

Programming an

OPC DA .NET

Client with C# for

the SIMATIC NET

OPC Server

(COM/DCOM)

SIMATIC NET OPC
Server

SIMATIC NET OPC Server

https://support.industry.siemens.com/cs/ww/en/view/21043779

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/21043779

Warranty and Liability

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 2

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete with
regard to configuration, equipment or any contingencies. The Application
Examples do not represent customer-specific solutions; they are only intended to
provide support for typical applications. You are responsible for ensuring that the
described products are used correctly. These Application Examples do not
relieve you of the responsibility of safely and professionally using, installing,
operating and servicing equipment. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time and without prior notice. If there are any
deviations between the recommendations provided in this Application Example
and other Siemens publications – e.g. catalogs – the contents of the other
documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example will be excluded. Such an exclusion will not
apply in the case of mandatory liability, e.g. under the German Product Liability Act
(“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life, body
or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The compensation for damages due to a breach
of a fundamental contractual obligation is, however, limited to the foreseeable
damage, typical for the type of contract, except in the event of intent or gross
negligence or injury to life, body or health. The above provisions do not imply a
change in the burden of proof to your disadvantage.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens Industry Sector.

Security
informa-

tion

Siemens provides products and solutions with industrial security functions that
support the secure operation of plants, solutions, machines, equipment and/or
networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens’ products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
http://support.automation.siemens.com.

http://www.siemens.com/industrialsecurity
http://support.automation.siemens.com/

Table of Contents

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 3

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of Contents
Warranty and Liability ... 2

1 Task ... 4

1.1 Overview... 4
1.2 Requirements ... 5

2 Solution... 6

2.1 Solution overview ... 6
2.2 Description of the core functionality ... 7
2.3 Hardware and software components used... 9
2.4 Alternative solutions ... 10

3 Basics ... 12

3.1 Principal application model of the OPC DA interface 12
3.2 Differences between synchronous and asynchronous read and

write jobs .. 14
3.3 Dividing OPC items into OPC groups .. 18
3.4 Identifying OPC items created in an OPC client 19
3.5 Function mechanisms of .NET and inclusion of components of

the previous programming world .. 21
3.5.1 Programming model of the old world ... 21
3.5.2 Programming model of the .NET world .. 22
3.5.3 Integration of COM components in .NET applications 23
3.6 Basics on S7 communication ... 25

4 Functional Mechanisms of this Application ... 28

4.1 COMDA Client API ... 30
4.2 Simple Client COM DA ... 32
4.3 S7 program ... 35

5 Configuration and Setting of the OPC Server... 39

5.1 Configuration of the OPC server in STEP7 V15.1 39
5.2 Configuring the S7 connections ... 44
5.3 Check the settings .. 49

6 Installation and Commissioning .. 51

6.1 Hardware and software installation .. 51
6.2 Loading the PC station via STEP 7 V1x ... 53
6.3 Importing the XDB file into the Station Configuration Editor 56
6.4 Installation of the OPC client on the PC/PG....................................... 59
6.5 Loading the simulation to the S7 stations .. 60

7 Operating the Application ... 61

7.1 Overview... 61
7.2 Using the block services... 63

8 Glossary ... 64

9 Related Literature .. 65

9.1 Bibliographic references ... 65
9.2 Internet link specifications .. 66

10 History... 66

1 Task

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 4

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Task

1.1 Overview

Introduction

This application example shows the coupling of a production process to a
Windows-based PC with a data exchange via OPC. With this principle of operation,
for example, separate, specialized user interfaces and process visualization or data
acquisition can be realized.

Overview of the automation task

The figure below provides an overview of the automation task.

Figure 1-1

I/O

PLC

Visualization
DB

Connection

other

applications

OPC Client

Visualization

Data acquisition

Monitoring

Control system

Operating

OPC server

Applications on the PC

Process

Logic

Data
I/O

PLC…

Description of the automation task

A process is simulated with two different PLCs. The data from this process is to be
displayed, recorded and modified. This application shows how process data can be
displayed on a PC – using the .NET programming environment – irrespective from
which process control this data is.

1 Task

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 5

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1.2 Requirements

Requirements for operating and monitoring software for visualizing

The software is to enable the fast and simple generation of an interface. For this
purpose, the following requirements have to be met:

• Expandable library with interface controls.

• Use of Windows standard controls.

• Simple, reusable connection of these controls to the data.

Requirements to the data interface between visualizing and controlling

• Connection to the process data via Industrial Ethernet as well as the SIMATIC
NET OPC Server V8.x.

• Use of OPC DataAccess Custom interfaces RCW.

• Symbolic and absolute addressing of process data.

• Asynchronous/synchronous reading and writing of individual process data.

• Writing and reading of large data volumes via block services.

• Implementation of a structure for error handling.

Requirements to the development environment to be used

The current Windows development environment is to be used:

• Use of Microsoft Visual Studio® .NET 2010 SP1.

• Use of the .NET programming language Visual C#

2 Solution

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 6

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Solution

2.1 Solution overview

Schematic layout

The following scheme shows the most important components of the solution:

Figure 2-1

S7-300 station S7-1200 station

CPU 315-2 PN/DP CPU 1214C

PG/PC station

STEP 7 V13

SIMATIC NET CD V12

MS Visual Studio 2010

OPC simple client

Industrial Ethernet

S7 station

The controller side consists of two S7 stations: a CPU 315-2 PN/DP and an S7-
1214C

PC station

A PC station is connected via a standard Ethernet network card to a S7-300
controller and a S7-1200. On the PC station the SIMATIC NET OPC server and the
OPC client is running. A very simply designed client (Simple OPC Client) shows
you all basic functions for getting started.

The functionality of these sample clients will be explained in the next section.

Advantages

This application offers the following advantages:

• A complete C# programming example which shows you all important OPC
mechanisms.

• A reusable, expandable class library in which the most important OPC
methods for individual applications are encapsulated.

• A simplification of the general ".NET RCW" of the OPC Foundation to an easily
usable and expandable library for ".NET".

2 Solution

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 7

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Delimitation

This application does not contain a complete description of the following topics:

• ".NET" Framework

• C#

• OPC specification

• Deeper level COM mechanisms

• Basic knowledge of these topics is assumed.

Assumed knowledge

Basic knowledge in the area of object-oriented programming, as well as in the
COM environment is assumed. Further knowledge in UML (Unified Modelling
Language) is an advantage.

2.2 Description of the core functionality

Software components involved

The following figure shows the involved software components. Precise descriptions
can be found in chapter 4.

Figure 2-2

IE Softnet S7

Ethernet NIC

S7 protocol

SIMATIC NET

OPC DA server

.NET OPC RCW (OPC Foundation)

.NET OPC Client library
encapsulates reusable functions

COM OPC Custom Interface

simplified .NET interface

.NET Interface

.NET Windows application

GUI using OPC Client functions

CP

CPU

Logic / Simulation

PG/PCPLC

Assemblies
In scope of delivery of

SIMATIC NET DVD 2011

Application

.NET Framework V3.5 SP1

OPC server

PC/PG

A C# OPC client has been realized on the PC/PG for visualizing.

For connecting to the process, the OPC client uses the OPC Runtime Callable
Wrapper (abbr.: RCW) that is automatically installed together with the SIMATIC
NET OPC server.
The SIMATIC NET OPC server establishes the connection to the controller via the
SIMATIC NET SOFTNET-S7 connection.

2 Solution

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 8

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Control

The controller provides the data to be visualized.

For this purpose, a simple S7 program for simulating various data types is
implemented.

Created software components

• C# OPC client

• STEP7 simulation program

General application procedure

The OPC SimpleClient shows access to OPC data points and the use of the tags
as well as block services of the OPC server. The client library is expandable:

Table 2-1

Action User interface

The following functions are implemented in the OPC SimpleClient:

Connection to the OPC server:

• Connecting with the OPC server.

• Creating groups and items.

• Monitoring values.

• Reading/writing values.

• Reading/writing block.

Note The actions are performed via the operator elements of the user interface.

