

Industry Online Support

4

-

NEWS

SIMIT-Komponenten zur Simulation von fehlersicheren Modulen der S7-1500 / ET 200MP / ET 200SP

SIMIT / Simulation / Safety Integrated

https://support.industry.siemens.com/cs/ww/de/view/109771692

Rechtliche Hinweise

Nutzung der Anwendungsbeispiele

In den Anwendungsbeispielen wird die Lösung von Automatisierungsaufgaben im Zusammenspiel mehrerer Komponenten in Form von Text, Grafiken und/oder Software-Bausteinen beispielhaft dargestellt. Die Anwendungsbeispiele sind ein kostenloser Service der Siemens AG und/oder einer Tochtergesellschaft der Siemens AG ("Siemens"). Sie sind unverbindlich und erheben keinen Anspruch auf Vollständigkeit und Funktionsfähigkeit hinsichtlich Konfiguration und Ausstattung. Die Anwendungsbeispiele stellen keine kundenspezifischen Lösungen dar, sondern bieten lediglich Hilfestellung bei typischen Aufgabenstellungen. Sie sind selbst für den sachgemäßen und sicheren Betrieb der Produkte innerhalb der geltenden Vorschriften verantwortlich und müssen dazu die Funktion des jeweiligen Anwendungsbeispiels überprüfen und auf Ihre Anlage individuell anpassen.

Sie erhalten von Siemens das nicht ausschließliche, nicht unterlizenzierbare und nicht übertragbare Recht, die Anwendungsbeispiele durch fachlich geschultes Personal zu nutzen. Jede Änderung an den Anwendungsbeispielen erfolgt auf Ihre Verantwortung. Die Weitergabe an Dritte oder Vervielfältigung der Anwendungsbeispiele oder von Auszügen daraus ist nur in Kombination mit Ihren eigenen Produkten gestattet. Die Anwendungsbeispiele unterliegen nicht zwingend den üblichen Tests und Qualitätsprüfungen eines kostenpflichtigen Produkts, können Funktions- und Leistungsmängel enthalten und mit Fehlern behaftet sein. Sie sind verpflichtet, die Nutzung so zu gestalten, dass eventuelle Fehlfunktionen nicht zu Sachschäden oder der Verletzung von Personen führen.

Haftungsausschluss

Siemens schließt seine Haftung, gleich aus welchem Rechtsgrund, insbesondere für die Verwendbarkeit, Verfügbarkeit, Vollständigkeit und Mangelfreiheit der Anwendungsbeispiele, sowie dazugehöriger Hinweise, Projektierungs- und Leistungsdaten und dadurch verursachte Schäden aus. Dies gilt nicht, soweit Siemens zwingend haftet, z.B. nach dem Produkthaftungsgesetz, in Fällen des Vorsatzes, der groben Fahrlässigkeit, wegen der schuldhaften Verletzung des Lebens, des Körpers oder der Gesundheit, bei Nichteinhaltung einer übernommenen Garantie, wegen des arglistigen Verschweigens eines Mangels oder wegen der schuldhaften Verletzung wesentlicher Vertragspflichten. Der Schadensersatzanspruch für die Verletzung wesentlicher Vertragspflichten ist jedoch auf den vertragstypischen, vorhersehbaren Schaden begrenzt, soweit nicht Vorsatz oder grobe Fahrlässigkeit vorliegen oder wegen der Verletzung des Lebens, des Körpers oder der Gesundheit gehaftet wird. Eine Änderung der Beweislast zu Ihrem Nachteil ist mit den vorstehenden Regelungen nicht verbunden. Von in diesem Zusammenhang bestehenden oder entstehenden Ansprüchen Dritter stellen Sie Siemens frei, soweit Siemens nicht gesetzlich zwingend haftet.

Durch Nutzung der Anwendungsbeispiele erkennen Sie an, dass Siemens über die beschriebene Haftungsregelung hinaus nicht für etwaige Schäden haftbar gemacht werden kann.

Weitere Hinweise

Siemens behält sich das Recht vor, Änderungen an den Anwendungsbeispielen jederzeit ohne Ankündigung durchzuführen. Bei Abweichungen zwischen den Vorschlägen in den Anwendungsbeispielen und anderen Siemens Publikationen, wie z. B. Katalogen, hat der Inhalt der anderen Dokumentation Vorrang.

Ergänzend gelten die Siemens Nutzungsbedingungen (https://support.industry.siemens.com).

Securityhinweise

Siemens bietet Produkte und Lösungen mit Industrial Security-Funktionen an, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen.

Um Anlagen, Systeme, Maschinen und Netzwerke gegen Cyber-Bedrohungen zu sichern, ist es erforderlich, ein ganzheitliches Industrial Security-Konzept zu implementieren (und kontinuierlich aufrechtzuerhalten), das dem aktuellen Stand der Technik entspricht. Die Produkte und Lösungen von Siemens formen nur einen Bestandteil eines solchen Konzepts.

Der Kunde ist dafür verantwortlich, unbefugten Zugriff auf seine Anlagen, Systeme, Maschinen und Netzwerke zu verhindern. Systeme, Maschinen und Komponenten sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn und soweit dies notwendig ist und entsprechende Schutzmaßnahmen (z.B. Nutzung von Firewalls und Netzwerk-segmentierung) ergriffen wurden.

Zusätzlich sollten die Empfehlungen von Siemens zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Industrial Security finden Sie unter: https://www.siemens.com/industrialsecurity.

Die Produkte und Lösungen von Siemens werden ständig weiterentwickelt, um sie noch sicherer zu machen. Siemens empfiehlt ausdrücklich, Aktualisierungen durchzuführen, sobald die entsprechenden Updates zur Verfügung stehen und immer nur die aktuellen Produktversionen zu verwenden. Die Verwendung veralteter oder nicht mehr unterstützter Versionen kann das Risiko von Cyber-Bedrohungen erhöhen.

