

Tool for Control Technology

Tool collection of functions for programming tasks
involving mathematical operations

Tool collection for bit, number and mathematical operations

Warranty, Liability and Support

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 2/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Note The application examples and Tools are not binding and do not claim to
be complete regarding the circuits shown, equipping and any eventuality.
The application examples and Tools do not represent customer-specific
solutions. They are only intended to provide support for typical
applications. You are responsible in ensuring that the described products
are correctly used. These application examples and Tools do not relieve
you of the responsibility in safely and professionally using, installing,
operating and servicing equipment. When using these application
examples, you recognize that we cannot be made liable for any
damage/claims beyond the liability clause described. We reserve the right
to make changes to these application examples at any time without prior
notice. If there are any deviations between the recommendations
provided in these application examples and other Siemens publications -
e.g. Catalogs - then the contents of the other documents have priority.

Warranty, Liability and Support

We do not accept any liability for the information contained in this
document.

Any claims against us - based on whatever legal reason - resulting from the
use of the examples, information, programs, engineering and performance
data etc., described in this application example shall be excluded. Such an
exclusion shall not apply in the case of mandatory liability, e.g. under the
German Product Liability Act (“Produkthaftungsgesetz”), in case of intent,
gross negligence, or injury of life, body or health, guarantee for the quality
of a product, fraudulent concealment of a deficiency or breach of a
condition which goes to the root of the contract (“wesentliche
Vertragspflichten”). However, claims arising from a breach of a condition
which goes to the root of the contract shall be limited to the foreseeable
damage which is intrinsic to the contract, unless caused by intent or gross
negligence or based on mandatory liability for injury of life, body or health
The above provisions does not imply a change in the burden of proof to
your detriment.

Copyright© 2009 Siemens Industry Sector. It is not permissible to
transfer or copy these examples or excerpts of them without first
having prior authorization from Siemens Industry Sector in writing.
For questions about this document, please use the following e-mail
address:

online-support.automation@siemens.com

mailto:online-support.automation@siemens.com

Preface

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 3/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Preface
In this example, we introduce fully functional and tested automation
configurations based on Siemens Industry Sector standard products and
individual function blocks or tools, for simple, fast and inexpensive
implementation of automation tasks.

Apart from a list of all required hardware and software components and a
description of the way they are connected to each other, the examples
include the tested tools or function blocks. This ensures that the
functionalities described here can be reset in a short period of time and
thus also be used as a basis for individual expansions.

Industry Automation and Drives Technologies Service & Support Portal
This entry is from the internet service portal of Siemens AG, Industry
Automation and Drives Technologies. Clicking the link below directly
displays the download page of this document.

http://support.automation.siemens.com/WW/view/en/29851674

http://support.automation.siemens.com/WW/view/en/29851674

Table of Contents

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 4/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Table of Contents
1 Bit and Number Operations ... 5
1.1 Random number generator... 5
1.2 Determination of the parity of data elements .. 9
1.3 Determination of the active bit position in a flag word 12
1.4 Edge detection in a 32-bit field ... 14
1.5 Incremental counter with limit of 2,147,483,647 ... 16

2 Mathematical Operations ... 19
2.1 Calculate the xth root of a REAL number ... 19
2.2 Calculation of statistical values in automation systems 21
2.3 Matrix operations in SIMATIC systems... 26
2.4 Multidimensional interpolation .. 39

3 Overview of the Download Files.. 52

4 History ... 53

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

1 Bit and Number Operations

1.1 Random number generator

Description
In order to create random numbers, random number generators are used.
These can be hardware- or software-implemented in IT systems. It should
be noted that these random number generators are generally deterministic.
Accordingly, the sequences of numbers created by such random number
generators only appear to be random, but are actually determined by an
algorithm. This means that the same initial value creates the same
sequence of numbers.

In practical use, you can easily implement deterministic random number
generators by means of a linear feedback shift register.

Figure 1-1 illustrates the basic structure of such a register.

V1.0 Edition 2009-04-06 5/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Figure 1-1

In each cycle, the register is shifted to the left by one bit and the bits 15, 13,
12 and 10 are operated on by XOR. The result of the XOR operation is the
input bit of the shift register. In the case of a 16-bit shift register, the range
of possible values is 1 – 65,535. The algorithm excludes the zero value.

Function “RANDOM” (FC 45)
The RANDOM function is a random number generator implemented as 16-
bit feedback shift register. The random numbers are in the range of -32,768
to +32,767. It should be noted that the zero number never occurs. For the
16-bit shift register, you have to assign a static variable to the INOUT
parameter “RND”. At the same time, RND contains the random number,
which is recalculated on each call of the RANDOM function.

The random number generator is initialized with a new seed by means of
the “Init” input. The initial value is determined by means of system function
SFC1 (READ_CLK). The initialization is level-triggered; edge detection
does not take place. If the INOUT variable RND is zero on function call, an
initialization takes place automatically.

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Note • The initialization via the “Init” input is not edge-triggered. As
long as this input is selected, no random numbers are created.

• The algorithm excludes the zero value.

• If the random numbers Z are desired to be in the range
between “0” and N, you have to perform a modulo
operation (Z MOD (N + 1)).

Block parameters of function “RANDOM” (FC 45)
Table 1-1

Parameters Declaration Data type Area Description
Init IN BOOL I, Q, M,

D, L
Initialization of the random
number generator

V1.0 Edition 2009-04-06 6/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

RND INOUT INT Q, M,
D, L

Contains the random number

Example
In the example project, the RANDOM function is called in the OB1 block if
the M0.0 flag (EnableGenerator) is set. The random numbers range
between 0 and 3000. The last 30 random numbers are saved to DB1. The
variable table “VAT_1” contains the results.

