
Open Development Kit 1500S V2.5 SP4

SIMATIC

STEP 7 (TIA Portal) Options
Open Development Kit 1500S
V2.5 SP4

Programming and Operating Manual

12/2023
A5E35253941-AH

Introduction 1

Security information 2

Product overview 3

Installation 4
Developing a CPU function
library for the Windows
environment

5

Developing a CPU function
library for the realtime
environment

6

Development of a C/C++
runtime application 7
Developing a PLCSIM
Advanced function library 8

Using example projects 9

General conditions A
Syntax Interface file
<project>.odk for CPU
function libraries

B

Code generator messages
for CPU function libraries C
Helper functions for CPU
function libraries D
Instructions for CPU
function libraries E

 Siemens Aktiengesellschaft
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E35253941-AH
Ⓟ 01/2024 Subject to change

Copyright © Siemens 2014 - 2023.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens Aktiengesellschaft. The remaining trademarks in
this publication may be trademarks whose use by third parties for their own purposes could violate the rights of
the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 3

Table of contents

1 Introduction ... 7

1.1 S7-1500/ET 200MP Documentation Guide .. 8
1.1.1 S7-1500 / ET 200MP Documentation Guide .. 8
1.1.2 SIMATIC Technical Documentation ... 10
1.1.3 Tool support .. 12

2 Security information .. 13

2.1 Cybersecurity information .. 13

2.2 Information about third-party software updates ... 14

2.3 Notes on protecting administrator accounts ... 14

3 Product overview ... 15

3.1 Introduction to ODK 1500S .. 15

3.2 Development environments ... 18

3.3 Basic procedure ... 19

4 Installation ... 21

4.1 System Requirements .. 21

4.2 Installing ODK .. 23

4.3 Licensing ODK 1500S ... 25

4.4 Subsequently integrating project template for Windows CPU function libraries in Visual
Studio.. 27

4.5 Uninstalling ODK ... 27

5 Developing a CPU function library for the Windows environment ... 28

5.1 Creating a CPU function library ... 28
5.1.1 Requirements .. 28
5.1.2 Creating a project .. 28
5.1.2.1 Solution Explorer structure: C++ project ... 29
5.1.2.2 Solution Explorer structure: C# project ... 32
5.1.2.3 Solution Explorer structure: VB Project ... 33
5.1.3 Generating a CPU function library .. 33
5.1.4 Defining the runtime properties of a CPU function library ... 34
5.1.5 Environment for loading or executing the CPU function library ... 35
5.1.6 Defining functions and structures of a CPU function library ... 37
5.1.6.1 Using ODK_VARIANT as parameter ... 40
5.1.6.2 Handling strings .. 41
5.1.6.3 Definition of the <Project>.odk file ... 42
5.1.6.4 Modifying the <Project>.odk file .. 44
5.1.6.5 Comments ... 46
5.1.6.6 Comments in Visual Basic ... 47
5.1.7 Implementing functions ... 48

Table of contents

 Open Development Kit 1500S V2.5 SP4

4 Programming and Operating Manual, 12/2023, A5E35253941-AH

5.1.7.1 General notes .. 48
5.1.7.2 Callback functions ... 49
5.1.7.3 Implementing custom functions... 50

5.2 Transferring a CPU function library to the target system ... 51

5.3 Importing and generating an SCL file in STEP 7 ... 52

5.4 Executing a function .. 54
5.4.1 Loading functions .. 54
5.4.2 Calling functions .. 57
5.4.3 Unloading functions .. 60

5.5 Remote debugging .. 62
5.5.1 Performing remote debugging ... 63

6 Developing a CPU function library for the realtime environment .. 65

6.1 Creating a CPU function library... 65
6.1.1 Requirements .. 65
6.1.2 Creating a project .. 65
6.1.3 Generating a CPU function library .. 68
6.1.4 Defining the runtime properties of a CPU function library ... 68
6.1.5 Environment for loading or running the CPU function library .. 70
6.1.6 Defining functions and structures of a CPU function library ... 71
6.1.6.1 Defining functions a CPU function library ... 71
6.1.6.2 Use of ODK_CLASSIC_DB as parameter ... 74
6.1.6.3 Handling strings .. 75
6.1.6.4 Definition of the <Project>.odk file ... 76
6.1.6.5 Modifying the <Project>.odk file .. 78
6.1.6.6 Comments ... 78
6.1.7 Implementing functions ... 80
6.1.7.1 General notes .. 80
6.1.7.2 Callback functions ... 81
6.1.7.3 Implementing custom functions... 82
6.1.7.4 Dynamic memory management ... 83
6.1.7.5 Debug (Test) .. 85

6.2 Transferring a CPU function library to the target system ... 88

6.3 Importing and generating an SCL file in STEP 7 ... 90

6.4 Executing a function .. 91
6.4.1 Loading functions .. 91
6.4.2 Calling functions .. 93
6.4.3 Unloading functions .. 96
6.4.4 Reading the trace buffer .. 97

6.5 Post Mortem analysis ... 99
6.5.1 Introduction .. 99
6.5.2 Execute post mortem analysis .. 101

7 Development of a C/C++ runtime application ... 105

7.1 Install additional Eclipse plugins ... 105

7.2 Create C/C++ application .. 106
7.2.1 Requirements .. 106
7.2.2 Creating a C/C++ Runtime Application project ... 107

 Table of contents

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 5

7.2.3 Editing C/C++ code ... 109
7.2.4 Generate C/C++ runtime application ... 111

7.3 Load C/C++ runtime application in the target system .. 111
7.3.1 Configuring PuTTY ... 111
7.3.2 Commissioning C/C++ Runtime .. 113
7.3.3 Set up new connection to the target system in Eclipse .. 114
7.3.4 Load and execute C/C++ runtime application in the target system via Eclipse 117
7.3.5 Load and debug C/C++ runtime application in the target system via Eclipse 117

7.4 Execute C/C++ runtime application ... 119
7.4.1 Start application via secure shell .. 119

8 Developing a PLCSIM Advanced function library .. 120

8.1 Creating a PLCSIM Advanced function library .. 120
8.1.1 Requirements .. 120
8.1.2 Creating a PLCSIM Advanced function library with Visual Studio.. 120

8.2 Transferring the PLCSIM Advanced function library to PLCSIM Advanced 122

8.3 Defining the runtime properties of a PLCSIM Advanced function library 123

8.4 Definition of the <Project>.odk file ... 124

8.5 Modifying the <Project>.odk file .. 125

8.6 Editing PLCSIM Advanced function library ... 126

8.7 Generating a PLCSIM Advanced function library .. 127

8.8 Executing a function .. 128

8.9 Debugging C/C++ Code .. 128

9 Using example projects ... 129

A General conditions .. 130

A.1 Number of loadable CPU function libraries ... 130

A.2 Compatibility ... 131

B Syntax Interface file <project>.odk for CPU function libraries .. 132

B.1 Data types ... 132

B.2 Parameters .. 134

C Code generator messages for CPU function libraries .. 136

C.1 Error messages of the code generator .. 136

C.2 Warnings of the code generator ... 138

D Helper functions for CPU function libraries ... 139

D.1 C++ helper functions .. 139

D.2 C#/VB helper functions ... 142

E Instructions for CPU function libraries... 145

E.1 "Load" instruction .. 145

E.2 "Unload" instruction ... 145

Table of contents

 Open Development Kit 1500S V2.5 SP4

6 Programming and Operating Manual, 12/2023, A5E35253941-AH

E.3 "GetTrace" instruction .. 145

 Index .. 146

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 7

Introduction 1

Purpose of the documentation
This documentation describes the specific characteristics of the Open Development Kit (ODK)
V2.5 SP3.

Definitions and naming conventions
The following terms are used in this documentation:

• CPU: Designates the products named under "Scope of documentation".

• ODK: Open Development Kit

• MFP: Multifunctional platform

• Windows: Designates the Microsoft operating systems supported by ODK.

• STEP 7: For the designation of the configuring and programming software, we use "STEP
7" as a synonym for the version "STEP 7 (TIA Portal) V13 SP1 and higher".

• DLL: Dynamic Link Library

• SO: Shared Object

• Visual Studio: Microsoft Visual Studio

• TCF: Target Communication Framework

Basic knowledge required
This documentation is intended for engineers, programmers, and maintenance personnel
with general knowledge of automation systems and programmable logic controllers.

To understand this documentation, you need to have general knowledge of automation
engineering. You also need basic knowledge of the following topics:

• SIMATIC Industrial Automation System

• PC-based automation

• Using STEP 7

• Use of Microsoft Windows operating systems

• Programming with C/C++, C#, Visual Basic

Introduction
1.1 S7-1500/ET 200MP Documentation Guide

 Open Development Kit 1500S V2.5 SP4

8 Programming and Operating Manual, 12/2023, A5E35253941-AH

Validity of the documentation
This documentation applies to use of ODK with the following products:

• CPU 1505SP (T/F/TF)

• CPU 1507S (F)

• CPU 1508S (F)

• CPU 1518-4 PN/DP MFP (F)

Notes
Please also observe notes labeled as follows:

 Note

A note contains important information on the product described in the documentation, on
the handling of the product or on the section of the documentation to which particular
attention should be paid.

1.1 S7-1500/ET 200MP Documentation Guide

1.1.1 S7-1500 / ET 200MP Documentation Guide
The documentation for the SIMATIC S7-1500 automation system and the ET 200MP
distributed I/O system is arranged into three areas.

This arrangement enables you to access the specific content you require. Changes and
supplements to the manuals are documented in a Product Information.

You can download the documentation free of charge from the Internet
(https://support.industry.siemens.com/cs/ww/en/view/109742691).

Basic information
The System Manual and Getting Started describe in detail the configuration, installation,
wiring and commissioning of the SIMATIC S7-1500 and ET 200MP systems.

The STEP 7 online help supports you in the configuration and programming.

Examples:

• Getting Started S7-1500

• S7-1500/ET 200MP System Manual

• Online help TIA Portal

https://support.industry.siemens.com/cs/ww/en/view/109742691

 Introduction
 1.1 S7-1500/ET 200MP Documentation Guide

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 9

Device information
Equipment manuals contain a compact description of the module-specific information, such
as properties, wiring diagrams, characteristics and technical specifications.

Examples:

• Equipment Manuals CPUs

• Equipment Manuals Interface Modules

• Equipment Manuals Digital Modules

• Equipment Manuals Analog Modules

• Equipment Manuals Communications Modules

• Equipment Manuals Technology Modules

• Equipment Manuals Power Supply Modules

General information
The function manuals contain detailed descriptions on general topics relating to the SIMATIC
S7-1500 and ET 200MPsystems.

Examples:

• Function Manual Diagnostics

• Function Manual Communication

• Function Manual Motion Control

• Function Manual Web Server

• Function Manual Cycle and Response Times

• PROFINET Function Manual

• PROFIBUS Function Manual

Product Information
Changes and supplements to the manuals are documented in a Product Information. The
Product Information takes precedence over the device and system manuals.

You can find the latest Product Information on the S7-1500 and ET 200MP systems on the
Internet (https://support.industry.siemens.com/cs/de/en/view/68052815).

Manual Collection S7-1500/ET 200MP
The Manual Collection contains the complete documentation on the SIMATIC S7-1500
automation system and the ET 200MP distributed I/O system gathered together in one file.

You can find the Manual Collection on the Internet.
(https://support.industry.siemens.com/cs/ww/en/view/86140384)

https://support.industry.siemens.com/cs/de/en/view/68052815
https://support.industry.siemens.com/cs/ww/en/view/86140384

Introduction
1.1 S7-1500/ET 200MP Documentation Guide

 Open Development Kit 1500S V2.5 SP4

10 Programming and Operating Manual, 12/2023, A5E35253941-AH

SIMATIC S7-1500 comparison list for programming languages
The comparison list contains an overview of which instructions and functions you can use for
which controller families.

You can find the comparison list on the Internet
(https://support.industry.siemens.com/cs/ww/en/view/86630375).

1.1.2 SIMATIC Technical Documentation
Additional SIMATIC documents will complete your information. You can find these
documents and their use at the following links and QR codes.

The Industry Online Support gives you the option to get information on all topics. Application
examples support you in solving your automation tasks.

Overview of the SIMATIC Technical Documentation
Here you will find an overview of the SIMATIC documentation available in Siemens Industry
Online Support:

Industry Online Support International
(https://support.industry.siemens.com/cs/ww/en/view/109742705)

Watch this short video to find out where you can find the overview directly in Siemens Indus-
try Online Support and how to use Siemens Industry Online Support on your mobile device:

Quick introduction to the technical documentation of automation products per
video (https://support.industry.siemens.com/cs/us/en/view/109780491)

YouTube video: Siemens Automation Products - Technical Documentation at a
Glance (https://youtu.be/TwLSxxRQQsA)

https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/109742705
https://support.industry.siemens.com/cs/us/en/view/109780491
https://youtu.be/TwLSxxRQQsA

 Introduction
 1.1 S7-1500/ET 200MP Documentation Guide

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 11

Retention of the documentation
Retain the documentation for later use.

For documentation provided in digital form:

1. Download the associated documentation after receiving your product and before initial
installation/commissioning. Use the following download options:

– Industry Online Support International: (https://support.industry.siemens.com)

The article number is used to assign the documentation to the product. The article
number is specified on the product and on the packaging label. Products with new,
non-compatible functions are provided with a new article number and documentation.

– ID link:

Your product may have an ID link. The ID link is a QR code with a frame and a black
frame corner at the bottom right. The ID link takes you to the digital nameplate of your
product. Scan the QR code on the product or on the packaging label with a smartphone
camera, barcode scanner, or reader app. Call up the ID link.

2. Retain this version of the documentation.

Updating the documentation
The documentation of the product is updated in digital form. In particular in the case of
function extensions, the new performance features are provided in an updated version.

1. Download the current version as described above via the Industry Online Support or the ID
link.

2. Also retain this version of the documentation.

mySupport
With "mySupport" you can get the most out of your Industry Online Support.

Registration You must register once to use the full functionality of "mySupport". After registra-

tion, you can create filters, favorites and tabs in your personal workspace.
Support re-
quests

Your data is already filled out in support requests, and you can get an overview of
your current requests at any time.

Documentation In the Documentation area you can build your personal library.
Favorites You can use the "Add to mySupport favorites" to flag especially interesting or

frequently needed content. Under "Favorites", you will find a list of your flagged
entries.

Recently viewed
articles

The most recently viewed pages in mySupport are available under "Recently
viewed articles".

CAx data The CAx data area gives you access to the latest product data for your CAx or CAe
system. You configure your own download package with a few clicks:
• Product images, 2D dimension drawings, 3D models, internal circuit diagrams,

EPLAN macro files
• Manuals, characteristics, operating manuals, certificates
• Product master data

You can find "mySupport" on the Internet. (https://support.industry.siemens.com/My/ww/en)

https://support.industry.siemens.com/
https://support.industry.siemens.com/My/ww/en

Introduction
1.1 S7-1500/ET 200MP Documentation Guide

 Open Development Kit 1500S V2.5 SP4

12 Programming and Operating Manual, 12/2023, A5E35253941-AH

Application examples
The application examples support you with various tools and examples for solving your
automation tasks. Solutions are shown in interplay with multiple components in the system -
separated from the focus on individual products.

You can find the application examples on the Internet.
(https://support.industry.siemens.com/cs/ww/en/ps/ae)

1.1.3 Tool support
The tools described below support you in all steps: from planning, over commissioning, all
the way to analysis of your system.

TIA Selection Tool
The TIA Selection Tool tool supports you in the selection, configuration, and ordering of
devices for Totally Integrated Automation (TIA).

As successor of the SIMATIC Selection Tools , the TIA Selection Tool assembles the already
known configurators for automation technology into a single tool.

With the TIA Selection Tool , you can generate a complete order list from your product
selection or product configuration.

You can find the TIA Selection Tool on the Internet.
(https://support.industry.siemens.com/cs/ww/en/view/109767888)

SINETPLAN
SINETPLAN, the Siemens Network Planner, supports you in planning automation systems and
networks based on PROFINET. The tool facilitates professional and predictive dimensioning of
your PROFINET installation as early as in the planning stage. In addition, SINETPLAN supports
you during network optimization and helps you to exploit network resources optimally and to
plan reserves. This helps to prevent problems in commissioning or failures during productive
operation even in advance of a planned operation. This increases the availability of the
production plant and helps improve operational safety.

The advantages at a glance

• Network optimization thanks to port-specific calculation of the network load

• Increased production availability thanks to online scan and verification of existing systems

• Transparency before commissioning through importing and simulation of existing STEP 7
projects

• Efficiency through securing existing investments in the long term and the optimal use of
resources

You can find SINETPLAN on the Internet
(https://new.siemens.com/global/en/products/automation/industrial-
communication/profinet/sinetplan.html).

See also
PRONETA Professional (https://support.industry.siemens.com/cs/ww/en/view/109781283)

https://support.industry.siemens.com/cs/ww/en/ps/ae
https://support.industry.siemens.com/cs/ww/en/view/109767888
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/sinetplan.html
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/sinetplan.html
https://support.industry.siemens.com/cs/ww/en/view/109781283

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 13

Security information 2

Notes on Open Source Software
You can download and install various development tools of the Open Source project
MinGW32 as a supplement to the product. Note that these components are optional and are
provided and distributed by the MinGW32 project or other licensors under different licenses,
which you can view on the project homepage or on the specific packages.

2.1 Cybersecurity information
Siemens provides products and solutions with industrial cybersecurity functions that support
the secure operation of plants, systems, machines, and networks.

In order to protect plants, systems, machines, and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
cybersecurity concept. Siemens’ products and solutions constitute one element of such a
concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the internet if and to the extent such a connection is necessary
and only when appropriate security measures (e.g. firewalls and/or network segmentation)
are in place.

For more information on protective industrial cybersecurity measures for implementation,
please visit (https://www.siemens.com/global/en/products/automation/topic-areas/industrial-
cybersecurity.html).

Siemens' products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends that product updates are applied as soon as they are
available and that the latest product versions are used. Use of product versions that are no
longer supported, and failure to apply the latest updates may increase customers' exposure to
cyber threats.

To stay informed about product updates at all times, subscribe to the Siemens Industrial
Cybersecurity RSS Feed under
(https://new.siemens.com/global/en/products/services/cert.html).

https://www.siemens.com/global/en/products/automation/topic-areas/industrial-cybersecurity.html
https://www.siemens.com/global/en/products/automation/topic-areas/industrial-cybersecurity.html
https://new.siemens.com/global/en/products/services/cert.html

Security information
2.2 Information about third-party software updates

 Open Development Kit 1500S V2.5 SP4

14 Programming and Operating Manual, 12/2023, A5E35253941-AH

2.2 Information about third-party software updates
This product contains third-party software. Siemens accepts liability with respect to
updates/patches for the third-party software only when these are distributed by Siemens in
the context of a Software Update Service contract or officially approved by
Siemens. Otherwise, updates/patches are installed at the user's own risk. You can find more
information in our Software Update Service (http://w3.siemens.com/mcms/automation-
software/en/software-update-service/Pages/Default.aspx).

2.3 Notes on protecting administrator accounts
A user with administrator rights has extensive access and manipulation possibilities.

Therefore, make sure that the administrator account is adequately protected to prevent
unauthorized changes. To do this, set secure passwords and use a standard user account for
regular operation. Other measures, such as the use of security policies, should be applied as
required.

http://w3.siemens.com/mcms/automation-software/en/software-update-service/Pages/Default.aspx
http://w3.siemens.com/mcms/automation-software/en/software-update-service/Pages/Default.aspx

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 15

Product overview 3
3.1 Introduction to ODK 1500S

Overview
ODK is a development kit that allows you to program custom functions and generate files
that STEP 7 can call directly.

ODK serves as a tool for:

• Windows environment

– Execution on your Windows PC

– Use of resources of your Windows PC

– Use of operating system functions and system resources with access to external
hardware and software components

• Realtime environment

– Execution on your CPU

– Synchronous function call (algorithmic, controllers)

Calling multiple applications under Windows or in the realtime environment is possible.

You must use the CPU function libraries in the STEP 7 program.

You can use C/C++ runtime applications running in SIMATIC S7-1500 MFP C/C++ Runtime
independently of the STEP 7 program.

With the PLCSIM Advanced function libraries, you can run a project in a simulated
environment instead of on a hardware or software CPU.

Structure and design of an CPU function library
ODK supports the interface for calling custom high-level language programs from the
controller program of the CPU.

ODK supports the following templates:

• Templates in different programming languages for Microsoft Visual Studio. This allows
you to generate a DLL file. The C++, C# and Visual Basic programming languages are
supported.

• A template for programming in Eclipse. This allows you to generate an SO file. ODK also
supplies a class library for Eclipse. The C++ programming language is supported.

You can create a CPU function library for both the Windows and the real-time environment.
The programming languages mentioned are available to you for this purpose.

Product overview
3.1 Introduction to ODK 1500S

 Open Development Kit 1500S V2.5 SP4

16 Programming and Operating Manual, 12/2023, A5E35253941-AH

You can run the ODK program in the following ways:

• Synchronous, i.e. executed as part of the CPU cycle (executed in the realtime
environment).

• Asynchronous, i.e. started by the CPU program and ended in the background (executed in
the Windows environment).

You can run CPU function libraries both under Windows (DLL) as well as in the real-time core
of the CPU (SO). You call the functions of the DLL or SO file using instructions in the user
program.

The CPU can perform functions in libraries that can be loaded dynamically. There are several
functions possible in a CPU function library. Specific function blocks are available for a CPU
function library:

• Loading and unloading of the CPU function library

• In each case, a specific function block for calling a function.

The following illustration provides a schematic overview of how CPU function libraries work
and run on a PC. The illustration applies to the S7-1500 Software Controller.

Figure 3-1 Running a CPU function library on a PC

 Product overview
 3.1 Introduction to ODK 1500S

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 17

Structure and design of a C/C++ runtime application

Figure 3-2 Overview of the performance segment

You can use C/C++ runtime applications to implement parallel processes to the STEP 7 user
program, for example, for pre-processing or transmitting data via Industrial Ethernet. A CPU
can perform several tasks at the same time. The complexity of functions is reduced and the
time required for implementation is reduced.

You can reuse existing C/C++ algorithms. In order to continue using existing technological
know-how, you can integrate the existing C/C++ code via the Open Development Kit as C/C++
runtime applications in the SIMATIC S7-1500 MFP C/C++ Runtime.

Once you integrate the C/C++ sources, you can execute them on the CPU.

Product overview
3.2 Development environments

 Open Development Kit 1500S V2.5 SP4

18 Programming and Operating Manual, 12/2023, A5E35253941-AH

The following options are available for communication between CPU Runtime and C/C++
Runtime:

• On Open User Communication with the "TSTEND" and "TRCV" function blocks.

• About the Communication protocol OPC UA.

Figure 3-3 Communication between CPU Runtime and C/C++ Runtime

3.2 Development environments
The following development environments for creating an ODK project are available for
selection.

• Microsoft Visual Studio for CPU function libraries for the Windows environment (DLL file)
and PLCSIM Advanced function libraries.

• Eclipse CPU function libraries for the realtime environment (SO file) and C/C++ runtime
applications.

Microsoft Visual Studio as a development environment
Use Microsoft Visual Studio. To help you develop a CPU function library, a template for a
Microsoft Visual Studio project is included in the installation of ODK 1500S. The ODK
template can be found under the entry of the corresponding programming language when a
new project is created.

 Product overview
 3.3 Basic procedure

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 19

Eclipse as a development environment
Use Eclipse. To help you develop a C/C++ runtime application, a template for an Eclipse
project is included in the installation of ODK 1500S. The template can be found in the folder
"ODK 1500S Templates".

3.3 Basic procedure
The following sections describe the development tasks and procedures for the development
and execution of a CPU function library/C/C++ runtime application:

• Developing a CPU function library for the Windows environment (Page 28)

• Developing a CPU function library for the realtime environment (Page 65)

• Development of a C/C++ runtime application (Page 105)

• Developing a PLCSIM Advanced function library (Page 120)

Figure 3-4 Overview of the development steps

Product overview
3.3 Basic procedure

 Open Development Kit 1500S V2.5 SP4

20 Programming and Operating Manual, 12/2023, A5E35253941-AH

Overview of the development steps
To develop and execute a C/C++ runtime application/CPU function library, follow these steps:

1. Implement your function.

– Implement your function for CPU function libraries in Visual Studio (DLL file) or Eclipse
(SO file).

– Implement your function for C/C++ runtime application in Eclipse.

2. Create the C/C++ runtime application, DLL or SO file and the SCL file.

3. Import the SCL file into STEP 7.

4. Write your user application in STEP 7.

5. Load the user program in the CPU and the C/C++ runtime application or DLL or SO file into
the target system.

Result
Your C/C++ runtime application/CPU function library is loaded in the target system.

