

操作指南 • 03/2015

应用举例: SINAMICS S120 中 SMC40 的配置方法

Example , SMC40, Configuration

目录

1	概述		3
	1.1	EnDat 简介	3
	1.2	SMC40 简介	3
2	应用示例	:SMC40 与 EnDat22 编码器的配置	5
	2.1	使用的软、硬件	5
	2.2	硬件连接示意图	5
	2.3	项目配置步骤	6

1 概述

1.1 EnDat 简介

EnDat 信号接口是一种用于绝对值编码器的双向数字接口,它能传输位置值,也能传输保存在编码器中的信息。该接口采用串行数据传输方式,只需要四根信号线: CLOCK、CLOCK*、DATA 和 DATA*,即时钟与数据信号,如图 1-1 所示。数据传输保持与电子电路时钟信号同步,传输的数据包括位置值、参数或诊断信息等。

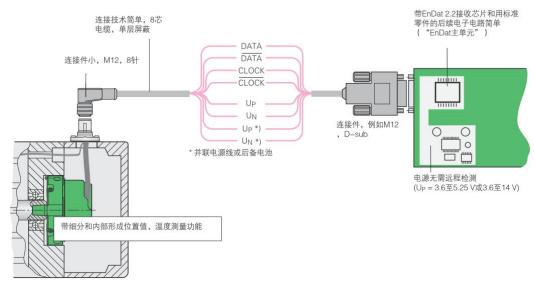


图 1-1 Endat 接口编码器连接示意图

目前海德汉绝对值类型编码器 EnDat 接口指令集目前已经升级到 2.2 版本。 EnDat 2.2 的通信、指令集和时间条件兼容 2.1 版,但有更明显优点。例如,它能随位置值一起传送附加数据,例如温度传感器值、诊断信息等,而无需单独请求发送。它支持更多的编码器类型,接口协议得到进一步扩展,时间条件也进一步优化,建议在新应用中采用 EnDat2.2 版。

EnDat2.2接口也可以带有增量信号,这可以通过订购标识来识别,比如:

EnDat 01 有 1 VPP 增量信号 指令集 EnDat2.1 或 2.2
EnDat 21 无增量信号 指令集 EnDat2.1 或 2.2

EnDat 02 有 1 VPP 增量信号 指令集 EnDat2.2
EnDat 22 无增量信号 指令集 EnDat2.2

1.2 SMC40 简介

在 SINAMICS S120 驱动系统中,SMC40 是专为订购标识为 EnDat 22 指令集为 EnDat2.2 的绝对值编码器而设计的,它可以将绝对值编码器信号转换至 DRIVE-CLiQ 接口并发送给控制单元。

一个 SMC40 可以连接两个编码器系统,这两个编码器系统彼此独立,并将分别将信号转换为两个 DRIVE-CLiQ 编码器信号,其外形如图 1-2 所示。

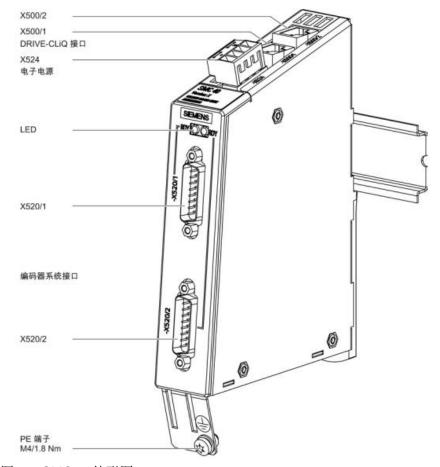


图 1-2 SMC40 外形图

在使用 SMC40 时, 需要注意如下事项:

- 只能使用订购标识为 EnDat22 的绝对值编码器
- 使用前,至少连接一个 EnDat 编码器到相应的编码器接口上
 - o 编码器接口 X520/1 对应 DRIVE-CLiQ 接口 X500/1
 - o 编码器接口 X520/2 对应 DRIVE-CLiQ 接口 X500/2
- 只能在 DRIVE-CLiQ 星形拓扑结构中连接 SMC40
- DRIVE-CLiQ 接口 X500/1 和 X500/2 不可串联
- 如果 DRIVE-CLiQ 插口 X500/x 和相应的编码器接口 X520/x 连接了编码器, 那么 SMC40 将接收在实际拓扑结构中。如果没有连接编码器,那么 SMC40 此后也不会加入到拓扑结构中。

