

CANopen Tutorial

Version 2.0

https://support.industry.siemens.com/cs/ww/en/view/109479771

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/109479771

Warranty and Liability

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 2

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete
regarding the circuits shown, equipping and any eventuality. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for ensuring that
the described products are used correctly. These Application Examples do not
relieve you of the responsibility to use safe practices in application, installation,
operation and maintenance. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time without prior notice. If there are any deviations
between the recommendations provided in this Application Example and other
Siemens publications – e.g. Catalogs – the contents of the other documents shall
have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this application example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of fundamental contractual obligations (“wesentliche
Vertragspflichten”). The damages for a breach of a substantial contractual
obligation are, however, limited to the foreseeable damage, typical for the type of
contract, except in the event of intent or gross negligence or injury to life, body or
health. The above provisions do not imply a change of the burden of proof to your
detriment.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens AG.

Security
informa-

tion

Siemens provides products and solutions with industrial security functions that
support the secure operation of plants, solutions, machines, equipment and/or
networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens’ products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
http://support.automation.siemens.com.

http://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/#?lc=en-US

Table of Contents

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 3

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of Contents
Warranty and Liability ... 2

1 Understanding the CAN Bus .. 4

2 The CAN Bus: The Basis for CANopen ... 5

2.1 What is the CAN bus? .. 5
2.2 Transmission technology.. 6
2.2.1 Bus topology and physical layer ... 6
2.2.2 CAN at the data link layer... 8
2.3 Error handling and error detection ... 10

3 The Adaptation of CAN: CANopen ... 11

3.1 What is CANopen? ... 11
3.2 CANopen technology ... 12
3.2.1 Objects and profiles .. 12
3.2.2 Object dictionary ... 13
3.2.3 The communication objects.. 14
3.2.4 Defined identifiers (COB-IDs) ... 20
3.2.5 The EDS and DCF device data sheets .. 21
3.2.6 Communication relationships ... 22
3.3 Synchronization of the CANopen network ... 24
3.4 Error detection in CANopen ... 24
3.5 Service data communication .. 27
3.6 Process data communication ... 28
3.7 PDO mapping ... 30
3.8 Network management .. 33
3.8.1 Control of the CANopen devices .. 33
3.8.2 Monitoring functions ... 35

4 Links & Literature .. 38

5 History... 38

1 Understanding the CAN Bus

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 4

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Understanding the CAN Bus

Overview

CAN is a message-oriented multi-master protocol for quick serial data exchange. It
is well established in numerous areas of the industry that

• require a high degree of robustness and security,

• expect low costs,

• require a wide range of suppliers of components, associated software and
tools.

These areas include:

• Automotive engineering (networking of different control units, sensors and
multimedia)

• Automation engineering (time-critical sensors in the field, harsh industrial
environment)

• Medical engineering

• Aeronautical and marine engineering.

Due to this versatility, CAN bus technology ranks high among possible bus
systems.

What you get

This document was developed for users who are new to CAN bus technology.

It describes the most important terms and the architecture of the CAN bus in a
simple way.

This provides the reader with a comprehensive compendium that allows him/her to
meet the requirements placed on him/her more efficiently.

This document is also ideal as an accompanying document to the application
description that is located on the same HTML page as this document.

2 The CAN Bus: The Basis for CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 5

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 The CAN Bus: The Basis for CANopen

What will you find here?

This chapter describes the basics of the transmission technology with the CAN
bus. This introduction is important for understanding the following chapters as the
CAN bus was adapted by CANopen.

2.1 What is the CAN bus?

Introduction

The Controller Area Network (CAN) bus was developed in 1983 by Bosch and Intel
as a fieldbus for real-time-capable, low-cost data transmission in vehicles.

Due to its more cost-effective field devices, the CAN bus is now also used in
industrial automation and enhanced for communication at the sensor/actuator level
(CAN in Automation http://www.can-cia.org).

Due to the standardization of layers 1 (physical layer) and 2 (data link layer) of the
OSI reference model in ISO 11898 and the openness of the protocol, CAN allows
devices, sensors and actuators from different manufacturers to communicate.

Characteristics

The CAN bus is characterized by the following capabilities:

• Multi-master: All stations are equal and can independently send and receive
data. They are equally responsible for bus access, error handling and failure
monitoring. If one node fails, this does not result in a failure of the entire
system.

• Message-oriented communication: The stations have no address.
Communication between the stations takes place via broadcast.
New stations are integrated into the overall system without a new configuration
as it is not necessary to reveal addresses.

• Flexibility: CAN provides the messages and not the nodes with an identifier
(ID) (content-oriented addressing). All CAN frames are available to each CAN
node for receiving (broadcasting). Each receiver is responsible for selecting the
CAN frames. Such receiver-selective addressing is very flexible; however, it
requires that the received CAN messages be filtered on the receiver side.

• Prioritizing the messages: The messages can be assigned and prioritized
using special identifiers in the CAN frame.

• Unique fault confinement: Various security procedures minimize data
transmission errors and ensure network-wide data consistency.

