

Applications & Tools

Answers for industry.

Cover

Access to WinCC Data with
independent Windows Application

“WinCC_CopackCsharp”

Application Description October 2009

2
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Industry Automation and Drives Technologies Service & Support Portal
This article is taken from the Service Portal of Siemens AG, Industry Automation
and Drives Technologies. The following link takes you directly to the download
page of this document.
http://support.automation.siemens.com/WW/view/en/35840700

If you have any questions regarding this document, please send us an e-mail to the
following address:
online-support.automation@siemens.com

http://support.automation.siemens.com/WW/view/en/35840700�
mailto:online-support.automation@siemens.com�

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 3

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

s

SIMATIC
WinCC_CopackCsharp

Access to WinCC Data with independent Windows application

Automation Task
 1

Automation Solution
 2

Installation
 3

Operating the Application
 4

Further Notes, Tips and
Tricks, etc.

 5

Bibliography
 6

History
 7

Warranty and Liability

4
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Warranty and Liability

Note The application examples are not binding and do not claim to be complete
regarding configuration, equipment and any eventuality. The application
examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for ensuring that
the described products are used correctly. These application examples do not
relieve you of the responsibility to use sound practices in application, installation,
operation and maintenance. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time without prior notice. If there are any deviations
between the recommendations provided in this application example and other
Siemens publications – e.g. Catalogs – the contents of the other documents
have priority.

We accept no liability for information contained in this document.
Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). However, claims arising from a breach of a
condition which goes to the root of the contract shall be limited to the foreseeable
damage which is intrinsic to the contract, unless caused by intent or gross
negligence or based on mandatory liability for injury of life, body or health. The
above provisions do not imply a change in the burden of proof to your detriment.

It is not permissible to transfer or copy these Application Examples or excerpts
thereof without express authorization from Siemens Industry Sector.

Table of Contents

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 5

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Table of Contents
Warranty and Liability ... 4
1 Automation Task.. 6
2 Automation Solution ... 7

2.1 Description ... 7
2.2 Hardware and software components used... 8

3 Installation.. 9
4 Operating the Application... 10

4.1 Detailed description of the screen objects ... 10
4.1.1 “Connection” group... 11
4.1.2 “Archive” group... 13
4.1.3 “data selection” group... 14
4.1.4 “Time Interval” group.. 16
4.1.5 “read archives” button .. 17
4.1.6 “Export data” group .. 17
4.1.7 Spreadsheet for displaying the runtime data 19
4.2 Reading, displaying and exporting the WinCC process value archives20
4.3 Reading, displaying and exporting the WinCC message archive 22
4.4 Reading, displaying and exporting the WinCC user archive.............. 24

5 Further Notes, Tips and Tricks, etc. .. 25
5.1 Creating a report in Crystal Reports... 25
5.2 C#-Code to evaluate the process value archive 29
5.2.1 Definition for the connection process ... 29
5.2.2 Definition for the data selection.. 29
5.2.3 Connecting with the database and reading data................................ 30
5.2.4 Providing data for DataGrid and/or Crystal Report: 31
5.2.5 DataGrid data connection: ... 33
5.2.6 Crystal Report data connection:... 33
5.2.7 Closing the connection with archive... 34
5.2.8 Exporting the archive values into a csv-file .. 34
5.3 C#-Code for evaluating the alarms and messages............................ 34
5.3.1 Definition for the connection process ... 34
5.3.2 Definition for the data selection.. 34
5.3.3 Connecting with the database and reading data:............................... 35
5.3.4 Providing data for DataGrid and/or Crystal Report: 35
5.3.5 DataGrid data connection: ... 35
5.3.6 Crystal Report data connection:... 36
5.3.7 Closing the connection with archive... 36
5.4 C#-Code to evaluate the user archive.. 36
5.4.1 Definition for the connection process ... 36
5.4.2 Definition for the data selection.. 36
5.4.3 Connecting with the database and reading data:............................... 36
5.4.4 Providing data for DataGrid and/or Crystal Report: 36
5.4.5 DataGrid data connection: ... 37
5.4.6 Crystal Report data connection:... 37
5.4.7 Closing the connection with archive... 37

6 Bibliography... 38
7 History... 39

Automation Task

6
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Automation Task 1
Introduction

As of WinCC V6.0 the WinCC Runtime database is segmented, i.e. data are filed
in several archive segments (several databases). The data is partially filed in
compressed binary form. The WinCC option “WinCC Connectivity Pack” provides
the WinCC-OleDBProvider, which enables reading the Runtime data of Tag
Logging and Alarm Logging directly. The WinCC OLE DB Provider provides the
data from the respective archive segments in decompressed, decrypted form. The
user of the WinCC Connectivity Pack does not have to worry about the
segmentation of the archives and their encryption when accessing the Tag Logging
and Alarm Logging data.

Description of the automation task
With a separate C-Sharp Windows application and using the WinCC Connectivity
Pack the archived WinCC Runtime data of the tag logging (process data archiving),
of the alarm logging (archived messages and alarms) and the user archive can be
accessed.
It shall be described additionally how the Runtime data of the tag logging, the
alarm logging and the user archives can be read, displayed and output via Crystal
reports or into a CSV-file.
Particular attention is not given here to creating and writing a C# Windows
application, bit to the required mechanisms for accessing the WinCC archive data.

