Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Product-specific safety information</td>
<td>2</td>
</tr>
<tr>
<td>Description</td>
<td>3</td>
</tr>
<tr>
<td>Configuration</td>
<td>4</td>
</tr>
<tr>
<td>Mounting</td>
<td>5</td>
</tr>
<tr>
<td>Connection</td>
<td>6</td>
</tr>
<tr>
<td>Operator control and monitoring</td>
<td>7</td>
</tr>
<tr>
<td>Service and maintenance</td>
<td>8</td>
</tr>
<tr>
<td>Technical data</td>
<td>9</td>
</tr>
<tr>
<td>Dimension drawings</td>
<td>10</td>
</tr>
<tr>
<td>Circuit diagrams</td>
<td>11</td>
</tr>
<tr>
<td>Typical circuits</td>
<td>A</td>
</tr>
<tr>
<td>Directives</td>
<td>B</td>
</tr>
</tbody>
</table>

Industrial Controls

Load feeders and motor starters

SIRIUS 3RM1 motor starter

Manual

06/2016

A5E0345285095020A/RS-AE/005
Legal information

Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

<table>
<thead>
<tr>
<th>Warning Notice</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>indicates that death or severe personal injury will result if proper precautions are not taken.</td>
</tr>
<tr>
<td>WARNING</td>
<td>indicates that death or severe personal injury may result if proper precautions are not taken.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>indicates that minor personal injury can result if proper precautions are not taken.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>indicates that property damage can result if proper precautions are not taken.</td>
</tr>
</tbody>
</table>

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

<table>
<thead>
<tr>
<th>Warning Notice</th>
<th>Description</th>
</tr>
</thead>
</table>
| **WARNING** | Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed. |

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.
Table of contents

1 Introduction ... 11
 1.1 Responsibility of the user for system configuration and functionality ... 11
 1.2 Required basic knowledge ... 11
 1.3 Scope ... 12
 1.4 Definition ... 12
 1.5 Conformity .. 12
 1.6 Further documentation ... 13
 1.7 Siemens Industry Online Support ... 14
 1.8 DataMatrix code ... 16
 1.9 Quick navigation .. 17

2 Product-specific safety information .. 19
 2.1 General safety notes ... 19
 2.2 Safety information for hazardous areas ... 20
 2.3 Safety instructions for safety-related applications ... 21
 2.4 Intended use ... 23
 2.5 Current information about operational safety ... 23
 2.6 Declaration of conformity ... 24

3 Description .. 25
 3.1 Overview .. 25
 3.2 Applications .. 26
 3.3 Hybrid technology .. 27
 3.4 Device versions .. 29
 3.5 Functions .. 32
 3.5.1 Switching the 3RM1 motor starter under normal operating conditions 32
 3.5.1.1 Direct-on-line starter ... 33
 3.5.1.2 Reversing starter .. 34
 3.5.2 Protective functions ... 35
 3.5.2.1 Overload protection ... 35
 3.5.2.2 Equipment protection ... 35
 3.5.2.3 Phase failure protection ... 35
 3.5.2.4 Asymmetry monitoring .. 36
 3.5.2.5 Thermal calculation method (motor memory module) ... 37
 3.5.2.6 ATEX-certified motor overload protection in the case of 3RM11/3RM13 Failsafe 38
Table of contents

3.5.3 Shutdown on malfunction ... 42
3.5.4 Safety-related shutdown with 3RM11/3RM13 Failsafe motor starters ... 43
3.5.4.1 Safety-related shutdown via the control supply voltage ... 44
3.5.5 Carrying out the function test ... 45
3.6 Accessories and article number scheme ... 47
3.6.1 Overview of all device components ... 47
3.6.2 Accessories ... 48
3.6.2.1 Infeed system ... 48
3.6.2.2 Fuse module ... 49
3.6.2.3 Sealable cover ... 51
3.6.2.4 Wall mounting ... 51
3.6.2.5 Device connectors ... 52
3.6.2.6 Terminals ... 55
3.6.2.7 Device identification label ... 55
3.6.3 Article number scheme for SIRIUS 3RM1 motor starter ... 56

4 Configuration

4.1 Rated operational current ... 57
4.2 Derating at high installation altitudes (> 2 000 m) ... 58
4.3 Derating with high motor starting current ... 59
4.4 Derating with high ambient temperature ... 60
4.4.1 Maximum ambient temperature for 3RM1.01 (0.5 A) and 3RM1.02 (2 A) ... 60
4.4.2 Derating for 7 A devices ... 60
4.5 Ambient conditions ... 63
4.5.1 Application environment ... 63
4.5.2 Ambient temperature ... 63
4.5.3 Mounting position ... 63
4.5.4 Grounding measures ... 68
4.5.5 Permissible operating voltage ... 68
4.5.6 Minimum load current ... 68
4.6 Load feeders - protection against short circuit ... 69
4.6.1 Protection against short circuit ... 69
4.6.2 Configuration of load feeders ... 69
4.6.3 Configuration of a load feeder with 3RM1 motor starter in compliance with IEC ... 69
4.6.3.1 Fuseless design ... 70
4.6.3.2 Fused design ... 71
4.6.4 Configuration of a load feeder with 3RM1 motor starter in compliance with UL ... 73
4.6.4.1 Function according to UL 508 ... 73
4.6.4.2 Configuration of individual load feeders ... 73
4.6.4.3 Configuring a group of load feeders (group installation) ... 76
4.7 Infeed for the main circuit ... 79
4.7.1 Infeed options ... 79
4.7.2 3RM19 3-phase infeed system ... 79
4.7.3 3RM193 fuse module ... 81
4.8 Configuration with device connectors ... 82
4.9 Examples/applications ... 83
4.9.1 Operation with the EMERGENCY-STOP function ... 83
Table of contents

5 Mounting

5.1 Warning notices .. 87
5.2 Mounting the devices on a level surface .. 88
5.3 Disassembling the devices from a level surface ... 89
5.4 Mounting the devices on a standard mounting rail .. 90
5.5 Mounting the devices on a fuse module ... 91
5.6 Disassembling devices from a fuse module .. 92
5.7 Mounting the fuse module ... 93
5.8 Dismantling the fuse module ... 95
5.9 Modifying the fuse module to a 1-pole connection .. 96
5.10 Disassembling devices from a standard mounting rail ... 98
5.11 Mounting the devices with device connectors on a standard mounting rail ... 99
5.12 Disassembling the devices with device connectors from a standard mounting rail .. 102
5.13 Mounting the devices with device connectors on a wall ... 105
5.14 Disassembling the devices with device connectors from a wall .. 107
5.15 Mounting the sealable cover .. 109

6 Connection

6.1 Connecting the screw-type terminals ... 111
6.2 Disconnecting the screw-type terminals .. 113
6.3 Connecting the push-in terminals .. 114
6.3.1 Wiring rules for spring-loaded terminals (with push-in technology) ... 114
6.3.2 Connecting the push-in terminals ... 115
6.4 Disconnecting the push-in terminals .. 117
6.5 Attaching the terminals .. 118
6.6 Removing the terminals .. 119
6.7 Connecting the infeed system (option) ... 121
6.8 Connecting the fuse module (option) .. 124

7 Operator control and monitoring

7.1 Operator controls .. 125
7.1.1 Parameterizing the 3RM1 motor starter .. 126
7.1.2 Setting the rated operational current .. 126
7.1.3 Setting the RESET method .. 126
7.2 Displays and location of the connections .. 128
7.2.1 Alarms, faults and system events .. 131
7.2.1.1 LEDs .. 131
7.2.1.2 Status indicators of the 3RM1 motor starter .. 131
7.2.1.3 Signaling faults on external I/O .. 133
7.2.1.4 Fault rectification .. 134
Service and maintenance

8.1 Maintenance and service

8.2 Test interval for safety-related applications

8.3 Device replacement

8.4 Replacing the fuses in the 3RM19 fuse module

Technical data

9.1 General technical data

9.2 General safety data

9.3 ATEX-specific safety data

9.4 Connection cross sections

9.5 Technical data in Siemens Industry Online Support

9.6 Number of starting operations

9.7 Overload protection/device protection characteristic

Dimension drawings

10.1 CAx data

10.2 Dimension drawings for 3RM1 device connectors

10.3 3RM1 dimension drawings

10.4 Dimension drawings 3RM19 fuse module

Circuit diagrams

11.1 CAx data

11.2 3RM10 circuit diagrams (direct-on-line starter, Standard)

11.3 3RM11 circuit diagrams (direct-on-line starter, Failsafe)

11.4 3RM12 circuit diagrams (reversing starter, Standard)

11.5 3RM13 circuit diagrams (reversing starter, Failsafe)

Typical circuits

A.1 Typical circuits for 3RM1

A.1.1 Direct-on-line starter 24 V DC with switch operation

A.1.2 Direct-on-line starter 24 V DC with switch operation and 230 V brake

A.1.3 Direct-on-line starter 24 V DC with switch operation and 400 V brake

A.1.4 Direct-on-line starter 24 V DC with switch operation and single-phase motor

A.1.5 Direct-on-line starter with group protection, 24 V DC and PLC operation

A.1.6 Reversing starter 24 V DC with PLC operation
A.2 Typical circuits for safety-related shutdown
A.2.1 General safety notes
A.2.2 3SK1 safety relay with 3RM13 motor starter via device connector
A.2.3 3SK1 safety relay wired with 3RM13 motor starter
A.2.4 3SK2 safety relay with 3RM11 motor starter via device connector
A.2.5 3SK2 safety relay wired to 3RM11 motor starter
A.2.6 3RM13 reversing starter with PLC control, F-DO pp-switching
A.2.7 3RM13 reversing starter with PLC control, F-DO pm-switching

B Directives
B.1 ESD Guidelines

Glossary

Index
Introduction

1.1 Responsibility of the user for system configuration and functionality

The SIRIUS 3RM1 motor starters described here have been developed to carry out switching functions as part of a plant or machine.

The 3RM1 motor starters are available as direct-on-line starters in Standard design without safety-related shutdown (3RM10) and in Failsafe design with safety-related shutdown (3RM11 Failsafe), and also as reversing starters without safety-related shutdown (3RM12) and in Failsafe design with safety-related shutdown (3RM13 Failsafe).

The following must be noted when using 3RM11 Failsafe/3RM13 Failsafe safety-related motor starters:

A complete safety system consists of sensors, evaluation units, signaling devices and methods for safety-related shutdown.

The manufacturer is responsible for ensuring safe overall functioning of a plant or machine with safety-related components.

Siemens AG, its regional offices, and associated companies (hereinafter referred to as "Siemens") cannot guarantee all the properties of an overall installation or machine that has not been designed by Siemens.

Nor can Siemens assume liability for recommendations that appear or are implied in the following description. No new guarantee, warranty, or liability claims beyond the scope of the Siemens general terms of supply are to be derived or inferred from the following description.

1.2 Required basic knowledge

A general knowledge of the following areas is needed in order to understand this manual:

- Industrial controls
- Digital circuitry
- Automation technology
- Safety engineering
1.3 Scope

This manual is valid for SIRIUS 3RM1 motor starters. It contains a description of the motor starter and its functions. It provides information about configuration, commissioning and servicing. You will also find information on the infeed system, device connectors and further accessories in the manual.

To facilitate configuration, the manual contains dimension drawings, circuit diagrams and technical data of the system components.

SIEMENS reserves the right of including a Product Information for each new component, and for each component of a later version.

1.4 Definition

In this manual, "3RM1 motor starter" always refers to all variants of the SIRIUS 3RM1 motor starters.

1.5 Conformity

Standards

All 3RM1 motor starters comply with the following standards:

- IEC 60947-4-2:2011-05
- IEC 60947-4-3:2011-07

The 3RM11 Failsafe and 3RM13 Failsafe motor starters also comply with the following standards:

- EN 62061: 2005
- EN ISO 13849-1:2008
- IEC 61508-1:2010
- IEC 61508-2:2010
- IEC 61508-3:2010

Approvals, test reports, characteristics

Confirmation of approvals, test certificates and characteristic curves is available via the Internet [http://www.siemens.com/sirius/approvals].
Degree of protection

The 3RM1 motor starter's degree of protection is IP20.

The infeed system for the 3RM1 motor starter features IP20 degree of protection.

DANGER

Hazardous voltage.
Will cause death or serious injury.

To ensure protection against an electric shock hazard with the hinged cover open at the signaling contacts 95, 96, 98 at a voltage of \(\geq 50 \) V, screw in all terminal screws that are not needed to clamp conductors.

1.6 Further documentation

Further documents that might be of interest for your configuration:

<table>
<thead>
<tr>
<th>Title of the manual</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRIUS 3SK1 safety relays</td>
<td>3ZX1012-0SK11-0AC0</td>
</tr>
<tr>
<td>https://support.industry.siemens.com/cs/ww/de/view/67585885</td>
<td></td>
</tr>
<tr>
<td>SIRIUS 3SK2 Safety Relays</td>
<td>3ZX1012-0SK21-1AB1</td>
</tr>
<tr>
<td>https://support.industry.siemens.com/cs/ww/de/view/109444336</td>
<td></td>
</tr>
</tbody>
</table>

1) The manuals are available in the Service&Support Portal for downloading free of charge.
1.7 Siemens Industry Online Support

Information and service

At Siemens Industry Online Support you can obtain up-to-date information from our global support database quickly and simply. To accompany our products and systems, we offer a wealth of information and services that provide support in every phase of the lifecycle of your machine or plant – from planning and implementation and commissioning, right through to maintenance and modernization:

- Product support
- Application examples
- Services
- Forum
- mySupport

Link: Siemens Industry Online Support [https://support.industry.siemens.com/cs/ww/en/]

Product support

Here you will find all the information and comprehensive know-how for your product:

- FAQs
 Our replies to frequently asked questions.
- Manuals/operating instructions
 Read online or download, available as PDF or individually configurable.
- Certificates
 Clearly sorted according to approving authority, type and country.
- Characteristics
 For support in planning and configuring your system.
- Product announcements
 The latest information and news concerning our products.
- Downloads
 Here you will find updates, service packs, HSPs and much more for your product.
- Application examples
 Function blocks, background and system descriptions, performance statements, demonstration systems, and application examples, clearly explained and represented.
- Technical data
 Technical product data for support in planning and implementing your project.

Link: Product support [https://support.industry.siemens.com/cs/ww/en/ps]
mySupport

With "mySupport", your personal work area, you get the very best out of your Industry Online Support experience. Everything enables you to find the right information - every time.

The following functions are now available:

- **Personal Messages**
 Your personal mailbox for exchanging information and managing your contacts

- **Requests**
 Use our online form for specific solution suggestions, or send your technical inquiry directly to a specialist in Technical Support

- **Notifications**
 Make sure you always have the latest information - individually tailored to your needs

- **Filter**
 Simple management and re-use of your filter settings from Product Support and the Technical Forum

- **Favorites / Tagging**
 Create your own knowledge database by assigning "Favorites" and "Tags" to documents – simply and efficiently

- **Entries last viewed**
 Clear presentation of your last viewed entries

- **Documentation**
 Configure your individual documentation from different manuals – quickly and without complications

- **Personal data**
 Change personal data and contact information here

- **CAx data**
 Simple access to thousands of items of CAx data such as 3D models, 2D dimension drawings, EPLAN macros, and much more

Configurator

Various configurators are available on the Internet to assist you with configuration.

The configurator for 3RM1 motor starters and matching accessories is an easy-to-use selection and configuration tool. You can select the individual components and plan your system in accordance with your specific requirements. You can save your selection, export it as a text file or you can order it directly.

The configurator automatically compiles a document list of the information available in Service&Support for every component. You can use it as the basis for putting together your system documentation.

Link: Configurator http://www.siemens.com/sirius/configurators
1.8 DataMatrix code

A DataMatrix code is lasered onto the lower terminal cover of all devices of this series. DataMatrix codes are standardized in ISO/IEC 16022. The DataMatrix codes on Siemens devices use ECC200 coding.

The following device information is encoded in the DataMatrix codes as a bit stream:

- Article number
- Serial number

This information is stored in the following format in the DataMatrix code:

```
1P Article number + S Serial number
```

Note

The information content is displayed without spaces.

This machine-readable information simplifies and accelerates handling of the respective devices. As well as fast access to the serial numbers of the respective devices for unique identification, the DataMatrix codes simplify communication with Siemens Technical Support.

SIEMENS Industry Support App

DataMatrix codes primarily enable extremely fast and convenient access to all device-specific information relating to an article number in the SIEMENS Service&Support Portal [https://support.industry.siemens.com/cs/ww/en/], such as operating instructions, manuals, data sheets, FAQs, etc.

We provide the SIEMENS Industry Support app free for this purpose and it can be used on most commercially available smart phones and tablets. The SIEMENS Industry Support app is available for iOS and Android-based devices and can be accessed via the following links:

- Link for Android
- Link for iOS
- Link for Windows phone
1.9 Quick navigation

Note

Reading the manual

The quick navigation is provided to help you find important topics quickly. It does not a substitute for reading the manual.

Always read the entire manual.

Configuring

- Functions (Page 32)
- Technical data (Page 139)
- Derating (temperature, installation altitude, installation) Rated operational current (Page 57)
- Applications Operation with the EMERGENCY-STOP function (Page 83)
- Circuit diagrams (Page 159)
- Product-specific safety information (Page 19)
- Overload trip:
 - Thermal calculation method (motor memory module) (Page 37)
 - Setting the RESET method (Page 126)
- Terminal designations Terminals (Page 55)
- Also note the following: Number of starts Number of starting operations (Page 144), switching times Switching the 3RM1 motor starter under normal operating conditions (Page 32), pauses Technical data (Page 139), minimum current Rated operational current (Page 57) and Minimum load current (Page 68)

Commissioning:

- Diagnosis Alarms, faults and system events (Page 131)
- Fault rectification (Page 134)
- Terminal designation Terminals (Page 55)
- Connection method Device versions (Page 29) and Connection cross sections (Page 141)
- Removable terminals Terminals (Page 55)
- Setting the rated operational current (Page 126)
Service:

- Diagnosis Alarms, faults and system events (Page 131)
- Setting the rated operational current (Page 126)
- Removable terminals Terminals (Page 55)
- Terminal designation Terminals (Page 55)

FAQ [https://support.industry.siemens.com/cs/ww/en/view/81525494]
Product-specific safety information

2.1 General safety notes

DANGER
Hazardous voltage.
Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

DANGER
Hazardous voltage.
Will cause death or serious injury.

To ensure protection against an electric shock hazard with the hinged cover open at the
signaling contacts 95, 96, 98 at a voltage of ≥ 50 V, screw in all terminal screws that are not
needed to clamp conductors.

NOTICE
Damage caused by electrostatic charge

When handling and installing the 3RM1 motor starters, ensure that the components are
protected from electrostatic charge. Changes to the system configuration and wiring are
only permissible in the voltage-free state.

Connection of 3RM11 / 3RM13 Failsafe motor starters is only permissible when the power
supply units (PELV and SELV) are switched off.
2.2 Safety information for hazardous areas

WARNING

Explosion hazard in Class I and Class II Hazardous Locations.
Lebensgefahr oder schwere Verletzungsgefahr.

The components of the 3RM1 motor starters are not suitable for installation in Class I and Class II Hazardous Locations.

The device must be installed in a control cabinet with minimum degree of protection of IP 4x.

Please contact your ATEX specialist.

You will find further information in Chapter [ATEX-certified motor overload protection in the case of 3RM11/3RM13 Failsafe](Page 38)."
2.3 Safety instructions for safety-related applications

⚠️ DANGER
Hazardous voltage. Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

⚠️ WARNING
Loss of the safety function
In continuous operation, the key safety values apply in the case of a function test interval (state change of the outputs) ≤ 1 year.
Annual function test
- Actuate the connected sensors.
- Check their effect on the safety relay and the downstream actuators.
- Activate the safety relay via the connected sensors.
- Check their effect on the safety relay and the downstream actuators.
- Defective devices must be replaced.

⚠️ WARNING
Loss of the safety function in the event of a fault in the case of 3RM11 / 3RM13 Failsafe motor starters with 110 to 230 V AC/110 V DC control supply voltage. Can cause death or serious injury.
The control signal for the control inputs in the case of 3RM11/3RM13 Failsafe motor starters with 110 to 230 V AC control supply voltage must come from A1. Otherwise, the safety function is bypassed in the event of a fault. Thus, only relay outputs are admissible when using a PLC.
Do not use a separate control voltage. Only use the relay outputs when using a PLC.

⚠️ WARNING
Loss of the safety function when using device connectors. Can cause death or serious injury.
When the product is operated with a 3SK safety relay and a device connector, the supply voltage for 3RM1 motor starters is fed in via the device connectors.
In this case, do not connect anything to terminals A1 and A2 of the 3RM1 motor starters, in order to prevent bypassing of the safety function.
2.3 Safety instructions for safety-related applications

WARNING

Loss of the safety function during hybrid operation of Failsafe and Standard motor starters. Can cause death or serious injury.

Hybrid operation of 3RM10/3RM12 Standard motor starters with 3RM11/3RM13 Failsafe motor starters in safety-related applications is not admissible.

Only ever use safety-related motor starters (3RM11 Failsafe and 3RM13 Failsafe) in safety-related applications.

WARNING

Loss of the safety function when the neutral conductor is connected to a load. Can cause death or serious injury.

When using the 3RM11 Failsafe and 3RM13 Failsafe motor starters, note that no neutral conductor may be connected if the load circuit contains 3-phase loads, e.g. a 230 V brake or resistive loads.

NOTICE

Electromagnetic interference

The following must be grounded in accordance with regulations to ensure noise immunity of the 3RM11 / 3RM13 Failsafe motor starters:

- PELV / SELV power supply units (please also note the documentation for the respective power supply unit in this regard).

Note

SILCL 3 to EN 62061:2005, PL e/Cat. 4 to EN ISO 13849-1:2008

The 3RM11 Failsafe and 3RM13 Failsafe safety-related motor starters are designed in such a way as to allow implementation of safety-related applications up to SILCL 3 in accordance with EN 62061 and PL e/Cat. 4 in accordance with EN ISO 13849-1.
2.4 Intended use

⚠️ WARNING

Improper use of hardware products.
Serious damage to property, can cause death or serious injury.

This equipment is only allowed to be used for the applications described in the catalog and in the technical description, and only in conjunction with non-Siemens equipment and components recommended by Siemens.

Correct transport, storage, installation and assembly, as well as careful operation and maintenance, are required to ensure that the product operates safely and without faults.