Um stets über Produkt-Updates informiert zu sein, abonnieren Sie den Siemens Industrial Security RSS Feed unter: <u>https://www.siemens.com/industrialsecurity</u>.

Inhaltsverzeichnis

Recl	Rechtliche Hinweise 2					
1	Einführ	ung	4			
	1.1 1.2 1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.4	Überblick Voraussetzungen Funktionsweise F-DI F-DQ F-PME F-AI Verwendete Komponenten	4 5 5 5 5 5			
2	Engine	ering	7			
	$\begin{array}{c} 2.1\\ 2.1.1\\ 2.1.2\\ 2.1.3\\ 2.1.4\\ 2.2\\ 2.3\\ 2.3.1\\ 2.3.2\\ 2.3.3\\ 2.3.4\\ 2.4\\ 2.4.1\\ 2.4.2\\ 2.4.3\\ 2.5\\ 2.5.1\\ 2.5.2\\ 2.6\\ 2.6.1\\ 2.6.2\\ \end{array}$	Schnittstellenbeschreibung FDI FDQ_Feedback und FDQ_Reset FPME FAI_4x Integration ins Anwenderprojekt Bedienung FDI 1oo1 (1v1)-Auswertung 1oo2 (2v2)-Auswertung, äquivalent 1oo2 (2v2)-Auswertung, antivalent Modul-Passivierung Bedienung FDQ Antivalentes Rückführsignal Äquivalentes Rückführsignal Modul-Passivierung Bedienung FPME Parameter "OutputControl" Modul Passivierung Bedienung FAI 1oo1 und 1oo2 Auswertung Modul-Passivierung	7 9 . 11 . 13 . 16 . 17 . 18 . 20 . 21 . 22 . 23 . 24 . 25 . 26 . 27 . 28 . 29 . 31			
3	Anhang]	. 32			
	3.1 3.2 3.3 3.4	Service und Support Industry Mall Links und Literatur Änderungsdokumentation	. 32 . 33 . 33 . 33			

1 Einführung

1.1 Überblick

Für die Realisierung einer virtuellen Inbetriebnahme, muss das Anwenderprogramm in der S7-Steuerung, sowie auch das kinematische Modell (CAD-Modell) simuliert werden. Eine Hürde hierbei ist, dass das CAD-Modell und das Anwenderprogramm unterschiedliche Datenformate benötigen. Um hier eine geeignete Schnittstelle zu liefern, die diese Daten für das jeweilige System aufbereitet, bietet Siemens die Simulationssoftware SIMIT SP. In dieser Simulationssoftware können die verwendeten Systeme über geeignete Kopplungen verbunden werden.

Um eine einfache Anbindung von Safety-Signalen zu ermöglichen, stehen vier SIMIT-Komponenten zur Verfügung. Die Komponenten FDI, FDQ und FAI simulieren das Verhalten der fehlersicheren F-DI, F-DQ und F-AI Baugruppen. Die Komponente FPME simuliert das Verhalten der F-PM-E Baugruppe der ET 200SP. Die fehlersicheren Baugruppen F-DI und F-DQ können zentral an der S7-1500 oder dezentral an einer ET 200SP oder ET 200MP Station verwendet werden.

Abbildung 1-1: Überblick

1.2 Voraussetzungen

Der Nutzer der Komponenten sollte Kenntnisse von SIMIT SP sowie von STEP 7 in TIA Portal inklusive STEP 7 Safety haben.

1.3 Funktionsweise

Die Komponenten wurden mit dem SIMIT CTE (Component Type Editor) erstellt und können mit diesem auch bearbeitet werden.

Bei der Benennung der Komponenteneingänge und -ausgänge steht das Präfix "pv" (process value) für alle Werte, die aus dem Prozess kommen, z. B. dem MCD-Modell. Die Ein- und Ausgänge der Komponenten, die dieses Präfix nicht tragen, dienen zur Anbindung an das Anwenderprogramm der Steuerung.

1.3.1 F-DI

Um die Signale einer fehlersicheren, digitalen Eingangsbaugruppe einfach anbinden zu können, werden zwei Komponenten "FDI_8x" und "FDI_16x" bereitgestellt. Die Funktion der Komponenten unterscheidet sich nur in der Anzahl der Eingänge. So werden 8 oder 16 Eingängen zur Verfügung gestellt.

1.3.2 F-DQ

Um Signale einer fehlersicheren, digitalen Ausgangsbaugruppe einfach anbinden zu können, werden die Komponenten "FDQ" und "FDQ_Reset" bereitgestellt. Die Komponente "FDQ" kann modular eingesetzt werden. Je nach Anzahl der verwendeten fehlsicheren Ausgänge eines Moduls kann die entsprechende Anzahl an Blöcken übereinandergesetzt werden. Den Abschluss dieser Gruppierung bildet die Komponente "FDQ_Reset", die einfach an die unterste der "FDQ"-Komponenten gesetzt. Über den Eingang "pvReset" kann ein Rücksetzen der Komponente (Wiedereingliederung) durchgeführt werden.

1.3.3 F-PME

Die "FPME"-Komponente ist für die Anbindung des ET 200SP F-PM-E-Moduls ausgerichtet und beinhaltet dessen Funktionalität als Ein- und Ausgangsmodul. Die verschiedenen Funktionsbereiche sind sichtbar unterteilt. Der obere Bereich stellt die Werte der F-DI dar, gefolgt vom Bereich des F-DQ. Das Reset-Signal ist ebenfalls getrennt dargestellt, gilt aber für das gesamte Modul. Mit dem Reset-Signal kann die Komponente zurückgesetzt werden (Wiedereingliederung).

1.3.4 F-AI

Um die Signale einer fehlersicheren, analogen Eingangsbaugruppe einfach anbinden zu können, wird die Komponente "FAI_4X" bereitgestellt. Die Komponente unterstützt unterschiedliche Messbereiche. Über den Eingang "pvReset" kann ein Rücksetzen der Komponente (Wiedereingliederung) durchgeführt werden.

