SINUMERIK

SINUMERIK 828D, SINAMICS S120
Alarms

Diagnostics Manual

Valid for: CNC system software
Version 4.3 SINAMICS S120 Booksize / Combi
Version 4.3 SP2

07/2010
6FC5398-8BP40-0BA0
Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

⚠️ DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

⚠️ WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

⚠️ CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

⚠️ CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

⚠️ NOTICE
indicates that an unintended result or situation can occur if the corresponding information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety
instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying
risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

⚠️ WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be adhered to. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this
publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Preface

SINUMERIK documentation

The SINUMERIK documentation is organized in three parts:

- General documentation
- User documentation
- Manufacturer/service documentation

Information on the following topics is available at http://www.siemens.com/motioncontrol/docu:

- Ordering documentation:
 Here you can find an up-to-date overview of publications.
- Downloading documentation:
 Links to more information for downloading files from Service & Support.
- Researching documentation online
 Information on DOConCD and direct access to the publications in DOConWEB.
- Compiling individual documentation on the basis of Siemens contents with the My Documentation Manager (DM), refer to http://www.siemens.com/mdm.

My Documentation Manager provides you with a range of features for generating your own machine documentation.

- Training and FAQs
 Information on our range of training courses and FAQs (frequently asked questions) is available via the page navigation.

Target group

This publication is intended for:

- Project engineers
- Commissioning engineers
- Machine operators
- Service and maintenance personnel

Benefits

The Diagnostics Manual enables the intended target group to evaluate fault displays and to respond accordingly.

With the help of the Diagnostics Manual, the target group has an overview of the various diagnostic options and diagnostic tools.
Standard version

This documentation only describes the functionality of the standard version. Extensions or changes made by the machine manufacturer are documented by the machine manufacturer.

Other functions not described in this documentation might be executable in the control. This does not, however, represent an obligation to supply such functions with a new control or when servicing.

Further, for the sake of simplicity, this documentation does not contain all detailed information about all types of the product and cannot cover every conceivable case of installation, operation or maintenance.

Technical Support

If you have any technical questions, please contact our hotline:

<table>
<thead>
<tr>
<th></th>
<th>Europe / Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>+49 (0) 911 895 7222</td>
</tr>
<tr>
<td>Fax</td>
<td>+49 (0) 911 895 7223</td>
</tr>
<tr>
<td>Internet</td>
<td>http://www.siemens.com/automation/support-request</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Americas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>+1 423 262 2522</td>
</tr>
<tr>
<td>Fax</td>
<td>+1 423 262 2200</td>
</tr>
<tr>
<td>E-mail</td>
<td>mailto:techsupport.sea@siemens.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Asia / Pacific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>+86 1064 757 575</td>
</tr>
<tr>
<td>Fax</td>
<td>+86 1064 747 474</td>
</tr>
<tr>
<td>E-mail</td>
<td>mailto:support.asia.automation@siemens.com</td>
</tr>
</tbody>
</table>

Note

National telephone numbers for technical support are provided under the following Internet address:

Questions about this documentation

If you have any queries (suggestions, corrections) in relation to this documentation, please send a fax or e-mail to the following address:

Fax: +49 9131 98 2176
A fax form is available at the end of this document.
mailto:docu.motioncontrol@siemens.com

SINUMERIK Internet address
http://www.siemens.com/sinumerik
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Using the Diagnostics Manual</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Structure of the diagnostics manual</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Alarm number ranges</td>
<td>13</td>
</tr>
<tr>
<td>1.4 System error alarms</td>
<td>16</td>
</tr>
<tr>
<td>2 NCK alarms</td>
<td>17</td>
</tr>
<tr>
<td>3 HMI alarms</td>
<td>501</td>
</tr>
<tr>
<td>4 SINAMICS alarms</td>
<td>507</td>
</tr>
<tr>
<td>5 611D drive alarms</td>
<td>891</td>
</tr>
<tr>
<td>6 PLC alarms</td>
<td>903</td>
</tr>
<tr>
<td>7 List of actions</td>
<td>909</td>
</tr>
<tr>
<td>8 System reactions</td>
<td>931</td>
</tr>
<tr>
<td>8.1 System reactions to SINUMERIK alarms</td>
<td>931</td>
</tr>
<tr>
<td>8.2 Cancel criteria for alarms</td>
<td>934</td>
</tr>
<tr>
<td>8.3 System reactions for SINAMICS alarms</td>
<td>936</td>
</tr>
<tr>
<td>A Appendix</td>
<td>939</td>
</tr>
<tr>
<td>A.1 List of abbreviations</td>
<td>939</td>
</tr>
<tr>
<td>A.2 Feedback on the documentation</td>
<td>944</td>
</tr>
<tr>
<td>A.3 Documentation overview</td>
<td>946</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Using the Diagnostics Manual

The Diagnostic Manual specifies the alarms/messages from the NCK area. It should be used as a reference manual and allows operators at the machine tool:

- To correctly assess special situations when operating the machine.
- To identify the reaction of the system to the special situation.
- To utilize the possibilities for continued operation following the special situation.
- To follow references to other documentation containing further details.
1.2 Structure of the diagnostics manual

NCK / HMI / 611D drive / PLC alarms

The descriptions of the NCK/HMI/611D drive/PLC alarms are provided in the chapters:
- NCK alarms [Page 17]
- HMI alarms [Page 501]
- 611D drive alarms [Page 891]
- PLC alarms [Page 903]

In each chapter, the alarm descriptions are sorted according to ascending alarm number. There are gaps in the sequence.

Structure of the NCK / HMI / 611D drive / PLC alarm descriptions

The descriptions of the NCK/HMI/611D drive/PLC alarms have the following layout:

<table>
<thead>
<tr>
<th><Alarm No.></th>
<th><Alarm text></th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td></td>
</tr>
<tr>
<td>Reaction:</td>
<td></td>
</tr>
<tr>
<td>Help:</td>
<td></td>
</tr>
<tr>
<td>Continue</td>
<td></td>
</tr>
<tr>
<td>program:</td>
<td></td>
</tr>
</tbody>
</table>

Each alarm is uniquely identified using the <Alarm number> and the <Alarm text>.

The description of the NCK/HMI/611D drive/PLC alarms is sub-divided into the following categories:
- Explanation
- Reaction
 See Chapter "System reactions [Page 931]"
- Remedy
- Program continuation
 See Chapter "Cancel criteria for alarms [Page 934]"

Action list

The actions described in the NCK alarm texts ("Action %...") are explained in Chapter "List of actions [Page 909]".
SINAMICS alarms

The faults and states detected by the individual components of the drive system are indicated by alarms. These SINAMICS alarms are categorized into faults and alarms.

The differences between faults and alarms are as follows:

<table>
<thead>
<tr>
<th>Fault</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>The appropriate fault reaction is initiated when a fault occurs.</td>
<td>No fault reaction.</td>
</tr>
<tr>
<td>The following measures are required to remove the fault:</td>
<td>Alarms are self-acknowledging, i.e. if the cause has been removed, the alarms reset themselves automatically.</td>
</tr>
<tr>
<td>– Removing the cause of the fault</td>
<td></td>
</tr>
<tr>
<td>– Acknowledging the fault</td>
<td></td>
</tr>
</tbody>
</table>

The descriptions for the SINAMICS alarms are provided Chapter:

• [SINAMICS alarms][1] [Page 507]

Structure of SINAMICS alarm descriptions

The descriptions of the SINAMICS alarms have the following layout:

<table>
<thead>
<tr>
<th><Alarm No.></th>
<th><Location data></th>
<th><Alarm text></th>
</tr>
</thead>
<tbody>
<tr>
<td>Message value:</td>
<td>Drive object:</td>
<td>Reaction:</td>
</tr>
<tr>
<td>Acknowledgment:</td>
<td>Cause:</td>
<td>Help:</td>
</tr>
</tbody>
</table>

Each alarm is uniquely identified using the <Alarm number> and the <Alarm text>. The <Location data> is optional display information. Location data can include:

• Axis name and drive number or
• Bus and slave number of the PROFIBUS DP component affected

The place holder <Location data> is kept in the alarm description for this optional information.

The description of the SINAMICS alarms is classified according to the following categories:
• **Message value**
 The information provided under the message value tells you about the composition of the fault/alarm value.

 Example:
 Message value: Component number: %1, cause: %2
 This fault value or alarm value contains information about the component number and cause. The entries %1 and %2 are place holders, which are filled appropriately in online operation with the commissioning software.

• **Drive object**
 For each alarm (fault/alarm) it is specified in which drive object this message can be found. A message can belong to either one, several or all drive objects.

• **Reaction**
 Specifies the default reaction in the event of a fault.
 See Chapter "System reactions for SINAMICS alarms [Page 936]."

• **Acknowledgment**
 See Chapter "System reactions for SINAMICS alarms [Page 936]."

• **Cause**
 For the cause of the alarm, the fault/alarm value is essentially prepared in text form.

• **Remedy**
1.3 Alarm number ranges

The following tables show an overview of all of the reserved number ranges for alarms/messages.

NOTICE

In the alarm lists of this Diagnostics Manual, only those number ranges are represented, which are valid for the specified product.

Table 1-1 NCK alarms/messages

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 000 - 009 999</td>
<td>General alarms</td>
</tr>
<tr>
<td>010 000 - 019 999</td>
<td>Channel alarms</td>
</tr>
<tr>
<td>020 000 - 029 999</td>
<td>Axis/spindle alarms</td>
</tr>
<tr>
<td>027 000 - 027 999</td>
<td>Alarms for Safety Integrated</td>
</tr>
<tr>
<td>030 000 - 099 999</td>
<td>Functional alarms</td>
</tr>
<tr>
<td>060 000 - 064 999</td>
<td>Cycle alarms SIEMENS</td>
</tr>
<tr>
<td>065 000 - 069 999</td>
<td>Cycle alarms user</td>
</tr>
<tr>
<td>070 000 - 079 999</td>
<td>Compile cycles, manufacturer and OEM</td>
</tr>
<tr>
<td>082 000 - 082 999</td>
<td>Messages, SHOPMILL and CMT cycles</td>
</tr>
<tr>
<td>083 000 - 084 999</td>
<td>Messages, measurement cycles</td>
</tr>
<tr>
<td>085 000 - 089 999</td>
<td>Messages, user cycles</td>
</tr>
</tbody>
</table>

Table 1-2 HMI alarms/messages

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 000 - 119 999</td>
<td>HMI Embedded</td>
</tr>
<tr>
<td>100 000 - 100 999</td>
<td>Basic system</td>
</tr>
<tr>
<td>101 000 - 101 999</td>
<td>Diagnostics</td>
</tr>
<tr>
<td>102 000 - 102 999</td>
<td>Services</td>
</tr>
<tr>
<td>103 000 - 103 999</td>
<td>Machine</td>
</tr>
<tr>
<td>104 000 - 104 999</td>
<td>Parameter</td>
</tr>
<tr>
<td>105 000 - 105 999</td>
<td>Programming</td>
</tr>
<tr>
<td>106 000 - 106 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>107 000 - 107 999</td>
<td>MCU</td>
</tr>
<tr>
<td>108 000 - 108 999</td>
<td>HiGraph</td>
</tr>
<tr>
<td>109 000 - 109 999</td>
<td>Distributed systems (M : N)</td>
</tr>
<tr>
<td>110 000 - 110 999</td>
<td>Cycles</td>
</tr>
<tr>
<td>113 000 - 113 999</td>
<td>Wizard (HMI Embedded)</td>
</tr>
<tr>
<td>114 000 - 114 999</td>
<td>HT 6</td>
</tr>
<tr>
<td>119 000 - 119 999</td>
<td>OEM</td>
</tr>
<tr>
<td>120 000 - 129 999</td>
<td>HMI Advanced</td>
</tr>
<tr>
<td>130 000 - 139 999</td>
<td>HMI Advanced OEM</td>
</tr>
<tr>
<td>142 000 - 142 099</td>
<td>Remote diagnostics, RCS host/viewer</td>
</tr>
<tr>
<td>148 500 - 148 999</td>
<td>MCIS</td>
</tr>
<tr>
<td>149 000 - 149 999</td>
<td>ePS</td>
</tr>
</tbody>
</table>
1.3 Alarm number ranges

Table 1-2 HMI alarms/messages

<table>
<thead>
<tr>
<th>Alarms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 000 - 159 999</td>
<td>SINUMERIK Operate</td>
</tr>
<tr>
<td>160 000 – 169 999</td>
<td>SINUMERIK Operate OEM</td>
</tr>
</tbody>
</table>

Table 1-3 SINAMICS alarms (faults/alarms)

<table>
<thead>
<tr>
<th>Alarms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>201 000 - 203 999</td>
<td>Control Unit, closed-loop control</td>
</tr>
<tr>
<td>204 000 - 204 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>205 000 - 205 999</td>
<td>Power unit</td>
</tr>
<tr>
<td>206 000 - 206 899</td>
<td>Infeed</td>
</tr>
<tr>
<td>206 900 - 206 999</td>
<td>Braking Module</td>
</tr>
<tr>
<td>207 000 - 207 999</td>
<td>Drive</td>
</tr>
<tr>
<td>208 000 - 208 999</td>
<td>Option Board</td>
</tr>
<tr>
<td>209 000 - 212 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>213 000 - 213 010</td>
<td>Licensing</td>
</tr>
<tr>
<td>213 011 - 219 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>220 000 - 229 999</td>
<td>OEM</td>
</tr>
<tr>
<td>230 000 - 230 999</td>
<td>DRIVE-CLiQ component power unit</td>
</tr>
<tr>
<td>231 000 - 231 999</td>
<td>DRIVE-CLiQ component encoder 1</td>
</tr>
<tr>
<td>232 000 - 232 999</td>
<td>DRIVE-CLiQ component encoder 2</td>
</tr>
<tr>
<td>233 000 - 233 999</td>
<td>DRIVE-CLiQ component encoder 3</td>
</tr>
<tr>
<td>234 000 - 234 999</td>
<td>Voltage Sensing Module (VSM)</td>
</tr>
<tr>
<td>235 000 - 235 199</td>
<td>Terminal Module 54F (TM54F)</td>
</tr>
<tr>
<td>235 200 - 235 999</td>
<td>Terminal Module 31 (TM31)</td>
</tr>
<tr>
<td>236 000 - 236 999</td>
<td>DRIVE-CLiQ Hub Module</td>
</tr>
<tr>
<td>240 000 - 240 999</td>
<td>Controller Extension</td>
</tr>
<tr>
<td>241 000 - 248 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>249 000 - 249 999</td>
<td>SINAMICS GM/SM/GL</td>
</tr>
<tr>
<td>250 000 - 250 499</td>
<td>Communication Board (COMM BOARD)</td>
</tr>
<tr>
<td>250 500 - 259 999</td>
<td>OEM Siemens</td>
</tr>
<tr>
<td>260 000 - 265 535</td>
<td>SINAMICS DC MASTER (DC closed-loop control)</td>
</tr>
</tbody>
</table>

Note:
Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.

Note:
Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
1.3 Alarm number ranges

Table 1-4 611D drive alarms

<table>
<thead>
<tr>
<th>Alarm range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 000 - 399 999</td>
<td>General drive alarms</td>
</tr>
</tbody>
</table>

Table 1-5 PLC alarms/messages

<table>
<thead>
<tr>
<th>Alarm range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 000 - 499 999</td>
<td>General PLC alarms</td>
</tr>
<tr>
<td>500 000 - 599 999</td>
<td>Channel alarms 2)</td>
</tr>
<tr>
<td>600 000 - 699 999</td>
<td>Axis/spindle alarms 2)</td>
</tr>
<tr>
<td>700 000 - 799 999</td>
<td>User area 2)</td>
</tr>
<tr>
<td>800 000 - 899 999</td>
<td>Sequencers/graphs 2)</td>
</tr>
<tr>
<td>(810 001 - 810 009</td>
<td>System fault messages in the PLC 1)</td>
</tr>
</tbody>
</table>

1) More detailed information is available via the diagnostic function (diagnostic buffer) in SIMATIC STEP 7.
2) The PLC alarms in the range 500000 - 899999 are configured and described by the machine manufacturer.
1.4 System error alarms

The following alarms are system errors:

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Alarm</th>
<th>Alarm</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1005</td>
<td>1013</td>
<td>1017</td>
</tr>
<tr>
<td>1001</td>
<td>1010</td>
<td>1014</td>
<td>1018</td>
</tr>
<tr>
<td>1002</td>
<td>1011</td>
<td>1015</td>
<td>1019</td>
</tr>
<tr>
<td>1003</td>
<td>1012</td>
<td>1016</td>
<td>1160</td>
</tr>
</tbody>
</table>

These system error alarms are not described in detail. If such a system error occurs, please contact the hotline and indicate the following details:

- Alarm number
- Alarm text
- Internal system error number (contained in the alarm text)
2000 PLC sign-of-life monitoring

Definitions: The PLC must give a sign of life within a defined period of time (MD10100 $MN_PLC_CYCLIC_TIMEOUT). If this does not occur, the alarm is triggered.
The sign of life is a counter reading on the internal NC/PLC interface which the PLC causes to count up with the 10 ms time alarm. The NCK also tests cyclically whether the counter reading has changed.
The PLC must give a sign of life within a defined period of time. If this does not occur, this alarm is triggered.

Reaction: NC not ready.
Local alarm reaction.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Check monitoring time frame in MD10100 $MN_PLC_CYCLIC_TIMEOUT (reference value: 100ms).
Establish the cause of the error in the PLC and eliminate it (analysis of the ISTACK. If monitoring has responded with a loop in the user program rather than with a PLC Stop, there is no ISTACK entry).
This alarm is also caused by PLC stop.
(PLC stop with programming tool,
PLC stop by commissioning switch,
PLC stop by alarm)
If none of these cases applies, please contact the hotline mentioned at the beginning of this document and provide the operating system error number.

Program Continuation: Switch control OFF - ON.

2001 PLC has not started up

Definitions: The PLC must give at least 1 sign of life within a period of time defined in MD10120 $MN_PLC_RUNNINGUP_TIMEOUT (default: 1 sec.).
The PLC must give at least 1 sign of life within the defined period of time after Power ON.

Reaction: NC not ready.
Local alarm reaction.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Please inform the authorized personnel/service department. The monitoring time in MD10120 $MN_PLC_RUNNINGUP_TIMEOUT must be checked and adapted to the first OB1 cycle.
- Determine the cause of error in the PLC (loop or stop in the user program) and eliminate it.
Contact the hotline mentioned at the beginning of this documentation.

Program Continuation: Switch control OFF - ON.
NCK alarms

2130 5V/24V encoder or 15V D/A converter undervoltage

Definitions:
A failure has occurred in the power supply to the encoder (5V/24V) or D/A converter (+/-15V).

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Axes of this channel must be re-referenced.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Check the encoder and cable for short-circuits (the fault should not occur when you remove the cable). Check the power feeder line.

Program Continuation:
Switch control OFF - ON.

2900 Reboot is delayed

Definitions:
This alarm indicates a delayed reboot.
This alarm only occurs when reboot was carried out by the HMI and MD10088 $MN_REBOOT_DELAY_TIME was set greater than zero.
The alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK Bit 20.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes.
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- Alarm reaction delay is cancelled.

Remedy:
See MD10088 $MN_REBOOT_DELAY_TIME and MD11410 $MN_SUPPRESS_ALARM_MASK.

Program Continuation:
Switch control OFF - ON.

3000 Emergency stop

Definitions:
The EMERGENCY STOP request is applied to the NCK/PLC interface DB2600 DBX0000.1 (Emergency stop).

Reaction:
- NC not ready.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- Alarm reaction delay is cancelled.

Remedy:
Please inform the authorized personnel/service department. Remove the cause of the emergency stop and acknowledge the emergency stop via the PLC/NCK interface DB2600 DBX0000.2 (emergency stop acknowledgement).

Program Continuation:
Teileprogramm neu starten. Clear alarm with the RESET key in all channels of this mode group. Restart part program.
NCK alarms

4000 [Channel %1:] Machine data %2[%3] has gap in axis assignment

Parameters:
%1 = Channel number
%2 = String: MD identifier
%3 = Index: MD array index

Definitions: The assignment of a machine axis to a channel by the MD20070 $MC_AXCONF_MACHAX_USED must be contiguous. At system power-up (Power On) gaps are detected and displayed as an alarm.

Reaction: NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. The entries for the indices for the machine axes used in the channels must be contiguous in table MD20070 $MC_AXCONF_MACHAX_USED. Channel axis gaps must be enabled via MD11640$MN_ENABLE_CHAN_AX_GAP.

Program Continuation:
Switch control OFF - ON.

4002 [Channel %1:] Machine data %2[%3] assigns an axis not defined in channel

Parameters:
%1 = Channel number
%2 = String: MD identifier
%3 = Index: MD array index

Definitions: Only axes that have been activated in the channel by means of MD20070 $MC_AXCONF_MACHAX_USED [kx]=m may be declared as geometry axes or transformation axes by means of the MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB [gx]=k. This also applies to MD22420 $MC_FGROUP_DEFAULT_AXES (gx: Geometry axis index, kx: Channel axis index, k: Channel axis no., m: Machine axis no.).

Assignment of geometry axes to channel axes

MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB (includes channel axis no. k):
- Geometry axis index: 0, 1st channel: 1, 2nd channel: 1
- Geometry axis index: 1, 1st channel: 2, 2nd channel: 0
- Geometry axis index: 2, 1st channel: 3, 2nd channel: 3

MD20070 $MC_AXCONF_MACHAX_USED (includes machine axis no. m):
- Channel axis index: 0, 1st channel: 1, 2nd channel: 4
- Channel axis index: 1, 1st channel: 2, 2nd channel: 5
- Channel axis index: 2, 1st channel: 3, 2nd channel: 6
- Channel axis index: 3, 1st channel: 7, 2nd channel: 0
- Channel axis index: 4, 1st channel: 8, 2nd channel: 0
- Channel axis index: 5, 1st channel: 0, 2nd channel: 0
- Channel axis index: 6, 1st channel: 0, 2nd channel: 0
- Channel axis index: 7, 1st channel: 0, 2nd channel: 0

Reaction: NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Correct
- MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB
- MD24... $MC_TRAFO_AXES_IN...
- MD24... $MC_TRAFO_GEOAX_ASSIGN_TAB...
- MD22420 $MC_FGROUP_DEFAULT AXES
- and/or MD20070 $MC_AXCONF_MACHAX_USED.

Program Continuation:
Switch control OFF - ON.
4004 [Channel %1:] Machine data %2 axis %3 defined repeatedly as geometry axis

Parameters:
%1 = Channel number
%2 = String: MD identifier
%3 = Axis index

Definitions:
An axis may only be defined once as a geometry axis.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB.

Program
Switch control OFF - ON.

Continuation:

4005 [Channel %1:] Maximum number of axes in channel %1 exceeded. Limit %2

Parameters:
%1 = Channel number
%2 = Upper limit for the number of axes in the channel

Definitions:
MD20070 $MC_AXCONF_MACHAX_USED defines which machine axes can be used in this channel. This simultaneously defines the number of active axes in the channel. This upper limit has been exceeded. Note: The channel axis gaps may cause certain indices of MD20070 $MC_AXCONF_MACHAX_USED to remain unused and therefore do not count as active channel axes.

Example:
- CHANDATA(2)
- $MC_AXCONF_MACHAX_USED[0] = 7
- $MC_AXCONF_MACHAX_USED[1] = 8
- $MC_AXCONF_MACHAX_USED[2] = 0
- $MC_AXCONF_MACHAX_USED[3] = 3
- $MC_AXCONF_MACHAX_USED[4] = 2
- $MC_AXCONF_MACHAX_USED[5] = 0
- $MC_AXCONF_MACHAX_USED[6] = 1
- $MC_AXCONF_MACHAX_USED[7] = 0
This channel uses the five machine axes 1, 2, 3, 8, 7, i.e. it has 5 active channel axes.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify MD20070 $MC_AXCONF_MACHAX_USED.

Program
Switch control OFF - ON.

Continuation:

4006 The maximum number of activatable axes has been exceeded (limit %1)

Parameters:
%1 = Number of axes

Definitions:
The sum of the two option data $ON_NUM_AXES_IN_SYSTEM and $ON_NUM_ADD_AXES_IN_SYSTEM must not exceed the maximum number of axes in the system.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. The sum of the two option data $ON_NUM_AXES_IN_SYSTEM and $ON_NUM_ADD_AXES_IN_SYSTEM must not exceed the maximum number of axes (dependent on configuration).

Program Continuation: Switch control OFF - ON.

4009 Machine data %1 contains an illegal value.

Parameters:
- %1 = String: MD identifier

Definitions:
A value has been entered which exceeds the value range or a limit value for a variable, a machine data or a function.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Enter correct values.

Program Continuation: Switch control OFF - ON.

4010 Invalid identifier used in machine data %1[%2]

Parameters:
- %1 = String: MD identifier
- %2 = Index: MD array index

Definitions:
When determining a name in the NCK tables (arrays) for: machine axes, Euler angles, direction vectors, normal vectors, interpolation parameters and intermediate point coordinates, one of the following syntax rules for the identifier to be entered has been violated:
- The identifier must be an NC address letter (A, B, C, I, J, K, Q, U, V, W, X, Y, Z), possibly with a numerical extension (840D: 1-99)
- The identifier must begin with any 2 capital letters but not with $ (reserved for system variables).
- The identifier must not be a keyword of the NC language (e.g. POSA).

Reaction:
- NC not ready.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Enter the identifier for user-defined names with correct syntax in the displayed MD.
- Machine axes: MD10000 $MN_AXCONF_MACHAX_NAME_TAB
- Euler angles: MD10620 $MN_EULER_ANGLE_NAME_TAB
- Normal vectors: MD10630 $MN_NORMAL_VECTOR_NAME_TAB
- Direction vectors: MD10640 $MN_DIR_VECTOR_NAME_TAB
- Interpolation parameters: MD10650 $MN_IPO_PARAM_NAME_TAB
- Intermediate point coordinates: MD10660 $MN_INTERMEDIATE_POINT_NAME_TAB

Program Continuation: Switch control OFF - ON.
4011 [Channel %1:] Invalid identifier used in machine data %2[%3]

Parameters:
%1 = Channel number
%2 = String: MD identifier
%3 = Index: MD array index

Definitions:
When defining names in the channel-specific tables for geometry axes and channel axes, one of the following syntax rules for the identifier to be entered has been violated:
- The identifier must begin with any 2 capital letters but not with $ (reserved for system variables).
- The identifier must not be a keyword of the NC language (e.g. SPOS).

Reaction:
NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Enter the identifier for user-defined names with correct syntax in the displayed MD
- Geometry axes: MD20060 $MC_AXCONF_GEOAX_NAME_TAB
- Channel axes: MD20080 $MC_AXCONF_CHANAX_NAME_TAB

Program Continuation:
Switch control OFF - ON.

4012 Invalid identifier used in machine data %1[%2]

Parameters:
%1 = String: MD identifier
%2 = Index: MD array

Definitions:
The selected identifier is invalid. Valid identifiers are:
- AX1 - AXn: Machine axis identifiers

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Use the correct identifier.

Program Continuation:
Switch control OFF - ON.

4020 Identifier %1 used several times in machine data %2

Parameters:
%1 = String: Name of identifier
%2 = String: MD identifier

Definitions:
When determining a name in the NCK tables (arrays) for: machine axes, Euler angles, direction vectors, normal vectors, interpolation parameters and intermediate point coordinates, an identifier has been used that already exists in the control.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Select for the identifier to be entered a character string that is not yet used in the system (max. 32 characters).

Program Continuation: Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

4021

[Channel %1:] Identifier %2 used several times in machine data %3

Parameters:
- %1 = Channel number
- %2 = String: Name of identifier
- %3 = String: MD identifier

Definitions: To determine the name in the channel-specific tables for geometry axes and channel axes an identifier already existing in the control has been used.

Reaction: NC not ready.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Select for the identifier to be entered a character string that is not yet used in the system (max. 32 characters).

Program Continuation: Switch control OFF - ON.

4030

[Channel %1:] Identifier missing in machine data %2[%3]

Parameters:
- %1 = Channel number
- %2 = String: MD identifier
- %3 = Index: MD array index

Definitions: An axis identifier is expected for the displayed MD in accordance with the axis configuration in the MD20070 $MC AXCONF MACHAX USED and MD20050 $MC AXCONF GEOAX ASSIGN_TAB.

Reaction: NC not ready.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Check axis configuration and enter the missing identifier into the MD or, should the axis not exist, specify for this channel axis the machine axis 0 in the channel-specific MD20070 $MC AXCONF MACHAX USED. If this concerns a geometry axis that is not to be used (this applies only for 2-axis machining, e.g. on lathes), then channel axis 0 must be entered additionally in the channel-specific MD20050 $MC AXCONF GEOAX ASSIGN_TAB.

Program Continuation: Switch control OFF - ON.

4032

[Channel %1:] Wrong identifier for facing axis in %2

Parameters:
- %1 = Channel number
- %2 = String: MD identifier

Definitions: According to the axis configuration in MD20150 $MC_GCODE_RESET_VALUES or MD20100 $MC_DIAMETER_AX_DEF, a facing axis identifier is expected at the specified location.
NCK alarms

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Add the correct identifier.

Program
Switch control OFF - ON.

4040

[Channel %1:] Axis identifier %2 not consistent with machine data %3

Parameters:
- %1 = Channel number
- %2 = String: Axis identifier
- %3 = String: MD identifier
- %4 = There are not enough channel axes entered in the MD displayed.

Definitions:
The use of the specified axis identifier in the displayed MD is not consistent the channel's axis configuration stated in the MD20070 $MC_AXCONF_MACHAX_USED and MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Check and correct the identifier used in the MD10000 $MN_AXCONF_MACHAX_NAME_TAB, MD20080 $MC_AXCONF_CHANAX_NAME_TAB and/or MD20060 $MC_AXCONF_GEOAX_NAME_TAB.

Program
Switch control OFF - ON.

4045

[Channel %1:] Conflict between machine data %2 and machine data %3

Parameters:
- %1 = Channel number
- %2 = String: MD identifier
- %3 = String: MD identifier

Definitions:
Using the specified machine data %1 leads to a conflict with machine data %2.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct the specified machine data.

Program
Switch control OFF - ON.
4050 NC code identifier %1 cannot be reconfigured to %2

Parameters:
%1 = String: Old identifier
%2 = String: New identifier

Definitions:
Renaming of an NC code was not possible for one of the following reasons:
- The old identifier does not exist
- The new identifier lies in another type range.
NC codes/keywords can be reconfigured via machine data as long as the type range is not abandoned.
Type 1: "real" G codes: G02, G17, G33, G64,...
Type 2: named G codes: ASPLINE, BRISK, TRANS,...
Type 3: settable addresses: X, Y, A1, A2, I, J, K, ALF, MEAS,...

Reaction:
NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Correct MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB (protection level 1).
The list must be built up as follows:
Even address: Identifier to be modified.
Following odd address: New identifier
e.g.: $MN_NC_USER_CODE_CONF_NAME_TAB [10] = "ROT"
$MN_NC_USER_CODE_CONF_NAME_TAB [11] = " "
clears the ROT function from the control

Program
Continuation:
Switch control OFF - ON.

4060 Standard machine data loaded (%1, %2, %3, %4)

Parameters:
%1 = Identifier 1
%2 = Identifier 2
%3 = Identifier 3
%4 = Identifier 4

Definitions:
The standard MD were loaded because
- a cold start was requested or
- the MD buffer voltage failed or
- an initialization was requested for loading the standard machine data (MD11200 $MN_INIT_MD).

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department. After automatically loading the standard MDs, the individual MDs must be entered or loaded in the relevant system.

Program
Continuation:
Clear alarm with the RESET key. Restart part program

4062 Backup data loaded

Definitions:
The user data saved in the flash memory are loaded to the SRAM.

Reaction:
Alarm display.

Remedy:
Load specific machine data again.

Program
Continuation:
Clear alarm with the RESET key. Restart part program
4065 Buffered memory was restored from backup medium (potential loss of data!)

Definitions:
Only occurs with SINUMERIK 840D / 840Di sl / 802D.
!! 840Di sl only
The user data of the NC and the remanent data of the PLC are stored in the static memory area (SRAM) of the MCI board. The content of the SRAM is backed up as an SRAM image on PCU hard disk at each "NCK POWER ON reset" and each time Windows XP is closed down normally. The previously valid SRAM image then becomes the SRAM backup, which is also stored on the PCU hard disk.

The SRAM backup is used and alarm 4065 issued in the following cases:

<table>
<thead>
<tr>
<th>HW serial no</th>
<th>SRAM MCI board</th>
<th>SRAM image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unknown</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Unknown</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

!! Only for 802D
The reason for this alarm is that the backup time is exceeded. Make sure that the required operating time of the control corresponds to the specifications in your Installation & Start-up Guide. The current backup copy of the buffered memory has been created by the last internal data backup via the "Save data" softkey on the HMI.

Reaction:
NC not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Make a POWER ON reset.
!! 840Di / 840Di sl only:
Alarm 4065 also has to be acknowledged on the HMI after a POWER ON reset:
HMI: Operating area switchover > Diagnostics > NC/PLC Diagnostics > Diagnostics > "Acknowledge alarm 4065" button
Note
Press the "ETC" key to change to the secondary softkey bar in order to acknowledge the alarm with a softkey.

Program Continuation:
Switch control OFF - ON.

4070 Normalizing machine data has been changed

Definitions:
The control uses internal physical units (mm, degrees, s, for paths, velocities, acceleration, etc.). During programming or data storage, some of these values are input and output using different units (rev./min, m/s², etc.).

The conversion is carried out with the scaling factors that can be entered (system-specific MD array MD10230 $MN_SCALING_FACTORS_USER_DEF USER_DEF[n] (n ... index number 0 - 10), when the corresponding masking bit is set to "1".
If the masking bit is set to "0" then scaling takes place with the internal standard factors.

The following machine data influence the scaling of other MDs:
- MD10220: $MN_SCALING_USER_DEF_MASK
- MD10230: $MN_SCALING_FACTORS_USER_DEF
- MD10240: $MN_SCALING_SYSTEM_IS_METRIC
- MD10250: $MN_SCALING_VALUE_INCH
- MD30300: $MA_IS_ROT_AX

If these data are modified, the NCK must be powered up again. Only then will the input of dependent data be performed correctly.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
If the alarm has been displayed after downloading an MD file which is consistent within itself, then the download operation must be repeated with a new NC power-up. (The file contains scaling-dependent machine data in front of the scaling factors).

Program Continuation:
Clear alarm with the Delete key or NC START.
4071 Check the position of the encoder

Definitions:
A machine data has been changed that affects the value of an absolute encoder position. Please check the position values.
For absolute encoders:
Encoder adjustment has been changed, the machine reference of the axis position may have changed, check the encoder adjustment.
Other encoders:
The reference point of the axis position has been changed, check the referencing procedure.

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department.
Program Continuation: Clear alarm with the Delete key or NC START.

4075 Machine data %1 (and maybe others) not changed due to missing permission level %2

Parameters:
%1 = String: MD identifier
%2 = Write protection level of the MD

Definitions:
On executing a TOA file or when writing machine data from the part program, an attempt has been made to write an item of data with a higher protection level than the access authorization currently set in the control. The item of data in question has not been written and program execution is continued. This alarm is set only when access violation is detected for the first time.

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Set the required access level by means of keyswitch or password entry or delete the machine data concerned from the MD file/part program.
Program Continuation: Clear alarm with the Delete key or NC START.

4076 Machine data could not be changed with permission level %2

Parameters:
%1 = Number of MDs
%2 = Preset access authorization

Definitions:
On executing a TOA file or when writing data from the part program an attempt has been made to write data with a higher protection level than the access authorization currently set in the control. The data in question have not been written and program execution is continued without hindrance. This alarm is issued on acknowledging alarm 4075. It can be cleared only with Power ON.

Reaction: NC Start disable in this channel.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Set the required access level by means of keyswitch or password entry or delete the machine data concerned from the MD file/part program.
Program Continuation: Switch control OFF - ON.
4077 New value %1 of MD %2 not set. Requested %3 bytes too much %4 memory.

Parameters:
- %1 = New value of machine data
- %2 = Machine data number
- %3 = Number of bytes requested that exceeded availability
- %4 = Type of memory

Definitions:
An attempt was made to enter a new value in the specified memory configuration machine data. It was not possible to modify the value, as this would have cleared the contents of the user memory. This was because the memory requested exceeded the available capacity.

The third parameter specifies the number of bytes by which the maximum user memory was exceeded. The fourth parameter specifies the type of memory whose limit was exceeded.

- "D" stands for dynamic or non-buffered user memory (this is where, for example, the LUD variables are stored and the interpolation buffer size is entered). The capacity of this memory type is defined by the current memory configuration and the value in MD18210 $MN_MM_USER_MEM_DYNAMIC.
- "S" stands for static or buffered user memory (this is where part programs, offset data, R parameters, tool data, etc. are stored). This memory type is defined by the current memory configuration and the value in MD18230 $MN_MM_USER_MEM_BUFFERED.
- "iS" stands for internal static or buffered user memory. This memory type is defined by the current memory configuration (not settable). A few NCK functions use this memory.

Reaction:
Alarm display.

Remedy:
If the modification was unintentional, ignore the error message and continue. The alarm has no negative effects. The remedy depends on the access right and the current memory configuration of the NCK:
- The intended change is not possible -> Try again with a smaller value. Observe the change in the number of bytes.
- Is it possible to expand the memory? This option depends on the model in use. (Not possible if parameter 4 equals "iS").
- The NCK user memory may have been set smaller than it could be. With the appropriate access authorization, the machine data (see above) can be changed.
- If parameter 4 equals "iS" and no synchronous actions are used, then MD18232 $MN_MM_ACTFILESYS_LOG_FILE_MEM[2] = 0 can be set. Otherwise the desired machine data change cannot be made.

Program Continuation:
Clear alarm with the Delete key or NC START.

4080 Incorrect configuration of indexing axis in MD %1

Parameters:
- %1 = String: MD identifier

Definitions:
The assignment of a position table to an indexing axis or the contents of a position table contains an error, or the length of a position table has been parameterized with 0.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. 3 MD identifiers are output, depending on the type of error.
1. MD30500 $MA_INDEX_AX_ASSIGN_POS_TAB: the error is due to multiple assignment of a position table MD10910 $MN_INDEX_AX_POS_TAB_1 or MD10930 $MN_INDEX_AX_POS_TAB_2 to axes with different types (linear/rotary axis).
2. MD10910 $MN_INDEX_AX_POS_TAB_1 or MD10930 $MN_INDEX_AX_POS_TAB_2: the contents of the displayed tables are incorrect.
 - The entered positions must be arranged in increasing size.
 - A particular position must not be set more than once.
 - If the table is assigned to one or several modulo axes, then the contents must be within the 0 to < 360 degree range.
3. MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1 or MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2: the length of the displayed position table n was specified with 0.

Program Continuation:
Clear alarm with the RESET key. Restart part program
4090 **Too many errors during power-up**

Definitions: More than <n> errors occurred during control power-up.

Reaction: NC Start disable in this channel.
Alarm display.

Remedy: Set the machine data correctly.

Program Continuation:
Switch control OFF - ON.

4100 **System cycle time/scan time divider corrected for digital drive**

Definitions:
MD10050 $MN_SYSCLOCK_CYCLE_TIME (system clock cycle) and/or MD10080 $MN_SYSCLOCK_SAMPL_TIME_RATIO (division factor of the position control cycle for actual value acquisition) have been corrected.
The new value of the system clock cycle can be taken from MD10050 $MN_SYSCLOCK_CYCLE_TIME.
For PROFiDrive:
The sampling cycle to which the digital drive is synchronized (drive clock cycle) is largely determined by the cycle specifications of the STEP 7 project (above all the PROFIBUS and PROFINET cycle grids). An additional, independent cycle division factor is not required for the actual value acquisition (that means MD10080 $MN_SYSCLOCK_SAMPL_TIME_RATIO = 1 usually applies).

Reaction: Alarm display.

Remedy: No remedial measures are required. The alarm display can be canceled with Reset.

Program Continuation:
Clear alarm with the Delete key or NC START.

4110 **IPO cycle changed to %1 ms**

Parameters:
%1 = String (new IPO cycle time)

Definitions:
The IPO cycle divisor was set to a value which was not an integral multiple of the position control cycle divisor. The divisor (MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO) was increased.
For PROFIBUS/PROFINET: MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO has been modified because of the modified DP cycle in the SDB (MD10050 $MN_SYSCLOCK_CYCLE_TIME).

Reaction: Alarm display.

Remedy: MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO has been modified.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4111 **PLC cycle increased to %1 ms**

Parameters:
%1 = String (new PLC cycle time)

Definitions:
The PLC cycle divisor was set to a value which was not an integral multiple of the IPO cycle divisor. The divisor (MD10074 $PLC_IPO_TIME_RATIO) has been increased.
For PROFIBUS/PROFINET: MD10074 $PLC_IPO_TIME_RATIO has been modified because of the modified DP cycle in the SDB (MD10050 $SYSCLOCK_CYCLE_TIME).

Reaction: Alarm display.

Remedy: MD10074 $MN_PLC_IPO_TIME_RATIO has been modified.

Program Continuation:
Clear alarm with the RESET key. Restart part program
4112 **Servo cycle changed to %1 ms**

Parameters:
%1 = String (new servo cycle time)

Definitions:
For PROFIBUS/PROFINET only:
MD10060 $POSCTRL_SYSCLK_CYCLE_TIME_RATIO has been modified because of the modified DP cycle in the SDB.

(MD10050 $SYSCLK_CYCLE_TIME).

Reaction:
Alarm display.

Remedy:
MD10060 $MN_POSCTRL_SYSCLK_CYCLE_TIME_RATIO RATIO has been modified.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4113 **Sysclock cycle changed to %1 ms**

Parameters:
%1 = String (new PLC cycle time)

Definitions:
For PROFIBUS/PROFINET only:
MD10050 $SYSCLK_CYCLE_TIME has been modified because of the modified DP cycle in the SDB.

Reaction:
Alarm display.

Remedy:
MD10050 $MN_SYSCLK_CYCLE_TIME has been modified.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4114 **Error in DP cycle of the SDB**

Parameters:
%1 = String (new PLC cycle time)

Definitions:
For PROFIBUS/PROFINET only:
The DP cycle in the SDB contains an error and cannot be set. The default value of MD10050 $MN_SYSCLK_CYCLE_TIME is set.

Reaction:
Alarm display.

Remedy:
Correct the SDB

Program Continuation:
Switch control OFF - ON.

4115 **Time ratio communication to Ip0 changed to %1**

Parameters:
%1 = String (new PLC cycle time)

Definitions:
The value of the MD10072 $MN_COM_IPO_TIME_RATIO has been adapted. This can only occur, if the value of the machine data is smaller than one and the time thus calculated is no multiple of the position control cycle.

Reaction:
Alarm display.

Remedy:
The MD10072 $MN_COM_IPO_TIME_RATIO has been adapted. Please check to ensure that the calculated value is correct.

Program Continuation:
Clear alarm with the RESET key. Restart part program
4150
[Channel %1:] Invalid M function subprogram call configured

Parameters:
%1 = Channel number

Definitions:
MD10715 $MN_M_NO_FCT_CYCLE[n]$ or MD10718 $MN_M_NO_FCT_CYCLE_PAR$ contains invalid configuration data: An M function, which is occupied by the system and cannot be replaced by a subprogram call has been specified in MD10715 $MN_M_NO_FCT_CYCLE[n]$ for the configuration of the subprogram call via M function:
- M0 to M5,
- M17, M30,
- M19, M40 to M45,
- M function for selecting spindle/axis mode according to MD20094 $MC_SPIND_RIGID_TAPPING_M_NR$ (default: M70),
- M functions for nibbling/punching as configured in MD26008 $MC_NIBBLE_PUNCH_CODE$ if activated by MD26012 $MC_PUNCHNIB_ACTIVATION$.
- Also M96 to M99 for applied external language (MD18800 $MN_MM_EXTERN_LANGUAGE$).

MD10718 $MN_M_NO_FCT_CYCLE_PAR$ contains an invalid array index of MD10715 $MN_M_NO_FCT_CYCLE[n]$. Currently, the values 0 to 9 are permissible. The affected machine data is reset to the default value -1. This deactivates the function.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Configure an M function in MD10715 $MN_M_NO_FCT_CYCLE[n]$ that is not occupied by the system, or configure a permissible array index in MD10718 $MN_M_NO_FCT_CYCLE_PAR$.

Program Continuation:
Switch control OFF - ON.

4152
Illegal configuration of the 'Block display with absolute values' function

Definitions:
The "Block display with absolute values" function has been illegally parameterized:
- An illegal block length has been set with MD28400 $MC_MM_ABSBLOCK$:
 While ramping up, the machine data will be checked for the following value range:
 0, 1, 128 to 512
- An invalid display range has been set with MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[]$. While ramping up, the machine data will be checked for the following upper and lower limits:

 0 <= MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[0] <= 8
 0 <= MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[1] <= (MD28060 $MC_MM_IPO_BUFFER_SIZE + MD28070$MC_MM_NUM_BLOCKS_IN_PREP$).

Alarm 4152 is issued if the limits are violated.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Configure block length/display range within the permissible limits.

Program Continuation:
Switch control OFF - ON.
NCK alarms

<table>
<thead>
<tr>
<th>Alarm Code</th>
<th>Description</th>
<th>Parameters</th>
<th>Definitions</th>
<th>Reaction</th>
<th>Remedy</th>
<th>Program Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4160</td>
<td>[Channel %1:] Invalid M function number configured for spindle switchover</td>
<td>%1 = Channel number</td>
<td>An M function was specified in MD20094 $MC_SPIND_RIGID_TAPPING_M_NR in order to configure the M function number for spindle switchover. The M function number is assigned by the system and cannot be used for the switchover (M1 to M5, M17, M30, M40 to M45).</td>
<td>Mode group not ready. Channel not ready. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.</td>
<td>Configure an M function which is not used by the system (M1 to M5, M17, M30, M40 to M45) in MD20094 $MC_SPIND_RIGID_TAPPING_M_NR.</td>
<td>Switch control OFF - ON.</td>
</tr>
</tbody>
</table>

Alarm 4180
Invalid M function number assigned to enable ASUP

Definitions: An invalid M function number has been assigned for activation of ASUP. An illegal M number has been assigned in MD10804 $MN_EXTERN_M_NO_SET_INT or MD10806 $MN_EXTERN_M_NO_DISABLE_INT for the configuration of the M number range for activation/deactivation of the interrupt program.

Reaction: Mode group not ready. Channel not ready. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: Check MD10804 $MN_EXTERN_M_NO_SET_INT and MD10806 $MN_EXTERN_M_NO_DISABLE_INT.

Program Continuation: Switch control OFF - ON.

Alarm 4181
[Channel %1:] Invalid assignment of an M auxiliary function number

Parameters: %1 = Channel number

Definitions: In MD22254 $MC_AUXFU_ASSOC_M0_VALUE or MD22256 $MC_AUXFU_ASSOC_M1_VALUE, a number has been specified for the configuration of a new predefined M function which is occupied by the system, and cannot be used for an assignment. (M0 to M5, M17, M30, M40 to M45).

Reaction: Mode group not ready. Channel not ready. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: Configure an M function in machine data MD22254 $MC_AUXFU_ASSOC_M0_VALUE or MD22256 $MC_AUXFU_ASSOC_M1_VALUE which is not occupied by the system (M1 to M5, M17, M30, M40 to M45).

Program Continuation: Switch control OFF - ON.
4182
[Channel %1:] Invalid M auxiliary function number in %2%3, MD reset

Parameters:
- %1 = Channel number
- %2 = MD identifier
- %3 = If required, MD index

Definitions:
In the specified machine data, a number has been specified for the configuration of an M function which is occupied by the system, and cannot be used for an assignment. (M0 to M5, M17, M30, M40 to M45 and also M98, M99 with applied ISO dialect). The value set by the user has been reset to the default value by the system.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Configure an M function in the specified machine data which is not occupied by the system (M0 to M5, M17, M30, M40 to M45 and also M98, M99 with applied ISO dialect).

Program Continuation:
Clear alarm with the RESET key. Restart part program.

4183
[Channel %1:] M auxiliary function number %2 used several times (%3 and %4)

Parameters:
- %1 = Channel number
- %2 = M auxiliary function number
- %3 = MD identifier
- %4 = MD identifier

Definitions:
In the specified machine data, a number has been used several times for the configuration of an M function.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Check the specified machine data and create a unique assignment of M auxiliary function numbers.

Program Continuation:
Switch control OFF - ON.

4184
[Channel %1:] Illegally predefined auxiliary function in %2%3, MD reset

Parameters:
- %1 = Channel number
- %2 = MD identifier
- %3 = If required, MD index

Definitions:
In the specified machine data, a predefined auxiliary function has been illegally configured. The value set by the user has been reset to the default value by the system.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Configure a valid value in the specified machine data.

Program Continuation:
Clear alarm with the RESET key. Restart part program.
NCK alarms

4185

[Channel %1:] Illegal auxiliary function configured %2 %3 %4

Parameters:
- %1 = Channel number
- %2 = Type of auxiliary function
- %3 = Extension
- %4 = Auxiliary function value

Definitions:
An auxiliary function has been illegally configured.
Predefined auxiliary functions cannot be reconfigured by user-defined auxiliary functions.
See:
- MD22010 $MC_AUXFU_ASSIGN_TYPE[n]
- MD22020 $MC_AUXFU_ASSIGN_EXTENSION[n]
- MD22030 $MC_AUXFU_ASSIGN_VALUE[n]
- MD22035 $MC_AUXFU_ASSIGN_SPEC[n]

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Reconfigure the auxiliary function.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

4200

[Channel %1:] Geometry axis %2 must not be declared a rotary axis

Parameters:
- %1 = Channel number
- %2 = Axis name

Definitions:
The geometry axes represent a Cartesian coordinate system and therefore the declaration of a geometry axis as rotary axis leads to a definition conflict.

Reaction:
- NC not ready.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Remove rotary axis declaration for this machine axis.
For this purpose, the geometry axis index for the displayed geometry axis must be determined by means of MD20060 $MC_AXCONF_GEOAX_NAME_TAB. The channel axis number is stored with the same index in MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB. The channel axis number minus 1 provides the channel axis index under which the machine axis number is found in MD20070 $MC_AXCONF_MACHAX_USED.

Program Continuation:
Switch control OFF - ON.

4210

[Channel %1:] Spindle %2 declaration as rotary axis missing

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
If a machine axis is to be operated as a spindle, this machine axis must be declared as a rotary axis.

Reaction:
- NC not ready.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
NCK alarms

Remedy: Please inform the authorized personnel/service department. Set rotary axis declaration for this machine axis in the axis-specific MD30300 $MA_IS_ROT_AX.

Program Continuation: Switch control OFF - ON.

4215 [Channel %1:] Spindle %2 declaration as modulo axis missing

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: The spindle functionality requires a modulo axis (positions in [deg]).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
Set MD30310 $MA_ROT_IS_MODULO.

Program Continuation: Switch control OFF - ON.

4220 [Channel %1:] Spindle %2 declared repeatedly

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: The spindle number exists more than once in the channel.

Reaction: NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
The spindle number is stored in the axis-specific MD35000 $MA_SPIND_ASSIGN_TO_MACHAX. The channel to which this machine axis/spindle is assigned is listed in the machine axis index. (The machine axis number is given in the channel-specific MD20070 $MC_AXCONF_MACHAX_USED).

Program Continuation: Switch control OFF - ON.

4225 [Channel %1:] Axis %2 declaration as rotary axis missing

Parameters: %1 = Channel number
%2 = Axis name, axis number

Definitions: The modulo functionality requires a rotary axis (positions in [deg]).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
Set MD30300 $MA_IS_ROT_AX.

Program Continuation: Switch control OFF - ON.
4230 [Channel %1:] Data alteration from external not possible in current channel state

Parameters: %1 = Channel number
Definitions: It is not allowed to enter this data while the part program is being executed (e.g. setting data for working area limitation or for dry run feedrate).
Reaction: Alarm display.
Remedy: The data to be entered must be altered before starting the part program.
Program Continuation: Clear alarm with the Delete key or NC START.

4240 Runtime overflow for IPO cycle or position controller cycle, IP %1

Parameters: %1 = Program location
Definitions: The settings for the interpolation and position control cycle were modified before the last power-up such that too little computing time is now available for the requisite cyclic task.
The alarm occurs immediately after power-up if too little runtime is available even when the axes are stationary and the NC program has not started. However, task overflow can occur only when computation-intensive NC functions are called during program execution.
Reaction: NC not ready.
The NC switches to follow-up mode.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Alarm reaction delay is cancelled.
Remedy: Please inform the authorized personnel/service department.
Take greater care when optimizing the clock times MD10050 $MN_SYSCLOCK_CYCLE_TIME, MD10060 $MN_POSCTRL_SYSCLOCK_TIME_RATIO and/or MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO.
The test should be performed with an NC program that represents the highest possible control load. To be on the safe side, a margin of 15 to 25% should be added to the times determined in this way.
Program Continuation: Switch control OFF - ON.

4270 Machine data %1 assigns not activated NCK input/output byte %2

Parameters: %1 = String: MD identifier
%2 = Index
Definitions: The specified machine data assigns a digital input/output byte or an analog input/output signal the processing of which has not been activated to an NC function.
Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
NCK alarms

4275 Machine data %1 and %2 both assign the same NCK output byte no. %3 several times

Parameters:
- %1 = String: MD identifier
- %2 = String: MD identifier
- %3 = No. of output

Definitions:
The specified machine data assign two NC functions to the same digital/analog output.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Correct machine data.

Program Continuation:
Switch control OFF - ON.

4280 Assignment of NCK input/output byte via MD %1[%2] does not match hardware configuration

Parameters:
- %1 = String: MD identifier
- %2 = Index: MD array

Definitions:
When booting, the required input/output module was not found at the slot specified in the MD.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Check hardware or correct the MD, if necessary. Note: monitoring of the hardware configuration is performed independently of the number of activated inputs/outputs

Program Continuation:
Switch control OFF - ON.

4282 Hardware of external NCK outputs assigned repeatedly

Definitions:
Several outputs have been configured on the same hardware byte.

Remedy:
Please inform the authorized personnel/service department.

Correct machine data. Activate required inputs/outputs via MDs:
- MD10350 $MN_FASTIO_DIG_NUM_INPUTS
- MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS
- MD10300 $MN_FASTIO_ANA_NUM_INPUTS
- MD10310 $MN_FASTIO_ANA_NUM_OUTPUTS

Activation of fast inputs/outputs does not require the corresponding hardware configuration to be available at the control. All functions using fast inputs/outputs can also be made use of by the PLC specification/modification defined in the VDI interface, if the response time requirements are reduced accordingly.

Activated inputs/outputs increase the computation time requirement of the interpolation cycle because the PLC manipulation signals are handled cyclically. Note: Deactivate any inputs/outputs not in use.

Program Continuation:
Switch control OFF - ON.
NCK alarms

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Alter MD10368 $MN_HW.Assign_DIG_FASTOUT or MD10364 $MN_HW.Assign_ANA_FASTOUT.

Program Continuation:
Switch control OFF - ON.

4300 Declaration in MD %1 is not allowed for axis %2.

Parameters:
- %1 = String: MD identifier
- %2 = Axis name, spindle number

Definitions:
The axis cannot be operated as competing positioning axes, for example because the axis is the slave axis within a closed gantry group or a gantry group to be closed.

Reaction:
- Alarm display.

Remedy:
Please inform the authorized personnel/service department. Reset MD30450 $MA.IS_CONCURRENT_POS_AX for the axis concerned.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

4310 Declaration in MD %1 index %2 is not allowed.

Parameters:
- %1 = String: MD identifier
- %2 = Index: MD array index

Definitions:
The machine data values must be written in the array in ascending order.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Correct the MD.

Program Continuation:
Teileprogramm neu starten. Clear alarm with the RESET key in all channels of this mode group. Restart part program.

4320 Axis %1 function %2 %3 and %4 not allowed

Parameters:
- %1 = String: Axis identifier
- %2 = String: MD identifier
- %3 = String: Bit
- %4 = String: MD identifier

Definitions:
The functions declared by the specified machine data cannot simultaneously be active for one axis.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Deactivate one of the functions.
NCK alarms

Program Continuation:
Switch control OFF - ON.

4334
[Channel %1:] The amount of fine correction in parameter %2 of the orientable toolholder %3 is too large

Parameters:
%1 = Channel number
%2 = Invalid parameter of the orientable toolholder
%3 = Number of the orientable toolholder

Definitions:
The maximum permissible value of the fine correction in an orientable toolholder is limited by the MD20188 $MC_TOCARR_FINE_LIM_LIN for linear variables, and by the MD20190 $MC_TOCARR_FINE_LIM_ROT for rotary variables. The alarm can only occur if the SD42974 $SC_TOCARR_FINE_CORRECTION is not equal to zero.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Enter a valid fine correction value.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4336
[Channel %1:] Orientable toolholder no. %2 for orientation transformation %3 does not exist

Parameters:
%1 = Channel number
%2 = Number of the orientable toolholder
%3 = Number of the orientation transformation that is to be parameterized with the orientable toolholder

Definitions:
The orientable toolholder, with whose data the orientation transformation is to be parameterized (see MD2.... $MC_TRAFO5_TCARR_NO_...), does not exist.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Enter a valid tool-carrier number.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4338
[Channel %1:] Invalid transformation type '%2' in toolholder %3 for orientation transformer %4

Parameters:
%1 = Channel number
%2 = Transformer type
%3 = Number of the orientable toolholder
%4 = Number of the orientation transformation that is to be parameterized with the orientable toolholder

Definitions:
The parameters of the orientation transformation are taken over from the data of an orientable toolholder. This orientable toolholder contains an invalid transformation type. (Types T, P and M are permissible).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Enter a valid transformation type.

Program Continuation:
Clear alarm with the RESET key. Restart part program
4340 [Channel %1:] Block %2 invalid transformation type in transformation no. %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Transformation number

Definitions:
An invalid, i.e. undefined, number was entered in one of the machine data TRAFO_TYPE_1 ... TRAFO_TYPE_8. This alarm also occurs if a certain type of transformation is only impossible on the type of control used (e.g. 5-axis transformation on a SINUMERIK 802D).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
Enter a valid transformation type.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

4341 [Channel %1:] Block %2 no data set available for transformation no. %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Transformation number

Definitions:
Only a limited number of machine data sets (usually 2) is available for each related group of transformations (e.g. orientation transformations, Transmit, Tracyl, etc.). This alarm is output if an attempt is made to set more transformations from a group.

Example:
Two orientation transformations are allowed. The machine data contains e.g.:
- TRAFO_TYPE_1 = 16 ; 1st orientation transformation
- TRAFO_TYPE_2 = 33 ; 2nd orientation transformation
- TRAFO_TYPE_3 = 256 ; 1st transmit transformation
- TRAFO_TYPE_4 = 20 ; 3rd orientation transformation

This entry triggers alarm

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
Enter valid machine data.

Program Continuation:
- Clear alarm with the RESET key. Restart part program
4342 [Channel %1:] Invalid machine data for general 5-axis transformation error no. %2

Parameters:
%1 = Channel number
%2 = Error type

Definitions:
The machine data which describe the axis directions and the basic orientation and the input axes for the general 5-axis transformation are invalid. The error parameter displayed specifies the cause of the alarm:
- 1: The first axis (MD2.... $MC_TRAFO5_AXIS1_...) is not defined (all three entries of the vector are 0)
- 2: The second axis (MD2.... $MC_TRAFO5_AXIS2_...) is not defined (all three entries of the vector are 0)
- 3: The basic orientation (MD2.... $MC_TRAFO5_BASE_ORIENT_...) is not defined (all three entries of the vector are 0)
- 4: The first and second axis are (virtually) parallel
- 5: On MD2.... $MC_TRAFO5_TYPE_ = 56 (rotatable tool and workpiece) there is no 4-axis transformation, i.e. 2 rotary axes must always be available. (See MD2.... $MC_TRAFO5_AXES_IN_...)
- 6: The third axis (MD2.... TRAFO5$MC_TRAFO5_AXIS3_...) is not defined (all three entries of the vector are 0) (6-axis transformation)
- 7: The normal tool vector (MD2.... TRAFO6$MC_TRAFO6_BASE_ORIENT_NORMAL_...) is not defined (all three entries of the vector are 0) (6-axis transformation)
- 8: The basic tool orientation (MD2.... $MC_TRAFO5_BASE_ORIENT_...) and the normal tool vector (MD2.... $MC_TRAFO6_BASE_ORIENT_NORMAL_...) are (virtually) parallel (6-axis transformation)
- 9: The first external axis (MD2.... $MC_TRAFO7_EXT_AXIS1_*) has not been defined (all three vector entries are 0) (7-axis transformation)
-10: Invalid transformation type (MD2.... $MC_TRAFO5_TYPE_...). A transformation type unequal to 24 has been entered for the generic 7-axis transformation.

Reaction:
Correction block is reorganized.
Alarm signals are set.
NC Stop on alarm at block end.

Remedy:
Set valid machine data.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4343 [Channel %1:] Attempt made to change the machine data of an active transformation.

Parameters:
%1 = Channel number

Definitions:
An attempt was made to change the machine data of an active transformation and to activate the machine data with RESET or NEWCONFIG.

Reaction:
Interpreter stop
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Set valid machine data.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4344 [Channel %1:] Block %2 Axis %3 defined in $NK_NAME[%4] is not available in the current channel

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name
%4 = Index of the chain element

Definitions:
In the specified chain element a machine axis was indicated that is not available in the current channel on transformation selection. This means that this axis is currently assigned to another channel.
NCK alarms

4345 [Channel %1:] Invalid configuration in chained transformation no. %2

Parameters:
%1 = Channel number
%2 = Transformation number

Definitions:
A chained transformation is incorrectly configured (MD24995 $MC_TRACON_CHAIN_1 or MD24996 $MC_TRACON_CHAIN_2). The following causes for the error are possible:
- The list of transformations to be chained starts with a 0 (at least one entry not equal to zero is required).
- The list of transformations to be chained contains the number of a transformation which does not exist.
- The number of a transformation in the list is greater than or equal to the number of the chained transformation. Example: The cascaded transformation is the fourth transformation in the system, i.e. MD24400 $MC_TRAFO_TYPE_4 = 8192. In this case, only values 1, 2 or 3 may be entered in the associated list (e.g. MD24995 $MC_TRACON_CHAIN_1[...]).
- The chaining setting is invalid. The following restrictions currently apply. A maximum of two transformations can be chained. The first transformation must be an orientation transformation, transmit, peripheral curve transformation or inclined axis. The second transformation must be the inclined axis transformation.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Set a valid transformation chain.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4346 [Channel %1:] Invalid geoaxis assignment in machine data %2[%3]

Parameters:
%1 = Channel number
%2 = Name of machine data
%3 = Transformation number

Definitions:
MD2.... $MC_TRAFO_GEOAX_ASSIGN_TAB_... contains an invalid entry. The following causes for the error are possible:
- The entry references a channel axis which does not exist.
- The entry is zero (no axis) but the transformation needs the relevant axis as a geometry axis.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct the entry in MD2.... $MC_TRAFO_GEOAX_ASSIGN_TAB_ or MD2.... $MC_TRAFO_AXES_IN_.

Program Continuation:
Clear alarm with the RESET key. Restart part program
4347 [Channel %1:] Invalid channel axis assignment in machine data %2[%3]

Parameters:
%1 = Channel number
%2 = Name of machine data
%3 = Transformation number

Definitions: MD2.... $MC_TRAFO_AXIS_IN_... contains an invalid entry. The following causes for the error are possible:
- The entry refers to a channel axis which does not exist.
- The entry is zero (no axis) but the transformation needs the relevant axis as a channel axis.
- More than one external axis has been entered in MD2.... $MC_TRAFO_AXIS_IN_... for the 7-axis transformation.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct the entry in MD2.... $MC_TRAFO_AXES_IN_....

Program Continuation:
Clear alarm with the RESET key. Restart part program

4348 [Channel %1:] Block %5 Configuration error %6 in transformation $NT_NAME[%3] = '%2'.

Parameters:
%1 = Channel number
%2 = Name of the transformation data record
%3 = Index of the transformation data record
%4 = Block number, label|error number

Definitions: The transformation data record is incorrect. The error cause is defined in detail by the following error number:
- 1. The transformer type is not known, i.e. $NT_TRAFO_TYPE[n] contains an illegal name.
- 2. The machine kinematics have not been defined, i.e. neither $NT_TOOL_CHAIN[n,0] nor $NT_PART_CHAIN[n,0] refer to kinematic chains.
- 3. The kinematic chain with the name contained in $NT_T_CHAIN_NAME[n] could not be found.
- 4. The kinematic chain element with the name contained in $NT_T_CHAIN_1ST_ELEM[n] could not be found.
- 5. The kinematic chain element with the name contained in $NT_T_CHAIN_LAST_ELEM[n] could not be found.
- 6. The kinematic chain with the name contained in $NT_P_CHAIN_NAME[n] could not be found.
- 7. The kinematic chain element with the name contained in $NT_P_CHAIN_1ST_ELEM[n] could not be found.
- 8. The kinematic chain element with the name contained in $NT_P_CHAIN_LAST_ELEM[n] could not be found.
- 9. The kinematic chain element with the name contained in $NT_T_REF_ELEM[n] could not be found.
- 10. The rotary axis defined in $NT_ROT_AX_NAME[n,0] could not be found in any of the relevant kinematic chains.
- 11. The rotary axis defined in $NT_ROT_AX_NAME[n,1] could not be found in any of the relevant kinematic chains.
- 12. The rotary axis defined in $NT_ROT_AX_NAME[n,2] could not be found in any of the relevant kinematic chains.
- 20. The linear axis defined in $NT_GEO_AX_NAME[n,0] could not be found in any of the relevant kinematic chains.
- 21. The linear axis defined in $NT_GEO_AX_NAME[n,1] could not be found in any of the relevant kinematic chains.
- 22. The linear axis defined in $NT_GEO_AX_NAME[n,2] could not be found in any of the relevant kinematic chains.
- 30. The base orientation has not been defined, i.e. all three components of $NT_BASE_ORIENT[n,0..2] are zero.
- 31. The orientation normal vector has not been defined, i.e. all three components of $NT_BASE_ORIENTATION_NORMAL[n,0..2] are zero.
- 32. The vectors for the definition of the base orientation ($NT_BASE_ORIENTATION[$n,0..2]) and the base normal vector ($NT_BASE_ORIENTATION_NORMAL[$n,0..2]) are parallel.
- 40. The first and the second orientation axis of an orientation transformation are parallel.
- 41. The second and the third orientation axis of an orientation transformation are parallel.
- 42. No orientation axis has been defined (an orientation transformation requires at least one orientation axis).
- 43. Illegal 3-axis orientation transformation: The orientation axis is not vertical to the plane created by the two geometry axes.
- 50. Fewer than two geometry axes have been defined for an orientation transformation or an inclined axis transformation.
- 51. Not all three geometry axes have been defined for an orientation transformation with more than one orientation axis.
- 60. Geometry axes 1 and 2 are parallel.
- 61. Geometry axes 1 and 3 are parallel.
- 62. Geometry axes 2 and 3 are parallel.
- 65. The 3 geometry axes are on one plane.
- 100. The maximum number of kinematic elements (total of linear axes, rotary axes, and constant elements) has been exceeded. A sequence of constant elements in a chain that is not interrupted by an axis counts as only one element.
- A maximum of 15 kinematic elements is currently permissible for orientation transformations.
- 101. The maximum number of rotary axes in the kinematic chains for the definition of a transformation has been exceeded.
- 103. The maximum number of elements in the definition of the kinematic chain for the tool has been exceeded.
- 104. The maximum number of elements in the definition of the kinematic chain for the workpiece has been exceeded.
- A maximum of 6 rotary axes is currently permissible for orientation transformations.
- 10000. Illegal redundant rotary axis. For the time being, only one redundant axis is permissible for orientation transformation. This rotary axis must be the first axis in the kinematic chain.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
- Define valid transformation data record.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

4349 [Channel %1:] No free memory space available for transformations.

Parameters:
- %1 = Channel number
- %2 = Number of the transformations already active

Definitions:
- Any kinematic transformation in the NCK requires a defined memory space. If MD18866 $MN_MM_NUM_KIN_TRAFOS does not equal zero, it indicates how many kinematic transformations are allowed to be active in the NCK at the same time.
- If MD18866 $MN_MM_NUM_KIN_TRAFOS equals zero, the maximum number of kinematic transformations that are active at the same time, is determined automatically (currently twenty times the number of the existing channels).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
- Increase the value of MD18866 $MN_MM_NUM_KIN_TRAFOS.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

4350 [Channel %1:] Axis identifier %2 machine data %3 not consistent with machine data %4

Parameters:
- %1 = Channel number
- %2 = String: Axis identifier
- %3 = String: MD identifier
- %4 = String: MD identifier

Definitions:
- MD32420 $MA_JOG_AND_POS_JERK_ENABLE (jerk limitation) and MD35240 $MA_ACCEL_TYPE_DRIVE (acceleration reduction) have been defined as the normal position for an axis.
- However, the two functions cannot be activated at the same time for one axis.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
NCK alarms

4400 MD alteration will cause reorganization of buffered memory (Art %1), (loss of data) - %2
Parameters: %1 = Memory type
%2 = MD identifier, if required
Definitions: A machine data has been altered that configures the buffered memory. If the NCK powers up with the altered data, this will lead to reorganization of the buffered memory and thus to the loss of all buffered user data (part programs, tool data, GUD, leadscrew error compensation, ...)
Meaning of the 1st parameter
0x00 buffered memory (internal)
0x01 buffered memory
Reaction: Alarm display.
Remedy: If the control includes user data that have not yet been saved, then a data backup must be performed before the next NC power-up. By manually resetting the altered MD to the value it had before the last power-up, reorganization of the memory can be avoided.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

4402 %1 causes a machine data reset
Parameters: %1 = Machine data
Definitions: If this machine data is set, the current machine data values are overwritten by the default values at the next ramp-up. Under certain circumstances, this may cause data loss (even in the buffered memory).
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. If the control includes user data that has not yet been saved, then a data backup must be performed before the next NCK power-up. By manually resetting the altered MD to the value it had before the last power-up, reorganization of the memory can be avoided.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

4502 [Channel %1:] Anachronism %2(%3) -> %4
Parameters: %1 = Channel number
%2 = String: MD identifier
%3 = String: MD identifier
%4 = String: MD identifier
Definitions: Previously, in MD20110 $MC_RESET_MODE_MASK Bit4 and Bit5, the reset behavior of the 6th or 8th G groupe was determined. This setting is now made in MD20152 $MC_GCODE_RESET_MODE.
In order to ensure compatible handling of "old" data backups, the "old" values are taken from MD20110 $MC_RESET_MODE_MASK and entered in MD20152 $MC_GCODE_RESET_MODE.
Reaction: Alarm display.
Remedy: --
Program Continuation: Clear alarm with the Delete key or NC START.
4503 [TO unit %1:] H number %2 assigned more than once. Machine data is not set.

Parameters:
%1 = TO unit
%2 = H number

Definitions:
This error can only occur if MD10880 $MN_MM_EXTERN_CNC_SYSTEM= 1 or 2. MD10890, $MN_EXTERN_TOOLPROG_MODE bit 3 is reset (this MD becomes effective at power-on). On checking data management, it was found that various edges of the same TO unit had the same H number. MD10890 $MN_EXTERN_TOOLPROG_MODE bit 3 remains set and is not included in data management.

Reaction:
Alarm display.

Remedy:
H numbers must be assigned only once in a TO unit. Then, MD10890, $MN_EXTERN_TOOLPROG_MODE, bit 3 can be set = 0 and a restart can be performed.

Program Continuation:
Clear alarm with the Delete key or NC START.

4600 Invalid handwheel type for handwheel %1

Parameters:
%1 = Handwheel number

Definitions:
The handwheel type (hardware segment) for handwheel %1 requested through MD11350 $MN_HANDWHEEL_SEGMENT is invalid.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Configure a valid type for the corresponding handwheel through MD11350 $MN_HANDWHEEL_SEGMENT.

Program Continuation:
Switch control OFF - ON.

4630 Invalid handwheel module for handwheel %1

Parameters:
%1 = Handwheel module

Definitions:
For PROFIBUS/PROFINET only:
The reference in $MN_HANDWHEEL_MODULE to a corresponding entry in machine data array $MN_HANDWHEEL_LOGIC_ADDRESS[] which is required for configuring PROFIBUS handwheels is not available.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Configure the machine data MD11351 $MN_HANDWHEEL_MODULE for the corresponding PROFIBUS handwheel so that there is a valid reference to an entry in the machine data array MD11353 $MN_HANDWHEEL_LOGIC_ADDRESS[].

Program Continuation:
Switch control OFF - ON.

4631 Invalid handwheel slot for handwheel %1

Parameters:
%1 = Handwheel slot

Definitions:
For PROFIBUS/PROFINET only:
The handwheel slot for handwheel %1 requested through machine data $MN_HANDWHEEL_INPUT is not available for PROFIBUS handwheels.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Configure machine data MD11352 $MN_HANDWHEEL_INPUT to a valid handwheel slot for the corresponding PROFIBUS handwheel.

Program Continuation:
Switch control OFF - ON.
4632 Logical PROFIBUS handwheel slot base address for handwheel %1 not found

Parameters: %1 = Handwheel number
Definitions: For PROFIBUS/PROFINET only: The logical basic address of the PROFIBUS handwheel slot in machine data array $MN_HANDWHEEL_LOGIC_ADDRESS[] indexed in machine data $MN_HANDWHEEL_MODULE was not found in the current STEP 7 hardware configuration.
Reaction: Interface signals are set. Alarm display.
Remedy: Check if MD11351 $MN_HANDWHEEL_MODULE of the corresponding handwheel is correct. Check if indexed logical base address of PROFIBUS handwheel slot in machine date array MD11353 $MN_HANDWHEEL_LOGIC_ADDRESS[] is correct.
Program Continuation: Switch control OFF - ON.

5000 Communication job not executable %1

Parameters: %1 = Reference to which resources are no longer available.
Definitions: The communication job (data exchange between NCK and HMI, e.g.: loading an NC part program) cannot be executed because there is insufficient memory space. Cause: too many communication jobs in parallel.
Reaction: Alarm display.
Remedy: - Reduce the number of communication jobs taking place at the same time or increase MD10134 $MN_MM_NUM_MMC_UNITS
 - Restart communication job.
 Please inform the authorized personnel/service department. No remedial measures are possible - the operation triggering the alarm message has to be repeated. Clear the alarm display with Cancel.
Program Continuation: Clear alarm with the Delete key or NC START.

6000 Memory reorganized using standard machine data

Definitions: The memory management was not able to allocate the NC user memory with the values in the machine data. It did not have enough memory available because the total memory available is provided as dynamic and static memory for the NC user (e.g. for macro definitions, user variables, number of tool offsets, number of directories and files etc.).
Reaction: NC not ready. Mode group not ready, also effective for single axes. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.
Remedy: Redefine the NC memory structure! A specific MD for NC user memory allocation cannot be stated to be the cause of the alarm. The MD initiating the alarm therefore has to be determined on the basis of the default values in the machine data by changing the user-specific memory structure step by step. Usually, it is not just one single MD that has been set too large. Therefore it is advisable to reduce the memory area by a certain proportion in several MDs.
Program Continuation: Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
6010 [Channel %1:] Data block %2 not or not completely created, error code %3

Parameters:
- %1 = Channel number
- %2 = String (block name)
- %3 = Internal error code

Definitions:
Data management has detected an error during ramp-up. The specified data block may not have been created. The error number specifies the type of error. An error number >100000 indicates a fatal system error. Other error numbers indicate that the user memory area provided is too small. In this case the (user) error numbers have the following meaning:
- Error number 1: No memory space available
- Error number 2: Maximum possible number of symbols exceeded
- Error number 3: Index 1 lies outside the valid value range
- Error number 4: Name already exists in channel
- Error number 5: Name already exists in NCK

If the alarm occurs after cycle programs, macro definitions or definitions for global user data (GUD) have been introduced, the machine data for the user memory configuration has been configured incorrectly. In all other cases, changes to machine data that is already correct lead to errors in the user memory configuration.

The following block names (2nd parameter) are known in the NCK (all system and user data blocks; in general, only problems in the user data blocks can be remedied by user intervention):
- _N_NC_OPT - System internal: option data, NCK global
- _N_NC_SEA - System internal: setting data, NCK global
- _N_NC_TEA - System internal: machine data, NCK global
- _N_NC_CEC - System internal: 'cross error compensation'
- _N_NC_PRO - System internal: protection zones, NCK global
- _N_NC_GD1 - User: 1st GUD block defined by _N_SGUD_DEF, NCK global
- _N_NC_GD2 - User: 2nd GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_GD3 - User: 3rd GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_GD4 - User: 4th GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_GD5 - User: 5th GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_GD6 - User: 6th GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_GD7 - User: 7th GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_GD8 - User: 8th GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_GD9 - User: 9th GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_MAC - User: macro definitions
- _N_NC_FUN - System internal: predefined functions and procedures, NCK global
- _N_CHc_OPT - System internal: option data, channel-specific
- _N_CHc_SEA - System internal: setting data, channel-specific
- _N_CHc_TEA - System internal: machine data, channel-specific
- _N_CHc_CEC - System internal: 'cross error compensation'
- _N_CHc_PRO - System internal: protection zones, channel-specific
- _N_CHc_UFR - System internal: frames, channel-specific
- _N_CHc_RPA - System internal: R-parameters, channel-specific
- _N_CHc_GD1 - User: 1st GUD block defined by _N_SGUD_DEF, channel-specific
- _N_CHc_GD2 - User: 2nd GUD block defined by _N_MGUD_DEF, channel-specific
- _N_CHc_GD3 - User: 3rd GUD block defined by _N_MGUD_DEF, channel-specific
- _N_CHc_GD4 - User: 4th GUD block defined by _N_MGUD_DEF, channel-specific
- _N_CHc_GD5 - User: 5th GUD block defined by _N_MGUD_DEF, channel-specific
- _N_CHc_GD6 - User: 6th GUD block defined by _N_MGUD_DEF, channel-specific
- _N_CHc_GD7 - User: 7th GUD block defined by _N_MGUD_DEF, channel-specific
- _N_CHc_GD8 - User: 8th GUD block defined by _N_MGUD_DEF, channel-specific
- _N_CHc_GD9 - User: 9th GUD block defined by _N_MGUD_DEF, channel-specific
- _N_Ax_a_OPT - System internal: option data, axial
- _N_Ax_a_SEA - System internal: setting data, axial
- _N_Ax_a_TEA - System internal: machine data, axial
- _N_Ax_a_EEC - System internal: lead screw error compensation data, axial
- _N_Ax_a_QEC - System internal: quadrant error compensation data, axial
- _N_TO_t_TOC - System internal: toolholder data, TOA-specific
- _N_TO_t_TOA - System internal: tool data, TOA-specific
- _N_TO_t_TMA - System internal: magazine data, TOA-specific
- _N_NC_KIN - System internal: data to describe kinematic chains, NCK-specific
- _N_NC_NPA - System internal: data to describe 3D protection zones, NCK-specific
NCK alarms

- _N_NC_TRA - System internal: transformation data sets, NCK-specific
- _N_NC_WAL - System internal: data to describe coordinate-specific working area limitation
- _N_COMPLETE_CYD - System internal: cycle and display machine data, NCK-, channel-, axis-specific
c = Channel number
a = Machine axis number
t = TOA unit number
There are also other internal system data blocks with identifiers.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct the machine data or undo the changes made.
Please inform the authorized personnel/service department. There are two determining machine data for cycle programs:
- MD18170 $MN_MM_NUM_MAX_FUNC_NAMES = max. number of all cycle programs, error number = 2 shows that this value is too small.
- MD18180 $MN_MM_NUM_MAX_FUNC_PARAM = max. number of all parameters defined in the cycle programs, error number = 2 shows that this value is too small.
(If these MDs are modified, the memory backup is retained)
The following applies to macro definitions:
MD18160 $MN_MM_NUM_USER_MACROS = max. number of all macro definitions, error number = 2 shows that this value is too small.
(If these MDs are modified, the memory backup is retained)
The following applies to GUD variables:
- MD18120 $MN_MM_NUM_GUD_NAMES_NCK = max. number of all NCK global GUD variables, error number = 2 shows that this value is too small.
- MD18130 $MN_MM_NUM_GUD_NAMES_CHAN = max. number of all channel-specific GUD variables in the channel, error number = 2 shows that this value is too small.
- MD18150 $MN_MM_GUD_VALUES_MEM = total value memory of all GUD variables together, error number = 1 shows that this value is too small.

Program Continuation:
Switch control OFF - ON.

6020 Machine data have been changed - now memory is reorganized
Definitions:
Machine data have been changed that define the NC user memory allocation. Data management has restructured the memory in accordance with the altered machine data.

Reaction:
Alarm display.

Remedy:
No remedial measures are required. Any user data that are required must be input again.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6030 Limit of user memory has been adapted
Definitions:
Data management checks during power-up the actually available physical user memory (DRAM, DPRAM and SRAM) with the values in the system-specific machine data MD18210 $MN_MM_USER_MEM_DYNAMIC, MD18220 $MN_MM_USER_MEM_DPR und MD18230 $MN_MM_USERMEM_BUFFERED-USERSMEM_BUFFERED.

Reaction:
Alarm display.

Remedy:
No remedial measures are required. The new maximum permissible value can be read from the reduced machine data.

Program Continuation:
Clear alarm with the RESET key. Restart part program
6035 Instead of %1 KB the system has only %2 KB of free user memory of type '%3'

Parameters:
- %1 = Free memory capacity in KB defined for the control model
- %2 = Actual maximum capacity of free memory in KB
- %3 = Type of memory, “D” = non-battery-backed, “S” = battery-backed

Definitions:
The alarm can only occur after a 'cold start' (=NCK start-up with standard machine data). The alarm is only a notice. There is no interference with any NCK functions. It shows that the NCK has less free user memory available than specified by Siemens for this control variant. The value of the actually available free user memory can also be taken from the MD18050 $MN_INFO_FREE_MEM_DYNAMIC, MD18060 $MN_INFO_FREE_MEMS_STATIC.

Siemens supplies NCK with default settings that, depending on the model, have certain (free) memory space available for the specific settings of the actual applications. The original factory setting of NCK systems is thus that the alarm does not occur with a cold start.

Reaction:
Alarm display.

Remedy:
Reasons for the message:
- The NCK contains compile cycle software, that uses so much memory space that the hardware cannot provide the required memory.
- The NCK runs on hardware that is not intended for this NCK release (i.e. that has not enough memory capacity).
- If the application runs properly with the remaining free user memory (i.e. can be setup without any errors), the message can simply be ignored.
- If the actual application cannot be configured because there is not enough memory capacity available, either the existing compile cycle must be reduced or, if possible, the system must be upgraded with additional memory space.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6401 [Channel %1:] Tool change not possible: Empty location for tool %2 on magazine %4 not available.

Parameters:
- %1 = Channel ID
- %2 = String (identifier)
- %3 = -Not used-
- %4 = Magazine number

Definitions:
The tool cannot be moved into the selected tool magazine. There is no appropriate location for this tool. A suitable location is mainly determined by the status. The status must indicate that this location is free, not disabled, not reserved and not co-occupied by a tool that is too large. Furthermore, it is important that the type of tool matches the type of any magazine location that may be free. (If, for example, all magazine locations are of the ‘B’ type and these are all free and the tool is of type ‘A’, then this tool cannot be put into this magazine).

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Check whether the magazine data have been defined correctly.
- Check whether there is still room in the magazine to add another tool; there may not be due to operating procedures.
- Check whether a location type hierarchy is defined and whether it, for example, does not allow insertion of a type ‘A’ tool in a free location with type ‘B’.

Program Continuation:
Clear alarm with the RESET key. Restart part program
6402 [Channel %1:] Tool change not possible. Magazine no. %2 not available

Parameters:
- %1 = Channel ID
- %2 = Magazine number

Definitions:
The desired tool change is not possible. The magazine with the specified number is not available.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Check whether the magazine data have been defined correctly.
- Check whether the magazine is connected to the desired tool holder/spindle via a distance relation.
- The user PLC program may have sent wrong data to the NCK.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6403 [Channel %1:] Tool change not possible. Magazine location number %2 on magazine %3 not available.

Parameters:
- %1 = Channel ID
- %2 = Magazine number
- %3 = Magazine location number

Definitions:
The desired tool change is not possible. The specified magazine location is not contained in the specified magazine.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Check whether the magazine data have been defined correctly.
- The user PLC program may have delivered incorrect data to the NCK.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6404 [Channel %1:] Tool change not possible. Tool %2 not available or not usable

Parameters:
- %1 = Channel ID
- %2 = String (identifier)

Definitions:
The desired tool change is not possible. The specified tool does not exist or cannot be loaded.
The tool cannot be loaded either if it is part of a multitool which is already active with another tool, or is part of a multitool whose state is 'Change active' in relation to another toolholder.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Check whether the part program is written correctly.
- Check whether the tool data are correctly defined.
- Check whether there is a replacement tool which can be used for the specified tool.

Program Continuation:
Clear alarm with the RESET key. Restart part program
6405 [Channel %1:] Command %2 has invalid PLC acknowledge parameter %3 - identifier %4

Parameters:
%1 = Channel ID
%2 = Command no.
%3 = PLC acknowledge parameter
%4 = Error code

Definitions:
The specified command has been answered by the PLC with an invalid acknowledgement in the current context. The following assignments are defined for "command no."
1 Move tool, load or unload magazine
2 Prepare tool change
3 Execute tool change
4 Prepare tool change and execute with T command
5 Prepare tool change and execute with M command
7 Terminate canceled tool command
8 Check tool movement with reservation
9 Check tool movement
0 Transport acknowledgement
Parameters 2 and 3 designate the PLC command and the status number of the acknowledgement.
Example: Parameter 4 of the alarm message is 10. It is not defined that a buffer location has to be reserved for asynchronous tool motion. In the example, the parameter is ignored by the NCK. Further possible causes for the alarm:
The tool change defined by the command is not possible. The magazine location specified in the invalid parameter does not exist in the magazine.
The 3rd parameter - error identification - gives a more detailed description of the alarm. Meanings:
- 0 = not defined
- 1 = status not allowed or undefined status received by PLC
- 2 = source and/or target magazine no./location no. unknown
- 3 = not defined
- 4 = target magazine no. and/or location no. are not the end target in the tool motion command
- 5 = not defined
- 6 = source and/or target magazine no./location no. unknown during tool change
- 7 = PLC comm. with inconsistent data: either inconsistent magazine addresses in VDI or NCK command unequal to PLC acknowledgement or both
- 8 = PLC comm. with inconsistent data: while rejecting a tool, the tool to be rejected was unloaded asynchronously.
The tool motion with reservation is only defined for the motion from a magazine to a buffer location.
The NCK cannot perform a new selection.
- 9 = PLC comm. with inconsistent data: the command acknowledgement data wants to move a tool to a location that is occupied by another tool.
- 10 = Asynchronous tool motion with reservation is only defined for the motion from a magazine to a buffer location.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Erroneous PLC communication: Correct the PLC program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6406 [Channel %1:] PLC acknowledgement for command %2 is missing

Parameters:
%1 = Channel ID
%2 = Command no.

Definitions:
There is still no acknowledgement from the PLC for the tool change. The NCK cannot continue processing until it receives this acknowledgement for the specified command number. Possible command number values are described for alarm 6405.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy:
Please inform the authorized personnel/service department.
- Erroneous PLC communication: Correct the PLC program.
- It is possible to release NCK with the PLC command 7 from the wait condition.
 This aborts the waiting command.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6407

Definition:
[Channel %1:] Tool %2 cannot be placed in magazine %3 on location %4. Invalid definition of magazine!

Parameters:
%1 = Channel ID
%2 = String (identifier)
%3 = Magazine number
%4 = Magazine location number

Definitions:
A tool change request or a verification request was issued to put the tool in a location which does not satisfy the prerequisites for filling.
The following causes for the error are possible:
- Location is blocked or not free!
- Tool type does not match the location type!
- Tool possibly too large, adjacent locations are not free!

Reaction:
NC Start disable in this channel.
Alarm signals are set.
NC Stop on alarm.

Remedy:
- Check whether the magazine data are correctly defined (especially the location type).
- Check whether the tool data are correctly defined (especially the location type).

Program Continuation:
Clear alarm with the RESET key. Restart part program

6410

Definition:
[TO unit %1:] Tool %2 has reached its prewarning limit with D = %4

Parameters:
%1 = TO unit
%2 = Tool identifier (name)
%3 = -Not used-
%4 = D number

Definitions:
Tool monitoring: This message informs that the specified D offset has reached its prewarning limit for a time-, quantity- or wear-monitored tool. If possible, the D number is displayed; if not, value 0 is assigned to the 4th parameter.
If the function additive offset is being used, additive offset monitoring may be active instead of tool wear monitoring.
The actual type of tool monitoring is a tool property (see $TC_TP9). If replacement tools are not being used, the duplo number specified has no meaning. The alarm is triggered through the HMI or PLC (=OPI interface). The channel context is not defined. The TO unit was specified for this reason (see MD28085 $MC_MM_LINK_TOA_UNIT).

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.
6411 [Channel %1:] Tool %2 has reached its prewarning limit with D = %4

Parameters:
%1 = Channel number
%2 = Tool identifier (name)
%3 = -Not used-
%4 = D number

Definitions:
Tool monitoring: This message informs that the specified D offset has reached its prewarning limit for a time-, quantity- or wear-monitored tool. If possible, the D number is displayed; if not, value 0 is assigned to the 4th parameter.
If the function additive offset is being used, additive offset monitoring may be active instead of tool wear monitoring.
The actual type of tool monitoring is a tool property (see $TC_TP9). If replacement tools are not being used, the duplo number specified has no meaning.
The alarm originates during NC program execution.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.

6412 [TO unit %1:] Tool %2 has reached its monitoring limit with D = %4

Parameters:
%1 = TO unit
%2 = Tool identifier (name)
%3 = -Not used-
%4 = D number

Definitions:
Tool monitoring: This message informs that the specified D offset has reached its prewarning limit for a time-, quantity- or wear-monitored tool. If possible, the D number is displayed; if not, value 0 is assigned to the 4th parameter.
If the function additive offset is being used, additive offset monitoring may be active instead of tool wear monitoring.
The actual type of tool monitoring is a tool property (see $TC_TP9). If replacement tools are not being used, the duplo number specified has no meaning.
The alarm is triggered through the HMI or PLC (=OPI interface). The channel context is not defined. The TO unit was specified for this reason (see MD28085 $MC_MM_LINK_TOA_UNIT).

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.

6413 [Channel %1:] Tool %2 has reached its monitoring limit with D = %4

Parameters:
%1 = TO unit
%2 = Tool identifier (name)
%3 = -Not used-
%4 = D number

Definitions:
Tool monitoring: This message informs that the specified D offset has reached its prewarning limit for a time-, quantity- or wear-monitored tool. If possible, the D number is displayed; if not, value 0 is assigned to the 4th parameter.
If the function additive offset is being used, additive offset monitoring may be active instead of tool wear monitoring.
The actual type of tool monitoring is a tool property (see $TC_TP9). If replacement tools are not being used, the duplo number specified has no meaning.
The alarm originates during NC program execution.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.
6421
[Channel %1:] Tool move not possible. Empty location for tool %2 on magazine %4 not available.

Parameters:
- %1 = Channel ID
- %2 = String (identifier)
- %3 = -Not used-
- %4 = Magazine number

Definitions:
The desired tool motion command - triggered from the MMC or PLC - is not possible. The tool cannot be moved into the specified tool magazine. There is no appropriate location for this tool.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the magazine data have been defined correctly (e.g. the magazine must not be disabled).
- Check whether the tool data are correctly defined (for example, the tool location type must match the location types allowed in the magazine).
- Check whether the magazine has simply no more room to accept another tool thanks to operating procedures.
- Check whether a location type hierarchy is defined and whether, for example, it does not allow insertion of a type 'A' tool in a free location with type 'B'.

Program Continuation:
Clear alarm with the Delete key or NC START.

6422
[Channel %1:] Tool move not possible. Magazine no. %2 not available.

Parameters:
- %1 = Channel ID
- %2 = Magazine number

Definitions:
The desired tool motion command - triggered from the MMC or PLC - is not possible. The magazine with the specified number is not available.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the magazine data have been defined correctly.
- If the PLC issued the command for motion: check whether the PLC program is correct.
- If the MMC issued the command for motion: check whether the MMC command was assigned correct parameters.

Program Continuation:
Clear alarm with the Delete key or NC START.

6423
[Channel %1:] Tool move not possible. Location %2 on magazine %3 not available.

Parameters:
- %1 = Channel ID
- %2 = Magazine location number
- %3 = Magazine number

Definitions:
The desired tool motion command - triggered from the MMC or PLC - is not possible. The specified magazine location is not contained in the specified magazine.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check whether the magazine data have been defined correctly.

Program Continuation:
Clear alarm with the Delete key or NC START.
6424
[Channel \%1:] Tool move not possible. Tool \%2 not available/not usable.

Parameters:
- \%1 = Channel ID
- \%2 = String (identifier)

Definitions:
The desired tool motion command - triggered from the HMI or PLC - is not possible. The status of the specified tool does not allow movement of the tool. The specified tool is not defined or is not permitted for the command. The specified tool cannot be moved either if it is part of a multitool (only the multitool itself can be moved).

Reaction:
NC Start disable in this channel. Interface signals are set. Alarm display.

Remedy:
- Check whether the tool status 'is being changed' (‘H20’) is set. If yes, then the appropriate tool change command must first be completed by the PLC. Then the tool should be able to be moved.
- Check whether the tool data are correctly defined. Has the correct T number been specified?
- Check whether the move command has been correctly parameterized. Is the desired tool at the source location? Is the target location suitable for taking the tool?
- Check whether the tool has already been loaded (if the alarm occurs while loading the tool).

Program Continuation:
Clear alarm with the Delete key or NC START.

6425
[Channel \%1:] Tool \%2 cannot be placed in magazine \%3 on location \%4. Invalid definition of magazine!

Parameters:
- \%1 = Channel ID
- \%2 = String (identifier)
- \%3 = Magazine number
- \%4 = Magazine location number

Definitions:
The desired tool motion command - triggered from the MMC or PLC - is not possible. A movement request was issued to put the tool in a location which does not satisfy the prerequisites for filling. The following causes for the error are possible:
- Location is blocked or not free!
- Tool type does not match the location type!
- Tool possibly too large, adjacent locations are not free!
- If a tool is to be loaded or unloaded, the load/unload position must be of 'load location' type.
- If a tool is to be loaded or unloaded, is the magazine in question linked to the load/unload location?

The causes for the error are possible:

Reaction:
NC Start disable in this channel. Interface signals are set. Alarm display.

Remedy:
- Check whether the magazine data have been defined correctly.
- Check whether there is still room in the magazine to add another tool; there may not be due to operating procedures.
- Check whether a location type hierarchy is defined and whether it, for example, does not allow insertion of a type 'A' tool in a free location with type 'B'.
- Check whether the magazine in question is linked to the load/unload location or whether a distance has been defined.
- Check whether the load/unload position is of 'load location' type.

See also $TC_MPP1.

Program Continuation:
Clear alarm with the Delete key or NC START.
6430 Workpiece counter: overflow in table of monitored cutting edges.

Definitions:
No more cutting edges can be entered in the piece counter table.
As many cutting edges can be noted for the workpiece counter as are possible in total in the NCK.
This means that if for each tool each cutting edge in each TO unit is used precisely once for a workpiece then the limit is reached.
If several workpieces are made on several toolholders/spindles simultaneously, it is possible to note MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA cutting edges for the workpiece counter for all of the workpieces.
If this alarm occurs, it means that cutting edges used subsequently are no longer quantity monitored until the table has been emptied again, e.g. by means of the NC language command SETPIECE or by the relevant job from HMI, PLC (PI service).

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Was decrementing of the piece counter forgotten? Then program SETPIECE in the part program, or add the correct command in the PLC program.
- If the part program/PLC program is correct, then more memory should be set for tool cutting edges via the MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA (can only be performed with the necessary access rights!).

Program Continuation:
Clear alarm with the Delete key or NC START.

6431 [Channel %1:] Block %2 Function not allowed. Tool management/monitoring is not active.

Parameters:
%1 = Channel ID
%2 = Block number, label

Definitions:
Occurs when a data management function is called which is not available because ToolMan is deactivated. For example, the language commands GETT, SETPIECE, GETSELT, NEWT, DELT.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Make sure of how the NC is supposed to be configured! Is tool management or tool monitoring needed but not activated?
- Are you using a part program that is meant for a numerical control with tool management/tool monitoring? It is not possible to start this program on the numerical control without tool management/tool monitoring. Either run the part program on the appropriate NC control or edit the part program.
- Activate tool management/tool monitoring by setting the appropriate machine data. See MD18080$MN_MM_TOOL_MANAGEMENT_MASK, MD20310$MC_TOOL_MANAGEMENT_MASK
- Check whether the required option is set accordingly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

6432 Function not executable. No tool assigned to tool holder/spindle

Parameters:
%1 = Channel ID

Definitions:
When an attempt is made to perform an operation that requires a tool to be located on the spindle. This can be the quantity monitoring function, for example.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Select another function, another toolholder/spindle, position tool on toolholder/spindle.

Program Continuation:
Clear alarm with the Delete key or NC START.
6433 [Channel %1:] Block %2 %3 not available with tool management

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions: The symbol variable specified in %3 is not available with active tool management. The function GELSELT should be used with $P_TOOLP.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify program. If $P_TOOLP has been programmed, the GETSELT function should be used instead.

Program Continuation: Clear alarm with the RESET key. Restart part program

6434 [Channel %1:] Block %2 NC command SETMTH not allowed because tool holder function not active

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No master toolholder has been defined for the initial state (MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER = 0), therefore no toolholder is available. The NC command SETMTH has neither been defined. In this setting, the tool change is carried out referring to the master spindle. The master spindle is set with SETMS.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Correct the NC program (delete or replace SETMHT) or enable toolholder function via machine data.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

6436 [Channel %1:] Block %2 command '%3' cannot be programmed. Function '%4' has not been activated.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Programmed command
%4 = Function identifier

Definitions: The command cannot be programmed due to the lack of a function enable or activation.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct the NC program

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
6438 [Channel %1:] Block %2 inconsistent data modification is not permitted.

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In a defined multitool, for example, the distance coding $TC_MTP_KD cannot be changed once the multitool location has been generated.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC program

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

6441 Writing of $P_USEKT not allowed.

Definitions:
An attempt was made to write the value of $P_USEKT. This is not possible since programming T= ‘location number’ with automatic setting of $P_USEKT is active.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check how the NC is supposed to be configured. (See bit16 and bit22 in MD 20310 $MC_TOOL_MANAGEMENT_MASK).
- Is a part program being used that is intended for an NC control without T=’location number’ with automatic setting of $P_USEKT? This program cannot be started on an NC control with T=’location number’ with automatic setting of $P_USEKT.
- Either run the part program on an appropriate NC control or edit the part program.

Program Continuation:
Clear alarm with the Delete key or NC START.

6442 [Channel %1:] Function not executable. No tool assigned to desired magazine/magazine location %2.

Parameters:
%1 = Channel ID
%2 = Magazine/magazine location no.

Definitions:
PLC logic is presumably incorrect. Tool change with reject tool is configured. Preparatory command is pending.
Selected tool is (e.g. from PLC) unloaded from its location. PLC acknowledges preparatory command with ‘Repeat tool selection’ (e.g. status =7). NCK cannot find the tool at the magazine location specified in the PLC command.
Or: Illegal operator intervention in an active tool selection (unloading of the tool to be selected) has occurred. Therefore the PLC acknowledgement fails.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
PLC programmer must note the following:
- Ensure that the tool is not removed from the specified magazine location (e.g. incorrect PLC program).
- Do not remove the tool from the programmed tool change before the final acknowledgement of the command (= unload).
!! It is however permissible to change the location of the tool to be loaded. The NCK can deal with this situation.
This alarm supplements Alarm 6405, if it contains the identifier 8. Therefore, the diagnostics should be easier.

Program Continuation:
Clear alarm with the Delete key or NC START.
6450
[Channel %1:] Block %2 tool change not possible. Invalid magazine location no. %3 in buffer magazine

Parameters:
%1 = Channel ID
%2 = Block number, label
%3 = Magazine location number

Definitions:
The desired tool change is not possible. The specified magazine location is either toolholder/spindle or empty. Only the numbers of the buffer that are not toolholder/spindle may be programmed with the NC command TCI, i.e. the location number of a gripper is allowed.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
- Check whether the magazine data ($TC_MPP1) have been defined correctly.
- Check whether the alarm-causing program command _ e.g. TCI _ has been programmed correctly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

6451
[Channel %1:] Block %2 tool change not possible. No buffer magazine defined.

Parameters:
%1 = Channel ID
%2 = Block number, label

Definitions:
The desired tool change is not possible. No buffer magazine defined.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
Check whether the magazine data have been defined correctly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

6452
[Channel %1:] Block %2 tool change not possible. Tool holder/spindle number = %3 not defined.

Parameters:
%1 = Channel ID
%2 = Block number, label
%3 = Tool holder/spindle number

Definitions:
The desired tool change is not possible. The toolholder/spindle number has not been defined.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
General: The following must apply: 'maximum programmed address extension s (=spindle number/toolholder number) of Ts=t, Ms=6 must be less than the value of MD18076 $MN_MM_NUM_LOCS_WITH_DISTANCE.
With magazine management: Check whether the toolholder number/spindle number and the magazine data have been defined correctly.
(See also the system variables $TC_MPP1, $TC_MPP5 of the buffer magazine).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
6453 [Channel %1:] Block %2 tool change not possible. No assignment between toolholder/spindle no. = %3 and buffer magazine location %4

Parameters:
%1 = Channel ID
%2 = Block number, label
%3 = Spindle no.
%4 = Location no.

Definitions: The desired tool change is not possible. No assignment between the toolholder/spindle number and the buffer magazine location (Location No.)

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
- Check whether the magazine data ($TC_MLSR) have been defined correctly.
- Check whether the alarm-causing program command - e.g. TCI - has been programmed correctly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

6454 [Channel %1:] Block %2 tool change not possible. No distance relation available.

Parameters:
%1 = Channel ID
%2 = Block number, label

Definitions: The desired tool change is not possible. Neither the spindle nor the buffer magazine location have a distance relation.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
- Check whether the magazine data ($TC_MDP2) have been defined correctly.
- Check whether the alarm-causing program command - e.g. TCI - has been programmed correctly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

6455 [Channel %1:] Block %2 tool change not possible. Magazine location no. %3 not available in magazine %4

Parameters:
%1 = Channel ID
%2 = Block number, label
%3 = Magazine location number
%4 = Magazine number

Definitions: The desired tool change is not possible. The indicated magazine location is not available in the indicated magazine.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
- Check whether the causing program command - e.g. TCI - has been parameterized correctly.
- Check whether magazine data have been defined correctly. ($TC_MAP6 and $TC_MAP7 of the intermediate location magazine)

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
6460 [Channel %1:] Block %2 Command '%3' can only be programmed for tools. '%4' does not designate a tool.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Programmed command
- %4 = Programmed parameter

Definitions:
The specified command can only be programmed for tools. The command parameter is not a T number or a tool name.
If a mult-tool has been programmed: The command cannot be programmed for mult-tools.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the NC program

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

6462 [Channel %1:] Block %2 Command '%3' can only be programmed for magazines. '%4' does not designate a magazine.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Programmed command
- %4 = Programmed parameter

Definitions:
The specified command can only be programmed for magazines. The command parameter is not a magazine number or a magazine name. If a mult-tool has been programmed: The command cannot be programmed for mult-tools.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the NC program

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

6464 [Channel %1:] Block %2 Command '%3' cannot be programmed for the current mult-tool distance coding '%4'

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Programmed command
- %4 = Type of distance coding

Definitions:
- $TC_MTPPL can only be programmed if $TC_MTP_KD has a value of 2.
- $TC_MTPPA can only be programmed if $TC_MTP_KD has a value of 3.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the NC program

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.
NCK alarms

6500 NC memory full
Definitions: The NCK file system is full. The available buffered memory does not suffice. Note: At first commissioning, files of the NC file system may be affected such as drive data, MMC files, FIFO files, NC programs...
Reaction: Alarm display.
Remedy: Adjust the size of the buffered memory (MD18230 $MN_MM_USER_MEM_BUFFERED) or increase the space available in the buffered memory, e.g. by unloading part programs that are no longer being used. Or decrease the size of the ring buffer (see $MC_RESU_RING_BUFFER_SIZE).
Program Continuation: Clear alarm with the Delete key or NC START.

6510 Too many part programs in the NC memory
Definitions: The maximum number of possible files in the NC file system (part of the NC memory) has been reached. Note: During first commissioning, this can affect files from the NC file system, e.g. drive data, MMC files, FIFO files, NC programs...
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department.
- Delete or unload files (e.g. part programs), or
- Increase MD18320 $MN_MM_NUM_FILES_IN_FILESYSTEM.
Program Continuation: Clear alarm with the Delete key or NC START.

6520 The value of the machine data %1%2 is too low
Parameters: %1 = String: MD identifier
%2 = If required, index: MD array
Definitions: The MD18370 $MN_MM_PROTOC_NUM_FILES specifies the number of protocol files for the protocol users. However, more types are used than configured.
Reaction: Alarm display.
Remedy: Increase MD18370 $MN_MM_PROTOC_NUM_FILES.
Program Continuation: Clear alarm with the Delete key or NC START.

6530 Too many files in directory
Definitions: The number of files in a directory of the NC memory has reached the maximum limit.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department.
- Delete or unload files (e.g. part programs) in the respective directory, or
- Increase MD18280 $MN_MM_NUM_FILES_PER_DIR.
Program Continuation: Clear alarm with the Delete key or NC START.
6540 Too many directories in the NC memory
Definitions: The number of directories in the NC file system (part of the NC memory) has reached the maximum limit.
Reaction: Alarm display.
Remedy: - Delete or unload directory (e.g. workpiece), or
 - Increase MD18310 $MN_MM_NUM_DIR_IN_FILESYSTEM.
Program Continuation: Clear alarm with the Delete key or NC START.

6550 Too many subdirectories
Definitions: The number of subdirectories in a directory of the NCK has reached the maximum limit.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department.
 - Delete or empty subdirectories in the respective directory, or
 - Increase MD18270 $MN_MM_NUM_SUBDIR_PER_DIR.
Program Continuation: Clear alarm with the Delete key or NC START.

6560 Data format not allowed
Definitions: An attempt was made to write impermissible data in an NCK file. This error can occur in particular when the attempt was made to load binary data in the NCK as ASCII file.
The error can also occur during preprocessing of cycles (see MD10700 $MN_PREPROCESSING_LEVEL) if the NC block is very long. In this case, subdivide the NC block.
Reaction: Alarm display.
Remedy: Specify that the file concerned is a binary file (e.g. extension: .BIN).
Program Continuation: Clear alarm with the Delete key or NC START.

6570 NC memory full
Definitions: The NC card file system of the NCK is full. The task cannot be executed. Too many system files were created in the DRAM.
Reaction: Alarm display.
Remedy: Start fewer "execute from external" processes.
Program Continuation: Clear alarm with the Delete key or NC START.

6580 NC memory full
Definitions: The NC card file system of the NCK is full. The task cannot be executed. Too many files have been loaded
Reaction: Alarm display.
Remedy: Delete or unload files (e.g. parts programs)
Program Continuation: Clear alarm with the Delete key or NC START.
NCK alarms

<table>
<thead>
<tr>
<th>Alarm Code</th>
<th>Description</th>
<th>Definitions</th>
<th>Reaction</th>
<th>Remedy</th>
<th>Program</th>
<th>Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6581</td>
<td>NC user memory full</td>
<td>The DRAM file system of the user area is full. The order cannot be executed.</td>
<td>Alarm display.</td>
<td>Delete or unload files (e.g. parts programs)</td>
<td>Clear alarm with the Delete key or NC START.</td>
<td>Clear alarm with the Delete key or NC START.</td>
</tr>
<tr>
<td>6582</td>
<td>NC machine OEM memory full</td>
<td>The DRAM file system of the machine OEM area is full. The order cannot be executed.</td>
<td>Alarm display.</td>
<td>Delete or unload files (e.g. parts programs)</td>
<td>Clear alarm with the Delete key or NC START.</td>
<td>Clear alarm with the Delete key or NC START.</td>
</tr>
<tr>
<td>6583</td>
<td>NC system memory full</td>
<td>The DRAM file system of the system area (Siemens) is full. The order cannot be executed.</td>
<td>Alarm display.</td>
<td>Delete or unload files (e.g. parts programs)</td>
<td>Clear alarm with the Delete key or NC START.</td>
<td>Clear alarm with the Delete key or NC START.</td>
</tr>
<tr>
<td>6584</td>
<td>NC memory limit TMP reached</td>
<td>The DRAM file system of the TMP (temporary) area is full. The job cannot be executed.</td>
<td>Alarm display.</td>
<td>Increase MD18351 $MN_MM_DRAM_FILE_MEM_SIZE bzw. MD18355 $MN_MM_T_FILE_MEM_SIZE or switch off the precompilation of individual or all cycles</td>
<td>Clear alarm with the Delete key or NC START.</td>
<td>Clear alarm with the Delete key or NC START.</td>
</tr>
<tr>
<td>6585</td>
<td>NC external memory limit reached</td>
<td>The DRAM file system of the external area (execution of the external drive) is full. The job cannot be executed.</td>
<td>Alarm display.</td>
<td>Load the files to be executed explicitly into the NCK.</td>
<td>Clear alarm with the Delete key or NC START.</td>
<td>Clear alarm with the Delete key or NC START.</td>
</tr>
</tbody>
</table>
6693 **File %1 lost**

Parameters:
- %1 = File name

Definitions:
Due to a power failure, a file change could not be terminated properly. The file is lost.

Reaction:
- NC not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Import the file again.

Program Continuation:
Switch control OFF - ON.

6700 **[Channel %1:] Value of the machine data %2%3 is too low**

Parameters:
- %1 = Channel number
- %2 = MD identifier
- %3 = If required, field index

Definitions:
The MD28302 $MC_MM_PROTOC_NUM_ETP_STD_TYP specifies the number of default event types for the protocol users. However, more types are used than configured.

Reaction:
Alarm display.

Remedy:
Increase MD28302 $MC_MM_PROTOC_NUM_ETP_STD_TYP.

Program Continuation:
Clear alarm with the Delete key or NC START.

7500 **Block %1 invalid protection level for command %2 (protection level act.: %3 prog.: %4)**

Parameters:
- %1 = Block number
- %2 = Programmed command
- %3 = Current protection level of the command
- %4 = Programmed protection level of the command

Definitions:
On assigning a protection level for a parts program command via REDEF command
- an impermissible parts program command has been programmed
- a protection level has been programmed that is logically smaller (larger in value) than the protection level currently applicable for this command.
- the relevant definition file has not been protected sufficiently against write access. The write protection of the file must be at least as high as the highest protection level that has been assigned to a parts program command in this definition file.

Reaction:
Alarm display.

Remedy:
Modify definition files /_N_DEF_DIR/_N_MACCESS_DEF or /_N_DEF_DIR/_N_UACCESS_DEF-CESS_DEF.
Please see the Siemens Programming Guide or the OEM documentation for the language commands permissible for the relevant system configurations.

Program Continuation:
Clear alarm with the RESET key. Restart part program

8000 **[Channel %1:] Option 'Interrupt routines' not set**

Parameters:
- %1 = Channel number

Definitions:
Fast NCK inputs are required for the input signals in order to activate the interrupt routines and rapid lift from contour. This function is not included in the basic version and must be retrofitted when needed.
NCK alarms

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Do not use rapid interrupt inputs or contact the machine manufacturer with a view to retrofitting this option!

Program Continuation: Clear alarm with the RESET key. Restart part program

8010

Option 'activation of more than %1 axes' not set

Parameters: %1 = Number of axes
Definitions: More machine axes have been defined through the MD20070 $MC_AXCONF_MACHAX_USED than are allowed in the system.

Reaction: NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. The sum of all axes that have been configured using the channel-specific MD20070 $MC_AXCONF_MACHAX_USED must not exceed the maximum number of axes (dependent upon the configuration -> option, basic version: 4 axes).
Please also observe the information relating to the definition of auxiliary axes/spindles.

Program Continuation: Switch control OFF - ON.

8024

Option 'Activation of more than %1 magazines' not set

Parameters: %1 = Number of permissible magazines
Definitions: The option for activating multiple magazines is not set

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Buy option
- Reduce the number of magazines (MD18084 $MN_MM_NUM_MAGAZINE)

Program Continuation: Switch control OFF - ON.

8025

[Channel %1:] Option 'Advanced Surface' not set

Parameters: %1 = Channel number
Definitions: The option for 'Advanced Surface' functionality is not set.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Purchase option
- Reset the activation of 'Advanced Surface' functionality (MD20606 $MC_PREPDYN_SMOOTHING_ON and/or MD20443 $MC_LOOKAH_FFORM)

Program Continuation: Switch control OFF - ON.
8030 [Channel %1:] Block %2 option 'interpolation of more than %3 axes' not set

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of permissible axes

Definitions: The option for the number of interpolating axes does not correspond to the number of axes programmed in the interpolation group.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Option: "Interpolation of more than 4 axes" (the number of axes permitted can be set in this option) or, in the part program, program up to as many axes as are permitted by the configuration of the controller.

Program Continuation:
Clear alarm with the RESET key. Restart part program

8031 [Channel %1:] Block %2 axis %3: Axis has no IPO functionality

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis, spindle number

Definitions: An axis/spindle that has been defined as a special axis/auxiliary spindle (see MD30460 $MA_BASE_FUNCTION_MASK bit8), should be operated as an interpolating axis.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Define axis as interpolating axis (see MD30460 $MA_BASE_FUNCTION_MASK bit8) or change part program

Program Continuation:
Clear alarm with the RESET key. Restart part program

8037 'Activate APC/Number of current setpoint filters' option not set.

Definitions: More than six current setpoint filters were activated in the drive, although the corresponding option had not been set.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Buy option
- Deactivate the 'Advanced Positioning Control' (APC) function in the drive.
- Set a maximum of six current setpoint filters in the drive.

Program Continuation:
Switch control OFF - ON.

8040 Machine data %1 reset, corresponding option is not set

Parameters:
%1 = String: MD identifier

Definitions: A machine data has been set that is locked by an option.

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department.
For retrofitting the option, please refer to your machine manufacturer or to a sales representative of SIEMENS AG, A&D MC.

Program Continuation: Clear alarm with the Delete key or NC START.

8041

Axis %1: MD %2 reset, corresponding option not sufficient

Parameters:
- %1 = Axis number
- %2 = String: MD identifier

Definitions:
All of the axes selected in the machine data of the assigned option are used. Safety functions have been selected for too many axes in the axial machine data.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- Channel not ready.

Remedy: --

Program Continuation: Switch control OFF - ON.

8044

Option for IPO cycle time %1 ms not set

Parameters:
- %1 = Impermissible IPO cycle time

Definitions:
The option for activation of an IPO cycle time of %1 ms has not been set.
Option - Permiss. IPO cycle time:
- Option-free >= 8ms
- 1. 1st step >= 6ms
- 2. 2nd step >= 4ms
- 3. 3rd step >= 2ms
- 4. 4th step <2ms

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Buy option
- Increase IPO cycle time (e.g. via MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO)

Program Continuation: Switch control OFF - ON.

8051

Option 'Handwheel on PROFIBUS' not set

Definitions:
The option to operate handwheels on PROFIBUS is not set.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Activate option 'Handwheel on PROFIBUS'

Program Continuation: Switch control OFF - ON.
NCK alarms

8080 %1 option(s) is/are activated without setting the license key
Parameters: %1 = Number of non-licensed options
Definitions: One or more options were activated but no license key was set to prove the purchase of the option(s).
Reaction: Alarm display.
Remedy: Generate a license key on the internet at http://www.siemens.com/automation/licence and enter it in the operating area “Setup”, function (HSK) “Licenses”.
Program Continuation: Clear alarm with the Delete key or NC START.

8081 %1 option(s) is/are activated that are not licensed by the license key
Parameters: %1 = Number of non-licensed options
Definitions: One or more options were activated, that are not licensed by the license key entered.
Reaction: Alarm display.
Remedy: Generate a new license key on the internet at http://www.siemens.com/automation/licence and enter it in the operating area “Setup”, function (HSK) “Licenses”.
Program Continuation: Clear alarm with the Delete key or NC START.

8082 A wrong license key was entered three times, Power On required before next try.
Definitions: The license key was entered wrongly at least three times. Before the next input, a new power ON is required.
Reaction: Alarm display.
Remedy: Execute NCK Power On and enter the license key (correctly).
Program Continuation: Clear alarm with the Delete key or NC START.

8100 [Channel %1:] Block %2: function not possible
Parameters: %1 = Channel number
%2 = Block number, label
Definitions:
- Impossible due to embargo regulations:
 - 1. Synchronous actions: Writing of feed, override and axial offsets ($AA_VC, $AC_VC, $AA_OVR, $AA_VC and $AA_OFF) from synchronous actions as well as Continuous Dressing can be programmed only once in a block.
 - 2. Extended measurement: 'Cyclic measurement' (MEAC) and 'Measurement from synchronous action' is not possible.
 - 3. Axis interpolation: The number of axes interpolating with one another must not exceed 4 (this also includes synchronous coupling of axes via synchronous actions "DO POS[X]=$A..." "DO FA[X]=$A...").
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program.
8120 [Channel %1:] Block %2 following axis/spindle %3 generic coupling %4 required

Parameters:
%1 = Channel number
%2 = Block number
%3 = Slave axis
%4 = String

Definitions:
The option stage is inadequate for the desired function. Possible reasons:
More couplings have been created than are permitted.
The number of permissible leading axes has been exceeded for one or more couplings.
The range of functions of one or more couplings has not been released.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Buy an adequate option stage.
Reduce the number of simultaneously active couplings.
Reduce the number of leading axes per coupling or only use the released range of functions.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10203 [Channel %1:] NC start without reference point (action=%2<ALNX>)

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
NC start has been activated in the MDI or AUTOMATIC mode and at least one axis that needs to be referenced has not reached its reference point.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Via the channel-specific MD20700:
$MC_REFP_NC_START_LOCK (NC Start without reference point) you can decide whether or not the axis has to be referenced before NC Start. The start of referencing can be enabled channel-specific or axis-specific.
Channel-specific reference point approach: The rising edge of the NC/PLC interface signal DB3200 DBX0001.0 (Activate referencing) starts an automatic sequence which starts the axes of the channel in the same sequence as specified in the axis-specific MD34110 $MA_REFP_CYCLE_NR (axis sequence channel-specific referencing). 0: The axis does not participate in channel-specific referencing, but it must be referenced for NC Start. -1: The axis does not participate in channel-specific referencing, but it need not be referenced for NC Start. 1-8: Starting sequence for the channel-specific referencing (simultaneous start at the same no.), 1-31: CPU type
Axis-specific referencing: Press the direction key that corresponds to the approach direction in the axis-specific MD34010 $MA_REFP_CAM_MDIR_IS_MINUS (reference point approach in minus direction).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10208 [Channel %1:] Continue program with NC start
Parameters: %1 = Channel number
Definitions: After block search with calculation, the control is in the desired state. The program can now be started with NC Start or the state can be changed for the time being with overstore/jog.
Reaction: Interpreter stop
Alarm display.
NC Stop on alarm.
Remedy: Press NC Start.
Program
Continuation: Clear alarm with NC START or RESET key and continue the program.

10209 [Channel %1:] Internal NC stop after block search
Parameters: %1 = Channel number
Definitions: Internal alarm which only initiates the alarm response NC Stop.
The alarm is output in the following situations:
- If MD11450 $MN_SEARCH_RUN_MODE, bit 0 ==1 and the last action block is loaded in the main run after block search. Alarm 10208 is then activated as a function of the NC/PLC interface signal DB3200 DBX0001.6 (PLC action finished).
- Search alarm 10208 has been suppressed by the PI service _N_FINDBL (third decade of the parameter supplied with "2"). Alarm 10209 is set as a function of whether or not a search ASUB has been configured (MD11450 $MN_SEARCH_RUN_MODE bit 1) with the end of the search ASUB or the loading of the last action block in the main run.
Reaction: Interpreter stop
NC Stop on alarm.
Remedy: NC-Start
Program
Continuation: Clear alarm with NC START or RESET key and continue the program.

10225 [Channel %1:] command denied
Parameters: %1 = Channel number
Definitions: The channel has received a command that cannot be executed.
Reaction: Alarm display.
Remedy: Press RESET.
Program
Continuation: Clear alarm with the Delete key or NC START.

10299 [Channel %1:] Auto-Repos function is not enabled
Parameters: %1 = Channel number
Definitions: The Auto-Repos function (operating mode) was selected in the channel but is not implemented.
Reaction: Alarm display.
Remedy: This message is purely informational.
Program
Continuation: Clear alarm with the Delete key or NC START.
10600 [Channel %1:] Block %2 auxiliary function during thread cutting active

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An auxiliary function output is programmed in a thread cutting block.

Reaction:
Alarm display.

Remedy:
Consequential errors can occur if the machining path of the thread block is too short and further blocks (thread blocks) follow in which no machining stop may occur.
Possible remedial measures:
- Program a longer path and/or a lower traversing rate.
- Output auxiliary function in another block (program section).

Program Continuation:
Clear alarm with the Delete key or NC START.

10601 [Channel %1:] Block %2 zero velocity at block end point during thread cutting

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
This alarm occurs only when several blocks with G33 follow in succession. The block end velocity in the specified block is zero, although a further thread cutting block follows. The reasons for this can be, for instance:
- G9
- Auxiliary function after motion
- Auxiliary function output before the motion of the following block
- Positioning axis in the block

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify the NC part program by removing any programmed "Stop at end of block" G09.
Modify general MD11110 $MN_AUXFU_GROUP_SPEC [n] for selecting the output time of an auxiliary function group by changing "Auxiliary function output before/after the movement" to "Auxiliary function output during the movement".
Bit 5 = 1: Auxiliary function output before movement
Bit 6 = 1: Auxiliary function output during movement
Bit 7 = 1: Auxiliary function output after movement

Program Continuation:
Clear alarm with the RESET key. Restart part program

10604 [Channel %1:] Block %2 thread pitch increase too high

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The thread pitch increase is causing an axis overload. A spindle override of 100% is assumed during verification.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Reduce the spindle speed, thread pitch increase or path length in the NC program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10605 [Channel %1:] Block %2 thread pitch decrease too high

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The thread pitch decrease is causing an axis standstill in the thread block.

Reaction:
- Correction block is reorganized.
- Local alarm reaction.
- Interface signals are set.
- Alarm display.

Remedy:
- Reduce the thread pitch decrease or path length in the NC program.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

10607 [Channel %1:] Block %2 thread with frame not executable

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The current frame is corrupting the reference between the thread length and the thread pitch.

Reaction:
- Local alarm reaction.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
- Perform thread cutting with G33, G34, G35 without a frame.
- Use G63 or G331/G332.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

10610 [Channel %1:] Axis %2 not stopped

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
An axis/spindle has been positioned over several NC blocks using the POSA/SPOSA instruction. The programmed target position had not yet been reached ("exact stop fine" window) when the axis/spindle was reprogrammed.

Example:
N100 POSA[U]=100
N125 X... Y... U... ; e.g.: U axis still travels from N100!

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Check and correct the part program (analyze whether motion beyond block boundaries is appropriate here). Prevent block change by means of the keyword WAITP for axes or WAITS for spindles until the positioning axes or positioning spindles have also reached their target position.

Example for axes:
N100 POSA[U]=100
N125 WAITP(U)
N130 X... Y... U...

Example for spindles:
N100 SPOSA[2]=77
N125 WAITS(2)
N130 M6
NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

10620 [Channel %1:] Block %3 axis %2 at software limit switch %4
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
%4 = String
Definitions:
During the traversing motion, the system detected that the software limit switch would be traversed in the direction indicated. Exceeding the traversing range was not detected during block preparation because there has either been a motion overlay or a zero offset has been executed or a coordinate transformation is active.
Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy:
Depending on the reason for this alarm being triggered, the following remedial measures should be undertaken:
- Handwheel override: Cancel the motion overlay and avoid this or keep it smaller when the program is repeated.
- Transformation: Check the preset/programmed zero offsets (current frame). If the values are correct, the tool holder (fixture) must be moved in order to avoid triggering the same alarm when the program is repeated, which would again cause the program to be aborted.
Program Continuation: Clear alarm with the RESET key. Restart part program

10621 [Channel %1:] Axis %2 rests on software limit switch %3%4
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = String
%4 = The axis of the software limit switch is only output if different from the traversing axis.
Definitions:
The specified axis is already positioned at the displayed software end delimiter.
Reaction:
Alarm display.
Remedy:
Please inform the authorized personnel/service department. Check machine data MD36110 $MA_POS_LIMIT_PLUS/MD36130 $MA_POS_LIMIT_PLUS2 and MD36100 $MA_POS_LIMIT_MINUS/MD36120 $MA_POS_LIMIT_MINUS2 for the software limit switches.
Shut down in JOG mode from the software limit switch.
Please inform the authorized personnel/service department.
Machine data:
Check whether the 2nd software limit switch has been selected in the.axis-specific interface signals: "DB380 x DBX1000.3 (2nd software limit switch plus) and DB380x DBX1000.2 (2nd software limit switch minus).
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10630 [Channel %1:] Block %2 axis %3 at working area limit %4
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis, spindle number
%4 = String (+ or -)
Definitions:
The specified axis violates the working area limitation. This is recognized only in the main run either because the minimum axis values could not be measured before the transformation or because there is a motion overlay.
NCK alarms

Reaction: Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm at block end.
Remedy: Program other motion or do not perform overlaid motion.
Program Continuation:

10631 [Channel %1:] Axis %2 rests at working area limit %3%4
Parameters:
%1 = Channel number
%2 = Axis, spindle
%3 = String (+ or -)
%4 = The axis of the working area limitation is only output if different from the traversing axis.
Definitions: The specified axis reaches the working area limitation in JOG mode.
Reaction: Alarm display.
Remedy: Check SD43420 $SA_WORKAREA_LIMIT_PLUS and SD43430 $SA_WORKAREA_LIMIT_MINUS for the working area limitation.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10632 [Channel %1:] Block %2 axis %3 reaches the coordinate system-specific working area limit %4
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis, spindle number
%4 = String (+ or -)
Definitions: The specified axis violates the coordinate system-specific working area limitation. This is not detected until the main run, either because the minimum axis values could not be determined before the transformation or because there is an overlaid movement.
Reaction: Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm at block end.
Remedy: Program other motion or do not perform overlaid motion.
Program Continuation: Clear alarm with the RESET key. Restart part program

10633 [Channel %1:] Axis %2 is at coordinate system-specific working area limit %3%4
Parameters:
%1 = Channel number
%2 = Axis, spindle
%3 = String (+ or -)
%4 = The axis of the coordinate system-specific working area limitation is only output if different from the traversing axis.
Definitions: The specified axis reaches the coordinate system-specific working area limitation in JOG mode.
Reaction: Alarm display.
Remedy: Check the system parameter $P_WORKAREA_CS_xx for the coordinate system-specific working area limitation.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
10634 [Channel %1:] Axis %2, tool radius compensation is inactive for type %3 working area limitation, reason: The tool is not oriented parallel to the axis.

Parameters: %1 = Channel number
%2 = Axis, spindle
%3 = 0: BCS, 1: WCS / SZS

Definitions: The tool radius compensation of the working area limitation of the stated axis is not taken into account. Reason: The tool is not oriented parallel to the axis (e.g. because toolcarrier or transformation is active). The alarm is reported in JOG mode.

Reaction: Alarm display.

Remedy: The tool radius compensation for working area limitations in JOG mode can only be taken into account if the tool is parallel to the axis. Active transformation and toolcarrier must be switched off for this function.

Program Continuation: Clear alarm with the Delete key or NC START.

10635 [Channel %1:] Axis %2, tool radius compensation is inactive for type %3 working area limitation, reason: no milling or drilling tool.

Parameters: %1 = Channel number
%2 = Axis, spindle
%3 = 0: BCS, 1: WCS / SZS

Definitions: The tool radius compensation of the working area limitation of the stated axis is not taken into account. Reason: The tool must be of type milling cutter or drill. The alarm is reported in JOG mode.

Reaction: Alarm display.

Remedy: The tool radius compensation for working area limitations in JOG mode can only be taken into account for milling or drilling tools.

Program Continuation: Clear alarm with the Delete key or NC START.

10636 [Channel %1:] Axis %2, tool radius compensation is inactive for type %3 working area limitation, reason: Transformation is active.

Parameters: %1 = Channel number
%2 = Axis, spindle
%3 = 0: BCS, 1: WCS / SZS

Definitions: The tool radius compensation of the working area limitation of the stated axis is not taken into account. Reason: A transformation is active. The alarm is reported in JOG mode.

Reaction: Alarm display.

Remedy: The tool radius compensation for working area limitations in JOG mode cannot be taken into account if transformation is active.

Program Continuation: Clear alarm with the Delete key or NC START.

10637 [Channel %1:] Axis %2, tool radius compensation is inactive for type %3 working area limitation, reason: Tool not active.

Parameters: %1 = Channel number
%2 = Axis, spindle
%3 = 0: BCS, 1: WCS / SZS
NCK alarms

Definitions: The tool radius compensation of the working area limitation of the stated axis is not taken into account.
Reason: No tool is active.
The alarm is reported in JOG mode.
Reaction: Alarm display.
Remedy: The tool radius compensation for working area limitations in JOG mode cannot be taken into account without an active tool.
Program Continuation: Clear alarm with the Delete key or NC START.

10650 [Channel %1:] Axis %2 incorrect gantry machine data, error code %3
Parameters: %1 = Channel number
%2 = Axis
%3 = Error no.
Definitions: An incorrect value was entered in the gantry-specific axial machine data. Further information can be derived from the error number.
- Error no. = 1 => either an incorrect gantry unit has been entered or the designation of the following axis is incorrect.
- Error no. = 2 => master axis has been specified more than once.
Reaction: NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Correct the machine data:
MD37100 $MA_GANTRY_AXIS_TYPE
0: No gantry axis 1: Master axis grouping 1 11: Slave axis grouping 1 2: Master axis grouping 2 12: Slave axis grouping 2 3: Master axis grouping 3 13: Slave axis grouping 3
Program Continuation: Switch control OFF - ON.

10651 [Channel %1:] Gantry configuration error. Error code %2
Parameters: %1 = Channel number
%2 = Reason
Definitions: The gantry configuration set in the machine data is erroneous. Gantry unit and reason for objection can be found in the transfer parameter.
The transfer parameter is made up as follows.
- %2 = error designation + gantry unit (XX).
- %2 = 10XX => no master axis declared
- %2 = 20XX => no slave axis declared
- %2 = 30XX => different contents in MD30550 $MA_AXCONF_ASSIGN_MASTER_CHAN slave axis and master axis
- %2 = 40XX => different channel or NCU assignment of the gantry axes
- %2 = 50XX => no slave axis declared in this channel
- %2 = 60XX => different channel assignment of the master axis
- %2 = 70XX => error: compile cycle axis as slave axis
- %2 = 80XX => error: competing positioning axis as slave axis
- %2 = 90XX => error: gantry axis is spindle
- %2 = 100XX => error: gantry axis is Hirth geared
e.g. error code 1001 = no master axis declared, gantry unit 1.
Reaction: NC not ready.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Correct the machine data:
MD37100 $MA_GANTRY_AXIS_TYPE
0: No gantry axis
1: Master axis grouping 1
11: Slave axis grouping 1
2: Master axis grouping 2
12: Slave axis grouping 2
3: Master axis grouping 3
13: Slave axis grouping 3

Remedy: Please inform the authorized personnel/service department. Correct the machine data:
MD37130 $MA_GANTRY_POS_TOL_REF

Program Continuation: Switch control OFF - ON.

10652 [Channel %1:] Axis %2 gantry warning threshold exceeded

Parameters:
%1 = Channel number
%2 = Axis

Definitions:
The gantry following axis has exceeded the warning limit specified in MD37110 $MA_GANTRY_POS_TOL.WARNING.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department.
1. Check axis (uneven mechanical movement?)
2. MD not set correctly (MD37110 $MA_GANTRY_POS_TOL_WARNING). Changes to this MD take effect after a RESET.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10653 [Channel %1:] Axis %2 gantry error threshold exceeded

Parameters:
%1 = Channel number
%2 = Axis

Definitions:
The gantry following axis has exceeded the error limit (actual value tolerance) specified in MD37120 $MA_GANTRY_POS_TOL_ERROR.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
1. Check axis (uneven mechanical movement?)
2. MD not set correctly (MD37120 $MA_GANTRY_POS_TOL_ERROR). A POWER ON is necessary after modifying the MD.
If the axes are not yet referenced, MD37130 $MA_GANTRY_POS_TOL_REF is the trigger condition for the error message.

Program Continuation: Clear alarm with the RESET key. Restart part program

10654 [Channel %1:] Waiting for synchronization start of gantry group %2

Parameters:
%1 = Channel number
%2 = Gantry unit

Definitions:
The alarm message appears when the axes are ready for synchronization. The gantry grouping can now be synchronized. The actual value difference between the master and slave axes is greater than the gantry warning limit MD 37110 $MA_GANTRY_POS_TOL_WARNING. The synchronization must be started explicitly with the NC/PLC interface signal <StartSynchronisationGantry/> (Start gantry synchronization).

Reaction: Alarm display.
NCK alarms

Remedy: Please inform the authorized personnel/service department. See Function Manual, Special Functions, Gantry Axes (G1)

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10655 [Channel %1:] Synchronization of gantry group %2 in progress

Parameters: %1 = Channel number
%2 = Gantry unit

Definitions: The alarm may be suppressed with MD37150 $MA_GANTRY_FUNCTION_MASK Bit2 = 1.

Reaction: Alarm display.

Remedy: --

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10656 [Channel %1:] Axis %2 gantry slave axis dynamically overloaded

Parameters: %1 = Channel number
%2 = Axis

Definitions: The indicated gantry slave axis is dynamically overloaded, i.e. the slave axis cannot follow the master axis dynamically

Reaction: Mode group not ready.
Local alarm reaction.
Channel not ready.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Compare the axial machine data of the gantry slave axis with the data of the gantry master axis

Program Continuation: Teleprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

10657 [Channel %1:] Axis %2 power OFF in the gantry error limit exceeded status

Parameters: %1 = Channel number
%2 = Axis

Definitions: Gantry error limit exceeded status (alarm 10653) has been switched off. The error can only be removed by deleting MD37135 $MA_GANTRY_ACT_POS_TOL_ERROR or by deactivating the extended monitoring (MD37150 $MA_GANTRY_FUNCTION_MASK Bit0).

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
1. Remove a mechanical misalignment
2. Check axis (uneven mechanical movement?)
3. Delete MD37135 $MA_GANTRY_ACT_POS_TOL_ERROR or deactivate the extended monitoring
4. MD37120 $MA_GANTRY_POS_TOL_ERROR is set incorrectly
 If the MD is changed, a Power ON will be required.

Program Continuation: Clear alarm with the RESET key. Restart part program
10658 [Channel %1:] Axis %2 impermissible axis status %3.

Parameters:
%1 = Channel number
%2 = Axis number
%3 = Error ID and gantry unit.

Definitions:
Error ID and gantry unit
- 30XX => Gantry group cannot be closed, as not all gantry axes are in one channel.
- 40XX => Gantry group cannot be closed, as the gantry axes have different axis states (the axis is assigned to the PLC, for example).
- 50XX => Gantry group is to change channel due to a PLC request, not all gantry axes are known in the new channel.
- 60XX => Gantry group is to be transferred to the channel due to an NC program request, but the channel does not know all the gantry axes.
- 70XX => Gantry group cannot be closed, as movement is pending for at least one gantry axis.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Local alarm reaction.

Remedy:
Error ID:
- 30XX => assign all gantry axes to the current channel, for example via axis exchange.
- 40XX => set all axes of the gantry group to the same axis state, for example assign all axes to the NC program, or assign all axes to the PLC.
- 50XX => make all gantry axes known to the required channel.
- 60XX => make all gantry axes known to the required channel.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10700 [Channel %1:] Block %2 NCK protection zone %3 violated during automatic or MDI mode

Parameters:
%1 = Channel number
%2 = Block number
%3 = Protection zone number

Definitions:
The workpiece-related NCK protection zone has been violated. Note that another tool-related protection zone is still active. The workpiece-related protected area can be traversed after a new NC Start.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Protection zone can be traversed after a new NC Start.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10701 [Channel %1:] Block %2 channel-specific protection zone %3 violated during automatic or MDI mode

Parameters:
%1 = Channel number
%2 = Block number
%3 = Protection zone number

Definitions:
The workpiece-related channel-specific protection zone has been violated. Note that another tool-related protection zone is still active. The workpiece-related protected area can be traversed after a new NC Start.
NCK alarms

Reactions:
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedies:
Protection zone can be traversed after a new NC Start.

Program:
Clear alarm with NC START or RESET key and continue the program.

10702
[Channel %1:] NCK protection zone %2 violated during manual mode

Parameters:
%1 = Channel number
%2 = Protection zone number

Definitions:
The workpiece-related NCK protection zone has been violated. Note that another tool-related protection zone is still active. The workpiece-related protected area can be traversed after a new NC Start.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Protection zone can be traversed after a new NC Start.

Program:
Alarm display showing cause of alarm disappears. No further operator action necessary.

10703
[Channel %1:] Channel-specific protection zone %2 violated during manual mode

Parameters:
%1 = Channel number
%2 = Protection zone number

Definitions:
The workpiece-related channel-specific protection zone has been violated. Note that another tool-related protection zone is still active. The workpiece-related protected area can be traversed after a new NC Start.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Protection zone can be traversed after a new NC Start.

Program:
Alarm display showing cause of alarm disappears. No further operator action necessary.

10704
[Channel %1:] Block %2 protection zone monitoring is not guaranteed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
New movements of a geometry axis which have been added could not be allowed for at the time of block preparation. It is therefore not certain that the protection zones will not be violated. This is just a warning message without further reactions.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Take other measures to ensure that the geometry axes motion, including the additional motion, does not violate the protection zones. (The warning comes nevertheless) or exclude additional motions.

Program:
Alarm display showing cause of alarm disappears. No further operator action necessary.
10706 | [Channel %1:] NCK protection zone %2 reached with axis %3 during manual mode

Parameters:
%1 = Channel number
%2 = Protection zone number
%3 = Axis name

Definitions:
The workpiece-related NCK protection zone has been reached with the specified axis. Note that another tool-related protection zone is still active. The workpiece-related protection zone can be traversed when the PLC has issued an enable signal.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Protection zone can be traversed after enable signal from PLC.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

10707 | [Channel %1:] Channel-specific protection zone %2 reached with axis %3 during manual mode

Parameters:
%1 = Channel number
%2 = Protection zone number
%3 = Axis name

Definitions:
The workpiece-related channel-specific protection zone has been reached with the specified axis. Note that another tool-related protection zone is still active. The workpiece-related protection zone can be traversed when the PLC has issued an enable signal.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Protection zone can be traversed after enable signal from PLC.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

10720 | [Channel %1:] Block %3 axis %2 software limit switch %4

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
%4 = String (+ or -)

Definitions:
The path programmed for the axis violates the currently valid software limit switch. The alarm is activated when preparing the part program block.
If bit 11=0 in the machine data MD11411 $MN_ENABLE_ALARM_MASK, this alarm is issued instead of alarm 10722.
If bit 11 is set in the machine data MD11411 $MN_ENABLE_ALARM_MASK, an expanded diagnostics option is offered for the software limit switch violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Check and correct positions in the NC program.
Please inform the authorized personnel/service department.
Check machine data: MD36100 $MA_POS_LIMIT_MINUS / MD36120 $MA_POS_LIMIT_MINUS2 and MD36110 $MA_POS_LIMIT_PLUS / MD36130 $MA_POS_LIMIT_PLUS2 for the software limit switches.
Check the axis-specific interface signals: DB380x DBX1000.3 / .2 (2nd software limit switch plus/minus) to see whether the 2nd software limit switch is selected.
Check the currently active work offsets via the current frame.
Work offsets, overlaid movements ($AA_OFF), DRF and transformation components must also be checked.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10721

[Channel %1:] Block %3 axis %2 software limit switch %4

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Block number, label
- %4 = String (+ or -)

Definitions:
The motion planned for the axis violates the currently valid software limit switch.
The alarm is activated during the preprocessing of approach or rest blocks for REPOS.
Depending on MD11411 $MN_ENABLE_ALARM_MASK, bit11=0 this alarm is output instead of alarm 10723.
If this MD11411 $MN_ENABLE_ALARM_MASK, bit11 is set in this machine data $MN_ENABLE_ALARM_MASK, an expanded diagnostics option is offered for the software limit switch violation.
The condition for activation is the presence of the ALUN* alarm file in the HMI. See also the Diagnostics Manual for alarm 10723.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Determine the cause of the offset from the initial or target position.
The REPOS command is executed at the end of an ASUB or system ASUB.
See also cross reference from ASUBs.
Check the axis-specific NC/PLC interface signals DB380x DBX1000.3 / .2 (2nd software limit switch plus/minus) to see whether the 2nd software limit switch is selected.
Check the currently active work offset via the current frame.
Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
Cancel the NC program with NC reset.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10722

[Channel %1:] Block %5 axis %2 software limit switch %6 violated, residual distance: %7 %3<ALUN> violated

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Unit of distance
- %4 = Block number, label
- %5 = Block number, label
- %6 = String (+ or -)

Definitions:
The path programmed for the axis violates the currently valid software limit switch.
The alarm is activated when preparing the part program block.
This alarm is issued instead of alarm 10720 if bit 11=1 in the MD11411 $MN_ENABLE_ALARM_MASK.
Alarm 10722 offers an expanded diagnostics option for the software limit switch violation.
The condition for activation is the presence of the ALUN* alarm file in the HMI.
See also diagnostics guide for alarm 10720.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Check and correct positions in the NC program.
Please inform the authorized personnel/service department.

Machine data: MD36100 $MA_POS_LIMIT_MINUS/MD36120 $MA_POS_LIMIT_MINUS2 and MD36110 $MA_POS_LIMIT_PLUS/MD36130 $MA_POS_LIMIT_PLUS2 must be checked for the software limit switches.
Check the axis-specific interface signals: DB380x DBX1000.3 / .2 (2nd software limit switch plus/minus) to see whether the 2nd software limit switch is selected.
Check currently active work offsets via the current frame.
Work offsets, overlaid movements ($AA_OFF), DRF and transformation components must also be checked.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10723

[Channel %1:] Block %5 axis %2 software limit switch %6 violated, residual distance: %7 %3<ALUN>

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Unit of distance
- %4 = Block number, label
- %5 = String (+ or -)

Definitions:
The motion planned for the axis violates the currently active software limit switch.
The alarm is activated during the preprocessing of approach or rest blocks for REPOS.
This alarm is issued instead of alarm 10721 if bit 11=1 in MD11411 $MN_ENABLE_ALARM_MASK. Alarm 10723 offers an expanded diagnostics option for the software limit switch violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.
See also the Diagnostics Manual for alarm 10721.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs.
Check the MD36100 $MA_POS_LIMIT_MINUS / MD36120 $MA_POS_LIMIT_MINUS2 and MD36110 $MA_POS_LIMIT_PLUS / MD36130 $MA_POS_LIMIT_PLUS2 for the software limit switches.
Check the axis-specific interface signals DB380x DBX1000.3 / .2 (2nd software limit switch plus/minus) to see whether the 2nd software limit switch is selected.
Check the currently active work offset via the current frame.
Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
Cancel the NC program with NC reset.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10730

[Channel %1:] Block %3 axis %2 working area limitation %4

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Block number, label
- %4 = String (+ or -)

Definitions:
This alarm is generated if it is determined during block preparation that the programmed path of the axis violates the working area limitation.
If bit 11=0 in machine data MD11411 $MN_ENABLE_ALARM_MASK, this alarm is issued instead of alarm 10732. If bit 11 is set in machine data MD11411 $MN_ENABLE_ALARM_MASK, an expanded diagnostics option is offered for the software limit switch violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NCK alarms

Remedy:

a) Check NC program for correct positional data and, if necessary, make corrections.
b) Check zero offsets (current frame)
c) Correct working area limitation via G25/G26, or
d) Correct working area limitation via setting data, or
e) Deactivate working area limitation via setting data 43410 WORKAREA_MINUS_ENABLE=FALSE

Program Continuation:

Clear alarm with NC START or RESET key and continue the program.

10731

[Channel %1:] Block %3 axis %2 working area limitation %4

Parameters:

- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Block number, label
- %4 = String (+ or -)

Definitions:

The motion planned for the axis violates the currently active working area limit.
The alarm is activated during the preparation of approach or rest blocks for REPOS.
This alarm is issued instead of alarm10733 if bit11 is not set in MD11411 $MN_ENABLE_ALARM_MASK.

Reaction:

Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:

Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs.
Check the currently active work offset via the current frame.
Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
Cancel NC program with NC reset.

Program Continuation:

Clear alarm with the RESET key. Restart part program

10732

[Channel %1:] Block %5 axis %2 working area limitation violated, residual distance: %6 %3<ALUN>

Parameters:

- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Unit of distance
- %4 = Block number, label/residual distance

Definitions:

This alarm is generated if it is determined during block preprocessing that the programmed path of the stated axis violates the working area limitation.
If MD11411 $MN_ENABLE_ALARM_MASK, bit11=1, this alarm is issued instead of alarm 10730. Alarm 10732 offers an expanded diagnostics option for the working area limitation violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

Reaction:

Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:

a) Check NC program for correct positional data and, if necessary, make corrections.
b) Check zero offsets (current frame)
c) Correct working area limitation via G25/G26, or
d) Correct working area limitation via setting data, or
e) Deactivate working area limitation via setting data 43410 $SA_WORKAREA_MINUS_ENABLE=FALSE

Program Continuation:

Clear alarm with NC START or RESET key and continue the program.
10733

[Channel %1:] Block %5 axis %2 working area limitation violated, residual distance: %6 %3<ALUN>

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Unit of distance
- %4 = Block number, label/residual distance

Definitions:
The motion planned for the axis violates the currently active working area limitation.
The alarm is activated during the preparation of approach or rest blocks for REPOS.
This alarm is issued instead of alarm 10731 if bit11=1 in MD11411 $MN_ENABLE_ALARM_MASK. Alarm 10733 offers an expanded diagnostics option for the working area limitation violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

Reaction:
- Local alarm reaction.
- Interface signals are set.
- Alarm display.

Remedy:
- Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs.
- Check the currently active work offset via the current frame.
- Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
- Cancel NC program with NC reset.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

10735

[Channel %1:] Block %5 axis %2 coordinate system-specific working area limitation violated, residual distance: %6 %3<ALUN>

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Unit of distance
- %4 = Block number, label/residual distance

Definitions:
This alarm is generated if it is determined during block preparation that the programmed path of the stated axis violates the coordinate system-specific working area limitation.

Reaction:
- Correction block is reorganized.
- Local alarm reaction.
- Interface signals are set.
- Alarm display.

Remedy:
- a) Check NC program for correct positional data and, if necessary, make corrections.
- b) Check work offsets (current frame)
- c) Correct the working area limitation with WALCS1 ... WALCS9, or
- d) Correct the working area limitation in $P_WORKAREA_CS_LIMIT_PLUS or $P_WORKAREA_CS_LIMIT_MINUS, or
- e) Deactivate the working area limitation with $P_WORKAREA_CS_MINUS_ENABLE = FALSE or $P_WORKAREA_CS_PLUS_ENABLE.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.
10736 [Channel %1:] Block %5 axis %2 coordinate system-specific working area limitation violated, residual distance: %6 %3<ALUN>

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Unit of distance
%4 = Block number, label|residual distance

Definitions:
This alarm is generated if it is determined during block preparation that the programmed path of the stated axis violates the coordinate system-specific working area limitation. The alarm is activated during the preparation of approach or residual blocks for REPOS.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs.
Check the currently active work offset via the current frame.
Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
Cancel NC program with NC reset.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10740 [Channel %1:] Block %2 too many empty blocks in WAB programming

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
It is not allowed to program more blocks than specified by MD20202 $MC_WAB_MAXNUM_DUMMY_BLOCKS between the WAB block and the block determining the approach and retraction tangent.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10741 [Channel %1:] Block %2 direction reversal with WAB infeed motion

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A safety distance which has been programmed is located perpendicular to the machining plane and not between the start and end point of the WAB contour.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10742 [Channel %1:] Block %2 WAB distance invalid or not programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Possible causes:
In a WAB block, the parameter DISR has not been specified or its value is less than or equal to 0.
During approach or retraction with circle and active tool radius, the radius of the internally generated - WAB contour is negative. The internally generated WAB contour is a circle with a radius which, when offset with the current offset radius (sum of tool radius and offset value OFFN), yields the tool center point path with the programmed radius DISR.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10743 [Channel %1:] Block %2 WAB programmed several times

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An attempt has been made to activate a WAB motion before a previously activated WAB motion was terminated.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10744 [Channel %1:] Block %2 no valid WAB direction defined

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tangent direction for smooth approach or retraction is not defined.
Possible causes:
In the program, no block with travel information follows the approach block.
Before a retraction block, no block with travel information has been programmed in a program.
The tangent to be used for WAB motion is vertical to the current machining plane.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10745 [Channel %1:] Block %2 WAB end position not clear

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In the WAB block and in the following block, the position has been programmed perpendicular to the machining direction. In the WAB block, no position has been indicated in the machining plane.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program. Either remove the position data for the infeed axis from the WAB block or the following block, or program a position in the machining plane in the WAB block as well.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10746 [Channel %1:] Block %2 block search stop for WAB

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A preprocessing stop has been inserted between an SAR approach block and the following block defining the tangent direction or between an SAR retraction block and the following block defining the end position.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10747 [Channel %1:] Block %2 retraction direction not defined for WAB

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In a WAB retraction block with quarter circle or semi-circle (G248 or G348), the end point in the machining plane was not programmed, and either G143 or G140 without tool radius compensation is active.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program. The following changes are possible:
- Indicate end point in the machining plane in the WAB block.
- Activate tool radius compensation (effective for G140 only, not for G143).
- State retraction side explicitly with G141 or G142.
- Perform retraction with a straight line instead of a circle.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10748 [Channel %1:] Block %2 illegal retract plane with WAB
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
By means of DISRP a position of the retraction plane has been programmed which is not situated between the safety distance (DISCL) and the starting point (during approach) and/or end point (during retraction) of the WAB movement.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy:
Modify part program
Program
Continuation:
Clear alarm with NC START or RESET key and continue the program.

10771 [Channel %1:] Block %2 overflow of local block buffer due to orientation smoothing
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
This error occurs when more blocks must be buffered than memory space is available.
This error can only occur when the software has been incorrectly configured.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy:
Increase size of local buffer area.
Program
Continuation:
Clear alarm with NC START or RESET key and continue the program.

10790 [Channel %1:] Block %2 plane change during linear programming with angles
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The active plane was changed between the first and second subblock when programming two straight lines with angle parameters.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy:
Modify part program.
Program
Continuation:
Clear alarm with NC START or RESET key and continue the program.

10791 [Channel %1:] Block %2 invalid angle during linear programming
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
No intermediate point was found when programming a contour consisting of two straight lines and an angle specification.
NCK alarms

10792 [Channel %1:] Block %2 illegal interpolation type during linear programming with angles

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Only spline or linear interpolation is permitted for programming two straight lines with angle specification. Circular or polynomial interpolation is not allowed.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10793 [Channel %1:] Block %2 second block missing during linear programming with angles

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The second block is missing during programming of two straight lines with angle specification. This situation only occurs if the first subblock is also the last block of a program, or if the first subblock is followed by a block with a pre-processor stop.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10794 [Channel %1:] Block %2 angle specification missing in 2nd block during linear interpolation with angles

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The angle is missing from the second block during programming of two straight lines with angle specification. This error can only occur if an angle was programmed in the preceding block, but no axis of the active plane was programmed in that block. The cause of the error may therefore also have been the intention to program a single straight line with an angle in the previous block. In this case, exactly one axis of the active plane must be programmed.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10795 [Channel %1:] Block %2 end point specification during angle programming contradictory

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: During programming of a straight line, both positions of the active plane and an angle were specified (the position of the end point is over-specified), or the position of the programmed coordinate cannot be reached with the specified angle. If a contour consisting of two straight lines is to be programmed with angles, it is possible to specify the two axis positions of the plane and an angle in the second block. The error can also occur if, due to a programming error, the preceding block cannot be interpreted as the first subblock of such a contour. A block is interpreted as the first block of a two-block contour if an angle, but not an axis of the active plane, was programmed, and if the block is not already the second block of a contour.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10800 [Channel %1:] Block %3 axis %2 is not a geometry axis

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions: With an active transformation or a frame with a rotation component the geometry axes are needed for block preparation. If a geometry axis has previously been traversed as positioning axis, it retains its status of "positioning axis" until it is again programmed as a geometry axis. Because of the POSA motion beyond block boundaries, it is not possible to identify in the preprocessing run whether the axis has already reached its target position when the block is executed. This is, however, an unconditional requirement for calculating the ROT component of the frame or of the transformation. If geometry axes are used as positioning axes, then:
1. No rotation may be specified in the current overall frame.
2. No transformation may be selected.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: After selecting transformation or frame, reprogram the geometry axis now operating as positioning axis (e.g. with WAITP) in order to revert the status to "geometry axis.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10805 [Channel %1:] Block %2 repositioning after switch of geometry axes or transformation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In the asynchronous subroutine the assignment of geometry axes to channel axes was changed or the active transformation modified.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10810 [Channel %1:] Block %2 master spindle not defined

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The function "Revolutional feedrate" (with G95 or G96), or "Rigid tapping" (with G331/G332) has been programmed, although no master spindle is defined from which the speed could be derived.
For the definition the MD 20090 $MC_SPIND_DEF_MASTER_SPIND is available for the default or the keyword SETMS in the part program, thus allowing each spindle of the channel to be redefined as master spindle.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Preset the master spindle with MD20090 $MC_SPIND_DEF_MASTER_SPIND[n]=m (n ... channel index, m ... spindle no.) or define it with an identifier in an NC part program before a G function that requires a master spindle is programmed.
The machine axis that is to be operated as a spindle must be equipped in MD35000 $MA_SPIND_ASSIGN_TO_MACHAX[n]=m (n ... machine axis index, m ... spindle no.) with a spindle number. Additionally, the MD20070 $MC_AXCONF_MACHAX_USED[n]=m (n ... channel axis index, m ... machine axis index) must be used to assign it to a channel (channel axis index 1 or 2).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10820 [Channel %1:] Rotary axis/spindle %2 not defined

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
Revolutional feed has been programmed for contouring and synchronous axes or for an axis/spindle. However, the rotary axis/spindle from which the feed is to be deduced is not available.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Correct part program or set the SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE correctly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10860 [Channel %1:] Block %2 feedrate not programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Cause:
A traversing velocity has not been programmed for the displayed traversing block.
Feed F or FZ:
With the traversing velocity defined by feed F or FZ, F or FZ was not reprogrammed after the feed type changed, for example linear feed G94 after revolutional feedrate G95 F or G95 FZ.
Modal feed FRCM:
With modal traversing velocity FRCM defined for rounding RND or chamfering CHF, feed FRCM was not reprogrammed after the feed type changed, for example linear feed G94 after revolutional feedrate G95, or revolutional feedrate G95 F after tooth feedrate G95 FZ.
Note:
Feed FRCM also has to be reprogrammed when the feed type changes if the current traversing block does not contain chamfering CHF or rounding RND, but the feed FRCM was programmed active, that is unequal to 0, before the feed type changed.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Program feedrate in accordance with the interpolation type.
- G93: The feedrate is specified as a time-reciprocal value under address F in [rev/min].
- G94 and G97: The feedrate is programmed under address F in [mm/min] or [m/min].
- G95: The feedrate is programmed as revolutional feedrate under address F in [mm/revolution] or under the address FZ in [mm/tooth].
- G96: The feedrate is programmed as cutting rate under address S in [m/min]. It is derived from the current spindle speed.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10861 [Channel %1:] Block %3 velocity of positioning axis %2 is zero

Parameters:
%1 = Channel number
%2 = Axis
%3 = Block number, label

Definitions:
No axis velocity has been programmed and the positioning velocity set in the machine data is zero.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Enter a different velocity in MD32060 $MA_POS_AX_VELO.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10862 [Channel %1:] Block %2 master spindle also used as path axis

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A contour has been programmed that also includes the master spindle as contouring axis. However, the velocity of the contour is derived from the rotational speed of the master spindle (e.g. G95).

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NCK alarms

Remedy: Modify the program so that no reference is possible to the program itself.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10865 [Channel %1:] Block %2 FZ active, but no tool offset, tool %3

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Tool

Definitions:
- For the displayed traversing block a tooth feedrate is active, but no tool offset.

Reaction:
- Correction block is reorganized.
- Local alarm reaction.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
- Check the NC program for correct tool selection and correct it, if required; then continue the program with NC start.
- Or: Continue the NC program with NC start. For calculation of the effective feedrate one tooth per revolution is assumed.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10866 [Channel %1:] Block %2 FZ is active, but the number of teeth of the active D number %4 of tool %3 is zero.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Identifier
- %4 = D number

Definitions:
- Tooth feedrate is active for the displayed traversing block, but a D number of 0 is selected with $TC_DPNT (number of teeth).

Reaction:
- Correction block is reorganized.
- Local alarm reaction.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Check the NC program for correct tool selection and correct it, if required; then continue the program with NC start.
- Or: Continue the NC program with NC start. The feedrate will be calculated assuming 1 tooth.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10870 [Channel %1:] Block %2 facing axis for constant velocity not defined

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Constant cutting speed was selected although no transverse axis was applied as reference axis for constant cutting speed or assigned through SCC[AX].
Constant cutting speed can be activated as follows:
- Basic position G96, G961 or G962 of G group 29 during booting
- Programming of G96, G961 or G962
A reference axis for G96, G961 or G962 can be applied as a transverse axis in MD20100 $MC_DIAMETER_AX_DEF or defined through the instruction SCC[AX].

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Check MD20100 $MC_DIAMETER_AX_DEF. Before programming G96, G961 or G962 a transverse axis must be defined as a reference axis for constant cutting speed via MD20100 $MC_DIAMETER_AX_DEF or SCC[AX].

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10880 [Channel %1:] Block %2 too many empty blocks between two traversing blocks when inserting chamfers or radii

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Between 2 blocks containing contour elements and which are to be joined with a chamfer or a radius (CHF, RND), more blocks without contour information have been programmed than provided for in the MD20200 $MC_CHFRND_MAXNUMDummy_BLOCKS.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify the part program in order that the permissible number of dummy blocks is not exceeded or adapt the channel-specific machine data MD20200 $MC_CHFRND_MAXNUMDummy_BLOCKS (dummy blocks with chamfers/radii) to the maximum number of dummy blocks.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10881 [Channel %1:] Block %2 overflow of local block buffer in the case of chamfers or radii

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Between 2 blocks containing the contour elements and to be joined with a chamfer or a radius (CHF, RND), so many dummy blocks have been programmed without contour information that the internal buffer is too small.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Modify part program such that the number of dummy blocks is reduced.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10882 [Channel %1:] Block %2 activation of chamfers or radii (non-modal) without traversing movement in the block

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
No chamfer or radius has been inserted between 2 linear or circle contours (edge breaking) because:
There is no straight line or circle contour in the plane
There is a movement outside the plane
A plane change has taken place
The permissible number of empty blocks without traversing information (dummy blocks) has been exceeded.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Correct the part program according to the above error description or change the number of dummy blocks in the channel-specific MD20200 $MC_CHFRND_MAXNUM_DUMMY_BLOCKS to comply with the maximum number allowed for in the program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10883 [Channel %1:] Block %2 chamfer or fillet has to be reduced

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
This alarm is output, if at least one of the relevant blocks when inserting chamfers or radii is so short, that the contour element to be inserted must be reduced against its originally programmed value. The alarm occurs only if bit 4 is set in the MD11411 $MN_ENABLE_ALARM_MASK. Otherwise, the chamfer or radius is adapted without an alarm being output.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify NC program of continue program without modifications after CANCEL and Start or with Start alone.

Program Continuation:
Clear alarm with the Delete key or NC START.

10890 [Channel %1:] Block %2 overflow of local block buffer when calculating splines

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The maximum permissible number of empty blocks is limited by a machine data.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
- Modify part program
- Modify machine data
- Check whether SBL2 is activated. With SBL2, a block is generated from each part program line which can lead to exceeding the maximum permissible number of empty blocks between two traversing blocks.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10891 [Channel %1:] Block %2 multiplicity of node is greater than its order

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In the B spline the distance between nodes PL (node = point on spline at which 2 polynomials meet) has been programmed with zero too often in succession (i.e. the "multiplicity" of a node is too great).

In the quadratic B spline the node distance may not be specified more than twice with 0 in succession, and in the cubic B spline not more than 3 times.

Reaction:
Correction block is reorganized.

Local alarm reaction.

Interface signals are set.

Alarm display.

Remedy:
Program the node distance PL = 0 in succession no more than the degree of the B spline used.

Program

Continuation:
Clear alarm with NC START or RESET key and continue the program.

10900 [Channel %1:] Block %2 no S value programmed for constant cutting speed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If G96 is active, the constant cutting speed under address S is missing.

Reaction:
Correction block is reorganized.

Local alarm reaction.

Interface signals are set.

Alarm display.

Remedy:
Program constant cutting speed under S in [m/min] or deselect the function G96. For example, with G97 the previous feed is retained but the spindle continues to rotate at the current speed.

Program

Continuation:
Clear alarm with NC START or RESET key and continue the program.

10910 [Channel %1:] Block %2 irregular velocity waveform of one path axis

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When the path axis waveforms were analyzed during block preparation, a large local deviation relative to the path velocity was detected in the velocity waveform of one or more path axes.

Such a situation can have the following causes:
- The path runs close to singular positions of the machine kinematics.
- The programmed contour characteristic is very uneven.
- The FGROUP definition is unfavorable relative to the contour.
- The setting MD28530 $MC_MM_PATH_VELO_SEGMENTS=0 is inadequate for curvature changes occurring within one block. This problem occurs more frequently with G643, G644 and COMPCAD.
- A kinematic transformation has been implemented with insufficient numerical accuracy.

The path velocity is generally reduced substantially in order to avoid axis overloads safely. An apparent machine standstill may occur. Severe axis movements occur suddenly as soon as the singular position is reached.

Reaction:
Alarm display.

Warning display.

Remedy:
Dividing a block into several smaller ones often provides an improvement.

If MD28530 $MC_MM_PATH_VELO_SEGMENTS=0 is set, then the alarm may be avoidable by a value MD28530 $MC_MM_PATH_VELO_SEGMENTS=3 or 5, as the blocks are then analyzed considerably more accurately.

Program

Continuation:
Clear alarm with NC START or RESET key and continue the program.
10911
[Channel %1:] Block %2 transformation prohibits to traverse the pole

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The given curve passes through the pole of the transformation.

