SINUMERIK WS 800 A
Software Version 1
Cycle language CL 800

Planning Guide

Manufacturer Documentation

Edition 04.90

SINUMERIK WS 800 A
Software Version 1
CL 800 cycle language

Planning Guide

Manufacturer documentation

April 1990 Edition

Introduction 1
Overview of variables 2
Language notation 3
Structure of the CL 800 high-level language 4
Command description 5
Command overview 6
Examples 7
Using the interactive editor 8
Error messages of the cycle editor 9
Object code 10
Appendix 11

SINUMERIK® documentation

Printing history

Brief details of this edition and previous editions are listed below.

The status of each edition is shown by the code in the "Remarks” column.

Status code in "Remarks” column:

A ... New documentation B ... Unrevised reprint with new Order No.
C ... Revised edition with new status

Edition Order No. Remarks
04.90 6ZB5 410-0DP02-0AA0 A

Other functions not described in this documentation might be
executable in the control. This does not, however, represent an
obligation to supply such functions with a new control or when
servicing.

This publication was produced on the Siemens 5800 Office
System.
Subject to change without prior notice.

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or
design, are reserved.

© Siemens AG 1990 All Rights Reserved

Contents

Page
1 Introduction 1-1
11 General 1-1
1.2 Using the planning workstation 11
1.2.1 File functions e 1-3
1.2.2 Special functions 1-4
1.2.2.1 Interactive ProCeSSINGot v ittt 1-4
1.2.22 Compilation 15
1.2.2.3 Cross-references ... 1-5
2 Overview of variables 2-1
21 General ... e 2-1
2.2 R parameters 2-3
221 Central and channel-orientated R parameters 2-3
222 Channel-orientated R parameters 2-4
2.3 SYStEM MEMOIY ... e e 2-7
231 Machinedata i 2-7
23.2 Settingdata 2-10
233 Tool offSets 2-12
234 Zero offsets 2-15
2.35 PLCsignals i e 2-16
3 Language notation 3-1
3.1 General 3-1
3.2 CLBOOWOIAS ..ttt e e e 3-1
3.3 OpEerands 3-1
4 Structure of the CL 800 high-level language 4-1
4.1 Program Structure 4-1

4.2 Data StruCtUre 4-3

5.0

5.1
511
5.1.2

5.2
521
5.2.2

5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.1.3
5.3.1.4
5.3.1.5
5.3.2
53.21
5.3.2.2
5.3.2.3
5.3.3
5.3.3.1
5.3.4
534.1
5.3.4.2
5.35
5.35.1
5.35.2
5.3.5.3
5.3.54
5.35.5
5.35.6
5.35.7
5.3.5.8
5.35.9
5.3.5.10
5.3.5.11
5.3.5.12
5.3.5.13
5.3.5.14
5.3.6
5.3.6.1
5.3.6.2
5.3.6.3
5.3.6.4

Command description
Preliminary information
Program frame statements

General statements
Program header i,

Declarations
Declaration of variables
Declaration of variables in external lists

Statements
Repeat statements
REPEAT 100D ..ottt e e
WHILE 100D ..o e
WHILE INT 100D ..ot e

FORTOI0OD ...t e e e
FORDOWNTOIO0D .ot e e e
Decision statements
IFTHEN ELSE branching
IFINT THEN ELSE branching
Casebranching

Unconditional branching
Unconditional jump
General datatransfer
Data transfer: Rpar/Rpar.c. i,

Data transfer: R par./input buffer memory for numerical variable

Data transfer: System memory into the R parameter
Transfer machine data into the R parameter
Transfer setting data into the R parameter
Transfer tool offset values into the R parameter
Transfer zero offsets into the R parameter
Read programmed setpoints into the R parameter

Read actual values into the R parameter
Read programmed data into the R parameter
Read PLC signal bits into the R parameter
Read PLC signal bytes into the R parameter
Read PLC signal words into the R parameter
Read PLC signal data words into R parameter
Read alarms into the R parameter
Read alarm pointer into the R parameter
Read system memory into the R parameter
Data transfer: R parameter into the system memory
Transfer R parameter into the machinedata
Transfer R parameter into the settingdata
Write R parameter into the tool offsets

Write R parameter into the zero offsets

Page
5-1
5-1
5-1

5-3

5-6
5-10

5-14
5-14
5-14
5-19
5-23
5-24
5-26
5-29
5-29
5-33
5-34
5-37
5-37
5-38
5-38
5-39
5-40
5-40
5-42
5-43
5-44
5-47
5-49
5-54
5-55
5-56
5-57
5-58
5-60
5-61
5-61
5-62
5-62
5-65
5-66
5-67

5.3.6.5 Write R parameter into the programmed setpoints 5-70
5.3.6.6 Write R parameter into the PLC signal bits 5-72
5.3.6.7 Write R parameter into the PLC signalbytes 5-73
5.3.6.8 Write R parameter into the PLC signalwords 5-73
5.3.6.9 Write R parameter into the PLC signal datawords 5-74
5.3.6.10 Write R parameterintothealarms 5-77
5.3.6.11 Write R parameter into the system memory 5-77
5.3.7 Mathematical and logical functions 5-78
5.3.7.1 Value assignment with arithmetic operations 5-78
5.3.7.2 Arithmetic functions 5-79
5.3.7.3 Arithmetic procedures 5-81
5.3.7.4 Trigonometric functions i, 5-82
5.3.7.5 Logarithmic functions 5-84
5.3.7.6 Logical functions 5-85
5.3.7.7 Logical procedures 5-87
5.3.8 NC-related functions 5-88
5.3.8.1 Changing the program and machine reference points 5-88
5.3.8.2 Singlefunctions 5-89
5.3.8.3 Measuring functions 5-96
5.3.8.4 Programinfluence 5-97
5.3.9 /O statements 5-98
5.3.9.1 NCHOTUNCHONS e 5-98
5.3.9.2 General /O functions 5-99
5.3.9.3 Operator control functions 5-102
6 Command OVEIVIEWt e 6-1
6.1 General statements for the program structure 6-1
6.2 Declarations e 6-2
6.3 Repeat statementst 6-4
6.4 Decision statements 6-5
6.5 Unconditional branching 6-5
6.6 Data transfer, general 6-6
6.7 Data transfer: System memory into the R parameter 6-7
6.8 Parameters in systemmemory 6-12
6.9 Mathematical and logical functions 6-16
6.10 NC-related functions 6-17

6.11 /O StatemMeNtS i 6-19

7.1

7.2

7.3

7.4

8.1
8.2

8.2.1
8.2.2

9.1
9.2
9.21
9.2.2
9.2.3
10
10.1
10.1.1
10.1.2
10.1.3
10.2
10.3
10.4
10.5
10.6

10.7

Page

Examples ... 7-1
Program structure overviewc. i, 7-1
Program nesting for IF THEN ELSE branching 7-2
Program example: Hole pattern —............. 7-3
Program example: Deep-hole drillingcycle 7-5
Using the interactive editor 8-1
General ... 8-1
Interactive editor operating modes 8-2
Functionsinthedisplay mode 8-5
Functions in the command mode 8-10
Cycle editor errror messSages ... oiii i e 9-1
General 9-1
Errormessage list 9-2
Warning MeSSAgES . .o oottt e 9-2
USEr eIror MESSATES .« . v v vt v et e ettt et 9-2
System error meSSageSttt it e 9-5
Object code 10-1
Structure ofthe @ code 10-1
Subdivision into main groups 10-1
Operands afterthe @ function 10-2
NOtatiON . .. e 10-2
General statements for the program structure 10-3
Program branching i 10-4
General datatransfer 10-7
Data transfer: System memory into the R parameter 10-8
Data transfer: R parameter into the systemmemory 10-16

File handling, general: (in preparation) 10-22

Page

10.8 Mathematical and logical functions 10-23
10.9 NC-specific functions 10-25
10.10 O statements 10-27
11 APPENAIX o 111
11.1 Alphabetic keyword index/CL 800 names 11-1
11.2 Terminology e 11-7
11.3 Overview of functions implemented according to the software version .. 11-10
114 Weighting of operators 11-17

115 G-group classification e 11-18

Preliminary remarks

Instructions for reading

The SINUMERIK documentation is subdivided into three levels:
e User documentation,

e Manufacturer documentation and

e Service documentation.

This "Planning guide” is for machine tool manufacturers using SINUMERIK System 800
controls.

The document describes the program structure and the operation set of the CL 800 cycle
language.

The following is available in addition to this document:
* User's Guide, WS 800 A software,
* Programming Guide, SINUMERIK System 800 cycles.

Software versions

The complete functional scope of this description of the cycle language is valid from the
following software versions onwards:

Planning workstation

WS 800: Software version V 2.1
WS 800 A: Software version 1

SINUMERIK System 800

SINUMERIK 805: Software version 2
SINUMERIK 810: Software version 2 (05)
SINUMERIK 810 GAL: Software version 3
SINUMERIK 810 GA2: Software version 2
SINUMERIK 810 GA3: Software version 1
SINUMERIK 810G/820G GA2: Software version 1
SINUMERIK 810G/820G GAS3: Software version 1
SINUMERIK 820 GA2: Software version 2
SINUMERIK 820 GA3: Software version 1
SINUMERIK 840: Software version 1
SINUMERIK 850: Software version 3
SINUMERIK 880: Software version 3

SINUMERIK 805 cannot be configured.

The software version for SINUMERIK 810 given in brackets is valid for non-configurable
controls, which were supplied before 3/88.

Section 1

-Introduction-

Overview:
1.1 General

1.2 Using the configuring station
121 File functions

1.2.2 Special functions

1.2.2.1 Interactive processing
1.2.2.2 Compilation

1.2.2.3 Cross-references

04.90 1 Introduction
1.1 General

1 Introduction

1.1 General

Structured programming of subroutines and processing cycles with the CL 800 high-level
language is transparent, understandable, easy to change and especially reliable.
It permits the program to be drafted in a structural fashion using modern methods.

Cycles are clearly arranged and easily readable using symbolic programming. This allows other
software developers to continue software development and update. In the interactive CL 800
editor mode, the programmer is immediately notified of possible syntax errors which increases
the reliability.

The CL 800 language scope extends far beyond the level expected from high-level languages.
In addition to mathematical and logical functions, command structures (IF-THEN-ELSE) and
transfer commands, the language offers comprehensive CNC-related functions, such as e.g.
measuring functions, reference conditioning, and axis positioning information.

Machine diagnostics is simplified using direct addressing of PLC inputs and outputs using text
programs.
The cycles are converted into a memory space reducing CNC format using the compiler.

1.2 Using the planning workstation

The CL 800 cycles, external variable lists and the operator prompting macros OPM are com-
bined in the object program . Statements for generating cycle program sections in the NC are
designated as operator prompting macros OPM.

The following two possibilities of processing CL 800 files are available to the user in the object
main menu:

* General text editor File functions
* Interactive editor Special functions
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 11

SINUMERIK WS 800 A, (PJ)

1 Introduction 04.90
1.1 General

WS 800 A - Overview (German)

Texts Screens Programs Menus Linker Others Help

CL 800 cycles

Global lists
Central lists
Cycles, @ code
OPM files

WS 800 A basic menu
If a cycle is to be processed, the "CL 800 cycles” file type is selected using the pull-down

menu program in the basic menu.
The object main menu with the file- and special functions then appears.

WS 800 A - CL 800 cycles

File functions Special functions

CL 800 cycles, object main menu

The user can call-up help texts on the screen, which support him during configuring, using the
help menu. The user returns from the object main menu to the basic menu after actuating
end.

1.2 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 1 Introduction
1.2.1 File functions

1.2.1 File functions

Functions, which generally involve the whole file are involved here. The corresponding
functions can be selected using a pull-down menu.

WS 800 A - CL 800 cycles

File functions Special functions

CL 800 cycles, file functions
The general text editor is selected after the processing function has been selected.

An existing file can be selected in the current catalog using a corresponding dialog box. After
file selection, the general text editor is activated through windows. A source file for CL 800
cycles or for external data files can be newly generated or those already available, changed
here. Input is realized without analysis.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 1.3
SINUMERIK WS 800 A, (PJ)

1 Introduction 04.90
1.2.2 Special functions

1.2.2 Special functions

The following special functions can be selected using a pull-down menu for cycle processing,
with the program data type.

WS 800 A - CL 800 cycles

File functions Special functions

Interactive processing

Compilation

Cross-references

CL 800 cycles, special functions

The compilation and cross-references functions are eliminated for the global and central
lists.

1.2.2.1 Interactive processing

CL 800 file processing can be realized with, in addition to the general text editor, a CL 800 -
specific interactive editor.