1.4 Verwendete Komponenten

Dieses Anwendungsbeispiel wurde mit diesen Hard- und Softwarekomponenten erstellt:

Tabelle 1-1: Verwendete Komponenten

Komponente	Anzahl	Artikelnummer	Hinweis
SIMIT SP	1	6DL8913-0AK20-0AB5	V10.2

Dieses Anwendungsbeispiel besteht aus den folgenden Komponenten:

Tabelle 1-2: Komponenten des Beitrags

Komponente	Hinweis
109771692_F-Components-SIMIT_DOC_V1_2_de.pdf	Dieses Dokument
109771692_F-Components-SIMIT_SIMIT_LIB_V1_2.zip	Die gepackte Datei enthält die SIMIT-Komponenten

2 Engineering

2.1 Schnittstellenbeschreibung

2.1.1 FDI

Die Komponenten "FDI_8x" und "FDI_16x" simulieren das Signalverhalten der fehlersicheren, digitalen Eingangsmodule.

Ein- und Ausgänge

Die Belegung der Ein- und Ausgänge wird in der untenstehenden Tabelle gezeigt.

Tabelle 2-1: Ein- und Ausgänge der FDI-Komponenten

Name	Datentyp	Beschreibung		
pvln[0x]	Bool	Eingang aus dem Prozess (process value), z. B. aus MCD-Modell		
pvReset	Bool	Resetsignal aus dem Prozess		
in[0x]	Bool	Eingang für die Steuerung		
vs[0x]	Bool	Wertstatus für die Steuerung		

Parameter

Für die Anpassung des Verhaltens des Moduls and die gewünschten Eingangsparameter, können die Parameter der Komponente angepasst werden. In der Komponente "FDI_8x" entspricht der Parameter "CH04" beispielsweise der Eigenschaft des Kanalpaars 0, 4, in der Komponente "FDI_16x" der Parameter "CH08" entsprechend dem Kanalpaar 0, 8. Die Eigenschaften können für jede Kanalpaarung individuell gesetzt werden.

Die Parameter "passivation" (Passivierung) und "startupDepassivation" gelten für alle Kanäle der Komponente.

Abbildung 2-1 Parameter der Komponenten FDI_16x und FDI_8x

Folgende Verhalten können mit den Parametern abgebildet werden:

Tabelle 2-2: Parameter	der FDI-Komponente

Name	Beschreibung		
СНху	1oo1: 1oo1 (1v1) Auswertung		
	1002 equivalent: 1002 (2v2)-Auswertung, äquivalent		
	1002 antivalent: 1002 (2v2)-Auswertung, antivalent		
	default: 1oo1		
passivation	channel passivation: Kanalpassivierung		
	module passivation: Modulpassivierung		
	default: channel passivation		
startupDepassivation	autoStartupDepassivation: automatische		
	Depassivierung im Start		
	manualStartupDepassivation: manuelle Depassivierung im Start erforderlich (pvReset)		
	default: autoStartupDepassivation		

2.1.2 FDQ_Feedback und FDQ_Reset

Die Komponente "FDQ_Feedback" simuliert das Signalverhalten eines Ausgangs eines fehlersicheren, digitalen Ausgangsmoduls. Die Komponente FDQ_Feedback kann modular eingesetzt werden. Je nach Anzahl der verwendeten Ausgänge eines FDQs kann die entsprechende Anzahl an Blöcken übereinandergesetzt werden. Den Abschluss dieser Gruppierung bildet der "FDQ_Reset" Block, der an den untersten der "FDQ_Feedback" Blöcke gesetzt wird.

Ein- und Ausgänge

Die Belegung der Ein- und Ausgänge wird in der untenstehenden Tabelle gezeigt.

Name	Datentyp	Beschreibung		
out	Bool	Anschluss des Ausgangs aus der Steuerung		
pvReset Bool Resetsignal aus dem Prozess		Resetsignal aus dem Prozess		
pvOut	Bool	Anschluss des Ausgangs in den Prozess		
feedback	Bool	Rückführsignal für die Steuerung		
VS	Bool	Wertstatus für die Steuerung		

Tabelle 2-3: Ein- und Ausgänge der Kombination "FDQ_Feedback" und "FDQ_Reset"

Parameter

Für die Anpassung des Verhaltens des Moduls and die gewünschten Eingangsparameter, können die Parameter der Komponente angepasst werden. Der Parameter "Feedback" stellt ein zusätzliches Signal "Feedback" zur Verfügung, mit dem ein Rückführsignal eines Schützes mit zwangsgeführten Kontakten simuliert werden kann.

Der Parameter "passivation" (Passivierung) und "startupDepassivation" (nur bei FDQ_Reset) gilt für alle Kanäle des Moduls.

Abbildung 2-2: Parameter der Komponente FDQ_Feedback

FDQ_Feedback#4							
General	Name	Value					
Input	Feedback	antivalent feedback signal 💌					
Output	passivation	channel passivation 💌					
Parameter							
State							

Name	Beschreibung		
Feedback	antivalent feedback signal: Rückführsignal ist antivalent		
	zu "pvOut"		
	equivalent feedback signal: Ruckfunrsignal ist		
	aquivalent zu pvOut		
	derault: antivalent reedback signal		
passivation	channel passivation: Kanalpassivierung		
	module passivation: Modulpassivierung		
	default: channel passivation		
startupDepassivation	autoStartupDepassivation: automatische		
(Bei FDQ_Reset)	Depassivierung im Start		
· _ /	manualStartupDepassivation: manuelle Depassivierung		
	default: autoStartupDepassivation		

Tabelle	2-4:	Parameter	"FDQ"	und	"FDQ	Reset"
100000		aramotor		and	. Þ.a.	_1.00001

2.1.3 FPME

Die Komponente "FPME " simuliert das Signalverhalten des F-PME Moduls. Die verschiedenen Funktionsbereiche sind sichtbar unterteilt. Der obere Bereich stellt die Werte der F-DI dar, gefolgt vom Bereich des F-DQ. Das Reset-Signal ist ebenfalls getrennt dargestellt, gilt aber für das gesamte Modul.