In order to test the example project, proceed as follows:

Table 1-2

Step Action / Event

 Load the complete station into the CPU or to the S7-PLCSIM. 1.

 Open the variable table “VAT_1” in online mode. 2.

3.

1

 Set the M0.0 flag (EnableGenerator) to signal status “1”

Result: The simulation is activated and the random numbers are generated. 2

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 1-2

V1.0 Edition 2009-04-06 7/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

1

Random numbers
created

2

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 8/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Technical data
Table 1-3

Block Data

RANDOM (FC 45)
Random number generator

Required local data: 24 bytes
Load memory requirement: 252 bytes
Main memory requirement : 180 bytes

The respective download file is available in chapter “Overview of the
download files”.

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 9/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

1.2 Determination of the parity of data elements

Description
The PARITY function determines the parity bit of an input memory area.
The memory areas that may contain the data are:

• Inputs

• Flags

• Data blocks

Function “PARITY” (FC 12)
The PARITY function (FC 12) allows the parity determination of byte, word,
double word and DB blocks for the memory areas “input”, “flag” and “data
blocks”. The data is transferred via an ANY pointer. Transfer parameters,
such as MB, IW, DB12.DBD, or data blocks (e.g. P#DB12.DBX 0.0 BYTE
13) are permitted for this. The function checks the data types and memory
areas listed above, generating an error bit if they do not correspond. The
parity bit is available as output parameter. It is coded as follows:

• Parity even = '0'

• Parity odd = '1'

Block parameters of function “PARITY” (FC 12)
Table 1-4

Parameters Declaration Data type Area Description
ParityTest IN ANY I, M, D Input of the area to be checked
Parity Out BOOL Q, M, D,

L
Result: Even = 0,
Odd = 1

Failure Out BOOL Q, M, D,
L

Error in case of wrong transfer
parameters

Example
There is an example appended to the project. In this example, the PARITY
function is called with various parameters in FC 11. You can check the
results in the variable tables “Test_parity” and “Test_parity_block”.

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 1-3

V1.0 Edition 2009-04-06 10/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Figure 1-4

Odd parity (13 bytes from DB)

odd parity (DWord from DB)

even parity (Byte from DB)

odd parity (DWord)

odd parity (Word)

even parity (Byte)

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 11/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Technical data
Table 1-5

Block Data

PARITY (FC 12)
Parity determination of a data area

Required local data: 12 bytes
Load memory requirement: 370 bytes
Main memory requirement : 284 bytes

The respective download file is available in chapter “Overview of the
download files”.

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

1.3 Determination of the active bit position in a flag word

Description
In STEP 7, the process control for a sequential process is to be
implemented by means of a flag word. In a step sequence flag word, there
is always just one bit active, which corresponds to the currently active step
in the step sequence. Bit counting makes it possible to visualize the active
step as plain text – e.g. in ProTool – by means of symbol lists. For the
visualization, it is of advantage to have the bit position of the currently
active step as integer value. If only one bit is set in every case, the
following formula applies:

()
()2ln

ln
2

YX

Yx

=⇒

=

V1.0 Edition 2009-04-06 12/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Function “CalcBitPos” (FC 1)
The “CalcBitPos” function determines the position of the set bit in an input
data word (16 bit) and returns the position as an INT value via the OUT
parameter “bit_pos”. If no bit is set, the function returns “0” (zero); if the
most significant bit (msb) is set, the function returns “16”. If more than one
bit is set, the result is undefined.

Note • The bit counting starts with “1” (see Figure 1-5

• If more than one bit is set, the result is undefined.

Figure 1-5

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Block parameters of function “CalcBitPos”
Table 1-6

Parameters Declaration Data type Area Description

m_word IN WORD I, Q, M, D, L Data word to be analyzed
bit_pos OUT INT Q, M, D, L Position of the set bit

Example
In the appended example project, you can test the functionality of the
“CalcBitPos” function. For this purpose, proceed as follows:

Table 1-7

Step Action / Event

V1.0 Edition 2009-04-06 13/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

 Load the complete station into the CPU or to the S7-PLCSIM. 1.

2. Open the variable table “VAT_1” in online mode.

 Activate the control value (“control variable”) 3.

Result: MW 2 (“BitPosition”) returns “8” because the 8th bit of flag word “MW 0”
(“InputDataWord”) is set.

Figure 1-6

Technical data

Table 1-8

Block Data

CalcBitPos (FC 1)
Determine bit position

Required local data: 24 bytes
Load memory requirement: 252 bytes
Main memory requirement : 180 bytes

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

1.4 Edge detection in a 32-bit field

Description
In order to monitor a 32-bit field for any coming or going events, you can
check every bit subject to monitoring for positive or negative edges.

For filtering – from any number of bits – the one that changed its status in
the cycle, an XOR operator is used on the value of the last cycle and that of
the current one. The XOR operator only returns the bit found exclusively in
one of the two values. A further AND query determines whether the bit
represents a coming or going signal.

The bit position results from incrementing: X + 1, whereby the X-value is
determined by means of the following conversion:

V1.0 Edition 2009-04-06 14/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

()
()2ln

ln
2

YX

Yx

=⇒

=

Function “Monitor32” (FB 1)
The function “Monitor32” checks whether a bit has changed in a 32-bit data
word since the last function call. The function provides the following
information as result:

• Bit coming / going

• Bit position (bit counting starts with “1”)

If several bits of the data word have changed since the last function call,
the result is undefined.

Block parameters of function “Monitor32”
Table 1-9

Parameters Declaration Data type Area Description

value_in IN DWORD I, Q, M, D, L Input double word the bits of which
are to be checked for status changes

come OUT BOOL Q, M, D, L Bit has been set.
go OUT BOOL Q, M, D, L Bit has been reset.
bit No. of bit come / gone

0: No bit has changed since last
function call.