The CPU function library is loaded and executed by the user program in STEP 7.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 21

Installation 4
4.1 System Requirements

Requirements
Your PC must meet the following system requirements in order to use the ODK:

Category Requirements
Operating system • Microsoft Windows 8.1, 64-bit

• Microsoft Windows 10, 64-bit
• Microsoft Windows 11, 64-bit
Note: Installation on Windows 8.1
Before installing ODK 1500S with the Windows 8.1 operating system, ensure that the Win-
dows Knowledge Base article "KB2919355" is installed on the PC.

Processor and memory PC system:
• At least systems with Intel Core i5 processor
• 1.2 GHz or higher
• At least 4 GB of RAM

Mass storage Depending on the already installed components, you need up to 3 GB of free space on the
hard disk C:\.
The exact amount of space required is displayed during the installation.
Note: The setup files are deleted when the installation is complete.

Operator interface Color monitor, keyboard and mouse or another pointing device (optional) supported by
Microsoft Windows

SIMATIC software • SIMATIC STEP 7 Professional (TIA Portal) V15 or higher

Additional software Not included in the product package:
• Java Runtime 32-bit as of V1.7 (for Eclipse)
• Microsoft Visual Studio 2015
• Microsoft Visual Studio 2017
• Microsoft Visual Studio Community 2017
• Microsoft Visual Studio 2019
• Microsoft Visual Studio 2022
• Eclipse plugins (for MFP use)
• SSH Client, for example PuTTY (for MFP use)
• Microsoft Development Tool: Download Center (https://www.microsoft.com/en-

us/download/developer-tools.aspx)

https://www.microsoft.com/en-us/download/developer-tools.aspx
https://www.microsoft.com/en-us/download/developer-tools.aspx

Installation
4.1 System Requirements

 Open Development Kit 1500S V2.5 SP4

22 Programming and Operating Manual, 12/2023, A5E35253941-AH

 Note
.NET version for the Windows environment

When creating a C# project, the target framework is set as ".NET 4.8" (e.g.
"C# Console Application" under Visual Studio 2019/2022).

If you need a new .NET framework, ensure that a .NET version ≥ the target framework version
set on the target device is installed.

ODK 1500S V2.5 SP4 is compatible with the following devices (support for loadable function
libraries depends on the device):

 CPU function library

DLL (Windows)
CPU function library
SO (Real-time)

C/C++ runtime applica-
tion

CPU 1505SP (F/T/TF) as of V2.5 Yes Yes No
CPU 1507S (F) as of V2.5
CPU 1508S (F) as of V2.6
CPU 1518-4 PN/DP MFP (F) up to Firm-
ware V2.6.1
CPU 1518-4 PN/DP MFP (F) Firmware
V2.8
CPU 1518-4 PN/DP MFP (F) Firmware
V2.9

No Yes Yes

PLCSIM Advanced as of V3.0 no* Yes No
 * PLCSIM Advanced has its own function library type "PLCSIM Advanced Function Library DLL (Windows)"

 Installation
 4.2 Installing ODK

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 23

4.2 Installing ODK
To install the ODK, insert the Installation DVD. Follow the instructions of the setup program.

If the setup program does not start automatically, open the "Start.exe" file on the Installation
DVD manually with a double-click.

Requirements
You need administrator rights for this procedure.

It is possible to operate different ODK major versions (e.g. V2.0 and V2.5) on one PC at the
same time.

It is not possible to operate the major version and service pack (e.g. V2.5 and V2.5.4) on one
PC at the same time.

 Note
Close applications before a repair installation/uninstall

Close all applications (especially ODK-related applications), before performing the repair
installation/uninstall.

 Note
Use of antivirus programs

To avoid problems during installation, disable the antivirus program during installation or
close the directory "C:\Program Files\Common Files\Siemens\Automation\Siemens Installer
Assistant" as well as the directory in which the Start.exe of the antivirus program is located.

Procedure
If you want to use the Microsoft Visual Studio development environment, we recommend
that you install this before ODK.

To install ODK, follow these steps:

1. Start the "Start.exe" file from the Installation DVD manually with a double-click.

2. Select the language for performing the installation.

3. Confirm with "Next".

If you want to upgrade an installed version V2.5, V2.5.1, V2.5.2 or V2.5.3 to V2.5.4,
confirm with "Change".

4. Click "Next" to confirm the list of components that are to be installed.

The check mark for Automation License Manager (ALM) cannot be removed.

5. Follow the instructions of the installation wizard.

Installation
4.2 Installing ODK

 Open Development Kit 1500S V2.5 SP4

24 Programming and Operating Manual, 12/2023, A5E35253941-AH

6. Confirm the installation dialog with the "Install" button.

7. Choose whether you want to carry out the licensing (Page 25) during the installation or at a
later time.

Result
The installation is complete. All product languages are installed by default during the
installation process. The installation creates a shortcut in the Start menu of Windows.

 Note
Directory and workspace path for V2.5 SP4

The name of the directory and the path for the V2.5 workspace are retained after the update
to V2.5 SP4.

Example:

C:\Program Files (x86)\Siemens\Automation\ODK1500S\V2.5

C:\Program Data\Siemens\Automation\ODK1500S\V2.5

The setup program installs the following components:

• "Eclipse" development environment for the development of a CPU function library for the
realtime environment or a C/C++ runtime application

• Project templates for Eclipse

– C++ Project for CPU function library (CPU Runtime)

– C++ Project for MFP Linux application (CPU 1518 MFP - up to FW v2.6.1)

– C++ Project for MFP Linux application (CPU 1518 MFP FW v2.8)

– C++ Project for MFP Linux application (CPU 1518 MFP FW v2.9 or higher)

• Project templates for Visual Studio

– For the Windows CPU function library

– For the PLCSIM function library

• Tool to integrate Visual Studio templates

• Installation script for MinGW32

• Code generator

• Online help

• HelpStarter tool

• Automation License Manager, if this is out of date or was not yet installed

• Certificate of license (Certificate of License)

 Installation
 4.3 Licensing ODK 1500S

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 25

 Note
Eclipse workspace folder

If you have installed ODK and the Software Controller on the same IPC, move the Eclipse
Workspace from the path "%ProgramData%\Siemens\Automation\ODK1500S\V2.5" to, for
example, "C:\ODK1500S_V2.5_Workspace".

4.3 Licensing ODK 1500S
To create CPU function libraries, the software requires a product-specific license key that you
install with the Automation License Manager. Each SIMATIC software product for automation
that is subject to license (e.g., STEP 7) has its own license key. You must install the license key
for each product.

Working with the Automation License Manager
The Automation License Manager is a product of Siemens AG and is used for managing
license keys. The Automation License Manager is supplied on the installation data medium of
this product by default and is transferred automatically during the installation process.

Software products that require license keys for operation register the requirement for license
keys automatically in the Automation License Manager. If the Automation License Manager
finds a valid license key for this software, the software can be used according to the
conditions of use associated with this license key.

Certificate of license
A Certificate of License is included in the scope of delivery. It contains your unique license
number. The license certificate serves as proof that you have a valid license key. Store this
certificate in a safe place.

 Note
Obtaining a replacement license key

You must have a valid certificate of license to get a replacement license key.

Recovering the license key in case of defective mass storage
If a error has occurred on the mass storage or USB flash drive containing your license key file,
contact your Siemens representative (https://support.industry.siemens.com/cs/ww/en/). Make
sure you have your certificate of license available for this.

https://support.industry.siemens.com/cs/ww/en/

Installation
4.3 Licensing ODK 1500S

 Open Development Kit 1500S V2.5 SP4

26 Programming and Operating Manual, 12/2023, A5E35253941-AH

License key
The license key for ODK 1500S is located on a USB flash drive that is included in the scope of
delivery.

If the USB flash drive containing the license key is lost or damaged, you can contact Support
(https://support.industry.siemens.com/cs/ww/en/) to obtain a new license key. You need the
certificate of license to receive a replacement license key from Siemens.

Handling of license key for download version of ODK 1500S

The download of ODK 1500S allows you to access ordered license keys.

For access, you need:

• A personalized login that you can use to fetch all license keys assigned to "your company".

• An anonymous login that you can use to fetch an individual license key, and the
corresponding license certificate. This document contains all data required for the
anonymous download.

Additional information on the license key and the download is available in the Automation
License Manager manual (https://support.industry.siemens.com/cs/ww/en/view/102770153).

Transferring the license key
The license key can be transferred during the installation or afterwards.

If the USB flash drive with the relevant license key is inserted in the USB port of the PC at the
start of installation, the license key will be transferred automatically during the installation. If
the USB flash drive is not inserted at the start of installation, you have three options for
installing the license key subsequently:

• To transfer the license key manually from a network computer or other storage medium,
select the "Manual license transfer" button.

• Insert the USB flash drive with license key, and select the "Retry license transfer" button.
The Automation License Manager opens in order to transfer the license key.

• If you do not want to install a license key, select the "Skip license transfer" button.

 Note
Working without license key

For legal reasons, a valid license key is required for this product.

If no valid license key is present on your PC, you cannot generate any projects. An error
message will inform you at regular intervals that no valid license key is present.

https://support.industry.siemens.com/cs/ww/en/
https://support.industry.siemens.com/cs/ww/en/view/102770153

 Installation
 4.4 Subsequently integrating project template for Windows CPU function libraries in Visual Studio

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 27

Manually transferring the license key subsequently
A message is displayed if you generate a project for a CPU function library without transferred
license key.

To manually transfer the license key for ODK subsequently, follow these steps:

1. Start the installation of ODK 1500S with administrator rights.

2. In the "License Transfer" section, select the "Manual license transfer" button.

A dialog box for synchronization of the license opens.

3. Select the destination and the source of the license key.

4. To transfer the license key, click the "Synchronize" button.

The license key is transferred.

4.4 Subsequently integrating project template for Windows CPU
function libraries in Visual Studio

When Visual Studio is already installed, the project template for Windows CPU function
libraries is automatically installed during the ODK installation. If Visual Studio is installed
later, you have the following options to integrate the project template for Windows CPU
function libraries:

• Perform a repair installation of ODK.

• Run the integration manually. Call your ODK installation file
"ODK_VSTemplate_Integration.exe" in the "bin" folder.

Result
The project templates for Windows CPU function libraries is installed for Visual Studio. You
can find this under the corresponding programming language.

4.5 Uninstalling ODK

Procedure
To remove ODK from your PC, follow these steps:

1. Close all running programs, especially ODK-related applications.

2. Select the menu "Control Panel > Programs and Features", select the entry "SIMATIC ODK
1500S" and click "Uninstall".

3. Select the "Uninstall" command in the shortcut menu.

A dialog box for uninstalling appears.

4. Follow the steps for uninstalling.

Result
ODK is removed.

 Open Development Kit 1500S V2.5 SP4

28 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows
environment 5
5.1 Creating a CPU function library

5.1.1 Requirements
The Microsoft Visual Studio development environment is not included in the scope of delivery
of ODK.

You can find the Download Center for Microsoft development tools in the Internet
(https://www.microsoft.com/en-us/download/developer-tools.aspx).

5.1.2 Creating a project
To help you develop a CPU function library, a project template for CPU function libraries for a
project in Visual Studio is included in the installation of ODK 1500S. The template supports
32-bit and 64-bit applications.

Procedure
To create a project in Microsoft Visual Studio using the project template, follow these steps:

1. Open Microsoft Visual Studio as a development environment.

2. In the "File > New" menu, select the command "Project..."

The "New Project" dialog opens.

Figure 5-1 Creating a new project in Visual Studio

3. Select your preferred programming language and the corresponding project template (C++,
C# or VB).

4. Enter a project name.

5. Click "OK" to confirm.

https://www.microsoft.com/en-us/download/developer-tools.aspx

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 29

Result
The CPU function library is created using the project template and sets the following project
settings:

• Project settings for generating the DLL file

• Automates the generation of the DLL and SCL file

The project template set ups various structures depending on the programming language:

• C++ project (Page 29)

• C# project (Page 32)

• VB Project (Page 33)

5.1.2.1 Solution Explorer structure: C++ project

Folder / file Description

<project>
 Definition File
 <project>.odk ODK interface description
 <project>.scl.additional S7 blocks that are appended to the <project>.scl file.

Although the file is not part of the project template, the code
generator processes the file.

 Generated Files Files from this folder may not be edited!
 ODK_Types.h Definition of the ODK base types
 ODK_Functions.h Function prototypes
 ODK_Execution.cpp Implementation of the "Execute" method
 Header Files Header file
 ODK Helpers Files from this folder may not be edited!
 ODK_CpuReadData.h Definition: Help functions for reading the data blocks
 ODK_CpuReadData.cpp Implementation: Help functions for reading the data blocks
 ODK_CpuReadWriteData.h Definition: Help functions for reading/writing the data blocks

ODK_CpuReadWriteData.cpp
Implementation: Help functions for reading/writing the data
blocks

 ODK_StringHelper.h Definition: Help functions S7 strings / W strings
 ODK_StringHelper.cpp Implementation: Help functions S7 strings / W strings
 Resource Files
 <project>.rc
 Source Files Source Files
 <project>.cpp Function code
 dllmain.cpp Implementation of the "dllmain" file
 STEP7 Files from this folder may not be edited!
 <project>.scl S7 blocks

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

30 Programming and Operating Manual, 12/2023, A5E35253941-AH

The C++ Native project template supports the following applications:

Configuration and platform Visual Studio Version older than 2015 Visual Studio 2015 and later
Debug Win32 Yes Yes
Release Win32 Yes Yes
Debug x64 To be created manually Yes
Release x64 To be created manually Yes

 Note
Configuration of C/C++ Redistributables

Since the software controller contains the C/C++ redistributables for the release
configuration, build the CPU function library with the configuration "Release".

To use the "Debug" configuration, add the redistributables for the debug configuration on the
target system.

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 31

Creating a CPU function library for x64 platform with Visual Studio version older than 2015
To create a project template for an x64 platform with a Visual Studio version older than 2015,
proceed as follows:

1. Open the "Configuration Manager".

2. Create an x64 platform.

The "New Solution Platform" dialog opens.

Select "Win32" from the drop-down list box "Copy settings from:" .

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

32 Programming and Operating Manual, 12/2023, A5E35253941-AH

3. Define a solution configuration for an x64 platform.

4. Select "Debug" or "Release" from the drop-down list box "Active solution configuration" and
"x64" from the drop-down list box "Platform".

5.1.2.2 Solution Explorer structure: C# project

Directory / file Description

<project>
 Properties
 AssemblyInfo.cs
 Definition File
 <project>.odk ODK interface description
 <project>.scl.additional S7 blocks that are appended to the <project>.scl file.

The file is not part of the project template, but the code genera-
tor processes the file.

 Generated Files Files from this folder may not be edited!
 OdkTypes.cs Definition of the ODK base types
 OdkFunctions.cs Function prototypes
 OdkExecution.cs Implementation of the "Execute" method
 ODK Helpers Files from this folder may not be edited!
 OdkReadVariant.cs Help functions for reading the data blocks
 OdkReadWriteVariant.cs Help functions for reading/writing the data blocks
 Source Source Files
 <project>.cs Function code
 STEP7 Files from this folder may not be edited!
 <project>.scl S7 blocks

The C++ project template supports the following applications:

Configuration and platform Visual Studio Version older than 2015 Visual Studio 2015 and later
Debug each CPU Not supported Yes
Release each CPU Not supported Yes

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 33

5.1.2.3 Solution Explorer structure: VB Project

Directory / file Description

<project path>
 My Project
 AssemblyInfo.vb
 Definition File
 <project>.odk ODK interface description
 <project>.scl.additional S7 blocks that are appended to the <project>.scl file.

The file is not part of the project template, but the code genera-
tor processes the file.

 Generated Files Files from this folder may not be edited!
 OdkTypes.vb Definition of the ODK base types
 OdkFunctions.vb Function prototypes
 OdkExecution.vb Implementation of the "Execute" method
 ODK Helpers Files from this folder may not be edited!
 OdkReadVariant.vb Help functions for reading the data blocks
 OdkReadWriteVariant.vb Help functions for reading/writing the data blocks
 Source Source Files
 <project>.vb Function code
 STEP7 Files from this folder may not be edited!
 <project>.scl S7 blocks
 <project>.vb Function code

The VB project template supports the following applications:

Configuration and platform Visual Studio Version older than 2015 Visual Studio 2015 and later
Debug each CPU Not supported Yes
Release each CPU Not supported Yes

5.1.3 Generating a CPU function library
The generation of the project data is divided into two automated steps.

• Pre-Build: Generation of the files created by default based on the changed <project>.odk
file and generation of the SCL file.

• Actual-Build: Generation of the DLL file.

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

34 Programming and Operating Manual, 12/2023, A5E35253941-AH

Procedure
To generate the project data, follow these steps:

1. Save all edited files.

2. In the "Build" menu, select the command "Build Solution".

 Note

C/C++ projects

Perform the build of the CPU function library in the "Release" configuration, as the
software controller has already installed the C/C++ Redistributables (Release Runtime
files).

To use the "Debug" configuration, copy the Debug Runtime files to the software controller.

 Note

The project data is only generated if the files have been changed.

Result
The generation of the project data is started. The automatically generated files are stored in
the file system.

• DLL file: Project directory\<project>\<BuildConfiguration>\<project>.dll

• SCL file: Project directory\<project>\STEP7\<project>.scl

5.1.4 Defining the runtime properties of a CPU function library
The next step is to define the interface description of the CPU function library in the
<project>.odk file. The file contains the following elements:

• Comments

• Parameters

• Definitions of functions and structures

Procedure
To define the interface description in the <project>.odk file, follow these steps:

1. Open the <project>.odk file.

2. Change the elements depending on your requirements.

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 35

Description of the elements

Comments

You can use comments for explanation purposes.

Parameters

The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

The interfaces file supports the following parameters:

Parameter Value Description
Context user Specifies that the CPU function library is loaded in the context of a Windows user

(Page 35).
system Specifies that the CPU function library is loaded in the context of the Windows

system (Page 35).
STEP7Prefix <String> Describes the string that precedes your functions and is shown after importing

the SCL file in STEP 7. The following characters are allowed: {A...Z, a…z, 1…9, -,
_}
Umlauts are not permitted.
The project name is entered without spaces by default.

FullClassName <String> The parameter is required for the C# and VB programming languages.
To change the class names or namespace of the source files of the CPU function
library, you need to adjust the "FullClassName" parameter.

 Note
Spaces in the project name

With the STEP7 prefix, invalid characters are replaced by an underscore.

5.1.5 Environment for loading or executing the CPU function library
When the SCL file is imported into STEP 7 as an external source, the ODK instructions are
created in the selected directory in STEP 7. The ODK instructions enable you to control your
CPU function library regardless of the STEP 7 user program after programming and the initial
loading. You can load up to 32 CPU function libraries.

Depending on whether you have created the CPU function library for a 32-bit, 64-bit system
or with the "Any CPU" option, this is loaded into a 32-bit or 64-bit ODK host process.

You can choose one of two contexts for your CPU function library:

• "System" context

Windows is started, a user can be logged on

• "User" context

Windows is started, a user must be logged on

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

36 Programming and Operating Manual, 12/2023, A5E35253941-AH

The following graphic shows you when a CPU function library may be loaded depending on
the context.

"System" context
Change the following line of code in your <project>.odk file to use the CPU function library in
the system context (Session 0):
Context=system

In the system context, the CPU function library is running without the logon of a Windows
user. This means the CPU function library cannot be actively controlled with user interface
elements such as message dialogs.

"User" context
Change the following line of code in the <project>.odk file to use the CPU function library in
the user context:
Context=user

When you load the CPU function library in the user context, it automatically unloads as soon
as the user logs off in Windows. The CPU function library can be actively controlled by
Windows user interface elements such as message dialogs and provides access to additional
resources of the Windows environment.

If multiple users are logged on to Windows, the CPU function library loads or unloads for the
user, who has the current screen rights until he logs off in Windows.

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 37

5.1.6 Defining functions and structures of a CPU function library

Functions
Functions are defined by the following general lines of code:
ODK_RESULT <FunctionName>
([<InOut identifier>] <data type> <tag name>, etc.);

The <project>.odk file is the ODK interface description for CPU function libraries. This is
available for all supported programming languages.

The <project>.odk file contains an example function description by default. You can change
this description and/or add more function descriptions.
ODK_RESULT MyFunc1([IN] INT param1, [OUT] INT param2);

Syntax rules for functions
The following syntax rules apply to functions within the <project>.odk file:

• Note that the function names are case-sensitive.

• You can split function definitions into several lines.

• End a function definition with a semicolon.

• TAB and SPACE are allowed.

• Do not define a tag name in a function twice.

• Do not use any keywords for the programming language that is used (for example
"EN / ENO" as parameter name)

• Use ODK_RESULT only for the return values of the function.

• The tag name must start with a letter or an underscore.

• Illegal function names are displayed during generation in the development environment.

• The following names are not allowed in combination of <STEP 7Prefix> and <function
name>: ODK_Load, ODK_Unld, ODK_ExcA, ODK_ExcS

<FunctionName>

Function names are valid with the syntax and character restrictions of the used programming
language.

<InOut-Identifier>

There are three defined InOut-Identifiers. Use these in the following order: [IN], [OUT],
[INOUT]

• [IN]: Specifies an input tag. The tag is copied to the function when it is called. This is
constant and cannot be changed.

• [OUT]: Specifies an output tag. The tag is copied back after the function has been
completed.

• [INOUT]: Specifies an input and output tag. The tag is copied to the function when it is
called. This is not constant and can be changed. The tag is copied back after the function
has been completed.

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

38 Programming and Operating Manual, 12/2023, A5E35253941-AH

<DataType>

The data type defines the type of a tag. The following table defines the possible data types
and their representation in the individual programming languages or STEP 7:

Elementary data types:

ODK data type SIMATIC data

type
C++ data type C# data type VB data type Description

ODK_DOUBLE LREAL double double Double 64-bit floating point, IEEE
754

ODK_FLOAT REAL float float Single 32-bit floating point, IEEE
754

ODK_INT64 LINT long long long Long 64-bit signed integer
ODK_INT32 DINT long int Integer 32-bit signed integer
ODK_INT16 INT short short Short 16-bit signed integer
ODK_INT8 SINT char sbyte SByte 8-bit signed integer
ODK_UINT64 ULINT unsigned long long ulong ULong 64-bit unsigned integer
ODK_UINT32 UDINT unsigned long uint UInteger 32-bit unsigned integer
ODK_UINT16 UINT unsigned short ushort UShort 16-bit unsigned integer
ODK_UINT8 USINT unsigned char byte Byte 8-bit unsigned integer
ODK_LWORD LWORD unsigned long long ulong ULong 64-bit bit string
ODK_DWORD DWORD unsigned long uint UInteger 32-bit bit string
ODK_WORD WORD unsigned short ushort UShort 16-bit bit string
ODK_BYTE BYTE unsigned char byte Byte 8-bit bit string
ODK_BOOL BOOL unsigned char bool Boolean 1-bit bit string, remaining

bits (1..7) are empty
ODK_LTIME LTIME long long long Long 64-bit during in nanosec-

onds
ODK_TIME TIME long int Integer 32-bit during in milliseconds
ODK_LDT LDT unsigned long long ulong ULong 64-bit date and time of the

day in nanoseconds since
01/01/1970 00:00

ODK_LTOD LTOD unsigned long long ulong ULong 64-bit time of the day in
nanoseconds since midnight

ODK_TOD TOD unsigned long uint UInteger 32-bit time of the day in
milliseconds since midnight

ODK_WCHAR WCHAR wchar_t char Char 16-bit character
ODK_CHAR CHAR char sbyte SByte 8-bit character

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 39

Complex data types:

ODK data type SIMATIC data

type
C++ data type C# data type VB data type Description

ODK_DTL DTL struct ODK_DTL OdkInternal.
Dtl (class)

OdkInternal.
Dtl (class)

Structure for date and time

ODK_S7WSTRIN
G

WSTRING unsigned short string String Character string:
• For SIMATIC and C++:

16-bit character with
length max. and act.
(4xUSINT)

• For other languages:

native
ODK_S7STRING STRING unsigned char string String Character string:

• For SIMATIC and C++:

8-bit character with
length max. and act.
(2xUSINT)

• For other languages:

native
ODK_VARIANT VARIANT struct ODK_VARIANT byte []

byte [] Classic data (each data type

that can be serialized with
classic data.)

[] ARRAY [] [] [] Range of same data types.
You can use all data types as
array except IN_DATA /
INOUT_DATA / OUT_DATA.

User-defined data types:

User-defined data types (UDT) include structured data, especially the names and data types of
this component and their order.

A user-defined data type can be defined in the ODK interface description with the keyword
"ODK_STRUCT".

Example

ODK_STRUCT <StructName>

{

 <DataType> <TagName>;

 ...

};

The following syntax rules apply to the structure:

• You can divide the structure into multiple lines.

• The structure definition must end with a semicolon.

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

40 Programming and Operating Manual, 12/2023, A5E35253941-AH

• Any number of tabs and spaces between the elements is permitted.

• It is not permitted to use any keywords for the generated language used (for example
"en / eno" as tag name).

You can create additional structures within a structure.

<StructName>

Structure names are valid with the syntax and character restrictions of the programming
language and as defined for tag definitions in STEP 7.

In STEP 7, the structure name is extended with the STEP 7 prefix.