Ein- und Ausgänge

Name	Datentyp	Beschreibung		
pvIn0	Bool	Eingang 0 aus dem Prozess		
pvln1	Bool	Eingang 1 aus dem Prozess		
out	Bool	Anschluss des Ausgangs aus der Steuerung		
pvReset	Bool	Resetsignal aus dem Prozess		
in0 Bool Eingang für die Steuerung		Eingang für die Steuerung		
in1 Bool Eingang für die Steuerung		Eingang für die Steuerung		
vs0 Bool V		Wertstatus von in0 für die Steuerung		
vs1 Bool		Wertstatus von in1 für die Steuerung		
pvOut	Bool	Anschluss des Ausgangs für den Prozess		
feedback	Bool	Rückführsignal für die Steuerung		
VS	Bool	Wertstatus von pvOut für die Steuerung		

Tabelle 2-5: Ein- und Ausgänge "FPME"

Parameter

Für die Anpassung des Verhaltens des Moduls and die gewünschten Eingangsparameter, können die Parameter der Komponente angepasst werden. Der Parameter "Feedback" stellt ein zusätzliches Signal "Feedback" zur Verfügung, mit dem ein Rückführsignal eines Schützes mit zwangsgeführten Kontakten simuliert werden kann.

Die Parameter "passivation" (Passivierung) und "startupDepassivation" gelten für alle Kanäle der Komponente.

Abbildung 2-3 Parameter der Komponente FMPE

FPME#3							
General	Name	Value					
Input	CH01	1001	•				
Output	Feedback	antivalent feedback signal	•				
Parameter	outputControl	F-CPU	•				
State	passivation	channel passivation	•				
	startupDepassi	autoStartupDepassivation	•				

Tabelle 2-6: Parameter "FPME"

Name	Beschreibung
CH01	1oo1: 1001 Auswertung 1oo2 equivalent: 1002 Auswertung äquivalent 1oo2 antivalent: 1002 Auswertung antivalent default: 1001
Feedback	antivalent feedback signal: Feedback-Signal, antivalent zu "pvOut" equivalent feedback signal: Feedback-Signal, äquivalent zu pvOut
	default: antivalent feedback signal
outputControl	F-CPU: Ausgang "pvOut" wird nur von der CPU gesteuert F-CPU and onboard F-DI: Ausgang wird von der CPU und den F-DI Signalen gesteuert default: F-CPU
passivation	channel passivation: Kanalpassivierung module passivation: Modulpassivierung default: channel passivation
startupDepassivation	autoStartupDepassivation: automatische Depassivierung im Start manualStartupDepassivation: manuelle Depassivierung im Start erforderlich (pvReset)
	default: autoStartupDepassivation

2.1.4 FAI_4x

Die Komponente "FAI_4x" simuliert das Signalverhalten der fehlersicheren, analogen Eingangsmodule.

Ein- und Ausgänge

Die Belegung der Ein- und Ausgänge wird in der untenstehenden Tabelle gezeigt.

Name	Datentyp	Beschreibung
pvln[0x]	analog	Eingang aus dem Prozess (process value), z. B. aus MCD-Modell
pvReset	Bool	Resetsignal aus dem Prozess
in[0x]	Integer	Eingang für die Steuerung
vs[0x]	Bool	Wertstatus für die Steuerung

Parameter

Für die Anpassung des Verhaltens des Moduls and die gewünschten Eingangsparameter, können die Parameter der Komponente angepasst werden. In der Komponente "FAI_4x" entspricht der Parameter "CH02" beispielsweise der Eigenschaft des Kanalpaars 0, 2. Die Eigenschaften können für jede Kanalpaarung individuell gesetzt werden.

Die Parameter "passivation" (Passivierung) und "startupDepassivation" gelten für alle Kanäle der Komponente.

	FAI_4	x	
	0.01>pvin0	in0 ⊳	
	0.01>pvin1	in1 D	
	0.01>pvin2 0.01>pvin3	in2 p	
		vs0[>	
		vs12 vs22 vs32	
	pvReset		
FAT 4x#3			
General	Name	Value	
General Input	Name CH02	Value 1001	•
General Input Output	Name CH02 measurementRangeCH0	Value 1001 disabled	• •
General Input Output Parameter	Name CH02 measurementRangeCH0 measurementRangeCH2	Value 1001 disabled disabled	• •
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02	Value 1001 disabled disabled takeLowerValue	• • •
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%]	Value 1001 disabled disabled takeLowerValue	• • • 5.0
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%] discrepancyAbsoluteCH02	Value 1001 disabled disabled takeLowerValue	• • • 5.0 1.0
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%] discrepancyAbsoluteCH02 CH13	Value 1001 disabled disabled takeLowerValue 1001	• • • 5.0 1.0
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%] discrepancyAbsoluteCH02 CH13 measurementRangeCH1	Value 1001 disabled disabled takeLowerValue 1001 disabled	• • • • • • • • • • •
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%] discrepancyAbsoluteCH02 CH13 measurementRangeCH1 measurementRangeCH3	Value 1001 disabled disabled takeLowerValue 1001 disabled disabled disabled	• • • • • • • • • • • • • • • •
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%] discrepancyAbsoluteCH02 CH13 measurementRangeCH1 measurementRangeCH3 decisionCH13	Value 1001 disabled disabled takeLowerValue 1001 disabled disabled takeLowerValue	• • • • • • • • • •
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%] discrepancyAbsoluteCH02 CH13 measurementRangeCH1 measurementRangeCH3 decisionCH13 discrepancyRelativeCH13 [%]	Value 1001 disabled disabled takeLowerValue 1001 disabled disabled takeLowerValue	* * 5.0 1.0 * * *
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%] discrepancyAbsoluteCH02 CH13 measurementRangeCH1 measurementRangeCH3 decisionCH13 discrepancyRelativeCH13 [%] discrepancyAbsoluteCH13	Value 1001 disabled disabled takeLowerValue 1001 disabled disabled takeLowerValue	* * 5.0 1.0 * * * 5.0 1.0
General Input Output Parameter State	Name CH02 measurementRangeCH0 measurementRangeCH2 decisionCH02 discrepancyRelativeCH02 [%] discrepancyAbsoluteCH02 CH13 measurementRangeCH1 measurementRangeCH3 decisionCH13 discrepancyRelativeCH13 [%] discrepancyAbsoluteCH13 passivation	Value 1001 disabled disabled takeLowerValue 1001 disabled disabled takeLowerValue channel passivation	* * 5.0 1.0 * * * 5.0 1.0