After the interactive processing function is selected, a file is first specified via a correspon-
ding dialog box. After this, the interactive cycle editor is selected. A source file for CL 800
cycles or for external data files can now be newly generated, or an existing one changed. The
essential difference to the general text editor is that each input line is directly checked for
correct formatting. A corresponding error message appears in the command mode if the line
was incorrectly input.

If a file was edited and stored up to the end criteria (END. or ENDEXTERN), then the already
checked and analyzed file is converted and the object code file generated. The object main
menu is automatically output after editing has been completed.

Refer to Section 7 for further information:

,Use of the interactive editor”

14 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 1 Introduction
1.2.2 Special functions

1.2.2.2 Compilation

Compilation is the pure conversion of CL 800 programs into the @ code.

The external variable lists are, if available, automatically compiled at the next compilation.
Similar to the file functions, a file is defined via a dialog box. The compilation is activated after
file selection. The number of the line being processed is continually displayed during compi-

lation. Compilation is faster, as the complete program contents are not output line for line.

Compilation either ends with an OK or error message. Compilation is terminated and the error
is output with the corresponding line number as soon as the analysis discovers an error.

The user returns to the object main menu after the error message has been acknowledged.
The current file must now be modified corresponding to the error messages.

1.2.2.3 Cross-references

It is difficult to find an @ code statement generated from a CL 800 statement, as the listings of
source and @ codes are significantly different as far as the line numbering is concerned.

Thus, WS 800 A has the capability of generating a cross-reference list between CL 800
programs and @ code.

This cross-reference list is generated by a dedicated compilation. The difference to compilation
is that no object code is created which can be loaded in the NC, but a listing file with the same
file names as the source code.

Each statement which was converted from the source code into the NC code has the associ-
ated line number of the source code in the cross-reference list. The associated line number of
the source code is located in the cross-reference listing at the line start, there, where a new
block is generated in the NC code.

The cross-reference function can only be used for CL 800 programs.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 15
SINUMERIK WS 800 A, (PJ)

Section 2

-Overview of variables-

Overview:

2.1

2.2
221
2.2.2

2.3

23.1
2.3.2
2.3.3
234
235

General

R parameters
Central and channel-orientated R parameters
Channel-orientated R parameters

System memory
Machine data
Setting data
Tool offsets
Zero offsets
PLC signals

04.90

2

2.1

General

Overview of variables

2 Overview of variables

2.1 General

The variables, with which the cycles operate, are subdivided into the following areas (Fig.):

e transfer variables
* local variables

» global variables

e central variables
e system memory

Declaration of the
external variables

Central
variables

I I
I I
I I
I I
I I
I I
: : Setting System
: : data memory
I I
| Central ! Machine
I - T
| variables I data
! ! o T !
| |
I
| L v
I [
' |
: I : < Higher-level
: : GLOBAL: "CHANNEL 17 program
: : CENTRAL: "NBH70 B”; ¢
I .

: I : T — 7
: || LOCAL REAL: R50:=Sum; i . |
! || PAR REAL: R1:=Depth; “—— Tra.”sbfr |
: : . : variable : Variable per
! ! | BEGIN I | program
| | | | level
! ! : Local :
i i END. | He ; »| variable !
! I CL800- STTTTTTTTTT T -
: : Program
I | el A
I I I
I I I
I I I
: Global : : : Variable per
: variable Kn | |1 Global Global : channel
! —L—p| variable variable :
! Global !
[-] channel 1 channel n 1
: variable K1 : : :
[———— L __ a

Variables and their declaration for cycles

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 2-1

SINUMERIK WS 800 A, (PJ)

2 Overview of variables 04.90
2.1 General

ransfer variable

With the transfer variables, values from the higher-level program are transferred to the program
called. The parameters are declared in the program called. Operator prompting during input of
the higher-level program is implemented with these parameters.

All local variables used in the program are declared in the declaration part. Their contents are
zero at the beginning of the subroutine. Intermediate results within a subroutine are stored in
the variables. The variables remain valid within the subroutine.

lobal variable

Global variables are only present once per channel. They can be accessed by all programs
which run within a channel .

Global variables (R100 - R149) are declared in a separate list for each channel. The declara-
tion of global variables (R150 - R199) takes place jointly in one list for all channels. The
corresponding list names are referred to in the declaration part. Using the separate lists for the
declaration of global variables, the subroutines of a channel can be corrected and recompiled
independently of the programs of another channel.

Central variables are only present once in the communication RAM. They can be accessed by
all channels .

They can therefore be used to transfer information between all channels. The central variables
are declared in a separate list. The list is referred to in the declaration part.

ystem memory

All variables, which have a permanent task within the NC (e.g. TO memory, ZO memory, etc.)
come under system memory. Their designations are defined and are part of the CL 800 cycle
language.

2-2 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

2.2 R parameters

2.2.1 Central and channel-orientated R parameters

Each NC CPU has channel-orientated R parameters per channel. The channel-orientated

R parameters are broken down into transfer, local and global R parameters.

2 Overview of variables

2.2 R parameters

Central R parameters, which are common to all channels, are also present in the communi-
cation RAM. The distinction between channel-orientated and central parameters is made via

the R parameter addresses.

Central 900
R parameters | .
————> 4+ —
9é9 | Communication RAM |
NC CPU
NC channel 1 NC channel n
\ 4 \4
0 0
NC Channel- ' NC Channel- :
<+——> i <+——> .
program orientated program orientated
R parameters | 199 R parameters | 199

Central/channel-orientated R parameters

© Siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

2-3

2 Overview of variables
2.2.2 Channel-orientated R parameters

2.2.2 Channel-orientated R parameters

04.90

Local, global and transfer R parameters are available per channel. The assignments of the R
parameters for the individual tasks are defined as follows so that cycles can be created at
different locations and to allow smooth joint operation:

BlOO Global R parameters: ¢ Channel-dependent declaration (R100 ... 149)
R199 » Channel-independent declaration (R150 ... 199)
MPF or SPF SPF SPF SPF SPF
1st level 2nd level 3rd level 4th level 5th level
—> —> —> —>
RO RO
LNo. | Trans. ¢ y| LNo. |30 Trans.¢ | LNo. |p0 Transqp LNo. |p TSyl I No.
: Rpar R par. R par. R par.
R49 R49 R49
\ 4 n \ 4 v ¢ v
R50 [|ocal R50 [Local R50 [Local R50 [|ocal R50 [Local
. R par., . R par., . R par., . R par., . R par.,
R99 Pointer R99 Pointer R99 Pointer R99 Pointer R99 Pointer
Assignment of the R parameters
Abbreviations:
MPF Part program
SPF Subroutine
L-No. Program number
1) omitted when MP is at the 1st level
24 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 2 Overview of variables
2.2.2 Channel-orientated R parameters

Local R parameters (LOCAL)

Local R parameters are only valid within a subroutine. When a subroutine is called, the con-
tents of the declared local R parameters are saved at the beginning of the subroutine and re-
loaded at the end. In this way, any computed intermediate result is retained in the "local’ R
parameters, although the same parameter is used at a different program level. The same para-
meters can thus be used more than once by saving and reloading the "local” R parameters.

Local R parameters as pointers (POINTER)

R parameters can be used as pointers for indirect addressing of R parameters. A pointer con-
tains the address of the parameter into which something is to be entered or read out of.

Example:

» direct addressing of an R parameter

R67=R50 4—>» o R 50
transfer
—> v
R 67

The addresses of both R parameters are listed in the command.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 2-5
SINUMERIK WS 800 A, (PJ)

2 Overview of variables 04.90
2.2.2 Channel-orientated R parameters

« indirect addressing of an R parameter

R 67=[R 50] — > 60 R 50
® R 60
transfer
v
> R 67

The address of the R parameter, whose contents are to be read out, is located in the location
to which the 2nd operand of the commands points. As the pointer belongs to the local variable
group, they are also saved and reloaded, so that these can also be occupied a multiple num-
ber of times.

Transfer R parameters (PAR)

Transfer R parameters serve to initialize subroutines. They must be pre-assigned the desired
values before a subroutine is called. The transfer parameters retain their values in the program
at all levels, as long as they are not modified.

Transfer R parameters (GLOBAL)

Global R parameters remain valid at all program levels. They can thus be used to transfer
information between all subroutines of one channel .

Global R parameters are subdivided into two areas for declaration: Channel-dependent de-
clared R parameters R100 - R149, and channel-independent declared R parameters R150 -
R199.

R parameters R100 - R149 can be declared differently for each channel, while R parameters
R150 - R199 are declared common to all channels.

Subroutines which only run on a particular channel (e.g. machine-dependent cycles), thus use
R parameters R100 - R149. All programs which are to be run on several channels (e.g. stan-
dard cycles) use R parameters R150 to R199.

2-6 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

2.3 System memory

2.3.1

Machine data

2 Overview of variables

2.3 System memory

The values filed in the machine data are defined upon first startup of the machine, and are not
usually changed again. If machine data is changed (e.g. for optimization purposes) it should be

noted that the modification usually does not become effective immediately, but, for example

only after a system reset, for example (e.g. after power-on).

The machine data is subdivided into NC-, cycle-, and PLC machine data. They are further

subdivided into the following areas within these groups:

Machine data words:

NC machine general 0-999 | MDN <word>
data

channel-specific 1000 - 1999

axis-specific 2000 - 3999

spindle-specific 4000 - 4999
drive machine | feed 0x - 256x | MDD <word>
data X axis address

feed with spindle 4000 - 4960

function
cycles machine | channel-specific 0 -49 [MDZ <channel>
data standard cycles <word>

channel-specific 400 - 449

customer cycles

central 1000 - 1149

standard cycles

central 4000 - 4149

customer cycles

© Siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

2-7

2 Overview of variables
2.3 System memory

04.90

PLC machine operating system 0- 999 | MDP <word>
data customer program 1000 - 1999
for 810/820
for 850/880 operating system 0 - 1999
standard FBs 2000 - 3999
customer program 4000 - 5999
for 805 (in preparation) (in preparation)
for 840 (in preparation) (in preparation)
2-8 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

Machine data bits:

2 Overview of variables
2.3 System memory

NC machine general 5000 - 5399 | MDNBI <byte>
data <bit>
channel-specific 5400 - 5599 | MDNBY <byte>
axis-specific 5600 - 5799
spindle-specific 5800 - 5999
compensation 6000 - 6999
FLAGS
drive machine | feed 244x - 252x | MDDBY <word>
data <byte>
feed with spindle 4610 - 4630 | MDDBI <word>
function <byte>
<bit>
X axis address
cycles machine | channel-specific 800 - 849 | MDZBI <channel>
data standard cycles <byte>
<bit>
channel-specific 900 - 949 | MDZBY <channel>
customer cycles <byte>
central standard 7000 - 7049
cycles
central customer 8000 - 8049
cycles
PLC machine operating system 2000 - 2999 [MDPBI <byte>
data <bit>
for 810/820 customer program 3000 - 3999 | MDPBY <byte>
for 850/880 operating system 6000 - 6999
standard FBs 7000 - 7999
customer program 8000 - 8999
for 805 (in preparation) (in preparation)
for 840 (in preparation) (in preparation)

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

29

2 Overview of variables 04.90
2.3.2 Setting data

2.3.2 Setting data

Values assigned to the setting data describe the current machine status or the workpiece
machining. If setting data is modified, the modifications become immediately effective.
Similar to the machine data, the setting data is subdivided into NC-, cycle- and PLC setting
data. It is further subdivided into the following areas within these groups.

Setting data words:

NC setting general 0-1999 | SEN <word>
data

channel-specific 2000 - 2999

axis-specific 3000 - 3999

spindle-specific 4000 - 4999
cycles setting channel-specific 0-99 [SEZ <channel>
data cycles <word>

standard cycles

400 - 499

channel-specific

customer cycles
PLC setting operating system 0-1999 | SEP <word>
data standard FBs 2000 - 3999
for 850/880 customer program 4000 - 5999
for 805 (in preparation) (in preparation)
for 840 (in preparation) (in preparation)

2-10 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

Setting data bits:

2 Overview of variables

2.3.2 Setting data

NC setting data | general 5000 - 5199 | SENBI <byte>
<bit>
channel-specific 5400 - 5595 | SENBY <byte>
axis-specific 5600 - 5799
spindle-specific 5800 - 5999
cycles setting channel-specific 800 - 849 | SEZBI <channel>
data standard cycles <byte>
<bit>
channel-specific 900 - 949 | SEZBY <channel>
customer cycles <byte>
PLC setting operating system 6000 - 6999 | SEPBI <byte>
data standard FBs 7000 - 7999 <hit>
for 850/880 customer program 8000 - 8999 [SEPBY <byte>
for 805 (in preparation) (in preparation)
for 840 (in preparation) (in preparation)

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

2-11

2 Overview of variables

2.3.3 Tool offsets

2.3.3

Tool offsets

04.90

A max. of 99 (810) or 204 (850/880) tool offset blocks for active tools can be stored in the NC.
With SINUMERIK system 850/880, machine data can be used to define the tool areas assig-
ned to the tool magazines or turrets located at the machine.