<TagName>

Tag names are subject to the syntax and character restrictions of the programming language.

Example

The following code example explains the definitions of functions and structures. Sort the
parameters by: IN, OUT, INOUT.
//INTERFACE
…
ODK_STRUCT MyStruct
 {
 ODK_DWORD myDword;
 ODK_S7STRING myString;
 };
ODK_RESULT MyFct([IN] MyStruct myInStruct
 ,[OUT] MyStruct myOutStruct);

5.1.6.1 Using ODK_VARIANT as parameter
Restrictions of the data type ODK_VARIANT:

• When a parameter of the data type ODK_VARIANT is used, it is not permitted to use other
parameters with the same InOut-Identifier, regardless of data type.

• With the data type ODK_VARIANT, an [OUT] is modeled as [INOUT] in the generated FB.

Example
// INTERFACE
...
// OK:
ODK_RESULT MyFunc1([IN] ODK_VARIANT myClassicData);
ODK_RESULT MyFunc2([IN] ODK_VARIANT myDataIn
 , [OUT] ODK_VARIANT myDataOut
 , [INOUT] ODK_VARIANT myDataInout);
//
// NOT OK (Code Generator will throw an error):
// If ODK_VARIANT is used for [IN], no other [IN] parameter
// may be defined in this function
ODK_RESULT MyFunc4([IN] ODK_VARIANT myClassicData

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 41

 , [IN] ODK_INT32 myint);

Application example for C++
#include "ODK_CpuReadData.h"
...
ODK_RESULT MyFunc1 (const ODK_VARIANT& myClassicData)
{
 CODK_CpuReadData myReader(myClassicData);
 ODK_INT32 myInt1, myInt2;
 myReader.ReadS7DINT(0, myInt1);
 myReader.ReadS7DINT(4, myInt2);
 return myInt1 + myInt2;
}

Helper functions (Page 139) of the following classes are available to help you access the data
type ODK_VARIANT inside a user function:

• Class "CODK_CpuReadData"

• Class "CODK_CpuReadWriteData"

 Note
Size of the ODK_VARIANT tags

The size of the ODK_VARIANT tags is not known at the time of compiling and is therefore not
checked during the compiling process. When selecting the other parameters, consider the
possible size of the ODK_VARIANT parameter in your application.

5.1.6.2 Handling strings
You can define a maximum length for strings (String or WString). Define the maximum
number of characters in square brackets directly after the data type:

• ODK_S7STRING[30] or

• ODK_S7WSTRING[1000]

Without limitation, a string has a default length of 254 characters.

In order to access the data types ODK_S7STRING or ODK_S7WSTRING within a user function,
the string helper functions (Page 139) are available:

Example

//INTERFACE
…
ODK_RESULT MyFct(
 [IN] ODK_S7STRING myStrHas254Chars
 , [OUT] ODK_S7STRING[10] myStrHas10Chars
 , [INOUT] ODK_S7STRING[20] myStrArrayHas20Chars5Times[5]);

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

42 Programming and Operating Manual, 12/2023, A5E35253941-AH

If you use [INOUT], you can set the string with a length that differs from the [INOUT of the
function block in STEP 7.

 Note
Compatibility

If you use the "WSTRING" data type with more than 253 characters in a project, create a new
project with ODK version ≥ V2.5 SP1.

The characters are not read/written correctly with a project created with ODK version < V2.5
SP1.

5.1.6.3 Definition of the <Project>.odk file
The function prototypes and function blocks are generated based on the selected parameters
in the <project>.odk file. Define the <project>.odk file for this.

By default, the <project>.odk file contains the following:

• Description

The possible data types that are used for the interface are described in comment lines.
This simplifies the definition of the correct tag type for your task.

• Context=user

The CPU function library is loaded in the "User" context. You can change the parameter to
Context=system.

• STEP7Prefix="<project>"

Sets a string for the SCL generation in front of the functions of the CPU function library.
The string is visible in STEP 7. You can change the parameter. The string length of the
prefix including the function name must not exceed a length of 125 characters (for
example, ODK_App_SampleFunction)

• "SampleFunction" function definition

You can change this default function as you wish in the <project>.odk file and add more
functions. The string length may not exceed a length of 125 characters. The associated
function is located in the CPP file.

FullClassName="<OdkProject1.Source.CpuFunctionLibrary>"

The parameter is required for the C# and VB programming languages.

To change the class names or namespace of the source files of the CPU function library,
you need to adjust the "FullClassName" parameter.

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 43

Example
//INTERFACE
Context=user
STEP7Prefix=ODKProject
FullClassName=ODKProject.Source.CpuFunctionLibrary

 /*
* Elementary data types:
* ODK_DOUBLE LREAL 64-bit floating point, IEEE 754
* ODK_FLOAT REAL 32-bit floating point, IEEE 754
* ODK_INT64 LINT 64-bit signed integer
* ODK_INT32 DINT 32-bit signed integer
* ODK_INT16 INT 16-bit signed integer
* ODK_INT8 SINT 8-bit signed integer
* ODK_UINT64 ULINT 64-bit unsigned integer
* ODK_UINT32 UDINT 32-bit unsigned integer
* ODK_UINT16 UINT 16-bit unsigned integer
* ODK_UINT8 USINT 8-bit unsigned integer
* ODK_LWORD LWORD 64-bit bit string
* ODK_DWORD DWORD 32-bit bit string
* ODK_WORD WORD 16-bit bit string
* ODK_BYTE BYTE 8-bit bit string
* ODK_BOOL BOOL 1-bit bit string
* ODK_LTIME LTIME 64-bit duration in nanoseconds
* ODK_TIME TIME 32-bit duration in milliseconds
* ODK_LDT LDT 64 bit date and time of day
* in nanoseconds
* ODK_LTOD LTOD 64 bit time of day in nanoseconds
* since midnight
* ODK_TOD TOD 32 bit time of day in milliseconds
* since midnight
* ODK_CHAR CHAR 8 bit character
* ODK_WCHAR WCHAR 16 bit character
* Complex Datatypes:
* ODK_DTL DTL structure for date and time
* ODK_S7STRING STRING character string with 8-bit characters
* ODK_VARIANT VARIANT classic data (any datatype which can be
serialized
* to classic data)
* ODK_S7WSTRING WSTRING character string with 16 bit characters
* [] ARRAY field of this datatype
* User Defined Datatype:
* ODK_STRUCT UDT user defined structure
* Return Datatype:
* ODK_RESULT 0x0000-0x6FFF function succeeded
* (ODK_SUCCESS = 0x0000)
* 0xF000-0xFFFF function failed
* (ODK_USER_ERROR_BASE = 0xF000)
*/

// Basic function in order to show
// how to create a function in ODK 1500S.
ODK_RESULT SampleFunction([IN] ODK_INT32 myInt // integervalue
 // as input
 , [OUT] ODK_BOOL myBool // bool value

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

44 Programming and Operating Manual, 12/2023, A5E35253941-AH

 // as output
 , [INOUT] ODK_DOUBLE myReal);// double value
 // as input
 // and output

5.1.6.4 Modifying the <Project>.odk file
The following examples show you how you can change the <project>.odk file to suit your
needs.
//INTERFACE
Context=user
STEP7Prefix=ODK_SampleApp_

ODK_RESULT GetString ([OUT] ODK_S7STRING myString);

ODK_RESULT Calculate ([IN] ODK_INT64 In1,
 [IN] ODK_DOUBLE In2,
 [OUT] ODK_FLOAT Out1,
 [OUT] ODK_INT32 Out2,
 [INOUT] ODK_BYTE InOut1[64],
 [INOUT] ODK_BYTE InOut2[64]);

Function prototypes in the ODK file

Example for C++
ODK_RESULT GetString (
 /*OUT*/ ODK_S7STRING myString[256]);
#define _ODK_FUNCTION_GETSTRING ODK_RESULT GetString (/*OUT*/
ODK_S7STRING myString[256])

ODK_RESULT Calculate (
 /*IN*/ const ODK_INT64& In1,
 /*IN*/ const ODK_DOUBLE& In2,
 /*OUT*/ ODK_FLOAT& Out1,
 /*OUT*/ ODK_INT32& Out2,
 /*INOUT*/ ODK_BYTE InOut1[64],
 /*INOUT*/ ODK_BYTE InOut2[64]);
#define ODK_FUNCTION_CALCULATE ODK_RESULT Calculate(/*IN*/ const
ODK_INT64& In1,/*IN*/ 2480 const ODK_DOUBLE& In2,/*OUT*/ ODK_FLOAT&
Out1,/*OUT*/ ODK_INT32& Out2,/*INOUT*/ ODK_BYTE2481
InOut1[64],/*INOUT*/ ODK_BYTE InOut2[64])

#endif // ODK_FUNCTIONS_H

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 45

Example for C#
namespace OdkInternal
{
 interface IOdkFunctions
 {
 // declaration of the callback methods
 ushort OnLoad();
 ushort OnUnload();
 ushort OnRun();
 ushort OnStop();

 ushort GetString(
 /*OUT*/ out string myString);

 ushort Calculate(
 /*IN*/ ref long In1,
 /*IN*/ ref double In2,
 /*OUT*/ out float Out1,
 /*OUT*/ out int Out2,
 /*INOUT*/ ref byte[] InOut1,
 /*INOUT*/ ref byte[] InOut2);
 }
}

Example for VB
Namespace Global.OdkInternal
 Public Interface IOdkFunctions
 // declaration of the callback methods
 Function OnLoad() As UShort
 Function OnUnload () As UShort
 Function OnRun () As UShort
 Function OnStop () As UShort

 Function GetString(
 ByRef myString As String ‘OUT
) As UShort
 Function Calculate(
 ByRef In1 As Long, ‘IN
 ByRef In2 As Double, ‘IN
 ByRef Out1 As Float, ‘OUT
 ByRef Out2 As Integer, ‘OUT
 ByRef InOut1() As Byte, ‘INOUT
 ByRef InOut2() As Byte ‘INOUT
) As UShort
 End Interface
End Namespace

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

46 Programming and Operating Manual, 12/2023, A5E35253941-AH

5.1.6.5 Comments
The following examples for using comments are valid for C++ and C#. Differences to Visual
Basic are available under "Comments in Visual Basic (Page 47)"

Comments are started with a double slash "//" and end automatically at the end of the line.

Alternatively, you can limit comments by /* <comment> */, which enables new lines in a
comment. Characters after the end of the comment identifier "*/" are further processed by
the code generator.

Comments for functions and structures
You place comments on functions and structures directly in front of the functions/structures.

These comments are transferred to the ODK_Functions.h/.cs/.vb and <project>.scl files.

In the <project>.scl file, the comments are copied to the block properties and duplicated in
the code area of the function.

Observe the following rules:

• Comments for functions and structures must be located directly in front of the
functions/structures (without blank line).

• The end of the comment is located in front of the ODK_RESULT or ODK_STRUCT keyword.

• You can use both identifiers "//" and "/* */" but not in combination within a comment.

Example
// this comment did not appear in MyStruct, because of the empty
line.

// comment MyStruct
// ...
ODK_STRUCT MyStruct
{
 ODK_DWORD myDword;
 ODK_S7STRING myString;
};

/*
comment MyFct
...
*/
ODK_RESULT MyFct([IN] MyStruct myInStruct
 ,[OUT] MyStruct myOutStruct);

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 47

Comments for tags in functions and structures
Comments for function and structure tags are placed directly in front of or behind the tag.

These comments are transferred to the ODK_Functions.h/ and <project>.scl files.

The following rules apply to comments in front of tags:

• Comments must be directly in front of the tag (without blank line).

• The end of the comment is the <InOut-Identifier> of the tags.

The following rules apply to comments after tags:

• Comments must be after the tag name (without blank line).

The following general rules apply to comments for tags:

• You can use both identifiers "//" and "/* */" but not in combination within a comment.

• In the header file, the same comment identifier is used ("//" or "/* */").

Example
ODK_STRUCT MyStruct
{
 // comment myDword BEFORE definition
 ODK_DWORD myDword;

 ODK_S7STRING myString; /* comment myString AFTER definition */
};

ODK_RESULT MyFct([IN] MyStruct myInStruct // comment
 // myInStruct ...
 // ... "second line"
 , [OUT] MyStruct myOutStruct); /* comment
 myOutStruct ...
 ...
 */

5.1.6.6 Comments in Visual Basic
Not all comments can be transferred unchanged from the Interface file to the VB source.

The following rules are valid only for comments in Visual Basic:

• Comments are marked with a apostrophe.

• To mark multiple lines as comment, you need to set an apostrophe before each line.

Example:

<project>.odk ODK_Functions.vb
/* Multi line comment 1
 comment 2
 comment 3*/
ODK_RESULT f1();

‘ This file is AUTO GENERATED …
‘ <automatically generated comment>
...
‘ Multi line comment 1
‘ comment 2
‘ comment 3
Function f1() As UShort

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

48 Programming and Operating Manual, 12/2023, A5E35253941-AH

• Comments are not permitted in front of source code.

Set the InOut identifier after the function parameter.

Example:

<project>.odk ODK_Functions.vb
ODK_RESULT f1([IN] ODK_BYTE b); Function f1(

 b As Byte ‘ [IN]
) As UShort

• Multi-line comments are not permitted between function parameters.

Set multiple comments in a line.

Example:

<project>.odk ODK_Functions.vb
ODK_RESULT f1(
 // c1
 // c2
 [IN] ODK_BYTE b // c3
 // c4
);

Function f1(
 b As Byte ‘ [IN] c1‘ c2‘ c3‘ c4
) As UShort

5.1.7 Implementing functions

5.1.7.1 General notes
This section provides an overview of the basic topics relating to the implementation of
functions in a Windows environment.

• The function call is not limited in time, because the function is called asynchronously.

• Traces are possible via OutputDebugString instructions

• All asynchronous functions are executed with equal priority - regardless of the priority of
the OBs

• The complete Windows API (Application Programming Interface) and C++-Runtime library
are available

 Developing a CPU function library for the Windows environment
 5.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 49

5.1.7.2 Callback functions
The project template includes an execute file to define your functions.

Programming language Name of the execute file
C++ <project>.cpp
C# <project>.cs
VB <project>.vb

This execute file contains functions filled by default. This file does not necessarily need to be
filled with additional user code to be usable. However, neither may the functions be deleted
under any circumstances.

The empty function has the following code (using the "OnLoad()" function as an example):

You can define the following functions in the execute file:

• OnLoad(): Called after loading the CPU function library

• OnUnload(): Called before unloading the CPU function library

• OnRun(): Called when the CPU changes to RUN mode after the OnLoad() function

• OnStop(): Called when the CPU changes to the STOP mode and before the function
OnUnload()

The following table provides an overview of the various actions to invoke the callback
functions:

Current operating state New operating state User action ODK action
RUN RUN ODK_Load 1. OnLoad()

2. OnRun()

STOP RUN ODK_Load in
startup OB (e.g.
OB100)

1. OnLoad()
2. OnRun()

RUN STOP <already loaded> OnStop()
STOP RUN <already loaded> OnRun()
RUN RUN ODK_Unload 1. OnStop()

2. OnUnload()

RUN SHUTDOWN / MRES <already loaded> OnStop()
any any <already loaded>

Exit ODK host
1. OnStop() (optional, if

not already executed)
2. OnUnload()

"OnLoad()" and "OnUnload()" function
The functions have a return value of type "ODK_RESULT" and typically provide information
about the status of the "ODK_SUCCESS" value.

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

50 Programming and Operating Manual, 12/2023, A5E35253941-AH

The following return values are possible:

Return value for "ODK_RESULT" Description
ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnLoad()" or "OnUnload()"

function
0x0001 – 0xEFFF Invalid values (system-internal)
0xF000 – 0xFFFF
ODK_USER_ERROR_BASE = 0xF000

You can define your own error values.
The loading stops and the CPU function library unloads for the "OnLoad()" func-
tion.
The CPU function library within the specified value range is still unloaded for the
"OnUnload()" function.

"OnRun()" and "OnStop()" function
The functions have a return value of type "ODK_RESULT" and typically provide information
about the status of the "ODK_SUCCESS" value.

The following return values are possible:

Return value for "ODK_RESULT" Description
ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnRun()" or "OnStop()"

function
0x0001 – 0xFFFF No direct feedback to the user program is possible.

The return value is sent to Windows (WindowsEventLog).

5.1.7.3 Implementing custom functions
Once you have defined the ODK interface in the <project>.odk file, you must edit the
functions of the CPU function library in the Project Source file.

Procedure
To edit the function of a CPU function library, follow these steps:

1. To generate the function prototypes, execute the build.

2. Open the project source file, or create a custom source file if necessary.

3. Transfer the function prototypes from <ODK_Functions.h>/<OdkFunctions.cs/vb> to the
source file.

 Note

Use the function prototype macro to transfer the step 3 in the future when there is a change
to the function parameters.

4. Edit the code of your CPU function library in the execute file.

 Developing a CPU function library for the Windows environment
 5.2 Transferring a CPU function library to the target system

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 51

CPU function library
The execute file contains a schematically represented function description by default. You
can change this description with corresponding changes in the <project>.odk file and/or add
more function descriptions.

Execute file based on C++ example
#include "ODK_Functions.h"

EXPORT_API ODK_RESULT OnLoad (void)
{
 return ODK_SUCCESS;
}
EXPORT_API ODK_RESULT OnUnload (void)
{
 return ODK_SUCCESS;
}
EXPORT_API ODK_RESULT OnRun (void)
{
 return ODK_SUCCESS;
}
EXPORT_API ODK_RESULT OnStop (void)
{
 return ODK_SUCCESS;
}
ODK_RESULT SampleFunction(const ODK_INT32& myInt,
 ODK_BOOL& myBool,
 ODK_DOUBLE& myReal)
{
 return ODK_SUCCESS;
}

5.2 Transferring a CPU function library to the target system
Manually transfer the DLL file to a specific Windows folder on the target system (e.g. via a
network share or USB flash drive). Use the standard Windows data transfer procedure to
transfer of the CPU function library. The storage location in Windows is specified by a registry
key. When loading an CPU function library, the ODK service automatically searches for the file
in the path specified by the registry key.

 Note
CPU function library in the debug configuration

When the CPU function library has been transferred to the debug configuration, you also
need to transfer the debug DLLs of the development environment to the target system.

The default value that describes the file path is:

Developing a CPU function library for the Windows environment
5.3 Importing and generating an SCL file in STEP 7

 Open Development Kit 1500S V2.5 SP4

52 Programming and Operating Manual, 12/2023, A5E35253941-AH

%ProgramData%\Siemens\Automation\ODK1500S\

 Note
Administrator rights

Assign write permission to this folder only for the administrator. This prevents unauthorized
personnel from uploading CPU function libraries.
Please note:

The setup of the SIMATIC S7-1500 Software Controller checks whether the file path already
exists and the required administrator rights are assigned.

If not, the directory is renamed to "ODK1500S_OLD1" or "ODK1500S_OLD2" and a new
directory with the correct access rights is created.

The Windows file system can hide the folder based on your setting. You can view the folder
using the Windows option "Show hidden files, folders, and drives".

The registry key for 32-bit systems is:
HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\ODK1500S\odk_app_path

The registry key for 64-bit systems is:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Siemens\Automation\ODK1500S\odk_ap
p_path

You can change the default value of the registry key and thus adapt to the expected location
for the DLL file to suit your needs.

 Note
Changing the path in the registry key

To protect the DLL file, select a storage location that is secured by access protection.

5.3 Importing and generating an SCL file in STEP 7
The following files are created when the project map is created:

• SCL file for importing into STEP 7

• All files depending on the configuration, e.g. DLL file

If STEP 7 is installed on another PC as the development environment, you must transfer the
generated SCL file to the PC where the STEP 7 is installed.

Requirements
The project data were generated.

 Developing a CPU function library for the Windows environment
 5.3 Importing and generating an SCL file in STEP 7

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 53

Procedure
To import and compile the SCL file, follow these steps:

1. Start STEP 7.

2. Open your project.

3. Select the project view.

4. Select the CPU in the project tree.

5. Select the "External Sources" subfolder.

The "Open" dialog box opens.

6. Navigate in the file system to the SCL file that was created during the generation of the
project data.

7. Confirm your selection with "Open".

The SCL file is imported. After completion of the import process, the SCL file is displayed in
the "External Sources" folder.

8. You need to compile the SCL file before you can use the blocks in your project.

9. To do this, select the SCL file in "External sources" subfolder.

10.Select the "Generate blocks from source" command in the shortcut menu.

Result
STEP 7 creates the S7 blocks based on the selected SCL file.

The created blocks are now automatically displayed in the "Program blocks" folder below the
selected CPU in the project tree. You can load the function blocks during the next download
to the target device.

Developing a CPU function library for the Windows environment
5.4 Executing a function

 Open Development Kit 1500S V2.5 SP4

54 Programming and Operating Manual, 12/2023, A5E35253941-AH

5.4 Executing a function

5.4.1 Loading functions

Introduction
Regardless of the context in which the CPU function library is running, the loading procedure
consists of the following steps:

• Call the "<STEP7Prefix>_Load" instruction in the STEP 7 user program.

• In the Windows context, the loading process checks if a 32-bit or 64-bit process is required
and starts the appropriate host. Each CPU function library runs in a separate Windows
process (ODK_Host).

• The host loads the CPU function library and calls the "OnLoad()" function and then the
"OnRun()" functions.

 Note
Loading the same CPU function libraries with a modified <project>.odk file

When you load an CPU function library and subsequently change the <project>.odk file, we
recommend that you unload your CPU function library first before you load the newly
generated CPU function library. If the "<STEP7Prefix>_Unload" instruction is not executed,
both CPU function libraries are in the memory. This can lead to insufficient memory being
available for the CPU.

"<STEP7Prefix>_Load" instruction
A CPU function library is loaded by calling the "<STEP7Prefix>_Load" instruction in the STEP 7
user program.

<STEP7Prefix>_Load
REQ DONE
 BUSY
 ERROR
 STATUS

 Developing a CPU function library for the Windows environment
 5.4 Executing a function

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 55

The following table shows the parameters of the instruction "<STEP7Prefix>_Load":

Section Declaration Data type Description
Input REQ BOOL A rising edge activates the loading of the CPU function library.
Output DONE BOOL Indicates that the instruction has finished loading the CPU function library.
Output BUSY BOOL Indicates that the instruction is still loading the CPU function library.
Output ERROR BOOL Indicates that an error occurred during the loading of the CPU function library.

STATUS gives you more information about the possible cause.
Output STATUS INT Provides information about possible sources of error, if an error occurs during

the loading of the CPU function library.

Input parameters
An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Output parameters
The following table shows the information that is returned after loading.

DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000

=28672
No active loading

0 1 0 0x7001
=28673

Loading in progress, first call

0 1 0 0x7002
=28674

Loading in progress, ongoing call

1 0 0 0x7100
=28928

CPU 1500 V2.0 and later:
CPU function library is already loaded.

1 0 0 0x0000
=0

Loading was performed successfully.

0 0 1 0x80A4
=-32604

CPU function library could not be loaded.
Start the ODK service manually or restart Windows.

0x80C2
=-32574

CPU function library could not be loaded. There are currently not
enough resources available from Windows.
Reload the CPU function library after a few seconds.

0x80C3
=-32573

CPU function library could not be loaded. The CPU currently does not
have enough resources.
Reload the CPU function library after a few seconds.

0x8090
=-32624

CPU function library could not be loaded. An exception occurred during
execution of the "OnLoad()" function.

0x8092
=-32622

CPU function library could not be loaded because the library name is
invalid.

0x8093
=-32621

CPU function library could not be loaded because the
CPU function library could not be found. Check the file name and path
of the file.

0x8094
=-32620

CPU function library could not be loaded. The CPU function library was
created for the Windows user context, but no user is logged on.

Developing a CPU function library for the Windows environment
5.4 Executing a function

 Open Development Kit 1500S V2.5 SP4

56 Programming and Operating Manual, 12/2023, A5E35253941-AH

DONE BUSY ERROR STATUS Meaning
0x8095
=-32619

CPU function library could not be loaded due to the following reasons:
• The DLL file is not a CPU function library
• An attempt has been made to load a 64-bit application into a 32-bit

system
• Dependencies on other Windows DLL files could not be resolved.

– Check that the release build of the CPU function library is used.
– Check whether the "Visual C++ Redistributables" are installed for

the Visual Studio version you are using.
• The CPU does not support the utilized ODK version.

0x8096
=-32618

The CPU function library could not be loaded because the internal iden-
tification is already being used by another loaded CPU function library.

0x8097
=-32617

CPU 1500 V1.8 and earlier:
CPU function library is already loaded.

0x8098
=-32616

The CPU function library could not be loaded because the
CPU function library is currently being unloaded.

0x809B
=-32613

CPU 1500 V2.0 and later:
The CPU function library could not be loaded and returns an invalid
value (the values 0x0000 and 0xF000 - 0xFFFF are allowed)

0xF000 –
0xFFFF
=-4096 – -1

CPU 1500 V2.0 and later:
CPU function library could not be loaded. An error occurred during exe-
cution of the "OnLoad()" function.