EU note: Commissioning is absolutely prohibited until it has been ensured that the machine in which the component described here is to be installed complies with the stipulations of the Directive 2006/42/EC.

2.5 Current information about operational safety

Important note for maintaining operational safety of your system

Please take note of our latest information.

Systems with safety-related characteristics are subject to special operational safety requirements on the part of the operator. The supplier is also obliged to comply with special product monitoring measures. For this reason, we publish a special newsletter containing information on product developments and features that are (or could be) relevant to operation of safety-related systems. By subscribing to the appropriate newsletter, you will ensure that you are always up-to-date and able to make changes to your system, when necessary:

Siemens newsletter [http://www.industry.siemens.com/newsletter]

Sign on to the following newsletter under "Products & Solutions":

- Control Components and System Engineering News
- Safety Integrated Newsletter
2.6 Declaration of conformity

The manufacturer declares that the safety components of the 3RM1 motor starter series in the designs marketed by us comply with the applicable basic health and safety requirements of the EC Directives* stated (including amendments), and that the stated standards* were applied in their design and construction.

* You can download the complete EC Declaration of Conformity from the Internet [http://www.siemens.com/sirius/approvals] as a PDF.
Description

3.1 Overview

The 3RM1 motor starter is a compact device with a width of 22.5 mm. The 3RM1 motor starter comprises combinations of relay contacts, power semiconductors, and a solid-state overload relay for switching three-phase motors up to 3 kW (at 400 V) and resistive loads up to 10 A (at AC voltages to 500 V) under normal operating conditions.
3.2 Applications

The 3RM1 motor starters can be used wherever combinations of contactors and overload relays were previously used.

Thanks to the additional functionality of safety-related shutdown, the 3RM11 Failsafe and 3RM13 Failsafe motor starter variants are ideally suited to safety-related applications up to SIL CL 3 in accordance with EN 62061 and PL e/Cat. 4 in accordance with EN ISO 13849-1.

Short-circuit protection in a load feeder designed in this way must be implemented by appropriate upstream short-circuit protection devices. These can be, for example, circuit breakers or appropriate fuses.

You achieve maximum space-savings benefits by means of a group configuration of the 3RM1 motor starters. This enables several 3RM1 motor starters to be protected by one short-circuit protection device.

The 3RM1 motor starters are used in the following areas, for example:

- Conveyor technology
- Logistics systems
- Production machines
- Machine tools
- Small elevators
3.3 Hybrid technology

The 3RM1 motor starter combines the benefits of semiconductor technology and relay technology.

This combination is known as hybrid technology. The hybrid technology in the 3RM1 motor starter is characterized by the following features:

Switching on

The inrush current in the case of motorized loads is conducted briefly via the semiconductors.

Advantage: The relay contacts are protected. Longer service life is achieved thanks to reduced wear and tear.

Current conducting

The continuous current is conducted via relay contacts.

Advantage: Relay contacts cause less thermal losses than semiconductors.

Switching off

Switch-off is implemented again via the semiconductor.

Advantage: The contacts are only slightly burdened by arcs. This results in increased service life.
3.3 Hybrid technology

Circuit diagram

The semiconductors switch the motor on and off in two phases. In the switched-off state, all three phases are opened by a relay contact.

To achieve the highest safety level SIL CL 3 in accordance with EN 62061, PL e/Cat. 4 in accordance with EN ISO 13849-1 in the case of 3RM11/3RM13 fail-safe motor starters, further relay contacts are installed in series with the semiconductors.
3.4 Device versions

The 3RM1 motor starters are characterized by their compact design and narrow width.

They can be used for easy assembly of fuseless load feeders with SIRIUS motor starter protectors. Alternatively, combinations with fuses or other short-circuit protection devices are possible.

This allows implementation of load feeders with coordination type 1 for short-circuit currents of up to 55 kA at 400 V.

The 3RM1 motor starters are available in four different versions:

Table 3-1 Motor starter version

<table>
<thead>
<tr>
<th>Feature</th>
<th>3RM10</th>
<th>3RM11</th>
<th>3RM12</th>
<th>3RM13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product symbol</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Direct-on-line starter</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reversing starter</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Overload protection with wide setting range</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ATEX certification overload protection</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Safety-related shutdown up to SIL CL 3 to EN</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>ISO 62061, PL e/Cat. 4 to EN ISO 13849-1</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
</tbody>
</table>

Connection systems

The 3RM1 motor starters are optionally available with screw connections or push-in connections.

Push-in connections are a form of spring-loaded terminals allowing fast wiring without tools for rigid conductors or conductors equipped with end sleeves. For wiring finely-stranded or stranded conductors without end sleeves on push-in connections, a screwdriver (with 3.0 x 0.5 mm blade) is required. A screwdriver (with 3.0 x 0.5 mm blade) is also required to disconnect a conductor.

The advantages of the push-in terminals are found, as with all spring-loaded terminals, in speed of assembly and disassembly and vibration-proof connection. There is no need for the checking and tightening required with screw connections.
3.4 Device versions

Current ranges

The 3RM1 motor starters are designed for the following rated operational currents of the loads:

Table 3-2 Current ranges

<table>
<thead>
<tr>
<th>Versions</th>
<th>Adjustable response value current [A]</th>
<th>Maximum permissible motor power at 400 V AC [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3RM1.01-...</td>
<td>0.1 ... 0.5</td>
<td>0.12</td>
</tr>
<tr>
<td>3RM1.02-...</td>
<td>0.4 ... 2</td>
<td>0.75</td>
</tr>
<tr>
<td>3RM1.07-...*</td>
<td>1.6 ... 7</td>
<td>3</td>
</tr>
</tbody>
</table>

* The versions of the 3RM1.07-..... motor starter are also suitable for operating resistive loads (e.g. heaters) up to a rated operational current of I_{ACS1} = 10 A.

Control supply voltages

The 3RM1 motor starters are designed for the following control supply voltages:

Table 3-3 Control supply voltages

<table>
<thead>
<tr>
<th>Versions</th>
<th>Control supply voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3RM1-...-AA0.</td>
<td>24 V DC</td>
</tr>
<tr>
<td>3RM1-...-AA1.</td>
<td>110 ... 230 V AC 50/60 Hz; 110 V DC</td>
</tr>
</tbody>
</table>

Note the following information for the different device versions:

Note

Motor starters with 24 V DC control supply voltage

As is usual on solid-state motor starters, a buffering capacitance of 250 µF is installed in the 24 V DC control circuit of the 3RM1 Standard and Failsafe motor starters. Its purpose is to specifically shut down the motor with the semiconductors in the event of failure or disconnection of the control supply voltage. As a result, charging currents can arise briefly upon activation of the control supply voltage. The buffering capacitance is decoupled by a diode. This means that there is no influence on the dark test of safety-related outputs.

You can find more information on the Internet [https://support.industry.siemens.com/cs/ww/en/view/91372998].

Note

3RM10/3RM12 Standard motor starters with 24 V DC control supply voltage

The same voltage source (potential) must be used for the control supply voltage and the control inputs.

The reference point for the control inputs is terminal A2.
3.4 Device versions

Note

3RM10/3RM12 Standard motor starters with 110 to 230 V AC/110 V DC control supply voltage

The same voltage source (potential) must be used for the control supply voltage and the control inputs.

The reference point for the control inputs is terminal A2.

When controlling with a PLC, control must be via relay outputs.

There must be no parallel load (e.g. a lamp) connected at the control inputs in the case of motor starters with the product version E01.

Note

3RM11/3RM13 Failsafe motor starters with 24 V DC control supply voltage

The control inputs are electrically isolated from the control supply voltage (A1, A2).

The terminals M1 and M2 are the reference point for the control inputs.

For controlling the control inputs, e.g. via the digital outputs of a PLC, a voltage from an SELV/PELV Class 2 supply is required.

Note

3RM11/3RM13 Failsafe motor starters with 110 to 230 V AC/110 V DC control supply voltage

The same voltage source (potential) must be used for the control supply voltage and the control inputs in safety-related applications.

The reference point for the control inputs is terminal A2.

When controlling with a PLC, control must be via relay outputs.
3.5 Functions

3.5.1 Switching the 3RM1 motor starter under normal operating conditions

A typical application area of the 3RM1 motor starter is the switching and protection of motors. You can also operate the 3RM1 motor starter on resistive loads such as heaters.

During operational switching of the 3RM1 motor starter, an auto pause kicks in after the motor has been switched off. The motor starter does not accept a new start until the pause time has elapsed.

<table>
<thead>
<tr>
<th>Version</th>
<th>Article number</th>
<th>Pause time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>3RM10..-....; 3RM12..-....</td>
<td>• 500 ms (E01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 100 ms (E02)</td>
</tr>
<tr>
<td>Fail-safe</td>
<td>3RM11..-....; 3RM13..-....</td>
<td>• 500 ms (E01)</td>
</tr>
</tbody>
</table>

No distinction is made between direct-on-line and reversing starters in terms of pause time.

Note

Minimum loads must be observed for the 3RM1 motor starters.

You will find additional information in the chapter "Minimum load current (Page 68)."

NOTICE

Damage to property due to high making currents

When using capacitive loads, the switching components in the 3RM1 motor starter can be damaged by excessively high making currents.

Do not operate capacitive loads such as frequency converters on the 3RM1 motor starter.

Operation of single-phase capacitor motors is admissible.

NOTICE

Damage during operation on non-sinusoidal voltages

When operating frequency converters, the switching components in the 3RM1 motor starter can be damaged by non-sinusoidal voltages.

Do not operate the 3RM1 motor starter on outputs of frequency converters.
3.5 Functions

NOTICE

Damage to property

If you are operating a 3RM1 motor starter in parallel to a frequency converter on the same motor, install an isolating contactor. If the frequency converter has an output filter, the isolating contactor must be installed downstream of this filter.

3.5.1.1 Direct-on-line starter

Using the 3RM1 motor starter as a direct-on-line starter

All 3RM1 motor starters can be used as direct-on-line starters.

To switch the 3RM1 motor starter on, apply the control voltage at input IN1.

After the motor is switched off, the motor starter accepts a new start after a pause time.

You can also use the versions of the 3RM1 motor starter with a rated operational current up to 7 A for switching resistive loads up to $I_{AC51} = 10$ A under normal operating conditions.

Figure 3-2 3RM13 as an alternative control to a frequency converter

① SIRIUS 3RM13 Failsafe motor starter
② SIRIUS 3RT2 contactor
③ Frequency converter, e.g. SINAMICS G120 frame size A with BOB-2, 2nd generation
④ Motor
3.5.1.2 Reversing starter

Using the 3RM1 motor starter as a reversing starter

The 3RM12 and 3RM13 motor starters can be used as reversing starters.

The reversing starter starts the motor when the control voltage is applied at input IN1 in direction of rotation 1 (no phase swapping), when controlling input IN2 in direction of rotation 2 (phase change from L1 and L3).

Interlocking of the control inputs

After the motor is switched off, the motor starter accepts a new start after a pause time.

If you apply control inputs IN1 and IN2 simultaneously, control input IN1 has priority. The motor starts up in this direction of rotation.

When the motor is running, activation of the second input has no effect.

The figure below shows an example of the effects of the signals at the control inputs on the direction of rotation of the motor:

1. Controller 1 active
2. Motor ON
1-2. Switch-on delay
3. Control input 1 inactive
4. Motor OFF
3-4. Switch-off delay
5. With simultaneous activation of the control inputs, the motor is started in the clockwise direction.
6. Additional activation of the second control input has no influence.
7. After motor OFF, the motor starter accepts a new start (motor ON) after a pause time.

Note

Please observe the information about the control supply voltage and the control inputs in the chapter "Device versions [Page 29]."
3.5 Functions

3.5.2 Protective functions

3.5.2.1 Overload protection

The 3RM1 motor starter protects three-phase motors against overload. If the current exceeds the set value, the 3RM1 motor starter switches off within the specified tripping time and signals the fault via the LEDs and the fault signaling output. You will find the tripping characteristic in the chapter “Overload protection/device protection characteristic (Page 145)”.

Note
ATEX-certified motor overload protection in the case of 3RM11/3RM13 Failsafe

Overload protection of safety-related 3RM11 Failsafe and 3RM13 Failsafe motor starters is ATEX-certified up to SILCL 2; see Chapter “ATEX-certified motor overload protection in the case of 3RM11/3RM13 Failsafe (Page 38)”.

3.5.2.2 Equipment protection

In addition to the motor protection function, the 3RM1 motor starters also protect themselves against overload. This means that in the case of 3RM1 motor starters with a rated operational current of 7 A, an overload trip may occur in the upper current range before the motor protection trips.

If, for example, 8-fold current flows in the case of an unloaded motor memory module and a set current of 7 A, tripping takes place after approximately one second.

You will find the tripping characteristic in the chapter “Overload protection/device protection characteristic (Page 145)”.

3.5.2.3 Phase failure protection

The 3RM1 motor starter is provided with phase failure protection to prevent excessive temperature rise in the load in double phasing if phase failure occurs.

Depending on whether the phase failure already occurs before the ON command or during the ON state, the devices respond as described in the table and signal a phase failure.

<table>
<thead>
<tr>
<th></th>
<th>Standard motor starters 3RM10/3RM12</th>
<th>Failsafe motor starters 3RM11/3RM13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase failure before the ON command</td>
<td>The motor starter switches off after 5 s.</td>
<td>The motor starter does not switch on.</td>
</tr>
<tr>
<td>Phase failure during the ON state</td>
<td>The motor starter switches off after 5 s.</td>
<td>The motor starter switches off after 5 s.</td>
</tr>
</tbody>
</table>
The fault state is indicated by LEDs and the fault signaling output.

NOTICE

Damage due to asymmetrical current consumption by built-in brakes

When connecting and operating motors with built-in brakes, the energy for releasing the brakes is taken from the motor connection cables. This can result in substantial asymmetry in power consumption.

The following applies to 3RM1 Standard and Failsafe motor starters:

- If the current for the braking device is taken from two phases, connect the motor cables that are additionally loaded with braking current to terminals T1 and T3. Observe the additional braking current when setting the motor current.
- Alternatively, the braking device can be fed externally.

An additional braking device can only be installed for Standard 3RM1 motor starters:

- If the current for the braking device is taken from just one phase and the neutral conductor, connect the motor cable that is loaded with the braking current to terminal T2 of the motor starter.

Do not use 3RM11 Failsafe and 3RM13 Failsafe motor starters for braking devices of this kind.

NOTICE

Damage from incorrect connection

Incorrect connection of the motor can result in damage.

Connect the motor as specified in the typical circuit diagrams.

You can find circuit diagrams for operating motors with brakes in the chapter "Typical circuits (Page 167)".

3.5.2.4 Asymmetry monitoring

Asymmetry detection will only work if all three phases are directly dependent upon one another, i.e. when no external current flow is possible.

Asymmetry is detected as soon as one of the three phases deviates by more than 40 % from the mean value of all phases. As soon as this happens, the 2-pole trip curve CLASS 10 A is applied (see Chapter "Overload protection/device protection characteristic (Page 145)"). This means: The function trips as soon as a minimum value of 85.5 % of the set rated current is reached. If the current is below 85.5 % of the set rated current in all three phases, the function will not trip. For values above 85.5 % of the set current, the higher the current, the faster the function will trip.
For exact values, see the curve in Chapter "Overload protection/device protection characteristic (Page 145)." Some values are provided as examples from this curve in the table.

Table 3-5 Tripping times for tripping due to detected asymmetry

<table>
<thead>
<tr>
<th>Maximum current in one of the 3 phases with reference to the set rated current [%]</th>
<th>Tripping time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>132</td>
</tr>
<tr>
<td>90</td>
<td>77</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>32</td>
</tr>
</tbody>
</table>

The asymmetry detection is not active for setting value 10 A for resistive loads; in this case the overload trip occurs according to the table Table 9-1 Tripping for resistive loads at a setting value of 10 A (Page 147).

3.5.2.5 Thermal calculation method (motor memory module)

Principle of operation

The electronics continuously calculate a model of the thermal load on the motor dependent on the operating time and the current load. The motor memory module charges when the motor is switched on. The motor memory module discharges after the motor is switched off.

Following an overload tripping operation, the motor memory module is fully discharged after approximately three minutes. You must wait for this cooling time to elapse before you can acknowledge the fault. If the control supply voltage fails, the 3RM1 motor starter stores the remaining cooling time. When the control supply voltage is restored, the remaining cooling time elapses before the motor can be switched on again.

If you initiate a restart within a very short time after switching off the motor, it may be that the motor memory module has not yet fully discharged. This can result in an extremely fast overload trip after the restart. During continuous operation ("Warm" motor memory module), tripping times are reduced depending on the prior load.

If voltage is present at terminals A1/A2 and at control inputs IN1/IN2 after resetting the overload trip, the 3RM1 motor starter restarts.

The rated current of 10 A must not be set for motorized loads but only for resistive loads. In this setting, the tripping characteristics deviate from Class 10A; see Chapter "Overload protection/device protection characteristic (Page 145)."
3.5 Functions

You can find information about typical switching frequencies in Chapter "Number of starting operations" (Page 144).".

WARNING

Automatic restart following Reset. Can cause death or serious injury.

If the DEVICE LED shows a yellow light and the FAILURE LED a red light, and a manual RESET or auto RESET takes place following an overload trip, the machine starts up immediately if there is a control command at IN1/IN2. Personnel in the danger area can be injured.

Make sure that the danger area of the machine is kept clear of people.

Reset in manual operation

If the RESET method is set to manual RESET, acknowledge an overload trip as follows:

1. Wait for the cooling time to elapse.
2. Press the "TEST/RESET/RESET MODE" button to acknowledge.

As an alternative, in the case of the 3RM10/3RM12 Standard motor starters, you can use the RESET control input IN3 for acknowledgment.

Note

If you briefly switch the control supply voltage off and on again, there is no automatic acknowledgment.

3.5.2.6 ATEX-certified motor overload protection in the case of 3RM11/3RM13 Failsafe

Standards

Increased danger in hazardous areas means it is necessary to carefully observe the following standards:

- **EN 60079-14 / VDE 0165-1** Electrical apparatus for explosive gas atmospheres.
- **EN 60079-17** Inspection and maintenance of electrical installations in hazardous areas.
- **EN 50495** Safety devices required for the safe functioning of equipment with respect to explosion risks.
Certification of 3RM11/3RM13 Failsafe motor starters

The 3RM11 Failsafe and 3RM13 Failsafe motor starters are approved under Device Group II, Category (2) in the area "GD" (areas in which explosive gas, steam, mist, air mixtures and combustible dust are present):

BVS 12 ATEX F 002 X
II (2) G [Ex e] [Ex d] [Ex px]*
II (2) D [Ex t] [Ex p]
I (M2) [Ex d]

*) For the px applications, pressure and flow rate monitoring are additionally required for the overpressure encapsulation systems.

WARNING

Improper handling.
Can cause death, serious injury, or damage to property.

All work involved in connecting, commissioning and maintenance must be carried out by qualified personnel.

Control cabinet degree of protection in hazardous areas

DANGER

Explosion hazard in Class I and Class II Hazardous Locations.
Can cause death or serious injury.

The components of the 3RM1 motor starters are not suitable for installation in Class I and Class II Hazardous Locations.

The device must be installed in a control cabinet with minimum degree of protection of IP 4x.

Please contact your ATEX specialist.

In addition to the motor protection function, the 3RM1 motor starters also protect themselves against overload. This means that in the case of 3RM1 motor starters with a rated operational current of 7 A, an overload trip may occur in the upper current range before the motor protection trips.

If, for example, 8-fold current flows in the case of an unloaded motor memory module and a set current of 7 A, tripping takes place after approximately one second.

You will find the tripping characteristic in the chapter "Overload protection/device protection characteristic (Page 145)".
3.5 Functions

Setting the rated motor operational current

Set the 3RM1 motor starter to the rated motor operational current (according to the type plate or design test certificate of the motor).

On this topic, refer to the Chapter "Setting the rated operational current" (Page 126).

Note

Observe the trip class or the tripping characteristic of the 3RM1 motor starter in Chapter "Overload protection/device protection characteristic" (Page 145). The motor and cables must be designed for the selected trip class.

RESET settings

Note

Restriction in the hazardous area

In applications for the protection of motors in hazardous areas, a 3RM11/3RM13 Failsafe motor starter may only be operated with the "Manual RESET" setting. The "RESET Mode" LED must be off.

Short-circuit protection

Short-circuit protection must be handled by separately arranged overcurrent protection devices.

On this topic, refer to the Chapter "Load feeders - protection against short circuit" (Page 69).

Cable protection

Avoid impermissibly high cable surface temperatures by correctly dimensioning the cross sections. Select an adequate cable cross-section.

Cyclic test of the protection functions

The tests are run by means of the "TEST/RESET/RESET MODE" button and can take place when the motor is either on or off. The test consists of three function tests.

Carry out the tests during commissioning and cyclically every 36 months at the latest.

You will find out how to run the test in Chapter "Carrying out the function test" (Page 45).

Ambient conditions

See the chapter "Ambient conditions" (Page 63).
ATEX-specific safety data

The motor protection function according to ATEX in the case of 3RM11/3RM13 motor starters has the following safety data:

<table>
<thead>
<tr>
<th>Safety integrity level (SILCL)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware fault tolerance (HFT)</td>
<td>0</td>
</tr>
<tr>
<td>Interval for testing the protective functions</td>
<td>3 years</td>
</tr>
<tr>
<td>Probability of failure on demand (PFD)</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>Probability of a dangerous failure per hour (PFH)</td>
<td>5×10^{-8} 1/h</td>
</tr>
</tbody>
</table>

Note

See the data sheet for other specifications. You will find the data sheet in Service&Support [https://support.industry.siemens.com/cs/ww/en-ps/16311/td].

Maintenance and repairs

These devices are maintenance-free.

Note

Repairs to the device may only be carried out by the manufacturer.

Warranty

NOTICE

To meet the conditions of the warranty, you must observe the safety and commissioning instructions.

Further information

You will find further information on the Internet at
- Internet http://www.siemens.com/sirius
- Information and Download Center http://www.siemens.com/sirius/infomaterial
- Product Support http://www.siemens.com/sirius/support
- Service and Support http://www.siemens.com/sirius/technical-assistance
- Certificates http://www.siemens.com/sirius/approvals
3.5 Functions

3.5.3 Shutdown on malfunction

Shutdown via integrated monitoring

The 3RM1 motor starter has integrated monitoring of the main circuit components. During operation, the 3RM1 motor starter detects when a switching element fails to switch, or when a phase has failed.