Dn

channel TO initial
area D No.

1 1 1

2 1 1

3 2 26

n m

—»D1

Dn

TO areal

TO area 2

TO aream

With SINUMERIK system 810/820 there is only one TO area (0):

2-12

D 99

© siemens AG 1990 All Rights Reserved

TO area

128 (PO-P15)
204 (P0-P9)

99(P0-P7)

not configurable
(PO-P9)
configurable

6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

TO area for SINUMERIK system 805:

TO area for SINUMERIK system 840:

(in preparation)

(in preparation)

The individual TO areas are structured as follows:

D1
D2
Dn

2 Overview of variables

2.3.3 Tool offsets

T No.
PO

Type
P1

P2

Geometry

P3

P4

P5

Wear

P6

P7

Add. TO

P8

P9

P10

P15

Columns PO to P9 (P11) are permanently assigned, while columns P12 to P15 can be assig-
ned according to the machine (e.g. stand time, quantity, permissible cutting force). The num-
ber of columns is defined via a machine datum.

© Siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

2-13

2 Overview of variables
2.3.3 Tool offsets

Assignment of columns PO to P9 of the TO areas :

Tool No.

PO

T No. with up to 8 decades

Coding of tool type P1
Type with 2 decades. The tools are subdivided into the following groups according to type:

Type 1..9

Type 10
Type 20
Type 30
Type 40
Type 50

: Tools with length compensation, e.g. drills
: Tools with length and radius compensation, e.g. shank cutters
: Tools with 2 length and 1 radius compensation, e.g. angle milling cutters
: Tools with 5D length compensation

.59

monitoring.

: Tools with offsets X, Z and radius, e.g. lathe tools

04.90

: Grinding wheel with cutting position as type 1 to 9 with grinding-related

Decade 10° specifies the direction of the selected compensation plane in which the compen-

sation values are to be effective.

Assignments P2 to P9 are dependent on the tool type as follows:

Type Geometry Wear Add. TO
P1 P2 P3 P4 P5 P6 P7 P8 P9
1..9 length X Igth Z radius [length X | length Z length X | length Z
10...19 | length length length
20 ...29 | length radius | length radius | length
30...39 | length1 Igth 2 radius |length 1 | length 2 | radius | length 1 | length 2
40 ... 49 length
differ.
50...59 | length 1 Igth 2 radius |length 1 |length 2 | radius | length 1 | length 2

Values P2/P5/P8, P3/P6/P9 as well as P4/P7 are added in accordance with one item of
machine data.

2-14

© siemens AG 1990 All Rights Reserved

6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 2 Overview of variables
2.3.4 Zero offsets

2.3.4 Zero offsets

Per NC axis, the zero offsets and tool offsets (TO) are allowed for as follows:

Machine

Programmed or

actual external position
values
A4
DRF offset S e e O D
+ Sum of all offsets
AJ Settable ZO
PRESET offset |—p| — G54/G55/G56/G57
Programmable ZO
G58/G59
\ 4
Machine-related) External ZO (ZOE)
actual value > ReS|du5aI value p
© Tool offset
\4
A\ 4
Workpiece-
related actual
value
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 2-15

SINUMERIK WS 800 A, (PJ)

2 Overview of variables
2.3.5 PLC signals

2.3.5 PLC signals

The PLC signals are subdivided into the following areas:

04.90

7 0 7 0
P E
I/0O (1/O module) Input image
7 0 7 0
A M
Output image Flags
15 11 0 15 11 0
T Z
Timers Counters
15 0
DW 0
DW 1 Data block 1
. or
: DX block 0
DW n
DW 0
DwW 1 Data block m
. or
. DX block m
DW n
2-16 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

2 Overview of variables
2.3.5 PLC signals

For byte or word addressing of PLC data words, the following assignments must be

observed:

Byte n

Byte n+1

P/1/O/F DB
0 15 7 0
High byte High byte Low byte Word n
Low byte

A byte consists of 8 associated bits with numbers 0...7.
A word is created by combining two bytes. Thus, the word contains 16 bits (0...15). The byte
which has bit "0” in the word is designated as the "low byte”, and the byte with bit "15” as

the "high byte”.

The following formats are possible for PLC data words:

» Fixed point.

A data word or double word (serial or parallel) is read into, or loaded into the PLC.

DB/
DXm

DB/
DXm

DB/
DXm

DW,,

DW,,

DWh+1

DW,,

© Siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

Data word

Double word,

serial

DBm+1/
DXm+1

DW,,

Double word,
parallel

6ZB5 410-0DP02

2-17

2 Overview of variables 04.90
2.3.5 PLC signals

Dimension identifier:
The dimension identifier specifies the position of the decimal point for data transfer with fixed
point.

<Value> |Fixed point: Data word or double word, serial

0 value without decimal point

value with decimal point

1 digit after the decimal point

2 digits after the decimal point

3 digits after the decimal point

4 digits after the decimal point

5 digits after the decimal point

6 digits after the decimal point

7 digits after the decimal point

Ol 0Nl | B~ W] DN]|PF

8 digits after the decimal point

<Value> |Fixed point: Double word, parallel

10 value without decimal point

11 value with decimal point

12 1 digit after the decimal point

13 2 digits after the decimal point

14 3 digits after the decimal point

15 4 digits after the decimal point

16 5 digits after the decimal point

17 6 digits after the decimal point

18 7 digits after the decimal point

19 8 digits after the decimal point

2-18 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 2 Overview of variables
2.3.5 PLC signals

e BCD:
Data is read or loaded in serial or parallel, dependent on the defined number of data words.

- Number of data words= 1 : ==> one data word is read/loaded

DB/
DXm DW,,

- Number of data words= 2 : ==> two data words are read/loaded in parallel

DB/ DBpy41/
DXm DW,, DXm+1 DW,,

- Number of data words= 3 : ==> three data words are read/loaded serially

DB/

DXm DW, | =*
DWh+1
DWh.2

Dimension identifier:
Dimension identifier specifies the position of the decimal point for data transfer with BCD.

<Value> BCD

100 value without decimal point

101 value with decimal point

102 1 digit after the decimal point

103 2 digits after the decimal point

104 3 digits after the decimal point

105 4 digits after the decimal point

106 5 digits after the decimal point

107 6 digits after the decimal point

108 7 digits after the decimal point

109 8 digits after the decimal point

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 2-19
SINUMERIK WS 800 A, (PJ)

2 Overview of variables 04.90
2.3.5 PLC signals

e Floating point.
Two data words are always serially read/loaded into the PLC. In this case, a data driver
realizes the conversion into the different NC and PLC formats.

31 23 15 7 0

! ! Value range:
| | + 1038

}—Exponent I Mantissa 4’

i NC data driver

PLC DW, DWh41

Value range:
+ 99999999

I+
©
©
©
©
©
©
©
©

NC

I R parameters |

General comments:

« NC alarm "CL 800 error” is initiated for overflow NC==> PLC at writing
(e.g. 1 bit is written with R parameter contents 2).

¢ Anoverflow PLC ==> NC at reading causes the maximum value to be entered into the
R parameter and an NC alarm issued, which does not interrupt the program. The alarm
can then be evaluated in the program.

« A PLC machine data bit is used to determine whether PLC data can be written via CL 800
statements of the NC program or not.

¢ The NC alarm "CL 800 error” is issued for access to data which are not available in the
PLC through CL 800 statements of the NC program.

2-20 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

Section 3

-Language notation-

Overview:
3.1 General
3.2 CL 800 words

3.3 Operands

04.90 3 Language notation
3.3 Operands

3 Language notation

3.1 General

The cycle language for system 800 (abbreviated CL 800) is a higher-level programming
language based on Pascal. Commands are specified by means of terms derived from plain
English.

In order to rule out any ambiguities and to allow compilation into an instruction code by the
compiler, the language is subject to strict rules which are summarized as a syntax.

If these rules are violated, they are generally identified by the system (fault messages of the
cycle editor, Section 9).

3.2 CL 800 words

CL 800 words are represented in uppercase letters;

e.g.: BEGIN, LOCAL, GOTO, SIN, PRAP.

They must be specified in the relevant commands as mandatory requirement. A CL 800 word
list is provided in the Appendix under Section 11, alphabetic keyword index.

3.3 Operands

Variables and constants with which the commands operate are known as operands. A
distinction is made between the following operands:

R parameter : <Var name>

Pointer . [<Pointer name>]

System memory : <System memory name>(<Value 1>, <Value 2>, ..)
Constant (digit) . <Constant name>

Number . Real or integral number

Parentheses

() The parentheses are part of the language. They must be entered wherever
specified, and must be filled with the current parameters.

Angle brackets
Angle brackets are not part of the language. The enclosed expression must be
replaced by the current parameter and specified as a mandatory requirement

Square brackets

[] Square brackets are only part of the language in the case of a pointer variable.
Otherwise the enclosed expression need not be specified as a mandatory
requirement.

Braces
{ } Braces are not part of the language. The enclosed expression may be specified
any number of times or not at all.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 31
SINUMERIK WS 800 A, (PJ)

Section 4

-Structure of the CL 800 high-level language-

Overview:
4.1 Program structure

4.2 Data structure

04.90 4 Structure of the CL 800 high-level language
4.1 Program structure

4 Structure of the CL 800 high-level language
overview

4.1 Program structure

PROGRAM <Program number>; 1)

CHANNEL NC or COM <Channel No.>; 1)
Program ESS:

header [ID (<ID designation>);]

[PW <Password>;]

Declaration part

[LABEL:<Label name> {, Label name>};]

[CONST:<Const. name>;=<Digit> {,<Const.
name>:=<Digit>};]

[PAR <Data type>: R<Var No.> [:=<Var name>] {, R<Var No.>
[(=<Var name>1} ;]

[LOCAL <Data type>: R<Var No.> [:=<Var name>]
{, R<Var No> [:=<Var name>]} ;]

Program [POINTER: R <Var No.> [:=<Var name>] {, R<Var No.>
block [:=<Var name>]} ;]

[GLOBAL :’<List name>";] 2)
[CENTRAL : "<List name>";]

Statement part

BEGIN
<Statement>;

BEGIN
<Statement>;

END;

END.

Structure of a CL 800 program

Legend: 1) Program number and channel number must be at least specified with zero.
2) Two lists can be defined for global variables; a channel-independent list
(necessary when subroutines are to be run on several channels), and a
channel-dependent list.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 4-1
SINUMERIK WS 800 A, (PJ)

4 Structure of the CL 800 high-level language 04.90
4.1 Program structure

The structure of a CL 800 program consists of a program header and a program block. The
program block is further subdivided into a declaration part, in which all objects available in the
program are defined, and a statement part, in which the actions are specified which are to be
executed with these objects.

This structure must be adhered to for program generation.

Example of program structuring

The program variables R 50 should be assigned the instantaneous value of term 1, term 2 and
term 3 from a higher-level program in the NC channel.

(* program header *)

PROGRAM 1;

CHANNEL NC 1;

ID (0-ASSIGN-01.03.85-KUB-SIEMENS:850:02);

(* declaration part *)

PAR INTEGER:RO: =term_1, (* transfer parameter *)
R25: =term_2,
R49: =term_3;

LOCAL INTEGER: R50:=value; (* local parameter *)

(* statement part *)

BEGIN
value =term_1 + term_2 +term_3; (* first statement *)
: (* additional statement *)
END.
4-2 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

4.2

The data, with which the cycles operate, is subdivided into two areas:

Data structure

Program-internal data
Transfer variable
Local variable

Program-external data
Global variable
Central variable
System memory

PROGRAM <No.>;
CHANNEL NC <Channel No.>;
ID (<ID des.>);

GLOBAL:"<List name>";

CENTRAL: "<List name>";

LOCAL REAL: R50[:=<Var name>],
R70,
R99[:=<Var name>];

PAR REAL: RO[:=<Var name>],

R49;

BEGIN
R70 = MDN (2500);

END.

(RO-R49)
(R50-R99)

(R100-R199)
(R900-R999)

Program-internal data

4 Structure of the CL 800 high-level language

4.2 Data structure

Program-external data

EXTERNAL <No.>;
ID (<ID des.>);

CENTRAL <Data type>:

R900 [:=<Var name>],

R999 [:=<Var name>];
ENDEXTERN

EXTERNAL <No.>;
CHANNEL NC <Channel
No.>;

ID (<ID des.>);

GLOBAL <Data type>;
R100 [:=<Var name>];

R199 [:=<Var name>],

-~

A 4

System memory
(NC machine data etc.)