Automation Solution

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 7

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Automation Solution 2
2.1 Description

Structure of the database connection
• Preparing the data (adjusting the time format; local time and universal time)
• Using the MS OleDB interface for reading the WinCC archive configuration and

the WinCC user archive
• Using the WinCC OleDBProviders for reading the archived process values

(WinCC Tag Logging) and alarms and messages (WinCC Alarm Logging).
• Table display of data with the “DataGrid” control element
• Output of the file into a csv-file
• Output of the data via Crystal reports
This entry contains a complete Visual C# example program which illustrates the
above access mechanisms on a runnable Windows application.

Note This example only uses read access to the data. When using the MS OleDB
interface the respective SQL commands (e.g. update, insert, delete ...)
technically also enable write access to the data.

ATTENTION Write accesses are only tested and enabled for data in the user archive.

Note Entry http://support.automation.siemens.com/WW/view/en/22578952 gives an
overview of further options to access the WinCC archives.

http://support.automation.siemens.com/WW/view/en/22578952�

Automation Solution

8
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

2.2 Hardware and software components used

For this example two separate computers (WinCC-Server and Connectivity Pack
Client) were used. The WinCC server performs archiving in the WinCC Runtime
database. The Connectivity Pack Client reads the data of the WinCC Runtime
database. The following configurations were used for the systems:

WinCC-Server:

Table 2-1

Hardware Software

MS Windows XP Professional SP2 Intel Pentium 4 CPU 2,4 GHz, 2GB RAM
SIMATIC WinCC V6.2 (contains SQL
Server 2005 SP1)
or
SIMATIC WinCC V7.0

Connectivity Pack Client:

Table 2-2

Hardware Software

MS Windows XP Professional SP2

Note:
The Windows component “Microsoft
Message Queuing” must have been
installed. In “Control Panel > Software
> Add/Remove Windows components >
Message Queuing” these components can
be installed.

Intel Pentium 4 CPU 2,4 GHz, 1GB RAM

When using the WinCC-OleDBProvider:
• WinCC/ConnectivityPack V6.2 (Client)
or
• SIMATIC WinCC/ConnectivityPack

V7.0 (Client)
 Optional:

MS Visual Studio 2005 Professional
with Visual C#

Example files and projects
The following list contains all files and projects used in this example.
Table 2-3

Component Note

WinCCcopack.zip Contains the C# project created
with Visual Studio 2005

Installation

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 9

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Installation 3
Download and unzip

Download the example program available as download and unzip the received zip-
archive. Folder “WinCCcopack” is created. Subfolder “WinCCcopack > appCopack”
contains the C#-project created with Visual Studio 2005.
Depending on whether the development environment MS Visual Studio has been
installed on your computer, you can use the example program as follows:

Development environment Visual Studio has been installed
If Visual Studio has been installed on your computer, you can open the project by
double-clicking on the “appCopack.sln” file. After the project has been opened in
Visual Studio, you can edit the sources, compile the program and execute it with
the menu command “Debug” > “Start without debugging”.

Development environment Visual Studio has not been installed
If Visual Studio has not been installed on your computer, you can execute the
program by double-clicking on the “.WinCCcopack >
appCopack\obj\Debug\appCopack.exe” file.

Operating the Application

10
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Operating the Application 4
4.1 Detailed description of the screen objects

After the Windows application has been started, the following program window
“starting… (Form2)”. This window is started in a separate thread and terminated as
soon as the program has been downloaded.
Figure 4-1

As soon as the program has been downloaded, the program window “appCopack
(Form1)” appears.
Figure 4-2

The program consists of a program window which is described below.

Operating the Application

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 11

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

4.1.1 “Connection” group

Type: GroupBox
Name: grpConnection

Figure 4-3

The input fields of this group are used to configure the connection with the data
source. When starting the program the fields are preassigned. The user can
change the connection parameter during runtime and execute the data query.

Note After pressing the “connect to database” button this group can no longer be
operated.
As soon as you change the selection in the “archive” group, the “Connection”
group can be operated again.

Table 4-1

Screen objects
(Object name)

Description

Input field “Source”
Type: TextBox
Name: txtSource

This input field contains the name of the WinCC server
followed by the name of the instance of the SQL server whose
runtime data is to be accessed.
<ComputerName>\WINCC

This field is preassigned with “WINCC_70_LP\WINCC” at the
start of the program.

Input field “Catalog”
Type: TextBox
Name: lblCatalog

In this input field the user must assign the Data Source Name
(DSN) of the Runtime database whose data shall be accessed.
Notes:
• For WinCC Runtime the internal WinCC tag

“@DatasourceNameRT” contains the “Data Source
Name” of the WinCC Runtime database. You can read
this tag to determine the desired Data Source Name.
Entry
http://support.automation.siemens.com/WW/view/en
/9061684
contains detailed information.

• During program start this field is assigned with the value
“CC_OS_1__09_06_23_10_01_27R”.

http://support.automation.siemens.com/WW/view/en/9061684�
http://support.automation.siemens.com/WW/view/en/9061684�

Operating the Application

12
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Screen objects
(Object name)

Description

Input field “Provider”
Type: TextBox
Name: txtProvider

In this input field the user must assign the name of the WinCC-
OleDBProviders.
Notes:
• The WinCC-OleDBProvider is provided by the

Connectivity Pack and is used for reading the Runtime
data of the tag and alarm logging.

• To access WinCC Runtime data (e.g. archive
configuration or user archive) with the MS OleDB interface
the “SQLOLEDB” provider is always used in the program.

• During program start this field is assigned with the value
“WinCCOLEDBProvider.1”.