Monitoring before switching on in the case of 3RM11/3RM13 Failsafe motor starters

In the case of the 3RM11 Failsafe and 3RM13 Failsafe motor starters, monitoring prevents the load from switching on in the case of the following malfunctions:

- Damage to the power semiconductors
- Damage to the relay contacts
- Faults in the control electronics

Acknowledging

A malfunction is acknowledged by switching the control supply voltage back on and then pressing the “TEST/RESET/RESET MODE” pushbutton.

WARNING

Loss of the safety function. Can cause death or serious injury.

Check the safety function after acknowledging a disruption in the case of 3RM11/3RM13 Failsafe motor starters.

Note

If a malfunction is repeatedly indicated, the 3RM1 motor starter is defective and must be replaced.

Safety-related shutdown in the case of 3RM11/3RM13 Failsafe motor starters

Safety-related shutdown is achieved for the 3RM11 Failsafe and 3RM13 Failsafe motor starters thanks to the special arrangement and checking of the switching elements. Safety-related shutdown takes place when the control supply voltage is deactivated or by switching off the control inputs. Malfunctions result in automatic shutdown. You will find further information in Chapter "Safety-related shutdown with 3RM11/3RM13 Failsafe motor starters (Page 43)."
Display concept

The following events indicate the "Malfunction" status:

- DEVICE LED flashes red
- FAILURE LED shows a red light
- Fault signaling output active

3.5.4 Safety-related shutdown with 3RM11/3RM13 Failsafe motor starters

General description

In the case of 3RM11 / 3RM13 Failsafe motor starters, safety-related shutdown is achieved by removal of the control voltage (A1 / A2). As an alternative in the case of units with a 24 V DC supply voltage, safety-related shutdown can be performed by canceling the ON command (IN1/IN2).

SILCL 3 to EN 62061, PL e/Cat. 4 to EN ISO 13849-1 can be achieved with both shutdown methods. To achieve SILCL 3/PL e/Cat. 4 for the safety function, all components of the safety function (detecting/evaluating/reacting) must be designed accordingly.

In the case of 3RM11/3RM13 Failsafe motor starters, the OFF state is defined as the safe state. 3RM11/3RM13 Failsafe motor starters are self-monitoring in compliance with SILCL 3/PL e and therefore do not need to be monitored in the feedback circuit of the upstream evaluation unit/control.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of the safety function during hybrid operation of Failsafe and Standard motor starters. Can cause death or serious injury.</td>
</tr>
<tr>
<td>Hybrid operation of 3RM10/3RM12 Standard motor starters with 3RM11/3RM13 Failsafe motor starters in safety-related applications is not admissible.</td>
</tr>
<tr>
<td>Only ever use safety-related motor starters (3RM11 Failsafe and 3RM13 Failsafe) in safety-related applications.</td>
</tr>
</tbody>
</table>

Note

Fault signaling output (95-96-98) behavior in the event of safety-related shutdown

The fault signaling output (95-96-98) resumes its original state in the event of safety-related shutdown via the control supply voltage. If the fault is still present after reconnection of the control supply voltage, the fault signaling unit becomes active again. If an overload was detected before shutdown, the remaining cooling time is saved and elapses after reconnection of the control supply voltage.
3.5 Functions

3.5.4.1 Safety-related shutdown via the control supply voltage

Direct link to the 3SK safety relay

To ensure safety-related shutdown via the control supply voltage, you can directly connect up to 5 motor starters to the 3SK safety relay via the device connector. In this case, the 24 V DC control supply voltage is supplied via the device connector. In a safety case, the 3RM11/3RM13 Failsafe motor starters will be shut down by removal of the control supply voltage by the 3SK safety relay. No additional wiring is required between the 3SK safety relay and the 3RM1 motor starter. Nothing may be connected to terminals A1 and A2 of the 3RM1 motor starters.

⚠️ WARNING

Loss of the safety function when using device connectors. Can cause death or serious injury.

When operating with a 3SK safety relay and a device connector, the supply voltage for 3RM1 motor starters is established via the device connectors.

In this case, do not connect anything to terminals A1 and A2 of the 3RM1 motor starters, in order to prevent bypassing of the safety function.

Note

The device connector can only be used in combination with motor starters that have a 24 V DC supply voltage.

Wire connection to a safe output

Shutdown of the 3RM11 / 3RM13 Failsafe motor starter by removal of the control supply voltage can also be performed by wiring to a safe output of a fail-safe control / evaluation unit. This method can be used to shut down a single motor starter or a group of up to 5 motor starters safely. For safe group shutdown, the 3RM11 / 3RM13 Failsafe motor starters are connected to each other via the device connector. In this case, the control supply voltage is wired from the safe output to the first motor starter in the group.
If it can be ensured that the cables are installed in such way that they are protected against a cross-circuit and short-circuit to a power cable, safety-related shutdown of A1 (I+) via a safety-related output of the control will suffice. If this cannot be ensured, or if a PM-switching output is used, both A1 (L+) and A2 (M) must be shut down via a safety-related output. In both cases, safety-related shutdown in compliance with SILCL 3 per EN 62061, PL e / Cat. 4 per EN ISO 13849-1 is achieved.

Note

Motor starters with 24 V DC control supply voltage

As is usual on solid-state motor starters, a buffering capacitance of 250 µF is installed in the 24 V DC control circuit of the 3RM1 Standard and Failsafe motor starters. Its purpose is to specifically shut down the motor with the semiconductors in the event of failure or disconnection of the control supply voltage. As a result, charging currents can arise briefly upon activation of the control supply voltage. The buffering capacitance is decoupled by a diode. This means that there is no influence on the dark test of safety-related outputs.

Safety-related shutdown via inputs IN1 and IN2

As an alternative in the case of 3RM11 / 3RM13 Failsafe motor starters with a 24 V DC supply voltage, safety-related shutdown via the IN1 and IN2 inputs is possible. The safety-related output of the fail-safe control / evaluation unit performs operational switching.

Depending on peripherals used, shutdown is in one or two channels:

- PM (PPM)-switching: shutdown is in two channels.
- PP-switching: shutdown is in one channel.

Single-channel switching achieves SILCL 3 per EN 62061, PL e/Cat. 4 per EN ISO 13849-1 if steps are taken to ensure that the cables are installed in such a way that they are protected against a cross-circuit/line-to-line fault.

3.5.5 Carrying out the function test

You can start the different individual tests for the function test with the "TEST/RESET/RESET MODE" button.
Procedure

Depending on how long the "TEST/RESET/RESET MODE" button is pushed, a specific test is started:

<table>
<thead>
<tr>
<th>Actuation time for starting the test</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 s</td>
<td>LED-Test
 All four LEDs are activated.</td>
</tr>
<tr>
<td>2 s ... 5 s</td>
<td>Current measuring test
 Current measuring is tested in all 3 phases.</td>
</tr>
<tr>
<td>> > 5 s</td>
<td>Motor protection test disconnection
 The entire control chain is tested, including the switching elements and the fault signaling output. If the device responds as standard, an overload trip takes place. This can be reset immediately without a cooling time by pressing the "TEST/RESET/RESET MODE" pushbutton again.</td>
</tr>
</tbody>
</table>

1) Exception in the case of 3RM11/3RM13 Failsafe motor starters: in the case of 3RM11/3RM13 Failsafe motor starters, the LED test is only carried out in the OFF state (without load current). In the ON state (with load current), the LEDs stay unchanged.

<table>
<thead>
<tr>
<th>Actuation time for starting the test</th>
<th>Status</th>
<th>OK</th>
<th>Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 s</td>
<td>"DEVICE" LED
 Shows a yellow light<sup>1)</sup></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"FAILURE" LED
 Shows a red light<sup>1)</sup></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"STATE" LED
 Shows a green light<sup>1)</sup></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"RESET MODE" button
 Shows a green light<sup>1)</sup></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current measuring test
 • Without load current: Flickering red
 • With load current: Flashing red</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>2 s ... 5 s</td>
<td>"DEVICE" LED
 Shows a yellow light<sup>1)</sup></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"FAILURE" LED
 Shows a red light</td>
<td>Shows a red light</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault signaling output
 Active</td>
<td>Active</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td>Switching elements/motor
 Deactivated</td>
<td>Deactivated</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

1) Exception in the case of 3RM11/3RM13 Failsafe motor starters: in the case of 3RM11/3RM13 Failsafe motor starters, the LED test is only carried out in the OFF state (without load current). In the ON state (with load current), the LEDs stay unchanged.

Note

If the 3RM1 motor starter does not respond as in the table above during the function test, check the connections and the supply to the 3RM1 motor starter. If the fault persists after correct disconnection, the device must be replaced.
3.6 Accessories and article number scheme

3.6.1 Overview of all device components

1. Basic unit/expansion unit, e.g. 3RM1 motor starter
2. Top cover flap
3. Bottom cover flap
4. Terminals, 3-pole, push-in, 1 x 2.5 mm²
5. Terminals, 3-pole, screw-type, 1 x 2.5 mm²
6. Terminals, 3-pole, push-in, 1 x 4 mm²
7. Terminals, 3-pole, screw-type, 1 x 4 mm²

For connection, there is an infeed system (not shown in the overview diagram) for these terminals.

8. Coding pins
9. Push-in lugs for wall mounting
10. Cover
11. Device connector
12. Device connector
13. Device termination connector
14. Sealable cover
3.6 Accessories and article number scheme

3.6.2 Accessories

The following accessories are offered for the 3RM1 motor starter:

- Infeed system (Page 48)
- Fuse module (Page 49)
- Sealable cover (Page 51)
- Wall mounting (Page 51)
- Device connectors (Page 52)
- Terminals (Page 55)
- Device identification label (Page 55)

3.6.2.1 Infeed system

The infeed system comprises 3-phase busbars, one infeed terminal, and one protective cap for covering unused connections. The infeed system is suitable for 3RM1 motor starters with screw connections.

Time-saving wiring between 3RM1 motor starters with screw terminals to the supply connection is possible thanks to the infeed system with 3-phase busbars.

These busbars are available in three lengths, thus allowing 2, 3 or 5 motor starters (arranged side-by-side) to be connected at the same time. More than 5 devices can be connected by clamping the connection tags of an additional busbar rotated by 180° (e.g. 6 devices using one 5-pole busbar and one 2-pole busbar).

A single motor starter can be removed from the assembly without loosening the terminal screws of neighboring motor starters.

The maximum summation current must not exceed 25 A (UL: 16 A). Primary infeed is connected via a three-phase infeed terminal. The three-phase busbars are finger-safe but empty connection tags must be fitted with covers.
Table 3- 6 Infeed system article numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-phase busbar for two 3RM1 motor starters</td>
<td>3RM1910-1AA</td>
</tr>
<tr>
<td>3-phase busbar for three 3RM1 motor starters</td>
<td>3RM1910-1BA</td>
</tr>
<tr>
<td>3-phase busbar for five 3RM1 motor starters</td>
<td>3RM1910-1DA</td>
</tr>
<tr>
<td>3-phase infeed terminal</td>
<td>3RM1920-1AA</td>
</tr>
<tr>
<td>Cover caps for terminal lugs of the 3-phase busbars</td>
<td>3RM1910-6AA</td>
</tr>
</tbody>
</table>

3.6.2.2 Fuse module

Function

A 3RM1 motor starter can be inserted in the fuse module. Various fuses can be fitted in the fuse module to provide short-circuit protection. The fuse module can only be combined with special 8US adapters. Power can be supplied from busbar systems when these adapters are installed, or by conventional wiring when a special adapter is used.
Description

3.6 Accessories and article number scheme

By using the fuse module, you can create an extremely compact load feeder.

Table 3- 7 Article numbers of the 3RM193 fuse module and the adapters

<table>
<thead>
<tr>
<th>Description</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse module with 20 A gG fuse 3NW6007-1</td>
<td>3RM1932-1AB</td>
</tr>
<tr>
<td>Fuse module without fuse 1)</td>
<td>3RM1930-1AA</td>
</tr>
<tr>
<td>Busbar adapter for busbar system</td>
<td>8US1216-0AS00</td>
</tr>
<tr>
<td>Busbar adapter for compact busbar system</td>
<td>8US1616-0AK02</td>
</tr>
<tr>
<td>Adapter for standard mounting rails</td>
<td>8US1716-0RK00</td>
</tr>
</tbody>
</table>

1) For use of alternative fuses

Note

- You can use cylindrical 10 x 38 fuses, e.g. 3NW6... gG with maximum 25 A, or Class CC with maximum 25 A.
- The maximum load change stability is achieved with a fuse protection of 25 A. In this case, a cable cross-section of 4 mm² is required for line protection.
- You can only achieve equipment protection by installing fuse protection according to type of coordination 2. Please refer to chapter "Load feeders - protection against short circuit (Page 69)" for the relevant fuse specifications.
3.6.2.3 **Sealable cover**

The sealable cover prevents unauthorized access to the rotary coding switch.

![Sealable cover](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRIUS sealable cover 22.5 mm, cutout for pushbuttons at bottom</td>
<td>3ZY1321-2AA00</td>
</tr>
</tbody>
</table>

3.6.2.4 **Wall mounting**

The push-in lugs for wall mounting of the 3RM1 motor starter are inserted at the top and bottom of the motor starter enclosure. This method is used to screw the motor starter onto level mounting surfaces.

The wall fixture is inserted into the enclosure at the top and bottom for screw-mounting the 3RM1 motor starter to level mounting surfaces.

<table>
<thead>
<tr>
<th>Description</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRIUS push-in lugs for wall mounting</td>
<td>3ZY1311-0AA00</td>
</tr>
</tbody>
</table>
3.6 Accessories and article number scheme

3.6.2.5 Device connectors

Function

The device connectors can be used to loop through a common control supply voltage of 24 V DC to reduce wiring complexity between the individual motor starters (3RM1...-.AA04). Moreover, Failsafe motor starters with a 24 V DC control supply voltage (3RM11...-.AA04 / 3RM13...-.AA04) can be interfaced to one 3SK safety relay as a group via device connectors. The control signals are connected via the device terminals on the motor starter.

The device connectors can either be snapped onto a standard mounting rail or can be screwed onto a flat mounting wall.

If the motor starters are not to be interconnected side by side, device connectors for looping through signals must be used for the gaps, e.g. for thermal reasons (see "Derating (Page 57)").

Table 3-10 Article numbers for device connectors for 3RM1 motor starters

<table>
<thead>
<tr>
<th>Description</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device connector for 3RM1 motor starters, 22.5 mm wide</td>
<td>3ZY1212-2EA00</td>
</tr>
<tr>
<td>Device connector for looping through signals, 22.5 mm wide</td>
<td>3ZY1212-2AB00</td>
</tr>
<tr>
<td>Device termination connector for 3RM1 motor starters, 22.5 mm wide</td>
<td>3ZY1212-2FA00</td>
</tr>
<tr>
<td>including left cover for the first device connector in the system configuration</td>
<td></td>
</tr>
</tbody>
</table>

Use of device connectors exclusively for the 24 V DC control supply voltage

By using device connectors, several 3RM1...-.AA04 motor starters can be jointly supplied with a control supply voltage of 24 V DC. This requires the control supply voltage to be applied to the A1 and A2 terminals of only one motor starter.

Up to ten motor starters can be connected to one 24 V DC control supply voltage with device connectors. The 24 V DC control supply voltage must be within the operating range of 0.9 to 1.1 for this purpose. If the full operating range of 0.8 to 1.25 is to be used, no more than five 3RM1...-.AA04 motor starters can be used. Otherwise, the infeed must be repeated for every 5th 3RM1 motor starter.

The last motor starter in a row can be placed on a device termination connector.
Using device connectors with 3SK safety relays

Multiple 3RM11/3RM13 Failsafe motor starters can be connected in a group for joint safety-related shutdown by a 3SK safety relay. Safety-related applications up to SILCL 3 to EN 62061, PL e/Cat. 4 to EN ISO 13849-1 can be realized.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of the safety function during hybrid operation of Failsafe and Standard motor starters. Can cause death or serious injury.</td>
</tr>
</tbody>
</table>
Hybrid operation of 3RM10/3RM12 Standard motor starters with 3RM11/3RM13 Failsafe motor starters in safety-related applications is not admissible.
Only ever use safety-related motor starters (3RM11 Failsafe and 3RM13 Failsafe) in safety-related applications.

3RM1 motor starters are shut down by interrupting the control supply voltage by means of the 3SK safety relay. For this reason, the control supply voltage must not also be applied to the 3RM1 motor starters.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of the safety function when using device connectors. Can cause death or serious injury.</td>
</tr>
</tbody>
</table>
When the product is operated with a 3SK safety relay and a device connector, the supply voltage for 3RM1 motor starters is fed in via the device connectors.
In this case, do not connect anything to terminals A1 and A2 of the 3RM1 motor starters, in order to prevent bypassing of the safety function.

With device connectors, up to five Failsafe motor starters can be operated on one 3SK safety relay. For configuration using 3SK safety relays, also follow the configuration rules in the manuals for the "3SK Safety Relays"; see Chapter "Further documentation" (Page 13).
The last motor starter in a row must be placed on a device termination connector. This closes the circuits that were built up with the connectors.
3.6 Accessories and article number scheme

Overview of all device connectors for 3RM1 motor starters and 3SK safety relays

<table>
<thead>
<tr>
<th>Article number</th>
<th>Type of device connector</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3ZY1212-2EA00</td>
<td>Device connector for 3RM1 motor starters, 22.5 mm wide</td>
<td>• 3RM1 motor starter</td>
</tr>
<tr>
<td>3ZY1212-2FA00</td>
<td>Device termination connector for 3RM1 motor starters, 22.5 mm wide</td>
<td>• 3RM1 motor starter</td>
</tr>
<tr>
<td>3ZY1212-2AB00</td>
<td>Device connector for looping through signals, 22.5 mm wide</td>
<td>• 3RM1 motor starter</td>
</tr>
<tr>
<td>3ZY1212-1BA00</td>
<td>Device connector for 3SK1 safety relay, 17.5 mm wide</td>
<td>• 3SK1120 safety relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3SK1220 input expansion</td>
</tr>
<tr>
<td>3ZY1212-2BA00</td>
<td>Device connector for 3SK1 safety relay, 22.5 mm wide</td>
<td>• 3SK1121 safety relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3SK1122 safety relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3SK1211 output expansion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3SK1230 power supply</td>
</tr>
<tr>
<td>3ZY1212-2DA00</td>
<td>Device termination connector for 3SK1 safety relay, 22.5 mm wide</td>
<td>• 3SK1121 safety relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3SK1122 safety relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3SK1211 output expansion</td>
</tr>
<tr>
<td>3ZY1212-0FA01</td>
<td>Device termination connector set for 3SK1 safety relay, > 45 mm wide</td>
<td>• 3SK1213 output expansion</td>
</tr>
<tr>
<td>3ZY1212-2GA00</td>
<td>Device connectors for 3SK2 safety relay, width 22.5 cm</td>
<td>• 3SK2112 safety relay</td>
</tr>
<tr>
<td>3ZY1212-2AB00</td>
<td>Device connectors for 3SK2 safety relay for looping through signals, width 22.5 cm</td>
<td>• 3SK21 safety relay</td>
</tr>
<tr>
<td>3ZY1212-4GA01</td>
<td>Device connector set for 3SK2 safety relay, width 45 cm</td>
<td>• 3SK2122 safety relay</td>
</tr>
</tbody>
</table>

Reference

You will find further information on using device connectors in:

3.6.2.6 Terminals

Each 3RM1 motor starter has three main current terminals and three control current terminals. The terminals can be replaced with ease.

![Terminal Diagram](image)

Table 3-11 Article numbers for the terminals

<table>
<thead>
<tr>
<th>Description</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control current terminals</td>
<td></td>
</tr>
<tr>
<td>Detachable terminal, 3-pole, screw terminals up to 1x2.5 mm²</td>
<td>3ZY1131-1BA00</td>
</tr>
<tr>
<td>Detachable 3-pole terminal, push-in terminals up to 2x1.5 mm²</td>
<td>3ZY1131-2BA00</td>
</tr>
<tr>
<td>Main current terminals</td>
<td></td>
</tr>
<tr>
<td>Detachable 2-pole terminal, screw terminals up to 1x4 mm²</td>
<td>3ZY1122-1BA00</td>
</tr>
<tr>
<td>Detachable 2-pole terminal, push-in terminals up to 1x4 mm² or 2x1.5 mm²</td>
<td>3ZY1122-2BA00</td>
</tr>
</tbody>
</table>

3.6.2.7 Device identification label

Table 3-12 Article numbers for the device identification labels

<table>
<thead>
<tr>
<th>Description</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRIUS device identification label, titanium gray, 17 mats each with 20 labels for snapping into place, size 20 x 7 mm, in box</td>
<td>3RT2900-1SB20</td>
</tr>
<tr>
<td>SIRIUS device identification label, titanium gray, 10 sheets each with 306 adhesive labels, size 19 x 6 mm, in transparent bag</td>
<td>3RT2900-1SB60</td>
</tr>
</tbody>
</table>
3.6.3 **Article number scheme for SIRIUS 3RM1 motor starter**

<table>
<thead>
<tr>
<th>Digit of the Article No.</th>
<th>1. - 3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>-</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRIUS 3RM1 motor starter</td>
<td>3RM</td>
<td></td>
</tr>
<tr>
<td>Generation (1)</td>
<td></td>
</tr>
<tr>
<td>Function (Direct-on-line starter = 0; direct-on-line starter Failsafe & ATEX certification = 1; reversing starter = 2; reversing starter Failsafe & ATEX certification = 3; accessories = 9)</td>
<td></td>
</tr>
<tr>
<td>Setting range rated motor current (0.1 ... 0.5 A = 01; 0.4 ... 2.0 A = 02; 1.6 ... 7.0 A = 07)</td>
<td></td>
</tr>
<tr>
<td>Connection type (screw terminal = 1, push-in spring-loaded terminal = 2, hybrid connection method*) = 3)</td>
<td></td>
</tr>
<tr>
<td>Reserved (A)</td>
<td></td>
</tr>
<tr>
<td>Width (22.5 mm = A)</td>
<td></td>
</tr>
<tr>
<td>Rated control supply voltage (24 V DC = 0; 110 ... 230 V AC / 110 V DC = 1)</td>
<td></td>
</tr>
<tr>
<td>Rated operating voltage (48 ... 500 V = 4)</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>3RM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>A</td>
<td>A</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

*) Hybrid connection method: control circuit realized as push-in spring-loaded terminal and main circuit as screw terminal
4.1 Rated operational current

Values for rated operational current I_e

Depending on the current setting range, the following rated operational currents apply for the 3RM1 motor starters:

<table>
<thead>
<tr>
<th>Motor starter version</th>
<th>3RM1.01-.....</th>
<th>3RM1.02-.....</th>
<th>3RM1.07-.....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated operational current $I_{eAC53a} [A]$</td>
<td>0.5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Setting range for $I_e [A]$</td>
<td>0.1 ... 0.5</td>
<td>0.4 ... 2</td>
<td>1.6 ... 7 (10)</td>
</tr>
<tr>
<td>Minimum current per phase of the motorized load [A]</td>
<td>0.05</td>
<td>0.14</td>
<td>0.6</td>
</tr>
</tbody>
</table>

As soon as the minimum current limit is violated, fault detection (phase failure) picks up.