2 Solution

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 9

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 Hardware and software components used

The application was created with the following components:

Hardware components for the controller

Table 2-2

Component No. Article number Note

PS307 5A 1 6ES7307-1EA00-0AA0

CPU 315-2 PN/DP 1 6ES7315-2EH14-0AB0 or a comparable
S7-300 CPU

S7-1200 PM 1207 1 6EP1332-1SH71

CPU 1214C DC/DC/DC 1 6ES7 214-1AE30-0XB0 or a comparable
S7-1200 CPU.

Standard switch 1 Depending on product

Hardware components for the PC

Table 2-3

Component No. Article number Note

Power PG 1 6ES7751-0EA31-0LB3 or similar PC/PG

NDIS-capable network card 1 Depending on product Integrated in Power
PG

Standard software components

Table 2-4

Component No. Article number Note

STEP 7 Professional
V15.1

1 6ES7822-4AA03-0YA5

WinCC Professional 1 6AV2103-0DA00-0AM0 Adjust the article number
according to the required power
tags.

SIMATIC NET IE
SOFTNET-S7 (V15.1)

1 6GK1704-1LW12-0AA0

6GK1704-1CW12-0AA0

LW=8 S7 connections (Lean),
CW=64 S7 connections

Microsoft Visual Studio
2010

1 Express Edition

Standard Edition

Professional Edition

Obtainable in the Microsoft
store
(http://emea.microsoftstore.com)

.NET Framework 3.5 1 Free download at

http://www.microsoft.com/

Installed by SIMATIC NET

http://www.microsoft.com/

2 Solution

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 10

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Sample files and projects

The following list includes all files and projects that are used in this example.

Table 2-5

Component Note

21043779_OPCClient_RCW_CODE.zip The file contains the archived STEP7
simulation program for STEP7 V11 and
STEP7 V13, the setup for installing the
OPC clients (without .NET Framework)
and the complete source code files

21043779_OPCClient_RCW_DOKU_V2_1_e.pdf This document

2.4 Alternative solutions

OPC solutions in various programming languages

For coupling of process and operator control & monitoring, OPC is used as
standard mechanism. Depending on the preferred programming language, there
are various solutions that differ mainly in view of the speed of programming, type of
target application and their requirements. Furthermore, it should be distinguished
what OPC interfaces are to be used: the classic COM-based interfaces OPC DA2,
DA3, A&E or the combined OPC UA interface.

Decision criteria for using different programming languages

The following table shows you the most important decision criteria which are
decisive for selecting the used programming language.

Table 2-6

Deciding criteria Description

Custom interface Is it possible to use the custom interface of the OPC DA
interface?

Automation interface Is it possible to use the automation interface of the OPC
DA interface?

Simple implementation How suitable is the language to implement the code
relatively simply?

Error handling How well is the language suitable for realizing
professional error handling?

Performance How well is the language suitable for developing
performant OPC applications?

Parallelity How well suitable is the language to process tasks (from
different threads) in parallel?

Comparing different programming languages

The following table compares the different programming languages using the
above described criteria. The variant realized in this example is highlighted in blue
in this table.

Table 2-7

Criterion VBA (MSOffice) VB V6.0 VC++ .NET languages (managed)

Custom interface - - ✓ ✓(with RCW)

2 Solution

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 11

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Automation interface ✓ ✓ ✓ (*) ✓(*) (with RCW)

Simple implementation ++ ++ + (**) ++

Error handling - - ++ ++

Performance - - ++ +

Parallelity - - ++ +

(*) should not be used

(**) whilst using the Active Template Library (ATL)

Deciding criteria for using OPC interfaces

The following table shows you the most important decision criteria which are crucial
for selecting the used OPC interface:

Table 2-8

Deciding criteria Description

COM/DCOM OPC DA 2/3 Is the use of OPC DA interface with reading/writing/
monitoring sufficient for the application?

COM/DCOM OPC A&E Is the processing of events and process alarms pursued
(for the future)?

OPC UA Is a combined function
(read/write/alarms/methods/objects/types) with expanded
functions required?

Security Should remote connections be established and operated
securely across firewall boundaries?

Platforms Is the application only to communicate with Windows-
based systems (no Linux, Android, iOS)?

Functionality, flexibility What functionality is provided by the interface? In how far
are the functions to be expanded?

Combination with other
manufacturers

How suitable is the interface for integrating the systems
of other manufacturers, what remains, what is to be
configurable?

Comparison of various OPC libraries for .NET languages

In order to simplify the implementation of OPC Client application in the .NET
languages, there are various libraries for different application areas. The following
table compares the libraries based on the above described criteria.

Table 2-9

Criterion OPC Connector OPCClient.API OPCDa.RCW OPCUa.RCW

COM DA Interface ✓ ✓ ✓ -

COM AE Interface - - - -

OPC UA Interface ✓ (*) ✓ (*) - ✓

Security - (**) - (**) - (**) ++

Platforms - - - ✓

Functionality, flexibility - + ++ +++

Other manufacturer - (***) - (***) ✓ ✓

(*) only DA functions

(**) security only via DCOM

(***) classic OPC DA and OPC UA parallel, limited to SimaticNET OPC server

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 12

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Basics

3.1 Principal application model of the OPC DA interface

Introduction

This section only briefly discusses the application model of the OPC DA interface.
A detailed description of the object model is available in the OPC DA specification
of the OPC foundation.

OPC Client

The OPC client tells the OPC server that it wants to have access to certain tags by
the OPC client creating references to the respective interfaces.

Further interfaces available via the “IOPCGroupStateMgt” group(s) interface enable
read and write access to these tags. The following access methods are possible:

• Synchronous reading / writing

• Asynchronous reading / writing

• Monitoring tags (reporting value changes).

Note Single threaded OPC clients are blocked for synchronous read / write jobs.
For asynchronous read / write jobs, the OPC client remains operable
(“responsive“).

For more information see chapter 3.2.

OPC server

The OPC server is the central communication unit between an OPC client and the
respective controller.

Via COM/DCOM mechanisms, it provides standardized interfaces towards the
OPC client which allow each COM-capable application to access tags of any
controller.

In this application, the DataAccess interfaces for generating the logic connections
between OPC items and process tags are decisive.

The OPC server is connected to the respective controller via the implementation of
the communication protocols.

Connection between OPC server and controller

The values of the tags are read out via the connections configured in the OPC
server using the respective protocol blocks. In this example, the S7 protocol is
used that contains two principle transmission mechanisms, the tag services and
the block services. The connections are configured in the TIA portal (see chapter
5.2).

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 13

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Reading tags from the controller

You can read out and update the tags in two different ways:

Table 3-1

Service Description

Tag service For tag services, one or several process tags are specified by means
of absolute or symbolic addressing. Thereby, the tags to be monitored
can be polled cyclically from the OPC server (→Polling, see
Glossary). Nothing has to be programmed in the controller here. The
communication is performed via system-internal processes.

Block service If the tags to be monitored are transferred to the OPC server in a
program controlled manner by means of larger data blocks, then this
is referred to as block service. The controller calls a communication
block (BSEND) in its execution program in order to actively trigger the
data transmission. The OPC server receives the data in its receive
buffer.
In doing so, not the process tags themselves are addressed, but
rather the data areas, such as, for example, a data block.
Cyclic "monitoring" of the receive buffer by the OPC server only
makes sense here for receive items (e.g. "receive").

Notes on the services

• In this application tag services and block services (only S7-300) are used.

• The absolute addressing only differs from the symbolic addressing by the
ITEM_ID.

• The tag and block services on the OPC client side are only differentiated by its
ITEM_ID.

• Here, “block services” only refers to the services (“SEND/RECEIVE“,
“BSEND/BRECEIVE“) provided by the SIMATIC NET OPC server.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 14

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2 Differences between synchronous and asynchronous
read and write jobs

The differences between synchronous and asynchronous reading and writing of
OPC items are discussed below. We will in particular explain the difference
between accesses to the “DEVICE” and the “CACHE”.

Function principle of synchronous/asynchronous read and write jobs

The following image gives you an overview of the function principles of the
respective calls. The function principle is identical with the PROFINET interface.