OUT INT Q, M, D, L

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Example

Table 1-10

Step Action / Event

 Load the complete station into the CPU or to the S7-PLCSIM. 1.

2. Open the variable table “VAT_1” in online mode.
3. Enter 2#0000_0000_0000_0000_0000_1000_0000_0000 for the “BitField”

variable. (12th bit, coming)
 Set “CheckBit” to “1”

Result: “BitCame” has become “1”, variable “BitPosition” = 12.

Figure 1-7

V1.0 Edition 2009-04-06 15/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Technical data
Table 1-11

Block Data

Monitor32 (FB 1)
Edge detection in a 32-bit field

Required local data: 4 bytes
Load memory requirement: 318 bytes
Main memory requirement : 228 bytes

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 16/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

1.5 Incremental counter with limit of 2,147,483,647

Description
With a STEP 7 counter, you can only count in the range of 0 to 999.
Cascading the counters quickly uses up the internal counters. The system
function “CTU” (SFB0) also provides a counter, but it can only count to
32,767. In the example described here, you can count up to 2,147,483,647.

Function “Counter” (FB 2)
The function block “Counter” (FB 2) enables you to implement the
incremental counting function. A rising edge at the “CU” input (as compared
to the last FB call) causes the counter to be incremented by “1”. If the
counter reaches the upper limit of 2,147,483,647, it is not incremented
anymore and the “Overflow” output is set. In this case, any further rising
edge at the “CU” input has no result. A rising edge at the “R” input causes a
counter reset to zero, no matter which value is set at the “CU” input.
A rising edge at the “S” input causes the count value “CV” to be set with the
value at the “SW” input.
The “Q” output indicates whether the current count value is greater than or
equal to the comparative value “PV”.

Note • In each CPU cycle, you cannot count more than one counter
pulse. In this case, the edges are not detected

• The number 2,147,483,647 is the maximum positive number
you can represent with a double word.

Block parameters of function “Counter”
Table 1-12

Parameters Declaration Data type Area Description

CU IN BOOL I, Q, M, D, L Counter input
R IN BOOL I, Q, M, D, L Reset input
S IN BOOL I, Q, M, D, L Set input
SW IN DINT I, Q, M, D, L Value to be set (possible values:

0 to 2,147,483,647)
PV IN DINT I, Q, M, D,

L, const.
Comparative value
See parameter Q for relevance of
PV (possible values: 0 to
2,147,483,647).

Q OUT BOOL I, Q, M, D, L Status of counter:
Q has value 1 if CV >= PV

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Parameters Declaration Data type Area Description
0 otherwise

CV OUT DINT I, Q, M, D, L Current count value (possible
values: 0 to 2,147,483,647)

Overflow OUT BOOL I, Q, M, D, L Overflow has value
1 if CV >= 2,147,483,647
0 otherwise

Example
In the example project contained in the download, the function block
“Counter” is called. The incremental counting is triggered by the 4th bit of
the cycle flag word MW100 parameterized in the CPU. To test the example,
proceed as follows:

V1.0 Edition 2009-04-06 17/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Table 1-13

Step Action / Event

1. Load the complete station into the CPU or to the S7-PLCSIM.

2. Open the variable table “VAT1” in online mode.

 As an example, enter 40 for “set_value”. 3.

4. As an example, enter 50 for “compare_value” and apply
“control variable”.

Result: The values in the variable table are updated.

5. Set the variable “set_CV” to “1” and then reset it to “0”.

Result: The counter (“count_value”) is set to 40.

1

2

3

6. Let a period of 10 cycles elapse.

Result: After 10 cycles, the counter is set to 50 and the output
“CV_gr_eq_PV” is “1”.

4
5

6
7. Set “reset_C

 The counter is reset to “0” (“count_value”).

V” to “1”

Result:

7

Bit and Number Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 1-8

V1.0 Edition 2009-04-06 18/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

5

7

3
1

2
6

4

Technical data

Table 1-14

Block Data

Counter (FB 2)
Incremental counter with 2,147,483,647 limit

Required local data: 0 bytes
Load memory requirement: 264 bytes
Main memory requirement : 172 bytes

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

2 Mathematical Operations

2.1 Calculate the xth root of a REAL number

Description

Since there is no direct command for calculating the xth root (x a) in the
set of commands provided in STEP 7, the calculation must be performed by
means of the “EXP” and “LN” commands. “EXP” calculates the exponential
value of a floating-point number to the base “e” and “LN” determines the
natural logarithm (logarithm to the base “e”) of a floating-point number.

The following formula describes the relevant mathematical conversion:

a
xxx eaaC

ln11
⋅

===

Function “X-ROOT”

V1.0 Edition 2009-04-06 19/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

The X-ROOT function calculates the xth root from an input floating-point
number (REAL). The result – returned via an OUT parameter (result) – is of
type REAL.

Note The X-ROOT function provides one possible calculation of the xth root.
There are no additional checks of the input values for correctness with
respect to mathematical conventions and limits. Therefore, there is no
error status.

Block parameters of function “X-ROOT” (FC 23)
Table 2-1

Parameters Declaration Data type Area Description

number IN REAL I, M, D, L Number the xth root of which is
to be calculated

exponent IN REAL I, M, D, L Root exponent x
result OUT REAL Q, M, D,

L
Result of root calculation

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Example

In the program example, the function “CALL_XROOT” (FC 24) is called. In
turn, CALL_XROOT calls the function “X-ROOT” (FC 23), which calculates
the xth root of “a”. The function has the following formal parameters:

Table 2-2

Type Address Description Symbol
a REAL MD20 Number the xth root of which is to be calculated
x REAL MD24 Root exponent “x” (xth root)

result REAL MD28 Result of x a

For testing and monitoring the results, the variable table “Test x-root” is
available (see Figure 2-1). In this example 2599,123 ≈=x a is calculated.

