Getting Started Guide
Is for quick commissioning with SDP and BOP.

Operating Instructions
Gives information about features of the MM420, Installation, Commissioning, Control modes, System Parameter structure, Troubleshooting, Specifications and available options of the MM420.

Parameter List
The Parameter list contains the description of all Parameters structured in functional order and a detailed description. The Parameter list also includes a series of function plans.

Reference Manual
The reference Manual gives elaborate information about engineering communication troubleshooting and maintenance.

Catalogues
In the catalogue you will find all needs to select a certain inverter, as well as filters chokes, operator panels or communications options.
MICROMASTER 420

Parameter List
User Documentation

Valid for Version B1

Converter Type
MICROMASTER 420

Version B1
Warning

Please refer to all Definitions and Warnings contained in the Operating Instructions. You will find the Operating Instructions on the Docu CD delivered with your inverter. If the CD is lost, it can be ordered via your local Siemens department under the Order No. 6SE6400-5FA00-1AG00.

Further information can be obtained from Internet website:
http://www.siemens.de/micromaster

Approved Siemens Quality for Software and Training is to DIN ISO 9001, Reg. No. 2160-01

The reproduction, transmission or use of this document, or its contents is not permitted unless authorized in writing. Offenders will be liable for damages. All rights including rights created by patent grant or registration of a utility model or design are reserved.

© Siemens AG 2001. All Rights Reserved.

MICROMASTER® is a registered trademark of Siemens

Other functions not described in this document may be available. However, this fact shall not constitute an obligation to supply such functions with a new control, or when servicing.

We have checked that the contents of this document correspond to the hardware and software described. There may be discrepancies nevertheless, and no guarantee can be given that they are completely identical. The information contained in this document is reviewed regularly and any necessary changes will be included in the next edition. We welcome suggestions for improvement.

Siemens handbooks are printed on chlorine-free paper that has been produced from managed sustainable forests. No solvents have been used in the printing or binding process.

Document subject to change without prior notice.
Parameters MICROMASTER 420
This Parameter List must only be used together with the Operating Instructions or the Reference Manual of the MICROMASTER 420. Please pay special attention to the Warnings, Cautions, Notices and Notes contained in these manuals.

Table of Contents

1 Parameters .. 7
1.1 Introduction to MICROMASTER 420 System Parameters ... 7
1.2 Quick commissioning (P0010=1) ... 9
1.3 Parameter Description .. 11
2 Alarms and Warnings .. 93
2.1 MICROMASTER 420 fault messages ... 93
2.2 MICROMASTER 420 alarm messages .. 95
1 Parameters

1.1 Introduction to MICROMASTER 420 System Parameters

The layout of the parameter description is as follows.

<table>
<thead>
<tr>
<th>Par number [index]</th>
<th>Parameter name</th>
<th>Datatype</th>
<th>Unit:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>active:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Comm:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Parameter number
Indicates the relevant parameter number. The numbers used are 4-digit numbers in the range 0000 to 9999. Numbers prefixed with an “r” indicate that the parameter is a “read-only” parameter, which displays a particular value but cannot be changed directly by specifying a different value via this parameter number (in such cases, dashes “-” are entered at the points “Unit”, “Min”, “Def” and “Max” in the header of the parameter description.
All other parameters are prefixed with a “P”. The values of these parameters can be changed directly in the range indicated by the “Min” and “Max” settings in the header.

[index] indicates that the parameter is an indexed parameter and specifies the number of indices available.

2. Parameter name
Indicates the name of the relevant parameter. Certain parameter names include the following abbreviated prefixes: BI, BO, CI, and CO followed by a colon.

These abbreviations have the following meanings:

BI = Binector input, i.e. parameter selects the source of a binary signal
BO = Binector output, i.e. parameter connects as a binary signal
CI = Connector input, i.e. parameter selects the source of an analog signal
CO = Connector output, i.e. parameter connects as an analog signal
CO/BO = Connector/Binector output, i.e. parameter connects as an analog signal and/or as a binary signal

To make use of BiCo you will need access to the full parameter list. At this level many new parameter settings are possible, including BiCo functionality. BiCo functionality is a different, more flexible way of setting and combining input and output functions. It can be used in most cases in conjunction with the simple, level 2 settings.

The BiCo system allows complex functions to be programmed. Boolean and mathematical relationships can be set up between inputs (digital, analog, serial etc.) and outputs (inverter current, frequency, analog output, relays, etc.).

3. CStat
Commissioning status of the parameter. Three states are possible:

- Commissioning C
- Run U
- Ready to Run T

This indicates when the parameter can be changed. One, two or all three states may be specified. If all three states are specified, this means that it is possible to change this parameter setting in all three inverter states.
4. **P-Group**
 Indicates the functional group of the particular.

 Note
 Parameter P0004 (parameter filter) acts as a filter and focuses access to parameters according to the functional group selected.

5. **Datatype**
 The data types available are shown in the table below.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>U16</td>
<td>16-bit unsigned</td>
</tr>
<tr>
<td>U32</td>
<td>32-bit unsigned</td>
</tr>
<tr>
<td>I16</td>
<td>16-bit integer</td>
</tr>
<tr>
<td>I32</td>
<td>32-bit integer</td>
</tr>
<tr>
<td>Float</td>
<td>Floating point</td>
</tr>
</tbody>
</table>

6. **Active**
 Indicates whether
 - Immediately changes to the parameter values take effective immediately after they have been entered, or
 - Confirm the “P” button on the operator panel (BOP or AOP) must be pressed before the changes take effect.

7. **Unit**
 Indicates the unit of measure applicable to the parameter values

8. **QuickComm**
 Indicates whether or not (Yes or No) a parameter can only be changed during quick commissioning, i.e. when P0010 (parameter groups for commissioning) is set to 1 (quick commissioning).

9. **Min**
 Indicates the minimum value to which the parameter can be set.

10. **Def**
 Indicates the default value, i.e. the value which applies if the user does not specify a particular value for the parameter.

11. **Max**
 Indicates the maximum value to which the parameter can be set.

12. **Level**
 Indicates the level of user access. There are four access levels: Standard, Extended, Expert and Service. The number of parameters that appear in each functional group depends on the access level set in P0003 (user access level).

13. **Description**
 The parameter description consists of the sections and contents listed below. Some of these sections and contents are optional and will be omitted on a case-to-case basis if not applicable.

 Description: Brief explanation of the parameter function.
 Diagram: Where applicable, diagram to illustrate the effects of parameters on a characteristic curve, for example
 Settings: List of applicable settings. These include Possible settings, Most common settings, Index and Bitfields
 Example: Optional example of the effects of a particular parameter setting.
 Dependency: Any conditions that must be satisfied in connection with this parameter. Also any particular effects, which this parameter has on other parameter(s) or which other parameters have on this one.
 Warning / Caution / Notice / Note: Important information which must be heeded to prevent personal injury or damage to equipment / specific information which should be heeded in order to avoid problems / information which may be helpful to the user
 More details: Any sources of more detailed information concerning the particular parameter.
1.2 Quick commissioning (P0010=1)

The following parameters are necessary for quick commissioning (P0010=1).

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Access level</th>
<th>Cstat</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0100</td>
<td>Europe / North America</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0300</td>
<td>Select motor type</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>P0304</td>
<td>Motor voltage rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0305</td>
<td>Motor current rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0307</td>
<td>Motor power rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0308</td>
<td>Motor cosPhi rating</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>P0309</td>
<td>Motor efficiency rating</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>P0310</td>
<td>Motor frequency rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0311</td>
<td>Motor speed rating</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>P0320</td>
<td>Motor magnetizing current</td>
<td>3</td>
<td>CT</td>
</tr>
<tr>
<td>P0335</td>
<td>Motor cooling</td>
<td>2</td>
<td>CT</td>
</tr>
<tr>
<td>P0640</td>
<td>Motor overload factor [%]</td>
<td>2</td>
<td>CUT</td>
</tr>
<tr>
<td>P0700</td>
<td>Selection of command source</td>
<td>1</td>
<td>CT</td>
</tr>
<tr>
<td>P1000</td>
<td>Selection of frequency setpoint</td>
<td>1</td>
<td>CT</td>
</tr>
<tr>
<td>P1080</td>
<td>Min. speed</td>
<td>1</td>
<td>CUT</td>
</tr>
<tr>
<td>P1082</td>
<td>Max. speed</td>
<td>1</td>
<td>CT</td>
</tr>
<tr>
<td>P1120</td>
<td>Ramp-up time</td>
<td>1</td>
<td>CUT</td>
</tr>
<tr>
<td>P1121</td>
<td>Ramp-down time</td>
<td>1</td>
<td>CUT</td>
</tr>
<tr>
<td>P1135</td>
<td>OFF3 ramp-down time</td>
<td>2</td>
<td>CUT</td>
</tr>
<tr>
<td>P1300</td>
<td>Control mode</td>
<td>2</td>
<td>CT</td>
</tr>
<tr>
<td>P1910</td>
<td>Select motor data identification</td>
<td>2</td>
<td>CT</td>
</tr>
<tr>
<td>P3900</td>
<td>End of quick commissioning</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

When P0010=1 is chosen, P0003 (user access level) can be used to select the parameters to be accessed. This parameter also allows selection of a user-defined parameter list for quick commissioning.

At the end of the quick commissioning sequence, set P3900 = 1 to carry out the necessary motor calculations and clear all other parameters (not included in P0010=1) to their default settings.

Note
This applies only in Quick Commissioning mode.

Reset to Factory default

To reset all parameters to the factory default settings; the following parameters should be set as follows:

Set P0010=30.
Set P0970=1.

Note
The reset process takes approximately 10 seconds to complete. Reset to Factory default
Seven-segment display

The seven-segment display is structured as follows:

The significance of the relevant bits in the display is described in the status and control word parameters.
1.3 Parameter Description

Note:
Level 4 Parameters are not visible with BOP or AOP.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0000</td>
<td>Drive display</td>
</tr>
<tr>
<td></td>
<td>Displays the user selected output as defined in P0005.</td>
</tr>
<tr>
<td></td>
<td>Note: Pressing the "Fn" button for 2 seconds allows the user to view the values of DC link voltage, output current, output frequency, and chosen r0000 setting (defined in P0005).</td>
</tr>
<tr>
<td>r0002</td>
<td>Drive state</td>
</tr>
<tr>
<td></td>
<td>Displays actual drive state.</td>
</tr>
<tr>
<td></td>
<td>Enum: 0: Commissioning mode (P0010 != 0) 1: Drive ready 2: Drive fault active 3: Drive starting (DC-link precharging) 4: Drive running 5: Stopping (ramping down)</td>
</tr>
<tr>
<td></td>
<td>Dependency: State 3 visible only while precharging DC link, and when externally powered communications board is fitted.</td>
</tr>
<tr>
<td>P0003</td>
<td>User access level</td>
</tr>
<tr>
<td></td>
<td>Defines user access level to parameter sets. The default setting (standard) is sufficient for most simple applications.</td>
</tr>
<tr>
<td></td>
<td>Enum: 0: User defined parameter list - see P0013 for details on use 1: Standard: Allows access into most frequently used parameters. 2: Extended: Allows extended access e.g. to inverter I/O functions. 3: Expert: For expert use only. 4: Service: Only for use by authorized service personal - password protected.</td>
</tr>
<tr>
<td>P0004</td>
<td>Parameter filter</td>
</tr>
<tr>
<td></td>
<td>Filters available parameters according to functionality to enable a more focussed approach to commissioning.</td>
</tr>
<tr>
<td></td>
<td>Example: P0004 = 22 specifies that only PID parameters will be visible.</td>
</tr>
<tr>
<td></td>
<td>Dependency: Parameters marked "Quick Comm: Yes" in the parameter header can only be set when P0010 = 1 (Quick Commissioning).</td>
</tr>
<tr>
<td></td>
<td>Note: The inverter will start with any setting of P0004.</td>
</tr>
</tbody>
</table>
P0005 Display selection

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 21
- **P-Group:** FUNC
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 2294

Common Settings:
- 21 Actual frequency
- 25 Output voltage
- 26 DC link voltage
- 27 Output current

Notice: These settings refer to read only parameter numbers ("rxxxx").

Details: See relevant "rxxxx" parameter descriptions for further functions.

Selects display for parameter r0000 (drive display). Any read-only parameter (rxxxx) can be selected.

P0006 Display mode

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 2
- **P-Group:** FUNC
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 4

Defines mode of display for r0000 (drive display).

Enum:
- 0 In Ready state alternate between setpoint and output freq. In run display output freq.
- 1 In Ready state display setpoint. In run display output freq.
- 2 In Ready state alternate between P0005 value and r0020 value. In run display P0005 value
- 3 In Ready state alternate between r0002 value and r0020 value. In run display r0002 value
- 4 In all states just display P0005

Note: When inverter is not running, the display alternates between the values for "Not Running" and "Running".

Per default, the setpoint and actual frequency values are displayed alternately.

P0007 Backlight delay time

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** FUNC
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 2000

Defines time period after which the backlight display turns off if no operator keys have been pressed.

Value:
- P0007 = 0 : Backlight always on (default state)
- P0007 = 1-2000 : Number of seconds after which the backlight will turn off

P0010 Commissioning parameter filter

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** ALWAYS
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 30

Filters parameters so that only those related to a particular functional group are selected.

Enum:
- 0 Ready
- 1 Quick commissioning
- 2 Inverter
- 29 Download
- 30 Factory setting

Dependency: Reset to 0 for inverter to run.

Note: P0003 (user access level) also determines access to parameters.

If P3900 is not 0 (0 is the default value), this parameter is automatically reset to 0.

Settings 2 and 29 are only visible in service mode.

P0011 Lock for user defined parameter

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** FUNC
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 65535

Details: See parameter P0013 (user defined parameter)

P0012 Key for user defined parameter

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** FUNC
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 65535

Details: See parameter P0013 (user defined parameter)
User defined parameter

P0013[20] User defined parameter
CStat: CUT Datatype: U16 Unit: - Min: 0 Level: 3
P-Group: FUNC Active: Immediately QuickComm. No Def: 0 Max: 65535

Defines a limited set of parameters to which the end user will have access.

Instructions for use:
Step 1: Set P0003 = 3 (expert user)
Step 2: Go to P0013 indices 0 to 16 (user list)
Step 3: Enter into P0013 index 0 to 16 the parameters required to be visible in the user-defined list.
The following values are fixed and cannot be changed:
- P0013 index 19 = 12 (key for user defined parameter)
- P0013 index 18 = 10 (commissioning parameter filter)
- P0013 index 17 = 3 (user access level)
Step 4: Set P0003 = 0 to activate the user defined parameter.

Dependency:
First, set P0011 ("lock") to a different value than P0012 ("key") to prevent changes to user-defined parameter. Then, set P0003 to 0 to activate the user-defined list.

When locked and the user-defined parameter is activated, the only way to exit the user-defined parameter (and view other parameters) is to set P0012 ("key") to the value in P0011 ("lock").

Note:
Alternatively, set P0010 = 30 (commissioning parameter filter = factory setting) and P0970 = 1 (factory reset) to perform a complete factory reset.
The default values of P0011 ("lock") and P0012 ("key") are the same.

Firmware version

r0018 Firmware version
Datatype: Float Unit: - Min: - Level: 1
P-Group: INVERTER Def: - Max: -

Displays version number of installed firmware.

CO/BO: BOP control word

r0019 CO/BO: BOP control word
Datatype: U16 Unit: - Min: - Level: 3
P-Group: COMMANDS Def: - Max: -

Displays status of operator panel commands.
The settings below are used as the "source" codes for keypad control when connecting to BICO input parameters.

Bitfields:

Bit00 ON/OFF1
0 NO
1 YES
Bit01 OFF2: Electrical stop
0 YES
1 NO
Bit02 OFF3: Fast stop
0 YES
1 NO
Bit08 JOG right
0 NO
1 YES
Bit09 JOG left
0 NO
1 YES
Bit11 Reverse (setpoint inversion)
0 NO
1 YES
Bit13 Motor potentiometer MOP up
0 NO
1 YES
Bit14 Motor potentiometer MOP down
0 NO
1 YES

Note:
When BICO technology is used to allocate functions to panel buttons, this parameter displays the actual status of the relevant command.
The following functions can be "connected" to individual buttons:
- ON/OFF1,
- OFF2,
- JOG,
- REVERSE,
- INCREASE,
- DECREASE

CO: Act. frequency setpoint

r0020 CO: Act. frequency setpoint
Datatype: Float Unit: Hz Min: - Level: 3
P-Group: CONTROL Def: - Max: -

Displays actual frequency setpoint (output from ramp function generator).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0021 CO: Act. frequency</td>
<td>Displays actual inverter output frequency (r0024) excluding slip compensation, resonance damping and frequency limitation.</td>
<td>Float</td>
<td>Hz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>r0022 CO: Act. rotor speed</td>
<td>Displays calculated rotor speed based on inverter output frequency [Hz] x 120 / number of poles.</td>
<td>Float</td>
<td>1/min</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0024 CO: Act. output frequency</td>
<td>Displays actual output frequency (slip compensation, resonance damping and frequency limitation are included).</td>
<td>Float</td>
<td>Hz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0025 CO: Act. output voltage</td>
<td>Displays [rms] voltage applied to motor.</td>
<td>Float</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>r0026 CO: Act. DC-link voltage</td>
<td>Displays DC-link voltage.</td>
<td>Float</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>r0034 CO: Motor temperature (I2T)</td>
<td>Displays calculated motor temperature (I2T model) as [%] of the maximum permissible value.</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>r0036 CO: Inverter overload utilization</td>
<td>Displays inverter overload utilization calculated via I2T model.</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>r0037 CO: Inverter temperature [°C]</td>
<td>Displays internal inverter heatsink temperature.</td>
<td>Float</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r0039 CO: Energy consumpt. meter [kWh]</td>
<td>Displays electrical energy used by inverter since display was last reset (see P0040 - reset energy consumption meter).</td>
<td>Float</td>
<td>kWh</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Note:
- For r0022, this calculation makes no allowance for load-dependent slip.
- For r0034, a value of 100 % means that the motor has reached its maximum permissible operating temperature. In this case, the motor will attempt to reduce the motor loading as defined in P0610 (motor I2T temperature reaction).
- For r0036, if 100 % utilization is exceeded, alarm F0005 (inverter I2T) is tripped.

Dependency:
- Value is reset when P3900 = 1 (end quick commissioning), P0970 = 1 (factory reset) or P0040 = 1 (reset energy consumption meter).
P0040 Reset energy consumption meter

<table>
<thead>
<tr>
<th>Parameter: P0040</th>
<th>Min: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
</tr>
<tr>
<td>P-Group: INVERTER</td>
<td>Active: Immediately</td>
<td>QuickComm: No</td>
</tr>
</tbody>
</table>

Resets value of parameter r0039 (energy consumption meter) to zero.

Enum:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No reset</td>
</tr>
<tr>
<td>1</td>
<td>Reset r0039 to 0</td>
</tr>
</tbody>
</table>

Dependency:

No reset until "P" is pressed.

r0052 CO/BO: Act. status word 1

<table>
<thead>
<tr>
<th>Parameter: r0052</th>
<th>Min: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMMANDS</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
</tr>
<tr>
<td>Max: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays first active status word of inverter (bit format) and can be used to diagnose inverter status. The display segments for the status word are shown in the "Introduction to MICROMASTER Parameter List".

Bitfields:

- **Bit00** Drive ready: 0 NO, 1 YES
- **Bit01** Drive ready to run: 0 NO, 1 YES
- **Bit02** Drive running: 0 NO, 1 YES
- **Bit03** Drive fault active: 0 NO, 1 YES
- **Bit04** OFF2 active: 0 YES, 1 NO
- **Bit05** OFF3 active: 0 YES, 1 NO
- **Bit06** ON inhibit active: 0 NO, 1 YES
- **Bit07** Drive warning active: 0 NO, 1 YES
- **Bit08** Deviation setp. / act. value: 0 YES, 1 NO
- **Bit09** PZD control: 0 NO, 1 YES
- **Bit10** Maximum frequency reached: 0 NO, 1 YES
- **Bit11** Warning: Motor current limit: 0 YES, 1 NO
- **Bit12** Motor holding brake active: 0 NO, 1 YES
- **Bit13** Motor overload: 0 YES, 1 NO
- **Bit14** Motor runs direction right: 0 NO, 1 YES
- **Bit15** Inverter overload: 0 YES, 1 NO

Note:

Output of Bit3 (Fault) will be inverted on digital output (Low = Fault, High = No Fault).
CO/BO: Act. status word 2

<table>
<thead>
<tr>
<th>P-Group: COMMANDS</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0053</td>
<td>CO/BO: Act. status word 2</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td>Datatype: U16</td>
</tr>
<tr>
<td>Bitfields:</td>
<td>Displays second status word of inverter (in bit format).</td>
<td>Bit00</td>
<td>DC brake active</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit01</td>
<td>Act. freq. r0024 > P2167</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit02</td>
<td>Act. freq. r0024 > P1080</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit03</td>
<td>Act. current r0027 >= P2170</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit04</td>
<td>Act. freq. r0024 > P2155</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit05</td>
<td>Act. freq. r0024 <= P2155</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit06</td>
<td>Act. freq. r0024 >= setpoint</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit07</td>
<td>Act. Vdc r0026 < P2172</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit08</td>
<td>Act. Vdc r0026 > P2172</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit09</td>
<td>Ramping finished</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit10</td>
<td>PID output r2294 < P2291</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit11</td>
<td>PID output r2294 >= P2291</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit14</td>
<td>Download data set 0 from AOP</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit15</td>
<td>Download data set 1 from AOP</td>
<td>0</td>
</tr>
</tbody>
</table>

Details:
See description of seven-segment display given in the introduction

CO/BO: Act. control word 1

<table>
<thead>
<tr>
<th>P-Group: COMMANDS</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0054</td>
<td>CO/BO: Act. control word 1</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td>Datatype: U16</td>
</tr>
<tr>
<td>Bitfields:</td>
<td>Displays first control word of inverter and can be used to diagnose which commands are active.</td>
<td>Bit00</td>
<td>ON/OFF1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit01</td>
<td>OFF2: Electrical stop</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit02</td>
<td>OFF3: Fast stop</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit03</td>
<td>Pulse enable</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit04</td>
<td>RFG enable</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit05</td>
<td>RFG start</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit06</td>
<td>Setpoint enable</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit07</td>
<td>Fault acknowledge</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit08</td>
<td>JOG right</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit09</td>
<td>JOG left</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit10</td>
<td>Control from PLC</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit11</td>
<td>Reverse (setpoint inversion)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit13</td>
<td>Motor potentiometer MOP up</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit14</td>
<td>Motor potentiometer MOP down</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit15</td>
<td>Local / Remote</td>
<td>0</td>
</tr>
</tbody>
</table>

Details:
See description of seven-segment display given in the introduction
MM420 Parameter List

r0055 CO/BO: Add. act. control word

<table>
<thead>
<tr>
<th>P-Group: COMMANDS</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays additional control word of inverter and can be used to diagnose which commands are active.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitfields:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit00 Fixed frequency Bit 0</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit01 Fixed frequency Bit 1</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit02 Fixed frequency Bit 2</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit08 PID enabled</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit09 DC brake enabled</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit13 External fault 1</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Details:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See description of seven-segment display given in the introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r0056 CO/BO: Status of motor control

<table>
<thead>
<tr>
<th>P-Group: CONTROL</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays status of motor control (MM420: V/f status), which can be used to diagnose inverter status.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitfields:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit00 Init. control finished</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit01 Motor demagnetizing finished</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit02 Pulses enabled</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit03 Voltage soft start select</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit04 Motor excitation finished</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit05 Starting boost active</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit06 Acceleration boost active</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit07 Frequency is negative</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit08 Field weakening active</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit09 Volts setpoint limited</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit10 Slip frequency limited</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit11 F_out > F_max Freq. limited</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit12 Phase reversal selected</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit13 I-max controller active</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit14 Vdc-max controller active</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit15 Vdc-min controller active</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Details:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See description of seven-segment display given in the introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r0067 CO: Act. output current limit

<table>
<thead>
<tr>
<th>P-Group: CONTROL</th>
<th>Datatype: Float</th>
<th>Unit: A</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays valid maximum output current of drive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This value is influenced by P0640 (max. output current), the derating characteristics and the thermal motor and inverter protection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependency:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0610 (motor l2t temperature reaction) defines reaction when limit is reached.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normally, current limit = rated motor current (P0305) x motor current limit (P0640). It is less than or equal to maximum inverter current r0209.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The current limit may be reduced if the motor thermal model calculation indicates that overheating will occur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
r0071 CO: Max. output voltage
Datatype: Float Unit: V
Min: - Def: - Max: - Level: 3
P-Group: CONTROL
Displays maximum output voltage.
Dependency: Actual maximum output voltage depends on the actual input supply voltage.

r0078 CO: Act. current Isq
Datatype: Float Unit: A
Min: - Def: - Max: - Level: 3
P-Group: CONTROL
Displays component of torque generating current.

r0084 CO: Act. air gap flux
Datatype: Float Unit: %
Min: - Def: - Max: - Level: 4
P-Group: CONTROL
Displays air gap flux in [%] relative to the rated motor flux.

r0086 CO: Act. active current
Datatype: Float Unit: A
Min: - Def: - Max: - Level: 3
P-Group: CONTROL
Displays active (real part) of motor current.
Dependency: Applies when V/f control is selected in P1300 (control mode); otherwise, the display shows the value zero.