Figure 3-1

Explanations on the figure

• The red arrows show the call direction, the blue arrows the resulting data flow.

• Data is exchanged between the OPC server and the controller using an
Industrial Ethernet card and the internal interface of a PN-CPU or a CP343-1.

• Data exchange between OPC client and OPC server occurs as inter-process
communication (here: COM).

• "Cache" refers to a temporary buffer which the OPC server generates for a
particular group. It contains a local image of the process tags defined for this
group (which in return are managed by the group as OPC items).

• "Device" refers to the process tags on the controller.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 15

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Explanation of the processes

The following table explains the respective calls and data flows. In the process, the
following consequences are pointed out:

Table 3-2

No. Action Remarks

1 Synchronous read job on
the CACHE

The value of the OPC item is read with the value currently located in
the CACHE.

2 Updating the
CACHE

The OPC server updates the entire CACHE with the values from the
DEVICE after the time period defined with the
“requestedUpdateRate“.

Note:

The requestedUpdateRate or also the returned update time
by the OPC server (“revisedUpdateRate”) does not have to
match the actual update time. Please note that the actual
update time is by no means shorter than the
revisedUpdateRate.

3 OnDataChange Event For OPC items parameterized as "active", the OPC server has
registered a data change within its CACHE (new polled value <>
cached value). These changes are reported to the OPC client and the
new value is copied to the CACHE.

Note:

This mechanism is ideal for monitoring process tags. Please
note that a DataChange event also triggers a change of
status just as a change of value. The update rate
corresponds to the actual "updateRate". The DataChange
event only informs of the changed items.

4 Asynchronous read job to
the DEVICE

The OPC client starts an asynchronous read job via the OPC group.

The OPC server reads the requested process tags from the process
image of the S7-CPU and delivers them to the OPC client via the
OnReadComplete event. It then writes the read values to its CACHE

Note:

The OPC client continues being operable for asynchronous
calls while the respective job is processed (”responsive“).

5 Synchronous read job on
the DEVICE

The value of the OPC item is read with the value currently located in
the process image of the S7-CPU.

Note:

This access may take several seconds depending on
physics, data traffic and data volume.

During this time, the thread of the OPC client, which starts
the synchronous read call, cannot perform any other tasks!
Single threaded OPC clients are hence blocked during this
time and cannot execute further operating and monitoring
tasks.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 16

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

 6 Synchronous or
asynchronous write job

Write jobs are only executed to the DEVICE, irrespective of whether
they are synchronous or asynchronous.

Note:

This access may take several seconds depending on
physics and data volume.

If a synchronous write job was triggered, the same behavior
as described in point 5 takes place; for an asynchronous call
the OPC client behaves as described in point 4.

Access to CACHE and DEVICE

The following table summarizes what operations are possible on "DEVICE" and
"CACHE".

Table 3-3

Operation DEVICE CACHE Note

Synchronous reading ✓ ✓ Reading from the CACHE requires the
group and the respective item to be
active.

Asynchronous reading ✓ - The OPC server reads the tag from
the DEVICE. This also updates its
CACHE.

Synchronous writing ✓ - Write jobs are always written to the
DEVICE.

Asynchronous writing ✓ - Write jobs are always written to the
DEVICE.

Monitoring (event
controlled)

- ✓ Monitoring of tags is only possible
using the CACHE.

Note Apart from read and write jobs, further methods are also available (such as e.g.
IOPCAsyncIO2::Refresh) which, however, were not used in this application.

For further information see OPC Specification of the OPC Foundation.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 17

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Comparison of application cases

The following table contains a comparison of different application cases and shows
the recommended procedure:

Table 3-4

Operation Cyclic/

Acyclic

Data volume DataChange
mechanism

Sync Async

Read

Cyclic
monitoring

Large + * *

Small + * *

Acyclic
Large - - +

Small - + -

Write Acyclic
Large - - +

Small - + -

(*) The OnDataChange mechanism is executed asynchronous to the CACHE

Note Large data volumes in the range of several kilobytes should be read or written
with the block services, e.g. “BSEND/BRCV“. Here, the SIMATIC works as active
communication partner.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 18

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3 Dividing OPC items into OPC groups

Below, you learn about the criteria to be taken into consideration when dividing the
OPC items to OPC groups.

Motivation of dividing OPC items

As already explained in chapter 3.2, certain ways of behavior result from certain
call types.

It now makes sense to combine process tags or OPC items with a similar operating
or monitoring behavior into groups.

In some cases, however, it is desirable that a process tag is to be monitored at two
different locations of the OPC client (such as, for example, in two different pages or
dialogs). Another example for this is that a process tag is monitored at one
location, but only sporadically (i.e. acyclically) read out at another location.

In these cases it makes sense to create one and the same process tag in several
groups.

Dividing process tags to OPC items and OPC groups

The following figure illustrates this option with two different groups. Process tag 1 is
mapped to two OPC items, which are stored in two groups. This makes it possible
to achieve different ways of behavior for a process tag in an OPC client.

Figure 3-2

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 19

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.4 Identifying OPC items created in an OPC client

In order for the process tags mapped to OPC items to be read or written by an
OPC client, a unique assignment of OPC items to an OPC client must exist.

The concept of identifiers or handles is used here. It facilitates a more efficient
transmission and faster identification of the items for access operations.

Handle types

Two handle types are distinguished. This differentiation ensures that the OPC
client as well as the OPC server can identify the respective OPC items.

Table 3-5

Type Description

Client handles These handles are created by the client and are used for identification
of an OPC item within the OPC client. When creating the items
(AddItems) the client tells the server its client handles.

Server handles These handles are created by the server and are used for
identification of an OPC item within the OPC server. When creating
the items (AddItems) the server gives the client back its server
handles.

Server handles

If the call direction is from OPC client to OPC server (e.g. write), the OPC client
must transfer the respective server handles to the OPC server.

Example: write into the OPC item!

Figure 3-3

Client handles

If the call direction is from OPC server to OPC client (e.g. OnDataChange), the
OPC client will receive the respective client handles from the OPC server.

Example: The OPC items in the CACHE have changed.→ The OnDataChange
event is triggered.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 20

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-4

Effects on the client program

This structure implies that an OPC client must manage the server and/or client
handles depending on the application case.

This way, for example, the client handles may, for example, serve as an index of
the respective OPC item in an OPC item array.

The server handles should either be encapsulated in a separate server handle
array or in an independent OPC item management class.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 21

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.5 Function mechanisms of .NET and inclusion of
components of the previous programming world

The previous, as well as the latest Windows programming world will be discussed
first now. Then the differences to be noted are explained.

It is only a brief introduction to help to understand the "how to program with .NET"
as well as "how to combine the new and the old world?". Further information is
available in the secondary literature.

3.5.1 Programming model of the old world

Overview

Figure 3-5

API

The previous programming model of the Windows world builds on an Application
Programmers Interface (API). The API provides a lot of C functionalities for
accessing the operating system resources and functionalities.

Programming languages and libraries

Using various programming languages with partially extensive libraries
(VBRuntime, Microsoft Foundation Classes, Active Template Library) it was
possible to implement Windows programs. The libraries respectively encapsulated
a part of the API functions.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 22

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Interacting of the languages with COM

In order for the developed program components to be able to work with each other,
Component Object Model (COM) by Microsoft was introduced. Using standardized
interface definitions made it possible to establish a "connecting glue" between the
individual components. The concept of Distributed Component Object Model
(DCOM) was developed in order to expand the cross-language and cross-
component interaction to a cross-computer interaction.

Note The OPC server works as COM component.

→OPC clients access the OPC server via COM mechanisms.

3.5.2 Programming model of the .NET world

Overview

Figure 3-6

API

The basis of the model is Win32 API like in the previous Microsoft programming
world.

CLR

Based on the API, follows the Common Language Runtime (CLR). It constitutes a
runtime environment whose model is comparable with a Java Virtual Machine. It
compiles Just In Time (JIT) a type of byte code in X86 code (depending on the
respective processor architecture); Microsoft speaks of IL code (Intermediate
Language).