V1.0 Edition 2009-04-06 20/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Figure 2-1

Technical data
Table 2-3

Block Data

X-ROOT (FC 23)
Calculates the xth root of a REAL number

Required local data: 0 bytes
Load memory requirement: 120 bytes
Main memory requirement : 64 bytes

The respective download file is available in chapter “Overview of the
download files”.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

2.2 Calculation of statistical values in automation systems

Description
As a basic requirement, a quality management system must provide a
method to check how well a product conforms to the required standards.

The available function FB 20 (SPC01) enables you to perform basic SPC
calculations (Statistical Process Control). The function provides the
following statistical values:

• Highest value

• Lowest value

• Arithmetic mean

• Standard deviation

For the standard deviation, the following formula is used:

V1.0 Edition 2009-04-06 21/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

()
n
xx∑ −

=
2

σ̂

With:

x : Measured values

x : Arithmetic mean

n : Number of measured values

You can use the function for both continuous and discontinuous processes.

With a feedback loop, you can use these data to set control parameters
(not implemented in the download).

Function “SPC01” (FB 20)
The SPC01 function calculates statistical values, namely the highest value,
the lowest value, the arithmetic mean and the standard deviation.

If the function block is called with “Rec_On” = “false”, the outputs

• Hi

• Lo

• Mean

follow the value at the “PV” input. The outputs

• StdDev

• Count

• Total

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 22/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

• SqrsTotal

are set to 0.0.

If the function block is called with “Rec_On” = “true”, the values of the
instance data block and the output parameters are calculated and updated
in accordance with the value at “PV”.

For a continuous process, use the function as follows:

Step Action / Event
1. Perform a conditional function call.
2. Set the “Rec_On” input to “true”.

Result: Data recording starts.
3. To end the recording, you do not call the function again.

Note: If you set “Rec_On” to “false”, all results will be deleted.

For a discontinuous process, use the function as follows:

Step Action / Event
1. Set the “Rec_On” input to “true”.
2. Call the function block conditionally via a one-time call or by means of a rising

edge-trigger for the batch period.
3. When the batch measurement is finished, set “RecOn” to “false”.
4. Set “RecOn” to “true” again to restart collecting data.

ameters of function “SPC01” (FB 20)
Table 2-4

Block par

Parameters Declaration Data type Area Description

PV IN REAL I, M, D, L Recorded process variable
Rec_On IN REAL I, M, D, L

ut values
If “true”, value recording takes
place; if “false”, the outp
follow the current PV.

Hi OUT REAL M, D,
L

st toggled from

Q, The highest value recorded since
“Rec_On” was la
“false” to “true”

Lo OUT REAL M, D,
L st toggled from
Q, The lowest value recorded since

“Rec_On” was la
“false” to “true”

Mean OUT REAL M, D,
L st
Q, The arithmetic mean of the PV

values since “Rec_On” was la
toggled from “false” to “true”

StdDev OUT REAL M, D,
L

st

Q, The standard deviation of the PV
values since “Rec_On” was la

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 23/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Parameters Declaration Data type Area Description
toggled from “false” to “true”

Count OUT REAL M, D,
L

last toggled

Q, The number of recorded PV
measurements (auxiliary value)
since “Rec_On” was
from “false” to “true”

Total OUT REAL M, D,
L

st toggled from “false” to

Q, The total of the PV values
(auxiliary value) since “Rec_On”
was la
“true”

SqrsTotal OUT REAL M, D,
L

st toggled from
“false” to “true”

Q, The total of the squared PV
values (auxiliary value) since
“Rec_On” was la

Note This function block is not suitable for logging individual PV values. In
order to use the CPU memory sparingly, the function block calculates the
results of a data collection immediately and only stores such data as are
necessary to establish the output values. The analysis takes place at
runtime. If you need to store the process variables for a subsequent
statistical evaluation, the process values should be archived outside the
CPU (e.g. in WinCC).

Example
ry

e flag double word
ts are written to the following flags:

 StdDev MD18

In the organization block OB1, the function SPC01 (FB 20) is called eve
15 seconds. The “PV” parameter gets its data via th
MD2. The resul

 Hi MD6

 Lo MD10

 Mean MD14

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 24/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

In order to test the example, proceed as follows:

Step Action / Event
1. Load the complete station into the CPU or to the S7-PLCSIM.

 Open the “VAT1” variable table.
2. Set M0.1 (“RecordON”) to “true”.

Result: The recording of measured values starts.
3. Enter a value in MD2 (“ProcVar”) within 15 seconds.

Result: Every 15 seconds, the variables
• Hi
• Lo
• Mean
• StdDev
• "SPC01 Data".Count
• "SPC01 Data".Total
• "SPC01 Data".SqrsTotal

are updated.
4. Repeat step 3 as often as you like.
5. When you are finished, set M0.1 (“RecordON”) to “false”.

Result: Within 15 seconds, all values are reset or set to the value at the “PV”
input.

6. If you want to start a new series of measurements, go back to step 2.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 25/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Figure 2-2

Technical data
Table 2-5

Block Data

SPC01 (FB20)
Calculation of statistical values

Required local data: 6 bytes
Load memory requirement: 360 bytes
Main memory requirement : 284 bytes

The respective download file is available in chapter “Overview of the
download files”.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 26/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

2.3 Matrix operations in SIMATIC systems

Various high-level functions for process control deal with several in- and
output values and therefore matrices and matrix operations are required to
define them in the technical literature. Application examples include state
controllers, monitoring devices, Kalman filters, predictive controllers and
process simulators.

Such functions are quite easy to implement on a PC by including ready-
made numerical libraries while it is rather difficult to implement them in
SIMATIC systems (S7 or PCS7) because you have to program all matrix
operations manually by means of interlaced loops in the high-level
language SIMATIC SCL.