Input field “Uid”
Type: TextBox
Name: txtUid

In this input field the user must assign the name of the data
base user for the access to the Runtime database.
Notes:
• This user name is only used for database access with the

MS OleDB interface. This field is not used for database
access with the WinCC-OleDBProvider.

• In the WinCC Runtime database you create a separate
user for the MS OleDB access and assign password and
user rights. Entry
http://support.automation.siemens.com/WW/view/en
/27147643
contains detailed information on how to create a user.

• During program start this field is assigned with the value
“DBUser”.

Input field “Pwd”
Type: TextBox
Name: txtPwd

In this input field the user must assign the password of the
database user for access to the Runtime database. The
password input is hidden, i.e. stars “ *** ” are displayed.
Notes:
• The password is only used for database access with the

MS OleDB interface. This field is not used for database
access with the WinCC-OleDBProvider.

• During program start this field is assigned with the value
“123456”.

http://support.automation.siemens.com/WW/view/en/27147643�
http://support.automation.siemens.com/WW/view/en/27147643�

Operating the Application

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 13

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

4.1.2 “Archive” group

Type: GroupBox
Name: grpArchive

Figure 4-4

These radio buttons can be used to select the data source. The following options
are available (data source):
• “Tag Logging”
• “Alarm Logging”
• “User Archive” (user archive)

Selecting a data source the user can decide which type of data to read.
Furthermore, the groups “data selection”, “Time Interval”, “export data” and the
“read archives” button can no longer be operated by the selection.
Clicking the “connect to database” button loads the data required for further
settings from the database, therefore the “Connection” group can no longer be
operated after the click.

Note This group can always be operated.

Changing a data source also enables operating the “Connection” group again.

Table 4-2

Screen objects
(Object name)

Description

Option “Tag Logging”
Type: RadioButton
Name: rbtTagLogging

After pressing the “Tag Logging” option, “WinCC
Tag Logging” is used as data source for the
subsequent data query.

Notes:
After clicking the “connect to database” button the
“Data selection”, “Export Data”, “Time Interval”
groups and the “read archives” button can be
operated.

Operating the Application

14
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Screen objects
(Object name)

Description

Option “Alarm Logging”
Type: RadioButton
Name: rbtAlarmLogging

After pressing the “Alarm Logging” option, “WinCC
Alarm Logging” is used as data source for the
subsequent data query.

Note:
After clicking the “connect to database” button the
“Time Interval” group and the “read archives”
button can be operated.

Option “User Archives”
Type: RadioButton
Name: rbtAlarmLogging

After pressing the menu item “User Archives”, a
“WinCC user archive” is used as data source for
the subsequent data query.

Note:
After clicking the “connect to database” button the
“Time Interval” group and the “read archives”
button can be operated.

4.1.3 “data selection” group

Type: GroupBox
Name: grpDataSelection

Figure 4-5

The objects in this group are only used for configuring the access to the runtime
data of the Tag Logging. In this group an available archive tag of the WinCC Tag
Logging can be selected and special parameters for compressing the data be
specified.

Note This group can only be operated if the “Tag Logging” option has been selected in
the “Archive” group and the “connect to database” button has been pressed.

Operating the Application

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 15

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Table 4-3

Screen objects
(Object name)

Description

 Drop-down list “Archive Tag”
Type: ComboBox
Name: cmbTags

The drop-down list “Archive Tag” contains the
archive tags configured in the Runtime database.
You can open the drop-down list via mouse-click
and select an archive tag whose values shall be
read from the Runtime database.

Notes:
• When actually polling the data the WinCC-

OleDBProvider is given the archive tag ID
instead of the archive tag name for
performance reasons.

• Via the drop-down list the number of detected
archive tags is displayed.

• After selecting the “Data-Grid” control element
and the CrystalReportViewer are deactivated.

Button “Aggreg. Typ”
Type: ComboBox
Name: cmbInterpol

The drop-down list “Aggreg. Typ” contains the
aggregate types supported by the WinCC
Connectivity Pack. You can select an aggregate
type to summarize several successive archive
values of the Tag Logging Runtime in the given
time interval during data query (compressing).

During program start the “Without Aggreg.” value is
entered in the drop-down list. If this value is
selected the values during this query are not
combined with the WinCC-OleDBProvider.

Input field “Interval”
Type: TextBox
Name: txtStep

Here you enter the time interval in seconds in
which the values are combined (compressed). The
value entered in this field is only significant if a
value unequal “Without Aggreg.” has been selected
in the “Aggreg Typ” drop-down list.

During program start this field is assigned with the
value 60 (seconds).

Operating the Application

16
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

4.1.4 “Time Interval” group

Type: GroupBox
Name: grpTimeInterval

Figure 4-6

The objects of this group are used for giving a time-interval which is used as filter
criterion for requesting the Runtime data of the Tag Logging and Alarm Logging.

Note This group can only be operated if the “Tag Logging” option has been selected in
the “Archive” group and the “connect to database” button has been pressed.

The time is given in the local time format. When querying the time interval given
here is transformed to UTC time and then transferred to the WinCC-
OleDBProvider as a filter criterion.

When polling the user archives the time interval is not sent.

At program start the time interval is set to the last 24 hours.

Table 4-4

Screen objects
(Object name)

Description

DateTime selection box
“Local Time from”
Type: DateTimePicker
Name: dtpFrom

In this selection box you specify the start time for
the time interval of the query.

DateTime selection box
“Local Time to”
Type: DateTimePicker
Name: dtpTo

In this selection box you specify the end time for
the time interval of the query.