P0100 Europe / North America
CStat: C Datatype: U16 Unit: -
Min: 0 Def: 0 Level: 1
Active: Immediately QuickComm. Yes Max: 2
P-Group: QUICK
Determines whether power settings (e.g. nominal rating plate power - P0307) are expressed in [kW] or [hp].
The default settings for the nominal rating plate frequency (P0310) and maximum motor frequency (P1082) are also set automatically here, in addition to reference frequency (P2000).
Enum:
0 Europe [kW], frequency default 50 Hz
1 North America [hp], frequency default 60 Hz
2 North America [kW], frequency default 60 Hz
Dependency: The setting of DIP switch 2 under the I/O board determines the validity of settings 0 and 1 for P0100 according to the table below:

<table>
<thead>
<tr>
<th>DIP 2 setting</th>
<th>Meaning</th>
<th>P0100 setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>[kW], frequency default 50 [Hz]</td>
<td>overwrites</td>
<td>1 [hp], frequency default 60 [Hz]</td>
</tr>
<tr>
<td>ON</td>
<td>[hp], frequency default 60 [Hz]</td>
<td>overwrites</td>
<td>0 [kW], frequency default 50 [Hz]</td>
</tr>
</tbody>
</table>

Stop drive first (i.e. disable all pulses) before you change this parameter.
P0010 = 1 (commissioning mode) enables changes to be made.
Changing P0100 resets all rated motor parameters as well as other parameters that depend on the rated motor parameters (see P0340 - calculation of motor parameters).

Notice: P0100 setting 2 (==> [kW], frequency default 60 [Hz]) is not overwritten by the setting of DIP switch 2 (see table above).

r0200 Act. power stack code number
Datatype: U32 Unit: -
Min: - Def: - Max: - Level: 3
P-Group: INVERTER
Identifies hardware variant as shown in table below.

Notice: Parameter r0200 = 0 indicates that no power stack has been identified.

P0201 Power stack code number
CStat: C Datatype: U16 Unit: -
Min: 0 Def: 0 Level: 3
P-Group: INVERTER Active: Immediately QuickComm. No Max: 65535
Confirms actual power stack identified.
Act. inverter type

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0203</td>
<td>Act. inverter type</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

P-Group: INVERTER
Type number of actual power stack identified.

Enum:
1. MICROMASTER 420
2. MICROMASTER 440
3. MICRO- / COMBIMASTER 411
4. MICROMASTER 410
5. Reserved

Power stack features

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0204</td>
<td>Power stack features</td>
<td>U32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

P-Group: INVERTER
Displays hardware features of power stack.

Bitfields:
- Bit00 DC input voltage: 0 NO
 1 YES
- Bit01 RFI filter: 0 NO
 1 YES

Note: Parameter r0204 = 0 indicates that no power stack has been identified.

Rated inverter power [kW] / [hp]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0206</td>
<td>Rated inverter power [kW] / [hp]</td>
<td>Float</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

P-Group: INVERTER
Displays nominal rated motor power from inverter.

Dependency:
Value is displayed in [kW] or [hp] depending on setting for P0100 (operation for Europe / North America).

Rated inverter current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0207</td>
<td>Rated inverter current</td>
<td>Float</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

P-Group: INVERTER
Displays maximum continuous output current of inverter.

Rated inverter voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0208</td>
<td>Rated inverter voltage</td>
<td>U32</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

P-Group: INVERTER
Displays nominal AC supply voltage of inverter.

Value:
- r0208 = 230 : 200 - 240 V +/- 10 %
- r0208 = 400 : 380 - 480 V +/- 10 %
- r0208 = 575 : 500 - 600 V +/- 10 %

Maximum inverter current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0209</td>
<td>Maximum inverter current</td>
<td>Float</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

P-Group: INVERTER
Displays maximum output current of inverter.

Supply voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min.</th>
<th>Def.</th>
<th>Max.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0210</td>
<td>Supply voltage</td>
<td>U16</td>
<td>V</td>
<td>0</td>
<td>230</td>
<td>1000</td>
<td>3</td>
</tr>
</tbody>
</table>

P-Group: INVERTER
CStat: CT
Active: first confirm
QuickComm. No:
Optimizes Vdc controller, which extends the ramp-down time if regenerative energy from motor would otherwise cause DC link overvoltage trips.

Dependency:
Reducing the value enables controller to cut in earlier and reduce the risk of overvoltage.

Note:
If mains voltage is higher than value entered, automatic deactivation of the Vdc controller may occur to avoid acceleration of the motor. An alarm will be issued in this case (A0910).
r0231[2] Max. cable length

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

P-Group: INVERTER

- **Datatype:** U16
- **Unit:** m

Indexed parameter to display maximum allowable cable length between inverter and motor.

Index:
- r0231[0] : Max. allowed unscreened cable length
- r0231[1] : Max. allowed screened cable length

Notice:
For full EMC compliance, the screened cable must not exceed 25 m in length when an EMC filter is fitted.

P0290 Inverter overload reaction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CT

Datatype: U16

P-Group: INVERTER

- **Active:** Immediately
- **QuickComm:** No

Selects reaction of inverter to an internal over-temperature.

Enum:
- 0: Reduce output frequency (usually only effective on variable torque appl.)
- 1: Trip (F0004)
- 2: Reduce pulse frequency and output frequency
- 3: Reduce pulse frequency then trip (F0004)

Notice:
A trip will always result eventually, if the action taken does not sufficiently reduce internal temperature.

The pulse frequency is normally reduced only if higher than 2 kHz (see P0291 - configuration of inverter protection).

P0291 Config. of inverter protection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

CStat: CT

Datatype: U16

P-Group: INVERTER

- **Active:** first confirm
- **QuickComm:** No

Control bit for enabling/disabling automatic pulse frequency reduction at output frequencies below 2 Hz.

Bitfields:
- Bit00: Pulse freq reduced below 2Hz
 - 0: NO
 - 1: YES

Details:
See P0290 (inverter overload reaction)

P0292 Inverter overload warning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>15</td>
<td>25</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CUT

Datatype: U16

Unit: °C

P-Group: INVERTER

- **Active:** Immediately
- **QuickComm:** No

Defines temperature difference (in °C) between inverter over-temperature trip and warning thresholds.

P0294 Inverter I2t overload warning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.0</td>
<td>95.0</td>
<td>100.0</td>
<td>4</td>
</tr>
</tbody>
</table>

CStat: CUT

Datatype: Float

Unit: %

P-Group: INVERTER

- **Active:** Immediately
- **QuickComm:** No

Defines the [%] value at which warning A0504 (inverter overtemperature) is generated.

Inverter I2t calculation is used to estimate a maximum tolerable period for inverter overload. The I2t calculation value is deemed = 100 % when this maximum tolerable period is reached.

Dependency:
Motor overload factor (P0640) reduced to 100 % at this point.

Note:
P0294 = 100 % corresponds to stationary nominal load.

P0295 Inverter fan off delay time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>3600</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CUT

Datatype: U16

Unit: s

P-Group: TERMINAL

- **Active:** Immediately
- **QuickComm:** No

Defines inverter fan switch off delay time in seconds after drive has stopped.

Note:
Setting to 0, inverter fan will switch off when the drive stops, that is no delay.
Select motor type

This parameter is required during commissioning to select motor type and optimize inverter performance. Most motors are asynchronous; if in doubt, use the formula below.

\[(\text{rated motor frequency (P0310)} \times 60) / \text{rated motor speed (P0311)}\]

If the result is a whole number, the motor is synchronous.

<table>
<thead>
<tr>
<th>Enum</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asynchronous motor</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Synchronous motor</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Dependency:

Changeable only when P0010 = 1 (quick commissioning).

If synchronous motor is selected, the following functions are not available:
- Power factor (P0308)
- Motor efficiency (P0309)
- Magnetization time (P0346 (Level 3))
- Demagnetization time (P0347 (Level 3))
- Flying start (P1200, P1202 (Level 3), P1203 (Level 3))
- DC braking (P1230 (Level 3), P1232, P1233)
- Slip compensation (P1335)
- Slip limit (P1336)
- Motor magnetizing current (P0320 (Level 3))
- Rated motor slip (P0330)
- Rated magnetization current (P0331)
- Rated power factor (P0332)
- Rotor time constant (P0384)

Rated motor voltage

Nominal motor voltage [V] from rating plate. Following diagram shows a typical rating plate with the locations of the relevant motor data.

Dependency:

Changeable only when P0010 = 1 (quick commissioning).
P0305 Rated motor current

Min: 0.01
Def: 3.25
Max: 10000.00

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Note:
For asynchronous motors, the maximum value is defined as the maximum inverter current (r0209).
For synchronous motors, the maximum value is defined as twice the maximum inverter current (r0209).

The minimum value is defined as 1/32 times inverter rated current (r0207).

Nominal motor current [A] from rating plate - see diagram in P0304.

Depends also on P0320 (motor magnetization current).

P0307 Rated motor power

Min: 0.01
Def: 0.75
Max: 2000.00

Dependency:
If P0100 = 1 ([kW], frequency default 50 Hz), values will be in [hp] - see diagram P0304 (rating plate).

Changeable only when P0010 = 1 (quick commissioning).

Nominal motor power [kW/hp] from rating plate.

P0308 Rated motor cosPhi

Min: 0.000
Def: 0.000
Max: 1.000

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Visible only when P0100 = 0 or 2, (motor power entered in [kW]).

Setting 0 causes internal calculation of value (see r0332).

Nominal motor power factor (cosPhi) from rating plate - see diagram P0304.

P0309 Rated motor efficiency

Min: 0.0
Def: 0.0
Max: 99.9

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Visible only when P0100 = 1, (i.e. motor power entered in [hp]).

Setting 0 causes internal calculation of value (see r0332).

Note:
P0309 = 100 % corresponds to superconducting.

Details:
See diagram in P0304 (rating plate)

P0310 Rated motor frequency

Min: 12.00
Def: 50.00
Max: 650.00

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Pole pair number recalculated automatically if parameter is changed.

Details:
See diagram in P0304 (rating plate)
P0311 Rated motor speed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>Immediately</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Min: 0
Def: 0
Max: 40000

Level: 1

Dependency:
- Changeable only when P0010 = 1 (quick commissioning).
- Setting 0 causes internal calculation of value.
- Required for vector control and V/f control with speed controller.
- Slip compensation in V/f control requires rated motor speed for correct operation.
- Pole pair number recalculated automatically if parameter is changed.

Details:
See diagram in P0304 (rating plate)

Nominal motor speed [rpm] from rating plate.

Dependency:
Changeable only when P0010 = 1 (quick commissioning).

Setting 0 causes internal calculation of value.

Required for vector control and V/f control with speed controller.

Slip compensation in V/f control requires rated motor speed for correct operation.

Pole pair number recalculated automatically if parameter is changed.

r0313 Motor pole pairs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datatype: U16
Unit: -

Def: -

Max: -

Level: 3

Dependency:
- Recalculated automatically when P0310 (rated motor frequency) or P0311 (rated motor speed) is changed.

Value:
- r0313 = 1 : 2-pole motor
- r0313 = 2 : 4-pole motor
- etc.

P0320 Motor magnetizing current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datatype: Float
Unit: %

Def: 0.0

Max: 99.0

Level: 3

Dependency:
- Affected by P0366 - P0369 (magnetizing curve imag. 1 - 4)
- Setting 0 causes calculation by P0340 = 1 (data entered from rating plate) or by P3900 = 1 or 2 (end of quick commissioning).

r0330 Rated motor slip

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datatype: Float
Unit: %

Def: -

Max: -

Level: 3

Dependency:
- Displays nominal motor slip in [%] relative to P0310 (rated motor frequency) and P0311 (rated motor speed).

r0331 Rated magnetization current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datatype: Float
Unit: A

Def: -

Max: -

Level: 3

Dependency:
- Displays calculated magnetizing current of motor in [A].

r0332 Rated power factor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datatype: Float
Unit: -

Def: -

Max: -

Level: 3

Dependency:
- Displays power factor for motor
- Value is calculated internally if P0308 (rated motor cosPhi) set to 0; otherwise, value entered in P0308 is displayed.

P0335 Motor cooling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datatype: U16
Unit: -

Def: 0

Max: 1

Level: 2

Enum:
- 0 Self-cooled: Using shaft mounted fan attached to motor
- 1 Force-cooled: Using separately powered cooling fan

Notice:
Motors of series 1LA1 and 1LA8 have an internal fan. This internal motor fan must not be confused with the fan at the end of the motor shaft.
Calculation of motor parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0340</td>
<td>Calculates various motor parameters, including:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motor weight P0344 (Level 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetization time P0346 (Level 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demagnetization time P0347 (Level 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stator resistance P0350 (Level 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference frequency P2000 (Level 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference current P2002 (Level 3).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enum:
0 No calculation
1 Complete parameterization

Note:
This parameter is required during commissioning to optimize inverter performance.

Motor weight

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0344</td>
<td>Specifies motor weight [kg].</td>
<td>1.0</td>
<td>9.4</td>
<td>6500.0</td>
</tr>
</tbody>
</table>

Note:
This value is used in the motor thermal model.

It is normally calculated automatically from P0340 (motor parameters) but can also be entered manually.

Magnetization time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0346</td>
<td>Sets magnetization time [s], i.e. waiting time between pulse enable and start of ramp-up, Motor magnetization builds up during this time.</td>
<td>0.000</td>
<td>1.000</td>
<td>20.000</td>
</tr>
</tbody>
</table>

Note:
If boost settings are higher than 100 %, magnetization may be reduced.

Demagnetization time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0347</td>
<td>Changes time allowed after OFF2 / fault condition, before pulses can be re-enabled.</td>
<td>0.000</td>
<td>1.000</td>
<td>20.000</td>
</tr>
</tbody>
</table>

Notice:
The demagnetization time is approximately 2.5 x rotor time constant (r0384) in seconds.

Stator resistance (line-to-line)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0350</td>
<td>Stator resistance value in [Ohms] for connected motor (from line-to-line). The parameter value includes the cable resistance.</td>
<td>0.00001</td>
<td>4.0</td>
<td>2000.0</td>
</tr>
</tbody>
</table>

There are three ways to determine the value for this parameter:
1. Calculate using P0340 = 1 (data entered from rating plate) or P3900 = 1, 2 or 3 (end of quick commissioning)
2. Measure using P1910 = 1 (motor data identification - value for stator resistance is overwritten)
3. Measure manually using an Ohmmeter.

Note:
Since measured line-to-line, this value may appear to be higher (up to 2 times higher) than expected.

The value entered in P0350 (stator resistance) is the one obtained by the method last used.

Stator resistance [%]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0370</td>
<td>Displays standardized stator resistance of motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100 % means: $Z_{rated mot} = \frac{P0304}{P0305}$
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r0372</td>
<td>Cable resistance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays standardized cable resistance of motor equivalent circuit (phase value) in [%]. It is estimated to be 20% of the stator resistance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0373</td>
<td>Rated stator resistance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays rated stator resistance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0374</td>
<td>Rotor resistance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays standardized rotor resistance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0376</td>
<td>Rated rotor resistance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays rated rotor resistance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0377</td>
<td>Total leakage reactance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays standardized total leakage reactance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0382</td>
<td>Main reactance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays standardized main reactance of the motor equivalent circuit (phase value) in [%].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0384</td>
<td>Rotor time constant</td>
<td>Float</td>
<td>ms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays calculated rotor time constant [ms].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0386</td>
<td>Total leakage time constant</td>
<td>Float</td>
<td>ms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays total leakage time constant of motor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r0395</td>
<td>CO: Total stator resistance [%]</td>
<td>Float</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>P-Group: MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays stator resistance of motor as [%] of combined stator/cable resistance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

100 % means: \(\frac{Z_{\text{ratedмот}}}{P0304} \times P0305 \)
P0610 Motor I2t temperature reaction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CT</td>
<td>U16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm.</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

Defines reaction when motor I2t reaches warning threshold.

Enum:
- 0: No reaction, warning only
- 1: Warning and Imax reduction (results in reduced output freq.)
- 2: Warning and trip (F0011)

Dependency:
Trip level = P0614 (motor I2t overload warning level) * 110 %

P0611 Motor I2t time constant

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CT</td>
<td>U16</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
<td>QuickComm.</td>
<td>No</td>
<td>2</td>
</tr>
</tbody>
</table>

Defines motor thermal time constant and is calculated automatically from the motor data (see P0340).

Notice:
A larger number increases the time taken for the calculated motor temperature to change.

P0614 Motor I2t overload warning level

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
<td>Float</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm.</td>
<td>No</td>
<td>2</td>
</tr>
</tbody>
</table>

Defines the [%] value at which warning A0511 (inverter overtemperature) is generated.

Inverter I2t calculation is used to estimate a maximum tolerable period (i.e., without overheating) for inverter overload. The I2t calculation value is deemed = 100 % when this maximum tolerable period is reached (see r0034).

Dependency:
A motor over-temperature trip (F0011) is produced at 110 % of this level.

P0640 Motor overload factor [%]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
<td>Float</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
<td>QuickComm.</td>
<td>Yes</td>
<td>2</td>
</tr>
</tbody>
</table>

Defines motor overload current limit in [%] relative to P0305 (rated motor current). current.

Dependency:
Limited to maximum inverter current or to 400 % of rated motor current (P0305), whichever is the lower.

Details:
See function diagram for current limitation.

P0700 Selection of command source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CT</td>
<td>U16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm.</td>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

Selects digital command source.

Enum:
- 0: Factory default setting
- 1: BOP (keypad)
- 2: Terminal
- 4: USS on BOP link
- 5: USS on COM link
- 6: CB on COM link

Note:
Changing this parameter resets (to default) all settings on item selected. For example: Changing form 1 to 2 resets all digital inputs to default settings.
P0701 Function of digital input 1

- **Min:** 0
- **Def:** 1
- **Max:** 99
- **Level:** 2

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm: No</td>
<td></td>
</tr>
</tbody>
</table>

Selects function of digital input 1.

Enum:
- 0 Digital input disabled
- 1 ON/OFF1
- 2 ON reverse /OFF1
- 3 OFF2 - coast to standstill
- 4 OFF3 - quick ramp-down
- 9 Fault acknowledge
- 10 JOG right
- 11 JOG left
- 12 Reverse
- 13 MOP up (increase freq.)
- 14 MOP down (decrease freq.)
- 15 Fixed setpoint (Direct selection)
- 16 Fixed setpoint (Direct selection + ON)
- 17 Fixed setpoint (Binary coded selection + ON)
- 25 DC brake enable
- 29 External trip
- 33 Disable additional freq setpoint
- 99 Enable BICO parameterization

Dependency:
Setting 99 (enable BICO parameterization) requires P0700 (command source) or P3900 (end of quick commissioning) = 1, 2 or P0970 (factory reset) = 1 in order to reset.

Notice:
Setting 99 (BICO) for expert use only.

P0702 Function of digital input 2

- **Min:** 0
- **Def:** 12
- **Max:** 99
- **Level:** 2

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm: No</td>
<td></td>
</tr>
</tbody>
</table>

Selects function of digital input 2.

Enum:
- 0 Digital input disabled
- 1 ON/OFF1
- 2 ON reverse /OFF1
- 3 OFF2 - coast to standstill
- 4 OFF3 - quick ramp-down
- 9 Fault acknowledge
- 10 JOG right
- 11 JOG left
- 12 Reverse
- 13 MOP up (increase freq.)
- 14 MOP down (decrease freq.)
- 15 Fixed setpoint (Direct selection)
- 16 Fixed setpoint (Direct selection + ON)
- 17 Fixed setpoint (Binary coded selection + ON)
- 25 DC brake enable
- 29 External trip
- 33 Disable additional freq setpoint
- 99 Enable BICO parameterization

Details:
See P0701 (function of digital input1).
P0703 Function of digital input 3

<table>
<thead>
<tr>
<th>CStat: CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 99</td>
</tr>
</tbody>
</table>

| Level: 2 |

Selects function of digital input 3.

Enum:

- 0 Digital input disabled
- 1 ON/OFF1
- 2 ON reverse /OFF1
- 3 OFF2 - coast to standstill
- 4 OFF3 - quick ramp-down
- 9 Fault acknowledge
- 10 JOG right
- 11 JOG left
- 12 Reverse
- 13 MOP up (increase freq.)
- 14 MOP down (decrease freq.)
- 15 Fixed setpoint (Direct selection)
- 16 Fixed setpoint (Direct selection + ON)
- 17 Fixed setpoint (Binary coded selection + ON)
- 25 DC brake enable
- 29 External trip
- 33 Disable additional freq setpoint
- 99 Enable BICO parameterization

Details:

See P0701 (function of digital input 1).

P0704 Function of digital input 4

<table>
<thead>
<tr>
<th>CStat: CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 99</td>
</tr>
</tbody>
</table>

| Level: 2 |

Selects function of digital input 4 (via analog input).

Enum:

- 0 Digital input disabled
- 1 ON/OFF1
- 2 ON reverse /OFF1
- 3 OFF2 - coast to standstill
- 4 OFF3 - quick ramp-down
- 9 Fault acknowledge
- 10 JOG right
- 11 JOG left
- 12 Reverse
- 13 MOP up (increase freq.)
- 14 MOP down (decrease freq.)
- 21 Local/remote
- 25 DC brake enable
- 29 External trip
- 33 Disable additional freq setpoint
- 99 Enable BICO parameterization

Details:

See P0701 (function of digital input 1).
Central switch to select control command source for inverter.

Switch the command and setpoint source between free programmable BICO parameters and fixed command/setpoint profiles. Command and setpoint source can be changed independently.

The tens digit chooses the command source and the once digit choose the setpoint source.