本文将对 SMC40 连接 Endat22 编码器的配置方法进行介绍。

2 应用示例: SMC40 与 EnDat22 编码器的配置

2.1 使用的软、硬件

本例中所使用的软件与硬件如下:

•	CU320-2 PN V4.7	1台
•	Smart Line Module 5KW	1台
•	Double Motor Module 3A/3A 1 台	
•	1FK7 Servo Motor	1台
•	HEIDENHAIN ECN125 (EnDat22 Encoder)	1台
•	SMC40	1台
•	连接电缆	若干
•	SIMATIC Field PG	1台
•	SIMOTION SCOUT(STARTER)	V4.4

2.2 硬件连接示意图

本例中,硬件连接示意图如图 2-1 所示。

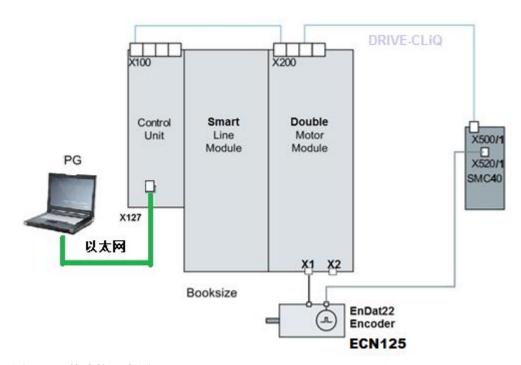
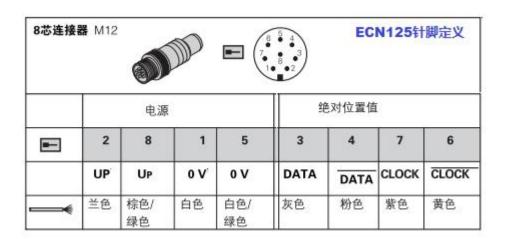
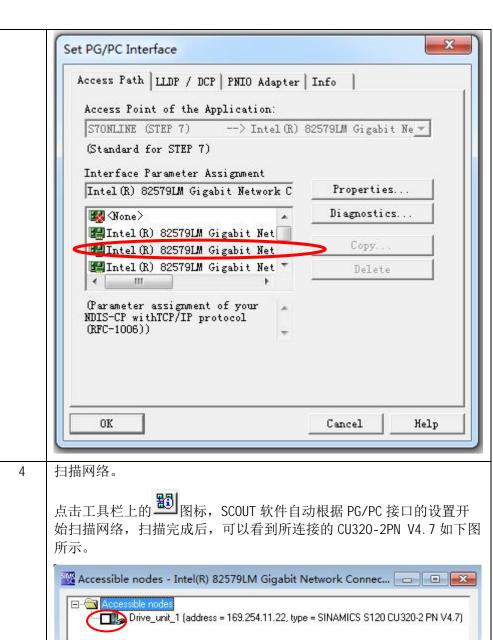
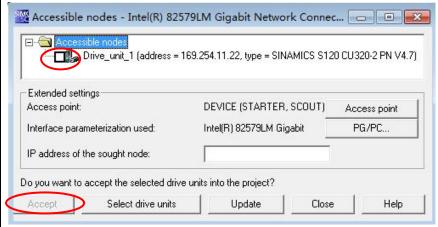



图 2-1 硬件连接示意图

其中,用于连接 ECN125 的编码器电缆需要另行制作,其针脚对应关系如图 2-2 所示。编码器电缆中包含 8 根线,包括电源线 2 对,数据线 1 对,时钟线 1 对。


15芯 D-sub接头,孔式									
	电源					绝对位置值			
Œ	1	9	2	11	5	8	14	15	
	UP	传感器 UP	0 V	传感器 0 V	DATA	DATA	CLOCK	CLOCK	
	兰色	棕色/ 绿色	白色	白色/ 绿色	灰色	粉色	紫色	黄色	