Field devices

Examples of CAN bus devices:

• Programmable controllers

• PCs

• Input/output modules

• Drive amplifiers

• Analyzers

• Sensors and actuators such as temperature/pressure sensors

http://www.can-cia.org/

2 The CAN Bus: The Basis for CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 6

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 Transmission technology

Layer 1 of the OSI reference model defines detailed specifications for the physical
communication layer such as recommended cables, connectors and power drivers.
Layer 2, the data link layer, controls and protects communication at the layer of a
frame.
Layers 3 to 6 are not necessary for CAN.
The application layer (layer 7) defines various protocols (e.g., SDS, DeviceNET,
CANopen), but there is no binding specification.

Note The following description refers to the CAN 2.0 specification.

2.2.1 Bus topology and physical layer

Connection of devices to the CAN bus

CAN is bit stream-oriented (serial data transmission) and designed as a linear bus.
A two-wire twisted pair cable is used as the transmission medium. The units are
called “nodes” and connected to each other in parallel via stubs. At both ends, the
bus must be terminated with a 120 Ω resistor.

Figure 2-1

CAN High

CAN Ground

CAN Low

Node 1 Node 2 Node n

120Ω120Ω

Pinout for CAN

The 9-pin D-sub connector has established itself as the connector for the CAN bus
in automation technology.
At least a 3-wire cable is required for the transmission of CAN signals. The wires
are named CAN-High, CAN-Low and Ground.

Line length and baud rate

The bus length and the allowed length of the stubs depend on the bit rate. The
maximum bit rate defined for CAN is 1 Mbit/s. If the bit rate is higher than 250
kbit/s, this is referred to as high-speed CAN; if it is lower than this value, this is
referred to as low-speed CAN.

All nodes on the CAN bus must use the same bit rate. As some nodes do not
support all bit rates, the maximum baud rate on the CAN bus is limited by the
maximum transmission speed supported by all nodes.

2 The CAN Bus: The Basis for CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 7

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Physical implementation

The CAN bus is a serial system and uses difference signals between the CAN-High
and CAN-Low wires. The base level, without external influences such as
electromagnetic interference, is 2.5 V.

The following applies:

Table 2-1

 Level State Difference signal

High-speed CAN dominant 0 Udiff > 0.9 V

recessive 1 Udiff < 0.5 V

Low-speed CAN dominant 0 Udiff > -3.2 V

recessive 1 Udiff < -3.2 V

The data is transmitted such that a bit, depending on its state, affects the bus lines
either dominantly or recessively. A dominant bit overwrites a recessive bit.

Figure 2-2

2.5V

3.5V

1.5V

0V

5V

CAN-High

CAN-Low

Time

Voltage

dominant

“0”

recessive

“1”

2 The CAN Bus: The Basis for CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 8

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2.2 CAN at the data link layer

Structure of the CAN data frame

CAN transmits messages in defined frames. It distinguishes between the following
formats:

• Data frame: for data transmission

• Remote frame (data request frame): For requesting data

• Overload frame: flow control

• Error frame: error detection and notification

The structure of a data frame is defined as follows:

Figure 2-3

Bits 1 12/32 6 0-64 16 2 7

Field Start Arbitration Control Data CRC ACK End

Note Currently, there are two specifications for a CAN data frame. They differ mainly
in the number of bits in the arbitration field.

CAN 2.0 A: 12-bit arbitration field

CAN 2.0 B: 32-bit arbitration field

Table 2-2

Section Subgroup Description

Start field RTR The start bit (SOF) defines the start of a data frame or
data request frame and always has a low level (state 0:
dominant).

Arbitration field

 Identifier The identifier is an ID code for the message type and
used for arbitration on the bus.

As the data frames are received by all nodes
(broadcast), this identifier is used to decide whether the
received message will be ignored or processed.

In CAN, the “0” state is dominant; therefore, the smallest
identifier value has the highest priority.

The number of bits of the identifier depends on the
specification:

CAN 2.0 A: 11-bit identifier

CAN 2.0 B: 29-bit identifier

 RTR RTR identifies whether the frame is a data frame or a
data request frame.

RTR = 0: data frame
RTR = 1 : data request frame

Control field

 IDE The identifier extension bit identifies an 11- or 29-bit
identifier.

IDE = 0: 11-bit identifier

IDE = 1: 29-bit identifier

 r0 reserved

2 The CAN Bus: The Basis for CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 9

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Section Subgroup Description

 DLC [0..3] These 4 bits encode the number of data bytes in the
data field.

Data field The user data is transmitted in the data field. Up to 8
bytes can be transmitted per frame.

CRC field The CRC field contains a CRC checksum of the
previous fields. With this checksum, transmission errors
can be ruled out.

ACK
(acknowledge)
field

 ACK slot The transmitting node puts both bits onto the bus on a
recessive (state: 1) basis and waits for the other nodes
to overwrite this level with a dominant level (0). This
ensures that at least one node has received the
message correctly.

 ACK
Delimiter

End-of-frame
field

 The end-of-frame field contains 7 recessive bits.

Bus arbitration principle

In CAN, each node on the bus listens to the data – even during its own send
operation. A node may transmit only when the bus is idle.

For this purpose, the CSMA/CA (carrier sense multiple access with collision
avoidance) bus access method was defined for CAN.