Enum:

0 "Cmd = BICO parameter Setpoint = BICO parameter"
1 "Cmd = BICO parameter Setpoint = MOP setpoint"
2 "Cmd = BICO parameter Setpoint = Analog setpoint"
3 "Cmd = BICO parameter Setpoint = Fixed frequency"
4 "Cmd = BICO parameter Setpoint = USS on BOP-Link"
5 "Cmd = BICO parameter Setpoint = USS on COM-Link"
6 "Cmd = BICO parameter Setpoint = CB on COM-Link"
10 "Cmd = BOP Setpoint = BICO parameter"
11 "Cmd = BOP Setpoint = MOP setpoint"
12 "Cmd = BOP Setpoint = Analog setpoint"
13 "Cmd = BOP Setpoint = Fixed frequency"
14 "Cmd = BOP Setpoint = USS on BOP-Link"
15 "Cmd = BOP Setpoint = USS on COM-Link"
40 "Cmd = USS on BOP-Link Setpoint = BICO parameter"
41 "Cmd = USS on BOP-Link Setpoint = MOP setpoint"
42 "Cmd = USS on BOP-Link Setpoint = Analog setpoint"
43 "Cmd = USS on BOP-Link Setpoint = Fixed frequency"
44 "Cmd = USS on BOP-Link Setpoint = USS on BOP-Link"
45 "Cmd = USS on BOP-Link Setpoint = USS on COM-Link"
46 "Cmd = USS on BOP-Link Setpoint = CB on COM-Link"
50 "Cmd = USS on COM-Link Setpoint = BICO parameter"
51 "Cmd = USS on COM-Link Setpoint = MOP setpoint"
52 "Cmd = USS on COM-Link Setpoint = Analog setpoint"
53 "Cmd = USS on COM-Link Setpoint = Fixed frequency"
54 "Cmd = USS on COM-Link Setpoint = USS on BOP-Link"
55 "Cmd = USS on COM-Link Setpoint = USS on COM-Link"
56 "Cmd = USS on COM-Link Setpoint = CB on COM-Link"
60 "Cmd = CB on COM-Link Setpoint = BICO parameter"
61 "Cmd = CB on COM-Link Setpoint = MOP setpoint"
62 "Cmd = CB on COM-Link Setpoint = Analog setpoint"
63 "Cmd = CB on COM-Link Setpoint = Fixed frequency"
64 "Cmd = CB on COM-Link Setpoint = USS on BOP-Link"
65 "Cmd = CB on COM-Link Setpoint = USS on COM-Link"
66 "Cmd = CB on COM-Link Setpoint = CB on COM-Link"

Note:

Note: - This parameter does not change any previously made BICO connections!

r0720 Number of digital inputs

<table>
<thead>
<tr>
<th>P-Group: COMANDS</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

Displays number of digital inputs.

r0722 CO/BO: Binary input values

<table>
<thead>
<tr>
<th>P-Group: COMANDS</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

Displays status of digital inputs.

Bitfields:

- **Bit00 Digital input 1**: 0 OFF, 1 ON
- **Bit01 Digital input 2**: 0 OFF, 1 ON
- **Bit02 Digital input 3**: 0 OFF, 1 ON
- **Bit03 Digital input 4 (via ADC)**: 0 OFF, 1 ON

Note:

Segment is lit when signal is active.
P0724
Debounce time for digital inputs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CT</td>
<td>U16</td>
<td>-</td>
</tr>
<tr>
<td>Datatype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>COMMANDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enum:
- **0**: No debounce time
- **1**: 2.5 ms debounce time
- **2**: 8.2 ms debounce time
- **3**: 12.3 ms debounce time

Defines debounce time (filtering time) used for digital inputs.

P0725
PNP / NPN digital inputs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CT</td>
<td>U16</td>
<td>-</td>
</tr>
<tr>
<td>Datatype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>COMMANDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>first confirm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switches between active high (PNP) and active low (NPN). This is valid for all digital inputs simultaneously.

Value:
- **NPN**: Terminals 5/6/7 must be connected via terminal 9 (0 V).
- **PNP**: Terminals 5/6/7 must be connected via terminal 8 (24 V).

Enum:
- **0**: NPN mode ==> low active
- **1**: PNP mode ==> high active

r0730
Number of digital outputs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype</td>
<td>U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>COMMANDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of digital outputs (relays).

P0731
BI: Function of digital output 1
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat</td>
<td>CUT</td>
<td>U32</td>
<td>-</td>
</tr>
<tr>
<td>Datatype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>52:3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>COMMANDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>Immediately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>4000:0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines source of digital output 1.

Settings:
- **52.0**: Drive ready
- **52.1**: Drive ready to run
- **52.2**: Drive running
- **52.3**: Drive fault active
- **52.4**: OFF2 active
- **52.5**: OFF3 active
- **52.6**: Switch on inhibit active
- **52.7**: Drive warning active
- **52.8**: Deviation setpoint/actual value
- **52.9**: PZD control (Process Data Control)
- **52.A**: Maximum frequency reached
- **52.B**: Warning: Motor current limit
- **52.C**: Motor holding brake (MHB) active
- **52.D**: Motor overload
- **52.E**: Motor running direction right
- **52.F**: Inverter overload
- **53.0**: DC brake active
- **53.1**: Inverter freq. less switch off limit
- **53.2**: Inverter freq. less minimum freq.
- **53.3**: Current greater or equal than limit
- **53.4**: Act. freq. greater comparison freq.
- **53.5**: Act. freq. less comparison freq.
- **53.6**: Act. freq. greater/equal setpoint
- **53.7**: Voltage less than threshold
- **53.8**: Voltage greater than threshold
- **53.A**: PID output at lower limit (P2292)
- **53.B**: PID output at upper limit (P2291)
- **53.C**: PID output at lower limit (P2292)
- **53.D**: PID output at upper limit (P2291)
- **53.E**: PID output at lower limit (P2292)
- **53.F**: PID output at upper limit (P2291)

r0747
CO/BO: State of digital outputs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Default</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype</td>
<td>U16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group</td>
<td>COMMANDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays status of digital outputs (also includes inversion of digital outputs via P0748).

Bitfields:
- **Bit00**: Digital output 1 energized
 - **0**: NO
 - **1**: YES

Dependency:
- **Bit 0 0** = relay de-energized / contacts open
- **1** = relay energized / contacts closed
P0748 Invert digital outputs

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
<td></td>
</tr>
</tbody>
</table>

Defines high and low states of relay for a given function.

Bitfields:

| Bit00 | Invert digital output 1 | 0 | NO | 1 | YES |

r0750 Number of ADCs

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Max: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of analog inputs available.

r0751 BO: Status word of ADC

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Max: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays status of analog input.

Bitfields:

| Bit00 | Signal lost on ADC 1 | 0 | NO | 1 | YES |

r0752 Act. input of ADC [V]

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Max: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays smoothed analog input value in volts before the characteristic block.

P0753 Smooth time ADC

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: ms</th>
<th>Def: 3</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 10000</td>
<td></td>
</tr>
</tbody>
</table>

Defines filter time (PT1 filter) in [ms] for analog input.

Note:

Increasing this time (smooth) reduces jitter but slows down response to the analog input.

P0753 = 0 : No filtering

r0754 Act. ADC value after scaling [%]

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Max: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shows smoothed value of analog input in [%] after scaling block.

Dependency:

P0757 to P0760 define range (ADC scaling)

r0755 CO: Act. ADC after scal. [4000h]

<table>
<thead>
<tr>
<th>Datatype: I16</th>
<th>Unit: -</th>
<th>Def: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td>Max: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays analog input, scaled using ASPmin and ASPmax.

Analog setpoint (ASP) from the analog scaling block can vary from min. analog setpoint (ASPmin) to a max. analog setpoint (ASPmax) as shown in P0757 (ADC scaling).

The largest magnitude (value without sign) of ASPmin and ASPmax defines the scaling of 16384.

Example:

- ASPmin = 300 %, ASPmax = 100 % then 16384 represents 300 %.
 This parameter will vary from 5461 to 16364
- ASPmin = -200 %, ASPmax = 100 % then 16384 represents 200 %.
 This parameter will vary from -16384 to +8192

Note:

This value is used as an input to analog BICO connectors.

ASPmax represents the highest analog setpoint (this may be at 10 V)

ASPmin represents the lowest analog setpoint (this may be at 0 V)

Details:

See parameters P0757 to P0760 (ADC scaling)
P0756 Type of ADC

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
<td></td>
</tr>
</tbody>
</table>

Defines type of analog input and also enables analog input monitoring.

Enum:

- 0 Unipolar voltage input (0 to +10 V)
- 1 Unipolar voltage input with monitoring (0 to 10 V)

Dependency:

Function disabled if analog scaling block programmed to output negative setpoints (see P0757 to P0760).

Notice:

When monitoring is enabled and a deadband defined (P0761), a fault condition will be generated (F0080) if the analog input voltage falls below 50 % of the deadband voltage.

Details:

See P0757 to P0760 (ADC scaling).

P0757 Value x1 of ADC scaling [V]

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 10</td>
<td></td>
</tr>
</tbody>
</table>

Parameters P0757 - P0760 configure the input scaling as shown in the diagram:

```
<table>
<thead>
<tr>
<th>AIN</th>
<th>P0757</th>
<th>P0758</th>
<th>P0759</th>
<th>P0760</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASP (max)</td>
<td>ASP (min)</td>
<td>Analog SETPOINT</td>
<td>Analog SETPOINT min</td>
</tr>
</tbody>
</table>
```

Where:

- Analog setpoints represent a [%] of the normalized frequency in P2000.
- Analog setpoints may be larger than 100 %.
- ASPmax represents highest analog setpoint (this may be at 10 V).
- ASPmin represents lowest analog setpoint (this may be at 0 V).
- Default values provide a scaling of 0 V = 0 %, and 10 V = 100 %.

P0758 Value y1 of ADC scaling

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: 0.0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 99999.9</td>
<td></td>
</tr>
</tbody>
</table>

Sets value of Y1 in [%] as described in P0757 (ADC scaling)

Dependency:

Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0759 Value x2 of ADC scaling [V]

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: V</th>
<th>Def: 10</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 10</td>
<td></td>
</tr>
</tbody>
</table>

Sets value of X2 as described in P0757 (ADC scaling)

P0760 Value y2 of ADC scaling

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: 100.0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 99999.9</td>
<td></td>
</tr>
</tbody>
</table>

Sets value of Y2 in [%] as described in P0757 (ADC scaling)

Dependency:

Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.
P0761 Width of ADC deadband [V]

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: V</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TERMINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Defines width of deadband on analog input. The diagrams below explain its use.

Example:
ADC value 2 to 10 V (0 to 50 Hz)
The above example produces a 2 to 10 V analog input (0 to 50 Hz)
P0757 = 2 V P0761 = 2 V P2000 = 50 Hz

![Diagram 1](image1)

ADC value 2 to 10 V (-50 to +50 Hz)
The above example produces a 2 to 10 V analog input (-50 to +50 Hz) with center zero and a "holding point" 0.2 V wide.
P0758 = -100 % P0761 = 0.1 (0.1 V to each side of center)

![Diagram 2](image2)

Note:
P0761[x] = 0 : No deadband active.

Notice:
Deadband starts from 0 V to value of P0761, if both values of P0758 and P0760 (y coordinates of ADC scaling) are positive or negative respectively. However, deadband is active in both directions from point of intersection (x axis with ADC scaling curve), if sign of P0758 and P0760 are opposite.

Fmin (P1080) should be zero when using center zero setup. There is no hysteresis at the end of the deadband.

P0762 Delay for loss of signal action

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: ms</th>
<th>Def: 10</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TERMINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Defines time delay between loss of analog setpoint and appearance of fault code F0080.

Note:
Expert users can choose the desired reaction to F0080 (default is OFF2).
<table>
<thead>
<tr>
<th>r0770 Number of DACs</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of analog outputs available.

<table>
<thead>
<tr>
<th>P0771 CI: DAC</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Min: 0:0</th>
<th>Def: 21:0</th>
<th>Max: 4000:0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td></td>
<td>Active: Immediately</td>
<td>QuickComm: No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines function of the 0 - 20 mA analog output.

Settings:
- 21 CO: Act. frequency (scaled to P2000)
- 24 CO: Act. output frequency (scaled to P2000)
- 25 CO: Act. output voltage (scaled to P2001)
- 26 CO: Act. DC-link voltage (scaled to P2001)
- 27 CO: Act. output current (scaled to P2002)

<table>
<thead>
<tr>
<th>P0773 Smooth time DAC</th>
<th>Datatype: U16</th>
<th>Unit: ms</th>
<th>Min: 0</th>
<th>Def: 2</th>
<th>Max: 1000</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm: No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines smoothing time [ms] for analog output signal. This parameter enables smoothing for DAC input using a PT1 filter.

Dependency:
P0773 = 0: Deactivates filter.

<table>
<thead>
<tr>
<th>r0774 Act. DAC value [mA]</th>
<th>Datatype: Float</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TERMINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shows value of analog output in [V] or [mA] after filtering and scaling.

<table>
<thead>
<tr>
<th>P0776 Type of DAC</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 0</th>
<th>Level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm: No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines type of analog output.

Enum:
- 0 Current output

Note:
The analog output is designed as a current output with a range of 0...20 mA.

For a voltage output with a range of 0...10 V an external resistor of 500 Ohms has to be connected at the terminals (12/13).
P0777 Value x1 of DAC scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
<td>Unit: %</td>
<td>Def: 0.0</td>
<td>2</td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 99999.0</td>
<td></td>
</tr>
</tbody>
</table>

Defines x1 output characteristic in [%]. Scaling block is responsible for adjustment of output value defined in P0771 (DAC connector input).

Parameters of DAC scaling block (P0777 ... P0781) work as follows:

![Graph showing output signal (mA) with points P0778, P0777, P0779, and P0780, and X1, X2, Y1, Y2, 0, and 20 mA on the y-axis.]

Where:
- Points P1 (x1, y1) and P2 (x2, y2) can be chosen freely.

Example:
The default values of the scaling block provide a scaling of
P1: 0.0 % = 0 mA or 0 V and P2: 100.0 % = 20 mA or 20 V.

Dependency:
Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0778 Value y1 of DAC scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
<td>Unit: -</td>
<td>Def: 0</td>
<td>2</td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 20</td>
<td></td>
</tr>
</tbody>
</table>

Defines y1 of output characteristic.

P0779 Value x2 of DAC scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
<td>Unit: %</td>
<td>Def: 100.0</td>
<td>2</td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 99999.0</td>
<td></td>
</tr>
</tbody>
</table>

Defines x2 of output characteristic in [%].

Dependency:
Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0780 Value y2 of DAC scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
<td>Unit: -</td>
<td>Def: 20</td>
<td>2</td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 20</td>
<td></td>
</tr>
</tbody>
</table>

Defines y2 of output characteristic.

P0781 Width of DAC deadband

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
<td>Unit: -</td>
<td>Def: 0</td>
<td>2</td>
</tr>
<tr>
<td>P-Group: TERMINAL</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 20</td>
<td></td>
</tr>
</tbody>
</table>

Sets width of dead-band in [mA] for analog output.
P0800 BI: Download parameter set 0

- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Def:** 0:0
- **P-Group:** COMMANDS
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 4000:0

Level: 3

Defines source of command to start download of parameter set 0 from attached AOP. The first three digits describe the parameter number of the command source, the last digit refers to the bit setting for that parameter.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

Note:
- Signal of digital input:
 - 0 = No download
 - 1 = Start download parameter set 0 from AOP.

P0801 BI: Download parameter set 1

- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Def:** 0:0
- **P-Group:** COMMANDS
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 4000:0

Level: 3

Defines sources of command to start download of parameter set 1 from attached AOP. The first three digits describe the parameter number of the command source, the last digit refers to the bit setting for that parameter.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

Note:
- Signal of digital input:
 - 0 = No download
 - 1 = Start download parameter set 1 from AOP.

P0840 BI: ON/OFF1

- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Def:** 722:0
- **P-Group:** COMMANDS
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 4000:0

Level: 3

Allows ON/OFF1 command source to be selected using BICO. The first three digits describe the parameter number of the command source; the last digit denotes the bit setting for that parameter.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.0 = ON/OFF1 via BOP/AOP

Dependency:
- Active only when P0719 = 0 (remote selection of command/setpoint source).
- BICO requires P0700 set to 2 (enable BICO).
- The default setting (ON right) is digital input 1 (722.0). Alternative source possible only when function of digital input 1 is changed (via P0701) before changing value of P0840.

P0842 BI: ON/OFF1 reverse

- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Def:** 0:0
- **P-Group:** COMMANDS
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 4000:0

Level: 3

Allows ON/OFF1 reverse command source to be selected using BICO. The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.0 = ON/OFF1 via BOP/AOP

Dependency:
- Active only when P0719 = 0 (remote selection of command/setpoint source).
P0844 BI: 1. OFF2

<table>
<thead>
<tr>
<th>Min: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Datatype: U32</td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: Immediately</td>
</tr>
</tbody>
</table>

Defines first source of OFF2 when P0719 = 0 (BICO). The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.0 = ON/OFF1 via BOP/AOP
- 19.1 = OFF2: Electrical stop via BOP/AOP

Dependency:
- Active only when P0719 = 0 (remote selection of command/setpoint source).

If one of the digital inputs is selected for OFF2, the inverter will not run unless the digital input is active.

Note:
- OFF2 means immediate pulse-disabling; the motor is coasting.
- OFF2 is low-active, i.e.:
 - 0 = Pulse disabling,
 - 1 = Operating condition.

P0845 BI: 2. OFF2

<table>
<thead>
<tr>
<th>Min: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Datatype: U32</td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: Immediately</td>
</tr>
</tbody>
</table>

Defines second source of OFF2. The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.0 = ON/OFF1 via BOP/AOP

Dependency:
- In contrast to P0844 (first source of OFF2), this parameter is always active, independent of P0719 (selection of command and frequency setpoint).

If one of the digital inputs is selected for OFF2, the inverter will not run unless the digital input is active.

Note:
- OFF2 means immediate pulse-disabling; the motor is coasting.
- OFF2 is low-active, i.e.:
 - 0 = Pulse disabling,
 - 1 = Operating condition.

P0848 BI: 1. OFF3

<table>
<thead>
<tr>
<th>Min: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Datatype: U32</td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td>Active: Immediately</td>
</tr>
</tbody>
</table>

Defines first source of OFF3 when P0719 = 0 (BICO). The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.0 = ON/OFF1 via BOP/AOP

Dependency:
- Active only when P0719 = 0 (remote selection of command/setpoint source).

If one of the digital inputs is selected for OFF3, the inverter will not run unless the digital input is active.

Note:
- OFF3 means fast ramp-down to 0.
- OFF3 is low-active, i.e.
 - 0 = Ramp-down,
 - 1 = Operating condition.
P0849 BI: 2. OFF3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0849</td>
<td>0:0</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CT
Datatype: U32
Unit: -
Def: 1:0
P-Group: COMMANDS
Active: Immediately
QuickComm: No
Max: 4000:0

Defines second source of OFF3. The first three digits describe the parameter number of the command source and the last digit denotes the bit setting for that parameter.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.0 = ON/OFF1 via BOP/AOP

Dependency:
In contrast to P0848 (first source of OFF3), this parameter is always active, independent of P0719 (selection of command and frequency setpoint).

If one of the digital inputs is selected for OFF3, the inverter will not run unless the digital input is active.

Note:
OFF3 means fast ramp-down to 0.
OFF3 is low-active, i.e. 0 = Ramp-down. 1 = Operating condition.

P0852 BI: Pulse enable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0852</td>
<td>0:0</td>
<td>3</td>
</tr>
</tbody>
</table>

CStat: CT
Datatype: U32
Unit: -
Def: 1:0
P-Group: COMMANDS
Active: Immediately
QuickComm: No
Max: 4000:0

Defines source of pulse enable/disable signal.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

Dependency:
Active only when P0719 = 0 (remote selection of command/setpoint source).

P0918 CB address

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0918</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

CStat: CT
Datatype: U16
Unit: -
Def: 3
P-Group: COMM
Active: Immediately
QuickComm: No
Max: 65535

Defines address of CB (communication board) or address of the other option modules.

There are two ways to set the bus address:
1 via DIP switches on the PROFIBUS module
2 via a user-entered value

Note:
Possible PROFIBUS settings:
1 ... 125
0, 126, 127 are not allowed

The following applies when a PROFIBUS module is used:
- DIP switch = 0 Address defined in P0918 (CB address) is valid
- DIP switch not = 0 DIP switch setting has priority and P0918 indicates DIP switch setting.

P0927 Parameter changeable via

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0927</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

CStat: CUT
Datatype: U16
Unit: -
Def: 15
P-Group: COMM
Active: Immediately
QuickComm: No
Max: 15

Specifies the interfaces which can be used to change parameters.

Example:
- "b - n n n" (bits 0, 1, 2 and 3 set) in the default setting means that parameters can be changed via any interface.
- "b - n n n" (bits 0, 1 and 3 set) would specify that parameters can be changed via PROFIBUS/CB, BOP and USS on COM link (RS485 USS) but not via USS on BOP link (RS232)

Bitfields:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>PROFIBUS / CB</td>
<td>0 NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 YES</td>
</tr>
<tr>
<td>01</td>
<td>BOP</td>
<td>0 NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 YES</td>
</tr>
<tr>
<td>02</td>
<td>USS on BOP link</td>
<td>0 NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 YES</td>
</tr>
<tr>
<td>03</td>
<td>USS on COM link</td>
<td>0 NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 YES</td>
</tr>
</tbody>
</table>

Details:
The seven-segment display is explained in the "Introduction to MICROMASTER System Parameters".
r0947[8] Last fault code

<table>
<thead>
<tr>
<th>Datatype: U16</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: ALARMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays fault history according to the diagram below

where:

"F1" is the first active fault (not yet acknowledged).
"F2" is the second active fault (not yet acknowledged).
"F1e" is the occurrence of the fault acknowledgement for F1 & F2.

This moves the value in the 2 indices down to the next pair of indices, where they are stored. Indices 0 & 1 contain the active faults. When faults are acknowledged, indices 0 & 1 are reset to 0.

![Fault History Diagram]

Example:

If the inverter trips on undervoltage and then receives an external trip before the undervoltage is acknowledged, you will obtain:

Index 0 = 3 Undervoltage
Index 1 = 85 External trip

Whenever a fault in index 0 is acknowledged (F1e), the fault history shifts as indicated in the diagram above.

Index:

- r0947[0] : Recent fault trip --, fault 1
- r0947[1] : Recent fault trip --, fault 2
- r0947[2] : Recent fault trip -1, fault 3
- r0947[3] : Recent fault trip -1, fault 4
- r0947[4] : Recent fault trip -2, fault 5
- r0947[5] : Recent fault trip -2, fault 6
- r0947[7] : Recent fault trip -3, fault 8

Dependency:

Index 2 used only if second fault occurs before first fault is acknowledged.

Details:

See fault codes in Operating Instructions Manual.
r0948[12] Fault time

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype: U16</td>
</tr>
<tr>
<td>Unit: -</td>
</tr>
<tr>
<td>Min: -</td>
</tr>
<tr>
<td>Def: -</td>
</tr>
<tr>
<td>Max: -</td>
</tr>
</tbody>
</table>

P-Group: ALARMS

Time stamp to indicate when the fault has occurred. P2114 (run-time counter) or P2115 (real time clock) are the possible sources of the time stamp.

Example:

The time is taken from P2115 if this parameter has been updated with the real time. If not, P2114 is used.

Index:

- r0948[0]: Recent fault trip --, fault time seconds+minutes
- r0948[1]: Recent fault trip --, fault time hours+days
- r0948[2]: Recent fault trip --, fault time month+year
- r0948[3]: Recent fault trip -1, fault time seconds+minutes
- r0948[4]: Recent fault trip -1, fault time hours+days
- r0948[5]: Recent fault trip -1, fault time month+year
- r0948[6]: Recent fault trip -2, fault time seconds+minutes
- r0948[7]: Recent fault trip -2, fault time hours+days
- r0948[8]: Recent fault trip -2, fault time month+year
- r0948[9]: Recent fault trip -3, fault time seconds+minutes
- r0948[10]: Recent fault trip -3, fault time hours+days
- r0948[11]: Recent fault trip -3, fault time month+year

Note:

P2115 can be updated via AOP, Starter, DriveMonitor, etc.

r0949[8] Fault value

<table>
<thead>
<tr>
<th>Level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype: U16</td>
</tr>
<tr>
<td>Unit: -</td>
</tr>
<tr>
<td>Min: -</td>
</tr>
<tr>
<td>Def: -</td>
</tr>
<tr>
<td>Max: -</td>
</tr>
</tbody>
</table>

P-Group: ALARMS

Displays drive fault values.

Index:

- r0949[0]: Recent fault trip --, fault value 1
- r0949[1]: Recent fault trip --, fault value 2
- r0949[2]: Recent fault trip --, fault value 3
- r0949[3]: Recent fault trip --, fault value 4
- r0949[4]: Recent fault trip --, fault value 5
- r0949[5]: Recent fault trip --, fault value 6
- r0949[6]: Recent fault trip --, fault value 7
- r0949[7]: Recent fault trip --, fault value 8

P0952 Total number of faults

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype: U16</td>
</tr>
<tr>
<td>Unit: -</td>
</tr>
<tr>
<td>Min: 0</td>
</tr>
<tr>
<td>Def: 0</td>
</tr>
<tr>
<td>Max: 8</td>
</tr>
</tbody>
</table>

CStat: CT

P-Group: ALARMS

Displays number of faults stored in P0947 (last fault code).