The library “MatrixOperations” offers a solution to this problem by providing
ready-made functions for processing matrices in SCL. To define a matrix,
you use a UDT (user-defined data type), which requires header information
on the number of rows and columns and contains the matrix elements in
form of a two-dimensional array. Vectors are included in the definition as
special matrices consisting of only one column. For all variables of this data
type, at least the following ready-made functions are available as “FCs”:

• Matrix addition

• Subtraction

• Matrix multiplication

• Transposition

• Inversion

In addition, there are functions available for creating a zero matrix or an
identity matrix of specified dimensions.

Examples
In the download, there is an example of each matrix function with the
exception of the functions “MxEin” for creating an identity matrix and
“MxNull” for creating a zero matrix. Each example has its own variable table
and a test FB, which is called cyclically in OB1. To test the examples,
proceed as follows:

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 27/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Table 2-6

Step Action / Event

 Create a new project in the SIMATIC Manager. 1.
 Configure a SIMATIC station.

2.
ct.

 Open the “MatrixOperations” library and copy all elements (including the variable
tables) to your proje

3. Load the complete station into the CPU or to the S7-PLCSIM.

4.

N an find the relevant variable tables in the section of the respective
f

 Open the relevant variable table in online mode.

ote: You c
unctions (see below).

User-defin
d data type MATRIX has the following data structure:

 Elements: ARRAY[1..4,1..4] OF REAL;

END_

The inte
dimensio
elements rray
represen

Note

ed data type (UDT): Matrix
The user-define
STRUCT

 No. of rows: INT: = 0;

 No. of columns: INT: = 0;

STRUCT

ger variables “No. of rows” and “No. of columns” define the
n of the matrix; the two-dimensional array contains the matrix
 of type “REAL”. At the same time, the dimension of the a
ts the maximum permissible size of a matrix.

• t possible to adjust the dimension of the array Since it is no
dynamically, you have to specify the size of the field in advance
when declaring the variable. For this purpose, you have to make
sure that the selected dimension can accommodate the
maximum-sized matrix of the S7 program. The default size of the
array is 4 x 4. You can adjust the dimension in the source file
“Matrix_UDT”. To implement the change, you have to compile the
source file.

• For the sake of simplicity, the MATRIX data type includes the
definition of vectors so that no extra data type is necessary.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 28/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Function for matrix addition: “MxAdd” (FC 501)
wo nm×The “MxAdd” function serves for the addition of t matrices of data

mula: type MATRIX using the following calculation for

()ijij withbaBA +=+ njmi ,...,1;,...,1= =

ether both
returns a matrix

alculation example:

⎞⎛⎞⎛⎞⎛
3

731
1

500231

In SCL, you call th w :
MxAd A:= A = , MxC:=

Block parameters of function “MxAdd”

Table 2-7

Before the calculation takes place, the function checks wh
matrices have the same dimension. In case of an error, it
of dimension 00× as result.

C

⎟⎟
⎠3

 ⎜⎜
⎝

+⎟⎟
⎠ 222⎜⎜

⎝1 ⎜⎜
⎝

=⎟⎟
⎠ 31

e function ith
d(Mx m, MxB: Bm AplusB);

Parameters Declaration Data type Area Description
MxA L Matrix A IN MATRIX
MxB IN MATRIX L Matrix B
MxC OUT MATRIX L Sum of matrices A+B

Example
In the variable table “VAT_MxAdd”, you can see the result of the matrix
addition exemplified above (see Figure 2-3). As to how to apply the
example, see 2.3.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 2-3

V1.0 Edition 2009-04-06 29/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Technical data
Table 2-8

Block Data

MxAdd (FC 501)
Addition of two matrices

Required local data: 20 bytes
Load memory requirement: 916 bytes
Main memory requirement : 790 bytes

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Function for matrix subtraction: “MxSub” (FC 505)
The “MxSub” function subtracts two matrices of data type MATRIX from
each other. Before the calculation takes place, the function checks whether
both matrices have the same dimension and returns a 0x0 matrix in case of
error in this case as well.

Calculation example:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
111
331

112
500

221
231

In SCL, you call the function with:
MxSub(MxA:= Am, MxB:= Bm, MxC:= AminusB);

V1.0 Edition 2009-04-06 30/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Block parameters of function “MxSub”

Table 2-9

Parameters Declaration Data type Area Description
MxA IN MATRIX L Matrix A
MxB IN MATRIX L Matrix B
MxC OUT MATRIX L Difference of matrices A-B

Example
In the variable table “VAT_MxSub”, you can see the result of the matrix
subtraction exemplified above (see Figure 2-4). As to how to apply the
example, see 2.3.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 31/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Figure 2-4

Technical data

Table 2-10

Block Data

MxSub (FC 505)
Subtraction of two matrices

Required local data: 20 bytes
Load memory requirement: 916 bytes
Main memory requirement : 790 bytes

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Function for matrix multiplication: “MxMul” (FC 503)

For multiplying two matrices, the “MxMul” function is available. The
calculation only takes place if the number of columns of the first matrix
corresponds to the number of rows of the second one. As before, the
function returns a matrix of dimension 0x0 if this condition does not apply.
The calculation formula for multiplying two matrices A and B with each
other is:

V1.0 Edition 2009-04-06 32/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

() mjliaA ij ,...,1;,...,1with ===

() njmiaB ij ,...,1;,...,1with ===

() ∑ =
⋅====⋅

m

k kjikijij bacandnjlicBA
1

,...,1;,...,1with

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
•⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1239
612

30
23
16

654
321

In SCL, you call the function with:
MxMul(MxA:= Am, MxB:= Bm, MxC:= Cm);

Block parameters of function “MxMul”

