance ²⁰⁾	B07	✓	V		
Second rating plate, loose	M 10	1	1		
Rating plate, stainless steel	M 11				
Additional rating plate with deviating rating plate data	Y80 • and customer specifica- tions	✓	1		
Additional rating plate with customer specifications	Y82 • and customer specifica- tions	√	1		
Additional information on rating plate and on package label (max. 20 characters)	Y84 • and customer specifica- tions	1	1		
Extension of the liability for o	lefects				
Extension of the liability for defects period by 12 months to a total of 24 months (2 years) from delivery ²¹⁾	Q80	1	1		
Extension of the liability for defectsby 18 months to a total of 30 months (2.5 years) from delivery	Q81	1	1		
Extension of the liability for defects period by 24 months to a total of 36 months (3 years) from delivery ²¹	Q82	√	1		
Extension of the liability for defects by 30 months to a total of 42 months (3.5 years) from	Q83	✓	J		
Extension of the liability for defects by 36 months to a total of 48 months (4 years) from delivery	Q84	✓	1		
Extension of the liability for defects by 42 months to a total of 60 months (5 years) from delivery	Q85	✓	✓		
Packaging, safety notes, doc	umentation, and t	est certificates			
Acceptance test certificate 3.1in accordance with EN 10204 ²¹⁾	B02	1	1		
Printed German/English operating instructions enclosed ²²⁾	B04	1	1		
Equivalent circuit diagram	B51	1	1		

Standard motors SIMOTICS SD next generation

Options

Selection and ordering	data								
Options									
Cast-iron series 1LE									
Special versions	Additional identification code -Z with order code and plain text if required	Frame size 1LE5534 Add 1LE5533 Add 1LE5583 Pro	1LE5534 Add 1LE5533 Add			IE4 IE3			
1LE5		400	450						
Starting curve (torque-speed and current-speed curve)	B52	✓	1						
Document - Electrical data sheet	B60	1	1						
Document - Order dimensional drawing	B61	✓	1						
Standard test (routine test) with acceptance	B65	1	1						
Temperature rise test without acceptance	B67	1	1						
Temperature rise test with acceptance	B68	1	√						
Type test with heat run for vertical motors, without acceptance	B80	1	√						
Type test with heat run for vertical motors, with acceptance	B81	1	1						
Type test with heat run for horizontal motors, without acceptance	B82	1	1						
Type test with heat run for horizontal motors, with acceptance	B83	✓	1						
Documentation Package "Basic"	B90	1	1						
Documentation Package "Advanced"	B91	✓	1						
Documentation Package "Projects"	B92	√	1						

Standard version

O Without additional charge

· This order code only determines the price of the

version – Additional plain text is required.

O. R. Possible on request

- Evaluation with appropriate tripping unit (see Catalog IC 10) is recommended.
 Parallel Whitworth threaded pipe DIN ISO 228 (DIN 259) BSPP (British Standard Pipe Parallel) threaded pipe for connections not sealed in the thread (cylindrical), external = G.
 The grease lifetime specified in Catalog Section 1 "Introduction" refers to CT 40 °C. If the coolant temperature is increased by 10 K, the grease lifetime and regreasing interval are halved.
- 4)
- 5)
- 6)
- Not possible for 1LE5 motors with increased power rating. A second shaft extension is not possible in shaft height 315 355. Please inquire for mounted brakes. For order codes F11, and F12, the brake supply voltage must be specified or ordered. The protective cover is omitted at the factory when a rotary pulse encoder is combined with a separately driven fan, because in this case the rotary pulse encoder is installed under the fan cover. 7)

8) n.a.

- The LL and HOG rotary pulse encoders are fitted with a protective cover as standard. The protective cover is omitted at the factory when a rotary pulse encoder is combined with a separately driven fan, because in this case the rotary pulse encoder 9) is installed under the fan cover (order code G43).
- 10) Option (encoder mounting) is only possible for motors with a mounted separately driven fan or for naturally cooled motors (without a forceventilated fan). This option can be used in combination with brakes of type KFB ans SFB! This option cannot be used in combination with brakes of type 2LM8.
- 11) Protective cover air inlet at vertical type of construction.12) Not possible for type of construction IM V3.

13) n.a.