Example
This example describes how the loading and execution of a Windows CPU function library can
be implemented for the Windows environment in STEP 7 after communication disturbances.

When Windows is again available the CPU function library is loaded and the execution of the
functions is again possible.

A communication disturbance can be caused by the following:

• Windows Restart (or Shut down)

• Windows Log off (if application in user area)

• TerminateProcess/ODK_Host crash

A flag is necessary for this (here: ODK_Loaded), which is set after successful loading and is
reset following a faulty execution of the ODK function.

FUNCTION_BLOCK "ODK_AutoLoad"
{ S7_Optimized_Access := 'TRUE' }
VERSION: 0.1
 VAR
 ODK_Loaded : Bool;
 END_VAL
BEGIN
 // Loading of the Windows-CPU function library
 IF NOT #ODK_Loaded THEN
 // Toggle request flag if loading is not active

 Developing a CPU function library for the Windows environment
 5.4 Executing a function

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 57

 IF NOT "ODKProject_Load_DB".BUSY THEN
 "ODKProject_Load_DB".REQ := NOT "ODKProject_Load_DB".REQ;
 END_IF;

 // Loading of the CPU function library
 "ODKProject_Load_DB"();

 // Set "Loaded" flag if loading is successful
 IF "ODKProject_Load_DB".DONE THEN
 #ODK_Loaded := true;
 END_IF;
 END_IF;

 // Execute the ODK function(s) (only in loaded state)
 IF #ODK_Loaded THEN
 // Toggle request flag if function call is not active
 IF NOT "ODKProjectSampleFunction_DB".BUSY THEN
 "ODKProjectSampleFunction_DB".REQ := NOT
 "ODKProjectSampleFunction_DB".REQ;
 END_IF;

 // Execute the function
 "ODKProjectSampleFunction_DB"();

 // The "Loaded" flag must be reset when
 // a) An error is present in the communication with Windows
(0x80A4)
 // b) the CPU function library was already unloaded before this
function call (0x8096)
 IF "ODKProjectSampleFunction_DB".STATUS = 16#80A4 OR
"ODKProjectSampleFunction_DB".STATUS = 16#8096
 THEN
 #ODK_Loaded := false;
 END_IF;
 END_IF;
END_FUNCTION_BLOCK

5.4.2 Calling functions

Introduction
Once the CPU function library is loaded, you can execute functions via your STEP 7 user
program. This call is made from the corresponding "<STEP7Prefix>SampleFunction"
instruction.

You can load up to 32 CPU function libraries at the same time.

Developing a CPU function library for the Windows environment
5.4 Executing a function

 Open Development Kit 1500S V2.5 SP4

58 Programming and Operating Manual, 12/2023, A5E35253941-AH

"<STEP7Prefix>SampleFunction" instruction
A CPU function library is called by the "<STEP7Prefix>SampleFunction" instruction.

<STEP7Prefix>SampleFunction
REQ DONE
myInt BUSY
myReal ERROR
 STATUS
 myBool

The following table shows the parameters of the instruction "<STEP7Prefix>SampleFunction":

Section Declaration Data type Description
Automatically generated parameters
Input REQ BOOL A rising edge of this input value activates the execution of the

CPU function library.
Output DONE BOOL This output value indicates that the instruction has finished execution of the

CPU function library.
Output BUSY BOOL This output value indicates that the instruction is still unloading the

CPU function library.
Output ERROR BOOL This output value indicates that an error occurred during the execution of the

CPU function library. The STATUS output value provides more information on
this.

Output STATUS INT This output value provides information about possible sources of error, if an
error occurs during the execution of the CPU function library.

User-defined parameter
Input myInt User-defined input tags
InOut myReal User-defined input-output tags
Output myBool User-defined output tags

Input parameters
An edge transition (0 to 1) at the "REQ" input parameter starts the function.

 Developing a CPU function library for the Windows environment
 5.4 Executing a function

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 59

Output parameters
The following table shows the information for the output parameters returned after
execution.

DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000

=28672
No active process

0 1 0 0x7001
=28673

First call (asynchronous)

0 1 0 0x7002
=28674

Continuous call (asynchronous)

1 0 0 0x0000 –
0x6FFF
=0 – 28671

Function has been executed and returns a value between 0x0000 and
0x6FFF.
(ODK_SUCCESS = 0x0000)

0 0 1 0x80A4
=-32604

CPU function library could not be executed for the following reasons:
• The "<STEP7Prefix>_Unload" instruction was executed during a func-

tion execution. The function execution was aborted at the CPU end.
Windows terminates the execution of the function normally. No re-
turn value is sent to the CPU.

Wait until the "<STEP7Prefix>_Unload" instruction has ended. Then load
the CPU function library again.
• Windows is not available
• ODK service is not running
Start the ODK service manually or restart Windows.

0x80C2
=-32574

CPU function library could not be executed. There are currently not
enough resources available from Windows.
Execute the CPU function library again after a few seconds.

0x80C3
=-32573

CPU function library could not be executed. The CPU currently does not
have enough resources.
Execute the CPU function library again after a few seconds.

0x8090
=-32624

CPU function library could not be executed. An error occurred during
execution.

0x8091
=-32623

CPU function library could not be executed. A "STOP" occurred during
the function call.

0x8096
=-32618

CPU function library could not be executed because the
CPU function library was not loaded or unloading is not yet finished.

0x8098
=-32616

CPU function library could not be executed because the function is not
supported.

0x8099
=-32615

CPU function library could not be executed because the maximum
amount of input data (1 MB) was exceeded (declarations with "In" and
"InOut")

0x809A
=-32614

CPU function library could not be executed because the maximum
amount of output data (1 MB) was exceeded (declarations with "Out"
and "InOut")

0x809B
=-32613

The function returns an invalid value (a value between 0x0000 and
0x6FFF; 0xF000 and 0xFFFF is permitted)

Developing a CPU function library for the Windows environment
5.4 Executing a function

 Open Development Kit 1500S V2.5 SP4

60 Programming and Operating Manual, 12/2023, A5E35253941-AH

DONE BUSY ERROR STATUS Meaning
0x809C
=-32612

Function uses an invalid data type:
• IN_DATA
• INOUT_DATA
• OUT_DATA

0xF000 –
0xFFFF
=-4096 – -1

CPU 1500 V2.0 and later:
The function could not be executed and returns a value between
0xF000 and 0xFFFF.
(ODK_USER_ERROR_BASE = 0xF000)

 Note
Call of function(s) influences the cycle time

When you call a function, the function parameters are copied. In particular in the case of
large amounts of data or of structured data, this can lead to the cycle time being influenced.

5.4.3 Unloading functions

Introduction
The CPU function library is unloaded by calling the "<STEP7Prefix>_Unload" instruction. Call is
made from the STEP 7 user program.

In addition to this call, the CPU function library is also automatically unloaded for the
following reasons.

• The CPU is switched off

• Memory reset of CPU

• Windows is restarted

• Logoff off the Windows user (in the context of a Windows user)

Regardless of the context in which the CPU function library is running, the unloading
procedure consists of the following steps:

• Call the "<STEP7Prefix>_Unload" instruction in the STEP 7 user program.

• From now on, no new executes can be carried out for this CPU function library. Still active
executes are terminated at the CPU end. Windows terminates the execution of the
function normally ("Unload" waits). No return value is sent to the CPU.

• The host calls the "OnStop()" and "OnUnload()" functions.

• The CPU function library is being unloaded.

 Developing a CPU function library for the Windows environment
 5.4 Executing a function

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 61

"<STEP7Prefix>_Unload" instruction
A CPU function library is unloaded by calling the "<STEP7Prefix>_Unload" instruction in the
STEP 7 user program.

<STEP7Prefix>_Unload
REQ DONE
 BUSY
 ERROR
 STATUS

The following table shows the parameters of the instruction "<STEP7Prefix>_Unload":

Section Declaration Data type Description
Input REQ BOOL A rising edge activates the unloading of the CPU function library.
Output DONE BOOL Indicates that the instruction has finished unloading the CPU function library.
Output BUSY BOOL Indicates that the instruction is still unloading the CPU function library.
Output ERROR BOOL Indicates that an error occurred during the unloading of the CPU function library.

 STATUS gives you more information about the possible cause.
Output STATUS INT Provides information about possible sources of error, if an error occurs during

the unloading of the CPU function library.

Input parameters
An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Output parameter STATUS
The following table shows the information that is returned after unloading.

DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000

=28672
No active unloading

0 1 0 0x7001
=28673

Unloading in progress, the first call

0 1 0 0x7002
=28674

Unloading in progress, ongoing call

1 0 0 0x0000
=0

Unloading was carried out successfully

0 0 1 0x80A4
=-32604

CPU function library could not be unloaded for the following reasons:
• Windows is not available
Start the ODK service manually or restart Windows.

0x80C2
=-32574

CPU function library could not be unloaded. There are currently not
enough resources available from Windows.
Reload the CPU function library after a few seconds.

0x80C3
=-32573

CPU function library could not be unloaded. The CPU currently does not
have enough resources.
Reload the CPU function library after a few seconds.

Developing a CPU function library for the Windows environment
5.5 Remote debugging

 Open Development Kit 1500S V2.5 SP4

62 Programming and Operating Manual, 12/2023, A5E35253941-AH

DONE BUSY ERROR STATUS Meaning
0x8090
=-32624

An exception occurred during the unloading of the CPU function library.
The CPU function library has been unloaded nevertheless.

0x8096
=-32618

CPU function library could not be unloaded because the
CPU function library was not loaded or unloading is not yet finished.

0x809B
=-32613

CPU 1500 V2.0 and later:
The CPU function library could be unloaded and returns an invalid value
(the values 0x0000 and 0xF000 - 0xFFFF are allowed)

0xF000 –
0xFFFF
=-4096 – -1

CPU 1500 V2.0 and later:
CPU function library could be unloaded. An error occurred in the
CPU function library during the execution of the "OnUnload()" function.

5.5 Remote debugging
If you use Microsoft Visual Studio as a development environment, you can use the debugger
for debugging.

You can use the remote debugger to debug a CPU function library on a target system without
Visual Studio. It should be noted that the generated CPU function libraries (DLLs) are loaded
into one of the following processes:

• ODK_Host_x86.exe process (32-bit)

• ODK_Host_x64.exe process (64-bit)

The required remote debugger is dependent on the Visual Studio version used on the host
system and on the system type (32-bit/64-bit) of the target system.

You can find links to download the remote debugger for the relevant Visual Studio version on
the Microsoft website (https://docs.microsoft.com/en-us/visualstudio/debugger/remote-
debugging?#download-and-install-the-remote-tools).

After downloading, you can install the remote debugger on the target system.

https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging?#download-and-install-the-remote-tools
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging?#download-and-install-the-remote-tools

 Developing a CPU function library for the Windows environment
 5.5 Remote debugging

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 63

5.5.1 Performing remote debugging

Procedure
1. Start the Visual Studio remote debugger on the target system using "Start > All Programs >

Visual Studio 20xx > Remote Debugger".

2. Configure the authentication.

Select the "No authentication" option and select the "Allow any user to debug" check box.

Observe the security information.

3. With a C++ CPU function library, copy the Visual Studio Debug DLLs from the folder
"<installation path VS>\VC\redist\Debug_NonRedist\<ApplicationType>\Microsoft.<VS
version>.DebugCRT" in the target folder. With a managed (C# / VB) CPU function library you
can skip step 3.

– Destination folder with 32-bit Windows and a 32-bit application:

<windows install path>\System32

– Destination folder with 64-bit Windows and a 64-bit application:

<windows install path>\System32

– Destination folder with 64-bit Windows and a 32-bit application:

<windows install path>\SysWOW64

 Note

You need the file "ucrtbased.dll".

If this DLL is not present in the target system, copy it from the host in the folder:

With 32-bit Windows under Program Files\...

With 64-bit Windows under Program Files (x86)\...

...\Microsoft SDKs\Windows
Kits\10\ExtensionSDKs\Microsoft.UniversalCRT.Debug\<Highest available version>\
Redist\Debug\<Application type (32/64-bit)>

4. Load the CPU function library on the target system in the folder
"C:\ProgramData\Siemens\Automation\ODK1500S".

 Note

If the CPU function library is loaded, unload (Page 60) it before copying.

Developing a CPU function library for the Windows environment
5.5 Remote debugging

 Open Development Kit 1500S V2.5 SP4

64 Programming and Operating Manual, 12/2023, A5E35253941-AH

5. Load (Page 54) the CPU function library on the target system.

6. Set the breakpoints in the source code and start the debugger via "Debug > Attach to
Process…".

Select the following settings in the "Attach to Process" dialog:
– Transport: Remote

– Qualifier: IP address of the target system and port of the remote debugger.

– Attach to:

Use the default value "Automatic: Managed (...) code" for managed CPU function
libraries.
Only for a C++ CPU function library: Click "Select...", and select the code type "Native" in
the "Select Code Type" dialog.

Debugging OnLoad/OnRun
To attach the debugger to the OnLoad() or OnRun() function, incorporate a wait loop at the
start of OnLoad().

Example of a wait loop:
EXPORT_API ODK_RESULT OnLoad (void)
{
#if defined _DEBUG // available in debug configuration, only
 while (!IsDebuggerPresent()) // wait for debugger

 {
 Sleep(100);
 }
#endif
 // your code for OnLoad() ...

Result
The debugger stops the execution of the code after the activated breakpoint.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 65

Developing a CPU function library for the realtime
environment 6
6.1 Creating a CPU function library

6.1.1 Requirements
• ODK is installed. The Eclipse development environment is installed.

• You need administrator rights to create and edit an Eclipse project (CPU function library
for the realtime environment).

 Note

If you have to move the workspace to a different storage location, make sure you copy the
entire workspace.

 Note
SO files (CPU function libraries)

The SO files are not know-how-protected. The customer is responsible for the SO files and
their know-how protection.

 Note
Behavior with a large CPU function library for the real-time environment

When an exception is thrown for a CPU function library as of about 20 MB for the real-time
environment, the CPU may no longer change from "STOP" to "RUN".

Make sure that you have sufficient load memory for backup of the postmortem files. Then
switch the CPU off and on again.

6.1.2 Creating a project
To help you develop a CPU function library, an Eclipse Project template is included in the
installation of ODK 1500S.

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

66 Programming and Operating Manual, 12/2023, A5E35253941-AH

Procedure
To create a CPU project in Eclipse using an ODK template, follow these steps:

1. Start Eclipse as a development environment.

2. In the "File > New" menu, select the command "Project..."

The "New Project" dialog opens.

Figure 6-1 Creating a new project with Eclipse

3. Select the project template "C++ Project for CPU function library (CPU Runtime)" .

Figure 6-2 Selecting a template

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 67

4. Enter a project name.

5. Click "OK" to confirm.

Result
The CPU function library for the realtime environment is created using the project template
and sets the following project settings:

• Project settings for generating the SO file

• Automates the generation of the SO and SCL file

The project template sets up the following Project Explorer by default:

Folder / file Description

<project path>
 def
 <project>.odk ODK interface description
 <project>.scl.additional S7 blocks that are appended to the <project>.scl file.

Although the file is not part of the project template, the code
generator processes the file.

 STEP7 Files from this folder may not be edited!
 <project>.scl S7 blocks
 scr_cg_priv Files from this folder may not be edited!
 ODK_Types.h Definition of the ODK base types
 ODK_Functions.h Function prototypes
 ODK_Execution.cpp Implementation of the "Execute" method
 src
 <project>.cpp Function code: This file has always the suffix CPP, regardless of

whether you are creating a C or C++ project.

src_odk_helpers
 Files from this folder may not be edited!

 ODK_CpuReadData.h Definition of the helper function for reading classic DBs.
 ODK_CpuReadData.cpp Implementation of the helper function for reading classic DBs.
 ODK_CpuReadWriteData.h Definition of the helper function for reading/writing classic DBs.

ODK_CpuReadWriteData.cpp
Implementation of the helper function for reading/writing classic
DBs.

 ODK_StringHelper.h Definition of the helper function for access to S7String/S7WString.
 ODK_StringHelper.cpp Implementation of the helper function for access to

S7String/S7WString.
 release_so
 <project>.so ODK Application Binary (release version) that must be transferred

to the target system.
 <project>.debuginfo.so ODK Application Binary (debug version) that is required for the

post mortem analysis.
 <project>.symbols Symbol information that is required for the post mortem analysis.
 launches
 <project>.gdb.launch Start for the post mortem analysis.

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

68 Programming and Operating Manual, 12/2023, A5E35253941-AH

 Note
Invalid characters in the project name

All invalid characters in the project name are automatically replaced by an underscore. These
characters are allowed {A...Z, a…z, 1…9, -, _}.

"My + first#project" becomes, for example, "My___first_project".

6.1.3 Generating a CPU function library
The generation of the project data is divided into two automated steps.

• Pre-Build: Generation of the files created by default based on the changed <Project>.odk
file

• Build: Generation of the SO file

Procedure
To generate the project data, follow these steps:

1. Save all edited files.

2. In the "Build" menu, select the command "Build Project".

 Note

The project data is only generated if the files have been changed.

Result
The generation of the project data is started. The automatically generated files are stored in
the file system.

• SO file: Project directory\<Project>\<BuildConfiguration>\<Project>.so

• SCL file: Project directory\<Project>\STEP7\<Project>.scl

6.1.4 Defining the runtime properties of a CPU function library
The next step is to define the interface description of the CPU function library in the
<project>.odk file. The file contains the following elements:

• Comments

• Parameters

• Definitions of functions and structures

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 69

Procedure
To define the interface description in the <project>.odk file, follow these steps:

1. Open the <project>.odk file.

2. Change the elements depending on your requirements.

Description of the elements

Comments

You can use comments for explanation purposes.

Parameters

The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

 The interfaces file supports the following parameters:

Parameter Value Description
Context realtime Specifies that the CPU function library is loaded in the context of the

realtime environment (Page 70).
Trace on Specifies the trace function in the CPU function library. In this case, the

CPU function library requires 32 KB if memory as an additional trace buff-
er. A "GetTrace" function block is created by default for use in a STEP 7.

off A "GetTrace" function block is created. The trace buffer contains only one
trace entry with the contents: trace is off.

HeapSize [4…<Availabl
e CPU
memory
(Page 130)>]
k

Specifies a memory in KB that can be used as heap for these realtime
applications.

HeapMaxBlockSize [8…<HeapSiz
e>]

Specifies the maximum memory size in bytes that can be allocated at one
time.

SyncCallParallelCount [1...9]
Default=3

If a optional parameter and defines the maximum number of parallel calls
in this CPU function library. The size of the memory which is reserved for
calls in this CPU function library:
SyncCallParallelCount * (SyncCallStackSize + SyncCallDataSize)

SyncCallStackSize [1...1024]k
Default=32k

Is a optional parameter and defines the size of the thread stack for a call in
this CPU function library. Each new call receives its own stack memory.

SyncCallDataSize [1...1024]k

Is a optional parameter and defines the size of the data area for a call in
this CPU function library. The data area contains IN, INOUT and OUT pa-
rameters. Each new call receives its own stack memory.

Default=auto The required data size is automatically calculated by the code generator.
With an ODK_CLASSIC_DB, 65 KB is applied.

STEP7Prefix <String> Describes the string that precedes your functions and is shown after im-
porting the SCL file in STEP 7. The following characters are allowed: {A...Z,
a…z, 1…9, -, _}
The project name is entered without spaces by default.

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

70 Programming and Operating Manual, 12/2023, A5E35253941-AH

6.1.5 Environment for loading or running the CPU function library
When the SCL file is imported into STEP 7 as an external source, the ODK instructions are
created in the selected directory in STEP 7. You can load up to 32 CPU function libraries.

You can load and run your CPU function library in the context of the realtime environment:

Realtime environment
Add the following line of code in your <project>.odk file to use the CPU function library in the
context of the realtime environment:
Context=realtime

In this context, the CPU function library is not running in a host process at the Windows end,
but instead in the realtime environment. Because the CPU function library is loaded
synchronously, it should be loaded in a startup OB (e.g. OB 100).

The number of loadable CPU function libraries (Page 130) is limited in the context of the
realtime environment.

If the CPU function library has to be loaded in a cyclic OB (for example, OB 1), note the
following loading times:

CPU Small SO file → Loading time Large SO file → Loading time
CPU 1505SP 0.5 MB → 20 ms 3 MB → 70 ms
CPU 1507S (with SSD) 0.5 MB → 20 ms 5 MB → 100 ms

Determining the size of the CPU function library in the CPU memory
To determine the required size of the CPU function library in the CPU memory, follow these
steps:

1. Open a command line dialog.

2. Enter the following path from the ODK installation folder (the appended option "-l" is a
lower-case "L"): eclipse\ build_tools\x86_64_gcc_pc_elf_11.3.0\bin\x86_64-pc-elf-readelf.exe
"<StorageLocation\File.so>" -l

You can see the size of your CPU function library under the heading "Program Headers" in
the "MemSiz" column.

Additional administrative memory is required for each CPU function library in addition to
the amount specified here. The administrative memory can be calculated as follows:

Administrative memory = SyncCallParallelCount * (SyncCallStackSize + SyncCallDataSize)

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 71

6.1.6 Defining functions and structures of a CPU function library

6.1.6.1 Defining functions a CPU function library

Functions
Functions are defined by the following general lines of code:
ODK_RESULT <FunctionName>
([<InOut identifier>] <data type> <tag name>, etc.);

The <project>.odk file contains an example function description by default. You can change
this description and/or add more function descriptions.
ODK_RESULT MyFunc1([IN] INT param1, [OUT] INT param2);

Syntax rules for functions
The following syntax rules apply to functions within the <project>.odk file:

• Note that the function names are case-sensitive.

• You can split function definitions into several lines.

• End a function definition with a semicolon.

• TAB and SPACE are allowed.

• Do not define a tag name in a function twice.

• Do not use any keywords for the programming language that is used (for example
"EN / ENO" as parameter name)

• Use ODK_RESULT only for the return values of the function.

• The tag name must start with a letter or an underscore.

• Illegal function names are displayed during generation in the development environment.

• The following names are not allowed in combination of <STEP 7Prefix> and <function
name>: ODK_Load, ODK_Unld, ODK_ExcA, ODK_ExcS

<FunctionName>

Function names are valid with the syntax and character restrictions of the used programming
language.

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

72 Programming and Operating Manual, 12/2023, A5E35253941-AH

<InOut-Identifier>

There are three defined InOut-Identifiers. Use these in the following order: [IN], [OUT],
[INOUT]

• [IN]: Specifies an input tag. The tag is copied to the function when it is called. This is
constant and cannot be changed.

• [OUT]: Specifies an output tag. The tag is copied back after the function has been
completed.

• [INOUT]: Specifies an input and output tag. The tag is copied to the function when it is
called. This is not constant and can be changed. The tag is copied back after the function
has been completed.

<DataType>

The data type defines the type of a tag. The following tables define the possible data types
and their method of representation in C++ or STEP 7:

Elementary data types:

ODK data type SIMATIC data

type
C++ data type Description

ODK_DOUBLE LREAL double 64-bit floating point, IEEE 754
ODK_FLOAT REAL float 32-bit floating point, IEEE 754
ODK_INT64 LINT long long 64-bit signed integer
ODK_INT32 DINT long 32-bit signed integer
ODK_INT16 INT short 16-bit signed integer
ODK_INT8 SINT char 8-bit signed integer
ODK_UINT64 ULINT unsigned long

long
64-bit unsigned integer

ODK_UINT32 UDINT unsigned long 32-bit unsigned integer
ODK_UINT16 UINT unsigned short 16-bit unsigned integer
ODK_UINT8 USINT unsigned char 8-bit unsigned integer
ODK_LWORD LWORD unsigned long

long
64-bit bit string

ODK_DWORD DWORD unsigned long 32-bit bit string
ODK_WORD WORD unsigned short 16-bit bit string
ODK_BYTE BYTE unsigned char 8-bit bit string
ODK_BOOL BOOL unsigned char 1-bit bit string, remaining bits (1..7) are empty
ODK_LTIME LTIME long long 64-bit during in nanoseconds
ODK_TIME TIME long 32-bit during in milliseconds
ODK_LDT LDT unsigned long

long
64-bit date and time of the day in nanoseconds since 01/01/1970
00:00

ODK_LTOD LTOD unsigned long
long

64-bit time of the day in nanoseconds since midnight

ODK_TOD TOD unsigned long 32-bit time of the day in milliseconds since midnight
ODK_CHAR CHAR char 8-bit character

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 73

Complex data types:

ODK data type SIMATIC data

type
C++ data type Description

ODK_DTL DTL ODK_DTL
(struct)

Structure/class for date and time

ODK_S7STRING STRING unsigned char Character string:
• For SIMATIC and C++:

8-bit character with length max. and act. (2xUSINT)
• For other languages:

native
ODK_CLASSIC_DB VARIANT ODK_CLASSIC_DB

(struct)
Classic DB (global or based on UDT)

[] ARRAY [] Range of same data types.
You can use all data types as an array except ODK_CLASSIC_DB.