图 2-2 编码器电缆针脚对应示意图

2.3 项目配置步骤

项目配置步骤,请按表 2-1 步骤操作。

序号	描述			
1	完成硬件接线并上电。			
	按照 2.2 节接线示意图完成硬件接线,并给设备上电。			
2	创建项目。			
	打开 PG,双击桌面上的 SIMOTION SCOUT 图标			
3	设置 PG 所使用的通讯接口。			
	选择下拉菜单 Option→Set PG/PC Interface, 打开接口配置画面, 选择所使用的网卡, 本例中使用的是 S70NLINE(STEP7)→ Intel® 82579LM Gigabit Network Connection. TCPIP. 1。			

注意:

PG 的 IP 地址必须与 CU320-2 的 IP 地址处于同一网段, 否则无法正常扫描到 CU320-2 的站点信息。本例中 CU320-2 X127 接口的 IP 地址为 169. 254. 11. 23。

PG的IP地址可以在Windows系统的"控制面板"中进行修改。

依次打开:开始**→**控制面板→网络和共享中心→本地连接→属性 →Internet 协议版本 4(TCP/IPv4)属性,可以手动设置 PG 的 IP 地 上传项目并查看拓扑结构。 5 Accept 勾选扫描到的 Dri ve_Uni t_1,点击左下角的 按钮,完成 CU320-2驱动单元的上传。 在线连接上传后的驱动单元,并双击左侧导航栏中的 Topol ogy 可以看 到实际的拓扑结构,如下例所示。在实际拓扑图(Actual Topology)中 可以看到 SMC40(6SL3055-0AA00-5DA0)连接在双轴电机模块的第 3 个 DRIVE-CLiQ接口上,表示硬件正常连接。 SIMOTION SCOUT - SMC40Test - [Drive_unit_1 - Topology] Project Edit Paste Target system View Options Window Help <u> 명</u> $X_{\rm I} X_{\rm E}$ -00 ▼ Y₀ <No filter> ¥ Comparison ☐ SMC40Test nsert SIMOTION device Comparison level for all components: High Topology tree nsert single drive unit 6SL3040-1MA01-0AA0 (201) ☐ - Drive_unit_1 [S120 CU320-2 PN] 0-0-0 6SL3120-2TE21-0AA3 (202|203) Automatic Configuration 11-> Overview 2H0 🔐 6SL3055-0AA00-5DA0 (204) E >> Communication <u> 3</u>-Topo 11-Free ⊕ 📲 📆 Control_Unit 2 ⊕ 🎒 Infeeds Free Input/output components Free 🛨 🦲 Encoder 🛨 🦲 Drives 注意: 如果没有连接编码器,或者编码器接口与 DRIVE-CLi Q 接口不对应,那 么 SMC40 在拓扑结构中不能被识别使用! 注意事项请参考 1.2 节。 完成自动配置。 6 双击左侧导航栏中的 Automatic Configuration 完成自动配置,带有 DRIVE-CLiQ接口的设备会被自动识别。 离线完成驱动器配置。 7 在离线情况下,双击 SERVO 02,点击右侧窗口中的按钮 Configure DDS... 按照向导完成驱动器配置,包括驱动器数 据、电机数据等,其中在配置编码器时,选择手动输入编码器数据 Enter data.

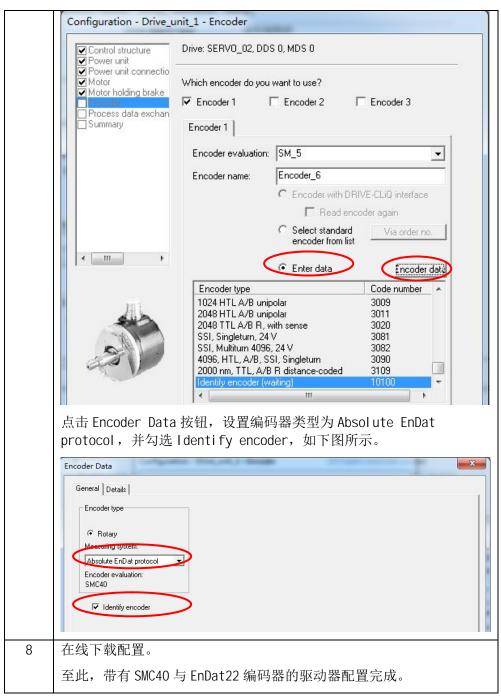


表 2-1 项目配置步骤