If multiple nodes start transmitting at the same time, the bus conflict is resolved
through bitwise arbitration. The arbitration field (Identifier) in the data frame is used
for this purpose.
Each transmitting node monitors the bus level bit by bit. To do this, it compares the
state of its bit to be transmitted to the bit currently on the bus. If these states are
identical, the node transmits the next bit.
The node that puts the first dominant bit (state: “0”) onto the bus prevails on the
bus. The other nodes abort their send attempt and go to receive mode.
Therefore, the first dominant bit in the identifier decides on the prioritization.

2 The CAN Bus: The Basis for CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 10

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 Error handling and error detection

CAN has a number of checking features for error detection and correction. The
following three mechanisms are implemented at the message level:

1. Checksum calculation: Each data frame has a 2-byte CRC field. On the
transmitting side, this is where the checksum calculated over the arbitration,
control and data field is stored. On the receiving side, too, a checksum is
calculated over these three fields and compared to the stored one. If the
checksums do not match, an error has occurred during data transmission and
the receiver re-requests the frame.

2. Data frame check: This mechanism checks the data frame fields predefined in
the structure. If one or more fields contain erroneous bits, a framing error has
occurred.

3. Acknowledgment: Each node acknowledges the receipt of a frame by changing
the ACK bit to “dominant”. If the transmitter does not detect a change to the
ACK bit by the receiver, a transmission error has occurred.

More actions for error analysis are provided at the bit level:

1. Monitoring: Each transmitting node simultaneously monitors the bus level. It
detects differences between the transmitted and received bit. This allows safe
detection of all global errors and local bit errors on the transmitter.

2. Bit stuffing: Up to the end of the CRC field, a data frame must not have more
than five consecutive bits of the same polarity.

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 11

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 The Adaptation of CAN: CANopen

3.1 What is CANopen?

Introduction

CANopen is a device- and manufacturer-independent protocol for communication
on the CAN bus and covers the application layer (layer 7) of the OSI reference
model.

Aside from Profibus, CANopen has established itself in Europe in automation
technology and many areas of embedded control.

The standardization of CANopen by “CAN in Automation (CiA)” in EN 50325-4
defines key points:

• Creation of a uniform basis for the exchange of commands and data between
CAN bus nodes through communication objects (COB).

• Implementation of mechanisms for exchanging process data in real time,
transferring large data volumes or sending alarm frames.

• Definition of defined interfaces for addressing certain parameters of a device
through profiles.

The figure below shows the classification of CANopen in the OSI reference model:

Figure 3-1

CAN Bus

Physical Layer (ISO 11898 CAN Specification)

Data Link Layer (ISO 11898 CAN Specification)

Application Layer (CiA EN 50325-4)

CANopen Communication Profiles

CANopen Device Profiles

Application

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 12

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Adaptation compared to CAN

For data communication, CANopen uses CAN bus technology (see chapter 2.2
Transmission technology).

However, there are a few areas where CAN was adapted by CANopen:

• No use of multi-master capability: For the most part, communication
between the nodes corresponds to the client-server model. Only the
transmission of process data is based on the producer-consumer model. A
CANopen network can contain up to 127 nodes.

• Network management: Special network management objects allow
monitoring and control of the network.

• Predefined identifiers: To reduce configuration overhead, the CANopen
specification predefines default values for a number of ID codes for the type of
a message.

3.2 CANopen technology

3.2.1 Objects and profiles

Objects

All processes in CANopen are performed using objects. These objects perform
different tasks:

• Identification objects for device information (name, manufacturer)

• Error objects for displaying the error condition of a node

• Communication objects for data transport between the nodes

• Network configuration objects for assigning the configuration data to the nodes

• Network management objects for monitoring and control

Now profiles compile these objects according to their tasks. A distinction is made
between

• standardized profiles

• manufacturer-specific profiles.

Standardized profiles

Standardized profiles comprise objects that can be used on different devices
without customization. They include

• the communication profiles (e.g., DS 301, DS 302)

• the DS 40x device profiles for

– digital/analog I/O devices (DS 401),

– drives (DS 402),

– operator panels (DS 403),

– sensors and controllers (DS 404),

– programmable controllers (DS 405) and

– encoders (DS 406).

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 13

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

 Communication profiles

The objects of the DS 301 communication profile define a uniform basis for
common data and parameter exchange between different device types on the CAN
bus and initialize, control and monitor the device in the network.

Objects of the communication profile:

• Process Data Objects (Process Data Objects/ PDOs)

• Service Data Objects (Service Data Objects/ SDOs)

• Objects with special functions for synchronization and error alert and response.

• NMT Network Management Objects for initialization, error monitoring and
status monitoring of the device.

The DS 302 profile is a framework for programmable devices (CANopen Manager,
SDO Manager).

 Device profiles

CiA defines device profiles for important modules used in industrial automation.
These profiles contain objects for the basic functions and parameters of the
respective standard device. In this way, the transmitted data of a device can be
interpreted on a unique, manufacturer-independent basis. In addition, devices that
follow the same profile can be interchanged largely without any problems.

Therefore, the DS 402 device profile describes standardized objects for positioning,
monitoring and setting drives.

Manufacturer-specific profiles

The objects of the standardized profiles describe only the basic functions and
parameters of a device type. The complete scope of functions and parameters is
stored in the manufacturer-specific profiles. These profiles contain the objects that
allow the use of the manufacturer-specific functions in CANopen such as the
definition of supported data types (Byte, Word, Long, etc.).