User-defined data types:

User-defined data types (UDT) include structured data, especially the names and data types of
this component and their order.

A user-defined data type can be defined in the user interface description with the keyword
"ODK_STRUCT".

Example

ODK_STRUCT <StructName>

{

 <DataType> <TagName>;

 ...

};

The following syntax rules apply to the structure:

• You can divide the structure into multiple lines.

• The structure definition must end with a semicolon.

• Any number of tabs and spaces between the elements is permitted.

• It is not permitted to use any keywords for the generated language used (for example
"en / eno" as tag name).

You can create additional structures within a structure.

<StructName>

Structure names are valid with the syntax and character restrictions of the programming
language and as defined for tag definitions in STEP 7.

In STEP 7, the structure name is extended with the STEP 7 prefix.

<TagName>

Tag names are subject to the syntax and character restrictions of the programming language.

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

74 Programming and Operating Manual, 12/2023, A5E35253941-AH

Example

The following code example explains the definitions of functions and structures. Sort the
parameters by: IN, OUT, INOUT.
//INTERFACE
…
ODK_STRUCT MyStruct
 {
 ODK_DWORD myDword;
 ODK_S7STRING myString;
 };
ODK_RESULT MyFct([IN] MyStruct myInStruct
 ,[OUT] MyStruct myOutStruct);

6.1.6.2 Use of ODK_CLASSIC_DB as parameter
The ODK_CLASSIC_DB data type may only be used with the InOut-Identifier [IN] and [INOUT].
If a parameter of data type ODK_CLASSIC_DB with InOut-Identifier [IN] or [INOUT] is used, no
other parameters, regardless of the data type, can be used with the same InOut-Identifier.

Example

// INTERFACE
...
// OK:
ODK_RESULT MyFunc1([IN] ODK_CLASSIC_DB myDB);
ODK_RESULT MyFunc2([IN] ODK_CLASSIC_DB myDB1, [INOUT] ODK_CLASSIC_DB
myDB2);
//
// NOT OK (Code Generator will throw an error):
// ODK_CLASSIC_DB not permitted for [OUT]
ODK_RESULT MyFunc3([OUT] ODK_CLASSIC_DB myDB);
// if ODK_CLASSIC_DB is used for [IN], no other [IN] parameter may
be
// defined in this function
ODK_RESULT MyFunc4([IN] ODK_CLASSIC_DB myDB, [IN] ODK_INT32 myint);

Application example for C++

#include "ODK_CpuReadData.h"
...
ODK_RESULT MyFunc1 (const ODK_CLASSIC_DB& myDB)
{
 CODK_CpuReadData myReader(&myDB);
 ODK_INT32 myInt1, myInt2;

 myReader.ReadS7DINT(0, myInt1);
 myReader.ReadS7DINT(4, myInt2);

 return myInt1 + myInt2;
}

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 75

In order to access the data type ODK_CLASSIC_DB within a user function, the helper functions
(Page 139) of the following classes are available:

• Class "CODK_CpuReadData"

• Class "CODK_CpuReadWriteData"

6.1.6.3 Handling strings
You can define a maximum length for strings (String or WString). Define the maximum
number of characters in square brackets directly after the data type:

• ODK_S7STRING[30] or

• ODK_S7WSTRING[1000]

Without limitation, a string has a default length of 254 characters.

In order to access the data types ODK_S7STRING or ODK_S7WSTRING within a user function,
the string helper functions (Page 139) are available:

Example

//INTERFACE
…
ODK_RESULT MyFct(
 [IN] ODK_S7STRING myStrHas254Chars
 , [OUT] ODK_S7STRING[10] myStrHas10Chars
 , [INOUT] ODK_S7STRING[20] myStrArrayHas20Chars5Times[5]);

If you use [INOUT], you can set the string with a length that differs from the [INOUT of the
function block in STEP 7.

 Note
Compatibility

If you use the "WSTRING" data type with more than 253 characters in a project, create a new
project with ODK version ≥ V2.5 SP1.

The characters are not read/written correctly with a project created with ODK version < V2.5
SP1.

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

76 Programming and Operating Manual, 12/2023, A5E35253941-AH

6.1.6.4 Definition of the <Project>.odk file
The function prototypes and function blocks are generated based on the selected parameters
in the <project>.odk file. Define the <project>.odk file for this.

By default, the <project>.odk file contains the following:

• Description

The possible data types that are used for the interface are described in comment lines.
This simplifies the definition of the correct tag type for your task.

• Context=realtime

The CPU function library is loaded in the context of the realtime environment.

• Trace=on

Specifies the trace function in the CPU function library. A "GetTrace" function block is
created by default for use in a STEP 7.

When you define the "ODK_TRACE" instruction (Page 97), it is also compiled and executed.
When you define the parameter Trace=on in the <project>.odk file, the instruction is
automatically defined with the following code:

#define ODK_TRACE(msg, ...);

Example: ODK_TRACE("number=%d", 13);

Calling the instruction creates an entry in the trace buffer.

• HeapSize

Specifies a memory in KB that can be used as heap for these realtime applications.

• HeapMaxBlockSize

Specifies the maximum memory size in bytes that can be allocated at one time.

• STEP7Prefix="<project>"

Sets a string for the SCL generation in front of the functions of the CPU function library.
This is visible in STEP 7. You can change the parameter. The string length of the prefix
including function name must not exceed 125 characters (e.g.
ODK_App_SampleFunction).

• "SampleFunction" function definition

You can change this default function as you wish in the <project>.odk file and add more
functions. The string length may not exceed a length of 125 characters. The associated
function is located in the CPP file.

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 77

Example

//INTERFACE
Context=realtime
Trace=on
HeapSize=4k
HeapMaxBlockSize=1024
STEP7Prefix=ODK_App

 /*
* Elementary data types:
*
* ODK_DOUBLE LREAL 64-bit floating point, IEEE 754
* ODK_FLOAT REAL 32-bit floating point, IEEE 754
* ODK_INT64 LINT 64-bit signed integer
* ODK_INT32 DINT 32-bit signed integer
* ODK_INT16 INT 16-bit signed integer
* ODK_INT8 SINT 8-bit signed integer
* ODK_UINT64 ULINT 64-bit unsigned integer
* ODK_UINT32 UDINT 32-bit unsigned integer
* ODK_UINT16 UINT 16-bit unsigned integer
* ODK_UINT8 USINT 8-bit unsigned integer
* ODK_LWORD LWORD 64-bit bit string
* ODK_DWORD DWORD 32-bit bit string
* ODK_WORD WORD 16-bit bit string
* ODK_BYTE BYTE 8-bit bit string
* ODK_BOOL BOOL 1-bit bit string
* ODK_LTIME LTIME 64-bit duration in nanoseconds
* ODK_TIME TIME 32-bit duration in milliseconds
* ODK_LDT LDT 64 bit date and time of day
* in nanoseconds
* ODK_LTOD LTOD 64 bit time of day in nanoseconds
 since midnight
* ODK_TOD TOD 32 bit time of day in milliseconds
 since midnight
* ODK_DTL DTL structure for date and time
* ODK_CHAR CHAR 8 bit character
* ODK_S7STRING STRING character string with 8-bit characters
* ODK_CLASSIC_DB VARIANT classic DB (global or based on UDT)
* [] ARRAY field of this datatype
* User Defined Datatype:
* ODK_STRUCT UDT user defined structure
* Return data type:
* ODK_RESULT 0x0000 - 0x6FFF function succeeded
* (ODK_SUCCESS = 0x0000)
* 0xF000 - 0xFFFF function failed
* (ODK_USER_ERROR_BASE = 0xF000)
*/

ODK_RESULT SampleFunction([IN] ODK_INT32 myInt
 , [OUT] ODK_BOOL myBool
 , [INOUT] ODK_DOUBLE myReal);

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

78 Programming and Operating Manual, 12/2023, A5E35253941-AH

6.1.6.5 Modifying the <Project>.odk file
The following example shows you how you can change the <Project>.odk file to suit your
needs.
//INTERFACE
Context=realtime
Trace=on
HeapSize=4k
HeapMaxBlockSize=1024
STEP7Prefix=ODK_SampleApp_

ODK_RESULT GetString ([OUT] ODK_S7STRING myString);

ODK_RESULT Calculate ([IN] ODK_INT64 In1,
 [IN] ODK_DOUBLE In2,
 [OUT] ODK_FLOAT Out1,
 [OUT] ODK_INT32 Out2,
 [INOUT] ODK_BYTE InOut1[64],
 [INOUT] ODK_BYTE InOut2[64]);

6.1.6.6 Comments
Comments are started with a double slash "//" and end automatically at the end of the line.

Alternatively, you can limit comments by /* <comment> */, which enables new lines in a
comment. Characters after the end of the comment identifier "*/" are further processed by
the code generator.

Comments for Visual Basic are marked with a apostrophe.

Comments for functions and structures
You place comments on functions and structures directly in front of the functions/structures.

These comments are transferred to the ODK_Functions.h and <project>.scl files.

In the <project>.scl file, the comments are copied to the block properties and duplicated in
the code area of the function.

Observe the following rules:

• Comments for functions and structures must be located directly in front of the
functions/structures (without blank line).

• The end of the comment is located in front of the ODK_RESULT or ODK_STRUCT keyword.

• You can use both identifiers "//" and "/* */" but not in combination within a comment.

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 79

Example

// this comment did not appear in MyStruct, because of the empty
line.

// comment MyStruct
// ...
ODK_STRUCT MyStruct
{
 ODK_DWORD myDword;
 ODK_S7STRING myString;
};

/*
comment MyFct
...
*/
ODK_RESULT MyFct([IN] MyStruct myInStruct
 ,[OUT] MyStruct myOutStruct);

Comments for tags in functions and structures
Comments for function and structure tags are placed directly in front of or behind the tag.

These comments are transferred to the ODK_Functions.h/ and <project>.scl files.

The following rules apply to comments in front of tags:

• Comments must be located directly in front of the tag (without blank line)

• The end of the comment is the <InOut-Identifier> of the tag

The following rules apply to comments after tags:

• Comments must be located after the tag name (without blank line)

The following general rules apply to comments for tags:

• You can use both identifiers "//" and "/* */" but not in combination within a comment.

• In the header file, the same comment identifier is used ("//" or "/* */").

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

80 Programming and Operating Manual, 12/2023, A5E35253941-AH

Example

ODK_STRUCT MyStruct
{
 // comment myDword BEFORE definition
 ODK_DWORD myDword;

 ODK_S7STRING myString; /* comment myString AFTER definition */
};

ODK_RESULT MyFct([IN] MyStruct myInStruct // comment
 // myInStruct ...
 // ... "second line"
 , [OUT] MyStruct myOutStruct); /* comment
 myOutStruct ...
 ...
 */

6.1.7 Implementing functions

6.1.7.1 General notes
This section provides an overview of the basic topics relating to the implementation of
functions in a realtime environment.

• The function call is limited in time

Since the function is called synchronously, the function call must be adjusted to the
timing of the cycle.

• Trace functionality

ODK provides a trace function (Page 97) to check variables or the execution of functions in
the realtime environment.

• The execution of synchronous functions can be interrupted by higher priority OBs
(Page 93) running in the same CPU.

• Application size

The number of loadable CPU function libraries (Page 70) is limited in the context of the
realtime environment.

• C++ Runtime library

Functions that need operating system functionality (threading) cannot be used

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 81

6.1.7.2 Callback functions
The project for the realtime CPU function library contains a CPP file (execute file:
<project>.cpp) to define your functions. This CPP file contains functions filled by default. You
do not necessarily have to fill these with additional user code to be usable. However, neither
may the functions be deleted under any circumstances.

The empty function has the following code (using the "OnLoad()" function as an example):
ODK_RESULT OnLoad (void)
{
 // place your code here
 return ODK_SUCCESS;
}

You can define the following functions in the CPP file:

• OnLoad(): Called after loading the CPU function library

• OnUnload(): Called before unloading the CPU function library

• OnRun(): Called when the CPU changes to RUN mode after the OnLoad() function

• OnStop(): Called when the CPU changes to the STOP mode and before the function
OnUnload()

The OnStop() function is terminated if the execution takes longer than 50 ms when CPU
changes to STOP mode.

"OnLoad()" and "OnUnload()" function
The functions have a return value of type "ODK_RESULT" and typically provide information
about the status of the "ODK_SUCCESS" value.

The following return values are possible:

Return value for "ODK_RESULT" Description
ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnLoad()" or "OnUnload()"

function
0x0001 – 0xEFFF Invalid values (system-internal)
0xF000 – 0xFFFF
ODK_USER_ERROR_BASE = 0xF000

You can define your own return values.
The loading stops and the CPU function library unloads for the "OnLoad()" func-
tion.
The CPU function library within the specified value range is still unloaded for the
"OnUnload()" function.

"OnRun()" and "OnStop()" function
The functions have a return value of type "ODK_RESULT" and typically provide information
about the status of the "ODK_SUCCESS" value.

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

82 Programming and Operating Manual, 12/2023, A5E35253941-AH

The following return values are possible:

Return value for "ODK_RESULT" Description
ODK_SUCCESS = 0x0000 Default return value for a successful execution of the function "OnRun()" or "On-

Stop()"
0x0001 – 0xFFFF Direct feedback to the user program is not possible because these functions are

not called directly by the user at RUN/STOP mode transitions.

6.1.7.3 Implementing custom functions
Once you have defined the ODK interface in the <project>.odk file, you must edit the
functions of the CPU function library in the Project Source file.

Procedure
To edit the function of a CPU function library, follow these steps:

1. To generate the function prototypes, execute the build.

2. Open the project source file, or create a custom source file if necessary.

3. Transfer the function prototypes from <ODK_Functions.h>/<OdkFunctions.cs/vb> to the
source file.

 Note

Use the function prototype macro to transfer the step 3 in the future when there is a change
to the function parameters.

4. Edit the code of your CPU function library in the execute file.

CPU function library
The execute file contains a schematically represented function description by default. You
can change this description with corresponding changes in the <project>.odk file and/or add
more function descriptions.

Execute file based on C++ example
#include "ODK_Functions.h"

EXPORT_API ODK_RESULT OnLoad (void)
{
 return ODK_SUCCESS;
}
EXPORT_API ODK_RESULT OnUnload (void)
{
 return ODK_SUCCESS;
}
EXPORT_API ODK_RESULT OnRun (void)
{
 return ODK_SUCCESS;
}

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 83

EXPORT_API ODK_RESULT OnStop (void)
{
 return ODK_SUCCESS;
}
ODK_RESULT SampleFunction(const ODK_INT32& myInt,
 ODK_BOOL& myBool,
 ODK_DOUBLE& myReal)
{
 return ODK_SUCCESS;
}

6.1.7.4 Dynamic memory management

Introduction
ODK objects work with a dynamic memory management (heap). The following instructions
and functionalities are supported by using the dynamic memory management:

• The new/delete and malloc/free instructions.

• STL (Standard Template Library)

• Software exceptions

The default setting for the heap size is 4 KB. The heap size can be from 4 KB up to the
available memory of the CPU (Page 130). You change the heap size in the <project>.odk file
using the following parameters:

• HeapSize

• HeapMaxBlockSize

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

84 Programming and Operating Manual, 12/2023, A5E35253941-AH

Special features
Because the used memory area (heap) has been optimized with regard to realtime and cyclic
processing, it has some special features:

• Blocks can only be allocated up to a specified size during the compiling time of the ODK
object.

 Note

You can specify the maximum block size with the HeapMaxBlockSize parameter in
<project>.odk. However, this has an effect on the global memory use for
CPU function libraries, because the management information of the following memories is
required in addition to the actual heap:

size_heap_admin_data = HeapMaxBlockSize * 3

Example: Therefore, with a maximum block size of 100 KB, this project needs 300 KB of
global data in addition to the heap. This data is used for heap administration.

You can find additional information under Environment for loading or running the CPU
function library (Page 70).

• Blocks can initially be requested in any size. When the blocks are released again, they are
entered in free lists. There is a free list in each case for all possible block sizes (up to
HeapMaxBlockSize) so that later allocations can be performed in constant time.

There is, however, no merging of neighboring released blocks to form a larger block.

This means continuously recurring requests can be met faster than constantly different
requests.

Example: The user allocates only blocks with 8 bytes until the heap is full. The user then
releases everything again so that the heap is completely empty. An allocation of a block
with 16 bytes is then no longer possible, however, because all free blocks are entered in
the free list for 8 bytes and merging is not possible.

Example
#include <assert.h>
#include <exception>
#include <vector>
…
 // check parameter
 assert (NULL != myPointer);

 // allocate heap memory with malloc()
 char* p1 = (char*) malloc(32);
 if (NULL == p1)
 {
 ODK_TRACE("ERROR: malloc() failed");
 }
 else
 {
 ODK_TRACE("malloc() done");
 // free allocated memory
 free(p1);

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 85

 ODK_TRACE("free() done");
 }

 // allocate heap memory with new()
 char* p2 = NULL;
 try
 {
 p2 = new char [64];
 ODK_TRACE("new done");
 // delete allocated memory
 delete[] p2;
 ODK_TRACE("delete done");
 }
 catch (std::exception& e)
 {
 ODK_TRACE("exception: %s", e.what());
 }
 std::vector<int> vec; // empty vector of ints

6.1.7.5 Debug (Test)
You have the possibility to write a custom test to debug the CPU function library for the
realtime environment in a Windows environment. This will ensure the quality of the code.

Requirements
You need an Internet connection for this procedure.

You need administrator rights for this procedure.

Procedure before the first debug process
To perform a test on a CPU function library for the realtime environment in a Windows
environment, perform the following once:

1. Close Eclipse.

2. Open the "bin" folder of your ODK installation.

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

 Open Development Kit 1500S V2.5 SP4

86 Programming and Operating Manual, 12/2023, A5E35253941-AH

3. Run the "MinGW32_Install.cmd" file with the "Run as administrator" command from the
shortcut menu.

A text editing dialog opens. The Windows prompt installs all necessary components.

4. Click on any button.

MinGW32 is installed.

Basic procedure
To perform the test, proceed as follows:

1. Open your project in Eclipse.

2. Change the debug environment to "Windows". To do this, select the "debug (win32)" option
in menu "Project > Build Configurations > Set Active".

3. Create the project as debug version. To do so, select the "Build Project" command in the

"Project " menu.

4. If you debug the project for the first time, you must now set the debug configuration.
Otherwise, continue with step 8.

5. To do this, select the "Debug Configurations" command in the "Run" menu.

The "Debug Configurations" dialog opens.

 Developing a CPU function library for the realtime environment
 6.1 Creating a CPU function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 87

6. To create a new application, select the entry "C/C++ Application" and select the "New"
command in the context menu.

7. Configure your test environment.

8. Click the "Search Project" button to select your application.

9. Start the debug process by clicking the "Debug" button.

10.If you want to debug your project again, select the "Local C/C++ Application" command in
the menu "Run > Debug as".

Developing a CPU function library for the realtime environment
6.2 Transferring a CPU function library to the target system

 Open Development Kit 1500S V2.5 SP4

88 Programming and Operating Manual, 12/2023, A5E35253941-AH

Result
Eclipse suggests a change in the debug perspective.

The test code is executed. The test code for the test is compiled only in the debug
environment and is implemented in the "main()" function. This function is located in the
<project>.cpp file.

The "main()" function offers you the following possibilities:

• Test data are provided and results can be reviewed.

• You can monitor tags of the function.

• You can use breakpoints to check the execution.

Test code
The following sample code shows the default contents of the "main()" function.
/*
 * main() is defined for windows debugging, only.
 * Therefore all automatically invoked functions
 * (OnLoad, OnRun, OnStop, OnUnload) have to be called manually.
 */
#ifdef _DEBUG
int main (int argc, char* argv[])
{
 ODK_RESULT ret = ODK_SUCCESS;
 ret = OnLoad();
 // error handling
 ret = OnRun();
 // error handling

 // place your test code here

 ret = OnStop();
 // error handling
 ret = OnUnload();
 // error handling
 return ret;
}
#endif // _DEBUG

6.2 Transferring a CPU function library to the target system

Procedure
Manually transfer the SO file to the target system. Use the file explorer of the web server of
the CPU to transfer the CPU function library.

 Developing a CPU function library for the realtime environment
 6.2 Transferring a CPU function library to the target system

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 89

To transfer an SO file, follow these steps:

1. Enable the Web server in your STEP 7 project.

2. Open the web server of the CPU in the browser.

3. Open the "Filebrowser" menu.

4. Open the following directory as the storage location for the CPU function libraries:
\ODK1500S\

Figure 6-3 Transferring the SO file via the file explorer from the web server of the CPU

5. Click the "Browse" button.

Developing a CPU function library for the realtime environment
6.3 Importing and generating an SCL file in STEP 7

 Open Development Kit 1500S V2.5 SP4

90 Programming and Operating Manual, 12/2023, A5E35253941-AH

6. Navigate in the file system to the SO file or copy the location from the properties of the SO
file in Eclipse.

7. Confirm the transfer of the SO file to the web server of the CPU by pressing the "Load File"
button.

Result
The SO file is transferred to the load memory of the CPU.

After a successful transfer, the SO file is loaded by calling the "<STEP7Prefix>_Load"
instruction.

6.3 Importing and generating an SCL file in STEP 7
When generating the project data, the following files are created:

• SCL file for importing into STEP 7

• All files depending on the configuration, e.g. SO file

If STEP 7 is installed on another PC as the development environment, you must transfer the
generated SCL file to the PC where the STEP 7 is installed.

Requirements
The project data were generated.

Procedure
To import and compile the SCL file, follow these steps:

1. Start STEP 7.

2. Open your project.

3. Select the project view.

4. Select the CPU in the project tree.

5. Select the "External Sources" subfolder.

The "Open" dialog box opens.

6. Navigate in the file system to the SCL file that was created during generation of the project
data or copy the storage location from the properties of the SCL file to Eclipse.

7. Confirm your selection with "Open".

The SCL file is imported. After completion of the import process, the SCL file is displayed in
the "External Sources" folder.

8. Compile the SCL file before you use the blocks in your project.

9. To do this, select the SCL file in "External sources" subfolder.

10.Select the "Generate blocks from source" command in the shortcut menu.

 Developing a CPU function library for the realtime environment
 6.4 Executing a function

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 91

Result
STEP 7 creates the S7 blocks based on the selected SCL file.

The "GetTrace" function block, which makes it possible to read the trace buffer, is created by
default.

The created blocks are now automatically displayed in the "Program blocks" folder below the
selected CPU in the project tree. You can load the function blocks during the next download
to the target device.

6.4 Executing a function

6.4.1 Loading functions

Introduction
Regardless of the context in which the CPU function library is running, the loading procedure
consists of the following steps:

• Call the "<STEP7Prefix>_Load" instruction in the STEP 7 user program.

• The loading process takes place synchronously

To avoid influencing the cycle time, load the CPU function library in startup OB (e.g. OB
100).

If the CPU function library has to be loaded in a cyclic OB (for example, OB 1), note the
following loading times:

CPU Small SO file → Loading time Large SO file → Loading time
CPU 1505SP 0.5 MB → 20 ms 3 MB → 70 ms
CPU 1507S (with SSD) 0.5 MB → 20 ms 5 MB → 100 ms

• As soon as the "<STEP7Prefix>_Load" instruction returns after the first call, the CPU
function library is loaded.

 Note
Loading the same CPU function libraries with a modified <project>.odk file

When you load a CPU function library and subsequently change the <project>.odk file, we
recommend that you unload your CPU function library first before you load the newly
generated CPU function library. If the "<STEP7Prefix>_Unload" instruction is not executed,
both CPU function libraries are in the memory. This can lead to insufficient memory being
available for the CPU.

Developing a CPU function library for the realtime environment
6.4 Executing a function

 Open Development Kit 1500S V2.5 SP4

92 Programming and Operating Manual, 12/2023, A5E35253941-AH

"<STEP7Prefix>_Load" instruction
A CPU function library is loaded by calling the "<STEP7Prefix>_Load" instruction in the STEP 7
user program.

<STEP7Prefix>_Load
REQ DONE
 BUSY
 ERROR
 STATUS

The following table shows the parameters of the instruction "<STEP7Prefix>_Load":

Section Declaration Data type Description
Input REQ BOOL A rising edge activates the loading of the CPU function library.
Output DONE BOOL Indicates that the instruction has finished loading the CPU function library.
Output BUSY BOOL Indicates that the instruction is still loading the CPU function library.
Output ERROR BOOL Indicates that an error occurred during the loading of the CPU function library.

STATUS gives you more information about the possible cause of the error.
Output STATUS INT Provides information about possible sources of error, if an error occurs during

the loading of the CPU function library.

Input parameters
An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Output parameters
The following table shows the information that is returned after loading.

DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000

=28672
No active loading

1 0 0 0x7100
=28928

CPU 1500 V2.0 and later:
CPU function library is already loaded.

1 0 0 0x0000
=0

Loading was performed successfully.

0 0 1 0x80A4
=-32604

CPU function library could not be loaded.

0x80C3
=-32573

CPU function library could not be loaded. The CPU currently does not
have enough resources.
Unload the CPU function library before you load a new CPU function
library or restart the CPU.