Intermediate Language, Garbage Collector and unmanaged Code

The advantage of the IL code is the fact that it is independent of the platform. It is
also possible, for example, to execute this code on Linux (Unix) systems, if a CLR
has been implemented there (see \6\).

The CLR does not only perform the JIT compiling of the IL code, but also the entire
memory management. Similar to Java, a Garbage Collector (GC) was developed,
who releases un-referenced memory areas within the CLR after an unspecified
time. Code that is subjected to the access of the Garbage Collector is also referred
to as “managed Code“.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 23

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

In order for it to be possible in certain cases to still control the release of memory
areas manually, the developed code can be declared as "unmanaged". This
enables protecting certain code areas or entire programs explicitly from the access
of the Garbage Collector.

Base classes

Regarding the libraries of partly varying extend of the old world, Microsoft has now
implemented a uniform base class library which can be accessed independently
from the .NET programming language.

Integrator Visual Studio .NET

Visual Studio .NET (VS .NET) takes on the task of combining the different .NET
languages with each other.

This enables realizing .NET components in different languages. Interactions
between .NET components are easily possible with Visual Studio .NET.

Easy-to-handle integration options therefore make a faster development within the
.NET components possible.

3.5.3 Integration of COM components in .NET applications

Overview

Using a COM component in a .NET application/component:

Figure 3-7

Runtime Callable Wrapper (RCW) and the relationship with the COM component

Installing a COM component generated for the previous Windows world within a
.Net application, requires a "wrapper", a type of case which encapsulates all
interface definitions for the .NET application.

This is necessary as the previous interface definitions located in so-called IDL files
(Interface Definition Language, see Glossary) are no longer supported by .NET.
This wrapper is also referred to as Runtime Callable Wrapper (RCW).

For COM components offering the automation interface, Visual Studio can
generate these wrappers automatically.

However, for COM components providing the custom interface, such wrappers
must be generated manually.

For the Custom Interfaces (e.g. OPC DA 2 / 3) defined by the OPC Foundation, the
wrappers were created manually by the OPC Foundation and provided for general
use. These .NET OPC RCWs are, for example, installed with the SIMATIC NET CD.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 24

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note The differences between automation and custom interface are not discussed
here in greater detail. This requires secondary literature /2/.

Memory management when using COM components

The memory management is performed by the GarbageCollector for .NET
applications. However, since COM components demand an explicit memory
management, the following has to be observed for the data exchange between the
two components:

Table 3-6

Direction Description

.NET to COM In .NET, all tags are objects. Due to the fact that generally speaking,
COM servers do not synchronize with COM clients, transfer values
should be protected from the access of the Garbage Collector ("pinning"
of objects).

COM to .NET COM components deliver returned values in form of COM pointers. Due
to the fact that in the managed code of .NET clients such pointers do
not exist, the returned values must first be saved into .NET objects. This
is performed via the .NET data type “ntPtr” and methods / objects of the
“System.Marshal” classes.

RCW and OPC

Due to the OPC specification, OPC components offer a custom interface, i.e. an
RCW must be generated manually for performant applications.

For the SIMATIC NET OPC server a RCW is part of the delivery for the
DataAccess interface V2.05 and for the V3.0 which has to be integrated into the
respective Visual Studio project.

If the automation interface of OPC is used with .NET, then the RCW is
automatically generated by VS .NET as soon as a reference to the OPC
automation interface is included into the .NET project. The resulting double
encapsulation of the OPC custom interface however, may cause a reduction in
performance.

Note Since a performant connection is the focus of this application, this application
deals with the usage of the custom interface.

Note The reverse application case – using a .NET component as COM component –
is possible using a Com Callable Wrapper (CCW) This however, is not further
discussed within the framework of this document, as it is not necessary for the
comprehension of this application.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 25

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6 Basics on S7 communication

The “classic” OPC server (COM/DCOM) is available for all other protocols such as
DP, FDL, SR or SNMP. On the SIMATIC NET CD V8.0 there is additionally an
OPC UA server. The OPC UA server is not a part of this description.

Functional chain of the communication

The S7 communication is divided into two very different communication services,
into tag services and block services. On the level of the OPC server they are
almost completely covered up. Which communication service is used for the
controller, can only be detected based on the ItemId. The “S7:” protocol prefix
specifies that it is a direct addressing type. The symbolic access uses the “SYM:”
prefix.

Internally, the OPC server separates the ItemId into its components and based on
its structure, detects via which communication service, communication to the S7
controller is to take place. Here, the connection name identifies the communication
partner (inter alia, this name represents e.g. an IP address) and the key word
“BRCV” or “BSEND” causes the use of the block services instead of the tag
services. The S7 type identifier and the offset address indicate the position of the
data within the controller and the data type specifies the interpretation this data.

Figure 3-8

OPC Client
The syntax of the ItemIDs used decides on the service

used for the communication via S7 protocol

S7 protocol

S7 block services

SendBuffer<RID> RcvBuffer<RID>

Data

(max. 384Kbytes)

Data

(max. 384Kbytes)

BSEND
BRCV

S7 tag services

PUT
GET

List

of addresses

to be written

List

of addresses

to be read

OPC server

Read or write optimization summarizes

individual addresses if possible

S7:[S7Connection1]DB1,DWord0 S7:[S7Connection1]BRCV,1,D0,1024

SIMATIC

S7-400

SIMATIC

S7-300

a bilaterally configured connection

has to exist for BSEND/BRCV and

the controller has to call the

SFB12/13 blocks and supply their

parameters (S7-1200 does not

support this service)

SIMATIC

S7-1200

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 26

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Tag services

A S7 controller replies to requests via tag services, for this purpose only a
unilaterally configured connection is necessary. Each S7 controller is a so called
“S7 server” and answers PUT/GET requests without the need of any
implementation in the control program of the PLC. All data areas of the controller
can be directly accessed (I, Q, M, DB, etc.). This communication service is very
flexible and, above all, easy to use.

ItemIds for tag services

S7:[<connectionname>]DB<no>,{<type>}<address>{,<quantity>}

Example: S7:[S7 connection_3]DB10,W20

A tag of the word type (16bit no signs), which is located in data block 10 and which
starts at the byte offset address 20 (meaning it consists of bytes 20 and 21). This
tag is retrieved with Put/Get via the connection called “S7 connection_3“, meaning
from the S7 controller which is hidden behind this connection.

Symbolic ItemIDs

Apart from the direct addressing, there is the option of symbolic addressing. For
this purpose, the address space is generated from STEP7 (TIA Portal). For all
symbolic identifiers of the data points in the S7 controllers which are connected
with an OPC server via a S7 connection, a symbol export can be triggered. The
thus generated symbols file with the ending ATI is introduced to the OPC server via
download from STEP7 or via XDB import. The ATI file (Advanced Tag Information)
contains an image of the symbolic name for the direct addresses.

Note All symbols are eventually retrieved via PUT/GET from the controllers. Symbols
which represent a BSEND or BRCV tag cannot be generated by STEP7.

Block services

For the exchange of large data volumes the more effective block service is
available. On a bilaterally configured connection, large data volumes (up to
64kbytes) can be exchanged. Communication is based on the exchange of data
buffers. However, the respective system function blocks (BSEND/BRECV) have to
be called in the control program for this purpose. The OPC server provides the
respective counterparts to the PC if the corresponding OPC items have been
created.

Structure of ItemIds for block services

S7:[<connectionname>]BRCV,<RID>{,{<type>}<address>{,<quantity>}}

Example: S7:[S7 connection_5]brcv,3

The complete receive buffer for the BSEND/BRECV pair with ID 3 which is
connected via the connection named “S7 connection_5” is represented in a byte
array for OPC. This byte array always contains the data last sent from the
communication partner with BSEND (on the other side of the “S7 connection_5”).
On a S7 connection, several BSEND/BRECV pairs belonging together can exist
which are connected via their RID. Here, it is the BRECV which belongs to BSEND
with ID 3.

S7:[<connectionname>]BSEND<length>,<RID>{,{<type>}<address>{,<quantity>}}

Example: S7:[S7 connection_2]bsend1024,1,W100,20

When writing on this NodeID, an array of words (unsigned integer 16 bit) with 20
elements from the byte offset address 100 is written in the send buffer with a length
of 1024. The range of 100 to 140 is overwritten in the 1024 byte size buffer.