- 14) Not possible in combination with brake 2LM8 order code F01.
- 15) In connection with mountings, the respective technical specifications must be observed, for SH 315 and 355 please inquire before ordering.
- 16) The rated voltage is indicated on the rating plate without voltage range. Order code D40 does not authorize importing into Canada.
- 17) Possible up to 600 V max. The rated voltage is indicated on the rating plate without voltage range. Order codes D30 and D31 do not authorize importing into USA and Mexico.

SIMOTICS SD standard motors next generation

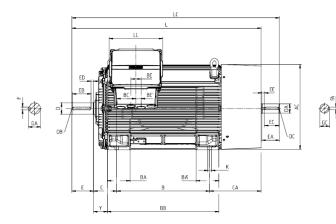
Selection and ordering	data				
Options					
Cast-iron series 1LE	55				
Special versions Additional	Additional	Frame size			
	identification code	1LE5534 Add		IEC	IE4
	-Z with order code				
	and plain text if	1LE5533 Add			IE3
	required	1LE5583 Pro			
1LE5		400	450		

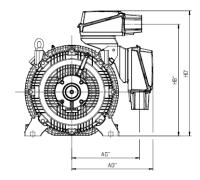
- 18) n.a. 19) When motors are ordered that have a longer or shorter shaft extension than normal, the required position and length of 19) When motors are ordered that have a longer or shorter shaft extension than normal, the required position and length of the feather keyway must be specified in a sketch. It must be ensured that only feather keys in accordance with EN 50347, Form A are used. The feather keyway is positioned centrally on the shaft extension. The length is defined by the manufacturer in accordance with the appropriate standard. Not valid for:
 - Conical shafts, non-standard threaded journals, non-standard shaft tolerances, friction welded journals, extremely "thin" shafts, special geometry dimensions (e.g. square journals), hollow shafts. Valid for nonstandard shaft extensions DE or NDE. The
 - For order codes Y58, Y59, and L05 the following applies:
 - Dimensions D and DA ≤ inner diameter of roller bearing (see dimension tables under
 - "Dimensions"

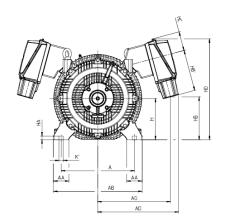
- Dimensions)
 Dimensions E and EA ≤ 2 × length E (normal) of the shaft extension.
 20) Can be ordered for 400 VΔ/690 VY (voltage code "34").
 21) The delivery time for the factory test certificate may differ from the delivery time for the motor.
 22) The Operating Instructions (compact) are available in PDF format for all official EU languages at http://support.automation.siemens.com/WW/view/en/40761976.
- 23) n a

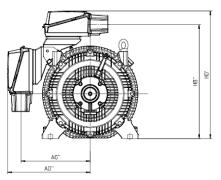
- 23) n.a.
 24) Not possible in combination with order codes Q72 and Q78.
 25) Not possible in combination with order codes N05, N06, N07, N08, and N11.
 26) In combining order codes F01 and F12, the rectifier for the brake will be supplied separately as a single part..
 27) Order code S06 cannot be combined with order codes S00 and S01. It can be combined with Y53 on request.
 28) A minimum cantilever force Fmin of 0.5 Fmax is required for NU bearings (cylindrical roller bearings) in contrast to ball bearings. Cylindrical roller bearings are not suitable for coupling output or for brief periods of no-load operation without cantilever force.
 29) Admissible cantilever forces with reinforced bearings for shaft height 400 450 on request. Please indicate cantilever force and lever arm lever arm.
- 30) UL- / CSA-approval not applicable for Shaft height 400 450.
- 31) For insulated bearing DE and not insulated bearing NDE motor coupling must be insulated.
- 32) Grounding brush (L52) is mandatory at insulated bearing DE and NDE if there is no grounding for drive train available. Otherwise it should not be used.
- 33) Only possible with motors for mains-fed operation.
- 34) Separately driven fan motor is carried out with voltage code 3-4 (400 V / 50 Hz; 460 V / 60 Hz).
 35) Type of protection is changing to IP54 for shaft height 400 450.
- 36) Not possible for 2-pole motors and shaft height 400 450.
- 37) Not possible at vertical type of construction for shaft height 400 450.
- 38) Only possible in combination with option H08 for motors with flange (IM B5, IM B35, IM V1).
- 39) Restrictions are possible when terminal box mounted.
 40) Only possible in combination for SIMOTICS SD Add motors (6th position of the Article No.: 3).
- Increased power by 5 % compared to temperature class 155 (F).