Dependency:

Setting 0 resets fault history (changing to 0 also resets parameter P0948 - fault time).

r0964[5] Firmware version data

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype: U16</td>
</tr>
<tr>
<td>Unit: -</td>
</tr>
<tr>
<td>Min: -</td>
</tr>
<tr>
<td>Def: -</td>
</tr>
<tr>
<td>Max: -</td>
</tr>
</tbody>
</table>

P-Group: COMM

Firmware version data.

Example:

- r0964[0] = 42 "SIEMENS"
- r0964[1] = 1001 "MICROMASTER 420"
- 1002 "MICROMASTER 440"
- 1003 "MICRO- / COMBIMASTER 411"
- 1004 "MICROMASTER 410"
- 1005 "Reserved"

Index:

- r0964[0]: Company (Siemens = 42)
- r0964[1]: Product type
- r0964[2]: Firmware version
- r0964[3]: Firmware date (year)
- r0964[4]: Firmware date (day/month)

r0965 Profibus profile

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype: U16</td>
</tr>
<tr>
<td>Unit: -</td>
</tr>
<tr>
<td>Min: -</td>
</tr>
<tr>
<td>Def: -</td>
</tr>
<tr>
<td>Max: -</td>
</tr>
</tbody>
</table>

P-Group: COMM

Identification for PROFI Drive. Profile number and version.
Control word 1

<table>
<thead>
<tr>
<th>P-Group: COMM</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays control word 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bitfields:

- **Bit00** ON/OFF1
 - 0 NO
 - 1 YES
- **Bit01** OFF2: Electrical stop
 - 0 NO
 - 1 YES
- **Bit02** OFF3: Fast stop
 - 0 NO
 - 1 YES
- **Bit03** Pulse enable
 - 0 NO
 - 1 YES
- **Bit04** RFG enable
 - 0 NO
 - 1 YES
- **Bit05** RFG start
 - 0 NO
 - 1 YES
- **Bit06** Setpoint enable
 - 0 NO
 - 1 YES
- **Bit07** Fault acknowledge
 - 0 NO
 - 1 YES
- **Bit08** JOG right
 - 0 NO
 - 1 YES
- **Bit09** JOG left
 - 0 NO
 - 1 YES
- **Bit10** Control from PLC
 - 0 NO
 - 1 YES
- **Bit11** Reverse (setpoint inversion)
 - 0 NO
 - 1 YES
- **Bit13** Motor potentiometer MOP up
 - 0 NO
 - 1 YES
- **Bit14** Motor potentiometer MOP down
 - 0 NO
 - 1 YES
- **Bit15** Local / Remote
 - 0 NO
 - 1 YES

Status word 1

<table>
<thead>
<tr>
<th>P-Group: COMM</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays active status word of inverter (in binary) and can be used to diagnose which commands are active.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bitfields:

- **Bit00** Drive ready
 - 0 NO
 - 1 YES
- **Bit01** Drive ready to run
 - 0 NO
 - 1 YES
- **Bit02** Drive running
 - 0 NO
 - 1 YES
- **Bit03** Drive fault active
 - 0 NO
 - 1 YES
- **Bit04** OFF2 active
 - 0 YES
 - 1 NO
- **Bit05** OFF3 active
 - 0 YES
 - 1 NO
- **Bit06** ON inhibit active
 - 0 NO
 - 1 YES
- **Bit07** Drive warning active
 - 0 NO
 - 1 YES
- **Bit08** Deviation setp. / act. value
 - 0 YES
 - 1 NO
- **Bit09** PZD control
 - 0 NO
 - 1 YES
- **Bit10** Maximum frequency reached
 - 0 NO
 - 1 YES
- **Bit11** Warning: Motor current limit
 - 0 YES
 - 1 NO
- **Bit12** Motor holding brake active
 - 0 NO
 - 1 YES
- **Bit13** Motor overload
 - 0 YES
 - 1 NO
- **Bit14** Motor runs direction right
 - 0 NO
 - 1 YES
- **Bit15** Inverter overload
 - 0 YES
 - 1 NO
P0970 Factory reset

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0970</td>
<td>Factory reset</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **CStat**: C
- **Datatype**: U16
- **Unit**: -
- **Def**: 0
- **P-Group**: PAR_RESET
- **Active**: Immediately
- **QuickComm**: No

Enum: 0 Disabled, 1 Parameter reset

Dependency: First set P0010 = 30 (factory settings)

Note: P0970 = 1 resets all parameters to their default values. Stop drive (i.e. disable all pulses) before you can reset parameters to default values.

The following parameters retain their values after a factory reset:
- P0918 (CB address)
- P2010 (USS baud rate)
- P2011 (USS address)

P0971 Transfer data from RAM to EEPROM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0971</td>
<td>Transfer data from RAM to EEPROM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **CStat**: CUT
- **Datatype**: U16
- **Unit**: -
- **Def**: 0
- **P-Group**: COMM
- **Active**: Immediately
- **QuickComm**: No

Enum: 0 Disabled, 1 Start transfer

Note: Transfers values from RAM to EEPROM when set to 1.

All values in RAM are transferred to EEPROM.

Parameter is automatically reset to 0 (default) after successful transfer.
P1000 Selection of frequency setpoint

<table>
<thead>
<tr>
<th>CS</th>
<th>Datatype</th>
<th>Unit</th>
<th>Def</th>
<th>P-Group</th>
<th>Active</th>
<th>QuickComm</th>
<th>Max</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>U16</td>
<td>-</td>
<td>2</td>
<td>SETPOINT</td>
<td>Immediately</td>
<td>Yes</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

- **Level:** 1

Selects frequency setpoint source. In the table of possible settings below, the main setpoint is selected from the least significant digit (i.e., 0 to 6) and any additional setpoint from the most significant digit (i.e., x0 through to x6).

Example:

Setting 12 selects main setpoint (2) derived from analog input with additional setpoint (1) taken from the motor potentiometer.

Settings:

1. Motor potentiometer setpoint
2. Analog input
3. Fixed frequency setpoint
4. USS on BOP link
5. USS on COM link
6. Communication board (CB) on COM link

Other settings including an additional setpoint can be selected using the table above.

Enum:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No main setpoint</td>
</tr>
<tr>
<td>1</td>
<td>MOP setpoint</td>
</tr>
<tr>
<td>2</td>
<td>Analog setpoint</td>
</tr>
<tr>
<td>3</td>
<td>Fixed frequency</td>
</tr>
<tr>
<td>4</td>
<td>USS on BOP link</td>
</tr>
<tr>
<td>5</td>
<td>USS on COM link</td>
</tr>
<tr>
<td>6</td>
<td>CB on COM link</td>
</tr>
<tr>
<td>10</td>
<td>No main setpoint + MOP setpoint</td>
</tr>
<tr>
<td>11</td>
<td>MOP setpoint + MOP setpoint</td>
</tr>
<tr>
<td>12</td>
<td>Analog setpoint + MOP setpoint</td>
</tr>
<tr>
<td>13</td>
<td>Fixed frequency + MOP setpoint</td>
</tr>
<tr>
<td>14</td>
<td>USS on BOP link + MOP setpoint</td>
</tr>
<tr>
<td>15</td>
<td>USS on COM link + MOP setpoint</td>
</tr>
<tr>
<td>16</td>
<td>CB on COM link + MOP setpoint</td>
</tr>
<tr>
<td>20</td>
<td>No main setpoint + Analog setpoint</td>
</tr>
<tr>
<td>21</td>
<td>MOP setpoint + Analog setpoint</td>
</tr>
<tr>
<td>22</td>
<td>Analog setpoint + Analog setpoint</td>
</tr>
<tr>
<td>23</td>
<td>Fixed frequency + Analog setpoint</td>
</tr>
<tr>
<td>24</td>
<td>USS on BOP link + Analog setpoint</td>
</tr>
<tr>
<td>25</td>
<td>USS on COM link + Analog setpoint</td>
</tr>
<tr>
<td>26</td>
<td>CB on COM link + Analog setpoint</td>
</tr>
<tr>
<td>30</td>
<td>No main setpoint + Fixed frequency</td>
</tr>
<tr>
<td>31</td>
<td>MOP setpoint + Fixed frequency</td>
</tr>
<tr>
<td>32</td>
<td>Analog setpoint + Fixed frequency</td>
</tr>
<tr>
<td>33</td>
<td>Fixed frequency + Fixed frequency</td>
</tr>
<tr>
<td>34</td>
<td>USS on BOP link + Fixed frequency</td>
</tr>
<tr>
<td>35</td>
<td>USS on COM link + Fixed frequency</td>
</tr>
<tr>
<td>36</td>
<td>CB on COM link + Fixed frequency</td>
</tr>
<tr>
<td>40</td>
<td>No main setpoint + USS on BOP link</td>
</tr>
<tr>
<td>41</td>
<td>MOP setpoint + USS on BOP link</td>
</tr>
<tr>
<td>42</td>
<td>Analog setpoint + USS on BOP link</td>
</tr>
<tr>
<td>43</td>
<td>Fixed frequency + USS on BOP link</td>
</tr>
<tr>
<td>44</td>
<td>USS on BOP link + USS on BOP link</td>
</tr>
<tr>
<td>45</td>
<td>USS on COM link + USS on BOP link</td>
</tr>
<tr>
<td>46</td>
<td>CB on COM link + USS on BOP link</td>
</tr>
<tr>
<td>50</td>
<td>No main setpoint + USS on COM link</td>
</tr>
<tr>
<td>51</td>
<td>MOP setpoint + USS on COM link</td>
</tr>
<tr>
<td>52</td>
<td>Analog setpoint + USS on COM link</td>
</tr>
<tr>
<td>53</td>
<td>Fixed frequency + USS on COM link</td>
</tr>
<tr>
<td>54</td>
<td>USS on BOP link + USS on COM link</td>
</tr>
<tr>
<td>55</td>
<td>USS on COM link + USS on COM link</td>
</tr>
<tr>
<td>56</td>
<td>CB on COM link + USS on COM link</td>
</tr>
<tr>
<td>60</td>
<td>No main setpoint + CB on COM link</td>
</tr>
<tr>
<td>61</td>
<td>MOP setpoint + CB on COM link</td>
</tr>
<tr>
<td>62</td>
<td>Analog setpoint + CB on COM link</td>
</tr>
<tr>
<td>63</td>
<td>Fixed frequency + CB on COM link</td>
</tr>
<tr>
<td>64</td>
<td>USS on BOP link + CB on COM link</td>
</tr>
<tr>
<td>65</td>
<td>USS on COM link + CB on COM link</td>
</tr>
<tr>
<td>66</td>
<td>CB on COM link + CB on COM link</td>
</tr>
</tbody>
</table>

Note:

Single digits denote main setpoints that have no additional setpoint.
P1001 Fixed frequency 1

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: 0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 650.00</td>
</tr>
</tbody>
</table>

Defines fixed frequency setpoint 1.

There are 3 types of fixed frequencies:
1. Direct selection
2. Direct selection + ON command
3. Binary coded selection + ON command

1. Direct selection (P0701 - P0703 = 15)
 - In this mode of operation 1 digital input selects 1 fixed frequency.
 - If several inputs are active together, the selected frequencies are summed.
 - E.g.: FF1 + FF2 + FF3.

2. Direct selection + ON command (P0701 - P0703 = 16)
 - The fixed frequency selection combines the fixed frequencies with an ON command.
 - In this mode of operation 1 digital input selects 1 fixed frequency.
 - If several inputs are active together, the selected frequencies are summed.
 - E.g.: FF1 + FF2 + FF3.

3. Binary coded selection + ON command (P0701 - P0703 = 17)
 - Up to 7 fixed frequencies can be selected using this method. The fixed frequencies are selected according to the following table:

<table>
<thead>
<tr>
<th>DIN3</th>
<th>DIN2</th>
<th>DIN1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1001</td>
<td>FF1</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1002</td>
<td>FF2</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1003</td>
<td>FF3</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1004</td>
<td>FF4</td>
<td>Active</td>
</tr>
<tr>
<td>P1005</td>
<td>FF5</td>
<td>Active</td>
</tr>
<tr>
<td>P1006</td>
<td>FF6</td>
<td>Active</td>
</tr>
<tr>
<td>P1007</td>
<td>FF7</td>
<td>Active</td>
</tr>
</tbody>
</table>

Dependency:
- Select fixed frequency operation (using P1000).

Note:
- Inverter requires ON command to start in the case of direct selection (P0701 - P0706 = 15).
- Fixed frequencies can be selected using the digital inputs, and can also be combined with an ON command.

Details:
- See parameter P1001 (fixed frequency 1).

P1002 Fixed frequency 2

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: 5.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 650.00</td>
</tr>
</tbody>
</table>

Defines fixed frequency setpoint 2.

Details:
- See parameter P1001 (fixed frequency 1).

P1003 Fixed frequency 3

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: 10.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 650.00</td>
</tr>
</tbody>
</table>

Defines fixed frequency setpoint 3.

Details:
- See parameter P1001 (fixed frequency 1).

P1004 Fixed frequency 4

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: 15.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 650.00</td>
</tr>
</tbody>
</table>

Defines fixed frequency setpoint 4.

Details:
- See parameter P1001 (fixed frequency 1).

P1005 Fixed frequency 5

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: 20.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>SETPOINT</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 650.00</td>
</tr>
</tbody>
</table>

Defines fixed frequency setpoint 5.

Details:
- See parameter P1001 (fixed frequency 1).
Version B1

MICROMASTER 420 Parameter List

P1006 Fixed frequency 6

<table>
<thead>
<tr>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>**CStat: ** CUT</td>
</tr>
<tr>
<td>**P-Group: ** SETPOINT</td>
</tr>
<tr>
<td>Details:</td>
</tr>
</tbody>
</table>

Details:
- Define fixed frequency setpoint 6.
- **See parameter P1001 (fixed frequency 1).**

P1007 Fixed frequency 7

<table>
<thead>
<tr>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>**CStat: ** CUT</td>
</tr>
<tr>
<td>**P-Group: ** SETPOINT</td>
</tr>
<tr>
<td>Details:</td>
</tr>
</tbody>
</table>

Details:
- Define fixed frequency setpoint 7.
- **See parameter P1001 (fixed frequency 1).**

P1016 Fixed frequency mode - Bit 0

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>**CStat: ** CT</td>
</tr>
<tr>
<td>**P-Group: ** SETPOINT</td>
</tr>
<tr>
<td>Enum:</td>
</tr>
<tr>
<td>Details:</td>
</tr>
</tbody>
</table>

Enum:
- 1 Direct selection
- 2 Direct selection + ON command
- 3 Binary coded selection + ON command

Details:
- Fixed frequencies can be selected in three different modes. Parameter P1016 defines the mode of selection Bit 0.
- **See table in P1001 (fixed frequency 1) for description of how to use fixed frequencies.**

P1017 Fixed frequency mode - Bit 1

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>**CStat: ** CT</td>
</tr>
<tr>
<td>**P-Group: ** SETPOINT</td>
</tr>
<tr>
<td>Enum:</td>
</tr>
<tr>
<td>Details:</td>
</tr>
</tbody>
</table>

Enum:
- 1 Direct selection
- 2 Direct selection + ON command
- 3 Binary coded selection + ON command

Details:
- Fixed frequencies can be selected in three different modes. Parameter P1017 defines the mode of selection Bit 1.
- **See table in P1001 (fixed frequency 1) for description of how to use fixed frequencies.**

P1018 Fixed frequency mode - Bit 2

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>**CStat: ** CT</td>
</tr>
<tr>
<td>**P-Group: ** SETPOINT</td>
</tr>
<tr>
<td>Enum:</td>
</tr>
<tr>
<td>Details:</td>
</tr>
</tbody>
</table>

Enum:
- 1 Direct selection
- 2 Direct selection + ON command
- 3 Binary coded selection + ON command

Details:
- Fixed frequencies can be selected in three different modes. Parameter P1018 defines the mode of selection Bit 2.
- **See table in P1001 (fixed frequency 1) for description of how to use fixed frequencies.**

P1020 BI: Fixed freq. selection Bit 0

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>**CStat: ** CT</td>
</tr>
<tr>
<td>**P-Group: ** COMMANDS</td>
</tr>
<tr>
<td>Details:</td>
</tr>
<tr>
<td>Settings:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dependency:</td>
</tr>
</tbody>
</table>

Details:
- Define origin of fixed frequency selection.
- **Settings:**
 - P1020 = 722.0 ==> Digital input 1
 - P1021 = 722.1 ==> Digital input 2
 - P1022 = 722.2 ==> Digital input 3
- **Dependency:**
 - Accessible only if P0701 - P0703 = 99 (function of digital inputs = BICO)

P1021 BI: Fixed freq. selection Bit 1

<table>
<thead>
<tr>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>**CStat: ** CT</td>
</tr>
<tr>
<td>**P-Group: ** COMMANDS</td>
</tr>
<tr>
<td>Details:</td>
</tr>
<tr>
<td>Dependency:</td>
</tr>
</tbody>
</table>

Details:
- Define origin of fixed frequency selection.
- **Dependency:**
 - Accessible only if P0701 - P0703 = 99 (function of digital inputs = BICO)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1022 Bi: Fixed freq. selection Bit 2</td>
<td>Defines origin of fixed frequency selection. Dependency: Accessible only if P0701 - P0703 = 99 (function of digital inputs = BICO) Details: See P1020 (fixed frequency selection Bit 0) for most common settings</td>
</tr>
<tr>
<td>r1024 CO: Act. fixed frequency</td>
<td>Displays sum total of selected fixed frequencies.</td>
</tr>
<tr>
<td>P1031 Setpoint memory of the MOP</td>
<td>Saves last motor potentiometer setpoint (MOP) that was active before OFF command or power down. Enum: 0: PID-MOP setpoint will not be stored 1: PID-MOP setpoint will be stored (P2240 is updated) Note: On next ON command, motor potentiometer setpoint will be the saved value in parameter P1040 (setpoint of the MOP)</td>
</tr>
<tr>
<td>P1032 Inhibit reverse direction of MOP</td>
<td>Inhibits reverse setpoint selection Enum: 0: Reserve direction is allowed 1: Reserve direction inhibited Dependency: Motor potentiometer (P1040) must be chosen as main setpoint or additional setpoint (using P1000). Note: It is possible to change motor direction using the motor potentiometer setpoint (increase / decrease frequency either by using digital inputs or BOP/AOP keypad up / down).</td>
</tr>
<tr>
<td>P1035 Bi: Enable MOP (UP-command)</td>
<td>Defines source for motor potentiometer setpoint increase frequency. Settings: 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO) 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO) 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO) 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99) 19.D = MOP up via BOP/AOP</td>
</tr>
<tr>
<td>P1036 Bi: Enable MOP (DOWN-command)</td>
<td>Defines source for motor potentiometer setpoint decrease frequency. Settings: 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO) 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO) 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO) 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99) 19.E = MOP down via BOP/AOP</td>
</tr>
<tr>
<td>P1040 Setpoint of the MOP</td>
<td>Determines setpoint for motor potentiometer control (P1000 = 1). Note: If motor potentiometer setpoint is selected either as main setpoint or additional setpoint, the reverse direction will be inhibited by default of P1032 (inhibit reverse direction of MOP). To re-enable reverse direction, set P1032 = 0.</td>
</tr>
</tbody>
</table>
r1050
CO: Act. Output freq. of the MOP
- **Datatype:** Float
- **Unit:** Hz
- **Min:** -
- **Def:** -
- **Max:** -
- **P-Group:** SETPOINT
- **Level:** 3

Displays output frequency of motor potentiometer setpoint ([Hz]).

P1055
BI: Enable JOG right
- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Min:** 0:0
- **Def:** 0:0
- **Max:** 4000:0
- **P-Group:** COMMANDS
- **Active:** Immediately
- **QuickComm. No:**
- **Level:** 3

Defines source of JOG right when P0719 = 0 (remote selection of command/setpoint source).

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.8 = JOG right via BOP/AOP

P1056
BI: Enable JOG left
- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Min:** 0:0
- **Def:** 0:0
- **Max:** 4000:0
- **P-Group:** COMMANDS
- **Active:** Immediately
- **QuickComm. No:**
- **Level:** 3

Defines source of JOG left when P0719 = 0 (remote selection of command/setpoint source).

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.9 = JOG left via BOP/AOP

P1058
JOG frequency right
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** Hz
- **Min:** 0.00
- **Def:** 5.00
- **Max:** 650.00
- **P-Group:** SETPOINT
- **Active:** first confirm
- **QuickComm. No:**
- **Level:** 2

Jogging advances the motor speed by small amounts. The JOG buttons uses a non-latching switch on one of the digital inputs to control the motor speed.

While JOG right is selected, this parameter determines the frequency at which the inverter will run.

Dependency:
P1060 and P1061 set up and down ramp times respectively for jogging.

P1059
JOG frequency left
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** Hz
- **Min:** 0.00
- **Def:** 5.00
- **Max:** 650.00
- **P-Group:** SETPOINT
- **Active:** first confirm
- **QuickComm. No:**
- **Level:** 2

While JOG left is selected, this parameter determines the frequency at which the inverter will run.

Dependency:
P1060 and P1061 set up and down ramp times respectively for jogging.

P1060
JOG ramp-up time
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Min:** 0.00
- **Def:** 10.00
- **Max:** 650.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:**
- **Level:** 2

Sets ramp-up time. This is the time used while jogging or when P1124 (enable JOG ramp times) is active.
P1061
JOG ramp-down time
CStat: CUT
Datatype: Float
Unit: s
Def: 10.00
Min: 0.00
Max: 650.00
Level: 2

Sets ramp-down time. This is the time used while jogging or when P1124 (enable JOG ramp times) is active.

![Graph showing JOG ramp-down time](image)

P1070
CI: Main setpoint
CStat: CT
Datatype: U32
Unit: -
Def: 755:0
Min: 0:0
Max: 4000:0
Level: 3

Defines source of main setpoint.
Settings:
755 = Analog input 1 setpoint
1024 = Fixed frequency setpoint
1050 = Motor potentiometer (MOP) setpoint

P1071
CI: Main setpoint scaling
CStat: CT
Datatype: U32
Unit: -
Def: 1:0
Min: 0:0
Max: 4000:0
Level: 3

Defines source of the main setpoint scaling.
Settings:
755 = Analog input 1 setpoint
1024 = Fixed frequency setpoint
1050 = Motor potentiometer (MOP) setpoint

P1074
BI: Disable additional setpoint
CStat: CUT
Datatype: U32
Unit: -
Def: 0:0
Min: 0:0
Max: 4000:0
Level: 3

Disables additional setpoint
Settings:
722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

P1075
CI: Additional setpoint
CStat: CT
Datatype: U32
Unit: -
Def: 0:0
Min: 0:0
Max: 4000:0
Level: 3

Defines source of the additional setpoint (to be added to main setpoint).
Settings:
755 = Analog input 1 setpoint
1024 = Fixed frequency setpoint
1050 = Motor potentiometer (MOP) setpoint

P1076
CI: Additional setpoint scaling
CStat: CT
Datatype: U32
Unit: -
Def: 1:0
Min: 0:0
Max: 4000:0
Level: 3

Defines source of scaling for additional setpoint (to be added to main setpoint).
Settings:
1 = Scaling of 1.0 (100%)
755 = Analog input 1 Setpoint
1024 = Fixed Frequency Setpoint
1050 = MOP Setpoint
r1078 CO: Total frequency setpoint

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

P-Group: SETPOINT

Displays sum of main and additional setpoints in [Hz].

r1079 CO: Selected frequency setpoint

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

P-Group: SETPOINT

Displays selected frequency setpoint.

Following frequency setpoints are displayed:
- Total frequency setpoint r1078
- JOG frequency right P1058
- JOG frequency left P1059

Dependency:
P1055 (BI: Enable JOG right) or P1056 (BI: Enable JOG left) define command source of JOG right or JOG left respectively.

Note:
P1055 = 0 and P1056 = 0 ==> Total frequency setpoint is selected.