Operating the Application

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 17

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

4.1.5 “read archives” button

Type: GroupBox
Name: grpExport

Figure 4-7

Click the “read archives” button to read the previously set archive from the
database, this can take several minutes. While reading the data the program
cannot be operated.
After the data have been read the volume of the read data is displayed in the text
next to the button.

Note This button can only be operated if a radio button has been selected in the
“Archive” group and the “connect to database” button has been pressed.

4.1.6 “Export data” group

Type: GroupBox
Name: grpExport

Figure 4-8

The objects in this group are only used for configuring the Export of the read
Runtime data of the Tag Logging, Alarmlogin.

Note This group can only be operated if the “read archives” button has been pressed.

The data displayed in the “DataGrid” spreadsheet are displayed (including
performed sorting).

Operating the Application

18
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Table 4-5

Screen objects
(Object name)

Description

Input field “ExportPath”
Type: TextBox
Name: txtExportPath

In this field the path is displayed in which the data
are exported. The path can be changed by input
into this field or by clicking the “Select Path” button.

Note:
At program start the path “C:\data\tmp” is created
and the default entry for this field

Input field “ExportFile”
Type: TextBox
Name: txtExportFile

In this field you enter the file name. A .csv-
compatible .txt-file is created.

When selecting an archive tag or during program
start the default entry for this field is the name of
the selected archive tag followed by the characters
“.txt”.

“<ARCHIV_TAGNAME>.txt”

Button “Select Path”
Type: Button
Name: btnPath

Clicking this button opens the folder selection
dialog. The selected or created folder is transferred
to the “ExportPath” path.

Button “Export”
Type: Button
Name: btnExport

By clicking this button the data of the “DataGrid”
control element are exported.
After terminating the export the text “export
finished” appears below the button.

Operating the Application

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 19

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

4.1.7 Spreadsheet for displaying the runtime data

Type: TabControl
Name: tabView

Figure 4-9

The result of the data query is displayed within a spreadsheet. The “DataGrid” tab
for a table display as well as the “CrystalReports” for a formatted display (e.g.
print version) are available.

Table 4-6

Screen objects
(Object name)

Description

“DataGrid” tab
Type: TabPage
Name: tabPageDataGrid

contains

DataGrid control element
Type: DataGridView
Name: myGrid

The “DataGrid” control element is used for
displaying the data in a table.

Operating the Application

20
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Screen objects
(Object name)

Description

“CrystalReports” tab
Type: TabPage
Name: tabPageCrystalReports

contains

Report control element
Type: CrystalReportViewer
Name: crystalReportViewer1

The CrystalReportViewer is used for formatted
data display.

“Rows found” display text
Type: Label
Name: lblAnz

This display field shows the number of result data
records provided by the database query.

“read archives” button
Type: Button
Name: btnRead

Pressing the “read archives” button executes the
database query. The delivered data are displayed
in a table or formatted.

When displaying the Tag Logging Runtime data the
csv-file is written. If the csv-file already exists it is
overwritten.

4.2 Reading, displaying and exporting the WinCC process
value archives

The following description shows how the Runtime data of the Tag Logging is
displayed in the “DataGrid” control element or in the Crystal Reports Viewer and
output into a csv-file.

Table 4-7

No. Action

1. Configure the connection with the database.
2. Select the “Tag Logging” radio button and click on the “connect to database” button.
3. In the “ArchiveTag” drop-down list you select an archive tag and set the compression of the

archive tag (Aggreg.Typ and Interval).
4. Select the time interval

Note The WinCC-OleDBProvider provides the data as a standard with a time stamp in
UTC-format. To display the data this time stamp is transformed into local time.

The values “Quality” and “Flags” are displayed as hexadecimal values.

Operating the Application

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 21

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

The following figure shows the table display of the Tag Logging archive data.

Figure 4-10

Operating the Application

22
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

4.3 Reading, displaying and exporting the WinCC message
archive

The following description shows how the Runtime data of the Alarm Logging is
displayed in the “DataGrid” control element or in the Crystal Reports Viewer.

Table 4-8

No. Action

1. Configure the connection with the database.
2. Select the “Alarm Logging” radio button and click on the “connect to database” button.
3. Select the time interval
4. Click the “read archives” button.
5. If necessary you change the Export folder and the name of the Export file and then click the

“Export” button

Note The WinCC-OleDBProvider provides the data as a standard with a time stamp in
UTC-format. To display the data this time stamp is transformed into local time.

The message status “State” is provided by the WinCC-OleDBProvider as a
default decimal value. The message status is transformed into a character chain
for display. The characters for a message class in the Alarm Logging editor are
used.

Operating the Application

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 23

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

The following figure shows the table display of the Alarm Logging archive data.

Figure 4-11

Operating the Application

24
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

4.4 Reading, displaying and exporting the WinCC user
archive

The following figure shows how the Runtime data of a user archive is displayed in
the “DataGrid” control element or in the Crystal Reports Viewer.
This application shows the data of the user archive “Products”. This requires that
the user archive in the WinCC project has been configured as follows:

Figure 4-12

To display the “Products” user archive proceed as follows:

Table 4-9

No. Action

1. Configure the connection with the database.
2. Select the “Alarm Logging” radio button and click on the “connect to database” button.
3. Click the “read archives” button.
4. If necessary you change the Export folder and the name of the Export file and then click the

“Export” button

Further Notes, Tips and Tricks, etc.

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 25

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Further Notes, Tips and Tricks, etc. 5

5.1 Creating a report in Crystal Reports

The following section describes how to create a crystal report in a form in MS
Visual Studio 2005.