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

4-3

Section 5

-Command description-

Overview:

5.0

51
511
5.1.2

52
521
5.2.2

53
53.1
5.3.1.1
5.3.1.2
5.3.1.3
53.14
5.3.1.5
5.3.2
5321
5.3.2.2
5.3.2.3
5.3.3
5.3.3.1
5.34
5.34.1
5.3.4.2
5.3.5
5.3.5.1
5.35.2
5353
5354
5.35.5
5.3.5.6
5.3.5.7
5.3.5.8
5.3.5.9
5.3.5.10
5.3.5.11
5.3.5.12
5.3.5.13
5.35.14
5.3.6
5.3.6.1
5.3.6.2
5.3.6.3
5.3.6.4
5.3.6.5

Preliminary information

Program frame statements
General statements
Program header

Declarations
Declaration of variables
Declaration of variables in external lists

Statements

Repeat statements

REPEAT loop

WHILE loop

WHILE INT loop

FOR TO loop

FOR DOWNTO loop

Decision statements

IF THEN ELSE branching

IF INT THEN ELSE branching

Case branching

Unconditional branching

Unconditional jump

General data transfer

Data transfer: R par./R par.

Data transfer: R par./input buffer memory for numerical variable
Data transfer: System memory into the R parameter
Transfer machine data into the R parameter
Transfer setting data into the R parameter
Transfer tool offsets into the R parameter
Transfer zero offsets into the R parameter

Read programmed setpoints into the R parameter
Read actual values into the R parameter

Read program data into the R parameter

Read PLC signal bits into the R parameter

Read PLC signal bytes into the R parameter
Read PLC signal words into the R parameter
Read PLC signal data words into the R parameter
Read alarms into the R parameter

Read alarm pointer into the R parameter

Read system memory into the R parameter

Data transfer: R parameter into the system memory
Transfer R parameter into the machine data
Transfer R parameter into the setting data

Write R parameter into the tool offsets

Write R parameter into the zero offsets

Write R parameter into the program setpoints

Section 5

-Command description-

5.3.6.6
5.3.6.7
5.3.6.8
5.3.6.9
5.3.6.10
5.3.6.11
5.3.7
5.3.7.1
5.3.7.2
5.3.7.3
53.7.4
5.3.7.5
5.3.7.6
5.3.7.7
5.3.8
5.3.8.1
5.3.8.2
5.3.8.3
53.8.4
5.3.9
5.3.9.1
5.3.9.2
5.3.9.3

Write R parameter into the PLC signal bits
Write R parameter into the PLC signal bytes
Write R parameter into the PLC signal words
Write R parameter into the PLC signal data words
Write R parameter into the alarms

Write R parameter into the system memory
Mathematical and logical functions

Value assignment with arithmetic operations
Arithmetic functions

Arithmetic procedures

Trigonometric functions

Logarithmic functions

Logical functions

Logical procedures

NC-specific functions

Changing program and machine reference points
Individual functions

Measurement functions

Program influence

I/O statements

I/O functions, NC

I/O functions, general

Operator control functions

04.90 5 Command description
5.1.1 General statements

5 Command description

5.0 Preliminary information

The syntax of CL 800 is described with words in this section, which also includes examples for
clarification.

5.1 Program frame statements

5.1.1 General statements

. END. statement part

These commands are used to start and terminate the complete statement part . The program
is executed with its various statements and statement blocks within these boundaries.

Example:
BEGIN

<Statement part>;

END.

statement block

Several statements are combined to form a statement block using these commands. For all
commands with only one permissible statement, then this can be replaced by a statement
block.

Example:
BEGIN
<Statement(s)>;

END,;

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-1
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.1.1 General statements

end of block

The code generator of the cycle compiler generates a compressed object code which is auto-
matically limited to a maximum length of 120 characters per block. Any "CR LF” (<--!) ente-
red in the CL 800 program as an end of line is not transferred to the object code as an end of
block.

However, the programmer has a facility in the CL 800 program for issuing an end of block in
the object code by inserting "LF;” at specific points. All block limits additionally required are
deliberately inserted, e.g. before and after programmed axis movements and after subroutine
calls.

Example:
BEGIN

<Statement 1>;LF;
<Statement 2>;LF;

END.

(*<Remarks>%*)

A remark of any length can be entered within the parenthesized expression and the two
asterisks (* . .. *) . All principle characters and CR/LF are allowed. Readability of the program
can be considerably improved by inserting remarks.

Example:
BEGIN
<Statement>; (* plunge grinding in Z *)

END.

A remark can be written at any point in the program. Remarks are

ignored during compilation. They are not transferred to the control (NC)
and therefore do not occupy any controller memory space.

5-2 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.1.2 Program header

(:<DIN-CODE>:); DIN command

With this statement, DIN commands which are not part of cycle language can be inserted in a
CL 800 program.

The DIN code may only be used within the statement part. It is treated as a statement and
must therefore be terminated with a semicolon.

Examples:
(: N100 G90 GO01 F=R25 X=R91 Z500 :);

(: (STARTING POINT X)3);
(: L50 P1);

Block numbers N1-999 are available to the programmer in the

(:<DIN CODE>:) The commands within the statement
(:<DIN CODE>:) are not checked by the compiler for correct syntax.

5.1.2 Program header

For CL 800, the program header is only optional and has absolutely no significance for the pro-
gram. If available, it provides the program with a name and optionally lists the parameters
through which the program communicates with the environment.

PROGRAM <Progr. number>; definition of a program

A subroutine (cycle) is assigned a program number (1-999/9999) with this command. The pro-
gram is entered in the control (NC) under this number (L 1. ..1L999/L9999). The number must
be specified in order to call the program from other programs.

Example:

PROGRAM 100;

END.

PROGRAM 999;

END.

A subroutine is called up in a CL 800 program using a DIN command

(refer to Section 5.1.1).

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 53
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.1.2 Program header

CHANNEL NC <Channel No.>; channel number

Using the channel designation, the programmer defines the channel in which the program may
be called. Channel numbers 0...16 may be used for the NC area, depending on the con-
trol and degree of expansion. If a program is to be executable in several NC channels, 0 is
preset as the channel number.

Example:

CHANNEL NC 2;

The program and channel numbers must be preset in each program.

enable for softkey start

A subroutine start via softkey can be configured with the softkey function 69. The program
enable for softkey start is realized with the statement enable softkey start .

Example:

PROGRAM 1;

CHANNEL NC 1;

ESS;

ID (O-EXAMPLE-22.07.85-KUB-SIEM:MA:850:02);

54 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.1.2 Program header

ID (<Ident. des.>); ID designation

The ID designation allows the user to make a clear distinction between his program and
other programs.

The following program identifiers are defined with the ID designation :

1) Consecutive number : 1 character

2) File designation . 8 characters

3) Date . 8 characters DD.MM.YY
4) Programmer . 3 characters

5) Object designation . e.g. 8 characters

6) Control type . e.g. 4 characters

7) Release : e.g. 2 characters

Explanations of individual terms of the ID designation:

1) The "consecutive number” is an internal revision identifier for the program. If the program
is modified the consecutive number is incremented by 1 by the programmer (refer to
example: 0).

2) The name of the file called is entered as the "file designation” (refer to example:
EXAMPLE).

3) The creation date of the program is entered under’date” by the programmer (refer to
example: 22.07.85).

4) The programmers initials are entered under programmer (refer to example: KUB).

5) With the "object designation” the user can describe the machine name, for example,
manufacturers name etc. (refer to example: SIEM:MA).

6) The "control type” serves to enter the NC control in use, (refer to example: 850).

7) Under release an incrementing number can be entered for program revisions (refer to
example: 02).

Example:

ID (0-EXAMPLE 22.07.85-KUB-SIEM:MA:850:02);

Terms 1-4 are fixed subdivisions of the ID designation. They must be
entered by the user in the same sequence and with the same number of
characters. Hyphens (-) must be entered as separators between the

terms. Terms 5-7 are additional data with a maximum of 14 characters
and can be handled flexibly. They are only a recommendation. The ID
designation comprises a maximum of 40 characters.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 55
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.2 Declarations

PW (<Password>); password

The purpose of the password is to protect a program in the NC from access by unauthorized
persons. When a password has been declared, the program can only be read out if the pass-
word is previously entered. This function is not implemented at present in the NC.

The password is a protection facility for the program, but need not be specified as a manda-
tory requirement when the program is written.

Example:

PW (KEY28);

The password consists of a maximum of 8 characters.

5.2 Declarations

The declaration part in a program block declares all designators which are used in the state-
ment part. The declarations are terminated with a semicolon.

5.2.1 Declaration of variables

The variables are subdivided into two main groups corresponding to the CL 800 data structure
(Section 4.2):

« External variables which are declared in separate lists (external files):

- global variables GLOBAL (R100-R199)
- central variables CENTRAL (R900-R999)

« Internal variables and constants which are declared within the program itself:

- transfer variables PAR (ROO - R49)
- local variables LOCAL (R50 - R99)
- constants CONST
- pointer variables POINTER (R50 - R99)
- branch labels LABEL
5-6 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.2 Declarations

The reference to global and central variables, which are declared in separate lists, is pro-
grammed as follows:

CENTRAL: "<list name variant>"; central variable

GLOBAL: “<list name variant>"; channel-dependent global variable
GLOBAL: “<list name variant>"; channel-independent global variable

The reference to the separate lists is given by the list names , which may have a maximum
length of 8 characters.

Example:

CENTRAL: "VARCEN?”;
GLOBAL: "VARKUP”,
GLOBAL: "VARKAP";

A channel-dependent declaration list and a channel-independent
declaration list can be referred to in the program. The list
name specified here must agree with the file names,
stored under the global or central list.

PAR <Dat type>: R<Var No.>[:=<Var name>] transfer variable
{,R<Var No.>[:=<Var name>]};

The transfer variables (range R0-R49) are declared with this statement.

All parameters can be assigned a symbolic name, which must not be used within the DIN
code.

Example:
PROGRAM 1, (* program header *)
PAR INTEGER: ROO:=term_1,

R25:=term_2; (* declaration part *)

PAR REAL: R49:=term_3;
LOCAL REAL: R50:= VALUE;

BEGIN
VALUE =term_1 + term_2 + term_3; (* statement part *)
END.
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-7

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.2 Declarations

All transfer variables used in (:<DIN-CODE>:) need not be declared.

LOCAL <Dat type> : R<Var No.>[:=<Var name>] local variable
{,R<Var No.>[:=<Var name>]};

The local variables (range R50-R99) are declared in the program with this statement.

The local variables can be assigned different values at each program level, and can be given
new symbolic names.

When the program level is exited because of a subroutine call, the local variables are saved
and preassigned zero for the following program. Thus, they are available again as independent
arithmetic parameters in the called subroutine. After return to the calling program, the saved
values are available there again.

Example:

Mode of operation of the transfer and local variables

PROGRAM 1; —» PROGRAM 120;
PAR REAL: RO; PAR REAL:RO;
LOCAL REAL:R60,R61,R62; LOCAL REAL:R60,R61,R70;
BEGIN BEGIN
R60=100; :
R61=5;
R62=R60+R61;LF;(*105%) :
RO=R62 (:L120 P1) ;LF; — | R60..... o (*0%)
R60... ; (*100%) «— R61..... C (0%
RO... ; (*300% R70=RO; (*105%)
: R0=300;
: R60=500;
END. L END.

CONST <Const. name>:=<Number> constant

{,<Const. name>:=<Number>} ;

Constant numerical values are assigned symbolic names with this statement.

Constant values are often inconvenient in a program. They can thus be replaced by symbolic
names (e.g. Pl instead of 3.14159).

5-8 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.2 Declarations

Example:

PROGRAM 3;

LOCAL REAL: R60, R61;

CONST : PI:=3.14159, MILL:=1000000;

(* Pl=real number, MILL=integral number *)

R60 =R 61 * P,

END.

In the declaration of the constant, the data type is specified by the
value of the constant, i.e. a number without a decimal point is
treated as an integral number, and a number with a decimal
point is treated as a real number.

POINTER R<Var No.>[:=<Var name>] pointer variable
{,R<Var No.>[:=<Var name>]};

Statement for declaring parameters (R50 - R99) as pointer variable (pointer)

The contents of the pointer determines the address of the R parameter to be used.
Example :

PROGRAM 3;

POINTER: R50, R51;
LOCAL INTEGER: R70, R71, R80;

BEGIN

R50 = 70; (* load address of an R parameter *)

[R50] = 20; (* contents of R70 = 20 *)

R51 =80 (* load address of an R parameter *)

R71 =[R51]; (* contents of R80 are transferred to R71 *)
END.