Dimensions

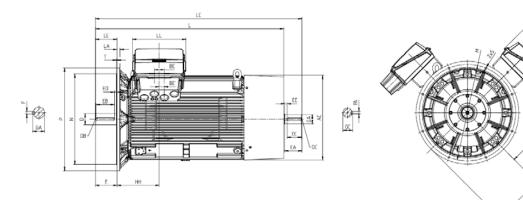

Standard motors SIMOTICS SD next generation


Cast-iron series


Dimension drawings


Type of construction IM B3

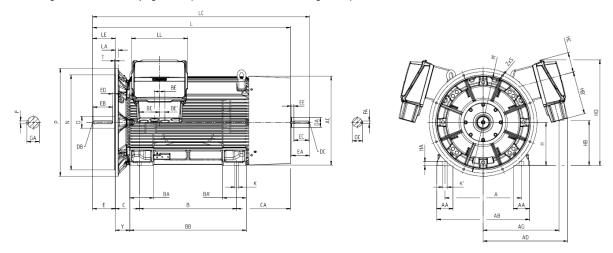
For flange dimension, see page 1/16 (Z = the number of retaining holes)

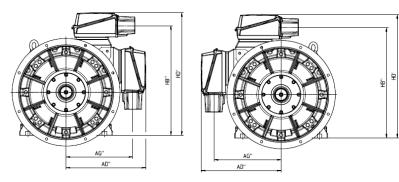


Type of construction IM B5 and IM V1

For flange dimension, see page 1/16 (Z = the number of retaining holes)

Dimensions


SIMOTICS SD standard motors next generation


Cast-iron series

Dimension drawings

Type of construction IM B5 and IM V1

For flange dimension, see page 1/16 (Z = the number of retaining holes)

For mo	otor	Dimens	sion o	desigr	nation	acc.	to IE	С																					
Frame size	Motor type 1LE55[38]	No. of poles	A	AA	AB	AC	AD	AD'	AD''	AG	AG'	AG''	AH	В	в'	в"	BA	BA'	BB	вс	BE	BE'	С	CA	CA'	CA"	Н	HA	ΗВ
400	4AA	2	710	150	860	880	785	845	740	705	720	620	1110	900	-	-	220	220	1080	186	87.5	43.5	224	501	-	-	400	35	420
	4AB	4																											
	4AC	6																											
	4AD	8																											
450	4BA	2	800	180	980	970	820	895	775	740	770	655	1235	5 1000) –	-	260	260	1220	170	87.5	43.5	250	535	-	-	450	42	505
	4BB	4																											
	4BC	6																											
	4BD	8																											
For mo	otor	Dimens	sion (desigr	nation	acc.	to IE	C								DE	shaf	t exte	ension				NDE	shaf	t ext	ensio	n		
Frame size	Motor type 1LE55[38]	No. of poles	нв'	HB'	' нс	н	DH	HD'	нн	Y	к	K'	L	LC ¹⁾	LL	D	DB	E	EB	ED	F	GA	DA	DC	EA	EC	EE	FA	GC
400	4AA	2	400	1020	0 190	0 98	0 1	140	410	134	35	42 1	795	1940	519	80	M20	0 170	140	25	22	85	70	M20	140	125	10	20	74.5
	4AB	4										1	835	2010		110	M24	4 210	180		28	116	90	M24	170	140	25	25	95
	4AC	6																											
	4AD	8																											
450	4BA	2	400	1105	5 190	0 100	65 1	225	420	140	42	50 1	955	2100	519	90	M24	4 170	140	25	25	95	75	M20	140	125	10	20	79.5
	4BB	4										1	995	2210		120)	210	180		32	127	100	M24	210	180	25	28	106
	4BC	6																											
	4BD	8																											

Get more information Siemens Motors: www.siemens.com/motors

Local partners worldwide: www.siemens.com/automation-contact

Siemens AG Process Industries and Drives Postfach 48 48 90026 Nuernberg Germany

© Siemens AG 2018 Subject to change without prior notice Printed in Germany

The information provided in this catalog contains merely general descriptions or characteristics of performance which in case of actual use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract. Availability and technical specifications are subject to change without notice.

All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.

Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place. Additionally, Siemens' guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit

http://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under http://www.siemens.com/industrialsecurity.