Note

The devices with $I_{eAC53a} = 7$ A have in addition to this setting value an I_{eAC51} setting value for 10 A in the highest setting level. This setting is intended for resistive loads to 10 A and is not suitable for operating motors. With this setting, there is no overload trip in accordance with Class 10A. Instead, this takes place in accordance with the description in the chapter "Overload protection/device protection characteristic (Page 145)".

Derating factors

The maximum settable rated operational current decreases depending on the following factors:

- Installation altitude
- High motor starting current (> 8x starting current)
- Ambient temperature
4.2 Derating at high installation altitudes (> 2 000 m)

Dependence of the rated operational current on the installation altitude

The permissible rated operational current of the 3RM1 motor starter is reduced as shown in the diagram depending on the installation altitude.

Note
Maximum installation altitude of 3RM11 / 3RM13 Failsafe motor starters: 2000 m
Installation altitudes of more than 2000 m are not permissible for 3RM11/3RM13 Failsafe motor starters.

![Diagram showing the reduction of rated operational current with installation altitude]

From an installation altitude in excess of 2000 m, in the case of Standard 3RM10/3RM12 motor starters the maximum permissible operational voltage must be reduced due to the limited insulation strength. You can obtain details on request from SIEMENS Technical Assistance [http://www.siemens.com/sirius/technical-assistance].
4.3 Derating with high motor starting current

Motors with a high efficiency and high motor starting currents

High starting currents may have to be taken into consideration when using 3RM1 motor starters on motors with a high efficiency (IE3 or IE4). According to the product standard IEC 60947-4-2, the 3RM1 motor starters are designed for motors with a maximum 8-fold starting current.

If motors are operated that have a higher starting current, refer to the following table for the maximum adjustable motor current:

Table 4-1 Maximum settable motor current

<table>
<thead>
<tr>
<th>Motor starter version</th>
<th>3RM1.01-.....</th>
<th>3RM1.02-.....</th>
<th>3RM1.07-.....</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{ACSSA} [A] at 40 °C max. motor starting current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 8-fold I_e</td>
<td>0.5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>8.5-fold I_e</td>
<td>0.47</td>
<td>1.9</td>
<td>6.6</td>
</tr>
<tr>
<td>9-fold I_e</td>
<td>0.45</td>
<td>1.8</td>
<td>6.2</td>
</tr>
<tr>
<td>9.5-fold I_e</td>
<td>0.42</td>
<td>1.7</td>
<td>5.9</td>
</tr>
<tr>
<td>10-fold I_e</td>
<td>0.4</td>
<td>1.6</td>
<td>5.6</td>
</tr>
</tbody>
</table>

The device protection may respond sooner in the case of motors with a higher starting current. You will find details in "Overload protection/device protection characteristic (Page 145)".
4.4 Derating with high ambient temperature

4.4.1 Maximum ambient temperature for 3RM1.01 (0.5 A) and 3RM1.02 (2 A)
For the versions 0.5 A and 2 A, the following ambient temperature limits apply depending on the mounting position:

<table>
<thead>
<tr>
<th>Mounting position</th>
<th>Max. ambient temperature for 0.5 A and 2 A device for AC 53a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Side-by-side</td>
</tr>
<tr>
<td>Vertically on horizontal rail</td>
<td>50 °C</td>
</tr>
<tr>
<td>Horizontally on vertical rail</td>
<td>45 °C</td>
</tr>
<tr>
<td>Upright on horizontal rail/mounting surface</td>
<td>45 °C</td>
</tr>
</tbody>
</table>

4.4.2 Derating for 7 A devices
The maximum settable rated operational current for 3RM1.07 motor starters depends on the following factors:

- The utilization category: AC 53a / AC 51
- The mounting position: Vertical / horizontal / upright
- The design version: Individually / Alternately / Side-by-side
- Accessories: Device connector / Fuse module
Design versions for 7 A devices:

For the 7 A device without clearance, a distinction is made between the following design versions:

<table>
<thead>
<tr>
<th>Design version</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individually with clearance $a = 22.5$ mm</td>
<td></td>
</tr>
<tr>
<td>Can be implemented with signal loop-through connectors when using device connectors. Note: When using the 3-phase busbar systems, the necessary clearances can also be implemented by leaving the connections free. Cover the free connections with cover caps (accessories) to protect the free terminal lugs against touch.</td>
<td></td>
</tr>
</tbody>
</table>

| 7 A device alternately with 2 A device or 0.5 A device (b) without clearance | ![Diagram](image2) |

| Devices with the same rated operational current without clearance: Side-by-side | ![Diagram](image3) |

Note

Please note the assembly examples in Chapter "Typical circuits (Page 167)".

Note

When using the 3-phase busbar system, you can achieve the necessary clearances by leaving the connections free. Cover the free connections with cover caps (accessories). This will protect the free terminal lugs against touch.

Note

If you are using fuse modules on 8US... busbars, you can achieve the necessary clearances by installing cover profiles for 8US1922... busbars.
Maximum ambient temperature for 3RM1.07 (7 A)

The permissible rated operational current of the 3RM1.07 motor starter decreases depending on the mounting position, the design version and the ambient temperature T_u.

Utilization category AC 53 a:

For the 7 A version, the following derating values apply depending on the mounting position and the installation version:

<table>
<thead>
<tr>
<th>Mounting position</th>
<th>Ambient temperature in °C</th>
<th>Max. setting values for 7 A device in A for AC 53 a with design version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Individually/with 22.5 mm clearance</td>
</tr>
<tr>
<td>Vertically on horizontal rail</td>
<td>40</td>
<td>7 / 6.5$^{(2)}$</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>4.6</td>
</tr>
<tr>
<td>Horizontally on vertical rail</td>
<td>40</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2.0</td>
</tr>
<tr>
<td>Upright on horizontal rail/mounting surface</td>
<td>40</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.6</td>
</tr>
</tbody>
</table>

1) When using device connectors
2) With fuse module

Utilization category AC 51 (resistive loads):

The permissible rated operational current of the 3RM1.07 motor starter decreases for utilization category AC 51 depending on the design version and the ambient temperature T_u as follows:

<table>
<thead>
<tr>
<th>Ambient temperature in °C</th>
<th>Max. setting values for 7 A device in A for AC 51</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individually/with 22.5 mm clearance</td>
</tr>
<tr>
<td>40</td>
<td>10 / 8.5$^{(1)}$</td>
</tr>
<tr>
<td>45</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>55</td>
<td>5.2</td>
</tr>
<tr>
<td>60</td>
<td>5.2</td>
</tr>
</tbody>
</table>

1) With fuse module
4.5 Ambient conditions

4.5.1 Application environment

The 3RM1 motor starters are designed for use in enclosed spaces in which no severe operating conditions prevail (e.g. dust, caustic vapors, hazardous gases).

If they are to be installed in dusty or damp rooms, suitable control cabinets must be provided.

Note

If you operate the 3RM1 motor starter in a control cabinet, ensure that the cabinet is adequately ventilated.

4.5.2 Ambient temperature

The 3RM1 motor starter has been designed for use under ambient temperatures ranging from -25 °C to +40 °C, singly in a vertical mounting position, and without a reduction in the permissible rated operational current. With the deratings given in the section "Rated operational current (Page 57)", you can operate the 3RM1 motor starters at ambient temperatures of up to 60 °C.

4.5.3 Mounting position

Installation on a vertical mounting surface is recommended for the 3RM1 motor starter. Please observe the power reduction levels/deratings for other mounting positions given in the section "Rated operational current (Page 57)".
Configuration

4.5 Ambient conditions

Dimension drawing showing clearance to be maintained from grounded parts for the RM1 motor starter

![Dimension drawing showing clearance to be maintained from grounded parts for the RM1 motor starter](image)

- \(a = 50 \text{ mm} \)
- \(b = 3.5 \text{ mm} \)

Figure 4-1 Dimension drawing 3RM1 with grounding clearances, side and front
Dimension drawing showing clearances to be maintained with side-by-side mounting of 3RM1 motor starters

Figure 4-2 Dimension drawing 3RM1 with clearances for side-by-side mounting, side and front, not grounded

a = 50 mm
Dimension drawing showing clearance to be maintained from grounded parts for the 3RM19 fuse module with 3RM1 motor starter

Figure 4-3 Front view and side view

\[a = 50 \text{ mm} \]
\[b = 3.5 \text{ mm} \]
Dimension drawing showing clearance to be maintained with side-by-side mounting of 3RM19 fuse module with 3RM1 motor starter

\[a = 50 \text{ mm} \]

Figure 4-4 Front view and side view
4.5 Ambient conditions

4.5.4 Grounding measures
No grounding measures are required for the 3RM1 motor starter.

4.5.5 Permissible operating voltage
To be able to ensure safe isolation of the circuits from each other in accordance with IEC 60947-1, the following operating voltages are permissible:

Table 4-2 Safe isolation of the 3RM1 motor starters

<table>
<thead>
<tr>
<th>... to ...</th>
<th>Control circuit (A1/A2, OUT, IN1-3, M1/M2)</th>
<th>Signaling contacts (98/95/96)</th>
<th>Main circuit (1L1/3L2/5L3 2T1/4T2/6T3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control circuit (A1/A2, OUT, IN1-3, M1/M2)</td>
<td>-</td>
<td>250 V</td>
<td>500 V</td>
</tr>
<tr>
<td>Signaling contacts (98/95/96)</td>
<td>250 V</td>
<td>-</td>
<td>500 V</td>
</tr>
<tr>
<td>Main circuit (1L1/3L2/5L3 2T1/4T2/6T3)</td>
<td>500 V</td>
<td>500 V</td>
<td>-</td>
</tr>
</tbody>
</table>

4.5.6 Minimum load current
The minimum load current is 20% of the set motor current, but at least the absolute minimum current specified in the tables below.

The minimum load current differs in the case of Standard 3RM10/3RM12 and Failsafe 3RM11/3RM13 motor starters:

Table 4-3 Minimum load current in the case of Standard 3RM10/3RM12 motor starters

<table>
<thead>
<tr>
<th>Motor current</th>
<th>0.5 A</th>
<th>2 A</th>
<th>7 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorized load</td>
<td>0.05 A</td>
<td>0.14 A</td>
<td>0.6 A</td>
</tr>
<tr>
<td>Resistive load</td>
<td>0.05 A</td>
<td>0.14 A</td>
<td>0.6 A</td>
</tr>
</tbody>
</table>

Table 4-4 Minimum load current in the case of Failsafe 3RM11/3RM13 motor starters

<table>
<thead>
<tr>
<th>Motor current</th>
<th>0.5 A</th>
<th>2 A</th>
<th>7 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorized load</td>
<td>0.05 A</td>
<td>0.14 A</td>
<td>0.6 A</td>
</tr>
<tr>
<td>Resistive load</td>
<td>0.25 A</td>
<td>1 A</td>
<td>3.5 A</td>
</tr>
</tbody>
</table>

As soon as the minimum current limit is violated, fault detection (phase failure) picks up.
4.6 Load feeders - protection against short circuit

4.6.1 Protection against short circuit

The short-circuit strength in combination with fuses is up to 100 kA at 400 V and with SIRIUS 3RV2 motor starter protectors up to 55 kA at 400 V. Type of coordination 1 is maintained here.

DANGER

Hazardous voltage at the motor
Will cause death, serious injury, or damage to property.
Health hazard from automatic hot restart.

The safety function must be checked after every tripping of the motor starter protector (also in the case of overload).

After every short circuit in the case of short-circuit protection according to type of coordination 1, a 3RM1 motor starter is defective.
Replace a 3RM1 motor starter including the terminals after a short circuit in the case of short-circuit protection according to type of coordination 1.
With 3RM11 / 3RM13 Failsafe motor starters, you must check the safety functions in addition to replacing the unit.

With 3RM11 / 3RM13 Failsafe motor starters, also check the safety functions after a short circuit in the case of short-circuit protection according to type of coordination 2.

4.6.2 Configuration of load feeders

The 3RM1 motor starters can be combined with any short-circuit protection devices. Using SIRIUS 3RV20 motor starter protectors offers a convenient solution for the configuration of fuseless load feeders. However, combinations with fuses are also possible, mastering particularly high short-circuit currents. Type of coordination 2 (see Glossary (Page 189)) can also be achieved. To achieve a particularly compact design, 3RM193 fuse modules can be installed as well.

4.6.3 Configuration of a load feeder with 3RM1 motor starter in compliance with IEC

Short-circuit protection for load feeders in compliance with IEC can also be realized by motor starter protectors or fuses. Depending on the design of the protection device, the two types of coordination 1 or 2 can be achieved. The protection devices listed are the maximum permissible versions and, as an alternative, protection devices of the same type with a lower rated current can be used.
4.6 Load feeders - protection against short circuit

4.6.3.1 Fuseless design

Combining 3RM1 motor starters with motor starter protectors

DANGER

Hazardous voltage at the motor
Will cause death, serious injury, or damage to property.
Health hazard from automatic hot restart.

The safety function must be checked after every tripping of the motor starter protector (also in the case of overload).

After every short circuit in the case of short-circuit protection according to **type of coordination 1**, a 3RM1 motor starter is defective.
Replace a 3RM1 motor starter including the terminals after a short circuit in the case of short-circuit protection according to type of coordination 1.
With 3RM11 / 3RM13 Failsafe motor starters, you must check the safety functions in addition to replacing the unit.
With 3RM11 / 3RM13 Failsafe motor starters, check the safety functions after a short circuit in the case of short-circuit protection according to **type of coordination 2**.

The 3RM1 motor starters can be combined with the following motor starter protectors for short circuits according to type of coordination 1:

Table 4-5

Motor starter protectors according to type of coordination 1 for 3RM1 motor starters with 400 V

<table>
<thead>
<tr>
<th>Motor starter TA = 40 °C</th>
<th>Short-circuit current</th>
<th>Maximum permitted motor starter protectors for 400 V + 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>Current [kA]</td>
</tr>
<tr>
<td>3RM1...</td>
<td>0.5 / 2.0 / 7.0</td>
<td>55</td>
</tr>
<tr>
<td>3RM1...</td>
<td>0.5 / 2.0 / 7.0</td>
<td>12.5</td>
</tr>
<tr>
<td>3RM1...</td>
<td>0.5 / 2.0 / 7.0</td>
<td>10</td>
</tr>
<tr>
<td>3RM1...</td>
<td>0.5 / 2.0 / 7.0</td>
<td>7.5</td>
</tr>
<tr>
<td>3RM1...</td>
<td>0.5 / 2.0 / 7.0</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4-6

Motor starter protectors according to type of coordination 1 for 3RM1 motor starters with 500 V

<table>
<thead>
<tr>
<th>Motor starter TA = 40 °C</th>
<th>Short-circuit current</th>
<th>Maximum permitted motor starter protectors for 500 V + 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>Current [kA]</td>
</tr>
<tr>
<td>3RM1.01...</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>3RM1.02...</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>3RM1.07...</td>
<td>7.0</td>
<td>10</td>
</tr>
</tbody>
</table>
Combining 3RM1 motor starters with miniature circuit breakers

DANGER

Hazardous voltage at the motor
Will cause death, serious injury, or damage to property.
Health hazard from automatic hot restart.

The safety function must be checked after every tripping of the motor starter protector (also in the case of overload).

After every short circuit in the case of short-circuit protection according to **type of coordination 1**, a 3RM1 motor starter is defective.
Replace a 3RM1 motor starter including the terminals after a short circuit in the case of short-circuit protection according to type of coordination 1.
With 3RM11 / 3RM13 Failsafe motor starters, you must check the safety functions in addition to replacing the unit.
With 3RM11 / 3RM13 Failsafe motor starters, check the safety functions after a short circuit in the case of short-circuit protection according to **type of coordination 2**.

The 3RM1 motor starters can be combined with the following miniature circuit breakers for short circuits according to type of coordination 1:

Table 4-7 Miniature circuit breakers according to type of coordination 1 for 3RM1 motor starters with 400 V

<table>
<thead>
<tr>
<th>Motor starter $T_A = 40 , ^\circ C$</th>
<th>Short-circuit current</th>
<th>Maximum permitted miniature circuit breakers with 400 V + 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>Current [kA]</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3RM1.01…</td>
<td>0.5</td>
<td>6</td>
</tr>
<tr>
<td>3RM1.02…</td>
<td>2.0</td>
<td>6</td>
</tr>
<tr>
<td>3RM1.07…</td>
<td>7.0</td>
<td>6</td>
</tr>
</tbody>
</table>

4.6.3.2 Fused design

On tested assemblies, the type of coordination defines the permissible condition of devices following a short-circuit.

Type of coordination 1 means that the load feeder may be non-operational after a short circuit has been cleared.

Type of coordination 2 means that the 3RM1 motor starter is still operational following a short-circuit.

With the 3RM1 motor starter, short-circuit protection is only provided by fuses up to 400 V (+10%) for type of coordination 2.
Combining 3RM1 motor starters with fuses for type of coordination 1

<table>
<thead>
<tr>
<th>Motor starter T_A = 40 °C</th>
<th>Maximum permitted fuse links for 500 V + 10 % DIAZED operating class gG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rated current [A]</td>
</tr>
<tr>
<td>3RM1.01…</td>
<td>0.5</td>
</tr>
<tr>
<td>3RM1.02…</td>
<td>2.0</td>
</tr>
<tr>
<td>3RM1.07…</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Combining 3RM1 motor starters with fuses for type of coordination 2

DANGER

Hazardous voltage at the motor
Will cause death, serious injury, or damage to property.
Health hazard from automatic hot restart.

The safety function must be checked after every tripping of the motor starter protector (also in the case of overload).

With 3RM11/3RM13 Failsafe motor starters, check the safety function after a short circuit in the case of short-circuit protection according to type of coordination 2.
The 3RM1 motor starters can be combined with the following fuses for short-circuits according to type of coordination 2: In a fused configuration with 3RM1 motor starters, please observe the dimensioning information of the fuse manufacturer.

Table 4-9 Fuses according to type of coordination 2 for 3RM1 motor starters at 400 V

<table>
<thead>
<tr>
<th>Motor starter $T_A = 40 , ^\circ C$</th>
<th>Short-circuit current</th>
<th>Maximum permissible fuse links at 400 V + 10% operational class gG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>Current [kA]</td>
</tr>
<tr>
<td>3RM1.01...</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>3RM1.02...</td>
<td>2.0</td>
<td>2</td>
</tr>
<tr>
<td>3RM1.07...</td>
<td>7.0</td>
<td>2</td>
</tr>
</tbody>
</table>

4.6.4 Configuration of a load feeder with 3RM1 motor starter in compliance with UL

4.6.4.1 Function according to UL 508

The 3RM1 motor starters can be combined individually with a circuit breaker (motor starter protector) or fuses. A group installation is also possible according to UL.

4.6.4.2 Configuration of individual load feeders

A circuit breaker or appropriate fuses is/are assigned to each motor starter.

SCCR short circuit current ratings

The SCCR (short circuit current rating) indicates the maximum permissible short-circuit current for a switching device. A higher value can only be achieved in combination with protection devices such as fuses or circuit breakers.

This rating is required for mounting accessories in control cabinets (control panels) conforming to UL 508a. The switching device or switchgear assembly with the lowest value specifies the value for the entire control panel.

A low value makes engineering the supply voltage for the control panel difficult.

According to UL 508a, the 3RM1 motor starters have a standard short circuit current rating of 1 kA for the versions up to 2 A rated current and 5 kA for the version with 7 A.

Tests were also carried out with a short circuit rating of 100 kA (high capacity short circuit current ratings). The UL reports include details of possible combinations with Class J fuses, as well as with a number of circuit breakers.
Circuit breakers for protecting against short-circuit currents

⚠️ DANGER

Hazardous voltage at the motor
Will cause death, serious injury, or damage to property.

Health hazard from automatic hot restart.

The 3RM1 motor starter and the safety function must be checked after every tripping of the motor starter protector (also in the case of overload).

Replace a defective 3RM1 motor starter including the terminals after a short circuit. With 3RM11 / 3RM13 Failsafe motor starters, you must check the safety functions in addition to replacing the unit.

Standard short circuit according to UL 508 for 460 V + 5 %

Table 4-10 Circuit breakers for protecting against short-circuit currents

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ \text{C}$</th>
<th>Short-circuit current [kA]</th>
<th>Circuit breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>Type</td>
</tr>
<tr>
<td>3RM1.01...</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>3RM1.02...</td>
<td>2.0</td>
<td>1</td>
</tr>
<tr>
<td>3RM1.07...</td>
<td>6.1</td>
<td>5</td>
</tr>
</tbody>
</table>

High SCCR according to UL 508 for 460 V + 5 %

Table 4-11 Circuit breakers for protecting against high short-circuit currents

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ \text{C}$</th>
<th>Short-circuit current [kA]</th>
<th>Circuit breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>Type</td>
</tr>
<tr>
<td>3RM1.01...</td>
<td>0.5</td>
<td>65</td>
</tr>
<tr>
<td>3RM1.02...</td>
<td>2.0</td>
<td>65</td>
</tr>
<tr>
<td>3RM1.07...</td>
<td>6.1</td>
<td>18</td>
</tr>
</tbody>
</table>
Fuses for protection from short-circuit currents

DANGER

Hazardous voltage at the motor
Will cause death, serious injury, or damage to property.

Health hazard from automatic hot restart.

The 3RM1 motor starter and the safety function must be checked after every tripping of the motor starter protector (also in the case of overload).