Variables, which are declared as pointers are placed in square

brackets for indirect addressing.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

59

5 Command descriptions 04.90
5.2.2 Declaration of variables in external lists

LABEL : <Name> {,<Name>}; label for jump destination

With the label declaration, names are declared which are used in the program as markers for
jump destinations of the GOTO command.

The name of a label can have up to 8 characters; the first character must be a letter.

Example:

LABEL : Error;

Also refer to unconditional jump (GOTO) Section 5.3.3.1

5.2.2 Declaration of variables in external lists

EXTERNAL <List number>; definition of an

external file

ENDEXTERN

A declaration list is assigned a list number (1 . . . 9999) with the EXTERNAL statement. If
required, the list is read into the control (NC) as a "subroutine” with this number.

The creation of declaration lists takes place separately from the CL 800 program at the confi-
guring station.

The EXTERNAL statement is terminated with ENDEXTERN.

Examples:

EXTERNAL 30;
ID (0-VARICEN-28.03.85-KUB- . . .);
PW (SECRETS);

(* declaration of central variables *)

ENDEXTERN

5-10 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.2.2 Declaration of variables in external lists

EXTERNAL 35;

CHANNEL NC 0;

ID (0-VARIKUP-03.04.85-KUB- . . .);
PW (PARAMEL);

(* declaration of channel-independent global variables *)

ENDEXTERN

During creation of an EXTERNAL list, a list number must be
specified. If the list is created for global parameters, the channel
number must be additionally specified. Remarks may also be
used within these declaration lists. The channel number must be
specified as 0 for the channel-independent global variables, so that the
list can be used for parameters in different channels.
In the ID designation, the "file designation” must agree with the
"file names” of the configuring station file. These file names
are referred to in the program.

GLOBAL <Dat type>: R<Var No.>[:=<Var name>] global variable
{,R<Var No.>[:=<Var name>]};

Global variables (R100-R199) are declared in external lists (EXTERNAL files) with this
statement. The lists must already exist when they are called in the program.

Global variables are present once per channel. They can be accessed by all programs which
are executed within a channel. Global variables R100-R149 are declared in a separate list for
each channel. The declaration of global variables R150-R199 takes place jointly in one list for
all channels.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 511
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.2.2 Declaration of variables in external lists

Example:

The channel number must be specified as zero for the list of R
parameters declared channel-independent (R150-R199).

5-12 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.2.2 Declaration of variables in external lists

CENTRAL <Dat type>: R<Var No.>[:=<Var name>] central variable

{,R<Var No.>[:=<Var name>]};

The central variables are declared in the external list with this statement. Central variables
R900-R999 are only present once for all channels in the communication RAM.

All channels can access the central variables. They can be used by all channels for
transferring values to other channels.
Example:

EXTERNAL 10;
ID (O-CENLIST-. . .)

CENTRAL REAL: R900:=Load_1,R950:=Read_3;
(* Declaration of central variables *)
ENDEXTERN

PROGRAM 81,
CHANNEL NC 1;

CENTRAL: "CENLIST";
PAR REAL: RO:=Transf.;

BEGIN

END.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-13
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3 Statements

5.3 Statements

The statement part defines the action which is to be executed by the program as a result of
statements. Each statement specifies a part of the action. In this sense, the CL 800 cycle lan-
guage is a sequential program language: Statements are sequentially executed, never simul-
taneously. The statement part is started and finished with BEGIN and END; the statements
are separated by semicolons within these boundaries.

5.3.1 Repeat statements

Repeat statements are used, as indicated by the name, for repeated execution of specific
program parts. So-called program loops are realized using the statements.

The following repeat statements are discussed:
* REPEAT ... UNTIL

e WHILE; WHILE INT

« FOR; FOR DOWNTO

5.3.1.1 REPEAT loop

REPEAT
<Statement>;
UNTIL <Var> "Vop” <Value>;

("Vop”: >; >=; <; <= = <)

The REPEAT loop is a repeat statement with scanning of the repeat condition at the end of
the loop.

With the REPEAT loop, the statement is processed first. A check is then made as to whether
the loop condition has been fulfilled.

The loop statement is processed as long as the condition is not fulfilled

If the condition is fulfilled , the following statements are processed.

Although REPEAT can initiate the repetition of several individual statements, it is only inter-
preted as a single statement by the compiler. Thus, the identification of the statement block in
the repeat loop using BEGIN and END; is not necessary.

The condition can be any valid term, whose result is boolean

Generally, the REPEAT statement has the form:

REPEAT

statement(s;)
UNTIL condition

5-14 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

Structogram of the REPEAT statement:

Statement 1;

Statement 2;

Statement n;

UNTIL condition

Example:

+ flowchart

5 Command description
5.3.1 Repeat statements

<
A4

R80 = PREP REF (L_No.)
R90 = INT SEC (R80, R70) (:X250 Z0:)

PRAP (1) = R91 PRAP (2) = R92

\

Flowchart: REPEAT loop

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

5-15

5 Command description 04.90
5.3.1 Repeat statements

. structogram

R80 = PREP REF (L_No.)

R90 = INT SEC (R80, R70) (:X250 Z0:)

R90=1

PRAP (1) =R91 PRAP (2) = R92

Structogram: REPEAT loop

e CL 800 programming

PROGRAM 502;

LOCAL REAL: R50:=L_No, R70, R80, R90, R91, R92;
BEGIN

REPEAT
BEGIN
R80 = PREP REF (L_No); LF;
R90 = INT SEC (R80,R70); (:X250 Z0);
END;
UNTIL R90=1;
PRAP (1) = R91; PRAP (2) = R92; LF;

END.

Wherever a statement is specified, it can be replaced by an entire

statement block which must be bracketed with BEGIN and END:;.

5-16 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.1 Repeat statements

REPEAT REPEAT loop

<Statement>;
UNTIL <Var>.<Const>;

REPEAT loop in which a program part is repeatedly processed dependent on the status of a
bit in a PATTERN variable. The bit number between 0 . . . 7 is specified as <Const>.

Example:
PROGRAM 510;
LOCAL PATTERN: R70;
R70 = i300011001;
REPEAT

<Statement>;

UNTIL R70.2;

END.

REPEAT REPEAT loop

<Statement>;
UNTIL <Var>;

REPEAT loop with which a statement block is processed, dependent on the status of a
boolean variable. The boolean variable <Var> has the value 0 or 1.

Example:
PROGRAM 515;
LOCAL BOOLEAN: R70;
R70:i;
REPIéAT
<Statement>;

UNTIL R70;

END.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-17
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.1 Repeat statements

REPEAT loop with extended arithmetic

Extended arithmetic is allowed in the REPEAT loop. Extended arithmetic is understood to
mean a facility for executing calculations with mathematical operations or logical functions
within the statement, in accordance with Section 5.3.7.

Depending on the result of the logic operation, a program section is either processed or not
processed.

Example:

PROGRAM 1;

PAR REAL: R15, R25, R35;
PAR PATTERN: R10, R20, R30,

R40:=INPUT;
PAR BOOLEAN: R21;

REPEAT
<Statement>;
UNTIL R25 + 5 > R15;

REPEAT
<Statement>;
UNTIL R10 AND R20 = R30;

REPEAT
<Statement>;
UNTIL R10.3 ANDB R21;

REPEAT
<Statement>;
UNTIL INPUT 3 ANDB INPUT .4;

REPEAT
<Statement>;
UNTIL SIN (R25) + 0.5 > 0;

REPEAT
<Statement>;
UNTIL ANGLE (15,10+R25) > R35;

REPEAT
<Statement>;
UNTIL R25 > R15 ANDB R25 = R35;

END.

5-18 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.1 Repeat statements

5.3.1.2 WHILE loop

WHILE <Var> "Vop” <Value> DO WHILE loop
<Statement>;

("Vop”: >; >=; <; <= =) <>))

The WHILE loop is a repeat statement with scanning of the repetition condition at the start of
the loop.

With the WHILE loop a check is first made to establish whether the loop condition is fulfilled.
If the condition is not fulfiled , the statement for the loop is skipped and the following state-
ments are processed.

The statement for the loop is processed as long as the loop condition is fulfilled

If several statements are to be executed at each loop run, then these must be started and ter-
minated with the word symbols BEGIN and END;.

The WHILE loop is processed in the program as follows:
WHILE condition DO:
BEGIN

Statement 1,

Statement 2;

Statement n
END;

Each statement sequence included in BEGIN and END; counts just like a single statement as
far as the syntax is concerned.

Structogram of the WHILE loop:

WHILE condition DO

Statement 1;

Statement 2;

Statement n

The key words BEGIN and END are not specified in the structogram. These are replaced by
applicable graphic elements, in this case lines in the WHILE block.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-19
SINUMERIK WS 800 A, (PJ)

5 Command description
5.3.1 Repeat statements

Example:

« flowchart

04.90

no

<O
X

(
\

X_value>X_spec >

A4

yes

X_status

PRAP (1) = X _value
X_value= X_value-

v

PRAP (1) = X_spec

Flowchart: WHILE loop

structogram

X_value>X_spec

PRAP (1) = X_value

X_value= X_value- X_status

PRAP (1) = X_spec

Structogram: WHILE loop

5-20

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.1 Repeat statements

» CL 800 programming
PROGRAM 502;
LOCAL REAL: R80:=X_spec, R81:=X_value, R82:=X_status;
BEGIN
WHILE X_value > X_spec DO
BEGIN
PRAP (1) = X _value; LF;
X_value= X_value - X_status
END;
PRAP (1) = X_spec;LF;

END.

Wherever a statement is specified, it can be replaced by an entire
statement block which must be braketed with BEGIN and END;

WHILE <Var>.<Const> DO WHILE loop
<Statement>;

A WHILE loop with which a program section is processed, dependent on the status of a bit
from a PATTERN variable. Bit numbers between 0 ... 7 are specified as <Const>.

Example:

PROGRAM 510;
LOCAL PATTERN: R70;
R70 = i300011101;

WHILE R70.2 DO
<Statement>;

END.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.21
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.1 Repeat statements

WHILE <Var>DO WHILE loop

<Statement>;

WHILE loop with which a statement block is processed, dependent on the status of a boolean
variable. The boolean variable <Var> has the value 0 or 1.

Example:
PROGRAM 515;

LOCAL BOOLEAN: R70:
R70=1:

WHILE R70 DO
<Statement>;

END.

WHILE loop with extended arithmetic

Extended arithmetic is permitted within the WHILE loop. Extended arithmetic is understood to
mean a facility for executing calculations with mathematical operations or logical functions
within a statement, in accordance with Section 5.3.7. Depending on the result of the logic
operation, a program section is either processed or not processed.

Example:
PROGRAM 1;

PAR REAL: R15, R25, R35;
PAR PATTERN: R10, R20, R30,

R40:=INPUT;
PAR BOOLEAN: R21,;

WHILE R25 + 5 > R15 DO
<Statement>;

WHIL.E R10 AND R20 = R30 DO
<Statement>;

WHIL'E R10.3 ANDB R21 DO
<Statement>;

WHIL'E INPUT.3 ANDB INPUT.4 DO
<Statement>;

WHIL.E SIN (R25) + 0.5 >0 DO
<Statement>;

WHIL.E ANGLE (15,10+R25) > R35 DO
<Statement>;

WHIL.E R25 > R15 ANDB R25 = R35 DO
<Statement>;

END.

5-22 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.1 Repeat statements

5.3.1.3 WHILE INT loop

WHILE INT <Value 1>.<Value 2> DO WHILE INT loop

<Statement>;

WHILE INT loop is dependent on the status of a defined external input.

The next statement is processed as long as the external input has a "1” signal . The loop
statement is skipped and the next statement processed if the external input has "0” signal .

The scan can be realized by the WHILE INT NOT for "0” signal .
The byte address (1 or 2) of the external input is defined by <Value 1> and the bit address
(0 to 7) by <Value 2>.
Example:
PROGRAM 510;
LOC-AL INTEGER: R70;
R70': 1;
WHI-LE INT R70.2 DO
<Statement>; (* is processed as long as the defined *)

(* external input has "1"signal *)
END;

Wherever a statement is specified, it can be replaced by an entire

statement block which must be braketed with BEGIN and END;.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.23
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.1 Repeat statements

5.3.1.4 FOR TO loop

OR <Var>:= <Value 1 > TO <Value 2> DO

<Statement>; FOR TO loop

The FOR TO loop is a counting loop. The index of a variable is preset with an initial value.
Taking this initial value, the statement is repeated until the index of a variable is greater than
the specified final value. The index is scanned at the beginning of the loop. The index is
incremented after statement processing before the scan.