Reaction:
Interpreter stop
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10912
[Channel %1:] Block %2 preprocessing and main run might not be synchronized

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The preset positioning axis run cannot be accurately calculated beforehand. The reason for this is either that the axes involved in the transformation are traversed as positioning axes or that a transformation pole is circumnavigated too frequently by the curve.
The velocity check is performed starting from this block in the main run. It is more conservative than with anticipated calculation. The LookAhead function is deactivated. If it is not possible to take over the velocity check into the main run, part program processing is aborted.

Reaction:
Alarm display.

Remedy:
No action is usually necessary. The velocity control operates more effectively, however, if the part program is modified.
- If a transformation pole is circumnavigated several times by the curve, it helps to split up the block into smaller parts.
- If a positioning axis is the cause, you should check whether the axis can be traversed as a path axis. The Look Ahead function remains deactivated until preprocessing can be based on defined conditions again (e.g. as a result of change from JOG->AUTO, tool or tool edge change).

Program Continuation:
Clear alarm with the Delete key or NC START.

10913
[Channel %1:] Block %2 negative feed profile is ignored

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The given feed profile is in part negative. However, negative path feed is not allowed. The feed profile is ignored. The specified feed block end value is taken when traversing over the entire block.

Reaction:
Local alarm reaction.
Alarm display.

Remedy:
No action is usually necessary. The alarm message indicates an error in the programming, however, and this should be corrected.

Program Continuation:
Clear alarm with the Delete key or NC START.
10914 [Channel %1:] Block %2: movement not possible while transformation active.

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The machine kinematics does not allow the specified motion. Transformation-dependent error causes can be in:
- TRANSMIT: A (circular) area exists around the pole, where positioning is not possible. The area is caused by the fact that the tool reference point cannot be traversed as far as into the pole.
The area is defined by:
- the machine data (MD24920 $MC_TRANSMIT_BASE_TOOL..)
- the active tool length compensation (see $TC_DP..). Whether the tool length compensation is included in the calculation depends on the working plane selected (see G17,..).
- The machine stops before the faulty block.

Reaction:
Interpreter stop
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program. Change the incorrectly specified tool length compensation.
Program Continuation:
Clear alarm with the RESET key. Restart part program

10915 [Channel %1:] Block %2 preparation problem in Look Ahead (module %3, identifier %4)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Module identifier
%4 = Error code

Definitions:
The parameterized memory is inadequate to run Look Ahead in expansion mode.

Reaction:
Interpreter stop
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Change parameterization. Increase work memory. Use standard Look Ahead.
Contact Siemens if necessary.
Program Continuation:
Clear alarm with the RESET key. Restart part program

10916 [Channel %1:] Block %2 preparation problem in Look Ahead (module %3, identifier %4)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Module identifier
%4 = Error code

Definitions:
The parameterized memory is inadequate to create an optimum path velocity profile. The profile created is not as smooth as it could be.

Reaction:
Local alarm reaction.
Alarm display.
Warning display.

Remedy:
Change parameterization, increase IPO buffer.
Program Continuation:
Clear alarm with the Delete key or NC START.
10930 [Channel %1:] Block %2 interpolation type not allowed in stock removal contour

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The following types of interpolation are allowed in the contour program for stock removal: G00, G01, G02, G03, CIP, CT

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: In the contour subroutine, program only path elements that consist of straight lines and arcs.

Program Continuation: Clear alarm with the RESET key. Restart part program

10931 [Channel %1:] Block %2 incorrect stock removal contour

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The following errors occurred in the subroutine for the contour during stock removal:
- Full circle
- Overlapping contour elements
- Wrong start position

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: The errors listed above must be corrected in the subroutine for the stock removal contour.

Program Continuation: Clear alarm with the RESET key. Restart part program

10932 [Channel %1:] Block %2 preparation of contour has been restarted

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The first contour preparation/contour decoding run must be terminated with EXECUTE.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program the keyword EXECUTE to terminate the contour preparation in the part program before again calling up contour segmentation (keyword CONTPRON).

Program Continuation: Clear alarm with the RESET key. Restart part program

10933 [Channel %1:] Block %2 contour program does not contain enough contour blocks

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The contour program contains:
- Less than 3 contour blocks with CONTPRON
- No contour blocks with CONTDCON
NCK alarms

10934 [Channel %1:] Block %2 array for contour segmentation is set too small

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: During contour segmentation (activated with the keyword CONTPRON), the field for the contour table has been detected as too small. For every permissible contour element (circle or straight line) there must be a row in the contour table.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Base the definition of the field variables of the contour table on the contour elements to be expected. The contour segmentation divides some NC blocks into as many as 3 machining cuts. Example: N100 DEF TABNAME_1 [30, 11] Field variables for the contour table provide for 30 machining cuts. The number of columns (11) is a fixed quantity.

Program Continuation: Clear alarm with the RESET key. Restart part program

10950 [Channel %1:] Calculation of arc length function too inaccurate

Parameters: %1 = Channel number

Definitions: The calculation of the arc length function could not be performed to the required accuracy.

Reaction: Alarm display.
Warning display.

Remedy: The calculation of the arc length function could not be performed to the required accuracy during active polynomial interpolation. Either increase MD20262 $MC_SPLINE_FEED_PRECISION or reserve more memory for the representation of the arc length polynomials. MD28540 $MC_MM_ARCLENGTH_SEGMENTS defines how many polynomial segments can be used per block in order to approximate the arc length function.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10960 [Channel %1:] Block %2 COMPCURV/COMPCAD and radius compensation can-not be used simultaneously

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Compressor types COMPCURV and COMPCAD cannot be used in combination with tool radius compensation. Only compressor type COMPON can be activated while tool radius compensation is active.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.
NCK alarms

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10961 [Channel %1:] Block %2 maximum cubic polynomials are allowed on active radius compensation.

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: With active radius compensation, only up to cubic polynomials are permissible for the geometry axes. In this case no 4th or 5th degree polynomials can be programmed.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10980 [Channel %1:] Block %2 orientation smoothing not possible

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: This alarm can have the following causes:
1. Orientation smoothing cannot be activated with active path-relative orientation interpolation with ORIPATH. This means that in the 34th modal G code group the G code OSOF must be active.
2. The path-relative orientation interpolation cannot be activated with ORIPATH and ORIPATH_MODE = 1 because MD28580 $MC_MM_ORIPATH_CONFIG = 0. This MD must have the value 1.
3. Smoothing of the orientation cannot be activated with OSD or OST because MD28580 $MC_MM_ORIPATH_CONFIG = 0. This MD must have the value 1.

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10982 [Channel %1:] Block %2 orientation smoothing not possible with ORISON

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: This alarm has the following cause:
The smoothing of the orientation with ORISON is only possible if MD MD28590 $MC_MM_ORISON_BLOCKS >= 4.

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify part program or set MD28590 $MC_MM_ORISON_BLOCKS >= 3.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12000 [Channel %1:] Block %2 address %3 programmed repeatedly
Parameters:
 %1 = Channel number
 %2 = Block number, label
 %3 = Source string of the address
Definitions: Most addresses (address types) may only be programmed once in an NC block, so that the block information remains unambiguous (e.g. X... T... F... etc. - exception: G and M functions).
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Remove from the NC program addresses that occur more than once (except for those where multiple value assignments are allowed).
- Check whether the address (e.g. the axis name) is specified via a user-defined variable (this may not be easy to see if allocation of the axis name to the variable is performed in the program through computational operations only).
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12010 [Channel %1:] Block %2 address %3 address type programmed too often
Parameters:
 %1 = Channel number
 %2 = Block number, label
 %3 = Source string of the address
Definitions: The number of times each address type may occur in a NC block is defined internally (for instance, all axes together form one address type to which a block limit also applies).
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECTION. The correction pointer positions on the incorrect block.
The program information must be split up over several blocks (but make sure that the functions are of the non-modal type!).
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12020 [Channel %1:] Block %2 illegal address modification
Parameters:
 %1 = Channel number
 %2 = Block number, label
Definitions: Valid address types are 'IC', 'AC', 'DC', 'CIC', 'CAC', 'ACN', 'ACP', 'CACN', 'CACP'. Not each of these address modifications can be used for each address type. The Programming Guide specifies which of these can be used for the various address types. If this address modification is applied to address types that are not allowed, then the alarm is generated, e.g.:
N10 G02 X50 Y60 I=DC(20) J30 F100
interpolation parameters with DC.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Key: Press the NC STOP key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer is then positioned on the incorrect block.
Apply non-modal address modifications only for permissible addresses, in accordance with the Programming Manual.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12040 [Channel %1:] Block %2 expression %3 is not of data type 'AXIS'

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string in the block

Definitions: Some keywords require that the data in their parameters be written in variables of the type "AXIS". For example, in the keyword PO the axis identifier must be specified in the parenthesized expression, and it must be defined as a variable of the AXIS type. With the following keywords only parameters of the AXIS type are possible:
AX[...], FA[...], FD[...], FI[...], IF[...], OVRA[...], PO[...], POS[...], POSA[...]

Example:
N5 DEF INT ZUSTELL=Z1 incorrect, this does not specify an axis identifier but the number 26 161
N5 DEF AXIS ZUSTELL=Z1 correct

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Correct the part program in accordance with the instructions given in the Programming Guide.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12050 [Channel %1:] Block %2 DIN address %3 not configured

Parameters: %1 = Channel number
%2 = Block number, label
%3 = DIN address in the source text block

Definitions: The name of the DIN address (e.g. X, U, X1) is not defined in the control. In addition to the fixed DIN addresses, the control also has variable addresses. Refer to "Variable addresses" in the Programming Guide. The names of these addresses can be altered by machine data.
e.g.: DIN identifier -> Configured identifier
G01 -> LINE, G04 -> WAIT ...

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Study the Programming Guide and the machine data with respect to the addresses actually configured and their significance and correct the DIN block accordingly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12060 [Channel %1:] Block %2 same G group programmed repeatedly

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The G functions that can be used in the part program are divided into groups that are syntax defining or non-syntax defining. Only one G function may be programmed from each G group. The functions within a group are mutually exclusive.
The alarm refers only to the non-syntax defining G functions. If several G functions from these groups are called in one NC block, the last of these in a group is active in each case (the previous ones are ignored).
Syntax defining G functions: 1. to 4th G group
Non-syntax defining G functions: 5. to nth G group

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NCK alarms

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. No remedy is required. You should, however, check whether the G function last programmed really is the one required.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12070 [Channel %1:] Block %2 too many syntax-defining G functions

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Syntax defining G functions determine the structure of the part program block and the addresses contained in it. Only one syntax defining G function may be programmed in each NC block. The G functions in the 1st to 4th G group are syntax defining.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Analyze NC block and distribute the G functions over several NC blocks.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12080 [Channel %1:] Block %2 syntax error in text %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source text area

Definitions: At the text position shown, the grammar in the block is incorrect. The precise reason for this error cannot be specified in more detail because there are too many possibilities.
Example 1:
N10 IF GOTOF ... ; the condition for the jump is missing!
Example 2:
N10 DEF INT VARI=5
N11 X VARI ; the operation is missing for the X and VARI variables

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Analyze the block and correct it in accordance with the syntax rules given in the Programming Guide.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12090 [Channel %1:] Block %2 unexpected parameter %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Disallowed parameters in the text

Definitions: The programmed function has been predefined; no parameters are allowed in its call. The first unexpected parameter is displayed.
Example: On calling the predefined subroutine TRAFOF (switching off a transformation) parameters have been transferred (one or more).
NCK alarms

12100

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Program function without parameter transfer.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of passes

Definitions:
The subroutines called with MCALL are modal, i.e. after each block with positional information a routine run is automatically performed once. For this reason, programming of the number of passes under address P is not allowed. The modal call is effective until another MCALL is programmed, either with a new subroutine name or without (delete function).

12110

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Program the subroutine call MCALL without number of passes.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The addresses programmed in the block are not permissible together with the valid syntax defining G function, e.g. G1 I10 X20 Y30 F1000.
An interpolation parameter must not be programmed in the linear block.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Check the block structure and correct in accordance with the programming requirements.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
NCK alarms

12120 [Channel %1:] Block %2 G function not separately programmed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The G function programmed in this block must be alone in the block. No general addresses or synchronous actions may occur in the same block. These G functions are:
- G25, G26: Working area and spindle speed limitation
- G110, G111, G112: Pole programming with polar coordinates
- G92: Spindle speed limitation with v constant
- STARTFIFO, STOPFIFO: Control of preprocessing buffer
 - E.g. G4 F1000 M100: no M function allowed in the G4 block.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program G function by itself in the block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12130 [Channel %1:] Block %2 illegal tool orientation

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The tool orientation may only be contained in a modal motion block or in a WAB block (repositioning).
It can be programmed via Euler angles (A1, B1, C1), normal vector components (A2, B2, C2), direction vectors (A3, B3, C3) or the axis end values. If the tool orientation is programmed in conjunction with the functions:
- G04 (dwell time), G33 (thread cutting with constant lead), G74 (approach reference points) or REPOSL, REPOSQ, REPOSH (repositioning)
 - then an alarm is issued with Euler angles, direction vectors and normal vector components.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Program tool orientation with the axis end values or use a separate block for this.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12140 [Channel %1:] Block %2 functionality %3 not implemented

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Software construct in the source text

Definitions:
In the full configuration of the control functions are possible that are not yet implemented in the current version.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
The displayed function must be removed from the program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12150 [Channel %1:] Block %2 operation %3 not compatible with data type

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String (violating operator)

Definitions:
The data types are not compatible with the required operation (within an arithmetic expression or in a value assignment).
Example 1:
Arithmetic operation
N10 DEF INT OTTO
N11 DEF STRING[17] ANNA
N12 DEF INT MAX
:
N50 MAX = OTTO + ANNA
Example 2:
Value assignment
N10 DEF AXIS DRILL N11 DEF INT OTTO : N50 OTTO = DRILL

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Alter the definition of the variables used such that the required operations can be executed.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12160 [Channel %1:] Block %2 Value %3 lies beyond the value range

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Impermissible value

Definitions:
The programmed constant or the variable lies beyond the value range that has previously been established by the definition of the data type.
An initial value in a DEF or REDEF instruction lies beyond the upper (ULI) or lower (LLI) limit values that have been programmed or already exist in the DEF instruction.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Correct value of the constant or adapt data type. If the value for an integer constant is too great, it can be specified as real constant by adding a decimal point.
Example:
Value range INTEGER: +/-2**31 - 1
Value range REAL: +/-10**-300 .. 10**+300

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12161 [Channel %1:] Block %2 Error on defining the limit %3
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Impermissible limit value
Definitions:
The alarm may have the following causes.
- During definition (DEF) or redefinition (REDEF) of a variable's limits, a value was entered for the upper limit that is smaller than that for the lower limit.
- A limit for a variable type was programmed that is not of type CHAR, INT or REAL.
- A limit value of type CHAR was programmed for a variable with the data type INT or REAL.
- A string (more than one character) was programmed for one of the limits.
Reaction:
Correlation block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
If the alarm occurs in the part program (DEF instruction), press the NC Stop key and select the function "Compensation block" using PROGRAM CORRECT softkey. The cursor is placed on the incorrect block.
Adjust the limit values afterwards or completely remove the limit programming in the case of an incorrect data type.
If the alarm occurs on compiling a GUD or ACCESS file, correct the GUD or ACCESS definition file (DEF file).
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12162 [Channel %1:] Block %2 Physical unit not allowed
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In a DEF or REDEF instruction, a physical unit may only be defined for variables of data type INT or REAL. Furthermore, only the following values may be programmed for the physical unit:
0 No physical unit
1 Linear or angular position, dependent upon axis type
2 Linear position [mm ; inch]
3 Angular position [degrees]
4 Linear or angular velocity, dependent upon axis type
5 Linear velocity [mm/min]
6 Angular velocity [rev/min]
7 Linear or angular acceleration, dependent upon axis type
8 Linear accel. [m/s² ; inch/s²]
9 Angular accel. [rev/s²]
10 Linear or angular jerk
11 Linear jerk [m/s³ ; inch/s³]
12 Angular jerk [rev/s³]
13 Time [s]
14 Position controller gain [16.667/s]
15 Revolutional feedrate [mm/rev ; inch/rev]
16 Unit for temperature compensation values, dependent upon axis type
18 Force [N]
19 Weight [kg]
20 Moment of inertia [kgm²]
21 Per cent
22 Frequency [Hz]
23 Voltage [V]
24 Current [A]
25 Temperature [degrees Celsius]
26 Angle [degrees]
27 KV [1000/min]
28 Linear or angular position [mm|deg or inch|deg]
29 Cutting velocity [m/min; feet/min]
30 Peripheral velocity [m/s; feet/s]
31 Resistance [ohms]
32 Inductance [mH]
33 Torque [Nm]
34 Torque constant [Nm/A]
35 Current controller gain [V/A]
36 Speed controller gain [Nm/rad ≤ 1]
37 Speed [rev/min]
42 Power [kW]
43 Low power [µA]
46 Low torque [µNm]
48 Per mill HZ_PER_SEC = 49, [Hz/s]
65 Flow [l/min]
66 Pressure [bar]
68 Volume [cm³]
69 Controlled system gain [mm/Vmin]
155 Thread pitch [mm/rev; inch/rev]
156 Thread pitch change [mm/rev² ; inch/rev²]

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: If the alarm occurs in the part program (DEF instruction), press the NC Stop key and select the function *"Compensation block" using PROGRAM CORRECT softkey. The cursor is placed on the incorrect block.
In the compensation block the data type can now be adjusted in the DEF instruction, or the physical unit (PHU xy) must be removed.
If the alarm occurs on compiling a GUD or ACCESS file, correct the GUD or ACCESS definition file (DEF file).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12163 [Channel %1:] Block %2 Change of access protection not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Changing the access rights for system variables (with REDEF) is not allowed in GUD files. They can only be changed in the ACCESS files (_N_SYSACCESS_DEF, _N_SACCESS_DEF, _N_MACCESS_DEF and _N_UACCESS_DEF).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Cut the REDEF instruction from the GUD file and paste it into one of the ACCESS files.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12164 [Channel %1:] Block %2 access protection programmed more than once %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Duplicate protection level programming

Definitions: The language commands APW and APR are used to program access protection for access to both the part program and the OPI. APWP and APRP define access protection from the part program; APWB and APRB define access protection via the OPI. Programming APW in the same block together with APWP or APWB or programming APR in the same block together with APRP or APRB will lead to a conflict, as the protection level assignment is no longer unique.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: If access protection in the part program and on the OPI needs to be set to different levels, only the language commands APWP, APWB, APRP and APRB may be used. If access protection is to be the same in the part program and on the OPI, it can also be programmed with APW or APR, although in this case the APWP and APWB or APRP and APRB commands must not be programmed in the same block.
NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12170

[Channel %1:] Block %2 name %3 defined several times

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Symbol in block

Definitions: The symbol shown in the error message has already been defined in the active part program. Note that user-defined identifiers may occur more than once if the multiple definition occurs in other (sub)programs, i.e. local variables may be redefined with the same name if the program has been exited (subprograms) or has already been concluded. This applies both to user-defined symbols (labels, variables) and to machine data (axes, DIN addresses and G functions).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: The symbol already known to data management is displayed. This symbol must be looked for in the definition part of the current program using the program editor. The 1st or 2nd symbol must be given a different name.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12180

[Channel %1:] Block %2 illegal chaining of operators %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Chained operators

Definitions: Operator chaining means the writing in sequence of binary and unary operators without using any form of parentheses. Example:
N10 ERG = VARA - (- VARB) ; correct notation
N10 ERG = VARA - - VARB ; error!

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Formulate the expression correctly and unambiguously making use of parentheses. This improves clarity and readability of the program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12185

[Channel %1:] Block %2 a bit combination with %3 is not permitted

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Address name

Definitions: A bit combination is not possible with the assignment to this address. Bit combinations are permitted only for coupling addresses (CPMBRAKE, CPMVDI and CPMAL).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Change the part program. If the data type of the address permits a bit combination, write the value of the address in a variable, make a bit combination with the variable, and assign the variable to the address.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12190 [Channel %1:] Block %2 variable of type ARRAY has too many dimensions

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Array with variables of type STRING may be no more than 1-dimensional, and with all other variables no more than 2-dimensional.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Correct the array definition, with multi-dimensional arrays define a second 2-dimensional array if necessary and operate it with the same field index.

Program
Continuation:
Clear alarm with NC START or RESET key and continue the program.

12200 [Channel %1:] Block %2 symbol %3 cannot be created

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Symbol in the source block

Definitions:
The symbol to be created with the DEF instruction cannot be created because:
- it has already been defined (e.g. as variable or function)
- the internal memory location is no longer sufficient (e.g. with large arrays)

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
Make the following checks:
- Check with the text editor whether the name to be allocated in the active program cycle (main program and called subprograms) has already been used.
- Estimate the memory requirements for the symbols already defined and reduce these if necessary by using fewer global and more local variables.

Program
Continuation:
Clear alarm with NC START or RESET key and continue the program.

12205 [Channel %1:] Block %2 area specification missing for GUD area

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The area specification (NCK or CHAN) was not programmed in the definition instruction for a GUD variable.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
Complete the area specification for the GUD variable definition in the GUD definition file. The definition of a GUD variable must conform to the following syntax:
DEF <Area> <Data type> <Variable name> e.g.
DEF NCK INT intVar1
DEF CHAN REAL realVar1

Program
Continuation:
Clear alarm with NC START or RESET key and continue the program.
12210 [Channel %1:] Block %2 string %3 too long

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String in the source block

Definitions:
- In the definition of a STRING type variable, an attempt has been made to initialize more than 200 characters.
- In an allocation, it has been found that the string does not fit the given variable.
- In synchronized actions, a string with more than 31 characters has been programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the "Correction block" function with the PROGRAM CORRECT softkey. The cursor is positioned on the incorrect block.
- Select a shorter string or divide the character string into 2 strings.
- Define a longer string variable.
- Restrict the string to 31 characters.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12220 [Channel %1:] Block %2 binary constant %3 in string too long

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Binary constant

Definitions:
When initializing or allocating the value of a variable of type STRING more than 8 bits have been found as binary constant.
DEF STRING[8] OTTO = "ABC"HS5"B000011111"DEF"

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
In the window for the alarm message, the first characters of the binary constant are always displayed although the surplus bit might not be located until further on. Therefore, the complete binary constant must always be checked for an incorrect value.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12230 [Channel %1:] Block %2 hexadecimal constant %3 in string too long

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Hexadecimal constant

Definitions:
A string can also contain bytes that do not correspond to a character that can be entered or one that is available on a keyboard with a minimized number of keys. These characters can be input as binary or hexadecimal constants. They may occupy up to 1 byte each only - therefore be < 256, e.g.
N10 DEF STRING[2] OTTO= "HCA"HFE"

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
In the window for the alarm message, the first characters of the hexadecimal constant are always displayed although the surplus bit might not be located until further on. Therefore, the complete hexadecimal constant must always be checked for an incorrect value.
Clear alarm with NC START or RESET key and continue the program.

12260 [Channel %1:] Block %2 too many initialization values specified %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions: In the initialization of an array (array definition and value assignments to individual array elements) there are more initialization values than array elements. Example: N10 DEF INT OTTO[2,3]=(..., ..., (more than 6 values))

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Check the NC program to establish whether:
1. During array definition the number of array elements (n,m) was indicated correctly (DEF INT FIELDNAME[n,m] e.g. an array with 2 lines and 3 columns: n=2, m=3). 2. During initialization the value assignments have been made correctly (values of the individual field elements separated by comma, decimal point for variables of the type REAL).

Clear alarm with NC START or RESET key and continue the program.

12261 [Channel %1:] Block %2 initialization of %3 not allowed

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions: Frame type variables cannot be initialized in the definition. Example: DEF FRAME LOCFRAME = CTRANS(X,200)
Equally, no default values can be programmed for axes in the program run during field initialization via SET.
A REDEF instruction with PRLOC is only permitted for setting data, but not for machine data or variables.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Perform initialization in separate block in the execution part of the program: DEF FRAME LOCFRAME = CTRANS(X,200)
When using for axis variables:
AXIS_VAR [7] = Y
If REDEF ... INIRE, INIPO, INICF, PRLOC changes the behavior of a GUD, LUD etc., then the MD11270 $MN_DEFAULT_VALUES_MEM_MASK must equal 1.

Clear alarm with NC START or RESET key and continue the program.

12270 [Channel %1:] Block %2 macro identifier %3 already defined

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string macro name

Definitions: The name of the macro to be selected by the instruction DEFINE is already defined in the control as:
Macro name
Keyword
Variable
Configured identifier.

Clear alarm with NC START or RESET key and continue the program.
12280 [Channel %1:] Block %2 maximum macro length %3 exceeded

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
The string of instructions on the right side of the macro is limited to 256 characters. If an attempt is made to define a longer character string under one macro (possible only through V.24 input of NC blocks, because communication between operator panel and NCK is limited to a block length of 242 characters), an alarm is displayed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Select DEFINE instruction with another macro name.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12290 [Channel %1:] Block %2 arithmetic variable %3 not defined

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string arithmetic variable

Definitions:
Only the R parameters are predefined as arithmetic variables. All other arithmetic variables must be defined with the DEF instruction before being used. The number of arithmetic parameters is defined via machine data. The names must be unambiguous and may not be repeated in the control (exception: local variables).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Define the required variable in the definition part of the program (possibly in the calling program if it is to be a global variable).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12300 [Channel %1:] Block %2 call-by-reference parameter missing on subroutine call %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
In the subroutine definition, a formal REF parameter (call-by-reference parameter) has been specified with no actual parameter assigned to it. The assignment takes place in the subroutine call on the basis of the position of the variable name and not on the basis of the name!
Example:
Subroutine: (2 call-by-value parameters X and Y, 1 call-by-reference parameter Z)
PROC XYZ (INT X, INT Y, VAR INT Z)
:
M17
ENDPROC
Main program:
N10 DEF INT X
N11 DEF INT Y
N11 DEF INT Z
:
N50 XYZ (X, Y); REF parameter Z missing
or
N50 XYZ (X, Z); REF parameter Z missing!

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.
Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Assign a variable to all REF parameters (call-by-reference parameters) of the subroutine when calling. No variable must be assigned to "normal" formal parameters (call-by-value parameters), as these are defaulted with 0.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12310 [Channel %1:] Block %2 axis parameter missing on procedure call %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
When calling the subroutine, an AXIS parameter is missing which, according to the EXTERN declaration, should be present. With the EXTERN instruction, user-defined subroutines (procedures) are made "known" that have a parameter transfer. Procedures without parameter transfer require no EXTERN declaration.
Example:
Subroutine XYZ (with the formal parameters):
PROC XYZ (INT X, VAR INT Y, AXIS A, AXIS B)
EXTERN instruction (with variable types):
EXTERN XYZ (INT, VAR INT, AXIS, AXIS)
Subroutine call (with actual parameters):
N10 XYZ (. , Y1, R_TISCH)
Variable X is defaulted with value 0
Variable Y is supplied with the value of the variable Y1 and returns the results to the calling program after the subroutine run
Variable A is supplied with the axis in R_TISCH
Variable B missing!

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.
12320 [Channel %1:] Block %2 parameter %3 is no variable

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
A constant or the result of a mathematical expression has been assigned to a REF parameter instead of a variable at the time of the subroutine call, even though only variable identifiers are allowed.

Examples:
- N10 XYZ (NAME_1, 10, OTTO) or
- N10 XYZ (NAME_1, 5 + ANNA, OTTO)

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Remove the constant or the mathematical expression from the NC block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12330 [Channel %1:] Block %2 type of parameter %3 incorrect

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
When calling a procedure (a subroutine) it is found that the type of the actual parameter cannot be converted into the type of the formal parameter. There are two possible cases:
- Call-by-reference parameter: Actual parameter and formal parameter must be of precisely the same type, e.g. STRING, STRING.
- Call-by-value parameter: Actual parameter and formal parameter can in principle be different providing conversion is basically possible. In the present case, however, the types are generally not compatible, e.g. STRING -> REAL.

Overview of type conversions:
- from REAL to: REAL: yes, INT: yes*, BOOL: yes1), CHAR: yes*, STRING: -, AXIS: -, FRAME: -
- from INT to: REAL: yes, INT: yes, BOOL: yes1), CHAR: if value 0 ...255, STRING: -, AXIS: -, FRAME: -
- from BOOL to: REAL: yes, INT: yes, BOOL: yes, CHAR: yes, STRING: -, AXIS: -, FRAME: -
- from CHAR to: REAL: yes, INT: yes, BOOL: yes1), CHAR: yes, STRING: yes, AXIS: -, FRAME: -
- from STRING to: REAL: -, INT: -, BOOL: yes2), CHAR: only if 1 character, STRING: yes, AXIS: -, FRAME: -
- from AXIS to: REAL: -, INT: -, BOOL: -, CHAR: -, STRING: -, AXIS: yes, FRAME: -
1) Value <> 0 corresponds to TRUE, value ==0 corresponds to FALSE.
2) String length 0 => FALSE, otherwise TRUE.

*) At type conversion from REAL to INT fractional values that are >=0.5 are rounded up, others are rounded down.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Check transfer parameters of the subroutine call and define the application accordingly as call-by-value or call-by-reference-parameter.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12340 [Channel %1:] Block %2 number of parameters too high %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
When calling a function or a procedure (predefined or user-defined) more parameters were transferred than defined.
Predefined functions and procedures: The number of parameters has been set permanently in the NCK.
User-defined functions and procedures: The number of parameters is established by type and name in the definition.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Check whether the correct procedure/function has been called. Program the number of parameters in accordance with the procedure/function.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12350 [Channel %1:] Block %2 parameter %3 no longer possible

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
An attempt has been made to transfer actual parameters although axis parameters located before them have not been assigned. For procedure or function calls, the assignment of parameters that are no longer required can be omitted if no more parameters are to be transferred subsequently. Example: N10 FGROUP(X, Y, Z, A, B); a max. of 8 axes possible The following call-by-value parameters would then be initialized with zero because the space-dependent assignment has been lost on account of the missing axis parameters. Axes that can be omitted and following parameters do not occur in the predefined procedures and functions.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. In predefined procedures and functions either remove the following parameters or transfer any preceding axis parameters. In user-defined procedures and functions, parameter transfer must be programmed in accordance with the instructions given in the machine manufacturer's programming guide.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12360 [Channel %1:] Block %2 dimension of parameter %3 incorrect

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
The following possibilities of error must be checked:
- The current parameter is an array, but the formal parameter is a variable
- The current parameter is a variable, but the formal parameter is an array

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Correct the NC part program in accordance with the cause of error as listed above.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12370 [Channel %1:] Block %2 range of values %3 not permissible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
A variable has been initialized with a value range outside an initialization block. The definition of program-global vari-
bables is allowed only in special initialization blocks. These variables can be initialized with a value range.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The cor-
rect block positions on the incorrect block.
Remove the value range specification (begins with the keyword OF) or define the variable as a global variable in the
initialization block and initialize it with a value range.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12380 [Channel %1:] Block %2 maximum memory capacity reached

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The data definitions in this block cannot be processed because the maximum available memory for creating the data
has been filled, or because the data block cannot accommodate any further data.

The alarm can also occur if several subroutine calls are executed in sequence and no block with an effect on the
machine is generated (motion, dwell, M function).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Reduce the number of variables, reduce the size of
arrays, or increase the capacity of the data management system.
- If new macro definitions are to be introduced -> Increase MD18160 $MN_MM_NUM_USER_MACROS
- If new GUD definitions are to be introduced -> Check MD18150 $MN_MM_GUD_VALUES_MEM, MD18130
$MN_MM_NUM_GUD_NAMES_CHAN, MD18120 $MN_MM_NUM_GUD_NAMES_NCK
- If the error occurs while executing an NC program with LUD definitions or when using cycle programs (the parameters
count as LUD variable of the cycle program), the following machine data must be checked:
MD28040 SMC.MM_LUD_VALUES_MEM,
MD18242 $MN_MM_MAX_SIZE_OF_LUD_VALUE,
MD18260 $MN_MM_LUD_HASH_TABLE_SIZE,
MD28020 SMC.MM_NUM_LUD_NAMES_TOTAL,
MD28010 SMC.MM_NUM_REORG_LUD_MODULES

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12390 [Channel %1:] Block %2 initialization value %3 cannot be converted

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
During initialization, a value has been assigned to a variable that does not correspond to the type of the variable, nor can it be converted to the data type of the variable.

Overview of type conversions:
- from REAL to REAL: no, INT: yes1), BOOL: yes, CHAR: yes2), STRING: -
- from INT to REAL: yes, INT: no, BOOL: yes, CHAR: yes2), STRING: -
- from BOOL to REAL: yes, INT: yes, BOOL: no, CHAR: yes, STRING: -
- from CHAR to REAL: yes, INT: yes, BOOL: yes, CHAR: no, STRING: yes
- from STRING to REAL: -, INT: -, BOOL: yes, CHAR: yes3), STRING: no

1) Value <> 0 corresponds to TRUE, value ==0 corresponds to FALSE.
2) String length 0 => FALSE, otherwise TRUE.
3) If only one character.

It is not possible to convert from type AXIS and FRAME nor into type AXIS and FRAME.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Define variable type such that the initialization value can be assigned, or
- Select initialization value in accordance with the variable definition.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12400 [Channel %1:] Block %2 field %3 element does not exist

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
The following causes are possible:
- Impermissible index list; an axis index is missing
- Array index does not match the definition of the variables
- An attempt was made to access a variable at array initialization via SET or REP; this attempt did not correspond to the standard access. Single character access, partial frame access, omitted indices not possible.

A non-existent element was addressed on initializing this array.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Array initialization: Check the array index of the addressed element. The 1st array element is given the index [0,0], the 2nd array element [0,1] etc. The right array index (column index) is incremented first.
In the 2nd row, the 4th element is also addressed with the index [1,3] (the indices start at zero).
Array definition: Check the size of the array. The 1st number indicates the number of elements in the 1st dimension (number of rows), the 2nd number indicates the number of elements in the 2nd dimension (number of columns).
An array with 2 rows and 3 columns must be defined by specifying [2,3].

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12410 [Channel %1:] Block %2 incorrect index type for %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: In assigning a value to an element of an array variable, the array index was specified in a way that is not allowed. Only the following are allowed as array index (in square brackets):
- Axis identifier, provided the array variable was defined as data type FRAME.
- Integer values for all other data types.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Correct indices of the array element with respect to variable definition or define the array variable differently.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12420 [Channel %1:] Block %2 identifier %3 too long

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. The symbol to be created or the target of program jumps (label) must conform to the system specifications, that means the name must begin with 2 letters (but the 1st sign must not be "$") and may be up to a maximum of 32 characters.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12430 [Channel %1:] Block %2 specified index is invalid

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: In specifying an array index (in the array definition) an index was used that is outside the permissible range.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Specify array index within the permissible range. Value range per array dimension: 1 - 32 767.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12440 [Channel %1:] Block %2 maximum number of formal arguments exceeded

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In the definition of a procedure (a subroutine) or in an EXTERN instruction, more than 127 formal parameters have been specified.
Example: PROC ABC (FORMPARA1, FORMPARA2, ..., FORMPARA127, FORMPARA128, ...) EXTERN ABC (FORMPARA1, FORMPARA2, ..., FORMPARA127, FORMPARA128, ...)

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. A check must be made to determine whether all parameters really have to be transferred. If so, the formal parameters can be reduced by using global variables or R parameters, or by grouping together parameters of the same type to form an array and transfer them in this form.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12450 [Channel %1:] Block %2 label defined twice

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The label of this block already exists.
If the NC program is compiled off-line, the entire program is compiled block for block. During this procedure all multiple labels are recognized; this is not always the case with on-line compilation. (Only the actual program run is compiled here, i.e. program branches that are not passed through in this run are disregarded and could therefore contain programming errors).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer is positioned on the block where the displayed label occurs for the 2nd time. Use the editor to search the part program where this label occurs for the 1st time, and change one of the names.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12460 [Channel %1:] Block %2 maximum number of symbols exceeded with %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
The max. number of variable definitions (GUD, LUD), macro definitions, cycle programs and/or cycle parameters (PROC instruction) that the controller's data management system is able to handle has been exceeded.
If this alarm occurs in conjunction with alarm 15175, not enough memory for the preprocessing of the cycle program definitions is available (PROC instruction).
If this alarm occurs in conjunction with alarm 15180, then this alarm shows the name of the file (INI or DEF file) causing the error.
(For a list of names of INI files and their meaning -> please refer to alarm 6010)

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Generally reduce the number of symbols in the affected block (possibly by using the array technique or by using R parameters), or adapt the corresponding machine data (see below).

MD28020 $MC_MM_NUM_LUD_NAMES_TOTAL with error in LUD blocks (i.e. if more variable definitions were made in the active part program than allowed by the MD).

GUD data blocks can cause errors as part of the 'initial.ini download' process (e.g. in the case of a series start-up) or by selective activation via PI service _N_F_COPY (activate GUD via HMI dialog). If alarm 15180 refers to a GUD definition file, then MD18120 $MN_MM_NUM_GUD_NAMES_NCK or MD18130 $MN_MM_NUM_GUD_NAMES_CHAN is set to a value that is too small.

Macros are loaded during POWER ON/NCK RESET or selectively via PI service _N_F_COPY (activate macro via HMI dialog). If alarm 15180 refers to a macro definition file, then MD18160 $MN_MM_NUM_USER_MACROS is set to a value that is too small.

Cycle program definitions (PROC instruction) are reloaded at each POWER ON/NCK RESET. In case of failure check parameter %3 to find out whether the name of the cycle program has caused the error - in this case, the value of MD18170 $MN_MM_NUM_MAX_FUNC_NAMES should be increased, or whether the name of a cycle call parameter has caused the error - in this case, the value of MD18180 $MN_MM_NUM_MAX_FUNC_PARAM should be increased.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12470 [Channel %1:] Block %2 G function %3 is unknown

Parameters: %1 = Channel number %2 = Block number, label %3 = Source string

Definitions: With indirectly programmed G functions, an invalid or non-allowed group number has been programmed. Allowed group number = 1, and 5 max. number of G groups. In the displayed block, a non-defined G function has been programmed. Only "real" G functions are checked, which begin with the address G, e.g. G555. "Named" G functions such as CSPLINE, BRISK etc. are interpreted as subroutine names.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. You should decide on the basis of the machine manufacturer's programming guide whether or not the displayed G function exists or is available, or whether a standard G function has been reconfigured (or introduced by an OEM). Remove G function from the part program or program function call in accordance with the machine manufacturer's programming guide.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12475 [Channel %1:] Block %2 invalid G function number %3 programmed

Parameters: %1 = Channel number %2 = Block number, label %3 = G code number

Definitions: A non-allowed G function number (parameter 3) has been programmed for a G group with indirect G code programming. Only the G function numbers indicated in the Programming Guide "Fundamentals", Section 12.3 "List of G functions/Path conditions" are allowed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12480 [Channel %1:] Block %2 subroutine %3 already defined

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: The name used in the PROC or EXTERN instruction has already been defined in another call description (e.g. for cycles).
Example: EXTERN CYCLE85 (VAR TYP1, VAR TYP2, ...)

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. A program name must be selected that has not yet been used as identifier. (Theoretically, the parameter declaration of the EXTERN instruction could also be adapted to the existing subroutine in order to avoid the alarm output. However, it would have been defined identically twice).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12481 [Channel %1:] Block %2 program attribute %3 not allowed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: The attribute used in the PROC instruction is not permitted in the current operating mode.
The attribute SAVE, for example, is not allowed in a technology cycle.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press button NC STOP and select the function "Compensation block" using softkey PROGAM CORRECT. The cursor jumps to the incorrect block. Then delete the invalid program attribute.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12490 [Channel %1:] Block %2 access permission level %3 is not valid

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: The desired access authorization, programmed with the keyword REDEF, has not been set. The desired protection level is either beyond the permitted value range or the protection level change is not allowed.
The protection level may be changed only if:
1. The current protection level is equal to or higher than the level originally defined, and
2. The new protection level is to be below the level originally defined.
The higher numerical values represent the lower protection levels. The lower 4 levels (from 7 to 4) correspond to the keyswitch positions, and the upper 4 levels are associated with 4 passwords.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Use the REDEF instruction only in the INITIAL_INI block
- Using the operator panel, set the current protection level to at least the same level as that of the variable with the highest level
- Program protection level within the permissible value range
- Only program new protection levels that are lower than the old values

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12495
[Channel %1:] Block %2 Change (definition) of data class %3 is not allowed here

Parameters:

- %1 = Channel number
- %2 = Block number, label
- %3 = Data class

Definitions:
Change of the data class in this ACCESS file or definition in this GUD file (for file name see alarm 15180) not possible.
Priority of the new data class may only be smaller or the same as that of the definition file. This means that DCS may only be programmed in SGUD (SACCESS), DCM not in UGUD and GUD9 (UACCESS), DCU not in GUD9. DCI is allowed in all GUD and ACCESS files.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program the data class of the area permissible for this GUD or ACCESS file.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12500
[Channel %1:] Block %2 in this module %3 is not possible

Parameters:

- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
The displayed keyword may not be used in this type of block and at this location (all files in the NCK are designated as blocks).
Block types:
- Program block
- Contains a main program or subroutine
- Data block
- Contains macro or variable definitions and possibly an M, H or E function
- Initialization block
- Contains only selected language elements for data initialization

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Remove the displayed language elements (keyword) with its parameters from this block and insert in the block provided for this purpose.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12510 [Channel %1:] Block %2 too many machine data %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions:
In the part program, in the machine data file (..._TEA) and in the initialization file (..._INI), no more than 5 machine data may be used per block.

Example:

N ...
N ...

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Divide up the part program block into several blocks.
- If necessary, use the local variable for storing intermediate results.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12520 [Channel %1:] Block %2 too many tool parameters %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions:
In the part program, in the tool offset file (..._TOA) and in the initialization file (..._INI), no more than 5 tool offset parameters may be used per block.

Example:

N ...
N ...

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Divide up the part program block into several blocks.
- If necessary, use the local variable for storing intermediate results.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12530 [Channel %1:] Block %2 invalid index for %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
In macro definitions, an attempt was made to define a G function with more than 3 decades or an M function with more than 2 decades as identifier of the macro.
Example:
_N_UMAC_DEF DEFINE G4444 AS G01 G91 G1234
DEFINE M333 AS M03 M50 M99
 M17

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Modify the macro definition in accordance with the Programming Guide.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12540 [Channel %1:] Block %2 Block is too long or too complex

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The maximum internal block length after translator processing must not exceed 256 characters. After editing, for example, several macros in the block or a multiple nesting, this limit can be exceeded.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Divide up the program block into several subblocks.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12550 [Channel %1:] Block %2 name %3 not defined or option/function not activated

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions:
The identifier displayed has not been defined before being used.
-
 _N_SMAC_DEF
 _N_MMAC_DEF
 _N_UMAC_DEF
 _N_MGUD_DEF
 _N_UGUD_DEF

Variable: DEF instruction is missing
Program: PROC declaration is missing
The T word cannot be interpreted in ISO mode 2,
$MN_EXTERN_DIGITS_TOOL_NO and $MN_EXTERN_DIGITS_OFFSET_NO are 0.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:

Press the NC Stop key and select the function "Compensation block" with the softkey PROGRAM CORRECT. The cursor positions itself on the incorrect block.
- Correct the name used (writing error)
- Check definitions of variables, subroutines and macros
- Declare subroutine with EXTERN, load subroutine to SPF-Dir
- Check interface definition of subroutine
- Check options. See also MD10711 $MN_NC_LANGUAGE_CONFIGURATION.

Program Continuation:

Clear alarm with NC START or RESET key and continue the program.

12552

[Channel %1:] Block %2 tool/magazine OEM parameter not defined. Option not set. Option not set.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- The programmed $TC_... Cx system variable is not known in the control.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the name used (writing error)
- $TC_DPCx, $TC_TPCx, $TC_MOPCx, $TC_MAPCx, $TC_MPPCx; $TC_DPCSx, $TC_TPCSx, $TC_MOPCSx, $TC_MAPCSx, $TC_MPPCSx; with x=1,...10
- These are the OEM parameters of the tools magazines, The corresponding machine data value is set to < 10, or the option 'TM OEM parameters' has not been set.
- Use correct parameter number, or - if the name cannot be changed - set machine data correction (see MD18096 $MN_MM_NUM_CC_TOA_PARAM, ... MD18206 $MN_MM_NUM_CCS_TOA_PARAM, ...).
- Check the option (machine data are only effective when the option is enabled).

Program Continuation:

Clear alarm with NC START or RESET key and continue the program.

12553

[Channel %1:] Block %2 name %3 option/function is not active

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source symbol

Definitions:
- The option (if MD10711 $MN_NC_LANGUAGE_CONFIGURATION = 1) or the NC function (if MD10711 $MN_NC_LANGUAGE_CONFIGURATION = 3) related to this language command is not active.
- But the name of the language command is known.
- Each programming of this language command is rejected with this alarm.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Press the NC Stop key and select the "Compensation block" function by pressing the PROGRAM CORRECT softkey.
- The cursor positions itself on the incorrect block.
- Correct the name used (in the case of a typing error).
- Activate the NC function (if a language command of an inactive function has been programmed).
- Enable the option required (if a language command of a function with a non-enabled option has been programmed).
- See also MD10711 $MN_NC_LANGUAGE_CONFIGURATION.

Program Continuation:

Clear alarm with NC START or RESET key and continue the program.
12554 [Channel %1:] Block %2 replacement cycle %3 for the predefined procedure is missing.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Cycle name

Definitions: The replacement cycle that is to be called instead of the predefined procedure is not present / unknown in the control.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press the NC stop key and select the "Compensation block" function by pressing the PROGRAM CORRECT softkey. The cursor will position itself in the faulty block.
- Correct the name used for the predefined procedure (write error)
- Or load the replacement cycle into one of the cycle directories (+ restart)
- Or set the machine data bit for the predefined procedure in MD11754 $MN_COUPLE_CYCLE_MASK to 0 so that the predefined procedure is executed again.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12555 [Channel %1:] Block %2 function not available (identification %3)

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Fine ID

Definitions: The identifier has not been defined for this system.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press the NC stop key and select the "Compensation block" function by pressing the "Program correct" softkey. The correction indicator will position in the incorrect block.
- Correct the name used (write error)
- Use a better software system in case of malfunction
- Check the definition of variables, subroutines and macros
- Declare a subroutine with EXTERNAL; load the subroutine to SPF-Dir
- Check the interface definition of the subroutine

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12556 [Channel %1:] Block %2 name %3 Name is already known

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions: The name of the symbol to be created is part of the NC language scope and therefore already known. Although the NC function is not active, this name can no longer be used for GUDs, macros and PROC definitions.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press key NC Stop and select "Correction block" function by pressing softkey "Program correct". The correction indicator is set to the incorrect block.
- Correct the name used (typing error)
- With MD10711 $MN_NC_LANGUAGE_CONFIGURATION = 2 or 4, only those language commands are created, the option of which has been set or the function of which is active.
NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12560 [Channel %1:] Block %2 programmed value %3 exceeds allowed limits

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions: In a value assignment, the permissible value range of the data type has been exceeded.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Assign value within the value range of the various data types, or if necessary use another type in order to increase the size of the value range, e.g. INT -> REAL.

Value ranges of the various variable types:
- REAL: Property: Fractional number with dec. pt., value range: +/- (2-1022 - 2 + 1023)
- INT: Property: Integers with signs, value range: +/- (231 - 1)
- BOOL: Property: Truth value TRUE, FALSE, value range: 0, 1
- CHAR: Property: 1 ASCII character, value range: 0-255
- STRING: Property: Character string (max. 100 values), value range: 0-255
- AXIS: Property: Axis addresses, value range: Axis names only
- FRAME: Property: Geometric information, value range: As for axis paths

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12573 [Channel %1:] Block %2 motion-synchronous action: Call by reference parameters not allowed %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source text area

Definitions: Call by reference parameters (keyword VAR) are not possible with technology cycles.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct PROC instruction of technology cycle.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12586 [Channel %1:] Block %2 motion synchronous action: type conflict in variable %3

Parameters:
%1 = Channel number
%2 = Block number
%3 = Source symbol

Definitions:
Type conversion is not possible for online variables $A.. or $V.., which are evaluated or written in the interpolation cycle. Only variables of the same type can be linked or assigned to one another.

Example 1:
WHENEVER $AA IM[X] > $A IN[1] DO ...
An online variable of the REAL type (actual value) cannot be compared with a variable of the BOOL type (digital input)
The operation is possible if the following change is made:
WHENEVER $AA IM[X] > $A INA[1] DO ...
Example 2:
WHENEVER ... DO SAC_MARKER[1]=$AA IM[X]-$AA_MM[X]
Improvement:
WHENEVER ... DO SAC_PARAM[1]=$AA IM[X]-$AA_MM[X]

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program: Use variables of the same type.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12587 [Channel %1:] Block %2 motion synchronous action: operation/function %3 not allowed

Parameters:
%1 = Channel number
%2 = Block number
%3 = Operator/function

Definitions:
The specified function / operator is not permissible for logic operations of real-time variables in motion synchronous actions. The following operators/functions are permissible:
- . <= >= << >> < > + - * /
- DIV MOD
- AND OR XOR NOT
- B_AND B_OR B_XOR B_NOT
- SIN COS TAN ATAN2 SQRT POT TRUNC ROUND ABS EXP LNX SPI

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12588 [Channel %1:] Block %2 motion synchronous action: address %3 not allowed

Parameters:
%1 = Channel number
%2 = Block number
%3 = Address

Definitions:
- The specified address cannot be programmed in motion-synchronous actions. Example: ID = 1 WHENEVER $A IN[1] == 1 DO D3
- The cutting edge cannot be changed out of a motion-synchronous action.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12589 \[Channel %1: \] Block %2 motion synchronous action: variable %3 not allowed with modal ID

Parameters: %1 = Channel number
%2 = Block number
%3 = Variable name

Definitions: The modal ID in motion synchronous action must not be formed by means of an on-line variable.
Examples:
This can be corrected in the following way:
R10 = $AC_MARKER[1]
The ID in a synchronous action is always permanent, and cannot be changed in the interpolation cycle.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program: Replace the on-line variable by an arithmetic variable.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12590 \[Channel %1: \] Block %2 global user data cannot be created

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The number of global user data blocks is defined in MD18118 $MN_MM_NUM_GUD_MODULES.
Here, _N_SGUD_DEF corresponds to block 1, _N_MGUD_DEF corresponds to block 2, _N_UGUD_DEF corre-
sponds to block 3, _N_GUD4_DEF corresponds to block 4 etc.
In the directory _N_DEF_DIR there is a file with definitions for global user data, the block number of which is greater
than the number of blocks given in the MD.
The alarm may, however, also be caused by value zero in one of MD18120 $MN_MM_NUM_GUD_NAMES_NCK,
MD18130 $MN_MM_NUM_GUD_NAMES_CHAN and by the definition of a variable with NCK or CHAN in one of the
GUD definition files.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Increase MD18118 $MN_MM_NUM_GUD_MODULES.
Or, if it already has the correct value, check whether MD18120 $MN_MM_NUM_GUD_NAMES_NCK (if a variable has
been defined with attribute NCK) or MD18130 $MN_MM_NUM_GUD_NAMES_CHAN (if a variable has been defined
with attribute CHAN) is not zero.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12600 \[Channel %1: \] Block %2 invalid line checksum

Parameters: %1 = Channel number
%2 = Block number

Definitions: On processing an INI file or when executing a TEA file, an invalid line checksum has been detected.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
12610 [Channel %1:] Block %2 accessing single character with call-by-reference parameter not possible %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: An attempt has been made to use a single character access for a call-by-reference parameter.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Temporarily store single characters in user-defined CHAR variable and transfer this.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12620 [Channel %1:] Block %2 accessing this variable as single character not possible %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: The variable is not a user-defined variable. The single character access is only allowed for user-defined variables (LUD/GUD).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Temporarily store variable in user-defined STRING, process this and put back into storage.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12630 [Channel %1:] Block %2 skip ID/label in control structure not allowed

Parameters:
%1 = Channel number
%2 = Block number

Definitions: Blocks with control structures (FOR, ENDIF, etc.) cannot be concealed and must not contain any labels.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program: Reproduce skip ID via an IF query. Write the label alone in the block before the control structure block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12640 [Channel %1:] Block %2 invalid nesting of control structures
Parameters:
%1 = Channel number
%2 = Block number
Definitions:
Error in program run: Opened control structures (IF-ELSE-ENDIF, LOOP-ENDLOOP etc.) are not terminated or there is no beginning of loop for the programmed end of loop.
Example:
LOOP ENDIF ENDLOOP
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals set.
Alarm display.
Remedy:
Correct part program in such a way that all opened control structures are also terminated.
Program Continuation:
Clear alarm with the RESET key. Restart part program

12641 [Channel %1:] Block %2 maximum nesting depth of control structures exceeded
Parameters:
%1 = Channel number
%2 = Block number
Definitions:
Max. nesting depth control structures (IF-ELSE-ENDIF, LOOP-ENDLOOP etc.) exceeded. At the present time, the max. nesting depth is 8.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals set.
Alarm display.
Remedy:
Correct part program. If necessary, move parts to a subroutine.
Program Continuation:
Clear alarm with the RESET key. Restart part program

12650 [Channel %1:] block %2 axis identifier %3 different in channel %4
Parameters:
%1 = Channel number
%2 = Block number
%3 = Source symbol
%4 = Channel number with different axis definition
Definitions:
In cycles that are preprocessed at Power On, only those geometry and channel axis identifiers may be used that exist in all channels with the same meaning. In different channels, different axis indices are assigned to the axis identifier. The axis identifiers are defined via MD20060 $MC_AXCONF_GEOAX_NAME_TAB and MD20080 $MC_AXCONF_CHANAX_NAME_TAB. Example: C is the 4th channel axis in channel 1 and the 5th channel axis in channel 2.
If the axis identifier C is used in a cycle that is preprocessed at Power On, then this alarm is issued.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals set.
Alarm display.
Remedy:
Please inform the authorized personnel/service department.
1. Modify machine data: Select the same identifiers for geometry and channel axes in all channels. Example: The geometry axes are called X, Y, Z in all channels. They can then also be programmed directly in preprocessed channels.
2. Do not program the axis directly in the cycle but define it as a parameter of the axis type. Example: Cycle definition: PROC DRILL(AXIS DRILLAXIS) G1 AX[DRILLAXIS]=10 F1000 M17 Call from the main program:
DRILL(Z)

Clear alarm with the RESET key. Restart part program.

12660 [Channel %1:] Block %2 motion synchronous action: variable %3 reserved for motion synchronous actions and technology cycles

Parameters:
- %1 = Channel number
- %2 = Block number
- %3 = Variable name

Definitions:
The displayed variable may only be used in motion synchronous actions or in technology cycles. For example, '$R1' may only be used in motion synchronous actions. In standard part programs R parameters are programmed with R1.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12661 [Channel %1:] Block %2 technology cycle %3: no further subprogram call possible

Parameters:
- %1 = Channel number
- %2 = Block number
- %3 = Name of the technology cycle call

Definitions:
In a technology cycle it is not possible to call a subroutine or another technology cycle.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12700 [Channel %1:] Block %2 contour definition programming not allowed as modal subprogram is active

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In the external language mode, a block is programmed with contour definition and a modal cycle is active at the same time. Because of unclear address assignment (e.g. \(R = \) radius for contour definition or return plane for drilling cycle) contour definition programming must not be used when a modal cycle is active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12701 [Channel %1:] Block %2 illegal interpolation type for contour definition active

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: In one contour definition block, G01 is not active as interpolation function. In one contour definition block, the linear interpolation always has to be selected with G01. G00, G02, G03, G33 etc. are not permitted.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program. Program linear interpolation G01.
Program Clear alarm with NC START or RESET key and continue the program.

Program Continuation:

12710 [Channel %1:] Block %2 illegal language element in external language mode

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The programmed language element is not allowed or unknown in external language mode. Only the language elements from Siemens mode which are used for subprogram calls (except for Lxx) and the language constructs for program repetition with REPEAT (UNTIL) are allowed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Check that the language command is available in Siemens mode. Switch to Siemens mode with G290. Program the command in the next block and switch back to the external language mode in the following block.
Program Clear alarm with NC START or RESET key and continue the program.

Program Continuation:

12720 [Channel %1:] Block %2 program number for macro call (G65/G66) missing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: During macro call with G65/G66 no program number was defined. The program number must be programmed with address "P".

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Program Clear alarm with NC START or RESET key and continue the program.

Program Continuation:

12722 [Channel %1:] Block %2 multiple ISO_2/3 macro or cycle calls in the block

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: A mixture of cycle and macro calls are programmed in a block, e.g. cycle calls with G81 - G89 together with an M macro in the block or a G65/G66 macro call together with M macros in the block. G05, G08, G22, G23, G27, G28, G29, G30, G50.1, G51.1, G72.1, G72.2 functions (ISO mode) also execute subroutine calls. Only one macro or cycle call can appear in an NC block.

NCK alarms

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Deactivate modal cycles or modal macro calls if one of the above mentioned G functions has been programmed.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12724

[Channel %1:] Block %2 no radius programmed for cylinder interpolation activation/deactivation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When programming G07.1 (cylinder interpolation TRACYL), no cylinder radius has been programmed. Selection of the cylinder interpolation (TRACYL) with G07.1 C <cylinder radius> deselect with G07.1 C0. For "C" the name of the rotary axis defined in the TRACYL machine data has to be programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
G07.1 block, program the cylinder radius under the name of the rotary axis for the cylinder interpolation.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12726

[Channel %1:] Block %2 illegal plane selection with parallel axes

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In a block with plane selection (G17 _ G19), a basic axis of the coordinate system must not be programmed together with the parallel axis assigned to it.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
For plane selection with G17, G18, G19 either program the basic axis of the coordinate system or the assigned parallel axis.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12728

[Channel %1:] Block %2 distance for double turret not set

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tool clearance for the double turret head in the SD42162 $SC_EXTERN_DOUBLE_TURRET_DIST is 0.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Enter tool clearance for the double turret head in the SD42162 $SC_EXTERN_DOUBLE_TURRET_DIST.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12730 [Channel %1:] Block %2 no valid transformation machine data parameterized

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The machine data MD24100 $MC_TRAFO_TYPE_1, MD24110 $MC_TRAFO_AXES_IN_1[1], MD24210 $MC_TRAFO_AXES_IN_2[1] are incorrectly set for G07.1, G12.1.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Enter valid transformation identifier for TRACYL in MD24100 $MC_TRAFO_TYPE_1 and the rotary axis number in MD24110 $MC_TRAFO_AXES_IN_1[1] or MD24210 $MC_TRAFO_AXES_IN_2[1].

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12740 [Channel %1:] Block %2 modal macro call %3 not possible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
When calling a modal macro no other modal macro, modal cycle or modal subroutine may be active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14000 [Channel %1:] Block %2 illegal end of file

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm 14000 is output in the following situations:
- Parts program was not terminated with M30, M02 or M17.
- Executing from external: Download was aborted (e.g. because HMI was switched off).

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- End parts program with M30, M02 or M17 and start parts program.
- Executing from external: If the download for the selected program was aborted, the default program _N_MPFO is automatically selected with RESET. The selection of the user program must be repeated after that.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

14001 [Channel %1:] Block %2 illegal end of block

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
After system-internal data manipulation (e.g. when reloading from an external source) a part file can end without having LF as the last character.
14005 [Channel %1:] Block %2 program %3 program-specific start disable has been set

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Program name

Definitions:
Program %3 cannot be executed, as the program-specific start disable has been set for this file.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Reset the program-specific start disable for file %3.

Program Continuation:
Clear alarm with the Delete key or NC START.

14006 [Channel %1:] Block %2 invalid program name %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Program name

Definitions:
When selecting or calling an NC program it was found that the program name did not follow NC conventions:
- The length of the program name, without prefix _N_ and Suffix _MPF / _SPF, must not exceed 24 characters, as otherwise the program name is truncated in the OPI variables.

Reaction:
Alarm display.

Remedy:
- Shorten the name of the program.
- Suppress the alarm with MD 11415 $MN_SUPPRESS_ALARM_MASK_2 bit 9.

Program Continuation:
Clear alarm with the Delete key or NC START.

14008 [Channel %1:] Block %2 WRITE command writes in the temporary memory area in /_N_EXT_DIR

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A workpiece is executed from an external data register (Execute from external drives function). The part programs are temporarily stored in the NCK directory /_N_EXT_DIR. An attempt is now made to write in this temporary directory with a WRITE command. The alarm is intended to indicate that this data is not stored in the original directory on the external data carrier, and will be lost at the next part program selection because the programs in the directory /_N_EXT_DIR will then be deleted.

Reaction:
Alarm display.

Remedy:
State a directory that remains permanently loaded in the NCK as the target for the WRITE command (e.g. MPF_DIR). The alarm can be suppressed with MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 8.

Program Continuation:
Clear alarm with the Delete key or NC START.
14009 [Channel %1:] Block %2 illegal program path %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Program path

Definitions: The part program command CALLPATH was called with a parameter (program path) referring to a directory which does not exist in the file system of the NCK.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
- Modify the CALLPATH instruction such that the parameter contains the complete path name of the loaded directory.
- Load the programmed directory in the file system of the NCK.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14010 [Channel %1:] Block %2 invalid default parameter in subroutine call

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: In a subroutine call with parameter transfer, parameters have been omitted that cannot be replaced by default parameters (call-by-reference parameters or parameters of type AXIS. The other missing parameters are defaulted with the value 0 or with the unit frame in the case of frames).

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: The missing parameters must be provided with values in the subroutine call.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14011 [Channel %1:] Block %2 program %3 not existing or will be edited

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Program name

Definitions: A subroutine call was aborted because the called subroutine could not be opened. The subroutine call can be executed via
- subroutine designator
- CALL / PCALL / MCALL command
- SETINT command
- M/T function replacement
- event-driven program calls (PROG_EVENT)
- selection of a PLC ASUB via PI "_N_ASUP__" and/or FB-4
- calling a PLC ASUB via interrupt interface (FC-9)

There are various reasons for the alarm:
- the subroutine is not in the parts program memory the subroutine
- the subroutine is not in the search path (selected directory, _N_SPF_DIR or cycle directories _N_CUS_DIR, _N_CMA_DIR, _N_CST_DIR
- the subroutine has not been released or is being edited
- faulty absolute path name in subroutine call:
 Examples of complete path names: /_NDirectoryName_DIR/_N_programmName_SPF or /_N_WKS_DIR/_N_wpdName_WPD/_N_programmName_SPF. directoryName: MPF, SPF, CUS, CMA, CST (predefined directories). wpdName: application-specific designator for workpiece directories (max. of 24 signs). programmName: Name of subroutine (max. of 24 signs).

- A reload buffer for executing from external was called as subroutine.

Note: Unknown designators (string) found in the parts program line by themselves, are interpreted as subroutine calls.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Ensure that the subroutine (alarm parameter %3)
- is available in the parts program memory
- has been released and is not being edited
- is available in the search path if not being called via an absolute path name.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14012 [Channel %1:] Block %2 maximum subroutine level exceeded

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The maximum nesting depth of 8 program levels has been exceeded.
Subroutines can be called from the main program, and these in turn may have a nesting depth of 7.
In interrupt routines the maximum number of levels is 4!

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify the machining program so that the nesting depth is reduced, e.g. using the editor copy a subroutine of the next nesting level into the calling program and remove the call for this subroutine. This reduces the nesting depth by one program level.

Program Continuation: Clear alarm with the RESET key. Restart part program.

14013 [Channel %1:] Block %2 number of subroutine passes invalid

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In a subroutine call the programmed number of passes P is zero or negative.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program number of passes between 1 and 9 999.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14014 [Channel %1:] Selected program %3 not available or will be edited

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Program name

Definitions: The selected parts program is not in the NCK memory or the access authorization for the program selection is from a higher level than the current control status.
During creation, this program received the protection level of the NC control which was active at the time.
In SW 5 or higher a program edited on HMI can no longer be started with NC Start.
The alarm will also be issued, if a file other than the specified definition file has been selected for the GUD or macro definition.

Reaction: Alarm display.

Remedy: Reload the program in the NCK memory or check and correct the name of the directory (workpiece overview) and the program (program overview) and reselect.
NCK alarms

Program Continuation: Clear alarm with the Delete key or NC START.

14015 [Channel %1:] Block %2 program %3 is not enabled

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Program name

Definitions:
The execution right currently set in the control (e.g. key switch position 0) is inadequate to execute part program %3.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Raise the execution right to match the protection level of part program %3
- Assign a lower protection level to part program %3 or release (key switch protection level 0)

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14016 [Channel %1:] Block %2 error when calling the subroutine via M/T function

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The following conflict was detected in a subprogram call per M or T function:
In the block referenced by parameter %2:
- An M or T function replacement has already been activated
- A modal subprogram call is active
- A subprogram return jump is programmed
- An end of program is programmed
- An M98 subprogram call is active (only in external language mode)
- T function replacement by D function programming in the same part program line is not possible with active TLC (G43/G44) in ISO2 system.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
An M or T function replacement is only possible if a subprogram call or return jump has not already been performed as a result of other program constructs. The part program must be corrected accordingly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14017 [Channel %1:] Block %2 syntax error when calling the subroutine via M function

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
When calling M code subroutine with parameter transfer, an illegal syntax was detected:
- Address extension not programmed as a constant.
- M function value not programmed as a constant.

Note:
If a parameter transfer has been programmed via MD10718 $MN_M_NO_FCT_CYCLE_PAR for an M function replacement, the following restriction applies to this M function: both the address extension and the M function value must be programmed for replacement as constants.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Change the programming of the M function.

NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14018 [Channel %1:] Block %2 parts program command %3 not executable (protection level setpoint value / actual value: %4)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Programmed command
%4 = Protection level of the command / current protection level

Definitions: To parts program command %3, a protection level has been assigned that is logically higher (smaller in value) than the current access right, or the command does not exist in the current control configuration.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify parts program. Please see the Siemens Programming Guide or OEM documentation for the language commands permissible for the relevant system configuration.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14020 [Channel %1:] Block %2 wrong value or wrong number of parameters on function or procedure call

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
- An illegal parameter value was specified in a function or procedure call.
- An illegal number of actual parameters was programmed in a function or procedure call.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14021 [Channel %1:] Block %2 wrong value or wrong number of parameters on function or procedure call

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
- An illegal parameter value was specified in a function or procedure call.
- An illegal number of actual parameters was programmed in a function or procedure call.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation: Clear alarm with the RESET key. Restart part program.
14022 [Channel %1:] Block %2 error on function or procedure call, error code %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions:
An error occurred during a function or procedure call.
The cause of the error is indicated more closely by an error code.
The meaning of the error code can be found in the documentation of the function or procedure that caused the error.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14025 [Channel %1:] Block %2 motion synchronous action: illegal modal ID

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In modal motion synchronous actions an illegal ID number has been assigned.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

14026 [Channel %1:] Block %2 motion synchronous action: invalid polynomial number in the FCTDEF command

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An FCTDEF command was programmed with a polynomial number that exceeds the maximum value set in MD28252 $MC_MM_NUM_FCTDEF_ELEMENTS.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

14027 [Channel %1:] Block %2 motion-synchronous action: Too many technology cycles programmed.

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
You can call a maximum of eight technology cycles with one motion-synchronous action. You exceeded the upper limit.
14028 [Channel %1:] Block %2 motion-synchronous action: Technology cycle programmed with too many parameters

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Maximum number of transfer parameters for one technology cycle exceeded.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14030 [Channel %1:] Block %2 combine OSCILL and POSP during oscillation with infeedmotion

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When oscillating controlled by synchronized actions, the assignment of oscillating and infeed axis (OSCILL) as well as the definition of the infeed (POSP) must be carried out in one NC block.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14040 [Channel %1:] Block %2 error in end point of circle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In circular interpolation, either the circle radii for the initial point and the end point are further apart, or the circle center points are further apart, than specified in the machine data.
1. In circle radius programming the starting and end points are identical, thus the circle position is not determined by starting and end points.
2. Radii: The NCK calculates from the present start point and the other programmed circle parameters the radii for the start and the end point.
 An alarm message is issued if the difference between the circle radii is either
 - greater than the value in the MD21000 $MC_CIRCLE_ERROR_CONST (for small radii, if the programmed radius is smaller than the quotient of the machine data MD21000 $MC_CIRCLE_ERROR_CONST divided by MD21010 $MC_CIRCLE_ERROR_FACTOR), or
 - greater than the programmed radius multiplied by the MD21000 $MC_CIRCLE_ERROR_FACTOR (for large radii, if the programmed radius is greater than the quotient of the machine data MD21000 $MC_CIRCLE_ERROR_CONST divided by MD21000 $MC_CIRCLE_ERROR_FACTOR).
3. Center points: A new circle center is calculated using the circle radius at the starting position. It lies on the mid-perpendicular positioned on the connecting straight line from the starting point to the end point of the circle. The angle in the radian measure between both straight lines from the starting point to the center calculated/programmed as such must be lower than the root of 0.001 (corresponding to approx. 1.8 degrees).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Check MD21000 $MC_CIRCLE_ERROR_CONST and MD21000 $MC_CIRCLE_ERROR_FACTOR. If the values are within reasonable limits, the circle end point or the circle mid-point of the part program block must be programmed with greater accuracy.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

14045

[Channel %1:] Block %2 error in tangential circle programming

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- The alarm may have the following causes:
 - The tangent direction is not defined for tangent circle, e.g. because no other travel block has been programmed before the current block. No circle can be formed from start and end point as well as tangent direction because - seen from the start point - the end point is located in the opposite direction to that indicated by the tangent.
 - It is not possible to form a tangent circle since the tangent is located perpendicular to the active plane.
 - In the special case in which the tangent circle changes to a straight line, several complete circular revolutions were programmed with TURN.

Reaction:
- Correction block is reorganized.
- Local alarm reaction.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
- Modify part program.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

14048

[Channel %1:] Block %2 wrong number of revolutions in circle programming

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- In the circle programming, a negative number of full revolutions has been specified.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program.

Program Continuation:
- Clear alarm with the RESET key. Restart part program
14050

[Channel %1:] Block %2 nesting depth for arithmetic operations exceeded

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
For calculating arithmetic expressions in NC blocks, an operand stack with a fixed set size is used. With very complex expressions, this stack can overflow. This may also occur with extensive expressions in synchronized actions.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Divide up complex arithmetic expressions into several simpler arithmetic blocks.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14051

[Channel %1:] Block %2 arithmetic error in part program

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
- In calculating an arithmetic expression, an overflow has occurred (e.g. division by zero)
- In a data type, the representable value range has been exceeded

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Analyze the program and correct the defective point in the program.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14055

[Channel %1:] Block %2 impermissible NC language substitution, error code %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions:
This alarm occurs in conjunction with an NC language substitution configured in MD30465 $MA_AXIS_LANG_SUB_MASK. Error code %3 gives more detailed information about the cause of the problem:
Error code:
1: Several events had been programmed, causing the replacement cycle to be called. Only one substitution is allowed per part program line.
2: A non-modal synchronized action had also been programmed for the part program line with the NC language substitution.
3: The system variables SP_SUB_SPOSIT and SP_SUB_SPOSMODE were called outside a replacement cycle.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Modify the NC program

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:
NCK alarms

14060
[Channel %1:] Block %2 invalid skip level with differential block skip

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
With "Differential block skip", a skip level greater than 7 has been specified. (In packet 1 specification of a value for the skip level is rejected by the converter as a syntax error, i.e. the only possibility is a "Suppress block" ON/OFF on one level).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Enter a skip level (number behind the slash) less than 8.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14070
[Channel %1:] Block %2 memory for variables not sufficient for subroutine call

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A called subroutine cannot be processed (opened), either because the internal data memory to be created for general purposes is not large enough, or because the available memory for the local program variables is too small. The alarm can only occur in MDI mode.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Analyze the part program section:
 1. Has the most useful data type always been selected in the variable definitions? (For example REAL for data bits is poor; BOOL would be better)
 2. Can local variables be replaced by global variables?

Program Continuation:
Clear alarm with the RESET key. Restart part program.

14080
[Channel %1:] Block %2 jump destination %3 not found

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Jump destination

Definitions:
In conditional and unconditional jumps, the jump destination within the program must be a block with a label (symbolic name instead of block number). If no jump destination has been found with the given label when searching in the programmed direction, an alarm is output.

For parameterizable returns with RET to block number or label, the jump destination within the program must be a block with the block number or label (symbolic name instead of block number).

For returns over several levels (parameter 2), the jump destination must be a block within the program level you jumped to.

For returns with a string as return destination, the search string must be a name known in the control and the search string must be preceded in the block by a block number and/or a label only.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Check NC part program for the following possible errors:
 1. Check whether the target designation is identical with the label.
 2. Is the jump direction correct?
 3. Has the label been terminated with a colon?

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14082 [Channel %1:] Block %2 label %3 program section not found
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Start or end label
Definitions:
The start point for repetition of the program part with CALL <program name> BLOCK <start label> TO <end label> has not been found or the same program part repetition has been called recursively.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Check the start and end labels for programming repetition in the user program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14085 [Channel %1:] Block %2 instruction not allowed
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The instruction 'TML()' may only be used in the subprogram, which replaces the T command.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14088 [Channel %1:] Block %2 axis %3 doubtful position
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions:
An axis position larger than 3.40e+38 increments has been programmed. This alarm can be suppressed with bit11 in MD11410 $MN_SUPPRESS_ALARM_MASK.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14091 [Channel %1:] Block %2 illegal function, index %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Index

Definitions:
A function has been programmed or triggered which is not permitted in the current program context. The function in question is encoded in the "index" parameter:

Index == 1: "RET" command was programmed in the main program level
Index == 2: Conflict between "Cancel level"/"Clear number of passes" and "Implicit GET"
Index == 3: Conflict ASUB start immediately after selection of overstore (up to P3)
Index == 4: MD10760 $MN_G53_TOOLCORR = 1 : SUPA/G153/G53 programmed in G75
Index == 5: POSRANGE command not programmed in synchronized action
Index == 6: SIRELAY command not programmed in synchronized action
Index == 7: GOTO/GOTO/GOTO command programmed with string variable in synchronized action.
Index == 8: COA application "Cutting generator" not active
Index == 9: Tool radius compensation active in G75
Index == 10: Number of return levels too big, with RET (...xy) across several program levels

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Index == 1: Substitute "RET" command with M17/M30
Index == 2: Insert an auxiliary block (e.g. M99) after the subroutine call to which the "Cancel level"/"Clear number of passes" refers
Index == 3: Overstore an auxiliary block (e.g. M99), then start ASUB (up to P3)
Index == 4: With MD10760 $MN_G53_TOOLCORR = 1: Do not activate SUPA/G53/G153 in the G75 block
Index == 5: Program POSRANGE command in synchronized action
Index == 6: Program SIRELAY command in synchronized action
Index == 7: Program GOTO/GOTO/GOTO command with block number or label
Index == 8: Load COA application "Cutting generator"
Index == 9: Tool radius compensation active in G75

Program Continuation:
Clear alarm with the RESET key. Restart part program

14092 [Channel %1:] Block %2 axis %3 is wrong axis type

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
One of the following programming errors has occurred:
1. The keyword WAITP(x) "Wait with block change until the specified positioning axis has reached its end point" has been used for an axis that is not a positioning axis.
2. G74 "Reference point approach from the program" has been programmed for a spindle. (Only axis addresses are permitted).
3. The keyword POS/POSA has been used for a spindle. (The keywords SPOS and SPOSA must be programmed for spindle positioning).
4. If the alarm occurs with the "Rigid tapping" function (G331), the following causes are conceivable:
 - The master spindle is not in position-controlled mode.
 - Incorrect master spindle.
 - Master spindle without encoder
5. An axis name was programmed which no longer exists (e.g. when using axial variables as an index). Or NO_AXIS has been programmed as an index.
6. If 14092 is output as a note with alarm 20140 Motion-synchronous action: traversing of command axis, the following causes are possible:
 - The axis is currently being traversed by the NC program already.
 - An overlaid movement is active for the axis.
 - The axis is active as following axis of a coupling.
 - An interpolation compensation such as a temperature compensation is active for the axis.
14093 [Channel %1:] Block %2 path interval <= 0 with polynomial interpolation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In the polynomial interpolation POLY, a negative value or 0 has been programmed under the keyword for the polynomial length PL=...

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Correct the value given in PL = ...

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:
Clear alarm with NC START or RESET key and continue the program.

14094 [Channel %1:] Block %2 polynomial degree greater than 3 programmed for polynomial interpolation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The polynomial degree in the polynomial interpolation is based on the number of programmed coefficients for an axis.
The maximum possible polynomial degree is 3, i.e. the axes are according to the function:
f(p) = a_0 + a_1 p + a_2 p^2 + a_3 p^3
The coefficient a_0 is the actual position at the start of interpolation and is not programmed!

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Reduce the number of coefficients. The polynomial block may have a form no greater than the following:
N1 POLY PO[X]=(1.11, 2.22, 3.33) PO[Y]=(1.11, 2.22, 3.33)
N1 PO[X]=... PL=44
n ... n ... axis identifier, max. 8 path axes per block

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:
Clear alarm with NC START or RESET key and continue the program.
14095 [Channel %1:] Block %2 radius for circle programming too small

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The radius entered for radius programming is too small, i.e. the programmed radius is smaller than half of the distance between start and end point.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14096 [Channel %1:] Block %2 illegal type conversion

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
During the program run, a variable value assignment or an arithmetic operation has caused data to be processed in such a way that they have to be converted to another type. This would lead to the value range being exceeded.

Value ranges of the various variable types:
- REAL: Property: Fractional number with dec. pt., value range: +/- (2-1022-2+1023)
- INT: Property: Integers with signs, value range: +/- (231-1)
- BOOL: Property: Truth value TRUE, FALSE, value range: 0,1
- CHAR: Property: 1 ASCII character, value range: 0-255
- STRING: Property: Character string (max. 100 values), value range: 0-255
- AXIS: Property: Axis addresses, value range: Axis names only
- FRAME: Property: Geometric information, value range: For axis paths

Overview of type conversions:
- from REAL to: REAL: yes, INT: yes*, BOOL: yes1), CHAR: yes*, STRING: -, AXIS: -, FRAME: -
- from INT to: REAL: yes, INT: yes, BOOL: yes1), CHAR: if value 0 ...255, STRING: -, AXIS: -, FRAME: -
- from BOOL to: REAL: yes, INT: yes, BOOL: yes, CHAR: yes, STRING: -, AXIS: -, FRAME: -
- from CHAR to: REAL: yes, INT: yes, BOOL: yes1), CHAR: yes, STRING: yes, AXIS: -, FRAME: -
- from STRING to: REAL: -, INT: -, BOOL: -, CHAR: -, STRING: yes, AXIS: -, FRAME: -
- from AXIS to: REAL: -, INT: -, BOOL: -, CHAR: -, STRING: -, AXIS: yes, FRAME: -

1) Value <> 0 corresponds to TRUE, value ==0 corresponds to FALSE.
2) String length 0 => FALSE, otherwise TRUE.
3) If only 1 character.

It is not possible to convert from type AXIS and FRAME nor into type AXIS and FRAME.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify the program section such that the value range is not exceeded, e.g. by a modified variable definition.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14097 [Channel %1:] Block %2 string cannot be converted to AXIS type

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The called function AXNAME - conversion of the transferred parameters of the STRING type to an axis name (return value) of the AXIS type - has not found this axis identifier in the machine data.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Check the transferred parameter (axis name) of the function AXNAME to determine whether a geometry, channel or machine axis of this name has been configured by means of the machine data:

- MD10000 $MN_AXCONF_MACHAX_NAME_TAB
- MD20060 $MC_AXCONF_GEOAX_NAME_TAB
- MD20080 $MC_AXCONF_CHANAX_NAME_TAB

Select the transfer string in accordance with the axis name, and change the axis name in the machine data if necessary. (If a change of name is to take place via the NC part program, this change must first be validated by means of a "POWER-ON").

Program Continuation:

Clear alarm with NC START or RESET key and continue the program.

14098 [Channel %1:] Block %2 conversion error: no valid number found

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: The string is not a valid INT or REAL number.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify part program. If it is an entry, then you can check whether the string is a number via the preset function ISNUMBER (with the same parameter).

Program Continuation:
Clear alarm with the RESET key. Restart part program

14099 [Channel %1:] Block %2 result in string concatenation too long

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: The result of string chaining returns a string which is greater than the maximum string length laid down by the system.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Adapt part program. With the function STRLEN, it is also possible to query the size of the sum string before executing the chaining operation.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14100 [Channel %1:] Block %2 orientation transformation not available

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: Up to 4 transformation groupings (transformation types) can be set for each channel via machine data. If the keyword TRAORI(n) (n ... number of the transformation grouping) is used to address a transformation grouping for which the machine data is not defaulted, the alarm message will be triggered.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NCK alarms

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Check the number of the transformation grouping when calling the part program with the keyword TRAORI(n) (n ... number of the transformation grouping).
- Enter the machine data for this transformation grouping and then activate by "Power On".

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14101 [Channel %1:] Block %2 orientation transformation not active

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Euler angles or a vector have been used in programming an orientation and no orientation transformation is active, i.e. the keyword TRAORI(n) (n ... number of transformation grouping) is missing.
Example of correct transformation programming:
N100 ... TRAORI(1)
N110 G01 X... Y... ORIWKS
N120 A3... B3... C3...
N130 A3... B3... C3...
:
N200 TAFOOF

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Before the transformation is applied, the number of the transformation grouping must be specified with the keyword TRAORI(n) (n is between 1 and 4).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14102 [Channel %1:] Block %2 polynomial degree greater than 5 programmed for orientation vector angle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
During polynomial interpolation for the orientation vector, a polynomial degree larger than 5 has been programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14104 [Channel %1:] Block %2 Active transformation allows neither vector programming nor interpolation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The active orientation transformation does allow neither the programming of vectors for tool orientation nor the vector interpolation (ORIVECT, ORICONxx, usw) of the orientation.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Change the NC program and/or the settings of the machine data.

Program

Continuation: Clear alarm with NC START or RESET key and continue the program.

14106

[Channel %1:] Block %2 orientation calculation not possible with ORISOL.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The G code ORISOL has been programmed and either no valid orientation has been programmed or no transformation is active which is able to supply possible axis positions for a predefined orientation.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy: Change the NC program.

Program

Continuation: Clear alarm with NC START or RESET key and continue the program.

14107

[Channel %1:] Block %2 illegal position in $NT_ROT_AX_POS[%3,%4].

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Trafo index
- %4 = Axis index

Definitions:
The position of the specified manual rotary axis is illegal; in other words, it violates the axis limits defined in $NT_ROT_AX_MIN / $NT_ROT_AX_MAX. This alarm may occur if a transformation is selected which uses this axis. In the case of manual axes with Hirth tooth systems, the transformation may involve a position which, due to the rounding of the value contained in $NT_ROT_AX_POS, actually relates to the adjacent grid position. The alarm may, therefore, also occur if the content of $NT_ROT_AX_POS is within permissible limits but the modified position used internally violates these limits.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy: Change the NC program.

Program

Continuation: Clear alarm with NC START or RESET key and continue the program.

14108

[Channel %1:] Block %2 kinematic transformation and toolholder active at the same time.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Transformations defined with kinematic chains cannot be active at the same time as orientable toolholders.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy: Change the NC program.

Program

Continuation: Clear alarm with NC START or RESET key and continue the program.
14109 [Channel %1:] Block %2 simultaneous linear and rotary axis movement with static orientation transformation.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The interpolation type CP (C group code 49) is not permitted with an active static orientation transformation if linear and rotary axes have to interpolate simultaneously.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Change the NC program:
 - Activate dynamic orientation transformation.
 - Change the G code for group 49.
 - Execute linear and rotary axis movement successively rather than simultaneously.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

14110 [Channel %1:] Block %2 Euler angles and orientation vector components programmed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
An orientation were programmed with Euler angles and the component of an orientation vector at the same time.

Example:
N50 TRAORI (1)
N55 A2=10 B2=20 C3=50 ; alarm, because Euler angle and orientation vector

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Program only one type, in other words when transformation is switched on program either Euler angles only or orientation vectors (direction vectors) only.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

14111 [Channel %1:] Block %2 Euler angles, orientation vector and transformation axes programmed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
An orientation has been programmed at the same time as Euler angles or components of an orientation vector and the machine axis influenced by the orientation.

Example:
N50 TRAORI (1)
N55 A2=70 B2=10 C2=0 X50 ; alarm, because Euler angle and axes were programmed

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Program only one type, in other words with transformation switched on program either Euler angles only or orientation vectors (direction vectors) only or deselect transformation (TRAFOOF) and set tool orientation by programming the auxiliary axes.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.
14112 [Channel %1:] Block %2 programmed orientation path not possible
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In 5-axis transformation, the two orientation axes place a coordinate system comprising lengths and circles of latitude on a spherical surface.
If the interpolation traverses the pole point, only the 5th axis will move and the 4th axis will retain its starting position.
If a motion is programmed that does not traverse the pole point directly, but passes it very closely, the preset interpolation will be deviated from if the path forms a circle that is defined by the machine data: MD24530 $MC_TRAFO5_NON_POLE_LIMIT_1 (changeover angle that refers to the 5th axis). The interpolated contour is then placed through the pole (in the immediate vicinity of the pole, the 4th axis would otherwise have to accelerate most rapidly and then decelerate again).
For the 4th axis, the result is a position deviation as compared to the programmed value. The maximum permissible angle which the programmed and the interpolated path may include is stored in the MD24540 $MC_TRAFO5_POLE_LIMIT.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
In the vicinity of the pole, always make use of axis programming. Programming of tool orientations close to the pole should generally be avoided because this always leads to problems concerning dynamic response.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14115 [Channel %1:] Block %2 illegal definition of workpiece surface
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The surface normal vectors programmed at the beginning of block and at the end of block point in opposite directions.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14116 [Channel %1:] Block %2 absolute orientation programmed while ORIPATH/ORIPATHS is active
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The orientation has been entered as an absolute value (e.g. by a direction vector or a rotation vector), although ORIPATH or ORIPATHS are active. When ORIPATH/ORIPATHS is active, the orientation is determined from the lead angle, tilt angle and angle of rotation relative to the path tangent and surface normal vector.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14117 [Channel %1:] Block %2 no angle or direction of the cone programmed

Parameters:
- `%1` = Channel number
- `%2` = Block number, label

Definitions:
With taper circumference interpolation of orientation (ORICONCW and ORICONCC), either the opening angle or the
direction vector of the taper must be programmed. Otherwise, the change of orientation is not clearly defined.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14118 [Channel %1:] Block %2 no end orientation programmed

Parameters:
- `%1` = Channel number
- `%2` = Block number, label

Definitions:
With taper circumference interpolation of orientation, no end orientation has been programmed. The change of orien-
tation is therefore not clearly defined.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14119 [Channel %1:] Block %2 no intermediate orientation programmed

Parameters:
- `%1` = Channel number
- `%2` = Block number, label

Definitions:
With taper circumference interpolation of orientation with ORICONIO, an intermediate orientation must also be pro-
grammed in addition to the end orientation.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14120 [Channel %1:] Block %2 plane determination for programmed orientation not possible

Parameters:
- `%1` = Channel number
- `%2` = Block number, label

Definitions:
The programmed orientation vectors (direction vectors) in the beginning of block and end of block point include an
angle of 180 degrees. Therefore the interpolation plane cannot be determined.

Example:
N50 TRAORI (1)
N55 A3=0 B3=0 C3=1
N60 A3=0 B3=0 C3=-1 ; the vector of this block is precisely opposite to that in the preceding block.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.
Remedy: Modify the part program so that the orientation vectors of a block are not directly opposed to each other, for instance by dividing the block up into 2 subblocks.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14121 [Channel %1:] Block %2 no orientation defined (distance equals zero).

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The programmed coordinates for the 2nd space curve with XH, YH, ZH do not define any tool orientation, as the distance of the curve to the TCP is becoming zero.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Change the part program so that the distance between the two curves is not becoming zero and that a tool orientation is defined.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14122 [Channel %1:] Block %2 angle and direction of the cone programmed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: With taper circumference interpolation of orientation with ORICONCW and ORICC, only the opening angle or the direction of the taper may be programmed. Programming of both in one single block is not allowed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14123 [Channel %1:] Block %2 nutation angle of the cone too small

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: With taper circumference interpolation, the programmed opening angle of the taper must be greater than the half of the angle between the start and end orientation. Otherwise, a taper cannot be defined.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14124
[Channel %1:] Block %2 start tangent for orientation is zero

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
With taper circumference interpolation with tangential continuation (ORICONTO), the start tangent of orientation must not be zero.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14125
[Channel %1:] Block %2 programmed rotation is not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The programmed rotation of tool orientation cannot be traversed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14126
[Channel %1:] Block %2 ORIPATH lift factor impermissible.

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The value programmed with ORIPLF = r is not within the permissible range. The relative retraction factor must lie within interval 0 <= r < 1.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14127
[Channel %1:] Block %2 rotation programmed several times

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The rotation (3rd degree of freedom of orientation at 6-axis transformations) has been programmed several times.
The rotation is clearly defined by one of the following specifications:
- Specification of the rotary axis positions included in the transformation
- Specification of Euler or RPY angles (A2, B2, C2)
- Specification of the normal orientation vector (AN3, BN3, CN3)
- Specification of the THETA angle of rotation
NCK alarms

Reaction: Correction block is reorganized.
 Interpreter stop
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14128 [Channel %1:] Block %2 absolute programming of the orienting rotation with active ORIROTC.

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The rotation of orientation (3rd degree of freedom of orientation for 6-axis transformations) has been programmed with G code ORIROTC active. This is not possible, as the rotation of orientation is oriented relatively to the path tangent when ORIROTC is active.
 With ORIROTC, it is only possible to program the angle of rotation THETA that indicates the angle of the rotation vector to the path tangent.

Reaction: Correction block is reorganized.
 Interpreter stop
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14129 [Channel %1:] Block %2 orientation angles and orientation vector components programmed

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: An orientation angle and components of an orientation vector were programmed at the same time.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14130 [Channel %1:] Block %2 too many initialization values given

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: On assigning an array by means of SET, more initialization values than existing array elements have been specified in the program run.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Reduce the number of initialization values.
Program Continuation: Clear alarm with the RESET key. Restart part program.
14131
[Channel %1:] Block %2 orientation axes and lead/tilt angles programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An orientation angle and a leading or sideways angle were programmed at the same time.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14132
[Channel %1:] Block %2 orientation axes incorrectly configured

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Possible causes:
- The configuration of the orientation axes does not match the machine kinematics. Also, for example, when the position measuring system has not been set for the rotary axes.
- An axis that is required as orientation axis is currently not available as path axis.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Adapt machine data.
Provide the required orientation axes using GET(..) or GETD(..).

Program
Clear alarm with the RESET key. Restart part program

Continuation:

14133
[Channel %1:] Block %2 G code for orientation definition not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
It is only possible to program a G code of the 50th G code group if MD21102 $MC_ORI_DEF_WITH_G_CODE is set to TRUE.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Adapt machine data.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

14134
[Channel %1:] Block %2 G code for orientation interpolation not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
It will only be possible to program a G code of the 51st G code group, if MD21104 $MC_ORI_IPO_WITH_G_CODE has been set to TRUE.
14136 **[Channel %1:] Block %2 Orientation polynomial is not permitted**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Programming of orientation polynomials both for the angles (PO[PHI], PO[PHI]) and for the coordinates of a reference point on the tool (PO[XH], PO[YH], PO[ZH]) is not permitted. Orientation polynomials can only be programmed, if an orientation transformation is active and the orientation is changed by interpolating the vector (ORIVECT, ORICONxxx, ORICURVE), i.e. the orientation must not be changed by interpolating the axis (ORIAXES).

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Change the NC program

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:
Clear alarm with the RESET key. Restart part program

14137 **[Channel %1:] Block %2 Polynomials PO[PHI] and PO[PSI] are not permitted**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A polynomial for the angles PHI and PSI can only be programmed, if the orientation is interpolated in the plane between start and end orientation (ORIVECT, ORIPLANE) or on a taper (ORICONxxx). If interpolation type ORICURVE is active, no polynomials can be programmed for angles PHI and PSI.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Change the NC program

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:
Clear alarm with the RESET key. Restart part program

14138 **[Channel %1:] Block %2 Polynomials PO[XH], PO[YH] and PO[ZH] are not permitted**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Polynomials for the coordinates of a reference point on the tool (PO[XH], PO[YH], PO[ZH]) can only be programmed, if interpolation type ORICURVE is active. If ORIVECT, ORIPLANE, ORICONxxx is active, no polynomials can be programmed for coordinates XH, YH and ZH.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Change the NC program

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:
Clear alarm with the RESET key. Restart part program
14139 [Channel %1:] Block %2 Polynomial for angle of rotation PO[THT] is not permitted

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A polynomial for the angle of rotation of orientation (PO[THT]) can only be programmed, if the active transformation supports it.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Change the NC program

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14140 [Channel %1:] Block %2 position programming without transformation not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Position information was programmed for an axis position but no transformation was active.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify the program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14144 [Channel %1:] Block %2 PTP movement not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The PTP G code was programmed for a movement other than G0 or G1.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify the program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14146 [Channel %1:] Block %2 CP or PTP movement without transformation not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The CP or PTP G code was programmed for a movement but no transformation was active.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify the program.

Program Continuation:
Clear alarm with the RESET key. Restart part program
14147 [Channel %1:] Block %2 spline for orientation not possible.

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If an orientation has been programmed while BSPLINE is active, the interpolation of tool orientation must be interpolated via a 2nd space curve. This means that G code ORICURVE must be active for the interpolation of the orientation.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Change the NC program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14148 [Channel %1:] Illegal reference system for Cartesian manual traverse

Parameters:
%1 = Channel number

Definitions:
In the SD42650 $SC_CART_JOG_MODE, an illegal value has been entered for the reference system with Cartesian manual travel.

Reaction:
Alarm display.

Remedy:
Enter a permitted value in the SD42650 $SC_CART_JOG_MODE.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14150 [Channel %1:] Block %2 illegal tool carrier number programmed or declared (MD)

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A toolholder number was programmed which is negative or greater than the MD18088 $MN_MM_NUM_TOOL_CARRIER.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Program valid toolholder number or adapt MD 18088 $MN_MM_NUM_TOOL_CARRIER.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14151 [Channel %1:] Block %2 illegal tool carrier rotation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A toolholder was activated with an angle of rotation unequal to zero, although the associated axis is not defined. A rotary axis is not defined when all three direction components are zero.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Set angle of rotation to zero, or define the associated rotary axis.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14152
[Channel %1:] Block %2 tool carrier: invalid orientation. Error code: %3

Parameters:

%1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions:

An attempt was made to define a tool orientation by means of the active frame which cannot be reached with the current toolholder kinematics. This case can always occur when both rotary axes of the toolholder are not perpendicular to one another or when the toolholder has fewer than two rotary axes; or when rotary axis positions must be set that violate the corresponding axis limitations. Together with the alarm, an error code is displayed that specifies the cause in detail:

The error code has the following meaning:

1: 1st rotary axis of the first solution violates the lower limit
2: 1st rotary axis of the first solution violates the upper limit
10: 2nd rotary axis of the first solution violates the lower limit
20: 2nd rotary axis of the first solution violates the upper limit
100: 1st rotary axis of the second solution violates the lower limit
200: 1st rotary axis of the second solution violates the upper limit
1000: 2nd rotary axis of the second solution violates the lower limit
2000: 2nd rotary axis of the second solution violates the upper limit
3: The required orientation cannot be set with the given axis configuration

Several of the error codes that indicate a violation of the axis limits can occur simultaneously.

As, when an axis limit is violated, an attempt is made to reach a valid position within the permissible axis limits by adding or subtracting multiples of 360 degrees, it is - if this is not possible - not unequivocally defined whether the lower or upper axis limit has been violated.

Reaction:

Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:

Modify the part program (TOABS instead of TCOFR, activate another Frame. Change toolholder data. Change processing level G17-G19)

Program Continuation:

Clear alarm with NC START or RESET key and continue the program.

14153
[Channel %1:] Block %2 unknown tool carrier type: %3

Parameters:

%1 = Channel number
%2 = Block number, label
%3 = Tool carrier type

Definitions:

An invalid tool carrier type was specified in $TC_CARR23[]. Only the following are allowed: t, T, p, P, m, M.

Reaction:

Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:

Change the tool carrier data.

Program Continuation:

Clear alarm with NC START or RESET key and continue the program.

14154
[Channel %1:] Block %2 The amount of fine correction in parameter %3 of the orientable toolholder %4 is too large

Parameters:

%1 = Channel number
%2 = Block number, label
%3 = Invalid parameter of the orientable toolholder
%4 = Number of the orientable toolholder

Definitions:

The maximum permissible value of the fine correction in an orientable toolholder is limited by the MD20188 $MC_TOCARR_FINE_LIM_LIN for linear variables, and by the MD20190 $MC_TOCARR_FINE_LIM_ROT for rotary variables. The alarm can only occur if the SD42974 $SC_TOCARR_FINE_CORRECTION is not equal to zero.
14155 [Channel %1:] Block %2 invalid base frame definition for tool carrier offset

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If a tool carrier selection causes a change in the table offset, a valid base frame must be defined in order to store this offset; for more information see machine data 20184 (TOCARR_BASE_FRAME_NUMBER).

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Change the NC program or machine data 20184 (TOCARR_BASE_FRAME_NUMBER).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14156 [Channel %1:] Toolholder selection error at reset

Parameters:
%1 = Channel number

Definitions:
The settings in MD20110 $MC_RESET_MODE_MASK require that an active orientable toolholder is maintained after the reset. This is done by deselecting the old orientable toolholder and then reselecting it with data that may have been modified. If an error occurs during the reselection, this alarm is issued (as a warning) and then an attempt is made to select the orientable toolholder in the initial setting. If this second attempt is successful, the reset cycle is continued without any further alarms.

Typically, the alarm only occurs when the old orientable toolholder has been selected with TCOFR, and its axis directions have been changed in such a way before the reset that a setting suitable for the associated frame is no longer possible. If there is another cause for the alarm, this results in an alarm also being issued when attempting to select in the initial setting. This is then also displayed in plain text.

Reaction:
Alarm display.

Remedy:
Check the program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14157 [Channel %1:] Block %2 illegal interpolation type with MOVT

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Linear or spline interpolation must be active with MOVT (G0, G1, ASPLINE, BSPLINE, CSPLINE).

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Modify program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14159 [Channel %1:] Block %2 more than two angles programmed with ROTS or AROTS

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Frame rotations are described using space angles with the language commands ROTS or AROTS. A maximum of two angles can be programmed.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Modify program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14160 [Channel %1:] Block %2 tool length selection without geometry axis specification

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If variant C (tool length acts on the programmed axis) is activated by machine data MD20380 $MC_TOOL_CORR_MODE_G43G44 for tool length compensation with H word and G43/G44 in ISO_2 mode, at least one geometry axis must be specified.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Change MD20380 $MC_TOOL_CORR_MODE_G43G44 or the part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14162 [Channel %1:] Block %2 error %3 on activation of the CUTMOD function

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions:
An error occurred during the activation of the CUTMOD function. The type of error is more closely defined by the error code number:

Error code
1 No valid cutting direction is defined for the active tool.
2 The edge angles (clearance angle and holder angle) of the active tool are both zero.
3 The clearance angle of the active tool has an impermissible value (less than 0 degrees or greater than 180 degrees).
4 The holder angle of the active tool has an impermissible value (less than 0 degrees or greater than 90 degrees).
5 The cutting tip angle of the active tool has an impermissible value (less than 0 degrees or greater than 90 degrees).
6 The cutting edge position - holder angle combination of the active tool is impermissible (with cutting edge positions 1 through 4, the holder angle must be less than or equal to 90 degrees, with cutting edge positions 5 through 8, it must greater than or equal to 90 degrees).
7 Impermissible rotation of the active tool (the tool was rotated through +/-90 degrees with a tolerance of about 1 degree) out of the active machining plane. As a result, the cutting edge position is no longer defined in the machining plane.
With the aid of MD20125 $MC_CUTMOD_ERR, it can be determined for each of the named errors whether the fault condition is to lead to the issue of an alarm, and whether the alarm is only to be displayed or also trigger a program stop.

Reaction:
Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Correct the tool data of the active tool, or modify the part program in the case of error 7.
Alternatively, suppress all error alarms with the aid of MD20125 $MC_CUTMOD_ERR.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14165 [Channel %1:] Block %2 selected ISO H/D number %3 does not match tool %4

Parameters: %1 = Channel number
%2 = Block number, label
%3 = ISO H/D number
%4 = Tool number

Definitions: When an H or D number is programmed in ISO_2 or ISO_3 mode, it must be available in the active tool. The active tool may also be the last tool loaded on the master spindle or master toolholder. This alarm is output if there is no H or D number on this tool.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Set ISO H/D number correctly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14166 [Channel %1:] Block %2 error %3 when programming a tool length offset with TOFF / TOFFL

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions: An error occurred while programming a tool length offset with TOFF or TOFFL. More information about the type of error is given by the error code number:
Error code
1At least one tool length offset component has been programmed twice in one block (with TOFF).
2At least one tool length offset component has been programmed twice in one block (with TOFFL).
3Tool length offset components have been programmed in one block with both TOFF and TOFFL.
4An index must be declared when a tool length offset is programmed with TOFF, the form TOFF=.... is not permissible.
5An illegal index was declared when programming TOFFL (permissible values 1..3).
6An illegal axis was declared as the index when programming TOFF. Only geometry axes are permitted.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct errors in program block.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14170 [Channel %1:] Block %2 illegal interpolation type with tool length compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: If tool compensation (G43/G44) is activated in language mode ISO_M, the linear type of interpolation must be active.
14180 [Channel %1:] Block %2 H number %3 is not defined

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = H number of ISO mode

Definitions:
The specified H number is not assigned to a tool (ISO_M).

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14181 [Channel %1:] Block %2 ISO tool offset %3 not present

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Offset number

Definitions:
Only relevant in ISO2 and ISO3 modes:
When selecting the tool offset with H or D:
- Only tool offsets 1 - 98 are permissible in ISO2 and ISO3 modes.
- Exception: The structured cutting edge D1 of the active tool can also be selected with H99 in ISO2 mode or with the offset component in the tool selection in ISO3 mode.
When writing the tool offset with G10:
- Only tool offsets 1 - 98 are permissible in ISO2 and ISO3 modes.
- Tool offset H99 can only be written in Siemens programming mode (G290) with $TC_DPx[y,z]=.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct NC block and select a permissible tool offset in the range 1 to 98.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14182 [Channel %1:] Block %2 different values under H and D addresses

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Only relevant in ISO2 mode:
Tool length and tool radius are programmed with H and D. The programming leads to contradictory offset numbers in the coupled offset memories.
14183 [Channel %1:] Block %2 H and D addresses must be programmed after Siemens offset

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Only relevant in ISO2 mode:
The structured D number D1 of the active tool has been selected with H99. These offset values cannot be calculated negatively with G44.

Reaction:
Correction block is reorganized.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct NC block.
Program H and/or D address in the block.
If MD10890 $MN_EXTERN_TOOLPROG_MODE, bit6=0, only H or D address must be programmed.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14184 [Channel %1:] Block %2 G44 is not possible with tool offset H99

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Only relevant in ISO2 mode:
The structured D number D1 of the active tool has been selected with H99. These offset values cannot be calculated negatively with G44.

Reaction:
Correction block is reorganized.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct NC block.
Program H and/or D address in the block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14185 [Channel %1:] Block %2 D number %3 is not defined

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = D number of ISO mode

Definitions:
The specified D number is not assigned to a tool (language mode ISO_M).
14186 [Channel %1:] Block %2 ISO2 mode, and toolcarrier or tool adapter are both active (identifier %3)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Identifier

Definitions:
Only relevant in ISO2 mode:
An attempt has been made to activate an ISO2 offset and toolcarrier or tool adapter together.
Identifier 1: ISO2 offset is active (activated in ISO2 mode) and an attempt has been made to activate an additional toolcarrier in Siemens mode.
Identifier 2: A toolcarrier has been activated in Siemens mode, and a tool offset is now activated in ISO2 mode.
Identifier 3: A tool is active in the adapter in Siemens mode, and a tool offset is now activated in ISO2 mode.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct NC block.
For identifier 1: Select a Siemens offset before activating the toolcarrier.
For identifier 2: Deactivate the toolcarrier before selecting a TLC in ISO2 mode.
For identifier 3: Load a tool (T=0) or activate a tool without an adapter before selecting a TLC in ISO2 mode.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14196 [Channel %1:] Block %2 error %3 on interpreting the contents of $SC_CUTDIRMOD

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions:
An error has occurred during the interpretation of the strings contained in SD42984 $SC_CUTDIRMOD. This setting data is always read when a new edge is selected. The error code indicates the cause of the error:
1: The string only consists of blanks or a sign
2: Unknown frame name after $P_
3: No colon after the first valid frame name
4: Insufficient memory space for creating a frame internally
5: Invalid frame index
6: Further characters found after complete string
7: Second frame name is missing after the colon
8: Impermissible frame rotation (surface normals are rotated against each other by 90 degrees or more)
9: Invalid frame chain (the first frame must come before the second frame in the frame chain)
10: Invalid axis name
11: Axis is not a rotary axis
12: Invalid string that cannot be assigned to any of the error types 1 to 11
20: Invalid angle statement (numerical value)
30: Invalid angle of rotation (not an integer multiple of 90 degrees)

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
REMEDIATE:
Enter valid string in SD42984 $SC_CUTDIRMOD.
PROGRAM
Clear alarm with the RESET key. Restart part program

14197

[Channel %1:] Block %2 D number and H number programmed simultaneously

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A D word and H word have been programmed simultaneously.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14198

[Channel %1:] Block %2 illegal change of tool direction with tool offset

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
If an offset is active in the tool direction, block change is not possible if this would change the assignment of the offset axes to the channel axes (plane change, tool change, cutter <-> turning tool, geometry axis exchange).

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
- Modify part program.
- Reduce the offset in tool direction to zero.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14199

[Channel %1:] Block %2 illegal plane change for tool with diameter component

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
If a tool has a wear or length component which is evaluated as a diameter for the facing axis (bit 0 and/or bit 1 in MD20360 $MC_TOOL_PARAMETER_DEF_MASK is set) and bit 2 of this MD is also set, this tool may only be used in the plane active on tool selection. A plane change results in an alarm.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program
Reset bit 2 in MD20360 $MC_TOOL_PARAMETER_DEF_MASK.
Clear alarm with NC START or RESET key and continue the program.

Continuation:
14200 [Channel %1:] Block %2 negative polar radius
Parameters: %1 = Channel number %2 = Block number, label
Definitions: In the endpoint specification of a traversing block with G00, G01, G02 or G03 in polar coordinates, the polar radius entered for the keyword RP=... is negative.
Definition of terms:
- Specification of end of block point with polar angle and polar radius, referring to the current pole (preparatory functions: G00/G01/G02/G03).
- New definition of the pole with polar angle and pole radius, referring to the reference point selected with the G function. G110 ... last programmed point in the plane, G111 ... zero point of the current work, G112 ... last pole
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct NC part program - permissible inputs for the pole radius are only positive absolute values that specify the distance between the current pole and the block end point. (The direction is defined by the polar angle AP=...).
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14210 [Channel %1:] Block %2 polar angle too large
Parameters: %1 = Channel number %2 = Block number, label
Definitions: In specifying the endpoints in a traversing block with G00, G01, G02 or G03 in polar coordinates, the value range of the polar angle programmed under the keyword AP=... has been exceeded. It covers the range from -360 to +360 degrees with a resolution of 0.001 degrees.
Definition of terms:
- Specification of end of block point with polar angle and polar radius, referring to the current pole (preparatory functions: G00/G01/G02/G03).
- New definition of the pole with polar angle and pole radius, referring to the reference point selected with the G function. G110 ... referred to the last programmed point in the plane, G111 ... referred to the zero point of the current workpiece coordinate system (WCS), G112 ... referred to the last pole
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct NC part program. The permissible input range for the polar angle is between the values -360 degrees and +360 degrees with a resolution of 0.001 degrees.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14250 [Channel %1:] Block %2 negative pole radius
Parameters: %1 = Channel number %2 = Block number, label
Definitions: In redefining the pole with G110, G111 or G112 in polar coordinates, the pole radius specified under keyword RP=... is negative. Only positive absolute values are permitted.
Definition of terms:
- Specification of end of block point with polar angle and polar radius, referring to the current pole (preparatory functions: G00/G01/G02/G03).
- New definition of the pole with polar angle and pole radius, referring to the reference point selected with the G function. G110 ... last programmed point in the plane, G111 ... zero point of the current work, G112 ... last pole
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NCK alarms

Remedy:
Correct the NC part program. Permissible inputs for the pole radius are only positive, absolute values that specify the distance between the reference point and the new pole. (The direction is defined with the pole angle AP=...).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14260 [Channel %1:] Block %2 pole angle too large

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In redefining the pole with G110, G111 or G112 in polar coordinates, the value range of the pole angle specified under keyword AP=... has been exceeded. It covers the range from -360 to +360 degrees with a resolution of 0.001 degrees.

Definition of terms:
- Specification of end of block point with polar angle and polar radius, referring to the current pole (preparatory functions: G00/G01/G02/G03).
- New definition of the pole with polar angle and pole radius, referring to the reference point selected with the G function. G110 ... last programmed point in the plane, G111 ... zero point of the current work, G112 ... last pole

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct NC part program. The permissible input range for the polar angle is between the values -360 degrees and +360 degrees with a resolution of 0.001 degrees.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14270 [Channel %1:] Block %2 pole programmed incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When defining the pole, an axis was programmed that does not belong to the selected processing level. Programming in polar coordinates always refers to the plane activated with G17 to G19. This also applies to the definition of a new pole with G110, G111 or G112.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC part program. Only the two geometry axes may be programmed that establish the current machining plane.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14280 [Channel %1:] Block %2 polar coordinates programmed incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The end point of the displayed block has been programmed both in the polar coordinate system (with AP=..., RP=...) and in the Cartesian coordinate system (axis addresses X, Y,...).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC part program - the axis motion may be specified in one coordinate system only.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14290 [Channel %1:] Block %2 polynomial degree greater than 5 programmed for polynomial interpolation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A polynomial degree greater than five was programmed for the polynomial interpolation. You can only program polynomials up to the 5th degree.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14300 [Channel %1:] Block %2 overlaid handwheel motion activated incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Handwheel override has been called up incorrectly:
- 1st For positioning axes:
 - Handwheel override programmed for indexing axes,
 - No position programmed,
 - FA and FDA programmed for the same axis in the block.
- 2nd For contouring axes:
 - No position programmed,
 - G60 not active,
 - 1st G group incorrect (only G01 to CIP).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14320 [Channel %3:] Axis %4: handwheel %1 used twice (%2)

Parameters:
%1 = Handwheel number
%2 = Use
%3 = Channel
%4 = Axis

Definitions:
Informational alarm indicating that the mentioned handwheel is used twice:
The second parameter provides the explanation:
1: Block with axial handwheel override for this axis cannot be executed as the handwheel for this axis performs a DRF movement
2: Block with velocity override of the path cannot be executed as the handwheel performs a DRF movement for this axis of the path
3: Block with contour handwheel cannot be executed as the handwheel performs a DRF movement for this axis of the path
4: PLC axis with axial handwheel override cannot be started immediately as the handwheel performs a DRF movement for this axis
5: The axis is a reciprocating axis with axial handwheel override; the reciprocating movement cannot be started immediately as the handwheel performs a DRF movement for this axis
6: The DRF movement for this axis cannot be executed as an axial handwheel override is active for this axis with the handwheel
7: The DRF movement for this axis cannot be executed as a velocity override of the path with the handwheel is active and the axis belongs to the path.
8: The DRF movement for this axis cannot be executed as the contour handwheel is active with this handwheel and the axis belongs to the path.
9: The DRF movement for this axis cannot be executed as the axis is a PLC axis with handwheel override that is active with this handwheel.
10: The DRF movement for this axis cannot be executed as the axis is active as reciprocating axis with handwheel override with this handwheel.

Reaction:
Alarm display.

Remedy:
Use the handwheel for one purpose at a time only.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

14401 [Channel %1:] Block %2 transformation not available

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The required transformation is not available.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
Modify part program; program defined transformations only.
Check MD 24... $MC_TRAFO_TYPE_... (assigns the transformation to part program instruction).

Program Continuation:
Clear alarm with the RESET key. Restart part program.

14402 [Channel %1:] Block %2 spline active at transformation change

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A change of transformation is not allowed in a spline curve section. A series of spline blocks must be concluded.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14403 [Channel %1:] Block %2 preprocessing and main run might not be synchronized

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Positioning axis runs cannot be accurately calculated beforehand. Consequently, the position in the MCS is not known exactly. It might therefore be possible that a change in the multiple significance of the transformation has been performed in the main run although no provision was made for this in the preprocessing run.

Reaction:
Alarm display.

Remedy:
Modify part program. Synchronize preprocessing run and main run.

Program Continuation:
Clear alarm with the Delete key or NC START.
14404 [Channel %1:] Block %2 illegal parameterization of transformation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Error has occurred when selecting transformation.
Possible causes of error:
- An axis traversed by the transformation has not been enabled:
- is being used by another channel (-> enable)
- is in spindle mode (-> enable with SPOS)
- is in POSA mode (-> enable with WAITP)
- is concurrent Pos axis (-> enable with WAITP)
- Parameterization via machine data has an error
- Axis or geometry axis assignment to the transformation has an error,
- Machine data has an error (-> modify machine data, restart)
Please note: Any axes not enabled might be signaled via alarm 14092 or alarm 1011 instead of alarm 14404.
Transformation-dependent error causes can be in: TRAORI:
- TRANSMIT:
- The current machine axis position is unsuitable for selection (e.g. selection in the pole) (-> change position slightly).
- Parameterization via machine data has an error.
- Special requirement with respect to the machine axis has not been fulfilled (e.g. rotary axis is not a modulo axis) (-> modify machine data, restart).
TRACYL:
The programmed parameter is not allowed when transformation is selected.
TRAANG:
- The programmed parameter is not allowed when transformation is selected.
- Parameterization via machine data has an error.
- Parameter is faulty (e.g. TRAANG: unfavorable angle value (-> modify machine data, restart)
Persistent transformation:
- Machine data for persistent transformation are wrong (-> consider dependencies, change machine data, restart)
Only with active "OEM transformation" compile cycle:
The axes included in the transformation must be referenced.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify part program or machine data.
Only with active "OEM transformation" compile cycle:
Reference the axes included in the transformation before selecting transformation.
Clear alarm with NC START or RESET key and continue the program.

Program
Continuation:
14412
[Channel %1:] Block %2 transformation active at geometry axis changeover

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
It is not permissible to change the assignment of geometry axes to channel axes when transformation is active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14413
[Channel %1:] Block %2 fine tool correction: changeover geometry/channel axis not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
It is not permissible to change the assignment of geometry axes to channel axes during active tool fine compensation.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14414
[Channel %1:] Block %2 GEOAX function: incorrect call

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The parameters for calling the GEOAX(...) are incorrect. Possible causes:
- Uneven number of parameters.
- More than 6 parameters were specified.
- A geometry axis number was programmed which was less than 0 or greater than 3.
- A geometry axis number was programmed more than once.
- An axis identifier was programmed more than once.
- An attempt was made to assign a channel axis to a geometry axis which has the same name as one of the channel axes.
- An attempt was made to assign a channel axis to a geometry axis lacking IPO functionality (see MD30460 $MA_BASE_FUNCTION_MASK, Bit8).
- An attempt was made to remove a geometry axis with the same name as one of the channel axes from the geometry axis grouping.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program or correction block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14420	[Channel %1:] Block %2 index axis %3 frame not allowed
Parameters: | %1 = Channel number
%2 = Block number, label
%3 = Axis
Definitions: | The axis is to be traversed as an indexing axis, but a frame is active. This is not allowed by MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED.
Reaction: | Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: | Please inform the authorized personnel/service department. Modify part program. Change MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED.
Program Continuation: | Clear alarm with NC START or RESET key and continue the program.

14500	[Channel %1:] Block %2 illegal DEF or PROC instruction in the part program
Parameters: | %1 = Channel number
%2 = Block number, label
Definitions: | NC part programs with high-level language elements are divided into a preceding definition part followed by a program part. The transition is not marked specifically; a definition statement is not allowed to follow the 1st program command.
Reaction: | Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: | Put definition and PROFC statements at the beginning of the program.
Program Continuation: | Clear alarm with NC START or RESET key and continue the program.

14510	[Channel %1:] Block %2 PROC instruction missing on subroutine call
Parameters: | %1 = Channel number
%2 = Block number, label
Definitions: | In subroutine calls with parameter transfer ("call-by-value" or "call-by-reference") the called subroutine must begin with a PROC statement.
Reaction: | Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: | Define the subroutine in accordance with the type used.
1. Conventional subroutine structure (without parameter transfer):
% SPF 123456
.: M17
2. Subroutine structure with keyword and subroutine name (without parameter transfer):
PROC UPNAME
.: M17
ENDPROC
3. Subroutine structure with keyword and subroutine name (with parameter transfer "call-by-value"):
PROC UPNAME (VARNAME1, VARNAME2, ...)
.: M17
ENDPROC
4. Subroutine structure with keyword and subroutine name (with parameter transfer "call-by-reference"):
PROC UPNAME (Typ1 VARNAME1, Typ2 VARNAME2, ...)
: M17
ENDPROC

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14520 [Channel %1:] Block %2 illegal PROC instruction in data definition section
Parameters: %1 = Channel number %2 = Block number, label
Definitions: The PROC statement may only be programmed at the beginning of the subroutine.
Reaction: Correction block is reorganized. Interface signals are set. Alarm display.
Remedy: Modify NC part program appropriately.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14530 [Channel %1:] Block %2 EXTERN and PROC instruction do not correspond
Parameters: %1 = Channel number %2 = Block number, label
Definitions: Subroutines with parameter transfer must be known before they are called in the program. If the subroutines are always available (fixed cycles) the control establishes the call interfaces at the time of system power-up. Otherwise an EXTERN statement must be programmed in the calling program.
Example: N123 EXTERN UPNAME (TYP1, TYP2, TYP3, ...)
The type of the variable must match the type given in the definition (PROC statements) or it must be compatible with it. The name can be different.
Reaction: Interpreter stop NC Start disable in this channel. Interface signals are set. Alarm display.
Remedy: Check the variable types in the EXTERN and the PROC statements for correspondence and correctness.
Program Continuation: Clear alarm with the RESET key. Restart part program

14540 [Channel %1:] Block %2 contour tool: the min. limit angle has been programmed more than once (edge D%3)
Parameters: %1 = Channel number %2 = Block number, label %3 = Edge number, label
Definitions: The limit angle of a contour tool must be equal zero in an involved edge only.
Reaction: Correction block is reorganized. Local alarm reaction. Interface signals are set. Alarm display. NC Stop on alarm at block end.
Remedy: Change tool definition.
NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14541 [Channel %1:] Block %2 contour tool: the max. limit angle has been programmed more than once (edge D%3)

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Edge number, label

Definitions: The limit angle of a contour tool must be equal zero in an involved edge only.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change tool definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14542 [Channel %1:] Block %2 contour tool: the min. limit angle has not been programmed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: On defining a contour tool, either no limit angle must be indicated, or both the minimum and the maximum limit angle must be programmed once for each.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change tool definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14543 [Channel %1:] Block %2 contour tool: the max. limit angle has not been programmed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: On defining a contour tool, either no limit angle must be indicated, or both the minimum and the maximum limit angle must be programmed once for each.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change tool definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14544 [Channel %1:] Block %2 contour tool: edge D%3 is not positioned between the two border edges

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Edge number, label

Definitions:
On defining a form tool with limit, all edges must be positioned between the edge with the minimum limit angle and the edge with the maximum limit angle when rotating counter-clockwise.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Change tool definition.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14545 [Channel %1:] Block %2 contour tool: edge D%3 completely encircles edge D%4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Edge number, label
%4 = Edge number, label

Definitions:
On defining a contour tool, tangents are placed on the adjacent circular edges. It will not be possible, if one edge is completely encircled by another one.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Change tool definition.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14546 [Channel %1:] Block %2 contour tool: edge D%3 defines a concave corner

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Edge number, label

Definitions:
The contour of a contour tool must be convex throughout, i.e. there must not be any concave corners.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Change tool definition.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14547 [Channel %1:] Block %2 contour tool: checksum erroneous or not available

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When MD20372 $MC_SHAPED_TOOL_CHECKSUM was set, no edge was found for which the tool length components and the tool radius equal the negative sum of the previous edges.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Check tool definition. An edge must exist, the tool length components and tool radius of which equal the negative sum of the previous edges. This will not take the tool length components of the first edge into consideration. On comparing the components, the relevant sums of basic value and wear value are compared with each other, not the part components themselves.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14548 [Channel %1:] Block %2 contour tool: negative radius in edge D%3 is not allowed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Edge number, label

Definitions:
No negative radii are permitted for contour tools, i.e. the sum of basic radius and wear value must be at least 0.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Check tool definition. Change edge radius.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14549 [Channel %1:] Block %2 contour tool: impermissible programming. Code no. %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions:
Impermissible programming has been found for contour tools on active tool radius compensation. The error cause is explained in detail by the error code.

1: In G code group 17, KONT is active during activation
2: In G code group 17, KONT is active during deactivation
9: In G code group 40, CUTCONOF is not active
10: Reprogramming of G41 / G42 in already active tool radius compensation not permissible
20: Circle with more than one rotation not permissible
21: Ellipse (circle not in compensation level)
23: Involute not permissible
24: Several polynomials not permitted in one block only. These blocks could be created by e.g. COMPCAD or G643.
30: Preprocessing stop not permitted
41: Starting point of first compensation block cannot be reached by anyone of the defined cutting edges
42: End point of last compensation block cannot be reached by anyone of the defined cutting edges

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
NCK alarms

Remedy: Change the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14550 [Channel %1:] Block %2 contour tool: impermissible tool contour change. Code no. %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions: A new tool with deviating tool contour was activated for contour tools on active tool radius compensation
The error cause is explained further by an error code.
If the error code is an integer, the lower-value three decimal places specify the number of the edge, in which the error was detected, while the thousandth digit explains the reason in more detail.
-1: The tool was deleted.
-2: The number of contour elements (edges) explaining the tool, has changed.
1000: The edge center has changed
2000: The edge radius has changed.
3000: The initial angle has changed.
4000: The final angle has changed.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14551 [Channel %1:] Block %2 contour tool: angle area of edge D%3 larger than 359 degrees

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Edge number, label

Definitions: A single edge must cover a max. angle area of 359 degrees.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Check tool definition.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14600 [Channel %1:] Block %2 reload buffer %3 cannot be established

Parameters: %1 = Channel number
%2 = Block number, label
%3 = File name

Definitions: The download buffer for "execute from external" could not be created. Possible causes:
- Not enough memory available (for minimum see MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE)
- No resources available for HMI NCK communication (see MD18362 $MN_MM_EXT_PROG_NUM)
- The file already exists

Remedy: Check tool definition.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
NC alarms

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Release memory, e.g. by deleting part programs
- Modify MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE and/or MD18362 $MN_MM_EXT_PROG_NUM.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

14601

[Channel %1:] Block %2 reload buffer could not be deleted

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- The reload buffer for "execute from external" could not be deleted. Possible cause:
- HMI/PLC communication was not terminated.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- All reload buffers are cleared on POWER ON.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

14602

[Channel %1:] Block %2 timeout while reloading from external.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- No connection could be made to the HMI while reloading external subprograms (EXTCALL) or executing from external drives) within the monitoring time set in MD10132 $MN_MMC_CMD_TIMEOUT.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check the connection to the HMI
- Increase MD10132 $MN_MMC_CMD_TIMEOUT.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

14603

[Channel %1:] Block %2 timeout during execution from external source.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- If a program is selected for execution from external source, it will be expected that the first part program line can be read from the reload buffer within 60s after part program start. Otherwise, part program processing will be aborted with alarm 14603 due to the assumption that the connection to the HMI or the external device is faulted.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check the connection to the HMI and repeat selection of the program that is to be executed from external source.
14610 [Channel %1:] Block %2 compensation block not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: An alarm was output which could be eliminated basically via program correction. Since the error occurred in a program which is processed from external, a compensation block/program correction is not possible.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Abort program with reset.
- Correct program on HMI or PC.
- Restart reloading (possibly with block search and interrupt location).

Program Continuation:
Clear alarm with the RESET key. Restart part program

14615 [Channel %1:] An error occurred while handling the function 'syntax check': identifier %3

Parameters:
%1 = Channel number
%2 = Is not used
%3 = Error code

Definitions: An error occurred while handling the function syntax check via the PI services _N_CHKSEL, _N_CHKRUN, _N_CHKABO and _N_SEL_BL. Parameter %3 describes the error situation more closely:
Value
1: An invalid line number was transferred with the PI service _N_SEL_BL
2: An invalid line number for the range end was transferred with the PI service _N_CHKRUN
3: PI service _N_CHKSEL was activated although a block selection (PI service _N_SEL_BL) was active for the selected program.

Reaction: Alarm display.

Remedy:
Value
1: Supply PI service _N_SEL_BL with the correct line number
2: Supply PI service _N_CHKRUN with the correct line number for the range end
3: Ensure that the channel is in reset status before activating the PI service _N_CHKSEL.

Program Continuation:
Clear alarm with the Delete key or NC START.

14650 [Channel %1:] Block %2 SETINT instruction with invalid ASUP input

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Asynchronous subroutines (ASUBs) are subroutines that are executed following a hardware input (interrupt routine started by a rapid NCK input).
The NCK input number must lie between 1 and 8. It is assigned a priority from 1 to 128 (1 is the highest priority) in the SETINT instruction with the keyword PRIO =
Example:
If NCK input 5 changes to "1 signal", the subroutine AB-HEB_Z should be started with the highest priority.
N100 SETINT (5) PRIO = 1 ABHEB_Z
Restriction for SW PLC2xx: The number of the NCK input must be 1 or 2.
NCK alarms

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program the NCK input of the SETINT statement with a value of not less than 1 or greater than 8.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14660
[Channel %1:] Block %2 SETINT instruction with invalid priority

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The NCK input number must lie between 1 and 8. It is assigned a priority from 0 to 128 (1 is the highest priority) in the SETINT instruction with the keyword PRIO =

Example:
If NCK input 5 changes to "1-signal" the subroutine ABHEB_Z should be started with the highest priority.
N100 SETINT (5) PRIO = 1 ABHEB_Z
Restriction for SW PLC2xx: The number of the NCK input must be 1 or 2.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program the priority of the NCK input with a value of not less than 1 or greater than 128.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14700
[Channel %1:] Block %2 timeout during command to interpreter

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A timeout has occurred in control-internal commands such as ANWAHL (part program selection), RESET (channel reset), REORG (reorganization of the preprocessing buffer) and NEWCONFIG (change in the configuration-specific machine data = restart).

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
If the runtime error occurred as the result of a temporary excessive load on the system (e.g. in the HMI area or in OEM application) error-free execution is possible on repeating the program or operator action.
Otherwise, the A&D MC system support should be contacted with a precise description of the error situation:
(contact SIEMENS AG, System Support for A&D MC products, Hotline (Tel.: see alarm 1000))

Program Continuation: Switch control OFF - ON.

14701
[Channel %1:] Block %2 number of available NC blocks reduced by %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Number of non-available blocks

Definitions:
After reset, it has been found that the number of available blocks has decreased compared with the last reset. This is due to a system error. Part program execution can be resumed after the alarm has been acknowledged. If the number of blocks no longer available is less than MD28060 $MC_MM_IPOBUFFER_SIZE, then the POWERON alarm 14700 is output.
14710 [Channel %1:] Block %2 error in initialization sequence in function %3

Parameters:

%1 = Channel number
%2 = Block number, label
%3 = Identifier of the function which caused the error

Definitions:

Initialization blocks are generated (or not) after control power-up, (program) RESET and (program) START, depending on the settings in machine data MD20110 $MC_RESET_MODE_MASK and MD20112 $MC_START_MODE_MASK. Errors can occur because of incorrect machine data settings. The errors are output with the same error messages as would appear if the function had been incorrectly programmed in the part program. This alarm is also generated in order to indicate that an error relates to the initialization sequence. Parameter %3 specifies which function triggers the alarm:

Control power-up and (program) RESET:

Value:
0: Error during synchronization preprocessing/main run
1: Error on selection of tool length compensation
2: Error on selection of transformation
3: Error on selection of work offset

The macro definitions and cycle interfaces are also read in during the power-up procedure. If an error occurs here, this is indicated by value = 4, or value = 5
6: Error creating 2 1/2 D protection zones during power up.

(Program) START:

Value
100: Error during synchronization preprocessing/main run
101: Error on selection of tool length compensation
102: Error on selection of transformation
103: Error on selection of synchronized spindle
104: Error on selection of work offset

Particularly when tool management is active, it is possible that a tool on the spindle or the toolholder is disabled but still needs to be activated. These tools are automatically activated on RESET. On START, machine data MD22562 $MC_TOOL_CHANGE_ERROR_MODE can be used to specify whether an alarm is to be generated or an automatic bypass strategy selected.

If the parameter contains 3 values from 200 to 203, this means that an insufficient number of NC blocks is available for NC block preparation on certain commands (ASUB start, overstore selection, teach-in).

Remedy: Increase machine data MD28070 $MC_MM_NUM_BLOCKS_IN_PREP.

Reaction:

Interpreter stop
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department.
If parameter %3= 0 - 3:
If the alarm or alarms occur on RESET:
Check the settings of machine data MD20110 $MC_RESET_MODE_MASK,
MD20120 $MC_TOOL_RESET_VALUE, MD20121 $MC_TOOL_PRESEL_RESET_VALUE,
MD20122 $MC_TOOL_RESET_NAME (only if tool management is active),
MD20130 $MC_CUTTING_EDGE_RESET_VALUE, MD20132 $MC_SUMCORR_RESET_VALUE,
MD20126 $MC_TOOL_CARRIER_RESET_VALUE,
MD20150 $MC_GCODE_RESET_VALUES, MD20154 $MC_EXTERN_GCODE_RESET_VALUES,
MD20140 $MC_TRAFO_RESET_VALUE,
MD21330 $MC_COUPLE_RESET_MODE_1,
MD24002 $MC_CHBFRAKE_RESET_MASK
If parameter %3= 100 - 104:
Check the setting of MD20112 $MC_START_MODE_MASK and the machine data specified under '_..._RESET_...'. If tool management is active, if necessary remove the tool stated in the associated alarm from the toolholder/spindle and cancel the 'disabled' status.
If parameter %3= 4 or 5:
Check macro definitions in _N_DEF_DIR
Check cycle directories _N_CST_DIR and _N_CUS_DIR
If parameter %3= 6:
Alarm 18002 or 18003 was also issued. This alarm contains the number of the incorrectly defined protection zone and an identifier of what is incorrect about the protection zone. The system variables must be appropriately corrected.
If Parameter %3= 200 bis 203:
Increase MD28070 $MC_MM_NUM_BLOCKS_IN_PREP.

Program Continuation: Clear alarm with the RESET key. Restart part program

14711 [Channel %1:] Transformation selection not possible as axis %2 not available
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions: Based on the configuration of machine data MD20110 $MC_RESET_MODE_MASK and MD20140 $MC_TRAFO_RESET_VALUE, a transformation shall be selected by performing a reset or control ramp-up. However, this is not possible as axis %2 required for this is not available. Possible reason: The axis was occupied by another channel or the PLC.
Reaction: Interface signals are set.
Alarm display.
Remedy:
- Use the GET command to get axis %2 in the channel in which the transformation is to be selected.
- Select the transformation by means of the part program command.
Program Continuation: Clear alarm with the RESET key. Restart part program

14750 [Channel %1:] Block %2 too many auxiliary functions programmed
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: More than 10 auxiliary functions have been programmed in an NC block.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Check whether all auxiliary functions are necessary in one block - modal functions need not be repeated. Create separate auxiliary function block or divide the auxiliary functions over several blocks.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14751 [Channel %1:] Block %2 resources for motion synchronous actions not sufficient
(code: %3)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Identifier

Definitions:
Processing of motion-synchronous actions requires resources that are configured using MD28060
$MC_MM_IPO_BUFFER_SIZE, MD28070 $MC_MM_NUM_BLOCKS_IN_PREP, MD28251
$MC_MM_NUM_SAFE_SYNC_ELEMENTS, MD28250 $MC_MM_NUM_SYNC_ELEMENTS, and MD28253
$MC_MM_NUM_SYNC_STRINGS. If these resources are insufficient for the execution of the part program, then this
alarm is issued. Parameter %3 shows which resource has run out:
Increase identifier <= 2: MD28060 $MC_MM_IPO_BUFFER_SIZE or
MD28070 $MC_MM_NUM_BLOCKS_IN_PREP.
Increase identifier > 2: MD28250 $MC_MM_NUM_SYNC_ELEMENTS, MD28251
$MC_MM_NUM_SAFE_SYNC_ELEMENTS.
Increase identifier 7: MD28253 $MC_MM_NUM_SYNC_STRINGS.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct part program or increase resources.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14752 [Channel %1:] Block %2 DELDTG | STOPREOF conflict

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In a block of motion synchronous actions referring to a motion block, both DELDTG (delete distance-to-go) and STO-
PREOF (preprocessing stop) have been programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
The functions DELDTG and STOPREOF exclude each other in a block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14753 [Channel %1:] Block %2 motion synchronous actions with illegal interpolation type

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The active interpolation type (e.g. 5-axis interpolation) is not allowed for the motion synchronous action or for the func-
tion "Several feeds".

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14754 [Channel %1:] Block %2 motion synchronous actions and wrong feed type

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The active feed type is not allowed for the motion synchronous action or for the function "Several feeds".

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14755 [Channel %1:] Block %2 motion synchronous actions without traverse motion

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The programmed motion synchronous action and the function "Several feeds" require a traversing motion or the value of the traversing motion is 0.
This alarm is no longer used after P3.2.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14756 [Channel %1:] Block %2 motion synchronous action and wrong value

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Value of the synchronous action or the function "Several feeds" is not allowed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program. Check whether a negative value was entered for a synchronous action.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14757 [Channel %1:] Block %2 motion synchronous action and wrong type

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Programmed combination between action and type of motion synchronous action is not allowed.
- RET allowed in technology cycle only
- Function "Several feeds" not allowed in technology cycle
- H and M function outputs not allowed with WHenever, FROM and DO
- MEASA / MEAWA / MEAC with WHenever, FROM and DO not allowed
- DELDTG and STOPREOF allowed only in blockwise synchronous action with WHEN and EVERY

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14758

[Channel %1:] Block %2 programmed value not available

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The synchronous variables $AA_LOAD, $AA_TORQUE, $AA_POWER and $AA_CURR are available only for the SIMODRIVE611D drive. They are activated by the machine data MDC 36730 $MA_DRIVE_SIGNAL_TRACKING. The system variable $VA_IS: Safe Actual Position is available only if the MD36901 $MA_SAFE_FUNCTION_ENABLE has been set and the option $ON_NUM_SAFE_AXES has been set to a sufficient size.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify program or machine data.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14759

[Channel %1:] Block %2 motion synchronous action and wrong axis type

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When there are several feeds, a spark-out time, or a retraction stroke for path motions, at least one GEO axis must be programmed. If the block also contains synchronous axes and there are several feeds, the feedrate for the synchronous axes is matched implicitly. No retraction stroke takes place for synchronous axes. However, after retraction stroke or spark-out time, the distance-to-go is also deleted in the block for the synchronous axes. The alarm is no longer used on P3.2.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program the axis as positioning axis with axial feed, return stroke or spark-out time.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14760

[Channel %1:] Block %2 auxiliary function of a group programmed repeatedly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The M and H functions can be divided up as required over machine data in groups in any variation. Auxiliary functions are thus put into groups that mutually preclude several individual functions of one group. Within one group only one auxiliary function is advisable and permissible.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Only program one help function per help function group. (For the group division, see the machine manufacturer's programming guide).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
NCK alarms

14761 [Channel %1:] Block %2 motion synchronous action: DELDTG function not allowed with active tool radius compensation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Rapid delete distance-to-go for synchronous actions is not allowed with DELDTG when tool radius compensation is active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Deactivate tool radius compensation before performing rapid delete distance-to-go and then reselect or
as of SW 4.3: "Delete distance-to-go without preparation".

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14762 [Channel %1:] Block %2 too many PLC variables programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The number of programmed PLC variables has exceeded the maximum permissible number. The number is set in MD 28150 $MC_MM_NUM_VDIVAR_ELEMENTS.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program or machine data.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14769 [Channel %1:] Block %2 Spindle %3 Implicit auxiliary function %4 Buffer full

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle number
%4 = Auxiliary function number

Definitions:
A maximum of 5 auxiliary functions of type "M" may be entered in an NC block. The upper limit is the total of programmed and implicitly generated M auxiliary functions. Implicit auxiliary functions M19 and M70 are generated, if in MD35035 $MA_SPIND_FUNCTION_MASK, bit 19 has been set for M19 and/or bit 20 for M70. M19 is generated with SPOS and SPOSA depending on the configuration. The same applies to M70 and transition into axis operation. The address extension corresponds to the spindle number like it is output to the PLC.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Distribute the M auxiliary functions and spindle functions that implicitly generate M19 and M70 to several blocks.
- Deactivate any implicit auxiliary functions that are not required in MD35035 $MA_SPIND_FUNCTION_MASK, bit 19 and/or bit 20.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

Alarms
Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0
196
14770 [Channel %1:] Block %2 auxiliary function programmed incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The permissible number of programmed auxiliary functions per NC block has been exceeded or more than one auxiliary function of the same auxiliary function group has been programmed (M and S function).
In the user-defined auxiliary functions, the maximum number of auxiliary functions per group in the NCK system settings has been defined for all auxiliary functions by means of the MD11100 SMN_AUXFU_MAXNUM_GROUP_ASSIGN (default: 1)
For each user-defined auxiliary function to be assigned to a group, the assignment is effected through 4 channel-specific machine data.
Return jump from asynchronous subprogram with M02/M17/M30, whereby the M code is not alone in the block. This is impermissible if the asynchronous subprogram interrupts a block with WAITE, WAITM or WAITMC. Remedy: Program M02/M17/M30 alone in the block or replace via RET.
22010 AUXFU_ASSIGN_TYPE: type of auxiliary function, e.g. M
22000 AUXFU_ASSIGN_GROUP: required group
22020 AUXFU_ASSIGN_EXTENSION: any required extension
22030 AUXFU_ASSIGN_VALUE: function value

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the part program - max. 16 auxiliary functions, max. 5 M functions per NC block, max. 1 auxiliary function per group.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14780 [Channel %1:] Block %2 unreleased option used (identification %3)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Fine ID

Definitions:
A non-released option has been used in the block.
Identifier Brief description
1 LaserCtrl option
2 ClearCtrl option
3 FeedAdapt option
4 AaTOff option
5 Tang option
6 LeadClab option
7 ELG option
8 Trafo5 option
9 Traoem option
10 Transmit option
11 Tracon option
12 Tracyl option
13 Traang option
14 Oscill option
15 SynSpi option
16 Repos option
17 Spline option
18 Involute option
19 Poly option
20 Compress option
23 Masl option
24 ExtLang or ExtLanguage option not activated

Alarms
Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0 197
NCK alarms

25 TechCycle option
26 Liftfast option
27 ProgAccel option
33 AllAsupSynact option
34 CmdAxSpind option
35 Mea2 option
36 ProgAnaOut option
37 OptAaTOff option
41 MachineMaintenance option
42 PathFeedSAInput option
45 ElecTransfer option
46 Cut3D option
47 CDA option
48 Reserved: generic coupling option
49 Measuring cycles option
50 ForceControl option

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program, retrofit option.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14782 [Channel %1:] Block %2 non-active function used (identification %3)

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Fine ID

Definitions: A non-active function is used in the block
Brief description of the identification
1 Transformation
2 H number of the tool

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: - Modify part program.
- Activate function.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14783 [Channel %1:] Block %2 coordinate system-specific working area limitation is not active

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: An attempt is made in the block to activate a group of the coordinate system-specific working area limitation. However, this group is not set up (see MD28600 $MC_MM_NUM_WORKAREA_CS_GROUPS).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
The NC program is stopped. The G code of the group WALCS01 - WALCS10 can be changed.

Remedy: - Modify part program.
- Activate more coordinate system-specific working area limitations.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14790
[Channel %1:] Block %2 axis %3 programmed by PLC

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis

Definitions:
In the NC block, an axis has been programmed that is already being traversed by the PLC.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Modify part program, do not use this axis.
- Stop traversing motion of the axis by the PLC, modify part program (insert WAITP).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14800
[Channel %1:] Block %2 programmed path speed less or equal to zero

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Zero or a negative F or FZ value has been programmed in conjunction with the G functions G93, G94, G95 or G96.
The path velocity may be programmed in the range of 0.001 to 999 999.999 [mm/min, mm/rev, mm/tooth, deg/min,
deg/rev] for the metric input system and 0.000 1 to 39 999.999 9 [inch/min, inch/rev, inch/tooth] for the inch input sys-
tem.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program the path velocity (geometric sum of the velocity components of the geometry axes involved) within the limits
given above.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14810
[Channel %1:] Block %2 negative axis speed programmed for positioning axis %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis

Definitions:
A negative feed (FA value) has been programmed for the displayed axis presently operating as a positioning axis. The
positioning velocity may be programmed in the range 0.001 to 999 999.999 [mm/min, deg/min] for the metric input
system and 0.000 1 to 39 999.999 9 [inch/min, inch/rev] for the inch input system.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program the positioning velocity within the limits given above.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14811
[Channel %1:] Block %2 incorrect value range for acceleration of axis/spindle %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis, spindle

Definitions:
A value outside of the permissible input range of the programmed acceleration has been used. Values of between 1
and 200 % are possible.
NCK alarms

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Adjust the value range in accordance with the Programming Guide. Values of 1 … 200% are allowed.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14812 [Channel %1:] Block %2 SOFTA not available for axis %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis

Definitions:
SOFT is to be set as type of motion control for an axis. This is not possible because a bent acceleration characteristic has been selected for this axis via machine data.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program or machine data.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14815 [Channel %1:] Block %2 negative thread pitch change programmed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A negative thread pitch change has been programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct the value assignment. The programmed F value should be greater than zero. Zero is allowed but has no effect.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14820 [Channel %1:] Block %2 negative value for maximum spindle speed programmed with constant cutting speed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
For the function "Constant cutting speed G96" a maximum spindle speed can be programmed with the keyword LIMS=.... The values are in the range 0.1 - 999 999.9 [rev/min].

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program the maximum spindle speed for the constant cutting speed within the limits given above. The keyword LIMS is modal and can either be placed in front of or within the block that selects the constant cutting speed.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14824 [Channel %1:] Block %2 conflict with GWPS

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The functions of constant grinding wheel surface speed GWPS and constant cutting speed G96 S... have been activated at the same time for a spindle.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program
Clear alarm with NC START or RESET key and continue the program.

14840 [Channel %1:] Block %2 incorrect value range for constant cutting speed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The programmed cutting speed is not within the input range
Input range metric: 0.01 to 9 999.99 [m/min]
Input range inch: 0.1 to 99 999.99 [inch/min]

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program cutting speed under address S within the permissible range of values.

Program
Clear alarm with NC START or RESET key and continue the program.

14850 [Channel %1:] Block %2 changing the reference axis for a constant cutting speed not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The attempt was made via the SCC[AX] instruction to change the reference axis for a constant cutting speed.
This is not allowed if the indicated axis is no geometry axis.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform authorized personnel/service.
When programming SCC[AX] indicate a geometry axis known in the channel.

Program
Clear alarm with NC START or RESET key and continue the program.
14860 [Channel %1] Block %2 Selection of the tool cutting rate not allowed. Cause %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Cause of the error

Definitions:
Selection of the cutting rate SVC is not permissible in the current state
Causes of the problem: the following function is active.
1: Constant cutting rate G96, G961 or G962 active
2: SPOS/SPOSA/M19 (spindle positioning mode) active
3: M70/axis mode active
4: SUG active

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Activate the speed control mode for the spindle prior to programming SVC, for example with M3, M4 or M5.

Program:
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14861 [Channel %1] Block %2 SVC programmed, but no tool offset active

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Cutting velocity SVC programmed in the block, but no tool offset active.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Select an appropriate tool prior to the SVC instruction.

Program:
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14862 [Channel %1] Block %2 SVC has been programmed, but the radius of the active tool correction is zero

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A cutting velocity SVC has been programmed in the block, but the radius of the active tool offset is zero.
The radius of the active tool offset consists of the offset parameters $TC_DP8, $TC_DP12, $TC_SCPx6 and $TC_ECPx6.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Select an appropriate tool offset with a positive tool radius prior to the SVC instruction.

Program:
Clear alarm with NC START or RESET key and continue the program.

Continuation:
14863 [Channel %1] Block %2 The programmed SVC value is zero or negative

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The programmed value for the cutting velocity SVC is zero or negative.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Program an SVC value larger than zero.

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14900 [Channel %1:] Block %2 center point and end point programmed simultaneously

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When programming a circle by means of the opening angle, the circle center point was programmed together with the circle end point. This is too much information for the circle. Only one of the two points is allowed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Select the programming variant guaranteeing that the dimensions are definitely taken over from the workpiece drawing (avoidance of calculation errors).

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14910 [Channel %1:] Block %2 invalid angle of aperture for programmed circle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When programming a circle by means of the opening angle, a negative opening angle or an opening angle greater than or equal to 360 degrees has been programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program opening angle within the allowed range of values between 0.0001 and 359.9999 [degrees].

Program
Clear alarm with NC START or RESET key and continue the program.

Continuation:

14920 [Channel %1:] Block %2 intermediate point of circle incorrect

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When programming a circle by means of an intermediate point (CIP) all 3 points (initial, end and intermediate points) are on a straight line and the intermediate point (programmed by means of interpolation parameters I, J, K) is not located between the initial and end points.

If the circle is the component of a helix, the specified number of turns (keyword TURN=...) determines further block processing:
- TURN>0: alarm display because the circle radius is infinitely great.
- TURN=0 and CIP specified between initial and end points. A straight line is generated between the initial and end points (without alarm message).
NCK alarms

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Locate the position of the intermediate point with the parameters I, J and K in such a way that it actually is located between the initial and end points of the circle or do not make use of this type of circle programming and instead program the circle with radius or opening angle or center point parameters.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

15030 [Channel %1:] Block %2 different measurement system settings

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The INCH or METRIC instruction describes the system of measurement in which the data blocks have been read from the control. In order to prevent the incorrect interpretation of data intended for a particular system of measurement, a data block is only accepted if the above instruction matches the active system of measurement.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Change the system of measurement or load a data block which matches the system of measurement.

Program Continuation: Clear alarm with the RESET key. Restart part program

15100 [Channel %1:] Block %2 REORG abort caused by log file overflow

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In order to synchronize the preprocessing run and the main run with REORG, the control accesses modification data which are maintained in a logfile. The alarm indicates that no more capacity is available in the logfile for the specified block in the channel.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. No remedial measures are available for the further execution of the current part program, however:
1. Reduce log file size requirement by:
Reducing the distance between the preprocessing and the main run via appropriate preprocessing stops STOPRE.
2. Increase the size of the logfile by means of the channel-specific machine data:
Modify MD28000 $MC_MM_REORG_LOG_FILE_MEM
And
Modify MD 28010 $MC_MM_NUM_REORG_LUD_MODULES

Program Continuation: Clear alarm with the RESET key. Restart part program

15110 [Channel %1:] Block %2 REORG not possible

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In order to synchronize the preprocessing run and the main run with REORG, the control accesses modification data which are maintained in a logfile. The alarm indicates that no more capacity is available in the logfile for the specified block in the channel.
The alarm message means that the logfile has been deleted in order to obtain additional memory for program reorganization. Consequently, it is no longer possible to REORG the preprocessing memory up to the next coincidence point.
NCK alarms

15120 If a power failure occurs now, the last data changed will be lost; index/buffer size = %1

Parameters:
%1 = Index/buffer size

Definitions:
Notification alarm. The alarm has no negative impact on the current machining.
One of the system-internal data buffers, in which the last changed, buffered data are stored, has overflowed because the current data change rate is too high.
The alarm warns that a spontaneous power failure in this situation (mains fault, disconnect the system from the power supply) would cause a loss of the immediately previously changed buffered data (tool data, parts programs, R parameters, GUDs,...)
If the system is operated in an environment in which a power failure cannot occur, then the output of this alarm can be prevented via machine data MD18232 $MN_MM_ACTFILESYS_LOG_FILE_MEM[index] = 0.
For information, parameter %1 specifies the index of the machine data, and the buffer size set there.

Reaction: Alarm display.
Remedy: If the alarm is present only sporadically, it can simply be regarded as a notification. The regular control behavior is not affected.
If one does not want to or cannot eliminate the cause, then the alarm can be suppressed by setting MD11415 $MN_SUPPRESS_ALARM_MASK_2; Bit3=1 ('H8').
If the alarm is permanently present, please inform the authorized personnel/service department.
The value of MD18232 $MN_MM_ACTFILESYS_LOG_FILE_MEM[index] will then have to be increased.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

15122 Power ON after power failure: %1 data were restored, of which %2 machine data, %3 errors.

Parameters:
%1 = Number of data
%2 = Number of machine data
%3 = Number of errors occurred

Definitions:
Notification alarm. The alarm has no negative effect as long as %3 the number of errors occurred is zero.
%1 indicates the number of elementary and complex data restoring steps which were taken after a power OFF during power ON orduring a power failure to restore the persistent NCK data.
%2 indicates the number of restored machine data. If the value is larger than zero, another warm restart (NCK reset) may be necessary to make the – possibly configuring – machine data changes prior to the power failure effective.
%3 indicates the number of errors occurred during data restoring.

Reaction: Alarm display.
Remedy: As long as %3 number of errors occurred is zero, the alarm is only informative.
As long as %3 number of errors occurred is larger than zero, the alarm indicates a software error. Further machining with the data is not recommended.
Please load a suitable archive file before continuing machining to avoid subsequent problems.
Please inform the authorized personnel/service department.
File /_N_MPF_DIR/_N_SIEMDIAGMPF_MPF contains information that may help Siemens for error diagnosis.
NCK alarms

15150 [Channel %1:] Block %2 reload from external aborted

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: Execution from external was aborted because the reload buffer does not have enough machine function blocks (traversing blocks, auxiliary function, dwell time etc.). Background: When already executed machine function blocks are released, memory becomes available in the reload buffer. If machine function blocks are no longer released, nothing can be reloaded - this results in a deadlock situation.

Example: Definition of extremely long curve tables via execution from external.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Insert machine function blocks in the part program.
- Increase the size of the reload buffer (MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE).
- Decrease the size of the curve table (Note: Blocks within CTABDEF/CTABEND are not machine function blocks).

Program Continuation: Clear alarm with the RESET key. Restart part program

15160 [Channel %1:] Block %2 wrong preprocessing configuration

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: A block element is required, but the block element memory is empty.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Please inform the authorized personnel/service department. Modify the block search configuration in MD28060 $MC_MM_IPO_BUFFER_SIZE (decrease size of IPO buffer if necessary) or MD28070 $MC_MM_NUM_BLOCKS_IN_PREP.

Program Continuation: Clear alarm with the RESET key. Restart part program

15165 [Channel %1:] Block %2 error when translating or interpreting Asup %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = String

Definitions: At part program start and at start of an ASUB under Reset condition, the relevant data of all the ASUBs that can be activated at that time are processed:
- PLC ASUBs
- With MD20108 $MC_PROG_EVENT_MASK configured event-controlled program calls
- ASUB after block search (MD11450 $MN_SEARCH_RUN_MODE bit 1=1)
- Editable system ASUB ($MN_ASUP_EDITABLE)

If an error occurs (converter or interpreter), alarm 15165 will be output first and then a converter or interpreter alarm that describes more details of the error. Alarm 15165 will cause an interpreter stop. A compensation block will not be possible.
15166 [Channel %1:] User system asup _N_ASUP_SPF not available

Parameters: %1 = Channel number

Definitions: By means of the MD11610 $MN_ASUP_EDITABLE the function "User-defined system asup" has been activated. However, the relevant user program could not be found in the specified search path:
- 1. /_N_CUS_DIR/_N_ASUP_SPF
- 2. /_N_CMA_DIR/_N_ASUP_SPF
The default system asups are used.

Reaction: Interface signals are set.
Alarm display.

Remedy: Load the user-defined system asup in /_N_CUS_DIR/_N_ASUP_SPF or /_N_CMA_DIR/_N_ASUP_SPF laden.

Program Clear alarm with the RESET key. Restart part program

Continuation: Clear alarm with the RESET key. Restart part program.

15170 [Channel %1:] Block %2 program %3 could not be compiled

Parameters: %1 = Channel number
%2 = Block number, label
%3 = String

Definitions: An error has occurred in compile mode. The (compiler) error message refers to the program specified here.

Reaction: Alarm display.

Remedy: Modify part program.

Program Clear alarm with the Delete key or NC START.

Continuation: Clear alarm with the Delete key or NC START.

15171 [Channel %1:] Block %2 compiled program %3 older than the relevant subroutine

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Compiled program file name

Definitions: When calling a precompiled subroutine, it was noticed that the compiled program is older than the relevant SPF file. The compiled program was deleted and during start the subroutine is executed instead of the compiled program.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Perform another precompilation.

Program Clear alarm with NC START or RESET key and continue the program.

Continuation: Clear alarm with NC START or RESET key and continue the program.
15172 [Channel %1:] Block %2 subroutine %3. No interface available at time of preprocessing.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Subroutine name

Definitions: In compilation mode no program interface of the subroutine to be called was available at the time of pre-compilation.

Reaction:
- Interpreter stop
- Interface signals are set.
- Alarm display.

Remedy:
- Modify parts program or recreate program interfaces and pre-compile programs again.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

15173 [Channel %1:] Block %2 variable %3 was unknown at the time of preprocessing.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Variable

Definitions: At the time of program precompilation, variable %3 was not known to the control.

Reaction:
- Interpreter stop
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the part program or introduce the variable at the time of precompilation, i.e. activate the new GUD variable prior to precompilation. Then restart precompilation.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

15175 [Channel %1:] Block %2 program %3. Interfaces could not be built

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String

Definitions: An error has occurred in interface generation mode. The (compiler) error message refers to the program specified here. In particular when loading new cycle program on the NCK, problems can occur if the value settings in MD18170 $MN_MM_NUM_MAX_FUNC_NAMES and MD18180 $MN_MM_NUM_MAX_FUNC_PARAM are too small.

Reaction:
- Alarm display.

Remedy:
- Modify part program.
- If new cycle programs have been loaded on the NCK, you will normally need to increase the values of MD18170 $MN_MM_NUM_MAX_FUNC_NAMES and MD18180 $MN_MM_NUM_MAX_FUNC_PARAM. See also the explanations for alarm 6010.

Program Continuation:
- Clear alarm with the Delete key or NC START.
15176

[Channel %1:] Block %2 Program %3 may only be executed after Power ON

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = File name

Definitions: If an encrypted program is loaded to the NCK, an NCK reset (restart) must be performed afterwards, because internal data for efficient processing of the encrypted program are preprocessed during NCK power-up. On calling an encrypted NC program it has now been detected that these data do not exist or are obsolete compared to the current version of the encrypted NC program.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Perform an NCK reset (restart).
- Program Continuation: Clear alarm with the RESET key. Restart part program

15177

[Channel %1:] Block %2 Error on preprocessing of program %3, error code: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = File name
- %4 = Error code

Definitions: If an encrypted program is loaded to the NCK, an NCK reset (restart) must be performed afterwards, because internal data for efficient processing of the encrypted program are preprocessed during NCK power-up. The following problem has occurred:

- Error code 1: Error on read-in of program %4
- Error code 2: There is not enough DRAM memory available for storing the preprocessed data.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Error code 1: Encrypt and load program %4 again. Then perform an NCK reset (restart).
- Increase system SL 840 D1: `$MN_MM_DRAM_FILE_MEM_SIZE`.
- Then perform an NCK reset (restart).

Program Continuation:
- Clear alarm with the RESET key. Restart part program

15180

[Channel %1:] Block %2: Error on editing program %3 as INI/DEF file.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = String

Definitions: Errors were found when processing an initialization program (INI file), or a GUD or macro definition file (DEF file). The error message which is then displayed refers to the program specified here.

Reaction:
- Alarm display.

Remedy:
- Correct the initialization program (INI file), or the GUD or macro definition file (DEF file).
- In connection with Alarm 12380 or 12460, also change the memory configuration.

Program Continuation:
- Clear alarm with the Delete key or NC START.
NCK alarms

15185
[Channel %1:] %2 errors in INI file

Parameters:
- %1 = Channel number
- %2 = Number of detected errors

Definitions:
Errors were found when processing initialization program _N_INITIAL_INI. This alarm will also be output, if errors are found during editing of _N_INITIAL_INI in the GUD definition files or if errors are found on ramp-up in the macro definition files.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Please inform the authorized personnel/service department. Correct the INI or DEF file or correct the MD and create a new INI file (via "Upload").

Program Continuation:
Switch control OFF - ON.

15186
[Channel %1:] %2 errors in GUD, macro or INI file

Parameters:
- %1 = Channel number
- %2 = Number of detected errors

Definitions:
%2 errors were found when processing GUD/macro definition files (DEF files) or initialization files (INI files) Alarm 15180 has already informed about the corresponding file. Prior to that the errors shown were reported by error-specific alarms, e.g. 12080 "syntax error".

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Modify definition file or initialization file

Program Continuation:
Clear alarm with the RESET key. Restart part program

15187
[Channel %1:] Error during execution of PROGEVENT file %3.

Parameters:
- %1 = Channel number
- %2 = Is not used
- %3 = PROGEVENT file name

Definitions:
An error has occurred on executing PROGEVENT. With alarm 15187, the name of the program that was started as PROGEVENT is displayed. Alarm 15187 is displayed together with the alarm that describes the error cause. Alarm 15187 is also output when the alarm occurs in a subroutine started from PROGEVENT.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
Correct the PROGEVENT file (subroutine).

Program Continuation:
Clear alarm with the Delete key or NC START.
15188 [Channel %1:] Error during execution of ASUB file %3.
Parameters: %1 = Channel number
%2 = Is not used
%3 = ASUB file name
Definitions: An error has occurred on executing an ASUB.
Alarm 15188 displays the name of the program that was started as ASUB. Alarm 15188 is output together with the alarm that describes the error cause. Alarm 15188 is also output when the alarm occurs in a subroutine started from the ASUB.
Reaction: Interface signals are set.
Alarm display.
Remedy: Correct the ASUB file (subroutine).
Program Continuation: Clear alarm with the Delete key or NC START.

15189 [Channel %1:] Error executing SAFE.SPF
Parameters: %1 = Channel number
Definitions: An error occurred while processing the NC initialization program for Safety Integrated /_N_CST_DIR/_N_SAFE_SPF. This alarm is output together with the alarm describing the cause of the error.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct /_N_CST_DIR/_N_SAFE_SPF and perform an NCK reset.
Program Continuation: Switch control OFF - ON.

15190 [Channel %1:] Block %2 not enough free memory for subroutine call
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The following deadlock has been found in the interpreter: Memory is needed for calling a subroutine. The module memory is, however, empty and there is no prospect of module memory becoming free again by executing the pre-processing/main run queue, because this queue is empty.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Increase machine data MD28010 $MC_MM_NUM_REORG_LUD_MODULES / MD28040 $MC_MM_LUD_VALUES_MEM / MD18210 $MN_MM_USER_MEM_DYNAMIC or program a preprocessing stop STOPRE before calling the subroutine.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

15300 [Channel %1:] Block %2 invalid number-of-passed-blocks during block search
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In the function "Block search with calculation" a negative number of passes has been entered in column P (number of passes). The permissible range of values is P 1 - P 9 999.
NCK alarms

15310 [Channel %1:] Block %2 file requested during block search is not available

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: During block search, a target has been specified with a program that has not been loaded.

Reaction: Alarm display.
Remedy: Correct the specified search target accordingly or reload the file.
Program Continuation: Clear alarm with the Delete key or NC START.

15320 [Channel %1:] Block %2 invalid block search command

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The block search command (type of search target) is smaller than 1 or greater than 5. It is entered in column type of the block search window. The following block search orders are allowed.
 Type Meaning
 1 Search for block number
 2 Search for label
 3 Search for string
 4 Search for program name
 5 Search for line number in a file

Reaction: Alarm display.
Remedy: Modify the block search command.
Program Continuation: Clear alarm with the Delete key or NC START.

15330 [Channel %1:] Block %2 invalid block number as search target

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: Syntax error! Positive integers are allowed as block numbers. Block numbers must be preceded by "：“ and subblocks by an "N".

Reaction: Alarm display.
Remedy: Repeat the input with corrected block number.
Program Continuation: Clear alarm with the Delete key or NC START.

15340 [Channel %1:] Block %2 invalid label as search target

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: Syntax error! A label must have at least 2 but no more than 32 characters, and the first two characters must be alpahabetic or underscore characters. Labels must be concluded with a colon.

Reaction: Alarm display.
Remedy:
Repeat the input with corrected label.

Program
Clear alarm with the Delete key or NC START.

Continuation:

15350 [Channel %1:] Block %2 search target not found

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The specified program has been searched to the end of the program without the selected search target having been found.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check the part program, change the block search (typing error in the part program) and restart the search.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

15360 [Channel %1:] Illegal target of block search (syntax error)

Parameters:
%1 = Channel number

Definitions:
The specified search target (block number, label or string) is not allowed in block search.

Reaction:
Alarm display.

Remedy:
Correct target of block search.

Program
Clear alarm with the Delete key or NC START.

Continuation:

15370 [Channel %1:] Target of block search not found

Parameters:
%1 = Channel number

Definitions:
In a block search, an impermissible search target has been specified (e.g. negative block number).

Reaction:
Alarm display.

Remedy:
Check the specified block number, label or character string. Repeat entry with correct search target.

Program
Clear alarm with the Delete key or NC START.

Continuation:

15380 [Channel %1:] Block %2 illegal incremental programming in axis %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis

Definitions:
The first axis programming after "search to block end point" is performed incrementally. This is not allowed in the following situations:
- After searching the target a transformation change has taken place.
- A frame with rotation component is active. The programmed axis is involved in the rotation.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy: Find search destination in which the axes are programmed using an absolute reference. Deactivate adding of the accumulated search position with SD42444 $SC_TARGET_BLOCK_INCR_PROG = FALSE. Use search run with calculation "at contour".