3.2.2 Object dictionary

The object dictionary is the main connection of the objects of a device. This is
where all the objects are structured in a clear table. The grouping is defined by the
specification.

Each object is addressed using a 16-bit index represented as a four-digit
hexadecimal number.

Table 3-1

Index (hex) Object group

0000h Reserved

0001 h – 009F h Static and complex data types

00A0 h – 0FFF h Reserved

1000 h – 1FFF h Communication profiles (e.g., DS 301, DS 302)

2000 h – 5FFF h Manufacturer-specific device profiles

6000 h – 9FFF h Standardized device profiles

A000 h – FFFF h reserved

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 14

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following figure shows an excerpt from the object dictionary for the
communication profiles:

Figure 3-2

3.2.3 The communication objects

Special communication objects (COBs) from the DS 30x profiles are available for
communication between the CANopen nodes.

As with all other fieldbus protocols, a distinction is made between real-time data
and parameter data. CANopen assigns the suitable communication objects to
these completely different data types.

Basically, a distinction is made between the following communication objects:

• Service Data Objects (SDOs) for transferring data from and to the object
dictionary (parameter assignment data)

• Process Data Objects for exchanging current process conditions (real-time
data)

• Objects for network management

• Objects for controlling the CAN messages (synchronization and error
messages)

Each communication object is uniquely identified by an identifier (ID).

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 15

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note This section provides only a brief overview and description of the objects. The
following chapters provide more detailed information.

Service Data Objects

Service Data Objects are used to modify the object dictionary, for example, to
parameterize a device during booting, for status checks or to modify Process Data
Objects. Each CANopen node has at least one SDO channel in order to respond to
a read/write request of another node.

The objects to be modified are accessed through the index and sub-index. The
values can be read and – if allowed – written to.

Process Data Objects

Process Data Objects are used to exchange real-time process data. Quick
transmission is implemented through the following:

• The frame is not acknowledged by the receiving node.

• Flexible data length: The frame length follows the included user data.

• Transmission of data without additional overhead.

• Pre-agreed data format.

• Compared to SDOs, PDOs have high-priority identifiers.

The Process Data Objects are located in sections 1400h – 1A7Fh of the object
dictionary.

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 16

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-3

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 17

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

When and if a producer sends/receives a message depends on the transmission
type of the Transmit Process Data Objects (T_PDOs).

The following transmission types are possible:

• Event-controlled data transfer

• Synchronized using the SYNC synchronization object

• Event-controlled synchronization

• Request by a consumer

The transmission type can be set separately for each T_PDO.

The modification of the object is performed using an SDO.

Figure 3-4

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 18

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Network Management Objects

The Network Management (NMT) Objects perform tasks that can be divided into
two groups:

• Device control services to

– initialize the network and network nodes.

– control the operating states of the nodes.

• Connection monitoring services to monitor the nodes during network operation.

The following figure shows an excerpt from the object dictionary for the Network
Management Objects:

Figure 3-5

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 19

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Special Objects

In addition to the Service Data, Process Data and Network Management Objects,
the communication profile defines objects for controlling the CAN messages:

• Synchronization Objects to synchronize network nodes and process data
communication.

• Emergency Objects for error messages triggered by errors of a device or its
I/Os.

Synchronization is based on two time values:

• The Cycle Period defines the interval between two synchronization messages
and is stored in the “Communication Cycle Period” Object (1006h).

• The Synchronous Window defines the time in which PDO messages must be
received and sent. The corresponding object is “Synchronous Window Length”
(1007h).

Figure 3-6

Whether a device can actively generate Sync messages or only act passively has
to be set in the “COB-ID Sync” Object (1005h).

Figure 3-7

CANopen error messages are displayed via an EMCY message. There are multiple
options to evaluate the error cause:

• “Error Register” Object (1001h): This 1-byte data field in the object dictionary of
each node displays the error condition of the device on a bit-coded basis.

 Figure 3-8

• “Pre-defined error field” Object (1003h): This object provides an error history
with a maximum of 10 entries. The possible error codes and descriptions are
specified by CANopen.

 Figure 3-9

• Up to 5 bytes of manufacturer-specific error information

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 20

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Mode of functioning of the communication objects

The schematic diagram below shows a CANopen node and the interaction of the
communication objects:

Figure 3-10

3.2.4 Defined identifiers (COB-IDs)

As we all know, CANopen is based on CAN and uses the CAN specification for
data transmission. The frame structure of CAN is not changed as the CANopen
messages are embedded into the user data area of the CAN frame. Merely the
meaning of the 11-bit identifier field is modified according to the CANopen
specification: the addressing of the node is now part of the identifier.

The identifier distribution is designed such that there are not more than 128
devices in a CANopen network: one master and up to 127 slaves.

CANopen uses the 11-bit identifier of CAN 2.0A and divides it into two parts:

• The (4-bit) function code to identify the communication object.

• The (7-bit) node ID in the range of values [1..127].

In CANopen, too, any identifier can be selected. To reduce configuration overhead,
the CANopen specification provides predefined identifiers for the communication
objects.

Binary or analog IO signals

Use of CANopen

Object Dictionary

Stores the device data and

communication properties.