The loop statement is repeated as long as the index of the variable <> the final value.

The following is also valid for the FOR statement: If several statements are to be executed at
each loop run, then they must be bracketed with the word symbols BEGIN and END;.

When the index of the variable = the final value , the counting loop statement is skipped
and the following statement processed.

The FOR TO loop is processed in the program as follows:
FOR count variable: =initial value TO, final value DO
BEGIN

statement 1;

statement 2;

statement n

END;

Structogram of the FOR statement:

FOR counting variable:=Initial value TO final value DO

Statement 1;

Statement 2;

Statement n

5-24 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

Example:

+ flowchart

5 Command description
5.3.1 Repeat statements

R50=1

<

A 4

yes(R50 = 10 >
l no

PRAP (3) =length_Z (:G91 G01 F500:)
PRAP (1) =depth_X (:F80:)
PRAP (1) = 100 (:G00:)

v

R50:= R50+1

v

PRAP (3) = 0 (:G90:)

&

Flowchart: FOR TO loop

i structogram

FOR R50:=1TO 10 DO

PRAP (3) =length_Z (:G91 GO1 F500:)

PRAP (1) =depth_X (:F80:)

PRAP (1) = 100 (:G00:)

PRAP (3)=0 (:G90:)

Structogram: FOR TO loop

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

5-25

5 Command description 04.90
5.3.1 Repeat statements

e CL 800 programming
PROGRAM 502;

LOCAL REAL: R51:=length_Z, R52:=depth_X;
LOCAL INTEGER: R50;

BEGIN

FOR R50:=1 TO 10 DO
BEGIN
PRAP (3) =length_Z; (:G91 G01 F500:); LF;
PRAP (1) =depth_X; (:F80:); LF;
PRAP (1) = 100; (:G00:); LF;
END;
PRAP (3) = 0; (:G90:); LF;

END.

Wherever a statement is specified, it can be replaced by an entire

statement block which must be bracketed with BEGIN and END,;.

5.3.1.5 FOR DOWNTO loop

FOR <Var>:= <Value 1> DOWNTO <Value 2> DO FOR DOWNTO loop

<Statement>;

The FOR DOWNTO loop is a counting loop. The index of a variable is preset with an initial
value. Taking this initial value, the statement is repeated until the index of a variable is lower
than the specified final value. The index is scanned at the beginning of the loop. The index is
decremented after each statement processing before the scan.

The loop statement is repeated as long as the index of the variable <> the final value.
As for the FOR statement, the same is also valid for the FOR DOWNTO statement:
If several statements are to be executed at each loop run, then they must be bracketed by the

word symbols BEGIN and END;.

When the index of the variable = the final value , the counting loop statement is skipped
and the following statements processed.

5-26 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.1 Repeat statements

The FOR DOWNTO loop is processed as follows in the program:

FOR counting variable:=initial value DOWNTO final value DO
BEGIN

Statement 1,

Statement 2;

Statement n
END;

Structogram FOR DOWNTO statement

FOR counting variable:= initial value DOWN TO final value DO

Statement 1;
Statement 2;

Statement n

Example:

» flowchart

R50 =10

d
|

A 4

yes< R50 = 1 >
¢ no

PRAP (3) =length_Z (:G91 G01 F500:)
PRAP (1) =depth_X (:F80:)
PRAP (1) =100 (:G00:)

v

R50:= R50-1
I

v

PRAP (3) =0 (: G90 :)

&

Flowchart: FOR DOWNTO loop

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.27
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.1 Repeat statements

. structogram

FOR R50:= 10 DOWNTO 1 DO

PRAP (3) =length_Z (:G91 G01 F500:)

PRAP (1) =depth_X (:F80:)

PRAP (1) = 100 (:G00:)

PRAP (3) = 0 (:G90:)

Structogram: FOR DOWNTO loop

e CL 800 programming
PROGRAM 502;

LOCAL REAL: R51:=length_Z, R52:=depth_X;
LOCAL INTEGER: R50;

BEGIN

FOR R50:= 10 DOWNTO 1 DO
BEGIN
PRAP (3) =length_Z; (:G91 G01 F500:); LF;
PRAP (1) =depth_X; (:F80:); LF;
PRAP (1) = 100; (:G00:); LF;
END;
PRAP (3) = 0; (:G90:); LF;

END.

Wherever a statement is specified it can be replaced by an entire

statement block which must be bracketed with BEGIN and END,;.

5-28 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.2 Decision statements

5.3.2 Decision statements

The program run can be efficiently influenced with the indicated REPEAT, WHILE, FOR
program control possibilities.

However, the problem often occurs that various statements are to be executed dependent on
specific conditions. The fact that several alternatives can exist must be taken into account.
These possibilities or combinations of these possibilities are taken into account using the
decision statements IF THEN ELSE and CASE.

5.3.2.1 IF THEN ELSE branching

IF <Var>"Vop” <Value> IF THEN ELSE branching
THEN <Statement 1>;
[ELSE <Statement 2>;]

ENDIF;

("'vop™: >; >=; <; <=; =) <>))

The IF THEN ELSE branching permits a choice to be made between the two alternatives
THEN (if) and ELSE (otherwise).

The IF THEN ELSE statement is processed as follows in the program:
IF condition THEN statement 1 ELSE statement 2.

If the specified condition <Var> "Vop” <Value> is fulfilled, the instructions of the THEN
branch will be executed, otherwise those of the ELSE branch. The ELSE branch can also be
omitted. If the condition is not fulfilled, processing continues with the statement following
ENDIF.

The term IF THEN ELSE,; is a single statement and thus a ”;” is not permitted in front of an
ELSE as the semicolon is a separator for the statements.

Only one statement can be located after the word symbols THEN and ELSE. If several state-
ments are to be checked using the condition, then they must be bracketed with BEGIN and
END (as for WHILE and FOR).

Structogram of the IF statement

IF condition

True False

Statement 1 Statement 2

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-29
SINUMERIK WS 800 A, (PJ)

5 Command description
5.3.2 Decision statements

Example:

« flowchart

04.90

THEN

7

D_No.=ACD (1)

v

l

Soft_X=1500

< D_No.>=20 >—

ELSE

A4

Soft_X=1000

»
Vr

MDN (2240) = Soft_X

&

Flowchart: IF THEN ELSE branching

. structogram

D_No0.=ACD (1)
D_No0.>=20
THEN ELSE
Soft_X=1500 Soft_X=1000
MDN (2240) = Soft_X

Structogram: IF THEN ELSE branching

5-30

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.2 Decision statements

» CL 800 programming
PROGRAM 505;
LOCiAL REAL: R70:=D_No., R71:=Soft_X;
BEéIN
b_No = ACD (1);
(* read the current tool offset number*)

IF D_No >= 20 THEN
(* scan size of D number*)

Soft_X = 1500;
ELSE
Soft_X = 1000;
(* values for software limit switch*)
ENDIF;

MDN (2240) = Soft_X;

END.

Under <Statement1>, <Statement2> all CL 800 commands are allowed
in this context (also other compound statements).

IF <Var>.<Const> IF THEN ELSE branching
THEN <Statement 1>;
[ELSE <Statement 2>;]

ENDIF;

IF THEN ELSE branching with which the program branches dependent on the status of a bit
from a PATTERN variable. Bit numbers between O . . . 7 are specified as <Const>.

Example:

PROGRAM 60;

LOCAL PATTERN: R70;
R702860011111;

IF R70.3 THEN

<Statement 1>; (* executed if bit 3 =1 *)
ELSE
<Statement 2>; (* executed if bit 3 is not 1 *)
ENDIF;
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.31

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.2 Decision statements

IF <Var> IF THEN ELSE branching
THEN <Statement 1>;

[ELSE <Statement 2>;]
ENDIF;

IF THEN ELSE branching with which the program branches dependent on the status of a
boolean variable. The boolean variable <Var> has the value 0 or 1.

Example:
PROGRAM 70;
LOCAL BOOLEAN: R70;

R70=1,

IF R70 THEN

<Statement 1>; (* executed if R70=1 *)
ELSE

<Statement 2>; (* executed if R70 is not 1 *)
ENDIF;

IF THEN ELSE branching with extended arithmetic

Extended arithmetic is permissible within the IF THEN ELSE branching. Extended arithmetic is
understood to mean the execution of calculations with mathematical functions or logical
operations with logical functions within the statement, in accordance with Section 5.3.7.

Program branching then takes place, depending on the result of the calculation or logic
operation.

Example:

PROGRAM 1;

PAR REAL: R15, R25, R35;

PAR PATTERN: R10, R20, R30,
R40:=OUTPUT;

PAR BOOLEAN: R21;

IF R25 + 5 > R15 THEN;

ENDIF;

IF R10.3 ANDB R21 THEN;

ENDIF;

5-32 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.2 Decision statements

IF OLjTPUT.3 ANDB OUTPUT.4 THEN,;
ENDIi:;

IF SIN (R25) + 0.5 >0 THEN;

ENDIi:;

IF AN'GLE (15,10+R25) > R35 THEN;
ENDIi:;

IF MDN (2520) > 2000 THEN;

ENDIi:;

IF N(jTB R10 = R20 THEN,;

ENDIi:;

IF R25 > R15 ANDB R25 = R35 THEN;
ENDIi:;

END.

5.3.2.2 IF INT THEN ELSE branching

IF INT <Value 1>.<Value 2> IF INT THEN ELSE branching
THEN <Statement 1>,

[ELSE <Statement 2>;]
ENDIF ;

IF INT THEN ELSE branching is dependent on the status of a defined external input.

If the input, defined with the notation <Value 1> and <Value 2>, has a "1” signal , then the
program is continued with the statement in the THEN branch, otherwise the statement of the
ELSE branch is executed. The ELSE branch can be omitted. If the condition is not fulfilled, the
statement which follows ENDIF is executed.

The scanning can also be realized using IF INT NOT for a "0” signal .

The byte address (1 or 2) of the external input can be defined with <Value 1> and the bit
address (0 to 7) with <Value 2>.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-33
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.2 Decision statements

Example:
IF INT 1.2 THEN
<Statement 1>; (* executed if the external input *)
(* has a "1” signal *)
ELSE
<Statement 2>; (* executed if the external input *)
(* has a "0” signal *)
ENDIF;

Wherever a statement is specified, it can be replaced by an entire

statement block which must be bracketed with BEGIN and END;.

5.3.2.3 Case branching

CASE <Var> =<Value 1> : <Statement 1>; CASE branching

=<Value n> : <Statement n>;

[OTHERWISE : <Statement n+1>;]
ENDCASE;

The CASE branching can be used if a decision must be made between more than two
solutions. Thus, the use of a multiple IF statement is superfluous.

With CASE branching, one of n+1 statements is executed, depending on the value of the
variable <Var> .

The CASE branching is processed in the program as follows:

CASE variable OF
<Value 1> : BEGIN statement 1 END;
<Value 2> : BEGIN statement 2 END;

<Value n> : BEGIN statement n END;
OTHERWISE: statement n+1;
ENDCASE

If several statements are to be executed per "CASE label” then these must be bracketed off
with BEGIN and END.

If an OTHERWISE statement is not programmed and none of the case statements are satis-
fied, the CASE branching is exited without being processed and the program is continued with
the next statement.

5-34 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

Structogram of the CASE branching

5 Command description
5.3.2 Decision statements

<Value 1>

Statement 1

<Value 2>

Variable

Statement 2

<Value n>

Statement n

OTHERWISE

Statement n+1

Example:

* flowchart

Shoulder position:

Shid._pos +2 = Left shoulder

0 = No shoulder
+1 = Right shoulder

2
A 4

\ 4

0
A 4

1 OTHERWISE

dest_pos=Z_pos+R52

dest_pos=Z_pos+R51
(:G91 GO z-1.)

dest_pos=Z_pos-R52

A 4

or
no condition fulfilled

A\ 4
A

plunge with reciprocation in Z

Flowchart: CASE branching

© Siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

5-35

5 Command description 04.90
5.3.2 Decision statements

. structogram

Shld_pos
2

dest pos=Z_pos+R52
0

dest pos=Z_pos+R51

(: G90 GO Z-1 3) 1

dest pos=Z_pos-R52

OTHERWISE
Plunge with reciprocation at Z
Structogram: CASE branching
¢ CL 800 programming
PROGRAM 500 ;
CHANNEL NC 1;
PAR INTEGER: RO:=shld_pos;
LOCAL REAL: R50:=dest_pos, R53:=Z_pos;
BEGIN
CASE SHLD _pos =2: dest _pos = Z pos + 2;
=0: BEGIN
dest_pos = Z pos + 1;
(:G91 GO z-1);
END;
=1: dest pos = Z pos - 2;
ENDCASE;
BEGIN
(* plunge with reciprocation at Z *)
END;
END.
5-36 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.3 Unconditional branching

5.3.3 Unconditional branching

5.3.3.1 Unconditional jump

GOTO <Label>;

Unconditional jump

A specific part of the program can be skipped with this command. Such a command is known
as an unconditional jump. The jump destination is specified by a declared label.