Table 2-11

Parameters Declaration Data type Area Description
MxA IN MATRIX L Matrix A to be multiplied
MxB IN MATRIX L Matrix B to be multiplied
MxC OUT MATRIX L Matrix product A*B

Example
In the variable table “VAT_MxMul”, you can see the result of the matrix
multiplication exemplified above (see Figure 2-5). As to how to apply the
example, see 2.3.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 2-5

V1.0 Edition 2009-04-06 33/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Technical data

Table 2-12

Block Data

MxMul (FC 503)
Multiplication of two matrices

Required local data: 26 bytes
Load memory requirement: 956 bytes
Main memory requirement : 820 bytes

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Function for matrix transposition: “MxTrans” (FC 506)

The “MxTrans” function returns the transposed matrix of an input matrix.
The formula for determining the transposed matrix of matrix A is:

TA

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mnm

n

aa

aa
A

L

MOM

K

1

111

V1.0 Edition 2009-04-06 34/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

The transpose of matrix A is:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mnn

m
T

aa

aa
A

L

MOM

K

1

111

Calculation example:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

63
52
41

654
321 T

In SCL, you call the function with:
MxTrans(MxA:= Am, MxAT:= Atrans);

Block parameters of function “MxTrans”

Table 2-13

Parameters Declaration Data type Area Description
MxA IN MATRIX L Matrix A to be transposed
MxAT OUT MATRIX L Transpose of matrix A

Example
In the variable table “VAT_MxTrans”, you can see the result of the matrix
transposition exemplified above (see Figure 2-6). As to how to apply the
example, see 2.3.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 2-6

V1.0 Edition 2009-04-06 35/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Technical data

Table 2-14

Block Data

MxTrans (FC 506)
Transposition of a matrix

Required local data: 16 bytes
Load memory requirement: 588 bytes
Main memory requirement : 486 bytes

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Function for matrix inversion: FC “MxInv” (FC 502)
The “MxInv” function serves for inverting a non-singular square matrix.
Since the dimension of the matrix to be inverted within the estimation
algorithm is low, meaning that the efficiency differences between the
various inversion algorithms are hardly significant, a very simple algorithm,
the so-called Shipley-Coleman algorithm is applied. Besides its simplicity,
this inversion algorithm stands out in that it is an “in-place” algorithm so
there is no additional auxiliary variable of type MATRIX required for the
inversion. If the function receives a non-square matrix as input, it returns a
0x0 matrix as result.

In SCL, you call the function with:
MxInv(MxA:= Am, MxAI:= Ainv);

V1.0 Edition 2009-04-06 36/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Block parameters of function “MxInv”

Table 2-15

Parameters Declaration Data type Area Description

MxA IN MATRIX L Matrix to be inverted
MxAI OUT MATRIX L Contains inverse matrix

Example
In this example, the following matrix is inverted:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

143
032
021

A

The inverse matrix is:
1−A

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=−

121
012
023

1A

You can find the result in variable table “VAT_MxInv” (Figure 2-7). As to
how to apply the example, see 2.3.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 37/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Figure 2-7

Technical data

Table 2-16

Block Data

MxInv (FC 502)
Inversion of a matrix

Required local data: 26 bytes
Load memory requirement: 3182 bytes
Main memory requirement : 3046 bytes

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 38/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Function for creating zero matrices: “MxNull” (FC 504)
The “MxNull” function serves for generating square zero matrices. The
function gets the dimension of the zero matrix via the input parameter
“dim”. If the specified “dim” value is less than or equal to zero, the function
returns a matrix of dimension 0x0 as result.

In SCL, you call the function with:
MxNull(Dim:= n, MxN:= Nm);

Block parameters of function “MxNull”

Table 2-17

Parameters Declaration Data type Area Description

Dim IN INT L Dimension of matrix
MxN OUT MATRIX L Contains the square zero matrix

of dimension “dim”

Technical data

Table 2-18

Block Data

MxNull (FC 504)
Creation of a square zero matrix

Required local data: 20 bytes
Load memory requirement: 462 bytes
Main memory requirement : 374 bytes

Function for creating identity matrices: “MxEin” (FC 507)
The “MxEin” function serves for creating square identity matrices. As
above, you can specify the dimension by means of the input parameter
“dim”. The error output is identical to that of the “MxNull” function.

In SCL, you call the function with:
MxEin (Dim:= n, MxI:= Im);

Block parameters of function “MxEin”
Table 2-19

Parameters Declaration Data type Area Description

Dim IN INT L Dimension of matrix
MxI OUT MATRIX L Contains the square identity

matrix of dimension “dim”

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Technical data

Table 2-20

Block Data

MxEin (FC 507)
Creation of a square identity matrix

Required local data: 20 bytes
Load memory requirement: 594 bytes
Main memory requirement : 502 bytes

2.4 Multidimensional interpolation

Description
In process automation, it is often necessary to calculate values that are
difficult or even impossible to express in formulas. In this case, it is suitable
to interpolate the function values.

V1.0 Edition 2009-04-06 39/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

However, a simple linear interpolation between two data points is often
insufficient. It is often reasonable to represent the function in a table by
means of several interpolation points and – if required – to select the best
pair of data points in question for the interpolation.

In other cases, the function depends on several parameters so that a
multidimensional interpolation is required. For instance, the response time
does not only depend on the temperature. The pressure and concentration
of the reagents are relevant as well.