Program
Continuation: Clear alarm with the RESET key. Restart part program

15395 [Channel %1:] Master-slave not executable during block search
Parameters: %1 = Channel number
Definitions: A master-slave coupling is to be closed in the part program via the instruction MASLON. The position offset $P_SEARCH_MASLD, however, cannot be correctly calculated during block search, as the axes to be coupled are located in different channels.
Reaction: Interpreter stop
NC Start disable in this channel. Interface signals are set. Alarm display.
Remedy: Make sure that all relevant axes are in the same channel.
Program
Continuation: Clear alarm with the RESET key. Restart part program

15400 [Channel %1:] Block %2 selected initial INIT block does not exist
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The operator has selected an INI block for a read, write or execution function which:
1. Does not exist in the NCK range or
2. Does not have the necessary protection level required for performing the function.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Check whether the selected INI block is contained in the file system of the NCK. The present protection level must be selected to be at least equal to (or greater than) the protection level that has been defined for the read, write or execution function at the time of creating the file.
Program
Continuation: Clear alarm with the RESET key. Restart part program

15410 [Channel %1:] Block %2 initialization file contains invalid M function
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The only M function allowed in an Init block is the M02, M17 or M30 end-of-program function.
Reaction: Interpreter stop
NC Start disable in this channel. Interface signals are set. Alarm display.
Remedy: Remove all M functions from the Init block except for the end identifier. An Init block may contain value assignments only (and global data definitions if they are not defined again in a program that can be executed later) but no motion or synchronous actions.
Program
Continuation: Clear alarm with the RESET key. Restart part program
15420 [Channel %1:] Block %2 instruction in current mode not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is output in the following situations:
- The interpreter has detected an illegal instruction (e.g. a motion command) while processing an INI file or a definition file (macro or GUD).
- In a GUD file, the access security for a machine data item is to be changed with REDEF, although an ACCESS file (_N_SACCESS_DEF, _N_MACCESS_DEF, _N_UACCESS_DEF) is available. Access rights for machine data can then only be changed via one of the ACCESS files with REDEF.
- When processing the safety initialization program /_N_CST_DIR/_N_SAFE_SPF an illegal instruction was detected due to the reduced language scope configured.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Correct the INI, GUD or macro file.
- Correct part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15450 [Channel %1:] Block %2 compiled program cannot be stored

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In the compile mode, a compiled program could not be stored. One of the following reasons applies:
- Not enough memory
- Intermediate code line (compilate) too large

Reaction:
Alarm display.

Remedy:
Create space in work memory or modify part program (make it less complex).

Program Continuation:
Clear alarm with the Delete key or NC START.

15460 [Channel %1:] Block %2 syntax error when locking

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The addresses programmed in the block are not compatible with the modal syntax-determining G function. Example:
N100 G01 ... I.. J.. K.. LF

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the displayed block and ensure that the G functions and addresses in the block are in agreement.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15500 [Channel %1:] Block %2 illegal angle of shear

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The function CSHEAR has been called with an illegal (impossible) angle of shear, e.g. when the sum of angles between the axis vectors is greater than 360 degrees.
NCK alarms

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program the angle of shear in accordance with the geometrical conditions of the machine and workpiece system.

Program Clear alarm with the RESET key. Restart part program

Continuation: 15700 [Channel %1:] Block %2 illegal cycle alarm number %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Cycle alarm number

Definitions: A SETAL command has been programmed with a cycle alarm number smaller than 60 000 or greater than 67 999.
Alarm reaction of Siemens standard cycles:
Nos. 61 000 - 61 999: Interpreter stop; delete with Reset
Nos. 62 000 - 62 999: Compensation block; delete with NC Start

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program alarm number in the SETAL instruction in the correct range.

Program Clear alarm with the RESET key. Restart part program

Continuation: 15800 [Channel %1:] Block %2 wrong starting conditions for CONTPRON/CONTDCON

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: There is an error in the start conditions for CONTPRON/CONTDCON:
- G40 not active
- SPLINE or POLY active
- Unknown machining type programmed
- Transferred machining direction not defined
- Definition of LUDs in incorrect subroutine level
- Transferred circle coordinates

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Clear alarm with the RESET key. Restart part program

Continuation: 15810 [Channel %1:] Block %2 wrong array dimension for CONTPRON/CONTDCON

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The number of columns for the array created for CONTPRON/CONTDCON does not conform to the current programming guide.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

NCK alarms

15900

[Channel %1:] Block %2 touch probe not allowed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Measure with deletion of distance-to-go
In the part program, an illegal probe has been programmed with the command MEAS (measure with deletion of distance-to-go). The probe numbers
- 0 ... no probe
- 1 ... probe 1
- 2 ... probe 2
are allowed, whether the probe is actually connected or not.

Example:
N10 MEAS=2 G01 X100 Y200 Z300 F1000
Probe 2 with deletion of distance-to-go

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Include a probe number within the limits given above in the keyword MEAS=... This must correspond to the hardware connection of the probe.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15910

[Channel %1:] Block %2 touch probe not allowed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Measure without deletion of distance-to-go
In the part program, an illegal probe has been programmed with the command MEAW (measure without distance-to-go). The probe numbers
- 0 ... no probe
- 1 ... probe 1
- 2 ... probe 2
are allowed, whether the probe is actually connected or not.

Example:
N10 MEAW=2 G01 X100 Y200 Z300 F1000
Probe 2 without deletion of distance-to-go

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Include a probe number within the limits given above in the keyword MEAW=... This must correspond to the hardware connection of the probe.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
15950

[Channel %1:] Block %2 no traverse motion programmed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Measure with deletion of distance-to-go

 In the part program, no axis or a traversing path of zero has been programmed with the command MEAS (measure with deletion of distance-to-go).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the part program and add the axis address or the traversing path to the measurements block.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

15960

[Channel %1:] Block %2 no traverse motion programmed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Measure without deletion of distance-to-go

 In the part program, no axis or a traversing path of zero has been programmed with the command MEAW (measure without deletion of distance-to-go).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the part program and add the axis address or the traversing path to the measurements block.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

16000

[Channel %1:] Block %2 invalid value for lifting direction

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- During the "rapid lift from contour" (keyword: LIFTFAST), a code value for the lifting direction (keyword: ALF=...) which lies outside the permissible range (permissible value range: 0 to 8) was programmed.

 With active cutter radius compensation:
 - Code numbers 2, 3 and 4 cannot be used in G41
 - Code numbers 6, 7 and 8 cannot be used in G42 because they code the direction to the contour.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Program the lifting direction under ALF=... within the permissible limits.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

16005

[Channel %1:] Block %2 invalid value for lifting distance

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Mistake in programming: the value for the lifting path must not be negative.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.
NCK alarms

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16010

[Channel %1:] Block %2 machining stop after lift fast

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: LIFTFAST without interrupt routine (Asup) has been programmed. The channel is stopped after the lift motion has been carried out.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy: After the channel stop, the axes must be retracted manually in JOG and the program aborted with Reset.

Program Continuation: Clear alarm with the RESET key. Restart part program.

16015

[Channel %1:] Block %2 wrong axis identifier %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name

Definitions: Axis names from different coordinate systems were used to program axes for LIFTFAST. The retraction movement is no longer clear.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy: Use axis names from one coordinate system.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16016

[Channel %1:] Block %2 no retraction position programmed for axis %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name

Definitions: The retraction enable was programmed for LIFTFAST without defining a retraction position for the axis. The retraction movement is no longer clear.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy: Program a retraction position for the relevant axis.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16017 [Channel %1:] Axis %2 Identifier %3, LIFTFAST ignores this axis, current axis not capable of retraction

Parameters:
- %1 = Channel
- %2 = Axis, spindle
- %3 = Identifier

Definitions:
- LIFTFAST cannot be applied to the axis.
- Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 11.
- Identifier (parameter 3) is bit-coded and displays some possible causes for the alarm:
 - 0x01Axis is in another channel
 - 0x04Axis is in spindle mode (e.g. SPOS)
 - 0x08Axis is oscillating axis
 - 0x10Axis is neutral axis
 - 0x20Axis is coupled slave axis
 - 0x40Axis is in static synchronized action
- Overview of reactions of common programming to LIFTFAST:
 - Axis | Synact | Reaction to LIFTFAST
 - Path | | STOP + LIFTFAST
 - POS | | STOP + LIFTFAST
 - POS | non-modal | STOP + LIFTFAST
 - POS | modal | STOP + LIFTFAST
 - POS | stati. | RUN + SHOWALARM 16017
 - POSA | | STOP + LIFTFAST
 - MOV | non-modal | STOP + LIFTFAST
 - MOV | modal | STOP + LIFTFAST
 - MOV | stati. | RUN + SHOWALARM 16017
 - PLC | | RUN + SHOWALARM 16017
 - Oscill. | | RUN + SHOWALARM 16017
 - SPOS | | STOP + SHOWALARM 16017
 - SPOS | non-modal | STOP + SHOWALARM 16017
 - SPOS | modal | STOP + SHOWALARM 16017
 - SPOS | stati. | RUN + SHOWALARM 16017
 - SPOSA | | STOP + SHOWALARM 16017

Reaction: Alarm display.
Remedy: Remove axis from POLFMLIN or POLFMASK.
- Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 11.
- At the time of LIFTFAST, an axis for LIFTFAST is programmed, but the status of the axis does not allow LIFTFAST (e.g. oscillating axis or spindle), or the axis is not in the channel. LIFTFAST should only be applied to those axes that are capable of retracting at that time; POLFMASK or POLFMLIN should be adapted accordingly.

Program Continuation:
- Clear alarm with the Delete key or NC START.

16020 [Channel %1:] Repositioning in block %2 is not possible

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Programming or operator action incorrect:
 - Repositioning via REPOS command is only possible in an asynchronous subprogram (interrupt routine).
 - If the REPOS command was programmed, e.g. in the main program or in a cycle, part program execution is aborted with alarm 16020.
- In addition, the alarm is output in the following situations:
 - Access to $AC_RETPOINT (repositioning point) outside an ASUP (e.g. in the main program)
 - An axis to be repositioned was a oscillating axis with synchronous infeed (OSCILL) in the interrupted block and is now in a state that does not allow it to be traversed as a oscillating axis. Remedy: Change the axis to "neutral axis" state before repositioning with WAITP.
 - An axis to be repositioned was an infeed axis for a oscillating axis in the interrupted block; now it can no longer be traversed as one. Remedy: Change the axis back to "POS axis" state before repositioning.
NCK alarms

16025 [Channel %1:] Block %2 impermissible axis exchange in REPOS command by axis %3.
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis identifier
Definitions:
With the REPOS command, an axis or spindle was programmed that was in the NEUTRAL state at that time. As the REPOS command cannot execute any implicit GET, these axes/spindles cannot be repositioned. Part program editing is therefore aborted.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Assign the axes/spindles that are to be repositioned to the channel via GET command prior to the REPOS command.
Example:
GET(A); assign the A axis to the channel
REPOSPL A; reposition the geometry axes and A axis
Program Continuation:
Clear alarm with the RESET key. Restart part program

16100 [Channel %1:] Block %2 spindle %3 not available in the channel
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String
Definitions:
Incorrect programming:
This channel does not recognize the spindle number.
The alarm can occur together with a dwell or a spindle function.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Please inform the authorized personnel/service department.
Check the part program to determine whether the programmed spindle number is correct and whether the program is run in the correct channel.
Check MD35000 $MA_SPIND_ASSIGN_TO_MACHAX for all machine axes to see whether one of them contains the programmed spindle number. This machine axis number must be entered in a channel axis of the machine data MD20070 $MC_AXCONF_MACHAX_USED.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16105 [Channel %1:] Block %2 spindle %3 cannot be assigned
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String
Definitions:
Mistake in programming: The programmed spindle is not assigned a real spindle by the spindle number converter. The alarm can be issued after improper use of SD42800 $SC_SPIND_ASSIGN_TAB[].
NCK alarms

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Correct setting data or modify part program.

Program Clear alarm with the RESET key. Restart part program

Continuation:

16111

[Channel %1:] Block %2 spindle %3 No speed programmed

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle

Definitions: Programming of a speed is expected.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program speed with S[spindle number]=..

Program Clear alarm with NC START or RESET key and continue the program.

Continuation:

16112

[Channel %1:] Block %2 following spindle %3 Impermissible programming

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle

Definitions: With synchronous spindle-VV-coupling an additional motion for the following spindle can only be programmed with M3, M4, M5 and S... The paths created by specified positions cannot be maintained safely for a velocity coupling, especially if a position control is missing. If dimensional accuracy or reproducibility are not important, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK Bit27 = 1.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Use synchronous spindle-DV-coupling or program direction of rotation and speed.

Program Clear alarm with NC START or RESET key and continue the program.

Continuation:

16120

[Channel %1:] Block %2 invalid index for tool fine compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Mistake in programming: The 2nd parameter in the PUTFTOC command indicates for which tool parameter the value is to be corrected (1 - 3 tool lengths, 4 tool radius). The programmed value is beyond the permitted range. Permissible values are 1 - 4 if on-line tool radius compensation is allowed (see MD20254 $MC_ONLINE_CUTCOM_ENABLE), otherwise values 1 - 3.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program: Length 1 - 3 or 4 permissible for radius.

Program Clear alarm with NC START or RESET key and continue the program.

Continuation:
16130
[Channel %1:] Block %2 command not allowed with FTOCON

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Case 1: A plane change is not allowed if the modal G function FTOCON; "fine tool compensation" is active.
- Case 2: Transformation selection is allowed only for zero transformation or transformation inclined axis, Transmit or Tracyl if FTOCON is active.
- Case 3: Tool change is not allowed with M06 if FTOCON has been active since the last tool change.
- Case 4: Orientable tool holder is active.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program: Deselect fine tool compensation with FTOCOF.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

16140
[Channel %1:] Block %2 FTOCON not allowed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- The tool fine compensation (FTOC) is not compatible with the currently active transformation.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program: Deselect fine tool compensation with FTOCOF.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

16150
[Channel %1:] Block %2 invalid spindle number with PUTFTOCF

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- The spindle number programmed for PUTFTOC or PUTFTOCF is beyond the permitted range for the spindle numbers.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program. Is the programmed spindle number available?

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

16200
[Channel %1:] Block %2 spline and polynomial interpolation not available

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- The spline and polynomial interpolation are options that are not contained in the basic version of the control.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Do not program spline and polynomial interpolation, or retrofit the necessary option.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.
16300 [Channel %1:] Block %2 denominator polynomial with zero places within parameter range not allowed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The programmed denominator polynomial (with PL [] = ... , i.e. without specification of geometry axis) has a zero place within the defined parameter range (PL = ...). This means that the quotient of the numerator polynomial and the denominator polynomial is infinite or indeterminate.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify the polynomial block so that there is no zero place within the polynomial length in the denominator polynomial.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16400 [Channel %1:] Block %2 positioning axis %3 cannot participate in spline

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
An axis assigned to a spline grouping (n) with SPLINEPATH (n, AX1, AX2, ...) has been programmed as positioning axis with POS or POSA.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Do not assign the positioning axis to the spline grouping.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16410 [Channel %1:] Block %2 axis %3 is not a geometry axis

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
A geometry axis has been programmed that cannot be imaged on any machine axis in the current transformation (possibly there is no transformation active at the moment).

Example:
- Without transformation: Polar coordinate system with X, Z, and C axis
- With transformation: Cartesian coordinate system with X, Y, and Z, e.g. with TRANSMIT.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Activate transformation type with TRAORI (n) or do not program geometry axes that do not participate in the transformation grouping.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
<table>
<thead>
<tr>
<th>Alarm Code</th>
<th>Description</th>
<th>Parameters</th>
<th>Definitions</th>
<th>Reaction</th>
<th>Remedy</th>
<th>Program</th>
<th>Continuation</th>
</tr>
</thead>
</table>
| 16420 | [Channel %1:] Block %2 axis %3 programmed repeatedly | %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number | It is not allowed to program an axis more than once. | Correction block is reorganized.
Interface signals are set.
Alarm display. | Delete the axis addresses that have been programmed more than once. | Clear alarm with NC START or RESET key and continue the program. |
| 16421 | [Channel %1:] Block %2 angle %3 programmed repeatedly in the block | %1 = Channel number
%2 = Block number, label
%3 = Angle | It is not allowed to program more than one PHI or PSI angle for an orientation vector in the same block. | Correction block is reorganized.
Interface signals are set.
Alarm display. | Modify part program. | Clear alarm with NC START or RESET key and continue the program. |
| 16422 | [Channel %1:] Block %2 angle %3 programmed repeatedly in the block | %1 = Channel number
%2 = Block number, label
%3 = Angle | It is not allowed to program more than one rotation angle THETA for the orientation in one block. The angle of rotation can either be programmed explicitly with THETA or by programing with Euler angles or RPY angles. | Correction block is reorganized.
Interface signals are set.
Alarm display. | Modify part program. | Clear alarm with NC START or RESET key and continue the program. |
| 16423 | [Channel %1:] Block %2 angle %3 programmed repeatedly in the block | %1 = Channel number
%2 = Block number, label
%3 = Angle | It is not allowed to program more than one polynomial for the orientation rotation angle with PO[THT] in one block. | Correction block is reorganized.
Interface signals are set.
Alarm display. | Modify part program. | Clear alarm with NC START or RESET key and continue the program. |
16424
[Channel %1:] Block %2 coordinate %3 programmed repeatedly in the block

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Coordinate

Definitions: It is not allowed to program a coordinate of the 2nd contact point of the tool for description of the tool orientation several times in one block.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

16430
[Channel %1:] Block %2 geometry axis %3 cannot traverse as positioning axis in rotated coordinate system

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions: In the rotated coordinate system, traversing of a geometry axis as positioning axis (i.e. along its axis vector in the rotated coordinate system) would mean traversing of several machine axes. This is in conflict with the positioning axis concept, however, in which one axis interpolator runs in addition to the path interpolator!

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Traverse geometry axes as positioning axes only with rotation deactivated.
- Deactivate rotation:
 - Keyword ROT without further specification of axis and angle.
 - Example: N100 ROT

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

16440
[Channel %1:] Block %2 rotation programmed for non-existent geometry axis

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: A rotation of a geometry axis which does not exist was programmed.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

16500
[Channel %1:] Block %2 chamfer or rounding negative

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: A negative chamfer or rounding has been programmed under the keywords CHF=..., RND=..., or RNDM=...
16510 [Channel %1:] Block %2 no facing axis for diameter programming available

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Diameter programming has been activated although no transverse axis with diameter programming has been applied. Transverse axes can be applied with MD20100 $MC_DIAMETER_AX_DEF or MD30460 $MA_BASE_FUNCTION_MASK bit2 for diameter programming. Diameter programming can be applied through:
 - basic position DIAMON or DIAM90 of the G 29 group during booting
 - programming of DIAMON or DIAM90
 - programming of DIAMONA[AX], DIAM90A[AX] or DAC, DIC, RAC, RIC

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
When programming DIAMON/DIAM90, a traverse axis must be configured via MD20100 $MC_DIAMETER_AX_DEF.
When programming DIAMONA[AX], DIAM90A[AX] or DAC, DIC, RAC, RIC, the AX axis must be a transverse axis for diameter programming configured via MD30460 $MA_BASE_FUNCTION_MASK bit2.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16600 [Channel %1:] Block %2 spindle %3 gear stage change not possible

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Spindle number

Definitions:
The programmed speed is outside the speed range of the set gear stage. In order to execute the programmed speed, the gear stage must be changed. In order to be able to execute the automatic gear stage change (M40 is active), the spindle must be in speed control operation. The alarm will no longer be output after having set bit 30 (0x40000000) in MD11410 $MN_SUPPRESS_ALARM_MASK. However, the function will not be affected by this.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
The changeover to speed control operation is performed by programming M3, M4 or M5. The M functions can be written together with the S word in the same block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16605 [Channel %1:] Block %2 Spindle %3 Gear stage change in %4 not possible

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Spindle number
- %4 = Gear stage
Definitions: A gear stage change for the spindle will not be possible, if:
- thread cutting (G33, G34, G35) is active
- the spindle is active as master or slave spindle in a coupling
- the spindle is being positioned

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: The gear stage is to be set prior to the corresponding machining step.
If it is necessary, however, to change the gear stage within one of the above mentioned functions, this function must be switched off for the time of the gear stage change. Thread cutting is deselected with G1; synchronous spindle coupling is switched off with COUPOF; the spindle positioning operation is exited with M3, M4 or M5.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16670 [Channel %1:] Block %2 following axis/spindle %3 maximum number of CP modules (%4) has been exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Max. number of CP modules

Definitions: An attempt was made to activate more generic couplings than are configured in MD18450 $MN_MM_NUM_CP_MODULES.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Reduce the number of defined or active couplings, or increase the number of coupling modules configured in MD18450 $MN_MM_NUM_CP_MODULES.
If necessary, buy another option stage of the generic coupling.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16671 [Channel %1:] Block %2 following axis/spindle %3 maximum number of CP modules (%4) has been exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Max. number of CP modules

Definitions: An attempt was made to activate more generic couplings than are configured in MD18450 $MN_MM_NUM_CP_MODULES.

Reaction: NC not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Reduce the number of defined or active couplings, or increase the number of coupling modules configured in MD18450 $MN_MM_NUM_CP_MODULES.
If necessary, buy another option stage of the generic coupling.

Program Continuation: Clear alarm with the RESET key in all channels. Restart part program.
16672 [Channel %1:] Block %2 leading axis/spindle %3 maximum number of CP master values (%4) exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Max. number of CP master values

Definitions:
An attempt was made to activate more master values of generic couplings than are configured in MD18452 $MN_MM_NUM_CP_MODUL_LEAD.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Reduce the number of defined or active master values, or increase the total number of master values configured in MD18452 $MN_MM_NUM_CP_MODUL_LEAD.
If necessary, buy another option stage of the generic coupling.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16673 [Channel %1:] Block %2 leading axis/spindle %3 maximum number of CP master values (%4) exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Max. number of CP master values

Definitions:
An attempt was made to activate more master values of generic couplings than are configured in MD18452 $MN_MM_NUM_CP_MODUL_LEAD.

Reaction:
NC not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Reduce the number of defined or active master values, or increase the total number of master values configured in MD18452 $MN_MM_NUM_CP_MODUL_LEAD.
If necessary, buy another option stage of the generic coupling.

Program Continuation:
Clear alarm with the RESET key in all channels. Restart part program.

16675 [Channel %1:] block %2 following axis/spindle %3 coupling module already defined in channel %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis/spindle
%4 = Channel number

Definitions:
An attempt was made to define or activate a CP coupling, although a coupling had already been defined or activated on this following axis/spindle in another channel.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Change the part program: A CP coupling module must not be simultaneously defined in multiple channels for the same following axis/spindle.

Program Continuation:
Clear alarm with the RESET key. Restart part program
16678 [Channel %1:] Block %2 following axis/spindle %3 status %4 impermissible traversing instruction

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Status

Definitions:
An additional traversing in the following axis/spindle is not permitted in the current status of the generic coupling.
Example: CPOF=X G0 X100 is not permitted.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.
A motion in the following axis/spindle can be programmed with CPFPOS, CPON or CPOF.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16680 [Channel %1:] Block %2 following axis/spindle %4 instruction %3 programmed repeatedly

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = CP instruction
%4 = Axis name, spindle number

Definitions:
The stated instruction has been programmed repeatedly in the block for the same following axis/spindle of a generic coupling.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16681 [Channel %1:] Block %2 following axis/spindle %3 CPFPOS not permitted (reason %4)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Reason

Definitions:
CPFPOS must not be declared for a following axis/spindle of a generic coupling in the current status. The reasons for this may be:
- Reason 1: The coupling does not completely switch off, at least one leading axis/spindle remains active in the coupling.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
The following remedies are available for the reasons stated below:
- Reason 1: Only declare CPFPOS when switching off the coupling, if it is completely closed.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16682 [Channel %1:] Block %2 following axis/spindle %3 instructions %4 are not possible.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instruction

Definitions:
The stated instructions are not permitted together in one block for a following axis/spindle of a generic coupling.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16684 [Channel %1:] Block %2 following axis/spindle %3 instructions %4 are not possible separately.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instructions

Definitions:
The stated instructions are only permitted together in one block for a following axis/spindle of a generic coupling.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16685 [Channel %1:] Block %2 following axis/spindle %3 instructions %4 are not possible separately.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instructions

Definitions:
The stated instructions are only permitted together in one block for a following axis/spindle of a generic coupling.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

16686 [Channel %1:] Block %2 following axis/spindle %3 type of coupling/instruction %4 is not possible.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instructions
Definitions: The stated instruction is not permitted for the stated type of generic coupling.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16687 [Channel %1:] Block %2 following axis/spindle %3 type of coupling/instruction %4 is not possible.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instructions

Definitions: The stated instruction is not permitted for the stated type of generic coupling.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16688 [Channel %1:] Block %2 following axis/spindle %3 coupling type %4 maximum number of master values exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Coupling type

Definitions: The maximum number of master values has been exceeded for the stated type of generic coupling.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program, reduce number of master values or use a different type of coupling.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16689 [Channel %1:] Block %2 following axis/spindle %3 coupling type %4 maximum number of master values exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Coupling type

Definitions: The maximum number of master values has been exceeded for the stated type of generic coupling.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Modify part program, reduce number of master values or use a different type of coupling.
Clear alarm with NC START or RESET key and continue the program.

16690

[Channel %1:] Block %2 following axis/spindle %3 changing the reference system %4 is not possible.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number
- %4 = Reference system

Definitions:
An attempt was made to change the reference system with generic coupling active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.
End coupling and reactivate with desired reference system.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16691

[Channel %1:] Block %2 following axis/spindle %3 changing the reference system %4 is not possible.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number
- %4 = Reference system

Definitions:
An attempt was made to change the reference system with generic coupling active.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program.
End coupling and reactivate with desired reference system.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16692

[Channel %1:] Block %2 following axis/spindle %3 maximum number of couplings in the block %4 has been exceeded

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number
- %4 = Maximum number of couplings

Definitions:
The maximum number of generic couplings in the block has been exceeded.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.
Reduce the number of generic couplings programmed in the block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16694

[Channel %1:] Block %2 following axis/spindle %3 status/instruction %4 is not possible.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Status, instruction

Definitions:
The stated instruction is not permitted for the current status of the generic coupling.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16695

[Channel %1:] Block %2 following axis/spindle %3 status/instruction %4 is not possible.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Status, instruction

Definitions:
The stated instruction is not permitted for the current status of the generic coupling.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16696

[Channel %1:] Block %2 following axis/spindle %3 coupling has not been defined.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
An instruction to an undefined coupling is to be executed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.
Define the coupling and activate, if necessary, before the instruction.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16697

[Channel %1:] Block %2 following axis/spindle %3 coupling has not been defined.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
An instruction to an undefined coupling is to be executed.
Reactions:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program.
Define the coupling and activate, if necessary, before the instruction.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16698 [Channel %1:] Block %2 following axis/spindle %3 leading axis/spindle %4 has not been defined.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number

Definitions:
An instruction to an undefined leading axis/spindle of a coupling is to be executed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.
Define the leading axis/spindle and activate, if necessary, before the instruction.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16699 [Channel %1:] Block %2 following axis/spindle %3 leading axis/spindle %4 has not been defined.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number

Definitions:
An instruction to an undefined leading axis/spindle of a coupling is to be executed.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program.
Define the leading axis/spindle and activate, if necessary, before the instruction.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16700 [Channel %1:] Block %2 axis %3 invalid feed type

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
In a thread cutting function, the feed has been programmed in a unit that is impermissible.
G33 (thread with constant lead) and the feed have not been programmed with G94 or G95.
G33 (thread with constant lead) is active (modal) and G63 is programmed additionally in a following block. (Conflict situation! G63 is in the 2nd G group, G33, G331 and G332 are in the 1st G group).
G331 or G332 (rigid tapping) and the feed have not been programmed with G94.
NCK alarms

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.
Remedy: Use only the feed type G94 or G95 in the thread cutting functions. After G33 and before G63, deselect the thread cutting function with G01.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16715 [Channel %1:] Block %2 axis %3 spindle not in standstill

Parameters: %1 = Channel number %2 = Block number, label %3 = Spindle number
Definitions: In the applied function (G74, reference point approach), the spindle must be stationary.
Reaction: Correction block is reorganized. Interface signals are set. Alarm display.
Remedy: Program M5 or SPOS/SPOSA in front of the defective block in the part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16720 [Channel %1:] Block %2 axis %3 thread pitch is zero

Parameters: %1 = Channel number %2 = Block number, label %3 = Axis name, spindle number
Definitions: No pitch was programmed in a thread block with G33 (thread with constant pitch) or G331 (rigid tapping).
Reaction: Correction block is reorganized. Interface signals are set. Alarm display.
Remedy: The thread pitch must be programmed for the specified geometry axis under the associated interpolation parameters.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16730 [Channel %1:] Block %2 axis %3 wrong parameter

Parameters: %1 = Channel number %2 = Block number, label %3 = Axis name, spindle number
Definitions: In G33 (tapping with constant pitch) the pitch parameter was not assigned to the axis that determines the velocity. For longitudinal and face threads, the thread pitch for the specified geometry axis must be programmed under the associated interpolation parameter. X -> I Y -> J Z -> K For taper threads, the address I, J, K depends on the axis with the longer path (thread length). A 2nd lead for the other axis is, however, not specified.
Reaction: Correction block is reorganized. Interface signals are set. Alarm display.
Remedy: Assign lead parameters to the axis that determines the velocity.
16740 \[\text{Channel \%1: } \] Block \%2 no geometry axis programmed

Parameters:
- \%1 = Channel number
- \%2 = Block number, label

Definitions:
No geometry axis was programmed for tapping (G33) or for rigid tapping (G331, G332). The geometry axis is, however, essential if an interpolation parameter has been specified.

Example:
N100 G33 Z400 K2 ; thread pitch 2mm, thread end Z=400 mm
N200 SPOS=0 ; position spindle in axis mode
N201 G90 G331 Z-50 K-2 ; tapping to Z=-50, counterclockwise
N202 G332 Z5 ; retraction, direction reversal automatic
N203 S500 M03 ; spindle again in spindle mode

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Specify geometry axis and corresponding interpolation parameters.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16746 \[\text{Channel \%1: } \] Block \%2 spindle \%3 selected gear stage \%4 not installed

Parameters:
- \%1 = Channel number
- \%2 = Block number, label
- \%3 = Spindle number
- \%4 = Gear stage

Definitions:
The first gear stage data block is active. The required gear stage is not installed in the 1st gear stage data block. The number of gear stages installed is configured in MD35090 $MA_NUM_GEAR_STEPS.
Examples of the occurrence of the alarm with 3 three gear stages installed (MD 35090 $MA_NUM_GEAR_STEPS = 3):
* ... M44 or M45 has been programmed for the spindle concerned
* ... M70 has been programmed and MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE is larger than 3.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program: Only those valid gear stages can be entered which have also been installed according to MD35090 $MA_NUM_GEAR_STEPS.
Limit M70 configuration (MD 35014 $MA_GEAR_STEP_USED_IN_AXISMODE) to MD35090 $MA_NUM_GEAR_STEPS.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16747 \[\text{Channel \%1: } \] Block \%2 spindle \%3 inserted gear stage \%4 for tapping not installed

Parameters:
- \%1 = Channel number
- \%2 = Block number, label
- \%3 = Spindle number
- \%4 = Gear stage

Definitions:
The second gear stage data block has been activated for tapping with G331.
However, the current gear stage has not been installed in the second gear stage data block. The number of gear stages installed is configured in MD35092 $MA_NUM_GEAR_STEPS. The gear stage cannot be changed in traversing blocks. The gear stage appropriate for the speed must be loaded before the traversing block.
NCK alarms

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Procedure for automatically engaging the suitable gear stage prior to thread cutting:
- Program the spindle speed (S) in a G331 block without axis motions and prior to thread cutting, e.g. G331 S1000.
- Activate M40 for the spindle.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16748 [Channel %1:] Block %2 spindle %3 gear stage %4 expected

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle number
%4 = Gear stage

Definitions: G331 activates the second gear stage data block for tapping.
The programmed speed (S) of the master spindle lies outside the speed range of the active gear stage in the current traversing block.
The gear stage cannot be changed in the traversing block. The gear stage appropriate for the speed must be loaded prior to the traversing block.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Procedure for automatically engaging the suitable gear stage prior to thread cutting:
- Program the spindle speed (S) in a G331 block without axis motions and prior to thread cutting, e.g. G331 S1000.
- Activate M40 for the spindle.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16750 [Channel %1:] Block %2 axis %3 SPCON not programmed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: For the programmed function (rotary axis, positioning axis), the spindle must be in position control mode.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program position control of the spindle with SPCON in the previous block.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16751 [Channel %1:] Block %2 spindle/axis %3 SPCOF not executable

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: For the programmed function, the spindle must be in the open-loop control mode. In the positioning or axis mode, the position control must not be deselected.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Put the spindle into open-loop control mode in the preceding block. This can be done with M3, M4 or M5 for the relevant spindle.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16755

[Channel %1:] Block %2 no stop required

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
No Stop is needed for the programmed function. A Stop is necessary after SPOSA or after M5 if the next block is to be loaded only after a spindle stop.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Do not write instruction.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16757

[Channel %1:] Block %2 for following spindle %3 coupling as leading spindle/axis already existing

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Following spindle number

Definitions:
A coupling has been switched on in which the following spindle/axis has already been active as leading spindle/axis in another coupling. Chained couplings cannot be processed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check in the parts program whether the following spindle/axis is already active as leading spindle/axis in another coupling.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16758

[Channel %1:] Block %2 for leading spindle %3 coupling as following spindle/axis already existing

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Leading spindle number

Definitions:
A coupling has been switched on in which the leading spindle/axis has already been active as following spindle/axis in another coupling. Chained couplings cannot be processed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check in the parts program whether the leading spindle/axis is already active as following spindle/axis in another coupling.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
NCK alarms

16760 [Channel %1:] Block %2 axis %3 S value missing
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: No spindle speed has been given for rigid tapping (G331 or G332).
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Program the spindle speed under address S in [rpm] (in spite of axis mode); the direction of rotation is given by the sign of the spindle lead:
- Positive thread pitch: Rotational direction as M03.
- Negative thread pitch: Rotational direction as M04 N2.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16762 [Channel %1:] Block %2 spindle %3 thread function is active
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle number
Definitions: Incorrect programming: the spindle function can currently not be executed. This alarm occurs when the spindle (master spindle) is linked with the axes by an interpolation function.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program. Deselect thread cutting or tapping.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16763 [Channel %1:] Block %2 axis %3 programmed speed is illegal (zero or negative)
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: A spindle speed (S value) was programmed with the value zero or with a negative value.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: The programmed spindle speed (S value) must be positive. Depending on the application case, the value zero can be accepted (e.g. G25 S0).
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16770

[Channel %1:] Block %2 axis %3 no measuring system available

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
One of the following spindle functions has been programmed, the position control requires:
- SPCON,
- SPOS, SPOSA,
- COUPON,
- G331/G332.

The position control requires at least one measuring system.

No measuring system has been configured in MD30200 $MA_NUM_ENCS of the programmed spindle.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Please inform the authorized personnel/service department. Retrofit a measuring system.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

16771

[Channel %1:] Block %3 following axis %2 overlaid movement not enabled

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Block number, label

Definitions:
- No gear synchronization and no overlay movement can be executed because this is not enabled at the VDI interface.

Reaction:
- Alarm display.

Remedy:
- Set the NC/PLC interface signal <Freigabe_Folgeachsueberlagerung/> (enable following axis overlay).

Program Continuation:
- Alarm display showing cause of alarm disappears. No further operator action necessary.

16772

[Channel %1:] Block %2 axis %3 is the slave axis, the coupling is being opened

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis, spindle

Definitions:
- The axis is active as a following axis in a coupling. In REF operating mode, the coupling is opened. The alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit 29 = 1 or with CP programming by setting CPMLARM[FAx] bit 0 = 1.

Reaction:
- Alarm display.

Remedy:
- The coupling will be closed again after having exited the REF operation mode.

Program Continuation:
- Alarm display showing cause of alarm disappears. No further operator action necessary.
16773 [Channel %1:] Axis %2 is the following axis. The axis/spindle disables of leading axes %3 and %4 differ from one another.

Parameters:
- %1 = Channel number
- %2 = Axis, spindle
- %3 = Axis, spindle
- %4 = Axis, spindle

Definitions:
The axis is active in a coupling as a following axis. The leading axes have different states regarding axis/spindle disable. The alarm can be suppressed with MD11415 $MN_SUPPRESS_ALARM_MASK_2, bit 0 = 1 or with CP programming by setting CPMALARM[FAx] bit 1 = 1.

Reaction: Alarm display.
Remedy: Set the same axis/spindle disable for all master axes.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

16774 [Channel %1:] Synchronization aborted for slave axis/spindle %2

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
For the indicated axis, the synchronization procedure (EGONSYN or EGONSYNE) was canceled. There are several reasons for aborting the synchronization process:
- RESET
- End of program
- Axis goes to follow-up mode
- Rapid stop caused by an alarm

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
If canceling the synchronization procedure can be tolerated or is intended, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit 31 = 1 or with CP programming by setting CPMALARM[FAx] bit 2 = 1.
Only applicable for electronic gear (EG):
If it is not possible to cancel the synchronization procedure, specify the block change criterion FINE in EGONSYN or EGONSYNE.

Program Continuation:
Clear alarm with the RESET key. Restart part program

16777 [Channel %1:] Block %2 coupling: following axis %3 for lead axis %4 not available

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number
- %4 = Axis name, spindle number

Definitions:
A coupling has been switched on in which the slave spindle/axis is currently not available. Possible causes:
- The spindle/axis is active in the other channel.
- The spindle/axis has been accessed by the PLC and has not yet been released.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Put the master spindle/axis with spindle/axis exchange into the necessary channel or release from the PLC.

Program Continuation:
Clear alarm with the RESET key. Restart part program
16778 [Channel %1:] Block %2 coupling: Ring coupling at following axis %3 and leading axis %4 impermissible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number

Definitions:
A coupling has been switched on which results in a cyclic coupling, allowance being made for further couplings. This cyclic coupling cannot be uniquely computed.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Configure link in accordance with the MD or correct NC part program (MD21300 $MC_COUPLE_AXIS_1).

Program Continuation:
Clear alarm with the RESET key. Restart part program.

16779 [Channel %1:] Block %2 coupling: too many couplings for axis %3, see active leading axis %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number

Definitions:
More leading axes and spindles were defined for the specified axis/spindle than are allowed. The last parameter to be specified is a leading value object/leading axis to which the specified axis/spindle is already linked.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

16780 [Channel %1:] Block %2 following spindle/axis missing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The following spindle/axis has not been written in the part program.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16781 [Channel %1:] Block %2 master spindle/axis missing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The master spindle/axis has not been programmed in the part program.
NCK alarms

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16782 [Channel %1:] Block %2 following spindle/axis %3 not available

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: A coupling has been switched on in which the slave spindle/axis is currently not available. Possible causes:
- The spindle/axis is active in the other channel.
- The spindle/axis has been accessed by the PLC and has not yet been released.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Put the master spindle/axis with spindle/axis exchange into the necessary channel or release from the PLC.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16783 [Channel %1:] Block %2 master spindle/axis %3 not available

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: A coupling has been switched on in which the master spindle/axis is currently not available. Possible causes:
- Setpoint linkage has been selected and spindle/axis is active in the other channel.
- The spindle/axis has been accessed by the PLC and has not yet been released.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Put the master spindle/axis with spindle/axis exchange into the necessary channel or release from the PLC.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16785 [Channel %1:] Block %2 identical spindles/axes %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: A coupling has been switched on in which the following spindle/axis is identical to the master spindle/axis.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Configure link accordingly in MD21300 $MC_COUPLE_AXIS_1
- or modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16786 [Channel %1:] Block %2 coupling to master spindle %3 already exists

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Leading spindle number

Definitions: A coupling is to be switched on, in which the slave axis is already actively coupled with the other master axis. Only one master spindle is allowed for the synchronous spindle function. The already active master spindle is displayed as last alarm parameter.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Prior to switching on the new coupling, separate the existing coupling. If several master spindels/axes are required, the ELG function will have to be used.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16787 [Channel %1:] Block %2 coupling parameter not changeable

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The specified coupling is write-protected. Therefore, the coupling parameters cannot be modified.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Remove write protection (see channel MD21340 $MC_COUPLE_IS_WRITE_PROT_1)
- or modify part program.

Program Continuation: Clear alarm with the RESET key. Restart part program

16788 [Channel %1:] Block %2 cyclic coupling

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: A coupling has been switched on which results in a cyclic coupling, allowance being made for further couplings. This cyclic coupling cannot be uniquely computed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Configure link accordingly in MD21300 $MC_COUPLE_AXIS_1
- or modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16789 [Channel %1:] Block %2 multiple link

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: A coupling has been switched on in which the axes/spindles have already been assigned by another coupling. Parallel couplings cannot be processed.
NCK alarms

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Check in the part program whether another link already exists for the axes.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16790 [Channel %1:] Block %2 Parameter is zero or missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A coupling has been switched on in which a relevant parameter has been specified with zero or has not been written (e.g. denominator in the transmission ratio, no slave axis).

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Configure link accordingly in SD42300 $SC_COUPLE_RATIO_1
- or correct part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16791 [Channel %1:] Block %2 parameter is not relevant

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A coupling has been switched on in which a non-relevant parameter has been written (e.g. parameter for ELG).

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16792 [Channel %1:] Block %2 too many couplings for axis/spindle %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: For the specified axis/spindle, more master axes/spindles have been defined than are allowed.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16793

[Channel %1:] Block %2 coupling of axis %3 prohibits transformation change

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
The specified axis is a slave axis in a transformation grouping. When the coupling is switched on, the transformation cannot be changed to another one.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program. Switch off coupling(s) of this axis before changing transformation or do not change the transformation.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16794

[Channel %1:] Block %2 coupling of axis/spindle %3 prohibits reference point approach

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
The specified axis is a (gantry) slave axis and cannot therefore approach the reference point.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program. Switch off coupling(s) of this axis before reference point approach or do not reference. A gantry slave axis cannot reference for itself.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16795

[Channel %1:] Block %2 string cannot be interpreted

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A coupling has been switched on in which a non-interpretable string has been written (e.g. block change behavior).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16796

[Channel %1:] Block %2 coupling not defined

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A coupling is to be switched the parameters of which have neither been programmed nor configured.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Please inform the authorized personnel/service department. Correct NC part program or MD, program the coupling with COUPDEF or configure by means of MD.
NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16797 [Channel %1:] Block %2 coupling is active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An operation is to be performed in which no coupling may be active, e.g. COUPDEL or TANGDEL must not be used on active couplings.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct NC part program, deselect the link with COUPOF or TANGOF.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16800 [Channel %1:] Block %2 traverse instruction DC/CDC for axis %3 not allowed
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: The keyword DC (Direct Coordinate) can only be used for rotary axes. This causes approach of the programmed absolute position along the shortest path.
Example:
N100 C=DC(315)
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department.
Replace the keyword DC in the displayed NC block by specifying AC (Absolute Coordinate).
If the alarm display is the result of an error in the axis definition, the axis can be declared as a rotary axis by means of the axis-specific MD30300 SMA_IS_ROT_AX.
Corresponding machine data:
Modify MD30310: $MA_ROT_IS_MODULO
Modify MD30320: $MA_DISPLAY_IS_MODULO
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16810 [Channel %1:] Block %2 traverse instruction ACP for axis %3 not allowed
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: The keyword ACP (Absolute Coordinate Positive) is only allowed for "modulo axes". It causes approach of the programmed absolute position in the specified direction.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department.
In the displayed NC block, replace the keyword ACP by specifying AC (Absolute Coordinate).
If the alarm display is based on an incorrect axis definition, the axis with the axis-specific MD30300 $MA_IS_ROT_AX and MD30310 $MA_ROT_IS_MODULO can be declared a rotary axis with modulo change.
Corresponding machine data:
Modify MD30320 $MA_DISPLAY_IS_MODULO

Alarms

Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0
NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16820 [Channel %1:] Block %2 traverse instruction ACN for axis %3 not allowed

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: The keyword ACN (Absolute Coordinate Negative) is only allowed for "modulo axes". It causes approach of the programmed absolute position in the specified direction.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
In the displayed NC block, replace the keyword ACN by specifying AC (Absolute Coordinate).
If the alarm display is based on an incorrect axis definition, the axis with the axis-specific machine data MD30300: $MA_IS_ROT_AX and MD30310: $MA_ROT_IS_MODULO can be declared a rotary axis with modulo change.
Corresponding machine data:
MD30320: $MA_DISPLAY_IS_MODULO

Program Continuation:
Clear alarm with the RESET key. Restart part program.

16830 [Channel %1:] Block %2 incorrect position programmed for axis/spindle %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: A position beyond the range of 0 - 359.999 has been programmed for a modulo axis.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program position in the range 0 - 359.999.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16903 [Channel %1:] Program control: action %2<ALNX> not allowed in the current state

Parameters: %1 = Channel number
%2 = Action number/action name

Definitions: The relevant action cannot be processed now. This can occur, for instance, during read-in of machine data.

Reaction: Alarm display.

Remedy: Wait until the procedure is terminated or abort with Reset and repeat the operation.

Program Continuation:
Clear alarm with the Delete key or NC START.

16904 [Channel %1:] Program control: action %2<ALNX> not allowed in the current state

Parameters: %1 = Channel number
%2 = Action number/action name

Definitions: The operation (program, JOG, block search, reference point, etc.) cannot be started or continued in the current status.
NCK alarms

Reaction: Alarm display.
Remedy: Check the program status and channel status.
Program Continuation: Clear alarm with the Delete key or NC START.

16905
[Channel %1:] Program control: action %2<ALNX> not allowed

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions: Operation cannot be started or continued. A start is only accepted when an NCK function can be started. Example: A start is accepted in JOG mode when, for example, the function generator is active or a JOG movement has first been stopped with the Stop key.

Reaction: Alarm reaction in Automatic mode.
Remedy: Check the program status and channel status.
Program Continuation: Clear alarm with the Delete key or NC START.

16906
[Channel %1:] Program control: action %2<ALNX> is aborted due to an alarm

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions: The action was aborted due to an alarm.

Reaction: Alarm display.
Remedy: Eliminate the error and acknowledge the alarm. Then repeat the operation.
Program Continuation: Clear alarm with the Delete key or NC START.

16907
[Channel %1:] Action %2<ALNX> only possible in stop state

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions: This action may only be performed in Stop state.

Reaction: Alarm display.
Remedy: Check the program status and channel status.
Program Continuation: Clear alarm with the Delete key or NC START.

16908
[Channel %1:] Action %2<ALNX> only possible in reset state or at the block end

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions: This action may only be performed in Reset state or at end of block. In JOG mode, no axis that is traversed as geometry axis in the switched coordinate system, must be active as PLC or command axis (started through static synchronized action) on mode change. This means that axes like that must be in the state 'neutral axis' again.

Reaction: Alarm display.
Remedy: Check the program status and channel status.
Check in JOG mode whether the axes are PLC or command axes.
Program Continuation: Clear alarm with the Delete key or NC START.
16909 [Channel %1:] Action %2<ALNX> not allowed in current mode

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions:
A different operating mode must be activated for the activated function.

Reaction:
Alarm display.

Remedy:
Check operation and operating state.

Program Continuation:
Clear alarm with the Delete key or NC START.

16911 [Channel %1:] Mode change is not allowed

Parameters:
- %1 = Channel number

Definitions:
The change from overstoring into another operating mode is not allowed.

Reaction:
Alarm display.

Remedy:
After overstoring is terminated, it is possible to change to another operating state again.

Program Continuation:
Clear alarm with the Delete key or NC START.

16912 [Channel %1:] Program control: action %2<ALNX> only possible in reset state

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions:
This action can only be performed in Reset state.

Example:
Program selection through HMI or channel communication (INIT) can only be performed in Reset state.

Reaction:
Alarm display.

Remedy:
Reset or wait until processing is terminated.

Program Continuation:
Clear alarm with the Delete key or NC START.

16913 [Mode group %1:] [Channel %2:] Mode change: action %3<ALNX> not allowed

Parameters:
- %1 = Channel number
- %2 = Mode group number
- %3 = Action number/action name

Definitions:
The change to the desired mode is not permitted. The change can only take place in the Reset state.

Example:
Program processing is halted in AUTO mode by NC Stop. Then there is a mode change to JOG mode (program status interrupted). From this operating mode, it is only possible to change to AUTO mode and not to MDI mode!

Reaction:
Alarm display.

Remedy:
Either activate the Reset key to reset program processing, or activate the mode in which the program was being processed previously.

Program Continuation:
Clear alarm with the Delete key or NC START.

16914 [Mode group %1:] [Channel %2:] Mode change: action %3<ALNX> not allowed

Parameters:
- %1 = Channel number
- %2 = Mode group number
- %3 = Action number/action name
NCK alarms

16915 [Channel %1:] Action %2<ALNX> not allowed in the current block

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions:
If traversing blocks are interrupted by asynchronous subroutines, then it must be possible for the interrupted program to continue (reorganization of block processing) after termination of the asynchronous subroutine. The 2nd parameter describes which action wanted to interrupt block processing.

Reaction:
Alarm display.

Remedy:
Let the program continue to a reorganized NC block or modify part program.

Program
Clear alarm with the Delete key or NC START.

Continuation:
Clear alarm with the Delete key or NC START.

16916 [Channel %1:] Repositioning: action %2<ALNX> not allowed in the current state

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions:
Repositioning of block processing is presently not possible. A mode change cannot take place. The 2nd parameter describes which action should be used to perform repositioning.

Reaction:
Alarm display.

Remedy:
Let the program continue to a repositioned NC block or modify part program.

Program
Clear alarm with the Delete key or NC START.

Continuation:
Clear alarm with the Delete key or NC START.

16919 [Channel %1:] Action %2<ALNX> is not allowed due to a pending alarm

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions:
This action cannot be performed due to an alarm, or the channel is in the fault condition.

Reaction:
Alarm display.

Remedy:
Press the RESET key.

Program
Clear alarm with the Delete key or NC START.

Continuation:
Clear alarm with the Delete key or NC START.

16920 [Channel %1:] Action %2<ALNX> is already active

Parameters:
- %1 = Channel number
- %2 = Action number/action name

Definitions:
An identical action is still being processed.

Reaction:
Alarm display.

Remedy:
Wait until the previous procedure has been terminated and then repeat the operation.

Program
Clear alarm with the Delete key or NC START.

Continuation:
Clear alarm with the Delete key or NC START.
16922 [Channel %1:] Subprograms: action %2<ALNX> maximum nesting depth exceeded

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
Various actions can cause the current procedure to be interrupted. Depending on the action, asynchronous subroutines are activated. These asynchronous subroutines can be interrupted in the same manner as user programs. Unlimited nesting depth is not possible for asynchronous subroutines due to memory limitations.
Example: An interrupt interrupts the current program processing. Other interrupts with higher priorities interrupt processing of the previously activated asynchronous subroutines.
Possible actions are: DryRunOn/Off, DecodeSingleBlockOn, delete distance-to-go, interrupts

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Do not trigger the event on this block.

Program Continuation:
Clear alarm with the RESET key. Restart part program

16923 [Channel %1:] Program control: action %2<ALNX> not allowed in the current state

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
The current processing cannot be stopped since a preprocessing process is active. This applies, for example, to the loading of machine data, and in block searches until the search target is found.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Cancel by pressing RESET!

Program Continuation:
Clear alarm with the Delete key or NC START.

16924 [Channel %1:] Caution: program test modifies tool management data

Parameters:
%1 = Channel number

Definitions:
Tool management data is changed during program testing. It is not possible to automatically rectify the data after termination of the program testing.
This error message prompts the user to make a backup copy of the data or to reimport the data after the operation is terminated.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
Save tool data on HMI and reimport data after "ProgtestOff".

Program Continuation:
Clear alarm with the Delete key or NC START.
16925 [Channel %1:] Program control: action %2<ALNX> not allowed in the current state, action %3<ALNX> active

Parameters:
%1 = Channel number
%2 = Action number/action name
%3 = Action number/action name

Definitions: The action has been refused since a mode or sub-mode change (change to automatic mode, MDI, JOG, overstoring, digitizing, etc.) is taking place.
Example: This alarm message is output if the Start key is pressed during a mode or sub-mode change from, for example, automatic to MDI, before the NCK has confirmed selection of the mode.

Reaction: Alarm display.
Remedy: Repeat action.
Program Continuation: Clear alarm with the Delete key or NC START.

16927 [Channel %1:] Action %2<ALNX> at active interrupt treatment not allowed

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions: This action may not be activated during interrupt processing (e.g. mode change).

Reaction: Alarm display.
Remedy: Reset or wait until interrupt processing is terminated.
Program Continuation: Clear alarm with the Delete key or NC START.

16928 [Channel %1:] Interrupt treatment: action %2<ALNX> not possible

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions: A program interrupt has been activated in a non REORG capable block.
Examples of possible program interrupts in this case:
- Traversing to fixed stop
- Vdi channel delete distance-to-go
- Vdi axial delete distance-to-go
- Measuring
- Software limit
- Axis interchange
- Axis comes from tracking
- Servo disable
- Gear stage change at actual gear stage unequal to setpoint gear stage.
The block affected is a:
- collection block from block search (except for the last collection block)
- Block in overstore interrupt.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Do not trigger the event on this block.
Program Continuation: Clear alarm with the RESET key. Restart part program
16930 [Channel %1:] Preceding block and current block %2 must be separated through an executable block

Parameters:
%1 = Channel number
%2 = Block number

Definitions:
The language functions WAITMC, SETM, CLEARM and MSG must be packed in separate NC blocks due to the language definition. To avoid velocity drops, these blocks are attached to the next NC block internally in the NCK (for MSG only in path control mode, for WAITMC to the previous NC block). For this reason, there must always be an executable block (not a calculation block) between the NC blocks. An executable NC block always includes e.g. travel movements, a help function, Stopre, dwell time etc.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Program an executable NC block between the previous and the current NC block.
Example:
N10 SETM.
N15 STOPRE ; insert executable NC block.
N20 CLEARM.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16931 [Channel %1:] Subprograms: action %2<ALNX> maximum nesting depth exceeded

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
Various actions can cause the current procedure to be interrupted. Depending on the action, asynchronous subroutines (ASUBs) are activated. These ASUBs can be interrupted in the same manner as the user program. Unlimited nesting depth is not possible for ASUBs due to memory limitations.
Example: In the case of an approach block in a repositioning procedure do not interrupt repeatedly, instead wait until processing is completed.
Possible actions are: mode change, SlashOn/Off, overstoring.

Reaction:
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Initiate a block change and repeat the action.

Program Continuation:
Clear alarm with the Delete key or NC START.

16932 [Channel %1:] Conflict when activating user data type %2

Parameters:
%1 = Channel number
%2 = Data type

Definitions:
The "activate user data" function (PI service _N_SETUDT) modifies a data block (tool offset, settable zero offset or base frame) which is also written by the NC blocks in preparation.
In the event of a conflict, the value entered by the HMI is reset.
Parameter %2 specifies which data block is affected:
1: Active tool offset
2: Base frame
3: Active zero offset

Reaction:
Alarm display.

Remedy:
Check the inputs on the HMI and repeat if necessary.

Program Continuation:
Clear alarm with the Delete key or NC START.
16933 [Channel %1:] Interrupt treatment: action %2<ALNX> not allowed in the current state
Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: If a temporary standstill has occurred because of a Reorg event across block boundaries, it is possible that a block without Reorg capability has been loaded. In this situation, it is unfortunately necessary to abort the Reorg event handling! Reorg events are, e.g. abort subprogram, delete distance-to-go and interrupts.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Abort program with the RESET key.
Program
Continuation: Clear alarm with the RESET key. Restart part program

16934 [Channel %1:] Interrupt treatment: action %2<ALNX> not possible due to stop
Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: Reorg events are, e.g. abort subprogram, delete distance to go and interrupts, axis exchange, termination of follow-up mode. Two Reorg events overlap in this situation. The 2nd Reorg event coincides with the 1st block generated by the previous event. (e.g. an axis exchange is induced twice in rapid succession). Axis exchange leads to Reorg in the channels in which an axis is removed without preparation. This block must be stopped in the above sequence in order to prevent the interpolator buffer from overflowing. This can be achieved by pressing the Stop or StopAll key, configuring an alarm with INTERPRETERSTOP or by decode single block.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: The program must be aborted with Reset.
Program
Continuation: Clear alarm with the RESET key. Restart part program

16935 [Channel %1:] Action %2<ALNX> not possible due to search run
Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: The action is not allowed as block search is currently running via program test. Block search via program test: "PI Service _N_FINDBL with mode parameter 5.”
With this block search type, it is not permissible to activate program test or dry run feedrate.
Reaction: Alarm display.
Remedy: Activate the action after block search is terminated.
Program
Continuation: Clear alarm with the Delete key or NC START.

16936 [Channel %1:] Action %2<ALNX> not possible due to active dry run
Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: This action is not allowed as dry run feedrate is currently active. Example: It is not permissible to activate block search via program test (PI service _N_FINDBL with mode parameter 5) when dry run feedrate is active.
NCK alarms

16937 [Channel %1:] Action %2<ALNX> not possible due to program test
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: This action is not allowed as program test is currently active.
Example: It is not permissible to activate block search via program test (PI service _N_FINDBL with mode parameter 5) when program test is active.
Reaction: Alarm display.
Remedy: Abort program with the RESET key.
Program Continuation: Clear alarm with the Delete key or NC START.

16938 [Channel %1:] Action %2<ALNX> aborted due to active gear change
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: Reorganization events are, among others, subprogram abort, delete distance-to-go and interrupts, axis exchange, exiting the correction state. These events wait for the end of a gear change. However, the maximum waiting period has elapsed.
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Program must be aborted with Reset and, if necessary, MD10192 $MN_GEAR_CHANGE_WAIT_TIME must be increased.
Program Continuation: Clear alarm with the RESET key. Restart part program

16939 [Channel %1:] Action %2<ALNX> rejected due to active gear change
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: Reorganization events that are possible in Stop state, e.g. mode change, are waiting for the end of the gear change. However, the maximum waiting period has elapsed.
Reaction: Interface signals are set.
 Alarm display.
Remedy: Repeat action or increase MD10192 $MN_GEAR_CHANGE_WAIT_TIME.
Program Continuation: Clear alarm with the Delete key or NC START.

16940 [Channel %1:] Action %2<ALNX> wait for gear change
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: Reorganization events are waiting for the end of a gear change. The alarm is displayed during the waiting period.
16941 [Channel %1:] Action %2<ALNX> rejected because no program event has been executed yet

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
The setting of the MD20108 $MC_PROG_EVENT_MASK forces an asynchronous subprogram to be triggered automatically on RESET or PowerOn. The implicitly triggered asynchronous subprograms are normally called "Event-triggered program call" or "Program event".

In the alarm situation, this asynchronous subprogram could not yet be activated; that is why the action (normally start of part program) must be rejected.

Reasons for the fact that the asynchronous subprogram could not be triggered:
1. The asynchronous subprogram does not exist (/_N_CMA_DIR/_N_PROG_EVENT_SPF)
2. The asynchronous subprogram is allowed to start in the referenced state only (see MD11602 $MN_ASUP_START_MASK)
3. READY is missing (because of alarm)

Reaction: Alarm display.
Remedy: Load program
Check MD11602 $MN_ASUP_START_MASK
Acknowledge alarm

Program Continuation: Clear alarm with the Delete key or NC START.

16942 [Channel %1:] Start program command action %2<ALNX> not possible

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
Currently, the alarm occurs only in combination with the SERUPRO action. SERUPRO stands for search via program test.
SERUPRO is currently searching the search target and has therefore switched this channel to the program test mode. With the START program command in channel 1, another channel 2 would actually be started, which means that axes would really be started during the search action.
If this alarm is switched off (see help), the user can make use of the above behavior by initially selecting via PLC the program test mode in channel 2, leaving channel 2 executing until its natural end, stopping channel 2 in order to deselect program test again.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Alarm can be switched off with MD10708 $MN_SERUPRO_MASK bit 1.

Program Continuation: Clear alarm with the RESET key. Restart part program.
16943 [Channel %1:] Action %2<ALNX> not possible due to ASUP

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
The action in the 2nd parameter was rejected, since an asynchronous subprogram is currently active.
Currently, only the integrated search run is rejected with this alarm. The integrated search run is activated, if search
run is triggered in the Stop program state. In other words: Parts of a program have already been executed and a fol-
lowing program part is "skipped" with search run in order to continue the program afterwards.
The event is not possible if the program is stopped within an asynchronous subprogram or if an asynchronous sub-
program had been selected before the event. An asynchronous subprogram is selected, when the triggering asynchro-
nous subprogram event arrives, but the asynchronous subprogram cannot be started (e.g. the asynchronous start
program is not started because of a read-in disable or because the Stop key is active).
In this case, it is irrelevant whether a user ASUP or a system ASUP has been triggered. User ASUPs are activated
via FC-9 or via the fast inputs.
The following events lead to system ASUPS:
- Mode change
- Overstore on
- Canceling subprogram level
- Switching on of single block, type 2
- Setting machine data effective
- Setting user data effective
- Change skip levels
- Dry run on/off
- Program test off
- Correction block alarms
- Editing modi in Teach
- External zero offset
- Axis exchange
- Delete distance-to-go
- Measuring

Reaction:
Alarm display.

Remedy:
Repeat the action after the end of the asynchronous subprogram.

Program Continuation:
Clear alarm with the Delete key or NC START.

16944 [Channel %1:] Action %2<ALNX> not possible due to active search blocks

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
The NCK is currently processing either the action blocks of the search run or the approach motion after the search
run. In this situation, the action (2nd parameter of the alarm) must be rejected. Currently, only the integrated search
run is rejected with this alarm. The integrated search run is activated, if search run is triggered in the Stop program
state. In other words: Parts of a program have already been executed and a following program part is "skipped" with
search run in order to continue the program afterwards.

Reaction:
Alarm display.

Remedy:
Repeat the action after the approach motion of the search run.

Program Continuation:
Clear alarm with the Delete key or NC START.
16945 [Channel %1:] Action %2<ALNX> delayed up to the block end
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
The currently executing action (e.g. dry run on/off, change skip levels, etc.) should be active immediately, but it can become active not earlier than at the end of the block, since a thread is currently being machined. The action is activated with a slight delay.
Example: Dry run is started in the middle of the thread, then traversing at high speed does not start before the next block.
Reaction:
Alarm display.
Remedy:
Alarm can be switched off via MD11410 $MN_SUPPRESS_ALARM_MASK bit17==1.
Program Continuation:
Clear alarm with the Delete key or NC START.

16946 [Channel %1:] Start via START is not allowed
Parameters:
%1 = Channel ID
Definitions:
This alarm is active with "Group Serupro" only. "Group Serupro" is activated by means of MD10708 $MN_SERUPRO_MASK, Bit 2 and enables the retrace support of entire channel groups during block search.
The MD22622 $MC_DISABLE_PLC_START specifies which channel is generally started from the PLC and which channel is only allowed to be started from another channel via the START part program command.
This alarm occurs if the channel was started via the START part program command and MD22622 $MC_DISABLE_PLC_START==FALSE was set.
Reaction:
Alarm display.
Remedy:
Modify MD22622 $MC_DISABLE_PLC_START of switch off "Group Serupro" (see MD10708 $MN_SERUPRO_MASK).
Program Continuation:
Clear alarm with the Delete key or NC START.

16947 [Channel %1:] Start via PLC is not allowed
Parameters:
%1 = Channel ID
Definitions:
This alarm is active with "Group Serupro" only. "Group Serupro" is activated by means of MD10708 $MN_SERUPRO_MASK, Bit 2 and enables the retrace support of entire channel groups during block search.
The machine data MD22622 $MC_DISABLE_PLC_START specifies which channel is generally started from the PLC and which channel is only allowed to be started from another channel via the START part program command.
This alarm occurs if the channel was started via the PLC and MD22622 $MC_DISABLE_PLC_START==TRUE was set.
Reaction:
Alarm display.
Remedy:
Modify MD22622 $MC_DISABLE_PLC_START of switch off "Group Serupro" (see MD10708 $MN_SERUPRO_MASK).
Program Continuation:
Clear alarm with the Delete key or NC START.

16950 [Channel %1:] Search run with hold block
Parameters:
%1 = Channel number
Definitions:
Informational alarm.
The search run was not performed on the interruption block, instead, it touches down shortly before that. This so-called "hold block" is generated by the part program command IPTRLOCK, or implicitly defined by MD22680 $MC_AUTO_IPTR_LOCK. This is to prevent you from performing a search run in critical program areas (e.g. gear hobbing).
The alarm also displays that, instead of searching for the block that actually was interrupted before, another block is being searched for. This behavior is desired and the alarm serves only informational purposes.
16951
[Channel %1:] Search run in a protected program section.

Parameters:
%1 = Channel number

Definitions:
A part programmer can define protected parts program sections with the language commands IPTRLOCK and IPTRUNLOCK. Every search run in these program sections will then be acknowledged with alarm 16951. In other words: When the alarm appears, the user has started a search run (Serupro type) and the search target lies in a protected area. A protected area can also be defined implicitly with the MD22680 $MC_AUTO_IPTR_LOCK.

Note:
The alarm can only be generated if the simulation has been completed during the search run. The alarm cannot be output immediately at the start of the search run.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
MD11410 $MN_SUPPRESS_ALARM_MASK, MD22680 $MC_AUTO_IPTR_LOCK and language command IPTRLOCK

Program Continuation:
Clear alarm with the RESET key. Restart part program.

16952
[Channel %1:] Start program command not possible due to MDI

Parameters:
%1 = Channel number

Definitions:
NCK is currently executing an ASUB in MDI mode. In this constellation, parts program command "Start" is not allowed for another channel. Attention: If an asub is started from JOG, the NCK can internally change to MDI, if the NCK was previously in MDI and not in RESET. Note: Without this alarm, the MDI buffer of the other channel would always be started.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Start ASUB in AUTO or \rightarrow JOG in AUTO

Program Continuation:
Clear alarm with the RESET key. Restart part program.

16953
[Channel %1:] For slave axis %2 SERUPRO not allowed, as master axis %3 not subject to axis/spindle disable

Parameters:
%1 = Channel number
%2 = Slave axis name, following spindle number
%3 = Master axis name, master spindle number

Definitions:
Currently, the alarm occurs only in combination with the SERUPRO action. SERUPRO stands for search via program test. SERUPRO is possible only with an active coupling, if the axis/spindle disable is active for all master axes/spindles of the slave axis/spindle.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
NCK alarms

Remedy: Set axis/spindle disable of the master axis
Program Clear alarm with the RESET key. Restart part program
Continuation:

16954 [Channel %1:] Block %2 programmed stop prohibited in stop delay area
Parameters: %1 = Channel ID
 %2 = Block number, label
Definitions: In a program area (stop delay area) that is bracketed with DELAYFSTON and DELAYFSTOF, a program command was used that causes a stop. No commands other than G4 are permissible that might cause a stop even though only shortly. A stop delay area can also be defined by MD11550 $MN_STOP_MODE_MASK.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: MD11550 $MN_STOP_MODE_MASK and language command DELAYFSTON DELAYFSTOF
Program Clear alarm with the RESET key. Restart part program
Continuation:

16955 [Channel %1:] Stop in stop delay area is delayed
Parameters: %1 = Channel ID
Definitions: In a program area (stop delay area) that is bracketed by DELAYFSTON and DELAYFSTOF, an event has been detected that causes a stop. The stop is delayed and executed after DELAYFSTOF. A stop delay area can also be defined by MD11550 $MN_STOP_MODE_MASK.
Reaction: Interface signals are set.
 Alarm display.
Remedy: MD11550 $MN_STOP_MODE_MASK and language command DELAYFSTON DELAYFSTOF
Program Alarm display showing cause of alarm disappears. No further operator action necessary.
Continuation:

16956 [Channel %1:] Program %2 cannot be started due to global start disable.
Parameters: %1 = Channel ID
 %2 = String (path with program name)
Definitions: The program selected in this channel cannot be started as "Global start disable" had been set.
Note:
PI "_N_STRTLK" sets the "Global start disable" and PI "_N_STRTUL"
deletes the "Global start disable".
The alarm is switched on with MD11411 $MN_ENABLE_ALARM_MASK bit 6.
Reaction: Alarm display.
Remedy: Delete the "Global start disable" and restart.
Program Clear alarm with the Delete key or NC START.
Continuation:
16957 [Channel %1:] Stop-Delay area is suppressed

Parameters: %1 = Channel ID
Definitions: The program area (Stop-Delay area), which is bracketed by DELAYFSTON and DELAYFSTOF, could not be acti-
vated. Every stop therefore becomes effective immediately and is not delayed!
This occurs every time, when braking into a stop Stop-Delay area, i.e. a braking process starts before the Stop-Delay
area and ends not earlier than in the Stop-Delay area.
If the Stop-Delay area is entered with override 0, the Stop-Delay area can also not be activated
Example: a G4 before the Stop-Delay area allows the user to reduce the override to 0. The next block in the Stop-
Delay area then starts with override 0 and the alarm situation described occurs.
MD11411 $MN_ENABLE_ALARM_MASK, bit 7 switches on this alarm.

Reaction: Interface signals are set.
Alarm display.

Remedy: MD11550 $MN_STOP_MODE_MASK and language command DELAYFSTON DELAYFSTOF
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

16959 [Channel %1:] Action %2<ALNX> prohibited during simulation block search.

Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: The function (2nd parameter) must not be activated during simulation search.

Reaction: Alarm display.

Remedy: Wait for search end.
Program Continuation: Clear alarm with the Delete key or NC START.

16960 [Channel %1:] Action %2<ALNX> prohibited during EXECUTE PROGRAM AREA.

Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: The function (2nd parameter) must not be activated during EXECUTE PROGRAM AREA.

Reaction: Alarm display.

Remedy: Wait for end of program area EXECUTE.
Program Continuation: Clear alarm with the Delete key or NC START.

16961 [Channel %1:] Action %2<ALNX> prohibited during syntax check.

Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: The function (2nd parameter) must not be activated during the syntax check.
Comment: The syntax check is served by the following PI services:
_N_CHKSEL _N_CHKRUN _N_CHKABO

Reaction: Alarm display.

Remedy: Wait for the end of the syntax check, or
Cancel the syntax check with reset, or
Cancel the syntax check with PI _N_CHKABO.

Program Continuation: Clear alarm with the Delete key or NC START.
16962 [Channel %1:] NCK computing time reduced, start is not allowed.
Parameters: %1 = Channel number
Definitions: The computing time available to the NCK has been reduced, starts have therefore been locked. The computer performance is inadequate for smooth program execution. The computing time of the NCK may have been reduced by the HMI because of an HMI part program simulation.
Reaction: Alarm display.
Remedy: Wait for the simulation to end or press RESET in any channel.
Program Continuation: Clear alarm with the Delete key or NC START.

16963 [Channel %1:] ASUB start declined
Parameters: %1 = Channel number
Definitions: An external ASUB start from the ABORTED program state has been declined for the following reasons:
 - Bit 0 is not set in MD11602 $MN_ASUP_START_MASK
 - ASUB priority has been set too low or MD11604 $MN_ASUP_START_PRIO_LEVEL has been set too high
Reaction: Alarm display.
Remedy: Correct the machine data or change the priority of the ASUB to be executed.
Program Continuation: Clear alarm with the Delete key or NC START.

16964 [Channel %1:] Executing of init blocks not fully completed
Parameters: %1 = Channel number
Definitions: Init blocks are processed during ramp-up; they ensure that the control is initialized correctly. The alarm is set if processing could not be completed correctly (usually due to alarms which were already pending).
Reaction: Alarm display.
Remedy: Eliminate pending alarms.
Program Continuation: Switch control OFF - ON.

17000 [Channel %1:] Block %2 maximum number of symbols exceeded
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The maximum number of symbols defined by machine data MD28020 $MC_MM_NUM_LUD_NAMES_TOTAL has been exceeded.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department.
 - Modify machine data
 - Reduce the number of symbols (variables, subroutines, parameters)
Program Continuation: Clear alarm with the RESET key. Restart part program
17001
[Channel %1:] Block %2 no memory left for tool/magazine data

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- The number of the following tool/magazine data variables in the NC is specified using machine data:
 - Number of tools + number of grinding data blocks: MD18082 $MN_MM_NUM_TOOL
 - Number of cutting edges: MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA
 Tools, grinding data blocks, cutting edges can be used independently of the tool management.

 - Number of monitoring data blocks: MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA
 - Number of magazines: MD18084 $MN_MM_NUM_MAGAZINE
 - Number of magazine locations: MD18086 $MN_MM_NUM_MAGAZINE_LOCATION

 The memory for the following data is available only if the corresponding bit has been set in MD18080 $MN_MM_TOOL_MANAGEMENT_MASK.

- Number of monitoring data blocks: MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA

 The following variable is determined by the software configuration: Number of magazine spacing data blocks: P2 permits 32 such spacing data blocks.

Definition:
- 'Grinding data blocks': Grinding data can be defined for a tool of type 400 to 499. A data block of this type occupies as much additional memory as that provided for a cutting edge.
- 'Monitoring data blocks': Each cutting edge of a tool can be supplemented with monitoring data.
- If the alarm occurs while writing one of the parameters $TC_MDP1/$TC_MDP2/$TC_MLSR, check whether machine data MD18077 $MN_MM_NUM_DIST_REL_PER_MAGLOC / MD18076 $MN_MM_NUM_LOCS_WITH_DISTANCE has been set correctly.

 MD18077 $MN_MM_NUM_DIST_REL_PER_MAGLOC defines the number of different Index1 statements that may be made for an Index2 value.
 MD18076 $MN_MM_NUM_LOCS_WITH_DISTANCE defines the number of different buffer locations that may be named in Index2.

 If a multitool is to be generated or its locations, the alarm indicates that either more multitools need to be generated than are permitted by the setting of MD18083 $MN_MM_NUM_MULTITOOL or, if the alarm occurs when the multitool locations are being generated, that more multitool locations need to be generated than is permitted by the setting of MD18085 $MN_MM_NUM_MULTITOOL_LOCATIONS.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Modify machine data
- Modify NC program, i.e. reduce number of rejected variable.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

17010
[Channel %1:] Block %2 no memory left

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- When executing/reading files from the active working memory, it was found that there is not enough memory space (e.g. for large multidimensional arrays or when creating tool offset memory).

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Make arrays smaller or make more memory space available for memory management of subroutine calls, tool offsets and user variables (machine data MM_...).
- See /FBI, S7 Memory Configuration

Program Continuation:
- Clear alarm with the RESET key. Restart part program
17018 | [Channel %1:] Block %2 incorrect value for parameter %3
---|---
Parameters: | %1 = Channel number
%2 = Block number, label
%3 = Parameter name
Definitions: | An incorrect value has been assigned to the stated parameter.
Only the following values are permissible for the parameter $P_{WORKAREA_CS_COORD_SYSTEM}$
- 1 for workpiece coordinate system
- 3 for settable zero system.
Reaction: | Interpreter stop
Interface signals are set.
Alarm display.
Remedy: | Assign another value.
Program Continuation: | Clear alarm with the RESET key. Restart part program.

17020	[Channel %1:] Block %2 illegal array index 1
Parameters: | %1 = Channel number
%2 = Block number, label
Definitions: | **General:**
Read or write access has been programmed to an array variable with an illegal 1st array index. The valid array indices must lie within the defined array size and the absolute limits (0 - 32,766).
PROFIBUS I/O:
An illegal slot / I/O area index was used while reading/writing data.
Cause:
1.: Slot / I/O area index >= max. number of available slot / I/O areas.
2.: Slot / I/O area index references a slot / I/O area that has not been configured.
3.: Slot / I/O area index references a slot / I/O area that has not been released for system variables.
The following applies specifically: If the alarm occurs while writing one of the parameters $TC_{MDP1}/TC_{MDP2}/$TC_MLSR, check whether MD18077 $MN_MM_NUM_DIST_REL_PER_MAGLOC$ has been set correctly. MD18077 $MN_MM_NUM_DIST_REL_PER_MAGLOC$ defines the number of different Index1 statements that may be made for an Index2 value. If an MT number is programmed, the value may collide with a previously defined T number or a previously defined magazine number.
Reaction: | Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: | Correct the specification of array elements in the access instruction to match the defined size. If an SPL is used in Safety Integrated, the field index via optional data may be subject to additional restrictions.
Program Continuation: | Clear alarm with NC START or RESET key and continue the program.
17030

[Channel %1:] Block %2 illegal array index 2

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- **General:**
 A read or write access has been programmed to an array variable with an invalid 2nd array index. The valid array indices must lie within the defined array size and the absolute limits (0 - 32,766).
- **PROFIBUS I/O:**
 An attempt was made to read/write data outside the slot / I/O area limits of the stated slot / I/O area. The following applies specifically: If the alarm occurs while writing one of the parameters $TC_MDP1/$TC_MDP2/$TC_MLSR, check whether MD18076 $MN_MM_NUM_LOCS_WITH_DISTANCE has been set correctly. $MN_MM_NUM_LOCS_WITH_DISTANCE defines the number of different buffer storage locations that may be named in Index2.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the specification of array elements in the access instruction to match the defined size.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

17035

[Channel %1:] Block %2 illegal array index 1

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- **General:**
 A read or write access has been programmed to an array variable with an invalid 3rd array index. The valid array indices must lie within the defined array size and the absolute limits (0 - 32,766).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Correct the specification of array elements in the access instruction to match the defined size.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

17040

[Channel %1:] Block %2 illegal axis index

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- A read or write access has been programmed to an axial variable in which the axis name cannot be unambiguously imaged on a machine axis.

Example:
- Writing of an axial machine data $MA_... [X]= ... ; but geometry axis X cannot be imaged on a machine axis because of a transformation!

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Deselect transformation before writing into the axial data (keyword: TRAFOOF) or use the machine axis names as axis index.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.
NCK alarms

17050

[Channel %1:] Block %2 illegal value

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A value has been programmed that exceeds the value range or the limit value of a variable or a machine data item. Example: In a string variable (e.g. GUD or LUD) a string needs to be written that exceeds the string length agreed upon in the variable definition.

- If an illegal value is to be written to a tool or magazine management variable (e.g. illegal cutting edge number in $TC_DPCE[x,y] or illegal magazine location number in $TC_MDP2[x,y])
- An illegal value is to be written to $P_USEKT or $A_DPB_OUT[x,y]
- An illegal value is to be written to a machine data (e.g. MD10010 $MN.Assign_CHAN_TO_MODE_GROUP[0] = 0)
- On accessing an individual frame element, a frame component other than TRANS, ROT, SCALE or MIRROR was addressed or the CSCALE function was assigned a negative scale factor

A multitool number has been programmed which collides with a previously defined T number or a previously defined magazine number.

When programming DELMLOWNER: The command cannot be programmed with the T number of a tool that is part of a multitool.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Address frame components only with the keywords provided; program the scale factor between the limits of 0.000 01 to 999.999 99.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

17055

[Channel %1:] Block %2 GUD variable not existing

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The required GUD variable was not found for a MEACALC procedure during read or write access.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check whether all the GUDs were created for MEACALC.

 - DEF CHAN REAL _OVR[32], _EV[20], _MV[20], _SPEED[4], _SM_R[10], _ISP[3]
 - DEF NCK REAL _TP[3,10], _WP[3,11], _KB[3,7], _CM[8], _MFS[6]
 - DEF NCK BOOL _CBIT[16]
 - DEF NCK INT _CVAL[4].

Program Continuation:
- Clear alarm with the RESET key. Restart part program

17060

[Channel %1:] Block %2 requested data area too large

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The maximum memory space of 8 KB available for a symbol has been exceeded.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Reduce array dimensions.
17070 [Channel %1:] Block %2 data is write-protected

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: An attempt was made to write into a write-protected variable (e.g. a system variable). Safety Integrated: Safety system variables can only be written into via the safety SPL program.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17071 [Channel %1:] Block %2 data read-protected

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: An attempt has been made to read a read-protected variable (e.g. a system variable).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Please set the corresponding access right or modify the part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17080 [Channel %1:] Block %2 %3 value below lower limit

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = MD

Definitions: An attempt was made to write into a machine data with a value smaller than the defined lower limit.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Please inform the authorized personnel/service department. Determine the input limits of the machine data and assign a value within these limits.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17090 [Channel %1:] Block %2 %3 value exceeds upper limit

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = MD

Definitions: An attempt was made to write into a machine data with a value greater than the defined upper limit.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.
NCK alarms

Remedy: Please inform the authorized personnel/service department. Determine the input limits of the machine data and assign a value within these limits.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17095 [Channel %1:] Block %2 invalid value
Parameters: %1 = Channel number
%2 = Block number, label

Definitions: An attempt was made to write an invalid value, e.g. zero, into a machine data.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct the value assignment, e.g. a value within the value range not equal to zero.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17100 [Channel %1:] Block %2 digital input/comparator no. %3 not activated
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Input number

Definitions: Either an attempt was made to read a digital input n via the system variable $A_IN[n]$ and this input has not been activated via NCK MD10350 $MN_FASTIO_DIG_NUM_INPUTS; or to read a comparator input via system variable $A_INCO[n]$ and this input belongs to a comparator which has not been activated.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Modify part program or machine data accordingly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17110 [Channel %1:] Block %2 digital output no. %3 not activated
Parameters: %1 = Channel number
%2 = Block number, label
%3 = No. of output

Definitions: An attempt was made to read or set a digital NCK output (connector X 121) via the system variable $A_OUT[n]$ with the index [n] greater than the specified upper limit in MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS.$

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program index [n] of the system variable $A_OUT[n]$ only between 0 and the value in MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS.$

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
17120 [Channel %1:] Block %2 analog input no. %3 not activated

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Input number

Definitions:
An attempt has been made by means of the system variable $A_INA[n]$ to read an analog input n that has not been activated by the MD10300 $MN_FASTIO_ANA_NUM_INPUTS$.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify part program or machine data accordingly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17130 [Channel %1:] Block %2 analog output no. %3 not activated

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = No. of output

Definitions:
An attempt has been made by means of the system variable $A_OUTA[n]$ to write or read an analog output n that has not been activated by the MD10310 $MN_FASTIO_ANA_NUM_OUTPUTS$.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify part program or machine data accordingly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17140 [Channel %1:] Block %2 NCK output %3 is assigned to a function via machine data

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = No. of output

Definitions:
The programmed digital/analog output is assigned to an NC function (e.g. software cams).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Use another output or deactivate concurrent NC function via MD.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17150 [Channel %1:] Block %2 maximum of %3 NCK outputs programmable in the block

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Quantity

Definitions:
No more than the specified number of outputs may be programmed in an NC block.
The quantity of hardware outputs is defined in the MDs:
MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS$ and
MD10310 $MN_FASTIO_ANA_NUM_OUTPUTS$
NCK alarms

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Program fewer digital/analog outputs in a block. The specified maximum number applies in each case separately for analog or digital outputs. If necessary, program two NC blocks.
- Clear alarm with NC START or RESET key and continue the program.

Program Continuation:

17160 [Channel %1:] Block %2 no tool selected

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- An attempt has been made to access the current tool offset data via the system variables:
 - $P_AD[n]$: Contents of the parameter (n: 1-25)
 - P_TOOL: Active D number (tool edge number)
 - $P_TOOL[n]$: Active tool length (n: 1-3)
 - P_TOOLL: Active tool radius although no tool had been selected previously.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Program or activate a tool offset in the NC program before using the system variables.
 - Example:
    ```
    N100 G... T5 D1 ... LF
    ```
 - With the channel-specific machine data:
 - Modify MD22550 $MC_TOOL_CHANGE_MODE
 - New tool offset for M function
 - Modify MD22560 $MC_TOOLCHANGE_M_CODE
 - M function with tool change
 - It is established whether a tool offset is activated in the block with the T word or whether the new offset values are allowed for only when the M word for tool change occurs.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

17170 [Channel %1:] Block %2 number of symbols too large

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- The predefined symbols could not be read in during power-up.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Clear alarm with the RESET key. Restart part program

Program Continuation:

17180 [Channel %1:] Block %2 illegal D number

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- In the displayed block, access is made to a D number that is not defined and therefore is not available.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Check tool call in the NC parts program:
 - Correct tool correction number D programmed? If no D number is specified with the tool change command, then the D number set by MD20270 $MC_CUTTING_EDGE_DEFAULT will be active automatically. It is D1 by default.
 - Tool parameters (tool type, length,...) defined? The dimensions of the tool edge must have been entered previously either through the operator panel or through a tool data file in NCK.
Description of the system variables $TC_DPx[t, d] as included in a tool data file.
 x ... Correction parameter number P
 t ... Associated tool number T
 d ... Tool correction number D

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17181 [Channel %1:] Block %2 T no.= %3, D no.= %4 not existing
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = T number
 %4 = D number
Definitions: A programmed D number was not recognized by the NC. By default, the D number refers to the specified T number.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: If the program is incorrect, remedy the error with a correction block and continue the program.
If the data block is missing, download a data block for the specified T/D values onto the NCK (via HMI with overstore) and continue the program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17182 [Channel %1:] Block %2 illegal sum correction number
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: An attempt was made to access a non-defined total offset of the current tool edge.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Access the total offset memory with $TC_SCP*, $TC_ECP*, check the total offset selection DLx or tool selection Ty or offset selection Dz.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17183 [Channel %1:] Block %2 H number already available in T no.= %3, D no.= %4
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = T number
 %4 = D number
Definitions: Each H number (except for H=0) must be assigned in a TO unit only once. The indicated edge already has the H number. If the H number shall be assigned more than once, MD10890 $MN_EXTERN_TOOLPROG_MODE, bit 3 must be set = 1.
NCK alarms

17188

Parameters:
- %1 = Channel number
- %2 = Offset number D
- %3 = T number of first tool
- %4 = T number of second tool

Definitions:
The specified D number %2 in the TO unit of channel %1 is not unique. The specified T numbers %3 and %4 each have an offset with number %2. If tool management is active: The specified T numbers belong to tool groups with different names.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
1. Ensure that the D numbers within the TO unit are unique.
2. If unique numbering is not necessary for subsequent operations, do not use the command.

Program Continuation:
Clear alarm with the Delete key or NC START.

17189

Parameters:
- %1 = Channel number
- %2 = Offset number D
- %3 = Magazine/location number of first tool, '/' as separator
- %4 = Magazine/location number of second tool, '/' as separator

Definitions:
The specified D number %2 in the TO unit of channel %1 is not unique. The specified T numbers %3 and %4 each have an offset with number %2. If tool management is active: The specified T numbers belong to tool groups with different names.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
1. Ensure that the D numbers within the TO unit are unique, e.g. by renaming the D numbers.
2. If unique numbering is not necessary for subsequent operations, do not use the command.

Program Continuation:
Clear alarm with the Delete key or NC START.

17190

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = T number

Definitions:
In the displayed block, access is made to a tool that is not defined and therefore not available. The tool has been named by its T number, its name or its name and duplo number.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.
NCK alarms

Remedy: Check tool call in the NC part program:
- Correct tool number T.. programmed?
- Tool parameters P1 - P25 defined? The dimensions of the tool edge must have been entered previously either through the operator panel or through the V.24 interface.

Description of the system variables $P_{DP}x[n,m]$
- n ... Associated tool number T
- m ... Tool edge number D
- x ... Parameter number P

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17191 [Channel %1:] Block %2 T= %3 not existing, program %4

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = T number or T identifier
- %4 = Program name

Definitions: A tool identifier which the NCK does not recognize was programmed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: If the program pointer is at an NC block which contains the specified T identifier: If the program is incorrect, remedy the error with a correction block and continue the program. If the data block is missing, create one. You can do this by downloading a data block with all the defined D numbers onto the NCK (via MMC with overstore) and continue the program.
If the program pointer is at an NC block which does not contain the specified T identifier: The error occurred at an earlier point in the program where the T command appeared, but the alarm was not output until the change command was detected.
If the program is incorrect - T5 programmed instead of T55 - the current block can be corrected with a correction block; i.e. if only M06 is entered, you can correct the block with T55 M06. The incorrect T5 line remains in the program until it is terminated by a RESET or end of program. In complex program structures with indirect programming, it may not be possible to correct the program. In this case, you can only intervene locally with an overstore block - with T55 in the example. If the data block is missing, create one. You can do this by downloading the data block of the tool with all the defined D numbers onto the NCK (via MMC with overstore), program the T command with overstore, and continue the program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17192 [TO unit %1:] Invalid tool designation of "%2", duplo no. %3. No more replacement tools possible in "%4".

Parameters:
- %1 = TO unit
- %2 = Tool identifier
- %3 = Duplonummer
- %4 = Group identifier

Definitions: The tool with the specified tool identifier, duplo number cannot accept the group identifier. Reason: The maximum number of replacement tools allowed has already been defined. The name allocation causes the tool to be reallocated to a tool group which already contains the maximum number of replacement tools allowed on this machine.

Reaction: Interface signals are set.
Alarm display.

Remedy: Use fewer replacement tools or request a different maximum setting from the machine manufacturer.

Program Continuation:
Clear alarm with the Delete key or NC START.
17193 [Channel %1:] Block %2 the active tool is no longer on toolholder no./spindle no. %3, program %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Toolholder no., spindle no.
%4 = Program name

Definitions:
The tool at the specified toolholder/spindle at which the last tool change was carried out as master toolholder or master spindle, has been replaced.
Example:
N10 SETTH(1)
N20 T="Wz1" ; Tool change at master toolholder 1
N30 SETMTH(2)
N40 T1="Wz2" ; Toolholder 1 is only a secondary toolholder.
Changing the tool does not result in correction deselection.
N50 D5; New correction selection. At present, there is no active tool which D can refer to, i.e. D5 refers to T no. = 0, which results in zero correction.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
- Modify program:
- Set desired spindle as master spindle or toolholder as master toolholder.
- Then, if required, reset master spindle or master toolholder.

Program Continuation:
Clear alarm with the Delete key or NC START.

17194 [Channel %1:] Block %2 no suitable tool found

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
- An attempt was made to access a tool which has not been defined.
- The specified tool does not permit access.
- A tool with the desired properties is not available.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check access to tool:
- Are the parameters of the command correctly programmed?
- Does the status of the tool prevent access?

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17195 [Channel %1:] block %2 illegal tool holder number %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Tool holder number

Definitions:
In the displayed block, a tool holder that is not defined is accessed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check the programming of the tool holder in the NC program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
17200
[Channel %1:] Block %2: Data of tool %3 cannot be deleted.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = T number

Definitions:
An attempt has been made to delete from the part program the tool data for a tool currently being processed. Tool data for tools involved in the current machining operation may not be deleted. This applies both for the tool preselected with T or that has been changed in place of another, and also for tools for which the constant grinding wheel peripheral speed or tool monitoring is active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check access to tool offset memory by means of $TC_DP1[t,d] = 0 or deselect tool.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17202
[Channel %1:] Block %2 deleting magazine data not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An attempt was made to delete magazine data which cannot currently be deleted. A magazine with the 'tool in motion' status active cannot be deleted. A tool adapter which is currently allocated to a magazine location cannot be deleted. A tool adapter cannot be deleted if MD18104 $MN_MM_NUM_TOOL_ADAPTER has the value -1.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
If an attempt to delete a magazine fails
$TC_MAP1[m] = 0 ; Delete magazine with m=magazine no.
$TC_MAP1[0] = 0 ; Delete all magazines
$TC_MAP6[m] = 0 ; Delete magazines and all their tools you must ensure that the magazine does not have the 'tool in motion' status at the time of the call.
If an attempt to delete a tool adapter fails
$TC_ADPTT[a] = -1 ; Delete adapter with number a
$TC_ADPTT[0] = -1 ; Delete all adapters
then the data association with the magazine location or locations must first be canceled with $TC_MPP7[m,p] = 0 ;
m = magazine no., p = no. of the location to which the adapter is assigned.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17210
[Channel %1:] Block %2 access to variable not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The variable cannot be written/read directly from the part program. It is allowed only in motion synchronous actions. Example for variable:
$P_ACTID (which planes are active)
$AA_DTEPB (axial distance-to-go for reciprocating infeed)
$A_IN (test input)
Safety Integrated: Safety PLC system variables can only be read during the safety SPL setup phase.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
17212

NCK alarms

17212 [Channel %1:] Tool management: Load manual tool %3, duplo no. %2 onto spindle/toolholder %4

Parameters:
- %1 = Channel number
- %2 = Duplo no.
- %3 = Tool identifier
- %4 = Toolholder number (spindle number)

Definitions: Indicates that the specified manual tool must be loaded in the specified toolholder or spindle before the program continues. A manual tool is a tool whose data is known to the NCK but has not been assigned to a magazine location and is, therefore, not fully accessible to the NCK for automatic tool change or, in most cases, to the machine either. The specified manual tool can also be a tool in a multitool. In this case the multitool has to be changed.

Reaction: Alarm display.

Remedy: Make sure that the specified tool is loaded in the toolholder. The alarm is cleared automatically after PLC acknowledgement of the tool change on command.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

17214

17214 [Channel %1:] Tool management: remove manual tool %3 from spindle/toolholder %2

Parameters:
- %1 = Channel number
- %2 = Toolholder number (spindle number)
- %3 = Tool identifier

Definitions: Indicates that the specified manual tool must be removed from the specified toolholder or spindle before the program continues. A manual tool is a tool whose data is known to the NCK but has not been assigned to a magazine location and is, therefore, not fully accessible to the NCK for automatic tool change or, in most cases, to the machine either. The specified manual tool may be a tool in a multitool. In this case the multitool has to be removed.

Reaction: Alarm display.

Remedy: Make sure that the specified tool is removed from the toolholder. The alarm is cleared automatically after PLC acknowledgement of the tool change on command. Manual tools can only be used efficiently if this is supported by the PLC program.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

17215

17215 [Channel %1:] Tool management: Remove manual tool %3 from buffer location %2

Parameters:
- %1 = Channel number
- %2 = Buffer location number
- %3 = Tool identifier

Definitions: Indicates that the specified manual tool must be removed from the specified buffer location before the program continues. A manual tool is a tool whose data is known to the NCK but has not been assigned to a magazine location and is, therefore, not fully accessible to the NCK for automatic tool change or, in most cases, to the machine either. The specified manual tool may also be included in a multitool. In this case the multitool has to be removed.

Reaction: Alarm display.

Remedy: Make sure that the specified manual tool is removed from the buffer location. The alarm is cleared automatically after PLC acknowledgment of the tool change OFF command. Manual tools can only be used efficiently if this is supported by the PLC program.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
17216 [Channel %1:] Remove manual tool from toolholder %4 and load manual tool %3 %2

Parameters:
%1 = Channel number
%2 = Duplo no.
%3 = Tool identifier
%4 = Toolholder number (spindle number)

Definitions:
Indicates that the specified manual tool must be loaded in the specified toolholder or spindle before the program is continued and that the manual tool located there must be removed. A manual tool is a tool whose data are known to the NCK but which is not assigned to a magazine location and is thus not fully accessible to the NCK, and usually also to the machine, for an automatic tool change.

Reaction:
Alarm display.

Remedy:
Make sure that the manual tools are exchanged. The alarm is cleared automatically after PLC acknowledgement of the tool change on command. Manual tools can only be used efficiently if this is supported by the PLC program.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

17218 [Channel %1:] Block %2 Tool %3 cannot become a manual tool

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Tool identifier

Definitions:
The specified tool has a dedicated location and/or a location has been reserved for this tool in an actual magazine. Therefore, it cannot become a manual tool.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Correct the NC program
- Use the programming of "DELRMRES" to check that there is no reference to an actual magazine location

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17220 [Channel %1:] Block %2 tool not existing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
- The tool which does not exist can also be a multitool (the multitool is treated like a tool).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
17224 | [Channel %1:] Block %2 tool T/D= %3 - tool type %4 is not permitted

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Incorrect T no. / D no.
%4 = Incorrect tool type

Definitions:
On this system, it is not possible to select tool offsets of the indicated tool types.
The variety of tool types can both be limited by the machine OEM and be reduced on individual control models.
Only use tools of the tool types permitted for this system.
Check whether an error has occurred on defining the tool.

Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Correct the NC program or correct the tool data

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17230 | [Channel %1:] Block %2 Duplo no. already assigned

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If an attempt is made to write a tool Duplo number to the name of which another tool (another T number) already exists with the same Duplo number.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17240 | [Channel %1:] Block %2 illegal tool definition

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If an attempt is made to modify a tool data that would subsequently damage the data consistency or lead to a conflicting definition, this alarm will appear.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17250 | [Channel %1:] Block %2 illegal magazine definition

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If an attempt is made to modify a magazine data that would subsequently damage the data consistency or lead to a conflicting definition, this alarm will appear.
17260 [Channel %1:] Block %2 illegal magazine location definition
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: This alarm occurs if an attempt is made to change a magazine location data which would subsequently damage data consistency irreparably or lead to a conflicting definition.
Example: If parameter $TC_MPP1 (=type of location) is written with 'spindle/toolholder location', this may conflict with the limiting MD18075 $MN_MM_NUM_TOOLHOLDERS.
The remedy is then either - if permitted by the control model - to increase the value of MD18075 $MN_MM_NUM_TOOLHOLDERS
or to correct the magazine definition.
It is not permitted to assign one tool to two different magazine locations at the same time. Neither may a tool be part of a multitool and in a magazine location at the same time.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17262 [Channel %1:] Block %2 illegal tool adapter operation
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: If an attempt is made to define or cancel a tool adapter assignment with reference to a magazine location and this magazine location already has another tool adapter and/or a tool is located in the adapter or - when canceling an assignment - a tool is still at the location, this alarm will appear. If machine data MD18108 $MN_MM_NUM_SUMCORR has the value -1, adapters cannot be generated by a write operation to an adapter which is not already defined. While the machine data has this value, you can only write adapter data to adapters which have already been (automatically) assigned to magazine locations.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: - Assign max. one adapter to a magazine location.
- The magazine location must not contain a tool.
- MD18108 $MN_MM_NUM_SUMCORR has value -1: If an alarm occurs when writing one of the system variables $TC_ADPtx (x=1,2,3,T), the write operation must be modified such that only adapter data which are already associated with the magazine locations are written.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17270 [Channel %1:] Block %2 call-by-reference: illegal variable
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Machine data and system variables must not be transferred as call-by-reference parameters.
17500 [Channel %1:] Block %2 axis %3 is not an indexing axis

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
An indexing axis position has been programmed for an axis with the keywords CIC, CAC or CDC that has not been defined as indexing axis in the machine data.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Remove programming instruction for indexing axis positions (CIC, CAC, CDC) from the NC part program or declare the relevant axis to be an indexing axis.

Indexing axis declaration:
Modify MD30500: $MA_INDEX_AX_ASSIGN_POS_TAB (indexing axis assignment)
The axis will become an indexing axis when an assignment to an indexing position table was made in the stated MD.
2 tables are possible (input value 1 or 2).
Modify MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1
Modify MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2 (Number of positions for 1st/2nd indexing axis)
Standard value: 0 Maximum value: 60
Modify MD10910 $MN_INDEX_AX_POS_TAB_1 [n]
Modify MD10930 $MN_INDEX_AX_POS_TAB_2 [n]
(Positions of the 1st indexing axis) The absolute axis positions are entered. (The list length is defined via MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17501 [Channel %1:] Block %2 indexing axis %3 with Hirth tool system is active

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name

Definitions:
The 'Hirth tooth system' function is activated for the indexing axis. This axis can therefore approach only indexing positions, another travel movement of the axis is not possible.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Correct part program.
Correct FC16 or FC18 call.
Deselect machine data MD30505 $MA_HIRTH_IS_ACTIVE.

Program Continuation:
Clear alarm with the RESET key. Restart part program
17502 [Channel %1:] Block %2 indexing axis %3 with Hirth tooth system stop is delayed
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name
Definitions:
For the indexing axis, the 'Hirth tooth system' function is activated and the override has been set to 0 or another stop condition (e.g. VDI interface signal) is active. Since it is possible to stop only on indexing axes, the next possible indexing position is approached. The alarm is displayed until this position is reached or the stop condition is deactivated.
Reaction:
Alarm display.
Remedy:
Wait until the next possible indexing position is reached or set override > 0 or deactivate another stop condition.
Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

17503 [Channel %1:] Block %2 indexing axis %3 with Hirth tooth system and axis not referenced
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name
Definitions:
The 'Hirth tooth system' function is activated for the indexing axis and the axis is to be traversed although it is not referenced.
Reaction:
Alarm display.
Remedy:
Reference axis.
Program Continuation:
Clear alarm with the Delete key or NC START.

17510 [Channel %1:] Block %2 invalid index for indexing axis %3
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions:
The programmed index for the indexing axis is beyond the position table range.
Example:
Perform an absolute approach of the 56th position in the list allocated via the axis-specific MD30500 $MA_INDEX_AX_ASSIGN_POS_TAB with the 1st positioning axis, the number of positions is e.g. only 40 (MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1 = 40).
N100 G.. U=CAC (56)
Or, with equidistant distances, the programmed index is smaller or equal 0.
Or, an attempt is made with a MOV movement to travel to a position outside the permitted area.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program the indexing axis position in the NC part program in accordance with the length of the current position table, or add the required value to the position table and adjust the length of the list.
Program Continuation:
Clear alarm with the RESET key. Restart part program.
17600 [Channel %1:] Block %2 preset on transformed axis %3 not possible

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
The programmed PRESET axis is involved in the current transformation. This means that setting the actual value memory (PRESET) is not possible for this axis.

Example:
- Machine axis A should be set to the new actual value A 100 at the absolute position A 300.

- N100 G90 G00 A=300
- N101 PRESETON A=100

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Avoid preset actual value memory for axes which are participating in a transformation or deselect the transformation with the keyword TRAFOOF.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

17610 [Channel %1:] Block %2 axis %3 involved in the transformation, action cannot be carried out

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
The axis is involved in the active transformation. It can therefore not execute the demanded action, traversing as positioning axis, enable for axis exchange.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Deselect the transformation with TRAFOOF ahead of time or remove the action from the part program block.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

17620 [Channel %1:] Block %2 approaching fixed point for transformed axis %3 not possible

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
In the displayed block, an axis is programmed for the fixed point approach (G75) that is involved in the active transformation. Fixed point approach is not performed with this axis!

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Remove G75 instruction from the part program block or previously deselect transformation with TRAFOOF.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.
17630 [Channel %1:] Block %2 referencing for transformed axis %3 not possible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: In the displayed block, an axis is programmed for reference point approach (G74) that is involved in the active transformation. Reference point approach is not performed with this axis!

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Remove G74 instruction, or the machine axes involved in transformation, from the part program block or previously deselect the transformation with TRAFOOF.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17640 [Channel %1:] Block %2 spindle operation for transformed axis %3 not possible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: The axis programmed for the spindle operation is involved in the current transformation as geometry axis. This is not allowed.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: First switch off the transformation function.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17650 [Channel %1:] Block %2 machine axis %3 not programmable

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: The machine axis cannot be used in an active transformation. You may be able to program the function in a different coordinate system. For example, it may be possible to specify the retraction position in the basic coordinate system or the workpiece coordinate system. The axis identifier is used to select the coordinate system.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Deactivate the transformation or use another coordinate system.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17800 [Channel %1:] Block %2 illegally coded position programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The position number n specified with the keyword FP=n is not permissible. Two (2) absolute axis positions can be directly defined as fixed points by the axis-specific machine data MD30600 $MA_FIX_POINT_POS[n].

Or, if position numbers 3 and/or 4 are to be used, then machine data MD30610 $MA_NUM_FIX_POINT_POS must be set accordingly.
NCK alarms

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program keyword FP with machine fixed points 1 or 2.
Example:
Approach fixed point 2 with machine axes X1 and Z2.
N100 G75 FP=2 X1=0 Z2=0
Or modify MD30610 $MA_NUM_FIX_POINT_POS and, if necessary, MD30600 $MA_FIX_POINT_POS[].

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17810 [Channel %1:] Axis %2 not referenced

Parameters: %1 = Channel number
%2 = Axis number

Definitions: A function has been activated for the axis in JOG mode, e.g. fixed-point approach, JOG to position, JOG in circles, but the axis has not been referenced.

Reaction: Interface signals are set.
Alarm display.

Remedy: Reference axis.

Program Continuation: Clear alarm with the Delete key or NC START.

17811 [Channel %1:] Fixed-point approach not possible for axis %2 in JOG, reason %3

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Cause

Definitions: A 'fixed-point approach in JOG' has been requested for an axis. This is not possible because:
Reason 1: The axis is involved in the active transformation.
Reason 2: The axis is a following axis in an active coupling.
The fixed point approach will therefore not be executed.

Reaction: Interface signals are set.
Alarm display.

Remedy: Deselect fixed-point approach in JOG, or previously deselect the transformation with TRAFOOF or disband the coupling.

Program Continuation: Clear alarm with the Delete key or NC START.

17812 [Channel %1:] Axis %2 fixed-point approach in JOG: Fixed point %3 changed

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Fixed-point number

Definitions: 'Fixed-point approach in JOG' is active for the axis, but another fixed point has been selected, or the fixed-point approach has been deactivated. The approach motion is canceled.

Reaction: Interface signals are set.
Alarm display.

Remedy: Trigger JOG motion again.

Program Continuation: Clear alarm with the Delete key or NC START.
17813 [Channel %1:] Axis %2 fixed-point approach in JOG and override motion active

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
- 'Fixed-point approach in JOG' is active for the axis, but another offset motion - for example a synchronization offset $AA_OFF - has been interpolated simultaneously.
- The position of the selected fixed-point is not reached if offset values are changed during the traversing motion. The target point then becomes "fixed-point position + change in offset value".
- The end point will be reached if the traversing motion is restarted after the offset value has been changed.
 (For example: incremental traversing in which the traversing motion stops intermittently).

Reason:
- Restarting the motion takes the current offset value into account.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
- Trigger JOG motion again.
- Program Continuation: Clear alarm with the Delete key or NC START.

17814 [Channel %1:] Axis %2 fixed-point position not available

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Number of fixed-point position

Definitions:
- No fixed-point position is available for the fixed point selected in JOG mode. See MD30610 $MA_NUM_FIX_POINT_POS.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Adapt MD30610 $MA_NUM_FIX_POINT_POS and, if necessary, MD30600 $MA_FIX_POINT_POS[].
- Deselect fixed-point approach or select a valid fixed point, and restart the JOG motion.
- Program Continuation: Clear alarm with the Delete key or NC START.

17815 Indexing axis %1 fixed point %2 unequal indexing position

Parameters:
- %1 = Axis number
- %2 = Array index of machine data

Definitions:
- The axis is a referenced indexing axis, and the fixed-point number %2 to be approached in JOG mode (defined in MD30600 $MA_FIX_POINT_POS) does not coincide with an indexing position. In JOG mode, referenced indexing axes approach indexing positions.

Reaction:
- NC not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- MD30600 $MA_FIX_POINT_POS[] or adapt the indexing positions.
- Program Continuation: Clear alarm with the RESET key. Restart part program.
17820 [Channel %1:] JOG to position not possible for axis %2, reason %3

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Cause

Definitions:
A 'JOG to position' has been requested for an axis. This is not possible because:
Reason 1: The axis is involved in the active transformation.
Reason 2: The axis is a following axis in an active coupling.
The JOG to position will therefore not be executed.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Deselect 'JOG to position', or previously deselect the transformation with TRAFOOF or disband the coupling.

Program Continuation:
Clear alarm with the Delete key or NC START.

17821 [Channel %1:] Axis %2 JOG to position and override motion active

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
'JOG to position' is active for the axis, but an offset motion - for example a synchronization offset $AA_OFF - has been interpolated simultaneously.
The position of the SD43320 $SA_JOG_POSITION is not reached if offset values are changed during the traversing motion.
The target point then becomes "Jog position + change in offset value".
The position SD43320 $SA_JOG_POSITION will be reached if the traversing motion is restarted after the offset value has been changed.
(For example: incremental traversing in which the traversing motion stops intermittently).
Reason:
Restarting the motion takes the current offset value into account.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Trigger JOG motion again.

Program Continuation:
Clear alarm with the Delete key or NC START.

17822 [Channel %1:] Axis %2 JOG to position: Position changed

Parameters:
%1 = Channel number

Definitions: An axis motion is active for the axis with 'JOG to position' but the position, that is the content of SD43320 $SA_JOG_POSITION, has been changed. The approach motion is canceled.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Trigger JOG motion again.

Program Continuation:
Clear alarm with the Delete key or NC START.

17823 [Channel %1:] Axis %2 JOG to position deactivated

Parameters:
%1 = Channel number

Definitions: An axis motion is active for the axis with 'JOG to position' but 'JOG to position' has been deactivated. The approach motion is canceled.
17825
Indexing axis %1 $SA_JOG_POSITION unequal indexing position

Parameters:
%1 = Axis number

Definitions:
The axis is a referenced indexing axis and 'JOG to position' is activated in JOG mode, but SD43320 $SA_JOG_POSITION does not coincide with an indexing position. In JOG mode, referenced indexing axes approach indexing positions.

Reaction:
NC not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify SD43320 $SA_JOG_POSITION or indexing positions.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

17830
[Channel %1:] JOG in a circle is activated, but the axis %2 required for this is not a geometry axis.

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
The function JOG in circles has been activated, but the axis required for this has not been defined as a geometry axis.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Define axis as geometry axis.

Program Continuation:
Clear alarm with the Delete key or NC START.

17831
[Channel %1:] JOG a circle is not possible, reason %2

Parameters:
%1 = Channel number
%2 = Cause

Definitions:
The JOG in circles was activated, but this is not possible because:
1. The current positions of the axes involved lie outside the selected pitch circle.
2. The current positions of the axes involved, with pitch circle selected and tool radius offset active, are too near to the center of the circle.
3. The current positions of the axes involved, with tool radius offset active, are too near to the limiting circle during internal machining.
4. The current positions of the axes involved, with tool radius offset active, are too near to the limiting circle during external machining.
5. The current positions of the axes involved in internal machining are outside the defined circle.
6. The current positions of the axes involved in external machining are inside the defined circle.
10. A rotation is acting on the current plane, that is the current plane is inclined in space. This is not currently supported.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Define axis as geometry axis.
NCK alarms

Program Continuation: Clear alarm with the Delete key or NC START.

17833
[Channel %1:] JOG a circle is active and JOG circles deactivated

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
A circular motion is active but 'JOG in circles' has been deactivated. The circular motion is canceled.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
Reactivate 'JOG circles' and trigger JOG motion again.

Program Continuation: Clear alarm with the Delete key or NC START.

17900
[Channel %1:] Block %2 axis %3 is no machine axis

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
At this point, the block context calls for a machine axis. This is the case with:
- G74 (reference point approach)
- G75 (fixed point approach)
If a geometry or additional axis identifier is used, then it must also be allowed as machine axis identifier (MD10000 $MN_AXCONF_MACHAX_NAME_TAB).

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Use machine axis identifier when programming.

Program Continuation: Clear alarm with the RESET key. Restart part program.

18000
[Channel %1:] Block %2 NCK-specific protection zone %3 wrong. Error code %4

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Number of NCK protection zone
- %4 = Error specification

Definitions:
There is an error in the definition of the protection zone. The error number gives the specific reason for the alarm:
1: Incomplete or conflicting contour definition.
2: Contour encompasses more than one surface area.
3: Tool-related protection zone is not convex.
4: If both boundaries are active in the 3rd dimension of the protection zone and both limits have the same value.
5: The number of the protection zone does not exist (negative number, zero or greater than the maximum number of protection zones).
6: Protection zone definition consists of more than 10 contour elements.
7: Tool-related protection zone is defined as inside protection zone.
8: Incorrect parameter used.
9: Protection zone to be activated is not defined.
10: Incorrect modal G code used for protection zone definition.
11: Contour definition incorrect or frame activated.
12: Other, not further specified errors.
NCK alarms

18001 [Channel %1:] Block %2 channel-specific protection zone %3 incorrect. Error code %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of the channel-specific protection zone
%4 = Error specification

Definitions:
There is an error in the definition of the protection zone. The error number gives the specific reason for the alarm.
No. Meaning
1: Incomplete or conflicting contour definition.
2: Contour encompasses more than one surface area.
3: Tool-related protection zone is not convex.
4: If both boundaries are active in the 3rd dimension of the protection zone and both limits have the same value.
5: The number of the protection zone does not exist (negative number, zero or greater than the maximum number of protection zones).
6: Protection zone definition consists of more than 10 contour elements.
7: Tool-related protection zone is defined as inside protection zone.
8: Incorrect parameter used.
9: Protection zone to be activated is not defined.
10: Incorrect modal G code used for protection zone definition.
11: Contour definition incorrect or frame activated.
12: Other, not further specified errors.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Modify definition of the protection zone and check MD.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

18002 [Channel %1:] Block %2 NCK protection zone %3 cannot be activated. Error code %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of NCK protection zone
%4 = Error specification

Definitions:
An error has occurred on activating the protection zone. The error number gives the specific reason for the alarm.
No. Meaning
1: Incomplete or conflicting contour definition.
2: Contour encompasses more than one surface area.
3: Tool-related protection zone is not convex.
4: If both boundaries are active in the 3rd dimension of the protection zone and both limits have the same value.
5: The number of the protection zone does not exist (negative number, zero or greater than the maximum number of protection zones).
6: Protection zone definition consists of more than 10 contour elements.
7: Tool-related protection zone is defined as inside protection zone.
8: Incorrect parameter used.
9: Protection zone to be activated is not defined or number of contour element <2 or >MAXIMUM_CONTOURNO_PROTECTAREA.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Modify definition of the protection zone and check MD.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10: Error in internal structure of the protection zones.
11: Other, not further specified errors.
12: The number of protection zones simultaneously active exceeds the maximum number (channel-specific machine data).
13,14: Contour element for protection zones cannot be created.
15,16: No more memory space for the protection zones.
17: No more memory space for the contour elements.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
If the alarm is output on ramp-up (2nd parameter: "INIT" instead of block number), "Channel not ready to operate" will be set.

Remedy:
Please inform the authorized personnel/service department.
1. Reduce the number of simultaneously active protection zones (MD).
2. Modify part program:
 - Delete other protection zones.
 - Preprocessing stop.
When the alarm occurs during control ramp-up, the system variables $SN_PA... have to be corrected for the specified protection zone. Afterwards perform a restart. If the erroneous data cannot be recognized, the protection zone's immediate activation can be removed, and the system variables of the protection zone can be written again by means of NPROTDEF.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
If the alarm occurs during NC program execution, the current block can be changed. This way, the NPROT parameters can also be adjusted. However, if there is an error in the definition of the protection zone, the NC program must be aborted and the definition must be corrected under NPROTDEF.
If the alarm occurs on control ramp-up, system variables $SN_PA... must be corrected for the specified protection zone. This can be done by downloading an Initial.ini file that includes the relevant corrected data. If afterwards a restart is performed again, the alarm will have been removed provided that the data are consistent.

18003

[Channel %1:] Block %2 channel-specific protection zone %3 cannot be activated.
Error code %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of the channel-specific protection zone
%4 = Error specification

Definitions:
An error has occurred on activating the protection zone. The error number gives the specific reason for the alarm.
No.
Meaning
1: Incomplete or conflicting contour definition.
2: Contour encompasses more than one surface area.
3: Tool-related protection zone is not convex.
4: If both boundaries are active in the 3rd dimension of the protection zone and both limits have the same value.
5: The number of the protection zone does not exist (negative number, zero or greater than the maximum number of protection zones).
6: Protection zone definition consists of more than 10 contour elements.
7: Tool-related protection zone is defined as inside protection zone.
8: Incorrect parameter used.
9: Protection zone to be activated is not defined or number of the contour element <2 or >MAXIMUM_CONTOURNO_PROTECTAREA.
10: Error in internal structure of the protection zones.
11: Other, not further specified errors.
12: The number of protection zones simultaneously active exceeds the maximum number (channel-specific machine data).
13,14: Contour element for protection zones cannot be created.
15,16: No more memory space for the protection zones.
17: No more memory space for the contour elements.
NCK alarms

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
If the alarm is output on ramp-up (2nd parameter: "INIT" instead of block number), "Channel not ready to operate" will be set.

Remedy: Please inform authorized personnel / the service department.
1. Reduce the number of simultaneously active protection zones (MD).
2. Modify part program:
 - Delete other protection zones.
 - Preprocessing stop.
When the alarm occurs on control ramp-up, system variables $SC_PA_... must be corrected for the specified protection zone. Afterwards perform a restart. If the erroneous data cannot be recognized, the protection zone’s immediate activation can be removed, and the system variables of the protection zone can be written again by means of CPROTDEF.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

The current block can be changed if the alarm occurs during NC program execution. The CPROT parameters can also be adjusted. However, if the error lies in the definition of the protection zone, the NC program must be aborted and the definition corrected under CPROTDEF.
If the alarm occurs on control power-up, the system variables $SC_PA_... must be corrected for the specified protection zone. This can be done by downloading an Initial.ini file that includes the relevant corrected data. If another restart is then made, the alarm will have been eliminated provided that the data are now consistent.

18004 [Channel %1:] Block %2 orientation of workpiece-related protection zone %3 does not correspond to the orientation of tool-related protection zone %4

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of workpiece-related protection zone

Definitions: The orientation of the workpiece-related protection zone and the orientation of the tool-related protection zone differ.
If the protection zone number is negative, then this is an NCK protection zone.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: - Modify the protection zone definition or do not simultaneously activate protection zones that have different orientations.
- Check machine data and modify the protection zone definition if necessary.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

18005 [Channel %1:] Block %2 serious error in definition of NCK-specific protection zone %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Protection zone number

Definitions: The protection zone definition must be terminated with EXECUTE before a preprocessing stop is performed. This also applies to any that are initiated implicitly such as with G74, M30, M17.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
18006 [Channel %1:] Block %2 serious error in definition of channel-specific protection zone %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Protection zone number

Definitions: The protection zone definition must be terminated with EXECUTE before a preprocessing stop is performed. This also applies to any that are initiated implicitly such as with G74, M30, M17.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

18100 [Channel %1:] Block %2 invalid value assigned to FXS[]

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The following values are valid at the present time:
0: "Deselect traverse against fixed stop"
1: "Select traverse against fixed stop" valid.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: --

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

18101 [Channel %1:] Block %2 invalid value assigned to FXST[]

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Only the range 0.0 - 100.0 is valid at the present time.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: --

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

18102 [Channel %1:] Block %2 invalid value assigned to FXSW[]

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Only positive values including zero are valid at the present time.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: --
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

18300 [Channel %1:] Block %2: frame: fine shift not possible
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Allocation of a fine shift to settable frames or the basic frame is not possible since MD18600 $MN_MM_FRAME_FINE_TRANS is not equal to 1.
Reaction: Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Modify program or set MD18600 $MN_MM_FRAME_FINE_TRANS to 1.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

18310 [Channel %1:] Block %2: frame: illegal rotation
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Rotations are not possible with NCU global frames.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

18311 [Channel %1:] Block %2: frame: illegal instruction
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An attempt was made to read or write a frame which does not exist.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

18312 [Channel %1:] Block %2: frame: fine shift not configured
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Fine shift must be configurd with G58 and G59.
NCK alarms

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Modify machine data.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

18313 [Channel %1:] Block %2 frame: illegal switchover of geometry axes

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- It is not allowed to change the geometry axis assignment because the current frame contains rotations.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Change NC program or set other mode with MD10602 $MN_FRAME_GEOAX_CHANGE_MODE.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

18314 [Channel %1:] Block %2 frame: type conflict

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- It is not possible to chain global frames and channel-specific frames. The alarm occurs if a global frame is programmed with a channel axis name and no machine axis on this NCU is assigned to the channel axis. Channel-specific frames cannot be programmed with machine axis names if there is no corresponding channel axis on this NCU.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Modify part program.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

18400 [Channel %1:] Block %2 language change not possible:%3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Cause

Definitions:
- The selection of an external NC language is not possible due to the reason specified. The following reasons are possible (see parameter 3):
 1. Invalid machine data settings
 2. Active transformation

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Remedy the specified cause of the error before selecting the language.
20000 [Channel %1:] Axis %2 reference cam not reached

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
After starting the reference point approach, the rising edge of the reduction cam must be reached within the section defined in the MD34030 $MA_REFP_MAX_CAM_DIST (phase 1 of referencing). (This error occurs only with incremental encoders).

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
There are 3 possible causes of error:
1. The value entered in MD34030 $MA_REFP_MAX_CAM_DIST is too small.
 Determine the maximum possible distance from the beginning of reference motion up to the reduction cam and compare with the value in MD34030 $MA_REFP_MAX_CAM_DIST, increase the value in the MD if necessary.
2. The cam signal is not received by the PLC input module.
 Operate the reference point switch manually and check the input signal on the NC/PLC interface (route: Switch! Connector! Cable! PLC input! User program).
3. The reference point switch is not operated by the cam.
 Check the vertical distance between reduction cam and activating switch.

Program
Continuation:
Clear alarm with the RESET key. Restart part program

20001 [Channel %1:] Axis %2 no cam signal present

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
At the beginning of phase 2 of reference point approach, the signal from the reduction cam is no longer available. Phase 2 of reference point approach begins when the axis remains stationary after deceleration to the reduction cam. The axis then starts in the opposite direction in order to select the next zero marker of the measuring system on leaving the reduction cam or approaching it again (negative/positive edge).

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Check whether the deceleration path after the approach velocity is greater than the distance to the reference point cam - in which case the axis cannot stop until it is beyond the cam. Use a longer cam or reduce the approach velocity in MD34020 $MA_REFP_VELO_SEARCH_CAM.
When the axis has stopped at the cam, it must be checked whether the signal DB380x DBX1000.7 (Deceleration reference point approach) is still available at the interface to the NCK.
- Hardware: Wire break? Short circuit?
- Software: User program?

Program
Continuation:
Clear alarm with the RESET key. Restart part program
NCK alarms

20002 [Channel %1:] Axis %2 zero mark not found

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
The hardware zero mark of the incremental position encoder or the substitute zero mark of the absolute position encoder is not within a defined section.

Phase 2 of the reference point approach ends when the zero mark of the encoder has been detected after the rising/falling edge of the NC/PLC interface signal DB380xDBX1000.7 (Deceleration reference point approach) has given the trigger start. The maximum distance between the trigger start and the zero mark that follows is defined in the MD34060 $MA_REFP_MAX_MARKER_DIST. The monitor prevents a zero mark signal from being overtraveled and the next being evaluated as reference point signal. (Faulty cam adjustment or excessive delay by the PLC user program).

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Please inform the authorized personnel/service department.
- Check the cam adjustment and make sure that the distance is sufficient between the end of the cam and the zero marker signal that follows. The path must be greater than the axis can cover in the PLC cycle time.
- Increase the MD34060 $MA_REFP_MAX_MARKER_DIST, but do not select a value greater than the distance between the 2 zero markers. This might result in the monitor being switched off.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

20003 [Channel %1:] Axis %2 measuring system error

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
In a measuring system with distance-coded reference marks, the distance between two adjacent markers has been found to be more than twice the value entered in MD34300 $MA_ENC_REFP_MARKER_DIST. The control does not issue the alarm until it has again detected a distance that is too long after having made a 2nd attempt in reverse direction with half the traversing velocity.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Determine the distance between 2 odd reference marks (reference mark interval). This value (which is 20.00 mm on Heidenhain scales) must be entered in MD34060 $MA_REFP_MAX_MARKER_DIST.
- Check the reference track of the scale including the electronics for the evaluation.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

20004 [Channel %1:] Axis %2 reference mark missing

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
In the distance-coded length measurement system, 2 reference marks were not found within the defined searching distance (axis-specific MD34060 $MA_REFP_MAX_MARKER_DIST). A reduction cam is not required for distance-coded scales (but an existing cam will be evaluated). The conventional direction key determines the direction of search. The searching distance MD34060 $MA_REFP_MAX_MARKER_DIST, within which the two reference marks are expected is counted commencing at the start point.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
NCK alarms

Remedy:
Please inform the authorized personnel/service department.
Determine the distance between 2 odd reference point markers (reference point marker interval). This value (which is 20.00 mm on Heidenhain scales) must be entered in the MD34060 $MA_REFP_MAX_MARKER_DIST.
Check the reference point track of the scale including the electronics for the evaluation.

Program Continuation: Clear alarm with the RESET key. Restart part program

20005

[Channel %1:] Axis %2 reference point approach aborted

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
Referencing could not be completed for all stated axes (e.g., abort caused by missing servo enable, measuring system switchover, release of direction key, etc.).
In distance-coded measuring systems, the alarm will also be displayed if the value 1 has been set in MD34000 $MA_REFP_CAM_IS_ACTIV (reference cams) and one of the conditions stated in the remedy has been fulfilled.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Check the possible reasons for termination:
- Servo enable missing: NC/PLC interface signal DB380x DBX0002.1 (Servo enable)
- Measuring system switchover: NC/PLC interface signal DB380x DBX0001.5 / 1.6 (Position measuring system 1/2)
- Traversing key + or - missing: NC/PLC interface signal DB380x DBX0004.7 / 4.6 (Traversing keys plus/minus)
- Feed override = 0
- The feed disable is active
- Exact stop not reached within MD36020 $MA_POSITIONING_TIME.
The axis-specific MD34110 $MA_REFP_CYCLE_NR determines which axes are involved in the channel-specific referencing.

Value Meaning
-1: No channel-specific referencing, NC Start without referencing.
0: No channel-specific referencing, NC Start with referencing.
1-8: Channel-specific referencing. The number entered here corresponds to the referencing sequence. (When all axes with contents 1 have reached the reference point, then the axes with contents 2 start, etc.).

Program Continuation: Clear alarm with the RESET key. Restart part program

20006

[Channel %1:] Axis %2 reference point creep velocity not reached

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
In phase 2 of reference point approach (wait for zero mark), the cam end was reached but the reference point approach velocity was not within the tolerance window. (This can occur when the axis is already at the end of the cam at the beginning of reference point approach. Phase 1 is therefore considered as being already concluded and will not be started.)
Phase 2 has been interrupted (this time before the cam) and the reference point approach will be started once again automatically with phase 1. If the approach velocity is not reached at the 2nd attempt either, referencing will be stopped and the alarm displayed.
Approach velocity: MD34040 $MA_REFP_VELO_SEARCH_MARKER
Velocity tolerance: MD35150 $MA_SPIND_DES_VELO_TOL.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Reduce the MD for the approach velocity MD34040 $MA_REFP_VELO_SEARCH_MARKER and/or increase the MD for the velocity tolerance MD35150 $MA_SPIND_DES_VELO_TOL.

Alarms
Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0 299
20007
[Channel %1:] Axis %2 reference point approach requires 2 measuring systems
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
2 encoders are needed for setting MD34200 $MA_ENC_REFP_MODE = 6!
Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Please inform the authorized personnel/service department.
Modify reference mode MD34200 $MA_ENC_REFP_MODE or install and configure a second encoder.
Program Continuation:
Clear alarm with the RESET key. Restart part program

20008
[Channel %1:] Axis %2 reference point approach requires second referenced measuring system
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
When setting MD34200 $MA_ENC_REFP_MODE = 6 the 2nd encoder must first be referenced.
Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Modify referencing mode MD34200 $MA_ENC_REFP_MODE or reference 2nd encoder.
Program Continuation:
Clear alarm with the RESET key. Restart part program

20050
[Channel %1:] Axis %2 handwheel mode active
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
The axes cannot be traversed in JOG mode using the traversing keys because traversing is still taking place via the handwheel.
Reaction:
Alarm display.
Remedy:
Decide whether the axis is to be traversed by means of the direction keys or the handwheel. End handwheel travel and delete the axial distance-to-go if necessary (NC/PLC interface signal DB380x DBX0002.2 (Delete distance-to-go/Spindle reset)).
Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

20051
[Channel %1:] Axis %2 handwheel mode not possible
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
The axis is already traveling via the traversing keys, so handwheel mode is no longer possible.
Reaction:
Alarm display.
Remedy:
Decide whether the axis is to be traversed by means of the jog keys or via the handwheel.
20052 [Channel %1:] Axis %2 already active

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions: The axis is to traverse as a machine axis in JOG mode using the direction keys on the machine control panel. However, this is not possible because:
1. It is already traversing as a geometry axis (through the channel-specific interface DB3200 DBX1000.7 / 0.6 (Traversing keys -/+) or DB3200 DBX1004.7 / 4.6 (Traversing keys -/+)) or
2. It is already traversing as a machine axis (through the axis-specific interface DB380x DBX0004.7 / 4.6 (Traversing keys plus/minus)) or
3. A frame is valid for a rotated coordinate system, and another geometry axis involved in this is already traversing in JOG mode by means of the direction keys.

Reaction: Alarm display.
Remedy: Stop traversing through the channel or axis interface or stop the other geometry axis.
Program Continuation: Clear alarm with the Delete key or NC START.

20053 [Channel %1:] Axis %2 DRF, FTOCON, external zero point offset not possible

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions: The axis is traversed in a mode (e.g. referencing) that allows no additional overlaid interpolation.

Reaction: Alarm display.
Remedy: Wait until the axis has reached its reference position or terminate reference point approach with "Reset" and start DRF once again.
Program Continuation: Clear alarm with the Delete key or NC START.

20054 [Channel %1:] Axis %2 wrong index for indexing axis in JOG mode

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions: 1. The displayed indexing axis is to be traversed incrementally in JOG mode (by 1 indexing position). However, no further indexing position is available in the selected direction.
2. The axis is stationary at the last indexing position. In incremental traversing the working area limitation or the software limit switch is reached without an indexing position being located in front of it at which a stop could be made.

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Correct (add to) the list of indexing positions by means of the machine data
MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1
MD10910 $MN_INDEX_AX_POS_TAB_1
MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2
MD10930 $MN_INDEX_AX_POS_TAB_2
or set the working area limits or the software limit switches to other values.
Program Continuation: Clear alarm with the Delete key or NC START.
20055 [Channel %1:] Master spindle not present in JOG mode

Parameters:
%1 = Channel number

Definitions:
The displayed axis is to be traversed as machine axis in JOG mode with revolutional feed, but no master spindle has been defined from which the actual speed could have been derived.

Reaction:
Local alarm reaction. Interface signals are set. Alarm display.

Remedy:
Please inform the authorized personnel/service department. If the revolutional feed is also to be active in JOG mode, then a master spindle must be declared via the channel-specific MD20090 $MC_SPIND_DEF_MASTER_SPIND. In this case you have to open a screen in the PARAMETER operating area with the softkeys "SETTINGDATA" and "JOG DATA" and preselect the G function G95 there. The JOG feedrate can then be entered in [mm/rev]. (If 0 mm/rev is set as JOG feed, the control takes the value assigned in the axis-specific MD 32050 $MA_JOG_REV_VELO or in the case of rapid traverse overlay MD32040 $MA_JOG_REV_VELO_RAPID). The revolutional feed in JOG mode is deactivated by changing the G function from G95 to G94.

Program Continuation:
Clear alarm with the Delete key or NC START.

20056 [Channel %1:] Axis %2 no revolutional feedrate possible. Axis/spindle %3 stationary

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Axis name, spindle number

Definitions:
An axis is to travel in JOG with revolutional feed, but the spindle/axis the feed is to be derived from is 0.

Reaction:
Alarm display.

Remedy:
Traverse the spindle/axis from which the feed is to be derived.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

20057 [Channel %1:] Block %2 revolutional feedrate for axis/spindle %3 is <= zero

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
Revolutional feed has been programmed for an axis/spindle, but the velocity was not programmed or the programmed value is smaller than or equal to zero.

Reaction:
Correction block is reorganized. Local alarm reaction. Channel not ready. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
- Correct the part program or
- Specify the correct feed for PLC axes at the VDI interface,
- Specify feed for oscillating axes in the SD43740 $SA_OSCILL_VELO.

Program Continuation:
Clear alarm with the RESET key. Restart part program
20058 [Channel %1:] Axis %2 revolutionary feedrate: illegal feed source

Parameters: %1 = Channel number
 %2 = Axis name, spindle number

Definitions: An axis/spindle is to be traversed at revolutionary feedrate. The reference axis/spindle defined in SD 43300 $SA_ASSIGN_FEED_PER_REV_SOURCE refers to itself. The coupling caused cannot be executed.

Reaction: Alarm display.

Remedy: The reference axis/spindle must be modified accordingly in SD 43300.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20059 [Channel %1:] Axis %2 already active due to %3

Parameters: %1 = Channel number
 %2 = Axis name, spindle number
 %3 = Cause

Definitions: The axis (machine axis, geometry axis or orientation axis) is to be traversed in operation mode "Automatic & Jog" (see MD10735 $MN_JOG_MODE_MASK) by using the direction keys or a handwheel. This is not possible, as (see parameter 3):
1. the axis is active as a rotating spindle
2. the axis is a PLC axis
3. the axis is active as an asynchronous reciprocating axis
4. the axis is active as a command axis
5. the axis is active as a slave axis
6. a frame applies for a rotated coordinate system and an axis involved in the required JOG movement of the geometry axis is not available for this
7. an axis container rotation is activated via NCU link

Note: This alarm identifies an axis not capable of JOG which received a JOG order. In this case, the NCK will not proceed according to "Internal JOG".

Reaction: Alarm display.

Remedy: Wait for the axis to traverse or abort with distance-to-go delete or RESET.

Program Continuation: Clear alarm with the Delete key or NC START.

20060 [Channel %1:] Axis %2 cannot be traversed as geometry axis

Parameters: %1 = Channel number
 %2 = Axis name

Definitions: The axis is not in "Geometry axis" state. Therefore, it cannot be traversed in JOG mode as geometry axis.

Reaction: Alarm display.

Remedy: Check the operating steps to establish whether geometry axes really must be traversed, otherwise switch over to the machine axes by activating the "WCS/MCS" key on the machine control panel.

Program Continuation: Clear alarm with the Delete key or NC START.

20061 [Channel %1:] Axis %2 cannot be traversed as orientation axis

Parameters: %1 = Channel number
 %2 = Axis name

Definitions: The axis is not an orientation axis and can therefore not be traversed as an orientation axis in JOG mode.
20062 [Channel %1:] Axis %2 already active

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
The displayed axis is already traversing as a machine axis. Therefore, it cannot be operated as a geometry axis.
Traversing an axis can take place in JOG mode through 2 different interfaces:
1. As a geometry axis: via the channel-specific interface DB3200 DBX1000.7 / 0.6 (Traversing keys +/-)
2. As a machine axis: via the axis-specific interface DB380x DBX0004.7 / 4.6 (Traversing keys plus/minus)
With the standard machine control panel, it is not possible to operate an axis as a machine axis and as a geometry axis at the same time.

Reaction:
Alarm display.
Remedy:
Do not start the geometry axis until the traversing motion as machine axis has been concluded.
Program
Clear alarm with the Delete key or NC START.

20063 [Channel %1:] Axis %2 orientation axes cannot be traversed without transformation

Parameters:
%1 = Channel number
%2 = Axis name

Definitions:
An attempt was made to move an orientation axis in JOG mode without an active orientation transformation.

Reaction:
Alarm display.
Remedy:
Activate an orientation transformation.
Program
Clear alarm with the Delete key or NC START.

20064 [Channel %1:] Axis %2 selection of several axes with an active taper angle is not permitted.

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
With an active taper angle, only one geometry axis at the time can be traversed in JOG mode by pressing traversing keys. Simultaneous traversing of a geometry axis as a machine axis is not permitted either.

Reaction:
NC not ready. Interface signals are set. Alarm display. NC Stop on alarm.
Remedy:
Starting the geometry axis only if traversing of the other geometry axis or machine axis completed.
Program
Clear alarm with the RESET key. Restart part program

20065 [Channel %1:] Master spindle not defined for geometry axes in JOG mode

Parameters:
%1 = Channel number

Definitions:
The displayed axis is to be traversed as geometry axis in JOG mode with rotary feed, but no master spindle has been defined from which the actual speed could be derived.
NCK alarms

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: If the revolutional feedrate is to be active in JOG mode too, then a master spindle must be declared in the channel-specific machine data MD20090 $MC_SPIND_DEF_MASTER_SPIND. In this case, you have to open a screen in the PARAMETER operating area with the softkeys "SETTINGDATA" and "JOG DATA", and preselect the G function G95 there. The JOG feedrate can then be entered in [mm/rev]. (If 0 mm/rev is set as JOG feedrate, the control takes the value assigned in the axis-specific machine data MD32050 $MA_JOG_REV_VELO or in the case of rapid traverse override MD32040 $MA_JOG_REV_VELO_RAPID).
The revolutional feedrate in JOG mode is deactivated by changing the G function from G95 to G94.

Program Continuation: Clear alarm with the Delete key or NC START.

20070 [Channel %1:] Axis %2 software limit switch %3 programmed end position %4
Parameters:
%1 = Channel number
%2 = Axis number
%3 = "1+" or "1-" for software limit switches 1, "2+" or "2-" for software limit switch 2,
%4 = Programmed end position
Definitions: The axis is to be traversed by the PLC as a concurrent positioning axis to the limit position. This would violate the corresponding software limit switch for the axis. No traversing takes place.
With an additional message to alarm 20140, the axis is to be traversed as a command axis.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Specify smaller target position. Modify MD for SW limit switch. Possibly activate another SW limit switch. Retract axis via JOG.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20071 [Channel %1:] Axis %2 working area limit %3 end position %4
Parameters:
%1 = Channel number
%2 = Axis number
%3 = "+" or "-
%4 = Programmed end position
Definitions: The displayed axis is to be traversed as a "concurrent positioning axis" to the programmed limit position and the corresponding working area limitation active for the axis is violated. No traversing takes place.
With an additional message to alarm 20140, the axis is traversed as a command axis.
Reaction: Alarm display.
Remedy: - Specify smaller target position.
- Deactivate working area limitation.
- Set working area limitation differently.
- Retract axis with JOG.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20072 [Channel %1:] Axis %2 is not an indexing axis
Parameters:
%1 = Channel number
%2 = Axis number
Definitions: The displayed axis is operated as a concurrent positioning axis. Its target position is parameterized in the FC INDEX AXIS as indexing position number, but the axis is not an indexing axis.
Reaction: Alarm display.
NCK alarms

Remedy: Please inform the authorized personnel/service department. The FC POS-AXIS for linear and rotary axes should be used or the axis should be declared as an indexing axis. Corresponding machine data for indexing axis declaration:
- Modify MD30500 $MA_INDEX_AX_ASSIGN_POS_TAB
- Modify MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1
- Modify MD10910 $MN_INDEX_AX_POS_TAB_1
- Modify MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2
- Modify MD10930 $MN_INDEX_AX_POS_TAB_2

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20073 [Channel %1:] Axis %2 cannot be repositioned
Parameters: %1 = Channel number
%2 = Axis number
Definitions: The concurrent positioning axis cannot be positioned because it has already been restarted via the VDI interface and is still active. No repositioning motion takes place and the motion initiated by the VDI interface is not affected.
Reaction: Alarm display.
Remedy: None.
Program Continuation: Clear alarm with the Delete key or NC START.

20074 [Channel %1:] Axis %2 wrong index position
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: For a concurrent positioning axis declared as indexing axis, the PLC has given an index number that is not available in the table.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Check the indexing axis number given by the PLC and correct this if necessary. If the indexing axis number is correct and the alarm results from an indexing position table that has been set too short, check the machine data for indexing axis declaration.
- Modify MD30500 $MA_INDEX_AX_ASSIGN_POS_TAB
- Modify MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1
- Modify MD10910 $MN_INDEX_AX_POS_TAB_1
- Modify MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2
- Modify MD10930 $MN_INDEX_AX_POS_TAB_2
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20080 [Channel %1:] Axis %2 no handwheel assigned for override
Parameters: %1 = Channel number
%2 = Axis number
Definitions: No handwheel has been assigned for this specified axis after handwheel overlay has been started in automatic mode. If the axis identifier is missing in the alarm with active velocity overlay FD > 0, then the 1st geometry axis has not been defined in the NC channel. In this case the block is executed without handwheel control.
Reaction: Alarm display.
Remedy: If handwheel control is required, a handwheel must be activated.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
20082 [Channel %1:] Axis %2 coordinate system-specific working area limit %3 end position %4

Parameters:
%1 = Channel number
%2 = Axis number
%3 = +" or "+"
%4 = End position

Definitions:
The displayed axis is operated as a "concurrent positioning axis", and the corresponding active coordinate system-specific working area limitation for the axis is violated. No traversing movement.

Reaction:
Alarm display.

Remedy:
- Specify smaller target position.
- Deactivate working area limitation.
- Set working area limitation differently.
- Retract axis with JOG.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

20085 [Channel %1:] Contour handwheel: traverse direction or overtravel of beginning of block not allowed

Parameters:
%1 = Channel number

Definitions:
Travel takes place on the path with the contour handwheel in the opposite direction to the programmed travel direction and the starting point of the path has been reached at the start of the block.

Reaction:
Alarm display.

Remedy:
Turn the contour handwheel in the opposite direction.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

20090 Axis %1 travel to fixed stop not possible. Check programming and axis data.

Parameters:
%1 = Axis name, spindle number

Definitions:
1. The "Traverse against fixed stop" function has been programmed with FXS[AX]=1 but the axis does not (yet) support this. Check MD37000 $MA_FIXED_STOP_MODE. This function is not available for gantry axes and simulated axes.
2. On selection, no movement was programmed for axis AX. AX is a machine axis identifier.
3. It is always necessary to program a traversing movement in the selection block for the axis/spindle for which the "Traverse against fixed stop" function is activated.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department.
- Check the axis type.
- Check MD37000 $MA_FIXED_STOP_MODE.
- Is a machine axis movement missing in the approach block?

Program Continuation:
Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
20091 **Axis %1 has not reached fixed stop**

Parameters: %1 = Axis name, spindle number

Definitions: On attempting to traverse against a fixed stop, the programmed end position has been reached or the traversing movement has been aborted. The alarm can be concealed by means of the MD37050 $MA_FIXED_STOP_ALARM_MASK. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Correct the part program and the settings:
- Has the traversing block been aborted?
- If the axis position does not correspond to the programmed end position, then correct the end position.
- If the programmed end position is in the part, the triggering criterion must be checked.
- Has the contour deviation leading to triggering been dimensioned too large? Has the torque limit been set too high?

Program Continuation: Teleprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

20092 **Axis %1 travel to fixed stop still active**

Parameters: %1 = Axis name, spindle number

Definitions: An attempt has been made to move an axis while it is in fixed stop or while the deselection function has not yet been completed. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department.
Check the following:
- Has the axis at the fixed stop also been moved by a traversing movement of geometry axes?
- Is a selection carried out even though the axis is stationary at the stop?
- Has the deselection process been interrupted by a RESET?
- Has the PLC switched the acknowledgement signals?

Program Continuation: Teleprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

20093 **Axis %1 standstill monitoring at fixed-stop end point has been triggered**

Parameters: %1 = Axis name, spindle number

Definitions: The position of the axis has been beyond the zero speed window ever since selection has been completed. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
NCK alarms

Remedy: Please inform the authorized personnel/service department.
- Check the mechanical components, e.g. has the stop broken away? Has the part to be clamped given way?
- Position window for zero speed control too small (MD37020 $MA_FIXED_STOP_WINDOW_DEF) (SD43520 $SA_FIXED_STOP_WINDOW). Default is 1 mm in each case.

Program Continuation:

20094 Axis %1 function has been aborted
Parameters: %1 = Axis name, spindle number
Definitions: The function has been aborted. The possible reasons for this are:
- Because a pulse disable has occurred, the torque can no longer be provided.
- The PLC has removed the acknowledgments.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Check whether
- there is a pulse disable from the infeed/regenerative-feedback unit or from the PLC?
- the acknowledgement bits have been deleted by the PLC even though NCK has not requested deselection?
Program Continuation:

20095 Axis %1 illegal torque, current torque %2
Parameters: %1 = Axis name, spindle number
%2 = Current holding torque when brake test selected
Definitions: The current holding torque, when brake test selected, cannot be attained with the present parameterization of the brake test.
Reaction: Alarm display.
Remedy: Check the parameterization for the brake test function check:
- The torque set for the brake test MD36966 $MA_SAFE_BRAKETEST_TORQUE must be greater than the current holding torque.
Program Continuation:

20096 Axis %1 brake test aborted, additional information %2
Parameters: %1 = Axis name, spindle number
%2 = Error information based on $VA_FXS_INFO
Definitions: The brake test has detected a problem. The additional info provides more detailed information on the cause of the alarm. The explanation can be found in the $VA_FXS_INFO system variable documentation.
Additional information:
0: No additional information available.
1: Axis type is not a PLC or command axis.
2: End position reached, motion completed.
3: Cancel by NC RESET (key reset).
4: Moved out of monitoring window.
5: Torque reduction rejected by drive.
6: PLC has cancelled enables.
NCK alarms

20097 Axis %1 incorrect travel direction brake test
Parameters: %1 = Axis name, spindle number
Definitions: Due to the selected travel direction, the brake test for the current load torque is performed with an incorrect torque.

Reaction: Interface signals are set.
Alarms display.

Remedy: - Perform the brake test for the other travel direction
- Activate the automatic determination of the load torque at the beginning of the brake test via MD36968 $MA_SAFE_BRAKETEST_CONTROL, bit 0 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.

20120 Axis %1: too many compensation relations
Parameters: %1 = Axis name, spindle number
Definitions: Interpolatory compensation with tables. For each axis, the maximum number of compensation relationships defined may be no more than the number of axes in the system. In this alarm, the interpolatory compensation in the axis is switched off automatically.

Reaction: Interface signals are set.
Alarm display.

Remedy: Check table parameters $AN_CEC_OUTPUT_AXIS and correct and/or switch off one or more tables (SD41300 $SN_CEC_TABLE_ENABLE).

Program Continuation: Clear alarm with the RESET key. Restart part program.

20121 Axis %1: Configuration error in compensation table %2
Parameters: %1 = Axis name, spindle number
%2 = Compensation table
Definitions: Interpolatory compensation with tables. The settings for the specified table are not allowed. $AN_CEC_MAX >= $AN_CEC_MIN and $AN_CEC_STEP != 0 apply to system variables. This table is switched off automatically.

Reaction: Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Check and correct the characteristic data in the compensation table. If the error cannot be found, the alarm can be suppressed by switching off the table ($SN_CEC_TABLE_ENABLE) or switching off compensation in the axis ($MA_CEC_ENABLE).

Program Continuation: Clear alarm with the RESET key. Restart part program.

20122 Compensation table %1: invalid axis assignment
Parameters: %1 = Compensation table
Definitions: Interpolatory compensation with tables. The input or output axes assignment in the given table is not allowed. $AN_CEC_INPUT_AXIS and $AN_CEC_OUTPUT_AXIS != 0 apply to system variables. This table is automatically switched off.
NCK alarms

20123 Axis %1: different output assignment of multiplied tables

Parameters: %1 = Axis name, spindle number
Definitions: Interpolatory compensation with tables. The two tables whose outputs are to be multiplied together have different output axes assigned to them. The compensation in this axis is automatically switched off.
Reaction: Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Check and correct the characteristic data in the compensation tables ($AN_CEC_OUTPUT_AXIS and $AN_CEC_MULT_BY_TABLE). If the error cannot be found, the alarm can be suppressed by switching off the compensation in the axis ($MA_CEC_ENABLE) or the tables, ($SN_CEC_TABLE_ENABLE).
Program Continuation: Clear alarm with the RESET key. Restart part program

20124 Axis %1: sum of compensation values too large

Parameters: %1 = Axis name, spindle number
Definitions: The sum of the compensation values from all tables assigned to the axis had exceeded the limit value MD32720 $MA_CEC_MAX_SUM and had to be limited. Contour errors could have occurred as a result.
Reaction: Interface signals are set.
Alarm display.
Remedy: Check characteristic data of the compensation tables assigned to the axis.
Check characteristic curves in the tables ($AN_CEC).
Program Continuation: Clear alarm with the RESET key. Restart part program

20125 Axis %1: change of compensation value is too rapid

Parameters: %1 = Axis name, spindle number
Definitions: The compensation value has changed more rapidly than has been allowed for in MD32730 $MA_CEC_MAX_VELO. It had to be limited temporarily. The missing section is repeated later but contour errors might have occurred.
Reaction: Interface signals are set.
Alarm display.
Remedy: Check characteristic data of the compensation tables assigned to the axis.
Check characteristic curves in the tables ($AN_CEC). Possibly one of the input axes has moved more rapidly than provided for.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
NCK alarms

20130
[Channel %1:] Contour tunnel monitoring

Parameters:
%1 = Channel number

Definitions:
The tool tip has exited the tunnel placed around the desired contour, i.e. the distance between tool tip and desired contour was greater than specified in the MD21050 $MC_CONTOUR_TUNNEL_TOL.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Check the following points in turn:
1. Is the machine in working order? That is, has the alarm been tripped by a sluggish axis, tool breakage or collision?
2. If the machine is in working order, reduce the velocity or improve the controller setting.
3. Possibly increase the size of the tunnel and monitor errors via analog output in order to ascertain the cause.

Program Continuation:
Teleprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

20139
[Channel %1:] Block %2 motion-synchronous action: invalid marker

Parameters:
%1 = Channel number
%2 = Block number

Definitions:
Setting or deleting of a marker in the motion-synchronous action is not possible.
Possible causes:
SETM(): Maximum number of markers exceeded; marker has already been set.
CLEARM(): Specified marker is not within permissible value range.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
SETM(): use marker in valid value range; do not set the marker again.
CLEARM(): use marker in valid value range.

Program Continuation:
Clear alarm with the RESET key. Restart part program

20140
[Channel %1:] Motion synchronous action: traversing of command axis %2 see NC alarm %3 parameter %4

Parameters:
%1 = Channel number
%2 = Axis
%3 = NC alarm
%4 = Additional parameter

Definitions:
An NC alarm was detected for a command axis which is to be traversed from a synchronized action. The NC alarm is indicated by an MMC alarm number in the 3rd parameter. If there is any additional information, this will be provided in a 4th parameter.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
See help information for the additional alarms.

Program Continuation:
Clear alarm with the RESET key. Restart part program
20141 [Channel %1:] Motion synchronous action: illegal axis type

Parameters:
%1 = Channel number

Definitions:
The requested command is not permissible in the current axis status for the command axis or spindle. This alarm occurs with command axes (POS, MOV), spindle commands from motion synchronous actions (M3/M4/M5, SPOS), coupled motion (TRAILON, TRAILOF) and lead value coupling (LEADON, LEADOF).

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
First stop the axis or deactivate the coupling, then select a new status.

Program Continuation:
Clear alarm with the RESET key. Restart part program

20143 [Channel %1:] Axis %2 command axis cannot be started as it is controlled by the PLC

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
An attempt has been made to start a command axis by means of a block-related or modal synchronous action. This start is not possible as the axis is controlled by the PLC.

Reaction:
Alarm display.

Remedy:
End control of the axis by the PLC and therefore return it to the channel or start the command axis with a static synchronous action.

Program Continuation:
Clear alarm with the Delete key or NC START.

20144 [Channel %1:] Block %2 motion synchronous action: system variable access not possible

Parameters:
%1 = Channel number
%2 = Block number

Definitions:
When using system variables, it is assumed that a read/write operation can access the required data successfully. In accesses to encoder actual values or digital I/Os, the result depends on the availability of the corresponding hardware components. If an access within synchronized actions does not return a valid value, alarm 20144 is output. Outside synchronized actions, such a read/write access causes block execution to be interrupted until the result is available. Block execution is subsequently continued.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Before reading/writing system variables, ensure that it is possible to access the required hardware components.

Program Continuation:
Clear alarm with the RESET key. Restart part program

20145 [Channel %1:] Block %2 motion synchronous action: arithmetic error

Parameters:
%1 = Channel number
%2 = Block number

Definitions:
In calculating an arithmetic expression for a motion synchronous action, an overflow has occurred (e.g. division by zero).
NCK alarms

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct error in expression.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

20146
[Channel %1:] Block %2 motion synchronous action: nesting depth exceeded

Parameters:
%1 = Channel number
%2 = Block number

Definitions:
For calculating arithmetic expressions in motion synchronous blocks, an operand stack with a fixed set size is used. With very complex expressions, this stack can overflow.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct error in expression.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

20147
[Channel %1:] Block %2 motion synchronous action: command not executable

Parameters:
%1 = Channel number
%2 = Block number

Definitions:
One of the commands for the synchronous action block cannot be executed, e.g. it is not possible to perform a Reset to the synchronous action.
Measurement level 2
- Embargo version does not allow measurement from a synchronized action
- MEASA was programmed in a synchronized action
- Measurement is already active
- Programming error (see alarm 21701)

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Change synchronous action.
Measurement level 2
Execute the measurement task from an NC program first, in order to improve the error diagnostics. Only include it in the synchronized action when the first error-free run has been performed.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

20148
[Channel %1:] Block %2 motion synchronous action: internal error %3

Parameters:
%1 = Channel number
%2 = Block number
%3 = Error code

Definitions:
An internal error has occurred during processing of a synchronous action. The error code is for diagnostics purposes. Please make a note and contact the manufacturer.
NCK alarms

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Change synchronous action.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

20149 [Channel %1:] Block %2 motion-synchronous action: Index %3 is illegal

Parameters:
%1 = Channel number
%2 = Block number
%3 = Index

Definitions: An illegal index was used to access a variable in the motion-synchronous action. The illegal index is displayed.
Example: ... DO $R[$AC_MARKER[1]] = 100
The error occurs if the value of marker 1 is greater than the maximum permissible R-parameter number.
PROFIBUS/PROFINET I/O:
An illegal slot / I/O area index was used while reading/writing data.
Cause:
1.: Slot / I/O area index >= max. number of available slots / I/O areas.
2.: Slot / I/O area index references a slot / I/O area that has not been configured.
3.: Slot / I/O area index references a slot / I/O area that has not been released for system variables.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Use a valid index.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

20150 [Channel %1:] Tool management: PLC terminates interrupted command

Parameters:
%1 = Channel number

Definitions: Indication that the PLC has terminated an interrupted command (with alarm output) from the tool management - tool change.

Reaction: Interface signals are set.
Alarm display.

Remedy: For information only.

Program
Clear alarm with the Delete key or NC START.

Continuation:

20160 [Channel %1:] Tool management: PLC can terminate only incorrectly aborted commands

Parameters:
%1 = Channel number

Definitions: Indication that the PLC wanted to interrupt an active command from the tool management (tool change); or that there is no command active for cancel. NCK refuses because the channel status is either 'active' (cancel is then not allowed), or 'reset' (then there is nothing to cancel).

Reaction: Interface signals are set.
Alarm display.

Remedy: For information only.

Program
Clear alarm with the Delete key or NC START.

Continuation:
NCK alarms

20170 [Channel %1:] Machine data $AC_FIFO invalid
Parameters: %1 = Channel number
Definitions: the structure of the FIFO variable $AC_FIFO1 - $AC_FIFO10 determined by machine data MD28260 $MC_NUM_AC_FIFO, MD28262 $MC_START_AC_FIFO, MD28264 $MC_LEN_AC_FIFO, MD28266 $MC_MODE_AC_FIFO cannot be stored in the R parameter field defined in MD28050 $MC_MM_NUM_R_PARAM.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Increase the number of the R parameters or reduce the FIFO elements.
MD28050 $MC_MM_NUM_R_PARAM = MD28262 $MC_START_AC_FIFO + MD28260 $MC_NUM_AC_FIFO * (MD28264 $MC_LEN_AC_FIFO + 6)
Program Continuation: Switch control OFF - ON.

20200 [Channel %1:] Invalid spindle number %2 with tool fine compensation
Parameters: %1 = Channel number target channel
%2 = Spindle number
Definitions: There is no spindle/axis assignment in the target channel for the spindle specified in the PUTFTOC command.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Modify program in channel that writes the tool fine compensation.
Program Continuation: Clear alarm with the RESET key. Restart part program

20201 [Channel %1:] Spindle %2 no tool assigned
Parameters: %1 = Channel number
%2 = Spindle number
Definitions: In order to make allowance for the fine tool compensation for the tool currently in the spindle, a spindle/tool assignment must be active. This is not presently the case for the programmed spindle in the target channel of fine tool compensation.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: 1. Modify the part program (write the tool fine compensation).
2. Establish spindle/tool assignment by programming:
 - TMON (tool monitoring)
 - GWPSON (tool selection)
Program Continuation: Clear alarm with the RESET key. Restart part program
20203 [Channel %1:] No active tool
Parameters: %1 = Channel number
Definitions: A tool fine compensation has been written for the active tool of channel %1 with PUTFTOC. No tool is active in this channel. Therefore, the compensation cannot be assigned.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct the program.
Program Continuation: Clear alarm with the RESET key. Restart part program

20204 [Channel %1:] PUTFTOC command not allowed with FTOCOF
Parameters: %1 = Channel number
Definitions: A tool fine compensation has been written for channel %1 with PUTFTOC. The tool fine compensation is not active in this channel. FTOCON must be active in the target channel of the PUTFTOC command.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct the program in the machining channel: Select FTOCON so that the channel is ready to receive the PUTFTOC command.
Program Continuation: Clear alarm with the RESET key. Restart part program

20300 [Channel %1:] Axis %2 orientation not possible
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: On traversing the displayed (virtual) orientation axis, a tool orientation is to be set for which the kinematics of this machine are not possible.
Reaction: Alarm display.
Remedy: Cancel the JOG movement and specify another (possible) change of orientation.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

21550 [Channel %1:] Axis %2 Travel from hardware limit switch not possible. Reason: %3
Parameters: %1 = Channel number
%2 = Axis name
%3 = Cause
Definitions: It has been tried to retract a following axis of an axis coupling or an output axis of a transformation through the master axis or input axis of a transformation. This is not permitted in the current situation.
Possible reasons:
1 No permissible direction of retraction
2 Coupling not synchronous
3 Retraction not permitted for the active coupling
4 Reserved
5 Retraction not permitted for the active transformation
NCK alarms

Reaction:
- NC Start disable in this channel.
- Alarm display.

Remedy:
- Remedy for error cause:
 1. Define another travel direction
 2. Deactivate the coupling and travel the axis/axes separately
 3. Deactivate the coupling and travel the axis/axes separately
 4. Reserved
 5. Deactivate the transformation and travel the axis/axes separately

Program Continuation:
Clear alarm with the RESET key. Restart part program

21610

[Channel %1:] Axis %2 encoder %3 frequency exceeded

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = String (encoder number)

Definitions:
The maximum permissible frequency of the currently active encoder (axis-specific interface signal DB380x DBX0001.5 / 1.6 (position measuring system 1/2)) in the axis-specific MD36300 $MA_ENC_FREQ_LIMIT [n] (n ... encoder number, 1 or 2) has been exceeded. The reference of the actual value to the mechanical slide position may have been lost. The alarm can be reprogrammed in MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- Channel not ready.

Remedy:
Check MD36300 $MA_ENC_FREQ_LIMIT [n] and NC/PLC interface signal DB380x DBX0001.5 / 1.6 (position measuring system 1/2).

Program Continuation:
Teileprogramm neu starten. Clear alarm with the RESET key in all channels of this mode group. Restart part program.

21612

[Channel %1:] Axis %2: enable reset, cause %3

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Cause of the alarm

Definitions:
Causes of alarm:
- 0: The cause of the alarm cannot be precisely determined.
- 1: The interface signal DB380x DBX0002.1 (Servo enable) is missing
- 2: The interface signal DB380x DBX4001.7 (Pulse enable) is missing
- 3: Drive signal DB390x DBX4001.7 (Impulses enabled) is not set
- 4: Drive signal DB390x DBX4001.5 (Drive ready) is not set

One of the motion-enabling signals (e.g. "Servo enable", "Pulse enable", parking/encoder selection (only for axes) or drive-specific enables (such as terminal 663 with SIMODRIVE 611D) has been reset for the displayed axis. The alarm can be reported with positioning axes, spindles and for axes from the geometry grouping.

The axes entered in the channel-specific MD array MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB are regarded as axes belonging to the geometry grouping. Servo enable must exist for all available geometry axes, regardless of whether or not they are currently in motion.

Occurs in connection with SAFETY function: If a test stop is performed with linked axes, the alarm is issued if a motion command from the ELG grouping is pending during the test stop of the slave axis.

Reaction:
The NC switches to follow-up mode.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Check the interface signals DB380x DBX0002.1 (Servo enable), DB380x DBX4001.7 (Pulse enable), check the drive signals DB390x DBX4001.7 (Pulses enabled), DB390x DBX4001.5 (Drive ready) for example with the PLC status display in the DIAGNOSTICS operating area. Check the encoder selection (for axes) as well as other signals enabling motion (such as SIMODRIVE 611D terminal 663 etc.) according to the drive type used. When the terminal enables of the drive have failed, trace back the wiring or hardware function (for example relay function) or proceed as stated in the relevant drive documentation. With SAFETY: With active actual-value linkage, output of the error message on the slave axis can be prevented by increasing MD36060 $MA_STANDSTILL_VELO_TOL (default value is 5 mm).

Program Continuation: Clear alarm with the Delete key or NC START.

21613
Axis %1 measuring system changing

Parameters: %1 = Axis name, spindle number

Definitions: The measuring system for this axis is changing.

Reaction: Alarm display.

Remedy:

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

21614
[Channel %1:] Axis %2 hardware limit switch %3

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = String (+, - or +/-)

Definitions: The signal DB380x DBX1000.1 und .0 (Hardware limit switch plus/minus) has been set at the NC/PLC interface.

Reaction: NC Start disable in this channel. Alarm display.

Remedy: Please inform the authorized personnel/service department.
1. With axes that have already been referenced, the software limit switch 1 or 2 should respond before the hardware limit switch is reached. Check MD36110 $MA_POS_LIMIT_PLUS, MD36100 $MA_POS_LIMIT_MINUS, MD36130 $MA_POS_LIMIT_PLUS2 and MD36120 $MA_POS_LIMIT_MINUS2 and the NC/PLC interface signal for the selection DB380x DBX1000.3 / 1000.2 (1st/2nd software limit switch plus/minus) and correct, if necessary (PLC user program).

2. If the axis has not yet been referenced, it is possible to depart from the hardware limit switch in the opposite direction in JOG mode.

3. Check the PLC user program and the connection from the switch to the PLC input module, provided the axis has not reached the hardware limit switch at all.

Program Continuation: Clear alarm with the RESET key. Restart part program

21615
[Channel %1:] Axis %2 taken from traverse mode to follow-up mode

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: This axis has been taken from traverse mode and put into "Follow-up" mode, for instance because the pulse enable for the drive has been reset.

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy:
NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

21616 [Channel %1:] Block %2 overlaid motion active at transformation switchover

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The overlaid motion in the BCS changes its significance because of the transformation change and can therefore lead to undesired axis movements.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Take out the overlaid movement.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

21617 [Channel %1:] Block %2 transformation does not allow to traverse the pole

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The preset curve passes through the pole or a forbidden area of the transformation.

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify the part program (if the alarm has occurred in AUTO mode).
To escape from the alarm position, transformation must be deselected (it is not enough to try a RESET if the transformation remains active when RESET is applied).

Program Continuation: Clear alarm with the RESET key. Restart part program

21618 [Channel %1:] As from block %2 transformation active: overlaid motion too great

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The share of overlaid motion on the transformation-related axes is so high that the path movement planned by the preparation no longer sufficiently corresponds to the actual ratio for the interpolation. Strategy of singularities, monitoring of working range limitation and dynamic Look Ahead are possibly no longer correct.

Reaction:
Alarm display.

Remedy:
With overlaid motion it is necessary to keep a sufficiently large path safety distance with regard to poles and working range limitations.

Program Continuation: Clear alarm with the Delete key or NC START.
21619 [Channel %1:] Block %2 transformation active: motion not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The machine kinematics does not allow the specified motion. Transformation-dependent error causes can be in:
- TRANSMIT: A (circular) area exists around the pole, where positioning is not possible. The area is caused by the fact that the tool reference point cannot be traversed as far as into the pole. The area is defined by:
 - the machine data (MD249.. $MC_TRANSMIT_BASE_TOOL_...)
 - the active tool length compensation (see $TC_DP_...).
Whether the tool length compensation is included in the calculation depends on the working plane selected (see G17,..). The machine stops at the edge of the area where positioning is not possible.

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program. Change the incorrectly specified tool length compensation.
Note: RESET alone is not enough if transformation also remains active during RESET.

Program Continuation:
Clear alarm with the RESET key. Restart part program

21620 [Channel %1:] Axis %2 Emergency braking ramp activated

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
The axial emergency braking ramp has been activated for the specified axis/spindle
The following causes are possible for activation of the emergency braking ramp:
- Alarm 26052: Path velocity for auxiliary function output too high
- Alarm 1012 : System error with ID 550006
- Alarm 1016 : System error with ID 550003, 550005 and 550010
Context-sensitive braking request with priority 13 is active

Reaction:
NC Start disable in this channel.
Local alarm reaction.
The NC switches to follow-up mode.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Remove or reset the cause of the alarm.