Table 5-1

No. Procedure

1 Add DataSet
In this step you create the Dataset, via which the read data are supplied to the
report:
• In the project folder Solution Explorer you right-click to open the context menu

of the project and select the menu item ”Add > New Item”
A window with a templates list opens.

• Select the “DataSet” entry.

Assign the final name here.

• Press the “Add” button to create the DataSet in the project.

Further Notes, Tips and Tricks, etc.

26
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

No. Procedure

2 DataSet > Add DataTable
• Double-click the previously created DataSet in the Solution Explorer. The

Dataset-Designer opens.
• Right-click the “free” area within the Dataset-Designer. The context menu

opens. Press the menu option “Add > DataTable”

An empty DataTable is provided.

• Adjust the name of the created DataTable.
3 DataSet > Add DataTable > Add Column

• With the right mouse button you select the head of the DataTable within the
DataSet. A context menu opens. Select the menu option “Add >Column”. A new
column is added.

Adjust the column name according to the archive data to be read later on. Add a
respective DataTable column of the DataSet for each data table column.

4 Add a crystal report

• In the Solution Explorer you right-click to open the context menu of the project
and select the menu command “Add > New Item”.
A window with a list of templates opens.

• Select the “Crystal Report” item.

• Assign the final name for the report here. (This name is used for creating the
report class.)

• Press the “Add” button to create the report in the project.

Further Notes, Tips and Tricks, etc.

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 27

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

No. Procedure

5 Crystal Report with DataSet > Connect DataTable
• Open report template

Open a report in the report designer. You can double-click a report
“<ReportName>.rpt” in the Solution Explorer.

• Open the Database Expert
In a free area of the report you right-click the report. The context menu opens.
Select the option “Database > Database Expert”. To open the Database Expert
you can also use the menu option “Crystal Reports > Database > Database
Expert”. The Database Expert opens.

• DataSet > Add DataTable
The “Available Data Sources” list contains the previously created DataSet in the
“ADO.NET (XML)” item. Click the desired DataSet, then the contained
DataTable becomes visible. Via double-click or the “>” button you add the
DataTable to the “Selected Tables” list.

From this time on the table columns are ready to use in the Crystal Reports
Designer.

Further Notes, Tips and Tricks, etc.

28
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

No. Procedure

6 Configure Crystal Reports with available database fields
Click on a free area of the report. The context menu opens. Select the menu option
“Field Explorer”. You can also open the Field Explorer via menu command “Crystal
Reports > Field Explorer”. The Field Explorer lists the previously connected
DataTable with the previously created columns. You can now use the mouse to
“drag” the columns into the report. A column used in the report is marked with a
green checkmark in “Field Explorer > Database Fields”

7 Add CrystalReportViewer into a form

To use a Crystal Report in the application you add the CrystalReportViewer into a
form of your application. You find the CrystalReportViewer in the Toolbox at “Crystal
Reports > CrystalReportViewer”.
During runtime this enables previewing, printing and exporting the report.

Notes:
• The class of the report to be displayed is only assigned to the “.ReportSource”

property during runtime. (see for example Crystal Report data connection)
• Toolbar and status bar are not displayed in the standard setting. To display

toolbar and statusbar, you set the properties “DisplayStatusbar” and
“DisplayToolbar” to the value “true”.

The toolbar (menu bar in the top area) provides the functions
Export/Print/Scroll/Zoom and Search. The status bar (displayed at the bottom)
provides information on the page and the zoom factor.

Further Notes, Tips and Tricks, etc.

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 29

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

5.2 C#-Code to evaluate the process value archive

5.2.1 Definition for the connection process

The “string” tab “myConnectionString” is initialized with the required information for
the connection established with the archive database. The principle setup of the
string for the connection process is displayed below:

string myConnectionString =
 "Provider = WinCCOLEDBProvider.1; ////WinCC OleDBProvider
 Data Source = <Rechnername>\WINCC>;
 Catalog = <Data Source Name>“;

In the program the objects of the “Connection” group (“txtSource”, “txtCatalog” and
“txtProvider”) are used to initialize the string for the connection process.

5.2.2 Definition for the data selection

The “string” tab “mySelectQuery” is initialized with the required information for the
actual SQL data query. The setup of the string for the data selection is displayed
below:
string mySelectQuery = "TAG:R,(id1;id2;idn), //id=Ident. Process
value archive
’yyyy-mm-dd hh:mm:ss’, //Start time stamp
’yyyy-mm-dd hh:mm:ss’, //End time stamp
’TIMESTEP=n,Typ’"; //n=increment in seconds
 //Type=compression type (e.g.AVG
 //for the mean value)

In the program the objects of the “Data selection” group (“cmbTags”,
“cmbInterpol” and “txtStep”) and “Time Interval” (“dtpFrom” and “dtpTo”) are used
for initializing the string for the data selection.

Notes:

– The WinCCOLEDBProvider supports the specification of several archive
tags in one query. The archive tags can be given with name or archive tag
ID.

This example program reads the data of only one archive tag. The values
of the archive tag selected in the “cmbTags” drop-down list are selected.

– The archive tags are saved in the Runtime database with the universal
time stamp (UTC). The query time period must be given to the
WinCCOLEDBProvider in universal time code (UTC) so the delivered data
have no time lag with the local time. The time stamp given in the “dtpFrom”
and “dtpTo” objects are therefore transformed from local time into universal
time before they are used for a data query. The following program code
shows the transformation of the time stamp into universal time code as well
as the preparation of the time tstamp for the data selection. The “string” tag
“tfrom” and “tto” are used for setting up the string for the data selection.