Function “INTERP_2POINT” FC 100
The function “INTERP_2POINT” performs a simple linear interpolation
between two points if the function follows a line (). The
following calculation formula applies to the interpolation:

bxaxF +⋅~)(

() ())()()(0
01

0
01 xF

xx
xxxFxFxF

i

+
−
−

⋅−=
+

See also Figure 2-8

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 2-8

V1.0 Edition 2009-04-06 40/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

X

F(x)

x0 x1x

F(x0

F(x1)

Y F(x) = [F(x1) - F(x0)] * [x – x0] + F(x0)

[x1 – x0]

Block parameters of function “INTERP_2POINT” FC 100

Table 2-21

Parameters Declaration Data type Area Description

X IN REAL I, Q, M, D, L Input value
Xn IN REAL I, Q, M, D, L X-value of max. interpolation point
Xo IN REAL I, Q, M, D, L X-value of min. interpolation point
Fxn IN REAL I, Q, M, D, L F(xn) of max. interpolation point
Fxo IN REAL I, Q, M, D, L F(xo) of min. interpolation point
FX OUT REAL Q, M, D, L Interpolated value F(x)
ERROR OUT BOOL Q, M, D, L 1: Error, 0: No error
STATUS OUT WORD Q, M, D, L Status:

0000: no error
7001: X<Xo
7002: X>Xn
8191: Xn = Xo -> Division by zero!

Example
In the project folder of “Interpol.zip”, you can find the variable table “VAT_1”
to test the functionality of function “INTERP_2POINT”. The function is
called cyclically in OB 1, where it is provided with the required parameters.
The example illustrates a temperature conversion from degrees Celsius to
degrees Fahrenheit. To test the example, proceed as follows:

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Table 2-22

Step Action / Event

 Load the complete station into the CPU or to the S7-PLCSIM and start the CPU. 1.

 Open the variable table “VAT_1” in online mode. 2.

 Enter, for instance, 30 as value in the variable table and transfer it
to control.

3.

V1.0 Edition 2009-04-06 41/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Result: The function returns value 86 as result. This corresponds to a conversion
from 30°Celcius to 86°Fahrenheit.

1

2

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Technical data
Figure 2-9

V1.0 Edition 2009-04-06 42/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

1
2

Table 2-23

Block Data

INTERP_2POINT FC 100
Linear interpolation between two data points

Required local data: 6 bytes
Load memory requirement: 300 bytes
Main memory requirement : 222 bytes

Function “INTERP_1D” FB 1
The function “INTERP_1D” FB 1 enables you to perform an interpolation of
a one-dimensional function F(x). You approximate the function by means of
several interpolation points. The interpolation points are saved to the
instance data block of the function and must be manually written (see
example). You can modify the number of possible interpolation points in
the SCL source file “INTERP_1D”. The default value is 10 interpolation
points.

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Note • Each X-value has a corresponding function value F(x).

• You can modify the number of interpolation points by means of
the “Nx” constant in the SCL source.

• If you change the number of possible interpolation points, you
have to compile the SCL source anew.

The following formula applies to the interpolation:

Figure 2-10

V1.0 Edition 2009-04-06 43/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

X

F(x)

xi xi+1x

F(x0

F(xi+1

Y
F(x) = [F(xi+1) - F(xi)] * [x– xi] + F(xi)

[xi+1 – xi]

x0 x1 … …xn-1 xn

…
F(x1

F(xn-

F(x0
F(xn

…

F(xi

Block parameters of function “INTERP_1D” FB 1

Table 2-24

Parameters Declaration Data type Area Description

X IN REAL I, Q, M, D, L Input value
FX OUT REAL Q, M, D, L Interpolated value F(x)
ERROR OUT BOOL Q, M, D, L 1: Error, 0: No error
STATUS OUT WORD Q, M, D, L Status:

0000: no error
7001: X<Xo or X>Xn
8191: Xn = Xo -> Division by zero

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Example

In the project folder of “Interpol.zip”, you can find the variable table “VAT_2”
to test the functionality of function “INTERP_1D”. The function is called
cyclically in OB 1.After restart, the function values (interpolation points) are
allocated in OB 100. To test the example, proceed as follows:

Table 2-25

Step Action / Event

1. Load the complete station into the CPU or to the S7-PLCSIM and start the CPU.
Result:
OB 100 is called and initializes the function values (interpolation points) in the
instance data block of the function.

 Open the variable table “VAT_2” in online mode. 2.

 Enter, for instance, 1.5 as value in the variable table and transfer it
to control.

3.

V1.0 Edition 2009-04-06 44/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Result: The function returns the interpolated value 15 as a result.

1
2

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 2-11

V1.0 Edition 2009-04-06 45/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

1
2

x-values

Function
values F(x)

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Technical data
Table 2-26

Block Data

Required local data: 26 bytes
Load memory requirement: 728 bytes
Main memory requirement : 616 bytes

INTERP_1D FB1
Linear interpolation of a one-dimensional
function with several interpolation points

Function “INTERP_2D” FB 2
The function “INTERP_2D” FB 2 enables you to perform an interpolation of
a two-dimensional function F(x, y). You approximate the function by means
of several interpolation points. The interpolation points are saved to the
instance data block of the function and must be manually written (see
example). You can modify the number of possible interpolation points in the
SCL source file “INTERP_2D”. The default value for each variable (x, y) is
three interpolation points.

V1.0 Edition 2009-04-06 46/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Note • Each pair of values (x, y) has a corresponding function value
 F(x, y).

• You can modify the number of interpolation points by means of
the constants “Nx” and “Ny” in the SCL source.

• If you change the number of possible interpolation points, you
have to compile the SCL source anew.