P1080 Min. frequency

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Min: 0.00</th>
<th>Def: 0.00</th>
<th>Max: 650.00</th>
<th>Level: 1</th>
</tr>
</thead>
</table>

CStat: CUT

P-Group: SETPOINT

Active: first confirm

QuickComm. Yes

Sets minimum motor frequency [Hz] at which motor will run irrespective of frequency setpoint.

Note:
Value set here is valid both for clockwise and for anticlockwise rotation.

Under certain conditions (e.g. ramping, current limiting), motor can run below minimum frequency.

P1082 Max. frequency

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Min: 0.00</th>
<th>Def: 50.00</th>
<th>Max: 650.00</th>
<th>Level: 1</th>
</tr>
</thead>
</table>

CStat: CT

P-Group: SETPOINT

Active: Immediately

QuickComm. Yes

Sets maximum motor frequency [Hz] at which motor will run irrespective of the frequency setpoint.

Note:
The value set here is valid for both clockwise and anticlockwise rotation.

The maximum output frequency of inverter can be exceeded if one of the following is active:

- Slip compensation
 \[f_{max} + f_{slipcomp\ max}\]
- Flying restart
 \[f_{max} + f_{slipnom}\]

Notice:
Maximum motor speed is subject to mechanical limitations.
P1091 Skip frequency 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1091</td>
<td>Skip frequency 1</td>
<td>0.00</td>
<td>0.00</td>
<td>650.00</td>
</tr>
</tbody>
</table>

Defines skip frequency 1 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).

Notice:

Stationary operation is not possible within the suppressed frequency range; the range is merely passed through (on the ramp).

For example, if P1091 = 10 Hz and P1101 = 2 Hz, it is not possible to operate continuously between 10 Hz +/- 2 Hz (i.e. between 8 and 12 Hz).

P1092 Skip frequency 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1092</td>
<td>Skip frequency 2</td>
<td>0.00</td>
<td>0.00</td>
<td>650.00</td>
</tr>
</tbody>
</table>

Defines skip frequency 2 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).

Details:

See P1091 (skip frequency 1).

P1093 Skip frequency 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1093</td>
<td>Skip frequency 3</td>
<td>0.00</td>
<td>0.00</td>
<td>650.00</td>
</tr>
</tbody>
</table>

Defines skip frequency 3 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).

Details:

See P1091 (skip frequency 1).

P1094 Skip frequency 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1094</td>
<td>Skip frequency 4</td>
<td>0.00</td>
<td>0.00</td>
<td>650.00</td>
</tr>
</tbody>
</table>

Defines skip frequency 4 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).

Details:

See P1091 (skip frequency 1).
P1101 Skip frequency bandwidth

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1101</td>
<td>Skip frequency bandwidth</td>
<td>0.00</td>
<td>2.00</td>
<td>10.00</td>
<td>3</td>
</tr>
</tbody>
</table>

Details:
Delivers frequency bandwidth to be applied to skip frequencies [in Hz].

P1110 BI: Inhibit neg. freq. setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1110</td>
<td>BI: Inhibit neg. freq. setpoint</td>
<td>0:0</td>
<td>0:0</td>
<td>4000:0</td>
<td>3</td>
</tr>
</tbody>
</table>

Details:
Inhibits direction reversal, thus preventing a negative setpoint from causing motor from running in reverse. Instead, it will run at minimum frequency (P1080) in the normal direction.

Settings:
0 = Disabled
1 = Enabled

Note:
It is possible to disable all reverse commands (i.e. the command is ignored). To do this, set P0719 = 0 (remote selection of command/setpoint source) and define the command sources (P1113) individually.

Notice:
This function does not disable the "reverse" command function; rather, a reverse command causes motor to run in the normal direction as described above.

P1113 BI: Reverse

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1113</td>
<td>BI: Reverse</td>
<td>0:0</td>
<td>722:1</td>
<td>4000:0</td>
<td>3</td>
</tr>
</tbody>
</table>

Details:
Defines source of reverse command used when P0719 = 0 (remote selection of command/setpoint source).

Settings:
722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

r1114 CO: Freq. setp. after dir. ctrl.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min:</th>
<th>Def:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1114</td>
<td>CO: Freq. setp. after dir. ctrl.</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Details:
Displays setpoint frequency after change of direction

r1119 CO: Freq. setp. before RFG

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min:</th>
<th>Def:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1119</td>
<td>CO: Freq. setp. before RFG</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Details:
Displays output frequency after modification by other functions, e.g. BI: Inhibit neg. freq. setpoint (P1110) or skip frequencies, f_min, f_max, limitations, etc.
P1120 Ramp-up time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1120</td>
<td>Ramp-up time</td>
<td>0.00</td>
<td>10.00</td>
<td>650.00</td>
</tr>
</tbody>
</table>

Time taken for motor to accelerate from standstill up to maximum motor frequency (P1082) when no rounding is used.

Note: Setting the ramp-up time too short can cause the inverter to trip (overcurrent).

If an external frequency setpoint with set ramp rates is used (e.g. from a PLC), the best way to achieve optimum drive performance is to set ramp times in P1120 and P1121 slightly shorter than those of the PLC.

P1121 Ramp-down time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1121</td>
<td>Ramp-down time</td>
<td>0.00</td>
<td>10.00</td>
<td>650.00</td>
</tr>
</tbody>
</table>

Time taken for motor to decelerate from maximum motor frequency (P1082) down to standstill when no rounding is used.

Notice: Setting the ramp-down time too short can cause the inverter to trip (overcurrent (F0001) / overvoltage (F0002)).

P1124 BI: Enable JOG ramp times

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1124</td>
<td>BI: Enable JOG ramp times</td>
<td>0.0</td>
<td>0.0</td>
<td>4000.0</td>
</tr>
</tbody>
</table>

Defines source for switching between jog ramp times and normal ramp times as applied to the RFG.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
P1130 Ramp-up initial rounding time

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def:** 0.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:**
- **Max:** 40.00

Defines initial rounding time in seconds as shown on the diagram below.

\[
\begin{align*}
T_{\text{up total}} &= \frac{1}{2} \cdot P1130 + X \cdot P1120 + \frac{1}{2} \cdot P1131 \\
T_{\text{down total}} &= \frac{1}{2} \cdot P1130 + X \cdot P1121 + \frac{1}{2} \cdot P1133
\end{align*}
\]

where:

\[X \text{ is defined as } \Delta f = X \times f_{\text{max}}\]

i.e. X is the ratio between the frequency step and fmax

Note:
Rounding times are recommended, since they prevent an abrupt response, thus avoiding detrimental effects on the mechanics.

Notice:
Rounding times are not recommended when analog inputs are used, since they would result in overshoot/undershoot in the inverter response.

P1131 Ramp-up final rounding time

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def:** 0.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:**
- **Max:** 40.00

Defines rounding time at end of ramp-up as shown in P1130 (ramp-up initial rounding time).

Note:
Rounding times are recommended, since they prevent an abrupt response, thus avoiding detrimental effects on the mechanics.

Notice:
Rounding times are not recommended when analog inputs are used, since they would result in overshoot/undershoot in the inverter response.

P1132 Ramp-down initial rounding time

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def:** 0.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:**
- **Max:** 40.00

Defines rounding time at start of ramp-down as shown in P1130 (ramp-up initial rounding time).

Note:
Rounding times are recommended, since they prevent an abrupt response, thus avoiding detrimental effects on the mechanics.

Notice:
Rounding times are not recommended when analog inputs are used, since they would result in overshoot/undershoot in the inverter response.

P1133 Ramp-down final rounding time

<table>
<thead>
<tr>
<th>Min</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2</td>
</tr>
</tbody>
</table>

- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def:** 0.00
- **P-Group:** SETPOINT
- **Active:** Immediately
- **QuickComm. No:**
- **Max:** 40.00

Defines rounding time at end of ramp-down as shown in P1130 (ramp-up initial rounding time).

Note:
Rounding times are recommended, since they prevent an abrupt response, thus avoiding detrimental effects on the mechanics.

Notice:
Rounding times are not recommended when analog inputs are used, since they would result in overshoot/undershoot in the inverter response.
P1134 Rounding type

CStat: CUT Datatype: U16 Unit: - Def: 0
P-Group: SETPOINT Active: first confirm QuickComm. No Max: 1

Defines smoothing response to OFF commands or setpoint reduction.

Enum:
0 Continuous smoothing
1 Discontinuous smoothing

Dependency:
No effect until total rounding time (P1130) > 0 s.

Notice:
Rounding times are not recommended when analog inputs are used, since they would result in
overshoot/undershoot in the inverter response.

P1135 OFF3 ramp-down time

CStat: CUT Datatype: Float Unit: s Def: 5.00
P-Group: SETPOINT Active: Immediately QuickComm. Yes Max: 650.00

Defines ramp-down time from maximum frequency to standstill for OFF3 command.

Note:
This time may be exceeded if the VDC_max. level is reached.

P1140 BI: RFG enable

CStat: CT Datatype: U32 Unit: - Def: 1.0
P-Group: COMMANDS Active: Immediately QuickComm. No Max: 4000:0

Defines command source of RFG enable command (RFG: ramp function generator).

P1141 BI: RFG start

CStat: CT Datatype: U32 Unit: - Def: 1.0
P-Group: COMMANDS Active: Immediately QuickComm. No Max: 4000:0

Defines command source of RFG start command (RFG: ramp function generator).

P1142 BI: RFG enable setpoint

CStat: CT Datatype: U32 Unit: - Def: 1.0
P-Group: COMMANDS Active: Immediately QuickComm. No Max: 4000:0

Defines command source of RFG enable setpoint command (RFG: ramp function generator).

p1170 CO: Frequency setpoint after RFG

Datatype: Float Unit: Hz Def: - Max: -

Displays overall frequency setpoint after ramp generator.
P1200

Flying start

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype:</th>
<th>U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td>Max: 6</td>
<td></td>
</tr>
</tbody>
</table>

Min: 0
Max: 6

Starts inverter onto a spinning motor by rapidly changing the output frequency of the inverter until the actual motor speed has been found. Then, the motor runs up to setpoint using the normal ramp time.

Enum:

0 Flying start disabled
1 Flying start is always active, start in direction of setpoint
2 Flying start is active if power on, fault, OFF2, start in direction of setpoint
3 Flying start is active if fault, OFF2, start in direction of setpoint
4 Flying start is always active, only in direction of setpoint
5 Flying start is active if power on, fault, OFF2, only in direction of setpoint
6 Flying start is active if fault, OFF2, only in direction of setpoint

Note:

Useful for motors with high inertia loads.

Settings 1 to 3 search in both directions.
Settings 4 to 6 search only in direction of setpoint.

Notice:

Flying start must be used in cases where the motor may still be turning (e.g. after a short mains break) or can be driven by the load. Otherwise, overcurrent trips will occur.
P1203

Search rate: Flying start

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** %
- **Def:** 100
- **Level:** 3

Sets factor by which the output frequency changes during flying start to synchronize with turning motor. This value is entered in [%] relative to the default time factor defines the initial gradient in the curve below (and thus influences the time taken to search for the motor frequency):

\[
\Delta f = \frac{100\% \times f_{\text{slip}}}{P1203}
\]

The search time is the time taken to search through all frequencies between \(f_{\text{max}} + 2 \times f_{\text{slip}} \) to 0 Hz.

- **P1203 = 100 %** is defined as giving a rate of \(2 % \) of \(f_{\text{slip,nom}} / [\text{ms}] \)
- **P1203 = 200 %** would result in a rate of frequency change of \(1 % \) of \(f_{\text{slip,nom}} / [\text{ms}] \)

Example:

For a motor with 50 Hz, 1350 rpm, 100 % would produce a maximum search time of 600 ms. If the motor is turning, the motor frequency is found in a shorter time.

Note:

A higher value produces a flatter gradient and thus a longer search time.
A lower value has the opposite effect.

r1204

Status word: Flying start

- **Datatype:** U16
- **Unit:** -
- **Def:** -
- **Max:** -
- **Level:** 4

Bit parameter for checking and monitoring states during search.

Bitfields:

- **Bit00** Current applied: 0 NO, 1 YES
- **Bit01** Current could not be applied: 0 NO, 1 YES
- **Bit02** Voltage reduced: 0 NO, 1 YES
- **Bit03** Slope-filter started: 0 NO, 1 YES
- **Bit04** Current less threshold: 0 NO, 1 YES
- **Bit05** Current-minimum: 0 NO, 1 YES
- **Bit07** Speed could not be found: 0 NO, 1 YES
P1210 Automatic restart

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype:</td>
<td>U16</td>
</tr>
<tr>
<td>Unit:</td>
<td>-</td>
</tr>
<tr>
<td>Def:</td>
<td>1</td>
</tr>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>5</td>
</tr>
</tbody>
</table>

Enables restart after a mains break or after a fault.

Enum:
- 0 Disabled
- 1 Trip reset after power on: P1211 disabled
- 2 Restart mains break; power on: P1211 disabled
- 3 Restart after fault/mains break: P1211 enabled
- 4 Restart after mains break: P1211 enabled
- 5 Restart mains break/fault/power on: P1211 disabled

Dependency:
Auto restart requires constant ON command (e.g. via a digital input wire link).

Caution:
Settings 2 to 5 can cause the motor to restart unexpectedly!

Notice:
Flying start must be used in cases where the motor may still be turning (e.g. after a short mains break) or can be driven by the load (P1200).

P1211 Number of restart attempts

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype:</td>
<td>U16</td>
</tr>
<tr>
<td>Unit:</td>
<td>-</td>
</tr>
<tr>
<td>Def:</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>10</td>
</tr>
</tbody>
</table>

Specifies number of times inverter will attempt to restart if P1210 (flying start) is activated.

P1215 Holding brake enable

<table>
<thead>
<tr>
<th>CStat:</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype:</td>
<td>U16</td>
</tr>
<tr>
<td>Unit:</td>
<td>-</td>
</tr>
<tr>
<td>Def:</td>
<td>0</td>
</tr>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>1</td>
</tr>
</tbody>
</table>

Enables/disables holding brake function. This function applies the following profile to the inverter:

Relay switching is also possible at point 1 and point 2 (if programmed in P0731 = 52.C) to control a brake.

Enum:
- 0 Motor holding brake disabled
- 1 Motor holding brake enabled

Note:
The brake relay opens at point 1, if enabled using P0731 (function of digital output), and closes at point 2.

P1216 Holding brake release delay

<table>
<thead>
<tr>
<th>CStat:</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype:</td>
<td>Float</td>
</tr>
<tr>
<td>Unit:</td>
<td>s</td>
</tr>
<tr>
<td>Def:</td>
<td>1.0</td>
</tr>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Defines period during which inverter runs at f_min before ramping up at point 1 (as shown in P1215 - holding brake enable). Inverter starts at f_min on this profile, i.e. it does not use a ramp.

Note:
A typical value of f_min for this type of application is the slip frequency of the motor.

You can calculate the rated slip frequency by using the following formula:

\[
\frac{\text{max} - \text{fn}}{\text{f}_{\text{min}}} = \text{f}_{\text{min}}
\]

Notice:
If used to hold the motor at a certain frequency against a mechanical brake (i.e. you are using a relay to control mechanical brake), it is important that f_min < 5 Hz; otherwise, the current drawn may be too high and the relay may not open.
P1217 Holding time after ramp down

<table>
<thead>
<tr>
<th>CStat:</th>
<th>T</th>
<th>Datatype: Float</th>
<th>Unit: s</th>
<th>Def: 1.0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 20.0</td>
<td></td>
</tr>
</tbody>
</table>

Defines time for which inverter runs at minimum frequency (P1080) after ramping down at point 2.

Details:
See diagram P1215 (holding brake enable)

P1230 BI: Enable DC braking

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Def: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 4000:0</td>
<td></td>
</tr>
</tbody>
</table>

Enables DC braking via a signal applied from an external source. Function remains active while external input signal is active.

DC braking causes the motor to stop rapidly by applying a DC braking current (current applied also holds shaft stationary).

When the DC braking signal is applied, the inverter output pulses are blocked and the DC current is not applied until the motor has been sufficiently demagnetized.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

Caution:
Frequent use of long periods of DC braking can cause the motor to overheat.

Notice:
This delay time is set in P0347 (demagnetization time). If this delay is too short, overcurrent trips can occur.

P1232 DC braking current

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: %</th>
<th>Def: 100</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 250</td>
<td></td>
</tr>
</tbody>
</table>

Defines level of DC current in [%] relative to rated motor current (P0305).

P1233 Duration of DC braking

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: s</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 250</td>
<td></td>
</tr>
</tbody>
</table>

Defines duration for which DC injection braking is to be active following an OFF1 command.

Value:
- P1233 = 0 : Not active following OFF1.
- P1233 = 1 - 250 : Active for the specified duration.

Caution:
Frequent use of long periods of DC braking can cause the motor to overheat.

Notice:
The DC braking function causes the motor to stop rapidly by applying a DC braking current (the current applied also holds the shaft stationary). When the DC braking signal is applied, the inverter output pulses are blocked and the DC current not applied until the motor has been sufficiently demagnetized (demagnetization time is calculated automatically from motor data).

P1236 Compound braking current

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: %</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 250</td>
<td></td>
</tr>
</tbody>
</table>

Defines DC level superimposed on AC waveform. The value is entered in [%] relative to rated motor current (P0305).

Value:
- P1236 = 0 : Compound braking disabled.
- P1236 = 1 - 250 : Level of DC braking current defined as a [%] of rated motor current (P0305).

Dependency:
Active after OFF1 / OFF3 command.

Notice:
Increasing the value will generally improve braking performance; however, if you set the value too high, an overcurrent trip may result.
P1240 Configuration of Vdc controller

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 1</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
<td></td>
</tr>
</tbody>
</table>

Enables / disables Vdc controller.

The Vdc controller dynamically controls the DC link voltage to prevent overvoltage trips on high inertia systems.

Enum:
- 0: Vdc controller disabled
- 1: Vdc-max controller enabled

Note:
Vdc max automatically increases ramp-down times to keep the DC-link voltage (r0026) within limits (P2172).

Vdc min is activated if DC-link voltage falls below minimum level. The kinetic energy of the motor is then used to buffer the DC-link voltage, thus causing deceleration of the drive.

r1242 CO: Switch-on level of Vdc-max

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: V</th>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: FUNC</td>
<td>Max: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays switch-on level of Vdc max controller.

P1243 Dynamic factor of Vdc-max

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: U16</th>
<th>Unit: %</th>
<th>Def: 100</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 200</td>
<td></td>
</tr>
</tbody>
</table>

Defines dynamic factor for DC link controller in [%].

Dependency:
P1243 = 100 % means parameters P1250, P1251 and P1252 (integration time, differential time and output limitation) are used as set. Otherwise, these are multiplied by P1243 (dynamic factor of Vdc-max).

Note:
Vdc controller adjustment is calculated automatically from motor and inverter data.

P1250 Gain of Vdc-controller

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: -</th>
<th>Def: 1.00</th>
<th>Level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 10.00</td>
<td></td>
</tr>
</tbody>
</table>

Enters gain for Vdc controller.

P1251 Integration time Vdc-controller

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: ms</th>
<th>Def: 40.0</th>
<th>Level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 1000.00</td>
<td></td>
</tr>
</tbody>
</table>

Enters integral time constant for Vdc controller.

P1252 Differential time Vdc-controller

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: ms</th>
<th>Def: 1.0</th>
<th>Level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 1000.0</td>
<td></td>
</tr>
</tbody>
</table>

Enters differential time constant for Vdc controller.

P1253 Vdc-controller output limitation

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: Hz</th>
<th>Def: 10</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 600</td>
<td></td>
</tr>
</tbody>
</table>

Limits maximum effect of Vdc max controller.

P1254 Auto detect Vdc switch-on levels

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 1</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>FUNC</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
<td></td>
</tr>
</tbody>
</table>

Enables/disables auto-detection of switch-on levels for Vdc max controller.

Enum:
- 0: Disabled
- 1: Enabled
P1300 Control mode

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype:</th>
<th>U16</th>
<th>Unit:</th>
<th>-</th>
<th>Def:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>CONTROL</td>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. Yes</td>
<td>Max:</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Controls relationship between speed of motor and voltage supplied by inverter as illustrated in the diagram below.

![Diagram of V vs. f with Vn and 0 and 2]

Enum:
0 V/f with linear charac.
1 V/f with FCC
2 V/f with parabolic charac.
3 V/f with programmable charac.

Note:

- P1300 = 1 : V/f with FCC
 * Maintains motor flux current for improved efficiency
 * If FCC is chosen, linear V/f is active at low frequencies.

- P1300 = 2 : V/f with a quadratic curve
 * Suitable for centrifugal fans / pumps
P1310 Continuous boost

CStat: CUT Datatype: Float Unit: % Def: 50.0
P-Group: CONTROL Active: first confirm QuickComm. No

Min: 0.0 Max: 250.0

Defines boost level in [%] relative to P0305 (rated motor current) applicable to both linear and quadratic V/f curves according to the diagram below:

Definitions:
- $V_{Boost,100} = \text{voltage given by rated motor current (P0305)} \times \text{Stator resistance (P0350)}$

Dependency:
Setting in P0640 (motor overload factor [%]) limits the boost.

Note:
The boost values are combined when continuous boost (P1310) used in conjunction with other boost parameters (acceleration boost P1311 and starting boost P1312). However priorities are allocated to these parameters as follows:
P1310 > P1311 > P1312
Notice:
Increasing the boost levels increases motor heating (especially at standstill).

\[\sum \text{Boosts} \leq \frac{300}{I_{\text{motor}}} R_s \]

P1311 Acceleration boost

<table>
<thead>
<tr>
<th>Stat</th>
<th>C</th>
<th>Datatype</th>
<th>Float</th>
<th>Unit: %</th>
<th>Def: 0.0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>CONTROL</td>
<td>Active: first confirm</td>
<td>QuickComm: No</td>
<td>Max: 250.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applies boost in [%] relative to P0305 (rated motor current) following a positive setpoint change and drops back out once the setpoint is reached.

Dependency:
Setting in P0640 (motor overload factor [%]) limits boost.

Note:
Acceleration boost can help to improve response to small positive setpoint changes.

\[\sum \text{Boosts} \leq \frac{300}{I_{\text{motor}}} R_s \]

Notice:
Increasing the boost level increases motor heating.

Details:
See note in P1310 for boost priorities.
Starting boost

P1312

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Def:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td>CUT</td>
<td>0.0</td>
</tr>
<tr>
<td>Datatype:</td>
<td></td>
<td>Float</td>
<td>0.0</td>
</tr>
<tr>
<td>Unit:</td>
<td></td>
<td>%</td>
<td>0.0</td>
</tr>
<tr>
<td>P-Group:</td>
<td></td>
<td>CONTROL</td>
<td>0.0</td>
</tr>
<tr>
<td>Active:</td>
<td></td>
<td>first confirm</td>
<td>0.0</td>
</tr>
<tr>
<td>QuickComm. No:</td>
<td></td>
<td>No</td>
<td>0.0</td>
</tr>
<tr>
<td>Max:</td>
<td></td>
<td>250.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Dependency:
Setting in P0640 (motor overload factor [%]) limits boost.

Notice:
Increasing the boost levels increases motor heating.

\[\sum \text{Boosts} \leq \frac{300}{\text{limat} \times \text{Rs}} \]

Details:
See note in P1310 for boost priorities.

r1315 CO: Total boost voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Def:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype:</td>
<td></td>
<td>Float</td>
<td>0.0</td>
</tr>
<tr>
<td>Unit:</td>
<td></td>
<td>V</td>
<td>0.0</td>
</tr>
<tr>
<td>P-Group:</td>
<td></td>
<td>CONTROL</td>
<td>0.0</td>
</tr>
<tr>
<td>Max:</td>
<td></td>
<td>-</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Displays total value of voltage boost (in volts).