Program Continuation:
Clear alarm with the RESET key. Restart part program

21650 [Channel %1:] Axis %2 overlaid motion not allowed

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
An overlaid motion was requested for the axis, however, this is not allowed due to the MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED.

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Deselect the overlaid motion or change MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED.

Program Continuation:
Clear alarm with the RESET key. Restart part program
21660 [Channel %1:] Block %2 axis %3 conflict between SYNACT: $AA_OFF and CORROF

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name

Definitions: When deselecting the position offset ($AA_OFF) via the part program command CORROF (<axis>, "AA_OFF") an active synchronized action is detected that immediately sets $AA_OFF for the axis (DO_$AA_OFF [<axis>] =<value>). Deselection is executed and $AA_OFF not set again.

Reaction:
- Correction block is reorganized.
- Local alarm reaction.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
- Modify part program.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

21665 [Channel %1:] $AA_TOFF cleared

Parameters:
- %1 = Channel number

Definitions:
- If the tool position is changed with RESET and $AA_TOFF is active during RESET, the position offset ($AA_TOFF) is cleared.

Reaction:
- Correction block is reorganized.
- Local alarm reaction.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
- Modify the RESET setting in $AA_TOFF_MODE.

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

21670 [Channel %1:] Block %2 illegal change of tool direction with $AA_TOFF active

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- If an offset has been activated in tool direction by means of $AA_TOFF[i], no block is allowed to be activated in which the offset axis assignment i is modified (plane change, tool change cutting tool <=> turning tool, transformation change, TRAFOOF, TCARR=0, geometry axis exchange)

Reaction:
- Correction block is reorganized.
- Local alarm reaction.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm at block end.

Remedy:
- Modify part program
- Program TOFFOF()

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.
21700

[Channel %1:] Block %3 axis %2 touch probe already deflected, edge polarity not possible

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Block number

Definitions:
- The probe programmed under the keyword MEAS or MEAW is already deflected and has switched. For a further measuring operation, the probe signal must first be canceled (quiescent state of the probe).
- The axis display is of no significance at the present time but an axis-specific evaluation has been planned for later stages of development.

Reaction:
- Local alarm reaction.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Verify the starting position of the measuring operation or check the probe signals in the PLC interface DB2700 DBX0001.0 / .1 (Probe actuated key 1/key 2). Are the cables and connectors in good order?
- Correct the measurement tasks.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

21701

[Channel %1:] Block %3 axis %2 measurement not possible

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Block number

Definitions:
- Measurement level 2 (MEASA, MEAWA, MEAC).
- There is an error in the programmed measurement task.
- Possible causes:
 - Invalid measurement mode
 - Invalid probe
 - Invalid encoder
 - Invalid number of measurement signal edges
 - Identical measurement signal edges are only programmable in mode 2
 - Invalid FIFO number
 - Mismatch between the number of FIFOs programmed and the number of probes used in the measurement task.
- Further causes:
 - A measurement task is already active (e.g. from a synchronized action).

Reaction:
- Local alarm reaction.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Correct the measurement tasks.

Program Continuation:
- Clear alarm with the RESET key. Restart part program
21702 [Channel %1:] Block %3 axis %2 measurement aborted

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number

Definitions:
The measurement block has ended (the programmed end position of the axis has been reached) but the activated
touch probe has not yet responded.
Measurement level 2 (MEAWA, MEASA, MEAC)
Measured values cannot be converted to the workpiece coordinate system. The measured values of the GEO axes
programmed in the measurement task are only available in the machine coordinate system.
Causes:
Not all GEO axes were programmed in the measurement task. At least one measured value is therefore missing for
conversion back into the workpiece coordinate system.
Further causes:
The measurement tasks programmed for all GEO axis are not identical.

Reaction:
Alarm display.
Remedy:
Verify the traversing movement in the measurements block.
- Is it necessary in all cases for the activated probe to have switched up to the specified axis position?
- Are the probe, cable, cable distributor, terminal connections in good order?
Either program all GEO axes explicitly or program the traversing movement with the POS[axis] command.

Program
Continuation:
Clear alarm with the Delete key or NC START.

21703 [Channel %1:] Block %3 axis %2 touch probe not deflected, illegal edge polarity

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number

Definitions:
The selected probe is not (!) deflected and therefore cannot record any measured value from the deflected to the non-
deflected state.
Measurement level 2 (MEAWA, MEASA, MEAC)
The degree of deflection of the probe at the start of the measurement task is identical to the first programmed mea-
 surement signal edge. The test is only performed in mode 2.

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Check probe
- Check start positioning for measuring
- Check program

Program
Continuation:
Clear alarm with the RESET key. Restart part program

21740 Output value at analog output no. %1 has been limited

Parameters:
%1 = No. of output

Definitions:
The value range of the analog output n is limited by MD10330 $MN_FASTIO_ANA_OUTPUT_WEIGHT[n].

Reaction:
Alarm display.

Remedy:
With $A_OUTA[..] = x no greater values can be programmed than permitted in the respective machine data.

Program
Continuation:
Clear alarm with the Delete key or NC START.
21760
[Channel %1:] Block %2 too many auxiliary functions programmed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The number of programmed auxiliary functions has exceeded the maximum permissible amount. This alarm can occur in conjunction with motion synchronous actions: The maximum number of auxiliary functions must not be exceeded in motion block and motion synchronous actions.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Modify part program.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

21800
[Channel %1:] Workpiece setpoint %2 reached

Parameters:
- %1 = Channel number
- %2 = Workpiece setpoint

Definitions:
This alarm is activated via MD27880 $MC_PART_COUNTER, bit 1: The number of counted workpieces ($AC_ACTUAL_PARTS or $AC_SPECIAL_PARTS) is equal or already greater than the programmed value for the number of required workpieces ($AC_REQUIRED_PARTS). At the same time, the channel VDI signal "Workpiece setpoint reached" is output. The value for the number of counted workpieces ($AC_ACTUAL_PARTS) is reset, while the value of $AC_SPECIAL_PARTS is retained.

Note:
The setpoint/actual comparisons of the workpieces are only made after an NC start under the condition that $AC_REQUIRED_PARTS > 0. If $AC_REQUIRED_PARTS has a negative value, all workpiece counts activated through MD27880 $MC_PART_COUNTER are frozen at the values they have reached, and the nominal/actual comparison is discontinued.

Reaction:
- NC not ready.
- Interface signals are set.
- Alarm display.

Remedy:
- No program interrupt. Delete alarm display.

Program Continuation:
- Clear alarm with the Delete key or NC START.

22000
[Channel %1:] Block %2 Spindle %3 Gear stage change in %4 not possible

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Spindle number
- %4 = Gear stage

Definitions:
A gear stage change for the spindle will not be possible, if:
- thread cutting (G33, G34, G35) is active
- the spindle is active as master or slave spindle in a coupling
- the spindle is being positioned

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- NC Stop on alarm.
- Interface signals are set.
- Alarm display.
Remedy:
The gear stage is to be set prior to the corresponding machining step.
If it is necessary, however, to change the gear stage within one of the above mentioned functions, this function must be switched off for the time of the gear stage change. Thread cutting is deselected with G1; synchronous spindle coupling is switched off with COUPOF; the spindle positioning operation is exited with M3, M4 or M5.

Program Continuation:
Clear alarm with the RESET key. Restart part program

22005 [Channel %1:] Spindle %2 selected gear stage %3 not installed
Parameters:
%1 = Channel number
%2 = Spindle number
%3 = Gear stage
Definitions: The first gear stage data block is active. The required gear stage is not installed in the 1st gear stage data block. The number of installed gear stages is configured in MD35090 $MA_NUM_GEAR_STEPS. Examples for the occurrence of the alarm with 3 gear stages installed (MD35090 $MA_NUM_GEAR_STEPS = 3):
* ...DO M44 or DO 45 was programmed in synchronized action for the spindle concerned.
* ...DO M70 was programmed and MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE was larger than 3.
Reaction: NC Start disable in this channel.
Alarm signals are set.
Remedy: Modify part program: Only those valid gear stages can be entered which have also been installed according to MD35090 $MA_NUM_GEAR_STEPS.
Limit M70 configuration (MD 35014 $MA_GEAR_STEP_USED_IN_AXISMODE) to MD35090 $MA_NUM_GEAR_STEPS.
Program Continuation:
Clear alarm with the RESET key. Restart part program

22010 [Channel %1:] Block %3 spindle %2 actual gear stage differs from requested gear stage
Parameters:
%1 = Channel number
%2 = Spindle number
%3 = Block number, label
Definitions: The requested gear stage change has been concluded. The actual gear stage reported by the PLC as being engaged is not the same as the required gear stage called for by the NC. Note: Wherever possible, the requested gear stage should always be engaged.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Correct the PLC program.
Program Continuation:
Clear alarm with the DELETE key or NC START.

22011 [Channel %1:] Block %3 spindle %2 change to programmed gear stage not possible
Parameters:
%1 = Channel number
%2 = Spindle number
%3 = Block number, label
Definitions: With the 'DryRun', 'ProgramTest' and 'SearchRunByProgTest' functions deselected, it is not possible in the Repos module to carry out a gear stage change to a previously programmed gear stage. This is the case, if the spindle is in the deselection block not active in speed control mode, as a slave axis or in a transformation. Execution of a gear stage change is avoided if the above mentioned functions are deselected by resetting bit 2 of MD35035 $MA_SPIND_FUNCTION_MASK.
Reaction: Alarm display.
Remedy: Change deselection block or block search target block to speed control mode (M3, M4, M5, SBCOF). Set bit 2 of MD35035 $MA_SPIND_FUNCTION_MASK to 0.
NCK alarms

Program Continuation: Clear alarm with the Delete key or NC START.

22012 [Channel %1:] Block %2 leading spindle %3 is in simulation.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Leading spindle number

Definitions: When coupling, no synchronism can be achieved if the lead spindle/axis is in simulation mode and the following spindle/axis is not.

Reaction: Alarm display.

Remedy: Switch the following spindle/axis to simulation mode or do not simulate the lead spindle/axis (MD30130 $MA_CTRLOUT_TYPE). If the differing settings have been selected on purpose, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit 21 = 1 or with CP programming by setting CPMALARM[FAx] bit 3 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.

22013 [Channel %1:] Block %2 dependent spindle %3 is in simulation.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of following spindle

Definitions: When coupling, no synchronism can be achieved if the following spindle/axis is in simulation mode and the lead spindle/axis is not.

Reaction: Alarm display.

Remedy: Switch the leading spindle/axis to simulation mode or do not simulate the following spindle/axis (MD30130 $MA_CTRLOUT_TYPE). If the differing settings have been selected on purpose, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit 21 = 1 or with CP programming by setting CPMALARM[FAx] bit 4 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.

22014 [Channel %1:] Block %2. The dynamics of leading spindle %3 and dependent spindle %4 is too variably

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Leading spindle number
%4 = Number of following spindle

Definitions: If the spindles/axes differ strongly in their dynamic behavior during coupling, synchronism cannot be achieved. The dynamics are dependent on many settings: default feedforward control, parameter block data, first of all the servo gain factor, symmetrizing time, etc., feedforward control mode and feedforward setting parameter, FIPO mode, jerk filter and dynamic filter settings, DSC on/off. Among these are the following machine data: MD32620 $MA_FFW_MODE, MD32610 $MA_VELO_FFW_WEIGHT, MD33000 $MA_FIPO_TYPE, VEL_FFW_TIME, MD32810 $MA_EQUIV_SPEEDCTRL_TIME, MD32200 $MA_POSCTRL_GAIN, MD32410 $MA_AX_JERK_TIME, MD32644 $MA_STIFFNESS_DELAY_TIME, MD37600 $MA_PROFIBUS_ACTVAL_LEAD_TIME, MD37602 $MA_PROFIBUS_OUTVAL_DELAY_TIME, MD10082 $MN_CTRLOUT_LEAD_TIME

Reaction: Alarm display.

Remedy: Use spindles/axes with identical dynamic responses. If the differing settings have been selected on purpose, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit 21 = 1 or with CP programming by setting CPMALARM[FAx] bit 5 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.
22015 [Channel %1:] Block %2 following spindle %3 No dynamic response for supplementary motion

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of following spindle

Definitions: The differential motion of the following spindle cannot be executed due to a lack of available velocity. The coupling consumes the entire available dynamic response. The following spindle is already rotating at maximum speed. In the part program a deadlock might occur. The alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit 26 = 1 or with CP programming by setting CPMALARM[FAx] bit 6 = 1.

Reaction: Alarm display.
Remedy: Reduce the speed of the master spindle
Program Continuation: Clear alarm with the Delete key or NC START.

22016 [Channel %1:] Block %2 following spindle %3 in the range of reduced acceleration capability

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of following spindle

Definitions: The following spindle is driven with position control. Additional motion components of the following spindle should not leave the linear range of the motor used. If they do, deviations may occur in the contour and servo alarms could even be output. Monitoring is based on the configuration in MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT. If the situation is being managed by the user, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit 25 = 1 or with CP programming by setting CPMALARM[FAx] bit 7 = 1.

Reaction: Alarm display.
Remedy: Use coupling type VV and safeguard SPCOF for master and following spindle.
Program Continuation: Clear alarm with the Delete key or NC START.

22018 [Channel %1:] Block %2 following axis/spindle %3 time monitoring: 'Synchronism fine' not reached

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Following axis/spindle number

Definitions: After reaching the setpoint-side synchronism, the time until reaching the actual value-side synchronism is fine monitored. The tolerance is not reached within the time window defined in MD37240 $MA_COUP_SYNC_DELAY_TIME[0]: MD37210 $MA_COUPLE_POS_TOL_FINE and MD37230 $MA_COUPLE_VELO_TOL_FINE

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. The interrelation between MD37240 $MA_COUP_SYNC_DELAY_TIME[0] and MD37210 $MA_COUPLE_POS_TOL_FINE or MD37230 $MA_COUPLE_VELO_TOL_FINE must be adapted to the mechanical conditions.
Program Continuation: Clear alarm with the Delete key or NC START.
22019 [Channel %1:] Block %2 following axis/spindle %3 time monitoring: 'Synchronism coarse' not reached

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Following axis/spindle number

Definitions:
After reaching the setpoint-side synchronism, the time until reaching the actual value-side synchronism is coarsely monitored.
The tolerance is not reached within the time window defined in MD37240 $MA_COUP_SYNC_DELAY_TIME[0]:
MD37200 $MA_COUPLE_POS_TOL_COARSE or MD37220 $MA_COUPLE_VELO_TOL_COARSE

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
The interrelation between MD37240 $MA_COUP_SYNC_DELAY_TIME[1] and MD37200 $MA_COUPLE_POS_TOL_COARSE or MD37220 $MA_COUPLE_VELO_TOL_COARSE must be adapted to the mechanical conditions.

Program Continuation:
Clear alarm with the Delete key or NC START.

22020 [Channel %1:] Block %3 spindle %2 gear step change position not reached

Parameters:
%1 = Channel number
%2 = Spindle number
%3 = Block number, label

Definitions:
Through the configuration of MD35010 $MA_GEAR_STEP_CHANGE_ENABLE[AXn] = 2, the spindle is traversed to the position stored in MD35012 $MA_GEAR_STEP_CHANGE_POSITION[AXn] before the actual gear step change.
The required gear step change position has not been reached.

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct sequence in the PLC.

Program Continuation:
Clear alarm with the RESET key. Restart part program

22022 [Channel %1:] Block %2 spindle %3 gear stage %4 is expected for axis mode.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle
%4 = Gear stage

Definitions:
The gear stage required for axis mode has not been installed.
A gear stage has been configured in MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE, in which the spindle is to be in axis mode. This gear stage is checked whenever the spindle is switched into axis mode. The configured gear stage is compared with the gear stage output by the PLC (NC/PLC interface signal DB380x DBX2000.0 - .2 (Actual gear stage A through C)).
This alarm will be output if the gear stages are not the same.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Program M70 before the switch to axis mode. The gear stage configured in MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE is then automatically loaded.
No gear stage change is required if the configured gear stage is already active. M40 remains active beyond the gear stage change.
Consider MD20094 $MC_SPIND_RIGID_TAPPING_M_NR.
NCK alarms

Program Continuation: Clear alarm with the Delete key or NC START.

22024 [Channel %1:] Block %2 Spindle %3 tapping: PLC signal 'invert M3/M4' changed after %4

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle
%4 = Value

Definitions: When loading a G331 block it was detected that the NC/PLC interface signal <M3M4_invertieren/> (invert M3/M4) had changed during part program execution. An alarm was output to prevent a tool break. The current value of the NC/PLC interface signal is displayed as parameter 4.

Reaction: Channel not ready. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: A change in the NC/PLC interface signal <M3M4_invertieren/> (invert M3/M4) during part program execution should be avoided. If MD35035 SPIND_FUNCTION_MASK bit 22 is set, the NC/PLC interface signal <M3M4_invertieren/> (invert M3/M4) is then no longer evaluated during tapping with G331, G332. The alarm is no longer output. Notice! Setting bit 22 means a change in function.

Program Continuation: Clear alarm with the RESET key. Restart part program.

22025 [Channel %1:] Block %2 Following axis/spindle %3 synchronism (2): Fine tolerance overshoot

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Following axis/spindle number

Definitions: Synchronism is monitored once the 'FINE' block-change criterion has been met. The 'fine' threshold value defined with MD37212 $MA_COUPLE_POS_TOL_FINE_2 has been exceeded by the synchronism difference on the actual value side. The alarm can be suppressed with MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 12 = 1 or with CP programming by setting CPMALARM[FAx] bit 8 = 1.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. The following axis/spindle was not able to follow the leading axis(axes)/spindle(s).

Program Continuation: Clear alarm with the Delete key or NC START.

22026 [Channel %1:] Block %2 Following axis/spindle %3 synchronism(2): Coarse tolerance overshoot

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Following axis/spindle number

Definitions: Synchronism is monitored once the 'COARSE' block-change criterion has been met. The 'coarse' threshold value defined with MMD37202 $MA_COUPLE_POS_TOL_COARSE_2 has been exceeded by the synchronism difference on the actual value side. The alarm can be suppressed with MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 12 = 1 or with CP programming by setting CPMALARM[FAx] bit 9 = 1.

Reaction: Alarm display.
NCK alarms

Remedy: Please inform the authorized personnel/service department. The following axis/spindle was not able to follow the leading axis(axes)/spindle(s).
Program Continuation: Clear alarm with the Delete key or NC START.

22030 [Channel %1:] Block %2 following spindle %3 Impermissible programming

Parameters: %1 = Channel number %2 = Block number, label %3 = Spindle

Definitions: With synchronous spindle-VV-coupling an additional motion for the following spindle can only be programmed with M3, M4, M5 and S... The paths created by specified positions cannot be maintained safely for a velocity coupling, especially if a position control is missing. If dimensional accuracy or reproducibility are not important, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK Bit27 = 1.

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: Use synchronous spindle-DV-coupling or program direction of rotation and speed.
Program Continuation: Clear alarm with the RESET key. Restart part program.

22033 [Channel %1:] Block %2 Axis/spindle %3 'Correct synchronism' diagnostics %4

Parameters: %1 = Channel number %2 = Block number, label %3 = Axis/spindle number %4 = Diagnostics

Definitions: The following situation occurred during 'Correct synchronism':
- Diagnosis 1: An existing override motion is terminated on key reset.
- Diagnosis 2: The override motion has been deleted.
- Diagnosis 3: Writing of override value not allowed. Synchronism override is deleted.
- Diagnosis 4: Override motion has been stopped temporarily (e.g. G74 reference point approach)
- Diagnosis 5: Delay of override motion: acceleration capacity used up by other motions.
- Diagnosis 6: Delay of override motion: velocity used up by other motions.
- Diagnosis 7: Delay of override motion: the maximum speed is limited to 0. System variable $AC_SMAXVELO_INFO[n] shows the reason for this.
- Diagnosis 8: Delay of override motion: the maximum acceleration capacity is limited to 0. $AC_SMAXACC_INFO[n] shows the reason for this.

MD11411 $MN_ENABLE_ALARM_MASK activates this alarm:
- Bit 9 = 1 for diagnosis 1 to 6
- Bit 12 = 1 for diagnosis 7 to 8

Reaction: Alarm display.
Remedy: Deactivate the alarm with MD 11411 $MN_ENABLE_ALARM_MASK Bit9 = 0 or Bit12 = 0.
Program Continuation: Clear alarm with the Delete key or NC START.

22035 [Channel %1:] Block %2 following axis/spindle %3 unable to determine the offset value (reason %4).

Parameters: %1 = Channel number %2 = Block number, label %3 = Following axis/spindle number %4 = Reason
Definitions: The determination of the offset value ($AA_COUP_CORR[Sn]$) intended by the NC/PLC signal <Synchronlauf_nachfuehren/> (correct synchronism) cannot be executed. The offset value cannot be calculated properly. The reasons for this may be:
- Reason 1: The following axis is not configured as a spindle.
- Reason 2: The coupling has more than one active leading axis.
- Reason 3: The leading axis is not configured as a spindle.
- Reason 4: The coupling factor (the quotient from CPLNUM and CPLDEN) is neither 1 nor -1.
- Reason 5: CPLSETVAL = "cmdvel".
- Reason 6: An independent motion component of the following spindle is active (VDI interface signal DB31.., DBX98.4 = 1).
- Reason 7: There is no following spindle synchronism on the setpoint side.
- Reason 8: The synchronism on the setpoint side has decreased again.
- Reason 9: The following or leading spindle is a link axis (NCU_LINK).

Reaction: Alarm display.

Remedy: The following remedies are available for the indicated reasons:
- Reasons 1 to 5: The coupling has to be reconfigured/reprogrammed.
- Reasons 6 and 7: Wait until VDI interface signals DB31.., DBX99.4 'Synchronization running' = 0 and DB31.., DBX98.4 'Overlaid movement' = 0 before setting VDI interface signal DB31.., DBX31.6 'Correct synchronism'.
- Reason 8: Wait until the following axle/spindle can follow the leading values before setting VDI interface signal DB31.., DBX31.6 'Correct synchronism'.

Program Continuation: Clear alarm with the Delete key or NC START.

22036 [Channel %1:] Block %2 Axis/spindle %3 Synchronism override not possible (reason %4)

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis/spindle number
%4 = Reason

Definitions: The synchronism override intended by setting the VDI interface signal DB31..,DBX31.6 'Correct synchronism' or writing variable $AA_COUP_CORR[Sn]$ cannot currently be considered. The reasons may be:
- Reason 1: Reference point approach or zero mark synchronization for spindles is active.
- Reason 2: Deletion of synchronism override is active.
- Reason 3: Writing is not allowed.

Reaction: Alarm display.

Remedy: Wait until the conditions for override value processing are available again prior to setting VDI interface signal DB31..,DBX31.6 'Correct synchronism' or writing variable $AA_COUP_CORR[Sn]$:
- Reason 1: Reference point approach / zero mark synchronization completed.
- Reason 2: Deletion of synchronism override completed.
- Reason 3: Writing allowed.

Program Continuation: Clear alarm with the Delete key or NC START.

22037 [Channel %1:] Block %2 Axis/spindle %3 'Correct synchronism' is being ignored

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis/spindle number

Definitions: VDI interface signal DB31..,DBX31.6 'Correct synchronism' is being ignored, because VDI interface signal DB31..,DBX31.7 'Delete synchronism override' has been set.

Reaction: Alarm display.

Remedy: Reset the two VDI interface signals DB31..,DBX31.7 'Delete synchronism override' and DB31..,DBX31.6 'Correct synchronism', before the latter signal can be set again.

Program Continuation: Clear alarm with the Delete key or NC START.
22038 [Channel %1:] Block %2 Axis/Spindle %3 'Delete synchronism override' is being ignored

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis/spindle number

Definitions:
VDI interface signal DB31..DBX31.7 'Correct synchronism' is being ignored, because VDI interface signal DB31..DBX31.6 'Delete synchronism override' has been set.

Reaction: Alarm display.
Remedy: Reset the two VDI interface signals DB31..DBX31.6 'Correct synchronism' and DB31..DBX31.7 'Delete synchronism override', before the latter signal can be set again.

Program Continuation:
Clear alarm with the Delete key or NC START.

22040 [Channel %1:] Block %3 spindle %2 is not referenced with zero marker

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions:
The current position is not referenced with the measuring system position although reference is made to it.

Reaction: Alarm display.
Remedy: Correct NC part program. Create the zero mark synchronization by positioning, by rotation (at least 1 revolution) in speed control mode or G74 before switching the alarm generating function on.
If this has been intentionally programmed, the alarm can be suppressed in the cyclic check with position control already enabled by means of MD11410 $MN_SUPPRESS_ALARM_MASK Bit 21 = 1.

Program Continuation:
Clear alarm with the Delete key or NC START.

22050 [Channel %1:] Block %3 spindle %2 no transition from speed control mode to position control mode

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions:
- An oriented spindle stop (SPOS/SPOSA) has been programmed or the position control of the spindle was switched on with SPCON but no spindle encoder has been defined.
- When switching on the position control, the spindle speed is greater than the limiting speed of the measuring system.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Spindle without attached encoder: Any NC language elements requiring the encoder signals must not be used.
Spindle with attached encoder: Enter the number of spindle encoders used in the MD30200 $MA_NUM_ENCS.

Program Continuation:
Clear alarm with the RESET key. Restart part program
NCK alarms

22051 [Channel %1:] Block %3 spindle %2 reference mark not found
Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
Definitions: When referencing, the spindle turned through a greater distance than given in the axis-specific MD34060 $MA_REFP_MAX_MARKER_DIST, without receiving a reference mark signal. The check is performed for spindle positioning with SPOS or SPOSA when the spindle has not previously run with speed control (S=...).
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Check and correct the MD34060 $MA_REFP_MAX_MARKER_DIST. The value entered states the distance in [mm] or [degrees] between 2 zero markers.
Program Continuation: Clear alarm with the RESET key. Restart part program

22052 [Channel %1:] Block %3 spindle %2 no standstill on block change
Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
Definitions: The displayed spindle has been programmed as spindle or as axis even though a positioning operation is still running from the previous block (with SPOSA ... spindle positioning beyond block limits).
Example:
N100 SPOSA [2] = 100
: N125 S2 = 1000 M2 = 04 ; Error, if spindle S2 from block N100 is still running!
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Before programming the spindle/axis again using the SPOSA instruction, a WAITS command should be activated in order to wait for the programmed spindle position.
Example:
N100 SPOSA [2] = 100
: N125 WAITS (2)
N126 S2 = 1000 M2 = 04
Program Continuation: Clear alarm with the RESET key. Restart part program

22053 [Channel %1:] Block %3 spindle %2 reference mode not supported
Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
Definitions: In the case of SPOS/SPOSA with an absolute encoder, only the referencing mode MD34200 $MA_ENC_REFP_MODE = 2 is supported! SPOS/SPOSA does not support MD34200 $MA_ENC_REFP_MODE = 6 at all!
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
NCK alarms

22055 [Channel %1:] Block %3 spindle %2 configured positioning speed is too high

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions:
The current position is not referenced with the measuring system position although reference is made to it.

Reaction:
Alarm display.

Remedy:
Correct NC part program. Create the zero mark synchronization by positioning, by rotation (at least 1 revolution) in speed control mode or G74 before switching the alarm generating function on.

Program Continuation:
Clear alarm with the Delete key or NC START.

22057 [Channel %1:] Block %2 for following spindle %3 coupling as leading spindle/axis already existing

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
A coupling has been switched on in which the following spindle/axis has already been active as leading spindle/axis in another coupling. Chained couplings cannot be processed.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Check in the parts program whether the following spindle/axis is already active as leading spindle/axis in another coupling.

Program Continuation:
Clear alarm with the RESET key. Restart part program

22058 [Channel %1:] Block %2 for leading spindle %3 coupling as following spindle/axis already existing

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
A coupling has been switched on in which the leading spindle/axis has already been active as following spindle/axis in another coupling. Chained couplings cannot be processed.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Check in the parts program whether the leading spindle/axis is already active as following spindle/axis in another coupling.

Program Continuation:
Clear alarm with the RESET key. Restart part program
NCK alarms

22060 [Channel %1:] Position control expected for axis/spindle %2
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
The programmed coupling type (DV, AV) or the programmed function requires position control.
Reaction:
Alarm display.
Remedy:
Activate position control, e.g. by programming SPCON.
Program
Alarm display showing cause of alarm disappears. No further operator action necessary.

22062 [Channel %1:] Axis %2 reference point approach: zero marker search velocity (MD) is not reached
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
The configured zero marker search velocity is not reached.
Reaction:
NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.
Remedy:
Please inform the authorized personnel/service department. Check active spindle speed limitations. Configure a lower zero marker search velocity MD34040 $MA_REFP_VELO_SEARCH_MARKER. Check the tolerance range for the actual velocity MD35150 $MA_SPIND.Des_VELO_TOL. Set a different referencing mode MD34200 $MA_ENC_REFP_MODE != 7.
Program
Clear alarm with the RESET key. Restart part program

22064 [Channel %1:] Axis %2 reference point approach: zero marker search velocity (MD) is too high
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
The configured zero marker search velocity is too high. The encoder limit frequency is exceeded for the active measuring system.
Reaction:
NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.
Remedy:
Please inform the authorized personnel/service department. Configure a lower zero marker search velocity MD34040 $MA_REFP_VELO_SEARCH_MARKER. Check the encoder frequency configuration MD36300 $MA_ENC_FREQ_LIMIT and MD36302 $MA_ENC_FREQ_LIMIT_LOW. Set a different referencing mode MD34200 $MA_ENC_REFP_MODE=7.
Program
Clear alarm with the RESET key. Restart part program

22065 [Channel %1:] Tool management: Tool motion is not possible as tool %2 is not in magazine %4.
Parameters:
%1 = Channel number
%2 = String (identifier)
%3 = -Not used-
%4 = Magazine no.
NCK alarms

Definitions: The desired tool motion command - triggered from the MMC or PLC - is not possible. The specified tool is not contained in the specified magazine. (NCK cannot contain tools that are not assigned to a magazine. With this kind of tool, no operations (motion, change) can be performed.)

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check that the specified tool is contained in the desired magazine, or program another tool to be changed.

Program Continuation: Clear alarm with the Delete key or NC START.

22066 [Channel %1:] Tool management: Tool change is not possible as tool %2 is not in magazine %4.

Parameters:
%1 = Channel number
%2 = String (identifier)
%3 = -Not used-
%4 = Magazine no.

Definitions: The desired tool change is not possible. The specified tool is not contained in the specified magazine. (NCK cannot contain tools that are not assigned to a magazine. With this kind of tool, no operations (motion, change) can be performed.)

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
- Check that the specified tool is contained in the desired magazine, or program another tool to be changed.
- Check whether the settings in machine data MD20110 $MC_RESET_MODE_MASK, MC20112 $MC_START_MODE_MASK and the associated machine data MD20122 $MC_TOOL_RESET_NAME match the current definition data.

Program Continuation: Clear alarm with the RESET key. Restart part program

22067 [Channel %1:] Tool management: tool change not possible since there is no tool available in tool group %2

Parameters:
%1 = Channel number
%2 = String (identifier)

Definitions: The desired tool change is not possible. The specified tool group does not contain a tool which is ready for use and could be used for tool change. It is possible that all of the tools in question have been set to the 'Disabled' state by the tool monitoring function.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: - Ensure that the specified tool group contains a tool that is ready for use when tool change is requested.
- This can be achieved, for example, by replacing disabled tools, or
- by releasing a disabled tool manually.
- Check whether the tool data are correctly defined. Have all intended tools in the group been defined with the specified identifier and loaded?

Program Continuation: Clear alarm with the RESET key. Restart part program
NCK alarms

22068

[Channel %1:] Block %2 tool management: no tool available in tool group %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = String (identifier)

Definitions:
The specified tool group does not contain a tool which is ready for use and could be used for tool change. It is possible that all of the tools in question have been set to the "Disabled" state by the tool monitoring function. The alarm can occur for example in conjunction with the alarm 14710 (error on INIT block generation). In this specific situation, NCK attempts to replace the disabled tool located on the spindle with an available replacement tool (which does not exist in this error condition).
The user must resolve this conflict, for example, by removing the tool located on the spindle from the spindle by issuing a movement command (e.g. through MMC operation).

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Ensure that the specified tool group contains a tool that is ready for use when tool change is requested.
- This can be achieved, for example, by replacing disabled tools, or
- by releasing a disabled tool manually.
- If an alarm occurs on programming TCA: Has the duplo number been programmed >0?
- Check whether the tool data are correctly defined. Have all intended tools in the group been defined/loaded with the specified identifier?

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.

22069

[Channel %1:] Block %2 tool management: No tool available in tool group %3, program %4

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = String (identifier)
- %4 = Program name

Definitions:
The specified tool group does not contain a tool which is ready for use and could be used for tool change. It is possible that all of the tools in question have been set to the "Disabled" state by the tool monitoring function. Parameter %4 = program name facilitates the identification of the program containing the programming command (tool selection) that caused the error. This can be a subprogram or cycle, etc., which can no longer be identified from the display. If the parameter is not specified, it is the currently displayed program.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Ensure that the specified tool group contains a tool that is ready for use when tool change is requested.
- This can be achieved, for example, by replacing disabled tools, or
- by releasing a disabled tool manually.
- Check whether the tool data are correctly defined. Have all intended tools in the group been defined with the specified identifier and loaded?

Program Continuation:
- Clear alarm with NC START or RESET key and continue the program.
22070 [TO unit %1:] Please change tool %2 into magazine. Repeat data backup

Parameters:
%1 = TO unit
%2 = T number of tool

Definitions:
The alarm can only occur when the tool management function is active in the NCK. (TOOLMAN = tool management)
A data backup of the tool/magazine data has been started. During the backup, the system detected that tools are still
located in the buffer magazine (= spindle, gripper, ...). During the backup, these tools will lose the information which
defines the magazine and location to which they are allocated.
It is therefore practical -assuming that the data are to be stored exactly as before - to ensure that all tools have been
deposited in the magazine before the data backup!!
If this is not the case, some magazine locations will have the 'reserved' status when the data are loaded again. This
'reserved' status must then be reset manually.
For tools with fixed location coding, the loss of the information allocating their location in the magazine has the same
effect as a general empty location search when they are returned to the magazine.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Ensure that no tools are located in the buffer magazine before the data backup. Repeat the data backup after removing
the tools from the buffer magazine.

Program Continuation:
Clear alarm with the Delete key or NC START.

22071 [TO unit %1:] Tool %2 is active, but not in the magazine area under consideration

Parameters:
%1 = TO unit
%2 = Tool identifier
%3 = -Not used-

Definitions:
The alarm can only occur when the tool management function is active in the NCK. Either the language command
SETTA has been programmed or the corresponding operator action has been carried out via MMC, PLC, The alarm
can also be triggered automatically by the NCK in the wear grouping function. It is detected that more than one tool
from the tool group (tools with the same name/identifier) has the status "active".
The specified tool is either
from a non-considered magazine,
from a non-considered wear grouping,
or from a non-active wear grouping
in a buffer location (is neither magazine nor wear grouping).

Reaction:
Interface signals are set.
Alarm display.

Remedy:
The alarm is intended for information purposes. If only one tool in a group can be active at a time for technological
reasons or for reasons of display, the "active" status must be canceled for the tool causing the error.
Otherwise, the alarm can be ignored or even suppressed via the MD11410 $MN_SUPPRESS_ALARM_MASK.
Typical reasons of display are present, if the operator works with the function 'definite D numbers', which can be dis-
played on Siemens MMC in a definite form only, if exactly one tool from a tool group has the status 'active'.
Before machining can be started or before the SETTA (or corresponding MMC operation, ...) language command is
used, all tools of the magazine should have the status "not active".
One option to achieve this is programming SETTIA (or corresponding MMC operation, ...).

Program Continuation:
Clear alarm with the Delete key or NC START.
22100 [Channel %1:] Block %3 spindle %2 chuck speed exceeded

Parameters: %1 = Channel number
 %2 = Axis name, spindle number
 %3 = Block number, label

Definitions: The actual spindle speed is higher than the maximum speed configured in MD35100 $MA_SPIND_VELO_LIMIT plus a tolerance of 10 percent (fixed setting). The alarm should not occur after correct optimization of the drive actuator and gear configuration. This alarm can be reconfigured with MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready to operate) to 'BAG not ready'.

Note: Reconfiguring affects all alarms with alarm response 'Chan not ready'.

Reaction: Mode group not ready.
 Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
 Channel not ready.

Remedy: Please inform the authorized personnel/service department. Check the setup and optimization data of the drive actuator in accordance with the Installation and Start-up Guide and make corrections. Increase the tolerance window in MD35150 $MA_SPIND_DES_VELO_TOL.

Program Continuation:
Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

22200 [Channel %1:] Spindle %2 axis stopped during tapping

Parameters: %1 = Channel number
 %2 = Axis name, spindle number

Definitions: When tapping with compensating chuck (G63) the drilling axis was stopped via the NC/PLC interface and the spindle continues to rotate. The thread and possibly also the tap were damaged as a result.

Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Please inform the authorized personnel/service department. Provide an interlock in the PLC user program so that no axis stop can be initiated when tapping is active. If the tapping operation is to be terminated under critical machine conditions, the spindle and the axis should be stopped simultaneously if at all possible. Slight differences are then accommodated by the compensating chuck.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

22250 [Channel %1:] Spindle %2 axis stopped during thread cutting

Parameters: %1 = Channel number
 %2 = Axis name, spindle number

Definitions: The thread cutting axis has been stopped while a thread block was active. The stop can be caused by VDI signals that cause the feed to be interrupted.

Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Please inform the authorized personnel/service department. Check the axis-specific/spindle-specific stop DB380x DBX0004.3 (Spindle stop).

Program Continuation:
Clear alarm with the RESET key. Restart part program.
22260: Spindle %2 thread might be damaged

Parameters:
- %1 = Channel number
- %2 = Axis name
- %3 = Block number

Definitions:
When DECODING SINGLE BLOCK has been selected and there is a chain of thread blocks, then machining pauses occur at the block limits until the next block is executed with the new NC Start.
In normal single block mode, the program is stopped by a higher-level logic only at the block boundaries at which no contour distortions or contour errors can occur. With chained thread blocks, this is the last thread block!

Reaction:
Alarm display.

Remedy:
If only one thread block has been programmed, the alarm message can be ignored.
If there are several consecutive thread blocks, this machining section must not be executed in the automatic DECODING SINGLE BLOCK mode.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

22270: Block %2 thread cutting: Maximum speed axis %3 exceeded %4

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name
- %4 = Velocity

Definitions:
Thread cutting with G33, G34, G35: The thread axis (pitch axis) velocity calculated exceeds the maximum permissible axis velocity MD32000 $MA_MAX_AX_VELO. The calculated axis velocity is displayed.
The velocity of the thread axis is dependent upon:
- The current spindle speed
- The programmed thread pitch
- The programmed thread pitch change and thread length (G34, G35)
- The spindle override (path and individual axis overrides are ineffective)

Reaction:
Alarm display.

Remedy:
Reduce the spindle speed or thread pitch (thread pitch change).

Program Continuation:
Clear alarm with the Delete key or NC START.

22275: Block %2 zero velocity of thread axis at position %3 reached

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Position

Definitions:
An axis standstill was reached at the specified position during thread cutting with G35 due to the linear decrease in the thread pitch. The standstill position of the thread axis depends on:
- Programmed thread pitch decrease
- Thread length

Reaction:
Alarm display.

Remedy:
Change at least one of the above factors.

Program Continuation:
Clear alarm with the Delete key or NC START.
22280 [Channel %1:] In block %2: Prog. acceleration path too short %3, %4 required

Parameters:

%1 = Channel number
%2 = Block number, label
%3 = Prog. acceleration path
%4 = Required acceleration path

Definitions:

In order to stay within the programmed acceleration path, the acceleration caused an overload on the thread axis. In order to accelerate the axis with the programmed dynamic response, the length of the acceleration path must be at least as large as the value in parameter %4.

The alarm is of the technological type and is output whenever bit 2 in MD11411 $MN_ENABLE_ALARM_MASK is enabled. The HMI softkey 'Technology support' sets and clears this bit in the MD.

Reaction:

Alarm display.

Remedy:

Modify part program or reset MD11411 $MN_ENABLE_ALARM_MASK bit 2.

Program Continuation:

Clear alarm with the Delete key or NC START.

22290 [Channel %1:] Spindle operation for transformed spindle/axis %2 not possible (reason: error code %3).

Parameters:

%1 = Channel number
%2 = Axis name, spindle number
%3 = Error code

Definitions:

It is impermissible to start a spindle as long as it is being used by a transformation. Reason: spindle usage in a transformation requires axis operation, which must not be exited.

This alarm may have the following reasons:
- Error code 1 : M3, M4 or M5 per synchronized action;
- Error code 2 : M41 through M45 per synchronized action;
- Error code 3 : SPOS, M19 per synchronized action;
- Error code 11 : DB380x DBX5006.0 (Spindle stop);
- Error code 12 : DB380x DBX5006.1 (Spindle start clockwise rotation);
- Error code 13 : DB380x DBX5006.2 (Spindle start counterclockwise rotation);
- Error code 14 : DB380x DBX5006.4 (Spindle positioning).

Reaction:

NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Resolve the conflict, for example by deactivating transformation prior to spindle start.

Program Continuation:

Clear alarm with the Delete key or NC START.
22295 [Channel %1:] Spindle %2 DBB30 function not possible (cause: error code %3)

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Error code

Definitions:
The function request by PLC via DBB30 interface could not be executed. The cause is specified by the error code.

Error codes:
- Error code 1: internal use
- Error code 2: internal use
- Error code 3: internal use
- Error code 4: internal use
- Error code 5: Switchover to command axis not possible
- Error code 6: Switchover to PLC axis not possible
- Error code 20: internal use
- Error code 21: internal use
- Error code 22: internal use
- Error code 23: MD 30132 IS_VIRTUAL_AX has been set
- Error code 50: internal use
- Error code 51: internal use
- Error code 70: internal use

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Remedy conflict.

Program Continuation:
Clear alarm with the Delete key or NC START.

22296 [Channel %1:] Spindle %2 Error on gear stage change (cause: error code %3)

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Error code

Definitions:
An error occurred during gear stage change. The cause is specified by the error code.

Error codes:
- Error code 1: internal use
- Error code 2: internal use
- Error code 3: internal use
- Error code 4: internal use
- Error code 5: Switchover to command axis not possible
- Error code 6: Switchover to PLC axis not possible
- Error code 20: internal use
- Error code 21: internal use
- Error code 22: internal use
- Error code 23: MD 30132 IS_VIRTUAL_AX has been set
- Error code 50: internal use
- Error code 51: internal use
- Error code 70: internal use

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Remedy conflict.

Program Continuation:
Clear alarm with the Delete key or NC START.
NCK alarms

22297

[Channel %1:] Spindle %2 FC18 function not possible (cause: error code %3)

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Error code

Definitions:
The function request by PLC via FC18 interface could not be executed. The cause is specified by the error code.

Error codes:
- Error code 1: internal use
- Error code 2: internal use
- Error code 3: internal use
- Error code 4: internal use
- Error code 5: Switchover to command axis not possible
- Error code 6: Switchover to PLC axis not possible
- Error code 20: internal use
- Error code 21: internal use
- Error code 22: internal use
- Error code 23: MD 30132 IS_VIRTUAL_AX has been set
- Error code 50: internal use
- Error code 51: internal use
- Error code 70: internal use

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Remedy conflict.

Program Continuation:
Clear alarm with the Delete key or NC START.

22320

[Channel %1:] Block %2 PUTFTOCF command could not be transferred

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The cyclic transfer of the PUTFTOCF data block (fine tool compensation) could not be performed because the transfer area is already occupied.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Check the part program, in particular with regard to the other channels. Is a data block being transferred by another channel?

Program Continuation:
Clear alarm with the RESET key. Restart part program

22321

[Channel %1:] Axis %2 PRESET not allowed during traverse motion

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A preset command was sent from the HMI or PLC while an axis was traveling in JOG mode.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Wait until the axis is stationary.

Program Continuation:
Clear alarm with the Delete key or NC START.
22322
[Channel %1:] Axis %2 PRESET: illegal value

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
The entered Preset value is too large (number format overflow).

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Use more realistic (smaller) Preset values.

Program:
Clear alarm with the RESET key. Restart part program

Continuation:

22400
[Channel %1:] Option 'contour handwheel' not set

Parameters:
%1 = Channel number

Definitions:
The function 'contour handwheel' was activated without the necessary option.
If the alarm occurs
- on selection of the contour handwheel via the PLC, then the contour handwheel has to be deselected in order to continue with the program
- on account of programming FD=0, then the program can be corrected and continued with the compensation block and NCSTART.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
- Set option
- Cancel the activation of the function 'contour handwheel'
- Modify part program.

Program:
Clear alarm with the Delete key or NC START.

Continuation:

25000
Axis %1 hardware fault of active encoder

Parameters:
%1 = Axis name, spindle number

Definitions:
The signals of the currently active position actual value encoder (NC/PLC interface signal DB380x DBX0001.5 = 1 (Position measuring system 1) or DB380x DBX0001.6 = 1 (Position measuring system 2)) are missing, do not have the same phase, or exhibit grounding/short-circuit.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
For PROFdrive only:
MD36310 $MA_ENC_ZERO_MONITORING >100 replaces the existing PowerOn alarm by the Reset alarm 25010.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Check measuring circuit connectors for correct contacting. Check encoder signals and replace the encoder if faults are found.
Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING[n] to 100 (n = encoder number: 1, 2).

Program:
Switch control OFF - ON.

Continuation:
25001
Axis %1 hardware fault of passive encoder

Parameters:
%1 = Axis name, spindle number

Definitions:
The signals from the currently inactive position actual value encoder are missing, or they are not of the same phase, or they exhibit grounding/short-circuit.

For PROFIdrive only:
MD36310 $MA_ENC_ZERO_MONITORING >100 replaces the existing PowerOn alarm by the Reset alarm 25011.
MD36310 $MA_ENC_ZERO_MONITORING >100 replaces the existing Reset alarm by the Cancel alarm 25011.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Check measuring circuit connectors for correct contacting. Check encoder signals and replace the encoder if faults are found. Switch off monitoring with the corresponding interface signal DB390x DBX0001.5 / 1.6 = 0 (Position measuring system 1/2).

Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING[n] to 100 (n = encoder number: 1,2).

Program Continuation:
Clear alarm with the RESET key. Restart part program

25010
Axis %1 pollution of measuring system

Parameters:
%1 = Axis name, spindle number

Definitions:
The encoder used for position control sends a contamination signal (only in measuring systems with contamination signal).

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

For PROFIdrive only:
MD36310 $MA_ENC_ZERO_MONITORING >100 returns the existing Reset alarm instead of the Power-on alarm 25000.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Check the measuring system in accordance with the instructions given by the measuring device manufacturer.

Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING[n] to 100 (n = encoder number: 1,2).

Program Continuation:
Teileprogramm neu starten. Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25011
Axis %1 pollution of passive encoder

Parameters:
%1 = Axis name, spindle number

Definitions:
The encoder not used for position control sends a contamination signal (only in measuring systems with contamination signal).

For PROFIdrive only:
MD36310 $MA_ENC_ZERO_MONITORING >100 returns the existing Reset alarm instead of the Power-on alarm 25001.
MD36310 $MA_ENC_ZERO_MONITORING >100 returns the existing Cancel alarm instead of the Reset alarm 25001.

Reaction:
Alarm display.
Remedy: Please inform the authorized personnel/service department. Check the measuring system in accordance with the instructions given by the measuring device manufacturer. Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING[n] to 100 (n = encoder number: 1, 2).

Program Continuation: Clear alarm with the Delete key or NC START.

25020
Axis %1 zero mark monitoring of active encoder

Parameters: %1 = Axis name, spindle number

Definitions: For PROFIdrive:
The position encoder pulses between 2 zero mark pulses are counted, and the plausibility is assessed (The functionality and possibly the parameterization of the plausibility check is done on the drive side. Please refer to the relevant drive documentation for details.), and reported in a PROFIdrive message frame (encoder interface) to the control, which then issues the present alarm.
The alarm can be reprogrammed in MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department.
The differences can result from transmission errors, disturbances, encoder hardware faults or from the evaluation electronics in the encoder used for position control. The actual value branch must therefore be checked:
1. Transmission path: Check the actual-value connectors for correct contacting, encoder cable for continuity, and also check for short-circuits and grounding (loose contact?).
2. Encoder pulses: Is the encoder power supply within the tolerance limits?
3. Evaluation electronics: Replace or reconfigure the drive or encoder module used.
Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING [n] to 0 or 100 (n = encoder number: 1, 2).

Program Continuation: Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25021
Axis %1 zero mark monitoring of passive encoder

Parameters: %1 = Axis name, spindle number

Definitions: Monitoring relates to the encoder that is not used by the position control. (NC-PLC interface signal DB380x DBX0001.5 = 0 (Position measuring system 1) or DB380x DBX0001.6 = 0 (Position measuring system 2))
More detailed explanations are similar to those for alarm 25020.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. The differences can result from transmission errors, disturbances, encoder hardware faults or from the evaluation electronics in the encoder not used for position control. The actual value branch must therefore be checked:
1. Transmission path: Check the actual-value connectors for correct contacting, encoder cable for continuity, and also check for short-circuits and grounding (loose contact?).
2. Encoder pulses: Is the encoder power supply within the tolerance limits?
3. Evaluation electronics: Replace or reconfigure the drive or encoder module used.
Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING [n] to 0 or 100 (n = encoder number: 1, 2).

Program Continuation: Clear alarm with the Delete key or NC START.
25022 Axis %1 encoder %2 warning %3

Parameters: %1 = Axis name, spindle number
%2 = Encoder number
%3 = Error fine coding

Definitions:
This alarm only occurs with absolute encoders:
a. Warning notice of missing absolute encoder adjustment (on the SIMODRIVE 611D or with PROFIdrive drives), that is if MD34210 $MA_ENC_REFP_STATE equals 0. In this case, fine error code 0 is returned.
b. If, on the SIMODRIVE 611D only, zero mark monitoring has been activated for the absolute encoder (see MD36310 $MA_ENC_ZERO_MONITORING): In this case, the absolute position of the absolute encoder could not be read without error:
Breakdown of fine error codes:
(Bit 0 not used)
Bit 1 Parity error
Bit 2 Alarm bit of the encoder
Bit 3 CRC error
Bit 4 Timeout - start bit for EnDat transfer is missing
This alarm is only displayed, as the absolute position itself is not required at this time for control/contour.
A frequent occurrence of this alarm indicates that the absolute encoder transfer or the absolute encoder itself is faulty, and that an incorrect absolute value could be determined in one of the next encoder selection or power on situations.

Reaction:
Alarm display.

Remedy:
a. Verify encoder adjustment (machine reference) or readjust encoder.
b. Replace the encoder, replace or screen the encoder cable (or deactivate zero mark monitoring).

Program Continuation:
Clear alarm with the Delete key or NC START.

25030 Axis %1 actual velocity alarm limit

Parameters: %1 = Axis name, spindle number

Definitions:
If the axis has at least one active encoder, then the actual speed of the axis is cyclically checked in the IPO cycle. If there are no errors, the actual velocity can never become greater than specified in the axis-specific MD36200 $MA_AX_VELO_LIMIT (threshold for velocity monitoring). This threshold value in [mm/min, rev/min] is input by an amount that is about 5 to 10% greater than that which can occur at maximum traversing velocity. Drive errors can result in the velocity being exceeded and the alarm is then triggered.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department.
- Check the speed setpoint cable (bus cable).
- Check the actual values and direction of position control.
- Change the position control direction if the axis rotates uncontrollably -> axis-specific MD32110 $MA_ENC_FEEDBACK_POL [n] = <-1, 0, 1>.
- Increase the monitoring limit value in MD 36200 $MA_AX_VELO_LIMIT.

Program Continuation:
Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
25040 Axis %1 standstill monitoring

Parameters:
%1 = Axis name, spindle number

Definitions:
The NC monitors to ensure that the position is held at zero speed. Monitoring is started after a time that can be set for a specific axis in the MD36040 $MA_STANDSTILL_DELAY_TIME after interpolation has ended. A constant check is made to determine whether the axis remains within the tolerance range given in MD36030 $MA_STANDSTILL_POS_TOL.

The following cases are possible:
1. The NC/PLC interface signal DB380x DBX0002.1 (Servo enable) is zero because the axis has jammed mechanically. Due to mechanical influences (e.g. high machining pressure), the axis is pushed outside the permissible position tolerance.
2. With closed position control loop (without jamming) - NC/PLC interface signal DB380x DBX0002.1 (Servo enable) is "1" - the axis is pushed away from its position by mechanical forces with a small gain in the position control loop.

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
- Please inform the authorized personnel/service department.
- Check MD36040 $MA_STANDSTILL_DELAY_TIME and MD36030 $MA_STANDSTILL_POS_TOL; increase if necessary. The value must be greater than the machine data "Exact stop - coarse" (MD36000 $MA_STOP_LIMIT_COARSE).
- Estimate machining forces and reduce if necessary by setting a lower feed or a higher rotational speed.
- Increase clamping pressure.
- Increase the gain in the position control loop by improved optimization (Kv factor MD32200 $MA_POSCTRL_GAIN, SIMODRIVE611D drive).

Program Continuation:
Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25042 Axis %1 standstill monitoring during torque/force limitation

Parameters:
%1 = Axis name, spindle number

Definitions:
The defined end position was not reached within the time specified in the machine data.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
- If the drive torque (FXST) was set too low with the result that the force of the motor was not sufficient to reach the end position -> increase FXST.
- If the machined part is slowly deformed, there may be a delay in reaching the end position -> increase MD36042 $MA_FOC_STANDSTILL_DELAY_TIME.

Program Continuation:
Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
25050 Axis %1 contour monitoring

Parameters:
%1 = Axis name, spindle number

Definitions:
The NCK calculates for each interpolation point (setpoint) of an axis the actual value that should result based on an internal model. If this calculated actual value and the true machine actual value differ by a larger amount than given in the MD36400 $MA_CONTOUR_TOL, then the program is aborted and the alarm message is issued. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department.
- Check whether the tolerance value set in MD36400 $MA_CONTOUR_TOL is too small.
- Check optimization of the position controller (Kv factor in the MD32200 $MA_POSCTRL_GAIN) to establish whether the axis follows the given setpoint without overshooting. Otherwise, the speed controller optimization must be improved or the Kv servo gain factor must be reduced.
- Check the mechanics (smooth running, inertial masses).

Program Continuation:
Teleprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25060 Axis %1 speed setpoint limitation

Parameters:
%1 = Axis name, spindle number

Definitions:
The speed setpoint has exceeded its upper limit for a longer period than allowed.
The maximum speed setpoint is limited to a certain percentage by the axis-specific MD36210 $MA_CTRLOUT_LIMIT. The input value of 100% corresponds to the rated speed of the motor and hence the rapid traverse velocity (exemplary default value: 840D=110%). For SINAMICS: Drive parameter p1082 also has a limiting effect.
If the values are exceeded for a short time, then this is tolerated provided they do not last longer than allowed for in the axis-specific MD36220 $MA_CTRLOUT_LIMIT_TIME. The setpoint is limited during this time to the maximum value that has been set in (MD36210 $MA_CTRLOUT_LIMIT).
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. This alarm should not occur if the drive controller has been set correctly and the machining conditions are those that normally prevail.
- Check actual values: Local sluggishness of the carriage, speed dip by torque surge due to contact with workpiece/tool, travel against fixed obstacle, etc.
- Check direction of position control: Does the axis continue to rotate without control (not on SIMODRIVE 611D drives)?

Program Continuation:
Teleprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
25070
Axis %1 drift value too large

Parameters:
%1 = Axis name, spindle number

Definitions:
Only with analog drives!
The permissible maximum value of drift (internal, integrated drift value of automatic drift compensation) was exceeded during the last compensation operation. The permissible maximum value is defined in the axis-specific MD36710 $MA_DRIFT_LIMIT. The drift value itself is not limited.
Automatic drift compensation: MD36700 $MA_DRIFT_ENABLE=1
The difference between actual and setpoint position (drift) is checked cyclically in the IPO cycle when the axes are at zero speed. The difference is automatically compensated to zero by slowly integrating an internal drift value.
Drift compensation by hand: MD36700 $MA_DRIFT_ENABLE=0
A static offset can be added to the speed setpoint in the MD36720 $MA_DRIFT_VALUE. This is not included in the drift monitoring because it acts like a voltage zero offset.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Adjust the drift compensation with the automatic drift compensation switched off at the drive until the position lag is approximately zero. Then reactivate the automatic drift compensation in order to balance out the dynamic drift changes (effects of heating up).

Program Continuation:
Clear alarm with the Delete key or NC START.

25080
Axis %1 positioning monitoring

Parameters:
%1 = Axis name, spindle number

Definitions:
For blocks in which "exact stop" is effective, the axis must have reached the exact stop window after the positioning time given in the axis-specific MD36020 $MA_POSITIONING_TIME.
Exact stop coarse: MD36000 $MA_STOP_LIMIT_COARSE
Exact stop fine: MD36010 $MA_STOP_LIMIT_FINE
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Check whether the exact stop limits (coarse and fine) correspond to the dynamic possibilities of the axis, otherwise increase them, if necessary in connection with the positioning time set in MD36020 $MA_POSITIONING_TIME.
Check speed controller/position controller optimization; select highest possible gain.
Check setting of Kv factor (MD32200 $MA_POSCTRL_GAIN) and increase, if required.

Program Continuation:
Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
25100

Axis %1 measuring system switchover not possible

Parameters:
%1 = Axis name, spindle number

Definitions:
The prerequisites are not satisfied for the required encoder switchover:

1. The newly selected encoder must be in the active state: (DB380x DBX0001.5 / 1.6 = 1 (Position measuring system 1/2)).
2. The actual value difference between the two encoders is greater than the value in the axis-specific MD36500 $MA_ENC_CHANGE_TOL ("Maximum tolerance for position actual value switchover").

Activation of the measuring system concerned takes place in accordance with the NC/PLC interface signals DB380x DBX0001.5 (Position measuring system 1) and DB380x DBX0001.6 (Position measuring system 2), i.e. the position control is now operated with this measuring system. The other measuring system is switched over to follow-up mode. If both interface signals are set to "1", then only the 1st measuring system is active; if both interface signals are set to "0", the axis is parked.

Changeover takes place as soon as the interface signals have changed, even if the axis is in motion.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. When referencing the active position actual value encoder, the actual value system of the inactive encoder is set to the same reference point value as soon as phase 3 has been concluded. A later positional difference between the two actual value systems can have occurred only as the result of an encoder defect or a mechanical displacement between the encoders.
- Check the encoder signals, actual value cable, connectors.
- Check the mechanical fastenings (displacement of the measuring head, mechanical twisting possible).
- Increase the axis-specific MD 36500 $MA_ENC_CHANGE_TOL.

Program continuation is not possible. The program must be aborted with "RESET", then program execution can be restarted with NC START, if necessary at the interruption point after "Block search with/without calculation".

Program Continuation:
Clear alarm with the RESET key. Restart part program

25105

Axis %1 measuring systems differ considerably

Parameters:
%1 = Axis name, spindle number

Definitions:
The two measuring systems differ considerably, i.e. the cyclically monitored actual value difference between the two measuring systems is greater than the associated tolerance value set in the machine data MD36510 $MA_ENC_DIFF_TOL. This can only occur when both measuring systems are active (MD30200 $MA_NUM_ENCS = 2) and referenced. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Check machine data for the active, selected encoders. Check the machine data relating to encoder (MD36510 $MA_ENC_DIFF_TOL) tolerance.

Program Continuation:
Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25110

Axis %1 selected encoder not available

Parameters:
%1 = Axis name, spindle number

Definitions:
The selected encoder does not correspond to the maximum number of encoders in the axis-specific MD30200 $MA_NUM_ENCS, i.e. the 2nd encoder does not exist.
NCK alarms

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Enter the number of actual value encoders used for this axis in the MD30200 $MA_NUM_ENCS ("Number of encoders").

- Input value 0: Axis without encoder -> e.g. spindle
- Input value 1: Axis with encoder -> default setting
- Input value 2: Axis with 2 encoders -> e.g. direct and indirect measuring system

Program Continuation: Clear alarm with the Delete key or NC START.

25200 Axis %1 requested set of parameters invalid

Parameters: %1 = Axis name, spindle number

Definitions: A new parameter set has been requested for the positioning control. The number of this parameter set is beyond the permissible limit (8 parameter sets: 0 ... 7 available).

Reaction: NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Check the axis-specific/spindle-specific interface signals <Regler-Parametersatz1A-C/> (Select parameter set servo A, B, C).

One parameter set includes the following machine data:
- MD31050 $MA_DRIVE_AX_RATIO_DENOM [n]
- MD31060 $MA_DRIVE_AX_RATIO_NUMERA [n]
- MD32200 $MA_POSTCTRL_GAIN [n]
- MD32800 $MA_EQUIV_CURRCTRL_TIME [n]
- MD32810 $MA_EQUIV_SPEEDCTRL_TIME [n]
- MD32910 $MA_DYN_MATCH_TIME [n]
- MD36200 $MA_AX_VELO_LIMIT [n]

Program Continuation: Clear alarm with the RESET key. Restart part program.

25201 Axis %1 drive fault

Parameters: %1 = Axis name, spindle number

Definitions: For PROFIdrive:
- The drive signals a serious fault which prevents the drive from being ready. The exact cause of the fault can be found by evaluating the additionally output drive alarms (It may be necessary to activate these diagnostic alarms by parameterizing the MDs $DRIVE_FUNCTION_MASK, PROFIBUS_ALARM_ACCESS etc):
- Alarms 380500 and 380501 (or the corresponding alarm numbers implemented on the HMI side).

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
- The NC switches to follow-up mode.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- Channel not ready.

Remedy: Evaluation of the drive alarms listed above.

Program Continuation: Teileprogramm neu starten. Clear alarm with the RESET key in all channels of this mode group. Restart part program.
25202 Axis %1 waiting for drive
Parameters: %1 = Axis name, spindle number
Definitions: Drive group error (self-clearing).
Reaction: Interface signals are set.
Alarm display.
Remedy: For PROFIdrive only:
Wait for the drive. This alarm reveals similar problems to alarm 25201 (see that alarm). It is continuously active during
power-up if the drive does not communicate (e.g. if the PROFIBUS connector has fallen out). Otherwise, the alarm is
active only briefly and is replaced by alarm 25201 after an internal timeout in the event of a permanent problem.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

26000 Axis %1 clamping monitoring
Parameters: %1 = Axis name, spindle number
Definitions: The clamped axis has been pushed out of its setpoint position. The permissible difference is defined in the axis-specific
MD36050 $MA.Clamp.POS_TOL.
Clamping an axis is activated with the axis-specific interface signal DB380x DBX0002.3 (Clamping process active).
The alarm can be reprogrammed in the MD11412 $MN.Alarm.REACTION_CHAN.NOREADY (channel not ready).
Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Determine the position deviation to the setpoint position and, depending on the results, either increase the permissible
tolerance in the MD or mechanically improve the clamping (e.g. increase clamping pressure).
Program Continuation: Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

26001 Axis %1 parameterization error: friction compensation
Parameters: %1 = Axis name, spindle number
Definitions: The parameterization of the adaptation characteristic in the quadrant error compensation is not allowed because
acceleration value 2 (MD32560 $MA.FRICT_COMP_ACCEL2) is not between acceleration value 1 (MD32550
$MA.FRICT_COMP_ACCEL1) and acceleration value 3 (MD32570 $MA.FRICT_COMP_ACCEL3).
The alarm can be reprogrammed in the MD11412 $MN.Alarm.REACTION_CHAN.NOREADY (channel not ready).
Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Please inform the authorized personnel/service department.
Check the setting parameters of the quadrant error compensation (friction compensation), if necessary switch off the
compensation with MD32500 $MA.FRICT_COMP_ENABLE.
Program Continuation: Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
26002

Axis %1 encoder %2 parameterization error: number of encoder marks

Parameters:
%1 = Axis name, spindle number
%2 = Encoder number

Definitions:
1. Rotary measuring system (MD31000 $MA_ENC_IS_LINEAR[]==FALSE)
 The number of encoder marks set in MD31020 $MA_ENC_RESOL[] does not correspond to the value in the drive machine data (SIMODRIVE 611D: MD1005 $MD_ENC_RESOL_MOTOR; PROFIdrive: p979) or zero has been entered in one of the two machine data.
2. Absolute measuring system with EnDat interface (MD5790 $MD_ENC_TYPE[]==4)
 On absolute encoders, the resolution of the incremental and absolute tracks supplied by the drive is also checked for consistency.
 For PROFIdrive drives:
 Compare drive parameter p979 (and possibly other internal drive, manufacture-specific parameters stated in the relevant drive documentation)

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department.
Adjust machine data.
For absolute encoders, possibly pending drive alarms indicating encoder problems should be evaluated. They could be the cause of incorrect entries of MD1022 $MD_ENC_ABS_RESOL_MOTOR/MD1032 $MD_ENC_ABS_RESOL_DIRECT, which the drive reads out of the encoder itself.

Program Continuation:
Switch control OFF - ON.

26003

Axis %1 parameterization error: lead screw pitch

Parameters:
%1 = Axis name, spindle number

Definitions:
The pitch of the ballscrew/trapezoidal leadscrew set in the axis-specific MD31030 $MA_LEADSCREW_PITCH is zero.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Determine the leadscrew pitch (specify the machine manufacturer or pitch measurement with spindle cover removed) and enter it in the MD31030: $MA_LEADSCREW_PITCH (mostly 10 or 5 mm/rev.).

Program Continuation:
Switch control OFF - ON.

26004

Axis %1 encoder %2 parameterization error: grid point distance with linear encoders

Parameters:
%1 = Axis name, spindle number
%2 = Encoder number

Definitions:
The scale division of the linear scale set in the axis-specific MD31010 $MA_ENC_GRID_POINT_DIST is zero or differs from the corresponding drive parameters. For a better understanding of the interrelations see the explanations for alarm 26002, which refer to rotatory encoders.

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
NCK alarms

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department.
Enter the encoder grid point distance according to the data given by the machine (or measuring device) manufacturer
in the MD31010 $MA_ENC_GRID_POINT_DIST.

Program
Continuation:

26005 Axis %1 parameterization error: output rating

Parameters: %1 = Axis name, spindle number

Definitions: For analog drives:
The output evaluation of the analog speed setpoint set in the MD32250 $MA_RATED_OUTVAL or in MD 32260
$MA_RATED VELO is zero.
For PROFIdrive drives: (ADI4, SIMODRIVE 611U, SINAMICS):
The effective output evaluation of the speed setpoint interface is zero:
- b. The corresponding drive-side standardizing parameter is zero, invalid or unreadable/unavailable although an auto-
matic interface scaling adjustment has been selected on account of MD32250 $MA_RATED_OUTVAL=0.
The drive parameter defining the standard is not determined by PROFIdrive, but is specific to the manufacturer (see
the relevant drive documentation: For SIMODRIVE 611U: p880; for SINAMICS: p2000).
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department. The nominal output voltage in [%] of the maximum set-
point value (10 V) is entered in the MD32250 $MA_RATED_OUTVAL, at which the rated motor speed in [degrees/s]
is to be reached (MD32260 $MA_RATED VELO).

Program
Continuation:

26006 Axis %1 encoder %2 encoder type/output type %3 not possible

Parameters: %1 = Axis name, spindle number
%2 = Encoder number
%3 = Encoder type/output type

Definitions: Not every encoder type or output type can be used with every control or drive variant.
Permissible settings:
MD30240 $MA_ENC_TYPE
 = 0 Simulation (always permissible)
 = 1 Raw signal incremental encoder (SIMODRIVE 611D and PROFIdrive)
MD30120 $MA_CTRLOUT_TYPE
 = 0 Simulation
 = 1 Standard (SIMODRIVE 611D and PROFIdrive drives)
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Alarms
Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0
NCK alarms

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department.
Check machine data MD30240 $MA_ENC_TYPE and/or MD30130 $MA_CTRLOUT_TYPE and make the necessary corrections.

Program Continuation: Switch control OFF - ON.

26007 Axis %1 QEC: invalid coarse step size

Parameters: %1 = Axis name, spindle number
Definitions: The course step width for QEC must be within the range 1 <= course step width <= maximum value of MD18342 $MN_MM_QEC_MAX_POINTS (currently 1025), because a greater number of values would exceed the available memory space.

Reaction: Alarm display.
Remedy: Modify the system variable $AA_QEC_COARSE_STEPS accordingly.
Program Continuation: Clear alarm with the RESET key. Restart part program

26008 Axis %1 QEC: invalid fine step size

Parameters: %1 = Axis name, spindle number
Definitions: The fine step size for quadrant error compensation $AA_QEC_FINE_STEPS must be in the range 1 <= fine step size <= 16 because this value has an influence on the computation time of the QEC.

Reaction: Alarm display.
Remedy: Modify the system variable $AA_QEC_FINE_STEPS accordingly.
Program Continuation: Clear alarm with the RESET key. Restart part program

26009 Axis %1 QEC: memory overflow

Parameters: %1 = Axis name, spindle number
Definitions: The product of the data $AA_QEC_COARSE_STEPS+1 and $AA_QEC_FINE_STEPS must not exceed the maximum number of the characteristic curve points (MD38010 $MA_MM_QEC_MAX_POINTS). With a direction-dependent characteristic, this criterion applies to 2 * ($AA_QEC_COARSE_STEPS+1) * $AA_QEC_FINE_STEPS!

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Either increase MD38010 $MA_MM_QEC_MAX_POINTS or reduce $AA_QEC_COARSE_STEPS and/or $AA_QEC_FINE_STEPS.
Program Continuation: Clear alarm with the RESET key. Restart part program
26010 **Axis %1 QEC: invalid acceleration characteristic**

Parameters: %1 = Axis name, spindle number

Definitions:
$AA_QEC_ACCEL_1/2/3$: The acceleration characteristic is divided into three areas. In each area there is a different quantization of the acceleration steps. The defaults should be changed only if compensation is inadequate in these acceleration areas.

- $AA_QEC_ACCEL_1$ with approx. 2% of maximum acceleration ($AA_QEC_ACCEL_3$),
- $AA_QEC_ACCEL_2$ with approx. 60% of maximum acceleration ($AA_QEC_ACCEL_3$),
- $AA_QEC_ACCEL_3$ with maximum acceleration (MD32300 $MA_MAX_AX_ACCEL$).

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Enter the values correctly:

\[0 < AA_QEC_ACCEL_1 < AA_QEC_ACCEL_2 < AA_QEC_ACCEL_3. \]

Program Continuation: Clear alarm with the RESET key. Restart part program.

26011 **Axis %1 QEC: invalid measuring periods**

Parameters: %1 = Axis name, spindle number

Definitions:
$AA_QEC_MEAS_TIME_1/2/3$: measuring time to determine the error criterion.

The measuring period begins when the criterion for activating the compensation value has been satisfied (the desired velocity changes the sign). The end is defined by the machine data values. In general, different measuring times are required for the three characteristic ranges. The presettings should be changed only if a problem occurs. The three data apply in each case for the three corresponding acceleration ranges.

1. $AA_QEC_MEAS_TIME_1$ specifies the measuring time (for determining the error criterion) for accelerations in the range between 0 and $AA_QEC_ACCEL_1$.
2. $AA_QEC_MEAS_TIME_2$ specifies the measuring time in the range from $AA_QEC_ACCEL_1$ to $AA_QEC_ACCEL_2$.
3. $AA_QEC_MEAS_TIME_3$ specifies the measuring time in the range from $AA_QEC_ACCEL_2$ to $AA_QEC_ACCEL_3$ and beyond.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Enter the values correctly:

\[0 < AA_QEC_MEAS_TIME_1 < AA_QEC_MEAS_TIME_2 < AA_QEC_MEAS_TIME_3. \]

Program Continuation: Clear alarm with the RESET key. Restart part program.

26012 **Axis %1 QEC: feed forward control not active**

Parameters: %1 = Axis name, spindle number

Definitions:

The error criterion for determining the quadrant error necessitates a correctly set feedforward control. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Alarm display.
Channel not ready.

Remedy: Switch on feedforward control and set it correctly.

Program Continuation: Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
26014 Axis %1 machine data %2 invalid value

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier

Definitions:
Machine data includes a value that is not valid.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Repeat entry with correct value and then Power On.

Program Continuation:
Switch control OFF - ON.

26015 Axis %1 machine data %2[%3] invalid value

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier
- %3 = Index: MD array index

Definitions:
Machine data includes a value that is not valid.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Repeat entry with correct value and then Power On.

Program Continuation:
Switch control OFF - ON.

26016 Axis %1 machine data %2 invalid value

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier

Definitions:
Machine data includes a value that is not valid.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Repeat entry with correct value and then Reset.

Program Continuation:
Teileprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.
26017 **Axis %1 machine data %2[%3] invalid value**

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier
- %3 = Index: MD array

Definitions:
Machine data includes a value that is not valid.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Repeat entry with correct value and then Reset.

Program Continuation:
Teleprogramm neu starten.Clear alarm with the RESET key in all channels of this mode group. Restart part program.

26018 **Axis %1 setpoint output drive %2 used more than once**

Parameters:
- %1 = Axis name, spindle number
- %2 = Drive number

Definitions:
The same setpoint assignment has been allocated more than once.
MD30110 $MA_CTRLOUT_MODULE_NR contains the same value for different axes.
PROFIdrive: The stated MDs contain the same values for different axes, or different entries in $MN_DRIVE_LOGIC_ADDRESS contain the same values.

Reaction:
- Mode group not ready.
- The NC switches to follow-up mode.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Avoid dual assignment of the setpoint by correcting MD30110 $MA_CTRLOUT_MODULE_NR. Also check the selected bus type MD30100 $MA_CTRLOUT_SEGMENT_NR.

Program Continuation:
Switch control OFF - ON.

26019 **Axis %1 encoder %2 measurement not possible with this controller module**

Parameters:
- %1 = NC axis number
- %2 = Encoder number

Definitions:
If the MD MD13100 $MN_DRIVE_DIAGNOSIS[8] contains a value not equal to zero, then the control has found at least one control module which does not support measuring. Measuring was programmed from the part program for the associated axis.

Reaction:
- Local alarm reaction.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
If possible, modify the measuring motion such that the axis concerned does not have to travel; do not program this axis in the MEAS block again. However, it is then no longer possible to query a measured value for this axis. Otherwise, exchange the controller module for one that supports measuring. See MD13100 $MN_DRIVE_DIAGNOSIS[8].

Program Continuation:
Clear alarm with the RESET key. Restart part program.
26022 Axis %1 encoder %2 measurement with simulated encoder not possible

Parameters:
%1 = NC axis number
%2 = Encoder number

Definitions:
Alarm occurs on the control when a measurement was made without the encoder hardware (simulated encoder).

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Please inform the authorized personnel/service department.
- If possible, modify the measuring motion such that the axis concerned does not have to travel; do not program this axis in the MEAS block again. However, it is then no longer possible to query a measured value for this axis.
- Ensure that measurement is not taking place with simulated encoders (MD30240 $MA_ENC_TYPE).

Program Continuation:
Clear alarm with the RESET key. Restart part program

26024 Axis %1 machine data %2 value changed

Parameters:
%1 = Axis name, spindle number
%2 = String: MD identifier

Definitions:
The machine data contains an invalid value and therefore has been changed by the software.

Reaction:
Alarm display.

Remedy:
Check MD.

Program Continuation:
Clear alarm with the RESET key. Restart part program

26025 Axis %1 machine data %2[%3] value changed

Parameters:
%1 = Axis name, spindle number
%2 = String: MD identifier
%3 = Index: MD array index

Definitions:
The machine data contains an invalid value. It was therefore changed by the software internally to a valid value.

Reaction:
Alarm display.

Remedy:
Check MD.

Program Continuation:
Clear alarm with the RESET key. Restart part program

26026 Axis %1 SINAMICS drive parameter P2038 value is not allowed.

Parameters:
%1 = Axis name, spindle number

Definitions:
For SINAMICS drives only:
The interface mode, which is set via drive parameter P2038, has not been set to SIMODRIVE 611 universal.
The alarm can be disabled by MD13070 $MN_DRIVE_FUNCTION_MASK - bit15.

However, the following must be noted:
- The device-specific assignment of the bits in the control and status words may be different.
- The drive data sets can be created at will, and need not be subdivided into groups of 8. (For details see also SINAMICS Commissioning Manual). So the parameters of motors 2-4 may be incorrectly assigned.
NCK alarms

Reaction:
NC not ready.
The NC switches to follow-up mode.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Set P2038 = 1 or
- Set P0922 = 100...199 or
- Set bit 15 of MD13070 $MN_DRIVE_FUNCTION_MASK (note the boundary conditions, see above)
and execute a Power ON in each case.

Program
Continuation:
Switch control OFF - ON.

26030
Axis %1 encoder %2 absolute position lost

Parameters:
%1 = Axis name, spindle number
%2 = Encoder number

Definitions:
The absolute position of the absolute encoder has become invalid because
- on changing parameter block a changed gear stage ratio was identified between encoder and processing or
- the encoder has been replaced (the absolute encoder's serial number has changed, see MD34230
$MA_ENC_SERIAL_NUMBER, and drive-specific parameters).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Rereferencing/resynchronization of the absolute
encoder; attach absolute encoder on the load side and configure correctly (e.g. MD 31040 $MA_ENC_IS_DIRECT).

Program
Continuation:
Teleprogramm neu starten. Clear alarm with the RESET key in all channels of this mode group. Restart part program.

26031
Axis %1 configuration error master-slave

Parameters:
%1 = Axis name, spindle number

Definitions:
The alarm is output when the same machine axis has been configured as a master and a slave axis. Each of the axes
in the master/slave link can be operated either as master or slave.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Check machine data for all linked axes and correct if necessary:
- MD 37250 $MA_MS_ASSIGN_MASTER_SPEED_CMD
- MD 37252 $MA_MS_ASSIGN_MASTER_TORQUE_CTR.

Program
Continuation:
Clear alarm with the RESET key. Restart part program.
NCK alarms

26032 [Channel %1:] Axis %2 master-slave not configured
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
The master-slave coupling could not be activated because of incomplete configuration.
Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Check the current configuration of the master-slave coupling.
The configuration can be modified via the MASLDEF instruction or the machine data MD37250 $MA_MS_ASSIGN_MASTER_SPEED_CMD and MD37252 $MA_MS_ASSIGN_MASTER_TORQUE_CTR.
Program Continuation:
Clear alarm with the RESET key. Restart part program

26050 Axis %1 parameter set change from %2 to %3 not possible
Parameters:
%1 = Axis name, spindle number
%2 = Index: current parameter block
%3 = Index: new parameter block
Definitions:
The parameter block change cannot be performed without jumps. This is due to the content of the parameter block to be switched on, e.g. different load gear factors.
Reaction:
The NC switches to follow-up mode.
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
In the following cases, the parameter block change is carried out via MD31060 $MA_DRIVE_AX_RATIO_NUMERA and MD31050 $MA_DRIVE_AX_RATIO_DENOM without an alarm, even with different load gear ratio settings:
1. If no position control is active (e.g. in follow-up mode or if spindle is in speed-controlled mode).
2. For position control with the direct encoder.
3. For position control with the indirect encoder (the calculated load position difference must not exceed the value indicated in MD36500 $MA_ENC_CHANGE_TOL).
Program Continuation:
Clear alarm with the RESET key. Restart part program

26051 [Channel %1:] In block %2 unanticipated stop crossed in continuous path mode
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The path interpolation did not stop, as required, at the end of the block, but will only decelerate to a standstill in the next block. This error situation occurs if the stop at block change was not planned by the path interpolation or was not detected early enough. A possible cause is that the PLC changed the spindle speed when MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START > 0, and the machine has to wait until the spindle has returned to the set-point range. Another possible cause is that a synchronized action needs to be finished before the path interpolation continues. The alarm is only output if MD11400 $MN_TRACE_SELECT = 'H400'. The alarm output is normally suppressed. - MD11400 $MN_TRACE_SELECT has SIEMENS password protection.
Reaction:
Alarm display.
Remedy:
MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START = 1. Program G09 before the alarm output in the block to allow the path interpolation to stop as planned.
Program Continuation:
Clear alarm with the Delete key or NC START.
NCK alarms

26052
[Channel %1:] In block %2: path velocity too high for auxiliary function output

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
This alarm usually occurs in a block with auxiliary function output during a movement. In this case, the wait for acknowledgement of the auxiliary function was longer than planned. The alarm also occurs if internal control inconsistencies cause continuous path mode (G64, G641, ...) to be blocked unexpectedly.

The path interpolation stops abruptly at the end of the block indicated in the message (regenerative stop). On the next block change, the path continues unless the abrupt stop has caused an error in the position controller (e.g. because MD36400 $MA_CONTOUR_TOL setting was over-sensitive).

Reaction:
Alarm display.

Remedy:
- If the alarm occurred in a block with auxiliary function output during the movement: from SW 5.1 or higher, increase machine MD10110 $MN_PLC_CYCLE_TIME_AVERAGE or
- Program G09 in the block indicated in the message to allow the path interpolation to stop as planned.

Program Continuation:
Clear alarm with the Delete key or NC START.

26053
[Channel %1:] Block %2 interpolation problem in Look Ahead (module %3, identifier %4)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Module identifier
%4 = Error code

Definitions:
Synchronism between interpolation and preparation is faulty.

Reaction:
Interpreter stop
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please contact Siemens.

Program Continuation:
Clear alarm with the RESET key. Restart part program

26054
[Channel %1:] Block %2 interpolation warning in Look Ahead (module %3, problem %4)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Module identifier
%4 = Error code

Definitions:
The computer performance is inadequate to create a smooth path velocity profile. This can lead to drops in velocity.

Reaction:
Local alarm reaction.
Alarm display.
Warning display.

Remedy:
Change parameterization. Increase interpolation cycle.

Program Continuation:
Clear alarm with the Delete key or NC START.
26070 [Channel %1:] Axis %2 cannot be controlled by the PLC, max. number exceeded
Parameters: %1 = Channel number
 %2 = Axis name, spindle number
Definitions: An attempt was made to define more axes than allowed as PLC-controlled axes.
Reaction: Interface signals are set.
 Alarm display.
Remedy: Check the option 'Number of PLC-controlled axes' and correct if necessary or reduce the number of requests for PLC-controlled axes.
Program Clear alarm with the Delete key or NC START.
Continuation:

26072 [Channel %1:] Axis %2 cannot be controlled by the PLC
Parameters: %1 = Channel number
 %2 = Axis name, spindle number
Definitions: Axis cannot be made a PLC-controlled axis. For the time being, the axis cannot be controlled at any state from the PLC.
Reaction: Interface signals are set.
 Alarm display.
Remedy: Use Release or Waip to make the axis a neutral one.
Program Clear alarm with the Delete key or NC START.
Continuation:

26074 [Channel %1:] Switching off PLC control of axis %2 not allowed in the current state
Parameters: %1 = Channel
 %2 = Axis, spindle
Definitions: The PLC can return the control rights for an axis to program processing only, if the axis is in READY state.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Reset VDI interface signal "PLC controls axis", then activate "Axial reset" and repeat process.
Program Clear alarm with the Delete key or NC START.
Continuation:

26075 [Channel %1:] Axis %2 not available for the NC program, as exclusively controlled by the PLC
Parameters: %1 = Channel
 %2 = Axis, spindle
Definitions: The axis is exclusively controlled by the PLC. Therefore, the axis is not available for the NC program.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Have the axis not exclusively controlled by the PLC, but only temporarily. Change MD30460 $MA_BASE_FUNCTION_MASK, bit 4.
Program Clear alarm with the RESET key. Restart part program
Continuation:
26076 [Channel %1:] Axis %2 not available for NC program, firmly assigned PLC axis

Parameters: %1 = Channel
%2 = Axis, spindle

Definitions: The axis is a firmly assigned PLC axis. The axis is therefore not available for the NC program.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Do not define axis as a firmly assigned PLC axis. Change of MD30460 $MA_BASE_FUNCTION_MASK bit5.

Program Clear alarm with the RESET key. Restart part program

Continuation:

26100 Axis %1 drive %2 sign of life missing

Parameters: %1 = Axis name, spindle number
%2 = Drive number

Definitions: Special case: The output of drive number=0 indicates that a computing timeout occurred on the IPO level (see also alarm 4240)

Reaction: NC not ready.
The NC switches to follow-up mode.
Mode group not ready, also effective for single axes.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Restart drive, check drive software.

Program Switch control OFF - ON.

Continuation:

26101 Axis %1 drive %2 communication failure

Parameters: %1 = Axis name, spindle number
%2 = Drive number

Definitions: For PROFIdrive only:
The drive is not communicating.

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Check the bus configuration.
- Check the interface (connector removed, option module inactive, etc.).

Program Clear alarm with the RESET key. Restart part program

Continuation:

Alarms

Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0
26102
Axis %1 drive %2 sign of life missing

Parameters:
%1 = Axis name, spindle number
%2 = Drive number

Definitions:
For PROFIdrive only:
The sign-of-life cell is no longer being updated by the drive.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Check the cycle settings.
- Increase the cycle time if necessary.
- Power-up the drive again.
- Check drive software.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

26105
Drive of axis %1 not found

Parameters:
%1 = Axis name, spindle number

Definitions:
For PROFIdrive only:
The drive configured for the specified axis could not be found. For example, a PROFIBUS slave was configured on the NC but is not contained in SDB-Type-2000.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Possible causes:
- MD30130 $MA_CTRLOUT_TYPE not equal to 0 as a result of an oversight; the drive should actually be simulated (= 0).
- MD30110 $MA_CTRLOUT_MODULE_NR entered incorrectly, i.e. the logical drive numbers were exchanged and an invalid value is stored for this drive in MD13050 $MN_DRIVE_LOGIC_ADDRESS (see 3.) or a drive number which does not exist on the bus was entered (check the number for slaves, for example).
- MD13050 $MN_DRIVE_LOGIC_ADDRESS contains values which were not configured on the Profibus (i.e. the values are not in SDB-Type-2000) or different addresses were selected for the input and output slots of the drive in the Profibus configuration.

Program Continuation:
Switch control OFF - ON.

26106
Encoder %2 of axis %1 not found

Parameters:
%1 = Axis name, spindle number
%2 = Encoder number

Definitions:
For PROFIdrive only:
The encoder configured for the specified axis could not be found. For example, a PROFIBUS slave was configured on the NC but it is not contained in the SDB or defective hardware was reported for it.
NCK alarms

Reaction:
- Mode group not ready.
- The NC switches to follow-up mode.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Possible causes:
- MD 30240 $MA_ENC_TYPE not equal to 0 as a result of an oversight; the encoder should actually be simulated (= 0).
- MD 30220 $MA_ENC_MODULE_NR entered incorrectly, i.e. the logical drive numbers were transposed and an invalid value is stored for this drive in MD 13050 $MN_DRIVE_LOGIC_ADDRESS (see next paragraph), or a drive number which does not exist on the bus was entered (check the number for slaves, for example).
- MD 13050 $MN_DRIVE_LOGIC_ADDRESS contains values which were not configured on the Profibus (i.e. the values are not in SDB Type 2000) or different addresses were selected for the input and output slots of the drive in the Profibus configuration.
- A fatal encoder error was detected during the selection of the encoder (encoder defective, removed), so that park status cannot be left (in such a case, this alarm is triggered instead of alarm 25000/25001 - please refer to them for other possible causes of the error).

Program Continuation:
Switch control OFF - ON.

26120 [Channel %1:] Axis %2 $AA_ESR_ENABLE = 1 but axis should be set to NEUTRAL

Parameters:
- %1 = Channel
- %2 = Axis, spindle

Definitions:
One axis with ESR configuration and $AA_ESR_ENABLE[Achse] = 1 should be set to NEUTRAL.
However, neutral axes (apart from single axes) cannot execute an ESR.

Reaction:
Alarm display.

Remedy:
Set $AA_ESR_ENABLE[Achse] = 0 before setting axis to NEUTRAL.
Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 6 = 1.

Program Continuation:
Clear alarm with the Delete key or NC START.

26121 [Channel %1:] Axis %2 is NEUTRAL and $AA_ESR_ENABLE = 1 should be set

Parameters:
- %1 = Channel
- %2 = Axis, spindle

Definitions:
$AA_ESR_ENABLE[Achse] = 1 should not be set to neutral axes (apart from single axes).
Neutral axes (apart from single axes) cannot execute an ESR.

Reaction:
Alarm display.

Remedy:
Do not apply $AA_ESR_ENABLE[Achse] = 1 to neutral axes (apart from single axes).
Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 6 = 1.

Program Continuation:
Clear alarm with the Delete key or NC START.

26122 [Channel %1:] Axis %2, $AA_ESR_ENABLE = 1, axis exchange not executed in this state

Parameters:
- %1 = Channel
- %2 = Axis, spindle

Definitions:
With $AA_ESR_ENABLE[Achse] = 1 axis exchange not permitted.
Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Set $AA_ESR_ENABLE[\text{axis}] = 0$ before axis exchange.

Program
Clear alarm with the RESET key. Restart part program

Continuation:
Set $AA_ESR_ENABLE[\text{axis}] = 0$

26124
[Channel %1:] Axis %2, $AC_ESR_TRIGGER triggered but axis is NEUTRAL and cannot execute ESR

Parameters:
- \%1 = Channel
- \%2 = Axis, spindle

Definitions:
- Channel-specific ESR ($AC_ESR_TRIGGER$) triggered, but one axis with ESR configuration is NEUTRAL at the time of triggering.
- Neutral axes are ignored with ESR (apart from single axes which react only to $AA_ESR_TRIGGER[Ax]$).

Reaction:
- Alarm display.

Remedy:
- $AA_ESR_ENABLE[Achse] = 1$ should not be set with neutral axes.
- Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2$ bit 6 = 1.

Program
Clear alarm with the Delete key or NC START.

Continuation:
Clear alarm with the RESET key. Restart part program

29033
[Channel %1:] Axis exchange of axis %2 not possible, PLC axis movement not yet completed

Parameters:
- \%1 = Channel number
- \%2 = Axis

Definitions:
- A PLC axis has not yet reached its end position and cannot be returned to a channel or neutralized. This alarm should not occur when PLC data block FC18 is used.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Wait until the axis has reached the end position or terminate the movement with delete distance to go.

Program
Clear alarm with the RESET key. Restart part program

Continuation:
Clear alarm with the RESET key. Restart part program

61000
%[[Channel %1:] Block %2: %]No tool offset active

Parameters:
- \%1 = Channel number
- \%2 = Block number, label

Definitions:
Alarm triggered by following cycles: LONGHOLE, SLOT1, SLOT2, POCKET1 bis POCKET4, CYCLE63, CYCLE64, CYCLE71, CYCLE72, CYCLE90, CYCLE93 through CYCLE96, CYCLE952.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
D-correction must be programmed before the cycle call.

Program
Clear alarm with the RESET key. Restart part program

Continuation:
Clear alarm with the RESET key. Restart part program
61001 [Channel %1:] Block %2: Thread pitch incorrectly defined
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE84, CYCLE840, CYCLE96, CYCLE97.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Check parameter for the thread size or setting for the pitch (contradict each other).
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61002 %][Channel %1:] Block %2: %]Type of machining incorrectly defined
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The value of the VARI parameter for the machining has been incorrectly specified. Alarm triggered by following cycles: SLOT1, SLOT2, POCKET1 to POCKET4, CYCLE63, CYCLE64, CYCLE71, CYCLE72, CYCLE76, CYCLE77, CYCLE93, CYCLE95, CYCLE97, CYCLE98.
Remedy:
Modify VARI parameter.
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61003 %][Channel %1:] Block %2: %]No feed programmed in cycle
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The parameter for the feed has been incorrectly specified. Alarm triggered by following cycles: CYCLE71, CYCLE72.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Modify feed parameter.
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61004 [Channel %1:] Block %2: Incorrect configuration of geometry axes
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The geometry-axes sequence is wrong. CYCLE328
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
--
Program
Clear alarm with the RESET key. Restart part program
Continuation:
61005 [Channel %1:] Block %2: 3rd geometry axis not available
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: With an application on the lathe with no Y-axis in the G18 plane. Alarm triggered by following cycle: CYCLE86.
Remedy: Check parameter on cycle call.

61006 %[[Channel %1:] Block %2: %]Tool radius too large
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The tool radius is too large for machining. Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE930,
 CYCLE951, E_CP_CE, E_CP_CO, E_CP_DR, E_PO_CIR, E_PO_REC, F_CP_CE, F_CP_CO, F_CP_DR,
 F_PO_CIR, F_PO_REC.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Select a smaller tool.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61007 [Channel %1:] Block %2: Tool radius too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The tool radius is too small for machining. Alarm triggered by following cycles: CYCLE92, E_CP_CO, E_SL_CIR,
 F_CP_CO, F_PARTOF, F_SL_CIR.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Select a larger tool.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61008 [Channel %1:] Block %2: No tool active
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles:
Remedy: Select a tool.

61009 [Channel %1:] Block %2: Active tool number = 0
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: No tool (T) has been programmed before the cycle call. Alarm triggered by following cycles: CYCLE71, CYCLE72.
NCK alarms

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program tool (T).

Program: Clear alarm with the RESET key. Restart part program

Continuation:

61010 [Channel %1:] Block %2: Finishing allowance too large

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The finishing allowance for the base is greater than the total depth. Alarm triggered by following cycle: CYCLE72.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Reduce finishing allowance.

Program: Clear alarm with the RESET key. Restart part program

Continuation:

61011 [Channel %1:] Block %2: Scaling not permissible

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A scale factor is active which is illegal for this cycle. Alarm triggered by following cycles: CYCLE71, CYCLE72.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify scale factor.

Program: Clear alarm with the RESET key. Restart part program

Continuation:

61012 %][Channel %1:] Block %2: %]Different scaling in planes

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE76, CYCLE77.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: --

Program: Clear alarm with the RESET key. Restart part program

Continuation:
61013 [Channel %1:] Block %2: Basic settings were changed, program cannot be executed

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: The basic settings are not compatible with the generated program. Alarm triggered by following cycles: E_CP_CE, E_CP_CO, E_CP_DR, F_CP_CE, F_CP_CO, F_CP_DR.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check and, if necessary, change the basic settings.

Program Continuation: Clear alarm with the RESET key. Restart part program

61014 [Channel %1:] Block %2: Return plane exceeded

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: Alarm triggered by following cycles: CYCLE72.

Remedy: Check parameter RTP.

61015 [Channel %1:] Block %2: Contour is not defined

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: Alarm triggered by following cycles: .

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Program Continuation: Clear alarm with the RESET key. Restart part program

61016 [Channel %1:] Block %2: System frame for cycles missing

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: All measuring cycles can trigger this alarm.

Remedy: Set MD 28082: MM_SYSTEM_FRAME_MASK, Bit 5=1.

61017 [Channel %1:] Block %2: %]function %4 not present in NCK

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: Alarm triggered by following cycles: .

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy:
Program
Continuation: Clear alarm with the RESET key. Restart part program

61018 [Channel %1:] Block %2: function %4 not executable with NCK
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program
Continuation: Clear alarm with the RESET key. Restart part program

61019 %[[Channel %1:] Block %2: %] Parameter %4 incorrectly defined
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: CYCLE60, CYCLE63, CYCLE64, CYCLE83, CYCLE952.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program
Continuation: Check the value of the parameter.
Clear alarm with the RESET key. Restart part program

61020 [Channel %1:] Block %2: Machining not possible with active TRANSMIT/TRACYL
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program
Continuation: Clear alarm with the RESET key. Restart part program

61021 [Channel %1:] Block %2: Parameter %4 value too high
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program
Continuation: Clear alarm with the RESET key. Restart part program

61022 [Channel %1:] Block %2: Parameter %4 value too low
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program
Continuation: Clear alarm with the RESET key. Restart part program

61023 [Channel %1:] Block %2: Parameter %4 value must be unequal to zero
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program
Continuation: Clear alarm with the RESET key. Restart part program

61024 [Channel %1:] Block %2: Parameter %4 check value
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program
Continuation: Clear alarm with the RESET key. Restart part program
NCK alarms

61025

[Channel %1:] Block %2: Check tool carrier position

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
Alarm triggered by following cycles: .

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Program
 - Clear alarm with the RESET key. Restart part program

Continuation:
- Clear alarm with the RESET key. Restart part program

61026

[Channel %1:] Block %2: Cycle cannot be executed with NC function %4.

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
Alarm triggered by following cycles: .

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Program
 - Clear alarm with the RESET key. Restart part program

Continuation:
- Clear alarm with the RESET key. Restart part program

61027

%[[Channel %1:] Block %2: %]Subroutine %4 does not exist

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE62

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check CYCLE62 call
- Check whether the subroutines specified on CYCLE62 call exist in the program storage

Program
- Clear alarm with the RESET key. Restart part program

Continuation:
- Clear alarm with the RESET key. Restart part program

61028

[Channel %1:] Block %2: Contour name %4 too long

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE62

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Use shorter contour name

Program
- Clear alarm with the RESET key. Restart part program

Continuation:
- Clear alarm with the RESET key. Restart part program
61029

%[[Channel %1:] Block %2:]Program name %4 too long

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles: CYCLE62, CYCLE63, CYCLE64, CYCLE952

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- use shorter program name

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61030

[Channel %1:] Block %2: Path not permitted: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61031

[Channel %1:] Block %2: Path not found: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61032

[Channel %1:] Block %2: File not found: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Program
Clear alarm with the RESET key. Restart part program

Continuation:
[Channel %1:] Block %2: Incorrect file type: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program
Continuation:
Clear alarm with the RESET key. Restart part program

[Channel %1:] Block %2: File is full: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program
Continuation:
Clear alarm with the RESET key. Restart part program

[Channel %1:] Block %2: File in use: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program
Continuation:
Clear alarm with the RESET key. Restart part program

[Block %1:] Block %2: NC storage limit reached: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program
Continuation:
Clear alarm with the RESET key. Restart part program
61037 [Channel %1:] Block %2: No access rights to file: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Program
- Continuation:
 - Clear alarm with the RESET key. Restart part program

61038 [Channel %1:] Block %2: Other file error: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Program
- Continuation:
 - Clear alarm with the RESET key. Restart part program

61039 [Channel %1:] Block %2: Line not available: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Program
- Continuation:
 - Clear alarm with the RESET key. Restart part program

61040 [Channel %1:] Block %2: Line longer than result variable: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Program
- Continuation:
 - Clear alarm with the RESET key. Restart part program
61041 **[Channel %1]: Block %2: Line range too large: %4**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles:

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Program

Continuation:
Clear alarm with the RESET key. Restart part program

61042 **[Channel %1]: Block %2: Program name %4 illegal**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles: CYCLE63, CYCLE64, CYCLE952

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
In the case of multi-channel systems, the main program name must not end with _Cxx (xx stands for figures).
Rename main program.

Program

Continuation:
Clear alarm with the RESET key. Restart part program

61043 **[Channel %1]: Block %2: Error affecting coordinate conversion (%4)**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles: F_SP_RP, F_SP_RP2, F_SP_RPB

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
1: Type not specified
2: Error during tool identification
3: Meas. point 1 not available
4: Meas. point 2 not available
5: Meas. point 3 not available
4: Meas. point 4 not available
7: No reference point available
8: No direction of approach
9: Meas. points are identical
10: Alpha is incorrect
11: Phi is incorrect
12: Incorrect direction of approach
13: Lines do not intersect
14: Planes not available
15: No frame or incorrect frame selected
16: Not enough memory available
17: Internal error

Program

Continuation:
Clear alarm with the RESET key. Restart part program
61044

[Channel %1:] Block %2: %]Illegal character(s) in file name: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE952, CYCLE63, CYCLE64

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Remove illegal character from file name
- Permitted characters are: letters, figures, underscore, slash with path name

Program Continuation:
- Clear alarm with the RESET key. Restart part program

61045

[Channel %1:] Block %2: Job list not found: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm triggered by following cycle: CYCLE208

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- The specified job list could not be found.
- Check name and contents of job list.
- The job list must be in the same workpiece as the part program.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

61046

[Channel %1:] Block %2: Part program not found in job list: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm triggered by following cycle: CYCLE208

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Part program (main program) not found in specified job list in respective channel.
- Check name and contents of job list.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

61047

[Channel %1:] Block %2: Label name %4 too long

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm triggered by following cycle: CYCLE62

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
Remedy: - select shorter label name
Program Clear alarm with the RESET key. Restart part program
Continuation:

61048 [Channel %1:] Block %2: Multi-channel data not found in job list: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE208
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Multi-channel data not found in job list.
Correct job list.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61049 [Channel %1:] Block %2: 1st spindle not programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The alarm was triggered by the following cycles: CYCLE209
First spindle in mask was not programmed.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program 1st spindle in the mask.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61050 [Channel %1:] Block %2: Spindle programmed twice
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm was triggered by the following cycles: CYCLE209
The same spindle was programmed twice.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Leave 2nd spindle empty or program other spindle.
Program Clear alarm with the RESET key. Restart part program
Continuation:
61051 %[[Channel %1:] Block %2: %]Program name assigned twice

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm was triggered by the following cycles: CYCLE63, CYCLE64, CYCLE952
- The same program name was assigned twice.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- When using CYCLE952, the name of the main program must not be the same as the name of the cutting file (PRG) or the name of the updated blank contour (CONR).
- When using CYCLE63 and/or CYCLE64, the name of the main program must not be the same as the name of the program to be generated (PRG).

Program Continuation:
- Clear alarm with the RESET key. Restart part program

61052 [Channel %1:] Block %2: Maximum spindle speed for main spindle not entered

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm was triggered by the following cycles: CYCLE209, F_PARTOF, F_SUB_SP
- Max. speed for main spindle was not entered.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Enter speed limit in program header or under settings.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

61053 [Channel %1:] Block %2: Maximum spindle speed not entered for counterspindle

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm was triggered by the following cycles: CYCLE209, F_PARTOF, F_SUB_SP
- Maximum speed of counterspindle was not entered.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Enter speed limit in program header or under settings.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

61054 [Channel %1:] Block %2: Programs started from various job lists: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm was triggered by the following cycles: CYCLE208
- Programs from various job lists were started simultaneously.
- This is illegal. All programs must be assigned to the same job list.

NCK alarms

| Reaction | Interpreter stop
| NC Start disable in this channel.
| Interface signals are set.
| Alarm display. |

| Remedy | Select desired job list again, and start programs afresh.
| Program | Clear alarm with the RESET key. Restart part program |

61099
[Channel %1:] Block %2: Internal cycle error (%4)

| Parameters | %1 = Channel number
| %2 = Block number, label channel number |

| Definitions | Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE71, CYCLE72, CYCLE81 to CYCLE90, CYCLE840, SLOT1, SLOT2, POCKET1 to POCKET4, LONGHOLE. |

| Reaction | Interpreter stop
| NC Start disable in this channel.
| Interface signals are set.
| Alarm display. |

| Remedy | With an incremental specification of the depth, either different values have to be selected for the reference point (reference plane) and the retraction plane, or an absolute value must be specified for the depth. |

| Program | Clear alarm with the RESET key. Restart part program |

61101
%[[Channel %1:] Block %2: %]Reference point defined incorrectly

| Parameters | %1 = Channel number
| %2 = Block number, label |

| Definitions | Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE86, CYCLE87, CYCLE88, CYCLE840, POCKET3, POCKET4. |

| Reaction | Interpreter stop
| NC Start disable in this channel.
| Interface signals are set.
| Alarm display. |

| Remedy | Parameter SDIR (or SDR in CYCLE840) must be programmed. |

| Program | Clear alarm with the RESET key. Restart part program |

61102
%[[Channel %1:] Block %2: %]No spindle direction programmed

| Parameters | %1 = Channel number
| %2 = Block number, label |

| Definitions | Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE86, CYCLE87, CYCLE88, CYCLE840, POCKET3, POCKET4. |

| Reaction | Interpreter stop
| NC Start disable in this channel.
| Interface signals are set.
| Alarm display. |

| Remedy | Parameter SDIR (or SDR in CYCLE840) must be programmed. |

| Program | Clear alarm with the RESET key. Restart part program |
61103 [Channel %1:] Block %2: Number of holes is zero
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No value for the number of holes has been programmed. Alarm triggered by following cycles: HOLES1, HOLES2.
Remedy: Check parameter NUM.
Program Continuation: Clear alarm with the RESET key. Restart part program

61104 [Channel %1:] Block %2: Contour violation of slots
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Incorrect parameterization of the milling pattern in the parameters which define the position of the slots/elongated holes on the circle and their form. Alarm triggered by following cycles: SLOT1, SLOT2, LONGHOLE.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61105 [Channel %1:] Block %2: Milling cutter radius too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The diameter of the cutter used is too large for the form to be machined. Alarm triggered by following cycles: SLOT1, SLOT2, POCKET1 to POCKET4, LONGHOLE, CYCLE90.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Either a tool with a smaller radius has to be used or the contour must be modified.
Program Continuation: Clear alarm with the RESET key. Restart part program

61106 [Channel %1:] Block %2: Number of or distance between circular elements
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Incorrect parameterization of NUM or INDA. The layout of the circle elements within a full circle is not possible. Alarm triggered by following cycles: HOLES2, LONGHOLE, SLOT1, SLOT2.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Correct parameterization.
Program Continuation: Clear alarm with the RESET key. Restart part program
61107 [Channel %1:] Block %2: First drilling depth incorrectly defined
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: First drilling depth is in the opposite direction to the total drilling depth. Alarm triggered by following cycle: CYCLE83.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Modify drilling depth.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61108 [Channel %1:] Block %2: Illegal values for radius and insertion depth parameters
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The radius (_RAD1) and insertion depth (_DP1) parameters for defining the helix path for the depth infeed have been incorrectly specified. Alarm triggered by following cycles: POCKET3, POCKET4.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Modify parameter.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61109 %[[Channel %1:] Block %2: %]Milling direction parameter incorrectly defined
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The value of the parameter for the cutting direction _CDIR has been incorrectly defined. Alarm triggered by following cycles: CYCLE63, CYCLE64, POCKET3, POCKET4.
Remedy: - Change milling direction.
 - During pocket machining (CYCLE63), the selected milling direction must match the milling direction of centering/rough drilling.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61110 [Channel %1:] Block %2: Finishing allowance at bottom > depth infeed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The finishing allowance at the base has been specified greater than the maximum depth infeed. Alarm triggered by following cycles: POCKET3, POCKET4.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Either reduce finishing allowance or increase depth infeed.
Program Clear alarm with the RESET key. Restart part program
Continuation:
61111 [Channel %1:] Block %2: Infeed width > Tool diameter

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The programmed infeed width is greater than the diameter of the active tool. Alarm triggered by following cycles: CYCLE71, POCKET3, POCKET4.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Infeed width must be reduced.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61112 [Channel %1:] Block %2: Tool radius negative

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The radius of the active tool is negative. This is illegal. Alarm triggered by following cycles: CYCLE72, CYCLE76, CYCLE77, CYCLE90.

Remedy:
Change the tool radius.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61113 [Channel %1:] Block %2: Parameter for corner radius too large

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The parameter for the corner radius _CRAD has been specified too large. Alarm triggered by following cycle: POCKET3.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Reduce corner radius.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61114 [Channel %1:] Block %2: Machining direction G41/G42 incorrectly defined

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The machining direction of the cutter radius compensation G41/G42 has been incorrectly selected. Alarm triggered by following cycle: CYCLE72.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Change machining direction.

Program Continuation:
Clear alarm with the RESET key. Restart part program.
61115 [Channel %1:] Block %2: Approach or retract mode(straight / circle / plane / space) incorrectly defined

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The approach or retract mode to/from the contour has been incorrectly defined. Alarm triggered by following cycle:
 CYCLE72.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Check parameter _AS1 or _AS2.

Program Clear alarm with the RESET key. Restart part program

Continuation:

61116 [Channel %1:] Block %2: Approach or retract path = 0

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The approach or retract path has been specified with zero. Alarm triggered by following cycle: CYCLE72.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Check parameter _LP1 or _LP2.

Program Clear alarm with the RESET key. Restart part program

Continuation:

61117 %[[Channel %1:] Block %2: %]Active tool radius <= 0

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The radius of the active tool is negative or zero. Alarm is triggered by the following cycles: CYCLE63, CYCLE71,
 POCKET3, POCKET4.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Modify radius.

Program Clear alarm with the RESET key. Restart part program

Continuation:

61118 [Channel %1:] Block %2: Length or width = 0

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The length or width of the milling area is illegal. Alarm triggered by following cycle: CYCLE71.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Check parameters _LENG and _WID.
Program Continuation: Clear alarm with the RESET key. Restart part program

61119 [Channel %1:] Block %2: Nominal or core diameter programmed incorrectly

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The nominal or core diameter was incorrectly programmed. Alarm triggered by following cycles: CYCLE70, E_MI_TR, F_MI_TR.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check thread geometry.

Program Continuation: Clear alarm with the RESET key. Restart part program

61120 [Channel %1:] Block %2: Thread type inside / outside not defined

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The thread type (internal/external) was not defined. Alarm triggered by following cycles: CYCLE70.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: The internal/external thread type must be entered.

Program Continuation: Clear alarm with the RESET key. Restart part program

61121 [Channel %1:] Block %2: Number of teeth per cutting edge is missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No value was entered for the number of teeth per cutting edge. Alarm triggered by following cycles: CYCLE70.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Enter the number of teeth/cutting edges for the active tool into the tool list.

Program Continuation: Clear alarm with the RESET key. Restart part program

61122 [Channel %1:] Block %2: Safety distance incorrectly defined in plane

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The safety clearance is negative or zero. This is not allowed.
NCK alarms

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Define the safety clearance.

Program
- Clear alarm with the RESET key. Restart part program

Continuation:

61123

[Channel %1:] Block %2: CYCLE72 cannot be simulated

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm triggered by following cycle: CYCLE72.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- With active simulation without tool, a value for the infeed width _MIDA must always be programmed.

Program
- Clear alarm with the RESET key. Restart part program

Continuation:

61124

[Channel %1:] Block %2: Infeed width is not programmed

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm triggered by following cycle: CYCLE71.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- With active simulation without tool, a value for the infeed width _MIDA must always be programmed.

Program
- Clear alarm with the RESET key. Restart part program

Continuation:

61125

[Channel %1:] Block %2: Technology selection parameter incorrectly defined

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- Alarm triggered by following cycles: CYCLE84, CYCLE840.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check technology selection parameter (_TECHNO).

Program
- Clear alarm with the RESET key. Restart part program

Continuation:
61126 [Channel %1:] Block %2: Thread length too short
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE840.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Program lower spindle speed or raise reference point (reference plane).
Program Continuation: Clear alarm with the RESET key. Restart part program

61127 [Channel %1:] Block %2: Wrong definition of tapping axis transformation ratio
(machine data)
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE84, CYCLE840.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check machine data 31050 and 31060 in the appropriate gear stage of the drilling axis.
Program Continuation: Clear alarm with the RESET key. Restart part program

61128 [Channel %1:] Block %2: Insertion angle = 0 for insertion with oscillation or helix
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: SLOT1.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check parameter _STA2.
Program Continuation: Clear alarm with the RESET key. Restart part program

61129 [Channel %1:] Block %2: perpendic. approach and retraction during contour milling
only allowed with G40
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE72.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy:
NCK alarms

Program Continuation:
Clear alarm with the RESET key. Restart part program

61130 [Channel %1:] Block %2: positions of parallel axes cannot be compensated. No workpiece reference agreed.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program Continuation:
Clear alarm with the RESET key. Restart part program

61131 [Channel %1:] Block %2: parameter _GEO incorrect, _GEO=%4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program Continuation:
Clear alarm with the RESET key. Restart part program

61132 [Channel %1:] Block %2: Parallel axis parameters incorrect, check values for parallel axis parameters ABS/INK

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program Continuation:
Clear alarm with the RESET key. Restart part program

61133 [Channel %1:] Block %2: 3rd parallel axis parameter incorrect, check axis name or GUD _SCW_N[]

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.
NCK alarms

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Clear alarm with the RESET key. Restart part program

61134
[Channel %1:] Block %2: Rotary axis parameters incorrect, check values for rotary axis parameters ABS/INK

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Clear alarm with the RESET key. Restart part program

61135
[Channel %1:] Block %2: incorrect parameter sequence for approaching target position: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Clear alarm with the RESET key. Restart part program

61136
[Channel %1:] Block %2: no 3rd geometry axis agreed in GUD _SCW_N[]

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Clear alarm with the RESET key. Restart part program
61137 [Channel %1:] Block %2: swiveling and parallel axes cycle are mutually exclusive because of workpiece reference $P_WPFRAME

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61138 [Channel %1:] Block %2: parameter %4 incorrectly defined for tool monitoring in cycles

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61139 [Channel %1:] Block %2: error in function Tool monitoring in cycles

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE69.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61150 [Channel %1:] Block %2: Tool cannot be aligned --> error code: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE800.

Remedy:
Causes of error:
1st error code = A -> only new swivel plane permitted, see parameter _ST

Alarms

Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0
61151 [Channel %1:] Block %2: Orientation of tool not possible --> error code: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Remedy: Causes of error:
1st error code = A -> only additive swivel plane permitted, see parameter _ST

61152 [Channel %1:] Block %2: B axis kinematics (turning technology) either not or incorrectly set up in Start-up of swivel cycle --> error code: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Remedy: Causes of error:
1st error code = A123 -> B axis not an automatic rotary axis under ShopTurn (123 corresponds to parameter _TCBA)
2nd error code = B123 -> B axis not activated in swiveling start-up (kinematics)
(123 corresponds to $TC_CARR37[n], n ... number of the swivel data record)

61153 [Channel %1:] Block %2: No 'Rotary axes direct' swivel mode possible --> error code: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Remedy: Causes of error:
1st error code = A -> No tool or cutting edge (D1..) active

61154 [%][Channel %1:] Block %2: %]Final depth wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE63, CYCLE64, CYCLE899
Remedy: Input of end depth possible only absolutely or incrementally

61155 [Channel %1:] Block %2: Unit for plane infeed wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE899
Remedy: Unit for plane infeed possible only in mm or % of tool diameter

61156 [Channel %1:] Block %2: Depth calculation wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE899
Remedy: Depth calculation possible only with or without SDIS
61157 %[[Channel %1:] Block %2: %]Reference point wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE63, CYCLE64, CYCLE899
Remedy: Check reference point in screen form, input only -X, centred or +X

61158 %[[Channel %1:] Block %2: %]Machining plane wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE63, CYCLE64, CYCLE899, CYCLE952
Remedy: Check machining plane (G17, G18 or G19)

61159 [Channel %1:] Block %2: Machining plane on cycle call differs from the one in the position pattern
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE899
Remedy: Adjust the machining plane on cycle call to the machining plane in the position pattern.

61160 [Channel %1:] Block %2: Residual material remains stationary, reduce plane infeed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE899
Remedy: Reduce plane infeed or slot width, or use milling cutter with larger diameter

61161 [Channel %1:] Block %2: Centering diameter or tool parameter (diameter, tip angle) are incorrect
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE81
Remedy: - Diameter of centering with tip angle of active tool not possible
- Entered workpiece diameter, tool diameter or tip angle of tool incorrect
- Diameter of tool only has to be entered if centering is to be on workpiece diameter.
Program Continuation: Clear alarm with the RESET key. Restart part program

61162 [Channel %1:] Block %2: Tool parameter diameter or tip angle incorrect
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE81
Remedy: - The tool parameter diameter or tip angle must be greater than zero
- Tip angle must be less than 180°
61163 [Channel %1:] Block %2: Infeed width in the plane too large
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The alarm is triggered by the following cycles: CYCLE899
Remedy: --
Program Continuation:
 Clear alarm with the RESET key. Restart part program

61175 [Channel %1:] Block %2: angle of aperture programmed too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The angle of aperture of the text (_DF) in the engraving cycle is too small. This means that the text for engraving does not fit in the specified angle.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter a larger angle of aperture.
Program Continuation:
 Clear alarm with the RESET key. Restart part program

61176 [Channel %1:] Block %2: text length programmed too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The text length (_DF) in the engraving cycle is too short. This means that the text for engraving is longer than the specified text length.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter longer text length
Program Continuation:
 Clear alarm with the RESET key. Restart part program

61177 [Channel %1:] Block %2: polar text length > 360 degrees
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: In the engraving cycle, the polar text length must not exceed 360 degrees.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter shorter text length.
Program Continuation:
 Clear alarm with the RESET key. Restart part program
61178 [Channel %1:] Block %2: code page not present
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The specified code page is not supported by the cycle.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Use code page 1252.
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61179 [Channel %1:] Block %2: character does not exist, no.: %4
Parameters:
%1 = Channel number
%2 = Block number, label
%4 = Character number
Definitions:
The character entered in the text for engraving cannot be milled.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Enter another character.
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61180 [Channel %1:] Block %2: No name assigned to swivel data record
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Although there are several swivel data blocks, no unique names have been assigned. Alarm triggered by following cycles: CYCLE800.
Remedy:
Assign unique name to swivel data block ($TC_CARR34[n]) if machine data 18088 $MN_MM_NUM_TOOL_CARRIER is >1.

61181 [Channel %1:] Block %2: NCK software version is insufficient for the Swivel function
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Swivelling is not possible with the current NCK software version. Alarm triggered by following cycles: CYCLE800.
Remedy:
Upgrade NCK software to NCK 75.00 or higher.

61182 [Channel %1:] Block %2: Name of swivel data record unknown: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The specified name of the swivel data block is unknown. Alarm triggered by following cycles: CYCLE800.
Remedy:
Check name of swivel data record $TC_CARR34[n].
61183 [Channel %1:] Block %2: Swivel CYCLE800: Retraction mode parameter lies outside value range: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The value of the retraction mode parameter (_FR) lies outside the valid range. Alarm triggered by following cycles: CYCLE800.
Remedy:
Swivel CYCLE800: Check transfer parameter _FR. Value range 0 to 8

61184 [Channel %1:] Block %2: No solution possible with current input angle values
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The surface defined via the input angle cannot be processed with the machine. Alarm triggered by following cycles: CYCLE800.
Remedy:
-Check the angles entered for swiveling the machining plane: %4
-Parameter _MODE coding incorrect, e.g. rotation axis-wise YXY

61185 [Channel %1:] Block %2: Invalid angular ranges of rotary axes in swivel data record: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The angular range of the rotary axes is invalid. Alarm triggered by following cycles: CYCLE800.
Check setup of the swivel CYCLE800.
Parameter $TC_CARR30[n]$ to $TC_CARR33[n]$ n number of swivel data record
Example: Rotary axis 1 modulo 360 degrees: -> $TC_CARR30[n]=0$ $TC_CARR32[n]=360$
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Check setup of swivel cycle CYCLE800.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61186 [Channel %1:] Block %2: Invalid rotary axis vectors --> Check setup of the swivel cycle CYCLE800.
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
No or incorrect entry for rotary axis vector V1 or V2. Alarm triggered by following cycles: CYCLE800.
Remedy:
Check setup of swivel CYCLE800
Check rotary axis vector V1: $TC_CARR7[n]$, $TC_CARR8[n]$, $TC_CARR9[n]$
Check rotary axis vector V2: $TC_CARR10[n]$, $TC_CARR11[n]$, $TC_CARR12[n]$
n number of swivel data record
61187 [Channel %1:] Block %2: Check setup of the swivel cycle CYCLE800. --> Error code: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The alarm is triggered by the following cycles: CYCLE800.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Error code: See current cycles software version notes in siemense.txt
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61188 [Channel %1:] Block %2: No axis name agreed for rotary axis 1 -> Check setup of the swivel cycle CYCLE800.
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
No axis name was specified for the rotary axis 1. Alarm triggered by following cycles: CYCLE800.
Remedy:
Check setup of swivel CYCLE800.
Axis name of rotary axis 1 see parameter $TC_CARR35[n] n number of swivel data record

61189 [Channel %1:] Block %2: Swivel direct: Invalid rotary axis positions: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Swivel direct: Check input values of rotary axes. Alarm triggered by following cycles: CYCLE800.
Remedy:
Swivel mode direct: Check input values of rotary axes or setup of swivel CYCLE800.
Check angular range of rotary axes in swivel data record n:
Rotary axis 1: $TC_CARR30[n], $TC_CARR32[n]
Rotary axis 2: $TC_CARR31[n], $TC_CARR33[n]

61190 [Channel %1:] Block %2: Unable to retract prior to swiveling -> Error code: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
See error code for error causes. The alarm is triggered by the following cycles: CYCLE800.
Remedy:
Check setup of swiveling CYCLE800. Parameter $TC_CARR37[n] 7th and 8th decimal place
n number of swivel data record
Error code:
A: Retraction Z not set up
B: Retraction Z XY not set up
C: Retraction in tool direction max. not set up
D: Retraction in tool direction incremental not set up
E: Retraction in tool direction: NC function CALCPOSI reports error
F: Retraction in tool direction: no tool axis existing
G: Retraction in tool direction max.: negative retraction path
H: Retraction in tool direction incremental: negative retraction path
I: Retraction not possible
61191: [Channel %1:] Block %2: Multi-axis transformation not set up. Error code: %4

| Parameters: | %1 = Channel number
| | %2 = Block number, label |
| Definitions: | See error code for error cause. The alarm is triggered by the following cycles: CYCLE800, 832. |
| Reaction: | Interpreter stop
	NC Start disable in this channel.
	Interface signals are set.
	Alarm display.
Remedy:	Error code:
	Number or parameter name of multi-axis transformation
Program Continuation:	Clear alarm with the RESET key. Restart part program

61192: [Channel %1:] Block %2: Additional multi-axis transformations not set up. Error code: %4

| Parameters: | %1 = Channel number
| | %2 = Block number, label |
| Definitions: | See error code for error cause. The alarm is triggered by the following cycles: CYCLE800, 832. |
| Reaction: | Interpreter stop
	NC Start disable in this channel.
	Interface signals are set.
	Alarm display.
Remedy:	Error code:
	Number or parameter name of multi-axis transformation
Program Continuation:	Clear alarm with the RESET key. Restart part program

61193: [Channel %1:] Block %2: compressor option not set up

| Parameters: | %1 = Channel number
| | %2 = Block number, label |
| Definitions: | The alarm is triggered by the following cycles: CYCLE832. |
| Reaction: | Interpreter stop
	NC Start disable in this channel.
	Interface signals are set.
	Alarm display.
Remedy:	--
Program Continuation:	Clear alarm with the RESET key. Restart part program

61194: [Channel %1:] Block %2: spline interpolation option not set up

| Parameters: | %1 = Channel number
| | %2 = Block number, label |
| Definitions: | The alarm is triggered by the following cycles: CYCLE832. |
| Reaction: | Interpreter stop
	NC Start disable in this channel.
	Interface signals are set.
	Alarm display.
Remedy:	--
Clear alarm with the RESET key. Restart part program

61196

[Channel %1:] Block %2: No swiveling in JOG --> Multi-axis transformations and TCARR activated at the same time

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Multi-axis transformations (TRAORI) and Toolcarrier (TCARR) activated at the same time.
Alarm triggered by following cycles: CYCLE800.

Remedy:
Deselection of multi-axis transformation with TRAFOOF
or deselection of Toolcarrier (TCARR) with CYCLE800()

61197

[Channel %1:] Block %2: Swiveling - plane not allowed --> Error code %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE800.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Error code:

Program
Clear alarm with the RESET key. Restart part program

61198

[Channel %1:] Block %2: Swiveling with kinematic chain --> Error code: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE800.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
--

Program
Clear alarm with the RESET key. Restart part program

61199

[Channel %1:] Block %2: Swiveling - tool not allowed --> Error code: %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
See error code for error cause. Alarm triggered by following cycles: CYCLE800.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Error code:
A: Orientation of tool and change of swivel data record not allowed
61200 [Channel %1:] Block %2: Too many elements in machining block

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The machining block contains too many elements.
Alarm triggered by following cycles: CYCLE76, CYCLE77, E_CALL, E_DR, E_DR_BGF, E_DR_BOR, E_DR_O1, E_DR_PEC, E_DR_REA, E_DR_SIN, E_DR_TAP, E_MI_TR, E_PI_CIR, E_PI_REC, E_PO_CIR, E_PO_REC, E_PS_CIR, E_PS_FRA, E_PS_HIN, E_PS_MRX, E_PS_POL, E_PS_ROW, E_PS_SEQ, E_PS_XYA, E_SL_LON, F_DR, F_DR_PEC, F_DR_REA, F_DR_SIN, F_DR_TAP, F_MI_TR, F_PI_CIR, F_PI_REC, F_PO_CIR, F_PO_REC, F_PS_CIR, F_PS_MRX, F_PS_ROW, F_PS_SEQ, F_SL_LON

Remedy:
Check the machining block, delete some elements if required.

61201 [Channel %1:] Block %2: Wrong sequence in machining block

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The sequence of elements in the machining block is invalid.
Alarm triggered by following cycles: E_CP_CE, E_CP_DR, E_MANAGE, F_CP_CE, F_CP_DR, F_MANAGE.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Sort the sequence in the machining block.

61202 [Channel %1:] Block %2: No technology cycle

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
No technology cycle was programmed in the machining block.
Alarm triggered by following cycles: E_MANAGE, F_MANAGE.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program a technology block.

61203 [Channel %1:] Block %2: No position cycle

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
No positioning cycle was programmed in the machining block.
Alarm triggered by following cycles: E_MANAGE, F_MANAGE.
NCK alarms

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Program positioning block.

Program

Program Continuation:
Clear alarm with the RESET key. Restart part program

61204
[Channel %1:] Block %2: Technology cycle unknown

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The specified technology cycle in the machining block is unknown.
Alarm triggered by following cycles: E_MANAGE, F_MANAGE.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Delete and reprogram the technology block.

Program

Program Continuation:
Clear alarm with the RESET key. Restart part program

61205
[Channel %1:] Block %2: Position cycle unknown

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The specified positioning cycle in the machining block is unknown.
Alarm triggered by following cycles: E_MANAGE, F_MANAGE.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Delete and reprogram the positioning block.

Program

Program Continuation:
Clear alarm with the RESET key. Restart part program

61206
[Channel %1:] Block %2: Synchronizing possible only when using a job list

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Synchronizing with a counterspindle step in another channel is possible only if a job list is used.
Alarm is triggered by the following cycles: F_SUB_SP.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Create job list and add programs for the individual channels.

Program

Program Continuation:
Clear alarm with the RESET key. Restart part program
NCK alarms

61207
[Channel %1:] Block %2: No counterspindle step found for synchronizing

| Parameters: | %1 = Channel number
%2 = Block number, label |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions:</td>
<td>No counterspindle step was found in any channel with which this channel could synchronize. Alarm is triggered by the following cycles: F_SUB_SP.</td>
</tr>
</tbody>
</table>
| Reaction: | Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display. |
| Remedy: | Control program.
Delete step for synchronizing if it is not required. |
| Program Continuation: | Clear alarm with the RESET key. Restart part program |

61208
[Channel %1:] Block %2: Assign parameters for main spindle chuck in the spindle chuck data

| Parameters: | %1 = Channel number
%2 = Block number, label |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions:</td>
<td>The parameters for the main spindle chuck in the spindle chuck data are not assigned. Alarm triggered by the following cycles: F_SUB_SP.</td>
</tr>
</tbody>
</table>
| Reaction: | Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display. |
| Remedy: | Indicate parameters ZCn, ZSn and ZEn in the mask “Parameters” > “Setting data” > “Spindle chuck data”. |
| Program Continuation: | Clear alarm with the RESET key. Restart part program |

61210
[Channel %1:] Block %2: Block search element not found

| Parameters: | %1 = Channel number
%2 = Block number, label |
|---|---|
| Definitions: | The element specified for the block search does not exist.
Alarm triggered by following cycles: E_MANAGE, E_PS_CIR, E_PS_MRX, E_PS_POL, E_PS_SEQ, E_PS_XYA, F_MANAGE, F_PS_CIR, F_PS_MRX, F_PS_SEQ |
| Reaction: | Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display. |
| Remedy: | Repeat block search. |
| Program Continuation: | Clear alarm with the RESET key. Restart part program |
NCK alarms

61211 [Channel %1:] Block %2: Absolute reference missing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An incremental indication was made, but the absolute reference is unknown.
Alarm triggered by following cycles: E_MI_CON, E_MI_PL, E_PI_CIR, E_PI_REC, E_PO_CIR, E_PO_REC, E_PS_CIR, E_PS_HIN, E_PS_MRX, E_PS_POL, E_PS_SEQ, E_PS_XYA, E_SL_CIR, E_SL_LON, F_PS_CIR, F_PS_MRX, F_PS_SEQ

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program an absolute position prior to using incremental indications.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61212 %[[Channel %1:] Block %2: %]Wrong tool type

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tool type is not suitable for machining.
Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE92, CYCLE951, CYCLE952, E_DR, E_DR_O1, E_DR_PEC, E_DR_SIN, E_MI_TXT, F_DR, F_DR_PEC, F_DR_SIN, F_DRILL, F_DRILLC, F_DRILLD, F_DRM_DR, F_DRM_PE, F_DRM_SI, F_GROOV, F_MI_TXT, F_MT_LEN, F_PARTOF, F_ROU_Z, F_ROUGH, F_SP_EF, F_TAP, F_TR_CON, F_UCUT_T

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Select a new tool type.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61213 [Channel %1:] Block %2: Circle radius too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The programmed circle radius is too small.
Alarm triggered by following cycles: CYCLE77, E_CR_HEL, E_PI_CIR, E_PO_CIR, E_PO_REC, F_PI_CIR, F_PO_CIR, F_PO_REC

Remedy:
Correct the circle radius, center point or end point.

61214 [Channel %1:] Block %2: No pitch programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
No thread/helical pitch has been entered.
Alarm triggered by following cycles: E_CR_HEL, E_PO_CIR, E_PO_REC, F_PO_CIR, F_PO_REC.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program a pitch.
NCK alarms

Program
Continuation: Clear alarm with the RESET key. Restart part program

61215 [Channel %1:] Block %2: Unfinished dimension incorrectly programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Check the blank spigot dimensions. The blank spigot must be larger than the production part spigot.
Alarm triggered by following cycles: CYCLE76, CYCLE77, E_PI_CIR, E_PI_REC, E_PO_CIR, E_PO_REC, F_PI_CIR, F_PI_REC, F_PO_CIR, F_PO_REC
Remedy: Check parameters _AP1 and _AP2.

61216 %[[Channel %1:] Block %2: %]Feed/tooth only possible with cutting tools
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Feed per tooth is only possible with milling tools.
Alarm triggered by following cycles: E_TFS, F_TFS.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: As alternative, set a different feed type.
Program
Continuation: Clear alarm with the RESET key. Restart part program

61217 [Channel %1:] Block %2: Cutting speed programmed for tool radius 0
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: To be able to work with cutting speed, the tool radius has to be specified.
Alarm triggered by following cycles: E_DR_SIN, E_DR_TAP, E_TFS, F_DR_SIN, F_DR_TAP, F_DRLLC, F_DRM_TA, F_TAP, F_TFS
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Enter a value for cutting speed.
Program
Continuation: Clear alarm with the RESET key. Restart part program

61218 [Channel %1:] Block %2: Feed/tooth programmed, but number of tools equals zero
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: For feed per tooth, the number of teeth has to be specified.
Alarm triggered by following cycles: E_TFS, E_DR_BGF, F_TFS.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy: Enter the number of teeth on the milling tool in the "Tool list" menu.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61219 [Channel %1:] Block %2: Tool radius too large

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The tool radius is too large for machining.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Select a suitable tool.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61220 [Channel %1:] Block %2: Tool radius too small

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The tool radius is too small for machining.
Alarm triggered by following cycles: CYCLE78.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Select a suitable tool.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61221 [Channel %1:] Block %2: No tool active

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No tool active.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Select a suitable tool.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61222 [Channel %1:] Block %2: Plane infeed greater than tool diameter

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The plane infeed must not be greater than the tool diameter.
Alarm triggered by following cycles: CYCLE79, E_MI_PL, E_PO_CIR, E_PO_REC, F_PO_CIR, F_PO_REC.
61223
[Channel %1:] Block %2: Approach path too small
Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The approach path must not be less than zero.
Alarm triggered by following cycles: E_MI_CON, F_MI_CON.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Enter a greater value for the approach path.

Program
Clear alarm with the RESET key. Restart part program

61224
[Channel %1:] Block %2: Retract path too small
Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The retract path must not be less than zero.
Alarm triggered by following cycles: E_MI_CON, F_MI_CON.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Enter a greater value for the retract path.

Program
Clear alarm with the RESET key. Restart part program

61225
[Channel %1:] Block %2: Swivel data record unknown
Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
An attempt was made to access a swivel data block which has not been defined.
Alarm triggered by following cycles: E_TCARR, F_TCARR.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Select another swivel data block or define a new swivel data block.

Program
Clear alarm with the RESET key. Restart part program
61226 [Channel %1:] Block %2: Inclinable head cannot be exchanged

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The parameter "Swivel data block" is set to "No". In spite of this, an attempt has been made to change the swivel head. Alarm triggered by following functions: E_TCARR, F_TCARR.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Set the parameter "Swivel data block" in the setup screen "Rotary axes" to "Automatic" or "Manual".

Program
Continuation:
Clear alarm with the RESET key. Restart part program

61228 [Channel %1:] Block %2: Retraction plane for swiveling with swivel head not reached due to software limit switches

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles: F_SP_RPB, E_SP_RP
Retraction plane not reached!

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Correct retraction plane

Program
Continuation:
Clear alarm with the RESET key. Restart part program

61229 [Channel %1:] Block %2: The external retraction plane must be greater than the internal retraction plane

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The alarm is triggered by the following cycles: F_SP_RP
The external retraction plane must be greater than the internal retraction plane.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Correct the retraction planes.

Program
Continuation:
Clear alarm with the RESET key. Restart part program

61230 [Channel %1:] Block %2: Tool probe diameter too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tool probe has not been calibrated correctly.
Alarm triggered by following cycles: E_MT_CAL, E_MT_RAD, E_MT_LEN.
Remedy:

840D:
Check the following variables in data block E_MESS_MT_DR[n] or E_MESS_MT_DL[n] for probe n+1

840D sl:
Check the following machine data: 51778 $MNS_J_MEA_T_PROBE_DIAM_LENGTH[n] or 51780 $MNS_J_MEA_T_PROBE_DIAM_RAD[n] for probe n+1

61231

[Channel %1:] Block %2: ShopMill program %4 not executable, as not tested by ShopMill

Parameters:

%1 = Channel number
%2 = Block number, label
%4 = Program name

Definitions:

Before a ShopMill program can be executed, it has to be tested by ShopMill.

Alarm triggered by following cycle: E_HEAD.

Reaction:

Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

The program first has to be simulated in ShopMill or loaded into the operating mode "Machine auto" by ShopMill.

Program Continuation:

Clear alarm with the RESET key. Restart part program

61232

[Channel %1:] Block %2: Impossible to load magazine tool

Parameters:

%1 = Channel number
%2 = Block number, label

Definitions:

Only manual tools may be loaded into a swivel head in which only manual tools can be loaded.
The alarm is triggered by the following cycles: E_TD, E_TFS, F_TFS

Reaction:

Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Load a manual tool into the swivel head or set the parameter "Tool change" on the setup screen form "Rotary axes" to "Automatic".

Program Continuation:

Clear alarm with the RESET key. Restart part program

61233

[Channel %1:] Block %2: Thread angle wrongly defined

Parameters:

%1 = Channel number
%2 = Block number, label

Definitions:

The thread angles were specified too large or too small.
Alarm triggered by following cycles: E_TR_CON, F_TR_CON

Reaction:

Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Check thread geometry.

Program Continuation:

Clear alarm with the RESET key. Restart part program
61234

[Channel %1:] Block %2: ShopMill subroutine %4 cannot be executed, as not tested by ShopMill.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %4 = Subroutine name

Definitions:
Before a ShopMill subroutine can be used, it has to be tested by ShopMill.
Alarm triggered by following cycle: E_HEAD.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
The subroutine first has to be simulated in ShopMill or loaded into the ShopMill operating mode "Machine auto".

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61235

[Channel %1:] Block %2: ShopTurn program %4 cannot be executed as not tested by ShopTurn.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %4 = Program name

Definitions:
Before a ShopTurn program can be executed, it has to be tested by ShopTurn.
Alarm triggered by following cycle: F_HEAD

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Simulate the subroutine first in ShopTurn or load it into the ShopTurn operating mode "Machine auto".

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61236

[Channel %1:] Block %2: ShopTurn subroutine %4 cannot be executed as not tested by ShopTurn.

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %4 = Subroutine name

Definitions:
Before a ShopTurn subroutine can be used, it has to be tested by ShopTurn.
Alarm triggered by following cycle: F_HEAD.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Simulate the subroutine first in ShopTurn or load it into the ShopTurn operating mode "Machine auto".

Program Continuation:
Clear alarm with the RESET key. Restart part program.
61237 [Channel %1:] Block %2: Retraction direction unknown. Withdraw tool manually!
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The tool is in the retraction area and it is unknown in which direction it can be travelled out of it.
Alarm triggered by following cycle: F_SP_RP
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Manually retract the tool from the retraction area defined in the program header and restart the program.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61238 [Channel %1:] Block %2: Machining direction unknown!
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The direction of the next machining is unknown.
Alarm triggered by following cycle: F_SP_RP.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Please contact the responsible Siemens regional office.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61239 [Channel %1:] Block %2: Tool change point lies within retraction area!
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The tool change point has to be far enough outside the retraction area so that when the revolver is swiveled, no tool extends into the retraction area.
The alarm is triggered by the following cycle: F_SP_RP
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Specify another tool change point.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61240 [%1:] Block %2: Wrong feed type
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The feed type is not possible for this machining.
NCK alarms

61241 [Channel %1:] Block %2: Retraction plane not defined for this machining direction

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
No retraction plane has been defined for the selected machining direction.
Alarm triggered by following cycles: F_SP_RP, F_SP_RPT.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Define the missing retraction plane.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61242 [Channel %1:] Block %2: Wrong machine direction

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The machining direction has been specified incorrectly.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check the programmed machining direction.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61243 [Channel %1:] Block %2: Correct tool change point, tool tip in

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tool change point must be situated so far outside the retraction area that no tool protrudes into the retraction area on turret swivelling.
Alarm triggered by following cycle: F_SP_RP

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Specify another tool change point.

Program
Clear alarm with the RESET key. Restart part program

Continuation:
61244 [Channel %1:] Block %2: Pitch change causing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The specified pitch change causes a reversal of the thread direction.
Alarm triggered by following cycle: CYCLE99

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check thread pitch change and thread geometry.

Program Continuation: Clear alarm with the RESET key. Restart part program

61245 [Channel %1:] Block %2: Machining plane does not match modal

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Machining plane does not match modal one.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check the machining plane.

Program Continuation: Clear alarm with the RESET key. Restart part program

61246 [Channel %1:] Block %2: Safety distance too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The safety clearance is too small for machining.
Alarm triggered by following cycle: CYCLE79.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Increase safety clearance.

Program Continuation: Clear alarm with the RESET key. Restart part program

61247 [Channel %1:] Block %2: Blank radius too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The blank radius is too small for machining.
Alarm triggered by following cycle: CYCLE79.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Increase blank radius.
NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

61248 [Channel %1:] Block %2: Infeed too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The infeed is too small for machining.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase infeed.
Program Continuation: Clear alarm with the RESET key. Restart part program

61249 [Channel %1:] Block %2: Number of edges too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The number of edges is too small.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase number of edges.
Program Continuation: Clear alarm with the RESET key. Restart part program

61250 [Channel %1:] Block %2: Width across flats/edge length too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The width across flats/edge length is too small.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase key width/edge length.
Program Continuation: Clear alarm with the RESET key. Restart part program

61251 [Channel %1:] Block %2: Width across flats/edge length too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The width across flats/edge length is too large.
Alarm triggered by following cycle: CYCLE79.
61252
Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Chamfer/radius is too large.
Alarm triggered by following cycle: CYCLE79.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Decrease chamfer/radius.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61253
Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
No finishing allowance has been entered.
Alarm triggered by following cycles: E_PO_CIR, E_PO_REC, E_SL_CIR, E_SL_LON, F_PO_CIR, F_PO_REC, F_SL_CIR, F_SL_LON.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Program a finishing allowance.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61254
Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Error on travelling to fixed stop.
Alarm triggered by following cycle: F_SUB_SP.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
specify another Z1 position for gripping the counterspindle.

Program Continuation:
Clear alarm with the RESET key. Restart part program
61255 [Channel %1:] Block %2: Error during cut-off: Tool broken?

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Cut-off could not be completed. A tool breakage might have occurred.
Alarm triggered by following cycles: F_PARTOF, F_SUB_SP.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check the tool.

Program
Clear alarm with the RESET key. Restart part program

61256 [Channel %1:] Block %2: Mirroring not allowed at program start. Deselect work offset!

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Mirroring impermissible at program start.
Alarm triggered by following cycle: F_HEAD.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Deselect work offset.

Program
Clear alarm with the RESET key. Restart part program

61257 [Channel %1:] Block %2: incomplete setup of counterspindle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Setup of the counterspindle is incomplete.
Alarm triggered by following cycle: F_SUB_SP.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
The following machine and setting data must be set for the counterspindle:
- MD52206 $MCS_AXIS_USAGE
- SD55532 $SCS_SUB_SPINDLE_REL_POS
- SD55550 $SCS_TURN_FIXED_STOP_DIST
- SD55551 $SCS_TURN_FIXED_STOP_FEED
- SD55552 $SCS_TURN_FIXED_STOP_FORCE

Program
Clear alarm with the RESET key. Restart part program
61258 [Channel %1:] Block %2: Assign parameters for counterspindle chuck in the spindle chuck data
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The parameters for the counterspindle chuck in the spindle chuck data have not been assigned.
The alarm is triggered by the following cycles: F_SUB_SP.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Indicate parameters ZCn, ZSn and ZEn in the mask "Parameters" > "Setting data" > "Spindle chuck data".
Program Continuation: Clear alarm with the RESET key. Restart part program

61259 [Channel %1:] Block %2: program contains new machining steps from ShopMill %4
Parameters: %1 = Channel number
%2 = Block number, label
%4 = ShopMill version
Definitions: The program has been created with a ShopMill version that is higher than the existing one.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Delete the machining step and reprogram machining if required.
Program Continuation: Clear alarm with the RESET key. Restart part program

61260 [Channel %1:] Block %2: program contains new machining steps from ShopTurn %4
Parameters: %1 = Channel number
%2 = Block number, label
%4 = ShopTurn version
Definitions: The program has been created with a ShopMill version that is higher than the existing one.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Delete the machining step and reprogram machining if required.
Program Continuation: Clear alarm with the RESET key. Restart part program

61261 [Channel %1:] Block %2: center offset too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The center offset on center drilling is larger than permissible.
Alarm triggered by following cycles: F_DRILL, F_DRILLD.

Alarms
Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0 419
NCK alarms

61262 [Channel %1:] Block %2: pitch not possible with selected tool

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The pitch of the tap does not match the programmed pitch.
Alarm triggered by cycles: F_DR_TAP, F_DRM_TA, F_TAP.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Use a tap with the programmed pitch.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61263 [Channel %1:] Block %2: Chained ShopMill program blocks not permissible in subprogram on pos. pattern

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If a subroutine is called from a position pattern, the subroutine itself must not include a position pattern.
The alarm is triggered by cycle: E_MANAGE

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Reprogram machining.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61264 [Channel %1:] Block %2: Chained ShopTurn program blocks not permissible in subprogram on pos. pattern

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If a subroutine is called from a position pattern, the subroutine itself must not include a position pattern.
Alarm triggered by cycle: F_MANAGE.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Reprogram machining.

Program
Clear alarm with the RESET key. Restart part program

Continuation:
61265 [Channel %1:] Block %2: Too many restrictions, use rectangular pocket
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In face milling a maximum of only 3 sides can be delimited.
Alarm triggered by following cycle: CYCLE61
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Use pocket cycle.
Program Continuation: Clear alarm with the RESET key. Restart part program

61266 [Channel %1:] Block %2: Illegal machining direction
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In face milling, the delimitations and the direction of machining do not match.
Alarm triggered by following cycle: CYCLE61
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Select another direction of machining.
Program Continuation: Clear alarm with the RESET key. Restart part program

61267 [Channel %1:] Block %2: Plane infeed too large, residual corners remain
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In face milling, the plane infeed must not exceed 85%.
Alarm triggered by following cycle: CYCLE61
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Select a smaller plane infeed, as otherwise residual corners will be left over.
Program Continuation: Clear alarm with the RESET key. Restart part program

61268 [Channel %1:] Block %2: Illegal machining direction, residual corners are left over.
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In face milling, the machining direction does not match the selected delimitations.
Alarm triggered by following cycle: CYCLE61
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: The machining direction must be selected to match the delimitations.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61269 **[Channel %1:] Block %2: External tool diameter too small**
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Incorrect tool definition.
Alarm triggered by following cycle: CYCLE61.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check angle and diameter of the tool used.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61270 **%[[Channel %1:] Block %2: %]Chamfer width too small**
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Chamfer width selected too small.
Alarm triggered by the following cycles: E_SP_CHA, F_SP_CHA.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase the chamfer width.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61271 **%[[Channel %1:] Block %2: %]Chamfer width > tool radius**
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Chamfer width larger than tool radius.
Alarm triggered by following cycles: E_SP_CHA, F_SP_CHA.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Use a larger tool.
Program Clear alarm with the RESET key. Restart part program
Continuation:
61272 %[[Channel %1:] Block %2: %] Insertion depth too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Insertion depth on chamfering too small.
Alarm triggered by following cycles: E_SP_CHA, F_SP_CHA.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Increase the insertion depth.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61273 %[[Channel %1:] Block %2: %] Insertion depth too large

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Insertion depth on chamfering too large.
Alarm triggered by following cycles: E_SP_CHA, F_SP_CHA.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Decrease the insertion depth.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61274 %[[Channel %1:] Block %2: %] Invalid tool angle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Invalid tool angle.
Alarm triggered by following cycles: E_SP_CHA, F_SP_CHA.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check tool angle

Program Continuation:
Clear alarm with the RESET key. Restart part program

61275 [Channel %1:] Block %2: Target point violates software limit switch!

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Due to a swivel action, the end point is outside the software limit switches.
Alarm triggered by following cycle: E_SP_RP.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy: Select another retraction plane or approach a suitable interpolation point.

Program: Clear alarm with the RESET key. Restart part program

Continuation:

61276 [Channel %1:] Block %2: External tool diameter required for restrictions

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Outer tool diameter required in case of delimitations.
Alarm triggered by following cycle: CYCLE61.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Specify the outer tool diameter.

Program: Clear alarm with the RESET key. Restart part program

Continuation:

61277 [Channel %1:] Block %2: Tool diameter larger than restriction

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Tool diameter larger than delimitation.
Alarm triggered by following cycle: CYCLE61.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Use a smaller tool.

Program: Clear alarm with the RESET key. Restart part program

Continuation:

61278 [Channel %1:] Block %2: If tool angle is larger than 90°, both tool diameters must be equal

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: For tool angles larger than 90°, the two tool diameters must be identical.
Alarm triggered by following cycle: CYCLE61.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Correct the tool angle or the tool diameters.

Program: Clear alarm with the RESET key. Restart part program

Continuation:
61279
[Channel %1:] Block %2: If tool angle equals 90°, both tool diameters must be equal

Parameters:
- \(%1 \) = Channel number
- \(%2 \) = Block number, label

Definitions:
For tool angles equal to 90°, the two tool diameters must be identical.
Alarm triggered by following cycle: CYCLE61.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Correct the tool angle or the tool diameters.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61280
[Channel %1:] Block %2: %4- Mirroring missing in work offset for counterspindle

Parameters:
- \(%1 \) = Channel number
- \(%2 \) = Block number, label

Definitions:
The work offset for counterspindle machining does not have Z mirroring.
The alarm is triggered by the following cycle: F_SUB_SP, CYCLE209

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Select Z mirroring for the work offset used.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61281
[Channel %1:] Block %2: starting point of machining outside retraction planes

Parameters:
- \(%1 \) = Channel number
- \(%2 \) = Block number, label

Definitions:
The starting point of machining is outside the retraction planes.
Alarm triggered by following cycle: F_SP_RP.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Adjust the retraction planes.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61282
[Channel %1:] Block %2: end point of machining outside retraction planes

Parameters:
- \(%1 \) = Channel number
- \(%2 \) = Block number, label

Definitions:
The end point of machining is outside the retraction planes.
Alarm triggered by following cycle: F_SP_RP.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
Remedy: Adjust the retraction planes.
Program: Clear alarm with the RESET key. Restart part program
Continuation:

61283

[Channel %1:] Block %2: direct approach not possible, as tool change required

Parameters: %1 = Channel number %2 = Block number, label
Definitions: After block search a position is to be reached by direct approach, but a tool change is required before. Alarm triggered by following cycle: F_TFS.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: First execute a manual tool change, then restart the block search.
Program: Clear alarm with the RESET key. Restart part program
Continuation:

61284

[Channel %1:] Block %2: starting point cannot be approached without collision. Preposition tool manually

Parameters: %1 = Channel number %2 = Block number, label
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Preposition the tool manually.
Program: Clear alarm with the RESET key. Restart part program
Continuation:

61285

[Channel %1:] Block %2: parking position is below return plane XRA.

Parameters: %1 = Channel number %2 = Block number, label
Definitions: The parking position is below retraction plane XRA. Alarm triggered by following cycle: F_SP_RP.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Move the parking position above retraction plane XRA.
Program: Clear alarm with the RESET key. Restart part program
Continuation:
61286 [Channel %1:] Block %2: machining not possible, check tool angle.
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Machining not possible with the specified tool.
 Alarm triggered by following cycles: F_UCUT_T.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Use a suitable tool.
Program Continuation: Clear alarm with the RESET key. Restart part program

61287 %[[Channel %1:] Block %2: %] no master spindle active.
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: No master spindle active.
 Alarm triggered by following cycle: CYCLE63, CYCLE64, F_TFS.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Activate the master spindle (machine data 20090).
Program Continuation: Clear alarm with the RESET key. Restart part program

61288 [Channel %1:] Block %2: Main spindle not set up
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE210
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter channel axis number of main spindle in MD52206 $MCS_AXIS_USAGE.
Program Continuation: Clear alarm with the RESET key. Restart part program

61289 [Channel %1:] Block %2: Counterspindle not set up
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE210
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter channel axis number of counterspindle in MD52206 $MCS_AXIS_USAGE.
61290
[Channel %1:] Block %2: Tool spindle not set up

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE210

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Enter channel axis number of tool spindle in MD52206 $MCS_AXIS_USAGE.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61291
[Channel %1:] Block %2: Linear axis of counterspindle not set up

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE210

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Enter channel axis number of linear axis of counterspindle in MD52206 $MCS_AXIS_USAGE.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61292
[Channel %1:] Block %2: B axis not set up

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE210

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Enter channel axis number of B axis in MD52206 $MCS_AXIS_USAGE.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61293
[Channel %1:] Block %2: Tool %4 has no spindle rotation direction

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm will be triggered by the following cycles: E_TFS, F_TFS

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
NCK alarms

Remedy: Select spindle rotation direction in tool list.
Program Continuation: Clear alarm with the RESET key. Restart part program

61294 [Channel %1:] Block %2: Active radius/diameter setting does not match reset setting

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The alarm is triggered by the following cycles: E_HEAD, F_HEAD

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Before starting up the program, set G group 29 (DIAMON, DIAMOF etc.) to reflect the corresponding reset value.
Program Continuation: Clear alarm with the RESET key. Restart part program

61295 [Channel %1:] Block %2: The value of the "Axis sequence" parameter is illegal

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The alarm is triggered by the following cycles: E_TCTOOL, F_TCTOOL

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Correct the "Axis sequence" parameter in the screen form
Program Continuation: Clear alarm with the RESET key. Restart part program

61296 [Channel %1:] Block %2: Blank programmed incorrectly

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The alarm is triggered by the following cycles: F_HEAD
 The blank has been programmed incorrectly.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Correct the blank.
Program Continuation: Clear alarm with the RESET key. Restart part program

61297 [Channel %1:] Block %2: Reference for incremental retraction plane missing

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The alarm is triggered by the following cycles: F_HEAD
 The retraction plane can only be specified in increments if the blank is entered.
NCK alarms

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Program the retraction plane in absolute terms.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61298 [Channel %1:] Block %2: No work offset entered for main spindle

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles: F_SUB_SP
No work offset has been specified for the main spindle.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Specify a work offset for the main spindle in the program header or under Settings.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61299 [Channel %1:] Block %2: No work offset entered for counterspindle

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The alarm is triggered by the following cycles: F_SUB_SP
No work offset has been entered for the counterspindle.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Specify a work offset for the counterspindle in the program header or under Settings.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61300 [Channel %1:] Block %2: Probe defective

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:

Program
Clear alarm with the RESET key. Restart part program

Continuation:
NCK alarms

61301 [Channel %1:] Block %2: Probe not switching
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The measuring distance was completely traversed, but no switching signal was generated at the measuring input.
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
- Check measuring input.
- Check measuring distance.
- Probe defective.

61302 [Channel %1:] Block %2: Probe - collision
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The measuring probe collided with an obstacle when being positioned.
Alarm can be triggered by the following measuring cycles: all measuring cycles.
Remedy:
- Check spigot diameter (may be too small)
- Check measuring distance (may be too long)

61303 [Channel %1:] Block %2: Safety margin exceeded
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The measuring result differs greatly from the specified value.
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
- Check setpoint value and parameter _TSA

61304 [Channel %1:] Block %2: Allowance
Parameters: %1 = Channel number
%2 = Block number, label
Definitions:
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program: Clear alarm with the RESET key. Restart part program

61305 [Channel %1:] Block %2: Dimension too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions:
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Clear alarm with the RESET key. Restart part program.

61306 [Channel %1:] Block %2: Permissible measuring difference exceeded

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
Alarm triggered by following cycles: CYCLE971, CYCLE972, CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE982, CYCLE994.

Remedy:
- Check setpoint value and parameter _TDIF

61307 [Channel %1:] Block %2: Incorrect measuring variant

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
- The value of parameter _MVAR is impermissible.

61308 [Channel %1:] Block %2: Check measuring path

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
A traversing path for measuring is generated with a size specified by parameter _FA (in 840D) or DFA (in 840D sl). It describes the maximum distance before and after the expected switching position (workpiece edge) and must have a value greater than 0.
- For 840D:
 - Check parameter _FA
- For 840D sl:
 - Check parameter DFA

61309 [Channel %1:] Block %2: Check probe type

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Probe type: 3D probe inactive.
- This alarm is generated by all cycles except CYCLE971, CYCLE972, CYCLE982.

Remedy:
The probe has to be of the "3D probe" type in the tool management.
- For CYCLE971: no permissible tool probe type entered in _TP[x,8], or check the permissible working plane G17...G19 in the case of tool type "Wheel".

61310 [Channel %1:] Block %2: Scale factor is active

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Scale factor = scaling is active.
- Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Switch off the active scale factor in the program. Measuring is not possible with an active scale factor.
61311 [Channel %1:] Block %2: No D number active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No tool offset for the measuring probe (for workpiece measurement) or no tool offset for the active tool (for tool measurement) is selected. Alarm can be triggered by the following measuring cycles: all measuring cycles.
Remedy: Select the tool's tool edge number D.

61312 [Channel %1:] Block %2: Check measuring cycle number
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The alarm can be triggered by the following measuring cycles: all measuring cycles.
Remedy: Measuring cycle called is impermissible...

61313 [Channel %1:] Block %2: Check probe number
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Check parameter _PRNUM in connection with the following data fields and machine data:
 For 840D:
 - Create data field _WP[], _TP[] and _TPW[] for additional tool or workpiece probe
 and adjust _CVAL[0]/_CVAL[1] accordingly.
 Bei 840D sl:
 - Check the following machine data: 51600 $MNS_MEA_CAL_WP_NUM, 51602 $MNS_MEA_CAL_TP_NUM and 51603 $MNS_MEA_CAL_TPW_NUM

61314 [Channel %1:] Block %2: Check selected tool type
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm is triggered: CYCLE971, CYCLE972, CYCLE982.
Remedy: Tool type impermissible for tool measurement/tool probe calibration.

61315 [Channel %1:] Block %2: Check position of cutting edge
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm is triggered: CYCLE972, CYCLE973, CYCLE974, CYCLE982, CYCLE994.
Remedy: Check tool edge position (probe) in TO memory.
61316
[Channel %1:] Block %2: Center and radius cannot be determined

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
No circle can be calculated from the measured points, as all measured points lie on a straight line.

The alarm is triggered by: CYCLE979

Remedy:
Program change

61317

[Channel %1:] Block %2: Check number of circle calculation points

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Parameterization faulty; requires 3 or 4 points to calculate the center point. Alarm is triggered: CYCLE979.

Remedy:
Change parameterization of CYCLE116.

61318

[Channel %1:] Block %2: Check weighting factor

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998.

Remedy:
Check parameter (_K).

61319

[Channel %1:] Block %2: Check call parameter CYCLE114

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Internal error in measuring cycles. Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998.

Remedy:
Check call parameter CYCLE114.

61320

[Channel %1:] Block %2: Check tool number

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
For 840D:
- Check parameters _TNUM, _TNAME.

Bei 840D sl:
- Check parameter T.

With active tool management, parameter T=0 (_TNUM=0), and parameter _TNAME is empty or the specified tool name is unknown to the tool management.
61321 [Channel %1:] Block %2: Check WO memory number

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
For 840D:
- Check parameter _KNUM
For 840D sl:
- Check the the number entered for the work offset compensation

Program Continuation:
Clear alarm with the RESET key. Restart part program

61322 [Channel %1:] Block %2: Check 4th digit of _KNUM

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The stated digit of _KNUM includes invalid values. Also check _MVAR.
Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998, CYCLE114.

Remedy:
Check parameter for tool offset target (_KNUM) and measurement variant (_MVAR)

61323 [Channel %1:] Block %2: Check 5th digit of _KNUM

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The stated digit of _KNUM includes invalid values. Also check _MVAR.
Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998, CYCLE114.

Remedy:
Check parameter for tool offset target (_KNUM) and measurement variant (_MVAR)

61324 [Channel %1:] Block %2: Check 6th digit of _KNUM

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The stated digit of _KNUM includes invalid values. Also check _MVAR.
Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998, CYCLE114.

Remedy:
Check parameter for tool offset target (_KNUM) and measurement variant (_MVAR)

61325 [Channel %1:] Block %2: Check measuring axis/offset axis

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm is triggered by: all measuring cycles except CYCLE979

Remedy:
For 840D:
- Check parameters for measuring axis _MA
For 840D sl:
- Check parameters for measuring axis (X, Y, Z)
61326 [Channel %1:] Block %2: Check measuring direction
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered: CYCLE973, CYCLE976.
Remedy: Parameter for measuring direction _MD has an incorrect value.

61327 [Channel %1:] Block %2: Program reset required
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: NC reset required.
 Alarm is triggered: all measuring cycles except for CYCLE973, CYCLE976.
Remedy: Execute NC reset.

61328 [Channel %1:] Block %2: Check D number
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: D number in parameter _KNUM is 0.
 The alarm can be triggered by all measuring cycles.
Remedy: Check parameter for tool offset target (_KNUM)

61329 [Channel %1:] Block %2: Check rotary axis
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered: CYCLE998
Remedy: No name assigned to the axis number specified in the parameter of the rotary axis (_RA), or this axis is not configured as a rotary axis.
 Check MD 20080 and MD 30300.

61330 [Channel %1:] Block %2: Coordinate rotation active
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: No measuring possible in the rotated coordinate system. Alarm is triggered: CYCLE972, CYCLE973, CYCLE974, CYCLE994.
Remedy: Check the conditions for measuring.

61331 [Channel %1:] Block %2: Angle too large, change measuring axis
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Parameter starting angle (_STA) is too large for the specified measuring axis. Alarm is triggered: CYCLE998.
Remedy: Select another metering axis.
61332 [Channel %1:] Block %2: Modify tool tip position

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tool tip is below the measuring probe surface (e.g. for a ring gauge or cube). Alarm is triggered: CYCLE971, CYLCE972, CYCLE982, E_MT_CAL, E_MT_LEN, E_MT_RAD.

Remedy:
Place the tool above the measuring probe surface.

61333 [Channel %1:] Block %2: Check calibration block number

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered: CYCLE973

Remedy:
Parameter _CALNUM is too large, reduce it to a permissible value
For 840D:
- Increase the maximum value of _CVAL[2] in GUD6
For 840D sl:
- Check following machine data: $MNS_MEA_CAL_EDGE_NUM

61334 [Channel %1:] Block %2: Check safety area

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered: CYCLE977

Remedy:
Check the parameters for the safety area
For 840D: _SZA or _SZO
For 840D sl: XS, YS or ZS

61335 [Channel %1:] Block %2: Reserved

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered: Reserved

Remedy:
reserved

61336 [Channel %1:] Block %2: Geometry axes do not exist

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
No geometry axes configured. Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Machine data in MD 20060 must be changed.
61337 [Channel %1:] Block %2: Check measuring input
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program: Clear alarm with the RESET key. Restart part program

61338 [Channel %1:] Block %2: Positioning speed equal to zero
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: For some measuring versions, for example measuring spigots, in addition to the actual measuring paths, intermediate paths are generated that are traversed with a specified feed.
The values for the feed are specified:
- For 840D sl: in setting data 55631 $SCS_MEA_FEED_PLANE_VALUE and 55632 $SCS_MEA_FEED_FEEDAX_VALUE

61339 [Channel %1:] Block %2: Correction factor for rapid traverse speed = 0
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: For 840D: Check parameter _SPEED[0] in GUD6
For 840D sl: Check setting data 55630 $SCS_MEA_FEED_RAPID_IN_PERCENT

61340 [Channel %1:] Block %2: Incorrect alarm number
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Internal error in measuring cycles.

61341 [Channel %1:] Block %2: Probe not calibrated in active plane.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE982
Remedy: Calibrate the probe prior to calling a cycle.
61342 [Channel %1:] Block %2: Upgrade NCK software version
Parameters:
 %1 = Channel number
 %2 = Block number, label channel number
Definitions:
 Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
 Up to measuring cycle software 6.2: _SI[1] in GUD6 has no value or a value < 3
 As from measuring cycle software 6.3: Upgrade NCK software version.

61343 %[[Channel %1:] Block %2: %]No tool available with this name %4
Parameters:
 %1 = Channel number
 %2 = Block number, label channel number
Definitions:
 The alarm can be triggered by the following measuring cycles: all measuring cycles, CYCLE63, CYCLE64
Remedy:
 Check tool name.

61344 [Channel %1:] Block %2: Several tools are active
Parameters:
 %1 = Channel number
 %2 = Block number, label channel number
Definitions:
 Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
 Remove tool from another spindle.

61345 [Channel %1:] Block %2: D number of tool offset, too many digits
Parameters:
 %1 = Channel number
 %2 = Block number, label channel number
Definitions:
 Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
 Reduce the D number in _KNUM, check software or MD of flat D number.

61346 [Channel %1:] Block %2: Distance between starting point and measuring point <=0
Parameters:
 %1 = Channel number
 %2 = Block number, label channel number
Definitions:
 The alarm is triggered by the following cycles: CYCLE961.
Reaction:
 Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy:
 840D:
 - Parameter _SETV[0] or _SETV[1] is empty or less than 0.
 840D sl:
 - Parameter X1 or Y1 is empty or less than 0.
Program Continuation:
 Clear alarm with the RESET key. Restart part program.
61347 **[Channel %1:] Block %2: Angle 1st edge - 2nd edge equals 0**

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE961.