Abbildung 2-4: Parameter der Komponente FAI_4x

Folgende Verhalten können mit den Parametern abgebildet werden:

Name	Beschreibung
СНху	1001: 1001 (1v1) Auswertung 1002 equivalent: 1002 (2v2)-Auswertung, äquivalent 1002 antivalent: 1002 (2v2)-Auswertung, antivalent default: 1001
passivation	channel passivation: Kanalpassivierung module passivation: Modulpassivierung default: channel passivation
decision	takeLowerValue / takeHigherValue Auswahl welcher Wert bei 1002 Auswertung verwendet wird
discrepancyRelative	Toleranzfenster: Absolutwert bei 1002 Auswertung
discrepancyAbolute	Toleranzfenster: Prozentualwert bei 1002 Auswertung
startupPassivation	autoStartupDepassivation: Automatische Depassivierung beim Start manualStartupDepassivation: Manuelle Depassivierung beim Start erforderlich (pvReset) Default: autoStartupPassivation
measurementRange [03]	010V: Messbereich 0-10V 020mA: Messbereich 0-20mA

Tabelle 2-8: Parameter der FAI_4x-Komponente

Name	Beschreibung
	420mA: Messbereich 4-20mA
	Default: disabled
	Die Skalierung erfolgt gemäß den technischen Daten der realen Baugruppe

2.2 Integration ins Anwenderprojekt

- Laden Sie sich die Projektdatei "109771692_F-Components-SIMIT_SIMIT_LIB_V1_2" herunter: https://support.industry.siemens.com/cs/ww/de/view/109771692
- 2. Speichern Sie die ZIP-Datei in einem beliebigen Verzeichnis auf Ihrem Computer und entpacken Sie diese.
- 3. Öffnen Sie Ihr SIMIT-Projekt, in dem Sie die Komponenten verwenden wollen.
- 4. Wechseln Sie in die Projekt-Ansicht.
- 5. Öffnen Sie das Diagramm, in dem Sie die Komponenten verwenden wollen.
- 6. Öffnen Sie die Komponenten als globale Komponenten.
- 7. Ziehen Sie per Drag & Drop die gewünschten Komponenten zur Verwendung in ein Diagramm.

Nachdem die Komponenten in SIMIT geöffnet wurden, können diese per Drag & Drop in ein Diagramm eingefügt werden. Die Parameter der jeweiligen Komponente können in den Eigenschaften verändert werden.

Abbildung 2-5: "FDI_16x" in SIMIT eingebunden

2.3 Bedienung FDI

Die nachfolgenden Beispiele werden mit der Komponente "FDI_8x" durchgeführt und anhand dieser erklärt. Das Verhalten der Komponente "FDI_16x" ist entsprechend übertragbar.

Per Drag & Drop kann die Komponente in ein Diagramm eingefügt werden. Die Parameter der Komponente können in den Eigenschaften verändert werden.

General	Name	Value	
Input	CH04	1001	-
Output	CH15	1001	-
Parameter	CH26	1001	-
State	CH37	1001	•
	passivation	channel passivation	•
	startupDepassivation	autoStartupDepassivation	-

Durch Doppelklicken auf die Komponente erscheint ein Bedienfenster, das im Online-Modus die Simulation von Fehlern ermöglicht. Jeder Kanal kann hier einzeln mit einem Fehler belegt werden.

Abbildung 2-7: "FDI_8x" mit Bedienfenster

2.3.1 1001 (1v1)-Auswertung

Ist die 1001 (1v1)-Auswertung ausgewählt, wird jeder Eingangskanal einzeln ausgewertet.

In der folgenden Abbildung sehen Sie die simulierten Zustände der Kanäle 0 und 4. Die Prozesswerte werden durch Schalter simuliert und die Eingänge für die Steuerung an Binäranzeigen dargestellt:

Abbildung 2-8: 1001 (1v1)-Auswertung bei "FDI_8x"

Fehlersimulation

Beim Simulieren eines Fehlers mit eingestelltem Parameter "channel passivation" (Kanal-Passivierung), wird nur der betroffene Eingang passiviert. Auch der Wertstatus des fehlerhaften Eingangs wird zurückgesetzt.

FDI_6	Bx n	FDI_8x#4	×
pvin0	in0		
False > pvin1	in1	simulate failure in0	
False > pvln2	in3	simulate failure in1	
False > pvln3	in4 in5	simulate failure in2	
False > pvin4	in6	simulate failure in3	
False >pvin6	vs0	simulate failure in4	
False > pvin7	vs1	simulate failure in5	
	vs3	simulate failure in6	
	vs4 vs5	simulate failure in7	
	vs6		
pvReset	vs7 🖒		

Abbildung 2-9: Fehlersimulation mit Bedienfenster

Nach der Beseitigung des Fehlers muss der Kanal über eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

Abbildung 2-10: Beseitigung und Rücksetzen des Fehlers

2.3.2 1002 (2v2)-Auswertung, äquivalent

Ist 1002 (2v2)-Auswertung, äquivalent ausgewählt, muss an beiden Eingängen des jeweiligen Kanalpaars der gleiche Signalzustand anliegen. Bei ungleichen Signalen wird der entsprechende Ausgang auf FALSE gesetzt. Der Wertstatus wechselt auf FALSE. Liegen an beiden Eingängen (pvInX) positive Signale an, wird nur der niederwertigere Ausgang (inX) TRUE gesetzt. Es wird entsprechend auch nur der Wertstatus des niederwertigeren Ausgangs beschrieben.