P1316 Boost end frequency

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min:</th>
<th>Def:</th>
<th>Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td></td>
<td>CUT</td>
<td>0.0</td>
</tr>
<tr>
<td>Datatype:</td>
<td></td>
<td>Float</td>
<td>0.0</td>
</tr>
<tr>
<td>Unit:</td>
<td></td>
<td>%</td>
<td>0.0</td>
</tr>
<tr>
<td>P-Group:</td>
<td></td>
<td>CONTROL</td>
<td>0.0</td>
</tr>
<tr>
<td>Active:</td>
<td></td>
<td>first confirm</td>
<td>0.0</td>
</tr>
<tr>
<td>QuickComm. No:</td>
<td></td>
<td>No</td>
<td>0.0</td>
</tr>
<tr>
<td>Max:</td>
<td></td>
<td>100.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Defines point at which programmed boost reaches 50 % of its value.

This value is expressed in [%] relative to P0310 (rated motor frequency).

This frequency is defined as follows:

\[f_{\text{Boost min}} = 2 \times \left(\frac{153}{\sqrt{P_{\text{motor}}} + 3} \right) \]

It is displayed as [%] value of the \(f_{\text{nominal}} \).

Note:
The expert user may change this value to alter the shape of the curve, e.g. to increase torque at a particular frequency.

Details:
See diagram in P1310 (continuous boost)
Sets V/f coordinates (P1320/1321 to P1324/1325) to define V/f characteristic.

Example:
This parameter can be used to provide correct torque at correct frequency and is useful when used with synchronous motors.

Dependency:
To set parameter, select P1300 = 3 (V/f with programmable characteristic)

Note:
Linear interpolation will be applied between points set from P1320/1321 to P1324/1325.
V/f with programmable characteristic (P1300 = 3) has 3 programmable points. The two non-programmable points are:
Boost voltage P1320 at zero 0 Hz
Nominal voltage at nominal frequency
The acceleration boost and starting boost defined in P1311 and P1312 are applied to V/f with programmable characteristic.

P1320 Programmable V/f freq. coord. 1
CStat: CT Datatype: Float Unit: Hz Def: 0.00
P-Group: CONTROL Active: first confirm QuickComm. No Max: 650.00

P1321 Programmable V/f volt. coord. 1
CStat: CT Datatype: Float Unit: V Def: 0.00
P-Group: CONTROL Active: first confirm QuickComm. No Max: 3000.0

See P1320 (programmable V/f freq. coord. 1).

P1322 Programmable V/f freq. coord. 2
CStat: CT Datatype: Float Unit: Hz Def: 0.00
P-Group: CONTROL Active: first confirm QuickComm. No Max: 650.00

See P1320 (programmable V/f freq. coord. 1).

P1323 Programmable V/f volt. coord. 2
CStat: CT Datatype: Float Unit: V Def: 0.00
P-Group: CONTROL Active: first confirm QuickComm. No Max: 3000.0

See P1320 (programmable V/f freq. coord. 1).

P1324 Programmable V/f freq. coord. 3
CStat: CT Datatype: Float Unit: Hz Def: 0.00
P-Group: CONTROL Active: first confirm QuickComm. No Max: 650.00

See P1320 (programmable V/f freq. coord. 1).

P1325 Programmable V/f volt. coord. 3
CStat: CT Datatype: Float Unit: V Def: 0.00
P-Group: CONTROL Active: first confirm QuickComm. No Max: 3000.0

See P1320 (programmable V/f freq. coord. 1).
P1333 Start frequency for FCC
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def.:** 10.0
- **P-Group:** CONTROL
- **Active:** first confirm
- **QuickComm:** No
- **Max.:** 100.0

Min.: 0.0

Level: 3

<table>
<thead>
<tr>
<th>Notice:</th>
<th>Defines start frequency at which FCC (flux current control) is enabled as [%] of rated motor frequency (P0310).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notice:</td>
<td>If this value is too low, the system may become unstable.</td>
</tr>
</tbody>
</table>

Value:

- P1333 = 0 %: Slip compensation disabled.
- P1333 = 100 %: This uses the motor data and motor model to add the rated slip frequency, rated motor speed, and rated motor current.

Note:

Gain adjustment enables fine-tuning of the actual motor speed (see P1460 - gain speed control).

100% = standard setting for warm stator

P1335 Slip compensation
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Def.:** 0.0
- **P-Group:** CONTROL
- **Active:** first confirm
- **QuickComm:** No
- **Max.:** 600.0

Min.: 0.0

Level: 2

<table>
<thead>
<tr>
<th>Value:</th>
<th>Dynamically adjusts output frequency of inverter so that motor speed is kept constant independent of motor load.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note:</td>
<td>P1335 = 0 %: Slip compensation disabled. P1335 = 100 %: This uses the motor data and motor model to add the rated slip frequency, rated motor speed, and rated motor current.</td>
</tr>
</tbody>
</table>

Note:

Gain adjustment enables fine-tuning of the actual motor speed (see P1460 - gain speed control).

100% = standard setting for warm stator

P1336 Slip limit
- **CStat:** CUT
- **Datatype:** U16
- **Unit:** %
- **Def.:** 250
- **P-Group:** CONTROL
- **Active:** first confirm
- **QuickComm:** No
- **Max.:** 600

Min.: 0

Level: 2

<table>
<thead>
<tr>
<th>Dependency:</th>
<th>Compensation slip limit in [%] relative to r0330 (rated motor slip), which is added to frequency setpoint.</th>
</tr>
</thead>
</table>

r1337 CO: V/f slip frequency
- **CStat:** CONTROL
- **Datatype:** Float
- **Unit:** %
- **Def.:** -
- **Max.:** -

Min.: -

Level: 3

| Dependency: | Displays actual compensated motor slip as [%] |

P1338 Resonance damping gain V/f
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** -
- **Def.:** 0.00
- **P-Group:** CONTROL
- **Active:** first confirm
- **QuickComm:** No
- **Max.:** 10.00

Min.: 0.00

Level: 3

<table>
<thead>
<tr>
<th>Note:</th>
<th>Defines resonance damping gain for V/f.</th>
</tr>
</thead>
</table>

P1340 Imax controller prop. gain
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** -
- **Def.:** 0.00
- **P-Group:** CONTROL
- **Active:** first confirm
- **QuickComm:** No
- **Max.:** 0.499

Min.: 0.00

Level: 3

<table>
<thead>
<tr>
<th>Note:</th>
<th>Proportional gain of the I_max controller.</th>
</tr>
</thead>
</table>

P1341 Imax controller integral time
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** s
- **Def.:** 0.300
- **P-Group:** CONTROL
- **Active:** first confirm
- **QuickComm:** No
- **Max.:** 50.000

Min.: 0.000

Level: 3

<table>
<thead>
<tr>
<th>Note:</th>
<th>Integral time constant of the I_max controller.</th>
</tr>
</thead>
</table>

P1341 = 0: I_max controller disabled P1340 = 0 and P1341 > 0: enhanced integral P1340 > 0 and P1341 > 0: normal PI control

See description in parameter P1340 for further information.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1343</td>
<td>CO: Imax controller freq. output</td>
<td>Float</td>
<td>Hz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>r1344</td>
<td>CO: Imax controller volt. output</td>
<td>Float</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P1350</td>
<td>Voltage soft start</td>
<td>U16</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>P1800</td>
<td>Pulse frequency</td>
<td>U16</td>
<td>kHz</td>
<td>2</td>
<td>4</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>P1801</td>
<td>CO: Act. switching frequency</td>
<td>U16</td>
<td>kHz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P1802</td>
<td>Modulator mode</td>
<td>U16</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Dependency:
- If I_{max} controller not in operation, parameter normally shows f_{max} (P1082).

Note:
- The settings for this parameter bring benefits and drawbacks:
 - 0 = OFF (jump to boost voltage)
 - Benefit: flux is built up quickly
 - Drawback: motor may move
 - 1 = ON (smooth voltage build-up)
 - Benefit: motor less likely to move
 - Drawback: flux build-up takes longer

P1350 Voltage soft start
Sets whether voltage is built up smoothly during magnetization time (ON) or whether it simply jumps to boost voltage (OFF)

P1800 Pulse frequency
Sets pulse frequency of power switches in inverter. The frequency can be changed in steps of 2 kHz.

Notice:
- Pulse frequencies > 4 kHz selected on 380-480 V units reduce the maximum continuous motor current.

Dependency:
- Minimum pulse frequency depends on P1082 (maximum frequency) and P0310 (rated motor frequency).

Note:
- At 4 kHz, full output current is obtained up to 50 degrees C (CT mode); over 50 degrees C, full output may be obtained at 8 kHz
- If silent operation is not absolutely necessary, lower pulse frequencies may be selected to reduce inverter losses and radio-frequency emissions.
- Under certain circumstances, the inverter may reduce the switching frequency to provide protection against over-temperature (see P0290, Level 3).

P1802 Modulator mode
Selects inverter modulator mode.

Notice:
- Asymmetric space vector modulation (ASVM) produces lower switching losses than space vector modulation (SVM), but may cause irregular rotation at very low speeds.
- Space vector modulation (SVM) with over-modulation may produce current waveform distortion at high output voltages.
- Space vector modulation (SVM) without over-modulation will reduce maximum output voltage available to motor.
Version B1

MM420 Parameter List

P1803
Max. modulation
| CStat: | CUT | Datatype: Float | Unit: % | Min: 20.0 | Level: 4 |
| P-Group: | INVERTER | Active: first confirm | QuickComm. No | |

Sets maximum modulation index.

Note:

P1803 = 100 % = limit for over-control (for ideal inverter without switching delay). For vector control the modulation limit will be reduced automatically with 4 %.

P1820
Reverse output phase sequence
| CStat: | CT | Datatype: U16 | Unit: - | Min: 0 | Level: 2 |
| P-Group: | INVERTER | Active: Immediately | QuickComm. No | Max: 1 |

Changes direction of motor rotation without changing setpoint polarity.

Enum:

0 OFF
1 ON

Dependency:

If positive and negative revolution is enabled, frequency setpoint is directly used.
If both positive and negative revolution are disabled, reference value is set to zero.

Details:

See P1000 (select frequency setpoint)

P1910
Select motor data identification
| CStat: | CT | Datatype: U16 | Unit: - | Min: 0 | Level: 2 |
| P-Group: | MOTOR | Active: Immediately | QuickComm. Yes | Max: 2 |

Performs stator resistance measuring.

Enum:

0 Disabled
1 Identification of Rs with parameter change
2 Identification of Rs without parameter change

Dependency:

No measurement if motor data incorrect.

P1910 = 1 : Calculated value for stator resistance (see P0350) is overwritten.
P1910 = 2 : Values already calculated are not overwritten.

Note:

Before selecting motor data identification, "Quick commissioning" has to be performed in advance.
Once enabled (P1910 = 1), A0541 generates a warning that the next ON command will initiate measurement of motor parameters.

Notice:

When choosing the setting for measurement, observe the following:
1. "with parameter change" means that the value is actually adopted as P0350 parameter setting and applied to the control as well as being shown in the read-only parameters below.
2. "without parameter change" means that the value is only displayed, i.e. shown for checking purposes in the read-only parameter r1912 (identified stator resistance). The value is not applied to the control.

r1912
Identified stator resistance
| Datatype: Float | Unit: Ohm | Min: - | Level: 2 |
| P-Group: | MOTOR | Max: - |

Displays measured stator resistance value (line-to-line) in [Ohms]

Note:

This value is measured using P1910 = 1 or 2, i.e., identification of all parameters with/without change.

P2000
Reference frequency
| CStat: | CT | Datatype: Float | Unit: Hz | Min: 1.00 | Level: 2 |
| P-Group: | COMM | Active: Immediately | QuickComm. No | Max: 650.00 |

Full-scale frequency setting used by serial link (corresponds to 4000H), analog I/O and P/D controller.

P2001
Reference voltage
| CStat: | CT | Datatype: U16 | Unit: V | Min: 10 | Level: 3 |

Full-scale output voltage (i.e. 100 %) used over serial link (corresponds to 4000H).

Example:

P2001 = 230 specifies that 4000H received via USS denotes 230 V.

P2002
Reference current
| CStat: | CT | Datatype: Float | Unit: A | Min: 0.10 | Level: 3 |
| P-Group: | COMM | Active: Immediately | QuickComm. No | Max: 10000.00 |

Full-scale output current used over serial link (corresponds to 4000H).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2009[2]</td>
<td>USS normalization</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>P2010[2]</td>
<td>USS baudrate</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>P2011[2]</td>
<td>USS address</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>P2012[2]</td>
<td>USS PZD length</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>P2013[2]</td>
<td>USS PKW length</td>
<td>0</td>
<td>127</td>
<td>127</td>
<td>3</td>
</tr>
</tbody>
</table>

P2009[2] USS normalization

- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** COMM
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 1

Enables special normalization for USS.

Enum:
- 0: Disabled
- 1: Enabled

Index:
- P2009[0]: Serial interface COM link
- P2009[1]: Serial interface BOP link

Note:
If enabled, the main setpoint (word 2 in PZD) is not interpreted as 100% = 4000H, but as "absolute" instead (e.g., 4000H = 16384 means 163.84 Hz).

P2010[2] USS baudrate

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 6
- **P-Group:** COMM
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 9

Sets baud rate for USS communication.

Enum:
- 3: 1200 baud
- 4: 2400 baud
- 5: 4800 baud
- 6: 9600 baud
- 7: 19200 baud
- 8: 38400 baud
- 9: 57600 baud

Index:
- P2010[0]: Serial interface COM link
- P2010[1]: Serial interface BOP link

P2011[2] USS address

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** COMM
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 31

Sets unique address for inverter.

Index:
- P2011[0]: Serial interface COM link
- P2011[1]: Serial interface BOP link

Note:
You can connect up to a further 30 inverters via the serial link (i.e., 31 inverters in total) and control them with the USS serial bus protocol.

P2012[2] USS PZD length

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 2
- **P-Group:** COMM
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 4

Defines the number of 16-bit words in PZD part of USS telegram. The PZD part of the USS telegram is used for the main setpoint, and to control the inverter.

Index:
- P2012[0]: Serial interface COM link
- P2012[1]: Serial interface BOP link

P2013[2] USS PKW length

- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Def:** 127
- **P-Group:** COMM
- **Active:** Immediately
- **QuickComm:** No
- **Max:** 127

Defines the number of 16-bit words in PKW part of USS telegram. The PKW part of the USS telegram is used to read and write individual parameter values.

Enum:
- 0: No words
- 3: 3 words
- 4: 4 words
- 27: Variable

Index:
- P2013[0]: Serial interface COM link
- P2013[1]: Serial interface BOP link

Notice:
Setting P2013 has implications for the PKW word order, please refer to the Reference Manual for details.
P2014

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2014[2]</td>
<td>USS telegram off time</td>
<td>Min: 0</td>
<td>Def: 0</td>
<td>65535</td>
<td>3</td>
</tr>
<tr>
<td>CStat: CT</td>
<td>Datatype: U16</td>
<td>Unit: ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines a time T_{off} after which a fault will be generated (F0070) if no telegram is received via the USS channels.

Index:
- P2014[0] : Serial interface COM link

Notice:
By default (time set to 0), no fault is generated (i.e. watchdog disabled).

r2015

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMM</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays process data received via USS on BOP link (RS232 USS).

Index:
- r2015[0] : Received word 0
- r2015[1] : Received word 1
- r2015[2] : Received word 2
- r2015[3] : Received word 3

Note:
The control words can be viewed as bit parameters r2032 and r2033.

P2016

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min: 0.0</th>
<th>Def: 52.0</th>
<th>Max: 4000.0</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2016[4]</td>
<td>Cl: PZD to BOP link (USS)</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CStat: CT</td>
<td>Datatype: U32</td>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selects signals to be transmitted to serial interface via BOP link.

Example:
P2016[0] = 52.0 (default). In this case, the value of r0052[0] (CO/BO: Status word) is transmitted as 1st PZD to the BOP link.

Index:
- P2016[0] : Transmitted word 0
- P2016[1] : Transmitted word 1
- P2016[2] : Transmitted word 2
- P2016[3] : Transmitted word 3

Note:
If r0052 not indexed, display does not show an index (".0").

r2018

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: COMM</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays process data received via USS on COM link.

Index:
- r2018[0] : Received word 0
- r2018[1] : Received word 1
- r2018[2] : Received word 2
- r2018[3] : Received word 3

Note:
The control words can be viewed as bit parameters r2032 and r2033.

P2019

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min: 0.0</th>
<th>Def: 52.0</th>
<th>Max: 4000.0</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Datatype: U32</td>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index:
- P2019[0] : Transmitted word 0
- P2019[1] : Transmitted word 1

Details:
See r2016 (PZD to BOP link)

r2024

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2024[2]</td>
<td>USS error-free telegrams</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>P-Group: COMM</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of error-free USS telegrams received.

Index:
- r2024[0] : Serial interface COM link
- r2024[1] : Serial interface BOP link
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2025[2]</td>
<td>USS rejected telegrams</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2026[2]</td>
<td>USS character frame error</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2027[2]</td>
<td>USS overrun error</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2028[2]</td>
<td>USS parity error</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2029[2]</td>
<td>USS start not identified</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2030[2]</td>
<td>USS BCC error</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2031[2]</td>
<td>USS length error</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Datatype</td>
<td>Unit</td>
<td>Min</td>
<td>Def</td>
<td>Max</td>
<td>Level</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>r2032 BO: CtrlWrd1 from BOP link (USS)</td>
<td>Displays control word 1 from BOP link (word 1 within USS).</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Bitfields:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 00</td>
<td>ON/OFF1</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 01</td>
<td>OFF2: Electrical stop</td>
<td>0</td>
<td>YES</td>
<td>1</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 02</td>
<td>OFF3: Fast stop</td>
<td>0</td>
<td>YES</td>
<td>1</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 03</td>
<td>Pulse enable</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 04</td>
<td>RFG enable</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 05</td>
<td>RFG start</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 06</td>
<td>Setpoint enable</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 07</td>
<td>Fault acknowledge</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 08</td>
<td>JOG right</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 09</td>
<td>JOG left</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 10</td>
<td>Control from PLC</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 11</td>
<td>Reverse (setpoint inversion)</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 12</td>
<td>Motor potentiometer MOP up</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 13</td>
<td>Motor potentiometer MOP down</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 14</td>
<td>Local / Remote</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2033 BO: CtrlWrd2 from BOP link (USS)</td>
<td>Displays control word 2 from BOP link (i.e. word 4 within USS)</td>
<td>U16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Bitfields:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 00</td>
<td>Fixed frequency Bit 0</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 01</td>
<td>Fixed frequency Bit 1</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 02</td>
<td>Fixed frequency Bit 2</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 03</td>
<td>PID enabled</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 04</td>
<td>DC brake enabled</td>
<td>0</td>
<td>NO</td>
<td>1</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 05</td>
<td>External fault 1</td>
<td>0</td>
<td>YES</td>
<td>1</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependency:
P0700 = 5 (USS on COM link) and P0719 = 0 (Cmd / Setpoint = BICO parameter).
BO: CtrlWrd1 from COM link (USS)

Parameter List

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2036</td>
<td>Displays control word 1 from COM link (i.e. word 1 within USS)</td>
<td>U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Bitfields:

- **Bit00** ON/OFF1
- **Bit01** OFF2: Electrical stop
- **Bit02** OFF3: Fast stop
- **Bit03** Pulse enable
- **Bit04** RFG enable
- **Bit05** RFG start
- **Bit06** Setpoint enable
- **Bit07** Fault acknowledge
- **Bit08** JOG right
- **Bit09** JOG left
- **Bit10** Control from PLC
- **Bit11** Reverse (setpoint inversion)
- **Bit12** Motor potentiometer MOP up
- **Bit13** Motor potentiometer MOP down
- **Bit14** Local / Remote

Details:
See r2033 (control word 2 from BOP link)

BO: CtrlWrd2 from COM link (USS)

Parameter List

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2037</td>
<td>Displays control word 2 from COM link (i.e. word 4 within USS)</td>
<td>U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Bitfields:

- **Bit00** Fixed frequency Bit 0
- **Bit01** Fixed frequency Bit 1
- **Bit02** Fixed frequency Bit 2
- **Bit08** PID enabled
- **Bit09** DC brake enabled
- **Bit13** External fault 1

Details:
See r2033 (control word 2 from BOP link)

P2040 CB telegram off time

Parameter List

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2040</td>
<td>Defines time after which a fault will be generated if no telegram is received via the link (SOL). Setting 0 = watchdog disabled</td>
<td>U16</td>
<td>ms</td>
<td>0</td>
<td>20</td>
<td>65535</td>
<td>3</td>
</tr>
</tbody>
</table>

Dependency:
Setting 0 = watchdog disabled
P2041[5]
CB parameter
- **CStat:** CT
- **Datatype:** U16
- **Unit:** -
- **Def:** 0
- **P-Group:** COMM
- **Active:** Immediately
- **QuickComm. No**
- **Max:** 65535

<table>
<thead>
<tr>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Min: 0

Details: Configures a communication board (CB).

Index:
- P2041[0]: CB parameter 0
- P2041[1]: CB parameter 1
- P2041[2]: CB parameter 2
- P2041[3]: CB parameter 3
- P2041[4]: CB parameter 4

See relevant communication board manual for protocol definition and appropriate settings.

r2050[4]
CO: PZD from CB
- **Datatype:** U16
- **Unit:** -
- **Def:** -
- **P-Group:** COMM
- **Max:** -

Index:
- r2050[0]: Received word 0
- r2050[1]: Received word 1
- r2050[2]: Received word 2
- r2050[3]: Received word 3

Note: The control words can be viewed as bit parameters r2032 and r2033.

P2051[4]
Ci: PZD to CB
- **CStat:** CT
- **Datatype:** U32
- **Unit:** -
- **Def:** 52:0
- **P-Group:** COMM
- **Active:** first confirm
- **QuickComm. No**
- **Max:** 4000:0

Min: 0:0

Details: Connects PZD to CB.

Settings:
- Status word 1 = 52
- CO/BO: Act. status word 1 (see r0052)
- Actual value 1 = 21 inverter output frequency (see r0021)

Other BICO settings are possible

Index:
- P2051[0]: Transmitted word 0
- P2051[1]: Transmitted word 1
- P2051[2]: Transmitted word 2
- P2051[3]: Transmitted word 3

r2053[5]
CB identification
- **Datatype:** U16
- **Unit:** -
- **Def:** -
- **P-Group:** COMM
- **Max:** -

Min: -

Details: Displays identification data of the communication board (CB). The different CB types (r2035[0]) are given in the Enum declaration.

Enum:
- 0: No CB option board
- 1: PROFIBUS DP
- 2: DeviceNet
- 56: not defined

Index:
- r2053[0]: CB type (PROFIBUS = 1)
- r2053[1]: Firmware version
- r2053[2]: Firmware version detail
- r2053[3]: Firmware date (year)
- r2053[4]: Firmware date (day/month)

r2054[7]
CB diagnosis
- **Datatype:** U16
- **Unit:** -
- **Def:** -
- **P-Group:** COMM
- **Max:** -

Min: -

Details: Displays diagnostic information of communication board (CB).

Index:
- r2054[0]: CB diagnosis 0
- r2054[1]: CB diagnosis 1
- r2054[2]: CB diagnosis 2
- r2054[3]: CB diagnosis 3
- r2054[4]: CB diagnosis 4
- r2054[5]: CB diagnosis 5
- r2054[6]: CB diagnosis 6

See relevant communications board manual.
BO: Control word 1 from CB

Parameter List

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays control word 1 received from communication board (CB).

Bitfields:

- **Bit00** ON/OFF1
 - 0 NO
 - 1 YES
- **Bit01** OFF2: Electrical stop
 - 0 NO
 - 1 YES
- **Bit02** OFF3: Fast stop
 - 0 NO
 - 1 YES
- **Bit03** Pulse enable
 - 0 NO
 - 1 YES
- **Bit04** RFG enable
 - 0 NO
 - 1 YES
- **Bit05** RFG start
 - 0 NO
 - 1 YES
- **Bit06** Setpoint enable
 - 0 NO
 - 1 YES
- **Bit07** Fault acknowledge
 - 0 NO
 - 1 YES
- **Bit08** JOG right
 - 0 NO
 - 1 YES
- **Bit09** JOG left
 - 0 NO
 - 1 YES
- **Bit10** Control from PLC
 - 0 NO
 - 1 YES
- **Bit11** Reverse (setpoint inversion)
 - 0 NO
 - 1 YES
- **Bit12** Motor potentiometer MOP up
 - 0 NO
 - 1 YES
- **Bit13** Motor potentiometer MOP down
 - 0 NO
 - 1 YES
- **Bit14** Local / Remote
 - 0 NO
 - 1 YES

Details:

See relevant communication board manual for protocol definition and appropriate settings

BO: Control word 2 from CB

Parameter List

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays control word 2 received from communication board (CB).