Lists the PDOs.

Service Data Objects

During startup, the objects of the

object dictionary are modified

with the configuration data.

In addition, objects can be

read from there.

Process Data Objects

Data transport

of process values

R_PDO

T_PDO

CAN bus

CAN protocol

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 21

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-2

Object Index in OD Identifier (COB-ID) COB-ID (hex)

Function
code

Node ID

NMT function - 0000 0000000 0h

Synchronization 1005 h-1007 h 0001 0000000 80h

Emergency 1014h,1015 h 0001 xxxxxxx 80h + node ID (81 h – FF h)

T_PDO1 1800 h 0011 xxxxxxx 180h + node ID (181 h – 1FF h)

R_PDO1 1400 h 0100 xxxxxxx 200h + node ID (201 h – 27F h)

T_PDO2 1801 h 0101 xxxxxxx 280h + node ID (281 h – 2FF h)

T_PDO2 1401 h 0110 xxxxxxx 300h + node ID (301 h – 37F h)

T_PDO3 1802 h 0111 xxxxxxx 380h + node ID (381 h – 3FF h)

R_PDO3 1402 h 1000 xxxxxxx 400h + node ID (401 h – 47F h)

T_PDO4 1803 h 1001 xxxxxxx 480h + node ID (481 h – 4FF h)

T_PDO4 1403 h 1010 xxxxxxx 500h + node ID (501 h – 57F h)

T_SDO - 1011 xxxxxxx 580 h + node ID (581 h – 5FF h)

R_SDO - 1100 xxxxxxx 600h + node ID (60 1 h – 67F h)

NMT Error Control 1110 xxxxxxx 700h + node ID (701 h – 77F h)

The key advantage of predefined identifiers for the objects is that filtering the
received CANopen frames on the receiver side is significantly easier. As the
identifiers are already known, the CANopen configuration software can be used to
explicitly inform each device of the specific frames it must respond to and process.

3.2.5 The EDS and DCF device data sheets

The EDS file

The device manufacturer describes all the functions and features of a CANopen
device in an electronic data sheet (EDS). This file includes all supported objects,
the access options (read/write) and default values of the objects, the number of
PDOs, baud rates, manufacturer information and much more device information.
However, the EDS is only a template for the device as it does not contain any
object values.

The DCF

The Device Configuration File has the same structure as the EDS file; however, it
additionally contains values for each object from the object dictionary. When the
CANopen nodes have been configured and parameterized in the configuration
software, this software generates the DCF.

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 22

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.6 Communication relationships

Overview

CANopen uses three relationships between the network nodes

• Master/slave relationship

• Client/server relationship

• Producer/consumer relationship

Master/slave relationship

In a master/slave relationship, a master controls the message traffic and the slaves
only respond to master requests. Messages can be exchanged on an
unacknowledged or acknowledged basis.

An unacknowledged message can be received by all nodes, single nodes or no
node.

For an acknowledged message, the master requests a message from the slave.
The slave responds to the frame with the requested data.

Figure 3-11

Master

1
2
0
Ω

1
2
0
Ω

Slave

Slave Slave

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 23

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Client/server relationship

A client/server relationship is always established between two nodes and is
bidirectional. The exchange of messages is always initiated by the client.
It makes a request to the server and expects an acknowledgment (that normally
contains the response data). Therefore, a client/server relationship always has at
least two frames (request/response).

Figure 3-12

Client

1
2

0
Ω

1
2
0
Ω

Server

Request

Response

Producer/consumer relationship

A producer/consumer relationship is used where quick data exchange without
management data is required.
The producer sends a frame that can be received by one or more nodes
(consumers).

To avoid unnecessary reduction of the bus bandwidth, data transfer is
unacknowledged.

Figure 3-13

Master

1
2
0
Ω

1
2
0
Ω

Consumer

Consumer Consumer

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 24

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3 Synchronization of the CANopen network

Overview

CANopen allows polling of inputs and states of different nodes and modification of
outputs or states.
The synchronization frame (SYNC COB-ID: 80h) is used for this purpose.
The sync frame is a broadcast (no node ID in the COB-ID) to all bus nodes – high-
priority and without data content.

A bus node (generally the master) cyclically sends the sync frame at fixed intervals
(communication cycle).

Modules in synchronized mode read out their process data inputs when they
receive the sync message and then directly send the data when the bus is idle.
Output data is only written (or executed) to the outputs after the next sync frame.

SYNC frame

The network is synchronized using a producer/consumer relationship.

The sync frame itself does not transmit any data and uses the “blank” CAN frame.

Figure 3-14

Bits 1 12/32 6 0-64 16 2 7

Field Start Arbitration Control Data CRC ACK End

3.4 Error detection in CANopen

Overview

Emergency messages are sent when a critical error situation has occurred/been
resolved in the device or if other devices must be provided with important
information. The emergency frame is sent independently by each CANopen device.

COB-ID: 80h + node ID was defined for the emergency frames.

The emergency frame contains a code that uniquely identifies the error (defined in
the DS-301 communication profile and in the respective DSP-40x device profiles).

The table shows some of the available error code groups.