Further Notes, Tips and Tricks, etc.

30
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

//covert to universal time (utc)
localDateTimeFrom = dtpFrom.Value;
localDateTimeFrom =
 System.DateTime.Parse(localDateTimeFrom.ToString());
univDateTimeFrom = localDateTimeFrom.ToUniversalTime();
string tfrom = dtpFrom.Value.Year.ToString() + "-"
 + string.Format("{0:MM}",univDateTimeFrom.Month.ToString())
 + "-"
 + string.Format("{0:dd}",univDateTimeFrom.Day.ToString())
 + " "
 + string.Format("{0:HH}",univDateTimeFrom.Hour.ToString())
 + ":"
 +
string.Format("{0:mm}",univDateTimeFrom.Minute.ToString())
 + ":"
 +
string.Format("{0:ss}",univDateTimeFrom.Second.ToString());

//covert to universal time (utc)
localDateTimeTo = dtpTo.Value;
localDateTimeTo =
 System.DateTime.Parse(localDateTimeTo.ToString());
univDateTimeTo = localDateTimeTo.ToUniversalTime();
string tto = dtpTo.Value.Year.ToString() + "-"
 + string.Format("{0:MM}",univDateTimeTo.Month.ToString())
 + "-"
 + string.Format("{0:dd}",univDateTimeTo.Day.ToString())
 + " "
 + string.Format("{0:HH}",univDateTimeTo.Hour.ToString())
 + ":"
 + string.Format("{0:mm}",univDateTimeTo.Minute.ToString())
 + ":"
 + string.Format("{0:ss}",univDateTimeTo.Second.ToString());

5.2.3 Connecting with the database and reading data

The following program code shows the connecting process with the database and
the access to the data.

OleDbConnection myConnection;
OleDbCommand myCommand;
OleDbDataAdapter myAdapter;

.
.
.
// Connection Archive-Database
myConnection=new OleDbConnection(myConnectionString);
myCommand = new OleDbCommand(mySelectQuery)
myCommand.Connection = myConnection;
myAdapter = new OleDbDataAdapter (myCommand); //connect and access

Note:
In this example data is read via OleDbDataAdapter. OleDbDataReader can also be
used. This does not affect the actual transmission process of the SQL query but
affects further data processing. Using OleDbDataAdapter the information in the
DataGridView can be provided directly without having to deal with the lines and
columns.

Further Notes, Tips and Tricks, etc.

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 31

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

5.2.4 Providing data for DataGrid and/or Crystal Report:

The example program uses the DataGridView control element for representation of
the data in a table and the CrystalReportViewer for formatted data output. For both
displays an object of type DataTable is used as the data source. The
OleDBDataAdapter supplies the DataTable object “myTableTags” with the read
data of the SQL query using the “.Fill()” method.

DataTable myTableTags;
.
.
.
myTableTags = new DataTable();
.
.
.
myTableTags.TableName = "myTableTags";
myAdapter.Fill(myTableTags);

Data of the DataTable “myTableTags” are read line by line (data record by data
record), prepared for display and written to a further DataTable
“myTableTagsModify”. Data of the modified DataTable “myTableTagsModify” are
used for display.

The following program code shows the preparation of the data:
The structure (columns) of DataTable “myTableTagsModify” must in this case be
created “manually”. The following code shows creating the first three columns of
DataTable “myTableTagsModify”.

Further Notes, Tips and Tricks, etc.

32
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

//===
//
//Adding Columns and Rows to Data Table myTableTagsModify
//
//===
DataColumn newColumn = new DataColumn ("localTimestamp",
 System.Type.GetType("System.String"));
newColumn.Caption = "localTimestamp";
newColumn.DefaultValue = string.Empty;
myTableTagsModify.Columns.Add(newColumn);
//
newColumn = new DataColumn ("RealValue",
 System.Type.GetType("System.String"));
newColumn.Caption = "RealValue";
newColumn.DefaultValue = string.Empty;
myTableTagsModify.Columns.Add(newColumn);
//
newColumn = new DataColumn ("Quality",
 System.Type.GetType("System.String"));
newColumn.Caption = "Quality";
newColumn.DefaultValue = string.Empty;
myTableTagsModify.Columns.Add(newColumn);
.
.
The following code shows “filling” the DataTable “myTableTagsModify”. The
following adjustments from DataTable “myTableTags” are made:
For display the time stamp is transformed from universal time code (UTC) to the
local time code.
The value of the archive tags is displayed with 3 digits.
The Quality code and the tag status are displayed as hexadecimal numbers.
In this section the columns “ValueName”, “localDateTimeFrom”,
“localDateTimeTo”, “univDateTimeFrom” and “univDateTimeTo” are created and
supplied with values. This column is accessed in the report.

–
//modify DataTable
myTableTagsModify.Clear();
foreach (DataRow row in myTableTags.Rows)
{
DataRow newRow = myTableTagsModify.NewRow();
//covert to local time
localDateTime =
System.DateTime.Parse(row["Timestamp"].ToString());
localDateTime = localDateTime.ToLocalTime();
newRow["localTimestamp"] = localDateTime.ToString();
newRow["RealValue"] =
 (String.Format("{0:F3}",row["RealValue"])).PadLeft(20);
newRow["Quality"] = String.Format("0x{0:X}",
 row["Quality"]).PadLeft(10);
newRow["Flags"] = String.Format("0x{0:X}",row["Flags"]).PadLeft(10);
newRow["ValueID"] = row["ValueID"];
newRow["ValueName"] = szValueName;
newRow["localDateTimeFrom"] = localDateTimeFrom;
newRow["localDateTimeTo"] = localDateTimeTo;
newRow["univDateTimeFrom"] = univDateTimeFrom;
newRow["univDateTimeTo"] = univDateTimeTo;
myTableTagsModify.Rows.Add(newRow);
}//foreach(DataRow)

myGrid.DataSource = myTableTagsModify;

Further Notes, Tips and Tricks, etc.