Fehlersimulation

Beim Simulieren eines Fehlers mit eingestelltem Parameter "channel passivation" (Kanal-Passivierung), wird nur der betroffene Eingang passiviert. Auch der Wertstatus des fehlerhaften Eingangs wird zurückgesetzt.

Nach Beseitigung des Fehlers muss der betroffene Kanal durch eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

Abbildung 2-11: Fehlersimulation mit Bedienfenster

2.3.3 1002 (2v2)-Auswertung, antivalent

Ist 1002 (2v2)-Auswertung, antivalent ausgewählt, müssen an beiden Eingängen des jeweiligen Kanalpaars unterschiedliche Signale anliegen. Bei gleichen Signalen wird der entsprechende Ausgang auf FALSE gesetzt. Der Wertstatus wechselt auf FALSE. Liegen an beiden Eingängen (pvInX) unterschiedliche Signale an, wird nur der niederwertigere Ausgang (inX) TRUE gesetzt. Es wird entsprechend auch nur der Wertstatus des niederwertigeren Ausgangs beschrieben.

Fehlersimulation

Beim Simulieren eines Fehlers mit eingestelltem Parameter "channel passivation" (Kanal-Passivierung), wird nur der betroffene Eingang passiviert. Auch der Wertstatus des fehlerhaften Eingangs wird zurückgesetzt.

Nach Beseitigung des Fehlers muss der betroffene Kanal durch eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

Abbildung 2-12: Fehlersimulation mit Bedienfenster

2.3.4 Modul-Passivierung

Ist das Passivierverhalten "module passivation" parametriert, wird das gesamte Modul bei der Simulation eines Fehlers passiviert und die Ausgänge FALSE gesetzt. Da für jeden Kanal ein Ersatzwert bereitgestellt wird, werden auch alle Wertstatus FALSE.

Nach Beseitigung des Fehlers muss die Komponente durch eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

Abbildung 2-13: Passivierung eines Moduls im (simulierten) Fehlerfall

2.4 Bedienung FDQ

Per Drag & Drop kann eine beliebige Anzahl von "FDQ_Feedback"-Komponenten (ein Ausgang eines fehlersicheren, digitalen Ausgangsmoduls) übereinandergesetzt werden. Den Abschluss einer solchen Gruppe bildet die Komponente "FDQ_Reset". Durch Doppelklicken auf eine der Komponenten erscheint ein Bedienfenster, das im Online-Modus die Simulation eines Fehlers ermöglicht. Es können zwei Arten von Fehlern simuliert werden:

- Allgemeiner Fehler (Wertstatus wird FALSE)
- Feedback Fehler (Feedback Ausgang liefert den falschen Status)

Abbildung 2-14: Fehlersimulation mit Bedienfenster

2.4.1 Antivalentes Rückführsignal

In der nachfolgenden Abbildung sind beide Komponenten mit einem antivalenten Rückführsignal parametriert.

Im fehlerfreien Fall verhält sich das Rückführsignal invers zu dem für den Prozess bereitgestellten Wert "pvOut".

Abbildung 2-15: Antivalentes Rückführsignal von "FDQ"

FDQ_Feedback#3	.		
General	Name	Value	
Input	Feedback	antivalent feedback signal	Ŧ
Output	passivation	channel passivation	•
Parameter			
State			

Fehlersimulation

Allgemeiner Fehler:

Bei Simulieren eines allgemeinen Fehlers mit eingestelltem Parameter "channel passivation" wird nur das betroffene Signal passiviert.

Nach Beseitigung des Fehlers muss der betroffene Kanal durch eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

Abbildung 2-16: Passivierung eines Kanals im (simulierten) Fehlerfall

Fehler im Rückführkreis:

Die Simulation eines Fehlers im Rückführkreis führt zu einem Rückführsignal, das, nicht zum bereitgestellten Prozesswert "pvOut" passt. Bei der Einstellung "antivalent feedback signal" wird also folglich ein äquivalentes Signal ausgegeben.

Dieser Fehler führt nicht zu einer Passivierung des Moduls, da das Signal im Programm verarbeitet werden muss, um eine Fehlerreaktion auszulösen. Daher ist bei Abwahl des Fehlers auch keine Quittierung durch eine positive Flanke an "pvReset" notwendig.

2.4.2 Äquivalentes Rückführsignal

In der nachfolgenden Abbildung sind beide Komponenten mit einem äquivalenten Rückführsignal parametriert. Im fehlerfreien Fall hat das Rückführsignal denselben Zustand wie der für den Prozess bereitgestellte Wert "pvOut".

Abbildung 2-17: Äquivalentes Rückführsignal von "FDQ"

FDQ_Feedback#:	3	
General	Name	Value
Input	Feedback	equivalent feedback signal 💌
Output	passivation	channel passivation
Parameter		
State		
State		

Fehlersimulation

Allgemeiner Fehler:

Bei Simulieren eines allgemeinen Fehlers mit eingestelltem Parameter "channel passivation" wird nur das betroffene Signal passiviert.

Nach Beseitigung des Fehlers muss der betroffene Kanal durch eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

Fehler im Rückführkreis:

Die Simulation eines Fehlers im Rückführkreis führt zu einem Rückführsignal, dass nicht zum bereitgestellten Prozesswert "pvOut" passt. Bei der Einstellung "equivalent feedback signal" wird also folglich ein antivalentes Signal ausgegeben.

Dieser Fehler führt nicht zu einer Passivierung des Kanals, da das Signal im Programm verarbeitet werden muss, um eine Fehlerreaktion auszulösen. Daher ist bei Abwahl des Fehlers auch keine Quittierung durch eine positive Flanke an "pvReset" notwendig.