The result of the GOTO statement is that the statement marked with the declared label is the
next one to be processed. The statement with the declared label must be located in the first
program nesting level. It can be programmed before or after the GOTO statement in the
program.
Example:

PROGRAM 2;

LABEL: Destination;

BEGIN

GOTO Destination;LF; (* jump to error indication *)

Dest: (:(MSG:ERROR MESSAGE):);LF;

END.

The GOTO statement is essentially used for cases necessitating a

program abort, e.g. as a result of an error.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.37
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.4 General data transfer

5.3.4 General data transfer

5.3.4.1 Data transfer: R par./R par.

CLEAR (<Var>); clear R parameter

The CLEAR statement is used to clear a variable . The specified R parameter <Var> is
cleared and assigned zero with the CLEAR command.

Example:
PROGRAM 46;
LOCAL REAL: R60;
BEGIN

R60 = 100;

CLEAR (R60);
(* R60 is assigned 0 *)

END.

<Var> = <Value>; value assignment

Statement for loading a value into a variable.
This command involves a simple value assignment.
The specified numerical quantity <Value> is assigned to the R parameter <Var>.

Example:

R10 = 100;
(* R10 has the contents 100 *)

XCHG (<Var 1>,<Var 2>); exchanging the variable contents

The XCHG statement allows the user to exchange the variable contents of <Var 1> and
<Var 2>.

Example:
R30 = 10;

R20 = 30;
XCHG(R30,R20);

(* R30 has the contents 30 *)
(* R20 has the contents 10 *)

5-38 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.4 General data transfer

5.3.4.2 Data transfer: R par./input buffer memory for numerical variable

CLEAR MIB (<Value 3>,<Value 4>); clear input buffer memory

The CLEAR MIB statement is used to clear input buffer memories. The input buffer
memory initial address is defined with <Value 3>, and the input buffer memory final address
with <Value 4>.

Example:

CLEAR MIB (100,110); The input buffer memories from 100 to 110 are cleared.

If the number of the input buffer memory final address is smaller than
the input buffer memory initial address, the "CL 800 error” alarm is

output to the control. The defined input buffer memory final address
must not be lower than the input buffer memory initial address.

<Var> = MIB (<Value 1>); read input buffer memory

The R parameter <Var> is loaded with the contents of the input buffer memory
location<Value 1>.

Example:

R50 = MIB (101); The contents of the input buffer memory location 101 are read into
R50.

MIB (<Value 1>) = <Value>; write into input buffer memory

The input buffer memory location <Value 1> is loaded with the numerical quantity <Value>.

Example:
MIB (102) = 5; 5 is written into the input buffer memory location 102.
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-39

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

5.3.5 Data transfer: System memory into the R parameter

5.3.5.1 Transfer machine data into the R parameter

<Var> = MDN (<Value 1>); NC machine data

With the command read NC machine data , the contents of the machine data with the number
<Value 1> is transferred into the parameter defined with <Var>.

Example:

R90 = MDN (2241); The value of the 1st software limit switch in the positive direction for
the 2nd axis is located in parameter R90.

<Var> = MDNBY (<Value 1>); NC machine data byte

An NC machine data byte is transferred into the parameter defined with <Var>. The byte
address is specified by <Value 1>.

Example:

R91 = MDNBY (5001); The address of the angle which is required in the control is located
in parameter R91 after the command has been executed.
R91 =11 corresponds to address A.

<Var> = MDNBI (<Value 1>,<Value 2>); NC machine data bit

An individual bit from the machine data area of the NC can be read into the parameter defined
with <Var>. The byte address is specified with <Value 1> and the bit number with
<Value 2>.

Example:

R92 = MDNBI (5002,4); Value 1 is located in parameter R92 if inch input is selected as
basic setting in the NC system.
The relevant information "bit set” or "bit not set” is made available
as parameter 1 or 0.

5-40 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

<Var> = MDZ (<Vvalue 1>,<Value 2>); cycles machine data

<Var> = MDZBY (<Value 1><Value 2>); cycles machine data byte
<Var> = MDZBI (<Value 1>,<Value 2>,<Value 3>); cycles machine data bit

The machine data for cycles can be read, as for the machine data from the NC, as value,
byte, or bit, in the parameter defined with <Var>. The channel number is selected using
<Valuel>. Its own channel is read when 0 is input for channel-orientated data. The channel
No. is always specified with O for central data. The word- or byte address is specified with
<Value 2> and the bit address with <Value 3>.

Example:

R50 = MDZ (0,400); The value of the channel-orientated machine data for cycles in its
own channel is read into parameter R50.

R51 = MDZBY (1,801); The value of the machine data byte is read into parameter R51.

R52 = MDZBI (1,802,1); The value of the machine data bit in the 1st channel is read into
parameter R52.

When system memories from other channels are read, which are not
located on the same NC CPU, then the "CL 800 error” alarm signal is
output to the control. Only those channels can be read, which are
processed from the same NC CPU as the selected channel.

<Var> = MDP (<Vvalue 1>); PLC machine data
<Var> = MDPBY (<value 1>); PLC machine data byte
<Var> = MDPBI (<Value 1>,<Value 2>) PLC machine data bit

The machine data from the PLC can, as for the machine data, be read into the parameter
defined with <Var> from the NC as value, byte, or bit .

Example:
R93 = MDP (20); The number of the 1st static M function which is used in the
SINUMERIK system 810 is located in parameter R93 (e.g. 40).
R94 = MDPBY (3000); byte 3000 00010010
The 1st byte of the PLC user data bit is transferred into R94 (R94
has the contents 10010).
R95 = MDPBI (3001,2); byte 3001 00010110
The status of the 2nd bit from the PLC user byte 3001 is read into
R95 (R95 has the contents 1).
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 541

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

<Var>= MDD (<value 1>); drive machine data

<Var> = MDDBY (<Value 1>,<Value 2>); drive machine data byte
<Var> = MDDBI (<Value 1>,<Value 2>,<Value 3>); drive machine data bit

The machine data for the drives can, as for the machine data, be read into the parameter

defined with <Var> from the NC as value, byte, or bit. The word address is selected by

<Value 1>. <Value 2> is used to define as to whether the low byte (0) or high byte (1) is

to be read. The bit address is specified by <Value 3>.

Example:

R60 = MDD (2521); The value of the machine data for the 2nd axis is read into R60.

R61 = MDDBY (2441,0); The low byte of the machine data for the 2nd axis is read into R61.

R62 = MDDBI (2442,0,2); The status of the 2nd bit in the low byte of the machine data for the
3rd axis is read into R62.

5.3.5.2 Transfer setting data into the R parameter

<Var> = SEN (<Value>); NC setting data

<Var> = SENBY (<Value>); NC setting data byte
<Var> = SENBI (<Value 1>,<Value 2>) NC setting data bit

The setting data of the NC can, as for the machine data, be read into the parameter defined
with <Var> as value, byte, or hit.

Example:

R80 = SEN (3041); The maximum working field limiting of the 2nd axis is read into
parameter R80.

R81 = SENBY (5013); The transmission format for the 1st V24 interface for output is read
into R81, e.g. R81=11000111 if 9600 baud is to be output.

R82 = SENBI (5001,0); R82=1 if the display of the workpiece-related actual value system
is active.

542 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

<Var> = SEZ (<Value 1><Value 2>); cycles setting data

<Var> = SEZBY (<Value 1>,<Value 2>); cycles setting data byte
<Var> = SEZBI (<Value 1>,<Value 2>,<Value 3>); cycles setting data bit

The setting data for cycles can, as for the machine data, be read into the parameter defined
with <Var> as value, byte, or bit.

Example:

R50 = SEZ (1,400); The contents of the setting data for cycles in the 1st channel is
read into parameter R50.

R51 = SEZBY (0,802); The contents of the setting data bytes for cycles in its own channel
are read into parameter R51.

R52 = SEZBI (0,802,2); The status of the 2nd bit of the cycles setting data byte in its own
channel is read into R52.

5.3.5.3 Transfer tool offsets into the R parameter

The individual tool offset areas are structured as follows:

T- Tve Geometry Wear
TO area Offset No. No. gi P7 P8 P15
PO P2 P3 P4 P5 P6

The individual offsets can be transferred from the table into a parameter <Var> with the TOS
command.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 543
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

<Var> =TOS (<Value 1>, <Value 2>, <Value 3>); tool offsets

The required TO area is defined with <Value 1>. For SINUMERIK System 810/ 820, a 0 is
always specified here, as only one tool offset area is available. For SINUMERIK System
850/880, the channel, assigned above the machine data is read when 0 is input into the TO
area.

The required D No. is selected by <Value 2>.
The required P No. is specified by <Value 3>.

Example:

R80 =TOS (1,2,3); The length of the tool in the 2nd axis from the tool offset memory
D2 from TO area 1 is read into parameter R80.

The offset memories P2 and P5 are read as radius or diameter value,

dependent on the NC machine data bit.

5.3.5.4 Transfer zero offsets into the R parameter

<Var> = ZOA (<Value 1>, <Value 2>, <Value 3>); settable zero offset

The individual values of the settable zero offsets (G54 to G57) can be read into the
parameter defined with <Var>.

The required zero offset is selected using <Value 1> (G54 = 1 to G57 = 4), and the
required axis using <Value 2>.

<Value 3> is used to determine from which area a value is read (coarse value=0 and fine
value= 1).

Example:

R81 =ZOA (1, 2, 0); The coarse value of the 1st settable zero offset (G54) of the 2nd
axis is read into parameter R81.

5-44 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

<Var> = ZOPR (<Value 1>, <Value 2>); programmable zero offset

The individual axis values of the programmed zero offsets can be read into the parameter
defined with <Var>.

The required zero offset (G58=1 and G59=2) can be selected with <Value 1>, and the
required axis with <Value 2>.

Example:

R80 = ZOPR (1,1); The 1st programmable zero offset of the 1st axis is read into
parameter R80.

<Var> = ZOE (<Value 2>); external zero offset

External , zero offsets of the axes, selected through the PLC, can be read into the parameter
defined with <Var>. The axis is specified with <Value 2>.

Example:

R60 = ZOE (2); The value of the external zero offset in the 2nd axis is read into
R60.

The zero offsets are read as either radius or diameter value, dependent

on the NC machine data bits.

<Var> = ZOD (<Value 2>); DRF offset

The handwheel offset (DRF offset) of each axis can be read into the parameter defined with
<Var>. The axis is specified by <Value 2>.

Example:
R61 =Z0OD (2); The handwheel offset of the 2nd axis is read into R61.
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 545

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

<Var> = ZOPS (< Value 2>); PRESET offset

The offset (PRESET offset) of each axis, caused by an actual value setting, can be read into
the parameter defined with <Var>. The axis is specified with <Value 2>.

Example :

R65 = ZOPS (1); The PRESET offset of the 1st axis is read into R65.

<Var> = ZOS (<Value 2>); total of all offsets

The sum of all current offsets in each axis can be read into the parameter defined with
<Var>. The axis is specified with <Value 2>.

The total of all offsets includes:
¢ the selected settable zero offset (G54 to G57)
« the programmable additive zero offset (G58 and G59)
« the external zero offset from the PLC
< the selected tool offset.

DRF- and PRESET offsets are not taken into account
Example:

R80 = ZOS (2); The total of all offsets of the 2nd axis are read into R80.

The DRF- or PRESET offset is read as radius or diameter value
dependent on the NC machine data bit. The total of all offsets is always
read as radius.

<Var> = ZOADW (<Value 1>,<Value 2>,<Value 3>); settable
coordinate rotation

The angle of rotation of the settable coordinate rotation can be read into the parameter
defined with the <Var>. The channel No. can be selected by <Value 1>. When 0 is input,
the angle of rotation in its own channel is read.

The required zero offset (G54=1 to G57=4) is defined with <Value 2>, and the angle No.
with <Value 3>. At the present time, <Value 3> is defined with 1.

Example:

R50 = ZOADW (0,1,1); The angle of rotation of the settable coordinate rotation in its own
channel for the 1st zero offset is read into R50.