3 Basics

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 27

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The entire block is sent with ID 1 to the communication partner who has to provide
a BRECV with ID 1 and a minimum length of 1024 bytes to be able to receive the
data.

Note To be able to use the BSEND/BRCV block services, a bilaterally configured
connection has to exist and the controller has to independently call the SFB12/13
blocks and supply their parameters.

Also read the notes in the SIMATIC NET manual regarding the subject of block-
oriented services (see \7\).

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 28

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Functional Mechanisms of this Application

General overview

Figure 4-1

IE Softnet S7

Ethernet NIC

S7 protocol

SIMATIC NET

OPC DA server

.NET Opc.Rcw.Da (OPC Foundation)

.NET COMDA Client API
encapsulates reusable functions

COM OPC Custom Interface

simplified .NET interface

.NET Interface

.NET Windows application

User interface of the simple client

CP

CPU

Logic / Simulation

PG/PCPLC

Assemblies
In scope of delivery of

SIMATIC NET DVD 2011

Application

Simple Client

.NET Framework V3.5 SP1

OPC server
1

2

3

4

Table 4-1

No. Module

1. OPC DA Server (SimaticNET) The SIMATIC NET OPC server implements the
necessary server logic for groups and items and
the data connection to the S7 stations.

2. OpcRcw.Da Interface to access the COM components.
Encapsulates the OPC interfaces for access to
the .NET application.

3. COMDA Client API Reusable, simplified and tailored to this .NET
Client API task. It offers reusable C# handling
classes for finding and connecting to servers
and for monitoring values.

4. Simple Client Simple user interface for the use of the client
API with the functions: connect, disconnect,
read, write and data monitoring.

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 29

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Program overview

The figure below shows the function blocks in the Simple Client and the interaction
with the OPC COM DA Server.

Figure 4-2

Table 4-2

No. Description

1 When establishing the connection the server object is created in the local or
remote OPC server.

2 The server object is created via the CoCreateInstance COM mechanisms.

3 Once the connection has been established, the Client API creates an inactive
group that is used for reading and writing of items.

4 When registering tags to monitor value changes, a subscription object is created
on the client side. From a logic point of view, this corresponds to an OPC group.

5 An OPC group object is created in the server via the COM DA interface.

6 The received DataChanges are passed on by the ClientAPI to a callback
method in the client application.

The client application then updates the respective elements in the interface.

Log layer / driver

OPC COM DA server

OPC COM DA interface

ServerObject

OPC Group
2

5

Simple Client COM DA

Server
Connection

Subscription
Management

Callback
Object

4

3 1

6

Read
Write

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 30

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.1 COMDA Client API

The class diagram in Figure 4-3 shows the classes of the COM DA ClientAPI.
These classes encapsulate the accesses to the OPC server in a simple and
reusable .NET API.

The classes are summarized in the .NET Assembly Siemens.Opc.Da.ClientAPI .dll.
It has dependencies to the .NET RCW files of the OPC Foundation
Opc.Rcw.Comn.dll and Opc.Rcw.Da.dll.

Figure 4-3

. . . . other OPC Interfaces

COM DA ClientAPI

+Connect()
+Disconnect()
+Read()
+Write()
+Browse()
+GetProperties()
+CreateSubscription()
+DeleteSubscription()

Server

+AddItem()
+RemoveItem()

Subscription

The server object creates the subscription object.
The subscription creates the OPC group on the OPC server.

OPC Server

OpcRcw.Da.dll
OpcRcw.Comn.dll

Lo
ca

l (
C

O
M

)
o

r
R

em
o

te
 (

D
C

O
M

)

IOPCServer IOPCItemMgt

IOPCDataCallback

IOPCSyncIO

«uses»«uses» «uses»

«uses»«uses»

Server class

The Server wrapper class described in the table below encapsulates the
functionality for the access to the OPC server. Moreover, it simplifies the use of
those OPC interfaces which are need by the client application, with the exception
of interfaces for the adding and deleting of items in the subscription.

The class is implemented in the OpcDaServer.cs file in the COMDAClientApi
project.

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 31

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 4-3

Method Functionality

Connect Creates an instance of the IOPCServer COM object. Afterwards a
group is created on the server. This group is used for reading and
writing of items.

Disconnect Releases all references to the COM object and deletes all groups.

Browse Offers a uniform simplified interface for browsing. With this method
it can be browsed on DA2.05 and DA30 servers.

Read Provides the current value of a tag on the server.

Write Writes the value of a tag on the server.

CreateSubscription Creates a subscription. The subscription is the container to monitor
item values. An OPCGroup is created in the direction of the OPC
server. This function is transferred a callback function. This callback
function is called as soon as the values for the items of this
subscription have changed.

DeleteSubscription Removes an existing subscription and deletes the group on the
OPC server.

Subscription class

The Subscription wrapper class described in the table below, encapsulates the
use of an OPCGroup for the value exchange between server and client.

The class is implemented in the OpcDaSubscription.cs file in the COMDAClientAPI
project.

Table 4-4

Method Functionality

AddItem Creates an item in the respective OPC group to monitor value
changes and link them with the subscription.

RemoveItem Removes an item from the subscription.

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 32

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 Simple Client COM DA

The simple client provides a simple example for the use of the Client API. The most
important function such as connect, disconnect, read, write and monitoring of data
is displayed in a file or class with a dialog. The code for the example can be found
in the SimpleClientCOMDA project in the SimpleClient.cs file.

User interface of the simple example

The user interface is operated via buttons for the individual functions.

Figure 4-4

Table 4-5

No. Description

1. The server URL can be specified in the text box for the Server URL. The URL is made up of the
computer name and the server ProgID:

opcda://<computername>/ProgID.

For example, for a local SIMATIC NET server://localhost/Opc.SimaticNET.

2. In the text boxes for the ItemIDs the OPC ItemID is specified. This ID is unique in the address
space of the server.

3. Via the connect and disconnect buttons, the connection to the OPC server can be established or
disconnected.

4. Via the monitor button, the subscription is created and the two items are added to a group. From
now on data changes are reported from the server to the client and displayed in the two text
boxes next to the button. Errors are each shown instead of values.

The button changes the text to “Stop” after creating the subscription. Via this button the
subscription can then also be deleted again.

5. The “Read” button reads the values of the two tags with the indicated ItemIDs and displays them
in the text boxes next to the button.

Reading in the direction of the server is performed synchronous via the IOPCSyncIO::Read()
OPC method.

6. The “Write” button writes the value from the text box next to the button on the tag which was
identified by the ItemID.

For writing, the text is sent from the text field to the server as a value.

The server automatically converts the values to the suitable data type of the item.

Writing in the direction of the server is performed synchronous via the IOPCSyncIO::Write()
OPC method.

8

7

9

1
3

6 5 4

2

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 33

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Description

7. In the “Block Read” group, data can be received which is actively sent by the S7 with the
BSEND block service. This can be, for example, used for the sending of result data from the S7
to a PC application.

8. In the “Block Write” group, data blocks can be sent to the S7 which are there received by the
BRECV block service. Two blocks with different contents can be sent. This can be used, for
example, for the download of recipe data for the S7.

9. The block services are only available for the S7-300. When switching to S7-1200, the reading
and writing of blocks on the interface will be disabled.

Functions of the simple example

The functions can be found in the SimpleClientDA class in the SimpleClient.cs file.
Simple error handling is implemented in the functions. If an exception occurs when
calling OPC, a dialog with the error message will appear. If an error occurs for one
or several tags with the tag related calls, the error is displayed in the respective text
boxes.