0x8090
=-32624

CPU function library could not be loaded. An exception occurred during
execution of the "OnLoad()" function.

0x8092
=-32622

CPU function library could not be loaded because the library name is
invalid.

0x8093
=-32621

CPU function library could not be loaded because the CPU function
library could not be found. Check the file name and path of the file.

 Developing a CPU function library for the realtime environment
 6.4 Executing a function

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 93

DONE BUSY ERROR STATUS Meaning
0x8095
=-32619

CPU function library could not be loaded due to the following reasons:
• The SO file is not a CPU function library.
• The CPU does not support the utilized ODK version.

0x8096
=-32618

The CPU function library could not be loaded because the internal iden-
tification is already being used by another loaded CPU function library.

0x8097
=-32617

CPU 1500 V1.8 and earlier:
CPU function library is already loaded.

0x8098
=-32616

CPU function library could not be loaded because the CPU function
library is currently being unloaded.

0x8099
=-32615

Unable to load the CPU function library because the instruction was not
called in an OB with lowest priority. Use a Startup OB (e.g. OB100) or a
Program cycle OB (e.g. OB1).

0x809B
=-32613

CPU 1500 V2.0 and later:
The CPU function library could not be loaded and returns an invalid
value (the values 0x0000 and 0xF000 - 0xFFFF are allowed)

0xF000 –
0xFFFF
=-4096 – -1

CPU 1500 V2.0 and later:
CPU function library could not be loaded. An error occurred during exe-
cution of the "OnLoad()" function.

6.4.2 Calling functions

Introduction
Once the CPU function library is loaded, you can execute C functions via your STEP 7 user
program. This call is made from the corresponding "<STEP7Prefix>SampleFunction"
instruction.

Figure 6-4 Calling functions

Developing a CPU function library for the realtime environment
6.4 Executing a function

 Open Development Kit 1500S V2.5 SP4

94 Programming and Operating Manual, 12/2023, A5E35253941-AH

The execution of synchronous functions can be interrupted by higher priority OBs running in
the same CPU.

• Call another ODK function

• Call the same function

Therefore, when creating your CPU function library make sure that the function calls are
implemented as re-entrant or avoid parallel execution.

If you implement more than the number of parallel calls set in "SyncCallParallelCount", the
function returns the status 0x80C3.

"<STEP7Prefix>SampleFunction" instruction
A CPU function library is called by the "<STEP7Prefix>SampleFunction" instruction.

<STEP7Prefix>SampleFunction
myInt STATUS
myReal myBool

The following table shows the parameters of the instruction "<STEP7Prefix>SampleFunction":

Section Declaration Data type Description
Automatically generated parameters
Output STATUS INT This output value provides information about possible sources of error, if an

error occurs during the execution of the CPU function library.
User-defined parameter
Input myInt User-defined input tags
InOut myReal User-defined input-output tags
Output myBool User-defined output tags

Output parameters
The "<STEP7Prefix>SampleFunction" instruction only has the "STATUS" output parameter.

The following table shows the information for the output parameter returned after
execution.

STATUS Meaning
0x0000 –
0x6FFF
=0 – 28671

Function has been executed and returns a value between 0x0000 and 0x6FFF.
(ODK_SUCCESS = 0x0000)

0x80A4
=-32604

CPU function library could not be executed for the following reasons:
• A stack overflow was detected after execution of the function. To avoid sequential errors, unload the

CPU function library. The developer of the CPU function library must ensure that the stack is not
overwritten.

• The "<STEP7Prefix>_Unload" instruction was executed during a function execution. The execution of
the function was interrupted and terminated immediately. No return value is sent to the CPU.

Wait until the "<STEP7Prefix>_Unload" instruction has ended. Then load the CPU function library
again.

 Developing a CPU function library for the realtime environment
 6.4 Executing a function

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 95

STATUS Meaning
0x80C3
=-32573

CPU function library could not be executed. The CPU currently does not have enough resources.
Pay attention to the maximum number of parallel calls (SyncCallParallelCount).

0x8090
=-32624

CPU function library could not be executed. An exception occurred during execution.
Each unhandled exception reduces the available heap size. An unhandled exception can damage the CPU
function library and lead to this no longer being used for further calls. The CPU function library must be
unloaded. The developer of the CPU function library must handle the exception and deliver an applica-
tion-specific error value.

0x8091
=-32623

CPU function library could not be executed. A "STOP" occurred during the function call.

0x8096
=-32618

CPU function library could not be executed because the CPU function library was not loaded or unloading
is not yet finished.

0x8098
=-32616

CPU function library could not be executed because the CPU function library is different than the ODK
instructions (FBs) in STEP 7:
• older
• newer
• different parameters

0x8099
=-32615

CPU function libraries could not be executed because the maximum amount of input data (Sync-
CallDataSize) was exceeded (declarations with "In" and "InOut").

0x809A
=-32614

CPU function libraries could not be executed because the maximum amount of data (SyncCallDataSize)
was exceeded (declarations with "In", "Out" and "InOut").

0x809B
=-32613

The function returns an invalid value (a value between 0x0000 and 0x6FFF; 0xF000 and 0xFFFF is al-
lowed).

0x809C
=-32612

Function uses an invalid data type:
• IN_DATA
• INOUT_DATA
• OUT_DATA

0xF000 –
0xFFFF
=-4096 – -1

CPU 1500 V2.0 and later:
The function could not be executed and returns a value between 0xF000 and 0xFFFF.
(ODK_USER_ERROR_BASE = 0xF000)

 Note
Call of function(s) influences the cycle time

When you call a function, the function parameters are copied. In particular in the case of
large amounts of data or of structured data, this can lead to the cycle time being influenced.

Developing a CPU function library for the realtime environment
6.4 Executing a function

 Open Development Kit 1500S V2.5 SP4

96 Programming and Operating Manual, 12/2023, A5E35253941-AH

6.4.3 Unloading functions

Introduction
The CPU function library is unloaded by calling the "<STEP7Prefix>_Unload" instruction. Call is
made from the STEP 7 user program.

In addition to this call, the CPU function library is also automatically unloaded for the
following reasons.

• The CPU is switched off

• The CPU is reset

Regardless of the context in which the CPU function library is running, the unloading
procedure consists of the following steps:

• Call the "<STEP7Prefix>_Unload" instruction in the STEP 7 user program.

• From now on, no new executes can be carried out for this CPU function library. Executions
still running are aborted. The execution of the function is interrupted and terminated
immediately. No return value is sent to the CPU.

• The host calls the "OnStop()" and "OnUnload()" functions.

The unloading of the cycle time can be influenced because the "OnStop()" and
"OnUnload()" functions are called synchronously.

• The CPU function library is being unloaded.

"<STEP7Prefix>_Unload" instruction
A CPU function library is unloaded by calling the "<STEP7Prefix>_Unload" instruction in the
STEP 7 user program.

<STEP7Prefix>_Unload
REQ DONE
 BUSY
 ERROR
 STATUS

The following table shows the parameters of the instruction "<STEP7Prefix>_Unload":

Section Declaration Data type Description
Input REQ BOOL A rising edge activates the unloading of the CPU function library.
Output DONE BOOL Indicates that the instruction has finished unloading the CPU function library.
Output BUSY BOOL Indicates that the instruction is still unloading the CPU function library.
Output ERROR BOOL Indicates that an error occurred during the unloading of the CPU function library.

 STATUS gives you more information about the possible cause.
Output STATUS INT Provides information about possible sources of error, if an error occurs during

the unloading of the CPU function library.

 Developing a CPU function library for the realtime environment
 6.4 Executing a function

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 97

Input parameters
An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Output parameter STATUS
The following table shows the information that is returned after unloading.

DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000

=28672
No active unloading

0 1 0 0x7001
=28673

Unloading in progress, the first call

0 1 0 0x7002
=28674

Unloading in progress, ongoing call

1 0 0 0x0000
=0

Unloading was carried out successfully

0 0 1 0x80A4
=-32604

CPU function library could not be unloaded. A communication error
between the CPU and ODK occurred during the execution of the "OnUn-
load()" function.

0x80C3
=-32573

CPU function library could not be unloaded. The CPU currently does not
have enough resources.

0x8090
=-32624

An exception occurred during the unloading of the CPU function library.
The CPU function library has been unloaded nevertheless.

0x8096
=-32618

CPU function library could not be unloaded because the CPU function
library was not loaded or unloading is not yet finished.

0x809B
=-32613

CPU 1500 V2.0 and later:
The CPU function library could be unloaded and returns an invalid value
(the values 0x0000 and 0xF000 - 0xFFFF are allowed)

0xF000 –
0xFFFF
=-4096 – -1

CPU 1500 V2.0 and later:
CPU function library could be unloaded. An error occurred in the
CPU function library during the execution of the "OnUnload()" function.

6.4.4 Reading the trace buffer
ODK provides a trace function to check variables or the execution of functions in the realtime
environment. The trace function supports the following elements:

• An integrated trace buffer for each CPU function library.

• An "ODK_TRACE" instruction that you can add to your code

• A "GetTrace" function block, which makes it possible to read the trace buffer

Developing a CPU function library for the realtime environment
6.4 Executing a function

 Open Development Kit 1500S V2.5 SP4

98 Programming and Operating Manual, 12/2023, A5E35253941-AH

"ODK_TRACE" instruction
If you define the "ODK_TRACE" instruction, it is also compiled and executed. When you define
the parameter Trace=on in the <project>.odk file, the instruction is automatically defined
with the following code:
#define ODK_TRACE(msg, ...);

Example: ODK_TRACE("number=%d", 13);

Calling the instruction creates an entry in the trace buffer.

When you define the parameter Trace=off in the <project>.odk file, no trace data is written.

Trace data is written automatically when an exception occurs.

Reading the trace buffer
The "GetTrace" function block enables you to read the trace buffer. The entries of the trace
buffer can be read in the following ways:

• By a variable table in the web server of the CPU

• By a variable table in STEP 7 (online)

• On an HMI display

The function block is included in the standard CPP file "<project>.cpp".

GetTrace
TraceCount STATUS

The following table shows the parameters of the "GetTrace" function block:

Section Declaration Data type Description
Output STATUS INT Number of trace entries actually read
Input TraceCount INT Number of trace entries to be read
Output TraceBuffer Array

[0..255] of
String[125
]

Trace string array for the user
Each trace string consists of:
• Date
• Time-of-day
• OB number
• File name
• Line number
• Trace text (trace implemented by the user)

Define the function block in the SCL file as follows:
#ret := "ODK_App_MyFct_DB_1"(myInt:=4);
IF (#ret > 0)
{
#ret := "ODK_App_GetTraces_DB_1"(TraceCount:=20);
// ret_val = number of entries
}

 Developing a CPU function library for the realtime environment
 6.5 Post Mortem analysis

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 99

When the "GetTrace" function block is called in STEP 7, the instance block appears as follows:

6.5 Post Mortem analysis

6.5.1 Introduction
You use the post mortem analysis to evaluate the system after an exception. The post
mortem files map a snapshot at the time of the exception.

You can analyze the dump with the post mortem analysis. It includes, for example:

• Register

• Stack

• Local/global data

• Transfer parameters

• The exception number under "g_PostMortemExceptionNr" in the window "Expressions"

An exception can be triggered by one of the following cases:

• Execution of an illegal command

– Division by zero

– Access to protected memory

• An exception triggered by the "throw" instruction but not handled by the "try...catch"
instruction

Developing a CPU function library for the realtime environment
6.5 Post Mortem analysis

 Open Development Kit 1500S V2.5 SP4

100 Programming and Operating Manual, 12/2023, A5E35253941-AH

The objective of the post mortem analysis is to find the error within the CPU function library
that caused the exception.

 NOTICE

Exception influences the cycle time

When an exception occurs in your application, the complete application memory is
buffered. This may take some milliseconds and influence the cycle time.

The post mortem files for the snapshot of the first exception are not created until the CPU
changes from RUN to STOP. You can use it for the following post mortem analysis. They are
stored in the following directory: <load memory>/ODK1500S

The following files are created or overwritten during this process and can, for example, be
downloaded via the web server:

• <project>.ed

Binary dump of the shared object in which the exception has occurred

• <project>.es

Stack at the time of the exception

• <project>.er

Script for restoring the snapshot at the time of the exception

 NOTICE

Insufficient load memory

When there is not enough load memory, the post mortem files are not saved properly.

Make sure that you have enough load memory for your applications.

 Developing a CPU function library for the realtime environment
 6.5 Post Mortem analysis

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 101

6.5.2 Execute post mortem analysis

Procedure
To run a post mortem analysis, follow these steps:

1. Open Eclipse.

2. Load the post mortem files to the engineering PC via the web server. Load these files to the
same directory in which the SO file is stored.

3. Select the required project.

Developing a CPU function library for the realtime environment
6.5 Post Mortem analysis

 Open Development Kit 1500S V2.5 SP4

102 Programming and Operating Manual, 12/2023, A5E35253941-AH

4. Start the debugging in one of the following ways:

– From Favorites:

– Using "Debug Configurations"

 Developing a CPU function library for the realtime environment
 6.5 Post Mortem analysis

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 103

When you start a debug process for the first time, a dialog opens prompting you to select
the required launch environment.

Select the item "GDB (DSF) Hardware Debugging Launcher".

A dialog opens showing you the progress of the loading process for the post mortem
image. The loading process can take several minutes, depending on the size of the post
mortem image.

5. Select the required debug view.

Developing a CPU function library for the realtime environment
6.5 Post Mortem analysis

 Open Development Kit 1500S V2.5 SP4

104 Programming and Operating Manual, 12/2023, A5E35253941-AH

6. Run the debug process.

The exception number is displayed as "g_PostMortemExceptionNr" in the window
"Expressions".

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 105

Development of a C/C++ runtime application 7
7.1 Install additional Eclipse plugins

Requirement
• ODK is installed.

• The Eclipse development environment is installed.

Procedure
1. Start Eclipse as a development environment.

2. Select the command "Install New Software..." in the menu bar under "Help".

The "Install" dialog opens.

3. Select the "--All Available Sites--" selection under "Work with:".

Figure 7-1 Install dialog

Development of a C/C++ runtime application
7.2 Create C/C++ application

 Open Development Kit 1500S V2.5 SP4

106 Programming and Operating Manual, 12/2023, A5E35253941-AH

4. Select the following plugins:

– C/C++ Remote Launch

– TCF Target Explorer

– TCF Remote System Explorer

– TCF C/C++ Debugger

You can filter the selection via the text box.

5. Confirm with "Next".

6. Accept the license provisions and install the plugin with "Finish".

Result
The plugins are installed and Eclipse restarted.

7.2 Create C/C++ application

7.2.1 Requirements
• ODK is installed.

• The Eclipse development environment is installed.

• Additional Eclipse plugins are installed.

• SSH client (for example, PuTTY) is installed.

 Note
Root rights

The default user and the C/C++ application must not have any root rights. Create a new user
to execute the C/C++ application.
Performance and jitter influence through C/C++ application

Depending on the programming type in the C/C++ application, CPU performance may be
influenced by jitter.
Know-how protection

The customer is responsible for the C/C++ application and its know-how protection.

 Development of a C/C++ runtime application
 7.2 Create C/C++ application

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 107

7.2.2 Creating a C/C++ Runtime Application project
A template for an Eclipse project is included in the installation of ODK 1500S to help you
develop a C/C++ runtime application.

Procedure
To create a project in Eclipse using a C++-project ODK template, follow these steps:

1. Start Eclipse as a development environment.

2. In the "File > New" menu, select the command "Project..."

The "New Project" dialog opens.

Figure 7-2 Creating a new project with Eclipse

Development of a C/C++ runtime application
7.2 Create C/C++ application

 Open Development Kit 1500S V2.5 SP4

108 Programming and Operating Manual, 12/2023, A5E35253941-AH

3. Select one of the following templates depending on the CPU firmware version:

– "C++ Project for MFP Linux application (CPU 1518 MFP - up to FW v2.6.1)"
(Template for CC++ applications for 1518 MFP CPUs with firmware version ≤ V2.6.1)

– "C++ Project for MFP Linux application (CU 1518 MFP FW v2.8)"
(Template for CC++ applications for 1518 MFP CPUs with firmware version = V2.8)

– "C++ Project for MFP Linux application (CU 1518 MFP FW v2.9 or higher)"
(Template for CC++ applications for 1518 MFP CPUs with firmware version ≥ V2.9)

Confirm your selection with "Next".

Figure 7-3 Selecting a template

4. Enter a project name.

5. Confirm with "Finish".

 Development of a C/C++ runtime application
 7.2 Create C/C++ application

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 109

Result
The C/C++ project is created using the template for the C/C++ runtime application.

The template for the C/C++ runtime application configures the following data structure by
default:

Project Explorer Description
Project name:
 src
 <project>.cpp Function code: This file always has the suffix CPP, re-

gardless of whether you are creating a C or C++ pro-
ject.

 launches
 <pro-

ject>.gdb.launch
Start for the post mortem analysis.

 MFP
1518_release

 "<project>" C/C++ Runtime Application Binary (release version) that
must be transferred to the target system.

 Note
Spaces in the project name

All spaces in the project name are automatically replaced by an underscore.

In the example, "My first project" becomes "My_first_project".

 Note

If you need to store the workspace at another storage location, ensure that you copy the
entire workspace.

7.2.3 Editing C/C++ code

Requirement
• You have created a project.

• Eclipse is open

Development of a C/C++ runtime application
7.2 Create C/C++ application

 Open Development Kit 1500S V2.5 SP4

110 Programming and Operating Manual, 12/2023, A5E35253941-AH

Procedure
1. Select the "<project>.cpp" file in the project folder under "src".

The editing mask opens.

Figure 7-4 Editing a project

2. Edit the code.

3. To add the new C/C++ files to the project, right-click on the "src" folder and select "New >
Source File" from the shortcut menu.

The "New Source File" dialog opens.

Figure 7-5 Dialog box New Source File

4. Enter a name for the CPP file in the "Source File" and confirm with "Finish".

The new CPP file is stored in the "src" folder.

 Development of a C/C++ runtime application
 7.3 Load C/C++ runtime application in the target system

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 111

7.2.4 Generate C/C++ runtime application
The generation of the project data runs in an automated "Build" and generates the C/C++
runtime application.

Requirement
A project has been created for the C/C++ runtime application.

Procedure
To generate the project data, follow these steps:

1. Select the project for the C/C++ runtime application.

2. Select the "Build Project" command in the "Project" menu in the system bar.

You can also select the "Build Project" command by right-clicking on the project for the
C/C++ Runtime Application in the shortcut menu.

 Note

The project data is only generated if you have changed the files.

Result
The generation of the project data starts. The automatically generated files are stored in the
file system.

7.3 Load C/C++ runtime application in the target system

7.3.1 Configuring PuTTY
You require a configured SSH client to establish a secure connection between Eclipse and the
C++ Runtime of the CPU 1518MFP (for example, PuTTY).

Development of a C/C++ runtime application
7.3 Load C/C++ runtime application in the target system

 Open Development Kit 1500S V2.5 SP4

112 Programming and Operating Manual, 12/2023, A5E35253941-AH

Procedure based on "PuTTY" example
1. Start PuTTY.

2. Enter the target address "Host Name (or IP address)" (default address: 192.168.15.18) in the
text box.

This is the IP address of the C/C++ Runtime and not the project IP address of the CPU.

3. Make sure that the following default settings are retained:

– Port: 22

– Connection type: SSH

4. To identify the PuTTY window and to create the association of the connection to the CPU in

Eclipse, enter the title "CPU 1518MFP Linux Secure Connection" in the category "Window >
Behavior" in the text box "Window title".

 Development of a C/C++ runtime application
 7.3 Load C/C++ runtime application in the target system

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 113

5. Enter the following values in the category "Connection > SSH > Tunnels".

– Under "Source port" "1534" or "2345".

– Under "Destination" "localhost:1534" or "localhost: 2345".

In each case, confirm the entries with "Add".

6. Enter "CPU-1518MFP-Linux-Secure-Connection" in the category "Session" under "Saved

Sessions" and confirm it with "Save".

7. To log on to the CPU 1518MFP, click "Open".

7.3.2 Commissioning C/C++ Runtime

Requirement
• You have started the CPU 1518-4 PN/DP MFP (F).

Procedure
1. Start the secure shell client (for example, PuTTY).

2. Connect the secure shell client to the CPU 1518-4 PN/DP MFP (F) using the PuTTY
configuration "CPU 1518MFP Linux Secure Connection" via the target address (default
address: 192.168.15.18).

Development of a C/C++ runtime application
7.3 Load C/C++ runtime application in the target system

 Open Development Kit 1500S V2.5 SP4

114 Programming and Operating Manual, 12/2023, A5E35253941-AH

3. Type in the user name and password and establish a secure shell connection.

The default user name is "root".

The default password is displayed under "Overview > MFP > Default Password:".

4. Change the default password after the first startup of the CPU.

5. Start the TCF Agent with the following command:

/usr/sbin/tcf-agent –d –L- –I0 –sTCP:localhost

6. On the CPU 1518-4 PN/DP MFP (F), in the directory "/home/<user>" create a folder in which
to load the application.

Reference
You can find more information on commissioning and the CPU 1518-4 PN/DP MFP (F) in the
CPU manual (https://support.automation.siemens.com/WW/view/en/109749061).

7.3.3 Set up new connection to the target system in Eclipse

Requirements
• An MFP is created in Eclipse.

• An MFP is generated in Eclipse.

https://support.automation.siemens.com/WW/view/en/109749061

 Development of a C/C++ runtime application
 7.3 Load C/C++ runtime application in the target system

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 115

Procedure
Create a C/C++ remote application connection to the CPU 1518-4 PN/DP MFP (F).

1. Select the "Run Configurations..." command in the "Run" menu in the system bar.

The "Run Configurations" dialog opens.

2. Configure your connection.

Figure 7-6 "Run Configurations" dialog with example configuration of a connection

3. To set up a new connection, click "New" in the "Main" tab under "Connection".

The "New Connection" dialog opens.

4. Select "TCF" and confirm with "Next".

Development of a C/C++ runtime application
7.3 Load C/C++ runtime application in the target system

 Open Development Kit 1500S V2.5 SP4

116 Programming and Operating Manual, 12/2023, A5E35253941-AH

5. Fill the dialog as in the following figure and confirm with "Finish".

Figure 7-7 New connection dialog

6. In the "Run Configurations" dialog, select the connection "localhost" under "Connections".

7. Apply the configuration settings with "Apply"

Result
A new connection to target system has been established.

 Note
Folder structure on the Linux target system

Create the folder structure manually on the Linux target system. Otherwise, remote launch is
not possible and the project folder is not created automatically.

 Development of a C/C++ runtime application
 7.3 Load C/C++ runtime application in the target system

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 117

7.3.4 Load and execute C/C++ runtime application in the target system via Eclipse

Procedure
Transfer the C/C++ runtime application to the target system.

1. Select the "Run Configurations..." command in the "Run" menu in the system bar.

The "Run Configurations" dialog opens.

2. Select the required configuration under "C/C++ Remote Application".

3. Run the loading process with "Run".

Result
Your program is executed on the CPU 1518-4 PN/DP MFP (F).

7.3.5 Load and debug C/C++ runtime application in the target system via Eclipse
To debug C/C++ applications, you have the option to write a custom test. This will ensure the
quality of the code.

Procedure
To perform the test, proceed as follows:

1. Open your project in Eclipse.

2. In the "Run" menu, select the command "Debug Configurations".

The "Debug Configurations" dialog opens.

3. If you debug the project for the first time, you must now set the debug configuration.
Otherwise, continue with step 5.

Development of a C/C++ runtime application
7.3 Load C/C++ runtime application in the target system

 Open Development Kit 1500S V2.5 SP4

118 Programming and Operating Manual, 12/2023, A5E35253941-AH

4. Configure your connection in the "Main" tab as described under Set up new connection to
the target system in Eclipse (Page 114).

Figure 7-8 Configuring the connection

5. Select the required configuration under "C/C++ Remote Application".

6. Start the debug process by clicking the "Debug" button.

Result
Eclipse suggests a change in the debug perspective.

The test code is executed.

 Development of a C/C++ runtime application
 7.4 Execute C/C++ runtime application

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 119

7.4 Execute C/C++ runtime application

7.4.1 Start application via secure shell

Requirement
The CPU is connected to a secure shell client.

Procedure
1. Open the secure shell client.

2. To decouple the application from the secure shell, enter the command "nohup" before
calling the application.

3. Call the application via the secure shell client.

Result
The CPU executes the application.

 Note

The CPU executes the application also after the secure shell client has terminated.

 Open Development Kit 1500S V2.5 SP4

120 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a PLCSIM Advanced function library 8
8.1 Creating a PLCSIM Advanced function library

8.1.1 Requirements
The Microsoft Visual Studio development environment is not included in the ODK product
package. You can find the Download Center for Microsoft development tools on the Internet
(https://www.microsoft.com/en-us/download/developer-tools.aspx).

The C++ PLCSIM Advanced project template supports the applications as of Visual Studio
2015. To debug the generated DLL file, you need Visual Studio 2017 or newer.