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 33

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

5.2.5 DataGrid data connection:

The name of the DataTable to be displayed is assigned to the property
“.DataSource” of the DataGridView control element.

myGrid.DataSource = myTableTagsModify;

5.2.6 Crystal Report data connection:

In this example a separate report was created for each report (Tag Logging, Alarm
Logging and Archive values). For each report Visual Studio creates a report class
with the same name.
The following figure displays the reports created in this project as well as the
existing report classes.

Figure 5-1

The connection of the data pool of the created instance to the DataTable occurs
via .SetDataSource.
In out example there is only one Crystal Report Viewer. The .ReportSource
connection and the desired report instance determines which report it shall display
here myDataReportAlarms.

// Activating Crystal-Report
CRTagLogging myDataReportTags = new CRTagLogging();
myDataReportTags.SetDataSource(myTableTagsModify);
crystalReportViewer1.ReportSource = myDataReportTags;

Further Notes, Tips and Tricks, etc.

34
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

5.2.7 Closing the connection with archive

myConnection.Close();

5.2.8 Exporting the archive values into a csv-file

The DataTable “myTableTagsModify” is read line by line (data record by data
record) and the content written to a csv-file.
StreamWriter streamTagLogging = null;

string strLine = "";

string strExportFile = "";

//
//Loop through DataTable by DataRow
//
//text file open
strExportFile = String.Format("{0}\\{1}", txtExportPath.Text,
 txtExportFile.Text);
streamTagLogging = File.CreateText(strExportFile);
strLine = "strExportFile=" + txtExportFile.Text;
streamTagLogging.WriteLine(strLine);
streamTagLogging.WriteLine(myConnectionString);
strLine = String.Format("mySelectQuery=\"{0}\"", mySelectQuery);
streamTagLogging.WriteLine(strLine);
strLine = "localTimestamp; RealValue; Quality; Flags";
streamTagLogging.WriteLine(strLine);

foreach (DataRow row in myTableTagsModify.Rows)
{
 strLine = String.Format("{0}; {1}; {2}; {3}",
 row["localTimestamp"], row["RealValue"], row["Quality"],
 row["Flags"]);
 streamTagLogging.WriteLine(strLine);
}//DataRow
if (streamTagLogging != null)streamTagLogging.Close();

5.3 C#-Code for evaluating the alarms and messages

5.3.1 Definition for the connection process

Please proceed as in section 5.2.1.

5.3.2 Definition for the data selection

The “string” tab “mySelectQuery” is initialized with the required information for the
actual SQL data query. The principle setup of the string for the data selection is
displayed below:

string mySelectQuery = "ALARMVIEW:SELECT * FROM AlgViewDeu
 Where DateTime>'2007-08-10 12:00:00’
 AND DateTime<'2007-08-10 14:00:00’";

In the program the objects of the “Time Interval” group (“dtpFrom” and “dtpTo”) are
used to initialize the string for the data selection.

Further Notes, Tips and Tricks, etc.

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 35

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Note The messages archive are saved in the Runtime database with the universal
time stamp (UTC). As for data selection for process value archives (see 5.2.2)
the local time stamp is transformed into the universal time stamp.

5.3.3 Connecting with the database and reading data:

Please proceed as in section 5.2.

5.3.4 Providing data for DataGrid and/or Crystal Report:

Please proceed as in section 5.2.4.
The following program code shows how the status of a message can be displayed
is character chain instead of a number value (as in WinCC Alarm Control). The
number value of the status of a message is evaluated in a switch instruction and
the respective character chain assigned in the various case branches.

Note Information on the possible number values, which the “status” of a message can
take on, is available in entry 24842903 or in the WinCC Information System at:
 “Working with WinCC
> ANSI-C for creating procedures and actions
> ANSI-C function description > Appendix > Structure definitions
> Structure definition MSG_RTDATA_STRUCT ”

//szState = String.Format("0x{0:X}", row["State"]).PadLeft(10);

iState = (short)(row["State"]);
switch (iState){
 case 1:
 szState = row["TxtCame"].ToString();
 break;

case 2:
 szState = row["TxtWent"].ToString();
 break;
 case 3:
 szState = row["TxtAck"].ToString();
 break;
 case 16://0x10 (Quit System)
 szState = row["TxtAck"].ToString();
 break;
 default:
 szState = String.Format("0x{0:X}", row["State"]).PadLeft(10);
 break;
}//switch row["State"]

newRow["State"] = szState;

5.3.5 DataGrid data connection:

The name of the DataTable to be displayed is assigned to the property
“.DataSource” of the DataGridView control element.

myGrid.DataSource = myTableAlarmsModify;

http://support.automation.siemens.com/WW/view/en/24842903�

Further Notes, Tips and Tricks, etc.