Table 4-6

Function Description

btnConnect_Click In this function the connection to the OPC server is established via the
Server::Connect() function of the client API. The URL string from the
corresponding text box is transferred.

btnDisconnect_Click In this function the connection to the OPC server is disconnected via
the Server::Disconnect() function of the client API.

btnRead_Click In this function the values for the two items are read via the
Server::Read() function. The result is written into the respective text
box. If there is an error when reading or if the quality is bad (i.e. no
value can be delivered by the server), an error code is written into the
text box.

btnMonitor_Click First of all a subscription is created with the
Server::CreateSubscription(). Afterwards the two items are created with
Subscription::AddItem(). The ClientHandles are permanently set in this
example, since only 3 items are used. The ClientHandle is transferred
from the server to the client if there is a message of value changes.
Thus, the client can uniquely assign the items.

If a subscription has already been created it is deleted by
Server::DeleteSubscription() and the client does no longer receive
value changes.

OnDataChange The function is indicated as callback function at
Server::CreateSubscription().

In the function it is first of all checked whether the call arrives in the
main thread of the dialog. If this is not the case, the call is transferred to
the main thread of the dialog via BeginInvoke. Otherwise access to the
dialog is not possible.

Afterwards the ClientHandles are checked and based on the handles,
the respective text field is updated.

If the value is a normal tag, the value is simply output as text.

However, if it is the value of a block tag, the byte array is extracted and
displayed as a sequence of HEX values for the individual elements of
the byte arrays.

btnWrite_Click The function calls the Server::Write() and writes the current text as
value to the item.

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 34

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Function Description

btnMonitorBlock_Click First of all a subscription is created with the
Server::CreateSubscription(). Afterwards the “BlockWrite” item is
created with Subscription::AddItem().

If a subscription has already been created, it is deleted by
Server::DeleteSubscription() and the client no longer receives value
changes for the “BlockWrite” item.

btnWriteBlock1_Click The function writes generated values to the “BlockWrite” item. The
simulation creates a byte array with the length indicated in the user
interface and fills the values with a tag value which starts at 0 and is
incremented after each assignment.

btnWriteBlock2_Click The function is identical to btnWriteBlock1_Click; however, the tag
value assigned here starts with 255 and is decremented after each
assignment.

Note Further details are contained in the source code of this application as comment.

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 35

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.3 S7 program

Overview

The S7 program is essentially divided in two parts. First of all, the dynamic data for
the tag services is simulated, afterwards the send data is simulated and the block
services are called in FB 100.

Note The block services are only available in the S7-300; the S7-1200 solely
communicates via S7 tag services.

Figure 4-5

OB1

FC10

FC11

FC13

FC14

FB100

FB12

FB13

DB51 DB50

DB112

DB113

change data

change data

change data

change data

receive block

send block

Simulation of dynamic data

The table below gives a brief overview of program parts and their function for data
simulation. Details were deliberately excluded here.

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 36

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 4-7

Block Remarks

OB1 Cyclic Main
initially, a variable timer is set here, whose interval is used to call
the other program functions. The rate of change of data can be set
via DB10 byte 0.

FC10 ChangeDateAndTime

increments a date value as well as the time in DB51.

FC11 ChangeSimpleTypes
increments the data of DB51. 8bit types are incremented with +1,
16bit types with +100 and 32bit types with +1000.

FC13 ChangeString
increments a string of length 10 in DB51.

DB10 SimulationConfiguration
contains global tags for the configuration of data simulation.

DB50 StaticDataTypes
contains simple data types which were given symbolic names. The
values are pre-initialized with maximum end value range.

DB51 DynamicDataTypes
contains simple data types which were given symbolic names. The
values are incremented with the functions FC10 to FC12 according
to their value ranges.

SFC21 FILL
auxiliary function to fill data areas with values, storage initialization.

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 37

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Block-oriented data

The S7 communication for the S7-300 is realized via FBs (loadable function blocks)
and not via SFBs (integrated system function blocks) as is the case for the S7-400.
However, if you call a SFB instead of a FB in the S7 program, the block delivers an
"ERROR" and displays "STATUS = 27". This status indicates that the function
block for the S7 communication is not present on the S7-300. The communication
FBs for the S7-300 are located in the "SIMATIC_NET_CP > CP300 > blocks"
library.

The table below gives a brief overview of the program parts and their function
regarding BSEND/BRCV. Details were deliberately excluded here.

Table 4-8

Block Remarks

OB1 Cyclic Main
Call of the send block (SFB12) for BSEND and of the receive
block (SFB13) for BRCV via function block 100.

For S7-300, FB12 and FB13 from the library are used since
S7 300 communicates via loadable FBs and not via system
functions.

FC14 ChangeSendData
Increments a byte which will then be copied to the entire send
buffer

FB100
+ DB100 (Instance
DB)

InvokeBSENDandBRCV
Calls the real communication blocks and supplies its
parameters.

DB112 SendData
Data block with 4096 bytes length which will be transferred to
the send block.

DB113 ReceiveData
data block with 4096 bytes length which will be transferred to the
receive block.

SFB12
+ DB12 (Instance
DB)

BSEND
The send block transfers the send buffer to the communication
processor (CP), which will then send it according to RID and
connectionID to the communication partner.

FB12 BSEND (only S7-300)

SFB13
+ DB13 (Instance
DB)

BRCV
The receive block picks up the data package last received from
the communication processor (CP) according to RID and
connectionID and files it in the receive buffer.

FB13 BRCV (only S7-300)

SFC21 FILL
Auxiliary function to fill data areas with values, storage
initialization.

The program logic sends or receives data blocks and supplies the respective
parameters via the FB100. When larger data packages are sent, a multiple call of
the BSEND or BRCV block is necessary. This multiple call is performed by FB100.

4 Functional Mechanisms of this Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 38

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note If the send and receive block is called cyclically, a high communication load may
be generated and there is furthermore the danger that the data buffers are
overwritten before they are processed by the counterpart. This is why the
program logic should contain a flow control to ensure data consistency. For this
purpose the parameters DONE (ready) and NDR (new data received) are to be
used.

To be able to exchange data between two S7-300 stations via a S7 connection
configured in TIA portal, communication functions have to be called in the S7
program. The FB12 "BSEND" block is used for sending data and the FB13 "BRCV"
block for receiving data.

Here, the S7 connection has to be bilaterally configured since the S7
communication via FB12 "BSEND" and FB13 "BRCV" is based on the client-client
principle.

Note When the S7 connection is configured via the integrated IE interface of the S7-
300 controller of the CPU31x-2PN/DP or the CPU319-3PN/DP, the FB12
"BSEND" and FB13 "BRCV" from the "Standard Library -> Communication
Blocks -> Blocks" library has to be used with the family="CPU_300". These FBs
can be used for the S7 communication via the integrated IE interface of the CPU
as well as for the S7 communication via the S7-300 IE-CPs.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 39

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5 Configuration and Setting of the OPC
Server

Introduction

In the sections below, we show you the steps to configure the PC station and the
OPC server in STEP7 V15.1. You only need to read this chapter if you are
interested in the details. The configuration has already been completed in the
delivered STEP7 project.

5.1 Configuration of the OPC server in STEP7 V15.1

Execute the following steps, for example, in order to add an OPC server to an
existing STEP7 V11 project (or higher) with already configured SIMATIC station.

Table 5-1

No. Action

1 Open your STEP7 V11 project and go to the project view.

2 Double click “Add new device”

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 40

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

3 Select “PC systems” and in the
“User applications” the “OPC
server”.

If possible, the version of the
SIMATIC NET OPC server
should correspond to the really
installed version.

In this application the SIMATIC
NET OPC Server V8.0 (or
higher) was used.

4 A SIMATIC PC station is created where a SIMATIC NET OPC server is configured on index 1.

Enable the creation of the XDB file (Generate XDB file). The storage of the XDB file by the system
can be set under “XDB file path”.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 41

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

5 Add an “IE general” network card and assign the IP address.

Note: The IP address has to match the IP address of the target system.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 42

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

6 Enable the symbolic display of the OPC tags. When using symbols, you can configure whether you
want to use “All” or “Configured” symbols. Often you do not want to make all symbols available via
the OPC server (e.g. internal tags or contents of instance data blocks).

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 43

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

7 If you only want to access a symbolic selection of process tags, select the “Configured” option.

Select the symbolically addressable tags via the “Configuring...” button.