Replace a defective 3RM1 motor starter including the terminals after a short circuit. With 3RM11 / 3RM13 Failsafe motor starters, you must check the safety functions in addition to replacing the unit.

Standard short circuit according to UL 508 for 460 V + 5 %

Table 4-12 Fuses for protecting against short-circuit currents

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ C$</th>
<th>Short-circuit current</th>
<th>Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>[kA]</td>
</tr>
<tr>
<td>3RM1.01…</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>3RM1.02…</td>
<td>2.0</td>
<td>5</td>
</tr>
<tr>
<td>3RM1.07…</td>
<td>6.1</td>
<td>5</td>
</tr>
</tbody>
</table>

High SCCR according to UL 508 for 460 V + 5 %

Table 4-13 Fuses for protecting against high short-circuit currents

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ C$</th>
<th>Short-circuit current</th>
<th>Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>[kA]</td>
</tr>
<tr>
<td>3RM1.01…</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>3RM1.02…</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>3RM1.07…</td>
<td>6.1</td>
<td>100</td>
</tr>
</tbody>
</table>
4.6 Load feeders - protection against short circuit

4.6.4.3 Configuring a group of load feeders (group installation)

A "group installation" is a combination of several 3RM1 motor starters with one common short-circuit protection device (branch circuit protection device). This common branch circuit protection device can be a circuit breaker according to UL489, e.g. a 3RV27 or fuses according to UL248.

The 3RM19 infeed system is suitable for a group installation according to UL because it can be loaded up to a total current of 16 A. As an alternative, distribution of the main circuit can be realized with individual cables that have an AWG 12 cross-section or with infeed system 16 A, with a different distribution, for example, "Power Distribution blocks" 5ST2-5 distribution blocks. Whether loading with a total current of >16 A is possible depends on the tested assembly.

For further information, see Certificate of Compliance CoC [https://support.industry.siemens.com/cs/ww/en/view/66427510].

SCCR short-circuit current rating

The SCCR (short circuit current rating) indicates the maximum permissible short-circuit current for a switching device. A higher value can only be achieved in conjunction with protection devices such as fuses or circuit breakers.

This rating is required for mounting accessories in control cabinets (control panels) conforming to UL 508a. The switchgear assembly with the lowest value specifies the value for the entire control panel.

Circuit breakers for protecting against short-circuit currents

| DANGER |
| Hazardous voltage at the motor |
| Will cause death, serious injury, or damage to property. |
| Health hazard from automatic hot restart. |
| The 3RM1 motor starter and the safety function must be checked after every tripping of the motor starter protector (also in the case of overload). |
| Replace a defective 3RM1 motor starter including the terminals after a short circuit. With 3RM11 / 3RM13 Failsafe motor starters, you must check the safety functions in addition to replacing the unit. |

Table 4-14 Circuit breakers for protecting against short-circuit currents

<table>
<thead>
<tr>
<th>Motor starter T<sub>A</sub> = 50 °C</th>
<th>Short-circuit current</th>
<th>Circuit breaker</th>
<th>Max. size [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>[kA]</td>
<td>Type</td>
</tr>
<tr>
<td>3RM1.01...</td>
<td>0.5</td>
<td>5</td>
<td>3RV2711 / 2721</td>
</tr>
<tr>
<td>3RM1.02...</td>
<td>2.0</td>
<td>5</td>
<td>3RV2711 / 2721</td>
</tr>
<tr>
<td>3RM1.07...</td>
<td>6.1</td>
<td>5</td>
<td>3RV2711 / 2721</td>
</tr>
</tbody>
</table>
High SCCR according to UL 508 for 460 V + 5%

Table 4-15 Circuit breakers for protecting against high short-circuit currents

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ C$</th>
<th>Short-circuit current</th>
<th>Circuit breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>[kA]</td>
</tr>
<tr>
<td>3RM1.01…</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>3RM1.02…</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>3RM1.07…</td>
<td>6.1</td>
<td>10</td>
</tr>
</tbody>
</table>

Fuses for protection from short-circuit currents

⚠️ **DANGER**

Hazardous voltage at the motor
Will cause death, serious injury, or damage to property.

Health hazard from automatic hot restart.

The 3RM1 motor starter and the safety function must be checked after every tripping of the motor starter protector (also in the case of overload).

Replace a defective 3RM1 motor starter including the terminals after a short circuit. With 3RM11 / 3RM13 Failsafe motor starters, you must check the safety functions in addition to replacing the unit.

Standard short circuit according to UL 508 for 460 V + 5%

Table 4-16 Fuses for protecting against short-circuit currents

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ C$</th>
<th>Short-circuit current</th>
<th>Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>[kA]</td>
</tr>
<tr>
<td>3RM1.01…</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>3RM1.02…</td>
<td>2.0</td>
<td>5</td>
</tr>
<tr>
<td>3RM1.07…</td>
<td>6.1</td>
<td>5</td>
</tr>
</tbody>
</table>
High SCCR according to UL 508 for 460 V + 5 %

Table 4-17 Fuses for protecting against high short-circuit currents

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ C$</th>
<th>Short-circuit current</th>
<th>Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>[kA]</td>
</tr>
<tr>
<td>3RM1.01...</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>3RM1.02...</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>3RM1.07...</td>
<td>6.1</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4-18 Fuses to provide protection against high short-circuit currents for use with the 3RM193 fuse module on 8US1216-0AS00 and 8US1616-0AK02 busbar adapters

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ C$</th>
<th>Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
</tr>
<tr>
<td>3RM1...</td>
<td>0.5 / 2.0 / 6.1</td>
</tr>
<tr>
<td>3RM1...</td>
<td>0.5 / 2.0 / 6.1</td>
</tr>
</tbody>
</table>

Table 4-19 Fuses to provide protection against high short-circuit currents for use with the 3RM193 fuse module on the 8US1716-0RK00 standard mounting rail adapter

<table>
<thead>
<tr>
<th>Motor starter $T_A = 50 , ^\circ C$</th>
<th>Fuse</th>
<th>Connecting cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article number</td>
<td>Rated current [A]</td>
<td>Short circuit current [kA]</td>
</tr>
<tr>
<td>3RM1...</td>
<td>0.5 / 2.0 / 6.1</td>
<td>50</td>
</tr>
</tbody>
</table>
4.7 Infeed for the main circuit

4.7.1 Infeed options

You have the following options for implementing the infeed for the main circuit of the 3RM1 motor starter:

- Infeed via parallel wiring of individual 3RM1 motor starters
- Infeed via the 3RM19 infeed system (for 3RM1...-1AA.4 motor starters with screw connections and 3RM1...-3AA.4 motor starters with hybrid connections)
- Infeed via the 3RM193 fuse module (for all 3RM1 motor starters)

4.7.2 3RM19 3-phase infeed system

The 3RM19 3-phase infeed system is designed for 3RM1...-1AA.4 motor starters with screw connections and 3RM1...-3AA.4 motor starters with hybrid connections. Push-in terminals can therefore not be connected with this infeed system.

Note

Use of several busbars

More than five devices can be connected by clamping the terminal lugs of a second busbar rotated by 180°.

A motor starter must be plugged into the connection points of the busbars. Observe this in the case of gaps stipulated for derating purposes, and select appropriate busbars.

The special 3-phase busbar enables fault-free and fast main circuit wiring when using several 3RM1 motor starters arranged side-by-side. The energy is routed from an upstream short-circuit protection device to the system via an infeed terminal. The 3-phase busbar is designed in such a way that the maximum number of 3RM1 motor starters is only limited by the rated operational current of the infeed system.
4.7 Infeed for the main circuit

Rated operational current

For the components of the 3RM19 infeed system, the maximum permissible rated operational current is 25 A (UL: 16 A).

If you use several 3RM1 motor starters that together require more than 25 A, form groups that each have a maximum requirement of 25 A (UL: 16 A).

Note

Multiple infeed

If you plan multiple infeed in the case of a respective requirement of more than 25 A, you must observe a potential current asymmetry in the infeeds.

Mounting

Attach the busbar from below to the rear terminals L1, L2 and L3 of the 3RM1 motor starter. The outgoing feeders to the motors thus remain accessible.

![Figure 4-5 Attaching the 3RM19 infeed system to the 3RM1 motor starters](image)

Figure 4-5 Attaching the 3RM19 infeed system to the 3RM1 motor starters
4.7 Infeed for the main circuit

DANGER

Hazardous voltage.
Will cause death or serious injury.

If free and uncovered terminal lugs are touched when the load voltage is switched on, death or serious physical injury will result.

For this reason, always cover the free terminal lugs (= free slots that are unassigned for thermal reasons, for example) with a cover cap. The cover caps are available as accessories.

Energy is supplied via the infeed terminal 3RM1920-1AA. This means you can connect conductors with a cross-section of 1.5 mm² to 4 mm².

4.7.3 3RM193 fuse module

A fuse module can be used to create a very compact design of load feeder. The 3RM1 motor starter in combination with the integrated fuses for short-circuit protection can be used on 8US busbar systems or on standard mounting rails.

The fuse module can be installed using a variety of different 8US adapters:
- In all 60 mm busbar systems
- In compact busbar systems
- On standard mounting rails

The interface to the adapter permits simple and safe replacement of the load feeder.

The fuse module can be combined with all 3RM1 motor starters. The easily replaceable fuses protect the motor starter, the connected motor and the cables.

Rated operational current

The maximum permissible rated operational current for the 3RM193 fuse module is 25 A.

Assembly

1. Connect the motor starter to terminals L1, L2 and L3.
2. Connect up the motor feeder cables.
3. Mount the assembled load feeder on an adapter.
4.8 Configuration with device connectors

The device connector may be used only with the 24 V DC version of the motor starter. There must be no mixing of the Standard and Failsafe variants of the 3RM1 motor starter via the device connector. If both variants are used, these must be fitted on separate device connector systems. This has no influence on the infeed system for the 3RM19 main circuit, which can still be used without restriction for a combination of the variants.

For additional information on using device connectors, refer to “FAQs on the 3RM1 motor starter [https://support.industry.siemens.com/cs/ww/en/view/81525494]”.

Figure 4-6 An assembled busbar system with fuse modules
4.9 Examples/applications

4.9.1 Operation with the EMERGENCY-STOP function

The 3RM11 Failsafe and 3RM13 Failsafe safety-related motor starters can be used with any safety relays and safety-related controllers in safety-related applications up to SIL CL 3 in accordance with IEC 62061, PL e/Cat. 4 in accordance with EN ISO 13849-1.

Basic configuration

Figure 4-7 Basic configuration with safety relay or safety-related controller
Configuration with 3SK safety relay and device connectors

If you use safety-related motor starters (3RM11...-AA04 / 3RM13...-AA04) with a control supply voltage of 24 V DC with the 3SK safety relay, you can establish safe connection of the safety-related wiring using the device connectors. Use of device connectors avoids errors when setting up the control circuit wiring and offers savings in cable laying. In addition, the test overhead following completion of the control cabinets is reduced. The 3RM11/3RM13 safety-related motor starters can be used optimally as output expansions in the 3SK system.

When the EMERGENCY-STOP is actuated, the motor starters' control supply voltage is shut down and the motor is isolated from the power supply. Due to the internal self-monitoring of the 3RM11/13 Failsafe motor starters in compliance with SILCL 3/PL e, there is no need for a feedback signal to the 3SK safety relay.

⚠️ WARNING

Loss of the safety function when using device connectors. Can cause death or serious injury.

When the product is operated with a 3SK safety relay and a device connector, the supply voltage for 3RM11 / 3RM13 motor starters is fed in via the device connectors.

In this case, do not connect anything to terminals A1 and A2 of the 3RM11/3RM13 Failsafe motor starters, in order to prevent bypassing of the safety function.

⚠️ WARNING

Loss of the safety function during hybrid operation of Failsafe and Standard motor starters. Can cause death or serious injury.

Hybrid operation of 3RM10/3RM12 Standard motor starters with 3RM11/3RM13 Failsafe motor starters in safety-related applications is not admissible.

Only ever use safety-related motor starters (3RM11 Failsafe and 3RM13 Failsafe) in safety-related applications.

Note

Please observe the information about the control supply voltage and the control inputs in Chapter "Device versions (Page 29)" and in the "Technical Data Sheet [https://support.industry.siemens.com/cs/ww/en/p/16311td]."
4.9 Examples/applications

SIRIUS 3RM1 motor starter

Manual, 06/2016, A5E0345285095020A/RS-AE/005

References

You will find more typical circuits in the Appendix "Typical circuits (Page 167)."

Further information on operation in safety-related applications in the 3SK safety relay manuals, see Chapter "Further documentation (Page 13)." Follow the safety instructions and information contained there.

Figure 4-8 Configuration with 3SK1 safety relay and device connectors

Figure 4-9 Configuration with 3SK2 safety relay and device connectors
Configuration

4.9 Examples/applications
5.1 Warning notices

Warning notices before installation, wiring, and commissioning

DANGER

Hazardous voltage.
Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

NOTICE

Damage caused by electrostatic charge

When handling and installing the 3RM1 motor starters, ensure that the components are protected from electrostatic charge. Changes to the system configuration and wiring are only permissible in the voltage-free state.
Connection of 3RM11 / 3RM13 Failsafe motor starters is only permissible when the power supply units (PELV and SELV) are switched off.
5.2 Mounting the devices on a level surface

Requirements

Please note the following requirements for mounting on a level surface:

- Please observe the information about the mounting position in the chapter "Mounting position (Page 63)".
- Two properly executed drill holes with thread or plug on the level surface
 For details of the distances between the drilled holes, please refer to the relevant dimension drawings in the chapter "Dimension drawings (Page 149)".
- Two screws to fit the holes M4 x 12 in accordance with DIN 784
- Two plastic securing brackets
 Refer to the accessories list for the relevant article number in the chapter "Accessories and article number scheme (Page 47)".

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert the securing brackets into the openings provided on the device until they engage.</td>
<td>![Figure 1]</td>
</tr>
<tr>
<td>2</td>
<td>Hold the device up to the level surface prepared for screw fastening.</td>
<td>![Figure 2]</td>
</tr>
<tr>
<td>3</td>
<td>Insert the screws through the oblong holes in the securing brackets.</td>
<td>![Figure 3]</td>
</tr>
<tr>
<td>4</td>
<td>Screw the device onto the level surface so that it is secure. Tightening torque: 1 Nm</td>
<td>![Figure 4]</td>
</tr>
</tbody>
</table>

Tightening torque: 1 Nm
5.3 Disassembling the devices from a level surface

DANGER

Hazardous voltage.
Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

Requirements

- The terminals have been removed or disconnected.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hold the device firmly.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unscrew the cap screws.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lift the device from the level surface.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Remove the securing brackets from the device.</td>
<td></td>
</tr>
</tbody>
</table>
5.4 Mounting the devices on a standard mounting rail

Requirements

- At the installation location, a horizontal 35 mm mounting rail in accordance with DIN EN 60715 is properly secured
- Please observe the information about the mounting position in chapter "Mounting position (Page 63)"

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hang the back of the device onto the upper edge of the standard mounting rail</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Press the lower half of the device against the rail until the device engages</td>
<td></td>
</tr>
</tbody>
</table>
5.5 Mounting the devices on a fuse module

Requirements

Make sure the rated operational current of the fuses fitted in the module is less than 25 A.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Figure</th>
</tr>
</thead>
</table>
| 1 and 2 | • Push the 3RM1 motor starters into the fuse module until the upper and lower latches on the motor starter enclosure snap into position.
• Pull the device gently to check that it is firmly seated. | ![Diagram](image) |

See also

[Connecting the fuse module (option) (Page 124)](Page 124)
5.6 Disassembling devices from a fuse module

DANGER

Hazardous voltage.
Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

Requirements

- The fuse module has been removed from the adapter.
- The control circuit terminals have been removed or disconnected.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Detach the cables marked L1 to L3.</td>
<td>3</td>
</tr>
<tr>
<td>2 to 3</td>
<td>Use a screwdriver to unlatch the motor starter at the top.</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Pull the 3RM1 motor starter out of the fuse module.</td>
<td>4</td>
</tr>
</tbody>
</table>
5.7 Mounting the fuse module

There are two possible mounting positions for the fuse module/motor starter assembly:

Motor feeder at bottom

Motor feeder at top

Requirements

- The fuses have been fitted in the fuse module.
- The cover over the fuse compartment is closed.
- The motor starter has been installed and connected up.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Figure</th>
</tr>
</thead>
</table>
| 1 | • Push the fuse module down onto the adapter until it snaps into position. | ![Diagram](image)
| | • Check whether the fuse module is securely engaged in the adapter. | |
| | • Check the lower narrow side of the fuse module to make sure that the plastic lug is not protruding. | |
5.8 Dismantling the fuse module

DANGER

Hazardous voltage. Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

Requirements

- The control circuit terminals have been removed or disconnected.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Figure</th>
</tr>
</thead>
</table>
| 1 and 2 | 1. Use a screwdriver to press down the plastic lug on the narrow side of the fuse module.
2. Pull the module upwards out of the adapter. | ![Image of fuse module with steps 1 and 2 highlighted] |
5.9 Modifying the fuse module to a 1-pole connection

Requirements

- The fuse module has been detached from the busbar system.
- The fuse compartment is open and the fuses removed from the compartment.

Procedure

Note

Modify the fuse module before you install it.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Figure</th>
</tr>
</thead>
</table>
| 1 | Use a pair of pliers to remove the snap rings at phases L2 and L3.
 | • Bottom
 | • Top | |
5.9 Modifying the fuse module to a 1-pole connection

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Figure</th>
</tr>
</thead>
</table>
| 2 | 1. Pick up each of the fuse holders. | ![Figure 2](image)
| | 2. Pull each of the leads with the fuse holder facing inwards out of the housing. | |
| 3 | Insert the fuse into the fuse holder at phase 1. | ![Figure 3](image) |
| 4 | Close the fuse compartment. | |
| 5 | Mount the motor starter on the fuse module. | |
5.10 Disassembling devices from a standard mounting rail

DANGER

Hazardous voltage.
Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

Requirements

- The terminals have been removed or disconnected.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Press the device downwards.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pull the lower half of the device away from the standard mounting rail.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lift the device from the upper edge of the standard mounting rail.</td>
<td></td>
</tr>
</tbody>
</table>
5.11 Mounting the devices with device connectors on a standard mounting rail

Requirements

- At the installation location, a horizontal 35 mm mounting rail in accordance with DIN EN 60715 is properly secured
- Please observe the information about the mounting position in chapter "Mounting position" (Page 63)

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Place the back of the device connector on the upper edge of the standard mounting rail.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Press the lower half of the device connector against the standard mounting rail until it engages.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Repeat the procedure with all the required device connectors.</td>
<td></td>
</tr>
</tbody>
</table>
Mounting

5.11 Mounting the devices with device connectors on a standard mounting rail

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Push the device connectors together until they engage.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mount the cover on the left on the first device connector in the system configuration. The cover is included in the scope of supply of the device terminator.</td>
<td></td>
</tr>
</tbody>
</table>
5.11 Mounting the devices with device connectors on a standard mounting rail

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Mount the device on the device connector.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mount all the devices required for the system configuration in accordance with the respective installation guidelines on the device connectors.</td>
<td></td>
</tr>
</tbody>
</table>
5.12 Disassembling the devices with device connectors from a standard mounting rail

![DANGER]

Hazardous voltage. Will cause death or serious injury. Turn off and lock out all power supplying this device before working on this device.

Requirements

- The terminals have been removed or disconnected.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unlock the device using a screwdriver.</td>
<td>![Figure 1]</td>
</tr>
<tr>
<td>2</td>
<td>Pull the lower half of the device away from the device connector.</td>
<td>![Figure 2]</td>
</tr>
<tr>
<td>3</td>
<td>Unlock the device using a screwdriver.</td>
<td>![Figure 3]</td>
</tr>
</tbody>
</table>
5.12 Disassembling the devices with device connectors from a standard mounting rail

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Pull the device away from the device connector.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Separate the device connectors using a screwdriver.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Remove the cover to the left of the first device connector.</td>
<td></td>
</tr>
</tbody>
</table>
Mounting

5.12 Disassembling the devices with device connectors from a standard mounting rail

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Press the device connector down.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pull the lower half of the device connector away from the standard mounting rail.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Lift the device connector from the upper edge of the standard mounting rail.</td>
<td></td>
</tr>
</tbody>
</table>
5.13 Mounting the devices with device connectors on a wall

Requirements

Please note the following requirements for mounting on a level surface:

- Please observe the information about the mounting position in the chapter "Mounting position (Page 63)".
- Two properly executed drill holes with thread or plug on the level surface
 For details of the distances between the drilled holes, please refer to the relevant dimension drawings in the chapter "Dimension drawings (Page 149)".
- Two screws to fit the M4 x 12 holes in accordance with DIN 784.
- Device connector
 Refer to the accessories list for the relevant article number in the chapter "Accessories and article number scheme (Page 47)".

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Push the device connectors together until they engage.</td>
<td>![Figure 1]</td>
</tr>
<tr>
<td>2</td>
<td>Mount the cover on the left on the first device connector in the system configuration. The cover is included in the scope of supply of the device terminator.</td>
<td>![Figure 2]</td>
</tr>
</tbody>
</table>
Mounting

5.13 Mounting the devices with device connectors on a wall

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hold the device connector against the level surface prepared for screw fastening.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Insert the screws through the holes in the device connectors.</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Screw the device connector securely onto the level surface.
 Tightening torques:
 - Top: < 0.1 Nm
 - Bottom: 1 Nm | ![Figure 5](image3.png) |
| 6 | Mount the device on the device connector. | ![Figure 6](image4.png) |
| 7 | Mount all the devices required for the system configuration in accordance with the respective installation guidelines on the device connectors. | ![Figure 7](image5.png) |
5.14 Disassembling the devices with device connectors from a wall

DANGER

Hazardous voltage.
Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

Requirements

- The terminals have been removed or disconnected.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unlock the device on the underside using a screwdriver.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pull the lower half of the device away from the device connector.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Unlock the device on the top using a screwdriver.</td>
<td></td>
</tr>
</tbody>
</table>
Mounting

5.14 Disassembling the devices with device connectors from a wall

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Pull the device away from the device connector.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Release the screws.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Separate the device connectors.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Remove the cover to the left of the first device connector.</td>
<td></td>
</tr>
</tbody>
</table>
5.15 Mounting the sealable cover

The sealable cover is used to protect the set rated operational current of the load (current setting I_e) against unauthorized or unintentional manipulation.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attach the two bottom hooks on the cover to the openings on the device and fold the cover up</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Seal the cover to secure it against unauthorized removal.</td>
<td></td>
</tr>
</tbody>
</table>
Mounting

5.15 Mounting the sealable cover
Connection

6.1 Connecting the screw-type terminals

DANGER

Hazardous voltage.
Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

NOTICE

Damage to property due to loss of overvoltage protection if wiring is wrong.