Table 3-3

Code (hex) Meaning

00xx No error

10xx Undefined error type

20xx Current error

30xx Voltage error

40xx Temperature error

50xx Device hardware error

60xx Device software error

70xx Additional modules

80xx Communication

90xx External error

FF00 Device-specific

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 25

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Simultaneously to transmitting the error frame, each node stores the error code in
object 1003h of its object dictionary (see Figure 3-9) and encoded bit by bit in
object 1001h.

Table 3-4

Bit Error cause

0 Generic Error

1 Current

2 Voltage

3 Temperature

4 Communication Error

5 Device Profile Specific

6 Reserved (always 0)

7 Manufacturer Specific

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 26

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

EMCY frame

The emergency frames are sent according to the consumer/provider relationship.

Emergency messages are sent when an error situation has occurred or been
resolved in the device or if other devices must be provided with important
information.

The error entries in the bus frame are encoded as follows:

Figure 3-15

Bits 1 12/32 6 0-64 16 2 7

Field Start Arbitration Control Data CRC ACK End

CAN header

Bits 16 8 40

Field Err
or

Error Register Manufacturer Specific
Code

EMCY

Table 3-5

Section Description

Error Code Error Code includes information on the error cause and is defined
in the DS-301communication profile and the respective DSP-40x
device profiles. See also Table 3-3.

Error Register This 1-byte data field shows the error condition of the device on a
bit-coded basis. This value is also stored in the “Error Register”

Object (1001h) of each node.

Manufacturer
Specific Code

Manufacturer-specific error information.

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 27

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.5 Service data communication

Overview

With the aid of the

• T_SDO: COB-ID: 580h + node ID

• R_SDO: COB-ID: 600h + node ID

Service Data Objects, the object dictionary entries of another network node can be
accessed and the values of the objects can be read and, if possible, modified.
Which entry is referenced is stored in the service data frame by adding the
appropriate index and sub-index.

Service Data Objects are predominantly used to parameterize and configure the
devices.

The data exchange request is sent with T_SDO and received with R_SDO. The
data frame of an SDO has a size of 8 bytes.

SDO frame

Service data communication takes place using a client/server relationship between
two nodes and is always asynchronous.

Aside from the addressing of the object in the object dictionary (16-bit index + 8-bit
sub-index), the SDO data frame contains a domain protocol and a 4-byte user data
field.

Figure 3-16

Bits 1 12/32 6 0-64 16 2 7

Field Start Arbitration Control Data CRC ACK End

CAN header

Bits 8 16 + 8 16

Field Domain Object Data

SDO

Table 3-6

Section Subgroup Description

Domain protocol The command code contains information that specifies
the action to be performed to the addressed parameter
and the length of the transferred value.

Object address

 Index The index consists of a 16-bit four-digit hexadecimal
number and addresses an object from the object
dictionary.

 Sub-index If an object consists of multiple subcategories, they are
addressed via the sub-index of an 8-bit hexadecimal
number.

Data field The user data is transmitted in the data field. Up to 4
bytes can be transmitted per frame. Normally, the data
field contains the values to be written to the addressed
parameter.

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 28

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6 Process data communication

Overview

Process Data Objects are used for real-time data exchange of process and
operating states. The communication profile defines the COB-IDs for 4 send and 4
receive channels (see Table 3-2). If the device supports more channels (e.g., the 1
SI module with 128 send and receive channels), the missing COB-IDs are defined
by the manufacturer.

PDO messages can be exchanged between network nodes that generate or
process process data.

Transmission types

PDO data exchange is either synchronous or asynchronous.

Synchronized transmission

Synchronous data transmission of PDOs takes place in relation to the SYNC
Object (see chapter 3.3 Synchronization of the CANopen network).

When the SYNC Object is received, the inputs of the device are read and then
sent. Received output data is not written before the next SYNC.

Synchronous message exchange can be implemented cyclically (divided
synchronization) or acyclically (event-controlled synchronization).

Asynchronous transmission

Asynchronous data transmission is independent of the SYNC Object. The data of a node is
sent when an event occurs (e.g., data change) or the node has received an
external data request. Such a remote request is indicated by the RTR bit (see

Table 2-2) in the identifier field of the CAN frame.

PDO frame

To avoid unnecessary reduction of the bus bandwidth for real-time data
transmission, data transmission takes place through a producer/consumer
relationship and is therefore unacknowledged

By filtering – on the receiver side – based on the COB-ID to be expected, each
network node decides whether or not the frame is relevant to it.

The filtering of the frames is communicated to the device through the CANopen
configuration software by means of PDO mapping (see chapter 3.7 PDO mapping).

A process data message has no additional management information; it uses the
“blank” CAN frame, including the user data field of CAN that has a maximum size
of 8 bytes.

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 29

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-17

Bits 1 12/32 6 0-64 16 2 7

Field Start Arbitration Control Data CRC ACK End

CAN header

Bits 0-64

Field Process data

PDO

The data length of a PDO message is flexible: If only 2 bytes are occupied, only 2
data bytes are transmitted. As “empty bytes” are not transmitted, data throughput
on the bus is higher.

Due to the missing protocol information on the part of CANopen in the frame,
producer and consumer must agree on the data format. This is done by PDO
mapping (see chapter 3.7 PDO mapping).