The following figure illustrates the calculation of interpolated values:
Figure 2-12

Y

F(xi,yi)

xi+1

xi x

xi+1

xi x

F(xi+1,y

F(x,yi)

F(xi,yi+

F(xi+1,yi+

F(x,yi+1

yi+1

yi

y
X

F(x, y)

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Block parameters of function “INTERP_2D” FB 2

Table 2-27

Declaration Data type Area Description Parameters

X IN REAL I, Q, M, D, L Input value
Y IN REAL I, Q, M, D, L Input value
FXY OUT REAL Q, M, D, L Interpolated value (F(x, y))
ERROR OUT BOOL Q, M, D, L 1: Error, 0: No error
STATUS OUT WORD Q, M, D, L Status:

0000: no error
7001: X<Xo or X>Xn or Y<Yo or
Y>Yn
8191: Xn = Xo or Yn = Yo -->
Division by zero

V1.0 Edition 2009-04-06 47/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Example
In the project folder of “Interpol.zip”, you can find the variable table “VAT_3”
to test the functionality of function “INTERP_2D”. The function is called
cyclically in OB 1. After restart, the function values (interpolation points) are
allocated in OB 100. To test the example, proceed as follows:

Table 2-28

Step Action / Event

 Load the complete station into the CPU or to the S7-PLCSIM and start the CPU. 1.
Result:
OB 100 is called and initializes the function values (interpolation points) in the
instance data block of the function.

 Open the variable table “VAT_3” in online mode. 2.

3. Enter, for instance, the value 1.0 and 10.0 in the variable table and transfer this
to control.

Result: The function returns the interpolated value 11 as a result.

1
2

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 2-13

V1.0 Edition 2009-04-06 48/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

1
2

x-values

y-values

Function
values F(x, y)

Technical data

Table 2-29

Block Data

Required local data: 54 bytes
Load memory requirement: 1466 bytes
Main memory requirement : 1308 bytes

INTERP_2D FB2
Linear interpolation of a two-dimensional
function with several interpolation points

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 49/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Function “INTERP_3D” FB 3
The function “INTERP_3D” FB 3 enables you to perform an interpolation of
a three-dimensional function F(x, y, z). You approximate the function by
means of several interpolation points. The interpolation points are saved to
the instance data block of the function and must be manually written (see
example). You can modify the number of possible interpolation points in
the SCL source file “INTERP_3D”. The default value for each variable (x, y,
z) is three interpolation points.

Note • Each triple of values (x, y, z) has a corresponding
function value F(x, y, z).

• You can modify the number of interpolation points by means of
the constants “Nx”, “Ny” and “Nz” in the SCL source.

• If you change the number of possible interpolation points, you
have to compile the SCL source anew.

The calculation is analogous to the calculation in case of “INTERP_2D”, but
with three variables x, y and z.

Block parameters of function “INTERP_3D” FB 3

Table 2-30

Parameters Declaration Data type Area Description

X IN REAL I, Q, M, D, L Input value
Y IN REAL I, Q, M, D, L Input value
Z IN REAL I, Q, M, D, L Input value
FXYZ OUT REAL Q, M, D, L Interpolated value (F(x, y, z))
ERROR OUT BOOL Q, M, D, L 1: Error, 0: No error
STATUS OUT WORD Q, M, D, L Status:

0000: no error
7001: X<Xo or X>Xn or Y<Yo or
Y>Yn or Z<Zo or Z>Zn
8191: Xn = Xo or Yn = Yo or Zn =
Zo --> Division by zero

Example
In the project folder of “Interpol.zip”, you can find the variable table “VAT_4”
to test the functionality of function “INTERP_3D”. The function is called
cyclically in OB 1. After restart, the function values (interpolation points) are
allocated in OB 100. To test the example, proceed as follows:

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Table 2-31

Step Action / Event

 Load the complete station into the CPU or to the S7-PLCSIM and start the CPU. 1.
Result:
OB 100 is called and initializes the function values (interpolation points) in the
instance data block of the function.

2. Open the variable table “VAT_4” in online mode.
3. Enter, for instance, the values 1.0, 20.0 und 300.0 in the variable table and

transfer this to control.

V1.0 Edition 2009-04-06 50/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

Result: The function returns the interpolated value 321 as a result.

1

2

Mathematical Operations

Tool collection for bit, number and mathematical operations ID Number: 29851674

Figure 2-14

V1.0 Edition 2009-04-06 51/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

1

2

x-values

y-values

z-values

Function values
F(x, y, z)

Technical data
Table 2-32

Block Data

Required local data: 98 bytes
Load memory requirement: 2618 bytes
Main memory requirement : 2404 bytes

INTERP_3D FB3
Linear interpolation of a three-dimensional
function with several interpolation points

Overview of the Download Files

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 52/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

3 Overview of the Download Files

In download file “29851674_Operationen_V10.zip”, you can find the
following ZIP files for the respective function examples.

Table 3-1

No. Data block ZIP file

1. Random number generator Random.zip
2. Determination of the parity of data elements Parity.zip
3. Determination of the active bit position in a 16-

bit data word
bitpos_c.zip

4. Edge detection in a 32-bit field Monitor.zip
5. Incrementing counter with 2,147,483,647 limit Counter.zip
6. Calculate the xth root of a REAL number xroot.zip
7. Calculation of statistical values in an

automation system
spc_example.zip

8. Matrix operations in SIMATIC systems MatrixOp.zip
9. Multidimensional interpolation Interpol.zip

History

Tool collection for bit, number and mathematical operations ID Number: 29851674

V1.0 Edition 2009-04-06 53/53

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

29
85

16
74

_O
pe

ra
tio

ne
n_

B
au

st
ei

ne
_V

10
_e

.d
oc

4 History

Table 4-1 History

Version Date Modifications

V1.0 2009-04-06 First version

	Warranty, Liability and Support
	Preface
	 Table of Contents
	1 Bit and Number Operations
	1.1 Random number generator
	1.2 Determination of the parity of data elements
	1.3 Determination of the active bit position in a flag word
	1.4 Edge detection in a 32-bit field
	1.5 Incremental counter with limit of 2,147,483,647

	2 Mathematical Operations
	2.1 Calculate the xth root of a REAL number
	2.2 Calculation of statistical values in automation systems
	2.3 Matrix operations in SIMATIC systems
	2.4 Multidimensional interpolation

	3 Overview of the Download Files
	4 History