Remedy:
Parameter following angle (_INCA) equals 0.

61348 **[Channel %1:] Block %2: Angle rel. to reference edge equals 0**

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:

Reaction:
- Interpreter stop
- NC Start disabled in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61349 **[Channel %1:] Block %2: Distance upper probe edge - measuring position = 0 for tool radius measurement**

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE971.

Remedy:
The distance between the upper and lower edges of the tool probe equals 0; relevant for radius measurement.
For 840D: Check parameter _TP[x,9]
For 840D sl: Check setting data 54634 $SNS_MEA_TP_CAL_MEASURE_DEPTH

61350 **[Channel %1:] Block %2: Feed, speed not programmed for tool measurement with rotating spindle**

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE971.
The measuring feed and/or spindle speed during tool measurement with rotating spindle is not specified in the GUD variable _MFS.

Remedy:
Check parameter _MFS[0]

61351 **[Channel %1:] Block %2: Tool length or radius is 0**

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE971

Remedy:
- Cutter: Check length and radius of the active tool in the compensation data memory
- Drill: Check length of the active tool in the compensation data memory
 - Radius or tip angle of the active tool must be predefined in the compensation data memory
61352 [Channel %1:] Block %2: Path for logfile not permitted

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE106.
The specified path for the log file is incorrect.

Remedy:
Check parameter _PROTNAME[1]

61353 [Channel %1:] Block %2: Path for logfile not found

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE106.
The specified directory does not exist or the specified path is incorrect.

Remedy:
Check parameter _PROTNAME[1]

61354 [Channel %1:] Block %2: File for logfile not found

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE106.
No name specified for the log file.

Remedy:
Check parameter _PROTNAME[1]

61355 [Channel %1:] Block %2: Incorrect file type for logfile

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE106.
The file extension for the log file is incorrect.

Remedy:
Check parameter _PROTNAME[1]

61356 [Channel %1:] Block %2: File for logfile is being used

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE106.
The log file is already used by an NC program.

Remedy:
Check parameter _PROTNAME[1]

61357 %[[Channel %1:] Block %2: %]No resources free

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
Alarm is triggered by the following cycles: CYCLE63, CYCLE64, CYCLE106.
Not enough NC memory space available or too many files / directories in the NC file system.
NCK alarms

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Delete or unload files
MD18270: SMN_MM_NUM_SUBDIR_PER_DIR, MD18280: SMN_MM_NUM_FILES_PER_DIR or MD18320: Check
SMN_MM_NUM_FILES_IN_FILESYSTEM and increase if necessary.

Program
Continuation: Clear alarm with the RESET key. Restart part program

61358 [Channel %1:] Block %2: Error during recording

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE106.
Internal error

Remedy: Call the hotline!

61359 [Channel %1:] Block %2: - continue with RESET

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE106.
Internal error

Remedy: Call the hotline!

61360 [Channel %1:] Block %2: Log job undefined - continue with RESET

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
Alarm triggered by following cycle: CYCLE106.
Cycle CYCLE106 was called by an incorrect parameter.

Remedy: Check cycle call for CYCLE106, specifically the call parameter.

61361 [Channel %1:] Block %2: Variable cannot be recorded

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE105.
The value specified in _PROTVAL[] cannot be logged.

Remedy: Check parameter _PROTVAL[].

61362 [Channel %1:] Block %2: Cycle118: No. of values too large

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE118.
4th parameter for CYCLE118 is larger than 10.

Remedy: Reduce the 4th parameter (PAR4) of CYCLE118.
61363 [Channel %1:] Block %2: Max. no. of value lines for recording exceeded

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Maximum number of value lines exceeded.
Alarm triggered by following cycle: CYCLE105.

Remedy:
Reduce the number of value lines.
Check parameter _PROTFORM[4].

61364 [Channel %1:] Block %2: Check distance from measuring point 1 to measuring point 2

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm triggered by following cycles: CYCLE998

Remedy:
Check parameter incremental infeed depth (_ID)

61365 [Channel %1:] Block %2: Check circular feed

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm triggered by following cycles: CYCLE979

Remedy:
For 840D:
- Check parameter _RF
For 840D sl:
- Check parameter FP

61366 [Channel %1:] Block %2: Direction of rotation for tool measurement with rotating spindle not specified.

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE971

Remedy:
For 840D:
- Check parameter _CM[5] in GUD6, permissible values are 3 (corresponds to M3) and 4 (corresponds to M4)
For 840D sl:
- Check setting data 54674 $SNS_MEA_CM_SPIND_ROT_DIR, permissible values are 3 (corresponds to M3) and 4 (corresponds to M4)

61367 [Channel %1:] Block %2: Parameters _SETV[0...3] or _SETV[4...7] are identical

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE961.

Remedy:
Specify different positions for the relevant points of _SETV[0...7].
61368

[Channel %1:] Block %2: Straights through parameter _SETV[0...3] or _SETV[4...7]do not intersect

Parameters:

- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE961.

Remedy: Specify different positions for the relevant points of _SETV[0...7] .

61369

[Channel %1:] Block %2: Position of corner not clearly definable, check parameter _SETV[0...7]

Parameters:

- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE961.

Reaction:

- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy: Define P1 and P2 or P3 and P4 in a way that the intersection of the straights determined by these points is outside the sections formed by P1 and P2 or P3 and P4.

Program Continuation: Clear alarm with the RESET key. Restart part program

61370

[Channel %1:] Block %2: _PROTVAL[0] - _PROTVAL[5] do not have any entries

Parameters:

- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE105.

Remedy: Enter values in _PROTVAL[0...5].

61371

[Channel %1:] Block %2: Product of column width and number of columns exceeds 200 characters per line

Parameters:

- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE105.

Remedy: Reduce the column width (_PROTFORM[4]) or number of columns (_PROTVAL[2...5]).

61372

[Channel %1:] Block %2: selected meas.variant requires SPOS-capable spindle

Parameters:

- %1 = Channel number
- %2 = Block number, label channel number

Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy: Change measuring variant or check machine equipment.
61373 [Channel %1:] Block %2: Mono-directional probe requires SPOS-capable spindle

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Check machine equipment.

61374 [Channel %1:] Block %2: Probe not calibrated in axis direction %4

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE982

Remedy:
Calibrate the probe in the specified axis direction.

61375 [Channel %1:] Block %2: Trigger values of measuring sensor are incompatible

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE971

Remedy:
Trigger values of the tool measuring sensor must be fully described either via the _TP[] / _TPW[] fields or via the setting data (SD: 54625-54632 or SD: 54640-54647). A mixture of the two variants is not permitted.

61401 [Channel %1:] Block %2: Probe does not switch, traversing path limited by software limit position.

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE961, CYCLE971, CYCLE976, CYCLE977, CYCLE978, CYCLE998

Remedy:
The position defined by a setpoint value cannot be reached as this would mean overrunning the software limit position.
- Check specified setpoint value.

61402 [Channel %1:] Block %2: Probe collision, traversing path limited by software limit position

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm triggered by following cycles: CYCLE977

Remedy:
For the measuring variants Measure web/shaft, the position path in the plane was limited by the software limit position.
The probe switched in the following infeed along the infeed axis.
Check programmed position of software limit position.
NCK alarms

61403 [Channel %1:] Block %2: Work offset correction not executed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Call the SIEMENS hotline

61404 [Channel %1:] Block %2: Tool correction not executed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Check the dependent tool specifications.

61405 [Channel %1:] Block %2: Tool environment does not exist
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Correct the name of the tool environment (_TENV) or create this environment.

61406 [Channel %1:] Block %2: Check DL number
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: For 840D: Check parameter _DLNUM
For 840D sl: Check parameter DL
Check the number of the sum offset and that of the setup offset.

61407 [Channel %1:] Block %2: Check 7th digit and higher of _KNUM
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Check parameter _KNUM.
Check the the number of the sum offset and that of the setup offset.

61408 [Channel %1:] Block %2: total offsets not present
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Set MD 18080, Bit 8=1
61409 [Channel %1:] Block %2: set up offsets not present
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
Set MD 18112, Bit 4=1

61410 [Channel %1:] Block %2: access to nonexistent tool element or property
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
The variable to be corrected requires an option or an increase in MD values.

61411 [Channel %1:] Block %2: Check the distribution of measuring points on the plane.
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE997, CYCLE119
Remedy:
Check the setpoint and actual values

61412 [Channel %1:] Block %2: channel basic frame not present
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE997, CYCLE119
Remedy:
Set MD 28081>0, $P_CHBFRMASK>0

61413 [Channel %1:] Block %2: check setpoint of ball diameter, _SETVAL<=0
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE997
Remedy:
Check setpoint value of spherical diameter.

61414 [Channel %1:] Block %2: distortion of triangle over limit
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE997, CYCLE119
Remedy:
Check the setpoint and actual values
61415 [Channel %1:] Block %2: Check probe / machining plane

Parameters:
\%1 = Channel number
\%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE971

Remedy:
Enter permissible probe for machining plane:
- For 840D: Check the variables _TP[x,8] and _TPW[x,8] in GUD6
- For 840D sl: Check the setting data 54633 $SNS_MEA_TP_TYPE and 54648 $SNS_MEA_TPW_TYPE
or change the machining plane.

61416 [Channel %1:] Block %2: adapt array size %4!

Parameters:
\%1 = Channel number
\%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
For 840D: Match _CVAL entry to the number of existing probe and calibration block data fields, that means:
- Adapt _TP[]/ _CVAL[0] field size, or
- Adapt _WP[]/ _CVAL[1] field size, or
- Adapt _KP[]/ _CVAL[2] field size, or
- Adapt _TWP[]/ _CVAL[3].
For 840D sl:
Check machine data for the number of probe and calibration block data fields, that means:
- Workpiece probe 51600$MNS_MEA_CAL_WP_NUM or
- Calibration block 51601$MNS_MEA_CAL_EDGE_NUM or
- Workpiece probe in MCS 51602$MNS_MEA_CAL_TP_NUM or
- Workpiece probe in WCS 51603$MNS_MEA_CAL_TPW_NUM

61417 [Channel %1:] Block %2: Probe will collide with the carrier of the reference groove.

Parameters:
\%1 = Channel number
\%2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following measuring cycles: CYCLE973

Remedy:
Take up collision-free initial position of the axes involved in the measuring process.

61418 [Channel %1:] Block %2: Protocol file too small, check MD11420:
LEN_PROTOCOL_FILE.

Parameters:
\%1 = Channel number
\%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycle: CYCLE106

Remedy:
Check MD11420: LEN_PROTOCOL_FILE.

61419 [Channel %1:] Block %2: Check probe calibration with reference to center of ball/
circumference of ball.

Parameters:
\%1 = Channel number
\%2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following measuring cycles: CYCLE974, CYCLE994, CYCLE977, CYCLE978,
CYCLE979, CYCLE997, CYCLE998

Remedy:
The workpiece probe must be calibrated according to its use in the measuring cycles.
61420 [Channel %1:] Block %2: Check calibration of multi/mono probes.

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following measuring cycles: CYCLE974, CYCLE994, CYCLE977, CYCLE978, CYCLE997, CYCLE998

Remedy: The workpiece probe must be calibrated according to its type and use.

61421 [Channel %1:] Block %2: Software release of measuring cycles or NCK inadequate or set up incorrectly --> error code %4

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996

Remedy: Causes of error:
 DEF CHAN REAL _OVR[72] (up to MZ06.03.xx.xx =32)

61422 [Channel %1:] Block %2: Parameter _MVAR incorrect --> Error code: %4

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996

Remedy: Causes of error:
1. Error code = A -> _MVAR = 9x identifier CYCLE996 measure kinematics
2. Error code = B -> Parameter for normalizing (_MVAR) incorrect
3. Error code = C -> Measurement variant "compute only" active, but rotary axis 1 or 2 not measured (see also parameter _OVR[40])

61423 [Channel %1:] Block %2: Parameter _TNUM not agreed or not created

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996

Remedy: Causes of error:
1. Parameter CYCLE996 _TNUM incorrect or equals zero
2. No swivel data record created -> MD18088 = 0

61424 [Channel %1:] Block %2: Parameter _SETVAL for diameter of calibration ball incorrect

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996

Remedy: Check parameter _SETVAL.
61425
[Channel %1:] Block %2: Parameter for measuring axis rotary axis 1 or 2 incorrect -> Error code: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following measuring cycles: CYCLE996

Remedy:
Causes of error:
1. Error code = A -> Rotary axis number incorrect (1 or 2)
2. Error code = B -> No name agreed for rotary axis 1
3. Error code = C -> Rotary axis vector 1 equals zero
4. Error code = D -> No name agreed for rotary axis 2
5. Error code = E -> Rotary axis vector 2 equals zero

61426
[Channel %1:] Block %2: Sum of the active offsets does not equal zero -> Error code: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following measuring cycles: CYCLE996

Remedy:
Causes of error:
Check the overview of active offsets ($P_ACTFRAME$)
1. Error code = A -> Sum of the translatory offsets of the geometry axes <> 0
2. Error code = B -> Sum of the fine offsets of the geometry axes <> 0
3. Error code = C -> Sum of the rotary components of the geometry axes <> 0
4. Error code = D -> Sum of the translatory offsets of rotary axis 1 <> 0
5. Error code = E -> Sum of the translatory offsets of rotary axis 2 <> 0

61427
[Channel %1:] Block %2: Tool data of the active workpiece probe incorrect or inactive --> Error code: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following measuring cycles: CYCLE996

Remedy:
Causes of error:
1. Error code = A -> Workpiece probe (or tool edge) inactive
2. Error code = B -> Length L1 of the workpiece probe = 0

61428
[Channel %1:] Block %2: Error while creating log file -> Error code: %4

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following measuring cycles: CYCLE996

Remedy:
Causes of error:
1. Error code = A -> Number of log files in the current directory > 99
2. Error code = B -> Log files too long. Rename or delete log files,
check MD11420 $MN_LEN_PROTOCOL_FILE$.

Alarms
Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0
61429 [Channel %1:] Block %2: Measuring axis (rotary axis 1 or 2) not in basic or intended position -> Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Error code = A -> Rotary axis 1 not in basic position on 1st measurement
2. Error code = B -> Rotary axis 2 not in basic position on 1st measurement
3. Error code = C -> Rotary axis 2 not in intended position on 2nd or 3rd measurement in comparison to 1st measurement, see parameters _OVR[63 to 65]
4. Error code = D -> Rotary axis 1 not in intended position on 2nd or 3rd measurement in comparison to 1st measurement, see parameters _OVR[60 to 62]

61430 [Channel %1:] Block %2: Kinematic vectors not computed -> Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Error code = A -> Plausibility of the input points PM1, PM2, PM3 not fulfilled, resulting side lengths must not be equal to zero
 (Notice: even in the case of side lengths not equal to zero, there is a risk of not being able to form a triangle, check => check PM1...3.)
2. Error code = B -> Enclosed angle at PM1 between the spread vectors PM1PM2 and PM1PM3 is equal to zero. Starting points do not form a triangle.
3. Error code = C -> Enclosed angle at PM2 between the spread vectors PM2PM1 and PM2PM3 is equal to 0. Starting points do not form a triangle.
4. Error code = D -> Enclosed angle at PM3 between the spread vectors PM3PM1 and PM3PM2 is equal to 0. Starting points do not form a triangle.
5. Error code = E -> Normalizing interpolation point: Invalid axis name defined for computation
6. Error code = F -> Normalizing interpolation point: Invalid plane defined for computation

61440 [Channel %1:] Block %2: Position of cutting edge cannot be determined
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycle: CYCLE982
Remedy: A turning tool with a cutting edge position between 1 and 8 must be used as the tool type.
Check the entered cutting edge position with reference to the basic position of the tool carrier.

61441 [Channel %1:] Block %2: Position of cutting edge is not in the machining plane.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycle: CYCLE982
Remedy: The position of the cutting edge of the turning tool (cutting tip) is no longer in the machining plane (interpolation plane), this can be caused, for example, by a tool carrier with orientation capability. Correct the tool carrier position.
61442 [Channel %1:] Block %2: Tool carrier not parallel to the geometry axes
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycle: CYCLE982
Remedy: As a result of incorrect positioning of the orientable tool carrier, tool lengths L1,2,3 are not parallel to the geometry axes.
Optimize the axes of the tool carrier.

61443 [Channel %1:] Block %2: Advance angle _INCA=0 or greater/less than +/-90° or +/-120°
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycle: CYCLE979
Remedy: Check the value in the parameter advance angle _INCA.
If 3-point measurement is selected, _INCA must not be greater/less than +/-120°, and with 4-point measurement _INCA must not be greater/less than +/-90°.
The advance angle _INCA must always be parameterized unequal to "zero".

61444 [Channel %1:] Block %2: Current measuring speed is not identical to the calibration speed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE974, CYCLE994, CYCLE977, CYCLE978, CYCLE979, CYCLE997, CYCLE998, E_MS_CAN, E_MS_HOL, E_MS_POC, E_MS_PIN, E_MS_SPI
Remedy: 1. Repeat the calibration on the basis of the desired measuring speed.
2. Match the current measuring speed to the calibration speed.
Note: In each case, the relevant calibration speed is stored in each calibration data record.

61445 [Channel %1:] Block %2: Check holder angle
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE982
Remedy: Check the entry for the holder angle in the tool offset.
For cutting edge positions 1-4, the holder angle must be greater than or equal to 90° and less than 180°,
for cutting edge positions 5-8, it must be greater than 0° and less than 90°.

61446 [Channel %1:] Block %2: Check insert angle and clearance angle
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE982
Remedy: Check the entry for the insert angle / clearance angle in the tool offset
61501 [Channel %1:] Block %2: Simulation is active

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: all grinding cycles

Remedy: Reset simulation

Program
Clear alarm with the RESET key. Restart part program

61502 [Channel %1:] Block %2: No tool offset active

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: all grinding cycles

Remedy: A tool number must be programmed

Program
Clear alarm with the RESET key. Restart part program

61503 [Channel %1:] Block %2: tool nose radius compensation left or right

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: CYCLE410, CYCLE411, CYCLE412, CYCLE413, CYCLE414, CYCLE415, CYCLE416, CYCLE420

Remedy: A tool offset value has to be programmed

Program
Clear alarm with the RESET key. Restart part program

61504 [Channel %1:] Block %2: _KNG incorrect for setup

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: setup function

Remedy:

Program
Clear alarm with the RESET key. Restart part program

61505 [Channel %1:] Block %2: retraction path < 1mm

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE420

Remedy: Increase retraction path

Program
Clear alarm with the RESET key. Restart part program
61506 [Channel %1:] Block %2: infeed path < 1mm
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE420
Remedy: Increase infeed path
Program Clear alarm with the RESET key. Restart part program
Continuation:

61507 [Channel %1:] Block %2: safety clearance < 1mm
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Clear alarm with the RESET key. Restart part program
Program Clear alarm with the RESET key. Restart part program
Continuation:

61508 [Channel %1:] Block %2: Incorrect default setting for shoulder position
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Clear alarm with the RESET key. Restart part program
Program Clear alarm with the RESET key. Restart part program
Continuation:

61509 [Channel %1:] Block %2: Incorrect default setting for dresser position
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Clear alarm with the RESET key. Restart part program
Program Clear alarm with the RESET key. Restart part program
Continuation:

61510 [Channel %1:] Block %2: Test run feed is active
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE410, CYCLE411, CYCLE413, CYCLE415, CYCLE420
Remedy: Switch off test run feed
Program Clear alarm with the RESET key. Restart part program
Continuation:
61511 [Channel %1:] Block %2: Incorrect shoulder position or tool edge D1/D2
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program
Continuation: Clear alarm with the RESET key. Restart part program

61512 [Channel %1:] Block %2: Incorrect longitudinal position
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program
Continuation: Clear alarm with the RESET key. Restart part program

61513 [Channel %1:] Block %2: Dresser left and inclined grinding wheel
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program
Continuation: Clear alarm with the RESET key. Restart part program

61514 [Channel %1:] Block %2: Grinding wheel type missing
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program
Continuation: Clear alarm with the RESET key. Restart part program

61515 [Channel %1:] Block %2: Retraction path <= dressing amount
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE416
Remedy: Program
Continuation: Change retraction path

Clear alarm with the RESET key. Restart part program
61517 [Channel %1:] Block %2: Angle of inclined grinding wheel missing
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE416
Remedy: Enter angle under $TC_TPG8
Program
Continuation: Clear alarm with the RESET key. Restart part program

61518 [Channel %1:] Block %2: Shoulder height of grinding wheel must be > grinding wheel radius
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Change shoulder height or grinding wheel radius
Program
Continuation: Clear alarm with the RESET key. Restart part program

61519 %[[Channel %1:] Block %2:]Incorrect type of machining
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE63, CYCLE64, CYCLE410, CYCLE411, CYCLE412, CYCLE413, CYCLE415, CYCLE432
Remedy: Assign a value between 1 and 3 to parameter B_ART
Program
Continuation: Clear alarm with the RESET key. Restart part program

61520 [Channel %1:] Block %2: Additional offsets not set
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE413, CYCLE420, CYCLE433
Remedy: Set MD18094 MM_NUM_CC_TDA_PARAM=10
Program
Continuation: Clear alarm with the RESET key. Restart part program

61521 [Channel %1:] Block %2: Current grinding wheel too wide
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE411, CYCLE415
Remedy: Reduce width of grinding wheel
Program
Continuation: Clear alarm with the RESET key. Restart part program
61522 | [Channel %1:] Block %2: Overlap >= current grinding wheel width
Parameters: | %1 = Channel number
 | %2 = Block number, label channel number
Definitions: | The alarm can be triggered by the following grinding cycle: CYCLE411
Remedy: | Reduce overlap
Program | Clear alarm with the RESET key. Restart part program
Continuation:

61523 | [Channel %1:] Block %2: Zero signal of calipers missing
Parameters: | %1 = Channel number
 | %2 = Block number, label channel number
Definitions: | The alarm can be triggered by the following grinding cycles: CYCLE410, CYCLE411, CYCLE413
Remedy: | Check calipers signal
Program | Clear alarm with the RESET key. Restart part program
Continuation:

61524 | [Channel %1:] Block %2: Incorrect oblique angle
Parameters: | %1 = Channel number
 | %2 = Block number, label channel number
Definitions: | The alarm can be triggered by the following grinding cycle: CYCLE413
Remedy: | Oblique plunge angles must be >-90° and <90°
Program | Clear alarm with the RESET key. Restart part program
Continuation:

61525 | [Channel %1:] Block %2: Incorrect grinding wheel type
Parameters: | %1 = Channel number
 | %2 = Block number, label channel number
Definitions: | The alarm can be triggered by the following grinding cycle: CYCLE413
Remedy: | Change grinding wheel type $TC_TPC1
Program | Clear alarm with the RESET key. Restart part program
Continuation:

61526 | [Channel %1:] Block %2: Workpiece radius = 0
Parameters: | %1 = Channel number
 | %2 = Block number, label channel number
Definitions: | The alarm can be triggered by the following grinding cycle: CYCLE414
Remedy: | Enter workpiece radius > 0
Program | Clear alarm with the RESET key. Restart part program
Continuation:
<table>
<thead>
<tr>
<th>Alarm Code</th>
<th>Description</th>
<th>Parameters</th>
<th>Definitions</th>
<th>Remedy</th>
<th>Program Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>61527</td>
<td>[Channel %1:] Block %2: Grinding wheel radius >= workpiece radius</td>
<td>%1 = Channel number, %2 = Block number, label channel number</td>
<td>The alarm can be triggered by the following grinding cycle: CYCLE414</td>
<td>Change grinding wheel radius or workpiece radius</td>
<td>Clear alarm with the RESET key. Restart part program</td>
</tr>
<tr>
<td>61529</td>
<td>[Channel %1:] Block %2: Dimensional notation INCH programmed</td>
<td>%1 = Channel number, %2 = Block number, label channel number</td>
<td>The alarm can be triggered by the following grinding cycles: CYCLE410, CYCLE411, CYCLE412, CYCLE413, CYCLE414, CYCLE415, CYCLE420</td>
<td>Basic system MD $MN_SCALING_SYSTEM_IS_METRIC does not correspond to programmed G command (G group 13).</td>
<td>Clear alarm with the RESET key. Restart part program</td>
</tr>
<tr>
<td>61530</td>
<td>[Channel %1:] Block %2: Default longitudinal position incorrect</td>
<td>%1 = Channel number, %2 = Block number, label channel number</td>
<td>The alarm can be triggered by the following grinding cycle: CYCLE420</td>
<td>Check longitudinal position parameter</td>
<td>Clear alarm with the RESET key. Restart part program</td>
</tr>
<tr>
<td>61531</td>
<td>[Channel %1:] Block %2: Longitudinal position not registered in Z</td>
<td>%1 = Channel number, %2 = Block number, label channel number</td>
<td>The alarm can be triggered by the following grinding cycle: CYCLE420</td>
<td>Increase infeed path parameter</td>
<td>Clear alarm with the RESET key. Restart part program</td>
</tr>
<tr>
<td>61532</td>
<td>[Channel %1:] Block %2: Value for _LAGE is incorrect</td>
<td>%1 = Channel number, %2 = Block number, label channel number</td>
<td>The alarm can be triggered by the following grinding cycle: CYCLE414</td>
<td>Correct parameter content for _LAGE</td>
<td>Clear alarm with the RESET key. Restart part program</td>
</tr>
</tbody>
</table>
61533 [Channel %1:] Block %2: No length L1 entered under D...
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE416, CYCLE420
Remedy: Enter length L1 in the tool offset D of the grinding wheel
Program Continuation: Clear alarm with the RESET key. Restart part program

61540 [Channel %1:] Block %2: Incorrect D number / dresser D field active
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE401, CYCLE402, CYCLE403, CYCLE443
Remedy: A tool D number must be programmed that is < _GC_DNUM
Program Continuation: Clear alarm with the RESET key. Restart part program

61541 [Channel %1:] Block %2: Incorrect grinding wheel type entered
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE432, CYCLE434, CYCLE435, CYCLE436, CYCLE438, CYCLE439, CYCLE444, CYCLE447
Remedy: Select a valid grinding wheel type in tool management
Program Continuation: Clear alarm with the RESET key. Restart part program

61542 [Channel %1:] Block %2: Incorrect grinding wheel reference point selected when selecting the dresser coordinate system
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE435, CYCLE441, CYCLE447
Remedy: A tool D number must be programmed that is < _GC_DNUM
Program Continuation: Clear alarm with the RESET key. Restart part program

61543 [Channel %1:] Block %2: Incorrect dresser selected when selecting the dresser coordinate system
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE402, CYCLE435, CYCLE442, CYCLE447
Remedy: A dresser number >0 and <4 must be selected
Program Continuation: Clear alarm with the RESET key. Restart part program
NCK alarms

61544 [Channel %1:] Block %2: Grinding wheel diameter worn down

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy:
New grinding wheel required, or check limit values in the grinding wheel data

Program
Clear alarm with the RESET key. Restart part program

61545 [Channel %1:] Block %2: Width of grinding wheel worn down

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy:
New grinding wheel required, or check limit values in the grinding wheel data

Program
Clear alarm with the RESET key. Restart part program

61546 [Channel %1:] Block %2: Dresser %4, wear limit length 1 reached

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy:
New dresser required, or check limit values of dresser

Program
Clear alarm with the RESET key. Restart part program

61547 [Channel %1:] Block %2: Dresser %4, wear limit length 2 reached

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy:
New dresser required, or check limit values of dresser

Program
Clear alarm with the RESET key. Restart part program

61548 [Channel %1:] Block %2: Dresser %4, wear limit length 3 reached

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy:
New dresser required, or check limit values of dresser

Program
Clear alarm with the RESET key. Restart part program
61549 \[\text{Channel \%1: } \text{Block \%2: Incorrect dresser type selected}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: CYCLE402, CYCLE421, CYCLE422, CYCLE423, CYCLE424

Remedy: Check dresser type on input

Program Continuation: Clear alarm with the RESET key. Restart part program

61555 \[\text{Channel \%1: } \text{Block \%2: Diameter of grinding wheel ==0, GWPS cannot be calculated}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE446

Remedy: Check diameter

Program Continuation: Clear alarm with the RESET key. Restart part program

61556 \[\text{Channel \%1: } \text{Block \%2: Impossible chamfer and radius of left edge of wheel}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432

Remedy: Check values in grinding wheel data

Program Continuation: Clear alarm with the RESET key. Restart part program

61557 \[\text{Channel \%1: } \text{Block \%2: Impossible chamfer and radius of right edge of wheel}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432

Remedy: Check values in grinding wheel data

Program Continuation: Clear alarm with the RESET key. Restart part program

61558 \[\text{Channel \%1: } \text{Block \%2: Chamfer / radius + shoulder height are less than the retraction height of the left edge of the grinding wheel}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432

Remedy: Check values in grinding wheel data

Program Continuation: Clear alarm with the RESET key. Restart part program
NCK alarms

61559

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE432

Remedy:
Check values in grinding wheel data

Program Continuation:
Clear alarm with the RESET key. Restart part program

61560

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycles: CYCLE427, CYCLE428

Remedy:
Reduce infeed path parameter or use other tool

Program Continuation:
Clear alarm with the RESET key. Restart part program

61561

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE432

Remedy:
Check values in grinding wheel data

Program Continuation:
Clear alarm with the RESET key. Restart part program

61562

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE432

Remedy:
Check values in grinding wheel data

Program Continuation:
Clear alarm with the RESET key. Restart part program

61563

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm can be triggered by the following grinding cycle: CYCLE432

Remedy:
Check values in grinding wheel data

Program Continuation:
Clear alarm with the RESET key. Restart part program
NCK alarms

61564
%[[Channel %1:] Block %2: %]Feed insertion <=0
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm can be triggered by the following grinding cycles: CYCLE434, CYCLE444
Remedy:
Check values in grinding wheel data
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61565
[Channel %1:] Block %2: Feed dressing <=0
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm can be triggered by the following grinding cycles: CYCLE434, CYCLE444
Remedy:
Check values in grinding wheel data
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61601
[Channel %1:] Block %2: Finished part diameter too small
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The programmed radius of the machined part is too small. Alarm triggered by following cycles: CYCLE94, CYCLE96.
Remedy:
Check parameter SPD or DIATH.
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61602
[Channel %1:] Block %2: Tool width incorrectly defined
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Plunge cutter is larger than the programmed groove width. Alarm triggered by following cycle: CYCLE93.
Remedy:
Check tool or change program.
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61603
[Channel %1:] Block %2: Recess type incorrectly defined
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Radii/chamfers at the groove base do not match the groove width. Face groove on a contour element running parallel to the longitudinal axis is not possible. Alarm triggered by following cycle: CYCLE93.
Remedy:
Check parameter VARI.
Program
Clear alarm with the RESET key. Restart part program
Continuation:
61604 [Channel %1:] Block %2: Active tool violates programmed contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Contour violation in the relief cut elements due to the tool clearance angle of the tool used. Alarm triggered by following cycle: CYCLE95.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Use a different tool or check the contour subroutine.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61605 [Channel %1:] Block %2: Contour incorrectly programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Illegal relief cut element detected. Alarm triggered by following cycles: CYCLE76, CYCLE77, CYCLE95.
Remedy:
Check contour program.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61606 [Channel %1:] Block %2: Error during contour preparation
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An error has been found on conditioning the contour. This alarm is always related to one of NCK alarms 10930...10934, 15800 or 15810. Alarm triggered by following cycle: CYCLE95.
Remedy:
Check contour subroutine.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61607 [Channel %1:] Block %2: Starting point incorrectly programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The starting point reached before the cycle call does not lie outside the rectangle described by the contour subroutine. Alarm triggered by following cycle: CYCLE95.
Remedy:
Check starting point prior to cycle call.
Program Continuation:
Clear alarm with the RESET key. Restart part program
61608 [Channel %1:] Block %2: Incorrect tool point direction programmed

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE94, CYCLE96.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: A cutting edge position 1..4, matching the undercut form, must be programmed.

Program
Continuation:

Clear alarm with the RESET key. Restart part program

61609 [Channel %1:] Block %2: Shape incorrectly defined

Parameters: %1 = Channel number
 %2 = Block number, label

Remedy: Check parameter for the undercut form or groove form or pocket.

Program
Continuation:

Clear alarm with the RESET key. Restart part program

61610 [Channel %1:] Block %2: No infeed depth programmed

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE76, CYCLE77, CYCLE96.

Remedy: Check parameter MID.

Program
Continuation:

Clear alarm with the RESET key. Restart part program

61611 [Channel %1:] Block %2: No point of intersection found

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: No intersection could be calculated with the contour. Alarm triggered by following cycle: CYCLE95.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Check contour programming or modify infeed depth.

Program
Continuation:

Clear alarm with the RESET key. Restart part program

61612 [Channel %1:] Block %2: Thread finishing not possible

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE97, CYCLE98.

Remedy: Check the conditions for thread finishing.
61613 [Channel %1:] Block %2: Undercut position incorrectly defined

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE94, CYCLE96.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check value in parameter _VARI.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61614 [Channel %1:] Block %2: %4 Z mirroring in WO for main spindle not permitted

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: WO for main spindle machining must not have Z mirroring.
Alarm is triggered by the following cycles: CYCLE209, F_HEAD

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Deselect Z mirroring in the WO used.
Program Clear alarm with the RESET key. Restart part program
Continuation:

61700 %[Channel %1:] Block %2: %]Name of program to be generated is missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE952

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check parameter PRG
Program Clear alarm with the RESET key. Restart part program
Continuation:

61701 %[Channel %1:] Block %2: %]Contour %4 does not exist

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE952

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy:
- Check parameter CON
- Check contour call
- Check whether the contours exist in the program storage (workpieces, subroutines or part programs)

Program Continuation:
Clear alarm with the RESET key. Restart part program

61702 %[[Channel %1:] Block %2: %]Label %4 not existing in machined part contour

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the labels exist in the machined part contour

Program Continuation:
Clear alarm with the RESET key. Restart part program

61703 %[[Channel %1:] Block %2: %]Label %4 not existing in the blank contour

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the labels exist in the blank contour

Program Continuation:
Clear alarm with the RESET key. Restart part program

61704 %[[Channel %1:] Block %2: %]Machined part contour missing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check contour call

Program Continuation:
Clear alarm with the RESET key. Restart part program
61705 %[[Channel %1:] Block %2: %]Blank contour missing

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check contour call

Program and Continuation:
- Clear alarm with the RESET key. Restart part program

61706 %[[Channel %1:] Block %2: %]Error in machined part contour %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check programming of machined part contour

Program and Continuation:
- Clear alarm with the RESET key. Restart part program

61707 %[[Channel %1:] Block %2: %]Error in the blank contour %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check programming of the blank contour

Program and Continuation:
- Clear alarm with the RESET key. Restart part program

61708 %[[Channel %1:] Block %2: %]Too many contours specified

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
Remedy:
- Check number of contours
 - Max. two contours (machined part and blank contours)
 - Min. one contour (machined part contour)

Program
Continuation:
Clear alarm with the RESET key. Restart part program

61709

%[[Channel %1:] Block %2: %] Cutting edge radius too small

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE952.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check cutting edge radius of the tool in tool management

Program
Continuation:
Clear alarm with the RESET key. Restart part program

61710

%[[Channel %1:] Block %2: %] Calculation has been cancelled

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE952.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Calculation has been cancelled by PI service; please try again

Program
Continuation:
Clear alarm with the RESET key. Restart part program

61711

%[[Channel %1:] Block %2: %] Infeed D is larger than the tip width of the tool

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE952.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check infeed D in connection with the tip width of the tool in tool management.

Program
Continuation:
Clear alarm with the RESET key. Restart part program
NCK alarms

61712 %[[Channel %1:] Block %2: %] Infeed DX or DZ is larger than tip length of tool

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check infeed DX or DZ in connection with tip length of the tool in tool management.

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61713 %[[Channel %1:] Block %2: %] Tool radius larger than half the tip width

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check tool radius and tip width of tool (plunge cutter, cutting tool)

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61714 %[[Channel %1:] Block %2: %] System error contour turning %4

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Call the SIEMENS hotline

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61730 %[[Channel %1:] Block %2: %] Machining range outside delimitation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check machining range and delimitation

Program
Clear alarm with the RESET key. Restart part program

Continuation:
NCK alarms

61731 %[[Channel %1:] Block %2: %]Unable to determine contour direction
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check contours
- Check whether the contour starting point exists
Program Continuation:
Clear alarm with the RESET key. Restart part program

61732 %[[Channel %1:] Block %2: %]No material available for machining
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check programming of the blank and machined part contour, particularly their position towards each other
Program Continuation:
Clear alarm with the RESET key. Restart part program

61733 %[[Channel %1:] Block %2: %]Cutting edge not compatible with cutting direction
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check cutting edge position and cutting direction in tool management
Program Continuation:
Clear alarm with the RESET key. Restart part program

61734 %[[Channel %1:] Block %2: %]Machined part contour is outside the blank contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check programming of the machined part and blank contour, particularly their position towards each other
Program Continuation:
Clear alarm with the RESET key. Restart part program
NCK alarms

61735 %[[Channel %1:] Block %2: %] Infeed D larger than the tip length of the tool
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check infeed D in relation to the tip length of the tool in tool management
Program Clear alarm with the RESET key. Restart part program
Continuation:

61736 %[[Channel %1:] Block %2: %] Cutting depth greater than maximum depth of cut of the tool
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Clear alarm with the RESET key. Restart part program
Continuation:

61737 %[[Channel %1:] Block %2: %] Cutting depth smaller than minimum depth of cut of the tool
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Clear alarm with the RESET key. Restart part program
Continuation:

61738 %[[Channel %1:] Block %2: %] Incorrect cutting edge position
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
61739 %[[Channel %1:] Block %2: %]Blank must be closed contour

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE952

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check whether the blank contour is closed

Program Continuation: Clear alarm with the RESET key. Restart part program

61740 %[[Channel %1:] Block %2: %]Collision through approach

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE952

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Select the starting position to enable collision-free approach of the contour

Program Continuation: Clear alarm with the RESET key. Restart part program

61741 %[[Channel %1:] Block %2: %]Axis in negative range

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE952

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check the position of the axis in the ordinate

Program Continuation: Clear alarm with the RESET key. Restart part program
NCK alarms

61742
%[[Channel %1:] Block %2: %] Retraction plane %4 is within the machining range

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycle: CYCLE952

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- On internal machining check machining range in relation to the entered retraction distance ($SCS_TURN_ROUGH_I_RELEASE_DIST)

Program Continuation:
Clear alarm with the RESET key. Restart part program

61800
[Channel %1:] Block %2: Ext. CNC system missing

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Machine data for external language MD18800: $MN_MM_EXTERN_LANGUAGE or option bit 19800
$ON_EXTERN_LANGUAGE is not set.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
--

Program Continuation:
Clear alarm with the RESET key. Restart part program

61801
[Channel %1:] Block %2: Wrong G code selected

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In the program call CYCLE300<value> an impermissible numerical value was programmed for the entered CNC System, or in the Cycles Setting Datum an incorrect value for the G Code System was set.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
--

Program Continuation:
Clear alarm with the RESET key. Restart part program

61802
[Channel %1:] Block %2: Wrong axis type

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The programmed axis is assigned to a spindle

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
NCK alarms

Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61803 [Channel %1:] Block %2: Programmed axis not available
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The programmed axis is not in the system.
Alarm triggered by following cycles: CYCLE83, CYCLE84, CYCLE840.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check parameter _AXN.
Check MD20050-20080.
Program Continuation: Clear alarm with the RESET key. Restart part program

61804 [Channel %1:] Block %2: Progr. position exceeds reference point
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The programmed intermediate position or actual position is behind the reference point.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61805 [Channel %1:] Block %2: Value programmed absolute and incremental
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The programmed intermediate position is both absolutely as well as incrementally programmed.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program
NCK alarms

<table>
<thead>
<tr>
<th>Alarm ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61806</td>
<td>[Channel %1:] Block %2: Wrong axis assignment</td>
</tr>
</tbody>
</table>
| Parameters: | %1 = Channel number
%2 = Block number, label |
| Definitions: | The axis-assignment sequence is wrong. |
| Reaction: | Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display. |
| Remedy: | -- |
| Program: | Clear alarm with the RESET key. Restart part program |
| Continuation: | |

<table>
<thead>
<tr>
<th>Alarm ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61807</td>
<td>[Channel %1:] Block %2: Wrong spindle direction programmed (active)</td>
</tr>
</tbody>
</table>
| Parameters: | %1 = Channel number
%2 = Block number, label |
| Definitions: | Alarm triggered by following cycle: CYCLE840.
The programmed spindle direction contradicts the spindle direction planned for the cycle. |
| Reaction: | Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display. |
| Remedy: | Check parameters SDR and SDAC. |
| Program: | Clear alarm with the RESET key. Restart part program |
| Continuation: | |

<table>
<thead>
<tr>
<th>Alarm ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61808</td>
<td>[Channel %1:] Block %2: Final drilling depth or single drilling depth missing</td>
</tr>
</tbody>
</table>
| Parameters: | %1 = Channel number
%2 = Block number, label |
| Definitions: | The total depth Z or individual drilling depth Q is missing from the G8x block (initial cycle call). |
| Reaction: | Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display. |
| Remedy: | -- |
| Program: | Clear alarm with the RESET key. Restart part program |
| Continuation: | |

<table>
<thead>
<tr>
<th>Alarm ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61809</td>
<td>[Channel %1:] Block %2: Drill position not permissible</td>
</tr>
</tbody>
</table>
| Parameters: | %1 = Channel number
%2 = Block number, label |
| Definitions: | -- |
| Reaction: | Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display. |
| Remedy: | -- |
| Program: | Clear alarm with the RESET key. Restart part program |
| Continuation: | |
61810 [Channel %1:] Block %2: ISO G code not possible

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In the call block an impermissible ISO axis name was programmed.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- --

Program Continuation:
Clear alarm with the RESET key. Restart part program

61811 [Channel %1:] Block %2: ISO axis name illegal

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In the call block an impermissible numerical value was programmed.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- --

Program Continuation:
Clear alarm with the RESET key. Restart part program

61812 [Channel %1:] Block %2: Value(s) in external cycle call wrongly defined

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In the call block an impermissible numerical value was programmed.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- --

Program Continuation:
Clear alarm with the RESET key. Restart part program

61813 [Channel %1:] Block %2: GUD value wrongly defined

Definitions:
An impermissible numerical value was entered in the cycles-setting data.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- --

Program Continuation:
Clear alarm with the RESET key. Restart part program
61814 [Channel %1:] Block %2: Polar coordinates not possible with cycle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61815 [Channel %1:] Block %2: G40 not active

Parameters:
%1 = Channel number
%2 = Block number

Definitions:
G40 was inactive before the cycle call.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61816 [Channel %1:] Block %2: Axes not on reference point

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61817 [Channel %1:] Block %2: Axis coordinates within protection zone

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:

Program
Clear alarm with the RESET key. Restart part program

Continuation:

Alarms

Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0
61818 [Channel %1:] Block %2: Axis range limits are equal
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
--
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
--
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61900 %[[Channel %1:] Block %2: %]Name of program to be generated is missing
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check parameter PRG
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61901 %[[Channel %1:] Block %2: %]Contour %4 does not exist
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check contour call
- Check whether the contours exist in the program storage (workpieces, subroutines or part programs)
Program
Continuation:
Clear alarm with the RESET key. Restart part program

61902 %[[Channel %1:] Block %2: %]Label %4 not existing in the pocket contour
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check whether the labels exist in the pocket contour
Program
Continuation:
Clear alarm with the RESET key. Restart part program
61903 %[[Channel %1:] Block %2: %]Label %4 not existing in the blank contour

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check whether the labels exist in the blank contour

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61904 %[[Channel %1:] Block %2: %]Label %4 not existing in the island contour

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check whether the labels exist in the island contour

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61905 %[[Channel %1:] Block %2: %]Label %4 not existing in the spigot contour

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check whether the labels exist in the spigot contour

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61906 %[[Channel %1:] Block %2: %]Label %4 not existing in the contour

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE64

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check whether the labels exist in the contour

Program
Clear alarm with the RESET key. Restart part program

Continuation:
61907 %[[Channel %1:] Block %2: %]Pocket contour missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check contour call
Program Clear alarm with the RESET key. Restart part program

Continuation:

61908 %[[Channel %1:] Block %2: %]Blank contour missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check contour call
Program Clear alarm with the RESET key. Restart part program

Continuation:

61909 %[[Channel %1:] Block %2: %]Error in pocket contour %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check programming of the pocket contour
Program Clear alarm with the RESET key. Restart part program

Continuation:

61910 %[[Channel %1:] Block %2: %]Error in the blank contour %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check programming of the blank contour
Program Clear alarm with the RESET key. Restart part program

Continuation:
61911
%[[Channel %1:] Block %2: %]Error in island contour %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check programming of the island contour
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61912
%[[Channel %1:] Block %2: %]Error in spigot contour %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check programming of the spigot contour
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61913
%[[Channel %1:] Block %2: %]Error in contour %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check programming of the contour
Program
Clear alarm with the RESET key. Restart part program
Continuation:

61914
%[[Channel %1:] Block %2: %]Too many contours specified
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check the number of contours
Program
Clear alarm with the RESET key. Restart part program
Continuation:
61915 %[[Channel %1:] Block %2: %]Cutter radius too small
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check the radius of the milling cutter in tool management
Program Clear alarm with the RESET key. Restart part program
Continuation:

61916 %[[Channel %1:] Block %2: %]Calculation has been cancelled
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Calculation has been cancelled by PI service; please try again
Program Clear alarm with the RESET key. Restart part program
Continuation:

61917 %[[Channel %1:] Block %2: %]Combination of centering/predrilling and spigot not allowed
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Machining of spigot in conjunction with predrilling/centering not allowed!
Program Clear alarm with the RESET key. Restart part program
Continuation:

61918 %[[Channel %1:] Block %2: %]Cut. radius for residual mach. must be smaller than cut. radius for ref. tool
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Alarms
Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0
NCK alarms

Remedy: - Check cutter radius for residual machining which must be smaller than cutter radius for reference tool!
Program Continuation: Clear alarm with the RESET key. Restart part program

61919 %[[Channel %1:] block %2: %]Radius of the reference tool is too small

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check the radius of the reference tool.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61920 %[[Channel %1:] block %2: %]System error contour milling %4

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Call the SIEMENS hotline

Program Continuation:
Clear alarm with the RESET key. Restart part program

61930 %[[Channel %1:] Block %2: %]No contour available

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Check contour call
- Check whether the contours exist in the program storage (workpieces, subroutines or part programs)

Program Continuation:
Clear alarm with the RESET key. Restart part program
61931 %[[Channel %1:] Block %2: %]Contour not closed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the contours are closed

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61932 %[[Channel %1:] Block %2: %]Selfcutting contour

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Modify contour programming

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61933 %[[Channel %1:] Block %2: %]Too many contour elements

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Modify contour programming and thereby try to reduce the number of contour elements

Program
Clear alarm with the RESET key. Restart part program

Continuation:

61934 %[[Channel %1:] Block %2: %]Programming of the machining plane not allowed here

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Modify contour programming

Program
Clear alarm with the RESET key. Restart part program

Continuation:
61935 %[[Channel %1:] Block %2: %] Programming of inch/metric measuring system not allowed here

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Modify contour programming
Program
Clear alarm with the RESET key. Restart part program

61936 %[[Channel %1:] Block %2: %] G0 is not allowed in contour programming

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Modify contour programming, replace G0 by G1
Program
Clear alarm with the RESET key. Restart part program

61937 %[[Channel %1:] Block %2: %] Pocket depth programmed incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check parameter Z1
Program
Clear alarm with the RESET key. Restart part program

61938 %[[Channel %1:] Block %2: %] No starting point specified

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check parameter for specified starting point,
 - for G17: XS, YS
 - for G18: ZS, XS
 - for G19: YS, ZS
Program Continuation: Clear alarm with the RESET key. Restart part program

61939 %[[Channel %1:] Block %2: %]No center point specified for circle
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check contour programming, particularly circular-path programming
Program Continuation: Clear alarm with the RESET key. Restart part program

61940 %[[Channel %1:] Block %2: %]Specified starting point programmed incorrectly
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Correct specified starting point
Program Continuation: Clear alarm with the RESET key. Restart part program

61941 %[[Channel %1:] Block %2: %]Helix radius too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Increase helix radius
Program Continuation: Clear alarm with the RESET key. Restart part program
61942 %[[Channel %1:] Block %2: %]Helix violates contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check helix radius and reduce in size, if possible
Program Clear alarm with the RESET key. Restart part program
Continuation:

61943 %[[Channel %1:] Block %2: %]Approach/retract motion violates contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Reduce safety clearance SC, if possible
Program Clear alarm with the RESET key. Restart part program
Continuation:

61944 %[[Channel %1:] Block %2: %]Ramp path too short
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check insertion angle, possibly use different insertion mode
- Use tool with smaller radius
Program Clear alarm with the RESET key. Restart part program
Continuation:

61945 %[[Channel %1:] Block %2: %]Plane infeed too large, residual corners remaining
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy: - Check parameter for plane infeed
- for G17: DXY
- for G18: DZX
- for G19: DYZ

Program Continuation: Clear alarm with the RESET key. Restart part program

61946 %[[Channel %1:] Block %2: %] Island contour existing twice

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Delete double island contour

Program Continuation: Clear alarm with the RESET key. Restart part program

61947 %[[Channel %1:] Block %2: %] Spigot contour existing twice

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Delete double spigot contour

Program Continuation: Clear alarm with the RESET key. Restart part program

61948 %[[Channel %1:] Block %2: %] No material available for machining

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check programming of the contours

Program Continuation: Clear alarm with the RESET key. Restart part program
61949 %[[Channel %1:] Block %2: %]Island is outside the pocket
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check programming of the island/pocket contour
Program Clear alarm with the RESET key. Restart part program
Continuation:

61950 %[[Channel %1:] Block %2: %]No residual material available
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Clear alarm with the RESET key. Restart part program
Continuation:

61951 %[[Channel %1:] Block %2: %]Cutter radius for residual material too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Use cutter with smaller radius
Program Clear alarm with the RESET key. Restart part program
Continuation:

61952 %[[Channel %1:] Block %2: %]Radius of res. material cutter too small in relation to ref. cutter
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Use a cutter with a larger radius for residual machining
Program Clear alarm with the RESET key. Restart part program
Continuation:
NCK alarms

62000 [Channel %1:] Block %2: Insert new tool
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Please load new tool.
Remedy: --
Program Continuation: Clear alarm with the Delete key or NC START.

62100 [Channel %1:] Block %2: No drilling cycle active
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: No modal drilling cycle has been called before the drilling pattern cycle call. Alarm triggered by following cycles: HOLES1, HOLES2.
Remedy: Check whether a drilling cycle was called prior to calling the drilling pattern cycle.
Program Continuation: Clear alarm with the Delete key or NC START.

62101 [Channel %1:] Block %2: Milling direction incorrect - G3 is generated
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Synchronous or reverse rotation programmed. But the spindle does not rotate at a cycle call.
Remedy: Check value in paramter CDIR.

62102 [Channel %1:] Block %2: pocket not completely solidly machined during finishing
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Reaction: Alarm display.
Remedy: Program Continuation: Clear alarm with the Delete key or NC START.

62103 [Channel %1:] Block %2: No finishing allowance programmed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: No finishing allowance is programmed, although it is necessary for this machining.
Remedy: Program Continuation: Clear alarm with the Delete key or NC START.
62104 [Channel %1:] Block %2: Drilling cycle incorrectly defined

Parameters: %1 = Channel number
%2 = Block number, label

Definitions:
Reaction: Alarm display.
Remedy: Clear alarm with the Delete key or NC START.

62105 [Channel %1:] Block %2: Number of columns or lines equals zero

Parameters: %1 = Channel number
%2 = Block number, label

Definitions:
Reaction: Alarm triggered by following cycle: CYCLE801.
Remedy: Check parameters _NUM1 and _NUM2.

62106 [Channel %1:] Block %2: incorrect value for monitoring status in tool monitoring

Parameters: %1 = Channel number
%2 = Block number, label

Definitions:
Reaction: Alarm display.
Remedy: Clear alarm with the Delete key or NC START.

62107 [Channel %1:] Block %2: parameter %4 incorrectly defined for tool monitoring in cycles

Parameters: %1 = Channel number
%2 = Block number, label

Definitions:
Reaction: Alarm display.
Remedy: Clear alarm with the Delete key or NC START.

62108 [Channel %1:] Block %2: error in function Tool monitoring in cycles

Parameters: %1 = Channel number
%2 = Block number, label

Definitions:
Reaction: Alarm display.
Remedy: Clear alarm with the Delete key or NC START.
NCK alarms

62180 [Channel %1:] Block %2: Set rotary axes %4 [deg]
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Note on 62180 and 62181:
Sample display of the swivel angle to be set for a manual rotary axis in CYCLE800:
 62181 "Set rotary axis B: 32.5 [grd]"
Remedy: Settable angles for manual rotary axes.

62181 [Channel %1:] Block %2: Set rotary axis %4 [deg]
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Note on 62180 and 62181:
Sample display of the swivel angle to be set for a manual rotary axis in CYCLE800:
 62181 "Set rotary axis B: 32.5 [grd]"
Remedy: Settable angle for manual rotary axis.

62182 [Channel %1:] Block %2: load inclinable head: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No swivel head is active. Alarm triggered by following cycles: E_TCARR, F_TCARR.
Reaction: Alarm display.
Remedy: Request to load a swivel head.
Program Continuation: Clear alarm with the Delete key or NC START.

62183 [Channel %1:] Block %2: unload inclinable head: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Reaction: Alarm display.
Remedy: --
Program Continuation: Clear alarm with the Delete key or NC START.

62184 [Channel %1:] Block %2: replace inclinable head: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Reaction: Alarm display.
Remedy: --
Program Continuation: Clear alarm with the Delete key or NC START.
62185 [Channel %1:] Block %2 : angle adapted to angle grid: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
%4 difference angle with Hirth tooth system
Alarm triggered by following cycle: CYCLE800.
Remedy:
Check setup of swivel CYCLE800.

62186 [Channel %1:] Block %2: No swiveling in JOG -> WO G%4 active and total basic WO (G500) contain rotations
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycle: CYCLE800.
On swiveling in JOG no rotation can be written to the work offset WO,
if rotations are already contained in the total basic WO or in the basic reference
Error 62186 message can be masked -> see setting data 55410 $SCS_MILL_SWIVEL_ALARM_MASK
Remedy:
%4 number of the active work offset WO.

62187 [Channel %1:] Block %2: Swiveling in JOG --> G500 active and total basic WO or basic reference contain rotations
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycle: CYCLE800.
During swiveling in JOG, it is not possible to write a rotation into the work offset WO,
if rotations are already contained in the total basic WO or in the basic reference
Error message 62187 can be masked -> see setting data 55410 $SCS_MILL_SWIVEL_ALARM_MASK
Remedy:
See notes for 62186 and 62187.

62200 [Channel %1:] Block %2: Start spindle
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Stop prior to thread machining, as the spindle is in stop position.
Alarm triggered by following cycles: ASUP, E_TR_CON, F_TR_CON.
Remedy:
Start the tool spindle before machining the thread.

62201 [Channel %1:] Block %2: Z offset does not influence the retraction planes.
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The retraction planes refer to the workpiece. Therefore, programmable offsets do not influence the retraction planes.
Alarm triggered by following cycle: F_SP_RP.
Remedy:
Ensure that the offset will not cause a collision.
Then start the NC.
The alarm can be suppressed via display machine data 9898.
62202 [Channel %1:] Block %2: NOTICE: tool travels directly to machining!
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
After block search a position is to be reached by direct approach.
Alarm triggered by following cycle: F_TFS.
Remedy:
Check whether the desired position can be reached without collision.
Then execute an NC start.

62300 [Channel %1:] Block %2: Check number of empirical value memory
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
--
Reaction:
Alarm display.
Remedy:
Check setpoint value
Program Continuation:
Clear alarm with the Delete key or NC START.

62301 [Channel %1:] Block %2: Notice! Search run, test run or simulation active
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
- Deactivate program test or test run

62303 [Channel %1:] Block %2: Safety margin exceeded
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
- Check setpoint value and parameter _TSA

62304 [Channel %1:] Block %2: Allowance
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994.
Reaction:
Alarm display.
Remedy:
The difference between actual and setpoint value is larger than upper tolerance limit (parameter _TUL).
Program Continuation:
Clear alarm with the Delete key or NC START.
62305 [Channel %1:] Block %2: Dimension too small
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994
Remedy: The difference between actual and setpoint value is smaller than lower tolerance limit (parameter _TLL).

62306 [Channel %1:] Block %2: Permissible measuring difference exceeded
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE971, CYCLE972, CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE982, CYCLE994
Remedy: The difference between actual and setpoint value is larger than tolerance parameter _TDIF, tool data are not corrected.

62307 [Channel %1:] Block %2: Maximum number of characters per line exceeded.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE105
Insufficient number of characters per line.
Remedy: Increase the value in _PROTFORM[1]

62308 [Channel %1:] Block %2: Variable column width not possible
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE105.
Unable to generate variable column widths, as no header available.
A fixed column width of 12 characters is used.
Reaction: Alarm display.
Remedy: Complete the header in _PROTVAL[0].
Program Continuation: Clear alarm with the Delete key or NC START.

62309 [Channel %1:] Block %2: Insufficient column width
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE105.
The value to be logged is larger than the column width.
Reaction: Alarm display.
Remedy: Adjust _PROTFORM[5] or change the header at variable column width.
Program Continuation: Clear alarm with the Delete key or NC START.
62310 [Channel %1:] Block %2: The max. number of characters per line is limited to 200 characters per line
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
Alarm triggered by following cycles: CYCLE105.
The maximum number of characters per line has been limited to 200 characters per line.
Remedy: --

62311 [Channel %1:] Block %2: The maximum number of characters per line _PROTFORM[1] is adjusted.
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE105
Max. number of characters per line _PROTFORM[1] has been adjusted.
Reaction:
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the Delete key or NC START.

62312 [Channel %1:] Block %2: probe is not perpendicular to plane!
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
Reaction:
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the Delete key or NC START.

62313 [Channel %1:] Block %2: The number of lines per page _PROTFORM[0] is incorrect and is automatically adjusted.
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
Alarm triggered by following cycle: CYCLE106.
Remedy: Check _PROTFORM[0] in the program.

62314 [Channel %1:] Block %2: Traverse path limitation via software end position, collision detection activated, continue with NC START / cancel with RESET.
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycle: CYCLE977
Remedy: Position the workpiece to be measured further away from the software end positions.
NCK alarms

62315 [Channel %1:] Block %2: Overwrite swivel data record TCARR = %4, yes -> NC start, no -> reset
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE996
Remedy:

62316 [Channel %1:] Block %2: Overwrite TRAORIdata, yes -> NC start, no -> reset
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE996
Remedy:

62317 [Channel %1:] Block %2: Tolerance of the linear vector %4 exceeded
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE996
Remedy:

62318 [Channel %1:] Block %2: Tolerance of the rotary axis vector %4 exceeded
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE996
Remedy:

62335 [Channel %1:] Block %2: No internal correction of the calibration data
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by the following cycles: CYCLE961, CYCLE977, CYCLE978, CYCLE979, CYCLE996, CYCLE997, CYCLE998
Remedy: Check probe alignment/spindle position!
The alignment (programmed position) of the tool probe in the workspindle must be identical during calibration and measuring!
If these positions vary, the calibration data cannot be corrected cycle-internally with regards to a coordinate rotation of the workplane around the infeed axis!
62500 [Channel %1:] Block %2: GWPS has been limited
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE446
Remedy: Check limit value for GWPS and program a lower value in the NC program if necessary
Program Clear alarm with the Delete key or NC START.
Continuation:

62501 [Channel %1:] Block %2: Speed has been limited
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE446
Remedy: Check limit value for speed and program a lower value in the NC program if necessary
Program Clear alarm with the Delete key or NC START.
Continuation:

62502 [Channel %1:] Block %2: Dresser %4, GWPS has been limited
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE421
Remedy: Check limit value for GWPS and program a lower value in the NC program if necessary
Program Clear alarm with the Delete key or NC START.
Continuation:

62503 [Channel %1:] Block %2: Dresser %4, speed has been limited
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE421
Remedy: Check limit value for speed and program a lower value in the NC program if necessary
Program Clear alarm with the Delete key or NC START.
HMI alarms

120006 The channel switchover is currently disabled by area %1.
Parameters: %1 = Operating area name
Definitions: The area %1 has disabled the channel switchover at the moment, as it is performing a critical operation (e.g. execution from external sources, etc.), during which no channel switchover may occur.
Reaction: Alarm display.
Remedy: Wait until the critical operation is finished or end the critical operation manually.
Program Continuation: Internal

120007 The channel switchover is currently disabled.
Definitions: The channel switchover is currently disabled, as a critical operation, during which no channel switchover may occur, is being carried out.
Reaction: Alarm display.
Remedy: Wait until the critical operation is finished or end the critical operation manually.
Program Continuation: Internal

120008 Control unit switchover, PLC timeout: %1
Parameters: %1 = --
Definitions: 001: MMC would like to go offline from this NCU. MMC has made the offline request in the online PLC and is waiting for the positive / negative acknowledgement from the PLC.
002: MMC would like to go online to this NCU. MMC has called the target PLC and is waiting for the release to go online.
003: MMC has requested the active operating mode and is waiting for acknowledgement from the PLC.
Remedy: Check whether the switchover blocks are loaded and started in the online PLC.

120200 Image preparation suppressed
Definitions: The control is so heavily loaded by the processing of a subroutine, that it cannot keep all the display values up-to-date.
Reaction: Alarm display.
Remedy: The alarm disappears automatically as soon as the overload situation has been eliminated.
If this alarm occurs often, the start-up engineer will have to take appropriate measures (e.g. reduce IPO clock pulse rate).
Program Continuation: Internal
120400

The settings for the acyclic links with the drive units are not yet effective.

Switch off/on HMI!

Definitions:
A file transfer from/to a drive unit has failed as the settings for acyclic links with the drive units become effective only after an HMI reboot.

Reaction:
Alarm display.

Remedy:
Switch off/on HMI and then repeat the process leading to the alarm.

Program Continuation:
Internal

120401

SINAMICS: Write job for parameter %1, value %2, area %3: %4s timeout!

Parameters:
- %1 = Number of parameter the value of which is to be written.
- %2 = Value to be written
- %3 = Area (drive object class to which the write job was addressed)
- %4 = Time passed without the write job being acknowledged by the drive unit.

Definitions:
The write job of a SINAMICS parameter was not acknowledged within 10 seconds by the drive unit.
If the write job is not acknowledged within the next 10 seconds, the alarm will again be triggered.
The waiting period for the acknowledgement of a write job is a maximum of 130 seconds, i.e. if the timeout specified in the alarm is 130 seconds, it is assumed that the write job has failed. Otherwise it can be assumed that the write job was successful despite the timeout.

Reaction:
Alarm display.

Remedy:
As long as the timeout specified in the alarm is less than 130 seconds, acknowledge alarm, otherwise switch off/on control, drive system and HMI, and then repeat the process leading to the alarm.

Program Continuation:
Internal

120402

Bus%1.Slave%2: %3: First commissioning of SINAMICS required!

Parameters:
- %1 = Bus number
- %2 = Slave address
- %3 = Name of the affected drive unit

Definitions:
The drive unit with the bus number and slave address specified in the alarm is in 'First commissioning' state.

Reaction:
Alarm display.

Remedy:
Execute first commissioning for the affected drive unit.
To do so, switch in the HMI to the dialog 'First commissioning > Drive system > Drive unit, select the affected drive unit, and follow the instructions of the HMI.

Program Continuation:
Internal
HMI alarms

120403
Bus%1 Slave%2: %3: Check/acknowledge topology!

Parameters:
- %1 = Bus number
- %2 = Slave address
- %3 = Name of the affected drive unit

Definitions:
The drive unit with the bus number and slave address specified in the alarm has detected an illegal difference between reference topology and actual topology during the ramp-up when checking the DRIVE-CLiQ topology. For this reason, the drive unit has stopped the ramp-up in the 'Topology error' state.

Reaction:
Alarm display.

Remedy:
- Check actual topology and possibly replug in line with the actual topology.
- Check DRIVE-CLiQ cables for breakage and problems with contacts.
- Test DRIVE-CLiQ components for operational functioning.

Note: Under 'Setup > Drive system > Drive devices > Topology', HMI offers a suitable diagnostics (e.g. reference/actual value comparison).

Program Continuation: Internal

120404
Setting up acyclic link %1 failed.\nSwitch off/on control, drives and HMI.

Parameters:
- %1 = Name of connection

Definitions:
Setting up an acyclic link with a drive unit for file transfer from/to this drive unit has failed. The file could not be transferred from/to this drive unit.
The affected drive unit has the bus number and slave address specified in the link name: /DRIVE_<Bus number>_<Slave address>.

Reaction:
Alarm display.

Remedy:
Execute the following measures in the sequence specified until the process leading to the alarm can be repeated successfully:
1. Switch off/on control, drives and HMI, and then repeat the process leading to the alarm.
2. Load PROFIBUS configuration (HW Config) with same PLC and CP-Subnet-ID in PLC and CP, switch off/on control and HMI, and then repeat the process leading to the alarm.
3. Return to factory settings of the affected drive unit, switch off/on control, drives and HMI, and then repeat the process leading to the alarm.
4. Contact Siemens AG, Industry Sector, I DT MC, Hotline (Phone/Fax: see Alarm 1000) regarding the error text.

Program Continuation: Internal

120405
SINAMICS: Firmware update for DRIVE-CLiQ components is running.\nPlease wait for the firmware update to be completed!

Definitions:
The firmware update is being executed for at least one DRIVE-CLiQ component.

Reaction:
Alarm display.

Remedy:
None required.
Please wait for the firmware update to be completed.
Completion of the firmware update is signaled by alarm 120406.

Program Continuation: Internal
120406 SINAMICS: Firmware update of DRIVE-CLiQ components completed.\nSwitch off/on drive system!
Definitions: Firmware update of all DRIVE-CLiQ components completed.
Reaction: Alarm display.
Remedy: Switch off/on drive system including all DRIVE-CLiQ components.
Program: Internal

120407 SINAMICS: Read job for parameter %1, area %2: %3 s timeout!
Parameters: %1 = Number of the parameter whose value was read.
%2 = Area (drive object class to which the write job was addressed)
%3 = Time required to read the parameter.
Definitions: It is taking too long to read a SINAMICS parameter. This can slow down the operation of a connected HMI significantly.
Reaction: Alarm display.
Remedy: 1. Acknowledge alarm.
2. Check drive load: The CPU time load values in parameter r9976 for the corresponding Control Unit should be less than 80%.
3. Make a note of the error text and contact Siemens AG, Industry Sector, I DT MC, hotline (phone/fax: see alarm 1000).
Program: Internal

150000 Auto Servo Tuning has been shut down unexpectedly during a previous operation.\nIt may be necessary to restore the output data of the last tuning.
Definitions: The alarm signals that a recovery point exists.
A recovery point may come to a standstill on a platform if AST is unexpectedly shut down (e.g. in the case of power failure, failure in communications etc.)
Recovery of the recovery point sets the machine data back to the values before the tuning. This ensures that the machine is in a consistent state.
Reaction: Alarm display.
Remedy: Data recovery may be executed from the Auto Servo Tuning application in HMI-Setup.
Program: Internal

150201 Communication to %1 failed
Parameters: %1 = Source URL of the component involved
Definitions: The operator panel is connected to the NC and PLC by a communications bus.
This alarm occurs when the communication to these components is interrupted.
In connection with this alarm, all display values connected with the NC/PLC become invalid.
Such faults are normal while the controls are ramping up (e.g. after resetting).
Reaction: Alarm display.
Remedy: The alarm disappears automatically as soon as the fault situation has ended.
If this alarm is continuously present, a wide variety of faults may be the cause. (e.g. wire breakage, NC/PLC not ramped up. fault address/data transfer rate configuration of one of the bus nodes, etc.).
Program: Internal
150202 Waiting for a connection to %1

Parameters:
%1 = Source URL of the component involved

Definitions:
The operator panel is connected to the NC and PLC by a communications bus.
This alarm occurs if the MMC is started for the first time and the NC/PLC ramp-up has not yet finished or the communication to these components is faulty.
In conjunction with this alarm, all display values connected with the NC/PLC become invalid.
Such faults are normal while the controls are starting up (e.g. after resetting).

Reaction:
Alarm display.

Remedy:
The alarm disappears automatically as soon as the fault situation has ended.
If this alarm is continuously present, a wide variety of faults may be the cause. (e.g. wire breakage, NC/PLC not ramped up, faulty address/data transfer rate configuration of one of the bus nodes, etc.).

Program Continuation:
Internal

150204 ----- Start alarm acquisition -----

Definitions:
The alarm indicates the start or restart of alarm acquisition in the alarm log.
If the alarm log has been configured so that it is persistently written into the file system, a further alarm is written into the log at each new start. The alarm thus separates the individual time intervals during which alarm acquisition is active.
The coming and going time stamps are identical, and correspond to the time of the start/restart of the alarm acquisition.
The alarm is only visible in the alarm log.

Reaction:
Alarm display.

Remedy:
The alarm can but need not be deleted as it is only visible in the alarm log.

Program Continuation:
Internal
201000 <location>Internal software error

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An internal software error has occurred.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- evaluate fault buffer (r0945).
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

201001 <location>FloatingPoint exception

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An exception occurred during an operation with the FloatingPoint data type.
The error may be caused by the base system or an OA application (e.g., FBLOCKS, DCC).
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Note:
Refer to r9999 for further information about this fault.
r9999[0]: Fault number.
r9999[1]: Program counter at the time when the exception occurred.
r9999[2]: Cause of the FloatingPoint exception.
Bit 0 = 1: Operation invalid
Bit 1 = 1: Division by zero
Bit 2 = 1: Overflow
Bit 3 = 1: Underflow
Bit 4 = 1: Imprecise result
Remedy:
- carry out a POWER ON (power off/on) for all components.
- check configuration and signals of the blocks in FBLOCKS.
- check configuration and signals of the charts in DCC charts.
- upgrade firmware to later version.
- contact the Hotline.
201002 <location>Internal software error

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: An internal software error has occurred.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201003 <location>Acknowledgement delay when accessing the memory

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A memory area was accessed that does not return a "READY".
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- contact the Hotline.

201004 <location>Internal software error

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An internal software error has occurred.
Fault value (r0949, hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- read out diagnostics parameter (r9999).
- contact the Hotline.
See also: r9999 (Software error internal supplementary diagnostics)
201005 <location>Firmware download for DRIVE-CLiQ component unsuccessful

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause: It was not possible to download the firmware to a DRIVE-CLiQ component.
Fault value (r0949, interpret hexadecimal):

yyxxxx hex: yy = component number, xxxx = fault cause
xxxx = 00B hex = 11 dec:
DRIVE-CLiQ component has detected a checksum error.
xxxx = 00F hex = 15 dec:
The selected DRIVE-CLiQ component did not accept the contents of the firmware file.
xxxx = 0012 hex = 18 dec:
Firmware version is too old and is not accepted by the component.
xxxx = 0013 hex = 19 dec:
Firmware version is not suitable for the hardware release of the component.
xxxx = 0065 hex = 101 dec:
After several communication attempts, no response from the DRIVE-CLiQ component.
xxxx = 008B hex = 139 dec:
Initially, a new boot loader is loaded (must be repeated after POWER ON).
xxxx = 008C hex = 140 dec:
Firmware file for the DRIVE-CLiQ component not available on the memory card.
xxxx = 008D hex = 141 dec:
An inconsistent length of the firmware file was signaled. The firmware download may have been caused by a loss of
connection to the firmware file. This can occur during a project download/reset in the case of a SINAMICS Integrated
Control Unit, for example.
xxxx = 008F hex = 143 dec:
Component has not changed to the mode for firmware download. It was not possible to delete the existing firmware.
xxxx = 0090 hex = 144 dec:
When checking the firmware that was downloaded (checksum), the component detected a fault. It is possible that the
file on the memory card is defective.
xxxx = 0091 hex = 145 dec:
Checking the loaded firmware (checksum) was not completed by the component in the appropriate time.
xxxx = 009C hex = 156 dec:
Component with the specified component number is not available (p7828).
xxxx = Additional values:
Only for internal Siemens troubleshooting.

Remedy: - check the selected component number (p7828).
- check the DRIVE-CLiQ connection.
- save suitable firmware file for download in the directory "/siemens/sinamics/code/sac".
- use a component with a suitable hardware version
- after POWER ON has been carried out again for the DRIVE-CLiQ component, download the firmware again. Depend-
ing on p7826, the firmware will be automatically downloaded.
201006 <location> Firmware update for DRIVE-CLiQ component required

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The firmware of a DRIVE-CLiQ component must be updated as there is no suitable firmware or firmware version in the component for operation with the Control Unit.
Alarm value (r2124, interpret decimal): Component number of the DRIVE-CLiQ component.
Remedy: Firmware update using the commissioning software:
The firmware version of all of the components on the "Version overview" page can be read in the Project Navigator under "Configuration" of the associated drive unit and an appropriate firmware update can be carried out.
Firmware update via parameter:
- take the component number from the alarm value and enter into p7828.
- start the firmware download with p7829 = 1.

201007 <location> POWER ON for DRIVE-CLiQ component required

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A DRIVE-CLiQ component must be powered up again (POWER ON) as, for example, the firmware was updated.
Alarm value (r2124, interpret decimal): Component number of the DRIVE-CLiQ component.
Note: For a component number = 1, a POWER ON of the Control Unit is required.
Remedy: Switch off the power supply of the specified DRIVE-CLiQ component and switch it on again.

201009 <location> CU: Control module overtemperature

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:
- check the air intake for the Control Unit.
- check the fan for the Control Unit (only for CU310).
Note: The alarm automatically disappears after the limit value has been undershot.
201010 <location>Drive type unknown</location>

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: An unknown drive type was found.
Fault value (r0949, interpret decimal):
Drive object number (refer to p0101, p0107).
Remedy:
- Replace Power Module.
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201011 <location>Download interrupted</location>

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The project download was interrupted.
- the project download was prematurely ended by the user or by the commissioning software (e.g. STARTER, SCOUT).
- the communication cable was interrupted (e.g. cable breakage, cable withdrawn).
Note: The response to an interrupted download is the state "first commissioning".
Remedy:
- check the communication cable.
- download the project again.
- boot from previously saved files (power-down/power-up or p0976).

201012 <location>Project conversion error</location>

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: When converting the project of an older firmware version, an error occurred.
Fault value (r0949, interpret decimal):
Parameter number of the parameter causing the error.
For fault value = 600, the following applies:
The temperature evaluation is no longer assigned to the power unit but to the encoder evaluation.
Notice: Monitoring of the motor temperature is no longer ensured.
Remedy:
Check the parameter indicated in the fault value and correctly adjust it accordingly.
Re fault value = 600:
Parameter p0600 must be set to the values 1, 2 or 3 in accordance with the assignment of the internal encoder evaluation to the encoder interface.
Value 1 means: The internal encoder evaluation is assigned to the encoder interface 1 via p0187.
Value 2 means: The internal encoder evaluation is assigned to the encoder interface 2 via p0188.
Value 3 means: The internal encoder evaluation is assigned to the encoder interface 3 via p0189.
- If necessary, the internal encoder evaluation must be assigned to an encoder interface via parameters p0187, p0188 or p0189 accordingly.
- If necessary, upgrade the firmware to a later version.
201015 <location>Internal software error

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An internal software error has occurred.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201016 <location>Firmware changed

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: At least one firmware file in the directory /SIEMENS/SINAMICS/ has been changed without authorization with respect to the version shipped from the factory. No changes are permitted in this directory.
Alarm value (r2124, interpret decimal):
0: Checksum of one file is incorrect.
1: File missing.
2: Too many files.
3: Incorrect firmware version.
4: Incorrect checksum of the back-up file.
See also: r9925 (Firmware file incorrect)
Remedy:
For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition.
Note:
The file involved can be read out using parameter r9925.
See also: r9926 (Firmware check status)
201017 <location>Component lists changed

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been illegally changed with respect to that supplied from the factory. No changes are permitted in this directory.

Alarm value (r2124, interpret decimal):
The problem is indicated in the first digit of the alarm value:
1. File does not exist.
2. Firmware version of the file does not match the software version.
3. The file checksum is incorrect.

The second digit of the alarm value indicates in which directory the file is located:
0: Directory /SIEMENS/SINAMICS/DATA/
1. Directory /ADDON/SINAMICS/DATA/

The third digit of the alarm value indicates the file:
0: File MOTARM.ACX
1: File MOTSRM.ACX
2: File MOTSLM.ACX
3: File ENCDATA.ACX
4: File FILTDATA.ACX
5: File BRKDATA.ACX
6: File DAT_BEAR.ACX
7: File CFG_BEAR.ACX
8: File ENC_GEAR.ACX

Remedy: For the memory card file involved, restore the status originally supplied from the factory.

201023 <location>Software timeout (internal)

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: An internal software timeout has occurred.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.

Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201030 <location>Sign-of-life failure for master control

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: Servo: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Infeed: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause: For active PC master control, no sign-of-life was received within the monitoring time.
The master control was returned to the active BICO interconnection.
Remedy: Set the monitoring time higher at the PC or, if required, completely disable the monitoring function. For the commissioning software, the monitoring time is set as follows: <Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.

Notice: The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!

201031 <location>Sign-of-life failure for OFF in REMOTE

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: Servo: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Infeed: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause: With the "OFF in REMOTE" mode active, no sign-of-life was received within 3 seconds.
Remedy: - Check the data cable connection at the serial interface for the Control Unit (CU) and operator panel.
- Check the data cable between the Control Unit and operator panel.

201033 <location>Units changeover: Reference parameter value invalid

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0
Fault value (r0949, parameter):
Reference parameter whose value is 0.0.
See also: p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units)
Remedy: Set the value of the reference parameter to a number different than 0.0.

201034 <location>Units changeover: Calculation parameter values after reference value change unsuccessful

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The change of a reference parameter meant that for an involved parameter the selected value was not able to be re-calculated in the per unit representation. The change was rejected and the original parameter value restored.
Fault value (r0949, parameter):
Parameter whose value was not able to be re-calculated.
Remedy: Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.
201035 <location>ACX: Boot from the back-up parameter back-up files

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out. Instead, a back-up data set or a back-up parameter back-up file is downloaded.
Alarm value (r2124, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: If you have saved the project using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely written to the non-volatile memory.

201036 <location>ACX: Parameter back-up file missing

Message value: %1
Drive object: All objects
Reaction: Servo: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF2)
Acknowledge: IMMEDIATELY
Cause: When downloading the device parameterization, a parameter back-up file associated with a drive object cannot be found. Neither a PSxxxxyy.ACX, a PSxxxxyy.NEW nor a PSxxxxyy.BAK parameter back-up file exists in the non-volatile memory for this drive object.
Fault value (r0949, interpret hexadecimal):
Byte 1: yyyy in the file name PSxxxxyy.ACX
 yyyy = 000 --> consistency back-up file
 yyyy = 001 ... 062 --> drive object number
 yyyy = 099 --> PROFIBUS parameter back-up file
 Byte 2, 3, 4:
 Only for internal Siemens troubleshooting.
Remedy: If you have saved the project data using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely written to the non-volatile memory.
If you have not saved the project data, then first commissioning of the system has to be carried out again.
201037 <location>ACX: Re-naming the parameter back-up file unsuccessful

Message value: %1
Drive object: All objects
Reaction: Servo: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF2)
Acknowledge: IMMEDIATELY
Cause: Re-naming after saving a parameter back-up file in the non-volatile memory was unsuccessful.
One of the parameter back-up files to be re-named had the "read only" attribute. The parameter back-up files are
saved in the directory \USER\SINAMICS\DATA.
It is possible that the non-volatile memory is defective.
Fault value (r0949, interpret hexadecimal):
Byte 1: yyy in the file names PSxxxyyy.* or CAxxxyyy.* or CCxxxyyy.*
yyy = 000 --> consistency back-up file
yyy = 099 --> PROFIBUS parameter back-up file PSxxx099.*
Byte 2: xxx in the file name PSxxxyyy.*
xxx = 000 --> data save started with p0977 = 1
xxx = 010 --> data save started with p0977 = 10
xxx = 011 --> data save started with p0977 = 11
xxx = 012 --> data save started with p0977 = 12
Byte 4, 3:
Only for internal Siemens troubleshooting.
Remedy:
- check whether one of the files to be overwritten has the attribute "read only" and change this file attribute to "writable".
Check all of the files (PSxxxyyy.*, CCxxxyyy.*, CAxxxyyy.*) that belong to drive yyy designated in the fault value.
- replace the memory card or Control Unit.

201038 <location>ACX: Loading the parameter back-up file unsuccessful

Message value: %1
Drive object: All objects
Reaction: Servo: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF2)
Acknowledge: IMMEDIATELY
Cause: An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory.
Fault value (r0949, interpret hexadecimal):
Byte 1: yyy in the file name PSxxxyyy.ACX
yyy = 000 --> consistency back-up file
yyy = 001 ... 062 --> drive object number
yyy = 099 --> PROFIBUS parameter back-up file
Byte 4, 3, 2:
Only for internal Siemens troubleshooting.
Remedy:
- If you have saved the project data using the commissioning software, carry out a new download for your project. Save
using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely written
to the non-volatile memory.
- replace the memory card or Control Unit.
201039 <location>ACX: Writing to the parameter back-up file was unsuccessful

Message value: %1
Drive object: All objects
Reaction: Servo: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF2)
Acknowledge: IMMEDIATELY
Cause: Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful.
- In the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten.
- There is not sufficient free memory space available.
- The non-volatile memory is defective and cannot be written to.
Fault value (r0949, interpret hexadecimal):
dcba hex
a = yyy in the file names PSxxxyyy.***
a = 000 --> consistency back-up file
a = 001 ... 062 --> drive object number
a = 070 --> FEPROM.BIN
a = 080 --> DEL4BOOT.TXT
a = 099 --> PROFIBUS parameter back-up file
b = xxx in the file names PSxxxyyy.***
b = 000 --> data save started with p0977 = 1
b = 010 --> data save started with p0977 = 10
b = 011 --> data save started with p0977 = 11
b = 012 --> data save started with p0977 = 12
d, c:
Only for internal Siemens troubleshooting.
Remedy:
- check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***)) and, if required, change from "read only" to "writeable".
- check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system.
- replace the memory card or Control Unit.

201040 <location>Save parameter settings and carry out a POWER ON

Message value: -
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot (e.g. p0110).
Remedy:
- save the parameters (p0971/p0977).
- carry out a POWER ON (power off/on) for all components.
201041 - Parameter save necessary

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Defective or missing files were detected on the memory card when booting.
Fault value (r0949, interpret decimal):
1: Source file cannot be opened.
2: Source file cannot be read.
3: Target directory cannot be set up.
4: Target file cannot be set up/opened.
5: Target file cannot be written to.
Additional values:
Only for internal Siemens troubleshooting.
Remedy:
- save the parameters.
- download the project again to the drive unit.
- update the firmware
- if required, replace the Control Unit and/or memory card card.

201042 - Parameter error during project download

Message value: Parameter: %1, Index: %2, fault cause: %3
Drive object: All objects
Reaction: Servo: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value).
For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters.
Fault value (r0949, interpret hexadecimal):
cbbbaaaa hex
aaaa = Parameter
bb = Index
cc = fault cause
0: Parameter number illegal.
1: Parameter value cannot be changed.
2: Lower or upper value limit exceeded.
3: Sub-index incorrect.
4: No array, no sub-index.
5: Data type incorrect.
6: Setting not permitted (only resetting).
7: Descriptive element cannot be changed.
9: Descriptive data not available.
11: No master control.
15: No text array available.
17: Task cannot be executed due to operating state.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal.
24: Number of values not consistent.
25: Drive object does not exist.
101: Presently de-activated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010 = 4).
110: Write access only in the commissioning state, motor (p0010 = 3).
111: Write access only in the commissioning state, power unit (p0010 = 2).
112: Write access only in the quick commissioning mode (p0010 = 1).
113: Write access only in the ready mode (p0010 = 0).
114: Write access only in the commissioning state, parameter reset (p0010 = 30).
115: Write access only in the Safety Integrated commissioning state (p0010 = 95).
116: Write access only in the commissioning state, technological application/units (p0010 = 5).
117: Write access only in the commissioning state (p0010 not equal to 0).
118: Write access only in the commissioning state, download (p0010 = 29).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basis configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basis configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).
124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0).
129: Parameter may not be written in download.
130: Transfer of the master control is inhibited via BI: p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.
200: Below the valid values.
201: Above the valid values.
202: Cannot be accessed from the Basic Operator Panel (BOP).
203: Cannot be read from the Basic Operator Panel (BOP).
204: Write access not permitted.

Remedy:
- enter the correct value in the specified parameter.
- identify the parameter that restricts the limits of the specified parameter.

201043 <location>Fatal error at project download

Message value: Fault cause: %1
Drive object: All objects
Reaction: Servo: OFF2 (OFF1, OFF3)
 Infeed: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: A fatal error was detected when downloading a project using the commissioning software. Fault value (r0949, interpret decimal):
1: Device status cannot be changed to Device Download (drive object ON?).
2: Incorrect drive object number.
3: A drive object that has already been deleted is deleted again.
4: Deleting of a drive object that has already been registered for generation.
5: Deleting a drive object that does not exist.
6: Generating an undeleted drive object that already existed.
7: Regenerating a drive object already registered for generation.
8: Maximum number of drive objects that can be generated exceeded.
9: Error while generating a device drive object.
10: Error while generating target topology parameters (p9902 and p9903).
11: Error while generating a drive object (global component).
12: Error while generating a drive object (drive component).
13: Unknown drive object type.
14: Drive status cannot be changed to "ready for operation" (p0947 and p0949).
15: Drive status cannot be changed to drive download.
16: Device status cannot be changed to "ready for operation".
17: It is not possible to download the topology. The component wiring should be checked, taking into account the various messages/signals.
18: A new download is only possible if the factory settings are restored for the drive unit.
19: The slot for the option module has been configured several times (e.g. CAN and COMM BOARD)
20: The configuration is inconsistent (e.g. CAN for Control Unit, however no CAN configured for drive objects A_INF, SERVO or VECTOR).

Remedy:
- use the current version of the commissioning software.
- modify the offline project and carry out a new download (e.g. compare the number of drive objects, motor, encoder, power unit in the offline project and at the drive).
- change the drive state (is a drive rotating or is there a message/signal?).
- carefully note any other messages/signals and remove their cause.

201044 <location>CU: Descriptive data error
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An error was detected when loading the descriptive data saved in the non-volatile memory.
Remedy: Replace the memory card or Control Unit.

201045 <location>CU: Configuring data invalid
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An error was detected when evaluating the parameter files PSxxxxxx.ACX, PTxxxxxx.ACX, CAXxxxx.ACX, or CCxxxxxx.ACX saved in the non-volatile memory.
Alarm value (r2124, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: Restore the factory setting using (p0976 = 1) and re-load the project to the drive unit. Operation without any restrictions is then possible.
After downloading the project, save the parameters in STARTER using "Copy RAM to ROM" or with p0977 = 1. This overwrites the incorrect parameter files in the non-volatile memory.

201049 <location>CU: It is not possible to write to file
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted.
Alarm value (r2124, interpret decimal):
Drive object number.
Remedy: Check whether the "write protected" attribute has been set for the files in the non-volatile memory under .../USER/SINAMICS/DATA/...
When required, remove write protection and save again (e.g. set p0977 to 1).
201050 <location>Memory card and device incompatible</location>
Message value: -
Drive object: All objects
Reaction: Servo: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: The memory card and the device type do not match (e.g. a memory card for SINAMICS S is inserted in SINAMICS G).
Remedy: - insert the matching memory card.
- use the matching Control Unit or power unit.

201054 <location>CU: System limit exceeded</location>
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: At least one system overload has been identified.
Fault value (r0949, interpret decimal):
1: Computing time load too high (r9976[1]).
5: Peak load too high (r9976[5]).
See also: r9976 (System utilization)
Remedy: Re fault value = 1, 5:
- reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under 100 %.
- check the sampling times and adjust if necessary (p0115, p0799, p4099).
- de-activate function modules.
- de-activate drive objects.
- remove drive objects from the target topology.
When using the Drive Control Chart (DCC) and free function blocks (FBLOCKS), the following applies
- the computing time load of the individual run-time groups on a drive object can be read out in r21005 (DCC) and r20005 (FBLOCKS).
- if necessary, the assignment of the run-time group (p21000, p20000) can be changed in order to increase the sampling time (r20001, r21001).
- if necessary, reduce the number of cyclically calculated blocks (DCC) or function blocks (FBLOCKS).

201064 <location>CU: Internal error (CRC)</location>
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: CRC error in the Control Unit program memory
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
201065 Drive: Fault on non-active encoder

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: One or several non-active encoders indicate an error.
Remedy: Remove the error for the non-active encoder.

201068 CU: Data memory, memory overflow

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A data memory area has been overloaded.
Fault value (r0949, interpret binary):
Bit 0 = 1: High-speed data memory 1 overloaded
Bit 1 = 1: High-speed data memory 2 overloaded
Bit 2 = 1: High-speed data memory 3 overloaded
Bit 3 = 1: High-speed data memory 4 overloaded
Remedy: - de-activate the function module.
- de-activate the drive object.
- remove the drive object from the target topology.

201099 Tolerance window of time synchronization exited

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The time master exited the selected tolerance window for time synchronization.
See also: p3109 (RTC real time synchronization, tolerance window)
Remedy: Select the re-synchronization interval so that the synchronization deviation between the time master and drive system lies within the tolerance window.
See also: r3108 (RTC last synchronization deviation)

201100 CU: Memory card withdrawn

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The memory card (non-volatile memory) was withdrawn during operation.
Notice: It is not permissible for the memory card to be withdrawn or inserted under voltage.
Remedy: - power down the drive system.
- re-insert the memory card that was withdrawn - this card must match the drive system.
- power up the drive system again.
201105 <location>CU: Insufficient memory
Message value: %1
Drive object: All objects
Reaction: OFF1
Acknowledge: POWER ON
Cause: Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc).
 Fault value (r0949, interpret decimal):
 Only for internal Siemens troubleshooting.
Remedy: - change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc).
 - use an additional Control Unit.

201107 <location>CU: Data save in the non-volatile memory unsuccessful
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A data save in the non-volatile memory was not able to be successfully carried out.
 - non-volatile memory is defective.
 - insufficient space in the non-volatile memory.
 Fault value (r0949, interpret decimal):
 Only for internal Siemens troubleshooting.
Remedy: - try to save again.
 - replace the memory card or Control Unit.

201110 <location>CU: More than one SINAMICS G on one Control Unit
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: More than one SINAMICS G type power unit is being operated from the Control Unit.
 Number of the second drive with a SINAMICS G type power unit.
 Fault value (r0949, interpret decimal):
Remedy: Only one SINAMICS G drive type is permitted.

201111 <location>CU: Mixed operation of drive units illegal
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Illegal operation of various drive units on one Control Unit:
 - SINAMICS S together with SINAMICS G
 - SINAMICS S together with SINAMICS S Value or Combi
 Number of the first drive object with a different power unit type.
 Fault value (r0949, interpret decimal):
Remedy: Only power units of one particular drive type may be operated with one Control Unit.
201112 <location>CU: Power unit not permissible

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The connected power unit cannot be used together with this Control Unit.
Fault value (r0949, interpret decimal):
1: Power unit is not supported (e.g. PM240).
2: DC/AC power unit connected to CU310 not permissible.
Remedy: Replace the power unit that is not permissible by a component that is permissible.

201120 <location>Terminal initialization has failed

Message value: %1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal software error occurred while the terminal functions were being initialized.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

201122 <location>Frequency at the measuring probe input too high

Message value: %1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: The frequency of the pulses at the measuring probe input is too high.
Fault value (r0949, interpret decimal):
1: DI/DO 9 (X122.10/X132.2)
2: DI/DO 10 (X122.12/X132.3)
4: DI/DO 11 (X122.13/X132.4)
8: DI/DO 13 (X132.10)
16: DI/DO 14 (X132.12)
32: DI/DO 15 (X132.13)
64: DI/DO 8 (X122.9/X132.1)
128: DI/DO 12 (X132.9)
To the terminal designation:
The first designation is valid for CU320, the second for CU305
Remedy: Reduce the frequency of the pulses at the measuring probe input.
201150 \textbf{CU: Number of instances of a drive object type exceeded}

\begin{itemize}
 \item \textbf{Message value:} Drive object type: \%1, number permitted: \%2, actual number: \%3
 \item \textbf{Drive object:} All objects
 \item \textbf{Reaction:} NONE
 \item \textbf{Acknowledge:} IMMEDIATELY
 \item \textbf{Cause:} The maximum permissible number of instances of a drive object type was exceeded.
 Fault value (r0949, interpret hexadecimal):
 \begin{itemize}
 \item Byte 1: Drive object type (p0107).
 \item Byte 2: Max. permissible number of instances for this drive object type.
 \item Byte 3: Actual number of instances for this drive object type.
 \end{itemize}
 \item \textbf{Remedy:} - power down the unit.
 - suitably restrict the number of instances of a drive object type by reducing the number of inserted components.
 - re-commission the unit.
\end{itemize}

201151 \textbf{CU: Number of drive objects of a category exceeded}

\begin{itemize}
 \item \textbf{Message value:} Drive object category: \%1, number permitted: \%2, actual number: \%3
 \item \textbf{Drive object:} All objects
 \item \textbf{Reaction:} NONE
 \item \textbf{Acknowledge:} IMMEDIATELY
 \item \textbf{Cause:} The maximum permissible number of drive objects of a category was exceeded.
 Fault value (r0949, interpret hexadecimal):
 \begin{itemize}
 \item Byte 1: Drive object category.
 \item Byte 2: Max. permissible number for this drive object category.
 \item Byte 3: Actual number for this drive object category.
 \end{itemize}
 \item \textbf{Remedy:} - power down the unit.
 - suitably restrict the number of drive objects of the specified category by reducing the number of inserted components.
 - re-commission the unit.
\end{itemize}

201200 \textbf{CU: Time slice management internal software error}

\begin{itemize}
 \item \textbf{Message value:} \%1
 \item \textbf{Drive object:} All objects
 \item \textbf{Reaction:} OFF2
 \item \textbf{Acknowledge:} IMMEDIATELY (POWER ON)
 \item \textbf{Cause:} A time slice management error has occurred.
 It is possible that the sampling times have been inadmissibly set.
 Fault value (r0949, interpret hexadecimal):
 \begin{itemize}
 \item 998: Too many time slices occupied by OA (e.g. DCC)
 \item 999: Too many time slices occupied by the basic system
 \end{itemize}
 Too many different sampling times may have been set.
 Further values for internal Siemens troubleshooting.
 \item \textbf{Remedy:} - check the sampling time setting (p0112, p0115, p4099).
 - contact the Hotline.
\end{itemize}
SINAMICS alarms

201205

CU: Time slice overflow

- **Message value:** %1
- **Drive object:** All objects
- **Reaction:** OFF2
- **Acknowledge:** POWER ON
- **Cause:** Insufficient processing time is available for the existing topology.
 Fault value (r0949, interpret hexadecimal):
 Only for internal Siemens troubleshooting.
- **Remedy:**
 - reduce the number of drives.
 - increase the sampling times.

201221

CU: Bas clk cyc too low

- **Message value:** %1
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** IMMEDIATELY
- **Cause:**
 The closed-loop control / monitoring cannot maintain the envisaged clock cycle.
 The runtime of the closed-loop control/monitoring is too long for the particular clock cycle or the computing time remaining in the system is not sufficient for the closed-loop control/monitoring.
 Fault value (r0949, interpret hexadecimal):
 Only for internal Siemens troubleshooting.
- **Remedy:**
 Increase the basic clock cycle of DRIVE-CLiQ communication.
 See also: p0112 (Sampling times pre-setting p0115)

201223

CU: Sampling time inconsistent

- **Message value:** %1
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:**
 When changing a sampling time (p0115[0], p0799 or p4099), inconsistency between the clock cycles has been identified.
 Alarm value (r2124, interpret decimal):
 1: Value, low minimum value.
 2: Value, high maximum value.
 3: Value not a multiple of 1.25 µs.
 4: Value does not match clock-cycle synchronous PROFIBUS operation.
 5: Value not a multiple of 125 µs.
 6: Value not a multiple of 250 µs.
 7: Value not a multiple of 375 µs.
 8: Value not a multiple of 400 µs.
 10: Special restriction of the drive object violated.
 20: On a SERVO with a sampling time of 62.5 µs, more than two drive objects or one drive object of a type other than SERVO have been detected on the same DRIVE-CLiQ line (a maximum of two SERVO type drive objects are permitted).
21: Value can be a multiple of the current controller sampling time of a servo or vector drive in the system (e.g. for TB30, the values of all of the indices should be taken into account).
30: Value less than 31.25 µs.
31: Value less than 62.5 µs.
32: Value less than 125 µs.
40: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 125 µs. Further, none of the nodes has a sampling time of less than 125 µs.
41: A chassis unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than 250 µs.
42: An Active Line Module was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than 125 µs.
43: A Voltage Sensing Module (VSM) was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is not equal to the current controller sampling time of the drive object of the VSM.
44: The highest common denominator of the sampling times of all of the components connected to the DRIVE-CLiQ line is not the same for all components of this drive object (e.g. there are components on different DRIVE-CLiQ lines on which different highest common denominators are generated).
52: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 31.25 µs.
54: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 62.5 µs.
56: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 125 µs.
58: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 250 µs.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].

General note:
The topology rules should be noted when connecting up DRIVE-CLiQ (refer to the appropriate product documentation).
The parameters of the sampling times can also be changed with automatic calculations.
Example for highest common denominator: 125 µs, 125 µs, 62.5 µs --> 62.5 µs

Remedy:
- check the DRIVE-CLiQ cables.
- set a valid sampling time.
See also: p0115, p0799

201224 <location>CU: Pulse frequency inconsistent

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
When changing the minimum pulse frequency (p0113) inconsistency between the pulse frequencies was identified.
Alarm value (r2124, interpret decimal):
1: Value, low minimum value.
2: Value, high maximum value.
3: Resulting sampling time is not a multiple of 1.25 µs.
4: Value does not match clock-cycle synchronous PROFIBUS operation.
10: Special restriction of the drive object violated.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].

Remedy:
Set a valid pulse frequency.
See also: p0113 (Minimum pulse frequency, selection)
201250 <location>CU: CU-EEPROM incorrect read-only data

Message value: %1
Drive object: All objects
Reaction: NONE (OFF2)
Acknowledge: POWER ON
Cause: Error when reading the read-only data of the EEPROM in the Control Unit.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON.
- replace the Control Unit.

201251 <location>CU: CU-EEPROM incorrect read-write data

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Error when reading the read-write data of the EEPROM in the Control Unit.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- for alarm value r2124 < 256, the following applies:
 - carry out a POWER ON.
 - replace the Control Unit.
- for alarm value r2124 >= 256, the following applies:
 - for the drive object with this alarm, clear the fault memory (p0952 = 0).
 - as an alternative, clear the fault memory of all drive objects (p2147 = 1).
 - replace the Control Unit.

201255 <location>CU: Option Board EEPROM read-only data error

Message value: %1
Drive object: All objects
Reaction: NONE (OFF2)
Acknowledge: POWER ON
Cause: Error when reading the read-only data of the EEPROM in the Option Board.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON.
- replace the Control Unit.
201256 <location>CU: Option Board EEPROM read-write data error

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: Error when reading the read-write data of the EEPROM in the Option Board.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.

Remedy:
- carry out a POWER ON.
- replace the Control Unit.

201303 <location>DRIVE-CLiQ component does not support the required function

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
Fault value (r0949, interpret decimal):
1: The component does not support the de-activation.
101: The Motor Module does not support an internal armature short-circuit.
102: The Motor Module does not support the de-activation.
201: The Sensor Module does not support actual value inversion (p0410.0 = 1) when using a Hall sensor (p0404.6 = 1) for the commutation.
202: The Sensor Module does not support parking/unparking.
203: The Sensor Module does not support the de-activation.
204: The firmware of this Terminal Module 15 (TM15) does not support the application TM15DI/DO.
205: The Sensor Module does not support the selected temperature evaluation (r0458).
206: The firmware of this Terminal Modules TM41/TM31/TM15 refers to an old firmware version. It is urgently necessary to upgrade the firmware to ensure disturbance-free operation.
207: The power unit with this hardware version does not support operation with device supply voltages of less than 380 V.
208: The Sensor Module does not support de-selection of commutation with zero mark (via p0430.23).
211: The Sensor Module does not support single-track encoders (r0459.10)

Remedy: Upgrade the firmware of the DRIVE-CLiQ component involved.
Re fault value = 205:
Check parameter p0600 and p0601 and if required, adapt interpretation.
Re fault value = 207:
 Replace the power unit or if required set the device supply voltage higher (p0210).
Re fault value = 208:
 Check parameter p0430.23 and reset if necessary.

201304 <location>Firmware version of DRIVE-CLiQ component is not up-to-date

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The non-volatile memory has a more recent firmware version than the one in the connected DRIVE-CLiQ component.
Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component involved.

Remedy: Update the firmware (p7828, p7829 and commissioning software).
201305 <location>Topology: Component number missing

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause:
The component number from the topology was not parameterized (p0121 (for power unit, refer to p0107), p0131 (for servo/vector drives, refer to p0107), p0141, p0151, p0161).
Fault value (r949, interpret decimal):
The fault value includes the particular data set number.
Note:
The fault also occurs if speed encoders have been configured (p0187 to p0189) but no component numbers exist for them.
In this case, the fault value includes the drive data set number plus 100 * encoder number (e.g. 3xx, if a component number was not entered in p0141 for the third encoder (p0189)).
See also: p0121, p0131, p0141, p0142, p0151, p0186, p0187, p0188, p0189

Remedy:
Enter the missing component number or remove the component and restart commissioning.
See also: p0121, p0131, p0141, p0142, p0151, p0186, p0187, p0188, p0189

201306 <location>Firmware of the DRIVE-CLiQ component being updated

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
Firmware update is active for at least one DRIVE-CLiQ component.
Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component.

Remedy:
None necessary.
This alarm automatically disappears after the firmware has been updated.

201314 <location>Topology: Component must not be present

Message value: Component number: %1, Component class: %2, Connection number: %3
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
For a component, "de-activate and not present" is set but this component is still in the topology.
Alarm value (r2124, interpret hexadecimal):
Byte 1: Component number
Byte 2: Component class of the component
Byte 3: Connection number
Note: Component class and connection number are described in F01375.

Remedy:
- remove the corresponding component.
- change the setting "de-activate and not present".
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
See also: p0105, p0125, p0145, p0155
201315 <location>Drive object not ready for operation

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: For the active drive object involved, at least one activated component is missing.
Note: All other active and operational drive objects can be in the "RUN" state.

Remedy:
- de-activate the drive object involved (p0105 = 0).
- de-activate the components involved (p0125 = 0, p0145 = 0, p0155 = 0, p0165 = 0).
- re-insert the components involved.
See also: p0105, p0125, p0145, p0155

201316 <location>Drive object inactive and again ready for operation

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: If, when inserting a component of the target topology, an inactive, non-operational drive object becomes operational again. The associated parameter of the component is, in this case, set to "activate" (p0125, p0145, p0155, p0165).
Note: This is the only message that is displayed for a de-activated drive object.

Remedy: The alarm automatically disappears again with the following actions:
- activate the drive object involved (p0105 = 1).
- again withdraw the components involved.
See also: p0105 (Activate/de-activate drive object)

201317 <location>De-activated component again present

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: If a component of the target topology for an active drive object is inserted and the associated parameter of the component is set to "de-activate" (p0125, p0145, p0155, p0165).
Note: This is the only message that is displayed for a de-activated component.

Remedy: The alarm automatically disappears again with the following actions:
- activate the components involved (p0125 = 1, p0145 = 1, p0155 = 1, p0165 = 1).
- again withdraw the components involved.
See also: p0125 (Activate/de-activate power unit components), p0145, p0155 (Voltage Sensing Module 2, activate/de-activate)
201318 <location>BICO: De-activated interconnections present

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: This alarm is used in the following cases:
- If an inactive/non-operational drive object is active again/ready for operation
- If there are items in the list of BI/CI parameters (r9498[0...29], r9499[0...29])
- If the BICO interconnections saved in the list of BI/CI parameters (r9498[0...29], r9499[0...29]) have actually been changed

Remedy: Reset alarm:
- Set p9496 to 1 or 2
or
- de-activate the drive object again.

201319 <location>Inserted component not initialized

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: Initialization is required for at least one inserted component.
This is only possible if the pulses are inhibited for all the drive objects.

Remedy: Activate pulse inhibit for all drive objects.

201320 <location>Topology: Drive object number does not exist in configuration

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A drive object number is missing in p0978
Alarm value (r2124, interpret decimal):
Index of p0101 under which the missing drive object number can be determined.

Remedy: Set p0009 to 1 and change p0978:
Rules:
- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0, the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0, all values must be 0.
- dummy drive object numbers (255) are only permitted in the first partial list.
201321 <location> Topology: Drive object number does not exist in configuration

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: p0978 contains a drive object number that does not exist.

Alarm value (r2124, interpret decimal):
Index of p0978 under which the drive object number can be determined.

Remedy: Set p0009 to 1 and change p0978:

Rules:
- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0, the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0, all values must be 0.
- dummy drive object numbers (255) are only permitted in the first partial list.

201322 <location> Topology: Drive object number present twice in configuration

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A drive object number is present more than once in p0978.

Alarm value (r2124, interpret decimal):
Index of p0978 under which the involved drive object number is located.

Remedy: Set p0009 to 1 and change p0978:

Rules:
- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0, the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0, all values must be 0.
- dummy drive object numbers (255) are only permitted in the first partial list.

201323 <location> Topology: More than two partial lists created

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Partial lists are available more than twice in p0978. After the second 0, all must be 0.

Alarm value (r2124, interpret decimal):
Index of p0978 under which the illegal value is located.

Remedy: Set p0009 to 1 and change p0978:

Rules:
- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0, the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0, all values must be 0.
- dummy drive object numbers (255) are only permitted in the first partial list.
201324 <location>Topology: Dummy drive object number incorrectly created

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: In p0978, dummy drive object numbers (255) are only permitted in the first partial list.
Alarm value (r2124, interpret decimal):
Index of p0978 under which the illegal value is located.
Remedy: Set p0009 to 1 and change p0978:
Rules:
- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0, the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0, all values must be 0.
- dummy drive object numbers (255) are only permitted in the first partial list.

201325 <location>Topology: Component Number not present in target topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The component configured in a parameter (e.g. p0121, p0131, etc.) is not present in the target topology.
Alarm value (r2124, interpret decimal):
Configured Component Number that is not present in target topology.
Remedy: Establish topology and DO configuration consistency.

201330 <location>Topology: Quick commissioning not possible

Message value: Fault cause: %1, supplementary information: %2, preliminary component number: %3
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Unable to carry out a quick commissioning. The existing actual topology does not fulfill the requirements.
Alarm value (r2124, interpret hexadecimal):
ccccc = preliminary component number, bb = supplementary information, aa = fault cause
aa = 01 hex = 1 dec:
On one component illegal connections were detected.
 - bb = 01 hex = 1 dec: For a Motor Module, more than one motor with DRIVE-CLiQ was detected.
 - bb = 02 hex = 2 dec: For a motor with DRIVE-CLiQ, the DRIVE-CLiQ cable is not connected to a Motor Module.
aa = 02 hex = 2 dec:
The topology contains too many components of a particular type.
 - bb = 01 hex = 1 dec: There is more than one master Control Unit.
 - bb = 02 hex = 2 dec: There is more than 1 infeed (8 for a parallel circuit configuration).
 - bb = 03 hex = 3 dec: There are more than 10 Motor Modules (8 for a parallel circuit configuration).
 - bb = 04 hex = 4 dec: There are more than 9 encoders.
 - bb = 05 hex = 5 dec: There are more than 8 Terminal Modules.
 - bb = 07 hex = 7 dec: Unknown component type
 - bb = 08 hex = 8 dec: There are more than 6 drive slaves.
 - bb = 09 hex = 9 dec: Connection of a drive slave not permitted.
 - bb = 0a hex = 10 dec: There is no drive master.
 - bb = 0b hex = 11 dec: There is more than one motor with DRIVE-CLiQ for a parallel circuit.
 - cccc: Not used.
SINAMICS alarms

aa = 03 hex = 3 dec:
More than 16 components are connected at a DRIVE-CLiQ socket of the Control Unit.
- bb = 0, 1, 2, 3 means e.g. detected at the DRIVE-CLiQ socket X100, X101, X102, X103.
- cccc: Not used.

aa = 04 hex = 4 dec:
The number of components connected one after the other is greater than 125.
- bb: Not used.
- cccc = preliminary component number of the first component and component that resulted in the fault.

aa = 05 hex = 5 dec:
The component is not permissible for SERVO.
- bb = 01 hex = 1 dec: SINAMICS G available.
- bb = 02 hex = 2 dec: Chassis available.
- cccc = preliminary component number of the first component and component that resulted in the fault.

aa = 06 hex = 6 dec:
On one component illegal EEPROM data was detected. These must be corrected before the system continues to boot.
- bb = 01 hex = 1 dec: The Order No. [MLFB] of the power unit that was replaced includes a space retainer. The space retainer (*) must be replaced by a correct character.
- cccc = preliminary component number of the component with illegal EEPROM data.

aa = 07 hex = 7 dec:
The actual topology contains an illegal combination of components.
- bb = 01 hex = 1 dec: Active Line Module (ALM) and Basic Line Module (BLM).
- bb = 02 hex = 2 dec: Active Line Module (ALM) and Smart Line Module (SLM).
- bb = 03 hex = 3 dec: SIMOTION control (e.g. SIMOTION D445) and SINUMERIK component (e.g. NX15).
- bb = 04 hex = 4 dec: SINUMERIK control (e.g. SINUMERIK 730.net) and SIMOTION component (e.g. CX32).
- cccc: Not used.

Note:
Connection type and connection number are described in F01375.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)

Remedy:
- adapt the output topology to the permissible requirements.
- carry out commissioning using the commissioning software.
- for motors with DRIVE-CLiQ, connect the power and DRIVE-CLiQ cable to the same Motor Module (Single Motor Module: DRIVE-CLiQ at X202, Double Motor Module: DRIVE-CLiQ from motor 1 (X1) to X202, from motor 2 (X2) to X203).

Re aa = 06 hex = 6 dec and bb = 01 hex = 1 dec:
Correct the order number when commissioning using the commissioning software.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)

201331
Topology: At least one component not assigned to a drive object

Message value: Component number: %1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Causes:
At least one component is not assigned to a drive object.
- when commissioning, a component was not able to be automatically assigned to a drive object.
- the parameters for the data sets are not correctly set.

Alarm value (r2124, interpret decimal):
Component number of the unassigned component.

Remedy:
This component is assigned to a drive object.
Check the parameters for the data sets.
Examples:
- power unit (p0121).
- motor (p0131, p0186).
- encoder interface (p0140, p0141, p0187 ... p0189).
- encoder (p0140, p0142, p0187 ... p0189).
- Terminal Module (p0151).
- option board (p0161).
201340
<location>Topology: Too many components on one line

Message value: Component number or connection number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit.
Fault value (r0949, interpret hexadecimal):
xyy hex: x = fault cause, yy = component number or connection number.

1yy: The communications clock cycle of the DRIVE-CLiQ connection on the CU is not sufficient for all read transfers.
2yy: The communications clock cycle of the DRIVE-CLiQ connection on the CU is not sufficient for all write transfers.
3yy: Cyclic communication is fully utilized.
4yy: The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
5yy: Internal buffer overflow for net data of a DRIVE-CLiQ connection.
6yy: Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
7yy: Internal buffer overflow for send data of a DRIVE-CLiQ connection.

Remedy: Check the DRIVE-CLiQ connection:
Reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ connections of the Control Unit. This means that communication is uniformly distributed over several communication lines.
Re fault value = 1yy - 4yy in addition:
- increase the sampling times (p0112, p0115).

201354
<location>Topology: Actual topology indicates an illegal component

Message value: Fault cause: %1, component number: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The actual topology indicates at least one illegal component.
Fault value (r0949, interpret hexadecimal):
yyyy hex: yy = component number, xx = cause.
xx = 1: Component at this Control Unit not permissible.
xx = 2: Component in combination with another component not permissible.

Note: Pulse enable is prevented.

Remedy: Remove the illegal components and restart the system.
201355 <location>Topology: Actual topology changed

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The device target topology (p0099) does not correspond to the device actual topology (r0098). The fault only occurs if the topology was commissioned using the automatic internal device mechanism and not using the commissioning software. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. See also: r0098 (Actual device topology), p0099 (Device target topology)
Remedy: One of the following counter-measures can be selected if no faults have occurred in the topology detection itself:
- carry out a self-commissioning routine (starting from p0009 = 1).
In general:
Set p0099 = r0098, set p0009 = 0; for existing Motor Modules, this results in servo drives being automatically generated (p0107).
Generating servo drives: Set p0097 to 1, set p0009 to 0.
Generating vector drives: Set p0097 to 2, set p0009 to 0.
Generating vector drives with parallel circuit: Set p0097 to 12, set p0009 to 0.
In order to set configurations in p0108, before setting p0009 to 0, it is possible to first set p0009 to 2 and modify p0108.
If commissioning has already been completed:
- re-establish the original connections and re-connect power to the Control Unit.
- restore the factory setting for the complete equipment (all of the drives) and allow automatic self-commissioning again.
- change the device parameterization to match the connections (this is only possible using the commissioning software).
Notice: Topology changes that result in this fault being generated cannot be accepted by the automatic function in the device, but must be transferred using the commissioning software and parameter download. The automatic function in the device only allows constant topology to be used. Otherwise, when the topology is changed, all of the previous parameter settings are lost and replaced by the factory setting.
See also: r0098 (Actual device topology)

201356 <location>Topology: Defective components in actual topology

Message value: Fault cause: %1, Component number: %2, Connection number: %3
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The actual topology indicates at least one defective DRIVE-CLiQ component. Fault value (r0949, interpret hexadecimal):
zzyyxx hex:
z = connection number of component before the defective component
y = component number of component before the defective component
x = fault cause
xx = 1: Component at this Control Unit not permissible.
Note:
Pulse enable is withdrawn and prevented.
Remedy: Remove the defective components and restart the system.
201360 <location>Topology: Actual topology not permissible

Message value: Fault cause: %1, preliminary component number: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The detected actual topology is not permissible.
Fault value (r0949, interpret hexadecimal):
ccccbbaa hex: cccc = preliminary component number, aa = fault cause
aa = 01 hex = 1 dec:
Too many components were detected at the Control Unit. A maximum of 199 components is permissible.
aa = 02 hex = 2 dec:
The component type of a component is not known.
aa = 03 hex = 3 dec:
It is illegal to combine ALM and BLM.
aa = 04 hex = 4 dec:
It is illegal to combine ALM and SLM.
aa = 05 hex = 5 dec:
It is illegal to combine BLM and SLM.
aa = 06 hex = 6 dec:
A CX32 was not directly connected to a permitted Control Unit.
aa = 07 hex = 7 dec:
An NX10 or NX15 was not directly connected to a permitted Control Unit.
aa = 08 hex = 8 dec:
A component was connected to a Control Unit that is not permitted for this purpose.
aa = 0A hex = 10 dec:
Too many components of a particular type detected.
aa = 0B hex = 11 dec:
Too many components of a particular type detected on a single line.
Note: The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy: Re fault cause = 1:
Change the configuration. Connect less than 199 components to the Control Unit.
Re fault cause = 2:
Remove the component with unknown component type.
Re fault cause = 3, 4, 5:
Establishe a valid combination.
Re fault cause = 6, 7:
Connect the expansion module directly to a permitted Control Unit.
Re fault cause = 8:
Remove component or use a permissible component.
Re fault cause = 10, 11:
Reduce the number of components.
201361
Topology: Actual topology contains SINUMERIK and SIMOTION components

<table>
<thead>
<tr>
<th>Message value:</th>
<th>%1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>All objects</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
<tr>
<td>Cause:</td>
<td>The detected actual topology contains SINUMERIK and SIMOTION components. The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.</td>
</tr>
<tr>
<td></td>
<td>Alarm value (r2124, interpret hexadecimal):</td>
</tr>
<tr>
<td></td>
<td>ddccbbbaa hex: cc = fault cause, bb = component class of the actual topology, aa = component number of the component</td>
</tr>
<tr>
<td></td>
<td>cc = 01 hex = 1 dec:</td>
</tr>
<tr>
<td></td>
<td>An NX10 or NX15 was connected to a SIMOTION control.</td>
</tr>
<tr>
<td></td>
<td>cc = 02 hex = 2 dec:</td>
</tr>
<tr>
<td></td>
<td>A CX32 was connected to a SINUMERIK control.</td>
</tr>
<tr>
<td>Remedy:</td>
<td>Re alarm value = 1:</td>
</tr>
<tr>
<td></td>
<td>Replace all NX10 or NX15 by a CX32.</td>
</tr>
<tr>
<td></td>
<td>Re alarm value = 2:</td>
</tr>
<tr>
<td></td>
<td>Replace all CX32 by an NX10 or NX15.</td>
</tr>
</tbody>
</table>

201362
Topology: Topology rule(s) broken

<table>
<thead>
<tr>
<th>Message value:</th>
<th>%1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>All objects</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
<tr>
<td>Cause:</td>
<td>At least one topology rule for the SINAMICS S120 Combi has been broken. In the event of a fault, the ramping up of the drive system is aborted and closed-loop drive control is not enabled. Fault value (r0949, interpret decimal):</td>
</tr>
<tr>
<td></td>
<td>The fault value indicates which rule has been broken.</td>
</tr>
<tr>
<td></td>
<td>1: The S120 Combi may only be wired via DRIVE-CLiQ socket X200 to X1 on the NCU.</td>
</tr>
<tr>
<td></td>
<td>2: Only one Terminal Module 54F (TM54F) may be connected to DRIVE-CLiQ socket X2 on the NCU. If a TM54 is being used, it may only be wired via X500 to X2 on the NCU.</td>
</tr>
<tr>
<td></td>
<td>3: Only one DRIVE-CLiQ Hub Module (hub) may be connected to DRIVE-CLiQ socket X3 on the NCU. If a hub is being used, it may only be wired via X500 to X3 on the NCU.</td>
</tr>
<tr>
<td></td>
<td>4: Only Sensor Modules may be connected to DRIVE-CLiQ sockets X201 through X203 (3-axis) or X204 (4-axis) on the S120 Combi.</td>
</tr>
<tr>
<td></td>
<td>5: Only one Single Motor Module or one Double Motor Module may be connected to DRIVE-CLiQ socket X205 (X204 is not available for 3-axis). The module must be wired to the S120 Combi via X200.</td>
</tr>
<tr>
<td></td>
<td>6: Only certain Motor Modules may be used for expansion axes.</td>
</tr>
<tr>
<td></td>
<td>7: If a Single Motor Module is being used as the first expansion axis, only one more Single Motor Module may be connected (via X200 to X201 on the first Single Motor Module).</td>
</tr>
<tr>
<td></td>
<td>8: Only Sensor Modules may be connected to the corresponding DRIVE-CLiQ socket X202 on any Single Motor Modules which may be present.</td>
</tr>
<tr>
<td></td>
<td>9. On the second Single Motor Module there must be nothing connected to X201.</td>
</tr>
<tr>
<td></td>
<td>10: If a Double Motor Module is used as an expansion axis, only Sensor Modules may be connected to X202 and X203.</td>
</tr>
<tr>
<td></td>
<td>11: On the Double Motor Module there must be nothing connected to X201.</td>
</tr>
<tr>
<td></td>
<td>12: On the Terminal Module 54F (TM54F) there must be nothing connected to X501.</td>
</tr>
<tr>
<td></td>
<td>13: On the DRIVE-CLiQ Hub Module, only Sensor Modules Cabinet (SMC) and Sensor Modules External (SME) may be connected to X501 through X505.</td>
</tr>
<tr>
<td>Remedy:</td>
<td>Evaluate the fault value and ensure compliance with the corresponding topology rule(s).</td>
</tr>
</tbody>
</table>
201375

<location>Topology: Actual topology, duplicate connection between two components

Message value:
- Preliminary component number: %1, component class: %2, connection number: %3

Drive object:
- All objects

Reaction:
- NONE

Acknowledge:
- IMMEDIATELY

Cause:
When detecting the actual topology, a ring-type connection was detected.
Fault value (r0949, interpret hexadecimal):
- ccbbaaa hex:
 - cc = connection number
 - bb = component class
 - aaaa = preliminary component number of a component included in the ring

Component class:
- 1: Control Unit.
- 2: Motor Module.
- 3: Line Module.
- 4: Sensor Module (SM).
- 5: Voltage Sensing Module (VSM).
- 6: Terminal Module (TM).
- 7: DRIVE-CLiQ Hub Module.
- 8: Controller Extension 32 (CX32, NX10, NX15).
- 49: DRIVE-CLiQ components (non-listed components).
- 50: Option Slot (e.g. Terminal Board 30).
- 60: Encoder (e.g. EnDat).
- 70: Motor with DRIVE-CLiQ.

Component type:
- Precise designation within a component class (e.g. "SMC20").
- Connection number:
 - Consecutive numbers, starting from zero, of the appropriate connection or slot (e.g. DRIVE-CLiQ connection X100 on the Control Unit has the connection number 0).

Remedy:
Output the fault value and remove the specified connection.

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201380

<location>Topology: Actual topology, defective EEPROM

Message value:
- Preliminary component number: %1

Drive object:
- All objects

Reaction:
- NONE

Acknowledge:
- POWER ON

Cause:
When detecting the actual topology, a component with a defective EEPROM was detected.
Fault value (r0949, interpret hexadecimal):
- bbbbaaaa hex:
 - aaaa = preliminary component number of the defective components

Remedy:
Output the fault value and remove the defected component.
201381

Topology: Comparison power unit shifted

Message value: Component number: %1, Component class: %2, Component (target): %3, Connection number: %4
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a power unit in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
<table>
<thead>
<tr>
<th>dd</th>
<th>cc</th>
<th>bb</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>connection number</td>
<td>component number</td>
<td>component class</td>
<td>component number of the component shifted in the target topology</td>
</tr>
</tbody>
</table>
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375.

Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201382

Topology: Comparison Sensor Module shifted

Message value: Component number: %1, Component class: %2, Component (target): %3, Connection number: %4
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a Sensor Module in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
<table>
<thead>
<tr>
<th>dd</th>
<th>cc</th>
<th>bb</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>connection number</td>
<td>component number</td>
<td>component class</td>
<td>component number of the component shifted in the target topology</td>
</tr>
</tbody>
</table>
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375.

Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201383 <location>Topoogy: Comparison Terminal Module shifted
Message value: Component number: %1, Component class: %2, Component (target): %3, Connection number: %4
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The topology comparison has detected a Terminal Module in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
 dd = connection number
 cc = component number
 bb = component class
 aa = component number of the component shifted in the target topology
Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:
Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note:
Under "Topology --> Topology View" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201384 <location>Topoogy: Comparison DRIVE-CLiQ Hub Module shifted
Message value: Component number: %1, Component class: %2, Component (target): %3, Connection number: %4
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The topology comparison has detected a DRIVE-CLiQ Hub Module in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
 dd = connection number
 cc = component number
 bb = component class
 aa = component number of the component shifted in the target topology
Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:
Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note:
Under "Topology --> Topology View" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201385 <location>Topology: Comparison CX32 shifted</location>
Message value: Component number: %1, Component class: %2, Component (target): %3, Connection number: %4
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a controller extension 32 (CX32) in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
<table>
<thead>
<tr>
<th>dd</th>
<th>cc</th>
<th>bb</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>connection number</td>
<td>component number</td>
<td>component class</td>
<td>component number of the component shifted in the target topology</td>
</tr>
</tbody>
</table>
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201386 <location>Topology: Comparison DRIVE-CLiQ component shifted</location>
Message value: Component number: %1, Component class: %2, Component (target): %3, Connection number: %4
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a DRIVE-CLiQ component in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
<table>
<thead>
<tr>
<th>dd</th>
<th>cc</th>
<th>bb</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>connection number</td>
<td>component number</td>
<td>component class</td>
<td>component number of the component shifted in the target topology</td>
</tr>
</tbody>
</table>
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201387 <location>Topology: Comparison option slot component shifted

Message value: Component number: %1, Component class: %2, Component (target): %3, Connection number: %4
Drive object: All objects
Reaction: NONE
Acknowledgment: NONE
Cause: The topology comparison has detected an option slot component in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
 dd = connection number
 cc = component number
 bb = component class
 aa = component number of the component shifted in the target topology
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
 - undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
 - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
 - automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201388 <location>Topology: Comparison EnDat encoder shifted

Message value: Component number: %1, Component class: %2, Component (target): %3, Connection number: %4
Drive object: All objects
Reaction: NONE
Acknowledgment: NONE
Cause: The topology comparison has detected an EnDat encoder in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
 dd = connection number
 cc = component number
 bb = component class
 aa = component number of the component shifted in the target topology
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb. Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
 - undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
 - commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
 - automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201389
Topology: Comparison motor with DRIVE-CLiQ shifted

<table>
<thead>
<tr>
<th>Message value:</th>
<th>Component number: %1, Component class: %2, Component (target): %3, Connection number: %4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>All objects</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Cause:
The topology comparison has detected a motor with DRIVE-CLiQ in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number
cc = component number
bb = component class
aa = component number of the component shifted in the target topology

Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy:
Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201416
Topology: Comparison additional component in actual topology

<table>
<thead>
<tr>
<th>Message value:</th>
<th>Component number: %1, Component class: %2, Connection number: %3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>All objects</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Cause:
The topology comparison has found a component in the actual topology which is not specified in the target topology.
The alarm value includes the component number and connection number of the component with which the additional component is connected.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
c = connection number
bb = component class of the additional component
aa = component number

Note:
- component class and connection number are described in F01375.
- components that are connected to this additional component are not operational.

Remedy:
Adapting the topologies:
- remove the additional component in the actual topology.
- download the target topology that matches the actual topology (commissioning software).

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201420 <location>Topology: Comparison a component is different

Message value: Component number: %1, component class target: %2, component class actual: %3, fault cause: %4
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected differences in the actual and target topologies in relation to one component. There are differences in the electronic rating plate.
Alarm value (r2124, interpret hexadecimal):
\[ddccbbaa\] hex: \[aa\] = component number of the component, \[bb\] = component class of the target topology, \[cc\] = component class of the actual topology, \[dd\] = fault cause
\[dd\] = 01 hex = 1 dec:
Different component type.
\[dd\] = 02 hex = 2 dec:
Different Order No.
\[dd\] = 03 hex = 3 dec:
Different manufacturer.
\[dd\] = 04 hex = 4 dec:
Connection changed over for a multi-component slave (e.g. Double Motor Module), defective EEPROM data in the electronic rating plate, or only part of a multi-component slave set to "de-activate and not present".
\[dd\] = 05 hex = 5 dec:
A CX32 was replaced by an NX10 or NX15.
\[dd\] = 06 hex = 6 dec:
An NX10 or NX15 was replaced by a CX32.
Note:
Component class and component type are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- check the component soft-wired connections against the hardware configuration of the drive unit in the commissioning software and correct differences.
- parameterize the topology comparison of all components (p9906).
- parameterize the topology comparison of one components (p9907, p9908).
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201421 <location>Topology: Comparison different components

Message value: Component number: %1, component class target: %2, component class actual: %3, fault cause: %4
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected differences in the actual and target topologies in relation to one component. The component class, the component type or the number of connections differ.
Alarm value (r2124, interpret hexadecimal):
\[ddccbbaa\] hex: \[aa\] = component number of the component, \[bb\] = component class of the target topology, \[cc\] = component class of the actual topology, \[dd\] = fault cause
\[dd\] = 01 hex = 1 dec:
Different component class.
\[dd\] = 02 hex = 2 dec:
Different component type.
\[dd\] = 03 hex = 3 dec:
Different Order No.
\[dd\] = 04 hex = 4 dec:
Different number of connections.
Note:
Component class, component type and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Check the component soft-wired connections against the hardware configuration of the drive unit in the commissioning software and correct differences.

Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201425
<location>Topology: Comparison serial number of a component is different

Message value: Component number: %1, Component class: %2, Differences: %3

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The topology comparison has detected differences in the actual and target topologies in relation to one component. The serial number is different.

Alarm value (r2124, interpret hexadecimal):

ddccbbaa hex:
- cc = number of differences
- bb = component class
- aa = component number of the component

Note: The component class is described in F01375.

The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy:
- Adapting the topologies:
 - change over the actual topology to match the target topology.
 - download the target topology that matches the actual topology (commissioning software).

Re byte cc:
- cc = 1 --> can be acknowledged using p9904 or p9905.
- cc > 1 --> can be acknowledged using p9905 and can be de-activated using p9906 or p9907/p9908.

Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

See also: p9904 (Topology comparison, acknowledge differences), p9905 (Device specialization), p9906 (Topology comparison, comparison stage of all components), p9907 (Topology comparison, comparison stage of the component number), p9908 (Topology comparison, comparison stage of a component)

201428
<location>Topo: Comparison connection of a component is different

Message value: Component number: %1, Component class: %2, Connection number1: %3, Connection number2: %4

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The topology comparison has detected differences in the actual and target topologies in relation to one component. A component was connected to another connection.

The different connections of a component are described in the alarm value:

Alarm value (r2124, interpret hexadecimal):

ddccbbaa hex:
- dd = connection number of the target topology
- cc = connection number of the actual topology
- bb = component class
- aa = component number

Note: Component class and connection number are described in F01375.

The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- change over the actual topology to match the target topology.
- download the target topology that matches the actual topology (commissioning software).
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
See also: p9904 (Topology comparison, acknowledge differences)

201429

<location>Topology: Comparison connection is different for more than one component

Message value: Component number: %1, Component class: %2, Connection number1: %3, Connection number2: %4

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: A topology comparison has found differences between the actual and target topology for several components. A component was connected to another connection.
The different connections of a component are described in the alarm value:
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number of the target topology
cc = connection number of the actual topology
bb = component class
aa = component number

Note:
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy: Adapting the topologies:
- change over the actual topology to match the target topology.
- download the target topology that matches the actual topology (commissioning software).

Note:
In the software, a Double Motor Module behaves just like two separate DRIVE-CLiQ nodes. If a Double Motor Module is re-inserted, this can result in several differences in the actual topology.
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201451

<location>Topology: Target topology is invalid

Message value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: An error was detected in the target topology.
The target topology is invalid.
Fault value (r0949, interpret hexadecimal):
ccccbbbaa hex: cccc = index error, bb = component number, aa = fault cause
aa = 1B hex = 27 dec: Error not specified.
aa = 1C hex = 28 dec: Value illegal.
aa = 1D hex = 29 dec: Incorrect ID.
aa = 1E hex = 30 dec: Incorrect ID length.
aa = 1F hex = 31 dec: Too few indices left.
aa = 20 hex = 32 dec: component not connected to Control Unit.

Remedy: Reload the target topology using the commissioning software.
201470 Target topology ring-type connection detected

<table>
<thead>
<tr>
<th>Message value</th>
<th>Component number: %1, Component class: %2, Connection number: %3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object</td>
<td>All objects</td>
</tr>
<tr>
<td>Reaction</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge</td>
<td>IMMEDIATELY</td>
</tr>
<tr>
<td>Cause</td>
<td>A ring-type connection was detected when writing to the target topology. Fault value (r0949, interpret hexadecimal): ddcbbbbaa hex: cc = connection number bb = component class aa = component number of a component included in the ring Note: Component class and connection number are described in F01375.</td>
</tr>
<tr>
<td>Remedy</td>
<td>Read out the fault value and remove one of the specified connections. Then download the target topology again using the commissioning software. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).</td>
</tr>
</tbody>
</table>

201475 Target topology duplicate connection between two components

<table>
<thead>
<tr>
<th>Message value</th>
<th>Component number: %1, Component class: %2, Connection number1: %3, Connection number2: %4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object</td>
<td>All objects</td>
</tr>
<tr>
<td>Reaction</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge</td>
<td>IMMEDIATELY</td>
</tr>
<tr>
<td>Cause</td>
<td>When writing the target topology, a duplicate connection between two components was detected. Fault value (r0949, interpret hexadecimal): ddcbbbbaa hex: dd = connection number 2 of the duplicate connection cc = connection number 1 of the duplicate connection bb = component class aa = component number of one of the components connected twice Note: Component class and connection number are described in F01375.</td>
</tr>
<tr>
<td>Remedy</td>
<td>Read out the fault value and remove one of the two specified connections. Then download the target topology again using the commissioning software. Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).</td>
</tr>
</tbody>
</table>
201481 <location>Topology: Comparison power unit missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a power unit in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy: - delete the drive belonging to the power unit in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the power unit is working properly.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201482 <location>Topology: Comparison Sensor Module missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a Sensor Module in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy: - re-configure the drive belonging to the Sensor Module in the commissioning software project (encoder configuration) and download the new configuration to the drive unit.
- delete the drive belonging to the Sensor Module in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the Sensor Module is working properly.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201483
<location>Topology: Comparison Terminal Module missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a Terminal Module in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy:
- delete the Terminal Module in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the Terminal Module is working properly.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201484
<location>Topology: Comparison DRIVE-CLiQ Hub Module missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a DRIVE-CLiQ Hub Module in the target topology that does not exist in the actual topology.
Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy:
- delete the DRIVE-CLiQ Hub Module in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- test the DRIVE-CLiQ Hub Module to ensure that it functions properly.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201485

Topologies: Comparison CX32 missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a controller extension 32 (CX32) in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.
Remedy:
- delete the CX32 / NX in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that CX32/NX functions correctly.
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201486

Topologies: Comparison DRIVE-CLiQ components missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a DRIVE-CLiQ component in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.
Remedy:
- delete the drive belonging to this component in the commissioning software project and download the new configuration to the drive unit.
- re-configure the drive belonging to this component in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the component is working properly.
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201487

Topologies: Comparison option slot components missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected an option slot module in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.
Remedy:
- delete the option board in the commissioning software project and download the new configuration to the drive unit.
- re-configure the drive unit in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check that the option board is functioning correctly
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201488 <location>Topology: Comparison EnDat encoder missing in the actual topology
Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected an EnDat encoder in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy:
- re-configure the drive belonging to the encoder in the commissioning software project (encoder configuration) and download the new configuration to the drive unit.
- delete the drive belonging to the encoder in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201489 <location>Topology: Comparison motor with DRIVE-CLiQ missing in the actual topology
Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a motor with DRIVE-CLiQ in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy:
- re-configure the drive belonging to this motor in the commissioning software project and download the new configuration to the drive unit.
- re-configure the drive belonging to this motor in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check that the motor is working properly.
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201505

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
A PROFIdrive telegram has been set (p0922).
An interconnection contained in the telegram was not able to be established.
Fault value (r0949, interpret decimal):
Parameter receiver that should be changed.
Remedy: Establish another interconnection.

201506

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The standard telegram in p0922 is not maintained and therefore p0922 is set to 999.
Fault value (r0949, interpret decimal):
BICO parameter for which the write attempt was unsuccessful.
Remedy: Again set the required standard telegram (p0922).

201507

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: There are BICO interconnections as signal sink from a drive object that is either inactive/not operational.
The Bi/CI parameters involved are listed in r9498.
The associated BO/CO parameters are listed in r9499.
The list of the BICO interconnections to other drive objects is displayed in r9491 and r9492 of the de-activated drive object.
Note:
r9498 and r9499 are only written to, if p9495 is not set to 0.
Alarm value (r2124, interpret decimal):
Number of BICO interconnections found to inactive drive objects.
Remedy:
- set all open BICO interconnections centrally to the factory setting with p9495 = 2.
- make the non-operational drive object active/operational again (re-insert or activate components).
201508 <location>BICO: Interconnections to inactive objects exceeded
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The maximum number of BICO interconnections (signal sinks) when de-activating a drive object was exceeded. When de-activating a drive object, all BICO interconnections (signal sinks) are listed in the following parameters:
- r9498[0...29]: List of the BI/CI parameters involved.
- r9499[0...29]: List of the associated BO/CO parameters.
Remedy: The alarm automatically disappears as soon as no BICO interconnection (value = 0) is entered in r9498[29] and r9499[29].
Notice: When re-activating the drive object, all BICO interconnections should be checked and if required, re-established.

201510 <location>BICO: Signal source is not float type
Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The requested connector output does not have the correct data type. This interconnection is not established.
Fault value (r0949, interpret decimal): Parameter number to which an interconnection should be made (connector output).
Remedy: Interconnect this connector input with a connector output having a float data type.

201511 <location>BICO: Interconnection between different scalings
Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The requested interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
- the BICO output has different normalized units than the BICO input.
- message only for interconnections within a drive object.
Example: The BICO output has, as normalized unit, voltage and the BICO input has current. This means that the factor p2002 (contains the reference value for current) / p2001 (contains the reference value for voltage) is calculated between the BICO output and BICO input.
Fault value (r0949, interpret decimal): Parameter number of the BICO input (signal sink).
Remedy: No correction needed.
201512 <location>BICO: No scaling available

Message value: %1
Drive object: All objects
Reaction: Servo: OFF2
 Infeed: OFF2 (OFF1)
Acknowledge: POWER ON
Cause: An attempt was made to determine a conversion factor for a scaling that does not exist.
Fault value (r0949, interpret decimal):
Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy: Apply scaling or check the transfer value.

201513 <location>BICO: Spanning DO between different scalings

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The requested interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different.
Example: The BICO output has, as standard unit, voltage and the BICO input has current; both lie in different drive objects. This means that the factor p2002 (contains the reference value for current) / p2001 (contains the reference value for voltage) is calculated between the BICO output and BICO input.
Fault value (r0949, interpret decimal):
Parameter number of the BICO input (signal sink).
Remedy: None necessary.

201514 <location>BICO: Error when writing during a reconnect

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to.
Example: When writing to a double word BICO input in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting.
Alarm value (r2124, interpret decimal):
Parameter number of the BICO input (signal sink).
Remedy: None necessary.
201515 <location>BICO: Writing to parameter not permitted as the master control is active
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: While changing the number of CDS or when copying from CDS, the master control was active.
Remedy: None necessary.

201590 <location>Drive: Motor maintenance interval expired
Message value: Fault cause: %1 bin
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: The selected service/maintenance interval for this motor was reached.
Alarm value (r2124, interpret decimal):
Motor data set number.
See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval)
Remedy: carry out service/maintenance and reset the service/maintenance interval (p0651).

201600 <location>SI CU: STOP A initiated
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a fault and initiated a STOP A
(pulse suppression via the safety shutdown path of the Control Unit).
- forced checking procedure of the safety shutdown path of the Control Unit unsuccessful.
- subsequent response to fault F01611 (defect in a monitoring channel).
Fault value (r0949, interpret decimal):
0: Stop request from the Motor Module.
1005: Pulses suppressed although STO not selected and there is no internal STOP A present.
1010: Pulses enabled although STO is selected or an internal STOP A is present.
1015: Feedback of the safe pulse suppression for Motor Modules connected in parallel are different.
9999: Subsequent response to fault F01611.
Remedy: - select Safe Torque Off and de-select again.
- replace the Motor Module involved.
Re fault value = 9999:
- carry out diagnostics for fault F01611.
Note: CU: Control Unit
 MM: Motor Module
 SI: Safety Integrated
 STO: Safe Torque Off / SH: Safe standstill
201611 <location>SI CU: Defect in a monitoring channel

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a fault in the data cross-check between the CU and Motor Module (MM) and initiated a STOP F.
As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
Fault value (r0949, interpret decimal):
0: Stop request from the Motor Module.
1 ... 999: Number of the cross-checked data that resulted in this fault. This number is also displayed in r9795.
1: SI monitoring clock cycle (r9780, r9880).
2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
3: SI SGE changeover tolerance time (p9650, p9850).
4: SI transition period STOP F to STOP A (p9658, p9858).
5: SI enable Safe Brake Control (p9602, p9802).
6: SI Motion enable, safety-relevant functions (p9501, internal value).
7: SI pulse suppression delay time for Safe Stop 1 (p9652, p9852).
8: SI PROFlsafe address (p9610, p9810).
9: SI debounce time for STO/SBC/SS1 (MM) (p9651, p9851).
11: SI Safe Brake Adapter mode, BICO interconnection (p9621, p9821).
12: SI Safe Brake Adapter relay ON time (p9622[0], p9822[0]).
13: SI Safe Brake Adapter relay OFF time (p9622[1], p9822[1]).
1000: Watchdog timer has expired. Within the time of approx. 5 * p9650 too many switching operations have occurred at terminal EP of the Motor Module, or STO (also as subsequent response) was initiated too frequently via PROFIsafe/ TM54F.
1001, 1002: Initialization error, change timer / check timer.
2000: Status of the STO selection on the Control Unit and Motor Module are different.
2001: Feedback signal for safe pulse suppression on the Control Unit and Motor Module are different.
2002: Status of the delay timer SS1 on the Control Unit and Motor Module are different.
2004: Status of the STO selection for modules connected in parallel are different.
2005: Feedback signal of the safe pulse suppression on the Control Unit and Motor Modules connected in parallel are different.
6000 ... 6999: Error in the PROFlsafe control. The significance of the individual message values is described in safety message C01711 of the Control Unit.
Remedy:
Re fault value = 1 ... 5 and 7 ... 999:
- check the cross-checked data that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 6:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 1000:
- check the EP terminal at the Motor Module (contact problems).
- PROFlsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
- check the wiring of the fail-safe inputs at the TM54F (contact problems).
Re fault value = 1001, 1002:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the causes of the STO selection in r9772. When the SMM functions are active (p9501 = 1), STO can also be selected using these functions.
- replace the Motor Module involved.

Re fault value = 6000 ... 6999:
Refer to the description of the message values in safety message C01711.

Note:
CU: Control Unit
EP: Enable Pulses (pulse enable)
MM: Motor Module
SGE: Safety-relevant input
SI: Safety Integrated
SMM: Safe Motion Monitoring
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill

201612 <location>SI CU: STO inputs for power units connected in parallel different

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function on the Control Unit (CU) has identified different states of the AND'ed STO inputs for power units connected in parallel and has initiated a STOP F.
As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
Fault value (r0949, interpret binary):
- check the tolerance time SGE changeover and if required, increase the value (p9650).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
Remedy:
Note:
CU: Control Unit
SGE: Safety-relevant input
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

201620 <location>SI CU: Safe Torque Off active

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The "Safe Torque Off" (STO) function has been selected on the Control Unit (CU) using the input terminal and is active.
Note: This message does not result in a safety stop response.
Remedy:
Note:
CU: Control Unit
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill
SINAMICS alarms

201621

Message value:

-

Drive object:

SERVO_COMBI, SERVO_SINUMERIK828

Reaction:

NONE

Acknowledge:

NONE

Cause:

The "Safe Stop 1" (SS1) function has been selected on the Control Unit (CU) and is active.

Note:

This message does not result in a safety stop response.

Remedy:

None necessary.

Note:

CU: Control Unit

SI: Safety Integrated

SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)

201625

Message value:

%1

Drive object:

SERVO_COMBI, SERVO_SINUMERIK828

Reaction:

OFF2

Acknowledge:

IMMEDIATELY (POWER ON)

Cause:

The drive-based "Safety Integrated" function in the Control Unit (CU) has detected an error in the sign-of-life of the safety data between the CU and Motor Module (MM) and initiated a STOP A.

- there is either a DRIVE-CLiQ communication error or communication has failed.
- a time slice overflow of the safety software has occurred.

Fault value (r0949, interpret decimal):

Only for internal Siemens troubleshooting.

Remedy:

- select Safe Torque Off and de-select again.
- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- de-select all drive functions that are not absolutely necessary.
- reduce the number of drives.
- check the electrical cabinet design and cable routing for EMC compliance

Note:

CU: Control Unit

MM: Motor Module

SI: Safety Integrated
201630 <location>SI CU: Brake control error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause:
The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a brake control error and initiated a STOP A.

Fault value (r0949, interpret decimal):
10, 11:
Fault in "open holding brake" operation.
- Parameter p1278 incorrectly set.
- No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC de-activated)).
- Ground fault in brake cable.
20:
Fault in "brake open" state.
- Short-circuit in brake winding.
30, 31:
Fault in "close holding brake" operation.
- No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC de-activated)).
- Short-circuit in brake winding.
40:
Fault in "brake closed" state.
50:
Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control).
80:
SafeBrakeAdapter: Fault in the brake control circuit of the Control Unit or communication fault between Control Unit and Motor Module (brake control diagnostics).

Note:
The following causes may apply to fault values:
- motor cable is not shielded correctly.
- defect in control circuit of the Motor Module.

Remedy:
- check parameter p1278 (for SBC, only p1278 = 0 is permissible).
- select Safe Torque Off and de-select again.
- check the motor holding brake connection.
- check the function of the motor holding brake.
- check whether there is a DRIVE-CLIQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing).
- replace the Motor Module involved.

Operation with Safe Brake Module or Safe Brake Adapter:
- check the Safe Brake Module or Safe Brake Adapter connection.
- replace the Safe Brake Module or Safe Brake Adapter.

Note:
CU: Control Unit
SBC: Safe Brake Control
SI: Safety Integrated
201649 <location>SI CU: Internal software error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal error in the Safety Integrated software on the Control Unit has occurred.
 This fault results in a STOP A that cannot be acknowledged.
 Fault value (r0949, interpret hexadecimal):
 Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on) for all components.
 - re-commission the "Safety Integrated" function and carry out a POWER ON.
 - upgrade the Control Unit software.
 - contact the Hotline.
 - replace the Control Unit.
 Note:
 CU: Control Unit
 MM: Motor Module
 SI: Safety Integrated

201650 <location>SI CU: Acceptance test required

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function in the Control Unit requires an acceptance test.
 This fault results in a STOP A that can be acknowledged.
 Fault value (r0949, interpret decimal):
 130: Safety parameters for the Motor Module not available.
 1000: Reference and actual checksum on the Control Unit are not identical (booting).
 - at least one checksum-checked piece of data is defective.
 2000: Reference and actual checksum on the Control Unit are not identical (commissioning mode).
 - reference checksum incorrectly entered into the Control Unit (p9799 not equal to r9798).
 - when de-activating the safety functions, p9501 or p9503 are not deleted.
 2001: Reference and actual checksum on the Motor Module are not identical (commissioning mode).
 - reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898).
 - when de-activating the safety functions, p9501 or p9503 are not deleted.
 2002: Enable of safety-related functions between the Control Unit and Motor Module differ (p9601 not equal to p9801).
 2003: Acceptance test is required as a safety parameter has been changed.
 2004: An acceptance test is required because a project with enabled safety-functions has been downloaded.
 2005: The Safety LogBook has identified that a functional safety checksum has changed. An acceptance test is required.
 2010: Safe Brake Control is enabled differently between the Control Unit and Motor Module (p9602 not equal to p9802).
 2020: Error when saving the safety parameters for the Motor Module.
 3003: Acceptance test is required as a hardware-related safety parameter has been changed.
 3005: The Safety LogBook has identified that a hardware-related safety checksum has changed. An acceptance test is required.
 9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:

Re fault value = 130:
- carry out safety commissioning routine.

Re fault value = 1000:
- again carry out safety commissioning routine.
- replace the memory card or Control Unit.

Re fault value = 2000:
- check the safety parameters in the Control Unit and adapt the reference checksum (p9799).

Re fault value = 2001:
- check the safety parameters in the Motor Module and adapt the reference checksum (p9899).

Re fault value = 2002:
- enable the safety-related functions in the Control Unit and check in the Motor Module (p9601 = p9801).

Re fault value = 2003, 2004, 2005:
- Carry out an acceptance test and generate an acceptance report.
 The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the documentation for SINAMICS Safety Integrated.
 The fault with fault value 3005 can only be acknowledged when the "STO" function is de-selected.

Re fault value = 2010:
- check enable of the safety-related brake control in the Control Unit and Motor Module (p9602 = p9802).

Re fault value = 2020:
- again carry out safety commissioning routine.
- replace the memory card or Control Unit.

Re fault value = 3003:
- carry out the function checks for the modified hardware and generate an acceptance report.
 The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
 SINAMICS S120 Function Manual Safety Integrated
 Re fault value = 3005:
- carry out the function checks for the modified hardware and generate an acceptance report.
 The fault with fault value 3005 can only be acknowledged when the "STO" function is de-selected.

Re fault value = 9999:
- carry out diagnostics for the other safety-related fault that is present.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off
See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))

201651 <location>SI CU: Synchronization safety time slices unsuccessful

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The "Safety Integrated" function requires a synchronization of the safety time slices between the Control Unit (CU) and Motor Module (MM) and between the Control Unit and the higher-level control. This synchronization routine was unsuccessful.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
150: Fault in the synchronization to the PROFIBUS master.
All other values: Only for internal Siemens troubleshooting.
See also: p9510 (SI Motion clock-cycle synchronous PROFIBUS master)
SINAMICS alarms

Remedy:

Re fault value = 150:
- check the setting of p9510 (SI Motion clock-cycle synchronous PROFIBUS master) and if required, correct.

General:
- carry out a POWER ON (power on/off) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- upgrade the software of the higher-level control.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201652

<location>SI CU: Illegal monitoring clock cycle

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)

Cause:
One of the Safety Integrated monitoring clock cycles is not permissible:
- the drive-based monitoring clock cycle cannot be maintained due to the communication conditions required in the system.
- the monitoring clock cycle for safe motion monitoring functions with the higher-level control is not permissible (p9500).
- The sampling time for the current controller (p0112, p0115) cannot be supported.

Note:
This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, interpret decimal):
- for enabled drive-based SI monitoring (p9601/p9801 > 0):
 - Minimum setting for the monitoring clock cycle (in µs).
- with the motion monitoring function enabled (p9501 > 0):
 - 100: No matching monitoring clock cycle was able to be found.
 - 102: An error has occurred when transferring the DP clock cycle to the Motor Module (MM).
 - 103: An error has occurred when transferring the DP clock cycle to the Sensor Module.
 - 104,105: four times the current controller sampling time is greater than 1 ms when operating with a non-isochronous PROFIBUS.
 - four times the current controller sampling time is greater than the DP clock cycle when operating with an isochronous PROFIBUS.
- The DP clock cycle is not an integer multiple of the sampling time of the current controller.
- The parameterized actual value sensing clock cycle cannot be set on this component.
- If the motion monitoring functions have been parameterized as encoderless (p9506), the actual value sensing clock cycle (p9511) and the current controller clock cycle must be identical.
- The actual value sensing clock cycle (p9511) for safety with encoder (p9506 = 0) is less than 2 ms for this Control Unit (e.g. CU305).
Remedy: For enabled drive-based SI monitoring (p9601/p9801 > 0):
- upgrade the Control Unit software.
For enabled motion monitoring function (p9501 > 0):
- correct the monitoring clock cycle (p9500) and carry out POWER ON.
Re fault value = 101:
- actual value sensing clock cycle corresponds to position control clock cycle/DP clock cycle (factory setting).
- for the drive-based motion monitoring functions (p9601/p9801 bit 2 = 1) the actual value sensing clock cycle can be directly parameterized in P9511/p9311.
Re fault value = 104, 105:
- set a separate actual value sensing clock cycle in p9511.
- restrict operation to a maximum of two vector drives. For the standard setting in p0112, p0115, the current controller sampling time is automatically reduced to 250 µs. If the standard values were changed, then the current controller sampling time (p0112, p0115) should be appropriately set.
- increase the DP clock cycle for operation with a clock-cycle synchronous PROFINET so that there is a multiple clock cycle ratio of at least 4:1 between the DP clock cycle and the current controller sampling time. A clock cycle ratio of at least 8:1 is recommended.
- With firmware version 2.5, please ensure that parameter p9510 is set to 1 in the drive (clock cycle synchronous operation).
Re fault value = 106:
- set the parameters for the monitoring clock cycles the same (p10000 and p9500 / p9300).
Re fault value = 107:
- set an actual value sensing clock cycle in p9511 that matches the current controller clock cycle. A clock cycle ratio of at least 8:1 is recommended.
Re fault value = 108:
- set a suitable actual value sensing clock cycle in p9511.
- if the DP clock cycle is used as the actual value sensing clock cycle for operation with isochronous PROFINET (p9511 = 0), then a suitable DP clock cycle must be configured.
A suitable multiple of the DP clock cycle (e.g. 1, 2, 3, 4, 5, 6, 8, 10) must be parameterized on the D410. Otherwise, the clock cycle must be set to less than 8 ms.
Re fault value = 109:
- set the actual value sensing clock cycle in p9511 to the same value as the current controller clock cycle (p115).
Re fault value = 110:
- set the actual value sensing clock cycle in p9511 to 2 ms or higher.
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201653 <location>SI CU: PROFIBUS configuration error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: There is a PROFIBUS configuration error for using Safety Integrated monitoring functions with a higher-level control (SINUMERIK or F-PLC).
Note:
For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
200: A safety slot for receive data from the control has not been configured.
210, 220: The configured safety slot for the receive data from the control has an unknown format.
230: The configured safety slot for the receive data from the F-PLC has the incorrect length.
231: The configured safety slot for the receive data from the F-PLC has the incorrect length.
240: The configured safety slot for the receive data from the SINUMERIK has the incorrect length.
250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive.
300: A safety slot for the send data to the control has not been configured.
310, 320: The configured safety slot for the send data to the control has an unknown format.
330: The configured safety slot for the send data to the F-PLC has the incorrect length.
331: The configured safety slot for the send data to the F-PLC has the incorrect length.
340: The configured safety slot for the send data to the SINUMERIK has the incorrect length.
SINAMICS alarms

Remedy: The following generally applies:
- check and, if necessary, correct the PROFIBUS configuration of the safety slot on the master side.
- upgrade the Control Unit software.
Re fault value = 250:
- remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive.
Re fault value = 231, 331:
- configure the PROFIsafe telegram matching the parameterization in the F-PLC.
The following applies for p9501.30 = 1 (FDI via PROFIsafe is enabled): PROFIsafe telegram 900 must be configured.
The following applies for p9501.30 = 0 (FDI via PROFIsafe not enabled): PROFIsafe telegram 30 must be configured.

201655 <location>SI CU: Align monitoring functions

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions.
- there is either a DRIVE-CLIQ communication error or communication has failed.
- Safety Integrated software releases on the Control Unit and Motor Module are not compatible with one another.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- check the electrical cabinet design and cable routing for EMC compliance
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201656 <location>SI CU: Motor Module parameter error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When accessing the Safety Integrated parameters for the Motor Module (MM) in the non-volatile memory, an error has occurred.
Note: This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
129: Safety parameters for the Motor Module corrupted.
131: Internal Motor Module software error.
132: Communication errors when uploading or downloading the safety parameters for the Motor Module.
255: Internal software error on the Control Unit.
SINAMICS alarms

Remedy:
- re-commission the safety functions.
- upgrade the Control Unit software.
- upgrade the Motor Module software.
- replace the memory card or Control Unit.

Re fault value = 132:
- check the electrical cabinet design and cable routing for EMC compliance

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201659 <location>SI CU: Write request for parameter rejected

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause:
The write request for one or several Safety Integrated parameters on the Control Unit (CU) was rejected.

Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
1: The Safety Integrated password is not set.
2: A reset of the drive parameters was selected. However, the Safety Integrated parameters were not reset, as Safety Integrated is presently enabled.
3: The interconnected STO input is in the simulation mode.
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
12: An attempt was made to enable the STO function although this cannot be supported for a parallel circuit configuration.
13: An attempt was made to enable the SS1 function although this cannot be supported.
14: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on the CU and MM is different.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
16: An attempt was made to enable the STO function although this cannot be supported when the internal voltage protection (p1231) is enabled.
17: An attempt was made to enable the PROFIsafe function although this cannot be supported for a parallel circuit configuration.
18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
19: An attempt was made to enable the SBA (Safe Brake Adapter), although this cannot be supported.

See also: p0970, p3900, r9771, r9871

Remedy:
Re fault value = 1:
- set the Safety Integrated password (p9761).
Re fault value = 2:
- Inhibit Safety Integrated (p9501, p9601) or reset safety parameters (p0970 = 5), then reset the drive parameters again.
Re fault value = 3:
- end the simulation mode for the digital input (p0795).
Re fault value = 10, 11, 12, 13, 14, 15, 17, 18, 19:
- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
- use a Motor Module that supports the required function ("Safe Torque Off", "Safe Brake Control", "PROFIsafe/PROFIsafe V2", "motion monitoring functions integrated in the drive").
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 16:
- inhibit the internal voltage protection (p1231).

Note:
CU: Control Unit
MM: Motor Module
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
SBA: Safe Brake Adapter

See also: p9501 (SI Motion enable safety functions (Control Unit)), p9601 (SI enable, functions integrated in the drive (Control Unit)), p9620 (SI signal source for STO (SH)/SBC/SS1 (Control Unit)), p9761 (SI password input), p9801 (SI enable, functions integrated in the drive (Motor Module))

201660
<location>SI CU: Safety-related functions not supported

Message value:
-

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
OFF2

Acknowledge:
IMMEDIATELY (POWER ON)

Cause:
The Motor Module (MM) does not support the safety-related functions (e.g. the Motor Module version is not the correct one). Safety Integrated cannot be commissioned.

Note:
This fault does not result in a safety stop response.

Remedy:
- use a Motor Module that supports the safety-related functions.
- upgrade the Motor Module software.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201663
<location>SI CU: Copying the SI parameters rejected

Message value:
-

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
OFF2

Acknowledge:
IMMEDIATELY (POWER ON)

Cause:
One of the following values is saved in p9700 or was entered offline: 87 or 208. This is the reason that when booting, an attempt is made to copy SI parameters from the Control Unit to the Motor Module. However, no safety-relevant function has been selected on the Control Unit (p9501 = 0, p9601 = 0). This is the reason that copying is not possible.

Note:
This fault does not result in a safety stop response.

See also: p9700 (SI Motion copy function)

Remedy:
- Set p9700 to 0.
- Check p9501 and p9601 and if required, correct.
- Restart the copying function by entering the corresponding value into p9700.
201664 <location>SI CU: No automatic firmware update

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: During booting, the system detected that the "Firmware update automatic" function (p7826 = 1) was not activated. This function must be activated for automatic firmware updates/downgrades to prevent impermissible version combinations when safety functions are enabled.
Note: This fault does not result in a safety stop response.
See also: p7826 (Firmware update automatic)
Remedy: For enabled drive-based SI monitoring:
1. Activate the "Firmware update automatic" function (p7826 = 1).
2. Save the parameters (p0977 = 1) and carry out a POWER ON.
When de-activating drive-based SI monitoring (p9601 = 0), the fault can be acknowledged after exiting the safety commissioning mode.

201665 <location>SI CU: System is defective

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Before the drive booted the last time, it detected a defect in the system and carried out an emergency stop.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on).
- upgrade firmware to later version.
- contact the Hotline.
201670 <location>SI Motion: Invalid parameterization Sensor Module

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameterization of a Sensor Module used for Safety Integrated is not permissible.
 - This fault results in a STOP A that cannot be acknowledged.
 - Fault value (r0949, interpret decimal):
 1: No encoder was parameterized for Safety Integrated.
 2: An encoder was parameterized for Safety Integrated that does not have an A/B track (sine/cosine).
 3: The encoder data set selected for Safety Integrated is still not valid.
 4: A communication error with the encoder has occurred.
 10: For an encoder used for Safety Integrated, not all of the Drive Data Sets (DDS) are assigned to the same Encoder Data Set (EDS) (p0187 ... p0189).
Remedy: Re fault value = 1, 2:
 - use and parameterize an encoder that Safety Integrated supports (encoder with track A/B sine-wave, p0404.4 = 1).
 Re fault value = 3:
 - check whether the drive or drive commissioning function is active and if required, exit this (p0009 = p00010 = 0), save the parameters (p0971 = 1) and carry out a POWER ON
 Re fault value = 4:
 - check whether there is a DRIVE-CLIQ communication error between the Control Unit and the Sensor Module involved and if required, carry out a diagnostics routine for the faults identified.
 Re fault value = 10:
 - align the EDS assignment of all of the encoders used for Safety Integrated (p0187 ... p0189).
Note: SI: Safety Integrated

201671 <location>SI Motion: Parameterization encoder error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameterization of the encoder used by Safety Integrated is different to the parameterization of the standard encoder.
 - This fault does not result in a safety stop response.
 Fault value (r0949, interpret decimal):
 Parameter number of the non-corresponding safety parameter.
Remedy: Align the encoder parameterization between the safety encoder and the standard encoder.
Note: SI: Safety Integrated
201672 <location>SI CU: Motor Module software/hardware incompatible

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The existing Motor Module software does not support safe motion monitoring or is not compatible to the software on the Control Unit or there is a communications error between the Control Unit and Motor Module.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
1: The existing Motor Module software does not support the safe motion monitoring function.
2, 3, 6, 8: There is a communications error between the Control Unit and Motor Module.
4, 5, 7: The existing Motor Module software is not compatible to the software on the Control Unit.
9: The current Motor Module software does not support safe encoderless motion monitoring.
Remedy:
- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out the appropriate diagnostics routine for the particular faults.
Re fault value = 1:
- use a Motor Module that supports safe motion monitoring
Re fault value = 2, 3, 6, 8:
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re fault value = 4, 5, 7:
- upgrade the Motor Module software.
Re fault value = 9:
- upgrade the Motor Module firmware.
Note:
SI: Safety Integrated

201673 <location>SI Motion: Sensor Module software/hardware incompatible

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The existing Sensor Module software and/or hardware does not support the safe motion monitoring function with the higher-level control.
Note: This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- upgrade the Sensor Module software.
- use a Sensor Module that supports the safe motion monitoring function.
Note:
SI: Safety Integrated
201680
<location>SI Motion CU: Checksum error safety monitoring functions

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The actual checksum calculated by the drive and entered in r9728 via the safety-relevant parameters does not match the reference checksum saved in p9729 at the last machine acceptance. Safety-relevant parameters have been changed or a fault is present.
Note:
This fault results in a STOP A that can be acknowledged. Fault value (r0949, interpret decimal):
0: Checksum error for SI parameters for motion monitoring.
1: Checksum error for SI parameters for actual values.
2: Checksum error for SI parameters for component assignment.
Remedy:
- check the safety-relevant parameters and if required, correct.
- perform a POWER ON if safety parameters requiring a POWER ON have been modified.
- carry out an acceptance test.
Note:
SI: Safety Integrated

201681
<location>SI Motion CU: Incorrect parameter value

Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameter cannot be parameterized with this value.
Note:
This fault does not result in a safety stop response. Fault value (r0949, interpret decimal): Parameter number with the incorrect value.
Remedy:
Correct the parameter value. With hysteresis/filtering enabled (p9501.16=1), the following applies:
Set parameters p9546/9346 and p9547/9347 acc. to the following rule: p9546 >= 2 * p9547; 9346 >= 2 * p9347.
The following rule must also be adhered to when actual value synchronization (p9501.3 = 1) is enabled: p9549 <= p9547; p9349 <= p9347.
Correct the parameter 9522 fault value. Also check p9516.0 for fault value 9517.
201682 <location>SI Motion CU: Monitoring function not supported

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The monitoring function enabled in p9501, p9601 or p9801 is not supported in this firmware version.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
1: Monitoring function SLP not supported (p9501.1).
2: Monitoring function SCA not supported (p9501.7 and p9501.8 ... 15 and p9503).
3: Monitoring function SLS override not supported (p9501.5).
4: Monitoring function external ESR activation not supported (p9501.4).
5: Monitoring function FDI in PROFIsafe not supported (p9501.30).
6: Enable actual value synchronization not supported (p9501.3).
9: Monitoring function not supported, enable bit reserved (p9501.2, p9501.17 ... 29, p9501.31, if required p9501.6).
10: Monitoring functions only supported for a SERVO drive object.
11: Only drive-based encoderless monitoring functions are supported.
12: Monitoring functions for ncSI are not supported on a CU305.
20: Drive-based motion monitoring functions are only supported in conjunction with PROFIsafe (p9501, p9601.1 ... 2 and p9801.1 ... 2).
21: PROFIsafe only supported in conjunction with motion monitoring functions in the drive (p9501, p9601.1 ... 2 and p9801.1 ... 2).
22: Encoderless monitoring functions in chassis format not supported.
Remedy: De-select the monitoring function involved (p9501, p9503, p9506, p9601, p9801).
Note: SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
SLP: Safely-Limited Position / SE: Safe software limit switches
SLS: Safely-Limited Speed / SG: Safely reduced speed
See also: p9501 (SI Motion enable safety functions (Control Unit)), p9503 (SI Motion SCA (SN) enable (Control Unit))

201683 <location>SI Motion CU: SOS/SLS enable missing

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The safety-relevant basic function "SOS/SLS" is not enabled in p9501 although other safety-relevant monitoring functions are enabled.
Note: This fault does not result in a safety stop response.
Remedy: Enable the function "SOS/SLS" (p9501.0) and carry out a POWER ON.
Note: SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9501 (SI Motion enable safety functions (Control Unit))
201684 <location>SI Motion: Safely limited position limit values interchanged

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: For the function "Safely-Limited Position" (SE), a lower value is in p9534 than in p9535.
Note:
 This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
 1: Limit values SLP1 interchanged.
 2: Limit values SLP2 interchanged.
Remedy: Correct the limit values in p9534 and p9535 and carry out a POWER ON.
Note:
 SI: Safety Integrated
 SLP: Safely-Limited Position / SE: Safe software limit switches

201685 <location>SI Motion CU: Safely-limited speed limit value too high

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz.
Note:
 This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
 Maximum permissible speed.
Remedy: Correct the limit values for SLS and carry out a POWER ON.
Note:
 SI: Safety Integrated
 SLS: Safely-Limited Speed / SG: Safely reduced speed
 See also: p9531 (SI Motion SLS (SG) limit values (Control Unit))

201686 <location>SI Motion: Illegal parameterization cam position

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: At least one enabled "Safe Cam" (SCA) is parameterized in p9536 or p9537 too close to the tolerance range around the modulo position.
The following conditions must be complied with to assign cams to a cam track:
 - the cam length of cam x = p9536[x]-p9537[x] must be greater or equal to the cam tolerance + the position tolerance (= p9540 + p9542). This also means that for cams on a cam track, the minus position value must be less than the plus position value.
 - the distance between 2 cams x and y (minus position value[y] - plus position value[x] = p9537[y] - p9536[x]) on a cam track must be greater than or equal to the cam tolerance + position tolerance (= p9540 + p9542).
Note:
 This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
 Number of the "Safe Cam" with an illegal position.
See also: p9501 (SI Motion enable safety functions (Control Unit))
Remedy: Correct the cam position and carry out a POWER ON.