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 30

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7 PDO mapping

Task

PDO mapping is generated for each network node with the aid of the CANopen
configuration software and performs multiple tasks:

• It defines the data formats for the 8-byte data field in the PDO.

• It defines the data assignment of the 8-byte data field.

• It defines which PDO frames a node sends to the bus and which data they
contain.

• It informs which frames the node can expect.

For each PDO, there is a corresponding PDO Mapping Object that stores these
definitions (see Figure 3-3).

Table 3-7

Object Index Description

Receive PDO Parameter
[0..127]

1400h –

147Fh

All frames a node is to respond to and process are described by
this object.

A total of 128 Receive PDOs (R_PDOs) are available for 128
frames.

Through the sub-indexes, each R_PDO saves settings regarding
the frame to be expected. This includes information such as:

• COB-ID of the frame to be received

• Transmission type

• Delay time

Receive PDO Mapping
[0..127]

1600h –

167Fh

Another object that precisely defines the meaning of the 8 bytes
of user data and the specific data formats included in the R_PDO
corresponds to each R_PDO.

Each mapping object has nine sub-indexes:

The first entry (Sub[0]) contains the number of mapped objects,
Sub[1]-Sub[8] represent the possible entries
(8 * 1 byte for the 8-byte user data field).

Transmit PDO Parameter
[0..127]

1800h –

187Fh

All frames a node sends are described by this object.

A total of 128 Transmit PDOs (T_PDOs) are available for 128
frames.

Through the sub-indexes, each T_PDO saves settings that
define how to send the frame. This includes information such as:

• COB-ID of the frame to be sent

• Transmission type

• Delay time

Transmit PDO Mapping
[0..127]

1A00h –

1A7Fh

Another object that precisely defines the specific data formats
and data to be transmitted with the T_PDO corresponds to each
T_PDO. Data formats

A total of 8 bytes of data can be transmitted per PDO.

Each mapping object has nine sub-indexes:

The first entry (Sub[0]) contains the number of mapped objects,
Sub[1]-Sub[8] represent the possible entries
(8 * 1 byte for the 8-byte user data field).

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 31

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Furthermore, the object dictionary sections that define the data types supported by
the device are of importance to PDO mapping.

In the 1SI module, these are stored in the Manufacturer Specific profile:

Figure 3-18

PDO mapping types

Basically, we distinguish between two types of PDO mapping:

• Dynamic mapping: The 8 bytes of user data of the PDOs can be flexibly
formatted and the data can be compiled differently, depending on the use.

• Static mapping: In this case, the data formats for each PDO are predefined by
the manufacturer and cannot be changed.

Principle

The following section uses a sample scenario to illustrate PDO mapping.

Node 1 wants to communicate the following values from its process image to Node
2:

Table 3-8

 Consumer Node 2

Producer
Node 1 B

y
te

 0

B
y
te

 1

B
y
te

 2

B
y
te

 3

W
o

rd
 0

W
o

rd
 1

L
o

n
g

 0

Byte 0

Byte 1

Byte 2

Byte 3

Long 0

Word 0

Word 1

A total of 8 bytes are to be transmitted; one T_PDO is sufficient for data
transmission.

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 32

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following figure illustrates the PDO mapping principle in the object dictionary of
the producer:

Figure 3-19

Index Sub-index Description

1600h T_PDO_0

0 = 4 (number of entries)

1 = 181h (COB_ID: 180h + node ID)

…

1A00h T_PDO_0 Mapping

0 = 4 (number of mapping entries)

1 = 2000 31 20h (index 2000h, sub-index 31h, 20h bit)

2 = 2000 21 10h (index 2000h, sub-index 21h, 10h bit)

3 = 2000 01 08h (index 2000h, sub-index 01h, 08h bit)

4 = 2000 02 08h (index 2000h, sub-index 02h, 08h bit)

2000h Input Data Buffer

0 = 56 (number of objects)

1 Input Data Buffer Byte 0

2 Input Data Buffer Byte 1

…

33 Input Data Buffer Word 0 (≙byte 0 & byte 1)

…

49 Input Data Buffer Long 0 (≙byte 0 - byte 3)

COB ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

T_PDO_0

181h Long 0 Word 0 Byte 0 Byte 1

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 33

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8 Network management

Overview

The Network Management (NMT) Objects perform tasks that can be divided into
two groups:

• Device control services to

– initialize the network and network nodes.

– control the operating states of the nodes.

• Connection monitoring services to monitor the nodes during network operation.

– Node Guarding function

– Heartbeat function

3.8.1 Control of the CANopen devices

Network management state machine

During operation, CANopen devices can have different states. Depending on the
state, only certain functions or communication objects can be used.

The network management state machine gives an overview of the possible
operating states and illustrates the correlations:

Figure 3-20

Initialization

Pre-operational

Stopped

Operational

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 34

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-9

State Description Objects that can be
used

Initialization After switching on, all devices are
automatically in this phase and prepared for
CAN bus operation.

Pre-operational Once initialized, the devices are in the Pre-
operational state and send a “boot-up”
message to the NMT master. From this time
on, the master can control the behavior of
the device.
The Pre-operational state can be used for
configuration via SDOs:

- PDO mapping

- Start of synchronization

- Start of connection monitoring

SDO, EMCY, NMT

Operational Operational is the normal bus operating
mode. The devices are fully functional.