Observe the wiring’s terminal assignment:

For optimum response in the event of short circuits and for protection against overvoltages, the main circuit's infeed must be at terminals 1/L1 to 5/L3.

Requirements

- Cross-tip screwdriver size PZ 1 x 80
- For suitable connection cross-sections of the cables, see chapter Connection cross-sections (Page 141).

Procedure

DANGER

Hazardous voltage.
Will cause death or serious injury.

To ensure protection against an electric shock hazard with the hinged cover open at the signaling contacts 95, 96, 98 at a voltage of ≥ 50 V, screw in all terminal screws that are not needed to clamp conductors.
6.1 Connecting the screw-type terminals

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert the relevant cable into square on the screw terminal until it engages.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hold the cable in the screw terminal.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tighten the screw with a torque of 0.6 to 0.8 Nm.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pull on the cable to ensure it is screwed tight.</td>
<td></td>
</tr>
</tbody>
</table>
6.2 Disconnecting the screw-type terminals

DANGER

Hazardous voltage.
Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

Requirements

- Cross-tip screwdriver size PZ 1 x 80

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unscrew the screw of the screw-type terminal.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Remove the cable from the unscrewed screw-type terminal.</td>
<td></td>
</tr>
</tbody>
</table>
6.3 Connecting the push-in terminals

6.3.1 Wiring rules for spring-loaded terminals (with push-in technology)

<table>
<thead>
<tr>
<th>Wiring rules for ...</th>
<th>Control current terminals (top of enclosure):</th>
<th>Main current terminals (bottom of enclosure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectable cross-sections for solid cables</td>
<td>2 x 0.5 ... 2 x 1.5 mm²</td>
<td>0.5 ... 4 mm²</td>
</tr>
<tr>
<td>(AWG 1): 20 ... 16</td>
<td>AWG 1): 20 ... 12</td>
<td></td>
</tr>
<tr>
<td>Connectable cross-sections for flexible cables</td>
<td>Without end sleeve</td>
<td>2 x 0.5 ... 2 x 1.5 mm²</td>
</tr>
<tr>
<td>(AWG 1): 20 ... 16</td>
<td>AWG 1): 20 ... 12</td>
<td></td>
</tr>
<tr>
<td>With end sleeve (with and without plastic sleeve)</td>
<td>2 x 0.5 ... 2 x 1.0 mm² 2)</td>
<td>0.5 ... 2.5 mm²</td>
</tr>
<tr>
<td>(AWG 1): 20 ... 18</td>
<td>(AWG 1): 20 ... 14</td>
<td></td>
</tr>
<tr>
<td>With TWIN end sleeve</td>
<td>---</td>
<td>2 x 0.5 ... 2x1.5 mm²</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>(AWG 1): 20 ... 16</td>
</tr>
<tr>
<td>Cable stripping length</td>
<td>10 ... 11 mm</td>
<td></td>
</tr>
<tr>
<td>End sleeves according to DIN 46228-4 with plastic sleeve</td>
<td>10 mm</td>
<td></td>
</tr>
</tbody>
</table>

1) AWG: American Wire Gauge (AWG does not define use of end sleeves)
2) When 2 x 1.0 mm² end sleeves with a plastic sleeve are used, space problems may arise with the sleeves; as an alternative, you are advised to use end sleeves without plastic sleeves

Notes on handling spring-loaded terminals with push-in technology

The terminal area of the spring-loaded terminals is rectangular, and the maximum overall dimensions of a conductor to be wired must not exceed 1.5 x 2.4 mm (control current terminals) or 2.4 x 2.8 mm (main current terminals).

Attention must be paid to the orientation of the terminal area, which may call for vertical fitting of rectangularly crimped cables.

To make optimum use of available terminal area, you are advised to choose a form of crimping that creates a corresponding rectangular contour. Trapezoidal crimping is generally very highly suitable in this case.
When use is made of a cable that utilizes the full overall height, the terminal's spring is deflected to the maximum. Therefore, removal of this cable may become a problem because it requires further deflection of the spring.

Control current terminals

Main current terminals

Terminal area of control current terminals

Terminal area of main current terminals

6.3.2 Connecting the push-in terminals

DANGER

Hazardous voltage. Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

NOTICE

Damage to property due to loss of overvoltage protection if wiring is wrong.

Observe the wiring's terminal assignment:

For optimum response in the event of short circuits and for protection against overvoltages, the main circuit's infeed must be at terminals 1/L1 to 5/L3.

Push-in connections are a form of spring-loaded terminals allowing wiring without tools for rigid conductors or conductors equipped with end sleeves.

For wiring finely stranded or stranded conductors without end sleeves on push-in connections, a screwdriver is required.

Requirements

- Screwdriver DIN 5264 of the size 0.5 x 3 mm (for finely-stranded conductors only)
- For suitable connection cross-sections of the cables and notes on end sleeve finishing, see Chapter Connection cross sections (Page 141).
6.3 Connecting the push-in terminals

Procedure

Table 6-1 Rigid conductors or conductors equipped with end sleeves

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert the cable into the oval opening as far as it will go.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pull on the cable to ensure it is tight.</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-2 Finely-stranded conductors

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert the screwdriver in the rectangular opening to open the terminal (oval opening).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Insert the cable as far as it will go into the oval opening and remove the screwdriver.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pull on the cable to ensure it is tight.</td>
<td></td>
</tr>
</tbody>
</table>
6.4 Disconnecting the push-in terminals

DANGER

Hazardous voltage.
Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

Requirements

- Screwdriver DIN 5264 of the size 0.5 x 3 mm

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert the flat-head screwdriver into the rectangular opening of the spring-loaded terminal until it engages.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Remove the cable from the oval opening.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Remove the screwdriver.</td>
<td></td>
</tr>
</tbody>
</table>
6.5 Attaching the terminals

DANGER
Hazardous voltage.
Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

Requirements
- You must have removed the terminals, for the purpose of replacing a device, for example.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert the terminal into the guide rail of the device.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Slide the terminal back until it audibly engages.</td>
<td></td>
</tr>
</tbody>
</table>
6.6 Removing the terminals

DANGER
Hazardous voltage.
Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Press the clip of the terminal block upwards.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pull the terminal out to the front.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lift the terminal out of the guide rail of the device.</td>
<td></td>
</tr>
</tbody>
</table>
Terminal coding

You can provide the terminals with coding pins (3ZY1440-1AA00). These help you to avoid errors when replacing the terminals.

Figure 6-1 Safety with terminal coding

Figure 6-2 Terminal coding
6.7 Connecting the infeed system (option)

DANGER

Hazardous voltage.
Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

Requirements

Please note the following requirements for mounting the 3RM19 infeed system:

- Make sure the rated operational current of the infeed system (IEC: 25 A; UL: 16 A) is not exceeded.
- The 3RM1 motor starters are mounted next to each other on a mounting rail or a level mounting surface.
- The mounting system is only suitable for main current terminals with screw connections.
- Cross-tip screwdriver size PZ 1 x 80
- For suitable connection cross-sections of the cables for the infeed terminal, see the Chapter "Connection cross sections" (Page 141).
DANGER

Hazardous voltage.
Will cause death or serious injury.

If free and uncovered terminal lugs are touched when the load voltage is switched on, death or serious physical injury will result.

For this reason, always cover the free terminal lugs (= free slots that are unassigned for thermal reasons, for example) with a cover cap. The cover caps are available as accessories.

Procedure

Figure 6-3 Mount the 3RM19 infeed system
Connection

6.7 Connecting the infeed system (option)

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connect the main circuit L1, L2 and L3 to the infeed terminal. Tighten the screw terminals with 0.6 to 0.8 Nm. Pull on the cables to ensure they are screwed tight.</td>
</tr>
<tr>
<td>2</td>
<td>Plug the first busbar into the rear screw terminals on the underside of the device. The first three terminal lugs must be assigned here to the first device on the extreme left.</td>
</tr>
<tr>
<td>3</td>
<td>Plug the infeed terminal into the screw terminals of the first device together with the busbar from Step 1.</td>
</tr>
<tr>
<td>4</td>
<td>Mount the second busbar rotated through 180°. The first three terminal lugs overlap here with the last three terminal lugs of the first busbar, and are mounted in the same device.</td>
</tr>
<tr>
<td>5</td>
<td>Tighten the screw terminals with 0.6 to 0.8 Nm. Pull on the busbars to ensure they are screwed tight.</td>
</tr>
</tbody>
</table>

Note

Third busbar

If you use a third busbar, you must rotate it in the same way as the first busbar, and mount it so that it overlaps the second busbar.

Note

Free slots due to derating

If a clearance is left between the devices for thermal reasons, three terminal lugs (= one slot) must always remain free.

Note

Busbar connection points

A motor starter must be plugged into the connection points of the busbars. Observe this in the case of gaps stipulated for derating purposes, and select appropriate busbars.
6.8 Connecting the fuse module (option)

DANGER

Hazardous voltage.
Will cause death or serious injury.
Turn off and lock out all power supplying this device before working on this device.

Requirements

- Make sure the rated operational current of the fuses fitted in the module is less than 25 A.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connect the infeed end of the cables marked L1 to L3 at the 3RM1 motor starter using the connection system provided. For further information, see the following chapters: "Connecting the screw-type terminals (Page 111)" "Connecting the push-in terminals (Page 114)"</td>
<td></td>
</tr>
</tbody>
</table>
7.1 Operator controls

The following operator controls are available on the 3RM1 motor starter for parameter assignment and operation:

- Rotary coding switch with adjusting scale for current setting "Ie":
 You set the rated operational current of the load "Ie" with the rotary coding switch.

- "TEST/RESET/RESET MODE" button:
 You can start different function tests with the "TEST/RESET/RESET MODE" button. You can find details about this in the section "Carrying out the function test (Page 45)".

 Following an overload trip, the 3RM1 motor starter can be reset using the button after three minutes have elapsed. You can find details about this in the section "Setting the RESET method (Page 126)".
7.1 Parameterizing the 3RM1 motor starter

All the settings are made directly at the 3RM1 motor starter:

1. Rotary coding switch for rated operational current of the load
2. TEST/RESET/RESET MODE button

Figure 7-1 Front view of the 3RM1 motor starter

7.1.2 Setting the rated operational current

Use a screwdriver to set the load's rated operational current (current setting I_e) on the rotary coding switch.

A change takes effect immediately. The sealable cover (accessory) prevents unauthorized access to the rotary coding switch.

7.1.3 Setting the RESET method

On the 3RM1 motor starter, you can select either manual RESET or auto RESET for resetting following an overload trip.

SIRIUS 3RM1 motor starter

Manual, 06/2016, A5E0345285095020A/RS-AE/005
7.1 Operator controls

Manual RESET

After an overload trip, reset the 3RM1 motor starter manually after a cooling time of three minutes using the "TEST/RESET/RESET MODE" button. As an alternative, in the case of the 3RM10/3RM12 Standard motor starters, you can use the RESET control input IN3 for acknowledgment.

Auto RESET

After an overload trip, the 3RM1 motor starter is reset automatically after a cooling time of three minutes.

WARNING

Automatic restart following reset. Can cause death or serious injury.

If the DEVICE LED shows a yellow light and the FAILURE LED a red light, and a manual RESET or auto RESET takes place following an overload trip, the machine starts up immediately if there is a control command at IN1/IN2. Personnel in the danger area can be injured.

Make sure that the danger area of the machine is kept clear of people.

Note

Restriction in the hazardous area

In applications for the protection of motors in hazardous areas, a 3RM11/3RM13 Failsafe motor starter may only be operated with the "Manual RESET" setting. The "RESET Mode" LED must be off.

Procedure

When it is delivered, the 3RM1 motor starter is set to manual RESET. You can change the setting as follows:

1. Press the "TEST/RESET/RESET MODE" button and hold it down. Switch on the supply voltage via A1-A2.
2. The set RESET method is changed to the other RESET method.
 - "RESET MODE" LED lit: Auto RESET selected
 - "RESET MODE" LED not lit: Manual RESET selected

Note

Briefly switching the supply voltage off and on again does not shorten the cooling time and there is no automatic acknowledgment.
7.2 Displays and location of the connections

Figure 7-2 Front elements of the 3RM1 motor starter

1. LED DEVICE (red/green/yellow)
2. LED FAILURE (red)
3. LED STATE (green)
4. LED RESET MODE (green)
5. Rotary coding switch for the rated operational current I_e of the load
6. TEST/RESET/RESET MODE button
7. Data matrix code for unique identification of the 3RM1 motor starter
8. Control circuit control supply voltage (A1, A2)
9. Control circuit start input direction of rotation 1 (IN1) and start input direction of rotation 2 (IN2; on 3RM12 and 3RM13 reversing starters only)
10. Control circuit fault signaling output (95,96,98)
11. Control circuit signaling output OUT (only on Standard motor starters with 24 V DC rated control voltage) 3RM10...0. and 3RM12...0.)
12. Control circuit RESET input (IN3) in the case of 3RM10/3RM12 Standard motor starters
13. Ground inputs (M1, M2) in the case of Failsafe motor starters with a 24 V DC control supply voltage (3RM11...0. and 3RM13...0.); M2 only in the case of Failsafe reversing starters with a 24 V DC control supply voltage (3RM13...0.)
14. Main circuit outgoing load feeder (T1, T2, T3)
15. Main circuit infeed (L1, L2, L3)
Location of the connections

The terminal covers for the control and main circuit are labeled on the inside with the designations of the relevant terminals. The position of the label corresponds to the position of the respective terminal.

Figure 7-3 Upper terminal cover

Figure 7-4 Lower terminal cover
Terminal cover

Depending on the version of the 3RM1 motor starter, the device will have the following connections:

<table>
<thead>
<tr>
<th>Motor starter version</th>
<th>Inscript of the terminal cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control circuit (at the top of the device)</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>• 24 V DC</td>
</tr>
<tr>
<td></td>
<td>• Direct-on-line starter 3RM10.-...0. (IN1)</td>
</tr>
<tr>
<td></td>
<td>• Reversing starter 3RM12.-...0. (IN1 and IN2)</td>
</tr>
<tr>
<td></td>
<td>• 110-230 V AC/110 V DC</td>
</tr>
<tr>
<td></td>
<td>• Direct-on-line starter 3RM10.-...1. (IN1)</td>
</tr>
<tr>
<td></td>
<td>• Reversing starter 3RM12.-...1. (IN1 and IN2)</td>
</tr>
<tr>
<td>Failsafe</td>
<td>• 24 V DC</td>
</tr>
<tr>
<td></td>
<td>• Direct-on-line starter (3RM11.-...0.) (IN1, M1)</td>
</tr>
<tr>
<td></td>
<td>• Reversing starter (3RM13.-...0.) (IN1 and IN2, M1 and M2)</td>
</tr>
<tr>
<td></td>
<td>• 110-230 V AC/110 V DC</td>
</tr>
<tr>
<td></td>
<td>• Direct-on-line starter 3RM11.-...1. (IN1)</td>
</tr>
<tr>
<td></td>
<td>• Reversing starter 3RM13.-...1. (IN1 and IN2)</td>
</tr>
<tr>
<td>Main circuit (at the bottom of the device)</td>
<td></td>
</tr>
<tr>
<td>All motor starters</td>
<td>All motor starters</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) IN2 only in the case of reversing starters (3RM12 and 3RM13)

**) M2 only in the case of Failsafe reversing starters (3RM13)
7.2 Displays and location of the connections

7.2.1 Alarms, faults and system events

7.2.1.1 LEDs

The 3RM1 motor starter provides device status information via four LEDs:

<table>
<thead>
<tr>
<th>LED</th>
<th>Displayable colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>Red/green/yellow</td>
</tr>
<tr>
<td>FAILURE</td>
<td>Red</td>
</tr>
<tr>
<td>STATE</td>
<td>Green</td>
</tr>
<tr>
<td>RESET MODE</td>
<td>Green</td>
</tr>
</tbody>
</table>

7.2.1.2 Status indicators of the 3RM1 motor starter

The 3RM1 motor starter indicates the status messages for operation, fault and test via the LEDs:

Operation

<table>
<thead>
<tr>
<th>LED</th>
<th>Fault signaling output</th>
<th>Reaction of feedback circuit</th>
<th>Device status / operating mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>FAILURE</td>
<td>STATE</td>
<td>RESET MODE</td>
</tr>
<tr>
<td>Green</td>
<td>Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Off</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

X = LED status not relevant; * = depending on the selected RESET MODE
Fault

<table>
<thead>
<tr>
<th>DEVICE FAILURE STATE</th>
<th>Fault signaling output</th>
<th>Reaction of feedback circuit</th>
<th>Possible cause/corrective measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Off</td>
<td>Green/off*</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Overload trip motor protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Motor blocks during starting or operation</td>
</tr>
<tr>
<td>Flashing yellow</td>
<td>Off</td>
<td>Green/off*</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• No current flow despite ON command: Check whether the connected load fulfills the minimum current [Page 68].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Phase failure: Check whether all three phases are applied.</td>
</tr>
<tr>
<td>Flashing red</td>
<td>Off</td>
<td>Green/off*</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Malfunction: For information about correcting faults, please refer to the section “Fault rectification (Page 134)”.</td>
</tr>
</tbody>
</table>

* = depending on the selected RESET MODE

Note
Difference between Standard and Failsafe
3RM11 Failsafe and 3RM13 Failsafe motor starters signal a phase failure immediately.
3RM10 and 3RM12 Standard motor starters signal a phase failure after 5 s.

Test

<table>
<thead>
<tr>
<th>DEVICE FAILURE STATE</th>
<th>Fault signaling output</th>
<th>Reaction of feedback circuit</th>
<th>Device status / operating mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Green</td>
<td>Green</td>
<td>Self-test: Indicator test 2 s</td>
</tr>
<tr>
<td>Flickering red</td>
<td>Green</td>
<td></td>
<td>Current flow test: Current not flowing 3 s</td>
</tr>
<tr>
<td>Flashing red</td>
<td>Off</td>
<td>Off</td>
<td>Current flow test: Current flowing</td>
</tr>
<tr>
<td>Flashing yellow</td>
<td>Off</td>
<td>Off</td>
<td>Self-test: Overload tripping >5 s</td>
</tr>
<tr>
<td>Flashing red</td>
<td>Off</td>
<td>Off</td>
<td>Overload trip failed</td>
</tr>
</tbody>
</table>
7.2.1.3 Signaling faults on external I/O

Fault signaling output

Faults are signaled via relay outputs as well as via the LEDs.

In the event of a fault, the fault signaling output becomes active, contact (95-98) closes and contact (95-96) opens. The fault signaling output resumes its original state (contact 95-98 open, contact 95-96 closed) when there are no faults and the control supply voltage is not present.

The faults that result in pick-up of the relays are listed in the chapter "Status indicators of the 3RM1 motor starter" [Page 131].

Note

Behavior in the event of a safety-related shutdown

The fault signaling output resumes its original state in the event of a safety-related shutdown via the control supply voltage.

Feedback output

The Standard motor starters with a control voltage of 24 V DC (3RM10..-.AA0. and 3RM12..-.AA0.) have a feedback output (OUT Run) referred to M (A2) that outputs a high level when the motor is in operation. Since the current flow is not monitored in the first five seconds after switching on the device, the feedback output outputs the high level at least for this time.

The output is non-floating and can be loaded with up to one control input of a PLC. The maximum continuous current of the output is 15 mA.

The safety-related motor starters (3RM11 Failsafe/3RM13 Failsafe) and the Standard motor starters (3RM10/3RM12) with a control voltage of 110 to 230 V/110 V DC (3RM1...-.AA1.) do not have a feedback output.
7.2 Displays and location of the connections

7.2.1.4 Fault rectification

Malfunction

A malfunction (Page 42) is acknowledged by switching the control supply voltage back on and then pressing the "TEST/RESET/RESET MODE" pushbutton.

The following malfunctions can occur:

- Damage to the power semiconductors
- Damage to the relay contacts
- Faults in the control electronics

WARNING

Loss of the safety function. Can cause death or serious injury.

Check the safety function after acknowledging a disruption in the case of 3RM11/3RM13 Failsafe motor starters.

Note

If a malfunction is repeatedly indicated, the 3RM1 motor starter is defective and must be replaced.

Other faults

You acknowledge all other faults using the "TEST/RESET/RESET MODE" button. As an alternative, in the case of the 3RM10/3RM12 Standard motor starters, you can use the RESET control input IN3 for acknowledgment. You will find information about setting the reset method in the chapter Setting the RESET method (Page 126).

Note

If the possible fault causes have been rectified and resetting is still not possible, the 3RM1 motor starter must be replaced.
Service and maintenance

8.1 Maintenance and service

The 3RM1 motor starters and accessories are maintenance-free.

The motor starter indicates a detected malfunction with LEDs and the fault output.

Note

If a malfunction is repeatedly indicated, the 3RM1 motor starter is defective and must be replaced.

You will find information about the status indicators of the 3RM1 motor starter in the chapter Alarms, faults and system events (Page 131).

8.2 Test interval for safety-related applications

WARNING

Loss of the safety function

In continuous operation, the key safety values apply in the case of a function test interval (state change of the outputs) \(\leq 1 \text{ year} \).

Annual function test

- Actuate the connected sensors.
- Check their effect on the safety relay and the downstream actuators.
- Activate the safety relay via the connected sensors.
- Check their effect on the safety relay and the downstream actuators.
- Defective devices must be replaced.
8.3 Device replacement

DANGER

Hazardous voltage.
Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

When replacing a device, you do not need to re-wire it. The terminals can be disconnected from the defective device and then connected to the new device.

Replace device

WARNING

Loss of the safety function through changes to the system.
Can cause death or serious injury.

To ensure the safety of the system, a complete function test on the system must be conducted and successfully completed following any modifications to the system or replacement of defective components, such as 3RM11 and 3RM13 Failsafe motor starters.

Note

A defective device must only be replaced with a device that has exactly the same article number.

1. Disconnect the defective device at the terminals.
2. Remove the defective device.
3. Mount the new device.
4. Connect the new device at the terminals.