2.4.3 Modul-Passivierung

Ist das Passivierverhalten "module passivation" parametriert, wird das gesamte Modul bei der Simulation eines Fehlers passiviert und die Ausgänge FALSE gesetzt. Da für jeden Kanal ein Ersatzwert bereitgestellt wird, werden auch alle Wertstatus FALSE.

Nach Beseitigung des Fehlers muss die Komponente durch eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

Abbildung 2-18: Passivierung des Moduls im (simulierten) Fehlerfall

FDQ_Feedback#4			
General	Name	Value	
Input	Feedback	equivalent feedback signal	*
Output	passivation	module passivation	•
Parameter			
State			

2.5 Bedienung FPME

Die nachfolgenden Beispiele werden mit der Komponente "FPME" durchgeführt und anhand dieser erklärt.

Per Drag & Drop kann die Komponente in ein Diagramm eingefügt werden

Die Parameter der Eingänge sowie der Ausgänge der Komponente sind analog zu den Parametern der Komponenten "FDI_8x" und "FDQ_Feedback". Die Ausnahme davon ist der Parameter "OutputControl"

Abbildung 2-19 FPME in SIMIT

FPME#3			
General	Name	Value	
Input	CH01	1001	•
Output	Feedback	antivalent feedback signal	•
Parameter	outputControl	F-CPU	•
State	passivation	channel passivation	•
	startupDepassi	autoStartupDepassivation	•

2.5.1 Parameter "OutputControl"

Mit dem Parameter "OutputControl" wird festgelegt, wie der fehlersichere Ausgang des F-PM-E-Moduls angesteuert wird. Dabei bestehen die folgenden Möglichkeiten.

Einstellung "F-CPU"

Der fehlersichere Ausgang wird durch das Sicherheitsprogramm in der F-CPU gesteuert. Die integrierten fehlersicheren Eingänge des Moduls haben keine direkte Auswirkung auf den fehlersicheren Ausgang.

Parameter "F-CPU and onboard F-DI"

Der fehlersichere Ausgang wird durch das Sicherheitsprogramm in der F-CPU und die integrierten fehlersicheren Eingänge des Moduls gesteuert.

Die untenstehende Abbildung zeigt beispielhaft das Verhalten bei eingestelltem Parameter "CH01: 1002". In dieser Einstellung werden die Zustände der beiden Eingänge mit dem Wert von "out" logisch UND-verknüpft. Das Resultat wird dann auf den "pvOut" geschrieben.

Abbildung 2-20: Verhalten von "FPME" bei Einstellung "F-CPU and onboard F-DI"

Hinweis Genauere Informationen zum Verhalten des F-PM-E-Moduls finden Sie im Gerätehandbuch:

https://support.industry.siemens.com/cs/ww/de/view/78645796

2.5.2 Modul Passivierung

Ist das Passivierverhalten "module passivation" parametriert, wird das gesamte Modul bei der Simulation eines Fehlers passiviert und die Ausgänge FALSE gesetzt. Da für jeden Kanal ein Ersatzwert bereitgestellt wird, werden auch alle Wertstatus FALSE.

Nach Beseitigung des Fehlers muss das Modul durch eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

2.6 Bedienung FAI

Die nachfolgenden Beispiele werden mit der Komponente "FAI_4x" durchgeführt.

Per Drag & Drop kann die Komponente in ein Diagramm eingefügt werden. Die Parameter der Komponente können in den Eigenschaften verändert werden. In den folgenden Kapiteln wird die nachfolgende Parametrierung übernommen:

- CH02: 1002 (2v2)-Auswertung, 0...10V.
- CH13: 1001 (1v1)-Auswertung, 0...10V.

Abbildung 2-21: "FAI_4x" mit Parametern

FAI_4x#3				
General	Name	Value		
Input	CH02	1001	•	
Output	measurementRangeCH0 disabled		-	
Parameter	measurementRangeCH2 disabled		-	
State	decisionCH02	takeLowerValue	-	
	discrepancyRelativeCH02 [%]		5.0	
	discrepancyAbsoluteCH02		1.0	
	CH13	1001	-	
	measurementRangeCH1	disabled	-	
	measurementRangeCH3	disabled	*	
	decisionCH13	takeLowerValue	•	
	discrepancyRelativeCH13 [%]		5.0	
	discrepancyAbsoluteCH13		1.0	
	passivation	channel passivation	-	
	startupDepassivation	autoStartupDepassivation	-	

Durch Doppelklicken auf die Komponente erscheint ein Bedienfenster, das im Online-Modus die Simulation von Fehlern ermöglicht. Jeder Kanal kann hier einzeln mit einem Fehler belegt werden. Abbildung 2-22: "FDAI_4x" mit Bedienfenster

2.6.1 1001 und 1002 Auswertung

Ist die 1001 Auswertung ausgewählt, wird jeder der beiden zusammenhängenden Eingangskanäle einzeln ausgewertet.

Bei der 1002 Auswertung werden die beiden Kanäle zusammen ausgewertet und auf Diskrepanz miteinander verglichen. Hierbei kann im Parameter *"decission"* ausgewählt werden, ob im Diskrepanzfall der Eingang mit dem höheren, oder der Eingang mit dem niedrigeren Wert verwendet werden soll. Mit dem Parameter *"discrepancyAbsolute"* und *"discrepancyRelative"* wird ausgewählt, ab welcher Differenz der beiden Eingänge der Wertstatus auf FALSE wechselt und der Ersatzwert 0 ausgegeben wird.

Bei der 1002 Auswertung wird nur der niederwertigere Ausgang (inX) des Kanalpaares gesetzt. Es wird entsprechend auch nur der Wertstatus des niederwertigeren Ausgangs beschrieben.

In der folgenden Abbildung sind die simulierten Zustände der Kanäle 0 bis 3 zu sehen. Die Prozesswerte werden durch Eingabefelder simuliert und die Eingänge für die Steuerung sind an Digitalanzeigen dargestellt. Die Kanäle 0 und 2 sind hier als 1002 und die Kanäle 1 und 3 als 1001 Auswertung parametriert.