Note:

If no symbols are displayed, the S7 connection configuration is missing. Only when a S7 connection
was configured for the respective SIMATIC by the OPC server, will symbols be displayed.

This will be shown in the next chapter.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 44

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.2 Configuring the S7 connections

The PC station and the OPC server require configured S7 connections in order to
be able to use the symbolic display of the OPC items.

Table 5-2

No. Action

1 Open the object properties of the network card. If no IE network has been configured yet, generate
a new one with “Add new subnet” and apply the standard parameters.

Note: All network nodes should be in the same IE network.

Go to the network view, network the PC station with the SIMATIC station/s and
configure a S7 connection each.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 45

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

2 Open the network view. Connect all nodes with the same IE network.

3 Select the OPC server. “Add new connection” in the context menu.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 46

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

4 Select the type of connection (S7 connection) and the connection partner as well as the physical
access point (blue) that is supported by both partners.

Assign a name for the S7 connection.

5 The connection now appears in the connection list.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 47

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

6 Configure the connection by editing the properties of the connection.

7 The connection with CPU 315-2 PN/DP was configured both ways here.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 48

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

9 The OPC server should always establish the connection actively and maintain it permanently. The
OPC server should furthermore respond instantly if a connection failure is detected.

10 Perform the same steps in the same way for the S7 connection for S7-1200.

11 Save your project.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 49

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.3 Check the settings

The settings can be checked with the Communication Settings configuration
console.

The following settings should be considered:

Table 5-3

No. Action

1 Open the configuration dialog

2 Check the set IP address.

5 Configuration and Setting of the OPC Server

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 50

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action

4 Check the set protocols

Note: Enabling the S7 protocol is sufficient for this application.

5 Check whether the symbols have been loaded.

6 If one of the settings does not correspond with the displayed images, perform the preceding
configurations again.

Close the configuration dialog box.

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 51

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6 Installation and Commissioning

6.1 Hardware and software installation

In this chapter we describe which hardware and software component you have to
install in order to operate the example with the existing configuration data. Also
note the manuals as well as delivery information that are delivered with the
respective products.

Installing the hardware

For details on the hardware components, please refer to chapter 2.3. For setting up
the hardware, please proceed according to the following table:

NOTICE Only switch on the voltage supply after the last step.

Table 6-1

No. Focus Action

1 Control
S7-300 station

Install the station in compliance with the diagram shown in chapter 2.

2 Control
S7-1200 station

Install the station in compliance with the diagram shown in chapter 2.

3 PG/PC station Install the station in compliance with the diagram shown in chapter 2.

4 Industrial Ethernet Connect the controller with the PG as shown in the illustration in chap. 2.

Note Instead of using a hub or a switch you can also use a cross cable for a direct
connection.

Always observe the installation guidelines for SIMATIC S7.

Installation of the standard software

STEP7 V15 and SIMATIC NET have to be installed on the PG/PC. STEP7 V11 is
already preinstalled on the current SIMATIC PGs.

A description of the installation procedure for STEP7 and SIMATIC NET is not part
of this documentation. The installation takes place in the usual Windows
environment and is self-explanatory or described in the respective manuals.

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 52

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Address overview of the involved modules

If you want to operate the project on an existing Industrial Ethernet, you have to
note the following address specification:

Table 6-2

Focus Module IP address

PG/PC NDIS network card 192.168.172.1

Control CP 343-1 192.168.172.2

Control CPU 1214 C 192.168.172.4

Notes • Note the correct subnet mask 255.255.255.0.

• Alternatively, it is also possible to change the assigned IP addresses in the STEP7
project.

Setting the IP address

The Ethernet network card has to be switched to the configured operation. For this
purpose the PC station has to be configured.

Note Please ensure, that the network card has the fixed IP address 192.168.172.1 (it
can be set via the network settings and the TCP/IP properties) if you want to use
the project included in delivery.

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 53

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.2 Loading the PC station via STEP 7 V1x

Installation of the STEP7 project via TIA portal

The PC station can be loaded directly from the TIA portal. Alternatively, a PC
station can also be configured via the station configuration editor and the XDB file
(see chap. 2).

The description in was created with TIA V15.1. The same procedure applies for TIA
V15.1.

Table 6-3

No. Action Remarks

1 Extract the TIA project: STEP7_TIA15.1.zip Unzip the project in a path in which you have the
read and write permissions.

2 Open the TIA portal and navigate to the
project via the browser function

3 Confirm by opening. \OPCSample\OPCSample.ap15

4 Go to the project view once you opened

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 54

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action Remarks

5 Load the PC station

Alternative: You can also configure the PC
station via the import of the included XDB file
(see 6.3).

Changing the IP address of the PC station in STEP7 V1x

Note Only execute these steps if you want to change the IP address of your PC
station.

Table 6-4

No. Action/Remark

10. Start the TIA Portal V1x

11. Go to the project view, select the SIMATIC PC station in the project view and open the “Device
view”.

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 55

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action/Remark

12. Select your network card in the PC station and select the “Properties” tab in the bottom window.
You can change the IP address under “Ethernet addresses” -> “IP protocol”.

Note: In this case an IE General network card was used.

13. In the context menu of the SIMATIC PC station you can find “Configure PC station online”.

Changes on the configuration of the PC station require the station to be reloaded.

14. After these configuration steps the station has to be reloaded.

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 56

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.3 Importing the XDB file into the Station Configuration
Editor

Introduction

Alternatively to loading a PC station via the TIA portal (see chap Fehler!
Verweisquelle konnte nicht gefunden werden.), it can also be configured via the
station configuration editor and the XDB file. The XDB file already exists in the TIA
project included.

Setting the IP address

The Ethernet network card has to be switched to the configured operation. For this
purpose the PC station has to be configured.

Note Please ensure, that the network card has the fixed IP address 192.168.172.1 (it
can be set via the network settings and the TCP/IP properties) if you want to use
the project included in delivery.

Table 6-5

No. Action Remarks

1 Open the Station

Configuration Editor by

double-clicking

(icon in the task bar, next to the
time)

2 Click on the “Import Station”
button.

Confirm the task with “Yes”.

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 57

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action Remarks

3 Navigate to the project folder of
your STEP7 V11 project. Select
the XDB file.

Click the dialog.

4 The import wizard confirms that
import is possible.

Confirm with OK.

Note:
If components have been
configured in a different version,
they will be exchanged by
existing compatible versions

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 58

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action Remarks

5 After the successful import of the
XDB file, your PC station is
ONLINE.

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 59

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.4 Installation of the OPC client on the PC/PG

The application software is delivered with a setup program.

NOTICE If you are using an older operating system then Windows 7 SP1 and if
SimaticNET PC Software V8.x was not installed on it, you have to
install .NET-Framework 3.5 +SP1 first.

Information on this matter can be found on the Microsoft Internet pages (see \5\).

For installing the operator user interface proceed as follows:

Table 6-6

No. Action Remarks

15. Extract the
21043779_OPCClient_RCW_CODE.zip file

This zip file contains the STEP7
V11 and the STEP7 V13,
project as well as the OPC
client with C# Source code.

16. Unzip the Csharp_OPCClient_RCW_CODE.zip
file

17. You find the DAClient.exe file in the
\OpcClientDA_V2\bin directory

EXE can only be executed if the
respective assemblies are
located in the same directory

Files included

The archive file contains the MS Visual Studio Solution file and the source code as
well as pre-compiled binary files for x86 systems. In the subfolder is the executable
file (EXE) as well as the required assemblies.

Directory: \OpcClientDA_V2\bin

Table 6-7

File Belongs to...

DAClient.exe Main application

OpcCRcw.Comn.dll OPC RC Wrapper

OpcRcw.Da.dll OPC RC Wrapper

ClientAPI.dll Reusable OPC DA functions

•

6 Installation and Commissioning

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 60

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.5 Loading the simulation to the S7 stations

Loading the TIA project

To do this, proceed as follows:

Table 6-8

No. Action Remarks

1 Extract the TIA project:
STEP7_TIA15.1.zip

Unzip the project in a path in which you have the read and write
permissions.