You can find more information on disassembling/mounting and disconnecting/connecting in the chapters "Mounting (Page 87)" and "Connection (Page 111)".
8.4 Replacing the fuses in the 3RM19 fuse module

Requirements

- The motor is switched off.

Procedure

DANGER

Hazardous voltage. Will cause death or serious injury.

Turn off and lock out all power supplying this device before working on this device.

Note

A defective device must only be replaced with a device that has exactly the same article number.

Note

Example involving replacement of motor starter

The example described here involves replacement of the motor starter. If the motor starter has appropriate fuse protection, it might be fully functional and need not necessarily be replaced.

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
</table>
| 1 | Remove the 3RM19 fuse module from the adapter.
1. Use a screwdriver to press down the plastic lug on the narrow side of the module.
2. Pull the module out of the adapter.
3. Disconnect the motor starter and take it out of the fuse module. | ![Figure 1](image1.jpg) | ![Figure 2](image2.jpg) |
8.4 Replacing the fuses in the 3RM19 fuse module

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating instruction</th>
<th>Figure</th>
</tr>
</thead>
</table>
| 2 | Turn the module onto its side so that the cover of the fuse compartment is facing upwards.
 1. Use a screwdriver to lift up the locking device on the fuse compartment.
 2. Open the flap of the fuse compartment. | ![Figure 2](image) |
| 3 | 1. Use a pair of pliers to remove the defective fuses from the fuse compartment.
 Use a pair of pliers to insert new fuses of an identical type.
 2. Close the fuse compartment.
 3. Install and connect up the motor starter again.
 4. Place the fuse module on the adapter again. | ![Figure 3](image) |

For further information about dismantling and installation procedures, see the following chapters:

- "Disassembling devices from a fuse module (Page 92)"
- "Dismantling the fuse module (Page 95)"
- "Mounting the fuse module (Page 93)"
- "Mounting the devices on a fuse module (Page 91)"

For further information about connection and disconnection procedures, see chapter "Connecting the fuse module (option) (Page 124)".
Technical data

9.1 General technical data

<table>
<thead>
<tr>
<th>Order number</th>
<th>3RM100..AA.4</th>
<th>3RM120..AA.4</th>
<th>3RM110..AA.4</th>
<th>3RM130..AA.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>product brand name</td>
<td>SIRIUS</td>
<td>Wert fehlt!</td>
<td>vertical, horizontal, standing</td>
<td></td>
</tr>
<tr>
<td>Product designation</td>
<td>Wert fehlt!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting position</td>
<td>vertical, horizontal, standing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation altitude / at height above sea level / maximum</td>
<td>4 000 m</td>
<td>2 000 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• during operation</td>
<td>-25 ... +60 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• during storage</td>
<td>-40 ... +70 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• during transport</td>
<td>-40 ... +70 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative humidity / during operation</td>
<td>10 ... 95 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection against electrical shock</td>
<td>finger-safe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection class IP</td>
<td>IP20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note the following:
- Table 3-1 Motor starter version (Page 29)
- Table 3-2 Current ranges (Page 30)
- Table 3-3 Control supply voltages (Page 30)
9.2 General safety data

The 3RM11 Failsafe motor starters (direct-on-line starters) / 3RM13 Failsafe motor starters (reversing starters) have the following safety data:

<table>
<thead>
<tr>
<th>Order number</th>
<th>3RM110..AA.4</th>
<th>3RM130..AA.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Integrity Level (SIL) acc. to IEC 61508</td>
<td>SIL3</td>
<td></td>
</tr>
<tr>
<td>Performance level (PL) acc. to EN ISO 13849-1</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Category acc. to EN ISO 13849-1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Safety device type acc. to IEC 61508-2</td>
<td>Type B</td>
<td></td>
</tr>
<tr>
<td>Hardware fault tolerance acc. to IEC 61508</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PFHD with high demand rate acc. to EN 62061</td>
<td>1/h 0.00000002</td>
<td></td>
</tr>
<tr>
<td>PFDavg with low demand rate acc. to IEC 61508</td>
<td>0.000018</td>
<td></td>
</tr>
<tr>
<td>T1 value for proof test interval or service life acc. to IEC 61508</td>
<td>y 20</td>
<td></td>
</tr>
<tr>
<td>Safe state</td>
<td>Load circuit open</td>
<td></td>
</tr>
<tr>
<td>Stop category acc. to DIN EN 60204-1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Safe failure fraction (SFF)</td>
<td>% 99.4</td>
<td></td>
</tr>
<tr>
<td>MTTFd</td>
<td>y 75</td>
<td></td>
</tr>
<tr>
<td>Average diagnostic coverage level (DCavg)</td>
<td>% 99</td>
<td></td>
</tr>
<tr>
<td>Function test interval maximum</td>
<td>y 1</td>
<td></td>
</tr>
<tr>
<td>Diagnostics test interval by internal test function maximum</td>
<td>s 600</td>
<td></td>
</tr>
<tr>
<td>Failure rate [FIT] at rate of recognizable hazardous failures (λdd)</td>
<td>FIT 1 400</td>
<td></td>
</tr>
<tr>
<td>Failure rate [FIT] at rate of non-recognizable hazardous failures (λdu)</td>
<td>FIT 16</td>
<td></td>
</tr>
<tr>
<td>Off-delay time with safety-related request when switched off via control inputs maximum</td>
<td>ms 65</td>
<td></td>
</tr>
<tr>
<td>Off-delay time with safety-related request when switched off via supply voltage maximum</td>
<td>ms 120</td>
<td></td>
</tr>
</tbody>
</table>

9.3 ATEX-specific safety data

Referred to ATEX, the 3RM11 Failsafe motor starters (direct-on-line starters) / 3RM13 Failsafe motor starters (reversing starters) have the following safety data:

<table>
<thead>
<tr>
<th>Order number</th>
<th>3RM110..AA.4</th>
<th>3RM130..AA.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Integrity Level (SIL) acc. to IEC 61508 relating to ATEX</td>
<td>SIL2</td>
<td></td>
</tr>
<tr>
<td>Hardware fault tolerance acc. to IEC 61508 relating to ATEX</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T1 value for proof test interval or service life acc. to IEC 61508 relating to ATEX</td>
<td>y 3</td>
<td></td>
</tr>
<tr>
<td>PFDavg with low demand rate acc. to IEC 61508 relating to ATEX</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>PFHD with high demand rate acc. to EN 62061 relating to ATEX</td>
<td>1/h 0.00000005</td>
<td></td>
</tr>
</tbody>
</table>
9.4 Connection cross sections

3RM1 motor starter

Connectable cable cross-sections depend on the motor starter's connection system.

<table>
<thead>
<tr>
<th>Connection system</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw connection</td>
<td>3RM1...-1AA.4</td>
</tr>
<tr>
<td>Push-in spring-type terminals</td>
<td>3RM1...-2AA.4</td>
</tr>
<tr>
<td>Hybrid connection method</td>
<td>3RM1...-3AA.4</td>
</tr>
<tr>
<td>Control circuit realized as push-in spring-loaded terminal and main circuit as screw terminal</td>
<td></td>
</tr>
</tbody>
</table>

The table below contains the suitable conductor cross-sections for the control circuit and signaling contacts (= auxiliary contacts) and for the main circuit (= main contacts).

<table>
<thead>
<tr>
<th>Order number</th>
<th>3RM1.0.1AA.4</th>
<th>3RM1.0.2AA.4</th>
<th>3RM1.0.3AA.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of connectable conductor cross-sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for main contacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solid</td>
<td>1x (0.5 ... 4 mm²), 2x (0.5 ... 2,5 mm²)</td>
<td>1x (0.5 ... 4 mm²), 2x (0.5 ... 2,5 mm²)</td>
<td>1x (0.5 ... 4 mm²), 2x (0.5 ... 2,5 mm²)</td>
</tr>
<tr>
<td>finely stranded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with core end processing</td>
<td>1x (0.5 ... 2,5 mm²), 2x (0.5 ... 1,5 mm²)</td>
<td>1x (0.5 ... 2,5 mm²)</td>
<td>1x (0.5 ... 2,5 mm²), 2x (0.5 ... 1,5 mm²)</td>
</tr>
<tr>
<td>without core end processing</td>
<td>-</td>
<td>1x (0.5 ... 4 mm²)</td>
<td>-</td>
</tr>
<tr>
<td>for auxiliary contacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solid</td>
<td>1x (0.5 ... 2,5 mm²), 2x (1,0 ... 1,5 mm²)</td>
<td>1x (0.5 ... 1,5 mm²), 2x (0.5 ... 1,5 mm²)</td>
<td></td>
</tr>
<tr>
<td>finely stranded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with core end processing</td>
<td>1x (0.5 ... 2,5 mm²), 2x (0.5 ... 1 mm²)</td>
<td>1x (0.5 ... 1,0 mm²), 2x (0.5 ... 1,0 mm²)</td>
<td></td>
</tr>
<tr>
<td>without core end processing</td>
<td>-</td>
<td>1x (0.5 ... 1,5 mm²), 2x (0.5 ... 1,5 mm²)</td>
<td></td>
</tr>
<tr>
<td>at AWG conductors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for main contacts</td>
<td>1x (20 ... 12), 2x (20 ... 14)</td>
<td>1x (20 ... 12)</td>
<td>1x (20 ... 12), 2x (20 ... 14)</td>
</tr>
<tr>
<td>for auxiliary contacts</td>
<td>1x (20 ... 14), 2x (18 ... 16)</td>
<td>1x (20 ... 16), 2x (20 ... 16)</td>
<td></td>
</tr>
</tbody>
</table>
Infeed terminal 3RM19

<table>
<thead>
<tr>
<th>Order number</th>
<th>3RM1920-1AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product designation</td>
<td>Infeed terminal</td>
</tr>
<tr>
<td>Type of connectable conductor cross-sections</td>
<td></td>
</tr>
<tr>
<td>- for main contacts</td>
<td></td>
</tr>
<tr>
<td>- solid</td>
<td>1x (1,5 ... 4 mm²), 2x (1,5 ... 2,5 mm²)</td>
</tr>
<tr>
<td>- finely stranded</td>
<td></td>
</tr>
<tr>
<td>- with core end processing</td>
<td>1x (1,5 ... 2,5 mm²), 2x 1,5 mm²</td>
</tr>
<tr>
<td>- without core end processing</td>
<td>—</td>
</tr>
<tr>
<td>- at AWG conductors for main contacts</td>
<td>1x (16 ... 12), 2x (16 ... 14)</td>
</tr>
</tbody>
</table>
9.5 Technical data in Siemens Industry Online Support

Technical data sheet

1. Enter the full article number of the desired device in the "Product" field, and confirm with the Enter key.

2. Click the "Technical data link."

Overview tables technical data

You will find overview tables with technical data in the "Product information" tab in our online ordering system (https://mall.industry.siemens.com/mall/en/WW/Catalog/Products/10143170?tree=CatalogTree#Technische Daten).
9.6 Number of starting operations

Permissible number of starting operations per hour 1/h

Parameter: on-load factor = 50 %

The number of starting operations 1/h is calculated for an effective motor current of 100 %, and the motor starter's actual performance can be higher.

<table>
<thead>
<tr>
<th>Motor starter</th>
<th>3RM1.07...</th>
<th>3RM1.02...</th>
<th>3RM1.01...</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. rated operating current (I_e)</td>
<td>7 A</td>
<td>2 A</td>
<td>0.5 A</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting current</td>
<td>Starting time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 %</td>
<td>100 ms</td>
<td>1000</td>
<td>3300</td>
<td>3600</td>
</tr>
<tr>
<td>400 %</td>
<td>100 ms</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>400 %</td>
<td>300 ms</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>400 %</td>
<td>500 ms</td>
<td>220</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>500 %</td>
<td>100 ms</td>
<td>750</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>500 %</td>
<td>300 ms</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>500 %</td>
<td>500 ms</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>600 %</td>
<td>100 ms</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>600 %</td>
<td>300 ms</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>600 %</td>
<td>500 ms</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>700 %</td>
<td>100 ms</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>700 %</td>
<td>300 ms</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>700 %</td>
<td>500 ms</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
9.7 Overload protection/device protection characteristic

Overload protection

![Motor overload protection characteristic diagram]

Figure 9-1 Motor overload protection characteristic

Device protection against overload trips at current setting values from 4.6 A. This results in shorter tripping times; see figure below.
Equipment protection

In addition to the motor protection function, the 3RM1 motor starters also protect themselves against overload. This means that in the case of 3RM1 motor starters with a rated operational current of 7 A, an overload trip may occur in the upper current range before the motor protection trips. If, for example, 8-fold current flows in the case of an unloaded motor memory model and a set current of 7 A, tripping takes place after approximately one second.

Figure 9-2 Device protection characteristic

- Device protection 7 A
- Device protection 6.1 A
- Device protection 5.2 A
- Device protection 4.6 A
- Device protection 4.0 A
Resistive loads

The tripping characteristic shown does not apply for resistive loads at a setting value of 10 A. In this case, tripping takes place as follows:

Table 9-1 Tripping for resistive loads at a setting value of 10 A

<table>
<thead>
<tr>
<th>Tripping after</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 A < load current < 15 A</td>
</tr>
<tr>
<td>Load current > 15 A</td>
</tr>
</tbody>
</table>
9.7 Overload protection/device protection characteristic
Dimension drawings

10.1 CAx data

You can find the CAx data in the Siemens Industry Online Support [https://support.industry.siemens.com/cs/ww/en/ps/].

1. Enter the full article number of the desired device in the "Product" field, and confirm with the Enter key.

2. Click the "CAx data link."
10.2 Dimension drawings for 3RM1 device connectors

Dimension drawing of device connectors for 3RM1 motor starter
Dimension drawing of device termination connectors for 3RM1 motor starter
Dimension drawings

10.2 Dimension drawings for 3RM1 device connectors

Dimension drawing of device connectors for signal loop-through
Drilling diagram for device connectors with 22 mm width
10.3 3RM1 dimension drawings

Dimension drawing for 3RM1 motor starter
Drilling diagram for push-in lugs for wall mounting
Dimension drawings

10.3 3RM1 dimension drawings

Dimension drawing for 3RM1 motor starter with infeed terminal and system
10.4 Dimension drawings 3RM19 fuse module

Dimension drawing of the fuse module with 3RM1 motor starter

See also

Siemens Industry Online Support
[https://support.industry.siemens.com/cs/ww/en/pn/16311/td]
10.4 Dimension drawings 3RM19 fuse module
Circuit diagrams

11.1 CAx data

You can find the CAx data in the Siemens Industry Online Support (https://support.industry.siemens.com/cs/ww/en/ps/).

1. Enter the full article number of the desired device in the "Product" field, and confirm with the Enter key.

2. Click the "CAx data link."
11.2 3RM10 circuit diagrams (direct-on-line starter, Standard)

Versions with 24 V DC control supply voltage

Versions with 110 ... 230 V AC; 110 V DC control supply voltage
Note

Parallel loads in the case of motor starters with product version E01

In the case of motor starters with product version E01, no parallel loads can be connected to the IN terminal; see diagram below. This is admissible as of product version E02.
11.3 3RM11 circuit diagrams (direct-on-line starter, Failsafe)

Versions with 24 V DC control supply voltage

Versions with 110 ... 230 V AC; 110 V DC control supply voltage
11.4 3RM12 circuit diagrams (reversing starter, Standard)

Versions with 24 V DC control supply voltage

Versions with 110 ... 230 V AC; 110 V DC control supply voltage
Note
Parallel loads in the case of motor starters with product version E01

In the case of motor starters with product version E01, no parallel loads can be connected to the IN terminal; see diagram below. This is admissible as of product version E02.
11.5 3RM13 circuit diagrams (reversing starter, Failsafe)

Versions with 24 V DC control supply voltage

![Circuit Diagram 24 V DC Control Supply Voltage]

Versions with 110 … 230 V AC; 110 V DC control supply voltage

![Circuit Diagram 110 … 230 V AC; 110 V DC Control Supply Voltage]
Circuit diagrams

11.5 3RM13 circuit diagrams (reversing starter, Failsafe)
A.1 Typical circuits for 3RM1

A.1.1 Direct-on-line starter 24 V DC with switch operation

The 3RM1 motor starter is controlled with a switch. The 3RM1 motor starter is operated as a direct-on-line starter.

Figure A-1 Standard 24 V DC direct-on-line starter with switch operation
A.1.2 Direct-on-line starter 24 V DC with switch operation and 230 V brake

The current for the brake facility is drawn via only one phase. Connection is via T2.

Note

This configuration is admissible for standard variants 3RM10 and 3RM12 only.
This operating mode is not suitable for 3RM11 Failsafe and 3RM13 Failsafe motor starters since there is a connection to the neutral conductor.
A.1.3 **Direct-on-line starter 24 V DC with switch operation and 400 V brake**

The current for the brake facility is drawn via two phases. Connection is via T1 and T3. Make allowance for the additional current in the current setting value.

The configuration is shown based on the example of a standard motor starter. The configuration with a 400 V brake is also admissible for the Failsafe variants 3RM11 and 3RM13. The notes on safety-related shutdown (Page 174) must be observed.

- **S1** ON
- **S2** Remote reset

Figure A-3 Standard 24 V DC direct-on-line starter with switch operation and 400 V brake
A.1.4 Direct-on-line starter 24 V DC with switch operation and single-phase motor

The current is drawn via only one phase. The motor is connected at T3. The second connection is directly at the neutral conductor. On the 3RM1 motor starter, T1 is wired directly with T2, and L2 direct with L3.

The configuration is shown based on the example of a standard motor starter. The configuration for single-phase loads is also admissible for the Failsafe variants 3RM11 and 3RM13. The notes on safety-related shutdown (Page 174) must be observed.

NOTICE

Damage to property can occur
Connection IN2 on reversing starters must not be used in the case of single-phase motors.

NOTICE

Damage to property due to high making currents
When using capacitive loads, the switching components in the 3RM1 motor starter can be damaged by excessively high making currents.

Do not operate capacitive loads such as frequency converters on the 3RM1 motor starter. Operation of single-phase capacitor motors is admissible.

In this operating mode, switching on and off is carried out only with connection IN1.
Typical circuits

A.1 Typical circuits for 3RM1

SIRIUS 3RM1 motor starter
Manual, 06/2016, A5E0345285095020A/RS-AE/005

Figure A-4 Standard direct-on-line starter 24 V DC with switch operation and single-phase motor

A.1.5 Direct-on-line starter with group protection, 24 V DC and PLC operation

Several 3RM1 motor starters can be connected by means of 3-phase busbars on the main current side. Control takes place via digital outputs.
The configuration is shown based on the example of standard motor starters. In the main circuit, this configuration is also admissible for the Failsafe variants 3RM11 and 3RM13. The notes on safety-related shutdown (Page 174) must be observed.
A.1.6 Reversing starter 24 V DC with PLC operation

The motor is controlled via a PLC. The 3RM1 motor starter is operated as a reversing starter.

Figure A-6 Reversing starter 24 V DC with PLC operation
A.2 Typical circuits for safety-related shutdown

A.2.1 General safety notes

Note

SIL CL 3 in accordance with EN 62061/PL e in accordance with EN ISO 13849-1

The 3RM11/3RM13 motor starters are designed in such a way as to allow implementation of applications up to SIL CL 3 in accordance with EN 62061 and PL e/Cat. 4 in accordance with EN ISO 13849-1.

To achieve SIL CL 3/PL e/Cat. 4 for the safety-related application, all components of the safety functions (detecting/evaluating/reacting) must be designed accordingly.

Note

Safe state

The basis of the safety function is the definition of the safe state. In the case of the 3RM11 and 3RM13 Failsafe motor starters, this is the "OFF state".

WARNING

Hazardous voltage at the motor
Will cause death, serious injury, or damage to property.
Health hazard from automatic hot restart.

The safety function must be checked after every tripping of the motor starter protector (also in the case of overload).

After every short circuit in the case of short-circuit protection according to type of coordination 1, a 3RM1 motor starter is defective.
Replace a 3RM1 motor starter including the terminals after a short circuit in the case of short-circuit protection according to type of coordination 1.
With 3RM11/3RM13 Failsafe motor starters, you must check the safety function in addition to replacing the unit.

With 3RM11/3RM13 Failsafe motor starters, also check the safety function after a short circuit in the case of short-circuit protection according to type of coordination 2.

WARNING

Hazardous voltage.
Will cause death or serious injury.

To ensure protection against an electric shock hazard with the hinged cover open at the signaling contacts 95, 96, 98 at a voltage of ≥ 50 V, screw in all terminal screws that are not needed to clamp conductors.
A.2 Typical circuits for safety-related shutdown

WARNING

Loss of the safety function

In continuous operation, the key safety values apply in the case of a function test interval (state change of the outputs) ≤ 1 year.

Annual function test

- Actuate the connected sensors.
- Check their effect on the safety relay and the downstream actuators.
- Activate the safety relay via the connected sensors.
- Check their effect on the safety relay and the downstream actuators.
- Defective devices must be replaced.

WARNING

Loss of the safety function in the event of a fault in the case of 3RM11 / 3RM13 Failsafe motor starters with 110 to 230 V AC/110 V DC control supply voltage.

Can cause death or serious injury.

The control signal for the control inputs in the case of 3RM11/3RM13 Failsafe motor starters with 110 to 230 V AC control supply voltage must come from A1. Otherwise, the safety function is bypassed in the event of a fault. Thus, only relay outputs are admissible when using a PLC.

Do not use a separate control voltage. Only use the relay outputs when using a PLC.

WARNING

Loss of the safety function when using device connectors.

Can cause death or serious injury.

When the product is operated with a 3SK safety relay and a device connector, the supply voltage for 3RM1 motor starters is fed in via the device connectors.

In this case, do not connect anything to terminals A1 and A2 of the 3RM1 motor starters, in order to prevent bypassing of the safety function.

WARNING

Loss of the safety function during hybrid operation of Failsafe and Standard motor starters.

Can cause death or serious injury.

Hybrid operation of 3RM10/3RM12 Standard motor starters with 3RM11/3RM13 Failsafe motor starters in safety-related applications is not admissible.

Only ever use safety-related motor starters (3RM11 Failsafe and 3RM13 Failsafe) in safety-related applications.
Typical circuits

A.2 Typical circuits for safety-related shutdown

WARNING

Risk from conductive contamination.
Can cause death, serious injury, or damage to property.

The devices must be protected against conductive contamination while taking account of the ambient conditions. One way you can do this is to install the devices in a control cabinet with the appropriate degree of protection. You will find further information in IEC 60529, for example.