	FAI_4	×	
	0.0 ⁵ pvin0 0.0 ¹ pvin1 0.0 ¹ pvin2 0.0 ² pvin3	intp intp intp intp	
	pyReset	vs0[> vs1[- vs2[- vs3]-	
FAI_4x#3			
General	Name	Value	
Input	CH02	1001	•
Output	measurementRangeCH0	disabled	•
Parameter	measurementRangeCH2	disabled	•
State	decisionCH02	takeLowerValue	•
	discrepancyRelativeCH02 [%]		5.0
	discrepancyAbsoluteCH02		1.0
	CH13	1001	-
	measurementRangeCH1	disabled	-
	measurementRangeCH3	disabled	-
	decisionCH13	takeLowerValue	-
	discrepancyRelativeCH13 [%]		5.0
	discrepancyAbsoluteCH13		1.0
	passivation	channel passivation	-
	startupDepassivation	autoStartupDepassivation	•

Abbildung 2-23: 1001, und 1002-Auswertung bei "FAI_4x"

Fehlersimulation

Beim Simulieren eines Fehlers mit eingestelltem Parameter "channel passivation" (Kanal-Passivierung), wird nur der betroffene Eingang passiviert. Auch der Wertstatus des fehlerhaften Eingangs wird auf FALSE gesetzt.

Abbildung 2-24: Fehlersimulation mit Bedienfenster

Nach der Beseitigung des Fehlers muss der Kanal über eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

2.6.2 Modul-Passivierung

Ist das Passivierverhalten "module passivation" parametriert, wird das gesamte Modul bei der Simulation eines Fehlers passiviert und die Ausgänge auf 0 gesetzt. Da für jeden Kanal ein Ersatzwert bereitgestellt wird, werden auch alle Wertstatus FALSE.

Nach Beseitigung des Fehlers muss die Komponente durch eine positive Flanke am Eingang "pvReset" wiedereingegliedert werden.

3 Anhang

3.1 Service und Support

Industry Online Support

Sie haben Fragen oder brauchen Unterstützung?

Über den Industry Online Support greifen Sie rund um die Uhr auf das gesamte Service und Support Know-how sowie auf unsere Dienstleistungen zu.

Der Industry Online Support ist die zentrale Adresse für Informationen zu unseren Produkten, Lösungen und Services.

Produktinformationen, Handbücher, Downloads, FAQs und Anwendungsbeispiele – alle Informationen sind mit wenigen Mausklicks erreichbar:

support.industry.siemens.com

Technical Support

Der Technical Support von Siemens Industry unterstützt Sie schnell und kompetent bei allen technischen Anfragen mit einer Vielzahl maßgeschneiderter Angebote – von der Basisunterstützung bis hin zu individuellen Supportverträgen.

Anfragen an den Technical Support stellen Sie per Web-Formular: <u>siemens.com/SupportRequest</u>

SITRAIN – Digital Industry Academy

Mit unseren weltweit verfügbaren Trainings für unsere Produkte und Lösungen unterstützen wir Sie praxisnah, mit innovativen Lernmethoden und mit einem kundenspezifisch abgestimmten Konzept.

Mehr zu den angebotenen Trainings und Kursen sowie deren Standorte und Termine erfahren Sie unter:

siemens.de/sitrain

Serviceangebot

Unser Serviceangebot umfasst folgendes:

- Plant Data Services
- Ersatzteilservices
- Reparaturservices
- Vor-Ort und Instandhaltungsservices
- Retrofit- und Modernisierungsservices
- Serviceprogramme und Verträge

Ausführliche Informationen zu unserem Serviceangebot finden Sie im Servicekatalog:

support.industry.siemens.com/cs/sc

Industry Online Support App

Mit der App "Siemens Industry Online Support" erhalten Sie auch unterwegs die optimale Unterstützung. Die App ist für iOS und Android verfügbar: support.industry.siemens.com/cs/ww/de/sc/2067

3.2 Industry Mall

Die Siemens Industry Mall ist die Plattform, auf der das gesamte Produktportfolio von Siemens Industry zugänglich ist. Von der Auswahl der Produkte über die Bestellung und die Lieferverfolgung ermöglicht die Industry Mall die komplette Einkaufsabwicklung – direkt und unabhängig von Zeit und Ort: <u>mall.industry.siemens.com</u>

3.3 Links und Literatur

Tabelle 3-1

Nr.	Thema	
\1\	Siemens Industry Online Support	
	https://support.industry.siemens.com	
\2\	Link auf die Beitragsseite des Anwendungsbeispiels	
	https://support.industry.siemens.com/cs/ww/de/view/109771692	
\3\	SIMIT-Marketingseite	
	https://siemens.com/SIMIT	
\4\	Erste Schritte mit SIMIT V10.0 und STEP 7 (TIA Portal)	
	https://support.industry.siemens.com/cs/ww/de/view/109767324	
\5\	Überwachung einer Schutztür bis PL e / SIL 3 durch eine fehlersichere Steuerung S7-1500	
	https://support.industry.siemens.com/cs/ww/de/view/21331363	
\6\	Not-Halt bis SIL 3 / PL e an einer fehlersicheren Steuerung S7-1500	
	https://support.industry.siemens.com/cs/ww/de/view/21064024	
\7\	SIMATIC ET 200SP Manual Collection	
	https://support.industry.siemens.com/cs/ww/de/view/84133942	
\8\	SIMATIC ET 200SP Powermodul F-PM-E 24VDC/8A PPM ST	
	https://support.industry.siemens.com/cs/ww/de/view/78645796	

3.4 Änderungsdokumentation

Tabelle 3-2

Version	Datum	Änderung
V1.0	09/2019	Erste Ausgabe
V1.2	07/2021	Erweiterung für F-AI Baugruppe
		Erweiterung des Passivierungsverhaltens