36
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

5.3.6 Crystal Report data connection:

Please proceed as in section 5.2.5.
// Activating Crystal-Report
CRAlarmLogging myDataReportAlarms = new CRAlarmLogging();
myDataReportAlarms.SetDataSource(myTableAlarmsModify);
crystalReportViewer1.ReportSource = myDataReportAlarms;

5.3.7 Closing the connection with archive

myConnection.Close();

5.4 C#-Code to evaluate the user archive

5.4.1 Definition for the connection process

The “string” tab “myConnectionString” is initialized with the required information for
the connection established with the archive database. The principle setup of the
string for the connection process is displayed below:

string myConnectionString =
 "Provider =SQLOLEDB; //Microsoft OleDBProvider
 Data Source = <Rechnername>\WINCC>;
 uid = <User Name>
 pwd = <Password>
 Initial Catalog = <Data Source Name>“;

In the program the objects of the “Connection” group (“txtSource”, “txtCatalog”,
“txtProvider”, “txtUid” and “txtPwd”) are used to initialize the string for the
connection process.

5.4.2 Definition for the data selection

The “string” tab “mySelectQuery” is initialized with the required information for the
actual SQL data query. The setup of the string for the data selection is displayed
below:

mySelectQuery = "SELECT iID,szName, iCount, fWeight FROM UA#Products" ;

5.4.3 Connecting with the database and reading data:

Please proceed as in section 5.2.

5.4.4 Providing data for DataGrid and/or Crystal Report:

Please proceed as in section 5.2.4.
// Providing data for data grid

myTableProducts.TableName = "myTableProducts";
myAdapter.Fill(myTableProducts);

Further Notes, Tips and Tricks, etc.

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 37

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

5.4.5 DataGrid data connection:

The name of the DataTable to be displayed is assigned to the property
“.DataSource” of the DataGridView control element.

myGrid.DataSource = myTableProducts;

5.4.6 Crystal Report data connection:

Please proceed as in section 5.3.6.

// Activating Crystal-Report
CRProducts myDataProducts = new CRProducts ();
myDataProducts.SetDataSource(myTableProducts);
crystalReportViewer1.ReportSource = myDataProducts;

5.4.7 Closing the connection with archive

myConnection.Close();

Bibliography

38
WinCC_CopackCsharp

Version 1.1, Entry ID: 35840700

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

Bibliography 6
Internet Links

The following list is by no means complete and only provides a selection of
appropriate sources.
Table 6-1 Internet links

 Topic Title

\1\ Reference to this
entry

http://support.automation.siemens.com/WW/view/en/35840700

\2\ Siemens I IA/DT
Customer Support

http://support.automation.siemens.com

\3\ Determining the
Data Source
Name.

http://support.automation.siemens.com/WW/view/en/9061684

\4\ Creating a user
for the WinCC
Runtime database

http://support.automation.siemens.com/WW/view/en/27147643

\5\ “Status“ of a
message

http://support.automation.siemens.com/WW/view/en/24842903

\6\ Access to WinCC
archive

http://support.automation.siemens.com/WW/view/en/22578952

http://support.automation.siemens.com/WW/view/en/35840700�
http://support.automation.siemens.com/�
http://support.automation.siemens.com/WW/view/en/9061684�
http://support.automation.siemens.com/WW/view/en/27147643�
http://support.automation.siemens.com/WW/view/en/24842903�
http://support.automation.siemens.com/WW/view/en/22578952�

History

WinCC_CopackCsharp
Version 1.1, Entry ID: 35840700 39

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
9

A
ll

rig
ht

s
re

se
rv

ed

History 7

Table 7-1 History

Version Date Changes

V1.0 06.12.2007 First issue
V1.1 08.10.2009 • User guidance by activating/deactivating input groups

• Export of messages and user archives realized
• Application can be used without installed Crystal Report

	1 Automation Task
	2 Automation Solution
	2.1 Description
	2.2 Hardware and software components used

	3 Installation
	4 Operating the Application
	4.1 Detailed description of the screen objects
	4.1.1 “Connection” group
	4.1.2 “Archive” group
	4.1.3 “data selection” group
	4.1.4 “Time Interval” group
	4.1.5 “read archives” button
	4.1.6 “Export data” group
	4.1.7 Spreadsheet for displaying the runtime data

	4.2 Reading, displaying and exporting the WinCC process value archives
	4.3 Reading, displaying and exporting the WinCC message archive
	4.4 Reading, displaying and exporting the WinCC user archive

	5 Further Notes, Tips and Tricks, etc.
	5.1 Creating a report in Crystal Reports
	5.2 C#-Code to evaluate the process value archive
	5.2.1 Definition for the connection process
	5.2.2 Definition for the data selection
	5.2.3 Connecting with the database and reading data
	5.2.4 Providing data for DataGrid and/or Crystal Report:
	5.2.5 DataGrid data connection:
	5.2.6 Crystal Report data connection:
	5.2.7 Closing the connection with archive
	5.2.8 Exporting the archive values into a csv-file

	5.3 C#-Code for evaluating the alarms and messages
	5.3.1 Definition for the connection process
	5.3.2 Definition for the data selection
	5.3.3 Connecting with the database and reading data:
	5.3.4 Providing data for DataGrid and/or Crystal Report:
	5.3.5 DataGrid data connection:
	5.3.6 Crystal Report data connection:
	5.3.7 Closing the connection with archive

	5.4 C#-Code to evaluate the user archive
	5.4.1 Definition for the connection process
	5.4.2 Definition for the data selection
	5.4.3 Connecting with the database and reading data:
	5.4.4 Providing data for DataGrid and/or Crystal Report:
	5.4.5 DataGrid data connection:
	5.4.6 Crystal Report data connection:
	5.4.7 Closing the connection with archive

	6 Bibliography
	7 History