WARNING

Safe functional extra-low voltage
Can cause death or serious injury.

The 3RM11/3RM13 Failsafe motor starters with a supply voltage of 24 V DC must be operated with safe functional extra-low voltage (SELV, PELV). This means these modules must only be subjected to a voltage of Um even in the event of a fault. The following applies to these 3RM1 motor starters: \(Um < 60.0 \text{ V DC} \).

You will find more detailed information about safe functional extra-low voltage in the data sheets of the power supplies to be used.

WARNING

Loss of the safety function when the neutral conductor is connected to a load.
Can cause death or serious injury.

When using the 3RM11 Failsafe and 3RM13 Failsafe motor starters, note that no neutral conductor may be connected if the load circuit contains 3-phase loads, e.g. a 230 V brake or resistive loads.

NOTICE

Damage caused by electrostatic charge

When handling and installing the 3RM11/3RM13 Failsafe motor starters, ensure that the components are protected against electrostatic charge. Changes to the system configuration and wiring are only permissible in the voltage-free state.

Connection of 3RM11/3RM13 Failsafe motor starters is only permissible when the power supply units (PELV and SELV) are switched off.

NOTICE

Electromagnetic interference

The following must be grounded in accordance with regulations to ensure noise immunity of the 3RM11/3RM13 Failsafe motor starters:

- PELV / SELV power supply units (please also note the documentation for the respective power supply unit in this regard).
Typical circuits

A.2 Typical circuits for safety-related shutdown

Note
Operational faults and malfunctions in communication
If the EMC Directive 2014/30/EC is not complied with when plants and devices are installed, communication breaks may occur.

Note
Cover the 3ZY12 device connector on the left-hand side using the cover supplied with the device termination connector.

A.2.2 3SK1 safety relay with 3RM13 motor starter via device connector

The 3RM13 Failsafe motor starter is connected to a 3SK1 safety relay via a 3ZY1 device connector.

The two directions of rotation are switched on and off operationally via IN1 and IN2, e.g. with a PLC.

The control supply voltage (L+ and L-) to the motor starters is deactivated by the 3SK1 safety relay and the system is in a safe state.

Note
SILCL 3 in accordance with EN 62061/PL e in accordance with EN ISO 13849-1
A safety-related application up to SILCL 3 to EN 62061, PL e/Cat. 4 to EN ISO 13849-1 can be realized in this way.

To achieve SILCL 3/PL e/Cat. 4 for the safety-related application, all components of the safety functions (detecting/evaluating/reacting) must be designed accordingly.

WARNING
Loss of the safety function when using device connectors. Can cause death or serious injury.

When operating with a 3SK1 safety relay and a device connector, the supply voltage for 3RM1 motor starters is established via the device connectors.

In this case, do not connect anything to terminals A1 and A2 of the 3RM1 motor starters, in order to prevent bypassing of the safety function.
Typical circuits

A.2 Typical circuits for safety-related shutdown

*) If there is a common reference potential for the two inputs, it is sufficient to establish a ground connection.

If there are separate potentials or controls, both connections must be assigned.

Figure A-7 3SK1 safety relay with 3RM13 reversing starter via device connector
A.2 Typical circuits for safety-related shutdown

A.2.3 3SK1 safety relay wired with 3RM13 motor starter

The 3RM13 Failsafe motor starter (230 V supply voltage) is connected to a 3SK1 safety relay.

The two directions of rotation are switched on and off operationally via IN1 and IN2, e.g. with separate switches.

WARNING

Loss of the safety function in the event of a fault in the case of 3RM11 / 3RM13 Failsafe motor starters with 110 to 230 V AC/110 V DC control supply voltage. Can cause death or serious injury.

The control signal for the control inputs in the case of 3RM11/3RM13 Failsafe motor starters with 110 to 230 V AC control supply voltage must come from A1. Otherwise, the safety function is bypassed in the event of a fault. Thus, only relay outputs are admissible when using a PLC.

Do not use a separate control voltage. Only use the relay outputs when using a PLC.

The control supply voltage (L1 and N) to the motor starters is deactivated by the 3SK1 safety relay and the system is in a safe state.

Note

SILCL 3 in accordance with EN 62061, PL e/Cat. 4 in accordance with EN ISO 13849-1

A safety-related application up to SILCL 3 to EN 62061, PL e/Cat. 4 to EN ISO 13849-1 can be realized in this way.

To achieve SILCL 3/PL e/Cat. 4 for the safety-related application, all components of the safety functions (detecting/evaluating/reacting) must be designed accordingly.

Note

A fuse must be fitted as short-circuit protection (4 A gL/gG) in the supply line to the supply voltage of 3RM1 (L1).
Figure A-8 3SK1 safety relay with 3RM13 reversing starter
A.2.4 3SK2 safety relay with 3RM11 motor starter via device connector

Description

- Shutdown via 3RM1 Failsafe motor starter
- "Reacting" subsystem up to SILCL 3 as per EN 62061 and PL e / Cat. 4 as per EN ISO 13849-1
- Safety-related control of up to five 3RM1 Failsafe motor starters via 3ZY12 device connectors
- Operational, non-safety-related switching of the 3RM1 Failsafe motor starter through its local input IN1 by means of the 3SK2 safety relay

WARNING

Loss of the safety function when using device connectors. Can cause death or serious injury.

When operating with a 3SK2 safety relay and 3ZY12 device connectors, the supply voltage for 3RM1 Failsafe motor starters is established via the 3ZY12 device connectors.

To prevent bypassing of the safety function, do not connect anything to terminals A1 and A2 of the 3RM1 Failsafe motor starters in this case.

Circuit diagram

You will find detailed information, for example, about "logic" or "parameters" in the manual "SIRIUS 3SK2 Safety Relays (https://support.industry.siemens.com/cs/ww/de/view/109444336)."
A.2.5 3SK2 safety relay wired to 3RM11 motor starter

Description

- Shutdown via 3RM1 Failsafe motor starter
- "Reacting" subsystem up to SILCL 3 as per EN 62061 and PL e / Cat. 4 as per EN ISO 13849-1
- Component certified in accordance with EN 62061/EN ISO 13849-1 in the actuator circuit (3RM1 Failsafe motor starter)
- Device supply of the 3RM1 Failsafe motor starter via the terminals A1/A2
- Safety-related switching of the local input of the 3RM1 Failsafe motor starter via fail-safe output of the 3SK2 safety relay
- Suitable for frequently requested safety functions (e.g. on indexing tables)
- No use of device connectors
- Protected laying of signal cables between the 3SK2 safety relay and 3RM1 Failsafe motor starter (in the same control cabinet or in armored conduit)

Circuit diagram
A.2.6 3RM13 reversing starter with PLC control, F-DO pp-switching

As an alternative to the 3SK safety relay, 3RM11/3RM13 Failsafe motor starters can be controlled by an F-DO module. In this typical circuit, shutdown is realized by a pp-switching F-DO module in 1 channel.

Up to SILCL 3 in accordance with EN 62061, PL e/Cat. 4 in accordance with EN ISO 13849-1 can be achieved. To this end, the controlling outputs must also fulfill SILCL3 in accordance with EN 62061/PL e/Cat. 4 in accordance with EN ISO 13849-1.

Note
SILCL 3 in accordance with EN 62061, PL e/Cat. 4 in accordance with EN ISO 13849-1

SILCL 3 in accordance with EN 62061, PL e/Cat. 4 in accordance with EN ISO 13849-1 can be achieved by laying the control lines from the safe output to IN1 and IN2 of the 3RM1 motor starter in such a way that they are protected against a cross-circuit or short-circuit to a power cable, e.g. as separately sheathed cable or by laying in separate cable ducts.

This application is available for S7-300, ET 200M, ET 200MP and MSS 3RK3. This application is not available for ET 200S.
Figure A-9 3RM13 reversing starter with PLC control, F-DO pp-switching
A.2.7 3RM13 reversing starter with PLC control, F-DO pm-switching

As an alternative to the 3SK safety relay, 3RM11/3RM13 Failsafe motor starters can be controlled by an F-DO module. In this typical circuit, shutdown is realized by a pm-switching F-DO module in 2 channels.

Up to SILCL 3 in accordance with EN 62061, PL e/Cat. 4 in accordance with EN ISO 13849-1 can be achieved. To this end, the controlling outputs must also fulfill SILCL3 in accordance with EN 62061/PL e/Cat. 4 in accordance with EN ISO 13849-1.

Figure A-10 3RM13 reversing starter with PLC control, F-DO pm-switching
Typical circuits

A.2 Typical circuits for safety-related shutdown
B.1 ESD Guidelines

What does ESD mean?

All electronic modules are equipped with large-scale integrated ICs or components. Due to their design, these electronic elements are highly sensitive to overvoltage, and thus to any electrostatic discharge.

The acronym ESD has become the established designation for such Electrostatic Sensitive Devices. This is also the international abbreviation for such devices.

ESD modules are identified by the following symbol:

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage caused by electrostatically charged persons</td>
</tr>
<tr>
<td>ESD devices can be destroyed by voltages well below the threshold of human perception. These static voltages develop when you touch a component or electrical connection of a device without having discharged your own body. The electrostatic discharge current may lead to latent failure of a module, that is, this damage may not be apparent immediately, but in operation may cause malfunction.</td>
</tr>
</tbody>
</table>
Electrostatic charging

Anyone who is not connected to the electrical potential of their surroundings might become electrostatically charged.

The figure below shows the maximum electrostatic voltage which may build up on a person coming into contact with the materials specified in the diagram. These values correspond to IEC 801-2 specifications.

![Electrostatic voltages on an operator](image)

Basic protective measures against electrostatic discharge

- **Ensure good equipotential bonding:**
 When handling electrostatic sensitive devices, ensure that your body, the workplace and the packaging are grounded. In this way, you can avoid becoming electrostatically charged.

- **Avoid direct contact:**
 As a general rule, only touch electrostatic sensitive devices when this is unavoidable (e.g. during maintenance work). Handle the modules without touching any chip pins or PCB traces. In this way, the discharged energy cannot reach or damage sensitive devices.

 Discharge your body before you start taking any measurements on a module. Do so by touching grounded metallic parts. Use only grounded measuring instruments.
Glossary

3-phase busbar
The 3-phase busbar enables several 3RM1 motor starters to be supplied using a single infeed terminal.

Approval
Approval of switching devices and switchgear in accordance with national standards, some of which must be met on a mandatory basis, which exist in addition to "IEC", "CENELEC", and "CEE" guidelines, for example. The North American market (the USA and Canada), for example, requires UL or CSA approvals. There is also an obligation to label the equipment accordingly, i.e. the approval mark must be inscribed on the device itself.

AWG (American Wire Gauge)
A standard measure for conductors used in the USA, which is assigned to a specific cross-sectional area of a conductor or wire. Each AWG number represents a jump of 26% in the cross-sectional area. The thicker the wire, the smaller the AWG number.

CLASS (time)
See "Trip class".

Connection system
The 3RM1 motor starter is connected using screw terminals, push-in connections and hybrid connection technology.

Explosion protection
Prerequisite for using electrical equipment in hazardous areas conforming to DIN EN 50014 (VDE 0170/0171). For explosion protection, you must ensure that equipment which may generate explosive arcs (plasma) during operation is enclosed in a flameproof casing. This means that, although the potentially explosive mixture could penetrate the enclosure, if an explosion were to occur inside it then no explosive flame could escape.

Infeed system for 3RM1
The infeed system for 3RM1 enables simple and fast establishment of the main circuit connections when using several 3RM1 motor starters arranged side-by-side.
Main switch

Every industrial machine which falls under the scope of DIN EN 60204 Part 1 (VDE 0113, Part 1) must be equipped with a main switch which disconnects all electrical equipment from the network while cleaning, maintenance, and repair work is being carried out, as well as during long periods of downtime. Usually a switch which can be operated by hand is stipulated in order to prevent electrical or mechanical hazards. The main switch can also function as an EMERGENCY-OFF device.

It must meet the following requirements:

1. Externally accessible handle.
2. Only one "Off" position and one "On" position with allocated stops.
3. Two positions labeled "0" and "I".
4. Lockable "Off" position.
5. Cover for the power supply terminals to protect against accidental contact.
6. The switching capacity must correspond to AC-23 for motor switches and AC-22 for load-break switches (utilization category).
7. Switch position displayed automatically.

Motor protection

Motor protection protects electric motors against thermal overload due to mechanical overload or in the event of failure of a single or two phase(s).

Motor starter protector/circuit breaker

Generally a latch-operated switch that can make, carry, and break currents in the circuit under normal operating conditions; and that can make current under specified conditions that are not normal up to the point of a short circuit, conduct the current for a defined period, and break it.

Operating range

Range within which the control circuit voltage of a switching device may deviate from the rated control circuit voltage without impairing the operational reliability of the switching device (e.g. shutdown of the 3RM1 motor starter).

Overload relay

Inverse-time delayed relay which responds to an overload in accordance with a time/current characteristic, thus protecting the switching device and any load against overloads.

Overload release

Overcurrent release that provides protection against overload.
Push-in lugs for wall mounting

The adapters for screw mounting enable the 3RM1 motor starter to be mounted on a level surface.

Rated conditional short-circuit current I_q

The assured short-circuit breaking capacity of switchgear assemblies and load feeders, also called "rated conditional short-circuit current".

Rating data for the main circuit

The most important rating data for the main circuit in terms of selecting a switching device are the rated operational current I_e (current specified by the conditions of use) or the rated power (motor power), as well as the corresponding rated voltage U_e.

Recovery time

When a protection function in a switching device has been tripped (e.g. 3RM1 motor starter) the motor cannot be restarted until a recovery time has elapsed. The recovery time is dependent on the cause of the fault. For further information, refer to the relevant product documentation.

Response delay

The response delay is the time from the start of entering a command until the time that the first contact connection is made, at the contactor, for example. The switch-on delay is the time between application of the control voltage and the first current flow. The switch-off delay is the time between removal of the control voltage and interruption of the current flow.

RoHS

EC Directive 2002/95/EC concerning the restriction of the use of certain hazardous substances in electrical and electronic equipment regulates the use of hazardous substances in devices and components. The English abbreviation RoHS is used to refer to this directive: (Restriction of the use of certain hazardous substances), as well as all related measures for implementing it into national legislation.

Service life

Period of time for which the switching device will work properly under normal operating conditions. This is specified as the number of operating cycles, the electrical durability (e.g. contact erosion), and the mechanical durability (e.g. operating cycles without load).

SIL (Safety Integrity Level)

Discrete level (one of a possible three) for the determination of the safety integrity requirements of safety-related control functions. Safety integrity level 3 is the highest possible level, level 1 the lowest.
Glossary

Trip class (CLASS)
The trip class of an inverse time-delay overload relay specifies the maximum tripping time from cold at a particular load. The trip class number (e.g. CLASS 10A) represents the maximum permissible tripping time in seconds when the 3RM1 motor starter is subjected to a symmetrical 3-pole load from cold with 7.2 times the current setting (IEC 60947-4-1; DIN VDE 0660 Part 107).

Tripping characteristic
The tripping characteristic (curve) is the graphical representation of the relationship between the tripping time and the influencing variable. The time/current diagram can be used to find out, for example, how long it will take for the release or the tripping relay to operate at a particular current.

Tripping current (of an overload release)
The current value at which a release trips within a certain time.

Type of coordination 1
The load feeder may be non-operational after a short circuit has been cleared. Damage to the 3RM1 motor starter is permissible.

Type of coordination 2
The 3RM1 motor starter remains functional after a short-circuit.

Types of coordination
The IEC 60947-4-1 (VDE 0660 Part 102) standard distinguishes between two types of coordination (type of coordination) referred to as coordination type "1" and coordination type "2". The short circuit that needs to be dealt with is cleared reliably and safely with both types of coordination; the only differences are in the extent of the damage sustained by the device following a short circuit.

Utilization category
According to IEC 60947-4-1, the application area of and the load applied to 3RM1 motor starters can be identified by looking at the specified utilization category in conjunction with the specified rated operational current or the motor power and the rated voltage. An example is utilization category AC 53 a for starting and switching off squirrel-cage motors.
Index

3
3D model, 15
3-phase busbar, 48, 79
3-phase busbar system, 61
3-phase infeed terminal, 49
3RM19 fuse module
 Replace fuses, 137
3RM193 fuse module
 Adapter, 50
 Article numbers, 50
3SK safety relay, 44, 53, 84
3SK1 safety relay, 13
3SK2 safety relays, 13

A
AC motors, 25
Acknowledging, 38, 42, 126, 134
Adapter, 81
 Article numbers, 50
Adapter for standard mounting rails, 50
Alternative control to frequency converter, 33
Ambient conditions, 40
 Application environment, 63
Ambient temperature, 60, 62, 63
Annual function test, 21, 135, 175
Applications, 26
Approvals, 12
Article No. scheme, 56
ATEX, 39
Auto RESET, 127

B
Braking device, 36
Busbar adapter, 50
Busbar system, 50, 81

C
Cable protection, 40
Capacitive load, 32, 170
CAx data, 15, 149, 159

Certification
 ATEX, 39
Characteristic, 12
Characteristics, 145
CLASS 10A, 57, 147
Clearances
to be observed, 64
Clearances to be observed, 64
Compact busbar system, 50, 81
Compact load feeder, 50
Configuration, 15
Configurator, 15
Conformity, 12
Connect fuse module, 124
Connecting, 36
Connecting lug, 79, 122
Connection, 129
Connection system, 29
Connections, 130
Control circuit, 128
Control current terminal, 114
Control current terminals, 55
Control input, 34
Control power supply, 52
Control supply voltage, 30, 44, 177, 179
Control voltage, 44
Cooling down period, 37, 125, 127
Cover cap, 48, 81
Current range, 30

D
Data sheet, 41
Declaration of conformity, 24
Degree of protection, 13
Derating, 52, 57, 62, 79, 123
Design version, 62
Device connector, 21, 44, 60, 82, 84, 107, 177, 181
 For signal loop-through, 52
 Terminator, 52
Device identification label, 55
Device replacement, 72, 74, 76, 136
Device status, 131
Device versions, 29
Diagnostics, 131
Dimension drawings, 15
Direct-on-line starter, 33
Display, 131
EC declaration of conformity, 24
End sleeve, 114
EPLAN macros, 15
Equipment protection, 35, 39, 50, 59, 146
ESD guidelines, 187

Fail-safe, 44
Fault, 132
Fault rectification, 134
Fault signaling output, 128, 133
Feedback output, 133
Frequency converters, 32
Function test, 46
Function test interval, 21, 135, 175
Fuse module, 60
With fuse, 50
Without fuse, 50
Fused design
Load feeder, 72
Fuseless design
Load feeder, 70

Grounding measures, 68
Group installation, 76
Guidelines
ESD guidelines, 187

Hazardous areas, 39
High capacity short circuit current ratings, 73
Hybrid connection, 79
Hybrid technology, 27

Infeed, 79
Infeed system, 48, 80, 121
Mounting, 80
Infeed terminal, 121
Installation altitude, 58
Insulation strength
Restricted, 58

LED colors, 131
LED display, 131
LED test, 46
Load change stability
Maximum, 50
Load feeder, 29, 69, 81
Compact, 50
IEC, 69
UL, 73
Loads, 25

Main circuit, 79, 128
Main circuit wiring, 79
Main current terminal, 114
Main current terminals, 55
Maintenance, 41, 135
Malfunction, 42, 134, 135
Display concept, 43
Manual RESET, 127
Maximum load change stability, 50
Messages, 131
Minimum load current, 68
Monitoring, 42
Motor memory module, 35, 37, 39
Motor power, 30
Motor protection, 35, 39, 146
Motor protection test disconnection, 46
Motorized load, 68, 68
Mounting position, 60, 62, 63
Multiple infeed, 80

Newsletters, 23

Online configurator, 15
Operating mode, 131
Operating voltage, 68
Operational safety, 23
Operator controls, 125
Ordering, 15
Overload, 75, 76
Overload protection, 35, 145
Overload relay
solid-state, 25
Overload tripping: 35, 37, 39, 125, 126
Overvoltage, 111
Protection, 115

P
Parameter assignment, 126
Phase failure, 57, 132
Phase failure protection, 35
PM (PPM)-switching, 45
Power semiconductors, 25
Power supply, 49
PP-switching, 45
Product data sheet, 149, 159
Protected against a cross-circuit, 45
Protected against a line-to-line fault, 45
Protective cap, 48
Protective function, 40
Pushbutton, 125
Push-in, 114
Push-in connection, 29
Push-in lugs, 51

R
Rated operational current, 30, 40, 57, 61, 80, 81, 91, 121, 124, 125, 126, 146
Permissible, 58
References, 13
Relay contacts, 25
Remove fuse holder, 97
Remove snap rings, 96
Repairs, 41
Reset, 38, 126
RESET, 38, 126
Resistive load, 30, 32, 37, 57, 62, 68, 68, 147
Reversing starter, 34
Rotary coding switch, 51, 125, 126, 126, 128

S
Safety data
ATEX, 41
Safety function, 21, 42, 53, 72, 74, 76, 84, 175, 177, 179, 181
Safety-related application
Example, 63
Safety-related shutdown, 29, 42, 43, 45
SCCR, 73
Screw connection, 29, 79, 121
Screw terminal, 112, 113, 123
Sealable cover, 51, 126
Sealing, 109
Service&Support, 13
Setting, 126
Short circuit, 74, 76
Short circuit current rating, 73
Short-circuit protection, 26, 40, 69, 72, 81, 179
Short-circuit strength, 69
Shutdown, 42
Safety-related, 43, 45
Side-by-side mounting, 65
Solid-state overload relays, 25
Spring-loaded terminals, 114
Standard mounting rail, 50, 81
Standards, 12, 22
ATEX, 38
Starting currents
High, 59
Status messages, 131
Switching frequency, 38
System documentation, 15
Test
Terminal assignment, 115
Terminal coding, 120, 120
Terminal cover, 130
Terminals, 55
Terminator, 52
Test, 40, 132
Current measurement, 46
Test reports, 12
Three-phase infeed system, 79
Touch protection, 111
Trip class, 40
Tripping characteristic, 40, 147
Tripping of the motor starter protector, 74
Tripping time, 145
UL 508, 75, 77
UL 508a, 73, 76
Use an isolating contactor, 33
Use of braking devices, 36
Utilization category AC 51, 62
Utilization category AC 53 a, 62
Index

V
Voltage source, 30

W
Wall mounting, 51
Warranty, 41
Wiring, 111, 115