8.1.2 Creating a PLCSIM Advanced function library with Visual Studio
To help you develop a PLCSIM Advanced function library, a project template for PLCSIM
Advanced function libraries for a project in Visual Studio is included in the installation of ODK
1500S. The template supports 32-bit and 64-bit applications.

Procedure
To create a project in Microsoft Visual Studio using the project template, follow these steps:

1. Open Microsoft Visual Studio as a development environment.

2. In the "File > New" menu, select the command "Project..."

The "New Project" dialog opens.

Figure 8-1 Creating a new project in Visual Studio

https://www.microsoft.com/en-us/download/developer-tools.aspx

 Developing a PLCSIM Advanced function library
 8.1 Creating a PLCSIM Advanced function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 121

3. Select the project template
"ODK 1500S V2.5.1 PLCSIM Advanced function library C++ (Windows Sync)" under
"Visual C++".

Figure 8-2 Select a template

4. Enter a project name.

5. Click "OK" to confirm.

Result
The PLCSIM Advanced function library is created using the project template and sets the
following project settings:

• Project settings for generating the DLL file

• Automates the generation of the DLL and SCL file

By default, the project template sets up the following Solution Explorer structure:

Folder / file Description

<project>
 Definition

File

 <project>.odk ODK interface description
 <pro-

ject>.scl.additional
S7 blocks that are appended to the <project>.scl file.
Although the file is not part of the project template,
the code generator processes the file.

 Generated
Files

 Files from this folder must not be edited!

 ODK_Types.h Definition of the ODK base types
 ODK_Functions.h Function prototypes
 ODK_Execution.cpp Implementation of the "Execute" method
 Header Files Header file
 ODK Helpers Files from this folder must not be edited!
 ODK_CpuReadData.h Definition: Help functions for reading the data

blocks

Developing a PLCSIM Advanced function library
8.2 Transferring the PLCSIM Advanced function library to PLCSIM Advanced

 Open Development Kit 1500S V2.5 SP4

122 Programming and Operating Manual, 12/2023, A5E35253941-AH

Folder / file Description

ODK_CpuReadData.cpp
Implementation: Help functions for reading the data
blocks

ODK_CpuReadWriteData.
h

Definition: Help functions for reading/writing the
data blocks

ODK_CpuReadWriteData.
cpp

Implementation: Help functions for reading/writing
the data blocks

 ODK_StringHelper.h Definition: Help functions S7 strings / W strings
 ODK_StringHelper.cpp Implementation: Help functions S7 strings / W

strings
 Resource

Files

 <project>.rc
 Source Files Source files
 <project>.cpp Function code
 dllmain.cpp Implementation of the "dllmain" file
 STEP7 Files from this folder must not be edited!
 <project>.scl S7 blocks

8.2 Transferring the PLCSIM Advanced function library to
PLCSIM Advanced

After creating it, transfer the PLCSIM function library to the PLCSIM Advanced program.

Transferring PLCSIM Advanced function library
Transfer the DLL file manually to PLCSIM Advanced. Use the standard Windows data transfer
procedure to transfer the PLCSIM Advanced function library.

Save the DLL file on the virtual memory card with the S7-PLCSIM Advanced Control Panel.

The default value that describes the file path is:

C:\Users\<user name>\Documents\Siemens\Simatic\Simulation\Runtime\Persistence\<name of
instance>\SIMATIC_MC\ODK1500S

 Note
Administrator rights

Assign write permission to this folder only for the administrator. This prevents unauthorized
personnel from importing PLCSIM Advanced function libraries.

 Developing a PLCSIM Advanced function library
 8.3 Defining the runtime properties of a PLCSIM Advanced function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 123

8.3 Defining the runtime properties of a PLCSIM Advanced function
library

The next step is to define the interface description of the PLCSIM Advanced function library in
the <project>.odk file. The file contains the following elements:

• Comments

• Parameters

• Definitions of functions and structures

Procedure
To define the interface description in the <project>.odk file, follow these steps:

1. Open the <project>.odk file.

2. Change the elements depending on your requirements.

Description of the elements

Comments

You can use comments for explanation purposes.

Parameters

The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

The interfaces file supports the following parameters:

Parameter Value Description
Context user Specifies that the PLCSIM Advanced function library is loaded in the con-

text of a user.
STEP7Prefix <String> Describes the string that precedes your functions and is shown after im-

porting the SCL file in STEP 7. The following characters are allowed: {A...Z,
a…z, 1…9, -, _}
Umlauts are not permitted.
The project name is entered without spaces by default.

 Note
Spaces in the project name

With the STEP7 prefix, invalid characters are replaced by an underscore.

Developing a PLCSIM Advanced function library
8.4 Definition of the <Project>.odk file

 Open Development Kit 1500S V2.5 SP4

124 Programming and Operating Manual, 12/2023, A5E35253941-AH

8.4 Definition of the <Project>.odk file
The function prototypes and function blocks are generated based on the selected parameters
in the <project>.odk file. Define the <project>.odk file for this.

By default, the <project>.odk file contains the following:

• Description

The possible data types that are used for the interface are described in comment lines.
This simplifies the definition of the correct tag type for your task.

• Context=user

The CPU function library is loaded in the "User" context. You can change the parameter to
Context=system.

• STEP7Prefix="<project>"

Sets a string for the SCL generation in front of the functions of the PLCSIM function
library. The string is visible in STEP 7. You can change the parameter. The string length of
the prefix including the function name must not exceed a length of 125 characters (for
example, ODK_App_SampleFunction)

• "SampleFunction" function definition

You can change this default function as you wish in the <project>.odk file and add more
functions. The string length must not exceed a length of 125 characters. The associated
function is located in the CPP file.

Example
//INTERFACE ODK 1500S V2.5.1
Context=user
STEP7Prefix=ODKProject
Trace=on

 /*
* Elementary data types:
* ODK_DOUBLE LREAL 64-bit floating point, IEEE 754
* ODK_FLOAT REAL 32-bit floating point, IEEE 754
* ODK_INT64 LINT 64-bit signed integer
* ODK_INT32 DINT 32-bit signed integer
* ODK_INT16 INT 16-bit signed integer
* ODK_INT8 SINT 8-bit signed integer
* ODK_UINT64 ULINT 64-bit unsigned integer
* ODK_UINT32 UDINT 32-bit unsigned integer
* ODK_UINT16 UINT 16-bit unsigned integer
* ODK_UINT8 USINT 8-bit unsigned integer
* ODK_LWORD LWORD 64-bit bit string
* ODK_DWORD DWORD 32-bit bit string
* ODK_WORD WORD 16-bit bit string
* ODK_BYTE BYTE 8-bit bit string
* ODK_BOOL BOOL 1-bit bit string
* ODK_LTIME LTIME 64-bit duration in nanoseconds
* ODK_TIME TIME 32-bit duration in milliseconds
* ODK_LDT LDT 64-bit date and time of day
* in nanoseconds

 Developing a PLCSIM Advanced function library
 8.5 Modifying the <Project>.odk file

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 125

* ODK_LTOD LTOD 64-bit time of day in nanoseconds
* since midnight
* ODK_TOD TOD 32-bit time of day in milliseconds
* since midnight
* ODK_CHAR CHAR 8-bit character
* Complex Datatypes:
* ODK_DTL DTL structure for date and time
* ODK_S7STRING STRING character string with 8-bit characters
* ODK_CLASSIC_DB VARIANT classic DB (global or based on UDT
* "optimized block access" must be
unchecked)
* [] ARRAY field of this datatype
* User Defined Datatype:
* ODK_STRUCT UDT user defined structure
* Return Datatype:
* ODK_RESULT 0x0000-0x6FFF function succeeded
* (ODK_SUCCESS = 0x0000)
* 0xF000-0xFFFF function failed
* (ODK_USER_ERROR_BASE = 0xF000)
*/

// Basic function in order to show
// how to create a function in ODK 1500S.
ODK_RESULT SampleFunction([IN] ODK_INT32 myInt // integervalue
 // as input
 , [OUT] ODK_BOOL myBool // bool value
 // as output
 , [INOUT] ODK_DOUBLE myReal);// double value
 // as input
 // and output

8.5 Modifying the <Project>.odk file
The following example shows you how you can change the <project>.odk file to suit your
needs.

//INTERFACE ODK 1500S V2.5.1
Context=user
STEP7Prefix=SampleProject
Trace=on

// Basic function in order to show
// how to create a function in ODK 1500S.
ODK_RESULT SampleFunction([IN] ODK_INT32 num1
 , [IN] ODK_INT32 num2
 , [OUT] ODK_INT32 sum);

Developing a PLCSIM Advanced function library
8.6 Editing PLCSIM Advanced function library

 Open Development Kit 1500S V2.5 SP4

126 Programming and Operating Manual, 12/2023, A5E35253941-AH

8.6 Editing PLCSIM Advanced function library
Once you have defined the ODK interface in the <project>.odk file, you must edit the
functions of the PLCSIM Advanced function library in the Project Source file.

Procedure
To edit the function of a PLCSIM Advanced function library, follow these steps:

1. To generate the function prototypes, execute the build.

2. Open the project source file, or create a custom source file if necessary.

3. Transfer the function prototypes from <ODK_Functions.h> to the source file.

 Note

Use the function prototype macro to transfer the step 3 in the future when there is a change
to the function parameters.

4. Edit the code of your PLCSIM Advanced function library in the execute file (<project>.cpp).

PLCSIM Advanced function library
The execute file contains a schematically represented function description by default. You
can change this description with corresponding changes in the <project>.odk file and/or add
more function descriptions.

Execute file based on C++ example

#include "stdafx.h"
#include "ODK_Functions.h"
#include "tchar.h"

EXPORT_API ODK_RESULT OnLoad (void)
{
 // place your code here
 return ODK_SUCCESS;
}
EXPORT_API ODK_RESULT OnUnload (void)
{
 // place your code here
 return ODK_SUCCESS;
}
EXPORT_API ODK_RESULT OnRun (void)
{
 // place your code here
 return ODK_SUCCESS;
}
EXPORT_API ODK_RESULT OnStop (void)
{
 // place your code here
 return ODK_SUCCESS;
}

 Developing a PLCSIM Advanced function library
 8.7 Generating a PLCSIM Advanced function library

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 127

ODK_RESULT SampleFunction(
 /*IN*/ const ODK_INT32& myInt,
 /*OUT*/ ODK_BOOL& myBool,
 /*INOUT*/ ODK_DOUBLE& myReal)
{
 return ODK_SUCCESS;
}

8.7 Generating a PLCSIM Advanced function library
The generation of the project data is divided into two automated steps.

• Pre-Build: Generation of the files created by default based on the changed <project>.odk
file and generation of the SCL file.

• Actual-Build: Generation of the DLL file.

Procedure
To generate the project data, follow these steps:

1. Save all edited files.

2. In the "Build" menu, select the command "Build Solution".

 Note

C/C++ projects

Perform the build of the PLCSIM Advanced function library in the "Release" configuration,
because the software controller has already installed the C/C++ Redistributables
(Release Runtime files).

To use the "Debug" configuration, copy the Debug Runtime files to the software controller.

 Note

The project data is only generated if the files have been changed.

Result
The generation of the project data is started. The automatically generated files are stored in
the file system.

• DLL file: Project directory\<project>\<BuildConfiguration>\<project>.dll

• SCL file: Project directory\<project>\STEP7\<project>.scl

Developing a PLCSIM Advanced function library
8.8 Executing a function

 Open Development Kit 1500S V2.5 SP4

128 Programming and Operating Manual, 12/2023, A5E35253941-AH

8.8 Executing a function
Executing functions is described in the section "Executing a function (Page 54)" using the
example of a CPU function library for the Windows environment.

Special features about PLCSIM Advanced, as well as advanced error codes are described in the
manual "SIMATIC S7-1500 S7-PLCSIM Advanced
(https://support.automation.siemens.com/WW/view/en/109760835)".

8.9 Debugging C/C++ Code
The debugging of Visual Studio C/C++ code is described in the section "Remote debugging
(Page 62)". To debug the generated DLL file, you need Visual Studio 2017 or newer.

While Visual Studio is connected to the client, PLCSIM Advanced is also in debug mode and
therefore remains in the "RUN" state. The cycle time is not exceeded.

https://support.automation.siemens.com/WW/view/en/109760835

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 129

Using example projects 9

To facilitate your introduction , ODK 1500S offers example projects for both development
environments. The example projects consist of the following elements:

• A project for Microsoft Visual Studio or Eclipse

• A compiled binary and SCL source that enables you to immediately test the example
projects

• A STEP 7 example project

Storage location of example projects
• The example projects for the CPU function libraries are available on the Internet

(https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-
examples?dti=0&lc=en-WW) for download.

• Example projects for C/C++ Runtime applications:

– Setting up communication between CPU and C/C++ runtime for a multifunctional
platform using OPC UA
(https://support.industry.siemens.com/cs/ww/en/view/109749176)

– Establishment of Open User Communication between CPU runtime and C/C++ runtime
of a multifunctional platform
(https://support.industry.siemens.com/cs/ww/en/view/109756757)

Using example projects
To open the example projects, follow these steps:

1. Transfer the example projects onto the hard disk of your PC.

2. Transfer the C/C++ runtime application, DLL or SO file to the target system.

https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-examples?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-examples?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/ww/en/view/109749176
https://support.industry.siemens.com/cs/ww/en/view/109756757

 Open Development Kit 1500S V2.5 SP4

130 Programming and Operating Manual, 12/2023, A5E35253941-AH

General conditions A
A.1 Number of loadable CPU function libraries

You can load up to 32 CPU function libraries for Windows and realtime environment.

Configuration limits for CPU function libraries:

• CPU function libraries for the Windows environment:

– Up to 32 parallel function calls (total)

– Up to 1 MB input and output data (in total)

– Up to 1 MB input data per function call

– Up to 1 MB output data per function call

 Note

The memory for input and output parameters is allocated dynamically, depending on the
quantity needed. The memory is allocated here in blocks of 8 KB each.

• Development of a CPU function library for the real time environment

– Parallel function calls in a CPU function library defined by the "SyncCallParallelCount"
parameter

– Up to 32 parallel function calls (in total)

– Up to 1 MB input data and output data per function call

Memory for loading CPU function libraries

The available memory for loading of CPU function libraries is limited in the context of the real
time environment. The table below provides an overview of the available memory of the
different CPUs for loading CPU function libraries:

CPU Memory available for loading Maximum size of the SO file
CPU 1505SP (T)(F) 20 MB 5.8 MB
CPU 1507S (F) 50 MB 9.8 MB
CPU 1518-4 PN/DP MFP (F) 50 MB 9.8 MB

The following restrictions are also in effect in the context of the realtime environment:

• SO file name may not exceed 56 characters.

 General conditions
 A.2 Compatibility

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 131

A.2 Compatibility
If you use an ODK version V2.5, note the following:

• Engineering:

A CPU function library project that was created with an ODK version < V2.5 is not
compatible. You need to recreate a CPU function library in the version V2.5.

• Runtime:

A CPU function library that was created with an ODK version < V2.5 is not compatible with
newer CPU versions.

 Open Development Kit 1500S V2.5 SP4

132 Programming and Operating Manual, 12/2023, A5E35253941-AH

Syntax Interface file <project>.odk for CPU
function libraries B
B.1 Data types

The data type defines the type of a tag. The following table defines the possible data types
and their representation in the individual program languages or in C++ or STEP 7:

Elementary data types:

ODK data type SIMATIC data

type
C++ data type C# data type VB data type Description

ODK_DOUBLE LREAL double double Double 64-bit floating point, IEEE
754

ODK_FLOAT REAL float float Single 32-bit floating point, IEEE
754

ODK_INT64 LINT long long long Long 64-bit signed integer
ODK_INT32 DINT long int Integer 32-bit signed integer
ODK_INT16 INT short short Short 16-bit signed integer
ODK_INT8 SINT char sbyte SByte 8-bit signed integer
ODK_UINT64 ULINT unsigned long long ulong ULong 64-bit unsigned integer
ODK_UINT32 UDINT unsigned long uint UInteger 32-bit unsigned integer
ODK_UINT16 UINT unsigned short ushort UShort 16-bit unsigned integer
ODK_UINT8 USINT unsigned char byte Byte 8-bit unsigned integer
ODK_LWORD LWORD unsigned long long ulong ULong 64-bit bit string
ODK_DWORD DWORD unsigned long uint UInteger 32-bit bit string
ODK_WORD WORD unsigned short ushort UShort 16-bit bit string
ODK_BYTE BYTE unsigned char byte Byte 8-bit bit string
ODK_BOOL BOOL unsigned char bool Boolean 1-bit bit string, remaining

bits (1..7) are empty
ODK_LTIME LTIME long long long Long 64-bit during in nanosec-

onds
ODK_TIME TIME long int Integer 32-bit during in milliseconds
ODK_LDT LDT unsigned long long ulong ULong 64-bit date and time of the

day in nanoseconds
ODK_LTOD LTOD unsigned long long ulong ULong 64-bit time of the day in

nanoseconds since midnight
ODK_TOD TOD unsigned long uint UInteger 32-bit time of the day in

milliseconds since midnight
ODK_WCHAR WCHAR wchar_t char Char Only for Windows: 16-bit

character
ODK_CHAR CHAR char sbyte SByte 8-bit character

 Syntax Interface file <project>.odk for CPU function libraries
 B.1 Data types

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 133

Complex data types:

ODK data type SIMATIC data

type
C++ data type C# data type VB data type Description

ODK_DTL DTL struct ODK_DTL OdkInternal.
Dtl (class)

OdkInternal.
Dtl (class)

Structure for date and time

ODK_S7STRING STRING unsigned char string String Character string (8-bit char-
acter) with max. and act.
length (2xUSINT)

ODK_S7WSTRIN
G

WSTRING unsigned short string String Only for Windows: Charac-
ter string (16-bit character)
with max. and act. length
(2xUINT)

ODK_VARIANT VARIANT struct ODK_VARIANT byte []

byte [] For Windows only: Classic
data (each data type that
can be serialized with clas-
sic data.)

ODK_CLASSIC_D
B

VARIANT struct
ODK_CLASSIC_DB

- - Only for realtime envi-
ronment: Classic DB (global
or based on UDT)

[] ARRAY [] [] [] Range of same data types.
The maximum number of
array elements is 220
(=1,048,576).
You can use all data types
as array except IN_DATA /
INOUT_DATA / OUT_DATA.

User-defined data types:

User-defined data types (UDT) include structured data, especially the names and the data
types of this component and their order.

A user-defined data type can be defined in the user interface description with the keyword
"ODK_STRUCT".

Example

ODK_STRUCT <StructName>

{

 <DataType> <TagName>;

 ...

};

The following syntax rules apply to the structure:

• You can divide the structure into multiple lines.

• The structure definition must end with a semicolon.

• Any number of tabs and spaces between the elements is permitted.

• It is not permitted to use any keywords for the generated language used (for example
"en / eno" as tag name).

Syntax Interface file <project>.odk for CPU function libraries
B.2 Parameters

 Open Development Kit 1500S V2.5 SP4

134 Programming and Operating Manual, 12/2023, A5E35253941-AH

Restrictions of the data type ODK_VARIANT:

• When a parameter of the data type ODK_VARIANT is used, it is not permitted to use other
parameters with the same InOut-Identifier, regardless of data type.

• With the data type ODK_VARIANT, an [OUT] is modeled as [INOUT] in the generated FB.

Restrictions of the data type ODK_CLASSIC_DB:

• The data type ODK_CLASSIC_DB can only be used with the InOut-Identifier [IN] and
[INOUT].

• When a parameter of the data type ODK_CLASSIC_DB is used with the InOut-Identifier [IN]
or [INOUT], it is not permitted to use other parameters with the same InOut-Identifier,
regardless of data type.

B.2 Parameters
The parameters of the <project>.odk file are different:

• Developing a CPU function library for the Windows environment

• Developing a CPU function library for the realtime environment

Parameters for the Windows environment
The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

 The <project>.odk file supports the following parameters:

Parameter Value Description
Context user Specifies that the CPU function library is loaded in the context of a Win-

dows user.
system Specifies that the CPU function library is loaded in the context of the Win-

dows system.
STEP7Prefix <String> Describes the string that precedes your functions and is shown after im-

porting the SCL file in STEP 7. The following characters are allowed: {A...Z,
a…z, 1…9, -, _}

FullClassName <String> The parameter is required for the C# and VB programming languages.
To change the class names or namespace of the source files of the CPU
function library, you need to adjust the "FullClassName" parameter.

Parameters for the realtime environment
The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

 Syntax Interface file <project>.odk for CPU function libraries
 B.2 Parameters

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 135

 The <project>.odk file supports the following parameters:

Parameter Value Description
Context realtime Specifies that the CPU function library is loaded in the context of the real

time environment.
Trace on Specifies the trace function in the CPU function library. In this case, the

CPU function library requires 32 KB if memory as an additional trace buff-
er. A "GetTrace" function block is created by default for use in a STEP 7.

off A "GetTrace" function block is created. The trace buffer contains only one
trace entry with the contents: trace is off.

HeapSize [4…<Availabl
e CPU
memory>
(Page 130)]k

Specifies a memory in KB that is used as heap for realtime applications.

HeapMaxBlockSize [8…<HeapSiz
e>]

Specifies the memory size in bytes that can be allocated at one time.

SyncCallParallelCount [1...9]
Default=3

If a optional parameter and defines the maximum number of parallel calls
in this CPU function library. The size of the memory which is reserved for
calls in this CPU function library:
SyncCallParallelCount * (SyncCallStackSize + SyncCallDataSize)

SyncCallStackSize [1...1024]k
Default=32k

Is a optional parameter and defines the size of the thread stack for a call in
this CPU function library. Each new call contains a separate stack memory.

SyncCallDataSize [1...1024]k

Is a optional parameter and defines the size of the data area for a call in
this CPU function library. The data area contains IN, INOUT and OUT pa-
rameters. Each new call contains a separate stack memory.

Default=auto The required data size is automatically calculated by the code generator.
STEP7Prefix <String> Describes the string that precedes your functions and is shown after im-

porting the SCL file in STEP 7. The following characters are allowed: {A...Z,
a…z, 1…9, -, _}
By default the name is entered without blanks.

Changes in the interface file
If changes to the interface file (.odk) are not automatically recognized with the next build,
run a manual rebuild.

 Open Development Kit 1500S V2.5 SP4

136 Programming and Operating Manual, 12/2023, A5E35253941-AH

Code generator messages for CPU function
libraries C
C.1 Error messages of the code generator

The code generator stops the build process and generates the following error messages:

File errors:

Error
number

Error message Possible solution

100 ‘<Project>.odk’ is missing Rename the file to <project>.odk.
101 Context is missing in resource file Valid for Visual Studio only.

One of the following resource files is faulty:
• C++: <project>.rc
• C#: AssemblyInfo.cs
• VB: AssemblyInfo.vb

102 resource file ‘...’ is missing Valid for Visual Studio only.
One of the following resource files is missing:
• C++: <project>.rc
• C#: AssemblyInfo.cs
• VB: AssemblyInfo.vb

103 ‘...’ write protected One of the following files is write-protected:
• C++

– <project>.rc (only for Visual Studio)
– ODK_Types.h
– ODK Functions.h
– ODK_Execution.cpp

• C# (only for Visual Studio)
– AssemblyInfo.cs
– OdkTypes.cs
– OdkFunctions.cs
– OdkExecution.cs

• VB (for Visual Studio only)
– AssemblyInfo.vb
– OdkTypes.vb
– OdkFunctions.vb
– OdkExecution.vb

• General
– cg.tmp

Temporary file for the code generator to detect changes
in the interface file.

– <project>.scl

 Code generator messages for CPU function libraries
 C.1 Error messages of the code generator

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 137

Error
number

Error message Possible solution

110 license key missing Transfer a current license key.
111 retrieve license key not possible Install the ALM with the version ≥ 6.0.

Parameter errors:

Error
number

Error message Possible solution

200 parameter ‘...’ is not allowed for current con-
text

The indicated parameter is not allowed here.

201 missing ‘...’ definition The indicated parameter (Page 68) is not defined.
202 more than one definition for ‘...’ There is more than one definition for the indicated parameter

(Page 68).
203 Context has to be one of ‘user’ or ‘system’ for

Microsoft Visual Studio
Choose the context "system" or "user" for Visual Studio.

204 Context has to be ‘realtime’ for Eclipse Choose the context "realtime" for Eclipse.
205 Trace has to be on or off The "Trace" parameter must have the value "on" or "off" (only

for realtime environment).
206 STEP7Prefix must not be longer than 120

characters
The STEP 7 prefix must not exceed 120 characters.

207 HeapSize has to be interval of [4…100000]k Ensure that the HeapSize parameter is within the value range
[4…100000]k.

208 HeapMaxBlockSize has to be interval of
[8…<HeapSize>]

Ensure that the HeapMaxBlockSize parameter is within the
value range [8…<HeapSize>].

209 SyncCallDataSize must be interval of
[1...1024]k

Ensure that the SyncCallDataSize parameter is within the value
range [1…1024]k.