Note:
SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
See also: p9536 (SI Motion SCA (SN) plus cam position (Control Unit)), p9537 (SI Motion SCA (SN) plus cam position (Control Unit))

201687 <location>SI Motion: Illegal parameterization modulo value SCA (SN)

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameterized modulo value for the "Safe Cam" (SCA) function is not a multiple of 360,000 mDegrees. This fault does not result in a safety stop response.
Remedy: Correct the modulo value for SCA and carry out a POWER ON.

Note:
SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
See also: p9505 (SI Motion SCA (SN) modulo value (Control Unit))

201688 <location>SI Motion CU: Actual value synchronization not permissible

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: - It is not permissible to enable actual value synchronization for a 1-encoder system.
- It is not permissible to simultaneously enable actual value synchronization and a monitoring function with absolute reference (SCA/SLP).
Note: This fault results in a STOP A that cannot be acknowledged.
Remedy: - Either select the "actual value synchronization" function or parameterize a 2-encoder system.
- Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON.

Note:
SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
SLP: Safely-Limited Position / SE: Safe software limit switches
See also: p9501 (SI Motion enable safety functions (Control Unit)), p9526 (SI Motion encoder assignment second channel)
201689 <location>SI Motion: Axis re-configured

Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: POWER ON
Cause: The axis configuration was changed (e.g. changeover between linear axis and rotary axis).
Parameter p0108.13 is internally set to the correct value.
Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Parameter number of parameter that initiated the change.
See also: p9502 (SI Motion axis type (Control Unit))
Remedy: The following should be carried out after the changeover:
- exit the safety commissioning mode (p0010).
- save all parameters (p0977 = 1 or "copy RAM to ROM").
- carry out a POWER ON.
Once the Control Unit has been switched on, safety message F01680 or F30680 indicates that the checksums in r9398[0] and r9728[0] have changed in the drive. The following must, therefore, be carried out:
- activate safety commissioning mode again.
- complete safety commissioning of the drive.
- exit the safety commissioning mode (p0010).
- save all parameters (p0977 = 1 or "copy RAM to ROM").
- carry out a POWER ON.
Note:
For the commissioning software, the units are only consistently displayed after a project upload.

201690 <location>SI Motion: Data save problem for the NVRAM

Message value: %1
Drive object: All objects
Reaction: Servo: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF1, OFF2)
Acknowledge: POWER ON
Cause: There is not sufficient memory space in the NVRAM on the drive to save parameters r9781 and r9782 (safety logbook).
Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
0: There is no physical NVRAM available in the drive.
1: There is no longer any free memory space in the NVRAM.
Remedy:
Re fault value = 0:
- use a Control Unit NVRAM.
Re fault value = 1:
- de-select functions that are not required and that take up memory space in the NVRAM.
- contact the Hotline.
201691 <location>SI Motion: Ti and To unsuitable for DP cycle
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The configured times for PROFIBUS communication are not permitted and the DP cycle is used as the actual value acquisition cycle for the safe movement monitoring functions:
Isochronous PROFIBUS: the total of Ti and To is too high for the set DP cycle. The DP cycle should be at least 1 current controller cycle greater than the sum of Ti and To.
Non-isochronous PROFIBUS: the DP cycle must be at least 4 x current controller cycle.
Remedy: Configure Ti and To low so that they are suitable for the DP cycle or increase the DP cycle time.
Alternative when drive-based SI monitoring is enabled (p9601/p9801 > 0):
Use the actual value acquisition cycle p9511/p9311 and, in turn, set independently from DP cycle. The actual value sensing clock cycle must be at least four times the current controller clock cycle. A clock cycle ratio of at least 8:1 is recommended.
See also: p9511 (SI Motion actual value sensing cycle clock (Control Unit))

201692 <location>SI Motion CU: Parameter value not permitted for encoderless
Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameter cannot be set to this value if encoderless motion monitoring functions have been selected in p9506.
Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal): Parameter number with the incorrect value.
See also: p9501 (SI Motion enable safety functions (Control Unit))
Remedy: - Correct the parameter specified in the fault value.
- If necessary, de-select encoderless motion monitoring functions (p9506).
See also: p9501 (SI Motion enable safety functions (Control Unit))

201693 <location>SI Motion CU: Safety parameter setting changed, wam restart/POWER ON required
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: Safety parameters have been changed; these will only take effect following a warm restart or POWER ON.
Alarm value (r2124, interpret decimal): Parameter number of the safety parameter which has changed, necessitating a warm restart or POWER ON.
Remedy: - carry out a warm restart (p0971 = 3)
- carry out a POWER ON (power off/on) for all components.
201696 <location>SI Motion: Testing of the motion monitoring functions selected when booting</location>

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
The test of the motion monitoring functions was already illegally active when booting.
This is the reason that the test is only carried out again after selecting the forced checking procedure parameterized in p9705.
Note:
This message does not result in a safety stop response.
Remedy:
De-select the forced checking procedure of the safety motion monitoring functions and then select again.
The signal source for initiation is parameterized in binector input p9705.
Note:
It is not permissible to use TM54F inputs to start the test stop.
Note:
SI: Safety Integrated
See also: p9705 (SI Motion: Test stop signal source)

201697 <location>SI Motion: Motion monitoring functions must be tested</location>

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
The time set in p9559 for the forced checking procedure of the safety motion monitoring functions has been exceeded.
A new test is required.
After next selecting the forced checking procedure parameterized in p9705, the message is withdrawn and the monitoring time is reset.
Note:
This message does not result in a safety stop response.
As the shutdown paths are not automatically checked during booting, an alarm is always issued once booting is complete.
Remedy:
Carry out the forced checking procedure of the safety motion monitoring functions.
The signal source for initiation is parameterized in binector input p9705.
Note:
It is not permissible to use TM54F inputs to start the test stop.
Note:
SI: Safety Integrated
See also: p9705 (SI Motion: Test stop signal source)
201698 <location>SI CU: Commissioning mode active

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA
Reaction: NONE
Acknowledge: NONE
Cause: The commissioning of the "Safety Integrated" function is selected. This message is withdrawn after the safety functions have been commissioned.
Note: This message does not result in a safety stop response.
See also: p0010
Remedy: None necessary.
Note: CU: Control Unit
SI: Safety Integrated

201699 <location>SI CU: Shutdown path must be tested

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The time set in p9659 for the forced checking procedure of the safety shutdown paths has been exceeded. The safety shutdown paths must be re-tested. After the next time the "STO" function is de-selected, the message is withdrawn and the monitoring time is reset.
Note: This message does not result in a safety stop response.
See also: p9659 (SI forced checking procedure timer)
Remedy: Select STO and then de-select again.
Note: CU: Control Unit
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

201700 <location>SI Motion CU: STOP A initiated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of the Control Unit). Possible causes:
- stop request from the second monitoring channel
- pulses not suppressed after a parameterized time (p9557) after test stop selection.
- subsequent response to the message C01706 "SI Motion CU: Safe Acceleration Monitoring limit exceeded".
- subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded".
- subsequent response to the message C01701 "SI Motion CU: STOP B initiated".
Remedy:
- remove the cause of the fault on the second monitoring channel
- carry out a diagnostics routine for message C01706.
- carry out a diagnostics routine for message C01714.
- carry out a diagnostics routine for message C01701.
- check the value in p9557 (where available), increase the value if necessary, and carry out a POWER ON
- check the shutdown path of the Control Unit (check DRIVE-CLiQ communication if it has been implemented)
- replace the Motor Module/Power Module
- replace Control Unit.

This message can be acknowledged without a POWER ON as follows:
- motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: via the machine control panel in acceptance test mode only

Note:
SI: Safety Integrated

201701
<location>SI Motion CU: STOP B initiated

Message value:
-
Drive object:
SERVO_COMBI, SERVO_SINUMERIK828
Reaction:
OFF3
Acknowledge:
IMMEDIATELY (POWER ON)
Cause:
The drive is stopped via a STOP B (braking along the OFF3 deceleration ramp).
As a result of this fault, after the time parameterized in p9556 has expired, or the speed threshold parameterized in p9560 has been undershot, message C01700 “STOP A initiated” is output.
Possible causes:
- stop request from the second monitoring channel
- subsequent response to the message C01714 “SI Motion: Safely reduced speed exceeded”.
- subsequent response to the message C01711 “SI Motion: Defect in a monitoring channel”.

Remedy:
- remove the cause of the fault on the second monitoring channel
- carry out a diagnostics routine for message C01714.
- carry out a diagnostics routine for message C01711.
This message can be acknowledged without a POWER ON as follows:
- motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: via the machine control panel in acceptance test mode only

Note:
SI: Safety Integrated

201706
<location>SI Motion CU: SBR limit undershot

Message value:
-
Drive object:
SERVO_COMBI, SERVO_SINUMERIK828
Reaction:
NONE
Acknowledge:
IMMEDIATELY (POWER ON)
Cause:
Motion monitoring functions with encoder: SBR - Safe Acceleration Monitoring. After initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance.
Encoderless motion monitoring function: SBR - Safe Brake Ramp Monitoring. After initiating STOP B (SS1) or SLS changeover to the lower speed stage, the speed has exceeded the selected tolerance.
The drive is shut down by the message C01700 “SI Motion: STOP A initiated”.

Remedy:
Check the braking behavior and, if necessary, adapt the tolerance for the “Safe Acceleration Monitor” or modify the parameter settings for the “safe brake ramp”.
This message can be acknowledged without a POWER ON as follows:
- motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: via the machine control panel in acceptance test mode only

Note:
SI: Safety Integrated
See also:
p9548 (SI Motion SBR actual velocity tolerance (Control Unit)), p9581 (SI Motion brake ramp reference value (Control Unit)), p9582 (SI Motion brake ramp delay time (Control Unit)), p9583 (SI Motion brake ramp monitoring time (Control Unit))
201707 <location>SI Motion CU: Tolerance for safe operating stop exceeded

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The actual position has distanced itself further from the target position than the standstill tolerance. The drive is shut down by the message C01701 "SI Motion: STOP B initiated".
Remedy: - check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults.
- check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis.
- carry out a POWER ON.
This message can be acknowledged without a POWER ON as follows:
- motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: via the machine control panel in acceptance test mode only
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9530 (SI Motion standstill tolerance (Control Unit))

201708 <location>SI Motion CU: STOP C initiated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: STOP2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP C (braking along the OFF3 deceleration ramp). "Safe Operating Stop" (SOS) is activated after the parameterized timer has expired.
Possible causes:
- stop request from the higher-level control.
- subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded".
- subsequent response to the message C01715 "SI Motion: Safe end stop exceeded".
See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))
Remedy: - remove the cause of the fault at the control.
- carry out a diagnostics routine for message C01714.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
201709 201709 <location>SI Motion CU: STOP D initiated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP D (braking along the path). "Safe Operating Stop" (SOS) is activated after the parameterized timer has expired. Possible causes:
- stop request from the higher-level control.
- subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded".
- subsequent response to the message C01715 "SI Motion: Safe end stop exceeded".
See also: p9553 (SI Motion transition time STOP D to SOS (SBH) (Control Unit))
Remedy:
- remove the cause of the fault at the control.
- carry out a diagnostics routine for message C01714.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop

201710 201710 <location>SI Motion CU: STOP E initiated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP E (retraction motion). "Safe Operating Stop" (SOS) is activated after the parameterized timer has expired. Possible causes:
- stop request from the higher-level control.
- subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded".
- subsequent response to the message C01715 "SI Motion: Safe end stop exceeded".
See also: p9554 (SI Motion transition time STOP E to SOS (SBH) (Control Unit))
Remedy:
- remove the cause of the fault at the control.
- carry out a diagnostics routine for message C01714.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
201711 <location>SI Motion CU: Defect in a monitoring channel

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)

Cause:

When cross-checking and comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.

If at least one monitoring function is active, then after the parameterized timer has expired, the message C01701 “SI Motion: STOP B initiated” is output.

The message value that resulted in a STOP F is displayed in r9725. The described message values involve the data cross-check between the Control Unit and Motor Module. If the drive is operated together with a SINUMERIK, the message values are described in message 27001 of SINUMERIK.

The following message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:
- cycle times not set uniformly (p9500/p9300 and p9511/p9311)
- differently parameterized axis types (p9502/p9302).
- excessively fast cycle times (p9500/p9300, p9511/p9311).
- for message values 3, 44 ... 57, 232, and encoder systems, differently parameterized encoder values (p9516/p9316, p9517/p9317, p9518/p9318, p9520/p9320, p9521/p9321, p9522/p9322, p9526/p9326).
- incorrect synchronization.

Message value (r9749, interpret decimal):
0 to 999: Number of the cross-checked data that resulted in this fault.
Message values that are not subsequently listed are only for internal Siemens troubleshooting.
0: Stop request from the other monitoring channel.
1: Status image of monitoring functions SOS, SLS or SLP (result list 1) (r9710[0], r9710[1]).
2: Status image of monitoring function SCA or n < nx (result list 2) (r9711[0], r9711[1]).
3: The position actual value differential (r9713) between the two monitoring channels is greater than the tolerance in p9542/p9342. When actual value synchronization is enabled (p9501.3/p9301.3), the velocity differential (based on the position actual value) is greater than the tolerance in p9549/p9349.
4: Error when synchronizing the crosswise data comparison between the two channels.
5: Function enable signals (p9501/p9301)
6: Limit value for SLS1 (p9531[0]/p9331[0])
7: Limit value for SLS2 (p9531[1]/p9331[1])
8: Limit value for SLS3 (p9531[2]/p9331[2])
9: Limit value for SLS4 (p9531[3]/p9331[3])
10: Standstill tol. (p9530/p9330)
31: Position tolerance (p9542/p9342) or (p9549/p9349) when actual value synchronization is enabled (p9501.3/p9301.3)
33: Time, velocity changeover (p9551/p9351)
35: Delay time, pulse canc. (p9556/p9356)
36: Checking time, pulse canc. (p9557/p9357)
37: Trans. time, STOP C to SOS (p9552/p9352)
38: Trans. time STOP D to SOS (p9553/p9353)
40: Stop response for SLS (p9561/p9361)
42: Shutdown speed, pulse canc. (p9560/p9360)
43: Memory test, stop response (STOP A).
44 ... 57: General

Possible cause 1 (during commissioning or parameter modification)
The tolerance value for the monitoring function is not the same on the two monitoring channels.

Possible cause 2 (during active operation)
The limit values are based on the current actual value (r9713). If the safe actual values on the two monitoring channels do not match, the limit values, which have been set at a defined interval, will also be different (i.e. corresponding to fault value 3). This can be ascertained by checking the safe actual positions.
44: Position actual value (r9713) + limit value for SLS1 (p9531[0]/p9331[0])
45: Position actual value (r9713) - limit value for SLS1 (p9531[0]/p9331[0])
46: Position actual value (r9713) + limit value for SLS2 (p9531[1]/p9331[1])
47: Position actual value (r9713) - limit value for SLS2 (p9531[1]/p9331[1])
48: Position actual value (r9713) + limit value for SLS3 (p9531[2]/p9331[2])
49: Position actual value (r9713) - limit value for SLS3 (p9531[2]/p9331[2])
50: Position actual value (r9713) + limit value for SLS4 (p9531[3]/p9331[3])
51: Position actual value (r9713) - limit value for SLS4 (p9531[3]/p9331[3])
52: Standstill position + tolerance (p9530/p9330)
53: Standstill position - tolerance (p9530/p9330)
54: Position actual value (r9713) + limit value nx (p9546/p9346) + tolerance (p9542/p9342)
55: Position actual value (r9713) + limit value nx (p9546/p9346)
56: Position actual value (r9713) - limit value nx (p9546/p9346)
57: Position actual value (r9713) - limit value nx (p9546/p9346) - tolerance (p9542/p9342)
58: Actual stop request.
59: Velocity limit nx (p9546/p9346).
60: Stop response for SLS1 (p9563[0]/p9363[0])
61: Stop response for SLS2 (p9563[1]/p9363[1])
62: Stop response for SLS3 (p9563[2]/p9363[2])
63: Stop response for SLS4 (p9563[3]/p9363[3])
64: Velocity tolerance for SBR (p9548/p9348)
65: SGEs for SLS correction factor.
66: Acceptance test timer (p9558/p9358)
67: Trans. time STOP F (p9555/p9355)
68: Trans. time bus failure (p9580/p9380)
69: ID 1-encoder system (p9526/p9326).
70: Encoder assignment, 2nd channel (p9526/p9326)
71: Encoder limit freq.
72: Filter time constant for n < nx.
73: Hysteresis tolerance for n < nx.
74: Smoothed velocity actual value.
75: Smoothed velocity actual value + limit value nx / safety monitoring clock cycle + hysteresis tolerance.
76: Smoothed velocity actual value + limit value nx / safety monitoring clock cycle.
77: Smoothed velocity actual value - limit value nx / safety monitoring clock cycle.
78: Smoothed velocity actual value - limit value nx / safety monitoring clock cycle - hysteresis tolerance.
79: SGA n < nx.
80: Speed limit value for SBR (p9568/p9368).
81: Acceleration for SBR (p9581/p9381 and p9583/p9383).
82: Inverse value of acceleration for SBR (p9581/p9381 and p9583/p9383).
83: Deceleration time for SBR (p9582/p9382).
84: Encoderless safety (p9506/p9306).
85: Encoderless actual value sensing filter time (p9587/p9387).
86: Encoderless actual value sensing minimum current (p9588/p9388).
87: Voltage tolerance acceleration (p9589/p9389).
88: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
89: Initialization error of watchdog timer.
90: Pulses already suppressed for test stop selection.
91: Acceptance test status between the monitoring channels differ.
92: Plausibility violation of the actual value from the encoder.
93: Cyclic communication failure between the monit. cycles.
94: Cyclic communication failure between the monit. channel and Sensor Module.
95: Sign-of-life error for DRIVE-CLIQ encoder CU
96: Error in the effectiveness test in the DRIVE-CLIQ encoder
97: Sign-of-life error for DRIVE-CLIQ encoder MM
98: Error checking offset between POS1 and POS2 for DRIVE-CLIQ encoder CU
99: Error checking offset between POS1 and POS2 for DRIVE-CLIQ encoder MM
100: Current absolute value too low (encoderless)
101: Current/voltage plausibility error
102: Too many acceleration phases
103: Actual current values plausibility error.
5000 ... 5140: PROFINet message values.
5000, 5014, 5023, 5024, 5030, 5032, 5042, 5043, 5052, 5053, 5068, 5072, 5073, 5082, 5087, 5090, 5091, 5122 ... 5125, 5132 ... 5135, 5140: An internal software error has occurred (only for internal Siemens troubleshooting).
5012: Error when initializing the PROFIsafe driver.
5013: The result of the initialization is different for the two controllers.
5022: Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
5025: The result of the F parameterization is different for the two controllers.
5026: CRC error for the F parameters. The transferred CRC value of the F parameters does not match the value calculated in the PST.
5065: A communications error was identified when receiving the PROFIsafe telegram.
5066: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
6000 ... 6166: PROFINet message values (PROFINet driver for PROFINET).
6000: An internal software error has occurred (only for internal Siemens troubleshooting).
6064 ... 6071: Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
6064: Destination address and PROFIsafe address are different (F_Dest_Add).
6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Source_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F_CRC_Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the F parameters (CRC1). The transferred CRC value of the F parameters does not match the value calculated in the PROFIsafe driver.
6072: F parameterization is inconsistent.
6165: A communications error was identified when receiving the PROFIsafe telegram. The fault may also occur if an inconsistent or out-of-date PROFIsafe telegram has been received after switching the Control Unit off and on or after plugging in the PROFINET cable.
6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion, diagnostics STOP F)

Remedy:
The following generally applies:
The monitoring clock cycles in both channels and the axis types should be checked for equality and the same setting applied if necessary. If the error continues to be identified, increasing the monitoring clock cycles may resolve it.
Re message value = 0:
- no error was identified in this monitoring channel. Note the error message of the other monitoring channel (for MM: C30711).
Re message value = 3:
Commissioning phase:
Encoder evaluation for own or second channel has been set incorrectly --> Correct the encoder evaluation. In operation:
Check the mechanical design and the encoder signals.
Re message value = 4:
The monitoring clock cycles in both channels should be checked for equality and if required, set the same. In combination with fault value 5 from the other monitoring channel (with MM: C30711), the monitoring clock cycle settings must be increased.
Re message value = 1 ... 999:
- if the message value is listed under cause: Check the crosswise-compared parameters to which the message value refers.
- copy the safety parameters.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- correction of the encoder evaluation. The actual values differ as a result of mechanical faults (V belts, travel to a mechanical endstop, wear and window setting that is too narrow, encoder fault, ...).
Re message value = 1000:
- investigate the signal associated with the safety-relevant input (contact problems).
Re message value = 1001:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re message value = 1005:
- check the conditions for pulse enable.

Re message value = 1011:
- for diagnostics, refer to parameter (r9571).
- upgrade the Sensor Module software.
- check the encoder parameters in the encoder systems for equality (p9515/p9315, p9519/p9319, p9523/p9323, p9524/p9324, p9525/p9325, p9529/p9329).

Re message value = 1020, 1021:
- check the communication link.
- increase the monitoring cycle clock settings (p9500, p9511).
- carry out a POWER ON (power off/on) for all components.
- replace the hardware.

Re message value = 1041:
- reduce the minimum current (p9588).

Re message value = 1042:
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.
- increase the minimum current (p9588).

Re message value = 1043:
- increase the voltage tolerance (p9588).
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.

Re message value = 5000, 5014, 5023, 5024, 5030, 5031, 5032, 5043, 5052, 5053, 5068, 5072, 5073, 5082 ...
5087, 5090, 5091, 5122 ... 5125, 5135, 5140:
- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

Re message value = 5012:
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810). It is not permissible for the PROFIsafe address to be 0 or FFFF!

Re message value = 5013, 5025:
- carry out a POWER ON (power off/on) for all components.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.

Re message value = 5026:
- check the settings of the values of the F parameters at the PROFIsafe slave (F_SIL, F_CRC_Length, F_Par_Version, F_Source_Add, F_Dest_add, F_WD_Time).

Re message value = 5065:
- check the configuration and communication at the PROFIsafe slave (cons. No. / CRC).
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.

Re message value = 5066:
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- evaluate diagnostic information in the F host.
- check PROFIsafe connection.
Re message value = 6000:
- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- increase the monitoring cycle clock settings (p9500, p9511).
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

Re message value = 6064:
- check the setting of the value in the F parameter F_Dest_Add at the PROFINet slave.
- check the setting of the PROFINet address of the Control Unit (p9610) and that of the Motor Module (p9810).

Re message value = 6065:
- check the setting of the value in the F parameter F_Dest_Add at the PROFINet slave. It is not permissible for the destination address to be either 0 or FFFF!

Re message value = 6066:
- check the setting of the value in the F parameter F_Source_Add at the PROFINet slave. It is not permissible for the source address to be either 0 or FFFF!

Re message value = 6067:
- check the setting of the value in the F parameter F_WD_Time at the PROFINet slave. It is not permissible for the watch time to be 0!

Re message value = 6068:
- check the setting of the value in the F parameter F_SI at the PROFINet slave. The SI level must correspond to SI2!

Re message value = 6069:
- check the setting of the value in the F parameter F_CRC_Length at the PROFINet slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode!

Re message value = 6070:
- check the setting of the value in the F parameter F_Par_Version at the PROFINet slave. The value for the F parameter version is 0 in the V1 mode and 1 in the V2 mode!

Re message value = 6071:
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFINet slave and, if required, update.

Re message value = 6072:
- check the settings of the values for the F parameters and, if required, correct.

The following combinations are permissible for F parameters F_CRC_Length and F_Par_Version:
- F_CRC_Length = 2-byte CRC and F_Par_Version = 0
- F_CRC_Length = 3-byte CRC and F_Par_Version = 1

Re message value = 6165:
- if the fault occurs after powering up the Control Unit or after plugging in the PROFINET cable, acknowledge the fault.
- check the configuration and communication at the PROFINet slave.
- check the setting of the value for F parameter F_WD_Time on the PROFINet slave and increase if necessary.

Re message value = 6166:
- check the configuration and communication at the PROFINet slave.
- check the setting of the value for F parameter F_WD_Time on the PROFINet slave and increase if necessary.
- evaluate diagnostic information in the F host.
- check PROFINet connection.

This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFINet
- motion monitoring functions with SINUMERIK: Via the machine control panel

See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))
Message value: \%1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: NONE

Acknowledge: IMMEDIATELY (POWER ON)

Cause:

When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.

The safety message C01711 with message value 0 is also displayed due to initiation of STOP F.

If at least one monitoring function is active, the safety message C01701 "SI Motion: STOP B initiated" is output after the parameterized timer has expired.

Message value (r9749, interpret decimal):
Number of the cross-checked data that resulted in this message.

1: SI discrepancy monitoring time inputs (p10002, p10102).
2: SI acknowledgement internal event input terminal (p10006, p10106).
3: SI STO input terminal (p10022, p10122).
4: SI SS1 input terminal (p10023, p10123).
5: SI SS2 input terminal (p10024, p10124).
6: SI SOS input terminal (p10025, p10125).
7: SI SLS input terminal (p10026, p10126).
8: SI SLS Limit(1) input terminal (p10027, p10127).
9: SI SLS Limit(2) input terminal (p10028, p10128).
10: SI Safe State signal selection (p10039, p10139).
11 SI F-DI input mode (p10040, p10140).
12: SI F-DO 0 signal sources (p10042, p10142).
13: Different states for static inactive signal sources (p10006, p10022 ... p10028).
14: SI discrepancy monitoring time outputs (p10002, p10102).
15: SI acknowledgment internal event (p10006, p10106).
16: SI test sensor feedback signal test mode selected for test stop (p10046, p10146, p10047, p10147).
17: SI delay time for test stop at DOs (p10001).
18 ... 25: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of internal readback signal, generated from the selected test stop mode.
26 ... 33: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of external readback signal, generated from the selected test stop mode.
34 ... 41: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of second internal readback signal, generated from the selected test stop mode.
42: Internal data for processing the second internal readback signal, generated from the selected test stop mode (p10047, p10147).
43: Internal data for processing the internal readback signal, generated from the selected test stop mode (p10047, p10147).
44: Internal data for processing the external readback signal, generated from the selected test stop mode (p10047, p10147).
45: Internal data for initialization state of test stop mode, dependent upon test stop parameters.
46: SI digital inputs debounce time (p10017, p10117)
47: Selection F-DI for PROFiSafe (p10050, p10150)
48: Selection F-DI for PROFiSafe (p10050, p10150)

Remedy:
- check parameterization in the parameters involved and correct if required.
- ensure equality by copying the SI data to the second channel and then carry out an acceptance test.
- check monitoring clock cycle in p9500 and p9300 for equality.

Note:
This message can be acknowledged via F-DI or PROFiSafe.

See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))
201714 <location>SI Motion CU: Safely-Limited Speed exceeded

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive has moved faster than that specified by the velocity limit value (p9531). The drive is stopped as a result of the configured stop response (p9563).
Message value (r9749, interpret decimal):
100: SLS1 exceeded.
200: SLS2 exceeded.
300: SLS3 exceeded.
400: SLS4 exceeded.
1000: Encoder limit frequency exceeded.
Remedy: - check the traversing/motion program in the control.
- check the limits for "Safely-Limited Speed (SLS) and if required, adapt (p9531).
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel
Note:
SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
See also: p9531 (SI Motion SLS (SG) limit values (Control Unit)), p9563 (SI Motion SLS (SG)-specific stop response (Control Unit))

201745 <location>SI Motion CU: Checking braking torque for the brake test

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: POWER ON (IMMEDIATELY)
Cause: The scaling of the brake torque for the brake test can be changed using parameter p2003.
An acceptance test must be carried out again for the braking test. This determines whether the braking test is still carried out with the correct braking torque.
Remedy: - carry out a POWER ON (power off/on) for all components.
- repeat the acceptance test for the safe brake test if the brake test is used.
See also: p2003 (Reference torque)

201750 <location>SI Motion CU: Hardware fault safety-relevant encoder

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The encoder that is used for the safety-relevant motion monitoring functions signals a hardware fault.
Message value (r9749, interpret decimal):
Encoder status word 1, encoder status word 2 that resulted in the message.
Remedy: - check the encoder connection.
- replace the encoder.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel.
201751 <location>SI Motion CU: Effectivity test error safety-relevant encoder

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The DRIVE-CLiQ encoder for safe motion monitoring signals an error for the effectivity tests.
Message value (r9749, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - check the encoder connection.
- replace the encoder.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel

201796 <location>SI Motion CU: Wait for communication

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The drive waits for communication to be established with SINUMERIK or TM54F to execute the safety-relevant motion monitoring functions.
Note: In this state, the pulses are safely suppressed.
Remedy: If, after a longer period of time, the message is not automatically withdrawn, the following checks have to be made as appropriate:
For communication with SINUMERIK, the following applies:
- check any other PROFIBUS messages/signals present and remove their cause.
- check that assignment of the axes on the higher-level control to the drives in the drive unit is correct.
- check enable signal of the safety-relevant motion monitoring functions for the corresponding axis on the higher-level control and if required, set it.
For communication with TM54F, the following applies:
- check any other messages/signals present for DRIVE-CLiQ communication with the TM54F and remove their cause.
- check the setting of p10010. All the drive objects controlled by the TM54F must be listed.
See also: p9601 (SI enable, functions integrated in the drive (Control Unit)), p9801 (SI enable, functions integrated in the drive (Motor Module)), p10010 (SI drive object assignment)

201798 <location>SI Motion CU: Test stop running

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The test stop is active.
Remedy: None necessary.
The message is withdrawn when the test stop is finished.
Note: SI: Safety Integrated
201799 <location>SI Motion CU: Acceptance test mode active
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The acceptance test mode is active. The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the RESET button of the higher-level control.
Remedy: None necessary.
The message is withdrawn when exiting the acceptance test mode.
Note: SI: Safety Integrated

201800 <location>DRIVE-CLiQ: Hardware/configuration error
Message value: %1
Drive object: All objects
Reaction: Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Infeed: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A DRIVE-CLiQ connection fault has occurred.
Fault value (r0949, interpret decimal):
100 ... 107: Communication via DRIVE-CLiQ socket X100 ... X107 has not been switched to cyclic operation. The cause may be an incorrect structure or a configuration that results in an impossible bus timing.
10: Loss of the DRIVE-CLiQ connection. The cause may be, for example, that the DRIVE-CLiQ cable was withdrawn from the Control Unit or as a result of a short-circuit for motors with DRIVE-CLiQ. This fault can only be acknowledged in cyclic communication.
11: Repeated faults when detecting the connection. This fault can only be acknowledged in cyclic communication.
12: A connection was detected but the node ID exchange mechanism does not function. The reason is probably that the component is defective. This fault can only be acknowledged in cyclic communication.
Remedy: Re fault value = 100 ... 107:
- ensure that the DRIVE-CLiQ components have the same firmware releases.
- avoid longer topologies for short current controller clock cycles.
Re fault value = 10:
- check the DRIVE-CLiQ cables at the Control Unit.
- remove any short-circuit for motors with DRIVE-CLiQ.
- carry out a POWER ON.
Re fault value = 11:
- check the electrical cabinet design and cable routing for EMC compliance
Re fault value = 12:
- replace the component involved.
201840 <location>SMI: Component found without motor data

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An SMI/DQI without motor data has been found (e.g. SMI installed as replacement part).
Alarm value (r2124, interpret decimal):
Component number from target topology.
Remedy:
1. Download the SMI/DQI data (motor/encoder data) from the data backup again (p4690, p4691).
2. Carry out a POWER ON (power off/on) for this component.
Note:
DQI: DRIVE-CLiQ Sensor Integrated
SMI: SINAMICS Sensor Module Integrated
See also: p4690 (SMI spare part component number), p4691 (SMI spare part save/download SMI data)

201900 <location>PROFIBUS: Configuration telegram error

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A PROFIBUS master attempts to establish a connection using an incorrect configuring telegram.
Alarm value (r2124, interpret decimal):
50: Syntax error.
51: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978.
52: Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051 for PZD IF1, and in r8850/p8851 for PZD IF2.
53: Uneven number of bytes for input or output.
54: Cyclic operation not active.
55: Invalid operating state.
Remedy:
Check the bus configuration on the master and slave sides.
Re alarm value = 51:
Check the list of the drive objects with process data exchange (p0978). With p0978[x] = 0, all of the following drive objects in the list are excluded from the process data exchange.
Re alarm value = 52:
Check the number of data words for output and input to a drive object.
201901 <location>PROFIBUS: Parameterizing telegram error

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: A PROFIBUS master attempts to establish a connection using an incorrect parameterizing telegram.
Alarm value (r2124, interpret decimal):
1: Incorrect parameterizing bits.
10: Illegal length of an optional parameterizing block.
11: Illegal ID of an optional parameterizing block.
20: Double parameterizing block for clock synchronization.
21: Incorrect parameterizing block for clock synchronization. For more information, see A01902.
22: Incorrect parameterizing bits for clock synchronization.
23: Illegal clock synchronization for PZD interface 2.
25: Incorrect parameterizing block for PROFIsafe.
30: Double parameterizing block for peer-to-peer data transfer.
31: Incorrect parameterizing block for peer-to-peer data transfer.

Remedy: Check the bus configuration:
- bus addresses
- slave configuring

201902 <location>IF1: PB/PN clock cycle synchronous operation parameterization not permissible

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: Alarm value (r2124, interpret decimal):
0: Bus cycle time Tdp < 0.5 ms.
1: Bus cycle time Tdp > 32 ms.
2: Bus cycle time Tdp is not an integer multiple of the current controller clock cycle.
3: Instant of the actual value sensing Ti > Bus cycle time Tdp or Ti = 0.
4: Instant of the actual value sensing Ti is not an integer multiple of the current controller clock cycle.
5: Instant of the setpoint acceptance To >= Bus cycle time Tdp or To = 0.
6: Instant of the setpoint acceptance To is not an integer multiple of the current controller clock cycle.
7: Master application cycle time Tmapc is not an integer multiple of the speed controller clock cycle.
8: Bus reserve bus cycle time Tdp - data exchange time Tdx less than two current controller clock cycles.
9: Instant of the setpoint acceptance not To <= data exchange time Tdx + To_min.
10: Master application cycle time Tmapc > 14 or Tmapc = 0.
11: Master application cycle time Tmapc > 14 or Tmapc = 0.
12: PLL tolerance window Tpll_w > Tpll_w_max.
13: Bus cycle time Tdp is not a multiple of all basic clock cycles p0110[x].
14: For COMM BOARD with the setting To - 1 = Tdp - Ti, the instant of the setpoint acceptance is not To <= Data exchange time Tdx + 2 * To_min.
15: This configuration is not permitted for Tdp < 1 ms.
16: Instant of the actual value sensing Ti is less than the permitted value (COMM BOARD: Ti >= 2).
17: The setting (To + Ti = Tdp + 2) is not permitted for COMM BOARD.

Remedy: - adapt the parameterizing telegram.
- adapt the current and speed controller clock cycle.
Re alarm value = 15:
- check the number of specific drive object types in the configuration.
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
201903 <location>COMM INT: Receive configuration data invalid

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The drive unit did not accept the receive configuration data.
Alarm value (r2124, interpret decimal):
0: Configuration accepted.
1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978.
2: Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051.
3: Uneven number of bytes for input or output.
4: Setting data for synchronization not accepted. For more information, see A01902.
5: Cyclic operation not active.
6: Buffer system not accepted.
7: Cyclic channel length too short for this setting.
8: Cyclic channel address not initialized.
9: 3-buffer system not permitted.
10: DRIVE-CLIQ fault.
11: CU-Link fault.
12: CX32 not in cyclic operation.
20: Incorrect parameterizing block for PROFIsafe.

Remedy: Check the receive configuration data.
Re alarm value = 1:
Check the list of the drive objects with process data exchange (p0978). With p0978[x] = 0, all of the following drive objects in the list are excluded from the process data exchange.
Re alarm value = 2:
Check the number of data words for output and input to a drive object.

201910 <location>PROFIBUS: Setpoint timeout

Message value: -
Drive object: All objects
Reaction: Servo: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: The receipt of setpoints from the PROFIBUS interface is interrupted because the bus connection is interrupted or the PROFIBUS master is switched off or was set to the STOP state.
Remedy: Restore the bus connection and set the PROFIBUS master to RUN.
Slave redundancy: For operation on a Y link, it must be ensured that "DP alarm mode = DPV1" is set in the slave parameterization.
201911

<location>IF1: PB/PN clock cycle synchronous operation clock cycle failure

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** Servo: OFF1 (OFF3)
 Infeed: OFF1
- **Acknowledge:** IMMEDIATELY
- **Cause:** The global control telegram to synchronize the clock cycles has failed - in cyclic operation - for several DP clock cycles or has violated the time grid specified in the parameterizing telegram over several consecutive DP clock cycles (refer to the bus cycle time, Tdp and Tpllw).
- **Remedy:**
 - check the PROFIBUS cables and connectors.
 - check whether communication was briefly or permanently interrupted.
 - check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
- **Note:**
 - IF1: Interface 1
 - PB: PROFIBUS
 - PN: PROFINET

201912

<location>IF1: PB/PN clock cycle synchronous operation sign-of-life failure

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** Servo: OFF1 (OFF3)
 Infeed: OFF1
- **Acknowledge:** IMMEDIATELY
- **Cause:** The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.
- **Remedy:**
 - check the physical bus configuration (terminating resistor, shielding, etc.).
 - correct the interconnection of the master sign-of-life (p2045).
 - check whether the master correctly sends the sign-of-life (e.g. create a trace with STW2.12 ... STW2.15 and trigger signal ZSW1.3).
 - check the permissible telegram failure rate (p0925).
- **Note:**
 - IF1: Interface 1
 - PB: PROFIBUS
 - PN: PROFINET

201913

<location>COMM INT: Monitoring time sign-of-life expired

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** Servo: OFF1 (NONE, OFF2, OFF3)
 Infeed: OFF1 (NONE, OFF2)
- **Acknowledge:** IMMEDIATELY
- **Cause:** The monitoring time for the sign-of-life counter has expired.
The connection between the drive and the higher-level control (SIMOTION, SINUMERIK) has been interrupted for the following reasons:
 - the control was reset.
 - the data transfer to the control was interrupted.
- **Remedy:**
 - wait until the control has re-booted.
 - restore data transfer to the control.
201914 | <location>COMM INT: Monitoring time configuration expired
---|---
Message value: | %1
Drive object: | All objects
Reaction: | Servo: OFF1 (NONE, OFF2, OFF3)
 | Infeed: OFF1 (NONE, OFF2)
Acknowledge: | IMMEDIATELY
Cause: | The monitoring time for the configuration has expired.
 | Fault value (r0949, interpret decimal):
 | 0: The transfer time of the send configuration data has been exceeded.
 | 1: The transfer time of the receive configuration data has been exceeded.
Remedy: | - acknowledge faults that are present.
 | - carry out a POWER ON (power off/on) for all components.
 | - upgrade firmware to later version.
 | - contact the Hotline.

201915	<location>IF1: PB/PN clock cycle synchronous operation sign-of-life failure drive object 1
Message value: | -
Drive object: | All objects
Reaction: | NONE
Acknowledge: | IMMEDIATELY
Cause: | Group display for problems with the sign-of-life of the master (clock-cycle synchronous operation) on the drive object 1 (Control Unit).
 | For central measurements, synchronism with the central master is lost.
Remedy: | Note:
 | IF1: Interface 1
 | PB: PROFIBUS
 | PN: PROFINET

201920	<location>PROFIBUS: Interruption cyclic connection
Message value: | -
Drive object: | All objects
Reaction: | NONE
Acknowledge: | NONE
Cause: | The cyclic connection to the PROFIBUS master is interrupted.
Remedy: | Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.
201921 <location>PROFIBUS: Receive setpoints after To</location>

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Output data of PROFIBUS master (setpoints) received at the incorrect instant in time within the PROFIBUS clock cycle.
Remedy: - check bus configuration.
 - check parameters for clock cycle synchronization (ensure To > Tdx).
Note: To: Time of setpoint acceptance
 Tdx: Data exchange time

201930 <location>ID1: PB/PN current controller clock cycle clock cycle synchronous not equal</location>

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The current controller clock cycle of all drives must be set the same for the clock cycle synchronous operation.
Alarm value (r2124, interpret decimal):
Number of the drive object with different current controller clock cycle.
Remedy: Set current controller clock cycles to identical values (p0115[0]).
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
See also: p0115

201931 <location>ID1: PB/PN speed controller clock cycle clock cycle synchronous not equal</location>

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The speed controller clock cycle of all drives must be set the same for the clock cycle synchronous operation.
Alarm value (r2124, interpret decimal):
Number of the drive object with different speed controller clock cycle.
Remedy: Set the speed controller clock cycles the same (p0115[1]).
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
See also: p0115
201932 <location>IF1: PB/PN clock cycle synchronization missing for DSC

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: There is no clock cycle synchronization and DSC is selected.
Note: DSC: Dynamic Servo Control
Remedy: Set the clock cycle synchronization when configuring the bus.

201940 <location>IF1: PB/PN clock cycle synchronism not reached

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. It was not possible to synchronize to the clock cycle specified by the master.
- The master does not send a clock synchronous global control telegram although clock synchronous operation was selected when configuring the bus.
- The master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
- At least one drive object has a pulse enable (not controlled from PROFIBUS/PROFINET either).
Remedy:
- Check the master application and bus configuration.
- Check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master.
- Check that no drive object has a pulse enable. Only enable the pulses after synchronizing the PROFIBUS/PROFINET drives.
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201941 <location>IF1: PB/PN clock cycle signal missing when establishing bus communication

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is not being received.
Remedy:
Check the master application and bus configuration.
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
201943 <location>IF1: PB/PN clock cycle signal error when establishing bus communication

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is being irregularly received.
- the master is sending an irregular global control telegram.
- the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
Remedy: - check the master application and bus configuration.
- check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master.

Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201944 <location>IF1: PB/PN sign-of-life synchronism not reached

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. Synchronization with the master sign-of-life (STW2.12 ... STW2.15) could not be completed because the sign-of-life is changing differently to how it was configured in the Tmapc time grid.
Remedy: - ensure that the master correctly increments the sign-of-life in the master application clock cycle Tmapc.
- correct the interconnection of the master sign-of-life (p2045).

Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201950 <location>IF1: PB/PN clock cycle synchronous operation synchronization unsuccessful

Message value: -
Drive object: All objects
Reaction: OFF1 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Synchronization of the internal clock cycle to the global control telegram has failed. The internal clock cycle exhibits an unexpected shift.
Remedy: Only for internal Siemens troubleshooting.

Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
SINAMICS alarms

201951
<location>CU DRIVE-CLiQ: Synchronization application clock cycle missing

- **Message value:** %1
- **Drive object:** All objects
- **Reaction:** OFF2 (NONE)
- **Acknowledge:** IMMEDIATELY (POWER ON)
- **Cause:** If DRIVE-CLiQ components with different application clock cycle are operated on a DRIVE-CLiQ port, this requires synchronization with the Control Unit. This synchronization routine was unsuccessful.
 - Fault value (r0949, interpret decimal):
 - Only for internal Siemens troubleshooting.
- **Remedy:**
 - carry out a POWER ON (power off/on) for all components.
 - upgrade the software of the DRIVE-CLiQ components.
 - upgrade the Control Unit software.

201952
<location>CU DRIVE-CLiQ: Synchronization of component not supported

- **Message value:** %1
- **Drive object:** All objects
- **Reaction:** OFF2 (NONE)
- **Acknowledge:** IMMEDIATELY (POWER ON)
- **Cause:** The existing system configuration requires that the connected DRIVE-CLiQ components support the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and the application clock cycle. However, not all DRIVE-CLiQ components have this functionality.
 - Fault value (r0949, interpret decimal):
 - Component number of the first faulty DRIVE-CLiQ component.
- **Remedy:** Upgrade the firmware of the component specified in the fault value.
 - Note: If required, also upgrade additional components in the DRIVE-CLiQ line.

201953
<location>CU DRIVE-CLiQ: Synchronization not completed

- **Message value:** %1
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
 - Alarm value (r2124, interpret decimal):
 - Only for internal Siemens troubleshooting.
- **Remedy:**
 - Carry out a POWER ON (power off/on) for all components.
 - If the error occurs after the drive sampling times were adjusted, and if a Terminal Module 31 (TM31) is being used, the sampling times (p0115, p4099) should be set as integer multiples to the drive clock cycles (p0115).
201954 <location>CU DRIVE-CLiQ: Synchronization unsuccessful

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started and was not able to be successfully completed.
Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:
1. Ensure perfect functioning of the DRIVE-CLiQ.
2. Initiate a new synchronization, e.g. as follows:
 - remove the PROFIBUS master and re-insert again.
 - restart the PROFIBUS master.
 - power down the Control Unit and power it up again.
 - press the Control Unit reset button.
 - reset the parameter and download the saved parameters (p0009 = 30, p0976 = 2).

201955 <location>CU DRIVE-CLiQ: Synchronization DO not completed

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
Remedy: Carry out a POWER ON (power off/on) for all components of the DO.

202000 <location>Function generator: Start not possible

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The function generator has already been started.
Remedy: Stop the function generator and restart again if necessary.
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4800 (Function generator control)
202005 <location>Function generator: Drive does not exist
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The drive object specified for connection does not exist.
See also: p4815 (Function generator drive number)
Remedy: Use the existing drive object with the corresponding number.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4815 (Function generator drive number)

202006 <location>Function generator: No drive specified for connection
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: No drive specified for connection in p4815.
See also: p4815 (Function generator drive number)
Remedy: At least one drive to be connected must be specified in p4815.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4815 (Function generator drive number)

202007 <location>Function generator: Drive not SERVO / VECTOR / DC_CTRL
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The drive object specified for connection is not a SERVO / VECTOR or DC_CTRL.
See also: p4815 (Function generator drive number)
Remedy: Use a SERVO / VECTOR / DC_CTRL drive object with the corresponding number.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
202008 <location>Function generator: Drive specified a multiple number of times

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The drive object specified for connection is already specified.
Alarm value (r2124, interpret decimal):
Drive object number of the drive object that is specified a multiple number of times.
Remedy: Specify a different drive object.
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202009 <location>Function generator: Illegal mode

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The set operating mode (p1300) of the drive object is not permissible when using the function generator.
Alarm value (r2124, interpret decimal):
Number of the drive object involved.
Remedy: Change the operating mode for this drive object to p1300 = 20 (encoderless speed control) or p1300 = 21 (speed con-
trol with encoder).
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202010 <location>Function generator: Speed setpoint from the drive is not zero

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The speed setpoint of a drive selected for connection is greater than the value for the standstill detection set using p1226.
Remedy: For all of the drives specified for connection, set the speed setpoints to 0.
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
202011
Function generator: The actual drive speed is not zero

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The speed actual value of a drive selected for connection is greater than the value for the standstill detection set using p1226.
Remedy: Set the relevant drives to zero speed before starting the function generator.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202015
Function generator: Drive enable signals missing

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The master control and/or enable signals are missing to connect to the specified drive. See also: p4815 (Function generator drive number)
Remedy: Fetch the master control to the specified drive object and set all enable signals.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202016
Function generator: Magnetizing running

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Magnetizing has not yet been completed on a drive object specified for connection. Alarm value (r2124, interpret decimal): Number of the drive object involved. See also: p4815 (Function generator drive number)
Remedy: Wait for magnetizing of the motor (r0056.4).
Note: The alarm is reset as follows:
- restart the function generator.
See also: r0056 (Status word, closed-loop control)
202020 <location>Function generator: Parameter cannot be changed

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: This parameter setting cannot be changed when the function generator is active (p4800 = 1). See also: p4810, p4812, p4813, p4815, p4820, p4821, p4822, p4823, p4824, p4825, p4826, p4827, p4828, p4829
Remedy: - stop the function generator before parameterizing (p4800 = 0).
- if required, start the function generator (p4800 = 1).
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4800 (Function generator control)

202025 <location>Function generator: Period too short

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The value for the period is too short. See also: p4821 (Function generator period)
Remedy: Check and adapt the value for the period.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4821 (Function generator period)

202026 <location>Function generator: Pulse width too high

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The selected pulse width is too high. The pulse width must be less than the period duration. See also: p4822 (Function generator pulse width)
Remedy: Reduce pulse width.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4821 (Function generator period), p4822 (Function generator pulse width)
202030 <location>Function generator: Physical address equals zero

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The specified physical address is zero.
See also: p4812 (Function generator physical address)
Remedy: Set a physical address with a value other than zero.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4812 (Function generator physical address)

202040 <location>Function generator: Illegal value for offset

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The value for the offset is higher than the value for the upper limit or lower than the value for the lower limit.
See also: p4826 (Function generator offset)
Remedy: Adjust the offset value accordingly.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4826 (Function generator offset), p4828 (Function generator lower limit), p4829 (Function generator upper limit)

202041 <location>Function generator: Illegal value for bandwidth

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The bandwidth referred to the time slice clock cycle of the function generator has either been set too low or too high. Depending on the time slice clock cycle, the bandwidth is defined as follows:
Bandwidth_max = 1 / (2 * time slice clock cycle)
Bandwidth_min = Bandwidth_max / 100000
Example:
Assumption: p4830 = 125 µs
---> Bandwidth_max = 1 / (2 * 125 µs) = 4000 Hz
---> Bandwidth_min = 4000 Hz / 100000 = 0.04 Hz
Note: p4823: Function generator bandwidth
p4830: Function generator time slice clock cycle
See also: p4823 (Function generator bandwidth), p4830 (Function generator time slice cycle)
Remedy: Check the value for the bandwidth and adapt accordingly.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
202047 Function generator: Time slice clock cycle invalid

- Message value: -
- Drive object: All objects
- Reaction: NONE
- Acknowledge: NONE
- Cause: The time slice clock cycle selected does not match any of the existing time slices.
 See also: p4830 (Function generator time slice cycle)
- Remedy: Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
 Note:
 - remove the cause of this alarm.
 - restart the function generator.
 See also: r7901 (Sampling times)

202050 Trace: Start not possible

- Message value: -
- Drive object: All objects
- Reaction: NONE
- Acknowledge: NONE
- Cause: The trace has already been started.
 See also: p4700 (Trace control)
- Remedy: Stop the trace and, if necessary, start again.

202055 Trace: Recording time too short

- Message value: -
- Drive object: All objects
- Reaction: NONE
- Acknowledge: NONE
- Cause: The trace duration is too short.
 The minimum is twice the value of the trace clock cycle.
 See also: p4721 (Trace recording time)
- Remedy: Check the selected recording time and, if necessary, adjust.

202056 Trace: Recording cycle too short

- Message value: -
- Drive object: All objects
- Reaction: NONE
- Acknowledge: NONE
- Cause: The selected recording cycle is shorter than the selected basic clock cycle 0 (p0110[0]).
 See also: p4720 (Trace recording cycle)
- Remedy: Increase the value for the trace cycle.
202057 <location>Trace: Time slice clock cycle invalid

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** The time slice clock cycle selected does not match any of the existing time slices.
 See also: p4723 (Time slice cycle for trace)
- **Remedy:** Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
 See also: r7901 (Sampling times)

202058 <location>Trace: Time slice clock cycle for endless trace not valid

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** The selected time slice clock cycle cannot be used for the endless trace
 See also: p4723 (Time slice cycle for trace)
- **Remedy:** Enter the clock cycle of an existing time slice with a cycle time >= 2 ms for up to 4 recording channels or >= 4 ms from 5 recording channels per trace.
 The existing time slices can be read out via p7901.
 See also: r7901 (Sampling times)

202059 <location>Trace: Time slice clock cycle for 2 x 8 recording channels not valid

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** The selected time slice clock cycle cannot be used for more than 4 recording channels.
 See also: p4723 (Time slice cycle for trace)
- **Remedy:** Enter the clock cycle of an existing time slice with a cycle time >= 4 ms or reduce the number of recording channels to 4 per trace.
 The existing time slices can be read out via p7901.
 See also: r7901 (Sampling times)

202060 <location>Trace: Signal to be traced missing

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:**
 - a signal to be traced was not specified.
 - the specified signals are not valid.
 See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
- **Remedy:**
 - specify the signal to be traced.
 - check whether the relevant signal can be traced.
202061 <location>Trace: Invalid signal</location>
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: - the specified signal does not exist.
 - the specified signal can no longer be traced (recorded).
See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
Remedy: - specify the signal to be traced.
 - check whether the relevant signal can be traced.

202062 <location>Trace: Invalid trigger signal</location>
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: - a trigger signal was not specified.
 - the specified signal does not exist.
 - the specified signal is not a fixed-point signal.
 - the specified signal cannot be used as a trigger signal for the trace.
See also: p4711 (Trace trigger signal)
Remedy: Specify a valid trigger signal.

202063 <location>Trace: Invalid data type</location>
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The specified data type to select a signal using a physical address is invalid.
See also: p4711 (Trace trigger signal), p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace record signal 3)
Remedy: Use a valid data type.

202070 <location>Trace: Parameter cannot be changed</location>
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The trace parameter settings cannot be changed when the trace is active.
See also: p4700, p4710, p4711, p4712, p4713, p4714, p4715, p4716, p4720, p4721, p4722, p4730, p4731, p4732, p4733, p4780, p4781, p4782, p4783, p4789, p4795
Remedy: - stop the trace before parameterization.
 - if required, start the trace.
202075 <location>Trace: Pretrigger time too long

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The selected pretrigger time must be shorter than the trace time.
See also: p4721 (Trace recording time), p4722 (Trace trigger delay)
Remedy: Check the pretrigger time setting and change if necessary.

202080 <location>Trace: Parameterization deleted due to unit changeover

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference parameters.
Remedy: Restart trace.

202099 <location>Trace: Insufficient Control Unit memory

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy: Reduce the memory required, e.g. as follows:
- reduce the trace time.
- increase the trace clock cycle.
- reduce the number of signals to be traced.
See also: r4708 (Trace memory space required), r4799 (Trace memory location free)

202100 <location>CU: Computing dead time current controller too short

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The value in p0118 produces a dead time of one clock cycle because it is prior to setpoint availability. A possible cause could be, for example, that the system characteristics no longer match those parameterized after a component has been replaced.
Alarm value (r2134, floating point):
The minimum value for p0118 where a dead time no longer occurs.
Remedy: - set p0118 to a value greater than or equal to the alarm value.
- set p0117 to an automatic setting.
- check the firmware releases of the components involved.
See also: p0117 (Current controller computing dead time mode), p0118 (Current controller computing dead time)
202150 <location>OA: Application cannot be loaded

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The system was not able to load an OA application.
Alarm value (r2124, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
Note:
OA: Open Architecture
See also: r4950, r4955, p4956, r4957

202151 <location>OA: Internal software error

Message value: %1
Drive object: All objects
Reaction: Servo: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal software error has occurred within an OA application.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.
Note:
OA: Open Architecture
See also: r4950, r4955, p4956, r4957

202152 <location>OA: Insufficient memory

Message value: %1
Drive object: All objects
Reaction: OFF1
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc).
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc).
- use an additional Control Unit.
Note:
OA: Open Architecture
203000 <location>NVRAM fault on action

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault occurred during execution of action p7770 = 1, 2 for the NVRAM data.
 Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = fault cause, xx = application ID
 yy = 1:
 The action p7770 = 1 is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned.
 yy = 2:
 The data length of the specified application is not the same in the NVRAM and the backup.
 yy = 3:
 The data checksum in p7774 is not correct.
 yy = 4:
 No data available to load.
 See also: p7770 (NVRAM action)
Remedy: Perform the remedy according to the results of the troubleshooting.
If necessary, start the action again.

203001 <location>NVRAM checksum incorrect

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit.
The NVRAM data affected was deleted.
Remedy: Carry out a POWER ON (power off/on) for all components.

203500 <location>TM: Initialization

Message value: %1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When initializing the Terminal Modules, the terminals of the Control Unit or the Terminal Board 30, an internal software error has occurred.
 Fault value (r0949, interpret decimal):
 The thousands digit = 1 ... 3:
 The component number (p0151) of the module involved is specified at the units, tens and hundreds digit.
Remedy: - power down the power supply for the Control Unit and power it up again.
 - check the DRIVE-CLiQ connection.
 - if required, replace the Terminal Module.
 The Terminal Module should be directly connected to a DRIVE-CLiQ socket of the Control Unit.
 If the fault occurs again, replace the Terminal Module.
203501 <location>TM: Sampling time change
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The sampling times of the inputs/outputs were changed.
This change only becomes valid after the next boot.
Remedy: Carry out a POWER ON.

203505 <location>TM: Analog input wire breakage
Message value: %1
Drive object: All objects
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The input current of the Terminal Module analog input has exceeded the threshold value parameterized in p4061[x].
This fault can only occur if p4056[x] = 3 (4 ... 20 mA with monitoring) is set.
Index x = 0: Analog input 0 (X522.1 to .3)
Index x = 1: Analog input 1 (X522.4 to .5)
Fault value (r0949, interpret decimal):
The component number (p0151) of the module involved is specified at the units, tens and hundreds digit.
The thousands digit specifies the analog input involved: 0: Analog input 0 (AI 0), 1: Analog input 1 (AI 1). The leading zero of analog input 0 (AI 0) is masked out of the fault value.
Remedy: Check the connection to the signal source for interruptions.
Check the magnitude of the injected current - it is possible that the infed signal is too low.
Please note that the input has a load resistance of 250 Ohm.
The input current measured by the Terminal Module can be read out from r4052[x].

203506 <location>24 V power supply missing
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_I_COMBI, CU_I_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: The 24 V power supply for the digital outputs (X124) is missing.
Remedy: Check the terminals for the power supply voltage (X124, L1+, M).

203550 <location>TM: Speed setpoint filter natural frequency > Shannon frequency
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The natural filter frequency of the speed setpoint filter (p1417) is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0]
See also: p1417 (Speed setpoint filter 1 denominator natural frequency)
Remedy: Reduce the natural frequency of the speed setpoint filter (PT2 low pass) (p1417).
203590 <location>TM: Module not ready

Message value: %1
Drive object: All objects
Reaction: Servo: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Infeed: OFF2 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The Terminal Module involved does not send a ready signal and no valid cyclic data.
Fault value (r0949, interpret decimal):
Drive object number of the Terminal Module involved.
Remedy:
- check the 24 V power supply.
- check the DRIVE-CLiQ connection.
- check whether the sampling time of the drive object involved is not equal to zero (p4099[0]).

205000 <location>Power unit: Overtemperature heat sink AC inverter

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290. If the temperature of the heat sink increases by an additional 5 K, then fault F30004 is initiated.
Remedy:
Check the following:
- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the cooling failed?

205001 <location>Power unit: Chip overtemperature

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. The response is set using p0290. If the chip temperature increases by an additional 15 K, then fault F30025 is triggered.
Remedy:
Check the following:
- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the cooling failed?
- pulse frequency too high?
See also: r0037, p0290 (Power unit overload response)
205002 <location>Power unit: Air intake overtemperature

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is 42 °C (hysteresis 2 K). The response is set using p0290.
If the air intake temperature increases by an additional 13 K, then fault F30035 is output.
Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- has the fan failed? Check the direction of rotation.

205003 <location>Power unit: Internal overtemperature

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The alarm threshold for internal overtemperature has been reached.
If the temperature inside the power unit increases by an additional 5 K, then fault F30036 is triggered.
Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- has the fan failed? Check the direction of rotation.

205004 <location>Power unit: Rectifier overtemperature

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290.
If the temperature of the rectifier increases by an additional 5 K, then fault F30037 is triggered.
Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the fan failed? Check the direction of rotation.
- has a phase of the line supply failed?
- is an arm of the supply (incoming) rectifier defective?
SINAMICS alarms

205005 <location>Cooling system: Cooling medium flow rate too low
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Cooling system: Alarm - flow rate has fallen below the alarm value
Remedy:

205006 <location>Power unit: Overtemperature thermal model
Message value: -
Drive object: AFE_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize power units only). Depending on p0290, an appropriate overload response is initiated.

See also: r0037
Remedy: None necessary.
The alarm disappears automatically once the limit value is undershot.
Note:
If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024.
See also: p0290 (Power unit overload response)

205007 <location>Power unit: Overtemperature thermal model (chassis PU)
Message value: -
Drive object: AFE_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The temperature difference between the chip and heat sink has exceeded the permissible limit value (r0293) (chassis power units only). Depending on p0290, an appropriate overload response is initiated.

See also: r0037, r0293 (Power unit alarm threshold model temperature)
Remedy: None necessary.
The alarm disappears automatically once the limit value is undershot.
See also: p0290 (Power unit overload response)

205050 <location>Parallel circuit: Pulse enable in spite of pulse inhibit
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: A power unit signals that the pulses are enabled although the pulses are inhibited.
Fault value (r0949, interpret decimal):
Number of the power unit involved.
Remedy: The power unit is defective and must be replaced.
205051 <location>Parallel circuit: Power unit pulse enable missing
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: For one or several power units, the pulses were not able to be enabled.
Fault value (r0949, interpret decimal):
Number of the power unit involved.
Remedy: - acknowledge power unit faults that are still present.
- inhibit the pulses of the power unit involved (p7001).

205052 <location>Parallel circuit: Illegal current dissymmetry
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The deviation of the individual currents of the power units exceeds the alarm threshold specified in p7010.
Alarm value (r2124, interpret decimal):
1: Phase U.
2: Phase V.
3: Phase W.
Remedy: - inhibit the pulses of the faulted power unit (p7001).
- check the connecting cables. Loose contacts can cause current spikes.
- the motor reactors are non-symmetrical or faulty and must be replaced.
- the CTs must be calibrated or replaced.

205053 <location>Parallel circuit: Inadmissible DC link voltage dissymmetry
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The deviation of the DC link voltage measured values exceeds the alarm threshold specified in p7011.
Remedy: - inhibit the pulses of the faulted power unit (p7001).
- check the DC link connecting cables.
- the DC link voltage measurement is incorrect and must be calibrated or renewed.

205054 <location>Parallel circuit: Power unit de-activated
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: For the drive object involved, fewer power unit components connected in parallel are active than exist in the target topology. Operation is only possible at reduced power (power derating).
Remedy: Re-activate the de-activated power unit components.
See also: p0125 (Activate/de-activate power unit components), p0895 (Activate/de-activate power unit components), p0897 (Parking axis selection)
205055 <location>Power circuit: Power units with different code numbers

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The code numbers of the power units do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different power unit code number was detected.
Remedy: For parallel circuit configurations, only power units with identical power unit data may be used.

205056 <location>Parallel circuit: Power unit EPROM versions differ

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The EEPROM versions of the power units do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.
Remedy: For parallel circuit configurations, only power units with identical EEPROM versions may be used.

205057 <location>Parallel circuit: Power unit firmware versions differ

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The firmware versions of the power units connected in parallel do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.
Remedy: For parallel circuit configurations, only power units with identical firmware versions may be used.

205058 <location>Parallel circuit: VSM EEPROM versions differ

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The EEPROM versions of the Voltage Sensing Modules (VSM) do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.
Remedy: For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical EEPROM versions may be used.
205059 <location>Parallel circuit: VSM firmware versions differ
Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The firmware versions of the Voltage Sensing Module (VSM) do not match.
Fault value (r0949, interpret decimal): Parameter in which the first different version number was detected.
Remedy: For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical firmware versions may be used.

205060 <location>Parallel circuit: Power unit firmware version does not match
Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Firmware from version V02.30.01.00 is required when connecting the power units in parallel.
Remedy: Update the firmware of the power units (at least V02.30.01.00).

205061 <location>Infeed, number of VSM
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The number of active Voltage Sensing Modules (VSM) for the drive object infeed with chassis power units is not correct.
For A_Infeed, each active power unit must be assigned an active VSM also for a parallel circuit configuration.
For S_Infeed, the active drive object, must be assigned at least one active VSM.
Fault value (r0949, interpret decimal): Number of VSMs that are currently assigned to the drive object.
Remedy: Adapts the number of active Voltage Sensing Modules (VSM).
206000 <location>Infeed: Precharging monitoring time expired

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause:
After the line contactor closes the power unit does not signal the READY state within the monitoring time (p0857).
1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
6) The pre-charging resistors are overheated as the DC link capacitance is too high.
7) The pre-charging resistors are overheated because there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
9) The DC link has either a ground fault or a short-circuit.
10) The pre-charging circuit is possibly defective (only for chassis units).
See also: p0210 (Drive unit line supply voltage), p0857 (Power unit monitoring time)
Remedy:
In general:
- check the line supply voltage at the connecting terminals.
- check the line supply voltage setting (p0210).
- check the monitoring time and, if required, increase (p0857).
- where relevant, observe additional power unit messages/signals (e.g. F30027).
- the following applies to booksize units: Wait (approx. 8 min.) until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
Re 5):
- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).
Re 6):
- check the total capacitance of the DC link and reduce in accordance with the maximum permissible DC-link capacitance if necessary (refer to the appropriate Equipment Manual)
Re 7):
- interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link
Re 8):
- check the connections of the external line contactor. The line contactor must be open during DC-link fast discharge.
Re 9):
- check the DC link for ground faults or short circuits.

206010 <location>Infeed: Power unit EP 24 V missing in operation

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
In operation, withdraw the pulse enable at terminal EP at the Line Module (X21.3, X21.4).
Remedy:
- do not open the Line Side Switch in operation - only when the pulses are inhibited.
- check the wiring of the DP input (X21.3, X21.4) at the Line Module to exclude any poor contacts.
SINAMICS alarms

206050

Infeed: Smart Mode not supported

<table>
<thead>
<tr>
<th>Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message value</td>
<td>-</td>
</tr>
<tr>
<td>Drive object</td>
<td>AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828</td>
</tr>
<tr>
<td>Reaction</td>
<td>OFF2</td>
</tr>
<tr>
<td>Acknowledge</td>
<td>IMMEDIATELY (POWER ON)</td>
</tr>
<tr>
<td>Cause</td>
<td>The power unit does not support the Smart Mode.</td>
</tr>
</tbody>
</table>
| Remedy | - set the suitable sampling time 250 µs = p0115[0] = 400 µs (e.g. by setting p0112 and p0115 to the factory setting).
- upgrade the power unit software and/or hardware for the Smart Mode. The availability of the Smart Mode function is displayed in r0192.
- for A_INF the following applies: De-activate the Smart Mode with p3400.0 = 0 and activate the voltage control with p3400.3 = 1. For booksize power units, it must be noted that for a supply voltage p0210 > 415 V only the Smart Mode is possible in the pre-setting. If DC link voltages above 660 V are permissible in the application, then voltage-controlled operation can be activated with p0280, p0210, p3400 and p3510. The information regarding p0210 should be carefully noted.
See also: r0192 (Power unit firmware properties) |

206052

Infeed: Filter temperature evaluation not supported

<table>
<thead>
<tr>
<th>Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message value</td>
<td>-</td>
</tr>
<tr>
<td>Drive object</td>
<td>AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828</td>
</tr>
<tr>
<td>Reaction</td>
<td>OFF2 (NONE)</td>
</tr>
<tr>
<td>Acknowledge</td>
<td>IMMEDIATELY</td>
</tr>
<tr>
<td>Cause</td>
<td>The power unit does not support filter temperature evaluation. This feature (r0192.11) is required when an Active Interface Module is used as a line filter (p0220 = 41 ... 45).</td>
</tr>
<tr>
<td>Remedy</td>
<td>Upgrade the firmware for the power unit to a later version. See also: r0192 (Power unit firmware properties), p0220 (Infeed line filter type)</td>
</tr>
</tbody>
</table>

206100

Infeed: Shutdown due to line supply undervoltage condition

<table>
<thead>
<tr>
<th>Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message value</td>
<td>%1</td>
</tr>
<tr>
<td>Drive object</td>
<td>AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828</td>
</tr>
<tr>
<td>Reaction</td>
<td>OFF2 (OFF1)</td>
</tr>
<tr>
<td>Acknowledge</td>
<td>IMMEDIATELY (POWER ON)</td>
</tr>
<tr>
<td>Cause</td>
<td>The filtered (steady-state) value of the line supply voltage is less than the fault threshold (p0283). Fault condition: Vrms < p0283 * p0210 Fault value (r0949, floating point): Actual steady-state line supply voltage. See also: p0283 (Line supply undervoltage, shutdown (trip) threshold)</td>
</tr>
<tr>
<td>Remedy</td>
<td>- check the line supply. - check the line supply voltage (p0210). - check the fault threshold (p0283).</td>
</tr>
</tbody>
</table>
206105
<location>Infeed: Line supply undervoltage

<table>
<thead>
<tr>
<th>Message value:</th>
<th>%1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
</tbody>
</table>
| Cause: | The filtered (steady-state) value of line supply voltage is lower than the alarm threshold (p0282).
Alarm condition: \(V_{\text{rms}} < p0282 \times p0210 \)
Alarm value (r2124, floating point):
Actual steady-state line supply voltage.
See also: p0282 (Line supply undervoltage, alarm threshold) |
| Remedy: | - check the line supply.
- check the line supply voltage (p0210).
- check the alarm threshold (p0282). |

206200
<location>Infeed: Failure of one or several line phases

<table>
<thead>
<tr>
<th>Message value:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>OFF2 (OFF1)</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>IMMEDIATELY (POWER ON)</td>
</tr>
</tbody>
</table>
| Cause: | Failure overvoltage in one or several line supply phases.
The fault can be output in two operating states:
1. During the power-on phase of the infeed unit.
The measured line supply angle deviates from the regular characteristic for a 3-phase system - the PLL cannot be synchronized.
The fault occurs immediately after power-up if, when operating with a VSM, the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.
2. While the infeed is operational.
After a voltage dip has been detected or an overvoltage (note A06205) in one or several line phases a fault occurred within 100 ms (also refer to other relevant messages). Generally, before fault message F06200 is output, Alarm A06205 occurs at least once, whose warning value can provide information regarding the cause of the line supply fault.
Probable causes of the fault:
- voltage dip on the line side or phase failure or overvoltage lasting longer than 10 ms.
- overload condition on the load side with peak current.
- line reactor missing. |
| Remedy: | - check the line supply and fuses.
- check the connection and size (rating) of the line reactor.
- check and correct the phase assignment at the VSM (X521 or X522) and at the power unit.
- check the load.
- if failed in operation, carefully note the previous alarm messages A6205 with alarm values.
See also: p3463 (Infeed, line angle change, phase failure detection) |
206205 <location>Infeed: Voltage dip in at least one line supply phase

Message value: %1
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause:
Voltage dip or overvoltage in one or several line supply phases has been detected in operation.
The pulses are then inhibited for a time of at least 8 ms. The operating signal of the infeed unit in r0863.0 remains and
the pulse inhibit due to the phase failure is displayed in r3405.2.
Alarm value (r2124, bitwise coded cause of the alarm):
Bit 0: Line angle deviation (limit value p3463) due to a line supply fault
Bit 2: Active current deviation
Bit 3: Line frequency deviation (limit values: 115 % * p0284, 85 % * p0285)
Bit 4: Line overvoltage (limit value 120 % * p0281 * p0210)
Bit 5: Line undervoltage (limit value 20 % * p0210)
Bit 7: Peak current fault
Bit 8: Smart Mode without VSM (p3400.5 = 0): Line angle deviation
Bit 9: Smart Mode: DC link voltage dip
Bit 10: Smart Mode: Line currents not symmetrical
Remedy:
Generally, the following applies when an alarm message is output:
- check the line supply and fuses.
- check the line supply quality and system fault level.
- check the load.
Dependent on the alarm value in r2124, the following applies:
Bit 0 = 1: Line fault occurred or poor/incorrect controller setting. For poor line quality or frequent line supply changeover
operations, when required, limit value p3463 can be increased until the alarm value no longer occurs.
Bit 2 = 1: Line fault occurred or poor/incorrect controller setting. - check the controller setting and load.
Bit 3 = 1: Line fault occurred. For poor line quality or frequent line changeover operations, when required, limit values
p0284 and p0285 can be increased until the alarm value no longer occurs.
Bit 4 = 1: Line interrupted or line overvoltage has occurred.
Bit 5 = 1: Line interrupted or line undervoltage has occurred.
Bit 7 = 1: Peak current trip due to line fault or overload. Check the load.
Bit 8 = 1: Line fault occurred.
Bit 9 = 1: Line undervoltage or overload. Check the load.
Bit 10 = 1: Line supply interrupted in at least one line phase. Check the fuses.
See also: r3405 (Infeed status word), p3463 (Infeed, line angle change, phase failure detection)

206207 <location>Infeed: Line currents not symmetrical

Message value: -
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
Asymmetry of the currents in the line phase too high.
The most probable cause is failure of a line phase.
Remedy:
- check the line supply and fuses.
- check the connection and size (rating) of the line reactor.
- check the previous alarm A06205 and the alarm value.
SINAMICS alarms

206210 <location>Infeed: Summation current too high
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The smoothed total of the phase currents (i1 + i2 + i3) is greater than 4 % of the maximum power unit current (r0209).
Possible causes:
- the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter!
- the zero point calibration of the current measurement was not carried out (p3491, A06602).
- defective current measurement in the power unit.
Fault value (r0949, floating point):
- check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove.
- increase the monitoring time of the current offset measurement (p3491).
- replace the power unit if necessary.
Remedy:

206211 <location>Infeed: Summation current impermissibly high
Message value: %1
Drive object: AFE_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The smoothed sum of the phase currents (i1 + i2 + i3) is impermissibly high. The summation current has exceeded the assigned ground fault monitoring threshold (p0287).
Possible causes:
- there is a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter!
- the zero point calibration of the current measurement was not carried out (p3491, A06602).
- defective current measurement in the power unit.
Fault value (r0949, floating point):
- check the line supply for ground faults and remove any that are present.
- check the set ground fault monitoring threshold (p0287).
- replace the power unit if necessary.
Remedy:

206215 <location>Infeed: Summation current too high
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The smoothed total of the phase currents (i1 + i2 + i3) is greater than 3 % of the maximum power unit current (r0209).
Possible causes:
- the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, line reactor or line filter!
- the zero point calibration of the current measurement was not carried out (p3491, A06602).
- defective current measurement in the power unit.
Alarm value (r2124, floating point):
- check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove.
- increase the monitoring time of the current offset measurement (p3491).
- replace the power unit if necessary.
Remedy:
<table>
<thead>
<tr>
<th>206250</th>
<th>Infeed: Defective capacitor(s) in at least one phase of line filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message value:</td>
<td>%1</td>
</tr>
<tr>
<td>Drive object:</td>
<td>AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
<tr>
<td>Cause:</td>
<td>A change in the line filter capacitance was detected in at least one line phase. The voltages and phase currents of the line filter, measured using a Voltage Sensing Module (VSM), indicate a deviation of the filter capacitances from the value parameterized in p0221. A change or a defect of the line filter capacitors results in a shift of the resonant frequencies and can result in severe damage to the drive system. Alarm value (r2124, floating point): The calculated present capacitance in µF (rounded-off to an integer number). The 1st decimal point specifies the number of the phase (1, 2, 3) where the capacitance deviates from the specified value.</td>
</tr>
<tr>
<td>Remedy:</td>
<td>- check the parameterized value of the filter capacitance (p0221). - check the correct wiring of the Voltage Sensing Module (VSM): Differential voltages u12 and u23 must be present at the 100 V/690 V inputs of the VSM; the phase currents of the line filter must be connected to the 10 V inputs through a current - voltage converter. - check the alarm limits for the permissible filter capacitance deviation (p3676). - check the scaling of the line supply voltage measurement using the VSM (p3660). - check the scaling of the filter current measurement using the VSM (p3670). - check the line filter capacitors and if required, replace the line filter. See also: p0221 (Infeed filter capacitance), p3660 (VSM input line supply voltage, voltage scaler), p3670 (VSM 10 V input CT gain), p3676 (VSM line filter capacitance alarm threshold).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>206260</th>
<th>Infeed: Temperature in the line filter too high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message value:</td>
<td>-</td>
</tr>
<tr>
<td>Drive object:</td>
<td>AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
<tr>
<td>Cause:</td>
<td>The temperature monitoring in the line filter has responded. If the temperature remains too high during the complete monitoring time, this results in fault F06261. Note: The temperature monitoring is only available for an Active Interface Module.</td>
</tr>
<tr>
<td>Remedy:</td>
<td>- check whether the line filter type set in p0220[0] matches the line filter that is actually connected. Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0]. - temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the line filter temperature switch is correctly and reliably connected to input X21 of the infeed. - reduce the ambient temperature of the line filter. - reduce the load on the infeed and the filter module. - check the magnitude of the line supply voltage. - the internal fan of the filter module is defective. Replace the fan if necessary. - defective temperature switch of the filter module. Replace the filter module if necessary.</td>
</tr>
</tbody>
</table>
206261 <location>Infeed: Temperature in the line filter permanently too high

Message value: -
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: After the temperature monitoring responded, the temperature in the line filter was permanently exceeded.
Note: The temperature monitoring is only available for an Active Interface Module.
Remedy: - check whether the line filter type set in p0220[0] matches the line filter that is actually connected. Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0].
- temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the line filter temperature switch is correctly and reliably connected to input X21 of the infeed.
- reduce the load on the infeed and the filter module.
- check the magnitude of the line supply voltage.
- the internal fan of the filter module is defective. Replace the fan if necessary.
- defective temperature switch of the filter module. Replace the filter module if necessary.

206262 <location>Infeed: Temperature switch in the line filter open when powering up

Message value: -
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: When powering up the infeed, the temperature in the line filter is too high. Powering up is prevented.
Remedy: - check whether the line filter type set in p0220[0] matches the line filter that is actually connected. Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0].
- temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the line filter temperature switch is correctly and reliably connected to input X21 of the infeed.
- the filter temperature is too high. Allow the system to cool down.
- the internal fan of the filter module is defective. Replace the fan if necessary.
- defective temperature switch of the filter module. Replace the filter module if necessary.

206300 <location>Infeed: Line voltage too high at power on

Message value: %1
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The RMS line supply voltage Vrms was so high when powering up that controlled operation is not possible without exceeding the permissible maximum voltage in the DC link (p0280).
 Fault condition: \(V_{\text{rms}} \times 1.5 > p0280 \).
 Fault value (r0949, floating point):
 Lowest possible controlled DC link voltage for the line supply voltage presently connected.
 See also: p0280 (DC link voltage maximum steady-state)
Remedy: - check the line supply voltage
- check the maximum DC link voltage and if required, increase (p0280).
- check the line supply voltage and compare with the actual line supply voltage (p0210).
- check whether the power unit is dimensioned for the line supply voltage actually being used.
See also: p0210 (Drive unit line supply voltage), p0280 (DC link voltage maximum steady-state)
SINAMICS alarms

206301 <location> Infeed: Line supply overvoltage

Message value: Line supply voltage: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The filtered (steady-state) value of the rms line supply voltage Vrms is higher than the alarm threshold (p0281).
Alarm condition: Vrms > p0281 * p0210.
Alarm value (r2124, floating point):
Actual steady-state line supply voltage.
See also: p0281 (Line supply overvoltage, alarm threshold)
Remedy:
- check the line supply.
- check the line supply voltage (p0210).
- check the alarm threshold (p0281).
See also: p0210 (Drive unit line supply voltage), p0281 (Line supply overvoltage, alarm threshold)

206310 <location> Supply voltage (p0210) incorrectly parameterized

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: For AC/AC drive units, the measured DC voltage lies outside the tolerance range after pre-charging has been completed. The following applies for the tolerance range: 1.16 * p0210 < r0070 < 1.6 * p0210. The fault can only be acknowledged when the drive is powered down.
See also: p0210 (Drive unit line supply voltage)
Remedy:
- check the parameterized supply voltage and if required change (p0210).
- check the line supply voltage.
See also: p0210 (Drive unit line supply voltage)

206310 <location> Infeed: Supply voltage (p0210) incorrectly parameterized

Message value: Line supply voltage: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: After pre-charging was completed, the line supply voltage Vrms was calculated using the measured DC link voltage. This voltage Vrms is not within the tolerance range of the supply voltage. The following applies for the tolerance range: 85 % * p0210 < Vrms < 110 % * p0210.
Alarm value (r2124, floating point):
Line supply voltage Vrms present.
See also: p0210 (Drive unit line supply voltage)
Remedy:
- check the parameterized supply voltage and if required change (p0210).
- check the line supply voltage.
See also: p0210 (Drive unit line supply voltage)
206311
Infeed: Supply voltage (p0210) incorrect

Message value: Line supply voltage: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The line voltage nominal value indicated in p0210 is outside the nominal voltage range of the power unit.
After pre-charging was completed, the current line supply voltage Vrms was calculated using the measured DC link voltage. This voltage Vrms does not lie within the extended tolerance range of the supply voltage set in p0210.
The following applies for the extended tolerance range:
75 % * p0210 < Vrms < 120 % * p0210
Alarm value (r2124, floating point): Line supply voltage Vrms present.
Remedy:
- check the parameterized supply voltage and if required change (p0210).
- check the line supply voltage.
See also: p0210 (Drive unit line supply voltage)

206320
Master/slave: 4-channel multiplexer control not valid

Message value: %1
Drive object: AFE_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Values 0, 1, 2, and 3 are valid to control the 4-channel multiplexer via connector input 3572.
In this case, an invalid value was identified. The control remains effective with the previous value.
Fault value (r0949, interpret decimal): Invalid value to control the multiplexer.
Remedy:
- check the interconnection to control the multiplexer (CI: p3572).
- check the signal source signal value of the BICO interconnection.
See also: p3572 (Master/slave active current setpoint, multiplexer selection)

206321
Master/slave: 6-channel multiplexer control not valid

Message value: %1
Drive object: AFE_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Values 0, 1, 2, 3, 4 and 5 are valid to control the 6-channel multiplexer via CI: 3577. In this case, an invalid value was identified. The control remains effective with the previous value.
Fault value (r0949, interpret decimal): Invalid value to control the multiplexer.
Remedy:
- check the interconnection to control the multiplexer (CI: p3577).
- check the signal source signal value of the BICO interconnection.
See also: p3577 (Master/slave current distribution factor, multiplexer selection)
206350 <location>Infeed: Measured line frequency too high

Message value: Line frequency: %1
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The actual line frequency f_{line} is higher than the parameterized alarm threshold ($f_{\text{line}} > p0211 \times p0284$).
The alarm can be output in two operating states:
1. During the power-on phase of the infeed unit.
 Consequence: Synchronization of the infeed to the line supply is interrupted and is restarted.
2. While the infeed is operational.
 Consequence: The infeed remains in the operating (run) state and alarm A6350 is output. This signifies a critical operational fault.
Alarm value ($r2124$, floating point):
 Actual line frequency determined.
See also: p0284 (Line supply frequency exceeded, alarm threshold)
Remedy: - check the parameterized line frequency and if required change (p0211).
 - check the alarm threshold (p0284).
 - check the line supply.
 - check the line supply quality.
See also: p0211 (Rated line freq), p0284 (Line supply frequency exceeded, alarm threshold)

206351 <location>Infeed: Measured line frequency too low

Message value: Line frequency: %1
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The actual line frequency f_{line} is lower than the parameterized alarm threshold ($f_{\text{line}} < p0211 \times p0285$).
The alarm can be output in two operating states:
1. During the power-on phase of the infeed unit.
 Consequence: Synchronization of the infeed to the line supply is interrupted and is restarted.
2. While the infeed is operational.
 Consequence: The infeed remains in the operating (run) state and alarm A06351 is output. This signifies a critical operational fault.
Alarm value ($r2124$, floating point):
 Actual line frequency determined.
See also: p0285 (Line supply frequency undershot, alarm threshold)
Remedy: - check the parameterized line frequency and if required change (p0211).
 - check the alarm threshold (p0285).
 - check the line supply.
 - check the line supply quality.
See also: p0211 (Rated line freq), p0285 (Line supply frequency undershot, alarm threshold)
206400 <location>Infeed: Line supply data identification selected/active

Message value: -
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The line supply data identification is selected and active.
The line inductance and the DC link capacitance are measured at the next pulse enable.
See also: p3410 (Infeed identification method)
Remedy: No remedial action required.

206401 <location>Infeed: Transformer data identification/test mode selected/active

Message value: %1
Drive object: AFE_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: A transformer data identification type or a transformer test mode has been selected or is active.
Alarm value (r2124, interpret decimal):
11: Identification type 1 selected for transformer data (automatic determination of the magnetizing inductance).
12: Identification type 2 selected for transformer data (automatic determination of transformer phase shift and gain correction).
13: Identification type 3 selected for transformer data (determination of total leakage inductance of transformer during line data identification).
101: Test mode 1 selected.
102: Test mode 2 selected.
See also: p5480 (Transformer magnetization mode)
Remedy: No remedial action required.
The alarm automatically disappears after identification has stopped.

206500 <location>Infeed: Line synchronization not possible

Message value: -
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The line synchronization is not possible within the monitoring time.
The infeed was re-synchronized to the line supply because it was interrupted due to a line frequency that was determined to be either too low or too high.
After 20 attempts, synchronization - and therefore also the power-on operation - were interrupted.
Remedy:
- check the parameterized line frequency and if required change (p0211).
- check the setting of the threshold values (p0284, p0285).
- check the line supply.
- when a Voltage Sensing Module (VSM) is used: check the line supply to the terminals (X521, X522), as well as the activation of the VSM (p0145, p3400).
In the case of chassis power units, the availability of correct VSM voltage measured values is imperative for line synchronization.
- check the line supply quality.
See also: p0211 (Rated line freq), p0284 (Line supply frequency exceeded, alarm threshold), p0285 (Line supply frequency undershot, alarm threshold)
206502 Infeed: Unable to achieve line synchronization in transformer magnetization

Message value: -
Drive object: AFE_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Line synchronization is not possible within the monitoring time (p5481[2]).
- check the setting of the threshold value (p5485)
- check the setting of the maximum time (p5481[2])
- check the line supply quality.
See also: p5481 (Transformer magnetization ramp-up time/bounce time/timeout), p5485 (Transf magnetization voltage threshold)

206601 Infeed: Current offset measurement interrupted

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Defective current measurement or a DC current is present during the offset measurement.
Alarm value (r2124, interpret decimal):
1: Excessively high phase current has occurred during the current offset calibration.
2: The measured current offset is greater than the 3% of the maximum permissible converter current (e.g. due to a ground fault in the DC link).
Remedy:
Re alarm value = 1:
- possible counter-measure if there is no line contactor: Power up an adequately long time before OFF1 = 1.
Re alarm value = 2:
- defective current measurement or a DC current is present during the offset measurement.
- check the DC link for a ground fault.

206602 Infeed: Current offset measurement not possible

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: After an OFF1 = 1 no valid current offset measurement was able to be made within the monitoring time (p3491) before closing the line contactor. The current offset is set to 0.
See also: p3491 (Infeed i-offset measurement monitoring time)
Remedy:
- check the DC link for a ground fault. A ground fault can destroy parts and components!
- Check the monitoring time setting and if required increase (p3491). At least 100 ms is required for a valid measurement (p3491 > 100 ms).
Notice:
If there is no valid measurement, then under certain circumstances the quality of the DC link control will be reduced.
See also: p3491 (Infeed i-offset measurement monitoring time)
206700 <location>Infeed: Switch line contactor for load condition

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE (OFF2)
Acknowledge: IMMEDIATELY
Cause: For an ON command, the infeed line contactor should be switched under load.
Remedy: - do not load the DC link if the infeed has not issued an operating signal (r0863.0 = 1).
- after the infeed has been powered down, all power units connected to the DC link should be powered down. To real-
ize this, the operating signal of the infeed (r0863.0) must be suitably interconnected.

206800 <location>Infeed: Maximum steady-state DC link voltage reached

Message value: -
Drive object: AFE_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The DC link voltage setpoint has reached the maximum steady-state voltage parameterized in p0280. The DC link voltage is increased by the modulation depth reserve controller for the following reasons:
- modulation depth reserve is too low (p3480).
- line supply voltage is too high.
- supply voltage (p0210) parameterized to be too low.
- excessively high setpoint for the reactive line current.
Remedy: - check the line supply voltage setting (p0210).
- check the line supply for an overvoltage condition.
- reduce the modulation depth reserve (p3480).
- reduce the reactive current setpoint.
See also: p0210 (Drive unit line supply voltage), p0280 (DC link voltage maximum steady-state), p3480 (Infeed mod-
ulation depth limit)

206810 <location>Infeed: DC link voltage alarm threshold

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: In operation, the DC link voltage has dropped to below the alarm threshold. The alarm threshold is obtained from the
sum of p0279 and r0296. Possible causes include:
- line supply voltage dip or another line supply fault.
- overload of the infeed.
- for ALM: Incorrect controller parameterization.
See also: p0279 (DC link voltage offset alarm threshold), r0296 (DC link voltage undervoltage threshold)
Remedy: - check the line voltage and line supply quality.
- reduce the power drawn, avoid step-like load changes
- for ALM: Adapt the controller parameterization, e.g. using an automatic line supply identification (p3410 = 4, 5).
206849 <location>Infeed: Short-circuit operation active
Message value: -
Drive object: AFE_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The current hysteresis controller sequence control has detected a short circuit (r5452, r5522). The absolute line supply voltage (r5444[0], r5512[0]) is below the short-circuit voltage limit (p5459[2], p5529[2]), and the current limitation is active (r5402.3=1, r5502.3=1).
Remedy:
- check the parameterization of the current hysteresis controller.
- check the line supply cables for a short-circuit.

206850 <location>Infeed: Short-circuit prevailing for too long
Message value: -
Drive object: AFE_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The maximum permissible duration (p5458[1], p5528[1]) for the short-circuit has been exceeded. The short-circuit could not be cleared within this time.
Remedy:
- check the minimum time parameter setting (p5458[1], p5528[1]).
- check the line supply and fuses.

206855 <location>Infeed: Line filter monitor responded
Message value: %1
Drive object: AFE_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A threshold value parameterized in p3678 has been exceeded or undershot in the line filter. Fault value (r0949, interpret decimal):
0: Voltage threshold value undershot (p3678[0]).
1: Current threshold value exceeded (p3678[1]).
See also: p3678 (Filter monitoring threshold values), p3679 (Transformer filter monitoring times)
Remedy:
- check the parameterization of the threshold values for filter monitoring (p3678).
- check filter.
Re fault value = 0:
- check parameterization of the smoothing time for voltage monitoring (3679[0]).
Re fault value = 1:
- check parameterization of the minimum time for voltage monitoring (3679[1]).
206860 <location>Infeed: Function module activation not possible
Message value: -
Drive object: AFE_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Function module activation is not possible. The power unit used does not have a "gating unit with current limitation control" (p0192.19).
The affected function module is identified in fault code r0949 (the value of r0949 corresponds to the bit of parameter p0108).
 r0949=7 "Fault ride-through" function module
 r0949=12 "Line droop control" function module
See also: r0192 (Power unit firmware properties)
Remedy: - check whether the power unit used has a "gating unit with current limitation control" (p0192.19).
 - if the power unit used does not have a "gating unit with current limitation control" replace it with a power unit which
does have a "gating unit with current limitation control".

206900 <location>Braking Module: Fault (1 -> 0)
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The Braking Module signals a fault (1 -> 0) via X21.4 ("booksize" format) or terminal X21.5 ("chassis" format).
This signal is interconnected via binector input Bi: p3866[0...7].
See also: p3866 (Braking Module fault)
Remedy: - reduce the number of braking operations.
 - check binector input Bi: p3866[0...7] and the wiring from terminal X21.4 ("booksize" format) or terminal X21.5 ("chassis" format).

206901 <location>Braking Module: Pre-alarm I2t shutdown
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The Braking Module signals "Pre-alarm I2t shutdown" via terminal X21.3.
This signal is interconnected via binector input p3865[0...7].
Note: The pre-alarm I2t shutdown is only possible for "booksize" formats. This function is not supported for "chassis" formats.
Remedy: - reduce the number of braking operations.
 - check binector input Bi: p3865[0...7] and the wiring from terminal X21.3 of the particular Braking Module.
206904 Braking Module internal is inhibited

Message value: %1
Drive object: BIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The internal Braking Module was inhibited via the binector input BI: p3680 = 1 signal.
In the inhibited state, energy cannot be dissipated using the braking resistor.
See also: p3680 (Braking Module internal inhibit)
Remedy: Release the internal Braking Module (BI: p3680 = 0 signal).

206905 Braking Module internal I2t shutdown alarm

Message value: %1
Drive object: BIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The internal Braking Module outputs an alarm due to the high I2t value.
80% of the maximum switch-on duration of the braking resistor has been reached.
Note:
This message is also displayed via BO: p3685.
See also: r3685 (Digital Braking Module: Pre-alarm I2t shutdown)
Remedy: Reduce the number of braking operations.

206906 Braking Module internal fault

Message value: %1
Drive object: BIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The internal Braking Module outputs a fault due to overcurrent or an excessively high I2t value and is therefore inhibited.
Note:
This message is also displayed via BO: p3686.
Fault value (r0949, interpret bitwise binary):
Bit 0 = 1: I2t exceeded
Bit 1 = 1: overcurrent
See also: r3686 (Digital Braking Module Fault)
Remedy: Reduce the number of braking operations.
206907 <location>Braking Module internal overtemperature

- **Message value:** -
- **Drive object:** BIC_SINUMERIK_828
- **Reaction:** OFF2 (NONE, OFF1)
- **Acknowledge:** IMMEDIATELY
- **Cause:**
 The temperature sensor connected to the braking resistor signals an overtemperature. The Braking Module is still active. If the overtemperature persists for more than 60 s, fault F06908 is output, and the braking module is switched off.

 See also: r3687 (Digital Braking Module pre-alarm overtemperature)

- **Remedy:**
 - reduce the temperature at the sensor.
 - check the temperature sensor connection.

206908 <location>Braking Module internal shutdown due to overtemperature

- **Message value:** -
- **Drive object:** BIC_SINUMERIK_828
- **Reaction:** OFF2 (OFF1)
- **Acknowledge:** IMMEDIATELY
- **Cause:** Braking module shut down due to overtemperature at the temperature sensor of the braking resistor. The overtemperature is detected by the sensor for longer than 60 s.

 See also: r3688 (Digital Braking Module fault overtemperature)

- **Remedy:**
 - reduce the temperature at the sensor.
 - check the temperature sensor connection.

206909 <location>Braking Module internal Vce fault

- **Message value:** %1
- **Drive object:** BIC_SINUMERIK_828
- **Reaction:** OFF2
- **Acknowledge:** IMMEDIATELY
- **Cause:** Trip due to Vce fault. Collector emitter voltage dip (Vce)

 See also: r3689 (Digital Braking Module Vce fault)

- **Remedy:**
 - Power ON
 - replace the unit.
207011 <location>Drive: Motor overtemperature

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: KTY:
The motor temperature has exceeded the fault threshold (p0605) or the timer (p0606) after the alarm threshold was exceeded (p0604) has expired.
PTC, bimetallic NC contact:
The response threshold of 1650 ohms was exceeded (in SME p4600..p4603 or in TM120 p4610..p4613 = 10 or 30), or the timer (p0606) has expired after 1650 ohms was exceeded (in SME p4600..p4603 or in TM120 p4610..p4613 = 12 or 32).
Possible causes:
- motor is overloaded.
- motor ambient temperature too high.
- PTC / bimetallic NC contact: Wire breakage or sensor not connected.
Fault value (r0949, interpret decimal):
200: The I2t motor model (p0612.0 = 1, p0611 > 0) signals an overtemperature.
- if SME/TM120 is selected (p0601 = 10, 11),
this is the number of the temperature channel leading to the message.
See also: p0604 (Motor temperature alarm threshold), p0605 (Motor temperature fault threshold), p0606 (Motor temperature timer)
Remedy:
- reduce the motor load.
- check the ambient temperature and the motor ventilation.
- check the wiring and the connection of the PTC or bimetallic NC contact.
See also: p0604 (Motor temperature alarm threshold), p0605 (Motor temperature fault threshold), p0606 (Motor temperature timer)

207012 <location>Drive: I2t motor model overtemperature

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The thermal I2t motor model (for synchronous motors) identified that the temperature alarm threshold was exceeded.
See also: r0034 (Motor utilization), p0605 (Motor temperature fault threshold), p0611 (I2t motor model thermal time constant)
Remedy:
- check the motor load and if required, reduce.
- check the motor ambient temperature.
- check the thermal time constant p0611.
- check the overtemperature fault threshold p0605 (= alarm threshold for the I2t motor model, see p0612)
207015
<location>Drive: Motor temperature sensor alarm

Message value:
%1

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
NONE

Acknowledge:
NONE

Cause:
An error was detected when evaluating the temperature sensor set in p0600 and p0601. With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.

Possible causes:
- wire breakage or sensor not connected (KTY: R > 1630 Ohm).
- measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).

Alarm value (r2124, interpret decimal):
- if SME/TM120 is selected (p0601 = 10, 11),
 this is the number of the temperature channel leading to the message.

Remedy:
- make sure that the sensor is connected correctly.
- check the parameterization (p0600, p0601).

See also: r0035, p0600, p0601, p0607

207016
<location>Drive: Motor temperature sensor fault

Message value:
%1

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
OFF1 (NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge:
IMMEDIATELY

Cause:
An error was detected when evaluating the temperature sensor set in p0600 and p0601. Possible causes:
- wire breakage or sensor not connected (KTY: R > 1630 Ohm).
- measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).

Note:
If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.

Fault value (r0949, interpret decimal):
- if SME/TM120 is selected (p0601 = 10, 11),
 this is the number of the temperature channel leading to the message.

See also: p0607 (Temperature sensor fault timer)

Remedy:
- make sure that the sensor is connected correctly.
- check the parameterization (p0600, p0601).
- induction motors: De-activate temperature sensor fault (p0607 = 0).

See also: r0035, p0600, p0601, p0607
207080 <location>Drive: Incorrect control parameter

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread = 0).
Fault value (r0949, interpret decimal):
The fault value includes the parameter number involved.
The following parameter numbers only occur as fault values for vector drives:
p0310, for synchronous motors: p0341, p0344, p0350, p0357
The following parameter numbers do not occur as fault values for synchronous motors:
p0354, p0358, p0360
See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0400, p0404, p0408, p0640, p1082, p1300
Remedy:
Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit > 0).
See also: p0311, p0341, p0344, p0350, p0356, p0358, p0360, p0400, p0404, p0408, p0640, p1082

207082 <location>Macro: Execution not possible

Message value: Fault cause: %1, supplementary information: %2, preliminary parameter number: %3
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The macro cannot be executed.
Fault value (r0949, interpret hexadecimal):
ccccbbaa hex:
cccc = preliminary parameter number, bb = supplementary information, aa = fault cause
Fault causes for the trigger parameter itself:
-19: Called file is not valid for the trigger parameter.
-20: Called file is not valid for parameter 15.
-21: Called file is not valid for parameter 700.
-22: Called file is not valid for parameter 1000.
-23: Called file is not valid for parameter 1500.
-24: Data type of a TAG is incorrect (e.g.: Index, number or bit is not U16).
Fault causes for the parameters to be set:
-25: Error level has an undefined value.
-26: Mode has an undefined value.
-27: A value was entered as string in the tag value that is not "DEFAULT".
-31: Entered drive object type unknown.
-32: A device was not able to be found for the determined drive object number.
-34: A trigger parameter was recursively called.
-35: It is not permissible to write to the parameter via macro.
-36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
-37: Source parameter for a BICO interconnection was not able to be determined.
-38: An index was set for a non-indexed (or CDS-dependent) parameter.
-39: No index was set for an indexed parameter.
-41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
-42: A value not equal to 0 or 1 was set for a BitOperation.
-43: Reading the parameter to be changed by the BitOperation was unsuccessful.
-51: Factory setting for DEVICE may only be executed on the DEVICE.
-61: The setting of a value was unsuccessful.
Remedy:
- check the parameter involved.
See also: p0015, p0700 (Macro Binector Input (BI)), p1000 (Macro Connector Inputs (CI) for speed setpoints), p1500 (Macro Connector Inputs (CI) for torque setpoints)
207083 <location>Macro: ACX file not found

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The ACX file (macro) to be executed was not able to be found in the appropriate directory.
Fault value (r0949, interpret decimal):
Parameter number with which the execution was started.
See also: p0015, p0700 (Macro Biector Input (BI)), p1000 (Macro Connector Inputs (CI) for speed setpoints), p1500 (Macro Connector Inputs (CI) for torque setpoints)
Remedy: - check whether the file is saved in the appropriate directory on the memory card.
Example: If p0015 is set to 1501, then the selected ACX file must be located in the following directory:
... /PMACROS/DEVICE/P15/PM001501.ACX

207084 <location>Macro: Condition for WaitUntil not fulfilled

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
Fault value (r0949, interpret decimal):
Parameter number for which the condition was set.
Remedy: Check and correct the conditions for the WaitUntil loop.

207085 <location>Drive: Open-loop/closed-loop control parameters changed

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Open-loop/closed-loop control parameters have had to be changed because:
1) They have exceeded dynamic limits because of other parameters, or
2) They cannot be used due to the hardware detected not having certain properties.
Fault value (r0949, interpret decimal):
The fault value includes the modified parameter number.
340: The motor and control parameters were automatically calculated (p0340 = 1), because the vector control was subsequently activated as configuration (r0108.2).
See also: p0640 (Current limit), p1082 (Maximum speed), p1300 (Open-loop/closed-loop control operating mode)
Remedy: It is not necessary to change the parameters as they have already been correctly limited.
207086 <location>Units changeover: Parameter limit violation due to reference value change</location>

Message value: Parameter: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit representation (cause: e.g. the steady-state minimum/maximum limit or that defined in the application was violated). The values of the parameters were set to the corresponding violated minimum/maximum limit or to the factory setting.

Fault value (r0949, parameter):
Diagnostics parameter r9450 to display the parameters that were not able to be re-calculated.

Remedy: Check the adapted parameter value and if required correct.

See also: r9450 (Reference value change parameter with unsuccessful calculation)

207087 <location>Drive: Encoderless operation not possible for the selected pulse frequency</location>

Message value: Parameter: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: Encoderless operation is not possible for the selected pulse frequency (p1800). Encoderless operation is activated under the following conditions:
- the changeover speed for encoderless operation (p1404) is less than the maximum speed (p0322).
- a control type with encoderless operation has been selected (p1300).
- encoder faults of the motor encoder result in a fault response with encoderless operation (p0491).

See also: p0491 (Motor encoder fault response ENCODER), p1300 (Open-loop/closed-loop control operating mode), p1404 (Encoderless operation changeover speed)

Remedy: Increase the pulse frequency (p1800).

Note: In encoderless operation, the pulse frequency must be at least as high as half the current controller clock cycle (1/p0115[0]).

207088 <location>Units changeover: Parameter limit violation due to units changeover</location>

Message value: Parameter: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: A changeover of units was initiated.
Possible causes for the violation of a parameter limit are:
- when rounding off a parameter corresponding to its decimal places, the steady-state minimum or maximum limit was violated.
- inaccuracies for the data type "FloatingPoint".
In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down.

Fault value (r0949, interpret decimal):
Diagnostics parameter r9451 to display all parameters whose value had to be adapted.
See also: p0100 (IEC/NEMA mot stds), p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units)

Remedy: Check the adapted parameter values and if required correct.

See also: r9451 (Units changeover adapted parameters)
207089
Changing over units: Function module activation is blocked because the units have been changed over

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** An attempt was made to activate a function module. This is not permissible if the units have already been changed over.

 See also: p0100 (IEC/NEMA mot stds), p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units)
- **Remedy:** Restore units that have been changed over to the factory setting.

207090
Drive: Upper torque limit less than the lower torque limit

- **Message value:** -
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** OFF2 (NONE, OFF1, OFF3)
- **Acknowledge:** IMMEDIATELY
- **Cause:** The upper torque limit is lower than the lower torque limit.
- **Remedy:** P1 must be >= P2 if parameter P1 is connected to p1522 and parameter P2 to p1523.

207100
Drive: Sampling times cannot be reset

- **Message value:** Parameter: %1
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
- **Reaction:** NONE
- **Acknowledge:** IMMEDIATELY
- **Cause:** When resetting drive parameter (p0976) sampling times cannot be reset using p0111, p0112, p0115.

 Fault value (r0949, interpret decimal):

 Parameter whose setting prevents the sampling times being reset.

 See also: r0110 (Basic sampling times)
- **Remedy:**
 - continue to work with the set sampling times.
 - before resetting the drive parameters, set the basic clock cycle p0110[0] to the original value.

 See also: r0110 (Basic sampling times)

207110
Drive: Sampling times and basic clock cycle do not match

- **Message value:** Parameter: %1
- **Drive object:** All objects
- **Reaction:** NONE
- **Acknowledge:** IMMEDIATELY
- **Cause:** The parameterized sampling times do not match the basic clock cycle.

 Fault value (r0949, interpret decimal):

 The fault value specifies the parameter involved.

 See also: r0110, r0111, p0115
- **Remedy:** Enter the current controller sampling times so that they are identical to the basic clock cycle, e.g. by selecting p0112.

 Note which basic clock cycle is selected in p0111.

 The sampling times in p0115 can only be changed manually in the sampling times pre-setting "Expert" (p0112).

 See also: r0110, r0111, p0112, p0115
207200 <location>Drive: Master control ON/OFF1 command present</location>
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The ON/OFF1 command is not 0, either via binector input p0840 (current CDS) or in control word bit 0 via the master control.
Remedy: Both the signal at binector input p0840 (current CDS) and bit 0 via the master control must be 0.

207220 <location>Drive: Master control by PLC missing</location>
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: Servo: OFF1 (NONE, OFF2, OFF3, STOP1, STOP2)
Infeed: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause: The "master control by PLC" signal was missing in operation.
- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
- the higher-level control has withdrawn the "master control by PLC" signal.
- data transfer via the fieldbus (master/drive) was interrupted.
Remedy: - check the interconnection of the binector input for "master control by PLC" (p0854).
- check the "master control by PLC" signal and, if required, switch in.
- check the data transfer via the fieldbus (master/drive).
Note: If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.

207300 <location>Drive: Line contactor feedback signal missing</location>
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: - the line contactor was not able to be closed within the time in p0861.
- the line contactor was not able to be opened within the time in p0861.
- the line contactor dropped out during operation
- the line contactor has closed although the drive converter is powered down.
Remedy: - check the setting of p0860.
- check the feedback circuit from the line contactor.
- increase the monitoring time in p0861.
See also: p0860 (Line cont. fdbk sig), p0861 (Line contactor monitoring time)
207320 <location>Drive: Automatic restart interrupted
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause:
- The specified number of restart attempts (p1211) has been completely used up because within the monitoring time (p1213) the faults were not able to be acknowledged. The number of restart attempts (p1211) is decremented at each new start attempt.
- there is no active ON command.
- the monitoring time for the power unit has expired (p0857).
- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the drive unit is not automatically powered up again.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- increase the number of restart attempts (p1211). The actual number of starting attempts is displayed in r1214.
- increase the delay time in p1212 and/or the monitoring time in p1213.
- issue an ON command (p0840).
- either increase or disable the monitoring time of the power unit (p0857).

207321 <location>Drive: Automatic restart active
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause:
The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate.
Remedy:
- the automatic restart (AR) should, if required, be inhibited (p1210 = 0).
- an automatic restart can be directly interrupted by withdrawing the power-on command (Bi: p0840).

207329 <location>Drive: kT estimator, kT(iq) characteristic or voltage compensation does not function
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
A function of the function module "extended torque control" (r0108.1) was activated - however the (complete) function is not available.
Fault value (r0949, interpret decimal):
1 ... 3: The kT estimator is active (p1780.3 = 1) without a functioning compensation of the voltage emulation error in the drive converter. This means that the accuracy is severely restricted.
1: The drive converter voltage emulation error "final value" is 0 (p1952).
2: The drive converter voltage emulation error "current offset" is 0 (p1953).
3: The compensation of the voltage emulation error is disabled (p1780.8 = 0).
4: The kT estimator (p1780.3 = 1), the kT(iq) characteristic (p1780.9 = 1) or the compensation of the voltage emulation error (p1780.8 = 1) was activated without activating the function module "extended torque control" (when the function module is activated, the following must apply: r0108.1 = 1).
Remedy:
Re fault value = 1, 2:
- carry out an identification of the voltage emulation error in the drive converter (p1909.14 = 1, p1910 = 1).
- set the parameter to compensate the voltage emulation error in the drive converter (p1952, p1953).

Re fault value = 3:
- enable the compensation of the voltage emulation error in the drive converter (p1780.8 = 1).

Re fault value = 4:
- activate the function module "extended torque control" (r0108.1 = 1) or de-activate the corresponding functions (p1780.3 = 0, p1780.8 = 0, p1780.9 = 0).

207350

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The measuring probe is connected to a bi-directional digital input/output and the terminal is set as output.
Alarm value (r2124, interpret decimal):
8: DI/DO 8 (X122.9/X132.1)
9: DI/DO 9 (X122.10/X132.2)
10: DI/DO 10 (X122.12/X132.3)
11: DI/DO 11 (X122.13/X132.4)
12: DI/DO 12 (X132.9)
13: DI/DO 13 (X132.10)
14: DI/DO 14 (X132.12)
15: DI/DO 15 (X132.13)

To the terminal designation:
The first designation is valid for CU320, the second for CU305.

Remedy:
- set the terminal as input (p0728).
- de-select the measuring probe (p0488, p0489, p0580).

207400

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE

Cause: The DC link voltage controller has been activated because of the upper switch-in threshold (r1244).
A system deviation can occur between the setpoint and actual speed.
See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration)

Remedy: None necessary.
This alarm automatically disappears after the upper threshold has been distinctly undershot.
Otherwise, apply the following measures:
- use a Braking Module or regenerative feedback unit.
- increase the ramp-down times (p1121, p1135).
- shut down the Vdc_max controller (p1240 = 0).
207402

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The DC link voltage controller has been activated due to the lower switch-in threshold (r1248).
A system deviation can occur between the setpoint and actual speed.
A possible cause can be e.g. that the line supply has failed.
See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1248 (DC link voltage threshold lower)
Remedy: None necessary.
This alarm automatically disappears after the lower threshold has been distinctly exceeded.
Otherwise, apply the following measures:
- check the line supply and infeed.
- increase the ramp-up times (p1120).
- shut down the Vdc_min controller (p1240 = 0).

207403

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The DC link voltage monitoring is active (p1240 = 5, 6) and the lower DC link voltage threshold (p1248) was reached in the "Operation" state.
Remedy:
- check the line supply voltage.
- check the infeed module
- reduce the lower DC link threshold (p1248).
- switch out (disable) the DC link voltage monitoring (p1240 = 0).

207404

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The DC link voltage monitoring is active (p1240 = 4, 6) and the upper DC link voltage threshold (p1244) was reached in the "Operation" state.
Remedy:
- check the line supply voltage.
- check the infeed module or the Braking Module.
- increase the upper DC link voltage threshold (p1244).
- switch out (disable) the DC link voltage monitoring (p1240 = 0).
207410 Drive: Current controller output limited

Message value:
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following:
- motor not connected or motor contactor open.
- no DC link voltage present.
- Motor Module defective.
Remedy:
- connect the motor or check the motor contactor.
- check the DC link voltage (r0070).
- check the Motor Module.

207411 Drive: Flux controller output limited

Message value:
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: The specified flux setpoint cannot be reached although 90% of the maximum current has been specified.
- incorrect motor data.
- motor data and motor configuration (star-delta) do not match.
- the current limit has been set too low for the motor.
- induction motor (encoderless, open-loop controlled) in I2t limiting.
- the Motor Module is too small.
Remedy:
- correct the motor data.
- check the motor configuration.
- correct the current limits (p0640, p0323).
- reduce the induction motor load.
- if required, use a larger Motor Module.
207412 <location>Drive: Commutation angle incorrect (motor model)

Message value: -
Drive object: SERVO_COMBI, SERVO_SIMUNERIK828
Reaction: ENCODER (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause: An incorrect commutation angle was detected that can result in a positive coupling in the speed controller. Possible causes:
- the motor encoder is incorrectly adjusted with respect to the magnet position.
- the motor encoder is damaged.
- the angular commutation offset is incorrectly set (p0431).
- data to calculate the motor model has been incorrectly set (p0356 (motor-stator leakage inductance) and/or p0350 (motor-stator resistance) and/or p0352 (cable resistance).
- the changeover speed for the motor model is too low (p1752). The monitoring function only becomes effective above the changeover speed.
- pole position identification might have calculated an incorrect value when activated (p1982 = 1).
- the motor encoder speed signal is faulted.
- the control loop is instable due to incorrect parameterization.
Fault value (r0949, interpret decimal):
SERVO:
0: The comparison of the pole position angle from the encoder and the motor model resulted in an excessively high value (> 80 ° electrical).
1: -
VECTOR:
0: The comparison of the pole position angle from the encoder and the motor model resulted in an excessively high value (> 45 ° electrical).
1: The change in the speed signal from the motor encoder has changed by > p0492 within a current controller clock cycle.
Remedy:
- if the encoder mounting was changed - re-adjust the encoder.
- replace the defective motor encoder.
- correctly set the angular commutation offset (p0431).
- correctly set the motor stator resistance, cable resistance and motor-stator leakage inductance (p0350, p0352, p0356).
- increase the changeover speed for the motor model (p1752). The monitoring is completely de-activated for p1752 > p1082 (maximum speed).
- with pole position identification activated (p1982 = 1) check the procedure for pole position identification (p1980) and force a new pole position identification procedure by means of de-selection followed by selection (p1982 = 0 -> 1).
Note:
For High Dynamic Motors (1FK7xxx-7xxx), for applications with a higher current, if necessary, the monitoring should be disabled.

207413 <location>Drive: Commutation angle incorrect (pole position identification)

Message value: -
Drive object: SERVO_COMBI, SERVO_SIMUNERIK828
Reaction: ENCODER (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause: An incorrect commutation angle was detected that can result in a positive coupling in the speed controller.
A difference of > 45° electrical to the encoder angle was determined.
- within the pole position identification routine (p1982 = 2):
A difference of > 6° electrical to the encoder angle was determined.
- for VECTOR, within the encoder adjustment (p1990 = 2):
Remedy:
- correctly set the angular commutation offset (p0431).
- re-adjust the motor encoder after the encoder has been replaced.
- replace the defective motor encoder.
- check the pole position identification routine. If the pole position identification routine is not suitable for this motor type, then disable the plausibility check (p1982 = 0).
207414 <location>Drive: Encoder serial number changed

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause: The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 = 401) or third-party motors (p0300 = 2).
Cause 1: The encoder was replaced.
Cause 2: A third-party, build-in or linear motor was re-commissioned.
Cause 3: The motor with integrated and adjusted encoder was replaced.
Cause 4: The firmware was updated to a version that checks the encoder serial number.
Remedy: Re causes 1, 2:
Carry out an automatic adjustment using the pole position identification routine. Acknowledge the fault. Initiate the pole position identification routine with p1990 = 1. Then check that the pole position identification routine is correctly executed.
SERVO:
If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated.
or
Set the adjustment via p0431. In this case, the new serial number is automatically accepted.
or
Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.
Re causes 3, 4:
Accept the new serial number with p0440 = 1.

207415 <location>Drive: Angular commutation offset transfer running

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: NONE
Cause: The angular commutation offset was automatically determined using p1990 = 1.
This fault causes the pulses to be suppressed - this is necessary to transfer the angular commutation offset to p0431.
See also: p1990 (Encoder adjustment, determine angular commutation offset)
Remedy: The fault can be acknowledged without any additional measures.
207420 <location>Drive: Current setpoint filter natural frequency > Shannon frequency
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: One of the filter natural frequencies is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0]
Fault value (r0949, interpret hexadecimal):
Bit 0: Filter 1 (p1658, p1660)
Bit 1: Filter 2 (p1663, p1665)
Bit 2: Filter 3 (p1668, p1670)
Bit 3: Filter 4 (p1673, p1675)
Bit 8 ... 15: Data set number (starting from zero).
Remedy:
- reduce the numerator or denominator natural frequency of the current setpoint filter involved.
- reduce the current controller sampling time (p0115[0]).
- switch out the filter involved (p1656).

207421 <location>Drive: Speed filter natural frequency > Shannon frequency
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: One of the filter natural frequencies is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1]
Fault value (r0949, interpret hexadecimal):
Bit 0: Setpoint filter 1 (p1417, p1419)
Bit 1: Setpoint filter 2 (p1423, p1425)
Bit 4: Actual value filter (p1447, p1449)
Bit 8 ... 15: Data set number (starting from zero)
Remedy:
- reduce the numerator or denominator natural frequency of the speed filter involved.
- reduce the speed controller sampling time (p0115[1]).
- switch off the filter involved (p1413, p1414).

207422 <location>Drive: Reference model natural frequency > Shannon frequency
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The natural filter frequency of the PT2 element for the reference model (p1433) is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1]
Remedy:
- reduce the natural frequency of PT2 element for reference model (p1433).
- reduce the speed controller sampling time (p0115[1]).
207429 <location>Drive: DSC without encoder not possible

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The function DSC (Dynamic Servo Control) was activated although there is no encoder.
See also: p1191 (DSC position controller gain KPC)
Remedy: If there is no encoder and connector input p1191 (DSC position controller gain) is interconnected, then connector input p1191 must have a 0 signal.

207430 <location>Drive: Changeover to open-loop torque controlled operation not possible

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: For encoderless operation, the converter cannot change over to closed-loop torque-controlled operation (BI: p1501).
Remedy: Do not attempt to cover over to closed-loop torque-controlled operation.

207431 <location>Drive: Changeover to encoderless operation not possible

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: For closed-loop torque control, the converter cannot change over to encoderless operation (p1404).
Remedy: Do not attempt to change over to encoderless operation.

207432 <location>Drive: Synchronous motor without overvoltage protection

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: Under voltage conditions, a synchronous motor can generate an overvoltage condition that can destroy the drive system.
Fault value (r0949, interpret hexadecimal): Associated Drive Data Set (DDS).
Remedy: Overvoltage protection can be implemented in the following ways:
- limit the maximum speed (p1082) without any additional protection.
The maximum speed without protection is calculated as follows:
 Rotary motors: p1082 [rpm] <= 11.695 * p0297/p0316 [Nm/A]
 Linear motors: p1082 [m/min] <= 73.484 * p0297/p0316 [N/A]
- use a voltage protection module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801).
 When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be suppressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM.
 When using a VPM, p0643 must be set to 1.
- activating the internal voltage protection (IVP) with p1231 = 3.
See also: p0643 (Overvoltage protection for synchronous motors), p1231 (Armature short-circuit / DC brake configuration)
207433 Drive: Closed-loop control with encoder is not possible as the encoder has not been unparked

Message value:
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The changeover to closed-loop control with encoder is not possible as the encoder has not been unparked.
Remedy: - check whether the encoder firmware supports the "parking" function (r0481.6 = 1).
 - upgrade the firmware.
Note: For long-stator motors (p3870.0 = 1), the following applies:
The encoder must have completed the unparking procedure (r3875.0 = 1) before a changeover can be made to closed-loop control with encoder. The encoder is unparked with a 0/1 edge at BI: p3876 and remains unparked until a 0 signal is again present.

207434 Drive: It is not possible to change the direction of rotation with the pulses enabled

Message value:
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A drive data set was selected - with the pulses enabled - which has a different parameterized direction of rotation (p1821).
It is only possible to change the motor direction of rotation using p1821 when the pulses are inhibited.
Remedy: - change over the drive data set with the pulses inhibited.
 - ensure that the changeover to a drive data set does not result in the motor direction of rotation being changed (i.e. for these drive data sets, the same value must be in p1821).
See also: p1821 (Dir of rot)

207500 Drive: Power unit data set PDS not configured

Message value: Drive data set: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Only for controlled line supply infeed/regenerative feedback units:
The power unit data set was not configured - this means that a data set number was not entered into the drive data set.
Fault value (r0949, interpret decimal):
Drive data set number of p0185.
Remedy: The index of the power unit data set associated with the drive data set should be entered into p0185.
207501 Drive: Motor Data Set MDS not configured

Message value: Drive data set: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Only for power units:
The motor data set was not configured - this means that a data set number was not entered into the associated drive data set.
Fault value (r0949, interpret decimal):
The fault value includes the drive data set number of p0186.
Remedy: The index of the motor data set associated with the drive data set should be entered into p0186.
See also: p0186 (Motor Data Sets (MDS) number)

207502 Drive: Encoder Data Set EDS not configured

Message value: Drive data set: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Only for power units:
The encoder data set was not configured - this means that a data set number was not entered into the associated drive data set.
Fault value (r0949, interpret decimal):
The fault value includes the drive data set number of p0187, p0188 and p0189.
The fault value is increased by 100 * encoder number (e.g. for p0189: Fault value 3xx with xx = data set number).
Remedy: The index of the encoder data set associated with the drive data set should be entered into p0187 (1st encoder), p0188 (2nd encoder) and p0189 (3rd encoder).

207504 Drive: Motor data set is not assigned to a drive data set

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: A motor data set is not assigned to a drive object.
All of the existing motor data sets in the drive data sets must be assigned using the MDS number (p0186[0...n]). There must be at least as many drive data sets as motor data sets.
Alarm value (r2124, interpret decimal):
The number of motor data sets that has not been assigned.
Remedy: In the drive data sets, assign the non-assigned motor data set using the MDS number (p0186[0...n]).
- If required, do the superfluous motor data sets.
- If required, set up new drive data sets and assign to the corresponding motor data sets.
See also: p0186 (Motor Data Sets (MDS) number)
207509 <location>Drive: Component number missing

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A Drive Data Set (DDS) is assigned to a Motor Data Set (MDS) or Encoder Data Set (EDS) that does not have a component number.
Alarm value (r2124, interpret decimal):
nnnmmxxxyy
nn: Number of the MDS/EDS.
m: Parameter number of the missing component number.
xx: Number of the DDS that is assigned to the MDS/EDS.
yy: Parameter number that references the MDS/EDS.
Example:
p0131[5] = 0: There is no component number set in MDS 5.
Alarm value = 051307186
Remedy: In the drive data sets, no longer assign MDS/EDS using p0186, p0187, p0188, p0189 or set a valid component number.
See also: p0131, p0141, p0142, p0186, p0187, p0189, p0189

207510 <location>Drive: Identical encoder in the drive data set

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: More than one encoder with identical component number is assigned to a single drive data set. In one drive data set, it is not permissible that identical encoders are operated together.
Fault value (r0949, interpret decimal):
1000 * first identical encoder + 100 * second identical encoder + drive data set.
Example:
Fault value = 1203 means:
In drive data set 3, the first (p0187[3]) and second encoder (p0188[3]) are identical.
Remedy: Assign the drive data set to different encoders.
See also: p0141, p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number)

207511 <location>Drive: Encoder used a multiple number of times

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Each encoder may only be assigned to one drive and within a drive must - in each drive data set - either always be encoder 1, always encoder 2 or always encoder 3. This unique assignment has been violated.
Fault value (r0949, interpret decimal):
The two parameters in coded form, that refer to the same component number.
First parameter:
Index: First and second decimal place (99 for EDS, not assigned DDS)
Parameter number: Third decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS not assigned DDS)
Drive number: Fourth and fifth decimal place

Second parameter:
Index: Sixth and seventh decimal place (99 for EDS, not assigned DDS)
Parameter number: Eighth decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS, not assigned DDS)
Drive number: Ninth and tenth decimal place

See also: p0141

Remedy:
Correct the double use of a component number using the two parameters coded in the fault value.

207512 <location>Drive: Encoder data set changeover cannot be parameterized

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Using p0141, a changeover of the encoder data set is prepared that is illegal. In this firmware release, an encoder data set changeover is only permitted for the components in the actual topology.
Alarm value (r2124, interpret decimal): Incorrect EDS data set number.
See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number)
Remedy: Every encoder data set must be assigned its own dedicated DRIVE-CLiQ socket. The component numbers of the encoder interfaces (p0141) must have different values within a drive object.
The following must apply: p0141[0] not equal to p0141[1] not equal to … not equal to p0141[n]

207514 <location>Drive: Data structure does not correspond to the interface module

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The interface mode "SIMODRIVE 611 universal" was set (p2038 = 1) and the data structure does not correspond to this mode.
For the data structure, the following rule must be complied with.
Within the group of 8 drive data sets, the assignment to the motor data set must be set the same:
See also: p0180 (Number of Drive Data Sets (DDS)), p0186 (Motor Data Sets (MDS) number), p2038 (PROFIdrive STW/ZSW interface mode)
Remedy: - structure the data according to the rules of the "SIMODRIVE 611 universal" interface mode.
- check the interface mode (p2038).
207515
<location>Drive: Power unit and motor incorrectly connected

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A power unit (via PDS) was assigned to a motor (via MDS) in a drive data set that is not connected in the target topology.
Alarm value (r2124, interpret decimal): Number of the incorrectly parameterized drive data set.
Remedy:
- assign the drive data set to a combination of motor and power unit permitted by the target topology.
- adapt the target topology.
See also: p0121 (Power unit component number), p0131 (Motor component number), p0186 (Motor Data Sets (MDS) number)

207516
<location>Drive: Re-commission the data set

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The assignment between the drive data set and motor data set (p0186) or between the drive data set and the encoder data set was modified (p0187). This is the reason that the drive data set must re-commissioned.
Fault value (r0949, interpret decimal): Drive data set to be re-commissioned.
Remedy: Commission the drive data set specified in the fault value (r0949).

207517
<location>Drive: Encoder data set changeover incorrectly parameterized

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: An MDS cannot have different motor encoders in two different DDS.
The following parameterization therefore results results in an error:
p0186[0] = 0, p0187[0] = 0
p0186[0] = 0, p0187[0] = 1
Alarm value (r2124, interpret decimal): The lower 16 bits indicate the first DDS and the upper 16 bits indicate the second DDS.
Remedy: If you wish to operate a motor once with one motor encoder and then another time with the other motor encoder, then you must set up two different MDSs, in which the motor data are the same.
Example:
p0186[0] = 0, p0187[0] = 0
p0186[0] = 1, p0187[0] = 1
207518 Drive: Motor data set changeover incorrectly parameterized

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The system has identified that two motor data sets were incorrectly parameterized. Parameter r0313 (calculated from p0314, p0310, p0311), r0315 and p1982 may only have different values if the motor data sets are assigned different motors. p0827 is used to assign the motors/contacts. It is not possible to toggle between motor data sets.
Alarm value (r2124, interpret hexadecimal):
xxxx: First DDS with assigned MDS, yyyy: Second DDS with assigned MDS
Remedy: Correct the parameterization of the motor data sets.

207519 Drive: Motor changeover incorrectly parameterized

Message value: %1
Drive object: SERVO COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: With the setting p0833.0 = 1, a motor changeover via the application is selected. This is the reason that p0827 must have different values in the appropriate motor data set.
Alarm value (r2124, interpret hexadecimal):
xxxx: First MDS, yyyy: Second MDS
Remedy: - parameterize the appropriate motor data sets differently (p0827).
- select the setting p0833.0 = 0 (motor changeover via the drive).

207520 Drive: Motor cannot be changed over

Message value: %1
Drive object: SERVO COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The motor cannot be changed over.
Alarm value (r2124, interpret decimal):
1: The contactor for the motor that is presently active cannot be opened, because for a synchronous motor, the speed (r0063) is greater than the speed at the start of field weakening (p3048). As long as r0063 > p0348, the current in the motor does not decay in spite of the pulses being suppressed.
2: The "contactor opened" feedback signal was not detected within 1 s.
3: The "contactor closed" feedback signal was not detected within 1 s.
Remedy: Re alarm value = 1:
Set the speed lower than the speed at the start of field weakening (r0063 < p0348).
Re alarm value = 2, 3:
Check the feedback signals of the contactor involved.
207530 Drive: Drive Data Set DDS not present
Message value:
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The selected drive data set is not available (p0837 > p0180). The drive data set was not changed over. See also: p0180, p0820, p0821, p0822, p0823, p0824, r0837
Remedy: - select the existing drive data set.
 - set up additional drive data sets.

207531 Drive: Command Data Set CDS not present
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The selected command data set is not available (p0836 > p0170). The command data set was not changed over. See also: p0810 (Command Data Set selection CDS bit 0), r0836 (Command Data Set CDS selected)
Remedy: - select the existing command data set.
 - set up additional command data sets.

207541 Drive: Data set changeover not possible
Message value:
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The selected drive data set changeover and the assigned motor changeover are not possible and are not carried out. For synchronous motors, the motor contactor may only be switched for actual speeds less than the speed at the start of field weakening (r0063 < p0348).
See also: r0063 (Actual speed smoothed), p0348 (Speed at the start of field weakening Vdc = 600 V)
Remedy: Reduce the speed below the speed at the start of field weakening.

207550 Drive: Not possible to reset encoder parameters
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: When carrying out a factory setting (e.g. using p0970 = 1), it was not possible to reset the encoder parameters. The encoder parameters are directly read out of the encoder via DRIVE-CLIQ.
Alarm value (r2124, interpret decimal): Component number of the encoder involved.
Remedy: - repeat the operation.
 - check the DRIVE-CLIQ connection.
207551 <location>Drive encoder: No commutation angle information

Message value: Fault cause: %1, drive data set: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The commutation angle information is missing. This means that synchronous motors cannot be controlled (closed-loop control)
Fault value (r0949, interpret decimal):
- yyyy = fault cause, xxxx = drive data set
- yyyy = 1 dec:
 - The motor encoder used does not supply an absolute commutation angle.
- yyyy = 2 dec:
 - The selected ratio of the measuring gear does not match the motor pole pair number.
Remedy:
- Re fault cause = 1:
 - check the encoder parameterization (p0404).
 - use an encoder with track C/D, EnDat interface of Hall sensors.
 - use an encoder with sinusoidal A/B track for which the motor pole pair number (r0313) is an integer multiple of the encoder pulse number (p0408).
 - activate the pole position identification routine (p1982 = 1).
- Re fault cause = 2:
 - the quotient of the pole pair number divided by the ratio of the measuring gear must be an integer number: (p0314 * p0433) / p0432.
Note:
For operation with track C/D, this quotient must be less than 8.
See also: p0402 (Gearbox type selection), p0404 (Encoder configuration effective), p0432 (Gearbox factor, encoder revolutions), p0433 (Gearbox factor, motor/load revolutions)

207552 <location>Drive encoder: Encoder configuration not supported

Message value: Fault cause: %1, component number: %2, encoder data set: %3
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The requested encoder configuration is not supported. Only bits may be requested in p0404 that are signaled as being supported by the encoder evaluation in r0456.
Fault value (r0949, interpret decimal):
- Low word low byte: Encoder data set number
- Low word high byte: Component number
- High word:
 - The encoder evaluation does not support a function selected in p0404.
 - 1: sin/cos encoder with absolute track (this is supported by SME25).
 - 3: Squarewave encoder (this is supported by SMC30).
 - 4: sin/cos encoder (this is supported by SMC20, SMI20, SME20, SME25).
 - 12: sin/cos encoder with reference mark (this is supported by SME20).
 - 15: Commutation with zero mark for separately-excited synchronous motors with VECTORMV.
 - 23: Resolver (this is supported by SMC10, SMI10).
 - 65535: Other function (compare r0456 and p0404).
See also: p0404 (Encoder configuration effective), r0456 (Encoder configuration supported)
Remedy:
- check the encoder parameterization (p0400, p0404).
- use the matching encoder evaluation (r0456).
207553 <location>Drive encoder: Sensor Module configuration not supported

Message value: Encoder data set: %1, first incorrect bit: %2, incorrect parameter: %3
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The Sensor Module does not support the requested configuration.
For incorrect p0430 (cc = 0), the following applies:
- In p0430 (requested functions), at least 1 bit was set that is not set in r0458 (supported functions) (exception: Bit 19, 28, 29, 30, 31).
- p1982 > 0 (pole position identification requested), but r0458.16 = 0 (pole position identification not supported).
For incorrect p0437 (cc = 1), the following applies:
- In p0437 (requested functions), at least 1 bit was set that is not set in r0459 (supported functions).
Fault value (r0949, interpret hexadecimal):

 ddcbbbaa hex
 aa: encoder data set number
 bb: first incorrect bit
 cc: incorrect parameter
 cc = 0: incorrect parameter is p0430
 cc = 1: incorrect parameter is p0437
 cc = 2: incorrect parameter is r0459
 dd: reserved (always 0)

Remedy: - check the encoder parameterization (p0430, p0437).
- check the pole position identification routine (p1982).
- use the matching encoder evaluation (r0458, r0459).
See also: p0430 (Sensor Module configuration), p0437 (Sensor Module configuration extended), r0458 (Sensor Module properties), r0459 (Sensor Module properties extended), p1982 (Pole position identification selection)

207555 <location>Drive encoder: Configuration position tracking

Message value: Component number: %1, encoder data set: %2, drive data set: %3, fault cause: %4
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The configuration of the position tracking is not supported.
Position tracking can only be activated for absolute encoders.
For linear axes, it is not possible to simultaneously activate the position tracking for load and measuring gears.
Fault value (r0949, interpret hexadecimal):

 ddcbbbaa hex
 aa = encoder data set number
 bb = component number
 cc = drive data set
 dd = fault cause
 dd = 00 hex = 0 dez
 An absolute encoder is not being used.
 dd = 01 hex = 1 dez
 Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.
 dd = 02 hex = 2 dez
 For a linear axis, the position tracking was activated for the load and measuring gear.
 dd = 03 hex = 3 dez
 Position tracking cannot be activated because position tracking with another gear ratio, axis type or tolerance window has already been detected for this encoder data set.
 dd = 04 hex = 4 dez
 A linear encoder is being used.
See also: p0404 (Encoder configuration effective), p0411 (Measuring gear, configuration)
Remedy:
- use an absolute encoder.
- if necessary, de-select the position tracking (p0411 for the measuring gear, p2720 for the load gear).
- use a Control Unit with sufficient NVRAM.
- Only activate position tracking of the load gear in the same encoder data set if the gear ratio (p2504, p2505), axis type (p2720.1) and tolerance window (p2722) are also the same.

207556 <location>Measuring gear: Position tracking, maximum actual value exceeded

Message value: Component number: %1, encoder data set: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: When the position tracking of the measuring gear is configured, the drive/encoder identifies a maximum possible absolute position actual value (r0483) that cannot be represented within 32 bits.
Maximum value: p0408 * p0412 * 2^p0419
Fault value (r0949, interpret decimal):
Low word low byte: Encoder data set number
Low word high byte: Component number
See also: p0408 (Rotary encoder pulse No.), p0412 (Measuring gear, absolute encoder, rotary, revolutions, virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))
Remedy:
- reduce the fine resolution (p0419).
- reduce the multiturn resolution (p0412).
See also: p0412 (Measuring gear, absolute encoder, rotary, revolutions, virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))

207560 <location>Drive encoder: Number of pulses is not to the power of two

Message value: Encoder data set: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: For rotary absolute encoders, the pulse number in p0408 must be to the power of two.
Fault value (r0949, interpret decimal):
The fault value includes the encoder data set number involved.
Remedy:
- check the parameterization (p0408, p0404.1, r0458.5).
- upgrade the Sensor Module firmware if necessary

207561 <location>Drive encoder: Number of multiturn pulses is not to the power of two

Message value: Encoder data set: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The multiturn resolution in p0421 must be to the power of two.
Fault value (r0949, interpret decimal):
The fault value includes the encoder data set number involved.
Remedy:
- check the parameterization (p0421, p0404.1, r0458.5).
- upgrade the Sensor Module firmware if necessary
207562 <location>Drive, encoder: Position tracking, incremental encoder not possible

Message value: Fault cause: %1, component number: %2, encoder data set: %3
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The requested position tracking for incremental encoders is not supported.
Fault value (r0949, interpret hexadecimal):
ccccbbaa hex
aa = encoder Data Set number
bb = component number
cccc = fault cause
ccc = 00 hex = 0 dec
Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.
ccc = 04 hex = 4 dec
A linear encoder is used that does not support the position tracking function.
See also: p0404 (Encoder configuration effective), p0411 (Measuring gear, configuration), r0456 (Encoder configuration supported)

Remedy:
- check the encoder parameterization (p0400, p0404).
- use a Control Unit with sufficient NVRAM.
- if required, de-select position tracking for the incremental encoder (p0411.3 = 0).

207565 <location>Drive: Encoder error in PROFIdrive encoder interface 1

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: An encoder error was signaled for encoder 1 via the PROFIdrive encoder interface (G1_ZSW.15).
Alarm value (r2124, interpret decimal):
Error code from G1_XIST2, refer to the description regarding r0483.
Note:
This alarm is only output if p0480[0] is not equal to zero.

Remedy:
Acknowledge the encoder error using the encoder control word (G1_STW.15 = 1).

207566 <location>Drive: Encoder error in PROFIdrive encoder interface 2

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: An encoder error was signaled for encoder 2 via the PROFIdrive encoder interface (G2_ZSW.15).
Alarm value (r2124, interpret decimal):
Error code from G2_XIST2, refer to the description regarding r0483.
Note:
This alarm is only output if p0480[1] is not equal to zero.

Remedy:
Acknowledge the encoder error using the encoder control word (G2_STW.15 = 1).
207567 <location>Drive: Encoder error in PROFIdrive encoder interface 3

<table>
<thead>
<tr>
<th>Message value:</th>
<th>%1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
<tr>
<td>Cause:</td>
<td>An encoder error was signaled for encoder 3 via the PROFIdrive encoder interface (G3_ZSW.15). Alarm value (r2124, interpret decimal): Error code from G3_XIST2, refer to the description regarding r0483. Note: This alarm is only output if p0480[2] is not equal to zero.</td>
</tr>
<tr>
<td>Remedy:</td>
<td>Acknowledge the encoder error using the encoder control word (G3_STW.15 = 1).</td>
</tr>
</tbody>
</table>

207569 <location>Encoder could not be identified

<table>
<thead>
<tr>
<th>Message value:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
<tr>
<td>Cause:</td>
<td>During encoder identification (waiting) with p0400 = 10100, the encoder could not be identified. Either the wrong encoder has been installed or no encoder has been installed, the wrong encoder cable has been connected or no encoder cable has been connected to the Sensor Module, or the DRIVE-CLiQ component has not been connected to DRIVE-CLiQ. Note: Encoder identification must be supported by the encoder and is possible in the following cases: Encoder with EnDat interface, motor with DRIVE-CLiQ.</td>
</tr>
<tr>
<td>Remedy:</td>
<td>- check and, if necessary, connect the encoder and/or encoder cable. - check and, if necessary, establish the DRIVE-CLiQ connection. - in the case of encoders that cannot be identified (e.g. encoders without EnDat interface), the correct encoder type must be entered in p0400.</td>
</tr>
</tbody>
</table>

207575 <location>Drive: Motor encoder not ready

<table>
<thead>
<tr>
<th>Message value:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>Servo: OFF2 (ENCODER) Infeed: OFF2</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>IMMEDIATELY</td>
</tr>
<tr>
<td>Cause:</td>
<td>The motor encoder signals that it is not ready. - initialization of encoder 1 (motor encoder) was unsuccessful. - the function "parking encoder" is active (encoder control word G1_STW.14 = 1). - the encoder interface (Sensor Module) is de-activated (p0145). - the Sensor Module is defective.</td>
</tr>
<tr>
<td>Remedy:</td>
<td>Evaluate other queued faults via encoder 1.</td>
</tr>
</tbody>
</table>
SINAMICS alarms

207576 <location>Drive: Encoderless operation due to a fault active

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Encoderless operation is active due to a fault (r1407.13).
The required response when an encoder fault occurs is parameterized in p0491.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:

207580 <location>Drive: No Sensor Module with matching component number

Message value: Encoder data set: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: A Sensor Module with the component number specified in p0141 was not found.
Alarm value (r2124, interpret decimal):
Encoder data set involved (index of p0141).
Remedy: Correct parameter p0141.

207800 <location>Drive: No power unit present

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The power unit parameters cannot be read or no parameters are stored in the power unit.
Connection between Control Unit and power unit was interrupted or is defective.
Note:
This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization
is then downloaded to the Control Unit.
See also: r0200 (Power unit code number actual)
Remedy:
- connect the data line to power unit and restart the Control Unit (POWER ON).
- check or replace the Control Unit.
- check the cable between the Control Unit and power unit.
- after correcting the topology, the parameters must be again downloaded using the commissioning software.
SINAMICS alarms

207801

<location>Drive: Motor overcurrent

- **Message value:** -
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** OFF2 (NONE, OFF1, OFF3)
- **Acknowledge:** IMMEDIATELY

Cause:
The permissible motor limit current was exceeded.
- effective current limit set too low.
- current controller not correctly set.
- motor was braked with an excessively high stall torque correction factor.
- V/f operation: Up ramp was set too short or the load is too high.
- V/f operation: Short-circuit in the motor cable or ground fault.
- V/f operation: Motor current does not match the current of Motor Module.

Note:
Synchronous motor: Limit current= 1.3 * p0323
Induction motor: Limit current= 1.3 * r0209

Remedy:
- check the current limits (p0323, p0640).
- check the current controller (p1715, p1717).
- reduce the stall torque correction factor (p0326).
- increase the up ramp (p1318) or reduce the load.
- check the motor and motor cables for short-circuit and ground fault.
- check the Motor Module and motor combination.

207802

<location>Drive: Infeed or power unit not ready

- **Message value:** -
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** OFF2 (NONE)
- **Acknowledge:** IMMEDIATELY

Cause:
After an internal power-on command, the infeed or drive does not signal ready.
- monitoring time is too short.
- DC link voltage is not present.
- associated infeed or drive of the signaling component is defective.
- supply voltage incorrectly set.

Remedy:
- increase the monitoring time (p0857).
- ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed.
- replace the associated infeed or drive of the signaling component.
- check the line supply voltage setting (p0210).

See also: p0857 (Power unit monitoring time)

207805

<location>Drive: Power unit overload I2t

- **Message value:** -
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** NONE
- **Acknowledge:** NONE

Cause:
Alarm threshold for I2t overload (p0294) of the power unit exceeded.
The response parameterized in p0290 becomes active.
See also: p0290 (Power unit overload response)

Remedy:
- reduce the continuous load.
- adapt the load duty cycle.
- check the assignment of the rated currents of the motor and Motor Module.
207805 <location>Infeed: Power unit overload I2t
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Alarm threshold for I2t overload (p0294) of the power unit exceeded.
Remedy: - reduce the continuous load.
- adapt the load duty cycle.

207810 <location>Drive: Power unit EEPROM without rated data
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: No rated data are stored in the power unit EEPROM.
See also: r0206 (Rated power unit power), r0207 (Rated power unit current), r0208 (Rated power unit line supply voltage), r0209 (Power unit, maximum current)
Remedy: Replace the power unit or inform Siemens Customer Service.

207815 <location>Drive: Power unit has been changed
Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The code number of the actual power unit does not match the saved number. The fault only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum).
Fault value (r0949, interpret decimal):
Number of the incorrect parameter.
See also: r0200 (Power unit code number actual), p0201 (Power unit code number)
Remedy: Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 = 0.
For infeeds, the following applies:
Line reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine (p3410 = 5) must then be carried out. It is not possible to change the power unit without re-commissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units.
For inverters, the following applies:
If the new power unit is accepted, then if required, the current limit (p0640) can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same).
If not only the power unit is changed, but also the motor, then the motor must be re-commissioned (e.g. using p0010 = 1). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ.
If the comparison stage in p9906 is set to 2, 3, then commissioning can be exited (p0010 = 0) and the fault acknowledged.
See also: r0200 (Power unit code number actual)
207815
<location>Drive: Power unit has been changed

Message value: Parameter: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The code number of the actual power unit does not match the saved number. The fault only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum). Fault value (r0949, interpret decimal): Number of the incorrect parameter. See also: r0200 (Power unit code number actual), p0201 (Power unit code number)
Remedy: Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 = 0. For infeeds, the following applies: Line reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine (p3410 = 5) must then be carried out. It is not possible to change the power unit without re-commissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units. For inverters, the following applies: If the new power unit is accepted, then if required, the current limit (p0640) can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same). If not only the power unit is changed, but also the motor, then the motor must be re-commissioned (e.g. using p0010 = 1). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ. See also: r0200 (Power unit code number actual)

207820
<location>Drive: Temperature sensor not connected

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The temperature sensor for monitoring the motor temperature, specified in p0600, is not available.
- 10 (SME) is set in p0601, but a value other than 1, 2, or 3 is set in p0600.
- 11 (BICO) is set in p0601, but a value other than 20 or 21 is set in p0600.
- 11 (BICO) is set in p0601, and a sensor is set in p4610 ... p4613, but the associated BICO parameter (p0608, p0609) is not interconnected.
- component with sensor evaluation not present or has been removed in the meantime.
- temperature sensor via Motor Module, not for CU310.
Remedy: - connect the component with the temperature sensor.
- set the available temperature sensor (p0600, p0601).
- set p4610 ... p4613 = 0 (no sensor), or interconnect p0608 or p0609 with an external sensor value (only if p0601 = 11 (BICO)).
See also: p0600 (Motor temperature sensor for monitoring), p0601

207840
<location>Drive: Infeed operation missing

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The signal "infeed operation" is not present although the enable signals for the drive have been present for longer than the parameterized monitoring time (p0857).
- infeed not operational.
- interconnection of the binector input for the ready signal is either incorrect or missing (p0864).
- infeed is presently carrying out a line supply identification routine.
Remedy:
- bring the infeed into an operational state.
- check the interconnection of the binector input for the signal "infeed operation" (p0864).
- increase the monitoring time (p0857).
- wait until the infeed has completed the line supply identification routine.
See also: p0857 (Power unit monitoring time), p0864 (Infeed operation)

207841 <location>Drive: Infeed operation withdrawn
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The signal "infeed operation" was withdrawn in operation.
- interconnection of the binector input for the signal "infeed operation" is either incorrect or missing (p0864).
- the enable signals of the infeed were disabled.
- due to a fault, the infeed withdraws the signal "infeed operation".
Remedy:
- check the interconnection of the binector input for the "infeed operation" signal (p0864).
- check the enable signals of the infeed and if required, enable.
- remove and acknowledge an infeed fault.
Note:
If this drive is intended to back up the DC link regeneratively, then the fault response must be parameterized for NONE, OFF1 or OFF3. so that the drive can continue to operate even after the infeed fails.

207850 <location>External alarm 1
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The BICO signal for "external alarm 1" was triggered.
The condition for this external alarm is fulfilled.
See also: p2112 (External alarm 1)
Remedy: Eliminate the causes of this alarm.

207851 <location>External alarm 2
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The BICO signal for "external alarm 2" was triggered.
The condition for this external alarm is fulfilled.
See also: p2116 (External alarm 2)
Remedy: Eliminate the causes of this alarm.
207852 <location>External alarm 3
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The BICO signal for "external alarm 3" was triggered.
The condition for this external alarm is fulfilled.
See also: p2117 (External alarm 3)
Remedy: Eliminate the causes of this alarm.

207860 <location>External fault 1
Message value: -
Drive object: All objects
Reaction: Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The BICO signal "external fault 1" was triggered.
See also: p2106 (External fault 1)
Remedy: Eliminate the causes of this fault.

207861 <location>External fault 2
Message value: -
Drive object: All objects
Reaction: Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The BICO signal "external fault 2" was triggered.
See also: p2107 (External fault 2)
Remedy: Eliminate the causes of this fault.

207862 <location>External fault 3
Message value: -
Drive object: All objects
Reaction: Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The BICO signal "external fault 3" was triggered.
See also: p2108, p3111, p3112
Remedy: Eliminate the causes of this fault.
207890 <location>Internal voltage protection / internal armature short-circuit with STO active

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The internal armature short-circuit (p1231 = 4) is not possible as Safe Torque Off (STO) is enabled. The pulses cannot be enabled.
Remedy: Switch out the internal armature short-circuit (p1231=0) or de-activate Safe Torque Off (p9501 = p9561 = 0).
Note: STO: Safe Torque Off / SH: Safe standstill

207900 <location>Drive: Motor locked/speed controller at its limit

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold set in p2175.
This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit.
See also: p2175 (Motor locked speed threshold), p2177 (Motor locked delay time)
Remedy:
- check that the motor can rotate freely.
- check the torque limit: For a positive direction of rotation r1538, for a negative direction of rotation r1539.
- check the parameter, message "Motor locked" and if required, correct (p2175, p2177).
- check the inversion of the actual value (p0410).
- check the motor encoder connection.
- check the encoder pulse number (p0408).
- for SERVO with encoderless operation and motors with low power ratings (< 300 W), increase the pulse frequency (p1800).
- after de-selecting the "Basic positioner" (EPOS) function mode, check the motoring (p1528) and regenerative (p1529) torque limit and modify again.

207901 <location>Drive: Motor overspeed

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE)
Acknowledge: IMMEDIATELY
Cause: The maximum permissible speed was either positively or negatively exceeded.
The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162
Remedy:
The following applies for a positive direction of rotation:
- check r1084 and if required, correct p1082, CI:p1085 and p2162.
The following applies for a negative direction of rotation:
- check r1087 and if required, correct p1082, CI:p1088 and p2162.
207902 <location>Drive: Motor stalled

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: For a vector drive the system has identified that the motor has stall for a time longer than is set in p2178.
Fault value (r0949, interpret decimal):
1: Stall detection using r1408.11 (p1744 or p0492).
2: Stall detection using r1408.12 (p1745).
3: Stall detection using r0056.11 (only for separately excited synchronous motors).
Remedy: For closed-loop speed and torque control with speed encoder, the following applies:
- check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft).
- check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the same motor that is controlled for the data set changeover.
If there is no fault, then the fault tolerance (p1744 and p0492) can be increased.
For closed-loop speed and torque control without speed encoder, the following applies:
- check whether the drive in the open-loop controlled mode (r1750.0) stalls under load. If yes, then increase the current setpoint using p1610.
- check whether the drive stalls due to the load if the speed setpoint is still zero. If yes, then increase the current setpoint using p1610.
- if the motor excitation (magnetizing) time (r0346) was significantly reduced, then it should be increased again.
- check the current limits (p0640, r0067). If the current limits are too low, then the drive cannot be magnetized.
- check the current controller (p1715, p1717) and the speed adaptation controller (p1764, p1767). If the dynamic response was significantly reduced, then this should be increased again.
- check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the motor that is controlled for the data set changeover.
If there is no fault, then the fault tolerance (p1745) or the delay time (p2178) can be increased.
For separately-excited synchronous motors (closed-loop control with speed encoder), the following applies:
- check the speed signal (interrupted cable, polarity, pulse number).
- ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters).
- check the excitation equipment and the interface to the closed-loop control.
- encoder the highest possible dynamic response of the closed-loop excitation current control.
- check the speed control for any tendency to oscillate and if resonance effects occur, use a bandstop filter.
- do not exceed the maximum speed (p2162).
If there is no fault, then the delay time can be increased (p2178).

207903 <location>Drive: Motor speed deviation

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The absolute value of the speed difference from the two setpoints (p2151, p2154) and the speed actual value (r2169) exceeds the tolerance threshold (p2163) longer than tolerated (p2164, p2166).
The alarm is only enabled for p2149.0 = 1.
Possible causes could be:
- the load torque is greater than the torque setpoint.
- when accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the drive has been dimensioned too small.
- for closed-loop torque control, the speed setpoint does not track the speed actual value.
- for active Vdc controller.
For V/f control, the overload condition is detected as the Imax controller is active.
See also: p2149 (Monitoring configuration)
Remedy: - increase p2163 and/or p2166.
- increase the torque/current/power limits.
- for closed-loop torque control: The speed setpoint should track the speed actual value.
- de-activate alarm with p2149.0 = 0.
207904 <location>External armature short-circuit: Contactor feedback signal "Closed" missing

Message value:
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: When closing, the contactor feedback signal (p1235) did not issue the signal "Closed" (r1239.1 = 1) within the monitoring time (p1236).
Remedy:
- check that the contactor feedback signal is correctly connected (p1235).
- check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open").
- increase the monitoring time (p1236).
- if required, set the external armature short-circuit without contactor feedback signal (p1231=2).

207905 <location>External armature short-circuit: Contactor feedback signal "Open" missing

Message value:
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: When opening, the contactor feedback signal (p1235) did not issue the signal "Open" (r1239.1 = 0) within the monitoring time (p1236).
Remedy:
- check that the contactor feedback signal is correctly connected (p1235).
- check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open").
- increase the monitoring time (p1236).
- if required, set the external armature short-circuit without contactor feedback signal (p1231=2).

207906 <location>Armature short-circuit / internal voltage protection: Parameterization error

Message value: Fault cause: %1, motor data set: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The armature short-circuit is incorrectly parameterized.
Fault value (r0949, interpret decimal):
Low word: Motor data set number
High word: Cause:
1: A permanent-magnet synchronous motor has not been selected.
2: No induction motor selected.
101: External armature short-circuit: Output (r1239.0) not connected up.
102: External armature short-circuit with contactor feedback signal: No feedback signal connected (Bl:p1235).
103: External armature short-circuit without contactor feedback signal: Delay time when opening (p1237) is 0.
201: Internal voltage protection: The maximum output current of the Motor Module (r0209) is less than 1.8 * motor short-circuit current (r0331).
202: Internal voltage protection: A Motor Module in booksize or chassis format is not being used.
203: Internal voltage protection: The motor short-circuit current (p0320) is greater than the maximum motor current (p0323).
204: Internal voltage protection: The activation (p1231 = 4) is not given for all motor data sets with synchronous motors (p0300 = 2xx, 4xx).
Remedy:

Re cause 1:
- an armature short-circuit / voltage protection is only permissible for permanent-magnetic synchronous motors. The highest position of the motor type in p0300 must either be 2 or 4.

Re cause 101:
- the contactor for the external armature short-circuit configuration should be controlled using output signal r139.0. The signal can, e.g. be connected to an output terminal BI: p0738. Before this fault can be acknowledged, p1231 must be set again.

Re cause 102:
- if the external armature short-circuit with contactor feedback signal (p1231 = 1) is selected, this feedback signal must be connected to an input terminal (e.g. r722.x) and then connected to BI: p1235.
- alternatively, the external armature short-circuit without contactor feedback signal (p1231 = 2) can be selected.

Re cause 103:
- if the external armature short-circuit without contactor feedback signal (p1231 = 2) is selected, then a delay time must be parameterized in p1237. This time must always be greater than the actual contactor opening time, as otherwise the Motor Module would be short-circuited!

Re cause 201:
- a Motor Module with a higher maximum current or a motor with a lower short-circuit current must be used. The maximum Motor Module current must be higher than 1.8 * short-circuit current of the motor.

Re cause 202:
- for internal voltage protection, use a Motor Module in booksize or chassis format.

Re cause 203:
- for internal voltage protection, only use short-circuit proof motors.

Re cause 204:
- The internal voltage protection must either be activated for all motor data sets with synchronous motors (p0300 = 2xx, 4xx) (p1231 = 3) or it must be de-activated for all motor data sets (p1231 not equal to 3). This therefore ensures that the protection cannot be accidentally withdrawn as a result of a data set changeover. The fault can only be acknowledged if this condition is fulfilled.

207907 <location>Internal armature short-circuit: Motor terminals are not at zero potential after pulse suppression

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause:
The function "Internal voltage protection" (p1231 = 3) was activated. The following must be observed:
- when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the DC link voltage (without an internal voltage protection, the motor terminals are at zero potential)!
- it is only permissible to use motors that are short-circuit proof (p0320 < p0323).
- the Motor Module must be able to continually conduct 180% short-circuit current (r0331) of the motor (r0289).
- the internal voltage protection cannot be interrupted due to a fault response. If an overcurrent condition occurs during the active, internal voltage protection, then this can destroy the Motor Module and/or the motor.
- if the Motor Module does not support the autonomous, internal voltage protection (r0192.10 = 0), in order to ensure safe, reliable functioning when the line supply fails, an external 24 V power supply (UPS) must be used for the components.
- if the Motor Module does support the autonomous, internal voltage protection (r0192.10 = 1), in order to ensure safe, reliable functioning when the line supply fails, the 24 V power supply for the components must be provided through a Control Supply Module.
- if the internal voltage protection is active, it is not permissible that the motor is driven by the load for a longer period of time (e.g. as a result of loads that move the motor or another coupled motor).

Remedy:
None necessary.
This a note for the user.
207908 <location>Internal armature short-circuit active

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The pulses cannot be enabled. The internal armature short-circuit is selected (p1231 = 4):
Remedy: For synchronous motors, the armature short-circuit braking is activated if a 1 signal is present via binector input p1230. See also: p1230 (Armature short-circuit / DC brake activation), p1231 (Armature short-circuit / DC brake configuration)

207909 <location>Internal voltage protection: De-activation only effective after POWER ON

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: POWER ON
Cause: The de-activation of the internal voltage protection (p1231 not equal to 3) only becomes effective after POWER ON. The status signal r1239.6 = 1 indicates that the internal voltage protection is ready.
Remedy: None necessary.
This is a note for the user.

207910 <location>Drive: Motor overtemperature

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: KTY:
The motor temperature has exceeded the fault threshold (p0604 or p0616).
PTC or bimetallic NC contact:
The response threshold of 1650 Ohm was exceeded.
Alarm value (r2124, interpret decimal):
- if SME/TM120 is not selected (p0601 < 10),
 1: No output current reduction.
 2: Output current reduction active.
- if SME/TM120 is selected (p0601 = 10, 11),
 this is the number of the temperature channel leading to the message.
See also: p0604 (Motor temperature alarm threshold)
Remedy:
- reduce the motor load.
- check the ambient temperature and the motor ventilation.
- check the wiring and the connection of the PTC or bimetallic NC contact.
207913 <location>Excitation current outside the tolerance range</location>
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The difference between the excitation current actual value and setpoint has exceeded the tolerance:
abs(r1641 - r1626) > p3201 + p3202
The cause of this fault is again reset for abs(r1641 - r1626) < p3201.
Remedy:
- check the parameterization (p1640, p3201, p3202).
- check the interfaces to the excitation equipment (r1626, p1640).
- check the excitation equipment.

207914 <location>Flux out of tolerance</location>
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The difference between the flux actual value and setpoint has exceeded the tolerance:
abs(r0084 - r1598) > p3204 + p3205
The cause of this fault is again reset for abs(r0084 - r1598) < p3204.
The fault is only issued after the delay time in p3206 has expired.
Remedy:
- check the parameterization (p3204, p3205).
- check the interfaces to the excitation equipment (r1626, p1640).
- check the excitation equipment.
- check the flux control (p1592, p1592, p1597).
- check the control for oscillation and take the appropriate counter measures (e.g. optimize the speed control loop, parameterize a bandstop filter).

207918 <location>Three-phase setpoint generator operation selected/active</location>
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Only for separately excited synchronous motors (p0300 = 5):
The actual open-loop/closed-loop control mode is if control (open-loop) with a fixed current (p1300 = 18).
The speed is entered via the setpoint channel and the current setpoint is given by the minimum current (p1620).
It must be ensured that in this mode, the control dynamic performance is very limited. This is the reason that longer
ramp-up times should be set for the setpoint speed than for normal operation.
Remedy:
Select another open-loop/closed-loop control mode
See also: p1300 (Open-loop/closed-loop control operating mode)
207927 <location>DC brake active</location>
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The motor is braked with a DC current, the DC current brake is active.
 1) An alarm with response DCBRAKE is active. The motor is braked with the braking current set in p1232 for the duration set in p1233. If the standstill threshold p1226 is undershot, then braking is prematurely canceled.
 2) DC braking has been activated at binector input p1230 with the DC brake set (p1230 = 4). Braking current p1232 is injected until this binector input becomes inactive.
Remedy: None necessary.

207928 <location>Internal voltage protection initiated</location>
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The pulses cannot be enabled. The internal voltage protection is selected (p1231 = 3).
Remedy: If the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1), then the Motor Module automatically decides - using the DC link voltage - as to whether the armature short-circuit should be activated. The armature short-circuit is activated and response OFF2 is initiated if the DC link voltage exceeds 800 V. If the DC link voltage falls below 450 V, then the armature short-circuit is withdrawn. If the motor is still in a critical speed range, the armature short-circuit is re-activated once the DC link voltage exceeds the threshold of 800 V. If the autonomous (independent) internal voltage protection is active (r1239.5 = 1) and the line supply returns (450 V < DC link voltage < 800 V), the armature short-circuit is withdrawn after 3 minute.