2 Open the TIA portal and
navigate to the project
via the browser function

3 Compile and load the
S7-300 station

4 Compile and load the
S7-1200 station.

7 Operating the Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 61

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7 Operating the Application

7.1 Overview

The first part for operating the application shows how data of S7 tags are
monitored, read and written via direct or symbolic addressing.

Table 7-1

No. Action Remarks

1 Start the
simple client

After starting the application the user interface will appear.

2 Establish
connection to
server

The server URL has to be entered manually.

The Connect button can be used to establish the connection to the server.

3 Select type of
controller.

The use of block services in this application is only possible with controllers of the
S7-300 family. When selecting S7-1200 the interface elements for block services
are disabled.

7 Operating the Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 62

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

No. Action Remarks

4 Monitoring of
data

For the monitoring of data changes, reading, and writing, two tags can be
indicated. As the Item ID, the symbolic name is either specified in the OPC server
or addressed directly (e.g. S7:[con1]MB100).

Via the Monitor button, monitoring can be switched on. The reported data
changes are displayed in the text boxes next to the button. If monitoring is
enabled, the button changes the text to Stop.

5 Reading and
writing

For reading and writing, the same ItemIDs are used as for monitoring. By
pressing the “Read” button the two tags are read. Via the two “Write” buttons the
tags can be written individually.

7 Operating the Application

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 63

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7.2 Using the block services

Using the block services

A typical application for block-oriented services is shown here as a clear, simple
example: the sending of recipe data to the S7 or the receiving of result data from
the S7, whilst using the BSEND and BRCV block services.

The server decides via which service communication takes place with the S7
based on the syntax of the ItemIDs, for example,
S7:[S7connection1]BRCV,1,D0,1024].

For the use of the block services, the respective ItemID therefore has to be entered
in the fields “ItemID Block Read” or “ItemID Block Write”

Table 7-2

No. Action Remarks

18. Start the Simple Client
and connect with the S7
server

19. Receiving from the S7 For receiving from the S7, “Monitor Block” has to be enabled. As soon
as monitoring is enabled, the button changes the text to “Stop”.

In the “Block Read Result” text field, the data of the read block is
displayed as HEX code.

20. Sending of data to S7 Select the recipe by either pressing “Write Block 1” or “Write Block 2”.
The first button writes into the data block by incrementing a value for
each array entry from 0 onwards. The second button decrements the
array entries from 255.

8 Glossary

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 64

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

8 Glossary

COM / DCOM

COM (Component Object Model): Software model for communication between
components, based on a standardized interface.
DCOM: Software model for communicating beyond computer boundaries based on
COM.

Event handler

An event handler processes occurring events or Windows messages.

Exception

An exception is referred to as an exceptional situation.
It can be generated either by the operating system (e.g. division by zero) or by the
user program.

Exception handler

An exception handler processes occurring exceptional situations. This is usually a
secured error behavior and/or a message to the user.

HRESULT

Return data type of COM objects.

IDL

Interface Definition Language: A Microsoft standard language for the definition of
function and parameter interfaces.

Polling

Term referring to the (mostly cyclical) polling of certain values or states.

Sink interface

Using the sink interface, messages can be sent between components. The sink
interface is based on COM mechanisms.

Thread

Within an application or a process, threads make it possible to execute several
code fragments virtually in parallel, meaning at the same time.

If an application uses several threads, this application also has the property “multi-
threaded”.
If an application only has one thread, it is called “single-threaded”. All code
fragments for these applications are always processed sequentially.

Windows message

The standard Microsoft Windows operating systems exchange messages to notify
of events, e.g. the paint event.

9 Related Literature

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 65

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Wrapper

The term “wrapper” normally refers to a class group which encapsulates other
class groups for data conversion or easier handling. It can be considered an
“envelope” enclosing the “wrapped” classes, covering them from the outside.

9 Related Literature

9.1 Bibliographic references

This list is not complete and only represents a selection of relevant literature.

Table 9-1

 Topic Title

/1/ STEP7

SIMATIC S7-300/400

Automating with STEP 7 in STL and SCL

Author: Hans Berger

Publicis Corporate Publishing

ISBN: 978-3-89578-397-5

/2/ STEP7

SIMATIC S7-300/400

Automating with STEP7 in LAD and FBD

Author: Hans Berger

Publicis Corporate Publishing

ISBN: 978-3-89578-296-1

/3/ STEP7

SIMATIC S7-300

Automating with SIMATIC S7-300 inside TIA Portal

Author: Hans Berger

Publicis Corporate Publishing

ISBN: 978-3-89578-357-9

/4/ STEP7

SIMATIC S7-400

Automating with SIMATIC S7-400 inside TIA Portal

Author: Hans Berger

Publicis Corporate Publishing

ISBN: 978-3-89578-372-2

/5/ STEP7

SIMATIC S7-1200

Automating with SIMATIC S7-1200

Author: Hans Berger

Publicis Corporate Publishing

ISBN: 978-3-89578-355-5

10 History

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 66

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

9.2 Internet link specifications

This list is not complete and only represents a selection of relevant information

Table 9-2

 Topic Title

\1\ OPC • OPC DA 2.05 Specification at
http://www.opcfoundation.org/

\2\ .NET • Inside C#, Tom Archer

• .NET Crashkurs, Clemens Vasters, Oellers, Javidi, Jung,
Freiberger, DePetrillo

• Microsoft .NET Framework Programming, Jeffrey Richter

\3\ Siemens Industry
Online Support

http://support.automation.siemens.com

\4\ Link to this
document

http://support.automation.siemens.com/WW/view/en/21043779

\5\ Visual Studio http://www.microsoft.com

\6\ Cross-platform
ILs

http://www.mono-project.com/

\7\ SIMATIC NET
Industrial
communication
Volume 2

http://support.automation.siemens.com/WW/view/en/61630140

10 History

Table 10-1

Version Date Modifications

V1.0 05/2005 First version

V2.0 12/2012 Complete revision of STEP7 V11

V2.1 06/2014 Migration to

- STEP7 V13

- Visual Studio 2010

V2.2 07/2019 Update to STEP 7 V15.1

http://www.opcfoundation.org/
http://support.automation.siemens.com/
http://support.automation.siemens.com/WW/view/en/21043779
http://www.microsoft.com/
http://www.mono-project.com/
http://support.automation.siemens.com/WW/view/en/61630140

10 History

(D)COM OPC-Client
Entry ID:21043779, V2.2, 07/2019 67

©
 S

ie
m

e
n

s
 A

G
 2

0
1

9
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

	SIMATIC NET OPC Server Programming an OPC DA .NET Client with C# for the SIMATIC NET OPC Server (COM/DCOM)
	Warranty and Liability
	1 Task
	1.1 Overview
	1.2 Requirements

	2 Solution
	2.1 Solution overview
	2.2 Description of the core functionality
	2.3 Hardware and software components used
	2.4 Alternative solutions

	3 Basics
	3.1 Principal application model of the OPC DA interface
	3.2 Differences between synchronous and asynchronous read and write jobs
	3.3 Dividing OPC items into OPC groups
	3.4 Identifying OPC items created in an OPC client
	3.5 Function mechanisms of .NET and inclusion of components of the previous programming world
	3.5.1 Programming model of the old world
	3.5.2 Programming model of the .NET world
	3.5.3 Integration of COM components in .NET applications

	3.6 Basics on S7 communication

	4 Functional Mechanisms of this Application
	4.1 COMDA Client API
	4.2 Simple Client COM DA
	4.3 S7 program

	5 Configuration and Setting of the OPC Server
	5.1 Configuration of the OPC server in STEP7 V15.1
	5.2 Configuring the S7 connections
	5.3 Check the settings

	6 Installation and Commissioning
	6.1 Hardware and software installation
	6.2 Loading the PC station via STEP 7 V1x
	6.3 Importing the XDB file into the Station Configuration Editor
	6.4 Installation of the OPC client on the PC/PG
	6.5 Loading the simulation to the S7 stations

	7 Operating the Application
	7.1 Overview
	7.2 Using the block services

	8 Glossary
	9 Related Literature
	9.1 Bibliographic references
	9.2 Internet link specifications

	10 History