210 SyncCallStackSize must be interval of
[1...1024]k

Ensure that the SyncCallStackSize parameter is within the value
range [1…1024]k.

211 SyncCallParallelCount must be interval of
[1...9]

Ensure that the SyncCallParallelCount parameter is within the
value range [1…9].

Syntax errors:

Error
number

Error message Possible solution

500 unexpected end-of-file found Always end the file with a semicolon.
501 ‘...’ should be alpha numeric The following characters are allowed: a - z, A - Z, 0 - 9, _

Umlauts are not permitted.
502 ‘...’ should be numeric The following characters are allowed: 0 - 9
503 ‘...’ undefined keyword Use only the keywords [IN], [OUT] and [INOUT] and the defined

data types.
504 ... missing before ... Add the character displayed by the error message.
 missing space Add a space.
506 ‘...’ undefined type Use only the defined data types.
507 ‘...’ type not allowed Observe the syntax rules in section Defining functions a CPU

function library (Page 71)
508 ‘...’ type redefinition The function or parameter name is already assigned. Choose a

different name.
509 ‘...’ variable redefinition The tag name is already assigned. Choose a different name.
510 Structure ‘...’ must not be empty Fill the structure with a data type.

Code generator messages for CPU function libraries
C.2 Warnings of the code generator

 Open Development Kit 1500S V2.5 SP4

138 Programming and Operating Manual, 12/2023, A5E35253941-AH

Error
number

Error message Possible solution

511 ‘...’ no valid name Observe the syntax rules in section Defining functions a CPU
function library (Page 71).

512 unexpected variable order (must be [IN],
[OUT],
[INOUT] order)

There are three defined InOut identifiers. Use these in the fol-
lowing order: [IN], [OUT], [INOUT]

513 size of ODK_S7STRING could not be bigger
than 254

A string can have a maximum length of 254 characters.

514 size of ODK_S7WSTRING could not be bigger
than 16382

A Wstring can have a maximum length of 16382 characters.

515 Prefix + Function name ‘....’ exceeds 125
characters

Prefix and function name together are longer than 125 charac-
ters.

516 variable name ‘…’ exceeds 128 characters The tag name is longer than 128 characters.
517 '...' IN_BUFFER + INOUT_BUFFER could not be

greater than 1 MB
Altogether, the InOut identifiers [IN] and [INOUT] in a function
must not exceed 1 MB.

518 '...' INOUT_BUFFER + OUT_BUFFER could not
be greater than 1 MB

Altogether, the InOut identifiers [OUT] and [INOUT] in a func-
tion must not exceed 1 MB.

519 '...' needs '...k', but data size (Sync-
CallDataSize) is limited to '...k'

The amount of data is too high.

520 '...' has an array size of '...', but max. array size
is limited to '...'

The maximum Array size is exceeded.

521 no other variable in the same direction for
ODK_CLASSIC_DB / ODK_VARIANT type

As soon as the data type ODK_CLASSIC_DB or ODK_VARIANT is
used, no other parameter may defined with the same InOut
identifier.

522 no array allowed for ODK_CLASSIC_DB /
ODK_VARIANT type

No Array may be defined for the data type ODK_CLASSIC_DB or
ODK_VARIANT.

523 no [OUT] direction allowed for
ODK_CLASSIC_DB type

The InOut identifier [OUT] may not be defined for the
ODK_CLASSIC_DB data type.

524 function declarations lead to identical hashes
(change name of one parameter): ‘...’, ‘...’

Change a parameter name.

C.2 Warnings of the code generator
The code generator continues to execute the build process and generates the following
warnings:

Warning
number

Warning message Description

4100 built project with ODK 1500S trial mode - '...'
day(s) left

Use the test version. The warning shows when the test version
runs.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 139

Helper functions for CPU function libraries D
D.1 C++ helper functions

String helper functions for CPU function library for the Windows and realtime environment
The following helper functions provide access to S7 strings:

Helper functions Description
Convert_S7STRING_to_SZSTR Convert PLC string types to C/C++ string types ("char" array,

null-terminated)
Convert_SZSTR_to_S7STRING Convert C/C++ string types ("char" array, null-terminated) to PLC

string types.
Get_S7STRING_Length Returns the current length of a PLC string type.
Get_S7STRING_MaxLength Returns the maximum length of a PLC string type.

String helper functions for CPU function library for the Windows environment
The following helper functions provide access to S7WStrings:

Helper functions Description
Convert_S7WSTRING_to_SZWSTR Convert PLC WString types to C/C++ WString types ("wchar_t"

array, null-terminated)
Convert_SZWSTR_to_S7WSTRING Convert C/C++ WString types ("wchar_t" array, null-terminated)

to PLC WString types.
Get_S7WSTRING_Length Returns the current length of a PLC Wstring type.
Get_S7WSTRING_MaxLength Returns the maximum length of a PLC WString type.

Class "CODK_CpuReadData" (Windows and real-time environment)
The "CODK_CpuReadData" class allows read access to classic DBs / classic data:

Value Description
CODK_CpuReadData Class constructor, initializes the input data area and the data size.
SetBuffer Initializes the input data area and the data size.
ReadS7BOOL Reads "bool" (1 byte) from the data area.
ReadS7BYTE Reads a "byte" (1 byte) from the data area.
ReadS7WORD Reads a "word" (2 bytes) from the data area.
ReadS7DWORD Reads a "double word" (4 bytes) from the data area.
ReadS7LWORD Reads a "long word" (8 bytes) from the data area.
ReadS7SINT Reads a "short integer" (1 byte) from the data area.
ReadS7INT Reads a "integer" (2 bytes) from the data area.
ReadS7DINT Reads a "double integer" (4 bytes) from the data area.
ReadS7LINT Reads "long integer" (8 bytes) from the data area.

Helper functions for CPU function libraries
D.1 C++ helper functions

 Open Development Kit 1500S V2.5 SP4

140 Programming and Operating Manual, 12/2023, A5E35253941-AH

Value Description
ReadS7USINT Reads a "unsigned short integer" (1 byte) from the data area.
ReadS7UINT Reads a "unsigned integer" (2 bytes) from the data area.
ReadS7UDINT Reads a "unsigned double integer" (4 bytes) from the data area.
ReadS7ULINT Reads "unsigned long integer" (8 bytes) from the data area.
ReadS7REAL Reads a "real number" (4 bytes) from the data area.
ReadS7LREAL Reads a "long real number" (8 bytes) from the data area.
ReadS7S5TIME Reads a 16 bit (2 bytes) from the data area.
ReadS7DATE Reads a date value (2 bytes) from the data area.
ReadS7TIME Reads a time value (4 bytes) from the data area.
ReadS7LTIME Reads a time value (8 bytes) from the data area as nanoseconds.
ReadS7TIME_OF_DAY Reads the time of day (4 bytes) from the data area.
ReadS7LTIME_OF_DAY Reads the time of day (8 bytes) from the data area as nanosec-

onds since midnight.
ReadS7DATE_AND_TIME Reads a general date and time area.
ReadS7DATE_AND_LTIME Reads a date and time value (8 bytes) from the data area as na-

noseconds since 01/01/1970 00:00.
ReadS7DTL Reads a date and time information (12 bytes) as a predefined

structure from the data area.
ReadS7CHAR Reads a "char" (1 byte) from the data area.
ReadS7STRING_LEN Reads the information of the string length for a S7 string in the

data area.
ReadS7STRING Reads an S7 string from the data area and returns it as language

dependent string.
The string is shortened when there is insufficient space in the
target string.

ReadS7WCHAR Only available for CPU function libraries for the Windows envi-
ronment.
Reads "wide char" (2 bytes) from the data area.

ReadS7WSTRING_LEN Only available for CPU function libraries for the Windows envi-
ronment.
Reads the information of the string length for a S7W string in the
data area.

ReadS7WSTRING Only available for CPU function libraries for the Windows envi-
ronment.
Reads an S7W string from the data area and returns it as lan-
guage dependent string.
The string is shortened when there is insufficient space in the
target string.

 Helper functions for CPU function libraries
 D.1 C++ helper functions

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 141

Class "CODK_CpuReadWriteData" (Windows and real-time environment)
The "CODK_CpuReadWriteData" class allows the following write accesses in addition to the all
read accesses from "CODK_CpuReadData" to classic DBs / classic data:

Value Description
CODK_CpuReadWriteData Class constructor, initializes the output data area and the data

size.
SetBuffer Initializes the output data area and the data size.
LastByteChanged Retrieves the index of the last byte changed in the data area.
FirstByteChanged Retrieves the index of the first byte changed in the data area.
WriteS7BOOL Writes a "bool" (1 byte) to the data area.
WriteS7BYTE Writes a "byte" (1 byte) to the data area.
WriteS7WORD Writes a "word" (2 bytes) to the data area.
WriteS7DWORD Writes a "double word" (4 bytes) to the data area.
WriteS7LWORD Writes a "long word" (8 bytes) to the data area.
WriteS7SINT Writes a "short integer" (1 byte) to the data area.
WriteS7INT Writes a "integer" (2 bytes) to the data area.
WriteS7DINT Writes a "double integer" (4 bytes) to the data area.
WriteS7LINT Writes a "long integer" (8 bytes) to the data area.
WriteS7USINT Writes a "unsigned short integer" (1 byte) to the data area.
WriteS7UINT Writes a "unsigned integer" (2 bytes) to the data area.
WriteS7UDINT Writes a "unsigned double integer" (4 bytes) to the data area.
WriteS7ULINT Writes a "unsigned long integer" (2 bytes) to the data area.
WriteS7REAL Writes a "real number" (4 bytes) to the data area.
WriteS7LREAL Writes a "long real number" (8 bytes) to the data area.
WriteS7S5TIME Writes a 16-bit (2 bytes) time value to the data area.
WriteS7DATE Writes a date value (2 bytes) to the data area.
WriteS7TIME Writes a time value (4 bytes) to the data area.
WriteS7LTIME Writes a time value (8 bytes) to the data area as nanoseconds.
WriteS7TIME_OF_DAY Writes a time of day (4 bytes) to the data area.
WriteS7LTIME_OF_DAY Writes the time of day (8 bytes) to the data area as nanoseconds

since midnight.
WriteS7DATE_AND_TIME Writes a "System.DateTime" to the data area.
WriteS7DATE_AND_LTIME Writes a date and time value (8 bytes) to the data area as nano-

seconds since 01/01/1970 00:00.
WriteS7DTL Writes a date and time information (12 bytes) as a predefined

structure to the data area.
WriteS7CHAR Writes a "char" (1 byte) to the data area.
WriteS7STRING Writes a S7 string to the data area.

The string is shortened when there is insufficient space in the
target string.
If no maximum string length is set in the case of a "[OUT] Vari-
ant", the current string length is set as maximum string length.

WriteS7STRING_MAX_LEN Only available for CPU function libraries for the Windows envi-
ronment.
Writes the maximum string length to an S7 string.
Is only required for "[OUT] Variant".

Helper functions for CPU function libraries
D.2 C#/VB helper functions

 Open Development Kit 1500S V2.5 SP4

142 Programming and Operating Manual, 12/2023, A5E35253941-AH

Value Description
WriteS7WCHAR Only available for CPU function libraries for the Windows envi-

ronment.
Writes a "char" (2 bytes) to the data area.

WriteS7WSTRING Only available for CPU function libraries for the Windows envi-
ronment.
Writes an S7W string to the data area.
The string is shortened when there is insufficient space in the
target string.
If no maximum string length is set in the case of a "[OUT] Vari-
ant", the current string length is set as maximum string length.

WriteS7WSTRING_MAX_LEN Only available for CPU function libraries for the Windows envi-
ronment.
Writes the maximum string length to an S7W string.
Is only required for "[OUT] Variant".

D.2 C#/VB helper functions

Access to classic data
For the C# and VB programming languages, the following classes are available for reading
and writing in a classic data stream:

• OdkReadVariant

Supports all "ReadS7…" methods.

• OdkReadWriteVariant

Supports all "ReadS7…" and "WriteS7…" methods.

ReadS7 methods WriteS7 methods Description
ReadS7Bool WriteS7Bool Writes/writes/reads a "bool" (1 byte) to/to/from the data area.
ReadS7Byte WriteS7Byte Writes/writes/reads a "byte" (1 byte) to/from the data area.
ReadS7Word WriteS7Word Writes/writes/reads a "word" (2 bytes) to/from the data area.
ReadS7DWord WriteS7DWord Writes/writes/reads a "double word" (4 bytes) to/from the data

area.
ReadS7LWord WriteS7LWord Writes/writes/reads a "long word" (8 bytes) to/from the data area.
ReadS7Sint WriteS7Sint Writes/writes/reads a "short integer" (1 byte) to/from the data

area.
ReadS7Int WriteS7Int Writes/writes/reads a "integer" (2 bytes) to/from the data area.
ReadS7Dint WriteS7Dint Writes/writes/reads a "double integer" (4 bytes) to/from the data

area.
ReadS7Lint WriteS7Lint Writes/writes/reads a "long integer" (8 bytes) to/from the data

area.
ReadS7USint WriteS7USint Writes/writes/reads a "unsigned short integer" (1 byte) to/from the

data area.
ReadS7Uint WriteS7Uint Writes/writes/reads a "unsigned integer" (2 bytes) to/from the

data area.

 Helper functions for CPU function libraries
 D.2 C#/VB helper functions

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 143

ReadS7 methods WriteS7 methods Description
ReadS7UDint WriteS7UDint Writes/writes/reads a "unsigned double integer" (4 bytes) to/from

the data area.
ReadS7ULint WriteS7ULint Writes/writes/reads a "unsigned long integer" (8 bytes) to/from

the data area.
ReadS7Real WriteS7Real Writes/writes/reads a "real number" (4 bytes) to/from the data

area.
ReadS7LReal WriteS7LReal Writes/writes/reads a "long real number" (8 bytes) to/from the

data area.
ReadS7S5Time WriteS7S5Time Writes/writes/reads a 16-bit (2 bytes) time value to/from the data

area.
ReadS7Time WriteS7Time Writes/reads a time value (4 bytes) to/from the data area.
ReadS7LTime WriteS7LTime Writes/reads a time value (8 bytes) to/from the data area.
ReadS7Date WriteS7Date Writes/reads a date and time value (2 bytes) to/from the data

area.
ReadS7TimeOfDay WriteS7TimeOfDay Writes/reads the time of day (4 bytes) to/from the data area.
ReadS7LTimeOfDay WriteS7LTimeOfDay Writes/reads the time of day (8 bytes) to/from the data area.
ReadS7DateAndTime WriteS7DateAndTime Writes/reads a "System.DateTime" to/from the data area.
ReadS7DateAndLTime WriteS7DateAndLTime Writes/reads a date and time value (8 bytes) to/from the data area

as nanoseconds since 01/01/1970 00:00.
ReadS7Dtl WriteS7Dtl Writes/reads a date and time value (12 bytes) as a predefined

structure to/from the data area.
ReadS7Char WriteS7Char Writes/reads a "char" (1 byte) to/from the data area.
ReadS7String WriteS7String Writes/reads an SIMATIC S7 string to/from the data area and re-

turns it as language-dependent string.
The string is shortened when there is insufficient space in the
target string.
If no maximum string length is set in the case of a "[OUT] Vari-
ant", the current string length is set as maximum string length.

ReadS7StringCurLen - Reads the current string length of a S7 string exception if the
current string length is larger than the maximum string length.

ReadS7StringMaxLen WriteS7StringMaxLen Writes/reads the maximum string length to/from a S7 string.
Is only required for "[OUT] Variant".

ReadS7WChar WriteS7WChar Writes/reads a "wide char" (2 bytes) to/from the data area.
ReadS7WString WriteS7WString Writes/reads an S7W string to/from the data area and returns it as

language dependent string.
The string is shortened when there is insufficient space in the
target string.
If no maximum string length is set in the case of a "[OUT] Vari-
ant", the current string length is set as maximum string length.

ReadS7WStringCurLen - Reads the current string length of a S7W string exception if the
current string length is larger than the maximum string length.

ReadS7WStringMaxLen WriteS7WStringMaxLen Writes/reads the maximum string length to/from a S7W string.
Only required for "[OUT] variant".

Helper functions for CPU function libraries
D.2 C#/VB helper functions

 Open Development Kit 1500S V2.5 SP4

144 Programming and Operating Manual, 12/2023, A5E35253941-AH

Access to classic DBs

Use in C#
using OdkInternal;

public ushort SampleFunction (byte[] myDB)
{
 OdkReadVariant rv = new OdkReadVariant(myDB);
 int i = rv.ReadS7DINT(0);
 // do something with i
 return ODK_SUCSESS;
}

Use in VB
Imports OdkInternal;

Public Function SampleFunction (ByRef myDB As Byte[]) As UShort
{
 Dim wv As OdkReadWriteVariant = new OdkReadWriteVariant(myDB)
 Dim value As Short = 5 ‘ calculate the value somehow
 wv.WriteS7INT(8, value)
 return ODK_SUCSESS;
}

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 145

Instructions for CPU function libraries E
E.1 "Load" instruction

The "<STEP7Prefix>_Load" instruction has different parameters that depending on the
development environment:

• Development of a CPU function library for the Windows environment (Page 54)

• Development of a CPU function library for the realtime environment (Page 91)

E.2 "Unload" instruction
The "<STEP7Prefix>_Unload" instruction has different parameters that depending on the
development environment:

• Development of a CPU function library for the Windows environment (Page 60)

• Development of a CPU function library for the realtime environment (Page 96)

E.3 "GetTrace" instruction
The function block (Page 97) "GetTrace" is included in the default CPPfile "<project>.cpp".

GetTrace
TraceCount STATUS

The following table shows the parameters of the "GetTrace" function block:

Section Declaration Data type Description
Output STATUS INT Number of trace entries actually read
Input TraceCount INT Number of trace entries to be read
Output TraceBuffer Array

[0..255] of
String[125
]

Trace string array for the user
Each trace string consists of:
• Date
• Time-of-day
• OB number
• File name
• Line number
• Trace text (trace implemented by the user)

 Open Development Kit 1500S V2.5 SP4

146 Programming and Operating Manual, 12/2023, A5E35253941-AH

 Index

C
Callback functions

Realtime, 81
Windows, 49

Calling functions
Realtime, 93
Windows, 57

Certificate of license, 25
Commissioning

C/C++ Runtime, 113
Context Application, 36, 70
Context Realtime, 70
Context System, 36
Context User, 36
Creating a project

C/C++ runtime application, 107
PLCSIM Advanced, 120
Realtime, 65
Windows, 28

Customer service, 7

D
Debug (Test), 85

C/C++ runtime application, 117
Debug (Windows), 62
Defining functions, 37, 71
Defining runtime properties

PLCSIM Advanced, 123
Realtime, 69
Windows, 34

Definitions, 7
Development environments, 18
Development steps, 20
Documentation, 7
Dynamic memory, 83

G
Generating an application

C/C++ runtime application, 111
PLCSIM Advanced, 127
Realtime, 68
Windows, 34

I
Implementing functions

Custom functions, 50, 82, 126
Realtime, 80
Windows, 48

Installation, 23
Licensing, 25

Internet Web sites (Siemens), 7

K
Knowledge required, 7

L
License key, 25
Loading functions

Realtime, 91
Windows, 54

M
Manuals, 7

P
Post Mortem analysis, 99
Product overview, 15

Basic procedure, 20
How it works, 15

S
Siemens contact information, 7
STEP 7 import

Realtime, 90
Windows, 52

Support, 7
Syntax rules, 37, 71
System requirements, 21

 Index

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 147

T
Target group, 7
Technical support, 7
Trace buffer, 98
Transfer to target system

C/C++ application, 117
Create connection to the target system, 115
Realtime, 88
Windows, 51

U
Uninstalling, 27
Unloading functions

Realtime, 96
Windows, 60

W
Web sites (Siemens), 7

	Open Development Kit 1500S V2.5 SP4
	Legal information
	Table of contents
	1 Introduction
	1.1 S7-1500/ET 200MP Documentation Guide
	1.1.1 S7-1500 / ET 200MP Documentation Guide
	1.1.2 SIMATIC Technical Documentation
	1.1.3 Tool support

	2 Security information
	2.1 Cybersecurity information
	2.2 Information about third-party software updates
	2.3 Notes on protecting administrator accounts

	3 Product overview
	3.1 Introduction to ODK 1500S
	3.2 Development environments
	3.3 Basic procedure

	4 Installation
	4.1 System Requirements
	4.2 Installing ODK
	4.3 Licensing ODK 1500S
	4.4 Subsequently integrating project template for Windows CPU function libraries in Visual Studio
	4.5 Uninstalling ODK

	5 Developing a CPU function library for the Windows environment
	5.1 Creating a CPU function library
	5.1.1 Requirements
	5.1.2 Creating a project
	5.1.2.1 Solution Explorer structure: C++ project
	5.1.2.2 Solution Explorer structure: C# project
	5.1.2.3 Solution Explorer structure: VB Project

	5.1.3 Generating a CPU function library
	5.1.4 Defining the runtime properties of a CPU function library
	5.1.5 Environment for loading or executing the CPU function library
	5.1.6 Defining functions and structures of a CPU function library
	5.1.6.1 Using ODK_VARIANT as parameter
	5.1.6.2 Handling strings
	5.1.6.3 Definition of the <Project>.odk file
	5.1.6.4 Modifying the <Project>.odk file
	5.1.6.5 Comments
	5.1.6.6 Comments in Visual Basic

	5.1.7 Implementing functions
	5.1.7.1 General notes
	5.1.7.2 Callback functions
	5.1.7.3 Implementing custom functions

	5.2 Transferring a CPU function library to the target system
	5.3 Importing and generating an SCL file in STEP 7
	5.4 Executing a function
	5.4.1 Loading functions
	5.4.2 Calling functions
	5.4.3 Unloading functions

	5.5 Remote debugging
	5.5.1 Performing remote debugging

	6 Developing a CPU function library for the realtime environment
	6.1 Creating a CPU function library
	6.1.1 Requirements
	6.1.2 Creating a project
	6.1.3 Generating a CPU function library
	6.1.4 Defining the runtime properties of a CPU function library
	6.1.5 Environment for loading or running the CPU function library
	6.1.6 Defining functions and structures of a CPU function library
	6.1.6.1 Defining functions a CPU function library
	6.1.6.2 Use of ODK_CLASSIC_DB as parameter
	6.1.6.3 Handling strings
	6.1.6.4 Definition of the <Project>.odk file
	6.1.6.5 Modifying the <Project>.odk file
	6.1.6.6 Comments

	6.1.7 Implementing functions
	6.1.7.1 General notes
	6.1.7.2 Callback functions
	6.1.7.3 Implementing custom functions
	6.1.7.4 Dynamic memory management
	6.1.7.5 Debug (Test)

	6.2 Transferring a CPU function library to the target system
	6.3 Importing and generating an SCL file in STEP 7
	6.4 Executing a function
	6.4.1 Loading functions
	6.4.2 Calling functions
	6.4.3 Unloading functions
	6.4.4 Reading the trace buffer

	6.5 Post Mortem analysis
	6.5.1 Introduction
	6.5.2 Execute post mortem analysis

	7 Development of a C/C++ runtime application
	7.1 Install additional Eclipse plugins
	7.2 Create C/C++ application
	7.2.1 Requirements
	7.2.2 Creating a C/C++ Runtime Application project
	7.2.3 Editing C/C++ code
	7.2.4 Generate C/C++ runtime application

	7.3 Load C/C++ runtime application in the target system
	7.3.1 Configuring PuTTY
	7.3.2 Commissioning C/C++ Runtime
	7.3.3 Set up new connection to the target system in Eclipse
	7.3.4 Load and execute C/C++ runtime application in the target system via Eclipse
	7.3.5 Load and debug C/C++ runtime application in the target system via Eclipse

	7.4 Execute C/C++ runtime application
	7.4.1 Start application via secure shell

	8 Developing a PLCSIM Advanced function library
	8.1 Creating a PLCSIM Advanced function library
	8.1.1 Requirements
	8.1.2 Creating a PLCSIM Advanced function library with Visual Studio

	8.2 Transferring the PLCSIM Advanced function library to PLCSIM Advanced
	8.3 Defining the runtime properties of a PLCSIM Advanced function library
	8.4 Definition of the <Project>.odk file
	8.5 Modifying the <Project>.odk file
	8.6 Editing PLCSIM Advanced function library
	8.7 Generating a PLCSIM Advanced function library
	8.8 Executing a function
	8.9 Debugging C/C++ Code

	9 Using example projects
	A General conditions
	A.1 Number of loadable CPU function libraries
	A.2 Compatibility

	B Syntax Interface file <project>.odk for CPU function libraries
	B.1 Data types
	B.2 Parameters

	C Code generator messages for CPU function libraries
	C.1 Error messages of the code generator
	C.2 Warnings of the code generator

	D Helper functions for CPU function libraries
	D.1 C++ helper functions
	D.2 C#/VB helper functions

	E Instructions for CPU function libraries
	E.1 "Load" instruction
	E.2 "Unload" instruction
	E.3 "GetTrace" instruction

	 Index