207930 <location>Drive: Brake control error</location>
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The Control Unit has detected a brake control error. Fault value (r0949, interpret decimal):
 10, 11: Fault in "open holding brake" operation.
 - No brake connected or wire breakage (check whether brake releases for p1278 = 1).
 - Ground fault in brake cable.
 20: Fault in "brake open" state.
 - Short-circuit in brake winding.
 30, 31: Fault in "close holding brake" operation.
 - No brake connected or wire breakage (check whether brake releases for p1278 = 1).
 - Short-circuit in brake winding.
40: Fault in "brake closed" state.
50: Fault in the brake control circuit of the Control Unit or communication fault between Control Unit and Motor Module (brake control diagnostics).

Note:
The following causes may apply to fault values:
- motor cable is not shielded correctly.
- defect in control circuit of the Motor Module.

See also: p1278 (Brake control, diagnostics evaluation)

Remedy:
- check the motor holding brake connection.
- check the function of the motor holding brake.
- check whether there is a DRIVE-CLIQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing).
- replace the Motor Module involved.

Operation with Safe Brake Module:
- check the Safe Brake Modules connection.
- replace the Safe Brake Module.

See also: p1215 (Motor holding brake configuration), p1278 (Brake control, diagnostics evaluation)

207934 <location>Drive: S120 Combi motor holding brake configuration

Message value: %1
Drive object: All objects
Reaction: Servo: NONE (OFF1, OFF2, OFF3)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A connected motor holding brake has been detected with an S120 Combi unit. However, this motor holding brake has not been assigned to just one Combi feed drive and, therefore, brake control is not configured (correctly).
Fault value (r0949, interpret decimal):
0: No motor holding brake assigned (p1215 = 0 or 3 on all S120 Combi feed drives)
1: Multiple holding brakes assigned (p1215 = 1 or 2 on more than one S120 Combi feed drive)
MHB: Motor holding brake.
Remedy: Check whether the motor holding brake has been assigned to one S120 Combi feed drive exclusively (p1215 = 1 or 2). The fault will only be withdrawn once the motor holding brake has been assigned to just one of the S120 Combi feed drives (p1215 = 1 or 2 for this one drive). From this point, the motor holding brake will be controlled by this drive.
See also: p1215 (Motor holding brake configuration)

207935 <location>Drv: Motor holding brake detected

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A motor holding brake was detected where the brake control has not been configured (p1215 = 0). The brake control configuration was then set to "motor holding brake the same as sequence control" (p1215 = 1).
Remedy: None necessary.
See also: p1215 (Motor holding brake configuration)
207950 Drive: Incorrect motor parameter

Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
- The motor parameters were incorrectly entered while commissioning (e.g., p0300 = 0, no motor)
- The braking resistor (p6811) has still not been parameterized - commissioning cannot be completed.
Fault value (r0949, interpret decimal):
The parameter number involved.
See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323
Remedy:
Compare the motor data with the rating plate data and if required, correct.
See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323

207955 Drive: Motor has been changed

Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
The code number of the actual motor with DRIVE-CLiQ does not match the saved number.
Fault value (r0949, interpret decimal):
Number of the incorrect parameter.
See also: p0301 (Motor code number selection), r0302 (Motor code number of motor with DRIVE-CLiQ)
Remedy:
Connect the original motor, power up the Control Unit again (POWER ON) and exit the quick commissioning by setting p0010 to 0.
Or set p0300 = 10000 (load the motor parameter with DRIVE-CLiQ) and re-commission.
Quick commissioning (p0010 = 1) is automatically exited with p3900 > 0.
If quick commissioning was exited by setting p0010 to 0, then an automatic controller calculation (p0340 = 1) is not carried out.

207956 Drive: Motor code does not match the list (catalog) motor

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
The motor code of the connected motor with DRIVE-CLiQ does not match the possible list motor types (see selection in p0300).
The connected motor with DRIVE-CLiQ might not be supported by this firmware version.
Fault value (r0949, interpret decimal):
Motor code of the connected motor with DRIVE-CLiQ.
Note:
The first three digits of the motor code generally correspond to the list motor type.
Remedy:
Use a motor with DRIVE-CLiQ and the matching motor code.
207960 <location>Drive: Incorrect friction characteristic

Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The friction characteristic is incorrect.
Alarm value (r2124, interpret decimal):
1538:
The friction torque is greater than the maximum from the upper effective torque limit (p1538) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value.
1539:
The friction torque is less than the minimum from the lower effective torque limit (p1539) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value.
3820 ... 3829:
Incorrect parameter number. The speeds entered in the parameters for the friction characteristic do not correspond to the following condition:
0.0 < p3820 < p3821 < ... < p3829 <= p0322 or p1082, if p0322 = 0
Therefore the output of the friction characteristic (r3841) is set to zero.
3830 ... 3839:
Incorrect parameter number. The torques entered in the parameters for the friction characteristic do not correspond to the following condition:
0 <= p3830, p3831 ... p3839 <= p0333
Therefore the output of the friction characteristic (r3841) is set to zero.
See also: r3840 (Friction characteristic, status word)
Remedy:
Fulfill the conditions for the friction characteristic.
Re alarm value = 1538:
Check the upper effective torque limit (e.g. in the field weakening range).
Re alarm value = 1539:
Check the lower effective torque limit (e.g. in the field weakening range).
Re alarm value = 3820 ... 3839:
Fulfill the conditions to set the parameters of the friction characteristic.
If the motor data (e.g. the maximum speed p0322) are changed during commissioning (p0010 = 1, 3), then the technological limits and threshold values, dependent on this, must be re-calculated by selecting p0340= 5).

207961 <location>Drive: Friction characteristic record activated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The automatic friction characteristic record is activated.
The friction characteristic is recorded at the next power-on command.
Remedy: None necessary.
The alarm disappears automatically after the friction characteristic record has been successfully completed or the record is de-activated (p3845 = 0).
207963 Drive: Friction characteristic record interrupted

Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1
Acknowledge: IMMEDIATELY
Cause: The conditions to record the friction characteristic are not fulfilled.
 Fault value (r0949, interpret decimal):
 0046: Missing enable signals (r0046).
 1082: The highest speed value to be approached (p3829) is greater than the maximum speed (p1082).
 1084: The highest speed value to be approached (p3829) is greater than the maximum speed (r1084, p1083, p1085).
 1087: The highest speed value to be approached (p3829) is greater than the maximum speed (r1087, p1086, p1088).
 1110: Friction characteristic record, negative direction selected (p3845) and negative direction inhibited (p1110).
 1111: Friction characteristic record, positive direction selected (p3845) and positive direction inhibited (p1111).
 1198: Friction characteristic record selected (p3845 > 0) and negative (p1110) and positive directions (p1111) inhibited (r1198).
 1300: The control mode (p1300) has not been set to closed-loop speed control.
 1755: For encoderless closed-loop control (p1300 = 20), the lowest speed value to be approached (p3820) is less than or equal to the changeover speed, open-loop controlled operation (p1755).
 1910: Motor data identification activated.
 1960: Speed controller optimization activated.
 3820 ... 3829: Speed (p382x) cannot be approached.
 3840: Friction characteristic incorrect.
 3845: Friction characteristic record de-selected.

Remedy: Fulfill the conditions to record the friction characteristic.
 Re fault value = 0046:
 Establish missing enable signals.
 Re fault value = 1082, 1084, 1087:
 Select the highest speed value to be approached (p3829) less than or equal to the maximum speed (p1082, r1084, r1087).
 Re-calculate the speed points along the friction characteristic (p0340 = 5).
 Re fault value = 1110:
 Select the friction characteristic record, positive direction (p3845).
 Re fault value = 1111:
 Select the friction characteristic record, negative direction (p3845).
 Re fault value = 1198:
 Enable the permitted direction (p1110, p1111, r1198).
 Re fault value = 1300:
 Set the control mode (p1300) on the closed-loop speed control (p1300 = 20, 21).
 Re fault value = 1755:
 For encoderless closed-loop speed control (p1300 = 20) select the lowest speed value to be approached (p3820) greater than the changeover speed of open-loop controlled operation (p1755).
 Re-calculate the speed points along the friction characteristic (p0340 = 5).
 Re fault value = 1910:
 Exit the motor data identification routine (p1910).
 Re fault value = 1960:
 Exit the speed controller optimization routine (p1960).
 Re fault value 3820 ... 3829:
 - check the load at speed p382x.
 - check the speed signal (r0063) for oscillation at speed p382x. Check the settings of the speed controller if applicable.
 Re fault value = 3840:
 Make the friction characteristic error-free (p3820 to p3829, p3830 to p3839, p3840).
 Re fault value = 3845:
 Activate the friction characteristic record (p3845).
207965 <location>Drive: Save required
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The angular commutation offset (p0431) was re-defined and has still not been saved.
In order to permanently accept the new value, it must be saved in a non-volatile fashion (p0971, p0977).
See also: p0431 (Angular commutation offset), p1990 (Encoder adjustment, determine angular commutation offset)
Remedy: None necessary.
This alarm automatically disappears after the data has been saved.
See also: p0971 (Save drive object parameters), p0977 (Save all parameters)

207966 <location>Drive: Check the commutation angle
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The speed actual value was inverted and the associated angular commutation offset is not equal to zero and is therefore possibly incorrect.
Remedy: Angular commutation offset after the actual value inversion or determine it again (p1990=1).

207971 <location>Drive: Angular commutation offset determination activated
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The automatic determination of the angular commutation offset (encoder adjustment) is activated (p1990 = 1).
The automatic determination is carried out at the next power-on command.
For SERVO and fault F07414 present, the following applies:
The determination of the angular commutation offset is automatically activated (p1990 = 1), if a pole position identification technique is set in p1980.
See also: p1990 (Encoder adjustment, determine angular commutation offset)
Remedy: None necessary.
The alarm automatically disappears after determination or for the setting p1990 = 0.

207980 <location>Drive: Rotating measurement activated
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The rotating measurement is activated. For the rotating measurement, the motor can accelerate up to the maximum speed and with maximum torque. Only the parameterized current limit (p0640) and the maximum speed (p1082) are effective. The behavior of the motor can be influenced using the direction inhibit (p1959.14, p1959.15) and the ramp-up/ramp-down time (p1958).
The rotating measurement is carried out at the next power-on command.
See also: p1960 (Rotating measurement selection)
SINAMICS alarms

Remedy:

None necessary.

The alarm automatically disappears after the rotating measurement has been successfully completed or for the setting p1960 = 0.

If a POWER ON or a warm restart is performed with motor data identification selected, the motor data identification request will be lost. If motor data identification is required, it will need to be selected again manually following ramp-up.

207990 <location>Drive: Incorrect motor data identification

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: OFF2 (NONE, OFF1)

Acknowledge: IMMEDIATELY

Cause:

A fault has occurred during the identification routine.

Fault value (r0949, interpret decimal):

1: Current limit value reached.
2: Identified stator resistance lies outside the expected range 0.1 ... 100% of Zn.
3: Identified rotor resistance lies outside the expected range 0.1 ... 100% of Zn.
4: Identified stator reactance lies outside the expected range 50 ... 500% of Zn.
5: Identified magnetizing reactance lies outside the expected range 50 ... 500% of Zn.
6: Identified rotor time constant lies outside the expected range 10 ms ... 5 s.
7: Identified total leakage reactance lies outside the expected range 4 ... 50% of Zn.
8: Identified stator leakage reactance lies outside the expected range 2 ... 50% of Zn.
9: Identified rotor leakage reactance lies outside the expected range 2 ... 50% of Zn.
10: Data set changeover during motor data identification.
11: Motor shaft rotates.
20: Identified threshold voltage of the semiconductor devices lies outside the expected range 0 ... 10 V.
30: Current controller in voltage limiting.
40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
50: With the selected current controller sampling rate, the pulse frequency cannot be implemented.

Note:

Percentage values are referred to the rated motor impedance:

\[Z_n = \frac{V_{mot,nom}}{\sqrt{3}} / I_{mot,nom} \]

101: Voltage amplitude even at 30% maximum current amplitude is too low to measure the inductance.
102, 104: Voltage limiting while measuring the inductance.
103: Maximum frequency exceeded during the rotating inductance measurement.
110: Motor not finely synchronized before the rotating measurement.
111: The zero mark is not received within 2 revolutions.
112: Fine synchronization is not realized within 8 seconds after the zero mark has been passed.
113: The power, torque or current limit is zero.
115: V/f control is active.
120: Error when evaluating the magnetizing inductance.
125: Cable resistance greater than the total resistance.
126: Series inductance greater than the total leakage inductance.
127: Identified leakage inductance negative.
128: Identified stator resistance negative.
129: Identified rotor resistance negative.
130: Drive data set changeover during the motor data identification routine.
140: The setpoint channel inhibits both directions.
160: Accelerating when determining kT, moment of inertia or reluctance torque too short or the accelerating time is too long.
173: Internal problem.
180: Identification speed (maximum speed, rated speed, 0.9 * p0348) less than p1755.
190: Speed setpoint not equal to zero.
191: An actual speed of zero is not reached.
192: Speed setpoint not reached.
193: Inadmissible motion of the motor when identifying the voltage emulation error.
194: Supplementary torque (r1515) not equal to zero.
195: Closed-loop torque control active.
200, 201: Not possible to identify the voltage emulation error characteristic of the drive converter (p1952, p1953).
Remedy:

Re fault value = 0:
- check whether the motor is correctly connected. Observe configuration (star-delta).
Re fault value = 1 ... 40:
- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
- is there an appropriate relationship between the motor power rating and that of the Motor Module? The ratio of the Motor Module to the rated motor current should not be less than 0.5 and not be greater than 4.
- check configuration (star-delta).
Re fault value = 2:
- for parallel circuits, check the motor winding system in p7003. If, for power units connected in parallel, a motor is specified with a single-winding system (p7003 = 0), although a multi-winding system is being used, then a large proportion of the stator resistance is interpreted as feeder cable resistance and entered in p0352.
Re fault value = 4, 7:
- check whether inductances are correctly entered in p0233 and p0353.
- check whether motor has been correctly connected (star-delta).
Re fault value = 50:
- reduce the current controller sampling rate.
Re fault value = 101:
- increase current limit (p0640) or torque limit (p1520, p1521).
- check current controller gain (p1715).
- reduce current controller sampling time (p0115).
It may be impossible to completely identify the L characteristic, as required current amplitude is too high.
Re fault value = 102, 104:
- reduce current limit (p0640).
- check current controller P gain.
Re fault value = 103:
- increase external moment of inertia (if possible).
- reduce current controller sampling time (p0115).
Re fault value = 110:
- before rotating measurement, traverse motor over zero mark.
Re fault value = 111:
- it is possible that encoder does not have zero mark. Correct setting in p0404.15.
- encoder pulse number was incorrectly entered. Correct setting in p0408.
- if zero mark signal is defective, replace encoder.
Re fault value = 112:
- upgrade encoder software.
Re fault value = 113:
- check the limits (p0640, p1520, p1521, p1530, p1531), correct the zero values.
Re fault value = 115:
- de-select V/f control (p1317 = 0).
Re fault value = 120:
- check current controller P gain (p1715) and if required, reduce.
- increase the pulse frequency (p1800).
Re fault value = 125:
- reduce cable resistance (p0352).
Re fault value = 126:
- reduce series inductance (p0353).
Re fault value = 127, 128, 129:
- it is possible that current controller is oscillating. Reduce p1715 before next measurement.
Re fault value = 130:
- do not initiate a drive data set changeover during motor ident. routine.
Re fault value = 140:
- before the measurement, enable at least one direction (p1110 = 0 or p1111 = 0 or p1959.14 = 1 or p1959.15 = 1).
Re fault value = 160:
- extend accelerating time when determining kT, moment of inertia and reluctance torque, e.g. by increasing max. speed (p1082), increasing moment of inertia or reducing max. current (p0640).
- in encoderless operation with load moment of inertia, parameterize the load moment of inertia (p1498).
- reduce the ramp-up time (p1958).
- increase speed controller P-gain (p1460).
- suppress meas. (p1959).
SINAMICS alarms

Re fault value = 173:
-
Re fault value = 180:
- increase max. speed (p1082).
- reduce p1755.
Re fault value = 190:
- set speed setpoint to zero.
Re fault value = 191:
- do not start motor data ident. routine while motor is still rotating.
Re fault value = 192:
- check closed-loop speed control (motor rotor may be locked or closed-loop speed control is not functioning).
- for p1215 = 1, 3 (brake the same as the sequence control) check the control sense (p0410.0).
- ensure that enable signals are present during measurement.
- remove any pulling loads from motor.
- increase max. current (p0640).
- reduce max. speed (p1082).
- suppress meas. (p1959).
Re fault value = 193:
- the motor has moved through more than 5 ° electrical (r0093). Lock motor rotor at one of these pole position angles (r0093): 90 °, 210 ° or 330 ° (+/-5 °) and then start identification.
Re fault value = 194:
- switch out all supplementary torques (e.g. CI: p1511).
- for hanging/suspended axes: Lock motor rotor at one of these pole position angles (r0093): 90 °, 210 ° or 330 ° (+/-1 °) and then start identification.
Re fault value = 195:
- de-select closed-loop torque control (p1300 = 21 or 20, or set the signal source in p1501 to a 0 signal).
Re fault value = 200, 201:
- set pulse frequency to 0.5 * current controller frequency (e.g. 4 kHz for a current controller clock cycle of 125 us).
- reduce cable length between Motor Module and motor.
- read-out measured values (r1950, r1951) and therefore determine suitable values for p1952, p1953 according to your own estimation.

207991 <location>Drive: Motor data identification activated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The motor data ident. routine is activated.
The motor data identification routine is carried out at the next power-on command.
See also: p1910 (Motor data identification routine, stationary (standstill)), p1960 (Rotating measurement selection)
Remedy: None necessary.
The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1910 = 0 or p1960 = 0.
If a POWER ON or a warm restart is performed with motor data identification selected, the motor data identification request will be lost. If motor data identification is required, it will need to be selected again manually following ramp-up.
207993

Drive: Incorrect direction of rotation of the field or encoder actual value inversion

- **Message value:** -
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** OFF2 (NONE)
- **Acknowledge:** IMMEDIATELY

Cause:
Either the direction of the rotating field or the encoder actual value has an incorrect sign. The motor data identification automatically changed the actual value inversion (p0410) in order to correct the control sense. This can result in a direction of rotation change. To acknowledge this fault, the correctness of the direction of rotation must first be acknowledged with p1910 = -2.

Remedy:
Check the direction of rotation, also for the position controller, if one is being used.
If the direction of rotation is correct, the following applies:
No additional measures are required (except p1910 = -2 and acknowledge fault).
If the direction of rotation is incorrect, the following applies:
To change the direction of rotation, two phases must be interchanged and the motor identification routine must be repeated.

207995

Drive: Pole position identification not successful

- **Message value:** %1
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** OFF2
- **Acknowledge:** IMMEDIATELY

Cause:
The pole position identification routine was unsuccessful.
Fault value (r0949, interpret decimal):
1: No current is established.
2: The starting current is not zero.
3: The selected max. distance was exceeded (p1981).
4x: The measuring signal does not permit a clear evaluation.
5: The max. current was exceeded during the measurement.
6: The current measurement must be re-calibrated.
7x: The Sensor Module does not support the pole position identification routine.
8: The pole position identification routine current required is greater than the max. current.
9: The set pole position identification routine current is zero.
10: Data set changeover during the pole position identification.
11: The encoder adjustment to determine the commutation angle (p1990 = 1) and the encoder without zero mark is not finely synchronized or does not have any valid data.
100: Motion-based pole position identification, 1st and 2nd measurement different. Motor locked or current (p1993) too low.
101: Motion-based position position identification, insufficient motion, motor locked or current (p1993) too low.
102: Motion-based pole position identification, brake is being used and is closed. The motion-based position position identification in conjunction with the brake is not permitted.
103: Motion-based pole position identification without encoder.
104: Motion-based pole position identification, speed actual value not zero after stabilizing time.

Note: x = 0 ... 9
Remedy:

Re fault value = 1:
- check the motor connection and DC link voltage.
- for the following parameters, set practical values that are not zero (p0325, p0329).

Re fault value = 1, 2:
- in the case of a large computing time load (e.g., 6 drives with Safety Integrated), set the computing dead time of the current controller to late transfers (p0117 = 3).

Re fault value = 3:
- increase the max. distance (p1981).
- reduce the currents for the pole position identification routine (p0325, p0329).
- stop the motor in order to carry out the pole position identification routine.

Re fault value = 5:
- reduce the currents for the pole position identification routine (p0325, p0329).

Re fault value = 6:
- re-calibrate the Motor Module.

Re fault value = 8:
- reduce the currents for the pole position identification routine (p0329, p0325, p1993).
- the power unit cannot provide the necessary pole position identification routine current (p0209 < p0329, p0325, p1993), replace the power unit with a power unit with a higher max. current.

Re fault value = 9:
- enter a value not equal to zero in the pole position identification routine current (p0329, p0325, p1993).

Re fault value = 10:
- do not initiate a data set changeover during the pole position identification.

Re fault value = 11:
- for incremental encoders without commutation with zero mark (p0404.15 = 0), it does not make sense to adjust the encoder to determine the commutation angle (p1990 = 1). In this case, the function should be de-selected (p1990 = 0) or, for an encoder with suitable zero mark, commutation with zero mark should be selected (p0404.15 = 1).
- for absolute encoders, only adjust the encoder to determine the commutation angle (p1990 = 1) if the encoder supplies commutation information and is finely synchronized (p1992.8 = 1 and p1992.10 = 1). The encoder is possibly parked, de-activated (p0145), not ready for operation or signals a fault condition.
- de-select the encoder adjustment to determine the commutation angle (set p1990 to 0).

Re fault value = 40 ... 49:
- increase the currents for the pole position identification routine (p0325, p0329).
- stop the motor in order to carry out the pole position identification routine.
- select another technique for pole position identification routine (p1980).
- use another motor, absolute encoder or Hall sensors.

Re fault value = 70 ... 79:
- upgrade the software in the Sensor Module.

Re fault value = 100, 101:
- check and ensure that the motor is free to move.
- increase the current for motion-based pole position identification (p1993).

Re fault value = 102:
- if the motor is to be operated with a brake: Select a different technique to identify the pole position (p1980).
- if the motor can be operated without a brake: Open the brake (p1215 = 2).

Re fault value = 103:
- the motion-based pole position identification can only be carried out using an encoder. Connect an encoder or select another technique for pole position identification routine (p1980).

Re fault value = 104:
- pole position identification, increase the smoothing time, motion-based (p1997).
- pole position identification, increase the rise time, motion-based (p1994).
- pole position identification, check the gain, motion-based (p1995).
- pole position identification, check the integral time, motion-based (p1996).
- for motor encoders with track A/B sq-wave (p0404.3 = 1) and flank time measurement (p0430.20 = 0), disable the integral time (p1996 = 0).
207996 <location>Drive: Pole position identification routine not carried out

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (OFF2)
Acknowledge: IMMEDIATELY
Cause: In operation, the operating mode that requires a pole position identification was changed over, which is not possible in this state:
- the drive was changed over, flying, from encoderless operation to operation with encoder without having previously carried out a pole position identification for the encoder. p1404 is then at a value between zero and the max. speed and the pulses in the speed range above p1404 were enabled without a pole position ident. routine having been previously carried out in operation with encoder.
- in operation, an EDS changeover was made to an encoder where it is necessary to carry out a pole position identification. However, this has still not been carried out (p1982 = 1 or 2 and p1992.7 = 0).

Remedy: - for a flying changeover between operation with and without encoder with pole position identification after POWER ON or commissioning (p0010 not equal to zero) enable the pulses once at zero speed. This means that the pole position identification routine is carried out and the result is available for operation.
- carry out the EDS changeover with the pulses inhibited, or, before the changeover, carry out a pole position identification using this data set.

207998 <location>Drive: Motor data identification active on another drive

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The motor data identification is activated on the drive object specified in the fault value and interlocks the other drive objects so they cannot be powered up.
Fault value (r0949, interpret decimal):
Drive object with the active motor data identification.
See also: p1910 (Motor data identification routine, stationary (standstill)), p1960 (Rotating measurement selection)

Remedy: - wait for the complete execution of the motor data identification of the drive object designated in the fault value.
- de-select the motor data identification for the drive object designated in the fault value (p1910 = 0 or p1960 = 0).

207999 <location>Drive: Motor data identification cannot be activated

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Closed-loop control is enabled on a SERVO drive object type. To select motor data identification, pulses must be suppressed for all SERVO drive objects.
Fault value (r0949, interpret decimal):
Drive object with enabled closed-loop control.

Remedy: Withdraw the pulse enable on all drives and re-activate the motor data identification.
208000 <location>TB: +/-15 V power supply faulted

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_I_COMBI, CU_I_SINUMERIK_828, CU_LINK, CU_NX_828, HUB, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Terminal Board 30 detects an incorrect internal power supply voltage.
Fault value (r0949, interpret decimal):
0: Error when testing the monitoring circuit.
1: Fault in normal operation.
Remedy:
- replace Terminal Board 30.
- replace Control Unit.

208010 <location>TB: Analog-digital converter

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_I_COMBI, CU_I_SINUMERIK_828, CU_LINK, CU_NX_828, HUB, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The analog/digital converter on Terminal Board 30 has not supplied any converted data.
Remedy:
- check the power supply.
- replace Terminal Board 30.

213010 <location>Licensing function module not licensed

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: OFF1
Acknowledge: IMMEDIATELY
Cause: At least one function module which is under license does not have a license.
Fault value (r0949, interpret hexadecimal):
Bit x = 1: The corresponding function module does not have a license.
Note:
Refer to p0108 or r0108 for the assignment between the bit number and function module.
Remedy:
- enter and activate the license key for function modules under license (p9920, p9921).
- if necessary, de-activate unlicensed function modules (p0108, r0108).

230001 <location>Power unit: Overcurrent

Message value: Fault cause: %1 bin
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause:
The power unit has detected an overcurrent condition.
- closed-loop control is incorrectly parameterized.
- motor has a short-circuit or fault to ground (frame).
- V/f operation: Rated motor current is significantly greater than that of the Motor Module.
- infeed: High discharge and post-charging currents for voltage dip.
- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
- infeed: Short-circuit currents at power-up due to the missing line reactor.
- power cables are not correctly connected.
- power cables exceed the maximum permissible length.
- power unit defective.
- line phase interrupted.
Additional causes for a parallel switching device (r0108.15 = 1):
- a power unit has tripped (powered down) due to a ground fault.
- the closed-loop circulating current control is either too slow or has been set too fast.
Fault value (r0949, interpret bitwise binary):
Bit 0: Phase U.
Bit 1: Phase V.
Bit 2: Phase W.
Bit 3: Overcurrent in the DC link.
Note:
Fault value = 0 means that the phase with overcurrent is not recognized (e.g. for blocksize device).
Remedy:
- check the motor data - if required, carry out commissioning.
- check the motor circuit configuration (star-delta)
- V/f operation: Increase up ramp.
- V/f operation: Check the assignment of the rated currents of the motor and Motor Module.
- infeed: Check the line supply quality.
- infeed: Reduce the motor load.
- infeed: Correct connection of the line reactor.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
- replace power unit.
- check the line supply phases.
For a parallel switching device (r0108.15 = 1) the following additionally applies:
- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).

230002 <location>Power unit: DC link voltage, overvoltage
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit has detected overvoltage in the DC link.
- motor regenerates too much energy.
- device connection voltage too high.
- when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.
- line phase interrupted.
Fault value (r0949, interpret decimal):
DC link voltage [1 bit = 100 mV].
For SINAMICS GM/SM, the following applies:
Fault value (r0949, interpret decimal):
32: Overvoltage in the negative partial DC link (VdcN).
64: Overvoltage in the positive partial DC link (VdcP).
96: Overvoltage in both partial DC links.
Remedy:
- increase the ramp-down time
- activate the DC link voltage controller
- use a brake resistor or Active Line Module
- increase the current limit of the infeed or use a larger module (for the Active Line Module)
- check the device supply voltage
- check and correct the phase assignment at the VSM and at the power unit
- check the line supply phases.
See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller or Vdc monitoring configuration)

230003
<location>Power unit: DC link voltage, undervoltage
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit has detected an undervoltage condition in the DC link.
- line supply failure
- line supply voltage below the permissible value.
- line supply infeed failed or interrupted.
- line phase interrupted.
Note:
The monitoring threshold for the DC link undervoltage is the minimum of the following values:
- for a calculation, refer to p0210.
Remedy:
- check the line supply voltage
- check the line supply infeed and observe the fault messages relating to it (if there are any)
- check the line supply phases.
Note:
The ready signal for the infeed (r0863) must be connected to the associated drive inputs (p0864).
See also: p0210 (Drive unit line supply voltage)

230004
<location>Power unit: Overtemperature heat sink AC inverter
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The temperature of the power unit heat sink has exceeded the permissible limit value.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.
Fault value (r0949):
Temperature [1 bit = 0.01 °C].
Remedy:
- check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.
Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot.
230005 <location>Power unit: Overload I2t</location>
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit was overloaded (r0036 = 100 %).
- the permissible rated power unit current was exceeded for an inadmissibly long time.
- the permissible load duty cycle was not maintained.
Fault value (r0949, interpret decimal):
I2t [100 % = 16384].
Remedy: - reduce the continuous load.
- adapt the load duty cycle.
- check the motor and power unit rated currents.
See also: r0036 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)

230006 <location>Power unit: Thyristor Control Board</location>
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The Thyristor Control Board (TCB) of the Basic Line Module signals a fault.
- there is no line supply voltage.
- the line contactor is not closed.
- the line supply voltage is too low.
- line supply frequency outside the permissible range (45 ... 66 Hz).
- there is a DC link short-circuit.
- there is a DC link short-circuit (during the pre-charging phase).
- voltage supply for the Thyristor Control Board outside the nominal range (5 ... 18 V) and line voltage >30 V.
- there is an internal fault in the Thyristor Control Board.
Remedy: The faults must be saved in the Thyristor Control Board and must be acknowledged. To do this, the supply voltage of the Thyristor Control Board must be switched out for at least 10 s!
- check the line supply voltage
- check or energize the line contactor.
- check the monitoring time and, if required, increase (p0857).
- if required, observe additional power unit messages/signals.
- check the DC link regarding short-circuit or ground fault.
- evaluate diagnostic LEDs for the Thyristor Control Board.

230008 <location>Power unit: Sign-of-life error cyclic data</location>
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: Servo: NONE (OFF1, OFF2, OFF3)
- Infeed: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: The power unit has detected that the cyclic setpoint telegrams of the Control Unit have not been updated on time. The number of consecutive sign-of-life errors has exceeded the fault threshold (p7789).
SINAMICS alarms

Remedy:
- check the electrical cabinet design and cable routing for EMC compliance
- for projects with the VECTOR drive object, check whether p0117 = 6 has been set on the Control Unit.
- increase the fault threshold (p7789).
See also: p0117 (Current controller computing dead time mode)

230010 <location>Power unit: Sign-of-life error cyclic data
Message value:
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: A DRIVE-CLiQ communication error has occurred between the Control Unit and the power unit involved. The cyclic setpoint telegrams of the Control Unit were not received on time by the power unit for at least one clock cycle.
Remedy:
- check the electrical cabinet design and cable routing for EMC compliance

230011 <location>Power unit: Line phase failure in main circuit
Message value:
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: A line phase failure was detected at the power unit.
- the fuse of a phase of a main circuit has ruptured.
- the DC link voltage ripple has exceeded the permissible limit value.
Note:
The cause may also be a phase failure in the motor feeder cable.
Remedy:
- check the main circuit fuses.
- check the motor feeder cables.

230012 <location>Power unit: Temperature sensor heat sink wire breakage
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: The connection to one of the heat sink temperature sensors in the power unit is interrupted.
Fault value (r0949, interpret hexadecimal):
Bit 0: Module slot (electronics slot)
Bit 1: Air intake
Bit 2: Inverter 1
Bit 3: Inverter 2
Bit 4: Inverter 3
Bit 5: Inverter 4
Bit 6: Inverter 5
Bit 7: Inverter 6
Bit 8: Rectifier 1
Bit 9: Rectifier 2
Remedy:
Contact the manufacturer.
230013 <location>Power unit: Temperature sensor heat sink short-circuit

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: The heat sink temperature sensor in the power unit is short-circuited.
Fault value (r0949, interpret hexadecimal):
Bit 0: Module slot (electronics slot)
Bit 1: Air intake
Bit 2: Inverter 1
Bit 3: Inverter 2
Bit 4: Inverter 3
Bit 5: Inverter 4
Bit 6: Inverter 5
Bit 7: Inverter 6
Bit 8: Rectifier 1
Bit 9: Rectifier 2
Remedy: Contact the manufacturer.

230015 <location>Power unit: Phase failure motor feeder cable

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: A phase failure was detected at the power unit output (motor cable).
Chassis power units do not feature phase failure monitoring.
Remedy: Check motor cables.

230016 <location>Power unit: Load supply switched out

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The DC link voltage is too low.
Alarm value (r2124, interpret decimal):
DC link voltage in [V].
Remedy: - switch on load supply.
- check the line supply if necessary.

230017 <location>Power unit: Hardware current limit has responded too often

Message value: Fault cause: %1 bin
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
SINAMICS alarms

Cause: The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit. For infeed units, the following applies:
- closed-loop control is incorrectly parameterized.
- load on the infeed is too high.
- Voltage Sensing Module incorrectly connected.
- line reactor missing or the incorrect type.
- power unit defective.

The following applies to Motor Modules:
- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Fault value (r0949, interpret binary):
Bit 0: Phase U
Bit 1: Phase V
Bit 2: Phase W

Remedy: For infeed units, the following applies:
- check the controller settings and reset and identify the controller if necessary (p0340 = 2, p3410 = 5)
- reduce the load and increase the DC-link capacitance or use a higher-rating infeed if necessary
- check the connection of the optional Voltage Sensing Module
- check the connection and technical data of the line reactor
- check the power cables for short-circuit or ground fault.
- replace power unit.

The following applies to Motor Modules:
- check the motor data.
- check the motor circuit configuration (star-delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
- replace power unit.

230020 <location>Power unit: Configuration not supported

Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: A configuration is requested that is not supported by the power unit.
Fault value (r0949, interpret hexadecimal):
0: Autonomous operation is requested but is not supported.
1: The requested DRIVE-CLiQ timing is not permissible.
2: A PM260 has been detected with PS-ASIC version 2. This combination is not supported.

Remedy:
- Re fault value = 0:
 If internal voltage protection is active (p1231 = 3), de-activate it if necessary.
 Re fault value = 1:
 Perform a firmware update in the Control Unit or change the DRIVE-CLiQ topology.
 Re fault value = 2:
 Replace the power unit with a PM260 with PS-ASIC version 3 (or higher).
 See also: p1231 (Armature short-circuit / DC brake configuration)
230021 <location>Power unit: Ground fault</location>
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Power unit has detected a ground fault.
- ground fault in the power cables.
- winding fault or ground fault at the motor.
- CT defective.
Additional cause for CU310/CUA31:
- when the brake is applied, this causes the hardware DC current monitoring to respond.
Additional cause for parallel switching devices (r0108.15 = 1):
- the closed-loop circulating current control is either too slow or has been set too fast.
Fault value (r0949, interpret decimal):
Absolute value, total current amplitude [20479 = r0209 * 1.4142].
Remedy:
- check the power cable connections.
- check the motor.
- check the CT.
The following applies additionally for CU310/CUA31:
- check the cables and contacts of the brake connection (a wire is possibly broken).
For parallel switching devices (r0108.15 = 1) the following additionally applies:
- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).
See also: p0287 (Ground fault monitoring thresholds)

230022 <location>Power unit: Monitoring V_ce</location>
Message value: Fault cause: %1 bin
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: POWER ON
Cause: In the power unit, the monitoring of the collector-emitter voltage (V_ce) of the semiconductor has responded.
Possible causes:
- fiber-optic cable interrupted.
- power supply of the IGBT gating module missing.
- short-circuit at the power unit output.
- defective semiconductor in the power unit.
Fault value (r0949, interpret binary):
Bit 0: Short-circuit in phase U
Bit 1: Short circuit in phase V
Bit 2: Short-circuit in phase W
Bit 3: Light transmitter enable defective
Bit 4: V_ce group fault signal interrupted
See also: r0949 (Fault value)
Remedy:
- check the fiber-optic cable and if required, replace.
- check the power supply of the IGBT gating module (24 V).
- check the power cable connections.
- select the defective semiconductor and replace.
230023 <location>Power unit: Overtemperature thermal model alarm

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The temperature difference between the heat sink and chip has exceeded the permissible limit value.
- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.
See also: r0037
Remedy: - adapt the load duty cycle.
- check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

230024 <location>Power unit: Overtemperature thermal model

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The temperature difference between the heat sink and chip has exceeded the permissible limit value.
- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.
See also: r0037
Remedy: - adapt the load duty cycle.
- check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

230025 <location>Power unit: Chip overtemperature

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
SINAMICS alarms

Cause:
- Chip temperature of the semiconductor has exceeded the permissible limit value.
- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.

Fault value (r0949):
Temperature difference between the heat sink and chip [1 Bit = 0.01 °C].

Remedy:
- adapt the load duty cycle.
- check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05001 has been undershot.
See also: r0037

230027 <location>Power unit: Precharging DC link time monitoring

Message value: Enable signals: %1, Status: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause:
The power unit DC link was not able to be pre-charged within the expected time.
1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
6) The pre-charging resistors are overheated as the DC link capacitance is too high.
7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
9) The DC link has either a ground fault or a short-circuit.
10) The pre-charging circuit is possibly defective (only for chassis units).

Fault value (r0949, interpret binary):
Missing internal enable signals, power unit (lower 16 bit):
(Inverted bit-coded representation FFFF hex -> all internal enable signals available)
Bit 0: Power supply of the IGBT gating shut down
Bit 1: Reserved
Bit 2: Reserved
Bit 3: Ground fault detected
Bit 4: Peak current intervention
Bit 5: I2t exceeded
Bit 6: Thermal model overtemperature calculated
Bit 7: (heat sink, gating module, power unit) overtemperature measured
Bit 8: Reserved
Bit 9: Overvoltage detected
Bit 10: Power unit has completed pre-charging, ready for pulse enable
Bit 11: STO terminal missing
Bit 12: Overcurrent detected
Bit 13: Armature short-circuit active
Bit 14: DRIVE-CLiQ fault active
Bit 15: Uce fault detected, transistor de-saturated due to overcurrent/short-circuit
Status, power unit (upper 16 bit, hexadecimal number):
0: Fault status (wait for OFF and fault acknowledgement)
1: Restart inhibit (wait for OFF)
2: Overvoltage condition detected -> change into the fault state
3: Undervoltage condition detected -> change into the fault state
4: Wait for bypass contactor to open -> change into the fault state
5: Wait for bypass contactor to open -> change into restart inhibit
6: Commissioning
7: Ready for pre-charging
8: Pre-charging started, DC link voltage lower than the minimum switch-on voltage
9: Pre-charging, DC link voltage end of pre-charging still not detected
10: Wait for the end of the de-bounce time of the main contactor after pre-charging has been completed
11: Pre-charging completed, ready for pulse enable
12: It was detected that the STO terminal was energized at the power unit

See also: p0210 (Drive unit line supply voltage)

Remedy:
In general:
- check the line supply voltage at the input terminals.
- check the line supply voltage setting (p0210).
- the following applies to booksize units: Wait (approx. 8 min.) until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
Re 5):
- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).
Re 6):
- check the total capacitance of the DC link and reduce in accordance with the maximum permissible DC-link capacitance if necessary (refer to the appropriate Equipment Manual)
Re 7):
- interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link
Re 8):
- check the connections of the external line contactor. The line contactor must be open during DC-link fast discharge.
Re 9):
- check the DC link for ground faults or short circuits.
See also: p0210 (Drive unit line supply voltage)

230031 \text{Power unit: Hardware current limiting, phase U}

\begin{itemize}
\item \textbf{Message value:} -
\item \textbf{Drive object:} AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
\item \textbf{Reaction:} NONE
\item \textbf{Acknowledge:} NONE
\item \textbf{Cause:} Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period.
- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.
\item \textbf{Note:} Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
\item \textbf{Remedy:}
- check the motor data.
- check the motor circuit configuration (star-delta)
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
230032 <location>Power unit: Hardware current limiting, phase V
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period.
- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.
Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy: - check the motor data.
- check the motor circuit configuration (star-delta)
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

230033 <location>Power unit: Hardware current limiting, phase W
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period.
- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.
Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy: - check the motor data.
- check the motor circuit configuration (star-delta)
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

230034 <location>Power unit: Internal overtemperature
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
SINAMICS alarms

Cause:
The alarm threshold for internal overtemperature has been reached. If the temperature inside the unit continues to increase, fault F30036 may be triggered.
- ambient temperature might be too high.
- insufficient cooling, fan failure.
Fault value (r0949, interpret binary):
Bit 0 = 1: Control electronics range.
Bit 1 = 1: Power electronics range.
Remedy:
- check the ambient temperature.
- check the fan for the inside of the unit.

230035 <location>Power unit: Air intake overtemperature

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause:
The air intake in the power unit has exceeded the permissible temperature limit. For air-cooled power units, the temperature limit is at 55 °C.
- ambient temperature too high.
- insufficient cooling, fan failure.
Fault value (r0949, interpret decimal):
Temperature [1 bit = 0.01 °C].
Remedy:
- check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05002 has been undershot.

230036 <location>Power unit: Internal overtemperature

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause:
For chassis power units, the following applies:
The temperature inside the drive converter has exceeded the permissible temperature limit.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
Fault value (r0949, interpret binary):
Bit 0 = 1: Control electronics range.
Bit 1 = 1: Power electronics range.
Remedy:
- check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
Notice:
This fault can only be acknowledged once the permissible temperature limit minus 5 K has been undershot.
230037 <location>Power unit: Rectifier overtemperature
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- line supply phase failure.
Fault value (r0949, interpret decimal):
Temperature [1 bit = 0.01 °C].
Remedy: - check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- check the line supply phases.
Notice: This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot.

230038 <location>Power unit: Capacitor fan monitoring
Message value: %1
Drive object: BIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The capacitor fan signals a fault.
Remedy: Replace the capacitor fan in the power unit.

230039 <location>Power unit: Failure capacitor fan
Message value: %1
Drive object: BIC_SINUMERIK_828
Reaction: OFF1
Acknowledge: IMMEDIATELY
Cause: The capacitor fan has failed.
Remedy: Replace the capacitor fan in the power unit.

230040 <location>Power unit: Undervolt 24 V
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Failure of the 24 V power supply for the power unit.
- The undervoltage threshold was undershot for longer than 3 ms.
Fault value (r0949, interpret decimal):
24 V voltage [1 bit = 0.1 V].
Remedy: - check the 24 V DC voltage supply to power unit.
- carry out a POWER ON (power off/on) for the component.

230041 <location>Power unit: Undervoltage 24 V alarm

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: 24 V power supply fault for the power unit.
- the 16 V threshold was undershot...
Fault value (r0949, interpret decimal):
24 V voltage [1 bit = 0.1 V].
Remedy: - check the 24 V DC voltage supply to power unit.
- carry out a POWER ON (power off/on) for the component.

230042 <location>Power unit: Fan operating time reached or exceeded

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The maximum operating time of the fan in the power unit is set in p0252.
This message indicates the following:
Fault value (r0949, interpret decimal):
0: The maximum fan operating time is 500 hours.
1: The maximum fan operating time has been exceeded.
Remedy: Replace the fan in the power unit and reset the operating hours counter to 0 (p0251 = 0).
See also: p0251 (Operating hours counter power unit fan), p0252 (Maximum operating time power unit fan)

230043 <location>Power unit: Overvolt 24 V

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: POWER ON
Cause: The following applies for CU31x:
Overvoltage of the 24 V power supply for the power unit.
- the 31.5 V threshold was exceeded for more than 3 ms.
Fault value (r0949):
24 V voltage [1 bit = 0.1 V].
Remedy: Check the 24 V DC voltage supply to the power unit.
230044 Power unit: Overvoltage 24 V alarm

Message value: -

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: NONE

Acknowledge: NONE

Cause: The following applies for CU31x:
- 24 V power supply fault for the power unit.
- the 32.0 V threshold was exceeded.

Fault value (r0949):
- 24 V voltage [1 bit = 0.1 V]

Remedy: Check the 24 V DC voltage supply to the power unit.

230045 Power unit: Supply undervoltage

Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)

Cause: Power supply fault in the power unit.
- The voltage monitor signals an undervoltage fault on the module.
- The following applies for CU31x:
- the voltage monitoring on the DAC board signals an undervoltage fault on the module.

Remedy:
- check the 24 V DC voltage supply to power unit.
- carry out a POWER ON (power off/on) for the component.
- replace the module if necessary.

230046 Power unit: Undervoltage, alarm

Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: NONE

Acknowledge: NONE

Cause: Before the last restart, a problem occurred at the power unit power supply.
- the voltage monitor in the internal FPGA of the PSA signals an undervoltage fault on the module.

Fault value (r0949):
- Register value of the voltage fault register.

Remedy:
- check the 24 V DC voltage supply to power unit.
- carry out a POWER ON (power off/on) for the component.
- replace the module if necessary.

230047 Cooling system: Cooling medium flow rate too low

Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: Cooling system: Fault - flow rate has fallen below the fault value
SINAMICS alarms

Remedy:

230048 <location>Power unit: External fan faulty

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The feedback signal from the external fan indicates a fault.
- fan faulty, blocked.
- feedback signal inaccurate.
Remedy: - check the external fan and replace if necessary.
- if you are using an external fan with feedback, check its wiring (X12.2 or X13.2).
Note: If you are using an external fan without feedback, check that the feedback terminal wiring on the power unit is connected to ground and make this connection if necessary (X12.1/2 or X13.1/2).

230049 <location>Power unit: Internal fan faulty

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The internal fan has failed.
Remedy: Check the internal fan and replace if necessary.

230050 <location>Power unit: 24 V supply overvoltage

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: POWER ON
Cause: The voltage monitor signals an overvoltage fault on the module.
Remedy: - check the 24 V power supply.
- replace the module if necessary.

230052 <location>EEPROM data error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: POWER ON
Cause: EEPROM data error of the power unit module.
Fault value (r0949, interpret hexadecimal):
0: The EEPROM data read in from the power unit module is inconsistent.
1: EEPROM data is not compatible to the firmware of the power unit application.
Additional values:
Only for internal Siemens troubleshooting.

Remedy:
Re fault value = 0:
Replace the power unit module or update the EEPROM data.
Re fault value = 1:
The following applies for CU31x and CUA31:
Update the firmware `\SIEMENS\SINAMICS\CODE\SAC\cu31xi.ufw (cua31.ufw)`

230053
<location>FPGA data faulty

Message value: %1
Drive object: All objects
Response: NONE
Acknowledgment: POWER ON
Cause: Power unit module FPGA data error.
Remedy: Replace the power unit module or update the FPGA data.

230054
<location>Power unit: Undervoltage when opening the brake

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Response: NONE
Acknowledgment: NONE
Cause: When the brake is being opened, it is detected that the 24 V supply voltage is less than 24 V - 10 % = 21.6 V.
Alarm value (r2124, interpret decimal):
Supply voltage fault [resolution = 0.1 V].
Example:
Alarm value = 212 --> voltage = 21.2 V
Remedy: Check the 24 V supply voltage to the power unit.

230060
<location>Pre-charge contactor monitoring

Message value: Fault cause: %1 bin
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Response: OFF2 (NONE, OFF1)
Acknowledgment: IMMEDIATELY (POWER ON)
Cause: At the end of the monitoring time (p0255[0]), the actual state of the pre-charge contactor does not match the desired state.
Bit 0: Monitoring time exceeded.
Bit 1: Contactor opened during operation.
Bit 2: Contactor closed in OFF state.
Remedy:
- check the monitoring time setting p0255[0].
- check the contactor wiring and activation.
- replace the contactor.
230061 Bypass contactor monitoring
Message value: Fault cause: %1 bin
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: At the end of the monitoring time (p0255[1]), the actual state of the bypass contactor does not match the desired state.
Fault value (r0949, interpret bitwise binary):
 - Bit 0: Monitoring time exceeded.
 - Bit 1: Contactor opened during operation.
 - Bit 2: Contactor closed in OFF state.
Remedy:
 - check the monitoring time setting (p0255[1]).
 - check the contactor wiring and activation.
 - replace the contactor.

230062 Bypass contactor has been opened under current
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The bypass contactor for the infeed has been damaged due to (multiple) opening under current.
Possible causes:
 - Scheduled opening under load can be necessary to protect the converter line-up in the event of a ground fault in high-frequency spindles.
 - Operating the contactor under load can result from incorrect operation of the infeed; for example, if motoring power is drawn from the DC link although no operating enable is present for the infeed.
Remedy: Damaged infeeds must be replaced, to prevent serious damage to the entire converter line-up.

230070 Cycle requested by the power unit module not supported
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A cycle is requested that is not supported by the power unit.
Fault value (r0949, interpret hexadecimal):
 - 0: The current control cycle is not supported.
 - 1: The DRIVE-CLIQ cycle is not supported.
 - 2: Internal timing problem (clearance between RX and TX instants too low).
 - 3: Internal timing problem (TX instant too early).
Remedy: The power unit only supports the following cycles:
 - 62.5 μs, 125 μs, 250 μs and 500 μs
 - Re fault value = 0:
 - Set a permitted current control cycle.
 - Re fault value = 1:
 - Set a permitted DRIVE-CLIQ cycle.
 - Re fault value = 2, 3:
 - Contact the manufacturer (you may have an incompatible firmware version).
230071 <location>No new actual values received from the power unit module

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The number of actual value telegrams from the power unit module that have failed has exceeded the permissible number.
Remedy: Check the interface (adjustment and locking) to the power unit module.

230072 <location>Setpoints are no longer being transferred to the power unit

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The following applies for CU31x and CUA31:
More than one setpoint telegram was not able to be transferred to the power unit module.
Remedy: The following applies for CU31x and CUA31:
Check the interface (adjustment and locking) to the power unit module.

230073 <location>Actual value/setpoint preprocessing no longer synchronous

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Communication with the power unit module is no longer in synchronism with the current control cycle.
Remedy: Wait until synchronization is re-established.

230074 <location>Communications error to the power unit module

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Communication is not possible with the power unit module via the plug connection.
Remedy: The following applies for CU31x and CUA31:
Either replace the Control Unit or the power unit. You must check which of the two components needs to be replaced by replacing one component and then the other (ensuring that the component which is not being tested in each case is fully functioning). If these are not available, then both components must be returned.
230080 Power unit: Current increasing too quickly

Message value: Fault cause: %1 bin
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit has detected an excessive rate of rise in the overvoltage range.
- closed-loop control is incorrectly parameterized.
- motor has a short-circuit or fault to ground (frame).
- V/f operation: rated current of motor much greater than that of power unit.
- infeed: High discharge and post-charging currents for voltage dip.
- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
- infeed: Short-circuit currents at power-up due to the missing line reactor.
- power cables are not correctly connected.
- power cables exceed the maximum permissible length.
- power unit defective.
Additional causes for a parallel switching device (r0108.15 = 1):
- a power unit has tripped (powered down) due to a ground fault.
- the closed-loop circulating current control is either too slow or has been set too fast.
Fault value (r0949, interpret bitwise binary):
Bit 0: Phase U.
Bit 1: Phase V.
Bit 2: Phase W.
Remedy:
- check the motor data - if required, carry out commissioning.
- check the motor circuit configuration (star-delta)
- V/f operation: Increase up ramp.
- V/f operation: check assignment of rated currents of motor and power unit.
- infeed: Check the line supply quality.
- infeed: Reduce the motor load.
- infeed: Correct connection of the line reactor.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
- replace power unit.
For a parallel switching device (r0108.15 = 1) the following additionally applies:
- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).
230081

<location>Power unit: Switching operations too frequent

Message value: Fault cause: %1 bin
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause:
The power unit has executed too many switching operations for current limitation.
- closed-loop control is incorrectly parameterized.
- motor has a short-circuit or fault to ground (frame).
- V/f operation: rated current of motor much greater than that of power unit.
- infeed: High discharge and post-charging currents for voltage dip.
- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
- infeed: Short-circuit currents at power-up due to the missing line reactor.
- power cables are not correctly connected.
- power cables exceed the maximum permissible length.
- power unit defective.

Additional causes for a parallel switching device (r0108.15 = 1):
- a power unit has tripped (powered down) due to a ground fault.
- the closed-loop circulating current control is either too slow or has been set too fast.

Fault value (r0949, interpret bitwise binary):
Bit 0: Phase U.
Bit 1: Phase V.
Bit 2: Phase W.

Remedy:
- check the motor data - if required, carry out commissioning.
- check the motor circuit configuration (star-delta)
- V/f operation: Increase up ramp.
- V/f operation: check assignment of rated currents of motor and power unit.
- infeed: Check the line supply quality.
- infeed: Reduce the motor load.
- infeed: Correct connection of the line reactor.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
- replace power unit.

For a parallel switching device (r0108.15 = 1) the following additionally applies:
- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).

230105

<location>PU: Actual value sensing fault

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA). The incorrect actual value channels are displayed in the following diagnostic parameters.

Remedy:
Evaluate the diagnostic parameters.
If the actual value channel is incorrect, check the components and if required, replace.
SINAMICS alarms

230502
<location>Power unit: DC link voltage, overvoltage

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The power unit has detected overvoltage in the DC link on a pulse inhibit.
- device connection voltage too high.
- line reactor incorrectly dimensioned.
Fault value (r0949, interpret decimal): DC link voltage [1 bit = 100 mV].
See also: r0070 (Actual DC link voltage)
Remedy:
- check the device supply voltage (p0210).
- check the dimensioning of the line reactor.
See also: p0210 (Drive unit line supply voltage)

230600
<location>SI MM: STOP A initiated

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function in the Motor Module (MM) has detected a fault and initiated STOP A (pulse suppression via the safety shutdown path of the Motor Module).
- forced checking procedure of the safety shutdown path of the Motor Module unsuccessful.
- subsequent response to fault F30611 (defect in a monitoring channel).
Fault value (r0949, interpret decimal):
0: Stop request from the Control Unit.
1005: Pulses suppressed although STO not selected and there is no internal STOP A present.
1010: Pulses enabled although STO is selected or an internal STOP A is present.
1020: Internal software error in the "Internal voltage protection" function. The "internal voltage protection" function is withdrawn. A STOP A that cannot be acknowledged is initiated.
9999: Subsequent response to fault F30611.
Remedy:
- select Safe Torque Off and de-select again.
- replace the Motor Module involved.
Re fault value = 1020:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- replace the Motor Module.
Re fault value = 9999:
- carry out diagnostics for fault F30611.
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill
Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: Servo: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The drive-based "Safety Integrated" function in the Motor Module (MM) has detected a fault in the data cross-check between the Control Unit (CU) and MM and initiated a STOP F.
As a result of this fault, after the parameterized transition has expired (p9858), fault F30600 is output (SI MM: STOP A initiated).

Fault value (r0949, interpret decimal):
0: Stop request from the Control Unit.
1 ... 999: Number of the cross-checked data that resulted in this fault. This number is also displayed in r9895.
1: SI monitoring clock cycle (r9780, r9880).
2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
3: SI SGE changeover tolerance time (p9650, p9850).
4: SI transition period STOP F to STOP A (p9658, p9858).
5: SI enable Safe Brake Control (p9602, p9802).
6: SI Motion enable, safety-relevant functions (p9501, internal value).
7: SI pulse suppression delay time for Safe Stop 1 (p9652, p9852).
8: SI PROFIsafe address (p9610, p9810).
9: SI debounce time for STO/SBC/SS1 (MM) (p9651, p9851).
11: SI Safe Brake Adapter mode, BICO interconnection (p9621, p9821).
12: SI Safe Brake Adapter relay ON time (p9622[0], p9822[0]).
13: SI Safe Brake Adapter relay OFF time (p9622[1], p9822[1]).
1000: Watchdog timer has expired. Within the time of approx. 5 * p9850 too many switching operations have occurred at the safety-related inputs of the Control Unit, or STO (also as subsequent response) was initiated too frequently via PROFIsafe/TM54F.
1001, 1002: Initialization error, change timer / check timer.
2000: Status of the STO selection on the Control Unit and Motor Module are different.
2001: Feedback signal for safe pulse suppression on the Control Unit and Motor Module are different.
2002: Status of the delay timer SS1 on the Control Unit and Motor Module are different.
6000 ... 6999: Error in the PROFIsafe control. The significance of the individual message values is described in safety message CO1711 of the Control Unit.

Remedy:
Re fault value = 1 ... 5 and 7 ... 999:
- check the cross-checked data that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 6:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 1000:
- check the wiring of the safety-relevant inputs (SGE) on the Control Unit (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller. - check the wiring of the fail-safe inputs at the TM54F (contact problems).
Re fault value = 1001, 1002:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 2000, 2001, 2002:
- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the cause of the STO selection in r9772. When the SMM functions are active (p9501 = 1), STO can also be selected using these functions.
- replace the Motor Module involved.

Re fault value = 6000 ... 6999:
Refer to the description of the message values in safety message C01711.

Note:
CU: Control Unit
MM: Motor Module
SGE: Safety-relevant input
SI: Safety Integrated
SMM: Safe Motion Monitoring
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill

230620

Message value:
- 230620

Drive object:
- AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction:
NONE

Acknowledge:
NONE

Cause:
The "Safe Torque Off" function was selected on the Motor Module (MM) via the input terminal and is active.
Note:
This message does not result in a safety stop response.

Remedy:
None necessary.
Note:
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

230621

Message value:
- 230621

Drive object:
- AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction:
NONE

Acknowledge:
NONE

Cause:
The "Safe Stop 1" function (SS1) was selected on the Motor Module (MM) and is active.
Note:
This message does not result in a safety stop response.

Remedy:
None necessary.
Note:
MM: Motor Module
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
230625 <location>SI MM: Sign-of-life error in safety data

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function on the Motor Module (MM) has detected an error in the sign-of-life of the
 safety data between the Control Unit (CU) and MM and initiated a STOP A.
 - there is either a DRIVE-CLiQ communication error or communication has failed.
 - a time slice overflow of the safety software has occurred.
Fault value (r0949, interpret decimal):
 Only for internal Siemens troubleshooting.
Remedy: - select Safe Torque Off and de-select again.
 - carry out a POWER ON (power off/on) for all components.
 - check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved
 and, if required, carry out a diagnostics routine for the faults identified.
 - de-select all drive functions that are not absolutely necessary.
 - reduce the number of drives.
 - check the electrical cabinet design and cable routing for EMC compliance
Note:
 CU: Control Unit
 MM: Motor Module
 SI: Safety Integrated

230630 <location>SI MM: Brake control error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function on the Motor Module (MM) has detected a brake control error and initi-
 ated a STOP A.
Fault value (r0949, interpret decimal):
 10:
 Fault in "open holding brake" operation.
 - Parameter p1278 incorrectly set.
 - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC de-
 activated)).
 - Ground fault in brake cable.
 30:
 Fault in "close holding brake" operation.
 - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC de-
 activated)).
 - Short-circuit in brake winding.
 40:
 Fault in "brake closed" state.
 60, 70:
 Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module
 (brake control).
81: SafeBrakeAdapter: Fault in "brake closed" state.
82: SafeBrakeAdapter: Fault in "open brake" state.
83: SafeBrakeAdapter: Fault in "close brake" state.
84,85: SafeBrakeAdapter: Fault in the brake control circuit of the Control Unit or communication fault between Control Unit and Motor Module (brake control).

Note:
The following causes may apply to fault values:
- motor cable is not shielded correctly.
- defect in control circuit of the Motor Module.

Remedy:
- check parameter p1278 (for SBC, only p1278 = 0 is permissible).
- select Safe Torque Off and de-select again.
- check the motor holding brake connection.
- check the function of the motor holding brake.
- check whether there is a DRIVE-CLIQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing).
- replace the Motor Module involved.

Operation with Safe Brake Module or Safe Brake Adapter:
- check the Safe Brake Module or Safe Brake Adapter connection.
- Replace the Safe Brake Module or Safe Brake Adapter.

Note:
MM: Motor Module
SBC: Safe Brake Control
SI: Safety Integrated

230640 <location>SI MM: Fault in the shutdown path of the second channel

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The Motor Module has detected a communications error with the higher-level control or the TM54F to transfer the safety-relevant information.
Note: This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: For the higher-level control, the following applies:
- check the PROFIsafe address in the higher-level control and Motor Modules and if required, align.
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
For TM54F, carry out the following steps:
- start the copy function for the node identifier (p9700 = 1D hex).
- acknowledge hardware CRC (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
The following generally applies:
- upgrade the Motor Module software.
Note:
MM: Motor Module
SI: Safety Integrated
See also: p9810 (SI PROFI safe address (Motor Module))
230649 <location>SI MM: Internal software error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal error in the Safety Integrated software on the Motor Module has occurred.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- re-commission the Safety Integrated function and carry out a POWER ON.
- upgrade the Motor Module software.
- contact the Hotline.
- replace the Motor Module.
Note:
MM: Motor Module
SI: Safety Integrated

230650 <location>SI MM: Acceptance test required

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The "Safety Integrated" function on the Motor Module requires an acceptance test.
Note: This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
130: Safety parameters for the Motor Module not available.
1000: Reference and actual checksum in the Motor Module are not identical (booting).
- at least one checksum-checked piece of data is defective.
2000: Reference and actual checksum on the Motor Module are not identical (commissioning mode).
- reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898).
2003: Acceptance test is required as a safety parameter has been changed.
2005: The safety logbook has identified that the safety checksums have changed. An acceptance test is required.
3003: Acceptance test is required as a hardware-related safety parameter has been changed.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:
Re fault value = 130:
- carry out safety commissioning routine.
Re fault value = 1000:
- again carry out safety commissioning routine.
- replace the memory card or Control Unit.
Re fault value = 2000:
- check the safety parameters in the Motor Module and adapt the reference checksum (p9899).
Re fault value = 2003, 2005:
- Carry out an acceptance test and generate an acceptance report.
The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
Re fault value = 3003:
- carry out the function checks for the modified hardware and generate an acceptance report.
The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
Re fault value = 9999:
- carry out diagnostics for the other safety-related fault that is present.
Note:
MM: Motor Module
SI: Safety Integrated
See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))

230651 <location>SI MM: Synchronization with Control Unit unsuccessful
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function is requesting synchronization of the safety time slices on the Control Unit and Motor Module. This synchronization routine was unsuccessful.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Note:
MM: Motor Module
SI: Safety Integrated

230652 <location>SI MM: Illegal monitoring clock cycle
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The Safety Integrated monitoring clock cycle cannot be maintained due to the communication conditions requested in the system.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:
Upgrade the Motor Module software.
Note:
MM: Motor Module
SI: Safety Integrated
230655 <location>SI MM: Align monitoring functions

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions.
- there is either a DRIVE-CLiQ communication error or communication has failed.
- Safety Integrated software releases on the Control Unit and Motor Module are not compatible with one another.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- check the electrical cabinet design and cable routing for EMC compliance
Note: CU: Control Unit
MM: Motor Module
SI: Safety Integrated

230656 <location>SI MM: Motor Module parameter error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When accessing the Safety Integrated parameters for the Motor Module (MM) in the non-volatile memory, an error has occurred.
Note: This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
129: Safety parameters for the Motor Module corrupted.
131: Internal software error on the Control Unit.
255: Internal Motor Module software error.
Remedy: - re-commission the safety functions.
- upgrade the Control Unit software.
- upgrade the Motor Module software.
- replace the memory card or Control Unit.
Note: MM: Motor Module
SI: Safety Integrated
230659 <location>SI MM: Write request for parameter rejected</location>

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The write request for one or several Safety Integrated parameters on the Motor Module (MM) was rejected.

Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
13: An attempt was made to enable the SS1 function although this cannot be supported.
14: An attempt was made to enable the safe motion monitoring function with the higher-level control, although this cannot be supported.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
16: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on the CU and MM is different.
18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.

Remedy:
Re fault value = 10, 11, 13, 14, 15, 16, 18:
- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F306555) and if required, carry out diagnostics for the faults involved.
- use a Motor Module that supports the required function ("Safe Torque Off", "Safe Brake Control", "PROFIsafe/PROFIsafe V2", "motion monitoring functions integrated in the drive").
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Note:
CU: Control Unit
MM: Motor Module
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill

230662 <location>Error in internal communications</location>

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: OFF2
Acknowledge: POWER ON
Cause: A module-internal communication error has occurred.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

Remedy:
- carry out a POWER ON (power off/on).
- upgrade firmware to later version.
- contact the Hotline.
230664 <location>Error while booting
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828,
 SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: OFF2
Acknowledge: POWER ON
Cause: An error has occurred during booting.
 Fault value (r0949, interpret hexadecimal):
 Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on).
 - upgrade firmware to later version.
 - contact the Hotline.

230665 <location>SI MM: System is defective
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The drive has detected a defect in the system and performed an emergency shutdown.
 Fault value (r0949, interpret hexadecimal):
 Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on).
 - upgrade firmware to later version.
 - contact the Hotline.

230672 <location>SI CU: Control Unit software incompatible
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The existing Control Unit software does not support the safe drive-based motion monitoring function.
 Note:
 This fault results in a STOP A that cannot be acknowledged.
 Fault value (r0949, interpret decimal):
 Only for internal Siemens troubleshooting.
Remedy: - check whether there are faults in the safety function alignment between the Control Unit and the Motor Module
 involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
 - use a Control Unit that supports the safe motion monitoring function.
 - upgrade the Control Unit software.
 Note:
 SI: Safety Integrated
230680 <location>SI Motion MM: Checksum error safety monitoring functions

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The actual checksum calculated by the Motor Module and entered in r9398 over the safety-relevant parameters does not match the reference checksum saved in p9399 at the last machine acceptance. Safety-relevant parameters have been changed or a fault is present.
Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, interpret decimal):
0: Checksum error for SI parameters for motion monitoring.
1: Checksum error for SI parameters for component assignment.
Remedy: - check the safety-relevant parameters and if required, correct.
- set the reference checksum to the actual checksum.
- perform a POWER ON if safety parameters requiring a POWER ON have been modified.
- carry out an acceptance test.
Note: SI: Safety Integrated

230681 <location>SI Motion MM: Incorrect parameter value

Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameter value cannot be parameterized with this value.
Note: This message does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Parameter number with the incorrect value.
Remedy: Correct the parameter value.
If the encoder parameters (p9526/p9326) have different values, start the copy function for SI parameters on the drive (p9700 = 57 hex).
Also check p9316.0 for fault value 9317.

230682 <location>SI Motion MM: Monitoring function not supported

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The monitoring function enabled in p9301, p9501, p9601 or p9801 is not supported in this firmware version.
Note: This message does not result in a safety stop response.
Fault value (r0949, interpret decimal):
1: Monitoring function SLP not supported (p9301.1).
2: Monitoring function SCA not supported (p9301.7 and p9301.8 ... 15).
3: Monitoring function SLS override not supported (p9301.5).
4: Monitoring function external ESR activation not supported (p9301.4).
5: Monitoring function FDI in PROFIsafe not supported (p9301.30).
6: Enable actual value synchronization not supported (p9301.3).
9: Monitoring function not supported, enable bit reserved (p9301.2, p9301.17 ... 29, p9301.31, if required p9301.6).
30: The firmware version of the Motor Module is older than the version of the Control Unit.
Remedy:
- de-select the monitoring function involved (p9301, p9301, p9303, p9601, p9801).
- Upgrade the Motor Module firmware.
See also: p9301 (SI Motion enable safety functions (Motor Module)), p9501 (SI Motion enable safety functions (Control Unit)), p9503 (SI Motion SCA (SN) enable (Control Unit)), p9601 (SI enable, functions integrated in the drive (Control Unit)), p9801 (SI enable, functions integrated in the drive (Motor Module))

230683
<location>SI Motion MM: SOS/SLS enable missing

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The safety-relevant basic function "SOS/SLS" is not enabled in p9301 although other safety-relevant monitoring functions are enabled.
Note: This message does not result in a safety stop response.
Remedy: Enable the function "SOS/SLS" (p9301.0).
Note: SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9301 (SI Motion enable safety functions (Motor Module))

230685
<location>SI Motion MM: Safely-Limited Speed limit value too high

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz.
Note: This message does not result in a safety stop response.
Fault value (r0949, interpret decimal): Maximum permissible speed.
Remedy: Correct the limit values for SLS and carry out a POWER ON.
Note: SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9331 (SI Motion SLS limit values (Motor Module))

230688
<location>SI Motion MM: Actual value synchronization not permissible

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: - It is not permissible to enable actual value synchronization for a 1-encoder system.
- It is not permissible to simultaneously enable actual value synchronization and a monitoring function with absolute reference (SCA/SLP).
Note: This fault results in a STOP A that cannot be acknowledged.
Remedy:
- Either select the "actual value synchronization" function or parameterize a 2-encoder system.
- Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON.
Note:
SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
SLP: Safely-Limited Position / SE: Safe software limit switches
See also: p9501 (SI Motion enable safety functions (Control Unit)), p9526 (SI Motion encoder assignment second channel)

230692 <location>SI Motion MM: Incorrect parameter value encoderless

Message value: Parameter: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameter cannot be set to this value if encoderless motion monitoring functions have been parameterized in p9306.
Note: This message does not result in a safety stop response.
Fault value (r0949, interpret decimal): Parameter number with the incorrect value.
See also: p9301 (SI Motion enable safety functions (Motor Module))
Remedy: Correct the parameter value or de-select encoderless motion monitoring functions.
See also: p9301 (SI Motion enable safety functions (Motor Module)), p9501 (SI Motion enable safety functions (Control Unit))

230693 <location>SI MM: Safety parameter settings changed, warm restart/POWER ON required

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Safety parameters have been changed; these will only take effect following a warm restart or POWER ON.
Alarm value (r2124, interpret decimal): Parameter number of the safety parameter which has changed, necessitating a warm restart or POWER ON.
Remedy: - carry out a warm restart (p0971 = 3)
- carry out a POWER ON (power off/on) for all components.

230700 <location>SI Motion MM: STOP A initiated

Message value:
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of the Control Unit).
Possible causes:
- stop request from the Control Unit.
- pulses not suppressed after a parameterized time (p9357) after test stop selection.
- subsequent response to the message C30706 "SI Motion MM: Safe Acceleration Monitoring, limit exceeded".
- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
- subsequent response to the message C30701 "SI Motion MM: STOP B initiated".
Remedy:
- remove the cause to the fault on the Control Unit.
- check the value in p9357, if required, increase the value.
- check the shutdown path of the Control Unit (check DRIVE-CLiQ communication).
- carry out a diagnostics routine for message C30706.
- carry out a diagnostics routine for message C30714.
- carry out a diagnostics routine for message C30701.
- replace the Motor Module/Power Module
- replace Control Unit.
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.

Note:
SI: Safety Integrated

230701 <location>SI Motion MM: STOP B initiated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF3
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP B (braking along the OFF3 ramp).
As a result of this fault, after the time parameterized in p9356 has expired, or the speed threshold parameterized in p9360 has been undershot, message C30700 "SI Motion MM: STOP A initiated" is output.
Possible causes:
- stop request from the Control Unit.
- subsequent response to the message C30714 "SI Motion MM: Safely limited speed exceeded".
- subsequent response to the message C30711 "SI Motion MM: Defect in a monitoring channel".
Remedy:
- remove the cause of the fault on the Control Unit
- carry out a diagnostics routine for message C01714.
- carry out a diagnostics routine for message C01711.
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
Note:
SI: Safety Integrated

230706 <location>SI Motion MM: SBR limit exceeded

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Motion monitoring functions with encoder: SBR - Safe Acceleration Monitoring. After initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance.
Encoderless motion monitoring function: SBR - Safe Brake Ramp Monitoring. After initiating STOP B (SS1) or SLS changeover to the lower speed stage, the speed has exceeded the selected tolerance.
The drive is shut down by the message C30700 "SI Motion MM: STOP A initiated".
Remedy:
Check the braking behavior and, if necessary, adapt the tolerance for the "Safe Acceleration Monitor" or modify the parameter settings for the "safe brake ramp".
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
Note:
SI: Safety Integrated
See also: p9548 (SI Motion SBR actual velocity tolerance (Control Unit))
230707 <location>SI Motion MM: Tolerance for safe operating stop exceeded

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The actual position has distanced itself further from the target position than the standstill tolerance.
The drive is shut down by the message C30701 "SI Motion MM: STOP B initiated".
Remedy: - check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults.
- check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis.
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
Note: SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9530 (SI Motion standstill tolerance (Control Unit))

230708 <location>SI Motion MM: STOP C initiated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: STOP2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP C (braking along the OFF3 ramp).
"Safe Operating Stop" (SOS) is activated after the parameterized timer has expired.
Possible causes:
- stop request from the higher-level control.
- subsequent response to the message C30714 "SI Motion MM: Safely limited speed exceeded".
See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))
Remedy: - remove the cause of the fault at the control.
- carry out a diagnostics routine for message C30714.
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
Note: SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop

230709 <location>SI Motion MM: STOP D initiated

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP D (braking along the path).
"Safe Operating Stop" (SOS) is activated after the parameterized timer has expired.
Possible causes:
- stop request from the Control Unit.
- subsequent response to the message C30714 "SI Motion: Safely limited speed exceeded".
See also: p9353 (SI Motion transition time STOP D to SOS (Motor Module)), p9553 (SI Motion transition time STOP D to SOS (SBH) (Control Unit))
Remedy: - remove the cause of the fault at the control.
- carry out a diagnostics routine for message C30714.
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
Note: SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
230711 <location>SI MM MM: Defect in a monitoring channel

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)

Cause: When cross-checking and comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible. If at least one monitoring function is active, then after the parameterized timer has expired, the message C30701 “SI Motion: STOP B initiated” is output. The message is output with message value 1031 when the Sensor Module hardware is replaced. The following message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:
- differently parameterized cycle times (p9500/p9300, p9511/p9311).
- differently parameterized axis types (p9502/p9302).
- excessively fast cycle times (p9500/p9300, p9511/p9311).
- incorrect synchronization.

Message value (r9749, interpret decimal):
- 0 ... 999: Number of the cross-checked data that resulted in this message. Refer to safety message C01711 for a description of the individual data.
- 1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
- 1001: Initialization error of watchdog timer.
- 1005: Pulses already suppressed for test stop selection.
- 1011: Acceptance test status between the monitoring channels differ.
- 1012: Plausibility violation of the actual value from the encoder.
- 1020: Cyc. communication failure between the monit. cycles.
- 1021: Cyc. communication failure between the monit. channel and Sensor Module.
- 1023: Error in the effectiveness test in the DRIVE-CLiQ encoder
- 1030: Encoder fault detected from another monitoring channel.
- 1031: Data transfer error between the monitoring channel and the Sensor Module (p9526/p9326).
- 1040: Pulses suppressed with active encoderless monitoring functions.
- 1041: Current absolute value too low (encoderless)
- 1042: Current/voltage plausibility error
- 1043: Too many acceleration phases
- 1044: Actual current values plausibility error.

5000 ... 5140: PROFIsafe message values.
The significance of the individual message values is described in safety message C01711 of the Control Unit.
6000 ... 6166: PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
The significance of the individual message values is described in safety message C01711 of the Control Unit.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion, diagnostics STOP F)

Remedy:
Re message value = 1030:
- check the encoder connection.
- if required, replace the encoder.
Re message value = 1031:
When replacing a Sensor Module, carry out the following steps:
- start the copy function for the node identifier on the drive (p9700 = 1D hex).
- acknowledge the hardware CRC on the drive (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
The following always applies:
- check the encoder connection.
- if required, replace the encoder.
Re message value = 1040:
- de-select encoderless monitoring functions, select and de-select STO.
- if monitoring function is active, issue SLS pulse enable within 5 s of de-selecting STO.
Re other message values:
- The significance of the individual message values is described in safety message C01711 of the Control Unit.
Note:
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

230712 <location>SI Motion MM: Defect in F-IO processing

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
The safety message C30711 with message value 0 is also displayed due to initiation of STOP F.
If at least one monitoring function is active, the safety message C30701 "SI Motion: STOP B initiated" is output after the parameterized timer has expired.
Message value (r9749, interpret decimal):
Number of the cross-checked data that resulted in this message.
Refer to the description of the message values in safety message C01712.
Remedy: - check parameterization in the parameters involved and correct if required.
- ensure equality by copying the SI data to the second channel and then carry out an acceptance test.
- check monitoring clock cycle in p9500 and p9300 for equality.
Note:
This message can be acknowledged via F-DI or PROFIsafe.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

230714 <location>SI Motion MM: Safely-Limited Speed exceeded

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive had moved faster than that specified by the velocity limit value (p9331). The drive is stopped as a result of the configured stop response (p9363).
Message value (r9749, interpret decimal):
100: SLS1 exceeded.
200: SLS2 exceeded.
300: SLS3 exceeded.
400: SLS4 exceeded.
1000: Encoder limit frequency exceeded.
Remedy: - check the traversing/motion program in the control.
- check the limits for "Safely-Limited Speed" (SLS) and if required, adapt (p9331).
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
Note:
SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
See also: p9331 (SI Motion SLS limit values (Motor Module)), p9363 (SI Motion SLS stop response (Motor Module))
230798 <location>SI Motion MM: Test stop running
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The test stop is active.
Remedy: None necessary.
The message is withdrawn when the test stop is finished.
Note: SI: Safety Integrated

230799 <location>SI Motion MM: Acceptance test mode active
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The acceptance test mode is active. The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the acknowledgement functions of the higher-level control.
Remedy: None necessary.
The message is withdrawn when exiting the acceptance test mode.
Note: SI: Safety Integrated

230800 <location>Power unit: Group signal
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: NONE
Cause: The power unit has detected at least one fault.
Remedy: Evaluates other actual messages.

230801 <location>Power unit DRIVE-CLiQ: Sign-of-life missing
Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
The computing time load might be too high.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
x = 0A hex:
The sign-of-life bit in the receive telegram is not set.
SINAMICS alarms

Remedy:
- check the electrical cabinet design and cable routing for EMC compliance
- remove DRIVE-CLiQ components that are not required.
- de-select functions that are not required.
- if required, increase the sampling times (p0112, p0115).
- replace the component involved.

230802 <location>Power unit: Time slice overflow

Message value:
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A time slice overflow has occurred.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

230804 <location>Power unit: CRC

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: CRC error actuator
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

230805 <location>Power unit: EPROM checksum error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
- Fault value (0949, interpret hexadecimal):
 01: EEPROM access error.
 02: Too many blocks in the EEPROM.
Remedy:
Replace the module.

230809 <location>Power unit: Switching information not valid

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: For 3P gating unit:
The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

230810 <location>Power unit: Watchdog timer

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

230820 <location>Power unit DRIVE-CLiQ: Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex: CRC error.
xx = 02 hex: Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex: Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex: The length of the receive telegram does not match the receive list.
xx = 05 hex: The type of the receive telegram does not match the receive list.
xx = 06 hex: The address of the component in the telegram and in the receive list do not match.
xx = 07 hex: A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
xx = 08 hex: No SYNC telegram is expected - but the received telegram is one.
xx = 09 hex: The error bit in the receive telegram is set.
xx = 10 hex: The receive telegram is too early.
Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
SINAMICS alarms

230835

<location>Power unit DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
\[yyxx \text{ hex: } yy = \text{component number}, xx = \text{fault cause} \]
\[xx = 21 \text{ hex:} \]
The cyclic telegram has not been received.
\[xx = 22 \text{ hex:} \]
Timeout in the telegram receive list.
\[xx = 40 \text{ hex:} \]
Timeout in the telegram send list.
Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

230836

<location>Power unit DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
\[yyxx \text{ hex: } yy = \text{component number}, xx = \text{fault cause} \]
\[xx = 41 \text{ hex:} \]
Telegram type does not match send list.
Remedy: Carry out a POWER ON.

230837

<location>Power unit DRIVE-CLiQ: Component fault

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
\[yyxx \text{ hex: } yy = \text{component number}, xx = \text{fault cause} \]
\[xx = 20 \text{ hex:} \]
Error in the telegram header.
\[xx = 23 \text{ hex:} \]
Receive error: The telegram buffer memory contains an error.
\[xx = 42 \text{ hex:} \]
Send error: The telegram buffer memory contains an error.
\[xx = 43 \text{ hex:} \]
Send error: The telegram buffer memory contains an error.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts,...).
- check the electrical cabinet design and cable routing for EMC compliance.
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

230845 <location>Power unit DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

230850 <location>Power unit: Internal software error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: Servo: OFF1 (NONE, OFF2, OFF3)
Infeed: OFF1 (NONE, OFF2)
Acknowledge: POWER ON
Cause: An internal software error has occurred in the power unit.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - replace power unit.
- if required, upgrade the firmware in the power unit.
- contact the Hotline.

230851 <location>Power unit DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: Servo: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.
230853 <location>Power unit: Sign-of-life error cyclic data

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The power unit has detected that the cyclic setpoint telegrams of the Control Unit have not been updated on time. At least two sign-of-life errors have occurred within the window set in p7788.
Remedy: - check the electrical cabinet design and cable routing for EMC compliance
- reduce the size of the window (p7788) for monitoring.

230860 <location>Power unit DRIVE-CLiQ (CU): Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
Fault value (r0949, interpret hexadecimal):
 - yyxx hex: yy = component number, xx = fault cause
 - xx = 11 hex = 17 dec: CRC error and the receive telegram is too early.
 - xx = 01 hex = 01 dec: Checksum error (CRC error).
 - xx = 12 hex = 18 dec: The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
 - xx = 02 hex = 02 dec: The telegram is shorter than specified in the length byte or in the receive list.
 - xx = 13 hex = 19 dec: The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
 - xx = 03 hex = 03 dec: The telegram is longer than specified in the length byte or in the receive list.
 - xx = 14 hex = 20 dec: The length of the receive telegram does not match the receive list and the receive telegram is too early.
 - xx = 04 hex = 04 dec: The length of the receive telegram does not match the receive list.
 - xx = 15 hex = 21 dec: The type of the receive telegram does not match the receive list and the receive telegram is too early.
 - xx = 05 hex = 05 dec: The type of the receive telegram does not match the receive list.
 - xx = 16 hex = 22 dec: The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
 - xx = 06 hex = 06 dec: The address of the power unit in the telegram and in the receive list do not match.
 - xx = 19 hex = 25 dec: The error bit in the receive telegram is set and the receive telegram is too early.
 - xx = 09 hex = 09 dec: The error bit in the receive telegram is set.
 - xx = 10 hex = 16 dec: The receive telegram is too early.
Remedy: - carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
230885 <location>CU DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):
- yyxx hex: yy = component number, xx = fault cause
 - xx = 1A hex = 26 dec: Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
 - xx = 21 hex = 33 dec: The cyclic telegram has not been received.
 - xx = 22 hex = 34 dec: Timeout in the telegram receive list.
 - xx = 40 hex = 64 dec: Timeout in the telegram send list.
 - xx = 62 hex = 98 dec: Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

230886 <location>PU DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.

Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):
- yyxx hex: yy = component number, xx = fault cause
 - xx = 41 hex: Telegram type does not match send list.

Remedy:
- carry out a POWER ON.

230887 <location>Power unit DRIVE-CLiQ (CU): Component fault

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component (power unit) involved. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

- **yyxx hex:** yy = component number, xx = fault cause
- **xx = 20 hex:** Error in the telegram header.
- **xx = 23 hex:** Receive error: The telegram buffer memory contains an error.
- **xx = 42 hex:** Send error: The telegram buffer memory contains an error.
- **xx = 43 hex:** Send error: The telegram buffer memory contains an error.
- **xx = 60 hex:** Response received too late during runtime measurement.
- **xx = 61 hex:** Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

230895 <location>PU DRIVE-CLiQ (CU): Alternating cyclic data transfer error**

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Infeed: OFF2 (NONE, OFF1)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.

Fault value (r0949, interpret hexadecimal):

- **yyxx hex:** yy = component number, xx = fault cause
- **xx = 0B hex:** Synchronization error during alternating cyclic data transfer.

Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

230896 <location>Power unit DRIVE-CLiQ (CU): Inconsistent component properties**

Message value: Component number: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Infeed: OFF2 (NONE, OFF1)

Acknowledge: IMMEDIATELY

Cause: The properties of the DRIVE-CLiQ component (power unit), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.

Fault value (r0949, interpret decimal):

- **Component number.**

Remedy:
- carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
230899 <location>Power unit: Unknown fault</location>

Message value: New message: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction:
- Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
- Infeed: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: A fault occurred on the power unit that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.

Fault value (r0949, interpret decimal):
- Fault number.

Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.

Remedy:
- replace the firmware on the power unit by an older firmware version (r0128).
- upgrade the firmware on the Control Unit (r0018).

230903 <location>Power unit: I2C bus error occurred</location>

Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction:
- Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
- Infeed: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY

Cause: Communications error with an EEPROM or A/D converter.

Fault value (r0949, interpret hexadecimal):
- 80000000 hex: internal software error.
- 00000001 hex ... 0000FFFF hex: module fault.

Remedy:
- upgrade firmware to later version.
- replace the module.

230907 <location>Power unit: FPGA configuration unsuccessful</location>

Message value: -

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828

Reaction:
- Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
- Infeed: OFF2 (NONE, OFF1)

Acknowledge: IMMEDIATELY

Cause: During initialization within the power unit, an internal software error has occurred.

Remedy:
- if required, upgrade the firmware in the power unit.
- replace power unit.
- contact the Hotline.
230920 <location>Power unit: Temperature sensor fault

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm, PT100: R > 375 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT100: R < 30 Ohm).
Remedy: - make sure that the sensor is connected correctly.
- replace the sensor.

230999 <location>Power unit: Unknown alarm

Message value: New message: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal): Alarm number. Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy: - replace the firmware on the power unit by an older firmware version (r0128).
- upgrade the firmware on the Control Unit (r0018).

231100 <location>Encoder 1: Zero mark distance error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Fault value (r0949, interpret decimal): Last measured zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance. See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- replace the encoder or encoder cable.
231101 <location>Encoder 1: Zero marked failed

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The 1.5 x parameterized zero mark distance was exceeded.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Fault value (r0949, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the clearance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- when p0437.1 is active, check p4686.
- replace the encoder or encoder cable

231103 <location>Encoder 1: Amplitude error, track R

Message value: R track: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 1.
The fault can be initiated when the unipolar voltage level is exceeded (RP/RN) or if the differential amplitude is under-shot.
Fault value (r0949, interpret hexadecimal):
xxxx hex:
xxxx = Signal level, track R (16 bits with sign).
The response thresholds of the unipolar signal levels of the encoder are between < 1400 mV and > 3500 mV.
The response threshold for the differential signal level of the encoder is < -1600 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note:
The analog value of the amplitude error is not measured at the same time with the hardware fault output by the Sensor Module.
The fault value can only be represented between -32767dec and 32767dec (-770 mV ... 770 mV).
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts of the encoder cable.
- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly
- replace the encoder cable.
- if the coding disk is soiled or the lighting aged, replace the encoder.
231110

Message value: Fault cause: %1 bin

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause: Serial communication protocol transfer error between the encoder and evaluation module.

Fault value (r0949, interpret binary):

- Bit 0: Alarm bit in the position protocol.
- Bit 1: Incorrect quiescent level on the data line.
- Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
- Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
- Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
- Bit 5: Internal error in the serial driver: An illegal mode command was requested.
- Bit 6: Timeout when cyclically reading.
- Bit 8: Protocol is too long (e.g. > 64 bits).
- Bit 9: Receive buffer overflow.
- Bit 10: Frame error when reading twice.
- Bit 11: Parity error.
- Bit 12: Data line signal level error during the monoflop time.
- Bit 13: Data line incorrect.

Remedy:

Re fault value, bit 0 = 1:
- Enc defect F31111 may provide additional details.

Re fault value, bit 1 = 1:
- Incorrect encoder type / replace the encoder or encoder cable.

Re fault value, bit 2 = 1:
- Incorrect encoder type / replace the encoder or encoder cable.

Re fault value, bit 3 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable.

Re fault value, bit 4 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.

Re fault value, bit 5 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.

Re fault value, bit 6 = 1:
- Update Sensor Module firmware.

Re fault value, bit 8 = 1:
- Check parameterization (p0429.2).

Re fault value, bit 9 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.

Re fault value, bit 10 = 1:
- Check parameterization (p0429.2, p0449).

Re fault value, bit 11 = 1:
- Check parameterization (p0436).

Re fault value, bit 12 = 1:
- Check parameterization (p0429.6).

Re fault value, bit 13 = 1:
- Check data line.
231111 Encoder 1: Absolute encoder EnDat, internal fault/error

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The EnDat encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit 0: Lighting system failed.
Bit 1: Signal amplitude too low.
Bit 2: Position value incorrect.
Bit 3: Encoder power supply overvoltage condition.
Bit 4: Encoder power supply undervoltage condition.
Bit 5: Encoder power supply overcurrent condition.
Bit 6: The battery must be changed.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- Re fault value, bit 0 = 1:
 Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
- Re fault value, bit 1 = 1:
 Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
- Re fault value, bit 2 = 1:
 Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
- Re fault value, bit 3 = 1:
 5 V power supply voltage fault.
 When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
 When using a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
 Re fault value, bit 4 = 1:
 5 V power supply voltage fault.
 When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
 When using a motor with DRIVE-CLiQ: Replace the motor.
 Re fault value, bit 5 = 1:
 Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
 Re fault value, bit 6 = 1:
 The battery must be changed (only for encoders with battery back-up).

231112 Encoder 1: Error bit set in the serial protocol

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The encoder sends a set error bit via the serial protocol.
Fault value (r0949, interpret binary):
Bit 0: Fault bit in the position protocol.
Remedy:
For fault value, bit 0 = 1:
In the case of an EnDat encoder, F31111 may provide further details.
231115

<location>Encoder 1: Amplitude error track A or B (A^2 + B^2)

Message value: A track: %1, B-track: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The amplitude (root of A^2 + B^2) for encoder 1 exceeds the permissible tolerance.

Fault value (r0949, interpret hexadecimal):

yyyyxxxx hex:

yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.

A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.

Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).

The following applies to measuring systems without their own bearing system:
- adjust the scanning head and check the bearing system of the measuring wheel.

The following applies for measuring systems with their own bearing system:
- ensure that the encoder housing is not subject to any axial force.

231116

<location>Encoder 1: Amplitude error monitoring track A + B

Message value: A track: %1, B-track: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: The amplitude of the rectified encoder signals A and B and the amplitude from the roots of A^2 + B^2 for encoder 1 are not within the tolerance bandwidth.

Fault value (r0949, interpret hexadecimal):

yyyyxxxx hex:

yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 176 mV (observe the frequency response of the encoder) and > 955 mV.

A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.

Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).
231117

<location>Encoder 1: Inversion error signals A and B and R

Message value: Fault cause: %1 bin

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause: For a square-wave encoder (bipolar, double ended) the A* and B* and R* signals are not inverted with respect to signals A and B and R.

Fault value (r0949, interpret binary):

Bits 0-15: Only for internal Siemens troubleshooting.

Bit 16: Error track A.

Bit 17: Error track B.

Bit 18: Error track R.

Note:

For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), CUA32, and CU310, the following applies:

A square-wave encoder without track R is used and track monitoring (p0405.2 = 1) is activated.

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:

Check the encoder/cable: Does the encoder provide signals and the associated inverted signals?

Note:

For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), the following applies:

- check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
- For a square-wave encoder without track R, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
 - pin 10 (reference signal R) <-> pin 7 (encoder power supply, ground)
 - pin 11 (reference signal R inverted) <-> pin 4 (encoder power supply)

231118

<location>Encoder 1: Speed difference outside the tolerance range

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause: For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles.

The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.

Encoder 1 is used as motor encoder and can be effective as fault response to change over to encoderless operation.

Fault value (r0949, interpret decimal):

Only for internal Siemens troubleshooting.

See also: p0491 (Motor encoder fault response ENCODER), p0492 (Square-wave encoder, maximum speed difference per sampling cycle)

Remedy:

- check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the maximum speed difference per sampling cycle (p0492).
231120 Encoder 1: Power supply voltage fault

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: Encoder 1 power supply voltage fault.
Fault value (r0949, interpret binary):
Bit 0: Undervoltage condition on the sense line.
Bit 1: Overcurrent condition for the encoder power supply.
Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
Note: If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
Re fault value, bit 0 = 1:
- correct encoder cable connected?
- check the plug connections of the encoder cable.
- SMC30: Check the parameterization (p0404.22).
Re fault value, bit 1 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable
Re fault value, bit 2 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable
Re fault value, bit 3 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable

231121 Encoder 1: Coarse position error

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (NONE)
Acknowledge: PULSE INHIBIT
Cause: For the actual value sensing, an error was detected on the module. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

231122 Encoder 1: Internal power supply voltage faulty

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER
Acknowledge: IMMEDIATELY
Cause: Fault in internal reference voltage of ASICs for encoder 1.
Fault value (r0949, interpret decimal):
1: Reference voltage error.
2: Internal undervoltage.
3: Internal overvoltage.
Remedy:
Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
231123 <location>Encoder 1: Signal level A/B unipolar outside tolerance

Message value:
Fault cause: %1 bin

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
ENCODER (IASC/DCBRAKE, NONE)

Acknowledge:
PULSE INHIBIT

Cause:
The unipolar level (AP/AN or BP/BN) for encoder 1 is outside the permissible tolerance.
Fault value (r0949, interpret binary):
Bit 0 = 1: Either AP or AN outside the tolerance.
Bit 16 = 1: Either BP or BN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.

Note:
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
- check the plug connections and contacts of the encoder cable.
- check the short-circuit of a signal cable with mass or the operating voltage.
- replace the encoder cable.

231125 <location>Encoder 1: Amplitude error track A or B overcontrolled

Message value:
A track: %1, B-track: %2

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
ENCODER (IASC/DCBRAKE, NONE)

Acknowledge:
PULSE INHIBIT

Cause:
The amplitude of track A or B for encoder 1 exceeds the permissible tolerance band.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is > 750 mV. This fault also occurs if the A/D converter is overcontrolled.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.

Note for sensors modules for resolvers (e. g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is > 3582 mV.
A signal level of 2900 mV peak value corresponds to the numerical value 6666 hex = 26214 dec.

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable.
231126 <location>Encoder 1: Amplitude AB too high

Message value: Amplitude: %1, Angle: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The amplitude (root of $A^2 + B^2$ or |A| + |B|) for encoder 1 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):
yyyy = Angle
xxxx = Amplitude, i.e. root from $A^2 + B^2$ (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold for (|A| + |B|) is > 1120 mV or the root of ($A^2 + B^2$) > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex = 10650 dec.
The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero
crossover of track B.

Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the
Sensor Module.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable

231129 <location>Encoder 1: Position difference, hall sensor/track C/D and A/B too large

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater
than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect
rotational sense or supply values that are not accurate enough.
After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault
is no longer initiated, but instead, Alarm A31429.
Fault value (r0949, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.
231130

}*<location>*Encoder 1: Zero mark and position error from the coarse synchronization*

Message value: Angular deviation, electrical: %1, angle, mechanical: %2

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.

When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of +/-18 ° mechanical.

When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of +/-60 ° electrical.

Fault value (r0949, interpret hexadecimal): yyyyxxxx hex

- yyyy: Determined mechanical zero mark position (can only be used for track C/D).
- xxxx: Deviation of the zero mark from the expected position as electrical angle.

Scaling: 32768 dec = 180 °

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- Check p0431 and, if necessary, correct (trigger via p1990 = 1 if necessary).
- Check the encoder cables are routed in compliance with EMC.
- Check the plug connections
- If the Hall sensor is used as an equivalent for track C/D, check the connection.
- Replace the encoder or encoder cable

231131

}*<location>*Encoder 1: Deviation, position incremental/absolute too large*

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: Absolute encoder:

When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.

Limit value for the deviation:
- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQ1 1325 > 2 quadrants, EQN 1325 > 50 quadrants).
- Other encoders: 15 pulses = 60 quadrants.

Incremental encoder:

- When the zero pulse is passed, a deviation in the incremental position was detected.
- For equidistant zero marks, the following applies:
 - The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
- For distance-coded zero marks, the following applies:
 - The first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.

Fault value (r0949, interpret decimal): Deviation in quadrants (1 pulse = 4 quadrants).

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- Check that the encoder cables are routed in compliance with EMC.
- Check the plug connections
- Replace the encoder or encoder cable
- Check whether the coding disk is dirty or there are strong ambient magnetic fields.
- Adapt the parameter for the clearance between zero marks (p0425).
- If message output above speed threshold, reduce filter time if necessary (p0438).
231135 <location>Encoder 1: Fault when determining the position</location>

Message value: Fault cause: %1 bin

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause:
The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word.
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in
the fault value.

Fault value (r0949, interpret binary):
- Bit 0: F1 (safety status display)
- Bit 1: F2 (safety status display)
- Bit 2: Lighting (reserved)
- Bit 3: Signal amplitude (reserved)
- Bit 4: Position value (reserved)
- Bit 5: Overvoltage (reserved)
- Bit 6: Undervoltage (reserved)
- Bit 7: Overcurrent (reserved)
- Bit 8: Battery (reserved)
- Bit 16: Lighting (F3x135, x = 1, 2, 3)
- Bit 17: Signal amplitude (F3x135, x = 1, 2, 3)
- Bit 18: Singleturn position 1 (F3x135, x = 1, 2, 3)
- Bit 19: Overvoltage (F3x135, x = 1, 2, 3)
- Bit 20: Undervoltage (F3x135, x = 1, 2, 3)
- Bit 21: Overcurrent (F3x135, x = 1, 2, 3)
- Bit 22: Temperature exceeded (F3x405, x = 1, 2, 3)
- Bit 23: Singleturn position 2 (safety status display)
- Bit 24: Singleturn system (F3x135, x = 1, 2, 3)
- Bit 25: Singleturn power down (F3x135, x = 1, 2, 3)
- Bit 26: Multiturn position 1 (F3x136, x = 1, 2, 3)
- Bit 27: Multiturn position 2 (F3x136, x = 1, 2, 3)
- Bit 28: Multiturn system (F3x136, x = 1, 2, 3)
- Bit 29: Multiturn power down (F3x136, x = 1, 2, 3)
- Bit 30: Multiturn overflow/underflow (F3x136, x = 1, 2, 3)
- Bit 31: Multiturn battery (reserved)

Remedy: Replace DRIVE-CLiQ encoder.

231136 <location>Encoder 1: Error when determining multiturn information</location>

Message value: Fault cause: %1 bin

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause:
The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word.
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in
the fault value.

Fault value (r0949, interpret binary):
- Bit 0: F1 (safety status display)
- Bit 1: F2 (safety status display)
- Bit 2: Lighting (reserved)
- Bit 3: Signal amplitude (reserved)
- Bit 4: Position value (reserved)
- Bit 5: Overvoltage (reserved)
- Bit 6: Undervoltage (reserved)
- Bit 7: Overcurrent (reserved)
- Bit 8: Battery (reserved)
- Bit 16: Lighting (F3x135, x = 1, 2, 3)
- Bit 17: Signal amplitude (F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (→ F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (→ F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (→ F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (→ F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (→ F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (→ F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (→ F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (→ F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (→ F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (→ F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (→ F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (→ F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy: Replace DRIVE-CLiQ encoder.

231137 <location>Encoder 1: Internal error when determining the position

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

231138 <location>Encoder 1: Internal error when determining multiturn information

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

231150 <location>Encoder 1: Initialization error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: Encoder functionality selected in p0404 is not operating correctly.
Fault value (r0949, interpret hexadecimal):
The fault value is a bit field. Every set bit indicates functionality that is faulted.
The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
See also: p0404 (Encoder configuration effective), p0491 (Motor encoder fault response ENCODER)
Remedy:
- Check that p0404 is correctly set.
- check the encoder type used (incremental/absolute value) and for SMCxx, the encoder cable.
- if relevant, note additional fault messages that describe the fault in detail.
231151 <location>Encoder 1: Encoder speed for initialization AB too high

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The encoder speed is too high during while initializing the sensor.
Remedy: Reduce the speed of the encoder accordingly during initialization.
If necessary, de-activate monitoring (p0437.29).
See also: p0437 (Sensor Module configuration extended)

231160 <location>Encoder 1: Analog sensor channel A failed

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The input voltage of the analog sensor is outside the permissible limits.
Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4673.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy: Re fault value = 1:
- check the output voltage of the analog sensor.
Re fault value = 2:
- check the voltage setting for each encoder period (p4673).
Re fault value = 3:
- check the range limit setting and increase it if necessary (p4676).

231161 <location>Encoder 1: Analog sensor channel B failed

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The input voltage of the analog sensor is outside the permissible limits.
Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4675.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy: Re fault value = 1:
- check the output voltage of the analog sensor.
Re fault value = 2:
- check the voltage setting for each encoder period (p4675).
Re fault value = 3:
- check the range limit setting and increase it if necessary (p4676).
231400 Encoder 1: Alarm threshold zero mark distance error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance.
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- replace the encoder or encoder cable

231401 Encoder 1: Alarm threshold zero marked failed

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
The 1.5 x parameterized zero mark distance was exceeded.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the clearance between zero marks (p0425).
- replace the encoder or encoder cable

231405 Encoder 1: Temperature in the encoder evaluation inadmissible

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature.
The fault threshold is 125 ° C.
Alarm value (r2124, interpret decimal):
Measured board/module temperature in 0.1 °C.
Remedy:
Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
231407 Encoder 1: Function limit reached

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE

Cause: The encoder has reached one of its function limits. A service is recommended.

Alarm value (r2124, interpret decimal):
- 1 : Incremental signals
- 3 : Absolute track
- 4 : Code connection

Remedy: Perform service. Replace the encoder if necessary.

Note:
The current functional reserve of an encoder can be displayed via r4651. See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve)

231410 Encoder 1: Serial communications

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE

Cause: Serial communication protocol transfer error between the encoder and evaluation module.

Alarm value (r2124, interpret binary):
- Bit 0: Alarm bit in the position protocol.
- Bit 1: Incorrect quiescent level on the data line.
- Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
- Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
- Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
- Bit 5: Internal error in the serial driver: An illegal mode command was requested.
- Bit 6: Timeout when cyclically reading.
- Bit 8: Protocol is too long (e.g. > 64 bits).
- Bit 9: Receive buffer overflow.
- Bit 10: Frame error when reading twice.
- Bit 11: Parity error.
- Bit 12: Data line signal level error during the monoflop time.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder.

231411 Encoder 1: EnDat encoder signals alarms

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE

Cause: The error word of the EnDat encoder has alarm bits that have been set.

Alarm value (r2124, interpret binary):
- Bit 0: Frequency exceeded (speed too high).
- Bit 1: Temperature exceeded.
- Bit 2: Control reserve, lighting system exceeded.
- Bit 3: Battery discharged.
- Bit 4: Reference point passed.

Remedy: Replace encoder.

See also: p0491 (Motor encoder fault response ENCODER)
231412 <location>Encoder 1: Error bit set in the serial protocol</location>

<table>
<thead>
<tr>
<th>Message value:</th>
<th>%1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
<tr>
<td>Remedy:</td>
<td>- carry out a POWER ON (power off/on) for all components. - check that the encoder cables are routed in compliance with EMC. - check the plug connections - replace the encoder.</td>
</tr>
</tbody>
</table>

231414 <location>Encoder 1: Amplitude error track C or D (C^2 + D^2)</location>

<table>
<thead>
<tr>
<th>Message value:</th>
<th>C track: %1, D track: %2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>NONE</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>NONE</td>
</tr>
<tr>
<td>Cause: The amplitude (C^2 + D^2) of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth. Alarm value (r2124, interpret hexadecimal): yyyyxxxx hex: yyyy = Signal level, track D (16 bits with sign). xxxx = Signal level, track C (16 bits with sign). The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %). The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV. A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec. Note: If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.</td>
<td></td>
</tr>
<tr>
<td>Remedy:</td>
<td>- check that the encoder cables are routed in compliance with EMC. - check the plug connections - replace the encoder or encoder cable - check the Sensor Module (e.g. contacts). - check the Hall sensor box</td>
</tr>
</tbody>
</table>
231415 <location>Encoder 1: Amplitude alarm track A or B (A^2 + B^2)</location>

Message value: Amplitude: %1, Angle: %2

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: NONE

Acknowledge: NONE

Cause: The amplitude (root of A^2 + B^2) for encoder 1 exceeds the permissible tolerance.

Alarm value (r2124, interpret hexadecimal):

- yyyy = Angle
- xxxx = Amplitude, i.e. root from A^2 + B^2 (16 bits without sign)

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).

The response threshold is < 300 mV (observe the frequency response of the encoder).

A signal level of 500 mV peak value corresponds to the numerical value 299A hex = 10650 dec.

The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero crossover of track B.

Note for sensors modules for resolvers (e.g. SMC10):

- The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).
- A signal level of 2900 mV peak value corresponds to the numerical value 3333 hex = 13107 dec.

Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

Remedy:

- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).
- if the coding disk is soiled or the lighting aged, replace the encoder.

231418 <location>Encoder 1: Speed difference per sampling rate exceeded</location>

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: NONE

Acknowledge: NONE

Cause: For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.

The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.

Alarm value (r2124, interpret decimal):

- Only for internal Siemens troubleshooting.

Remedy:

- check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the setting of p0492.
231419 <location>Encoder 1: Track A or B outside the tolerance range

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude, phase or offset correction for track A or B is at the limit.
Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
Phase: <84 degrees or >96 degrees
SMC20: Offset correction: +/-140 mV
SMC10: Offset correction: +/-650 mV
Alarm value (r2124, interpret hexadecimal):
xxxx1: Minimum of the offset correction, track B
xxxx2: Maximum of the offset correction, track B
xxx1x: Minimum of the offset correction, track A
xxx2x: Maximum of the offset correction, track A
xx1xx: Minimum of the amplitude correction, track B/A
xx2xx: Maximum of the amplitude correction, track B/A
x1xxx: Minimum of the phase error correction
x2xxx: Maximum of the phase error correction
1xxxx: Minimum of the cubic correction
2xxxx: Maximum of the cubic correction
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).
- check the plug connections (also the transition resistance).
- check the encoder signals.
- replace the encoder or encoder cable

231421 <location>Encoder 1: Coarse position error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Alarm value (r2124, interpret decimal):
3: The absolute position of the serial protocol and track A/B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy:
Re alarm value = 3:
- for a standard encoder with cable, if required, contact the manufacturer.
- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A* and B with B*) or, for a programmable encoder, check the zero offset of the position.

231422 <location>Encoder 1: Pulses per revolution square-wave encoder outside tolerance bandwidth

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance. This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684. The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder).

Alarm value (r2124, interpret decimal):
accumulated differential pulses in encoder pulses.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- replace the encoder or encoder cable

231429 <location>Encoder 1: Position difference, hall sensor/track C/D and A/B too large
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
Alarm value (r2124, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
See also: p0491 (Motor encoder fault response ENCODER)

Remedy: - track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.

231431 <location>Encoder 1: Deviation, position incremental/absolute too large
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: When the zero pulse is passed, a deviation in the incremental position was detected. For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
For distance-coded zero marks, the following applies:
- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
Alarm value (r2124, interpret decimal):
Deviation in quadrants (1 pulse = 4 quadrants).
See also: p0491 (Motor encoder fault response ENCODER)

Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- Clean coding disk or remove strong magnetic fields.
231432 <location>Encoder 1: Rotor position adaptation corrects deviation

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected.
Alarm value (r2124, interpret decimal):
Last measured deviation of zero mark in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check encoder limit frequency.
- adapt the parameter for the distance between zero marks (p0424, p0425).

231442 <location>Encoder 1: Battery voltage pre-alarm

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- replace battery.

231443 <location>Encoder 1: Unipolar CD signal level outside specification

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The unipolar level (CP/CN or DP/DN) for encoder 1 is outside the permissible tolerance.
Alarm value (r2124, interpret binary):
Bit 0 = 1: Either CP or CN outside the tolerance.
Bit 16 = 1: Either DP or DN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.
Note:
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts of the encoder cable.
- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?
- replace the encoder cable.
231461
\textbf{Message value:} %1
\textbf{Drive object:} SERVO_COMBI, SERVO_SINUMERIK828
\textbf{Reaction:} NONE
\textbf{Acknowledge:} NONE
\textbf{Cause:}
The input voltage of the analog sensor is outside the permissible limits.
Alarm value (r2124, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4675.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
\textbf{Remedy:}
Re alarm value = 1:
- check the output voltage of the analog sensor.
Re alarm value = 2:
- check the voltage setting for each encoder period (p4675).
Re alarm value = 3:
- check the range limit setting and increase it if necessary (p4676).
SINAMICS alarms

231470

<location>Encoder 1: Soiling detected

- Message value: -
- Drive object: SERVO_COMBI, SERVO_SINUMERIK828
- Reaction: NONE
- Acknowledge: NONE
- Cause: In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7.
- Remedy: - check the plug connections
 - replace the encoder or encoder cable

231500

<location>Encoder 1: Position tracking traversing range exceeded

- Message value: -
- Drive object: SERVO_COMBI, SERVO_SINUMERIK828
- Reaction: OFF1 (NONE, OFF2, OFF3)
- Acknowledge: IMMEDIATELY
- Cause: For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions.
 - For p0411.0 = 1, the maximum traversing range for the configured linear axis is defined to be 64x (+/- 32x) of p0421.
 - For p0411.3 = 1, the maximum traversing range for the configured linear axis is pre-set (default value) to the highest possible value and is +/-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
- Remedy: The fault should be resolved as follows:
 - select encoder commissioning (p0010 = 4).
 - reset the position tracking as follows (p0411.2 = 1).
 - de-select encoder commissioning (p0010 = 0).
 The fault should then be acknowledged and the absolute encoder adjusted.

231501

<location>Encoder 1: Position tracking encoder position outside tolerance window

- Message value: %1
- Drive object: SERVO_COMBI, SERVO_SINUMERIK828
- Reaction: OFF1 (NONE, OFF2, OFF3)
- Acknowledge: IMMEDIATELY
- Cause: When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
 - Fault value (r0949, decimal): Deviation (difference) to the last encoder position in increments of the absolute value.
 - The sign designates the traversing direction.
 - Note: The deviation (difference) found is also displayed in r0477.
 - See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)
- Remedy: Reset the position tracking as follows:
 - select encoder commissioning (p0010 = 4).
 - reset the position tracking as follows (p0411.2 = 1).
 - de-select encoder commissioning (p0010 = 0).
 The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
 - See also: p0010

Alarms
Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0 757
SINAMICS alarms

231502 Encoder 1: Encoder with measuring gear, without valid signals

Message value:	-
Drive object:	SERVO_COMBI, SERVO_SINUMERIK828
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder with measuring gear no longer provides any valid signals.
Remedy:	It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.

231503 Encoder 1: Position tracking cannot be reset

Message value:	-
Drive object:	SERVO_COMBI, SERVO_SINUMERIK828
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted. |

231700 Encoder 1: Effectivity test does not supply the expected value

Message value:	Fault cause: %1 bin
Drive object:	SERVO_COMBI, SERVO_SINUMERIK828
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):	
Bit x = 1: Effectivity test x unsuccessful.	
Remedy:	
231801 <location>Encoder 1 DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex:
The sign-of-life bit in the receive telegram is not set.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check the electrical cabinet design and cable routing for EMC compliance
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

231802 <location>Encoder 1: Time slice overflow

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A time slice overflow has occurred in encoder 1.
Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- reduce the current controller frequency.

231804 <location>Encoder 1: Checksum error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A checksum error has occurred when reading-out the program memory on the Sensor Module.
Fault value (r0949, interpret hexadecimal):
yyyyyyyy hex
yyyy: Memory area involved.
xxxx: Difference between the checksum at POWER ON and the actual checksum.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- replace the Sensor Module.
231805
<location>Encoder 1: EPROM checksum error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK628
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Replace the module.

231806
<location>Encoder 1: Initialization error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK628
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The encoder was not successfully initialized.
Fault value (r0949, interpret hexadecimal):
Bit 0, 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
Bit 2: Mid-voltage matching for track A unsuccessful.
Bit 3: Mid-voltage matching for track B unsuccessful.
Bit 4: Mid-voltage matching for acceleration input unsuccessful.
Bit 5: Mid-voltage matching for track safety A unsuccessful.
Bit 6: Mid-voltage matching for track safety B unsuccessful.
Bit 7: Mid-voltage matching for track C unsuccessful.
Bit 8: Mid-voltage matching for track D unsuccessful.
Bit 9: Mid-voltage matching for track R unsuccessful.
Bit 10: The difference in mid-voltages between A and B is too great (> 0.5 V)
Bit 11: The difference in mid-voltages between C and D is too great (> 0.5 V)
Bit 12: The difference in mid-voltages between safety A and safety B is too great (> 0.5 V)
Bit 13: The difference in mid-voltages between A and safety B is too great (> 0.5 V)
Bit 14: The difference in mid-voltages between B and safety A is too great (> 0.5 V)
Bit 15: The standard deviation of the calculated mid-voltages is too great (> 0.3 V)
Bit 16: Internal fault - fault reading a register (CAFE)
Bit 17: Internal fault - fault writing a register (CAFE)
Bit 18: Internal fault: No mid-voltage matching available
Bit 19: Internal error - ADC access error.
Bit 20: Internal error - no zero crossover found.
Note:
Bit 0, 1: Up to 6SL3055-0AA00-5*A0
Bits 2 ... 20: 6SL3055-0AA00-5*A1 and higher
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Acknowledge the fault.
If the fault cannot be acknowledged:
Bit 2 ... 9: Check voltage supply of the encoder.
Bits 2 ... 14: Check the corresponding cable.
Bit 15 with no other bits: Check track R, check settings in p0404.
231811 <location>Encoder 1: Encoder serial number changed

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 = 401) or third-party motors (p0300 = 2).
Cause 1:
The encoder was replaced.
Cause 2:
A third-party, build-in or linear motor was re-commissioned.
Cause 3:
The motor with integrated and adjusted encoder was replaced.
Cause 4:
The firmware was updated to a version that checks the encoder serial number.
Note:
With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).
Proceed as follows to hide serial number monitoring:
- set the following serial numbers for the corresponding Encoder Data Set: p0441= FF, p0442 = 0, p0442 = 0, p0444 = 0, p0445 = 0.
- parameterize F07414 as message type N (p2118, p2119).
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
Re causes 1, 2:
Carry out an automatic adjustment using the pole position identification routine. Acknowledge the fault. Initiate the pole position identification routine with p1990 = 1. Then check that the pole position identification routine is correctly executed.
SERVO:
If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated.
or
Set the adjustment via p0431. In this case, the new serial number is automatically accepted.
or
Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.
Re causes 3, 4:
Accept the new serial number with p0440 = 1.

231812 <location>Encoder 1: Requested cycle or RX-TX timing not supported

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause:
A cycle requested from the Control Unit or RX/TX timing is not supported.
Alarm value (r2124, interpret decimal):
0: Application cycle is not supported.
1: DQ cycle is not supported.
2: Distance between RX and TX instants in time too low.
3: TX instant in time too early.

Remedy:
231813 Encoder 1: Hardware logic unit failed

<table>
<thead>
<tr>
<th>Message value:</th>
<th>Fault cause: %1 bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>ENCODER (IASC/DCBRAKE, NONE)</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>PULSE INHIBIT</td>
</tr>
</tbody>
</table>
| Cause: | The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary):
| | Bit 0: ALU watchdog has responded.
| | Bit 1: ALU has detected a sign-of-life error. |
| Remedy: | Replace encoder |

231820 Encoder 1 DRIVE-CLiQ: Telegram error

<table>
<thead>
<tr>
<th>Message value:</th>
<th>Component number: %1, fault cause: %2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>ENCODER (IASC/DCBRAKE, NONE)</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>IMMEDIATELY</td>
</tr>
</tbody>
</table>
| Cause: | A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Fault value (r0949, interpret hexadecimal):
| | yyxx hex: yy = component number, xx = fault cause
| | xx = 01 hex: CRC error.
| | xx = 02 hex: Telegram is shorter than specified in the length byte or in the receive list.
| | xx = 03 hex: Telegram is longer than specified in the length byte or in the receive list.
| | xx = 04 hex: The length of the receive telegram does not match the receive list.
| | xx = 05 hex: The type of the receive telegram does not match the receive list.
| | xx = 06 hex: The address of the component in the telegram and in the receive list do not match.
| | xx = 07 hex: A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
| | xx = 08 hex: No SYNC telegram is expected - but the received telegram is one.
| | xx = 09 hex: The error bit in the receive telegram is set.
| | xx = 10 hex: The receive telegram is too early. |
| Remedy: | See also: p0491 (Motor encoder fault response ENCODER) |
| | - carry out a POWER ON. |
| | - check the electrical cabinet design and cable routing for EMC compliance |
| | - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...). |
| | See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) |
231835
<location>Encoder 1 DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 21 hex:
The cyclic telegram has not been received.
xx = 22 hex:
Timeout in the telegram receive list.
xx = 40 hex:
Timeout in the telegram send list.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

231836
<location>Encoder 1 DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Carry out a POWER ON.

231837
<location>Encoder 1 DRIVE-CLiQ: Component fault

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
See also: p0491 (Motor encoder fault response ENCODER)
SINAMICS alarms

231845

<location>Encoder 1 DRIVE-CLiQ: Cyclic data transfer error</location>

Message value: Component number: %1, fault cause: %2

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.

Fault value (r0949, interpret hexadecimal):

- yyxx hex: yy = component number, xx = fault cause
- xx = 0B hex: Synchronization error during alternating cyclic data transfer.

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- Carry out a POWER ON.
- See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

231850

<location>Encoder 1: Encoder evaluation, internal software error</location>

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: POWER ON

Cause: An internal software error has occurred in the Sensor Module of encoder 1.

Fault value (r0949, interpret decimal):

- 1: Background time slice is blocked.
- 2: Checksum over the code memory is not OK.
- 10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
- 11000 ... 11899: Calibration data from EEPROM incorrect.
- 11900 ... 11999: Configuration data from EEPROM incorrect.
- 16000: DRIVE-CLiQ encoder initialization application error.
- 16001: DRIVE-CLiQ encoder initialization ALU error.
- 16002: DRIVE-CLiQ encoder HISI / SiSi initialization error.
- 16003: DRIVE-CLiQ encoder safety initialization error.
- 16004: DRIVE-CLiQ encoder internal system error.

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.
231851

<location>Encoder 1 DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.

231860

<location>Encoder 1 DRIVE-CLiQ (CU): Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 17 hex = 17 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
The telegram is shorter than that specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
The telegram is longer than that specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.
Remedy: - carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
SINAMICS alarms

231885

<location>Encoder 1 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: %1, fault cause: %2

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause
xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

231886

<location>Encoder 1 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy:
- carry out a POWER ON.
- check whether the firmware version of the encoder (r0148) matches the firmware version of Control Unit (r0018).

231887

<location>Encoder 1 DRIVE-CLiQ (CU): Component fault

Message value: Component number: %1, fault cause: %2

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause:
Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 1). Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
SINAMICS alarms

xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
xx = 60 hex:
Response received too late during runtime measurement.
xx = 61 hex:
Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

231895 <location>Encoder 1 DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.

Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

231896 <location>Encoder 1 DRIVE-CLiQ (CU): Inconsistent component properties

Message value: Component number: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Sensor Module for encoder 1), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.

Remedy: - carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
231899 <location>Encoder 1: Unknown fault
Message value: New message: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCKBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal):
Note: Fault number.
If required, the significance of this new fault can be read about in a more recent description of the Control Unit. See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

231902 <location>Encoder 1: SPI-BUS error occurred
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Error when operating the internal SPI bus. Fault value (r0949, interpret hexadecimal):
Note: Only for internal Siemens troubleshooting.
Remedy: - replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

231903 <location>Encoder 1: I2C-BUS error occurred
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Error when operating the internal I2C bus. Fault value (r0949, interpret hexadecimal):
Note: Only for internal Siemens troubleshooting.
Remedy: - replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.
231905 Encoder 1: Parameterization error

Message value: Parameter: %1, supplementary information: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 1 was detected as being incorrect. It is possible that the parameterized encoder type does not match the connected encoder. The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).
Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
 yyyy = 0: No information available.
 yyyy = 1: The component does not support HTL level (p0405.1 = 0) combined with track monitoring A/B <> -A/B (p0405.2 = 1).
 yyyy = 2: A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
 yyyy = 3: A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
 yyyy = 4: This component does not support SSI encoders (p0404.9 = 1) without track A/B.
 yyyy = 5: For SQW encoder, value in p4686 greater than in p0425.
 yyyy = 6: DRIVE-CLiQ encoder cannot be used with this firmware version.
 yyyy = 7: For the SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.
- re parameter number = 314:
- check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).

231915 Encoder 1: Configuration error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The configuration for encoder 1 is incorrect. Fault value (r0949, interpret decimal):
 1: Re-parameterization between fault/alarm is not permissible.
 419: When the fine resolution Gx_ACT2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy:
 1: No re-parameterization between fault/alarm.
 419: Reduce the fine resolution (p0419).
231916 <location>Encoder 1: Parameterization fault

Message value: Parameter: %1, supplementary information: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 1 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).
Fault value (r0949, interpret decimal):
Parameter number.
Note:
This fault is only output for encoders where r0404.10 = 1 or r0404.11 = 1. It corresponds to A31905 with encoders where r0404.10 = 0 and r0404.11 = 0.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.

231920 <location>Encoder 1: Temperature sensor fault

Message value: Fault cause: %1, channel number: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
Low word low byte: Cause:
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Additional values:
Only for internal Siemens troubleshooting.
Low word high byte: Channel number.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check that the encoder cable is the correct type and is correctly connected.
- check the temperature sensor selection in p0600 to p0603.
- replace the Sensor Module (hardware defect or incorrect calibration data).

231999 <location>Encoder 1: Unknown alarm

Message value: New message: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: A alarm has occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note:
If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).
232100 <location>Encoder 2: Zero mark distance error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Fault value (r0949, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance.
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- replace the encoder or encoder cable.

232101 <location>Encoder 2: Zero marked failed

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The 1.5 x parameterized zero mark distance was exceeded.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Fault value (r0949, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the clearance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- when p0437.1 is active, check p4686.
- replace the encoder or encoder cable.

232103 <location>Encoder 2: Amplitude error, track R

Message value: R track: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 2.

The fault can be initiated when the unipolar voltage level is exceeded (RP/RN) or if the differential amplitude is undershot.

Fault value (r0949, interpret hexadecimal):

\[\text{xxxx hex} \]

\[\text{xxxx} = \text{Signal level, track R (16 bits with sign).} \]

The response thresholds of the unipolar signal levels of the encoder are between \(< 1400 \text{ mV and } > 3500 \text{ mV).} \]

The response threshold for the differential signal level of the encoder is \(< -1600 \text{ mV.} \]

A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.

Note:
The analog value of the amplitude error is not measured at the same time with the hardware fault output by the Sensor Module.
The fault value can only be represented between -32767dec and 32767dec (-770 mV ... 770 mV).

The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).

Remedy:
- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts of the encoder cable.
- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly
- replace the encoder cable.
- if the coding disk is soiled or the lighting aged, replace the encoder.

232110

Encoder 2: Serial communications error

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause:
Serial communication protocol transfer error between the encoder and evaluation module.
Fault value (r0949, interpret binary):
Bit 0: Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 8: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.
Bit 13: Data line incorrect.

Remedy:
- Enc defect F31111 may provide additional details.
- Incorrect encoder type / replace the encoder or encoder cable.
- Incorrect encoder type / replace the encoder or encoder cable.
- EMC / connect the cable shield, replace the encoder or encoder cable.
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
SINAMICS alarms

Re fault value, bit 6 = 1:
- Update Sensor Module firmware.
Re fault value, bit 8 = 1:
- Check parameterization (p0429.2).
Re fault value, bit 9 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
Re fault value, bit 10 = 1:
- Check parameterization (p0429.2, p0449).
Re fault value, bit 11 = 1:
- Check parameterization (p0436).
Re fault value, bit 12 = 1:
- Check parameterization (p0429.6).
Re fault value, bit 13 = 1:
- Check data line.

232111

<location>Encoder 2: Absolute encoder EnDat, internal fault/error

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause:
The EnDat encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
 Bit 0: Lighting system failed.
 Bit 1: Signal amplitude too low.
 Bit 2: Position value incorrect.
 Bit 3: Encoder power supply overvoltage condition.
 Bit 4: Encoder power supply undervoltage condition.
 Bit 5: Encoder power supply overcurrent condition.
 Bit 6: The battery must be changed.
Remedy:
Re fault value, bit 0 = 1:
 Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 1 = 1:
 Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 2 = 1:
 Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 3 = 1:
 5 V power supply voltage fault.
 When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
 When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
Re fault value, bit 4 = 1:
 5 V power supply voltage fault.
 When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
 When using a motor with DRIVE-CLiQ: Replace the motor.
Re fault value, bit 5 = 1:
 Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 6 = 1:
The battery must be changed (only for encoders with battery back-up).
SINAMICS alarms

232112 Encoder 2: Error bit set in the serial protocol

- Message value: %1
- Drive object: SERVO_COMBI, SERVO_SINUMERIK828
- Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- Acknowledge: PULSE INHIBIT
- Cause: The encoder sends a set error bit via the serial protocol.
 Fault value (r0949, interpret binary):
 Bit 0: Fault bit in the position protocol.
- Remedy: For fault value, bit 0 = 1:
 In the case of an EnDat encoder, F31111 may provide further details.

232115 Encoder 2: Amplitude error track A or B (A^2 + B^2)

- Message value: A track: %1, B-track: %2
- Drive object: SERVO_COMBI, SERVO_SINUMERIK828
- Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- Acknowledge: PULSE INHIBIT
- Cause: The amplitude (root of A^2 + B^2) for encoder 2 exceeds the permissible tolerance.
 Fault value (r0949, interpret hexadecimal):
 yyyy = Signal level, track B (16 bits with sign).
 xxxx = Signal level, track A (16 bits with sign).
 The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
 The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
 A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
 Note for sensors modules for resolvers (e.g. SMC10):
 The nominal signal level is at 2900 mV (2.0 Vrms). The response thresholds are < 1070 mV and > 3582 mV.
 A signal level of 2900 mV peak value corresponds to the numerical value 6666 hex = 26214 dec.
 Note:
 The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
- Remedy:
 - check that the encoder cables and shielding are routed in compliance with EMC.
 - check the plug connections
 - replace the encoder or encoder cable
 - check the Sensor Module (e.g. contacts).
 The following applies to measuring systems without their own bearing system:
 - adjust the scanning head and check the bearing system of the measuring wheel.
 The following applies for measuring systems with their own bearing system:
 - ensure that the encoder housing is not subject to any axial force.
232116 <location>Encoder 2: Amplitude error monitoring track A + B

Message value: Amplitude: %1, Angle: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The amplitude of the rectified encoder signals A and B and the amplitude from the roots of A^2 + B^2 for encoder 2 are not within the tolerance bandwidth.
Fault value (r0949, interpret hexadecimal):
 yyyyyy hex:
 yyy = Signal level, track B (16 bits with sign).
 xxxx = Signal level, track A (16 bits with sign).
 The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
 The response thresholds are < 176 mV (observe the frequency response of the encoder) and > 955 mV.
 A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).

232117 <location>Encoder 2: Inversion error signals A and B and R

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: For a square-wave encoder (bipolar, double ended) the A* and B* and R* signals are not inverted with respect to signals A and B and R.
Fault value (r0949, interpret binary):
 Bits 0-15: Only for internal Siemens troubleshooting.
 Bit 16: Error track A.
 Bit 17: Error track B.
 Bit 18: Error track R.
Note:
 For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), CUA32, and CU310, the following applies:
 A square-wave encoder without track R is used and track monitoring (p0405.2 = 1) is activated.
Remedy:
 Check the encoder/cable: Does the encoder provide signals and the associated inverted signals?
Note:
 For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), the following applies:
 - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
 For a square-wave encoder without track R, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
 - pin 10 (reference signal R) <-> pin 7 (encoder power supply, ground)
 - pin 11 (reference signal R inverted) <-> pin 4 (encoder power supply)
232118 <location>Encoder 2: Speed difference outside the tolerance range

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles.
The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
See also: p0492 (Square-wave encoder, maximum speed difference per sampling cycle)
Remedy:
- check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the maximum speed difference per sampling cycle (p0492).

232120 <location>Encoder 2: Power supply voltage fault

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: Encoder 2 power supply voltage fault.
Fault value (r0949, interpret binary):
Bit 0: Undervoltage condition on the sense line.
Bit 1: Overcurrent condition for the encoder power supply.
Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
Note:
If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder
being destroyed because the pins of the operating voltage are reversed.
Remedy:
Re fault value, bit 0 = 1:
- correct encoder cable connected?
- check the plug connections of the encoder cable.
- SMC30: Check the parameterization (p0404.22).
Re fault value, bit 1 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable
Re fault value, bit 2 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable
Re fault value, bit 3 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable

232121 <location>Encoder 2: Coarse position error

Message value:
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: For the actual value sensing, an error was detected on the module. As a result of this error, it must be assumed that
the actual value sensing supplies an incorrect coarse position.
Remedy:
Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
232122

<location>Encoder 2: Internal power supply voltage faulty

- **Message value:** %1
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** ENCODER
- **Acknowledge:** IMMEDIATELY
- **Cause:** Fault in internal reference voltage of ASICs for encoder 2.
 - Fault value (r0949, interpret decimal):
 - 1: Reference voltage error.
 - 2: Internal undervoltage.
 - 3: Internal overvoltage.
- **Remedy:** Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

232123

<location>Encoder 2: Signal level A/B unipolar outside tolerance

- **Message value:** Fault cause: %1 bin
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- **Acknowledge:** IMMEDIATELY
- **Cause:** The unipolar level (AP/AN or BP/BN) for encoder 2 is outside the permissible tolerance.
 - Fault value (r0949, interpret binary):
 - Bit 0 = 1: Either AP or AN outside the tolerance.
 - Bit 16 = 1: Either BP or BN outside the tolerance.
 - The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
 - The response thresholds are < 1700 mV and > 3300 mV.
 - **Note:** The signal level is not evaluated unless the following conditions are satisfied:
 - Sensor Module properties available (r0459.31 = 1).
 - Monitoring active (p0437.31 = 1).
- **Remedy:**
 - make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
 - check the plug connections and contacts of the encoder cable.
 - check the short-circuit of a signal cable with mass or the operating voltage.
 - replace the encoder cable.

232125

<location>Encoder 2: Amplitude error track A or B overcontrolled

- **Message value:** A track: %1, B-track: %2
- **Drive object:** SERVO_COMBI, SERVO_SINUMERIK828
- **Reaction:** OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
- **Acknowledge:** PULSE INHIBIT
- **Cause:** The amplitude of track A or B for encoder 2 exceeds the permissible tolerance band.
 - Fault value (r0949, interpret hexadecimal): yyyyxxxx hex:
 - yyyy = Signal level, track B (16 bits with sign).
 - xxxx = Signal level, track A (16 bits with sign).
 - The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
 - The response threshold is > 750 mV. This fault also occurs if the A/D converter is overcontrolled.
 - A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
 - **Note for sensors modules for resolvers (e. g. SMC10):**
 - The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is > 3582 mV.
 - A signal level of 2900 mV peak value corresponds to the numerical value 6666 hex = 26214 dec.
 - **Note:** The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable

232126

- **<location>Encoder 2: Amplitude AB too high**

Message value: Amplitude: %1, Angle: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The amplitude (root of A^2 + B^2 or |A| + |B|) for encoder 2 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):

```
yyyyxxxx hex:  
```

- yyyy = Angle
- xxxx = Amplitude, i.e. root from A^2 + B^2 (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold for (|A| + |B|) is > 1120 mV or the root of (A^2 + B^2) > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex = 10650 dec.
The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero
crossover of track B.
Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the
Sensor Module.
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable

232129

- **<location>Encoder 2: Position difference, hall sensor/track C/D and A/B too large**

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater
than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect
rotational sense or supply values that are not accurate enough.
After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault
is no longer initiated, but instead, Alarm A32429.
Fault value (r0949, interpret decimal):

For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.
SINAMICS alarms

232130

Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Drive object:	SERVO_COMBI, SERVO_SINUMERIK828
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out. When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of +/-18° mechanical. When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of +/-60° electrical.
Fault value (r0949, interpret hexadecimal):	yyyyxxxx hex
	yyyy: Determined mechanical zero mark position (can only be used for track C/D). xxxx: Deviation of the zero mark from the expected position as electrical angle.
Scaling:	32768 dec = 180°

232131

Message value:	%1
Drive object:	SERVO_COMBI, SERVO_SINUMERIK828
Reaction:	OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Absolute encoder: When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected. Limit value for the deviation:
	- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI 1325 > 2 quadrants, EQN 1325 > 50 quadrants).
	- other encoders: 15 pulses = 60 quadrants.
Incremental encoder:	When the zero pulse is passed, a deviation in the incremental position was detected. For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark. For distance-coded zero marks, the following applies:
	- The first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
Fault value (r0949, interpret decimal):	Deviation in quadrants (1 pulse = 4 quadrants).

Remedy:

- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- if the Hall sensor is used as an equivalent for track C/D, check the connection.
- Check the connection of track C or D.
- replace the encoder or encoder cable
- check whether the coding disk is dirty or there are strong ambient magnetic fields.
- adapt the parameter for the clearance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
SINAMICS alarms

232135 <location>Encoder 2: Fault when determining the position

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause:

The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.

Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (→ F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (→ F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (→ F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (→ F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (→ F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (→ F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (→ F3x135, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (→ F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (→ F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (→ F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (→ F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (→ F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (→ F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (→ F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy: Replace DRIVE-CLiQ encoder.

232136 <location>Encoder 2: Error when determining multiturn information

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause:

The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.

Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (→ F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (--> F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (--> F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (--> F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (--> F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (--> F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (--> F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (--> F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (--> F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (--> F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (--> F3x135, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy: Replace DRIVE-CLiQ encoder.

232137 <location>Encoder 2: Internal error when determining the position
Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

232138 <location>Encoder 2: Internal error when determining multiturn information
Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

232150 <location>Encoder 2: Initialization error
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: Encoder functionality selected in p0404 is not operating correctly.
Fault value (r0949, interpret hexadecimal):
The fault value is a bit field. Every set bit indicates functionality that is faulted.
The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:
- Check that p0404 is correctly set.
- check the encoder type used (incremental/absolute value) and for SMCxx, the encoder cable.
- if relevant, note additional fault messages that describe the fault in detail.
232151 <location>Encoder 2: Encoder speed for initialization AB too high

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The encoder speed is too high during while initializing the sensor.
Remedy: Reduce the speed of the encoder accordingly during initialization.
If necessary, de-activate monitoring (p0437.29).
See also: p0437 (Sensor Module configuration extended)

232160 <location>Encoder 2: Analog sensor channel A failed

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The input voltage of the analog sensor is outside the permissible limits.
Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4673.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy: Re fault value = 1:
- check the output voltage of the analog sensor.
Re fault value = 2:
- check the voltage setting for each encoder period (p4673).
Re fault value = 3:
- check the range limit setting and increase it if necessary (p4676).

232161 <location>Encoder 2: Analog sensor channel B failed

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The input voltage of the analog sensor is outside the permissible limits.
Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4675.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy: Re fault value = 1:
- check the output voltage of the analog sensor.
Re fault value = 2:
- check the voltage setting for each encoder period (p4675).
Re fault value = 3:
- check the range limit setting and increase it if necessary (p4676).
232400

<location>Encoder 2: Alarm threshold zero mark distance error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE

Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal): Last measured zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.

Remedy: - check that the encoder cables are routed in compliance with EMC. - check the plug connections. - check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the distance between zero marks (p0424, p0425). - replace the encoder or encoder cable

232401

<location>Encoder 2: Alarm threshold zero marked failed

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE

Cause: The 1.5 x parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal): Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).

Remedy: - check that the encoder cables are routed in compliance with EMC. - check the plug connections. - check the encoder type (encoder with equidistant zero marks). - adapt the parameter for the clearance between zero marks (p0425). - replace the encoder or encoder cable

232405

<location>Encoder 2: Temperature in the encoder evaluation inadmissible

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature. The fault threshold is 125 ° C.
Alarm value (r2124, interpret decimal): Measured board/module temperature in 0.1 °C.

Remedy: Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
232407
<location>Encoder 2: Function limit reached

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The encoder has reached one of its function limits. A service is recommended.
Alarm value (r2124, interpret decimal):
- 1 : Incremental signals
- 3 : Absolute track
- 4 : Code connection
Remedy: Perform service. Replace the encoder if necessary.
Note: The current functional reserve of an encoder can be displayed via r4651.
See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve)

232410
<location>Encoder 2: Serial communications

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Serial communication protocol transfer error between the encoder and evaluation module.
Alarm value (r2124, interpret binary):
- Bit 0: Alarm bit in the position protocol.
- Bit 1: Incorrect quiescent level on the data line.
- Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
- Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
- Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
- Bit 5: Internal error in the serial driver: An illegal mode command was requested.
- Bit 6: Timeout when cyclically reading.
- Bit 8: Protocol is too long (e.g. > 64 bits).
- Bit 9: Receive buffer overflow.
- Bit 10: Frame error when reading twice.
- Bit 11: Parity error.
- Bit 12: Data line signal level error during the monoflop time.
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder.

232411
<location>Encoder 2: EnDat encoder signals alarms

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The error word of the EnDat encoder has alarm bits that have been set.
Alarm value (r2124, interpret binary):
- Bit 0: Frequency exceeded (speed too high).
- Bit 1: Temperature exceeded.
- Bit 2: Control reserve, lighting system exceeded.
- Bit 3: Battery discharged.
- Bit 4: Reference point passed.
Remedy: Replace encoder.
232412 <location>Encoder 2: Error bit set in the serial protocol

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The encoder sends a set error bit via the serial protocol.
 Alarm value (r2124, interpret binary):
 Bit 0: Fault bit in the position protocol.
 Bit 1: Alarm bit in the position protocol.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder.

232414 <location>Encoder 2: Amplitude error track C or D (C^2 + D^2)

Message value: C track: %1, D track: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (C^2 + D^2) of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth.
 Alarm value (r2124, interpret hexadecimal):
 yyyyxxxx hex:
 yyyy = Signal level, track D (16 bits with sign).
 xxxx = Signal level, track C (16 bits with sign).
 The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
 The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
 A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
 Note:
 If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).
- check the Hall sensor box
232415 <location>Encoder 2: Amplitude alarm track A or B (A^2 + B^2)
Message value: Amplitude: %1, Angle: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
The amplitude (root of A^2 + B^2) for encoder 2 exceeds the permissible tolerance.
Alarm value (r2124, interpret hexadecimal):
 yyyy hex:
 xxxx = Amplitude, i.e. root from A^2 + B^2 (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is < 300 mV (observe the frequency response of the encoder).
A signal level of 500 mV peak value corresponds to the numerical value 299A hex = 10650 dec.
The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero
crossover of track B.
Note for sensors modules for resolvers (e.g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).
A signal level of 2900 mV peak value corresponds to the numerical value 3333 hex = 13107 dec.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the
Sensor Module.
Remedy:
- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not suffi-
cient for the speed range.
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).
- if the coding disk is soiled or the lighting aged, replace the encoder.

232418 <location>Encoder 2: Speed difference per sampling rate exceeded
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.
The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
See also: p0492 (Square-wave encoder, maximum speed difference per sampling cycle)
Remedy:
- check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the setting of p0492.
232419 <location>Encoder 2: Track A or B outside the tolerance range

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
The amplitude, phase or offset correction for track A or B is at the limit.
Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
Phase: <84 degrees or >96 degrees
SMC20: Offset correction: +/-140 mV
SMC10: Offset correction: +/-650 mV
Alarm value (r2124, interpret hexadecimal):
xxxx1: Minimum of the offset correction, track B
xxxx2: Maximum of the offset correction, track B
xxx1x: Minimum of the offset correction, track A
xxx2x: Maximum of the offset correction, track A
x1xx: Minimum of the amplitude correction, track B/A
x2xx: Maximum of the amplitude correction, track B/A
x1xxx: Minimum of the phase error correction
x2xxx: Maximum of the phase error correction
1xxxx: Minimum of the cubic correction
2xxxx: Maximum of the cubic correction
Remedy:
- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).
- check the plug connections (also the transition resistance).
- check the encoder signals.
- replace the encoder or encoder cable

232421 <location>Encoder 2: Coarse position error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Alarm value (r2124, interpret decimal):
3: The absolute position of the serial protocol and track A/B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy:
Re alarm value = 3:
- for a standard encoder with cable, if required, contact the manufacturer.
- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A* and B with B*) or, for a programmable encoder, check the zero offset of the position.
232422 Encoder 2: Pulses per revolution square-wave encoder outside tolerance bandwidth

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance. This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684. The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder). Alarm value (r2124, interpret decimal): accumulated differential pulses in encoder pulses.
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- replace the encoder or encoder cable.

232429 Encoder 2: Position difference, hall sensor/track C/D and A/B too large

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
Alarm value (r2124, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
Remedy: - track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.
232431 Encoder 2: Deviation, position incremental/absolute too large

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: When the zero pulse is passed, a deviation in the incremental position was detected. For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
For distance-coded zero marks, the following applies:
- The first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
Alarm value (r2124, interpret decimal):
Deviation in quadrants (1 pulse = 4 quadrants).
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- Clean coding disk or remove strong magnetic fields.

232432 Encoder 2: Rotor position adaptation corrects deviation

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected.
Alarm value (r2124, interpret decimal):
Last measured deviation of zero mark in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check encoder limit frequency.
- adapt the parameter for the distance between zero marks (p0424, p0425).

232442 Encoder 2: Battery voltage pre-alarm

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- replace battery.
232443 <location>Encoder 2: Unipolar CD signal level outside specification</location>

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The unipolar level (CP/CN or DP/DN) for encoder 2 is outside the permissible tolerance.
Alarm value (r2124, interpret binary):
Bit 0 = 1: Either CP or CN outside the tolerance.
Bit 16 = 1: Either DP or DN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.
Note: The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts of the encoder cable.
- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?
- replace the encoder cable.

232460 <location>Encoder 2: Analog sensor channel A failed</location>

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The input voltage of the analog sensor is outside the permissible limits.
Alarm value (r2124, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4673.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:
Re alarm value = 1:
- check the output voltage of the analog sensor.
Re alarm value = 2:
- check the voltage setting for each encoder period (p4673).
Re alarm value = 3:
- check the range limit setting and increase it if necessary (p4676).

232461 <location>Encoder 2: Analog sensor channel B failed</location>

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The input voltage of the analog sensor is outside the permissible limits.
Alarm value (r2124, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4675.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy: Re alarm value = 1:
- check the output voltage of the analog sensor.
Re alarm value = 2:
- check the voltage setting for each encoder period (p4675).
Re alarm value = 3:
- check the range limit setting and increase it if necessary (p4676).

232462 <location>Encoder 2: Analog sensor, no channel active</location>
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Channel A and B are not activated for the analog sensor.
Remedy:
- activate channel A and/or channel B (p4670).
- check the encoder configuration (p0404.17).
See also: p4670 (Analog sensor configuration)

232470 <location>Encoder 2: Soiling detected</location>
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7.
Remedy:
- check the plug connections
- replace the encoder or encoder cable

232500 <location>Encoder 2: Position tracking traversing range exceeded</location>
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions. For p0411.0 = 1, the maximum traversing range for the configured linear axis is defined to be 64x (+/- 32x) of p0421. For p0411.3 = 1, the maximum traversing range for the configured linear axis is pre-set (default value) to the highest possible value and is +/-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
Remedy: The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted.
232501 <location>Encoder 2: Position tracking encoder position outside tolerance window

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:
When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.

Fault value (r0949, decimal):
Deviation (difference) to the last encoder position in increments of the absolute value.
The sign designates the traversing direction.

Note:
The deviation (difference) found is also displayed in r0477.
See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)

Remedy:
Reset the position tracking as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
See also: p0010

232502 <location>Encoder 2: Encoder with measuring gear, without valid signals

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:
The encoder with measuring gear no longer provides any valid signals.

Remedy:
It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.

232503 <location>Encoder 2: Position tracking cannot be reset

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:
The position tracking for the measuring gear cannot be reset.

Remedy:
The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted.
232700 <location>Encoder 2: Effectivity test does not supply the expected value

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit x = 1: Effectivity test x unsuccessful.
Remedy:

232800 <location>Encoder 2: Group signal

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: NONE
Cause: The motor encoder has detected at least one fault.
Remedy: Evaluates other actual messages.

232801 <location>Encoder 2 DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex: The sign-of-life bit in the receive telegram is not set.
Remedy: - check the electrical cabinet design and cable routing for EMC compliance
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

232802 <location>Encoder 2: Time slice overflow

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A time slice overflow has occurred in encoder 2.
Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
Remedy: Reduce the current controller frequency.
232804 <location>Encoder 2: Checksum error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A checksum error has occurred when reading-out the program memory on the Sensor Module.
Fault value (r0949, interpret hexadecimal):
 yyyyxxxx hex
 yyyy: Memory area involved.
 xxxx: Difference between the checksum at POWER ON and the actual checksum.
Remedy: - check whether the permissible ambient temperature for the component is maintained.
 - replace the Sensor Module.

232805 <location>Encoder 2: EPROM checksum error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
 01: EEPROM access error.
 02: Too many blocks in the EEPROM.
Remedy: Replace the module.

232806 <location>Encoder 2: Initialization error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The encoder was not successfully initialized.
Fault value (r0949, interpret hexadecimal):
 Bit 0, 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
 Bit 2: Mid-voltage matching for track A unsuccessful.
 Bit 3: Mid-voltage matching for track B unsuccessful.
 Bit 4: Mid-voltage matching for acceleration input unsuccessful.
 Bit 5: Mid-voltage matching for track safety A unsuccessful.
 Bit 6: Mid-voltage matching for track safety B unsuccessful.
 Bit 7: Mid-voltage matching for track C unsuccessful.
 Bit 8: Mid-voltage matching for track D unsuccessful.
 Bit 9: Mid-voltage matching for track R unsuccessful.
 Bit 10: The difference in mid-volages between A and B is too great (> 0.5 V)
 Bit 11: The difference in mid-volages between C and D is too great (> 0.5 V)
 Bit 12: The difference in mid-volages between safety A and safety B is too great (> 0.5 V)
 Bit 13: The difference in mid-volages between A and safety B is too great (> 0.5 V)
 Bit 14: The difference in mid-volages between B and safety A is too great (> 0.5 V)
Bit 15: The standard deviation of the calculated mid-voltages is too great (> 0.3 V)
Bit 16: Internal fault - fault reading a register (CAFE)
Bit 17: Internal fault - fault writing a register (CAFE)
Bit 18: Internal fault: No mid-voltage matching available
Bit 19: Internal error - ADC access error.
Bit 20: Internal error - no zero crossover found.
Note:
Bit 0, 1: Up to 6SL3055-0AA00-5*A0
Bits 2 ... 20: 6SL3055-0AA00-5*A1 and higher

Remedy:
- Acknowledge the fault.
- If the fault cannot be acknowledged:
 - Bit 2 ... 9: Check voltage supply of the encoder.
 - Bits 2 ... 14: Check the corresponding cable.
 - Bit 15 with no other bits: Check track R, check settings in p0404.

232811 <location>Encoder 2: Encoder serial number changed

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).
Note: The encoder was replaced.
With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).
Proceed as follows to hide serial number monitoring:
- set the following serial numbers for the corresponding Encoder Data Set: p0441 = FF, p0442 = 0, p0442 = 0, p0444 = 0, p0445 = 0.
Remedy: Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.

232812 <location>Encoder 2: Requested cycle or RX-/TX timing not supported

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A cycle requested from the Control Unit or RX/TX timing is not supported.
Alarm value (r2124, interpret decimal):
0: Application cycle is not supported.
1: DQ cycle is not supported.
2: Distance between RX and TX instants in time too low.
3: TX instant in time too early.
Remedy:
232813 <location>Encoder 2: Hardware logic unit failed

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
 Bit 0: ALU watchdog has responded.
 Bit 1: ALU has detected a sign-of-life error.
Remedy: Replace encoder

232820 <location>Encoder 2 DRIVE-CLiQ: Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 01 hex: CRC error.
 xx = 02 hex: Telegram is shorter than specified in the length byte or in the receive list.
 xx = 03 hex: Telegram is longer than specified in the length byte or in the receive list.
 xx = 04 hex: The length of the receive telegram does not match the receive list.
 xx = 05 hex: The type of the receive telegram does not match the receive list.
 xx = 06 hex: The address of the component in the telegram and in the receive list do not match.
 xx = 07 hex: A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
 xx = 08 hex: No SYNC telegram is expected - but the received telegram is one.
 xx = 09 hex: The error bit in the receive telegram is set.
 xx = 10 hex: The receive telegram is too early.
Remedy: - carry out a POWER ON.
 - check the electrical cabinet design and cable routing for EMC compliance
 - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
232835 <location>Encoder 2 DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 21 hex:
The cyclic telegram has not been received.
xx = 22 hex:
Timeout in the telegram receive list.
xx = 40 hex:
Timeout in the telegram send list.
Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

232836 <location>Encoder 2 DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.
Remedy:
Carry out a POWER ON.

232837 <location>Encoder 2 DRIVE-CLiQ: Component fault

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
232845 <location>Encoder 2 DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

232850 <location>Encoder 2: Encoder evaluation, internal software error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: POWER ON
Cause: An internal software error has occurred in the Sensor Module of encoder 2.
Fault value (r0949, interpret decimal):
1: Background time slice is blocked.
2: Checksum over the code memory is not OK.
10000 ... 11499: Descriptive data from EEPROM incorrect.
11500 ... 11899: Calibration data from EEPROM incorrect.
11900 ... 11999: Configuration data from EEPROM incorrect.
16000: DRIVE-CLiQ encoder initialization application error.
16001: DRIVE-CLiQ encoder initialization ALU error.
16002: DRIVE-CLiQ encoder HSI / SISI initialization error.
16003: DRIVE-CLiQ encoder safety initialization error.
16004: DRIVE-CLiQ encoder internal system error.
Remedy: - replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

232851 <location>Encoder 2 DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.
Alarms

Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0 799

232860 Encoder 2 DRIVE-CLiQ (CU): Telegram error

Message value: Component number: %1, fault cause: %2

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit. Fault value (r0949, interpret hexadecimal):

- yy = component number, xx = fault cause
- xx = 11 hex = 17 dec: CRC error and the receive telegram is too early.
- xx = 01 hex = 01 dec: Checksum error (CRC error).
- xx = 12 hex = 18 dec: The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
- xx = 02 hex = 02 dec: Telegram is shorter than specified in the length byte or in the receive list.
- xx = 13 hex = 19 dec: The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
- xx = 03 hex = 03 dec: Telegram is longer than specified in the length byte or in the receive list.
- xx = 14 hex = 20 dec: The length of the receive telegram does not match the receive list and the receive telegram is too early.
- xx = 04 hex = 04 dec: The length of the receive telegram does not match the receive list.
- xx = 15 hex = 21 dec: The type of the receive telegram does not match the receive list and the receive telegram is too early.
- xx = 05 hex = 05 dec: The type of the receive telegram does not match the receive list.
- xx = 16 hex = 22 dec: The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
- xx = 06 hex = 06 dec: The address of the power unit in the telegram and in the receive list do not match.
- xx = 19 hex = 25 dec: The error bit in the receive telegram is set and the receive telegram is too early.
- xx = 09 hex = 09 dec: The error bit in the receive telegram is set.
- xx = 10 hex = 16 dec: The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
232885 <location>Encoder 2 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.
Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

232886 <location>Encoder 2 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.
Remedy: Carry out a POWER ON.
232887 <location>Encoder 2 DRIVE-CLiQ (CU): Component fault

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 2). Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
xx = component number, xx = fault cause
xx = 20 hex: Error in the telegram header.
xx = 42 hex: Send error: The telegram buffer memory contains an error.
xx = 43 hex: Send error: The telegram buffer memory contains an error.
xx = 60 hex: Response received too late during runtime measurement.
xx = 61 hex: Time taken to exchange characteristic data too long.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

232895 <location>Encoder 2 DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit. Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex: Synchronization error during alternating cyclic data transfer.
Remedy:
Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

232896 <location>Encoder 2 DRIVE-CLiQ (CU): Inconsistent component properties

Message value: Component number: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Sensor Module for encoder 2), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.
SINAMICS alarms

Remedy:
- carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).

232899 <location>Encoder 2: Unknown fault

Message value: New message: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

232902 <location>Encoder 2: SPI-BUS error occurred

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Error when operating the internal SPI bus.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

232903 <location>Encoder 2: I2C-BUS error occurred

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Error when operating the internal I2C bus.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.
232905 <location> Encoder 2: Parameterization error

Message value: Parameter: %1, supplementary information: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 2 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).
Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
yyyy = 0: No information available.
yyyy = 1: The component does not support HTL level (p0405.1 = 0) combined with track monitoring A/B <> -A/B (p0405.2 = 1).
yyyy = 2: A code number for an identified encoder has been entered into p0400, however, no identification was carried out.
Please start a new encoder identification.
yyyy = 3: A code number for an identified encoder has been entered into p0400, however, no identification was carried out.
Please select a listed encoder in p0400 with a code number < 10000.
yyyy = 4: This component does not support SSI encoders (p0404.9 = 1) without track A/B.
yyyy = 5: For SQW encoder, value in p4686 greater than in p0425.
yyyy = 6: DRIVE-CLiQ encoder cannot be used with this firmware version.
yyyy = 7: For the SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks.
Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.
- re parameter number = 314:
 - check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).

232915 <location> Encoder 2: Configuration error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The configuration for encoder 2 is incorrect.
Fault value (r0949, interpret decimal):
1: Re-parameterization between fault/alarm is not permissible.
419: When the fine resolution Gx.ACT2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy:
1: No re-parameterization between fault/alarm.
419: Reduce the fine resolution (p0419).
232916 <location>Encoder 2: Parameterization fault</location>

Message value: Parameter: %1, supplementary information: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause:
A parameter of encoder 2 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).
Fault value (r0949, interpret decimal): Parameter number.
Note:
This fault is only output for encoders where r0404.10 = 1 or r0404.11 = 1. It corresponds to A32905 with encoders where r0404.10 = 0 and r0404.11 = 0.
Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.

232920 <location>Encoder 2: Temperature sensor fault</location>

Message value: Fault cause: %1, channel number: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
Low word low byte: Cause:
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Additional values:
Only for internal Siemens troubleshooting.
Low word high byte: Channel number.
Remedy:
- check that the encoder cable is the correct type and is correctly connected.
- check the temperature sensor selection in p0600 to p0603.
- replace the Sensor Module (hardware defect or incorrect calibration data).

232999 <location>Encoder 2: Unknown alarm</location>

Message value: New message: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
A alarm has occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal): Alarm number.
Note:
If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).
233100 <location> Encoder 3: Zero mark distance error
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that
if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the
system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Fault value (r0949, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance.
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- replace the encoder or encoder cable.

233101 <location> Encoder 3: Zero marked failed
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The 1.5 x parameterized zero mark distance was exceeded.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Fault value (r0949, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder
pulse).
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the clearance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- when p0437.1 is active, check p4686.
- replace the encoder or encoder cable.

233103 <location> Encoder 3: Amplitude error, track R
Message value: R track: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 3.
The fault can be initiated when the unipolar voltage level is exceeded (RP/RN) or if the differential amplitude is under-
shot.
Fault value (r0949, interpret hexadecimal):
xxxx hex:
xxxx = Signal level, track R (16 bits with sign).
The response thresholds of the unipolar signal levels of the encoder are between < 1400 mV and > 3500 mV.
The response threshold for the differential signal level of the encoder is < -1600 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note:
The analog value of the amplitude error is not measured at the same time with the hardware fault output by the Sensor Module.
The fault value can only be represented between -32767dec and 32767dec (-770 mV ... 770 mV).
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).

Remedy:
- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts of the encoder cable.
- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly
- replace the encoder cable.
- if the coding disk is soiled or the lighting aged, replace the encoder.

233110 <location>Encoder 3: Serial communications error

<table>
<thead>
<tr>
<th>Message value:</th>
<th>Fault cause: %1 bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>PULSE INHIBIT</td>
</tr>
</tbody>
</table>
| Cause: | Serial communication protocol transfer error between the encoder and evaluation module. Fault value (r0949, interpret binary):
- Bit 0: Alarm bit in the position protocol.
- Bit 1: Incorrect quiescent level on the data line.
- Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
- Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
- Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
- Bit 5: Internal error in the serial driver: An illegal mode command was requested.
- Bit 6: Timeout when cyclically reading.
- Bit 8: Protocol is too long (e.g. > 64 bits).
- Bit 9: Receive buffer overflow.
- Bit 10: Frame error when reading twice.
- Bit 11: Parity error.
- Bit 12: Data line signal level error during the monoflop time.
- Bit 13: Data line incorrect. |

Remedy:
- Re fault value, bit 0 = 1:
 - Enc defect F31111 may provide additional details.
- Re fault value, bit 1 = 1:
 - Incorrect encoder type / replace the encoder or encoder cable.
- Re fault value, bit 2 = 1:
 - Incorrect encoder type / replace the encoder or encoder cable.
- Re fault value, bit 3 = 1:
 - EMC / connect the cable shield, replace the encoder or encoder cable.
- Re fault value, bit 4 = 1:
 - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
- Re fault value, bit 5 = 1:
 - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
- Re fault value, bit 6 = 1:
 - Update Sensor Module firmware.
- Re fault value, bit 8 = 1:
 - Check parameterization (p0429.2).
- Re fault value, bit 9 = 1:
 - EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
- Re fault value, bit 10 = 1:
 - Check parameterization (p0429.2, p0449).
Re fault value, bit 11 = 1:
- Check parameterization (p0436).
Re fault value, bit 12 = 1:
- Check parameterization (p0429.6).
Re fault value, bit 13 = 1:
- Check data line.

233111 <location> Encoder 3: Absolute encoder EnDat, internal fault/error

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The EnDat encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
- Bit 0: Lighting system failed.
- Bit 1: Signal amplitude too low.
- Bit 2: Position value incorrect.
- Bit 3: Encoder power supply overvoltage condition.
- Bit 4: Encoder power supply undervoltage condition.
- Bit 5: Encoder power supply overcurrent condition.
- Bit 6: The battery must be changed.
Remedy:
Re fault value, bit 0 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 1 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 2 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 3 = 1:
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
Re fault value, bit 4 = 1:
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When using a motor with DRIVE-CLiQ: Replace the motor.
Re fault value, bit 5 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 6 = 1:
The battery must be changed (only for encoders with battery back-up).

233112 <location> Encoder 3: Error bit set in the serial protocol

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The encoder sends a set error bit via the serial protocol.
Fault value (r0949, interpret binary):
- Bit 0: Fault bit in the position protocol.
Remedy:
For fault value, bit 0 = 1:
In the case of an EnDat encoder, F31111 may provide further details.
233115 Encoder 3: Amplitude error track A or B (A^2 + B^2)

Message value: A track: %1, B-track: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT

Cause: The amplitude (root of A^2 + B^2) for encoder 3 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
 yyyy = Signal level, track B (16 bits with sign).
 xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 176 mV (observe the frequency response of the encoder) and > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).

The following applies to measuring systems without their own bearing system:
- adjust the scanning head and check the bearing system of the measuring wheel.
The following applies for measuring systems with their own bearing system:
- ensure that the encoder housing is not subject to any axial force.

233116 Encoder 3: Amplitude error monitoring track A + B

Message value: Amplitude: %1, Angle: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: The amplitude of the rectified encoder signals A and B and the amplitude from the roots of A^2 + B^2 for encoder 3 are not within the tolerance bandwidth.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
 yyyy = Signal level, track B (16 bits with sign).
 xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 176 mV (observe the frequency response of the encoder) and > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).
233117 <location>Encoder 3: Inversion error signals A and B and R

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: For a square-wave encoder (bipolar, double ended) the A* and B* and R* signals are not inverted with respect to signals A and B and R.
 Fault value (r0949, interpret binary):
 Bits 0-15: Only for internal Siemens troubleshooting.
 Bit 16: Error track A.
 Bit 17: Error track B.
 Bit 18: Error track R.
 Note:
 For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), CUA32, and CU310, the following applies:
 A square-wave encoder without track R is used and track monitoring (p0405.2 = 1) is activated.
Remedy: Check the encoder/cable: Does the encoder provide signals and the associated inverted signals?
 Note:
 For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), the following applies:
 - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
 For a square-wave encoder without track R, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
 - pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)
 - pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)

233118 <location>Encoder 3: Speed difference outside the tolerance range

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles.
 The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
 Fault value (r0949, interpret decimal):
 Only for internal Siemens troubleshooting.
 See also: p0492 (Square-wave encoder, maximum speed difference per sampling cycle)
Remedy: - check the tachometer feeder cable for interruptions.
 - check the grounding of the tachometer shielding.
 - if required, increase the maximum speed difference per sampling cycle (p0492).

233120 <location>Encoder 3: Power supply voltage fault

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: Encoder 3 power supply voltage fault.
 Fault value (r0949, interpret binary):
 Bit 0: Undervoltage condition on the sense line.
 Bit 1: Overcurrent condition for the encoder power supply.
 Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
 Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
Note:
If the encoder cables 6FX2002-2EO00-..... and 6FX2002-2CH00-..... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.

Remedy:
Re fault value, bit 0 = 1:
- correct encoder cable connected?
- check the plug connections of the encoder cable.
- SMC30: Check the parameterization (p0404.22).
Re fault value, bit 1 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable
Re fault value, bit 2 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable
Re fault value, bit 3 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable

233121

<location>Encoder 3: Coarse position error

Message value:
-

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
OFF1 (NONE, OFF2, OFF3)

Acknowledge:
PULSE INHIBIT

Cause:
For the actual value sensing, an error was detected on the module. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.

Remedy:
Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

233122

<location>Encoder 3: Internal power supply voltage faulty

Message value:
%1

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
ENCODER

Acknowledge:
IMMEDIATELY

Cause:
Fault in internal reference voltage of ASICs for encoder 3.
Fault value (r0949, interpret decimal):
1: Reference voltage error.
2: Internal undervoltage.
3: Internal overvoltage.

Remedy:
Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

233123

<location>Encoder 3: Signal level A/B unipolar outside tolerance

Message value:
Fault cause: %1 bin

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
OFF1 (IASC/DCCBRKE, NONE, OFF2, OFF3)

Acknowledge:
IMMEDIATELY

Cause:
The unipolar level (AP/AN or BP/BN) for encoder 3 is outside the permissible tolerance.
Fault value (r0949, interpret binary):
Bit 0 = 1: Either AP or AN outside the tolerance.
Bit 16 = 1: Either BP or BN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.
Note:
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).

Remedy:
- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
- check the plug connections and contacts of the encoder cable.
- check the short-circuit of a signal cable with mass or the operating voltage.
- replace the encoder cable.