PDO, SDO, SYNC,
EMCY, NMT

Stopped In the Stopped state, there is no more
communication. However, any configured
connection monitoring remains active.

NMT

The devices change their operating state

• upon request by an NMT Object.

• in the event of a hardware reset.

• initiated by a device control service.

Initialization of the network

To ensure a controlled network start and to monitor the connections of the nodes,
the devices are initialized and the operating modes are controlled in a master/slave
relationship.

These services are transmitted unidirectionally with COB-ID 0 and are therefore
assigned the highest priority on the bus.

The data frame consists of two bytes.

Figure 3-21

Bits 1 12/32 6 0-64 16 2 7

Field Start Arbitration Control Data CRC ACK End

CAN header

Bits 8 8

Field Command Node ID

Device service

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 35

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-10

Section Description

Command The “Command Specifier” field defines the NMT service to be used.

Possible values:

01h Start network node

02 h Stop network node

80 h Go to “Pre-operational”

81 h Reset node

82 h Reset communication

Node ID This 1-byte field addresses the receiver of the NMT message with the
node ID. A message with node ID 0 addresses all NMT slaves.

3.8.2 Monitoring functions

CANopen provides monitoring services for the network connections to allow
response to a failure of a node or network interrupts. The following mechanisms
are available to secure communication:

• Guarding

– Node Guarding (master)

– Life Guarding (slave)

• Heartbeat

A CANopen node must support at least one monitoring function.

Monitoring frames can be identified by COB-ID 700h + node ID.

Guarding function

With Node Guarding, it is the master’s responsibility to cyclically request NMT
status messages from the slaves. If a slave does not respond within a defined time
or sends an unexpected operating state, the master detects an error and sends an
EMCY Object.

Slaves that support Life Guarding can also monitor the cyclic request frame from
the master. If a frame from the master is not received within a defined time, the
slave detects an error and sends an error frame.

The times are configured using two Network Management Objects: “Guard Time”
(100Ch) and “Life Time Factor” (100Dh).

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 36

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-22

Guarding frames are always sent bidirectionally following the master-slave
principle.

Without Life Guarding, a failure of the NMT master is not detected by the NMT
slaves.

Figure 3-23

NMT master
NMT slave
(node ID: 4)Request frame

COB ID: 704h

Response frame

COB ID: 704h + NMT status

Request frame

COB ID: 704h

Response frame

COB ID: 704h + NMT status

G
u

a
rd

 T
im

e

3 The Adaptation of CAN: CANopen

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 37

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Heartbeat function

With heartbeat, the nodes (NMT master and NMT slaves) cyclically transmit their
current operating state to all other bus nodes on their own initiative. An explicit
request via the NMT master is not required. The individual cycle time of each node
can be set using object 1017h.

Figure 3-24

The bus nodes monitor the Heartbeat frames received from the other nodes and
report a failure if a frame does not arrive.

Figure 3-25

Nowadays, Heartbeat is preferred over Node Guarding as, due to the missing
request frame, it causes less bus load and, in addition, a failure of the NMT master
is also detected by the NMT slaves.

Heartbeat producer
(node ID: 4)

Heartbeat

consumer(s) Heartbeat frame

COB ID: 704h + NMT status

H
e
a
rt

b
e
a
t

P
ro

d
u
c
e
r

T
im

e

Heartbeat frame

COB ID: 704h + NMT status

4 Links & Literature

CANopen Tutorial
Entry ID: 109479771, V2.0, 07/2019 38

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Links & Literature
Table 4-1

 Topic Title

\1\ Siemens Industry
Online Support

http://support.automation.siemens.com

\2\ Download page of
the entry

https://support.industry.siemens.com/cs/ww/en/view/1094797
71https://support.industry.siemens.com/cs/ww/en/view/109479771

\3\

5 History

Table 5-1

Version Date Modifications

V1.0 10/2015 First version

V2.0 07/2019 Update for TIA Portal V15.1

https://support.industry.siemens.com/cs/#?lc=en-US
https://support.industry.siemens.com/cs/ww/en/view/109479771
https://support.industry.siemens.com/cs/ww/en/view/109479771
https://support.industry.siemens.com/cs/ww/en/view/109479771

	CANopen Tutorial
	Warranty and Liability
	1 Understanding the CAN Bus
	2 The CAN Bus: The Basis for CANopen
	2.1 What is the CAN bus?
	2.2 Transmission technology
	2.2.1 Bus topology and physical layer
	2.2.2 CAN at the data link layer

	2.3 Error handling and error detection

	3 The Adaptation of CAN: CANopen
	3.1 What is CANopen?
	3.2 CANopen technology
	3.2.1 Objects and profiles
	3.2.2 Object dictionary
	3.2.3 The communication objects
	3.2.4 Defined identifiers (COB-IDs)
	3.2.5 The EDS and DCF device data sheets
	3.2.6 Communication relationships

	3.3 Synchronization of the CANopen network
	3.4 Error detection in CANopen
	3.5 Service data communication
	3.6 Process data communication
	3.7 PDO mapping
	3.8 Network management
	3.8.1 Control of the CANopen devices
	3.8.2 Monitoring functions

	4 Links & Literature
	5 History