Bitfields:

- **Bit00** Fixed frequency Bit 0
 - 0 NO
 - 1 YES
- **Bit01** Fixed frequency Bit 1
 - 0 NO
 - 1 YES
- **Bit02** Fixed frequency Bit 2
 - 0 NO
 - 1 YES
- **Bit08** PID enabled
 - 0 NO
 - 1 YES
- **Bit09** DC brake enabled
 - 0 NO
 - 1 YES
- **Bit13** External fault 1
 - 0 YES
 - 1 NO

Details:

See relevant communication board manual for protocol definition and appropriate settings

P2100[3] Alarm number selection

Parameter List

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 65535</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>ALARMS</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selects up to 3 faults or warnings for non-default reactions.

Example:

If you want F0005 to perform an OFF3 instead of an OFF2, set P2100[0] = 5, then select the desired reaction in P2101[0] (in this case, set P2101[0] = 3).

Note:

All fault codes have a default reaction to OFF2. Some fault codes caused by hardware trips (e.g. overcurrent) cannot be changed from the default reactions.
P2101 [3] Stop reaction value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Def.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: ALARMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets drive stop reaction values for fault selected by P2100 (alarm number stop reaction).

This indexed parameter specifies the special reaction to the faults/warnings defined in P2100 indices 0 to 2.

Enum:
- 0: No reaction, no display
- 1: OFF1 stop reaction
- 2: OFF2 stop reaction
- 3: OFF3 stop reaction
- 4: No reaction warning only

Note:
- Settings 0 - 3 only are available for fault codes
- Settings 0 and 4 only are available for warnings

Index 0 (P2101) refers to fault/warning in index 0 (P2100)

P2103 BI: 1. Faults acknowledgement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Def.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>0:0</td>
<td>722:2</td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max: 4000:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines source of fault acknowledgement, e.g. keypad/DIN, etc. (depending on setting).

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

P2104 BI: 2. Faults acknowledgement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Def.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>0:0</td>
<td>0:0</td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max: 4000:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selects second source of fault acknowledgement.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

P2106 BI: External fault

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Def.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>0:0</td>
<td>1:0</td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: COMMANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max: 4000:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selects source of external faults.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

r2110 [4] Warning number

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Def.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: ALARMS</td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays warning information.

A maximum of 2 active warnings (indices 0 and 1) and 2 historical warnings (indices 2 and 3) may be viewed.

Index:
- r2110[0] : Recent Warnings --, warning 1
- r2110[1] : Recent Warnings --, warning 2
- r2110[2] : Recent Warnings -1, warning 3
- r2110[3] : Recent Warnings -1, warning 4

Note:
- The keypad will flash while a warning is active. The LEDs indicate the warning status in this case.
- If an AOP is in use, the display will show number and text of the active warning.
- Indices 0 and 1 are not stored.

P2111 Total number of warnings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Def.</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Datatype: U16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit: -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Group: ALARMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active: Immediately</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays number of warning (up to 4) since last reset. Set to 0 to reset the warning history.
Run time counter

- **Parameter:** r2114[2]
- **Data type:** U16
- **Unit:** -
- **Min:** -
- **Def:** -
- **Max:** -
- **Level:** 3

P-Group: ALARMS

Displays run time counter

Details:
See P0948 (fault time)

AOP real time clock

- **Parameter:** P2115[3]
- **Data type:** U16
- **Unit:** -
- **Min:** 0
- **Def:** 0
- **Max:** 65535
- **Level:** 3

P-Group: ALARMS

Displays AOP real time.

Details:
See P0948 (fault time)

Indication counter

- **Parameter:** P2120
- **Data type:** U16
- **Unit:** -
- **Min:** 0
- **Def:** 0
- **Max:** 65535
- **Level:** 4

P-Group: ALARMS

Indicates total number of alarm events. This parameter is incremented whenever an alarm event occurs.

Details:
See P0948 (fault time)

Hysteresis frequency f_{hys}

- **Parameter:** P2150
- **Data type:** Float
- **Unit:** Hz
- **Min:** 0.00
- **Def:** 3.00
- **Max:** 10.00
- **Level:** 3

P-Group: ALARMS

Defines hysteresis level applied for comparing frequency and speed to threshold as illustrated in the diagrams below.

Details:
See P0948 (fault time)

Diagrams:

1. **n_{act} > 0**
 - $n_{act} > 0$
 - $|n_{act}| > |n_{set}|$
 - $n_{act} <,> n_{x}$

2. **Hysteresis Diagram**
 - n_{act} vs n_{set}
 - $|n_{filtered}| <= n_{min}$
 - $|n_{filtered}| <= n_{1}$
 - $|n_{filtered}| > n_{1}$
P2155 Threshold frequency \(f_{\text{1}} \) Min: 0.00 Level: 3

CStat: CUT Datatype: Float Unit: Hz Def: 30.00

P-Group: ALARMS Active: first confirm QuickComm. No Max: 650.00

Sets a threshold for comparing actual speed or frequency to threshold values \(f_{\text{1}} \).
This threshold controls status bits 4 and 6 in status word 2 (r0053).

Details:
See diagram in P2150 (hysteresis frequency \(f_{\text{hys}} \))

P2156 Delay time of threshold freq \(f_{\text{1}} \) Min: 0 Level: 3

CStat: CUT Datatype: U16 Unit: ms Def: 10

P-Group: ALARMS Active: first confirm QuickComm. No Max: 10000

Sets delay time prior to threshold frequency \(f_{\text{1}} \) comparison (P2155).

Details:
See diagram in P2150 (hysteresis frequency \(f_{\text{hys}} \))

P2164 Hysteresis frequency deviation Min: 0.00 Level: 3

CStat: CUT Datatype: Float Unit: Hz Def: 3.00

P-Group: ALARMS Active: first confirm QuickComm. No Max: 10.00

Hysteresis frequency for detecting permitted deviation (from setpoint) or frequency or speed. This frequency controls bit 8 in status word 1 (P0052) and bit 6 in status word 2 (P0053)

\[
\text{n_act} = \text{n_set}
\]

P2167 Switch-off frequency \(f_{\text{off}} \) Min: 0.00 Level: 3

CStat: CUT Datatype: Float Unit: Hz Def: 1.00

P-Group: ALARMS Active: first confirm QuickComm. No Max: 10.00

Sets frequency threshold below which inverter switches off.

If the frequency falls below this threshold, bit 1 in status word 2 (r0053) is set.

\[
| \text{n_act} | < \text{n_off}
\]

Dependency:
Switched off only if OFF1 or OFF3 active.

P2168 Delay time \(T_{\text{off}} \) Min: 0 Level: 3

CStat: CUT Datatype: U16 Unit: ms Def: 10

P-Group: ALARMS Active: first confirm QuickComm. No Max: 10000

Defines time for which the inverter may operate below switch-off frequency (P2167) before switch off occurs.

Dependency:
Active if holding brake (P1215) not parameterized.

Details:
See diagram in P2167 (switch-off frequency)
P2170 Threshold current I_thresh

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
</tr>
<tr>
<td>Datatype:</td>
<td>Float</td>
</tr>
<tr>
<td>Unit:</td>
<td>%</td>
</tr>
<tr>
<td>Def:</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Level: 3

 Defines threshold current in [%] relative to P0305 (rated motor current) to be used in comparisons of I_act and I_Thresh as illustrated in the diagram below.

<table>
<thead>
<tr>
<th>I_act></th>
<th>I_thresh</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Note:
This threshold controls bit 3 in status word 3 (P0053).

P2171 Delay time current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
</tr>
<tr>
<td>Unit:</td>
<td>ms</td>
</tr>
<tr>
<td>Def:</td>
<td>10</td>
</tr>
</tbody>
</table>

Level: 3

 Defines delay time prior to activation of current comparison.

Details:
See diagram in P2170 (threshold current I_thresh).

P2172 Threshold DC-link voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
</tr>
<tr>
<td>Unit:</td>
<td>V</td>
</tr>
<tr>
<td>Def:</td>
<td>800</td>
</tr>
</tbody>
</table>

Level: 3

 Defines DC link voltage to be compared to actual voltage as illustrated in the diagram below.

| Vdc_act\!<,\> Vdc_thresh |
|---|---|
| 0 | 1 |

Note:
This voltage controls bits 7 and 8 in status word 3 (P0053).

P2173 Delay time DC-link voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat:</td>
<td>CUT</td>
</tr>
<tr>
<td>Datatype:</td>
<td>U16</td>
</tr>
<tr>
<td>Unit:</td>
<td>ms</td>
</tr>
<tr>
<td>Def:</td>
<td>10</td>
</tr>
</tbody>
</table>

Level: 3

 Defines delay time prior to activation of threshold comparison.

Details:
See diagram in P2172 (threshold DC-link voltage)
P2179
Current limit for no load ident.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Data type: Float</td>
<td>0.0</td>
<td>3.0</td>
<td>10.0</td>
<td>3</td>
</tr>
<tr>
<td>P-Group: ALARMS</td>
<td>Active: first confirm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Threshold current for A0922 (load missing) in [%] relative to P0305 (rated motor current) as illustrated in the diagram below.

Note:
It may be that the motor is not connected (load missing) or a phase could be missing.

Notice:
If a motor setpoint cannot be entered and the current limit (P2179) is not exceeded, Alarm A0922 (no load applied) is issued when delay time (P2180) expires.

P2180
Delay time for no load ident.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: U16</td>
<td>0</td>
<td>2000</td>
<td>10000</td>
<td>3</td>
</tr>
<tr>
<td>P-Group: ALARMS</td>
<td>Active: first confirm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Delay time load missing

Note:
It may be that the motor is not connected (load missing) or a phase could be missing.

Notice:
If a motor setpoint cannot be entered and the current limit (P2179) is not exceeded, Alarm A0922 (no load applied) is issued when delay time (P2180) expires.

Details:
See diagram in P2179 (current limit for no load identification)
r2197 CO/BO: Monitoring word 1

Datatype: U16 Unit: - Min: - Def: - Max: - Level: 2

Bitfields:

- **Bit00**: Act. freq. r0024 <= P1080 0 NO 1 YES
- **Bit01**: Act. freq. r0024 <= P2155 0 NO 1 YES
- **Bit02**: Act. freq. r0024 > P2155 0 NO 1 YES
- **Bit03**: Act. freq. r0024 > zero 0 NO 1 YES
- **Bit04**: Act. freq. r0024 >= setp. 0 NO 1 YES
- **Bit05**: Act. freq. r0024 <= P2167 0 NO 1 YES
- **Bit06**: Act. freq. r0024 >= P1082 0 NO 1 YES
- **Bit07**: Act. freq. r0024 == setp. 0 NO 1 YES
- **Bit08**: Act. current r0027 >= P2170 0 NO 1 YES
- **Bit09**: Act. unfilt. Vdc < P2172 0 NO 1 YES
- **Bit10**: Act. unfilt. Vdc > P2172 0 NO 1 YES
- **Bit11**: No load condition 0 NO 1 YES

Monitoring word 1 which indicates the state of monitor functions. Each bit represents one monitor function.

P2200 BI: Enable PID controller

Datatype: U32 Unit: - Min: 0:0 Def: 0:0 Max: 4000:0 Level: 2

PID mode Allows user to enable/disable the PID controller. Setting to 1 enables the PID closed-loop controller.

Dependency:

- Setting 1 automatically disables normal ramp times set in P1120 and P1121 and the normal frequency setpoints.

Following an OFF1 or OFF3 command, however, the inverter frequency will ramp down to zero using the ramp time set in P1121 (P1135 for OFF3).

Note:

- The PID setpoint source is selected using P2253. The PID setpoint and the PID feedback signal are interpreted as [%] values (not [Hz]). The output of the PID controller is displayed as [%] and then normalized into [Hz] through P2000 (reference frequency) when PID is enabled.

In level 3, the PID controller source enable can also come from the digital inputs in settings 722.0 to 722.2 for DIN1 to DIN3 or from any other BiCo source.

Notice:

- The minimum and maximum motor frequencies (P1080 and P1082) as well as the skip frequencies (P1091 to P1094) remain active on the inverter output. However, enabling skip frequencies with PID control can produce instabilities.
In addition, you can set any of the digital input parameters to Fixed PID Setpoint via the digital inputs (P0701 - P0703).

There are three selection modes for the PID fixed setpoint:
1 Direct selection (P0701 = 15 or P0702 = 15, etc.)
 In this mode of operation, 1 digital input selects one PID fixed setpoint.
2 Direct selection with ON command (P0701 = 16 or P0702 = 16, etc.)
 Description as for 1), except that this type of selection issues an ON command concurrent with any setpoint selection.
3 Binary Coded Decimal selection (P0701 - P0703 = 17)
 Using this method to select the PID Fixed Setpoint allows you to choose up to 7 different PID setpoints. The setpoints are selected according to the following table:

<table>
<thead>
<tr>
<th>DIN3</th>
<th>DIN2</th>
<th>DIN1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2201</td>
<td>FF1</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2202</td>
<td>FF2</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2203</td>
<td>FF3</td>
<td>Inactive</td>
</tr>
<tr>
<td>P2204</td>
<td>FF4</td>
<td>Active</td>
</tr>
<tr>
<td>P2205</td>
<td>FF5</td>
<td>Active</td>
</tr>
<tr>
<td>P2206</td>
<td>FF6</td>
<td>Active</td>
</tr>
<tr>
<td>P2207</td>
<td>FF7</td>
<td>Active</td>
</tr>
</tbody>
</table>

Dependency:
P2000 = 1 required in user access level 2 to enable setpoint source.

In mode 1 (above):
ON command required to start motor (enable pulses).

In mode 2 (above):
If inputs programmed to PID fixed setpoint and selected together, the selected setpoints are summed.

Note:
You may mix different types of frequencies; however, remember that they will be summed if selected together.

P2201 = 100 % corresponds to 4000 hex
P2205 **Fixed PID setpoint 5**

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Min: -200.00</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>200.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines Fixed PID Setpoint 5

Details:
See P2201 (Fixed PID Setpoint 1).

P2206 **Fixed PID setpoint 6**

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Min: -200.00</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>200.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines Fixed PID Setpoint 6

Details:
See P2201 (Fixed PID Setpoint 1).

P2207 **Fixed PID setpoint 7**

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Min: -200.00</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>200.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines Fixed PID Setpoint 7

Details:
See P2201 (Fixed PID Setpoint 1).

P2216 **Fixed PID setpoint mode - Bit 0**

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: 1</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fixed frequencies for PID setpoint can be selected in three different modes. Parameter P1016 defines the mode of selection Bit 0.

Enum:
1 Direct selection
2 Direct selection + ON command
3 Binary coded selection + ON command

P2217 **Fixed PID setpoint mode - Bit 1**

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: 1</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BCD or direct selection Bit 1 for PID setpoint.

Enum:
1 Direct selection
2 Direct selection + ON command
3 Binary coded selection + ON command

P2218 **Fixed PID setpoint mode - Bit 2**

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Min: 1</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BCD or direct selection Bit 2 for PID setpoint.

Enum:
1 Direct selection
2 Direct selection + ON command
3 Binary coded selection + ON command

P2220 **BI: Fixed PID setp. select Bit 0**

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Min: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>4000:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines command source of fixed PID setpoint selection Bit 0

Settings:
722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

P2221 **BI: Fixed PID setp. select Bit 1**

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Min: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active:</td>
<td>Immediately</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max:</td>
<td>4000:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defines command source of fixed PID setpoint selection Bit 1

Settings:
722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
Version B1

MM420 Parameter List

P2222 BI: Fixed PID setp. select Bit 2

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Def: 0:0</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 4000:0</td>
<td></td>
</tr>
</tbody>
</table>

Defines command source of fixed PID setpoint selection Bit 2

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)

r2224 CO: Act. fixed PID setpoint

<table>
<thead>
<tr>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Min: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TECH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays total output of PID fixed setpoint selection.

Note:
r2224 = 100 % corresponds to 4000 hex

P2231 Setpoint memory of PID-MOP

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 0</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
<td></td>
</tr>
</tbody>
</table>

Setpoint memory

Enum:
- 0: PID-MOP setpoint will not be stored
- 1: PID-MOP setpoint will be stored (P2240 is updated)

Dependency:
- If 0 selected, setpoint returns to value set in P2240 (setpoint of PID-MOP) after an OFF command
- If 1 is selected, active setpoint is 'remembered' and P2240 updated with current value.

Details:
- See P2240 (setpoint of PID-MOP)

P2232 Inhibit rev. direct. of PID-MOP

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U16</th>
<th>Unit: -</th>
<th>Def: 1</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 1</td>
<td></td>
</tr>
</tbody>
</table>

Inhibits reverse setpoint selection when PID motor potentiometer is chosen either as a main setpoint of additional setpoint (using P1000)

Enum:
- 0: Reserve direction is allowed
- 1: Reserve direction inhibited

Note:
- Setting 0 enables a change of motor direction using the motor potentiometer setpoint (increase/decrease frequency either by using digital inputs or motor potentiometer up/down buttons.

P2235 BI: Enable PID-MOP (UP-cmd)

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Def: 19:13</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 4000:0</td>
<td></td>
</tr>
</tbody>
</table>

Defines source of UP command.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 19.D = Keypad UP cursor

P2236 BI: Enable PID-MOP (DOWN-cmd)

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CT</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Def: 19:14</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>COMMANDS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 4000:0</td>
<td></td>
</tr>
</tbody>
</table>

Defines source of DOWN command.

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)
- 19.E = Keypad DOWN cursor
P2240 Setpoint of PID-MOP

<table>
<thead>
<tr>
<th>Stat:</th>
<th>C</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: 10.00</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td>Max: 200.00</td>
<td></td>
</tr>
</tbody>
</table>

Setpoint of the motor potentiometer.

Allows user to set a digital PID setpoint in [%].

Settings:
- 722.0 = Digital input 1 (requires P0701 to be set to 99, BICO)
- 722.1 = Digital input 2 (requires P0702 to be set to 99, BICO)
- 722.2 = Digital input 3 (requires P0703 to be set to 99, BICO)
- 722.3 = Digital input 4 (via analog input, requires P0704 to be set to 99)

19.D = Keypad UP cursor

Dependency:
To change setpoint:
1. Use UP / DOWN key on BOP or
2. Set P0702/P0703 = 13/14 (function of digital inputs 2 and 3)

Note:
- P2240 = 100 % corresponds to 4000 hex

r2250 CO: Output setpoint of PID-MOP

<table>
<thead>
<tr>
<th>Stat:</th>
<th>C</th>
<th>Datatype: Float</th>
<th>Unit: %</th>
<th>Def: -</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 4000.0</td>
<td></td>
</tr>
</tbody>
</table>

Displays output setpoint of motor potentiometer in [%].

Note:
r2250 = 100 % corresponds to 4000 hex

P2253 CI: PID setpoint

<table>
<thead>
<tr>
<th>Stat:</th>
<th>C</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Def: 0.0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 4000.0</td>
<td></td>
</tr>
</tbody>
</table>

Defines setpoint source for PID setpoint input.

This parameter allows the user to select the source of the PID setpoint. Normally, a digital setpoint is selected either using a fixed PID setpoint or an active setpoint.

Settings:
- 755 = Analog input 1
- 2224 = Fixed PI setpoint (see P2201 to P2207)
- 2250 = Active PI setpoint (see P2240)

P2254 CI: PID trim source

<table>
<thead>
<tr>
<th>Stat:</th>
<th>C</th>
<th>Datatype: U32</th>
<th>Unit: -</th>
<th>Def: 0.0</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td>Max: 4000.0</td>
<td></td>
</tr>
</tbody>
</table>

Selects trim source for PID setpoint. This signal is multiplied by the trim gain and added to the PID setpoint.

Settings:
- 755 = Analog input 1
- 2224 = Fixed PI setpoint (see P2201 to P2207)
- 2250 = Active PI setpoint (see P2240)
P2255 PID setpoint gain factor

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: -</th>
<th>Def: 100.00</th>
<th>Max: 100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gain factor for PID setpoint. The trim input is multiplied by this gain factor to produce a suitable ratio between setpoint and trim.

P2256 PID trim gain factor

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: -</th>
<th>Def: 100.00</th>
<th>Max: 100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gain factor for PID trim. This gain factor scales the trim signal, which is added to the main PID setpoint.

P2257 Ramp-up time for PID setpoint

<table>
<thead>
<tr>
<th>CStat:</th>
<th>CUT</th>
<th>Datatype: Float</th>
<th>Unit: s</th>
<th>Def: 1.00</th>
<th>Max: 650.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group:</td>
<td>TECH</td>
<td>Active: first confirm</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets the ramp-up time for the PID setpoint.

Dependency:
P2200 = 1 (PID control is enabled) disable normal ramp-up time (P1120).

PID ramp time effective only on PID setpoint and only active when PID setpoint is changed or when RUN command is given (when PID uses this ramp to reach its value from 0%).

Notice:
Setting the ramp-up time too short may cause the inverter to trip, on overcurrent for example.
P2258 Ramp-down time for PID setpoint

<table>
<thead>
<tr>
<th>Min: 0.00</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

CStat: CUT
Datatype: Float
Unit: s
Def: 1.00

Sets ramp-down time for PID setpoint.

Dependency:

P2200 = 1 (PID control is enabled) disables normal ramp-up time (P1120).

PID setpoint ramp effective only on PID setpoint changes.

P1121 (ramp-down time) and P1135 (OFF3 ramp-down time) define the ramp times used after OFF1 and OFF2 respectively.

Notice:

Setting the ramp-down time too short can cause the inverter to trip on overvoltage (F0002) / overcurrent (F0001).

r2260 CO: Act. PID setpoint

<table>
<thead>
<tr>
<th>Min: -</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

P-Group: TECH

Displays total active PID setpoint in [%].

Note:

r2260 = 100 % corresponds to 4000 hex

P2261 PID setpoint filter timeconstant

<table>
<thead>
<tr>
<th>Min: 0.00</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

CStat: CUT
Datatype: Float
Unit: s
Def: 0.00

Sets a time constant for smoothing the PID setpoint.

Note:

0 = no smoothing

r2262 CO: Act. PID filtered setpoint

<table>
<thead>
<tr>
<th>Min: -</th>
<th>Level: 3</th>
</tr>
</thead>
</table>

P-Group: TECH

Displays PID setpoint in [%] after smoothing.

Note:

r2262 = 100 % corresponds to 4000 hex

P2264 CI: PID feedback

<table>
<thead>
<tr>
<th>Min: 0.0</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

CStat: CUT
Datatype: U32
Unit: -
Def: 755:0

Selects the source of the PID feedback signal.

Settings:

755 = Analog input 1 setpoint
2224 = Fixed PID setpoint
2250 = Output setpoint of PID-MOP

Note:

When analog input is selected, offset and gain can be implemented using parameters P0756 to P0760.

P2265 PID feedback filter timeconstant

<table>
<thead>
<tr>
<th>Min: 0.00</th>
<th>Level: 2</th>
</tr>
</thead>
</table>

CStat: CUT
Datatype: Float
Unit: s
Def: 0.00

Defines time constant for PID feedback filter.
MICROMASTER 420 Parameter List

r2266 CO: PID filtered feedback
- **Datatype:** Float
- **Unit:** %
- **Min:** -
- **Def:** -
- **Max:** -
- **Level:** 2

Displays PID feedback signal in [%].

Note:
r2266 = 100 % corresponds to 4000 hex

P2267 Max. value for PID feedback
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Min:** -200.00
- **Def:** 100.00
- **Max:** 200.00
- **Level:** 3

Sets the upper limit for the value of the feedback signal in [%].

Note:
P2267 = 100 % corresponds to 4000 hex

Notice:
When PID is enabled (P2200 = 1) and the signal rises above this value, the inverter will trip with F0222.