<table>
<thead>
<tr>
<th>233125</th>
<th>Encoder 3: Amplitude error track A or B overcontrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message value:</td>
<td>A track: %1, B-track: %2</td>
</tr>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>PULSE INHIBIT</td>
</tr>
</tbody>
</table>
| Cause: | The amplitude of track A or B for encoder 3 exceeds the permissible tolerance band. Fault value (r0949, interpret hexadecimal): yyyyxxxx hex:
 yyyy = Signal level, track B (16 bits with sign).
 xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is > 750 mV. This fault also occurs if the A/D converter is overcontrolled.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note for sensors modules for resolvers (e.g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is > 3582 mV.
A signal level of 2900 mV peak value corresponds to the numerical value 6666 hex = 26214 dec.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. |
| | - replace the encoder or encoder cable |

<table>
<thead>
<tr>
<th>233126</th>
<th>Encoder 3: Amplitude AB too high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message value:</td>
<td>Amplitude: %1, Angle: %2</td>
</tr>
<tr>
<td>Drive object:</td>
<td>SERVO_COMBI, SERVO_SINUMERIK828</td>
</tr>
<tr>
<td>Reaction:</td>
<td>OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)</td>
</tr>
<tr>
<td>Acknowledge:</td>
<td>PULSE INHIBIT</td>
</tr>
</tbody>
</table>
| Cause: | The amplitude (root of A^2 + B^2 or |A| + |B|) for encoder 3 exceeds the permissible tolerance. Fault value (r0949, interpret hexadecimal):
 yyyyxxxx hex:
 yyyy = Angle
 xxxx = Amplitude, i.e. root from A^2 + B^2 (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold for (|A| + |B|) is > 1120 mV or the root of (A^2 + B^2) > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex = 10650 dec.
The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero crossover of track B.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module. |
| Remedy: | - check that the encoder cables and shielding are routed in compliance with EMC. |
| | - replace the encoder or encoder cable |
233129 Encoder 3: Position difference, hall sensor/track C/D and A/B too large

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause:
The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A33429.
Fault value (r0949, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.

233130 Encoder 3: Zero mark and position error from the coarse synchronization

Message value: Angular deviation, electrical: %1, angle, mechanical: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause:
After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of +/-18 ° mechanical.
When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of +/-60 ° electrical.
Fault value (r0949, interpret hexadecimal):
yyyyyyyy hex
yyyy: Determined mechanical zero mark position (can only be used for track C/D).
xxxx: Deviation of the zero mark from the expected position as electrical angle.
Scaling: 32768 dec = 180 °
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- if the Hall sensor is used as an equivalent for track C/D, check the connection.
- Check the connection of track C or D.
- replace the encoder or encoder cable

233131 Encoder 3: Deviation, position incremental/absolute too large

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause:

Absolute encoder:
When cyclically reading the absolute position, an excessively high difference to the incremental position was detected.
The absolute position that was read is rejected.
Limit value for the deviation:
- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI 1325 > 2 quadrants, EQN 1325 > 50 quadrants).
- other encoders: 15 pulses = 60 quadrants.
Incremental encoder:
When the zero pulse is passed, a deviation in the incremental position was detected.
For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
For distance-coded zero marks, the following applies:
- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
Fault value (r0949, interpret decimal):
Deviation in quadrants (1 pulse = 4 quadrants).

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check whether the coding disk is dirty or there are strong ambient magnetic fields.
- adapt the parameter for the clearance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).

233135

<location>Encoder 3: Fault when determining the position

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT

Cause:
The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word.
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (--> F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (--> F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (--> F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (--> F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (--> F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (--> F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (--> F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (--> F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (--> F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (--> F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy:
Replace DRIVE-CLiQ encoder.
233136 <location>Encoder 3: Error when determining multiturn information

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (→ F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (→ F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (→ F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (→ F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (→ F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (→ F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (→ F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (→ F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (→ F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (→ F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (→ F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (→ F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (→ F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (→ F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)
Remedy: Replace DRIVE-CLiQ encoder.

233137 <location>Encoder 3: Internal error when determining the position

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

233138 <location>Encoder 3: Internal error when determining multiturn information

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary): Only for internal SIEMENS use.
Remedy: Replace encoder

233150 <location>Encoder 3: Initialization error
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: Encoder functionality selected in p0404 is not operating correctly. Fault value (r0949, interpret hexadecimal): The fault value is a bit field. Every set bit indicates functionality that is faulted. The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:
- Check that p0404 is correctly set.
- check the encoder type used (incremental/absolute value) and for SMCxx, the encoder cable.
- if relevant, note additional fault messages that describe the fault in detail.

233151 <location>Encoder 3: Encoder speed for initialization AB too high
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The encoder speed is too high during while initializing the sensor.
Remedy: Reduce the speed of the encoder accordingly during initialization. If necessary, de-activate monitoring (p0437.29). See also: p0437 (Sensor Module configuration extended)

233160 <location>Encoder 3: Analog sensor channel A failed
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The input voltage of the analog sensor is outside the permissible limits. Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4673.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:
- check the output voltage of the analog sensor.
- check the voltage setting for each encoder period (p4673).
- check the range limit setting and increase it if necessary (p4676).
233161

Encoder 3: Analog sensor channel B failed

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause:
The input voltage of the analog sensor is outside the permissible limits.
Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4675.
3: The absolute value of the input voltage has exceeded the range limit (p4676).

Remedy:
- Re fault value = 1:
 - check the output voltage of the analog sensor.
- Re fault value = 2:
 - check the voltage setting for each encoder period (p4675).
- Re fault value = 3:
 - check the range limit setting and increase it if necessary (p4676).

233400

Encoder 3: Alarm threshold zero mark distance error

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: NONE

Acknowledge: NONE

Cause:
The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- replace the encoder or encoder cable

233401

Encoder 3: Alarm threshold zero marked failed

Message value: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: NONE

Acknowledge: NONE

Cause:
The 1.5 x parameterized zero mark distance was exceeded.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the clearance between zero marks (p0425).
- replace the encoder or encoder cable
SINAMICS alarms

233405 Encoder 3: Temperature in the encoder evaluation inadmissible

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The encoder evaluation for a motor with DRIVE-CLIQ has detected an inadmissible temperature. The fault threshold is 125 ° C.
Alarm value (r2124, interpret decimal):
Measured board/module temperature in 0.1 °C.
Remedy: Reduce the ambient temperature for the DRIVE-CLIQ connection of the motor.

233407 Encoder 3: Function limit reached

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The encoder has reached one of its function limits. A service is recommended.
Alarm value (r2124, interpret decimal):
1 : Incremental signals
3 : Absolute track
4 : Code connection
Remedy: Perform service. Replace the encoder if necessary.
Note: The current functional reserve of an encoder can be displayed via r4651.
See also: p4650 (Encoder functional reserve component number), r4651 (Encoder functional reserve)

233410 Encoder 3: Serial communications

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Serial communication protocol transfer error between the encoder and evaluation module.
Alarm value (r2124, interpret binary):
Bit 0: Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 8: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder.
233411 <location>Encoder 3: EnDat encoder signals alarms
Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The error word of the EnDat encoder has alarm bits that have been set.
Alarm value (r2124, interpret binary):
Bit 0: Frequency exceeded (speed too high).
Bit 1: Temperature exceeded.
Bit 2: Control reserve, lighting system exceeded.
Bit 3: Battery discharged.
Bit 4: Reference point passed.
Remedy: Replace encoder.

233412 <location>Encoder 3: Error bit set in the serial protocol
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The encoder sends a set error bit via the serial protocol.
Alarm value (r2124, interpret binary):
Bit 0: Fault bit in the position protocol.
Bit 1: Alarm bit in the position protocol.
Remedy: - carry out a POWER ON (power off/on) for all components.
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder.

233414 <location>Encoder 3: Amplitude error track C or D (C^2 + D^2)
Message value: C track: %1, D track: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (C^2 + D^2) of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth.
Alarm value (r2124, interpret hexadecimal):
yyyyyyyy hex:
yyyy = Signal level, track D (16 bits with sign).
xxxx = Signal level, track C (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note: If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).
- check the Hall sensor box
233415 <location>Encoder 3: Amplitude alarm track A or B (A^2 + B^2)

Message value: Amplitude: %1, Angle: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (root of A^2 + B^2) for encoder 3 exceeds the permissible tolerance.
Alarm value (r2124, interpret hexadecimal):
 yyyyxxxx hex:
 yyyy = Angle
 xxxx = Amplitude, i.e. root from A^2 + B^2 (16 bits without sign)
 The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
 The response threshold is < 300 mV (observe the frequency response of the encoder).
 A signal level of 500 mV peak value corresponds to the numerical value 299A hex = 10650 dec.
 The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero
crossover of track B.
 Note for sensors modules for resolvers (e.g. SMC10):
 The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).
 A signal level of 2900 mV peak value corresponds to the numerical value 3333 hex = 13107 dec.
 Note:
 The analog values of the amplitude error are not measured at the same time with the hardware fault output by the
 Sensor Module.
Remedy: - check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not suffi-
cient for the speed range.
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check the Sensor Module (e.g. contacts).
- if the coding disk is soiled or the lighting aged, replace the encoder.

233418 <location>Encoder 3: Speed difference per sampling rate exceeded

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.
The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
Alarm value (r2124, interpret decimal):
 Only for internal Siemens troubleshooting.
 See also: p0492 (Square-wave encoder, maximum speed difference per sampling cycle)
Remedy: - check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the setting of p0492.

233419 <location>Encoder 3: Track A or B outside the tolerance range

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude, phase or offset correction for track A or B is at the limit.
Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
Phase: <84 degrees or >96 degrees
SMC20: Offset correction: +/-140 mV
SMC10: Offset correction: +/-650 mV
Alarm value (r2124, interpret hexadecimal):
xxxx1: Minimum of the offset correction, track B
xxxx2: Maximum of the offset correction, track B
xxx1x: Minimum of the offset correction, track A
xxx2x: Maximum of the offset correction, track A
xx1xx: Minimum of the amplitude correction, track B/A
xx2xx: Maximum of the amplitude correction, track B/A
x1xxx: Minimum of the phase error correction
x2xxx: Maximum of the phase error correction
1xxxx: Minimum of the cubic correction
2xxxx: Maximum of the cubic correction

Remedy:
- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).
- check the plug connections (also the transition resistance).
- check the encoder signals.
- replace the encoder or encoder cable

233421 <location>Encoder 3: Coarse position error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Alarm value (r2124, interpret decimal):
3: The absolute position of the serial protocol and track A/B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.

Remedy:
- for a standard encoder with cable, if required, contact the manufacturer.
- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A* and B with B*) or, for a programmable encoder, check the zero offset of the position.

233422 <location>Encoder 3: Pulses per revolution square-wave encoder outside tolerance bandwidth

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance. This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684. The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder).
Alarm value (r2124, interpret decimal):
accumulated differential pulses in encoder pulses.
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- replace the encoder or encoder cable

233429 <location>Encoder 3: Position difference, hall sensor/track C/D and A/B too large
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
Alarm value (r2124, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.

233431 <location>Encoder 3: Deviation, position incremental/absolute too large
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause:
When the zero pulse is passed, a deviation in the incremental position was detected.
For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
For distance-coded zero marks, the following applies:
- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
Alarm value (r2124, interpret decimal):
Deviation in quadrants (1 pulse = 4 quadrants).
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- Clean coding disk or remove strong magnetic fields.

233432 <location>Encoder 3: Rotor position adaptation corrects deviation
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
SINAMICS alarms

Cause: For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected.
Alarm value (r2124, interpret decimal):
Last measured deviation of zero mark in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections
- replace the encoder or encoder cable
- check encoder limit frequency.
- adapt the parameter for the distance between zero marks (p0424, p0425).

233442 <location>Encoder 3: Battery voltage pre-alarm
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- replace battery.

233443 <location>Encoder 3: Unipolar CD signal level outside specification
Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The unipolar level (CP/CN or DP/DN) for encoder 3 is outside the permissible tolerance.
Alarm value (r2124, interpret binary):
Bit 0 = 1: Either CP or CN outside the tolerance.
Bit 16 = 1: Either DP or DN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.
Note: The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts of the encoder cable.
- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?
- replace the encoder cable.

233460 <location>Encoder 3: Analog sensor channel A failed
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The input voltage of the analog sensor is outside the permissible limits.
Alarm value (r2124, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4673.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
SINAMICS alarms

Remedy:
Re alarm value = 1:
- check the output voltage of the analog sensor.
Re alarm value = 2:
- check the voltage setting for each encoder period (p4673).
Re alarm value = 3:
- check the range limit setting and increase it if necessary (p4676).

233461 <location>Encoder 3: Analog sensor channel B failed
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The input voltage of the analog sensor is outside the permissible limits.
Alarm value (r2124, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4675.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:
Re alarm value = 1:
- check the output voltage of the analog sensor.
Re alarm value = 2:
- check the voltage setting for each encoder period (p4675).
Re alarm value = 3:
- check the range limit setting and increase it if necessary (p4676).

233462 <location>Encoder 3: Analog sensor, no channel active
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Channel A and B are not activated for the analog sensor.
Remedy:
- activate channel A and/or channel B (p4670).
- check the encoder configuration (p0404.17).
See also: p4670 (Analog sensor configuration)

233470 <location>Encoder 3: Soiling detected
Message value:
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7.
Remedy:
- check the plug connections
- replace the encoder or encoder cable
233500 Encoder 3: Position tracking traversing range exceeded

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions.
For p0411.0 = 1, the maximum traversing range for the configured linear axis is defined to be 64x (+/-32x) of p0421.
For p0411.3 = 1, the maximum traversing range for the configured linear axis is pre-set (default value) to the highest possible value and is +/-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
Remedy:
The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted.

233501 Encoder 3: Position tracking encoder position outside tolerance window

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
Fault value (r0949, decimal):
Deviation (difference) to the last encoder position in increments of the absolute value.
The sign designates the traversing direction.
Note:
The deviation (difference) found is also displayed in r0477.
See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)
Remedy:
Reset the position tracking as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
See also: p0010

233502 Encoder 3: Encoder with measuring gear, without valid signals

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
The encoder with measuring gear no longer provides any valid signals.
Remedy:
It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.
233503 Encoder 3: Position tracking cannot be reset

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The position tracking for the measuring gear cannot be reset.
Remedy: The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted.

233700 Encoder 3: Effectivity test does not supply the expected value

Message value: Fault cause: %1 bin
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit x = 1: Effectivity test x unsuccessful.
Remedy:

233800 Encoder 3: Group signal

Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: NONE
Cause: The motor encoder has detected at least one fault.
Remedy: Evaluates other actual messages.

233801 Encoder 3 DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex:
The sign-of-life bit in the receive telegram is not set.
Remedy: - check the electrical cabinet design and cable routing for EMC compliance
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
233802 Encoder 3: Time slice overflow

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A time slice overflow has occurred in encoder 3.
Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
Remedy: Reduce the current controller frequency.

Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).

233804 Encoder 3: Checksum error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A checksum error has occurred when reading-out the program memory on the Sensor Module.
Fault value (r0949, interpret hexadecimal):
 yyyyxxxx hex
 yyyy: Memory area involved.
xxxx: Difference between the checksum at POWER ON and the actual checksum.
Remedy: - check whether the permissible ambient temperature for the component is maintained.
- replace the Sensor Module.

233805 Encoder 3: EPROM checksum error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
 01: EEPROM access error.
 02: Too many blocks in the EEPROM.
Remedy: Replace the module.

233806 Encoder 3: Initialization error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The encoder was not successfully initialized.
Fault value (r0949, interpret hexadecimal):
 Bit 0, 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
Bit 2: Mid-voltage matching for track A unsuccessful.
Bit 3: Mid-voltage matching for track B unsuccessful.
Bit 4: Mid-voltage matching for acceleration input unsuccessful.
Bit 5: Mid-voltage matching for track safety A unsuccessful.
Bit 6: Mid-voltage matching for track safety B unsuccessful.
Bit 7: Mid-voltage matching for track C unsuccessful.
Bit 8: Mid-voltage matching for track D unsuccessful.
Bit 9: Mid-voltage matching for track R unsuccessful.
Bit 10: The difference in mid-voltages between A and B is too great (> 0.5 V)
Bit 11: The difference in mid-voltages between C and D is too great (> 0.5 V)
Bit 12: The difference in mid-voltages between safety A and safety B is too great (> 0.5 V)
Bit 13: The difference in mid-voltages between A and safety B is too great (> 0.5 V)
Bit 14: The difference in mid-voltages between B and safety A is too great (> 0.5 V)
Bit 15: The standard deviation of the calculated mid-voltages is too great (> 0.3 V)
Bit 16: Internal fault - fault reading a register (CAFE)
Bit 17: Internal fault - fault writing a register (CAFE)
Bit 18: Internal fault: No mid-voltage matching available
Bit 19: Internal error - ADC access error.
Bit 20: Internal error - no zero crossover found.

Note:
Bit 0, 1: Up to 6SL3055-0AA00-5*A0
Bits 2 ... 20: 6SL3055-0AA00-5*A1 and higher

Remedy:
Acknowledge the fault.
If the fault cannot be acknowledged:
Bit 2 ... 9: Check voltage supply of the encoder.
Bits 2 ... 14: Check the corresponding cable.
Bit 15 with no other bits: Check track R, check settings in p0404.

233811 <location>Encoder 3: Encoder serial number changed
Message value: -
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).
Note: The encoder was replaced.
With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).
Proceed as follows to hide serial number monitoring:
- set the following serial numbers for the corresponding Encoder Data Set: p0441= FF, p0442 = 0, p0442 = 0, p0444 = 0, p0445 = 0.
Remedy: Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.

233812 <location>Encoder 3: Requested cycle or RX-TX timing not supported
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2
Acknowledge: IMMEDIATELY
SINAMICS alarms

Cause:
A cycle requested from the Control Unit or RX/TX timing is not supported.
Alarm value (r2124, interpret decimal):
0: Application cycle is not supported.
1: DQ cycle is not supported.
2: Distance between RX and TX instants in time too low.
3: TX instant in time too early.

Remedy:

233813

<location>Encoder 3: Hardware logic unit failed

Message value:
Fault cause: %1 bin

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
PULSE INHIBIT

Cause:
The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit 0: ALU watchdog has responded.
Bit 1: ALU has detected a sign-of-life error.

Remedy:
Replace encoder

233820

<location>Encoder 3 DRIVE-CLiQ: Telegram error

Message value:
Component number: %1, fault cause: %2

Drive object:
SERVO_COMBI, SERVO_SINUMERIK828

Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex:
CRC error.
x = 02 hex:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex:
Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex:
The length of the receive telegram does not match the receive list.
xx = 05 hex:
The type of the receive telegram does not match the receive list.
xx = 06 hex:
The address of the component in the telegram and in the receive list do not match.
xx = 07 hex:
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
xx = 08 hex:
No SYNC telegram is expected - but the received telegram is one.
xx = 09 hex:
The error bit in the receive telegram is set.
xx = 10 hex:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
233835 Encoder 3 DRIVE-CLiQ: Cyclic data transfer error
Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
xx = 21 hex: The cyclic telegram has not been received.
xx = 22 hex: Timeout in the telegram receive list.
xx = 40 hex: Timeout in the telegram send list.
Remedy: - carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

233836 Encoder 3 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
xx = 41 hex: Telegram type does not match send list.
Remedy: Carry out a POWER ON.

233837 Encoder 3 DRIVE-CLiQ: Component fault
Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
xx = 20 hex: Error in the telegram header.
xx = 42 hex: Send error: The telegram buffer memory contains an error.
xx = 43 hex: Send error: The telegram buffer memory contains an error.
Remedy: - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
233845 Encoder 3 DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

233850 Encoder 3: Encoder evaluation, internal software error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: POWER ON
Cause: An internal software error has occurred in the Sensor Module of encoder 3.
Fault value (r0949, interpret decimal):
1: Background time slice is blocked.
2: Checksum over the code memory is not OK.
10000 ... 11499: Descriptive data from EEPROM incorrect.
11500 ... 11899: Calibration data from EEPROM incorrect.
11900 ... 11999: Configuration data from EEPROM incorrect.
16000: DRIVE-CLiQ encoder initialization application error.
16001: DRIVE-CLiQ encoder initialization ALU error.
16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
16003: DRIVE-CLiQ encoder safety initialization error.
16004: DRIVE-CLiQ encoder internal system error.
Remedy: - replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

233851 Encoder 3 DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.
233860 <location>Encoder 3 DRIVE-CLiQ (CU): Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause
xx = 11 hex = 17 dec:
CRC error and the receive telegram is too early.
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

233885 <location>Encoder 3 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):
- yyxx hex: yy = component number, xx = fault cause
- xx = 1A hex = 26 dec:
 Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
- xx = 21 hex = 33 dec:
 The cyclic telegram has not been received.
- xx = 22 hex = 34 dec:
 Timeout in the telegram receive list.
- xx = 40 hex = 64 dec:
 Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

233886
<Message value> Encoder 3 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
<Drive object> SERVO_COMBI, SERVO_SINUMERIK828
<Reaction> OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
<Acknowledge> IMMEDIATELY
<Cause> A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):
- yyxx hex: yy = component number, xx = fault cause
- xx = 41 hex:
 Telegram type does not match send list.

Remedy:
Carry out a POWER ON.

233887
<Message value> Encoder 3 DRIVE-CLiQ (CU): Component fault
<Drive object> SERVO_COMBI, SERVO_SINUMERIK828
<Reaction> OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
<Acknowledge> IMMEDIATELY
<Cause> Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 3). Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):
- yyxx hex: yy = component number, xx = fault cause
- xx = 20 hex:
 Error in the telegram header.
- xx = 23 hex:
 Receive error: The telegram buffer memory contains an error.
- xx = 42 hex:
 Send error: The telegram buffer memory contains an error.
- xx = 43 hex:
 Send error: The telegram buffer memory contains an error.
- xx = 60 hex:
 Response received too late during runtime measurement.
- xx = 61 hex:
 Time taken to exchange characteristic data too long.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

233895

<location>Encoder 3 DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit. Fault value (r0949, interpret hexadecimal):
- yy = component number,
- xx = fault cause

 xx = 0B hex:
 - Synchronization error during alternating cyclic data transfer.

Remedy:
- Carry out a POWER ON.
- See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

233896

<location>Encoder 3 DRIVE-CLiQ (CU): Inconsistent component properties

Message value: Component number: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Sensor Module for encoder 3), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
- Component number.

Remedy:
- carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).

233899

<location>Encoder 3: Unknown fault

Message value: New message: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
- Fault number.

Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.

Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).
233902 <location>Encoder 3: SPI-BUS error occurred
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Error when operating the internal SPI bus.
 Fault value (r0949, interpret hexadecimal):
 Only for internal Siemens troubleshooting.
Remedy: - replace the Sensor Module.
 - if required, upgrade the firmware in the Sensor Module.
 - contact the Hotline.

233903 <location>Encoder 3: I2C-BUS error occurred
Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: Error when operating the internal I2C bus.
 Fault value (r0949, interpret hexadecimal):
 Only for internal Siemens troubleshooting.
Remedy: - replace the Sensor Module.
 - if required, upgrade the firmware in the Sensor Module.
 - contact the Hotline.

233905 <location>Encoder 3: Parameterization error
Message value: Parameter: %1, supplementary information: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 3 was detected as being incorrect.
 It is possible that the parameterized encoder type does not match the connected encoder.
 The parameter involved can be determined as follows:
 - determine the parameter number using the fault value (r0949).
 - determine the parameter index (p0187).
 Fault value (r0949, interpret decimal):
 yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
 yyyy = 0:
 No information available.
 yyyy = 1:
 The component does not support HTL level (p0405.1 = 0) combined with track monitoring A/B <> -A/B (p0405.2 = 1).
 yyyy = 2:
 A code number for an identified encoder has been entered into p0400, however, no identification was carried out.
 Please start a new encoder identification.
 yyyy = 3:
 A code number for an identified encoder has been entered into p0400, however, no identification was carried out.
 Please select a listed encoder in p0400 with a code number < 10000.
 yyyy = 4:
 This component does not support SSI encoders (p0404.9 = 1) without track A/B.
yyy = 5:
For SQW encoder, value in p4686 greater than in p0425.
yyy = 6:
DRIVE-CLiQ encoder cannot be used with this firmware version.
yyy = 7:
For the SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks.

Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.
- re parameter number = 314:
 - check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).

233915 <location>Encoder 3: Configuration error

Message value: %1
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: NONE
Acknowledge: NONE
Cause: The configuration for encoder 3 is incorrect.
Fault value (r0949, interpret decimal):
1: Re-parameterization between fault/alarm is not permissible.
419: When the fine resolution Gx_ACT2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy: 1: No re-parameterization between fault/alarm.
419: Reduce the fine resolution (p0419).

233916 <location>Encoder 3: Parameterization fault

Message value: Parameter: %1, supplementary information: %2
Drive object: SERVO_COMBI, SERVO_SINUMERIK828
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 3 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:
 - determine the parameter number using the fault value (r0949).
 - determine the parameter index (p0187).
Fault value (r0949, interpret decimal):
Parameter number.
Note:
This fault is only output for encoders where r0404.10 = 1 or r0404.11 = 1. It corresponds to A33905 with encoders where r0404.10 = 0 and r0404.11 = 0.
Remedy: - check whether the connected encoder type matches the encoder that has been parameterized.
 - correct the parameter specified by the fault value (r0949) and p0187.
233920 <location>Encoder 3: Temperature sensor fault</location>

Message value: Fault cause: %1, channel number: %2

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: NONE

Acknowledge: NONE

Cause: When evaluating the temperature sensor, an error occurred.

- Alarm value (r2124, interpret decimal):
 - Low word low byte: Cause:
 - 1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
 - 2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).

- Additional values:
 - Only for internal Siemens troubleshooting.
 - Low word high byte: Channel number.

Remedy:
- check that the encoder cable is the correct type and is correctly connected.
- check the temperature sensor selection in p0600 to p0603.
- replace the Sensor Module (hardware defect or incorrect calibration data).

233999 <location>Encoder 3: Unknown alarm</location>

Message value: New message: %1

Drive object: SERVO_COMBI, SERVO_SINUMERIK828

Reaction: NONE

Acknowledge: NONE

Cause: A alarm has occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.

- Alarm value (r2124, interpret decimal):
 - Alarm number.

Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.

Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

234207 <location>VSM: Temperature fault threshold exceeded</location>

Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828

Reaction: OFF2 (NONE, OFF1)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3668).

Note: This fault can only be initiated if the temperature evaluation was activated (p3665 = 2 for a KTY sensor or p3665 = 1 for a PTC sensor).

- Fault value (r0949, interpret decimal):
 - yyxx dec:
 - yy: Component number of the component which detected the fault.

Remedy:
- check the fan.
- reduce the power.
234211
<location>VSM: Temperature alarm threshold exceeded

- **Message value:** %1
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3667).

 Alarm value (r2124, interpret decimal):
 The hundred-thousands and ten-thousands position specifies the component number of the VSM which detected the fault.
- **Remedy:**
 - check the fan.
 - reduce the power.

234800
<location>VSM: Group signal

- **Message value:** -
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
- **Reaction:** OFF2 (NONE, OFF1)
- **Acknowledge:** NONE
- **Cause:** The Voltage Sensing Module (VSM) has detected at least one fault.
- **Remedy:** Evaluates other actual messages.

234801
<location>VSM DRIVE-CLiQ: Sign-of-life missing

- **Message value:** Component number: %1, fault cause: %2
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
- **Reaction:** OFF2 (NONE, OFF1)
- **Acknowledge:** IMMEDIATELY
- **Cause:** A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).

 Fault value (r0949, interpret hexadecimal):
 yyyy hex: yyyy = component number, xx = fault cause
 xx = 0A hex:
 The sign-of-life bit in the receive telegram is not set.
- **Remedy:**
 - check the DRIVE-CLiQ connection.
 - replace the Voltage Sensing Module (VSM).

234802
<location>VSM: Time slice overflow

- **Message value:** -
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
- **Reaction:** OFF2 (NONE, OFF1)
- **Acknowledge:** IMMEDIATELY
- **Cause:** A time slice overflow has occurred on the Voltage Sensing Module.
- **Remedy:** Replace the Voltage Sensing Module.
234803 <location>VSM: Memory test

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: An error has occurred during the memory test on the Voltage Sensing Module.
Remedy: - check whether the permissible ambient temperature for the Voltage Sensing Module is being maintained.
- replace the Voltage Sensing Module.

234804 <location>VSM: CRC

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: A checksum error has occurred when reading-out the program memory on the Voltage Sensing Module (VSM).
Remedy: - check whether the permissible ambient temperature for the component is maintained.
- replace the Voltage Sensing Module.

234805 <location>VSM: EPROM checksum error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
Remedy: - check whether the permissible ambient temperature for the component is maintained.
- replace the Voltage Sensing Module (VSM).

234806 <location>VSM: Initialization

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: For the Voltage Sensing Module (VSM), a fault has occurred while initializing.
Remedy: Replace the Voltage Sensing Module.
234807 <location>VSM: Sequence control time monitoring

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: Error, timeout in the sequence control on the Voltage Sensing Module (VSM).
Remedy: Replace the Voltage Sensing Module.

234820 <location>VSM DRIVE-CLiQ: Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex: CRC error.
xx = 02 hex: Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex: Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex: The length of the receive telegram does not match the receive list.
xx = 05 hex: The type of the receive telegram does not match the receive list.
xx = 06 hex: The address of the component in the telegram and in the receive list do not match.
xx = 07 hex: A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
xx = 08 hex: No SYNC telegram is expected - but the received telegram is one.
xx = 09 hex: The error bit in the receive telegram is set.
xx = 10 hex: The receive telegram is too early.
Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

234835 <location>VSM DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
SINAMICS alarms

Cause:
A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):

- $yyxx$ hex: $yy =$ component number, $xx =$ fault cause
 - $xx = 21$ hex: The cyclic telegram has not been received.
 - $xx = 22$ hex: Timeout in the telegram receive list.
 - $xx = 40$ hex: Timeout in the telegram send list.

Remedy:
- carry out a POWER ON.
- replace the component involved.

234836 <location>VSM DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message value:
Component number: %1, fault cause: %2

Drive object:
AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828

Reaction:
OFF2 (NONE, OFF1)

Acknowledge:
IMMEDIATELY

Cause:
A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):

- $yyxx$ hex: $yy =$ component number, $xx =$ fault cause
 - $xx = 41$ hex: Telegram type does not match send list.

Remedy:
- carry out a POWER ON.

234837 <location>VSM DRIVE-CLiQ: Component fault

Message value:
Component number: %1, fault cause: %2

Drive object:
AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828

Reaction:
OFF2 (NONE, OFF1)

Acknowledge:
IMMEDIATELY

Cause:
Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

- $yyxx$ hex: $yy =$ component number, $xx =$ fault cause
 - $xx = 20$ hex: Error in the telegram header.
 - $xx = 42$ hex: Send error: The telegram buffer memory contains an error.
 - $xx = 43$ hex: Send error: The telegram buffer memory contains an error.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
234845 <location>VSM DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM). Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 0B hex:
 Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

234850 <location>VSM: Internal software error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: OFF1 (NONE, OFF2)
Acknowledge: POWER ON
Cause: An internal software error in the Voltage Sensing Module (VSM) has occurred. Fault value (r0949, interpret decimal):
 1: Background time slice is blocked.
 2: Checksum over the code memory is not OK.
Remedy:
- replace the Voltage Sensing Module (VSM).
- if required, upgrade the firmware in the Voltage Sensing Module.
- contact the Hotline.

234851 <location>VSM DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: Servo: NONE (OFF1, OFF2)
 Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 0A hex = 10 dec:
 The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.

234860 <location>VSM DRIVE-CLiQ (CU): Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: Servo: NONE (OFF1, OFF2)
 Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause
xx = 11 hex = 17 dec:
CRC error and the receive telegram is too early.
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
The telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Alarms

Diagnostics Manual, 07/2010, 6FC5398-8BP40-0BA0

SINAMICS alarms

xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

234886

<location>VSM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value:
Component number: %1, fault cause: %2

Drive object:
AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction:
Servo: NONE (OFF1, OFF2)
Infeed: OFF2 (NONE, OFF1)

Acknowledge:
IMMEDIATELY

Cause:
A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy:
Carry out a POWER ON.

234887

<location>VSM DRIVE-CLiQ (CU): Component fault

Message value:
Component number: %1, fault cause: %2

Drive object:
AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction:
Servo: NONE (OFF1, OFF2)
Infeed: OFF2 (NONE, OFF1)

Acknowledge:
IMMEDIATELY

Cause:
Fault detected on the DRIVE-CLiQ component (Voltage Sensing Module) involved. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
xx = 60 hex:
Response received too late during runtime measurement.
xx = 61 hex:
Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
SINAMICS alarms

234895

<location>VSM DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: Servo: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit. Fault value (r0949, interpret hexadecimal):
\[\text{yy} = \text{component number}, \text{xx} = \text{fault cause} \]
\[\text{xx} = 0B \text{ hex: Synchronization error during alternating cyclic data transfer.} \]
Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

234896

<location>VSM DRIVE-CLiQ (CU): Inconsistent component properties

Message value: Component number: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Voltage Sensing Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.
Remedy:
- carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).

234899

<location>VSM: Unknown fault

Message value: New message: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the Voltage Sensing Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the Voltage Sensing Module by an older firmware version (r0158).
- upgrade the firmware on the Control Unit (r0018).
234903 <location>VSM: I2C bus error occurred
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred when accessing the module-internal I2C bus.
Remedy: Replace Voltage Sensing Module (VSM).

234904 <location>VSM: EEPROM
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy: Replace Voltage Sensing Module (VSM).

234905 <location>VSM: Parameter access
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The Control Unit attempted to write an illegal parameter value to the Voltage Sensing Module (VSM).
Remedy: - check whether the firmware version of the VSM (r0158) matches the firmware version of Control Unit (r0018).
- if required, replace the Voltage Sensing Module.
Note:
The firmware versions that match each other are in the readme.txt file on the memory card.

234920 <location>VSM: Temperature sensor fault
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Remedy: - make sure that the sensor is connected correctly.
- replace the sensor.
234999 <location>VSM: Unknown alarm</location>

Message value: New message: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: A fault occurred on the Voltage Sensing Module (VSM) an alarm has occurred that cannot be interpreted by the Control
Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy: - replace the firmware on the Voltage Sensing Module by an older firmware version (r0148).
 - upgrade the firmware on the Control Unit (r0018).

235000 <location>TM54F: Sampling time invalid</location>

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: POWER ON
Cause: The set sampling time is invalid.
 - not a multiple integer of the DP clock cycle.
Fault value (r0949, floating point):
Recommended valid sampling time.
Remedy: Adapt the sampling time (e.g. set the recommended valid sampling time).
See also: p10000 (SI sampling time)

235001 <location>TM54F: Parameter value invalid</location>

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The entered value is invalid.
Fault value (r0949, interpret decimal):
Parameter number with the invalid value.
Remedy: Correct the parameter value.

235002 <location>TM54F: Commissioning not possible</location>

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The commissioning mode setting was rejected because for at least one drive belonging to the TM54F, the pulses had not been suppressed.
Fault value (r0949, interpret decimal):
Drive object number of the first drive found without pulse suppression.
Remedy: Cancel the pulses for the drive specified in the fault value.

235003 <location>TM54F: Acknowledgement on the Control Unit is required
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault on the Terminal Module 54F (TM54) was acknowledged using the safe acknowledgement (P10006). An additional acknowledgement is also required at the Control Unit.
Remedy: Acknowledge the fault at the Control Unit.

235011 <location>TM54F: Drive object number assignment illegal
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A drive object number was assigned twice. Each drive object number can be assigned only once.
Remedy: Correct the assignment of the drive object numbers.
See also: p10010 (SI drive object assignment)

235012 <location>TM54F: Test stop active
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: The test stop for the Terminal Module 54F (TM54F) is presently being executed. F35013 is output when a error occurs during the test stop.
Remedy: The alarm disappears automatically after successfully ending or canceling (when a fault condition occurs) the test stop.

235013 <location>TM54F: Test stop error
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
An error was detected when carrying out the test stop on the TM54F. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.

Fault value 0xaaabbbcc hex (r0949, interpret hexadecimal):

aaaa: Specifies the DOs or F-DIs (dependent on test step cc) for which the expected state was not assumed. The number is bit-coded (bit 0 = F-DI 0 or F-DO 0; bit 3 = F-DI 3 or F-DO 3).

bb: Describes the cause of the fault
0x01 = Internal error (error state on the opposite side).
0x02 = Fault during comparison of switching signals: FDIs or DIs
0x03 = Internal error (delay time in the new state has still not expired).
0x04 = Fault during comparison of switching signals: DiagDOs
cc: Describes the test step of the test stop in which the fault occurred

The information below is displayed in the following format:
Test stop step slave : (test actions)(test actions) | Step Master : (test actions)(test actions)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of test stop steps:</td>
</tr>
<tr>
<td>0x00:(L1+OFF)(L2+ON)</td>
</tr>
<tr>
<td>0x00:(L1+OFF)(L2+ON)</td>
</tr>
<tr>
<td>0x15:(L1+OFF)(L2+OFF)</td>
</tr>
<tr>
<td>0x20:(L1+OFF)(L2+OFF)</td>
</tr>
<tr>
<td>0x2B:(L1+ON)(L2+ON)</td>
</tr>
<tr>
<td>0x36:(DO OFF)()</td>
</tr>
<tr>
<td>0x41:(DO OFF)()</td>
</tr>
<tr>
<td>0x4C:(DO ON)()</td>
</tr>
<tr>
<td>0x57:(DO ON)()</td>
</tr>
<tr>
<td>0x62:(DO OFF)()</td>
</tr>
<tr>
<td>0x66:(DO OFF)()</td>
</tr>
<tr>
<td>0x78:(DO OFF)()</td>
</tr>
<tr>
<td>0x83:(DO OFF)()</td>
</tr>
<tr>
<td>0x8E:(DO OFF)()</td>
</tr>
<tr>
<td>0x99:(DO OFF)()</td>
</tr>
<tr>
<td>0xA4:(DO OFF)()</td>
</tr>
<tr>
<td>0xAF:(DO original state)()</td>
</tr>
<tr>
<td>0xC5: End of test</td>
</tr>
</tbody>
</table>

The following expected states are tested in the test steps when testing the FDOs: The information below is displayed in the following format:
Test step (SL MA): Expected DiagDO mode 1 | Expected Di20..23 mode 2 | Expected Di20..23 mode 3

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an error with fault causes (bb) 0x02 or 0x04 occurs in a test stop step, the test action for the fault took place in the previous test stop step. The expected states are tested in the next step.</td>
</tr>
</tbody>
</table>

Master signals fault value 0001_04AF and slave signals fault value 0001_04A4.

aaaa = 1 i.e. FDO 0 affected

bb = 04h i.e. testing of DiagFDO has failed

cc = The expected states were tested in test stop step AF on the master and A4 on the slave. Expected state DiagDO=0V is being tested in the table; in other words, the Diag DO was at 0 V instead of the expected 24 V. The associated test action took place in the previous step (0x99 DO OFF 0xA4 DO OFF). Both DOs were switched to OFF.

Remedy:
Check the wiring of the F-DIs and F-DOs and restart the test stop. The fault is withdrawn if the test stop is successfully completed.

Fault values 0xCCCCCCCC / 0xDDDDDDDD / 0xEEEEEEEE : These fault values are triggered together with alarm 35152. If they appear, you should check all test stop parameters. You should also check whether the firmware version of the TM54F matches the Control Unit's software version.

You also need to check P10001, P10017, P10046, and P10047.
235014 <location>TM54F: Test stop required
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: - after powering up the drive, a test stop has still not been carried out.
 - a new test stop is required after commissioning.
 - the time to carry out the forced checking procedure (test stop) has expired (p10003).
Remedy: Initiate test stop (BI: p10007).

235015 <location>TM54F: Communication with drive not established
Message value: Fault cause: %1 bin
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: Cyclic communication of one or several drives with the Terminal Module 54F (TM54F) is not active.
 Fault value (r0949, interpret binary):
 Bit 0 = 1: No communication with drive 1.
 ...
 Bit 5 = 1: No communication with drive 6.
 For fault value = 0, the following applies:
 The number of drive objects specified in p10010 is not equal to the number of drives that have drive-based motion monitoring functions that have been enabled.
 The drive object number for drive n is set in p10010[n-1].
 When this fault is present, none of the drives that have drive-based motion monitoring functions operating with TM54F, are enabled.
Remedy: For all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).

235016 <location>TM54F: Net data communication with drive not established
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: The cyclic net data communication within the Terminal Module 54F (TM54F) is still not active.
 This message is output after the TM54F master and TM54F slave have booted and is automatically withdrawn as soon as communications have been established.
 If a drive does not communicate with the TM54F, then none of the drives parameterized in p10010 are enabled.
Remedy: When replacing a Motor Module, carry out the following steps:
 - start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
 - acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
 - save all parameters (p0977 = 1).
 - carry out a POWER ON (power off/on) for all components.
 The following always applies:
 - for all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).
 - check whether fault F35150 is present and if required, remove the cause of the fault.
 See also: r10055 (SI TM54F communication status drive-specific)
235040 <location>TM54F: 24 V undervoltage

Message value: Fault cause: %1 bin
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: For the 24 V power supply for the Terminal Module 54F (TM54F) an undervoltage condition was detected. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Fault value (r0949, interpret binary):
Bit 0 = 1: Power supply undervoltage at connection X524.
Bit 1 = 1: Power supply undervoltage at connection X514.
Remedy:
- check the 24 V DC power supply for the TM54F.
- carry out safe acknowledgement (p10006).

235043 <location>TM54F: 24 V overvoltage

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: For the 24 V power supply for the Terminal Module 54F (TM54F) an overvoltage condition was detected. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Remedy:
- check the 24 V DC power supply for the TM54F.
- carry out safe acknowledgement (p10006).

235051 <location>TM54F: Defect in a monitoring channel

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The Terminal Module 54F (TM54F) has identified an error in the data cross check between the two control channels. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions. Fault value (r0949, interpret hexadecimal):
aaaaabbbcc hex
aaaa: A value greater than zero indicates an internal software error.
bb: Data to be cross-checked that resulted in the error.
 bb = 00 hex: p10000
 bb = 01 hex: p10001
 bb = 02 hex: p10002
 bb = 03 hex: p10006
 bb = 04 hex: p10008
 bb = 05 hex: p10010
 bb = 06 hex: p10011
 bb = 07 hex: p10020
 bb = 08 hex: p10021
 bb = 09 hex: p10022
bb = 0A hex: p10023
bb = 0B hex: p10024
bb = 0C hex: p10025
bb = 0D hex: p10026
bb = 0E hex: p10027
bb = 0F hex: p10028
bb = 10 hex: p10036
bb = 11 hex: p10037
bb = 12 hex: p10038
bb = 13 hex: p10039
bb = 14 hex: p10040
bb = 15 hex: p10041
bb = 16 hex: p10042
bb = 17 hex: p10043
bb = 18 hex: p10044
bb = 19 hex: p10045
bb = 1A hex: p10046
bb = 1B hex: Test stop internal p10041
bb = 1C hex: Test stop internal p10046
bb = 20 hex: - 2A hex test stop internal p10040
bb = 2B hex: Test stop initialization
bb = 2C hex: Input/output calculation initialization
bb = 46 hex - 63 hex data for SGE calculation of drive group 1
bb = 64 hex - 81 hex data for SGE calculation of drive group 2
bb = 82 hex - 9F hex data for SGE calculation of drive group 3
bb = BE hex debounce time of FDI inputs, p10017
bb = BF hex debounce time of DI inputs, P10017
bb = C0 hex debounce time of diag inputs, P10017
cc: Index of the data to be cross-checked that resulted in the error.

Remedy: Carry out the following steps on the TM54F:
- activate the safety commissioning mode (p0010 = 95).
- start the copy function for SI parameters (p9700 = 57 hex).
- exit the safety commissioning mode (p0010 = 0).
- save all parameters (p0977 = 1).
- carry out safe acknowledgement (p10006).
For an internal software error (aaaa greater than zero):
- upgrade the software on the TM54F.
- contact the Hotline.
- replace the TM54F.

235052 <location>TM54F: Internal hardware error
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal software/hardware error has been detected on the Terminal Module 54F (TM54F).
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - check the electrical cabinet design and cable routing for EMC compliance
- upgrade TM54F firmware to more recent version.
- contact the Hotline.
- replace the TM54F.
SINAMICS alarms

235053
<location>TM54F: Temperature fault threshold exceeded

- **Message value:** %1
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
- **Reaction:** NONE
- **Acknowledge:** IMMEDIATELY
- **Cause:** The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to initiate this fault. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
- **Remedy:**
 - allow the TM54F to cool down.
 - carry out safe acknowledgement (p10006).

235054
<location>TM54F: Temperature alarm threshold exceeded

- **Message value:** %1
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to initiate this alarm.
- **Remedy:**
 - allow the TM54F to cool down.
 - carry out safe acknowledgement (p10006).

235075
<location>TM54F: Error during internal communication

- **Message value:** %1
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** An internal communications error has occurred in the Terminal Module 54F (TM54F). This alarm can also occur if the TM54F exists and no safety function has yet been parameterized. Alarm value (r2124, interpret decimal): Only for internal Siemens diagnostics.
- **Remedy:** For internal communication errors:
 - check the electrical cabinet design and cable routing for EMC compliance
 - upgrade the software on the TM54F.
 - contact the Hotline.
 - replace the TM54F.
If TM54F exists and no safety function has yet been parameterized:
 - None necessary. The alarm disappears automatically after a safety function has been parameterized.
235080 <location>TM54F: Checksum error safety parameters

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: The calculated checksum entered in r10004 over the safety-relevant parameters does not match the reference checksum saved in p10005 at the last machine acceptance.
Fault value (r0949, interpret decimal):
1: Checksum error for functional SI parameters.
2: Checksum error for SI parameters for component assignment.
Remedy:
- check the safety-relevant parameters and if required, correct.
- set the reference checksum to the actual checksum.
- acknowledge the hardware replacement.
- carry out a POWER ON.
- carry out an acceptance test.

235081 <location>TM54F: Static (steady state) 1 signal at the F-DI for safety-relevant acknowledgement

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: A logical 1 signal is present at the F-DI configured in p10006 for more than 10 seconds. A logical 0 signal must be present statically (steady-state) at the F-DI. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounce.
Remedy:
Set F-DI (see p10006) to logical 0 signal.

235150 <location>TM54F: Communication error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
 SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A communication error between the TM54F master and Control Unit or between the TM54F slave and the Motor Module was detected.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
When replacing a Motor Module, carry out the following steps:
- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
The following always applies:
- check the electrical cabinet design and cable routing for EMC compliance
- upgrade the software on the TM54F.
- contact the Hotline.
- replace the TM54F.
235151
<TM54F: Discrepancy error>

Message value:
%1

Drive object:
AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM54F_MA, TM54F_SL

Reaction:
NONE

Acknowledge:
IMMEDIATELY

Cause:
The safety input terminals or output terminals show a different state longer than that parameterized in p10002.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex
xxxx:
The safety-relevant input terminals F-DI indicate a discrepancy.
Bit 0: Discrepancy for F-DI 0
...
Bit 9: Discrepancy for F-DI 9
yyyy:
The safety-relevant output terminals F-DO indicate a discrepancy.
Bit 0: Discrepancy for F-DO 0
...
Bit 3: Discrepancy for F-DO 3

Note:
If several discrepancy errors occur consecutively, then this fault is only signaled for the first error that occurs.
The following possibilities exist of diagnosing all of the discrepancy errors:
- in the commissioning software, evaluate the input states and output states of the TM54F. All discrepancy errors are displayed here.
- compare parameters p10051 and p10052 from the TM54F master and TM54F slave for discrepancy.

Remedy:
Check the wiring of the F-DI and F-DO (contact problems).

Note:
A discrepancy of the F-DO also occurs (in this special case, in conjunction with fault F35150 for the TM54F slave), if, after replacing a Motor Module, it was forgotten to acknowledge this.
When replacing a Motor Module, carry out the following steps:
- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
Discrepancy errors in the F-DIs can only be completely acknowledged if, after the cause of the error was resolved, safe acknowledgement was carried out (see p10006). As long as safety acknowledgement was not carried out, the corresponding F-DI stays in the safe state.

F-DI: FailSafe Digital Input
F-DO: FailSafe Digital Output
Where switching operations recur cyclically on the F-DIs, the discrepancy time must be parameterized as follows:
td = possible actual discrepancy time (in ms) that can occur with a switching operation. This must correspond to at least 1 SI sampling cycle (see p10000).
tp = period for a switching operation in ms.
The following rules must be adhered to:
p10002 < (tp/2) - td (discrepancy time must be less than half the period minus the actual discrepancy time)
p10002 > = p10000 (discrepancy time must be no less than P10000)
p10002 > td (discrepancy time must be greater than the switch discrepancy time which may actually apply)

Example: If SI sampling cycle is 12 ms and switching frequency is 110 ms, the maximum discrepancy time which can be set is as follows:
p10002 < = 110ms/2 - 12ms = 43mS; this rounds off to P10002 <= 36 ms.
(Since the sampling time can only be accepted as a whole SI sampling cycle, the value will need to be rounded up or down to a whole SI sampling time value if it is not an exact multiple of an SI sampling cycle.)
235152
<location>TM54F: Internal software error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
SIC_SINUMERIK_828, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: An internal software error has occurred in the Terminal Module 54F (TM54F).
The fail-safe digital inputs and digital outputs (F-DI, F-DO) on the TM54F have been set to the safe state.
Note:
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output
Remedy: Check that the firmware version of the TM54F matches the Control Unit's firmware version.
The automatic firmware update must be activated in the project.
Note:
This signal will also appear, for example, in conjunction with signal 35013. In this case you should check all the parameters for the test stop on the TM54F (p10001, p10003, p10007, p10041, p10046, p10047).

235200
<location>TM: Calibration data

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: An error was detected in the calibration data of the Terminal Module.
Alarm value [r2124, interpret decimal]:
The hundred-thousands and ten-thousands position specifies the component ID of the Terminal Module which detected the fault.
The thousands location specifies whether the analog input 0 (=0) or analog output 1 (= 1) is involved.
The hundreds location specifies the fault type:
0: No calibration data available.
1: Offset too high (> 100 mV).
The tens and ones location specifies the number of the input involved.
Remedy: Power down the unit and power up again.
If the fault is still present, replace the module/board.

235207
<location>TM: Temperature fault/alarm threshold channel 1 exceeded

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI,
SIC_SINUMERIK_828, TM120
Reaction: Servo: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled:
- alarm threshold has been exceeded longer than that set in the timer stage (p4102[0], p4103[0]).
or
- fault threshold exceeded (p4102[1]).
Note: For PTC, the following applies:
- if r4101[0] > 1650 ohms, the temperature r4105[0] = 250 °C
- if r4101[0] <= 1650 ohms, the temperature r4105[0] = -50°C
The measured temperature is displayed in r4105[0].
This fault can only be initiated if temperature evaluation was activated (p4100[0] = 2 for KTY84 sensor, p4100[0] = 1 for PTC thermistor or p4100[0] = 4 for bimetallic NC contact).
Notice: This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
Fault value (r0949, interpret decimal):
- reduce ambient temperature of temperature sensor to below p4102[1] hysteresis.
- if required, set the fault response to NONE (p2100, p2101).
See also: p4102 (TM120 temperature evaluation fault/alarm threshold)

Remedy:
- reduce ambient temperature of temperature sensor to below p4102[1] hysteresis.
- if required, set the fault response to NONE (p2100, p2101).
See also: p4102 (TM120 temperature evaluation fault/alarm threshold)
235209 <location>TM: Temperature fault/alarm threshold channel 3 exceeded</location>

Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: Servo: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: For the temperature evaluation via the Terminal Module 120 (TM120), at least one of the following conditions to initiate this fault is fulfilled:
- alarm threshold has been exceeded longer than that set in the timer stage (p4102[4], p4103[2]).
or
- fault threshold exceeded (p4102[5]).

Note: For PTC, the following applies:

The measured temperature is displayed in r4105[2].

This fault can only be initiated if temperature evaluation was activated (p4100[2] = 2 for KTY84 sensor, p4100[2] = 1 for PTC thermistor or p4100[2] = 4 for bimetallic NC contact).

Notice: This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.

Fault value (r0949, interpret decimal):
Temperature value multiplied by 10 at the point of initiation.

- if required, set the fault response to NONE (p2100, p2101).

See also: p4102 (TM120 temperature evaluation fault/alarm threshold)

235210 <location>TM: Temperature fault/alarm threshold channel 4 exceeded</location>

Message value: %1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: Servo: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: For the temperature evaluation via the Terminal Module 120 (TM120), at least one of the following conditions to initiate this fault is fulfilled:
- alarm threshold has been exceeded longer than that set in the timer stage (p4102[6], p4103[3]).
or
- fault threshold exceeded (p4102[7]).

Note: For PTC, the following applies:

The measured temperature is displayed in r4105[3].

This fault can only be initiated if temperature evaluation was activated (p4100[3] = 2 for KTY84 sensor, p4100[3] = 1 for PTC thermistor or p4100[3] = 4 for bimetallic NC contact).

Notice: This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.

Fault value (r0949, interpret decimal):
Temperature value multiplied by 10 at the point of initiation.

- if required, set the fault response to NONE (p2100, p2101).

See also: p4102 (TM120 temperature evaluation fault/alarm threshold)
235211
<location>TM: Temperature alarm threshold channel 1 exceeded
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[0]) has exceeded the threshold value to initiate this alarm (p4102[0]).
For PTC, the following applies:
- if r4101[0] > 1650 ohms, the temperature r4105[0] = 250 °C
- if r4101[0] <= 1650 ohms, the temperature r4105[0] = -50°C
Alarm value (r2124, interpret decimal): Temperature value multiplied by 10 at the point of initiation.
Remedy: See also: p4102 (TM120 temperature evaluation fault/alarm threshold)

235212
<location>TM: Temperature alarm threshold channel 2 exceeded
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The temperature measured using the temperature sensing of the Terminal Module 120 (TM120) (r4105[1]) has exceeded the threshold value to initiate this alarm (p4102[2]).
For PTC, the following applies:
- if r4101[1] > 1650 ohms, the temperature r4105[1] = 250 °C
- if r4101[1] <= 1650 ohms, the temperature r4105[1] = -50°C
Alarm value (r2124, interpret decimal): Temperature value multiplied by 10 at the point of initiation.
Remedy: See also: p4102 (TM120 temperature evaluation fault/alarm threshold)

235213
<location>TM: Temperature alarm threshold channel 3 exceeded
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The temperature measured using the temperature sensing of the Terminal Module 120 (TM120) (r4105[2]) has exceeded the threshold value to initiate this alarm (p4102[4]).
For PTC, the following applies:
Alarm value (r2124, interpret decimal): Temperature value multiplied by 10 at the point of initiation.
Remedy: See also: p4102 (TM120 temperature evaluation fault/alarm threshold)
235214 <location>TM: Temperature alarm threshold channel 4 exceeded
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The temperature measured using the temperature sensing of the Terminal Module 120 (TM120) (r4105[3]) has exceeded the threshold value to initiate this alarm (p4102[6]).
For PTC, the following applies:
Alarm value (r2124, interpret decimal):
 Temperature value multiplied by 10 at the point of initiation.
Remedy: See also: p4102 (TM120 temperature evaluation fault/alarm threshold)

235230 <location>HW problem with the TM module
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: Servo: NONE
 Infeed: OFF1 (NONE, OFF2)
Acknowledge: POWER ON
Cause: The Terminal Module (TM) used has signaled internal errors.
 Signals from this module may not be evaluated because they are very likely to be incorrect.
Remedy: If required, replace the Terminal Module.

235233 <location>DRIVE-CLiQ component does not support function
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
 Fault value (r0949, interpret decimal):
 1: Terminal Module 31 does not support the function "Timer for temperature evaluation" (X522.7/8, p4103 > 0.000).
Remedy: Re fault value = 1:
 - De-activate timer for temperature evaluation (X522.7/8) (p4103 = 0.000).
 - Use Terminal Module 31 and the relevant firmware version to enable the "Timer for temperature evaluation" function
 (Order No. 6SL3055-0AA00-3AA1, firmware version 2.6 and higher).
 See also: p4103 (TM120 temperature evaluation timer)
235800 <location>TM: Group signal

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) Infeed: OFF2 (NONE, OFF1)
Acknowledge: NONE
Cause: The Terminal Module has detected at least one fault.
Remedy: Evaluates other actual messages.

235801 <location>TM DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. Alarm value (r2124, interpret hexadecimal): yyxx hex: yy = component number, xx = fault cause xx = 0A hex: The sign-of-life bit in the receive telegram is not set.
Remedy: - check the DRIVE-CLiQ connection. - replace the component involved. See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

235802 <location>TM: Time slice overflow

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: A time slice overflow has occurred on the Terminal Module.
Remedy: Replace the Terminal Module.

235803 <location>TM: Memory test

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred during the memory test on the Terminal Module.
Remedy: - check whether the permissible ambient temperature for the Terminal Module is being maintained. - replace the Terminal Module.
235804 <location>TM: CRC

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: A checksum error has occurred when reading-out the program memory on the Terminal Module.
Fault value (r0949, interpret hexadecimal):
- Difference between the checksum at POWER ON and the actual checksum.
Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- replace the Terminal Module.

235805 <location>TM: EPROM checksum error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: Internal parameter data is corrupted.
Alarm value (r2124, interpret hexadecimal):
- 01: EEPROM access error.
- 02: Too many blocks in the EEPROM.
Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- replace the Terminal Module 31 (TM31).

235807 <location>TM: Sequence control time monitoring

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: Error, timeout, sequence control on the Terminal Module.
Remedy: Replace the Terminal Module.

235820 <location>TM DRIVE-CLiQ: Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. Fault value (r949, interpret hexadecimal):
- \(yyy\times x = \text{component number}, \ x = \text{fault cause} \\
- \ x = 01\text{ hex: CRC error.} \\
- \ x = 02\text{ hex: Telegram is shorter than specified in the length byte or in the receive list.} \\
- \ x = 03\text{ hex: Telegram is longer than specified in the length byte or in the receive list.} \\
- \ x = 04\text{ hex: The length of the receive telegram does not match the receive list.} \\
- \ x = 05\text{ hex: The type of the receive telegram does not match the receive list.} \\
- \ x = 06\text{ hex: The address of the component in the telegram and in the receive list do not match.} \\
- \ x = 07\text{ hex: A SYNC telegram is expected - but the received telegram is not a SYNC telegram.} \\
- \ x = 08\text{ hex: No SYNC telegram is expected - but the received telegram is one.} \\
- \ x = 09\text{ hex: The error bit in the receive telegram is set.} \\
- \ x = 10\text{ hex: The receive telegram is too early.}

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

235835 <location>TM DRIVE-CLiQ: Cyclic data transfer error

Message value:	Component number: %1, fault cause: %2
Drive object:	AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. The nodes do not send and receive in synchronism. Fault value (r949, interpret hexadecimal):
- \(yyy\times x = \text{component number}, \ x = \text{fault cause} \\
- \ x = 21\text{ hex: The cyclic telegram has not been received.} \\
- \ x = 22\text{ hex: Timeout in the telegram receive list.} \\
- \ x = 40\text{ hex: Timeout in the telegram send list.}

Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

235836 <location>TM DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message value:	Component number: %1, fault cause: %2
Drive object:	AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause

xx = 41 hex:
Telegram type does not match send list.

Remedy: Carry out a POWER ON.

235837

<location>PTM DRIVE-CLiQ: Component fault

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL

Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY

Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause

xx = 20 hex:
Error in the telegram header.

xx = 23 hex:
Receive error: The telegram buffer memory contains an error.

xx = 42 hex:
Send error: The telegram buffer memory contains an error.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

235845

<location>TM DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL

Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the encoder involved.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause

xx = 0B hex:
Synchronization error during alternating cyclic data transfer.

Remedy: Carry out a POWER ON.

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
235850

<location>TM: Internal software error

Message value: 1

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL

Reaction: Servo: OFF1 (NONE, OFF2, OFF3)
Infeed: OFF1 (NONE, OFF2)

Acknowledge: POWER ON

Cause: An internal software error in the Terminal Module (TM) has occurred.
Fault value (r0949, interpret decimal):
1: Background time slice is blocked.
2: Checksum over the code memory is not OK.

Remedy:
- replace the Terminal Module (TM).
- if required, upgrade the firmware in the Terminal Module.
- contact the Hotline.

235851

<location>TM DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: 1, fault cause: 2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL

Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
```
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
```

Remedy: Upgrade the firmware of the component involved.

235860

<location>TM DRIVE-CLiQ (CU): Telegram error

Message value: Component number: 1, fault cause: 2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL

Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved.
Fault value (r0949, interpret hexadecimal):
```
yyxx hex: yy = component number, xx = fault cause
xx = 11 hex = 17 dec:
CRC error and the receive telegram is too early.
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
The telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
The telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
```
xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

235885 <location>TM DRIVE-CLiQ (CU): Cyclic data transfer error

Message value:
Component number: %1, fault cause: %2

Drive object:
AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL

Reaction:
OFF1 (OFF2)

Acknowledge:
IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved. The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
235886 <location>TM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex: Telegram type does not match send list.
Remedy: Carry out a POWER ON.

235887 <location>TM DRIVE-CLiQ (CU): Component fault

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component (Terminal Module) involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex: Error in the telegram header.
x = 23 hex: Receive error: The telegram buffer memory contains an error.
x = 42 hex: Send error: The telegram buffer memory contains an error.
x = 43 hex: Send error: The telegram buffer memory contains an error.
x = 60 hex: Response received too late during runtime measurement.
x = 61 hex: Time taken to exchange characteristic data too long.
Remedy: - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

235895 <location>TM DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex: Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

235896 <location>TM DRIVE-CLiQ (CU): Inconsistent component properties

Message value: Component number: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: Servo: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
 Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Terminal Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.
Remedy:
- carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).

235899 <location>TM: Unknown fault

Message value: New message: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
 Infeed: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Component number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the Terminal Module by an older firmware version (r0158).
- upgrade the firmware on the Control Unit (r0018).

235903 <location>TM: I2C bus error occurred

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred while accessing the internal I2C bus of the Terminal Module.
Remedy: Replace the Terminal Module.
235904 <location>TM: EEPROM
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy: Replace the Terminal Module.

235905 <location>TM: Parameter access
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The Control Unit attempted to write an illegal parameter value to the Terminal Module.
Remedy: - check whether the firmware version of the Terminal Module (r0158) matches the firmware version of Control Unit (r0018).
- if required, replace the Terminal Module.
Note: The firmware versions that match each other are in the readme.txt file on the memory card.

235906 <location>TM: 24 V power supply missing
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The 24 V power supply for the digital outputs is missing.
Alarm value (r2124, interpret hexadecimal):
01: TM17 24 V power supply for Di/Do 0 ... 7 missing.
02: TM17 24 V power supply for Di/Do 8 ... 15 missing.
04: TM15 24 V power supply for Di/Do 0 ... 7 (X520) missing.
08: TM15 24 V power supply for Di/Do 8 ... 15 (X521) missing.
10: TM15 24 V power supply for Di/Do 16 ... 23 (X522) missing.
20: TM41 24 V power supply for Di/Do 0 ... 3 missing.
Remedy: Check the terminals for the power supply voltage (L1+, L2+, L3+, M, or +24 V_1 with TM41).

235907 <location>TM: Hardware initialization error
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The Terminal Module was not successfully initialized.
Alarm value (r2124, interpret hexadecimal):
01: TM17 or TM41 - incorrect configuration request.
02: TM17 or TM41 - programming not successful.
04: TM17 or TM41 - invalid time stamp
Remedy: Carry out a POWER ON.

235910 <location>TM: Module overtemperature
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The temperature in the module has exceeded the highest permissible limit.
Remedy: - reduce the ambient temperature.
- replace the Terminal Module.

235911 <location>TM: Clock synchronous operation sign-of-life missing
Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.
When the alarm is output, the module outputs are reset up to the next synchronization.
Remedy: - check the physical bus configuration (terminating resistor, shielding, etc.).
- check the interconnection of the master sign-of-life (r4201 via p0915).
- check whether the master correctly sends the sign-of-life (e.g. set up a trace with r4201.12 ... r4201.15 and trigger signal r4301.9).
- check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).

235920 <location>TM: Error temperature sensor channel 1
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Remedy: - make sure that the sensor is connected correctly.
- replace the sensor.
235921 TM: Error temperature sensor channel 2

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Remedy:
- make sure that the sensor is connected correctly.
- replace the sensor.

235922 TM: Error temperature sensor channel 3

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Remedy:
- make sure that the sensor is connected correctly.
- replace the sensor.

235923 TM: Error temperature sensor channel 4

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Remedy:
- make sure that the sensor is connected correctly.
- replace the sensor.

235999 TM: Unknown alarm

Message value: New message: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120, TM54F_MA, TM54F_SL
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the Terminal Module by an older firmware version (r0158).
- upgrade the firmware on the Control Unit (r0018).

236207 <location>Hub: Overtemperature component
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The temperature on the DRIVE-CLiQ Hub Module has exceeded the fault threshold.
Fault value (r0949, interpret decimal):
Actual temperature in 0.1 °C resolution.
Remedy:
- Check ambient temperature at component installation location.
- replace the component involved.

236211 <location>Hub: Overtemperature alarm component
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The temperature on the DRIVE-CLiQ Hub Module has exceeded the alarm threshold.
Alarm value (r2124, interpret decimal):
Actual temperature in 0.1 °C resolution.
Remedy:
- Check ambient temperature at component installation location.
- replace the component involved.

236214 <location>Hub: overvoltage fault 24 V supply
Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The 24 V power supply on the DRIVE-CLiQ Hub Module has exceeded the fault threshold.
Fault value (r0949, interpret decimal):
Actual operating voltage in 0.1 °C resolution
Remedy:
- check the supply voltage of the component involved.
- replace the component involved.
236216 <location>Hub: undervoltage fault 24 V supply

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The 24 V power supply on the DRIVE-CLiQ Hub Module has undershot the fault threshold.
Fault value (r0949, interpret decimal):
Actual operating voltage in 0.1 °C resolution
Remedy:
- check the supply voltage of the component involved.
- replace the component involved.

236217 <location>Hub: undervoltage alarm 24 V supply

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The 24 V power supply on the DRIVE-CLiQ Hub Module has undershot the alarm threshold.
Alarm value (r2124, interpret decimal):
Actual operating voltage in 0.1 °C resolution
Remedy:
- check the supply voltage of the component involved.
- replace the component involved.

236800 <location>Hub: Group signal

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The DRIVE-CLiQ Hub Module has detected at least one fault.
Remedy: Evaluates other actual messages.

236801 <location>Hub DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.
Alarm value (r2124, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
Remedy:
- check the DRIVE-CLiQ connection.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
236802 <location>Hub: Time slice overflow

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: Servo: NONE
Infeed: OFF2 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A time slice overflow has occurred on the DRIVE-CLiQ Hub Module.
Fault value (r0949, interpret decimal):
xx: Time slice number xx
Remedy:
- reduce the current controller frequency.
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

236804 <location>Hub: Checksum error

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: A checksum error has occurred when reading out the program memory on the DRIVE-CLiQ Hub Module.
Alarm value (r2124, interpret hexadecimal):
Difference between the checksum at POWER ON and the actual checksum.
Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- replace the DRIVE-CLiQ Hub Module.

236805 <location>Hub: EEPROM checksum incorrect

Message value: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The internal parameter data on the DRIVE-CLiQ Hub Module is incorrect.
Alarm value (r2124, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- replace the DRIVE-CLiQ Hub Module.
236820 <location>Hub DRIVE-CLiQ: Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.
Fault value (r0949, interpret hexadecimal):
xx = 01 hex = 1 dec:
Checksum error (CRC error).
xx = 02 hex = 2 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex = 3 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex = 4 dec:
The length of the receive telegram does not match the receive list.
xx = 05 hex = 5 dec:
The type of the receive telegram does not match the receive list.
xx = 06 hex = 6 dec:
The address of the component in the telegram and in the receive list do not match.
xx = 07 hex = 7 dec:
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
xx = 08 hex = 8 dec:
No SYNC telegram is expected - but the received telegram is one.
xx = 09 hex = 9 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

236835 <location>Hub DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.
The nodes do not send and receive in synchronism.
Fault value (0949, interpret hexadecimal):
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.

Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
236836 <location>Hub DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex = 65 dec:
Telegram type does not match send list.
Remedy: Carry out a POWER ON.

236837 <location>Hub DRIVE-CLiQ: Component fault

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex = 32 dec:
Error in the telegram header.
xx = 23 hex = 35 dec:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex = 66 dec:
Send error: The telegram buffer memory contains an error.
xx = 43 hex = 67 dec:
Send error: The telegram buffer memory contains an error.
Remedy: - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

236845 <location>Hub DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex = 11 dec:
Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
236851 <location>Hub DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828,
SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.

236860 <location>Hub DRIVE-CLiQ (CU): Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828,
SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 02 hex = 2 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex = 3 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex = 4 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 5 dec:
The type of the receive telegram does not match the receive list.
xx = 10 hex = 16 dec:
The receive telegram is too early.
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 9 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.
SINAMICS alarms

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

236885 <location>Hub DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause:
DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause

xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.

Remedy:
- check the supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.

236886 <location>Hub DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause:
DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause

xx = 41 hex = 65 dec:
Telegram type does not match send list.

Remedy: Carry out a POWER ON.

236887 <location>Hub DRIVE-CLiQ (CU): Component fault

Message value: Component number: %1, fault cause: %2

Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828, TM120

Reaction: NONE

Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex = 32 dec:
Error in the telegram header.
xx = 23 hex = 35 dec:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex = 66 dec:
Send error: The telegram buffer memory contains an error.
xx = 43 hex = 67 dec:
Send error: The telegram buffer memory contains an error.
xx = 60 hex = 96 dec:
Response received too late during runtime measurement.
xx = 61 hex = 97 dec:
Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

236895 <location>Hub DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828,
SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex = 11 dec:
Synchronization error during alternating cyclic data transfer.

Remedy:
- carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

236896 <location>Hub DRIVE-CLiQ (CU): Inconsistent component properties

Message value: Component number: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, CU_LINK, HUB, SERVO_COMBI, SERVO_SINUMERIK828,
SIC_COMBI, SIC_SINUMERIK_828, TM120
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
- Component number.

Remedy:
- carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
236899 <location>Hub: Unknown fault
Message value: New message: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: Servo: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Infeed: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).
- upgrade the firmware on the Control Unit (r0018).

236999 <location>Hub: Unknown alarm
Message value: New message: %1
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, HUB, SERVO_COMBI, SERVO_SINUMERIK828, SIC_COMBI, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: An alarm occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note:
If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).
- upgrade the firmware on the Control Unit (r0018).

240000 <location>Fault at DRIVE-CLiQ socket X100
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X100.
Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.
240001 <location>Fault at DRIVE-CLiQ socket X101

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X101. Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240002 <location>Fault at DRIVE-CLiQ socket X102

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X102. Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240003 <location>Fault at DRIVE-CLiQ socket X103

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X103. Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240004 <location>Fault at DRIVE-CLiQ socket X104

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X104. Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.
240005 <location>Fault at DRIVE-CLiQ socket X105
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X105.
Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240100 <location>Alarm at DRIVE-CLiQ socket X100
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X100.
Alarm value (r2124, interpret decimal):
First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240101 <location>Alarm at DRIVE-CLiQ socket X101
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X101.
Alarm value (r2124, interpret decimal):
First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240102 <location>Alarm at DRIVE-CLiQ socket X102
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X102.
Alarm value (r2124, interpret decimal):
First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.
240103 <location>Alarm at DRIVE-CLiQ socket X103

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X103.
Alarm value (r2124, interpret decimal):
First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240104 <location>Alarm at DRIVE-CLiQ socket X104

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X104.
Alarm value (r2124, interpret decimal):
First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240105 <location>Alarm at DRIVE-CLiQ socket X105

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X105.
Alarm value (r2124, interpret decimal):
First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240799 <location>CX32: Configured transfer end time exceeded

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The configured transfer end time when transferring the cyclic actual values was exceeded.
Remedy: - carry out a POWER ON (power off/on) for all components.
- contact the Hotline.
SINAMICS alarms

240801 CX32 DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 0A hex:
The sign-of-life bit in the receive telegram is not set.
Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

240820 CX32 DRIVE-CLiQ: Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 01 hex:
 CRC error.
 xx = 02 hex:
 Telegram is shorter than specified in the length byte or in the receive list.
 xx = 03 hex:
 Telegram is longer than specified in the length byte or in the receive list.
 xx = 04 hex:
 The length of the receive telegram does not match the receive list.
 xx = 05 hex:
 The type of the receive telegram does not match the receive list.
 xx = 06 hex:
 The address of the component in the telegram and in the receive list do not match.
 xx = 07 hex:
 A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
 xx = 08 hex:
 No SYNC telegram is expected - but the received telegram is one.
 xx = 09 hex:
 The error bit in the receive telegram is set.
 xx = 10 hex:
 The receive telegram is too early.
Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
240835 <location>CX32 DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 21 hex:
The cyclic telegram has not been received.
xx = 22 hex:
Timeout in the telegram receive list.
xx = 40 hex:
Timeout in the telegram send list.
Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

240836 <location>CX32 DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.
Remedy:
- carry out a POWER ON.

240837 <location>CX32 DRIVE-CLiQ: Component fault

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
240845
<location>CX32 DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault value (r0949, interpret hexadecimal):
\[yyxx\] hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

240851
<location>CX32 DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
\[yyxx\] hex: yy = component number, xx = fault cause
xx = 0A hex:
The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.

240860
<location>CX32 DRIVE-CLiQ (CU): Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
\[yyxx\] hex: yy = component number, xx = fault cause
xx = 11 hex:
CRC error and the receive telegram is too early.
xx = 01 hex:
CRC error.
xx = 12 hex:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex:
The telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex:
The telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 04 hex:
The length of the receive telegram does not match the receive list.
xx = 15 hex:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
SINAMICS alarms

xx = 05 hex:
The type of the receive telegram does not match the receive list.

xx = 16 hex:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.

xx = 06 hex:
The address of the power unit in the telegram and in the receive list do not match.

xx = 19 hex:
The error bit in the receive telegram is set and the receive telegram is too early.

xx = 09 hex:
The error bit in the receive telegram is set.

xx = 10 hex:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

240885 <location>CX32 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 1A hex:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex:
The cyclic telegram has not been received.
xx = 22 hex:
Timeout in the telegram receive list.
xx = 40 hex:
Timeout in the telegram send list.
xx = 62 hex:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

240886 <location>CX32 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy:
Carry out a POWER ON.
240887 <location>CX32 DRIVE-CLiQ (CU): Component fault

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 20 hex:
 Error in the telegram header.
 xx = 23 hex:
 Receive error: The telegram buffer memory contains an error.
 xx = 42 hex:
 Send error: The telegram buffer memory contains an error.
 xx = 43 hex:
 Send error: The telegram buffer memory contains an error.
 xx = 60 hex:
 Response received too late during runtime measurement.
 xx = 61 hex:
 Time taken to exchange characteristic data too long.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

240895 <location>CX32 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 0B hex:
 Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

249150 <location>Cooling system: Fault occurred

Message value:
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The cooling system signals a general fault.
Remedy:
- check the wiring between the cooling system and the input terminal (Terminal Module).
- check the external control device for the cooling system.
See also: p0266 (Cooling system, feedback signals, signal source)
SINAMICS alarms

249151
<location>Cooling system: Conductivity has exceeded the fault threshold

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The conductivity of the cooling liquid has exceeded the selected fault threshold (p0269[2]).
See also: p0261 (Cooling system, starting time 2), p0262 (Cooling system, fault conductivity delay time), p0266 (Cooling system, feedback signals, signal source)
Remedy: Check the device to de-ionize the cooling liquid.

249152
<location>Cooling system: ON command feedback signal missing

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The feedback signal of the ON command of the cooling system is missing.
- after the ON command, the feedback signal has not been received within the selected starting time (p0260).
- the feedback signal has failed in operation.
See also: p0260 (Cooling system, starting time 1), r0267 (Cooling system status word)
Remedy: - check the wiring between the cooling system and the input terminal (Terminal Module).
- check the external control device for the cooling system.

249153
<location>Cooling system: Liquid flow too low

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The drive converter cooling system signals that the cooling liquid flow is too low.
- after the ON command, the feedback signal has not been received within the selected starting time (p0260).
- in operation, the feedback signal has failed for longer than the permitted failure time (p0263).
See also: p0260 (Cooling system, starting time 1), p0263 (Cooling system fault liquid flow, delay time), r0267 (Cooling system status word)
Remedy: - check the wiring between the cooling system and the input terminal (Terminal Module).
- check the external control device for the cooling system.

249154
<location>Cooling system: Liquid leak is present

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The liquid leakage monitoring function has responded.
Caution: If this fault is re-parameterized as an alarm then using other monitoring functions it must be ensured that when cooling water is lost, the drive is powered down!
See also: r0267 (Cooling system status word)
Remedy: - check the cooling system for leaks in the cooling circuit.
- check the wiring of the input terminal (Terminal Module) used to monitor leaking fluid.
249155 <location>Cooling system: Power Stack Adapter, firmware version too old

- **Message value:** -
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
- **Reaction:** OFF2
- **Acknowledge:** POWER ON
- **Cause:** The firmware version in the Power Stack Adapter (PSA) is too old and does not support the liquid cooling.
- **Remedy:** Upgrade the firmware. Check EEPROM data.

249156 <location>Cooling system: Cooling liquid temperature has exceeded the fault threshold

- **Message value:** -
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
- **Reaction:** OFF2
- **Acknowledge:** IMMEDIATELY
- **Cause:** The cooling liquid intake temperature has exceeded the permanently set fault threshold.
- **Remedy:** Check the cooling system and the ambient conditions.

249170 <location>Cooling system: Alarm has occurred

- **Message value:** -
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** The cooling system signals a general alarm.
- **Remedy:** - check the wiring between the cooling system and the input terminal (Terminal Module).
 - check the external control device for the cooling system.

249171 <location>Cooling system: Conductivity has exceeded the alarm threshold

- **Message value:** -
- **Drive object:** AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
- **Reaction:** NONE
- **Acknowledge:** NONE
- **Cause:** The conductivity of the cooling liquid has exceeded the selected alarm threshold (p0269[1]). See also: p0261 (Cooling system, starting time 2), p0262 (Cooling system, fault conductivity delay time), p0266 (Cooling system, feedback signals, signal source)
- **Remedy:** Check the device to de-ionize the cooling liquid.
249172 <location>Cooling system: Conductivity actual value is not valid

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: When monitoring the conductivity of the cooling liquid, there is a fault in the wiring or in the sensor.
Remedy: - check the wiring between the cooling system and the Power Stack Adapter (PSA).
- check the function of the sensor to measure the conductivity.

249173 <location>Cooling system: Cooling liquid temperature has exceeded the alarm threshold

Message value: -
Drive object: AFE_SINUMERIK_828, BIC_SINUMERIK_828, SIC_SINUMERIK_828
Reaction: NONE
Acknowledge: NONE
Cause: The cooling liquid intake temperature has exceeded the specified alarm threshold.
Remedy: Check the cooling system and the ambient conditions.
611D drive alarms

300406 Problem in the non-cyclic communication for basic address %1, additional information %2, %3, %4

Definitions: For PROFIdrive only:
A problem occurred during the non-cyclic communication with the logical start address. The additional information defines the location of the problem. If the logical start address 0 is output, only the additional information is relevant.

Reaction: Alarm display.
Warning display.

Remedy: Please inform the authorized personnel/service department. The alarm can be suppressed with MD11411 $MN_ENABLE_ALARM_MASK bit 1 == 0
SIEMENS AG, System Support for A&D MC products, Hotline (Phone: see alarm 1000)

Program Continuation:
Clear alarm with the Delete key or NC START.

300410 Axis %1 drive %2 error when storing a file (%3, %4)

Parameters:
%1 = NC axis number
%2 = Drive number
%3 = Error code 1
%4 = Error code 2

Definitions: An attempt to save a data block, e.g. the result of a measuring function, in the file system has failed.
On error code 1 == 291: An error occurred during preparation of the ACC information. Basic information prepared on the drive contains an error or has an unknown format.
On error code 1 == 292: Memory shortage during preparation of the ACC information.

Reaction: Interface signals are set.
Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Create more space in the file system. It is normally sufficient to delete 2 NC programs or to free 4 - 8 Kbytes of memory. If these remedies do not work, it will be necessary to increase the number of files per directory or the size of the file system itself (this will require a complete data backup).
- Change settings of machine data
 - 18280 $MM_NUM_FILES_PER_DIR
 - 18320 $MM_NUM_FILES_IN_FILESYSTEM
 - 18350 $MM_USER_FILE_MEM_MINIMUM
 - and, if necessary, of
 - 18270 $MM_NUM_SUBDIR_PER_DIR,
 - 18310 $MM_NUM_DIR_IN_FILESYSTEM,
- Power On
- Reload saved data
- On error code 1 == 291: Replace the drive software and use version with suitable ACC basic information.
- On error code 1 == 292: Replace the drive software and use fewer different versions of the drive software.

Program Continuation:
Clear alarm with the RESET key. Restart part program.
300411 **Axis %1 drive %2 error when reading a file (%3, %4)**

Parameters:
- %1 = NC axis number
- %2 = Drive number
- %3 = Error code 1
- %4 = Error code 2

Definitions:
An attempt to read a data block, e.g. a drive boot file, from the file system has failed. The data block or the file system is damaged.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
If the error occurred during power-up, i.e. it is probably connected to a drive boot file, delete all boot files and load them back into the control from the back-up copy.

Program Continuation:
Clear alarm with the RESET key. Restart part program

300412 **Error when storing a file (%1, %2)**

Parameters:
- %1 = Error code 1
- %2 = Error code 2

Definitions:
An attempt to save a data block, e.g. the result of a measuring function, in the file system has failed.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
Please inform the authorized personnel/service department. Create more space in the file system. It is normally sufficient to delete 2 NC programs or to free 4 - 8 Kbytes of memory. If these remedies do not work, it will be necessary to increase the number of files per directory or the size of the file system itself. To do so, proceed as follows:
- Save all data
- Change settings of machine data
- 18280 $MM_NUM_FILES_PER_DIR
- 18320 $MM_NUM_FILES_IN_FILESYSTEM
- 18350 $MM_USER_FILE_MEM_MINIMUM
- and, if necessary, of
- 18270 $MM_NUM_SUBDIR_PER_DIR
- 18310 $MM_NUM_DIR_IN_FILESYSTEM
- Power On
- Reload saved data

Program Continuation:
Clear alarm with the RESET key. Restart part program

300413 **Error when reading a file (%1, %2)**

Parameters:
- %1 = Error code 1
- %2 = Error code 2

Definitions:
An attempt to read a data block, e.g. a drive boot file, from the file system has failed. The data block or the file system is damaged.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
If the error occurred during power-up, i.e. it is probably connected to a drive boot file, delete all boot files and load them back into the control from the back-up copy.

Program Continuation:
Clear alarm with the RESET key. Restart part program
611D drive alarms

300423 Measuring result could not be read (%1)

Parameters: %1 = Error code

Definitions: An attempt to read a measurement result has failed:
 - Error code = 4: Not enough space for test result
 - Error code = 16: Measurement not yet finished

Reaction: Interface signals are set.
 Alarm display.

Remedy: Repeat measurement. After measuring time if necessary.

Program: Clear alarm with the RESET key. Restart part program

Continuation:

380001 PROFIBUS/PROFINET: Startup error, reason %1 parameter %2 %3 %4.

Parameters: %1 = Cause of the error
 %2 = Parameter 1
 %3 = Parameter 2
 %4 = Parameter 3

Definitions: An error occurred during startup of the PROFIBUS/PROFINET master.
 Overview: Cause of the error, Par 1, Par 2, Par 3:
 - 01 = DPM version, DPM version, DPA version, --
 - 02 = DPM ramp-up timeout, DPM actual value status, DPM setpoint value status, --
 - 03 = DPM ramp-up status, DPM actual value status, DPM setpoint value status, DPM error code
 - 04 = DPM ramp-up error, DPM actual value status, DPM setpoint value status, DPM error code
 - 05 = DPM-PLL sync error, --, --, --
 - 07 = Alarm queue too long, Actual number, Setpoint number, --
 - 08 = Unknown client, Client ID, --, --
 - 09 = Client version, Client ID, Client version, DPA version
 - 10 = Too many clients, Client number, max. number of clients, --
 - 11 = Log.basic address used several times; bus no.; slot no.; log.basic address --
 - 20 = Slave/device address used several times, slave/device address --
 - 21 = Slave/device address unknown, slave/device address, --
 - 22 = Errorneous configuration telegram, slave/device address, error code, --
 - 23 = OMI incompatible (data), drive version, CDA version, --, --
 - 24 = OMI incompatible (driver), drive version, CDA version, --, --
 - 25 = CPI initialization failed, error code, --, --, --
 - 26 = DMA not active
 - 27 = Reserved
 - 28 = Reserved
 - 29 = Reserved
 - The 1000s digit of the error cause = number of the affected bus

Clients are the following components of the control system that use the PROFIBUS/PROFINET:
Client ID = 1: PLC
Client ID = 2: NCK

Possible causes are:
- Error in contents of SDB
- Corruption of parts of the system program
- Hardware defect on NC component

Reaction: Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
611D drive alarms

Remedy:

Remedy for 1-11
1. Check the control project, check MD11240 $MN_PROFIBUS_SDB_NUMBER, and reload it when using a user-spe-
cific SDB.
2. If the error still occurs, back up data, and restart the control with the standard values as per the as-delivered condi-
tion.
3. In case of correct ramp-up, reload the user data stage by stage.
4. If the error still occurs during ramp-up with standard values, reboot the system from the PC card or update the soft-
ware.
5. If the error still occurs, replace the hardware.

Remedy for 20-21
1. Check/correct the addresses of the connected slaves/devices.

Remedy for 22
See SINAMICS warning 1903 for a description of the meaning behind the error codes.
1. Control the SDB
 - Check the type and length of the message frame
 - Match slot assignment with P978
2. Evaluate the drive alarms/warnings

Remedy for 23-24
1. Software replacement required

Remedy for 25
1. Change the message frame type
2. Reduce the number of slots
3. Reduce the number of slaves/devices
4. Create a new SDB
5. Software must be replaced

If the error has still not been able to be rectified after this procedure, send the error text to the control manufacturer.

Program
Continuation:

Switch control OFF - ON.

380003 PROFIBUS/PROFINET: Operating error, reason %1 parameter %2 %3 %4.

Parameters:
%1 = Cause of the error
%2 = Parameter 1
%3 = Parameter 2
%4 = Parameter 3

Definitions:
An operating error occurred on the PROFIBUS/PROFINET in cyclic mode.
Overview: Cause of the error, Par 1, Par 2, Par 3:
- 01 = unknown alarm, alarm class, logical address, --
- 02 = DPM cycle timeout, DPM actual value status, DPM setpoint value status, --
- 03 = DPM cycle status, DPM actual value status, DPM setpoint value status, DPM error code
- 04 = DPM cycle error, DPM actual value status, DPM setpoint value status, DPM error code
- 05 = Client not registered, client number, max. number of clients, --
- 06 = Synchronisation error, number of sync violation, --, --
- 07 = Spinlock timeout, PLC spinlock, NCK spinlock, --
- 1000s digit of the error cause = number of the affected bus

Alarm class: (see alarm 380 060)
The following can be primary causes:
- For error cause 01: Data transfer error on the PROFIBUS/PROFINET
- For error causes 02, 03, 04: Error in contents of SDB
- For error causes 02, 03, 04, 05, 07: Corruption of parts of system program
- For error cause 06: The PCI bus cycle does not match the expected rate, so synchronization is not possible. The
correct PCI bus cycle must be entered.
The error can also be caused by a hardware problem on the MCI module.

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - For error cause 01:
 - Check the electrical and fault-related specifications for PROFIBUS/PROFINET, assess the cable installation
 - Check the terminating resistors of the PROFIBUS connectors (ON setting at ends of cables, otherwise OFF setting required)
 - Check slave/device
- For error causes 02, 03, 04:
 - Check SDB
- For error causes 02, 03, 04, 05, 07:
 - Follow the procedure described for troubleshooting alarm 380 001
- For error cause 06:
 - The correct PCI bus cycle must be entered.

If the error cannot be eliminated by this procedure, send the error text to the control system manufacturer.

Program Continuation:
Clear alarm with the RESET key. Restart part program

380005 PROFIBUS/PROFINET: Bus %3 access conflict, type %1, counter %2

Parameters: %1 = Conflict type
%2 = Serial number within a conflict sequence
%3 = Number of the affected bus

Definitions: An access conflict occurred on the PROFIBUS/PROFINET in cyclic mode: An attempt has been made in the NCK to write data to the bus or to read from the bus while cyclic data transfer was active. This may lead to inconsistent data.
Type 1: NCK attempts to read data before the cyclic transfer has finished on the bus.
Type 2: The NCK has not finished writing its data when the cyclic transfer begins again. Counter %2 contains a serial number starting at 1. A maximum of 10 alarms are output in succession. If no conflicts occur in a DP cycle, the counter is reset and new alarms are output again on the next conflict.

Reaction: Alarm display.
Remedy: - Check the timing again, in particular ensure that the settings in MD10050 $MN_SYSCLOCK_CYCLE_TIME and MD10062 $MN_POSCTRL_CYCLE_DELAY are correct:
 MD10062 $MN_POSCTRL_CYCLE_DELAY must be larger for type 1.
 MD10062 $MN_POSCTRL_CYCLE_DELAY must be smaller for type 2.
- If alarm-free operation cannot be achieved with any MD10062 $MN_POSCTRL_CYCLE_DELAY setting, MD10050 $MN_SYSCLOCK_CYCLE_TIME must be increased.
- If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation:
Clear alarm with the Delete key or NC START.

380020 PROFIBUS/PROFINET: Bus %3 SDB %4 error %1 source %2

Parameters: %1 = Error
%2 = SDB source
%3 = Bus number
%4 = SDB number

Definitions: Error in SDB for configuring PROFIBUS/PROFINET.
Causes of the error:
- 01 = SDB does not exist in source.
- 02 = SDB from source is too large.
- 03 = SDB from source cannot be activated.
- 04 = Source is empty.
- 05 = Source is not present.
611D drive alarms

SDB source:
- 99 = Passive file system: _N_SDB_DIR
- 100 = CF card: /siemens/sinumerik/sdb/...
- 101 = CF card: /addon/sinumerik/sdb/...
- 102 = CF card: /oem/sinumerik/sdb/...
- 103 = CF card: /user/sinumerik/sdb/...

Reaction: PROFIBUS/PROFINET is inactive or working with the default SDB.

Remedy:
- Check the setting of MD 11240 $MN_PROFIBUS_SDB_NUMBER.
- If source = 100: Check directory _N_SDB_DIR in the passive file system.
- If source = 103-106: Check directories on CF card

Program Continuation:
Switch control OFF - ON.

380022

PROFIBUS/PROFINET: Configuration of DP master bus %1 has been changed

Parameters:
%1 = Number of the affected bus

Definitions:
The PROFIBUS configuration on the DP master was changed during operation, e.g. by downloading a new hardware configuration via STEP 7. As the cycle data may also have changed, operation cannot be continued, and a warm start is required.

If the master functionality is within the PLC (as on the 840Di), the PLC will have been stopped for the download, and alarm 2000 (PLC sign-of-life) output.

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation:
Switch control OFF - ON.

380040

PROFIBUS/PROFINET: Bus %3, configuration error %1, parameter %2

Parameters:
%1 = Cause of the error
%2 = Parameter
%3 = Number of the affected bus

Definitions:
The generation of the PROFIBUS/PROFINET in the SDB does not conform to the configuration specifications of the NC in use.
Overview: Cause of the error, par 1:
- 01 = SDB contains slave/device without diagnostics slot, slave/device address
- 02 = SDB contains too many slot entries, identifier
- 03 = SDB contains no equidistance data, no function
- 04 = PNIO: SDB contains different Tdp (also TDC) on one device
- 05 = PNIO: SDB contains different Tmapc (also CACF) on one device
- 06 = PNIO: SDB contains different TI on one device
- 07 = PNIO: SDB contains different TO on one device
- 08 = PNIO: SDB contains device numbers that are too high (with values higher than 126)
- 09 = SDB content transferred segmented (too many slots/frames)
- 10 = Not enough memory space for segmented SDB content (too many slots/frames)
- 11 = The telegram configured in the SDB is too short for the selected telegram acc. to $MN_DRIVE_TELEGRAM_TYPE.
- 20 = SDB contains too many slaves/devices, quantity
- 21 = SDB missing or contains invalid data, error code
- 22 = SDB configuration data incorrect, slave/device address, error code
- 23 = Reserved
- 24 = Reserved
- 25 = Reserved
- 26 = Reserved
- 27 = Reserved
- 28 = Reserved
- 29 = Reserved

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check that the corresponding SDB:
- Contains a diagnostic slot for every slave/device
- Contains only slave/device entries relevant to the application
In principle, it is possible to include a superset of slaves/devices in the SDB that are partially relevant for different end versions of the product. However, this overloads the NC memory and runtime capacity and should, therefore, always be avoided.
If this alarm occurs, reduce the SDB to a minimum.
If the code for the error cause is 03, check that equidistance is activated in the SDB (e.g. using STEP 7 HW config).
If the code for the error cause is 10, reduce the number of slaves/slots on the bus concerned (e.g. using STEP 7 HW config).
If the alarm continues to occur, please send the error text to the control system manufacturer.
If the code for the error cause is 11, select a larger telegram as appropriate using STEP 7 HW config or select a smaller telegram under $MN_DRIVE_TELEGRAM_TYPE.

Program Continuation:
Switch control OFF - ON.

380050 PROFIBUS/PROFINET: Multiple assignment of inputs on address %1

Parameters: %1 = Logical address
Definitions: Multiple assignments of input data have been detected in the logical address space. Logical address: Base address of the address area defined several times
Reaction: Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: The address partitioning should be checked as follows:
Check for multiple assignments in the following machine data:
- MD13050 $MN_DRIVE_LOGIC_ADDRESS[0] - MD13050 $MN_DRIVE_LOGIC_ADDRESS[n-1] : n = highest axis index on control system
- MD12970 $MN_PLCLDIG_IN_LOGIC_ADDRESS, MD12971 $MN_PLCLDIG_IN_NUM : PLC address area for digital inputs
- MD12978 $MN_PLCANA_IN_LOGIC_ADDRESS, MD12979 $MN_PLCANA_IN_NUM : PLC address area for analog inputs
If no inconsistencies can be found in the parameters, compare these machine data with the configuration in SDB (STEP 7 project). In particular, check that the lengths configured for the individual slots do not result in area overlaps.
When you find the cause of the error, change the machine data and/or SDB.

Program Continuation:
Switch control OFF - ON.
380051 PROFIBUS/PROFINET: Multiple assignment of outputs on address %1

Parameters:
- %1 = Logical address

Definitions:
Multiple assignments of input data have been detected in the logical address space. Logical address: Base address of the address area defined several times

Reaction:
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
The address partitioning should be checked as follows:
- Check for multiple assignments in the following machine data:
 - MD13050 $MN_DRIVE_LOGIC_ADDRESS[0] - MD13050 $MN_DRIVE_LOGIC_ADDRESS [n-1] : n = highest axis index on control system
 - MD12974 $MN_PLC_DIG_OUT_LOGIC_ADDRESS, MD12975 $MN_PLC_DIG_OUT_NUM : PLC address area for digital outputs
 - MD12982 $MN_PLC_ANA_OUT_LOGIC_ADDRESS, MD12983 $MN_PLC_ANA_OUT_NUM : PLC address area for analog outputs

If no inconsistencies can be found in the parameters, compare these machine data with the configuration in the SDB (STEP 7 project). In particular, check that the lengths configured for the individual slots do not result in area overlaps. When you find the cause of the error, change the machine data and/or SDB.

Program Continuation:
Switch control OFF - ON.

380060 PROFIBUS/PROFINET: Alarm %1 on logical address %2 from unassigned slave/device

Parameters:
- %1 = Alarm class
- %2 = Logical address

Definitions:
- SDB contains a slave/device which is not assigned in the NC via the MD parameters (see also alarm 380050/051).
- The slave/device is however connected to the PROFIBUS/PROFINET, and has reported an alarm.
- Alarm class:
 - 01 = Station return (or arrival)
 - 02 = Station failure
- Display alarm, further operation with the NC is possible.

Reaction:
- Alarm display.

Remedy:
- Enter machine data or
- Modify SDB or
- Disconnect the slave/device from the PROFIBUS/PROFINET or
- Acknowledge the alarm.

Program Continuation:
Clear alarm with the Delete key or NC START.

380070 PROFIBUS/PROFINET: No input slot available for basic address %1 (length %2)

Parameters:
- %1 = Logical base address of the requested area
- %2 = Size of the area in bytes

Definitions:
- An incorrect logical base address was specified for a digital or analog input. Either no slot has been configured for this base address or the requested area extends beyond the end of the slot.
- Length=1 indicates a digital input.
- Length=2 indicates a analog input.

Reaction:
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
Remedy: Enter correct base addresses in the machine data:
- For length=1: Correct machine data MN_HW_ASSIGN_DIG_FASTIN.
- For length=2: Correct machine data MN_HW_ASSIGN_ANA_FASTIN.
- NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation: Switch control OFF - ON.

380071 PROFIBUS/PROFINET: No output slot available for basic address %1 (size %2)
Parameters:
%1 = Logical base address of the requested area
%2 = Size of the area in bytes
Definitions: An incorrect logical base address was specified for a digital or analog input. Either no slot has been configured for this base address or the requested area extends beyond the end of the slot.
For length =1 it is a digital output,
For length =2 it is an analog output.
Reaction: Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Enter correct base addresses in the machine data:
- For length=1: Correct machine data MN_HW_ASSIGN_DIG_FASTOUT.
- For length=2: Correct machine data MN_HW_ASSIGN_ANA_FASTOUT.
- NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation: Switch control OFF - ON.

380072 PROFIBUS/PROFINET: Output slot for basic address %1 (size %2) not allowed
Parameters:
%1 = Logical base address of the requested area
%2 = Size of the area in bytes
Definitions: An incorrect logical base address was set for a digital or analog output, the area is resides in the access range of the PLC (PIQ, base addresses < 256).
For length =1 it is a digital output,
For length =2 it is an analog output.
Reaction: Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Only use addresses outside the PLC process image (e.g. >= 256) for output slots. Enter correct basic addresses in the machine data:
- For length=1: Correct machine data MN_HW_ASSIGN_DIG_FASTOUT.
- For length=2: Correct machine data MN_HW_ASSIGN_ANA_FASTOUT.
- NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation: Switch control OFF - ON.
380075 PROFIBUS/PROFINET: DP I/O failure bus %2 slave/device %1
Parameters:
%1 = Slave/device address
%2 = Number of the affected bus
Definitions:
Failure of a PROFIBUS/PROFINET slot used by the NCK for digital or analog I/Os.
Reaction:
Alarm display.
Remedy:
Check that the slave/device is operating correctly (all slaves/devices must be included in the bus, green LEDs).
Program
Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

380076 PROFIBUS/PROFINET: No DO1 message frame: Bus %2 slave/device %1
Parameters:
%1 = Slave/device address
%2 = Number of the affected bus
Definitions:
Note for the system setup engineer: A PROFIBUS slave/PROFINET device used as an NCK drive does not have a valid DO1 message frame assignment (see MD13120 $MN_CONTROL_UNIT_LOGIC_ADDRESS with the STEP 7 configuration). This alarm is indicating, among other things, that the alarm time-of-day synchronization is not working between the controller and this slave/device.
Reaction:
Alarm display.
Remedy:
Enter a valid value in MD13120 $MN_CONTROL_UNIT_LOGIC_ADDRESS.
Program
Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

380077 PROFIBUS/PROFINET: Too many DOs: Current %2, maximum %3 in DO group %1
Parameters:
%1 = DO group
%2 = Current number of DOs
%3 = Maximum permissible number of DOs
Definitions:
Note for the system setup engineer: The number of equivalent DOs ("drive objects" group) on all busses (configured and connected) exceeds predefined limit values. The services linked to these DOs (e.g. time synchronization, alarm display, HMI diagnostics, HMI data archiving) can no longer be guaranteed for all DOs in this group. The following different DO groups exist (see parameter %1):
0 = Device (CU, DO1)
1 = Communications (CU-LINK)
2 = Drive (SERVO, VECTOR)
3 = Infeed (ALM etc.)
4 = Terminal block (TB)
5 = Terminal module (TM)
Reaction:
Alarm display.
Remedy:
Reduce the number of devices (containing DOs of this type) on the bus. Use a more powerful type of controller (one which supports more DOs).
Program
Continuation:
Switch control OFF - ON.
380500 PROFIBUS/PROFINET: Fault on drive %1, code %2, value %3, time %4
Parameters:
%1 = Axis
%2 = Fault code of drive (P947)/945/P824)
%3 = Fault value of drive (P949)/P826)
%4 = Fault time of drive (P948)/P825)
Definitions: Contents of fault memory of assigned drive.
Reaction: Alarm display.
Remedy: See drive documentation for fault codes/fault values.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

380501 PROFIBUS/PROFINET: Fault on bus, slave/device, DO ID %1, code %2, value %3, time %4
Parameters:
%1 = 8 bit bus number, 8 bit slave/device number, 16 bit DO ID
%2 = Fault code of drive (P947)
%3 = Fault value of the drive (P949)
%4 = Fault time of the drive (P948)
Definitions: Contents of the fault memory of the assigned slave/device.
Reaction: Alarm display.
Remedy: See drive documentation for fault codes/fault values.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

380502 PROFIBUS/PROFINET: Bus %1, slave/device %2 configuration changed
Parameters:
%1 = Bus number
%2 = Slave/device address
Definitions: The bus configuration has changed.
Causes: - First commissioning
- New slave/device recognized on the bus
Reaction: Interface signals are set.
Alarm display.
Remedy: In order to operate the bus with the new configuration, an additional restart will be required.
Program Continuation: Switch control OFF - ON.

380503 PROFIBUS/PROFINET: Bus %1 configuration changed
Parameters:
%1 = Bus number
Definitions: A new SDB with a modified configuration has been provided.
The new settings will be activated only at the next bus power up.
Reaction: Interface signals are set.
Alarm display.
Remedy: In order to operate the bus with the new configuration, an additional restart will be required.
Program Continuation: Switch control OFF - ON.
PLC alarms

400000 PLC STOP %1
Definitions: PLC not in cyclic mode. Travel with the machine is not possible.
%1: 1 Ready (User program has not been started)
2 Break (User program has been interrupted)
3 Error (Other PLC alarm with PLC Stop active)
Reaction: Alarm display.
Remedy: Rectify other PLC alarm;
set PLC stop from Startup menu
or test user program.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

400001 System error %2
Definitions: %1 :Type number
With this alarm, internal alarm states are displayed that, in conjunction with the transferred error number, provide infor-
mation on the cause and location of the error.
Reaction: PLC Stop
Remedy: Notify Siemens of this error together with the error message.
Program Continuation: Switch control OFF - ON.

400002 System error %1
Definitions: %1 :Type number
Internal error states are displayed with this alarm. An error number is also specified to provide further details about the
cause and location of the error.
Reaction: PLC Stop
Remedy: Report this error to Siemens along with the type number.
Program Continuation: Switch control OFF - ON.

400004 Code error: %2 network %1
Definitions: %1 :Network number
%2 :Internal error code, module type
The user program contains an operation which is not supported by the control.
Reaction: PLC Stop
Remedy: Modify and reload user program.
Program Continuation: Switch control OFF - ON.
PLC alarms

400005 PLC stop specified from start-up menu
Definitions: User program is not being processed
Reaction: Alarm display.
Remedy: Switch controller off/on
Program Switch control OFF - ON.
Continuation:

400006 Loss of remanent PLC data
Definitions: The following causes are possible:
 Control handling (e.g. standard PLC deletion, power up with default values)
 Control handling of power up with backed up data without backing up data in advance
 Support time exceeded
Reaction: Alarm display.
Remedy: Update the data required.
Program Clear alarm with the Delete key or NC START.
Continuation:

400007 Operand error: %2 network %1
Definitions: %1 :Network number
 %2 :Module type
Reaction: PLC Stop
Remedy: The variable displayed must be checked in the user program for violation of the address range, impermissible data type and alignment errors.
Program Switch control OFF - ON.
Continuation:

400008 Programming tool - version is not compatible %1 %2
Definitions: %1 :Programming tool version
 This version is not compatible with the product version of the control system.
Reaction: PLC Stop
Remedy: Translate the user program using a suitable programming tool version and load in the control.
Program Switch control OFF - ON.
Continuation:

400009 Computing time overrun at PLC level: %2 network %1
Definitions: %1 :Network number
 %2 :Module type
 Check user program of the corresponding network displayed.
Reaction: PLC Stop
Remedy: Change user program
Program Switch control OFF - ON.
Continuation:
400010 Arithmetic error in user program: Type %2 network %1
Definitions: Check user program in the specified network.
%1Network number, module ID
%2 = 1:Division by zero using fixed-point arithmetic
2:Floating-point arithmetic
Reaction: PLC Stop
Remedy: Change user program.
Program: Switch control OFF - ON.

400011 Maximum number of subroutine levels exceeded: %2 network %1
Definitions: %1Network number
%2Module ID
Check user program in the specified network.
Reaction: PLC Stop
Remedy: Change user program.
Program: Switch control OFF - ON.

400012 Error affecting indirect addressing: %2, network %1
Definitions: %1Network number
%2Module ID
Check user program in the specified network.
Reaction: PLC Stop
Remedy: Change user program.
Program: Switch control OFF - ON.

400013 PLC user program is incorrect
Definitions: The PLC user program in the control is incorrect or is not available.
Reaction: PLC Stop
Remedy: Reload PLC user program.
Program: Switch control OFF - ON.

400014 Profinet - I/O ramp-up fault type: %1
Definitions: %1: 1Profinet - I/O not ramped-up
2Software version NC - PLC incompatibility
3Number of slots per function exceeded
4Profinet I/O server not ready
Reaction: PLC Stop
Remedy: Types 1 to 3:Report error to Siemens
Type 4:828D – Check and/or replace PCU hardware and/or check MD 11240
Program: Switch control OFF - ON.
PLC alarms

400015 Profinet - IO I/O fault: log. addr. \%1 bus/station: \%2

Definitions:
- The PLC-AWP is using I/O addresses which are not available.
 - \%1 Logical I/O address
 - \%2 Bus number/station number
- Causes of error:
 - Bus peripheral has no voltage
 - Bus address set incorrectly
 - Bus connection faulty
 - Active MD 11240 (SDB configuration) is set incorrectly

Reaction: PLC Stop
Remedy: Rectify the error using the error cause
Program Continuation: Switch control OFF - ON.

400017 PLC TOOLMAN: missing table in DB9900

Definitions:
- The PLC TOOLMAN cannot find one of the tables 9900, 9901 or 9902.

Reaction: PLC Stop
Remedy: Create the missing table(s).
Program Continuation: Switch control OFF - ON.

400018 PLC TOOLMAN: Spindle or load location invalid

Definitions:
- The PLC TOOLMAN does not know the specified spindle or load location number.

Reaction: PLC Stop
Remedy: Specify the correct number.
Program Continuation: Switch control OFF - ON.

400019 PLC maintenance planner: Error in DB 9903 or 9904

Definitions:
- PLC maintenance planner: DBs 9903 and 9904 must be present and must have the same length.

Reaction: PLC Stop
Remedy: Create block(s) correctly.
Program Continuation: Switch control OFF - ON.

400020 PLC mainentance request \%1 : Initial data not plausible

Definitions:
- Redefine the initial data in accordance with the documentation.
- Error causes:
 - Too many alarms for the interval length
 - Time of first alarm too late
 - Time of first alarm greater than interval

Reaction: Alarm display.
Remedy: Specify correct initial data according to the documentation.
Program Continuation: Clear alarm with the Delete key or NC START.
400021

Wait until I/O access is possible

Definitions:
I/O access is not possible at the current time.

Reaction:
Alarm display.

Remedy:
Clear alarm with the Delete key or NC START.

Program Continuation:
Clear alarm with the Delete key or NC START.

400022

The PLC functionality: %2 is not permitted.

Definitions:
- PLC functionality: %2
 - The specified PLC functionality is not supported.

Reaction:
Alarm display.

Remedy:
You are not permitted to use the specified PLC functionality.

Program Continuation:
Clear alarm with the Delete key or NC START.
List of actions

/NO/ No. 0

/SYSTEM_SHUTDOWN/ No. 96
Definitions:
- Switch off system (VDI signal)
- Should not occur in any alarm

/SERUPRO_ON/ No. 97
Definitions:
- Connect block search PI in mode 5.
 Block search is simulated in this mode by executing the program under "program test mode" as far as the search target block.

/ESR/ No. 98
Definitions:
- Extended Stop and Retract

/BLOCKSEARCHRUN_SIGNAL/ No. 99
Definitions:
- Block search (general) is being activated.
 Should not occur in any alarm as, if necessary, the PI service is acknowledged negatively.

/BLOCKSEARCHRUN_INTEGR/ No. 100
Definitions:
- Integrated block search, this means that a search run is restarted after a stopped program.
List of actions

/EXT_ZERO_POINT/ No. 101
Definitions: External work offset is activated via PLC. To do this the path is stopped, REORG executed, the interpreter changed over, and then selected and continued automatically with REPOS.
Not permitted if:
1. The channel is not in AUTO or MDA.
2. The channel has stopped, and the current block cannot be reorganized.
Possible actions:
1. Select AUTO or MDA.
2. Activate block change until NC block can be reorganized.

/SINGLEBLOCK_IPONOSBLOF/ No. 102
Definitions: Single block type 3 is activated. With single block type 3, there is a stop at all main blocks. In contrast to single block type 1, the part programm command SBLOF is ignored.

/SINGLEAX_STOPALL_MASTER/ No. 103
Definitions: Stopping a single axis motion (VDI signal)
Not permitted if:
The axis is not controlled by the PLC
(Excepton: "old" behavior in the case of a reciprocating axis)

/SINGLEAX_STOPALARM_MASTER/ No. 104
Definitions: Stopping a single axis motion by an alarm (alarm)
Not permitted if:
The axis is not controlled by the PLC
(Excepton: "old" behavior in the case of a reciprocating axis)

/SINGLEAX_RESUME_MASTER/ No. 105
Definitions: Continuation of a single axis motion (VDI signal)
Not permitted if:
The axis has not previously stopped
Initially, not for all types of axis
List of actions

/SINGLEAX_RESET_MASTER/ No. 106
Definitions: Canceling a single axis motion (VDI signal)
Not permitted if:
The axis is not controlled by the PLC
Initially, not for all types of axis

/SINGLEAX_DELDIS_MASTER/ No. 107
Definitions: Delete distance-to-go of a single axis motion (VDI signal)
Not permitted if:
The axis is not controlled by the PLC
Initially, not for all types of axis

/SINGLEAX_PLCCTRL_ON_MASTER/ No. 108
Definitions: Activate: The axis is now controlled by the PLC (VDI signal)
Not permitted if:
The axis is not controlled by the PLC
Initially, not for all types of axis

/SINGLEAX_PLCCTRL_OFF_MASTER/ No. 109
Definitions: Deactivate: The axis is now controlled by the PLC (VDI signal)
Not permitted if:
The axis is a main run axis or neutral.
Initially, not for all types of axis

/SINGLEAX_JOG_WHEEL/ No. 110
Definitions: Available soon

/SINGLEAX_JOG_PLUS_MASTER/ No. 111
Definitions: Available soon

/SINGLEAX_JOG_MINUS_MASTER/ No. 112
Definitions: Available soon
List of actions

/SINGLEAX_JOG_PLUS_INC_MASTER/ No. 113
Definitions: Available soon

/SINGLEAX_JOG_MINUS_INC_MASTER/ No. 114
Definitions: Available soon

/REPOSMODECHANGE/ No. 115
Definitions: The event is triggered by the positive PLC edge of the signal "Repos mode edge".
Not permitted if:
1. The channel is active (program running, block search, loading machine data)
Possible actions:
1. Cancel the program with the Reset button
or stop the program (not with block search, loading machine data)

/TOOLCHANGECMDON/ No. 116
Definitions: Enable the tool management commands.
(CH VDI signal)
Not permitted if:
1. The NCK channel status is not Ready
Possible actions:
1. Cancel program or process with reset button
or wait for end of program

/TOOLCHANGECMDOFF/ No. 117
Definitions: Disable the tool management commands.
(CH VDI signal)
Not permitted if:
1. The NCK channel status is not Ready
Possible actions:
1. Cancel program or process with reset button
or wait for end of program

/SIVLIMCHANGE/ No. 118
Definitions: Switching over the desired safety limits (SGE) is always permitted
/STOPRUN/ No. 119
Definitions: Stop run, that is the NCK stops automatically at a block defined by the OPI.
Not permitted if
1. Control is not in Automatic.

/SINGLEAX_LIFTFASTOFF_MASTER/ No. 120
Definitions: Fast retraction with a single axis
Not permitted if:
The axis is not controlled by the PLC

/SINGLEAX_STOPLIFTOFF_MASTER/ No. 121
Definitions: Stop fast retraction with a single axis
Not permitted if:
The axis is not controlled by the PLC
and the single axis does not execute a fast retraction

/TEST_SYNC_ASYNC/ No. 122
Definitions: For test purposes only, and only in assert systems.

/START_LOCK/ No. 123
Definitions: P1_N_STRTLK Set global start disable
always permitted

/START_UNLOCK/ No. 124
Definitions: P1_N_STRTUL Reset global start disable
always permitted

/FASTMODESWITCHTOAHANDMODE/ No. 125
Definitions: Implicit change to JOG mode at the start of a "JOG motion" in Automatic
See also $MN_JOG_MODE_MASK
Not permitted if:
1. A channel has left the mode group on account of an interrupt.
2. Overstoring
Possible actions:
1. Cancel the program with the Reset button or wait until the interrupt has finished.
4. Deselect overstore
List of actions

/FASTMODESswitchtoaprogMODE/ No. 126

Definitions: Implicit mode change back at the end of a "JOG motion" started in automatic mode. See also $MN_JOG_MODE_Mask
Not permitted if:
1. A channel has left the mode group on account of an interrupt.
2. Overstoring
Possible actions:
1. Cancel the program with the Reset button or wait until the interrupt has finished.
4. Deselect overstore

/SIMULATIONBLOCKSEARCHRUN/ No. 127

Definitions: Simulation block search is to be started, that means the results of the computation will only be displayed on the HMI, NO traverse after block search.
Not permitted if:
1. The NCK channel is not in RESET
Possible action:
1. Press reset

/EXECPROGpart/ No. 128

Definitions: Execute program area has been rejected.
Not permitted if:
1. The channel is not in RESET.
2. The channel is not in Automatic.
Possible actions:
1. Press reset.
2. Switch to automatic.

/SYNTAXCHECK_SELECT/ No. 129

Definitions: Selection of PI service syntax check "_N_CHKSEL" has been rejected.
Not permitted if:
1. The channel is not in RESET
Possible action:
1. Press reset

/SYNTAXCHECK_RUN/ No. 130

Definitions: Starting of PI service syntax check "_N_CHKRUN" has been rejected.
Not permitted if:
1. The channel is not in RESET
Possible action:
1. Press reset

/SYNTAXCHECK_ABORT/ No. 131

Definitions: Starting of PI service syntax check "_N_CHKABO" has been rejected.
Not permitted if:
Should not occur.
List of actions

/REDUCE_CALC_TIME/ No. 132
Definitions: PI service _N_NCKMOD (BIT-1) has been rejected.
Not permitted if:
Should not occur.

/SIMULATION_ON_OFF/ No. 133
Definitions: PI service _N_NCKMOD (BIT-1) has been rejected.
Not permitted if:
Should not occur.

Abort subroutine execution /PROGCANCELSUB/ No. 17
Definitions: Cancel the subprogram execution.
(VDI signal: program level cancel)
Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error
Possible actions:
1. Cancel program
2. Cancel program

Abort subroutine repeat /PROGRESETREPEAT/ No. 16
Definitions: Cancel the subprogram repetition.
(VDI signal: delete subprogram number of passes)
Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error
Possible actions:
1. Cancel program
2. Cancel program

Activate block skip /PROGMODESLASHON/ No. 61
Definitions: Activate skip slash blocks
(VDI signal: skip block)
Not permitted if:
1. The nesting depth is too great
Possible actions:
1. Wait until previous ASUB has finished or cancel program
Activate decoding single block /SINGLEBLOCK_DECODIER/ No. 21

Definitions:
Activate decoding single block.
(OP variable and VDI signal: activate single block)

Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error

Possible actions:
1. Wait until previous ASUB has finished or cancel program
2. Cancel program

Activate main program single block /SINGLEBLOCK_MAINBLOCK/ No. 22

Definitions:
Activate main program single block.
(OP variable and VDI signal: activate single block)
Should not occur in any alarm

Activate main run single block /SINGLEBLOCK_IPO/ No. 20

Definitions:
Activate main run single block.
(OP variable and VDI signal: activate single block)
Should not occur in any alarm

Activate motion single block /SINGLEBLOCK_PATH/ No. 23

Definitions:
Activate traversing single block.
(OP variable and VDI signal: activate single block)
Should not occur in any alarm

Activate program test /PROGTESTON/ No. 69

Definitions:
Activate program test.
(VDI signal: program test)
Not permitted if:
1. Tool management is active
2. The NCK channel status is not Ready

Possible actions:
1. Backup tool data
2. Cancel program or process with reset button or wait for end of program

Activate read-in disable /BLOCKREADINHIBIT_ON/ No. 65

Definitions:
Activate read-in disable for main run block.
(VDI signal: read-in disable)
Should not occur in any alarm
Activate single block /SINGLEBLOCKSTOP/ No. 18

Definitions:
- Activate single block.
- (VDI signal: activate single block)
- Should not occur in any alarm

Activate test run /PROGMODEDRYRUNON/ No. 63

Definitions:
- Activate test run.
- (VDI signal: rapid traverse override)
- Not permitted if:
 1. The nesting depth is too great
 2. If there is a reorganize brake error
- Possible actions:
 1. Wait until previous ASUB has finished or cancel program
 2. Cancel program

Activate user data /SET_USER_DATA/ No. 93

Definitions:
- Set all user data to active.
- For example, that means tool lengths newly changed via MMC become active immediately in the current program.
- Not permitted if:
 1. The NCK channel status is not Stopped
 2. The channel has stopped, and the current block cannot be reorganized.
- Possible actions:
 1. Press stop button/single block/reset/StopAtEnd button (in Auto).
 2. Activate block change until NC block can be reorganized

All MD (NEW_CONF) active /NEWCONF/ No. 48

Definitions:
- Sets all machine data with the attribute (NEW_CONF) to active (PI command)
- Should not occur in any alarm

All MD (NEW_CONF) active (block search) /BLOCKSEARCHRUN_NEWCONF/ No. 90

Definitions:
- Set all machine data with the attribute (NEW_CONF) to active.
- (NC_Satz, NEW_CONF with block search)
- Should not occur in any alarm

All MD (NEW_CONF) active (program) /NEWCONF_PREP_STOP/ No. 89

Definitions:
- Set all machine data with the attribute (NEW_CONF) to active.
- (NC_Satz, NEW_CONF)
- Should not occur in any alarm
List of actions

Automatic mode change /MODESWITCHTOSAVEDMODE/ No. 6
Definitions: Automatic change from an internal mode into the externally set mode.
E.g: With teach-in: Internal mode = automatic or MDA
Should not occur in any alarm

Change measuring system /CONVERT_SCALING_SYSTEM/ No. 95
Definitions: Change over PI service measuring system
Should not occur in any alarm as, if necessary, the PI service is acknowledged negatively

Change to manual mode /MODESWITCHTOAHANDMODE/ No. 7
Definitions: Change the mode to a manual mode
(VDI signal: mode group signals, JOG, TEACH_IN, RE)
Not permitted if:
1. The nesting depth is too great
 The current processing procedure can be interrupted by various events.
 ASUB programs are activated according to the event.
 These ASUB programs can be interrupted in the same way as the user program.
 Free nesting depth of the ASUB programs is not possible for memory reasons.
 Example: An interrupt interrupts the current program execution.
 Other higher priority interrupts interrupt the previously activated ASUB program execution.
2. The channel is active (program running, block search, loading machine data)
3. A channel has left the mode group on account of an interrupt.
4. Overstoring
Possible actions:
1. Cancel the program with the Reset button
2. Cancel the program with the Reset button or stop the program (not with block search, loading machine data)
3. Cancel the program with the Reset button or wait until the interrupt has finished.
4. Deselect overstore

Change to program mode /MODESWITCHTOAPROGMODE/ No. 5
Definitions: Change the mode to a program operation mode "MDA or automatic"
(VDI signal: mode group signals)
Not permitted if:
1. The channel is active (program running, block search, loading machine data)
2. Has already been started in the other program operation mode.
3. A channel has left the mode group on account of an interrupt.
4. Overstoring
Possible actions:
1. Cancel the program with the Reset button
 or stop the program (not with block search, loading machine data)
2. Cancel the program with the Reset button
3. Cancel the program with the Reset button or wait until the interrupt has finished.
4. Deselect overstore
Conditional stop at end of block /CONDITIONAL_STOPATEND/ No. 73

Definitions:
Conditional stop at the block boundary. There is another stop if there is still a stop reason “Stop at end of block” after continuation by an NC start.
Should not occur in any alarm

Conditional stop at end of block (SBL2) /CONDITIONAL_SBL_DEC_STOPATEND/ No. 74

Definitions:
Conditional stop at the block boundary. Despite Start, the interpreter or preprocessing does not bring any blocks into the main run.
Should not occur in any alarm

Continue block search /BLOCKSEARCHRUN_CONTINUE/ No. 50

Definitions:
Continue block search (NC block: = Stopre)
Should not occur in any alarm

Continue block search /BLOCKSEARCHRUN_RESUME/ No. 52

Definitions:
Continue block search (Pl command)
Should not occur in any alarm

Continue interpreter processing /CONTINUE_INTERPR/ No. 91

Definitions:
Start the continuation of the interpreter processing (internal preprocessing stop)
Should not occur in any alarm

Continue program execution /RESUMEPROG/ No. 26

Definitions:
Start continue program execution,
(VDI signal, NC start)
Not permitted if:
1. Program status is active,
2. An alarm response is pending:
 which prevents a start,
 or compels braking.
3. Reference point approach not yet executed.
Possible actions:
1. None
2. Execute alarm clear condition.
3. Execute reference point approach

Continue program in Teach-in /RESUME_TEACHINPROG/ No. 83

Definitions:
Continue a program in the teach-in submode.
(VDI signal, NC start)
See STARTSIG and MODESWITCHTOAPROGMODE
List of actions

Continue selected processing /RESUMEJOGREFDIGIT/ No. 27
Definitions: Start continue the selected processing,
(VDI signal, NC start)
(JOG or reference point)
Not permitted if:
1. JOG motion is active,
2. An alarm response is pending:
 which prevents a start,
 or compels braking.
Possible actions:
1. None
2. Execute alarm clear condition.

Deactivate block skip /PROGMODESLASHOFF/ No. 62
Definitions: Deactivate skip slash blocks
(VDI signal: skip block)
Not permitted if:
1. The nesting depth is too great
Possible actions:
1. Wait until previous ASUB has finished or cancel program

Deactivate program test /PROGTESTOFF/ No. 70
Definitions: Deactivate program test.
(VDI signal: program test)
Not permitted if:
1. The NCK channel status is not Ready
Possible actions:
2. Cancel program or process with reset button
 or wait for end of program

Deactivate read-in disable /BLOCKREADINHIBIT_OFF/ No. 66
Definitions: Deactivate read-in disable for main run block.
(VDI signal: read-in disable)
Should not occur in any alarm

Deactivate single block /SINGLEBLOCKOFF/ No. 19
Definitions: Disable single block.
(VDI signal: deactivate single block)
Should not occur in any alarm
Deactivate test run /PROGMODEDRUNOFF/ No. 64

Definitions:
Deactivate test run.
(VDI signal: rapid traverse override)

Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error

Possible actions:
1. Wait until previous ASUB has finished or cancel program
2. Cancel program

Delete all cancel alarms /CLEARCANCELALARM/ No. 49

Definitions:
Clears all alarms with the clear condition CANCELCLEAR (PI command, Cancel key)

Should not occur in any alarm

Delete distance to go / axis synchronization /DELDISTOGO_SYNC/ No. 15

Definitions:
Execute delete distance-to-go or axis synchronization.
(VDI signal: delete distance-to-go or follow-up mode)
Follow-up mode: e.g. on enabling axis control

Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error

Possible actions:
1. Cancel program
2. Cancel program

Delete marker /CLEARM/ No. 79

Definitions:
Delete marker (NC_block,CLEARM)

Should not occur in any alarm

Deselect overstore /OVERSTOEROFF/ No. 9

Definitions:
Deselect overstore (PI command)

Should not occur in any alarm

Digitizing active /DIGITIZEON/ No. 53

Definitions:
! Digitize function removed!
Activate digitization (PI command)

Should not occur in any alarm
List of actions

Digitizing inactive /DIGITIZEOFF/ No. 54
Definitions:
! Digitize function removed!
Deactivate digitization (PI command)
Should not occur in any alarm

Digitizing processing /STARTDIGITIZE/ No. 28
Definitions:
! Digitize function removed!
Start processing in digitize submode
(VDI signal, NC start)
Not permitted if:
1. JOG motion is active,
2. An alarm response is pending:
 which prevents a start,
 or compels braking,
3. Reference point approach has not yet been executed.
Possible actions:
1. None
2. Execute alarm clear condition.
3. Execute reference point approach

Disable NC program /LOCK_FOR_EDIT/ No. 81
Definitions:
Block editing of the NC program
currently being processed (PI command)
Should not occur in any alarm

End of overstore buffer /OVERSTORE_BUFFER_END_REACHED/ No. 39
Definitions:
Stop because the end of the overstore buffer "_N_OSTOREXX_SYF" has been reached
Should not occur in any alarm

Function generator OFF /FUNCTGENOFF/ No. 56
Definitions:
"Disable the function generator (PI command)
Should not occur in any alarm"

Function generator ON /FUNCTGENON/ No. 55
Definitions:
Enable the function generator (PI command)
Should not occur in any alarm

Init phase /INIIT/ No. 1
Definitions:
Execute initialization phase (internal, after power on, initialization of tasks)
Locking save data /SAVEDATA/ No. 92
Definitions: Interlock for data recovery
 Is not permitted if:
 The NCK channel status is not Stopped

Machine data execution (external) /INITIALINIEXTSTART/ No. 36
Definitions: Start machine data processing (PI command)
 (INI file is located externally (e.g.) on MMC)
 Should not occur in any alarm

Machine data processing /INITIALINISTART/ No. 35
Definitions: Start machine data processing (PI command)
 (INI file is already in the NCK)
 Should not occur in any alarm

Move tool /TM_MOVETOOL/ No. 14
Definitions: Move tool (only with tool management) (PI command)
 Should not occur in any alarm

Preprocess stop /INTERPRETERSTOP_ALARM/ No. 75
Definitions: Stop the preprocessing (alarm)
 Should not occur in any alarm

Processing stop /STOPBAG/ No. 88
Definitions: Stop processing
 (VDI signal, mode group stop)
 Should not occur in any alarm

Program selection from other channel /CHANNEL_PROGSELECT/ No. 46
Definitions: Program selection from another channel (channel communication, NC block INIT)
 Should not occur in any alarm

Program selection from other channel /INIT.Sync/ No. 59
Definitions: Program selection from the other channel with synchronization
 (Channel communication, NC block INIT + SYNC)
 Should not occur in any alarm
List of actions

Program stop /STOPPROG/ No. 30
Definitions:
Execute a program stop (NC block M0)
Should not occur in any alarm

Rapid retract /FASTLIFTOFF/ No. 13
Definitions:
Execute a fast retraction
Should not occur in any alarm

Reorganize after block preparation /STOPATIPOBUF_EMPTY_ALARM_REORG/ No. 72
Definitions:
Stop at end of block preparation (alarm)
followed by reorganization of the block preparation.
Not permitted if:
1. The nesting depth is too great
Possible actions:
1. Wait until previous ASUB has finished or cancel program

Reorganize block preparation /PURE_REORG/ No. 84
Definitions:
Reorganize block execution
Should not occur in any alarm

Reset /RESET/ No. 2
Definitions:
Execute reset (VDI signal reset, mode group reset or after power on).
Should not occur in any alarm

Reset due to end of program /PROG_END/ No. 4
Definitions:
Execute reset. Program end has been detected (NC block M30).
Should not occur in any alarm

Reset Init blocks /RESET_INITBLOCK/ No. 3
Definitions:
Activate reset INIT blocks.
(Is initiated by the VDI signal reset)
Should not occur in any alarm

Retraction movement and stop /RETREAT_MOVE_THREAD/ No. 76
Definitions:
Retraction motion with G33 and Stop
Should not occur in any alarm
<table>
<thead>
<tr>
<th>Action Description</th>
<th>Action Code</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save asynchon. subroutine /ASUPDEFINITION/</td>
<td>No. 47</td>
<td></td>
</tr>
<tr>
<td>Definitions: Save definition of an activatable ASUB (PI command) Should not occur in any alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select external program /PROGSELECTTEXT/</td>
<td>No. 45</td>
<td></td>
</tr>
<tr>
<td>Definitions: Select program that is still located internally (PI command) Should not occur in any alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select NC block /BLOCK_SELECT/</td>
<td>No. 80</td>
<td></td>
</tr>
<tr>
<td>Definitions: Select an NC block (PI command) Should not occur in any alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select overstore /OVERSTOERON/</td>
<td>No. 8</td>
<td></td>
</tr>
<tr>
<td>Definitions: Select overstore (PI command) Should not occur in any alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select program /PROGSELECT/</td>
<td>No. 44</td>
<td></td>
</tr>
<tr>
<td>Definitions: Select program (PI command) Should not occur in any alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set marker /SETM/</td>
<td>No. 78</td>
<td></td>
</tr>
<tr>
<td>Definitions: Set marker (NC_block,SETM) Should not occur in any alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start block search /BLOCKSEARCHRUN_START/</td>
<td>No. 51</td>
<td></td>
</tr>
<tr>
<td>Definitions: Start block search (PI command) Should not occur in any alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start preprocessing /PREP_STOP/</td>
<td>No. 40</td>
<td></td>
</tr>
<tr>
<td>Definitions: Start the preprocessing (NC block, Stopre) Should not occur in any alarm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of actions

Start program execution (program) /STARTPROG/ No. 24
Definitions:
Start program execution,
(VDI signal, NC start)
Not permitted if:
1. Program status is active,
2. An alarm response is pending:
 which prevents a start,
 or compels braking.
3. Reference point approach not yet executed
Possible actions:
1. None
2. Execute alarm clear condition.
3. Execute reference point approach

Start program execution (VDI) /CHANNELSTARTPROG/ No. 25
Definitions:
Start program execution (Channel communication, NC block:START)
Not permitted if:
1. Program status is active,
2. An alarm response is pending:
 which prevents a start,
 or compels braking.
3. Reference point approach not yet executed.
4. An incorrect mode has been selected (automatic only).
Possible actions:
1. Protect start with WAITE.
2. Execute alarm clear condition.
3. Execute reference point approach
4. Select program operation mode

Start program in Teach-in /START_TEACHINPROG/ No. 82
Definitions:
Start a program in the teach-in submode.
(VDI signal, NC start)
See STARTSIG and MODESWITCHTOAPROGMODE

Start selected processing /STARTSIG/ No. 33
Definitions:
Start the selected machining
(VDI signal, NC start)
Not permitted if:
1. Process switch is active (mode change,
 enable and disable overstore)
2. An alarm response is pending:
 which prevents a start,
 or compels braking.
3. A process is running (NC program, block search, loading machine data)
Possible actions:
1. None
2. Execute alarm clear condition.
3. None
List of actions

Stop active processing /STOPSIG/ No. 34
Definitions: Stop the active processing.
(VDI signal, NC stop)
Should not occur in any alarm

Stop after block preparation /STOPATIPOBUFFER_ISEMPTY_ALARM/ No. 71
Definitions: Stop at the end of block preparation (alarm)
Should not occur in any alarm

Stop all axes /STOPALL/ No. 29
Definitions: Stop all axes
(VDI signal, stop all or by means of reset button)
Should not occur in any alarm

Stop all axes /STOP_ALARM/ No. 68
Definitions: Stop all axes (alarm)
Should not occur in any alarm

Stop at end of asynchron. subroutine /STOPPROGATASUPEND/ No. 43
Definitions: Stop at ASUB end if started from "stopped" (internal command)
Should not occur in any alarm

Stop at end of block /STOPATEND_ALARM/ No. 67
Definitions: Stop at the block boundary (alarm)
Should not occur in any alarm

Stop digitizing processing /STOPDIGITIZE/ No. 32
Definitions: ! Digitize function removed !
Stop the digitizer processing.
(VDI signal, NC stop)
Should not occur in any alarm

Stop JOG motion /STOPJOGREF/ No. 31
Definitions: Stop the JOG motion
Should not occur in any alarm
List of actions

Stop processing at block limit (program) /PROG_STOP/ No. 41
Definitions: Stop the processing at the block boundary. (NC block, M00/M01)
Should not occur in any alarm

Stop processing at block limit (VDI) /STOPPROGATBLOCKEND/ No. 42
Definitions: Stop the processing at the block boundary.
(Alarm, VDI signal: NC stop at the block boundary)
Should not occur in any alarm

Stop single block because of mode group (type A) /BAGSTOP_SLBTYPA/ No. 37
Definitions: Stop on account of mode group single block.
(VDI signal: single type A, after stop in another channel of this mode group)
Should not occur in any alarm

Stop single block because of mode group (type B) /BAGSTOPATEND_SLBTYPB/ No. 38
Definitions: Stop on account of mode group single block.
(VDI signal: single type B, after stop at the block boundary in the other channel of this mode group)
Should not occur in any alarm

User interrupt /INTERRUPT_SIGNAL/ No. 87
Definitions: Execute an "ASUB" user interrupt.
(VDI signal, ASUB interface, digital-analog interface)
Collective event for all interrupt signals.
This event decides which actual
interrupt one would like to trigger.
Possible candidates are:
 INTERRUPT
 INTERRUPTFASTLIFTOFF
 INTERRUPTBLSYNC
 INTERRUPT_TOPROG_NOEPOS
 INTERRUPT_START
See INTERRUPT

User interrupt (initial setting) /INTERRUPT_START/ No. 86
Definitions: Activate a user interrupt "ASUB".
Is only executed in channel status READY.
(VDI signal, ASUB interface, digital-analog interface)
See INTERRUPT
User interrupt ASUP /INTERRUPT/ No. 10
Definitions: Execute an "ASUB" user interrupt.
(VDI signal, ASUB interface, digital-analog interface)
Alarms can be switched on by machine data "HW_DEBUG_MASK" (for test purposes only).
Not permitted if:
1. The channel is active on account of block search or loading machine data
2. The channel has stopped, and the ASUB "ASUP_START_MASK" has to be started, and the current block cannot be reorganized.
3. Reference point approach has not yet been made
Possible actions:
1. Wait until block search or loading machine data has finished, or cancel the program with the Reset button.
2. Activate block change until NC block can be reorganized
3. Execute reference point approach, or this status can be ignored by means of machine data "ASUP_START_MASK".

User interrupt at end of block /INTERRUPTBLSYNC/ No. 12
Definitions: Execute an "ASUB" user interrupt at the block boundary.
(VDI signal, ASUB interface, digital-analog interface)
as INTERRUPT

User interrupt in manual mode /INTERRUPT_TOPROG_NOREPOS/ No. 85
Definitions: Activate a user interrupt "ASUB" in a manual mode (JOG, REF,...).
(VDI signal, ASUB interface, digital-analog interface)
See INTERRUPT

User interrupt with rapid retract /INTERRUPTFASTLIFTOFF/ No. 11
Definitions: Execute an "ASUB" user interrupt with fast retraction.
(VDI signal, ASUB interface, digital-analog interface)
as INTERRUPT

User PLC version file /PLCVERSION/ No. 94
Definitions: Write user PLC version in version file
Should not occur in any alarm

Waiting for acknowledgment /MMCCMD/ No. 60
Definitions: Wait until acknowledgement arrives from MMC (NC block, MMC_CMD)
Should not occur in any alarm
List of actions

Waiting for end of program /WAITE/ No. 58
Definitions: Wait for a program end (channel communication, NC block, WAITE)
Should not occur in any alarm

Waiting for program marker /WAITM/ No. 57
Definitions: Wait for a program marker (channel communication, NC block, WAITM)
Should not occur in any alarm

Waiting for program marker /WAITMC/ No. 77
Definitions: Conditional wait for a program marker (NC block, WAITMC)
Should not occur in any alarm
8.1 System reactions to SINUMERIK alarms

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPBLOCKWITHREORG</td>
<td>Block preparation has detected an error, which can be rectified by modifying the program. Reorganization is performed after a program modification.</td>
</tr>
<tr>
<td></td>
<td>• Correction block with reorganization.</td>
</tr>
<tr>
<td>COMPENSATIONBLOCK</td>
<td>Block preparation has detected an error, which can be rectified by modifying the program.</td>
</tr>
<tr>
<td></td>
<td>• Correction block.</td>
</tr>
<tr>
<td>FOLLOWUP</td>
<td>Follow-up of axes.</td>
</tr>
<tr>
<td></td>
<td>• NC switches to follow-up mode.</td>
</tr>
<tr>
<td>INTERPRETERSTOP</td>
<td>Program execution is aborted after all the prepared blocks (IPO buffer) have been processed.</td>
</tr>
<tr>
<td></td>
<td>• Interpreter stop.</td>
</tr>
<tr>
<td>LOCALREACTION</td>
<td>• Local alarm reaction.</td>
</tr>
<tr>
<td>NOALARMREACTION</td>
<td>• No alarm reaction.</td>
</tr>
<tr>
<td>NOREADY</td>
<td>NCKREACTIONVIEW</td>
</tr>
<tr>
<td></td>
<td>• NC not ready.</td>
</tr>
</tbody>
</table>
System reactions

8.1 System reactions to SINUMERIK alarms

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Effect Description</th>
</tr>
</thead>
</table>
| NOREADY | Mode group ready off: Active fast braking (i.e. with maximum braking current) of the drives in this mode group, the controller enable of the NC axes involved is deleted.
- Mode group not ready. |
| NOREADY | Channel ready off: Active fast braking (i.e. with maximum braking current) of the drives in this channel, the controller enable of the NC axes involved is deleted.
- Channel not ready. |
| NONCSTART | It is not possible to start a program in this channel.
- NC start inhibit in this channel. |
| NOREFMARK | The axes in this channel have to be referenced again.
- Re-reference axes in this channel. |
| SETVDI | VDI interface signal alarm is set.
- Interface signals are set. |
| SHOWALARM | Alarm is displayed on the HMI.
- Alarm display. |
| STOPBYALARM | Ramp stop of all channel axes.
- NC stop for alarm. |
| STOPATENDBYALARM | Stop at end of block.
- NC Stop for alarm at end of block. |
System reactions

8.1 System reactions to SINUMERIK alarms

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOWALARMAUTO</td>
<td>The alarm is displayed whenever bit 0 of machine data ENABLE_ALARM_MASK is set. The reaction should be set whenever an alarm should only occur during automatic mode without manual operation by the user.</td>
</tr>
<tr>
<td></td>
<td>- Alarm reaction in automatic mode</td>
</tr>
<tr>
<td>SHOWWARNING</td>
<td>The alarm is displayed whenever bit 1 of machine data ENABLE_ALARM_MASK is set. It is used for alarms which should normally be suppressed.</td>
</tr>
<tr>
<td></td>
<td>- Message display.</td>
</tr>
<tr>
<td>ALLBAGS_NOREADY</td>
<td>The Ready is canceled in all mode groups. The reaction thus corresponds to an NCKREACTIONVIEW</td>
</tr>
<tr>
<td></td>
<td>- Mode group not ready.</td>
</tr>
<tr>
<td>DELAY_ALARM_REACTION</td>
<td>If this alarm reaction is configured in the alarm handler, all alarm reactions for alarms, which occur at this point, are buffered channel-specifically and are, therefore, not active. The alarms are displayed on the HMI. Mode group and NCK-wide reactions are transferred. The reaction is cleared by activating the clearDelayReaction call or by an alarm, which has configured NO_DELAY_ALARM_REACTION. This activates all the delayed alarm reactions.</td>
</tr>
<tr>
<td></td>
<td>- All channel-specific alarm reactions delayed on alarm, alarm display.</td>
</tr>
<tr>
<td>NO_DELAY_ALARM_REACTION</td>
<td>The DELAY_ALARM_REACTION state is canceled.</td>
</tr>
<tr>
<td></td>
<td>- The alarm reaction delay is canceled.</td>
</tr>
<tr>
<td>ONE_IPO_CLOCK_DELAY_ALARM_REACTION</td>
<td>All alarm reactions are delayed by one cycle when an alarm is output. This functionality became necessary as part of ESR development.</td>
</tr>
<tr>
<td></td>
<td>- All alarm reactions are delayed by one IPO cycle on alarm.</td>
</tr>
</tbody>
</table>
8.2 Cancel criteria for alarms

<table>
<thead>
<tr>
<th>Identifier</th>
<th>CANCELCLEAR</th>
</tr>
</thead>
</table>
| Effects | The alarm is cleared in any channel when the Cancel key is pressed. It is also cleared by the Start part program key.
• Clear the alarm with the Clear key or with NC-START. |

<table>
<thead>
<tr>
<th>Identifier</th>
<th>CLEARHIMSELF</th>
</tr>
</thead>
</table>
| Effects | Self-clearing alarm. The alarm is not cleared by an operator action but explicitly by a "clearAlarm" programmed in the NCK source code.
• The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required. |

<table>
<thead>
<tr>
<th>Identifier</th>
<th>NCSTARTCLEAR</th>
</tr>
</thead>
</table>
| Effects | The alarm is cleared by starting a program in the channel, in which the alarm occurred. The alarm is also cleared by an NC reset.
• Clear the alarm with NC START or the RESET key and continue the program. |

<table>
<thead>
<tr>
<th>Identifier</th>
<th>POWERONCLEAR</th>
</tr>
</thead>
</table>
| Effects | The alarm is canceled by switching off the control and switching it on again.
• Switch the control OFF - ON. |

<table>
<thead>
<tr>
<th>Identifier</th>
<th>RESETCLEAR</th>
</tr>
</thead>
</table>
| Effects | The alarm is cleared by pressing the Reset key in the channel in which the alarm occurred.
• Clear the alarm with the RESET key. Restart the part program. |

<table>
<thead>
<tr>
<th>Identifier</th>
<th>BAGRESETTINGCLEAR</th>
</tr>
</thead>
</table>
| Effects | The alarm is cleared by a "BAGRESETTINGCLEAR" command or by carrying out a reset in all channels of this mode group.
• Press the RESET key to clear the alarm in all channels of this mode group. Restart the part program. |

<table>
<thead>
<tr>
<th>Identifier</th>
<th>NCKRESETTINGCLEAR</th>
</tr>
</thead>
</table>
| Effects | The alarm is cleared by an "NCKRESETTINGCLEAR" command or by carrying out a reset in all channels.
• Clear alarm in all channels with the RESET key. Restart the part program. |
System reactions

8.2 Cancel criteria for alarms

<table>
<thead>
<tr>
<th>Identifier</th>
<th>NOCLEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects</td>
<td>The clear information is only required for the internal pseudo alarm number EXBSAL_NOMOREALARMS.</td>
</tr>
</tbody>
</table>
System reactions for SINAMICS alarms

<table>
<thead>
<tr>
<th>Designation</th>
<th>NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>None</td>
</tr>
<tr>
<td>Description</td>
<td>No reaction when a fault occurs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designation</th>
<th>OFF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>Brake along the ramp-function generator down ramp followed by pulse disable</td>
</tr>
</tbody>
</table>
| Description | Closed loop speed control \((p1300 = 20, 21)\)
 - \(n_{\text{set}}=0\) is input immediately to brake the drive along the ramp-function generator down ramp \((p1121)\).
 - Standstill is detected when the motor holding brake (if parameters have been assigned for it) is closed \((p1215)\). The pulses are suppressed when the brake closing time \((p1217)\) expires.
 - The standstill is detected when the speed actual value of the speed threshold \((p1226)\) is undershot or when the monitoring time \((p1227)\) started when speed setpoint \(\leq\) speed threshold \((p1226)\) has expired.
\[
\text{Closed loop torque control} \ (p1300 = 23)
\cdot \text{The following applies to closed-loop torque control: Reaction as for OFF2}
\cdot \text{When the system switches over to closed-loop torque control} \ (p1501), \text{the following applies:}
 \text{There is no separate braking reaction.}
\]
| | If the speed actual value falls below the speed threshold \((p1226)\), then a possibly parameterized motor holding brake is closed. The pulses are suppressed when the brake closing time \((p1217)\) expires. |

<table>
<thead>
<tr>
<th>Designation</th>
<th>OFF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>Internal/external pulse disable</td>
</tr>
</tbody>
</table>
| Description | Closed-loop speed and torque control
 - Instantaneous pulse suppression, the drive "coasts" to a standstill.
 - The motor holding brake (if parameterized) is closed immediately.
 - Switch-on inhibit is activated. |
<table>
<thead>
<tr>
<th>Designation</th>
<th>OFF3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>Brake along the OFF3 down ramp followed by pulse disable</td>
</tr>
</tbody>
</table>
| Description | Closed loop speed control (p1300 = 20, 21)
 • n_set=0 is input immediately to brake the drive along the OFF3 down ramp (p1135).
 • When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the closing time of the holding brake (p1217) expires.
 Standstill is detected when the speed actual value of the speed threshold (p1226) is undershot or when the monitoring time (p1227) started when speed setpoint <= speed threshold (p1226) has expired.
 • Switch-on inhibit is activated.
 Closed loop torque control (p1300 = 23)
 • Switchover to closed-loop speed-controlled operation and other reactions as described for closed-loop speed-controlled operation |

<table>
<thead>
<tr>
<th>Designation</th>
<th>STOP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>-</td>
</tr>
<tr>
<td>Description</td>
<td>In preparation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designation</th>
<th>STOP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>n_set = 0</td>
</tr>
</tbody>
</table>
| Description | • n_set=0 is input immediately to brake the drive along the OFF3 down ramp (p1135).
 • The drive remains in closed-loop speed control. |

<table>
<thead>
<tr>
<th>Designation</th>
<th>IASC/DCBRAKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>-</td>
</tr>
</tbody>
</table>
| Description | • For synchronous motors, the following applies:
 If a fault occurs with this fault reaction, an internal armature short-circuit is triggered. The conditions for p1231 = 4 must be observed.
 • For induction motors, the following applies:
 If a fault occurs with this fault reaction, DC braking is triggered. DC braking must have been commissioned (p1232, p1233, p1234). |

<table>
<thead>
<tr>
<th>Designation</th>
<th>ENCODER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>Internal/external pulse disable (p0491)</td>
</tr>
</tbody>
</table>
| Description | The fault reaction ENCODER is applied as a function of the setting in p0491.
 Factory setting:
 p0491=0 → Encoder fault results in OFF2 |
8.3 System reactions for SINAMICS alarms

Acknowledging faults

Specifies the default method of acknowledging faults after the cause has been removed.

<table>
<thead>
<tr>
<th>Designation</th>
<th>POWER ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The fault is acknowledged by a POWER ON process (switch drive unit off and on again).</td>
</tr>
<tr>
<td></td>
<td>Note: If this action has not removed the fault cause, the fault is displayed again immediately after power up.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designation</th>
<th>IMMEDIATELY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>After the fault has been removed, the alarm can be cleared by pressing the RESET key.</td>
</tr>
</tbody>
</table>

Reference to SINAMICS parameters

In the "Cause" and "Remedy" fields, for several alarms, reference is made to a SINAMICS parameter.

The parameter number consists of a "p" or "r" as prefix, followed by a 4-digit number(xxxx) and optionally an index, e.g. p0918[0...3].

References

A detailed description of the SINAMICS parameters is provided in the:

SINAMICS S120/S150 List Manual
Appendix

A.1 List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Output</td>
</tr>
<tr>
<td>AS</td>
<td>Automation system</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application Specific Integrated Circuit: User switching circuit</td>
</tr>
<tr>
<td>ASUB</td>
<td>Asynchronous subprogram</td>
</tr>
<tr>
<td>AuxF</td>
<td>Auxiliary function</td>
</tr>
<tr>
<td>AV</td>
<td>Job planning</td>
</tr>
<tr>
<td>BA</td>
<td>Operating mode</td>
</tr>
<tr>
<td>BB</td>
<td>Ready to run</td>
</tr>
<tr>
<td>BCD</td>
<td>Binary Coded Decimals: Decimal numbers encoded in binary code</td>
</tr>
<tr>
<td>BCS</td>
<td>Basic Coordinate System</td>
</tr>
<tr>
<td>BIN</td>
<td>Binary files (Binary Files)</td>
</tr>
<tr>
<td>BIOS</td>
<td>Basic Input Output System</td>
</tr>
<tr>
<td>BOT</td>
<td>Boot files: Boot files for SIMODRIVE 611 digital</td>
</tr>
<tr>
<td>BP</td>
<td>Basic program</td>
</tr>
<tr>
<td>C Bus</td>
<td>Communication bus</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer-Aided Manufacturing</td>
</tr>
<tr>
<td>CNC</td>
<td>Computerized Numerical Control: Computerized numerical control</td>
</tr>
<tr>
<td>COM</td>
<td>Communication</td>
</tr>
<tr>
<td>COR</td>
<td>Coordinate rotation</td>
</tr>
<tr>
<td>CP</td>
<td>Communications Processor</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit: Central processing unit</td>
</tr>
<tr>
<td>CR</td>
<td>Carriage Return</td>
</tr>
<tr>
<td>CRC</td>
<td>Cutter radius compensation</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube picture tube</td>
</tr>
<tr>
<td>CSB</td>
<td>Central Service Board: PLC module</td>
</tr>
<tr>
<td>CSF</td>
<td>Function plan (PLC programming method)</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear To Send: Signal from serial data interfaces</td>
</tr>
<tr>
<td>CUTCOM</td>
<td>Cutter radius compensation: Tool radius compensation</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-Analog Converter</td>
</tr>
<tr>
<td>DB</td>
<td>Data block in the PLC</td>
</tr>
<tr>
<td>DBB</td>
<td>Data block byte in the PLC</td>
</tr>
<tr>
<td>DBW</td>
<td>Data block word in the PLC</td>
</tr>
<tr>
<td>DBX</td>
<td>Data block bit in the PLC</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Control: Movement of the rotary axis via the shortest path to the absolute position within one revolution</td>
</tr>
</tbody>
</table>
Appendix

A.1 List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>Data Carrier Detect</td>
</tr>
<tr>
<td>DDE</td>
<td>Dynamic Data Exchange</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsche Industrie Norm (German Industry Standard)</td>
</tr>
<tr>
<td>DIO</td>
<td>Data Input/Output: Data transfer display</td>
</tr>
<tr>
<td>DIR</td>
<td>Directory: Directory</td>
</tr>
<tr>
<td>DLL</td>
<td>Dynamic Link Library</td>
</tr>
<tr>
<td>DOE</td>
<td>Data transmission equipment</td>
</tr>
<tr>
<td>DOS</td>
<td>Disk Operating System</td>
</tr>
<tr>
<td>DPM</td>
<td>Dual-Port Memory</td>
</tr>
<tr>
<td>DPR</td>
<td>Dual-Port RAM</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic Random Access Memory</td>
</tr>
<tr>
<td>DRF</td>
<td>Differential Resolver Function: Differential resolver function (DRF)</td>
</tr>
<tr>
<td>DRY</td>
<td>Dry Run: Dry run feedrate</td>
</tr>
<tr>
<td>DSB</td>
<td>Decoding Single Block: Decoding single block</td>
</tr>
<tr>
<td>DSR</td>
<td>Data Send Ready: Signals that data is ready to be sent from the serial data interfaces</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment</td>
</tr>
<tr>
<td>DW</td>
<td>Data word</td>
</tr>
<tr>
<td>E</td>
<td>Input</td>
</tr>
<tr>
<td>EIA code</td>
<td>Special punched tape code, number of holes per character always odd</td>
</tr>
<tr>
<td>ENC</td>
<td>Encoder: Actual value encoder</td>
</tr>
<tr>
<td>EPROM</td>
<td>Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>Error</td>
<td>Error from printer</td>
</tr>
<tr>
<td>FB</td>
<td>Function block</td>
</tr>
<tr>
<td>FBS</td>
<td>Slimline screen</td>
</tr>
<tr>
<td>FC</td>
<td>Function Call: Function block in the PLC</td>
</tr>
<tr>
<td>FDB</td>
<td>Product database</td>
</tr>
<tr>
<td>FDD</td>
<td>Floppy Disk Drive</td>
</tr>
<tr>
<td>FDD</td>
<td>Feed Drive</td>
</tr>
<tr>
<td>FE PROM</td>
<td>Flash-EPROM: Read and write memory</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In First Out: Memory that works without address specification and whose data are read in the same order in which they were stored.</td>
</tr>
<tr>
<td>FIPO</td>
<td>Fine InterPOLator</td>
</tr>
<tr>
<td>FM</td>
<td>Function Module</td>
</tr>
<tr>
<td>FPU</td>
<td>Floating Point Unit Floating Point Unit</td>
</tr>
<tr>
<td>FRA</td>
<td>Frame block</td>
</tr>
<tr>
<td>FRAME</td>
<td>Data record (frame)</td>
</tr>
<tr>
<td>FST</td>
<td>Feed Stop: Feed stop</td>
</tr>
<tr>
<td>GUD</td>
<td>Global User Data: Global user data</td>
</tr>
<tr>
<td>HD</td>
<td>Hard Disk Hard disk</td>
</tr>
<tr>
<td>HEX</td>
<td>Abbreviation for hexadecimal number</td>
</tr>
<tr>
<td>HHU</td>
<td>Handheld unit</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface: Operator functionality of SINUMERIK for operation, programming and simulation.</td>
</tr>
<tr>
<td>HMS</td>
<td>High-resolution Measuring System</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>I/R</td>
<td>Infeed/regenerative-feedback unit (power supply) of the SIMODRIVE 611digital</td>
</tr>
<tr>
<td>iBN</td>
<td>Startup</td>
</tr>
<tr>
<td>IF</td>
<td>Drive module pulse enable</td>
</tr>
<tr>
<td>IK (GD)</td>
<td>Implicit communication (global data)</td>
</tr>
<tr>
<td>IKA</td>
<td>Interpolative Compensation: Interpolatory compensation</td>
</tr>
<tr>
<td>IM</td>
<td>Interface Module Interconnection module</td>
</tr>
<tr>
<td>IMR</td>
<td>Interface Module Receive: Interconnection module for receiving data</td>
</tr>
<tr>
<td>IMS</td>
<td>Interface Module Send: Interconnection module for sending data</td>
</tr>
<tr>
<td>INC</td>
<td>Increment: Increment</td>
</tr>
<tr>
<td>INI</td>
<td>Initializing Data: Initializing data</td>
</tr>
<tr>
<td>IPO</td>
<td>Interpolator</td>
</tr>
<tr>
<td>IS</td>
<td>Interface signal</td>
</tr>
<tr>
<td>ISA</td>
<td>Industry Standard Architecture</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standardization Organization</td>
</tr>
<tr>
<td>ISO code</td>
<td>Special punched tape code, number of holes per character always even</td>
</tr>
<tr>
<td>JOG</td>
<td>Jogging: Setup mode</td>
</tr>
<tr>
<td>K1 ... K4</td>
<td>Channel 1 to channel 4</td>
</tr>
<tr>
<td>K_{UE}</td>
<td>Speed ratio</td>
</tr>
<tr>
<td>K_v</td>
<td>Servo gain factor</td>
</tr>
<tr>
<td>LAD</td>
<td>Ladder diagram (PLC programming method)</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display: Liquid crystal display</td>
</tr>
<tr>
<td>LEC</td>
<td>Leadscrew error compensation</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode: Light emitting diode</td>
</tr>
<tr>
<td>LF</td>
<td>Line Feed</td>
</tr>
<tr>
<td>LR</td>
<td>Position controller</td>
</tr>
<tr>
<td>LUD</td>
<td>Local User Data</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>MC</td>
<td>Measuring circuit</td>
</tr>
<tr>
<td>MCP</td>
<td>Machine control panel</td>
</tr>
<tr>
<td>MCS</td>
<td>Machine coordinate system</td>
</tr>
<tr>
<td>MD</td>
<td>Machine data</td>
</tr>
<tr>
<td>MDI</td>
<td>Manual Data Automatic: Manual input</td>
</tr>
<tr>
<td>MLFB</td>
<td>Machine-readable product designation</td>
</tr>
<tr>
<td>Mode group</td>
<td>Mode group</td>
</tr>
<tr>
<td>MPF</td>
<td>Main Program File: NC part program (main program)</td>
</tr>
<tr>
<td>MPI</td>
<td>Multiport Interface Multiport Interface</td>
</tr>
</tbody>
</table>
A.1 List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Microsoft (software manufacturer)</td>
</tr>
<tr>
<td>MSD</td>
<td>Main Spindle Drive</td>
</tr>
<tr>
<td>NC</td>
<td>Numerical Control: Numerical Control</td>
</tr>
<tr>
<td>NCK</td>
<td>Numerical Control Kernel: NC kernel with block preparation, traversing range, etc.</td>
</tr>
<tr>
<td>NCU</td>
<td>Numerical Control Unit: Hardware unit of the NCK</td>
</tr>
<tr>
<td>NRK</td>
<td>Name for the operating system of the NCK</td>
</tr>
<tr>
<td>NURBS</td>
<td>Non-Uniform Rational B-Spline</td>
</tr>
<tr>
<td>OB</td>
<td>Organization block in the PLC</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OP</td>
<td>Operator Panel</td>
</tr>
<tr>
<td>OP</td>
<td>Operator Panel: Operating setup</td>
</tr>
<tr>
<td>OPI</td>
<td>Operator Panel Interface</td>
</tr>
<tr>
<td>OPI</td>
<td>Operator Panel Interface: Interface for connection to the operator panel</td>
</tr>
<tr>
<td>OPT</td>
<td>Options: Options</td>
</tr>
<tr>
<td>OSI</td>
<td>Open Systems Interconnection: Standard for computer communications</td>
</tr>
<tr>
<td>P bus</td>
<td>Peripheral Bus</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCU</td>
<td>PC Unit: PC box (computer unit)</td>
</tr>
<tr>
<td>PG</td>
<td>Programming device</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Control: Interface control</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PMS</td>
<td>Position measuring system</td>
</tr>
<tr>
<td>POS</td>
<td>Positioning</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory: Program memory that can be read and written to</td>
</tr>
<tr>
<td>REF</td>
<td>Reference point approach function</td>
</tr>
<tr>
<td>REPOS</td>
<td>Reposition function</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction Set Computer: Type of processor with small instruction set and ability to process instructions at high speed</td>
</tr>
<tr>
<td>ROV</td>
<td>Rapid override: Input correction</td>
</tr>
<tr>
<td>RPA</td>
<td>R-Parameter Active: Memory area on the NCK for R parameter numbers</td>
</tr>
<tr>
<td>RPY</td>
<td>Roll Pitch Yaw: Rotation type of a coordinate system</td>
</tr>
<tr>
<td>RTS</td>
<td>Request To Send: RTS, control signal of serial data interfaces</td>
</tr>
<tr>
<td>SBL</td>
<td>Single Block: Single block</td>
</tr>
<tr>
<td>SD</td>
<td>Setting Data</td>
</tr>
<tr>
<td>SDB</td>
<td>System Data Block</td>
</tr>
<tr>
<td>SEA</td>
<td>Setting Data Active: Identifier (file type) for setting data</td>
</tr>
<tr>
<td>SFB</td>
<td>System Function Block</td>
</tr>
<tr>
<td>SFC</td>
<td>System Function Call</td>
</tr>
<tr>
<td>SK</td>
<td>Softkey</td>
</tr>
</tbody>
</table>
A.1 List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKP</td>
<td>SKIP: Skip block</td>
</tr>
<tr>
<td>SM</td>
<td>Stepper Motor</td>
</tr>
<tr>
<td>SPF</td>
<td>Sub Routine File: Subprogram</td>
</tr>
<tr>
<td>SR</td>
<td>Subprogram</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static RAM (non-volatile)</td>
</tr>
<tr>
<td>SSI</td>
<td>Serial Synchronous Interface: Synchronous serial interface</td>
</tr>
<tr>
<td>STL</td>
<td>Statement list</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>SYF</td>
<td>System Files System files</td>
</tr>
<tr>
<td>T</td>
<td>Tool</td>
</tr>
<tr>
<td>TC</td>
<td>Tool change</td>
</tr>
<tr>
<td>TEA</td>
<td>Testing Data Active: Identifier for machine data</td>
</tr>
<tr>
<td>TLC</td>
<td>Tool length compensation</td>
</tr>
<tr>
<td>TNRC</td>
<td>Tool Nose Radius Compensation</td>
</tr>
<tr>
<td>TO</td>
<td>Tool Offset: Tool offset</td>
</tr>
<tr>
<td>TOA</td>
<td>Tool Offset Active: Identifier (file type) for tool offsets</td>
</tr>
<tr>
<td>TRANSMIT</td>
<td>TRANSform Milling Into Turning: Coordinate conversion on turning machine for milling operations</td>
</tr>
<tr>
<td>TRC</td>
<td>Tool Radius Compensation</td>
</tr>
<tr>
<td>UFR</td>
<td>User Frame: Zero offset</td>
</tr>
<tr>
<td>UI</td>
<td>User interface</td>
</tr>
<tr>
<td>V.24</td>
<td>Serial interface (definition of the exchange lines between DTE and DCE)</td>
</tr>
<tr>
<td>WOP</td>
<td>Workshop-oriented Programming</td>
</tr>
<tr>
<td>Work</td>
<td>Workpiece coordinate system</td>
</tr>
<tr>
<td>WPD</td>
<td>Workpiece Directory: Workpiece directory</td>
</tr>
<tr>
<td>ZO</td>
<td>Zero offset</td>
</tr>
<tr>
<td>ZOA</td>
<td>Zero Offset Active: Identifier (file type) for zero offset data</td>
</tr>
<tr>
<td>µC</td>
<td>Micro Controller</td>
</tr>
</tbody>
</table>
A.2 Feedback on the documentation

This document will be continuously improved with regard to its quality and ease of use. Please help us with this task by sending your comments and suggestions for improvement via e-mail or fax to:

E-mail: docu.motioncontrol@siemens.com

Fax: +49 9131 - 98 2176

Please use the fax form on the back of this page.
Appendix

A.2 Feedback on the documentation

<table>
<thead>
<tr>
<th>To</th>
<th>From</th>
</tr>
</thead>
</table>
| SIEMENS AG
I DT MC MS1
P.O. Box 3180
D-91050 Erlangen / Germany | Name: |
| | Address of your company/department |
| | Street: |
| | Zip code:
City: |
| Fax: +49 9131 - 98 2176 (Documentation) | Phone: / |
| | Fax: / |

Suggestions and/or corrections
Appendix

A.3 Documentation overview

Documentation overview, SINUMERIK 828D

General documentation

- Sales brochure
- EMC directives

User documentation

- Operating Manual
 - Turning
 - Milling
- Programming Manual
 - Basic information
 - Production planning
 - Easy Screen
- Programming Manual
 - ISO turning
 - ISO milling
- Diagnostics Manual

Manufacturer/service documentation

- Manual
- Commissioning Manual
- Service Manual
- Function Manual
 - Basic functions
 - Extended functions
- Function Manual
 - ISO dialects
- List Manual
 - Machine data and interface signals
 - Detailed Parameter description

Electronic documentation

- DOCenCD
- DOCenWEB
- Industry Mall