P2268 Min. value for PID feedback
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** %
- **Min:** -200.00
- **Def:** 0.00
- **Max:** 200.00
- **Level:** 3

Sets lower limit for value of feedback signal in [%].

Note:
P2268 = 100 % corresponds to 4000 hex

Notice:
When PID is enabled (P2200 = 1) and the signal rises above this value, the inverter will trip with F0221.

P2269 Gain applied to PID feedback
- **CStat:** CUT
- **Datatype:** Float
- **Unit:** -
- **Min:** -
- **Def:** 100.00
- **Max:** 500.00
- **Level:** 3

Allows the user to scale the PID feedback as a percentage value [%].

A gain of 100.0 % means that feedback signal has not changed from its default value.

P2270 PID feedback function selector
- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Min:** -
- **Def:** -
- **Max:** 3
- **Level:** 3

Applies mathematical functions to the PID feedback signal, allowing multiplication of the result by P2269 (gain applied to PID feedback).

Enum:
- 0 Disabled
- 1 Square root (\(\sqrt{x}\))
- 2 Square \(x^2\)
- 3 Cube \(x^3\)

P2271 PID tranducer type
- **CStat:** CUT
- **Datatype:** U16
- **Unit:** -
- **Min:** -
- **Def:** -
- **Max:** 1
- **Level:** 2

Allows the user to select the tranducer type for the PID feedback signal.

Value:
- 0: [default] If the feedback signal is less than the PID setpoint, the PID controller will increase motor speed to correct this.
- 1: If the feedback signal is greater than the PID setpoint, the PID controller will reduce motor speed to correct this.

Enum:
- 0 Disabled
- 1 Inversion of PID feedback signal

Notice:
It is essential that you select the correct tranducer type.

If you are unsure whether 0 or 1 is applicable, you can determine the correct type as follows:
- 1 Disable the PID function (P2200 = 0).
- 2 Increase the motor frequency while measuring the feedback signal.
- 3 If the feedback signal increases with an increase in motor frequency, the PID tranducer type should be 0.
- 4 If the feedback signal decreases with an increase in motor frequency the PID tranducer type should be set to 1.

r2272 CO: PID scaled feedback
- **Datatype:** Float
- **Unit:** %
- **Min:** -
- **Def:** -
- **Max:** -
- **Level:** 2

Displays PID scaled feedback signal in [%].

Note:
r2272 = 100 % corresponds to 4000 hex
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2273 CO: PID error</td>
<td>Displays PID error (difference) signal between setpoint and feedback signals in [%].</td>
</tr>
<tr>
<td>P2280 PID proportional gain</td>
<td>Allows user to set proportional gain for PID controller.</td>
</tr>
<tr>
<td>P2285 PID integral time</td>
<td>Sets integral time constant for PID controller.</td>
</tr>
<tr>
<td>P2291 PID output upper limit</td>
<td>Sets upper limit for PID controller output in [%].</td>
</tr>
<tr>
<td>P2292 PID output lower limit</td>
<td>Sets lower limit for the PID controller output in [%].</td>
</tr>
</tbody>
</table>

Diagram:

![PID Control Diagram](image)

For best results, enable both P and I terms.

Dependency:
- If P term = 0, I term acts on the square of the error signal.

Note:
- If the system is prone to sudden step changes in the feedback signal, P term should normally be set to a small value (0.5) with a faster I term for optimum performance.
- The D term (P2274) multiplies the difference between the present and previous feedback signal thus accelerating the controller reaction to an error that appears suddenly.

Notice:
- The D term should be used carefully, since it can cause the controller output to fluctuate as every change in the feedback signal is amplified by the controller derivative action.

Details:
- See P2280 (PID proportional gain).

For best results, enable both P and I terms.

Dependency:
- If P term = 0, I term acts on the square of the error signal.

Note:
- If the system is prone to sudden step changes in the feedback signal, P term should normally be set to a small value (0.5) with a faster I term for optimum performance.
- The D term (P2274) multiplies the difference between the present and previous feedback signal thus accelerating the controller reaction to an error that appears suddenly.

Notice:
- The D term should be used carefully, since it can cause the controller output to fluctuate as every change in the feedback signal is amplified by the controller derivative action.

Details:
- See P2280 (PID proportional gain).

For best results, enable both P and I terms.

Dependency:
- If P term = 0, I term acts on the square of the error signal.

Note:
- If the system is prone to sudden step changes in the feedback signal, P term should normally be set to a small value (0.5) with a faster I term for optimum performance.
- The D term (P2274) multiplies the difference between the present and previous feedback signal thus accelerating the controller reaction to an error that appears suddenly.

Notice:
- The D term should be used carefully, since it can cause the controller output to fluctuate as every change in the feedback signal is amplified by the controller derivative action.

Details:
- See P2280 (PID proportional gain).
P2293 Ramp-up /-down time of PID limit

<table>
<thead>
<tr>
<th>Min: 0.00</th>
<th>Level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: Float</td>
</tr>
<tr>
<td>P-Group: TECH</td>
<td>Active: first confirm</td>
</tr>
</tbody>
</table>

Sets maximum ramp rate on output of PID.

When PI is enabled, the output limits are ramped up from 0 to the limits set in P2291 (PID output upper limit) and P2292 (PID output lower limit). Limits prevent large step changes appearing on the output of the PID when the inverter is started. Once the limits have been reached, the PID controller output is instantaneous.

These ramp times are used whenever a RUN command is issued.

Note:
If an OFF1 or OFF 3 are issued, the inverter output frequency ramps down as set in P1121 (ramp-down time) or P1135 (OFF3 ramp-down time).

r2294 CO: Act. PID output

<table>
<thead>
<tr>
<th>Min: -</th>
<th>Level: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: TECH</td>
<td>Datatype: Float</td>
</tr>
</tbody>
</table>

Displays PID output in [%]

Note:
r2294 = 100 % corresponds to 4000 hex

P3900 End of quick commissioning

<table>
<thead>
<tr>
<th>Min: 0</th>
<th>Level: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: C</td>
<td>Datatype: U16</td>
</tr>
<tr>
<td>P-Group: QUICK</td>
<td>Active: Immediately</td>
</tr>
</tbody>
</table>

Performs calculations necessary for optimized motor operation.

After completion of calculation, P3900 and P0010 (parameter groups for commissioning) are automatically reset to their original value 0.

Enum:
0 No quick commissioning
1 Start quick commissioning with factory reset
2 Start quick commissioning
3 Start quick commissioning only for motor data

Dependency:
Changeable only when P0010 = 1 (quick commissioning)

Note:
When setting 1 is selected, only the parameter settings carried out via the commissioning menu “Quick commissioning”, are retained; all other parameter changes, including the I/O settings, are lost. Motor calculations are also performed.

When setting 2 is selected, only those parameters, which depend on the parameters in the commissioning menu “Quick commissioning” (P0010 = 1) are calculated. The I/O settings are also reset to default and the motor calculations performed.

When setting 3 is selected, only the motor and controller calculations are performed. Exiting quick commissioning with this setting saves time (for example, if only motor rating plate data have been changed).

Calculates a variety of motor parameters, overwriting previous values. These include P0344 (Level 3, motor weight), P0350 (Level 3, demagnetization time), P2000 (reference frequency), P2002 (Level 3, reference current).

P3950 Access of hidden parameter

<table>
<thead>
<tr>
<th>Min: 0</th>
<th>Level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CUT</td>
<td>Datatype: U16</td>
</tr>
<tr>
<td>P-Group: ALWAYS</td>
<td>Active: Immediately</td>
</tr>
</tbody>
</table>

Accesses special parameters for development (expert only) and factory functionality (calibration parameter).
CM version and GUI ID

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>r3954[13]</td>
<td>U16</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Index:
- **r3954[0]**: CM version (major release)
- **r3954[1]**: CM version (minor release)
- **r3954[2]**: CM version (baselevel or patch)
- **r3954[3]**: GUI ID
- **r3954[4]**: GUI ID
- **r3954[5]**: GUI ID
- **r3954[6]**: GUI ID
- **r3954[7]**: GUI ID
- **r3954[8]**: GUI ID
- **r3954[9]**: GUI ID
- **r3954[10]**: GUI ID
- **r3954[11]**: GUI ID major release
- **r3954[12]**: GUI ID minor release

Version for DriveMonitor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>r3955</td>
<td>U16</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Displays the version for DriveMonitor.

Commissioning command selection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Datatype</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3980</td>
<td>U16</td>
<td></td>
<td>-</td>
<td>0</td>
<td>66</td>
</tr>
</tbody>
</table>

Toggles command and setpoint sources between freely programmable BICO parameters and fixed command/setpoint profiles for commissioning.

The command and setpoint sources can be changed independently. The tens digit selects the command source, the ones digit the setpoint source.

Enum:
- **0**: `Cmd = BICO parameter` Setpoint = `BICO parameter`
- **1**: `Cmd = BICO parameter` Setpoint = `MOP setpoint`
- **2**: `Cmd = BICO parameter` Setpoint = `Analog setpoint`
- **3**: `Cmd = BICO parameter` Setpoint = `Fixed frequency`
- **4**: `Cmd = BICO parameter` Setpoint = `USS on BOP link`
- **5**: `Cmd = BICO parameter` Setpoint = `USS on COM link`
- **6**: `Cmd = BICO parameter` Setpoint = `CB on COM link`
- **10**: `Cmd = BOP` Setpoint = `BICO parameter`
- **11**: `Cmd = BOP` Setpoint = `MOP setpoint`
- **12**: `Cmd = BOP` Setpoint = `Analog setpoint`
- **13**: `Cmd = BOP` Setpoint = `Fixed frequency`
- **14**: `Cmd = BOP` Setpoint = `USS on BOP link`
- **15**: `Cmd = BOP` Setpoint = `USS on COM link`
- **16**: `Cmd = BOP` Setpoint = `CB on COM link`
- **40**: `Cmd = USS on BOP link` Setpoint = `BICO parameter`
- **41**: `Cmd = USS on BOP link` Setpoint = `MOP setpoint`
- **42**: `Cmd = USS on BOP link` Setpoint = `Analog setpoint`
- **43**: `Cmd = USS on BOP link` Setpoint = `Fixed frequency`
- **44**: `Cmd = USS on BOP link` Setpoint = `USS on BOP link`
- **45**: `Cmd = USS on BOP link` Setpoint = `USS on COM link`
- **46**: `Cmd = USS on BOP link` Setpoint = `CB on COM link`
- **50**: `Cmd = USS on COM link` Setpoint = `BICO parameter`
- **51**: `Cmd = USS on COM link` Setpoint = `MOP setpoint`
- **52**: `Cmd = USS on COM link` Setpoint = `Analog setpoint`
- **53**: `Cmd = USS on COM link` Setpoint = `Fixed frequency`
- **54**: `Cmd = USS on COM link` Setpoint = `USS on BOP link`
- **55**: `Cmd = USS on COM link` Setpoint = `USS on COM link`
- **56**: `Cmd = USS on COM link` Setpoint = `CB on COM link`
- **60**: `Cmd = CB on COM link` Setpoint = `BICO parameter`
- **61**: `Cmd = CB on COM link` Setpoint = `MOP setpoint`
- **62**: `Cmd = CB on COM link` Setpoint = `Analog setpoint`
- **63**: `Cmd = CB on COM link` Setpoint = `Fixed frequency`
- **64**: `Cmd = CB on COM link` Setpoint = `USS on BOP link`
- **65**: `Cmd = CB on COM link` Setpoint = `USS on COM link`
- **66**: `Cmd = CB on COM link` Setpoint = `CB on COM link`
Version B1
MM420 Parameter List

P3981
Reset active fault
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CStat: CT</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td>Def: 0</td>
<td>Max: 1</td>
<td>4</td>
</tr>
<tr>
<td>P-Group: ALARMS</td>
<td>Active: Immediately</td>
<td>QuickComm. No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resets active faults when changed from 0 to 1.

Enum:
- 0: No fault reset
- 1: Reset fault

Note:
Automatically reset to 0.

Details:
See P0947 (last fault code)

r3986[2]
Number of parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Group: -</td>
<td>Datatype: U16</td>
<td>Unit: -</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Number of parameters on the drive

Index:
r3986[0]: Read only
r3986[1]: Read & write
2 Alarms and Warnings

2.1 MICROMASTER 420 fault messages

In the event of a failure, the inverter switches off and a fault code appears on the display.

NOTE
To reset the fault code, one of three methods listed below can be used:
1. Cycle the power to the drive.
2. Press the button on the BOP or AOP.
3. Via Digital Input 3 (default setting)

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible Causes</th>
<th>Diagnose & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0001</td>
<td>Overcurrent</td>
<td>Check the following:</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td>➢ Motor power does not correspond to the inverter power</td>
<td>1. Motor power (P0307) must correspond to inverter power (P0206)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Motor lead short circuit</td>
<td>2. Cable length limits must not be exceeded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Earth fault</td>
<td>3. Motor cable and motor must have no short-circuits or earth faults</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Motor parameters must match the motor in use</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Value of stator resistance (P0350) must be correct</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Motor must not be obstructed or overloaded</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ Increase the ramp time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ Reduce the boost level</td>
<td></td>
</tr>
<tr>
<td>F0002</td>
<td>Overvoltage</td>
<td>Check the following:</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td>➢ DC-link voltage (r0026) exceeds trip level (P2172)</td>
<td>1. Supply voltage (P0210) must lie within limits indicated on rating plate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Overvoltage can be caused either by too high main supply voltage or if motor is in regenerative mode</td>
<td>2. DC-link voltage controller must be enabled (P1240) and parameterized properly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Regenerative mode can be caused by fast ramp downs or if the motor is driven from an active load</td>
<td>3. Ramp-down time (P1121) must match inertia of load</td>
<td></td>
</tr>
<tr>
<td>F0003</td>
<td>Undervoltage</td>
<td>Check the following:</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td>➢ Main supply failed</td>
<td>1. Supply voltage (P0210) must lie within limits indicated on rating plate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Shock load outside specified limits</td>
<td>2. Supply must not be susceptible to temporary failures or voltage reductions</td>
<td></td>
</tr>
<tr>
<td>F0004</td>
<td>Inverter Over-temperature</td>
<td>Check the following:</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td>➢ Ambient temperature outside of limits,</td>
<td>1. Fan must turn when inverter is running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Fan failure</td>
<td>2. Pulse frequency must be set to default value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Air inlet and outlet points are not obstructed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ambient temperature could be higher than specified for the inverter</td>
<td></td>
</tr>
<tr>
<td>F0005</td>
<td>Inverter I^2t</td>
<td>Check the following:</td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td>➢ Inverter overloaded</td>
<td>1. Load duty cycle must lie within specified limits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Duty cycle too demanding</td>
<td>2. Motor power (P0307) must match inverter power (P0206)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Motor power (P0307) exceeds inverter power capability (P0206)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0011</td>
<td>Motor Over-temperature I^2t</td>
<td></td>
<td>OFF1</td>
</tr>
<tr>
<td></td>
<td>➢ Motor overloaded</td>
<td>1. Check motor data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Motor data incorrect</td>
<td>2. Check loading on motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Long time period operating at low speeds</td>
<td>3. Boost settings too high (P1310, P1311, P1312)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Check parameter for motor thermal time constant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Check parameter for motor I^2t warning level</td>
<td></td>
</tr>
<tr>
<td>F0041</td>
<td>Stator resistance measurement failure</td>
<td></td>
<td>OFF2</td>
</tr>
<tr>
<td></td>
<td>➢ Stator resistance measurement failure</td>
<td>1. Check if the motor is connected to the inverter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check that the motor data has been entered correctly</td>
<td></td>
</tr>
<tr>
<td>Fault</td>
<td>Possible Causes</td>
<td>Diagnose & Remedy</td>
<td>Reaction</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
</tbody>
</table>
| F0051 | Parameter EEPROM Fault Reading or writing of the non-volatile parameter storage has failed | 1. Factory reset and new parameterization
2. Change inverter | OFF2 |
| F0052 | Powerstack Fault Reading of the powerstack information has failed or the data is invalid | Change inverter | OFF2 |
| F0060 | Asic Timeout Internal communications failure | 1. Acknowledge fault
2. Change inverter if repeated | OFF2 |
| F0070 | Communications board setpoint error No setpoint received from communications board during telegram off time | 1. Check connections to the communications board
2. Check the master | OFF2 |
| F0071 | No Data for USS (RS232 link) during Telegram Off Time No response during telegram off time via USS (BOP link) | 1. Check connections to the communications board
2. Check the master | OFF2 |
| F0072 | No Data from USS (RS485 link) during Telegram Off Time No response during telegram off time via USS (COM link) | 1. Check connections to the communications board
2. Check the master | OFF2 |
| F0080 | Analogue input - lost input signal Broken wire
Signal out of limits | Check connection to analogue input | OFF2 |
| F0085 | External Fault External fault is triggered via terminal inputs | Disable terminal input for fault trigger | OFF2 |
| F0101 | Stack Overflow Software error or processor failure 1. Run self test routines
2. Change inverter | | OFF2 |
| F0221 | PI Feedback below minimum value P2268 PID Feedback below minimum value | 1. Change value of P2268
2. Adjust feedback gain | OFF2 |
| F0222 | PI Feedback above maximum value P2267 PID Feedback above maximum value | 1. Change value of P2267
2. Adjust feedback gain | OFF2 |
| F0450 | (Service mode only) BIST Tests Failure Fault value 1 Some of the power section tests have failed 2 Some of the control board tests have failed 4 Some of the functional tests have failed 8 Some of the IO module tests have failed 16 The Internal RAM has failed its check on power-up | 1. Inverter may run but certain actions will not function correctly
2. Replace inverter | OFF2 |
2.2 MICROMASTER 420 alarm messages

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible Causes</th>
<th>Diagnose & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0501 Current Limit</td>
<td>Motor power does not correspond to the inverter power</td>
<td>1. Check whether the motor power corresponds to the inverter power</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Motor leads are too short</td>
<td>2. Check that the cable length limits have not been exceeded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earth faults</td>
<td>3. Check motor cable and motor for short-circuits and earth faults</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Check whether the motor parameters correspond with the motor being used</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Check the stator resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Increase the ramp-up-time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Reduce the boost</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Check whether the motor is obstructed or overloaded</td>
<td></td>
</tr>
<tr>
<td>A0502 Overvoltage</td>
<td>Mains supply too high</td>
<td>1. Check that mains supply voltage is within allowable range</td>
<td>--</td>
</tr>
<tr>
<td>limit</td>
<td>Load regenerative</td>
<td>2. Increase ramp down times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramp-down time too short</td>
<td>Note: Vdc-max controller is active, ramp-down times will be automatically increased</td>
<td></td>
</tr>
<tr>
<td>A0503 Undervoltage</td>
<td>Mains supply too low</td>
<td>Check main supply voltage (P0210)</td>
<td>--</td>
</tr>
<tr>
<td>Limit</td>
<td>Short mains interruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0504 Inverter</td>
<td>Warning level of inverter heat-sink temperature (P0614) is exceeded, resulting</td>
<td>1. Check if ambient temperature is within specified limits</td>
<td>--</td>
</tr>
<tr>
<td>Over-temperature</td>
<td>in pulse frequency reduction and/or output frequency reduction (depending on parametrization in (P0610))</td>
<td>2. Check load conditions and duty cycle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check if fan is turning when drive is running</td>
<td></td>
</tr>
<tr>
<td>A0505 Inverter i²t</td>
<td>Warning level is exceeded; current will be reduced if parameterized (P0610 = 1)</td>
<td>Check if duty cycle are within specified limits</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0506 Inverter Duty</td>
<td>Heatsink temperature and thermal junction model are outside of allowable range</td>
<td>Check if duty cycle are within specified limits</td>
<td>--</td>
</tr>
<tr>
<td>Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0511 Motor Over-</td>
<td>Motor overloaded</td>
<td>Check the following:</td>
<td>--</td>
</tr>
<tr>
<td>temperature i²t</td>
<td></td>
<td>1. P0611 (motor i²t time constant) should be set to appropriate value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. P0614 (Motor i²t overload warning level) should be set to suitable level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Are long periods of operation at low speed occurring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Check that boost settings are not too high</td>
<td></td>
</tr>
<tr>
<td>A0541 Motor Data</td>
<td>Motor data identification (P1910) selected or running</td>
<td>Wait until motor identification is finished</td>
<td>--</td>
</tr>
<tr>
<td>Identification Active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0600 RTOS Overrun</td>
<td>Software error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0700 CB warning 1</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0701 CB warning 2</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0702 CB warning 3</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0703 CB warning 4</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0704 CB warning 5</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0705 CB warning 6</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0706 CB warning 7</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0707 CB warning 8</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0708 CB warning 9</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>A0709 CB warning 10</td>
<td>CB (communication board) specific</td>
<td>See CB user manual</td>
<td>--</td>
</tr>
<tr>
<td>Fault</td>
<td>Possible Causes</td>
<td>Diagnose & Remedy</td>
<td>Reaction</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>A0710 CB communication error</td>
<td>Communication with CB (communication board) is lost</td>
<td>Check CB hardware</td>
<td>--</td>
</tr>
<tr>
<td>A0711 CB configuration error</td>
<td>CB (communication board) reports a configuration error</td>
<td>Check CB parameters</td>
<td>--</td>
</tr>
</tbody>
</table>
| A0910 Vdc-max controller deactivated | Vdc max controller has been deactivated, since controller is not capable of keeping DC-link voltage (r0026) within limits (P2172)
 Occurs if main supply voltage (P0210) is permanently too high
 Occurs if motor is driven by an active load, causing motor to go into regenerative mode
 Occurs at very high load inertias, when ramping down | Check the following:
 1. Input voltage (P0756) lies within range?
 2. Load must match
 In certain cases apply braking resistor | -- |
| A0911 Vdc-max controller active | Vdc max controller is active; so ramp-down times will be increased automatically to keep DC-link voltage (r0026) within limits (P2172) | 1. Check parameter inverter input voltage
 2. Check ramp-down times | -- |
| A0912 Vdc-min controller active | Vdc min controller will be activated if DC-link voltage (r0026) falls below minimum level (P2172)
 The kinetic energy of the motor is used to buffer the DC-link voltage, thus causing deceleration of the drive!
 So short mains failures do not necessarily lead to an undervoltage trip | Analogue input parameters should not be set to the same value as each other | -- |
| A0920 ADC parameters not set properly | ADC parameters should not be set to identical values, since this would produce illogical results.
 Index 0: Parameter settings for output identical
 Index 1: Parameter settings for input identical
 Index 2: Parameter settings for input do not correspond to ADC type | Analogue input parameters should not be set to the same value as each other | -- |
| A0921 DAC parameters not set properly | DAC parameters should not be set to identical values, since this would produce illogical results.
 Index 0: Parameter settings for output identical
 Index 1: Parameter settings for input identical
 Index 2: Parameter settings for output do not correspond to DAC type | Analogue Output parameters should not be set to the same value as each other | -- |
| A0922 No load applied to inverter | No Load is applied to the inverter
 As a result, some functions may not work as under normal load conditions
 Low output voltage eg when 0 boost applied at 0 Hz | 1. Check that load is applied to the inverter
 2. Check motor parameters correspond to motor attached
 3. As a result, some functions may not work correctly, because there is no normal load condition | -- |
| A0923 Both JOG Left and JOG Right are requested | Both JOG right and JOG left (P1055/P1056) have been requested. This freezes the RFG output frequency at its current value. JOG right and JOG left signals active together | Make sure that JOG right and JOG left signals are not applied simultaneously | -- |
Suggestions and/or Corrections

To
Siemens AG
Automation & Drives
Group
SD VM 4
P.O. Box 3269

D-91050 Erlangen
Federal Republic of Germany

<table>
<thead>
<tr>
<th>Suggestions for technical documentation</th>
<th>User Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>Issue: Version B1</td>
</tr>
<tr>
<td>Name:</td>
<td>Should you come across any printing errors when reading this publication, please notify us on this sheet. Suggestions for improvement are also welcome.</td>
</tr>
<tr>
<td>Company/Service Department</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Phone: ______ / ______________________</td>
<td></td>
</tr>
<tr>
<td>Fax: ______ / ________________________</td>
<td></td>
</tr>
</tbody>
</table>

For Publication/Manual:
MICROMASTER 420
Parameter List