5-46 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

<Var> = ZOPRDW (<Value 1>,<Value 2>,<Value 3>); programmable

coordinate rotation

The angle of rotation of the programmable coordinate rotation can be read into the
parameter defined with <Var>. The channel No. can be selected with <Value 1>. The
angle of rotation in its own channel is read when 0 is input.

The required zero offset (G58=1 and G59=2), is defined with <Value 2>, and the angle No.
with <Value 3>. At the present time, <Value 3> is defined with 1.

Example:

R70 = ZOPRDW (1,2,1); The angle of rotation of the programmable coordinate rotation in the
1st channnel for the 2nd zero offset is read into R70.

When reading from system memory locations from other channels which
are not located on the same NC CPU, a "CL 800 error” alarm signal is

output to the control. Only those channels can be read, which are
processsed by the same NC CPU as the selected channel.

5.3.5.5 Read programmed setpoints into the R parameter

<Var> = PRSS (<Value 1>, <Value 3>); programmable spindle speed

The programmed spindle speed from a channel can be read into the parameter defined with
<Var>.

The channel No. is specified with <Value 1>. If the programmed channel No. <Value 1> is
0, the channel No. of the current channel is used as channel No.

The spindle No. is specified with <Value 3>. If the programmed spindle No. <Value 3> is
0, the number of the leading spindle in the programmed channel <Value 1> is used as
spindle No..

Example:

R55 = PRSS (1,0); The programmed spindle speed for the master spindle in channel 1
is read into R55.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 547

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

The "CL 800 error” alarm signal is output to the control when reading
from system memories from other channels which are not located on
the same NC CPU. Only those channels can be read, which are
processed by the same NC CPU as the selected channel. If the spindle
speed is changed by overwriting, this spindle speed is not taken into

account by the statement PRSS. The command always provides the
actual programmed spindle speed, independent of the machine data. It
is not necessary to program "STOP DEC” (stop decoding until
intermediate buffer memory empty), as the programmed spindle speed
is internally stored and updated.

<Var> = PRVC (<Value 1>, <Value 2>); programmed cutting speed

The programmed cutting speed from a channel is read into the parameter defined with
<Var>.

The channel No. is defined by <Value 1>. If 0 is specified, the own-channel setpoint is read.

<Value 2> is always 0 at the present time. If no cutting speed is programmed under G96,
zero is assigned to parameter <Var>.

Example 1:

Program in channel 1, its own channel, is scanned as to which constant cutting speed was
programmed.

R79 = PRVC (0,0); The programmed constant cutting speed in channel 1 is read into
R79.

Example 2 :

Program in channel 2, scanned as to which constant cutting speed was programmed in
channel 3.

R79 = PRVC (3,0); The programmed constant cutting speed in channel 3 is read into
R79 with System 850/880.

The "CL 800 error” alarm signal is output to the control when reading
from system memories from other channels, which are not located on

the same NC CPU. Only those channels can be read, which are
processed by the same NC CPU as the selected channel.

5-48 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

<Var> = PCDA (<Value 1> <Value 2>,<Value 3>); programmed control words

for digital axis drives

The status of a bit in the programmed control word for digital axis drives is read into the
parameter defined with <Var>. The axis No. is specified by <Value 1>. The byte address
(0 or 1) is defined in <Value 2>. The bit address is specified by <Value 3>.

Example:

R50 = PCDA (1,1,6); The status of the 6th bit in byte 1 for the 1st axis is read into R50.

<Var> = PCDS (<Value 1>,<Value 2>,<Value 3>); programmed control words

for digital spindle drives

The status of a bit in the programmed control word for digital spindle drives is read into
the parameter defined with <Var>. The spindle No. is defined with <Value 1>. The byte
address (0 to 5) is defined in <Value 2>. The bit address (0 to 7) is specified with

<Value 3>.

Example:
R51 = PCDS (1,0,2); The status of the 2nd bit in byte O for the 1st spindle is read into
R51.

5.3.5.6 Read actual values into the R parameter

<Var> = ACPW (<Value 2>); workpiece-related axis position

The workpiece-related actual Value of each axis can be read into the parameter defined with
<Var>. It is the dimension between the workpiece zero W and tool starting position P (refer
to Fig., Page 4-51). The axis is defined by <Value 2>.

Example:
R80 = ACPW (2); The workpiece-related actual value of the 2nd axis is read into R80.
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-49

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

Var> = ACPM (<Value 2>); programmed control word

for digital axis drives

The machine-related actual value for each axis can be read into the parameter defined with
<Var>. It is the dimension between the machine zero M and the slide reference point F (refer
to Fig., page 4-51) The axis is specified with <Value>.

For rotary axes the result is stored from R parameter <Var> onwards (Rn) in a total of two R
parameters dependent on an NC machine data bit.

The following parameters are loaded:

Rn = position within a revolution
Rn+1 = number of revolutions
Example:

R80 = ACPM (1); The machine-related actual value of the 1st axis is read.

If the axis position is read in its own channel, a "STOP DEC”
(Section 5.3.8.2) should be programmed in the previous block.

The axis position is read as radius or diameter value dependent
on the NC machine data bits.

Var> = ACP (<Value 2>); current axis position

The current actual value of each axis can be read in the parameter defined with <Var>. It is
the machine related axis position with calculated following error. The axis is specified with
<Value 2>.

For rotary axes, the result is stored from R parameter <Var> onwards (Rn) in a total of two
R parameters dependent on an NC machine data bit.

The following parameters are loaded:

Rn = position within a revolution

Rn+1l = number of revolutions

Example:

R80 = ACP (2); The current actual value of the 2nd axis is read.

If the axis position is read in its own channel, a "STOP DEC”
(Section 5.3.8.2) should be programmed in the previous block.

The axis position is read as radius or diameter value dependent
on the NC machine data bits.

5-50 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

X A< Axis position, machine-related
AXxis position,
workpiece-related P
... _>
VA

Preset

Control zero _ ‘ .
Tool reference point or slide reference point

Tool starting position
Workpiece zero
NV Total of all zero offsets

C
F
M,M' Machine zero
P
W

<Var> = ACSP (<Value 2>); actual spindle position

The actual position of each spindle can be read into the parameter defined with <Var>.
The spindle is defined with <Value 2>. If 0 is specified, the position of the leading spindle is
read from its own channel.

Example:
R80 = ACSP (0); The position of the master spindle in its own channel is read.

<Var> = ACSS (<Value 2>); actual spindle speed

The actual speed of each spindle can be read into the parameter defined with <Var>. The
spindle is defined with <Value 2>. If 0 is specified, the speed of the leading spindle is read
from its own channel.

Example:
R81 = ACSS (1); The actual speed of the 1st master is read into R81.

If the spindle position or spindle speed is read in its own channel,

a "STOP DEC” (Section 5.3.8.2) must be programmed in
the previous block.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 551
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

<Var> = ACAS (<Value 1>); axis number of the actual

With this command, the axis numbers of the actual plane and the spindle number can be
read into the R parameter. The data is deposited for a total of five R parameters starting from
R parameter <Var> (Rn).

The following R parameters are loaded:

Rn = Number of the horizontal axis

Rn+1 = Number of the vertical axis

Rn+2 = Number of the axis vertical to the plane

Rn+3 = Number of the axis which acts in length 2 (tool type 30)
Rn+4 = Number of the master spindle

The channel No. is defined by <Value 1>. If O is specified, data is read from its own channel.
Cycles can be programmed to be generally valid using this command.
Example:

R50 = ACAS (1); The data of the actual plane and spindle No. is read and deposited
starting from R50.

When reading from system memories from other channels,
which are not located on the same NC CPU, the "CL 800 error”
is output to the control. Channels can only be read ,
which are processed by the same NC CPU as the selected channel.

In order to be able to read from another channel,
NC start must also be given in this channel. A "'STOP DEC”
(Section 5.3.8.2) must be programmed in front of the command ACAS,
when its own channel is read.

If a negative length compensation is selected via G16, the minus sign= 128 is added to the
axis number.

Example:

(:Gl6 XY Z-2);

R50 = ACAS (0); (* R50=1, R51=2, R52=131, R53=0, R54=1 *)

5.52 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

<Var> = ACD (<Value 1>); current D-No.

The current tool offset No . from each channel can be read into the parameter defined with
<Var>.

The channel No. is defined by <Value 1>. If 0 is specified, the own-channel tool offset No. is
read. A 0 is always specified with the System 810/820, because the tool offset No. is only
available for the first channel.

Example 1:
Program in Channel 1, the current tool offset No. is to be read from the programs own
channel.

R81 = ACD (0); The current tool offset No. is read into R81.

Example 2:

Program in channel 2, the current tool offset No. is to be read from channel 3.

R81 = ACD (3); For System 850, the current tool offset No. in channel 3 is read into
R81.

When reading from system memories from other channels, which are
not located on the same NC CPU, the "CL 800 error” alarm signal is
output to the control. Only those channels can be read which are

processed by the same NC CPU as the selected channel. If the current
D-No. is read in its own channel, then a "STOP DEC” (Section 5.3.8.2)
should be programmed in the previous block.

<Var> = ACG (<Value 1>,<Value 3>); G-function

The G-function of the parts program block presently being processed is read from the wor-
king memory into the parameter defined with <Var>. The channel No. is specified by
<Value 1>. If 0 is specified then the own-channel is read. The G-group is defined by
<Value 3>. A table with the G-group classification is located in the appendix.

Example:
R50 = ACG (0,0); The current G-function of the first G-group is read into parameter
R50 in its own channel.

When reading from system memories from other channels, which are
not located on the same NC CPU, the "CL 800 error” alarm signal is
output to the control. Only those channels can be read which are

processed by the same NC CPU as the selected channel. In order to be

able to read values from other channels, NC start must also be given in

these channels. If its own channel is to be read, a "STOP DEC” (Section
5.3.8.2) must be programmed in front of the command ACG.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.53
SINUMERIK WS 800 A, (PJ)

5 Command description
5.3.5 Data transfer: System memory into the R parameter

5.3.5.7 Read program data into the R parameter

The following special bits can be read into the parameter defined with <Var> with this
command.

Channel-dependent bits

<Var> = SOB (<Value 1>,<Value 3>);

special bits

04.90

7 2 1 0
. . Dry run Block
<Value 1> Simulation v
0,1,...n . feed rate search
R active . .
active active
Channel-independent bits:

7 2 1 0
<Value 1> Sensor Sensor
99 2 1

active active

The channel No. is defined by <Value 1>. When 0 is specified, the bit is read from its own
channel. When reading channel-independent bits, <Value 1> is defined with 99. The bit No.
is defined using <Value 3>.

Example 1:

Program in channel 2, the "dry run feed active” bit from the program's own channel is to be
scanned.

R81 = SOB (0,1); The status of the special bit for dry run feed rate is read into R81.

Example 2:
Program in channel 2, the "dry run feed active” bit from channel 3 is to be scanned.

R81 = SOB (3,1); The status of the "dry run feed active” special bit in channel 3 is

read into R81.

When reading from system memories from other channels, which are
not located on the same NC CPU, the "CL 800 error” alarm signal is

output to the control. Only those channels can be read, which are
processed by the same NC CPU as the selected channel.

5.-54 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

<Var>=PPCH ; current channel number for the program

The channel number of the NC channel in which the program is executed is read into the
parameter defined with <Var>.

Example:

R51 = PPCH,; The current channel number for the program is read into parameter
R51.

5.3.5.8 Read PLC signal bits into the R parameter

<Var> = PLCI (<Value 1>,<Value 2>,<Value 3>); PLC input bit

<Var>=PLCQ (<Value 1>,<Value 2>,<Value 3>); PLC output bit
<Var> = PLCF (<Value 1>,<Value 2>,<Value 3>); PLC flag bit

The status of an input-, output- or flag bit in the PLC is read into the parameter defined with
<Var>. The PLC No. is defined with <Value 1>, the byte address with <Value 2> and the
bit address with <Value 3>.

Example:

R50 = PLCI (1,2,0); The status of the defined PLC input bit is read into R50.

<Var>=PLCW (<Value 1><Value 2>,<Value 3>,<Value 4>; PLC data word bit

The status of a PLC data word bit is read into the parameter defined with <Var>.
The PLC No. is defined by <Value 1>, the number of the DB or DX by <Value 2>, the data
word number by <Value 3> and the bit address by <Value 4>.

Example:
R51 =PLCI (1,2,4,2); The status of the defined PLC data word bit is read into R51.
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.55

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

5.3.5.9 Read PLC signal bytes into the R parameter

<Var> = PLCIB (<Value 1>,<Value 2>); PLC input byte
<Var>=PLCQB (<Value 1> <Value 2>); PLC output byte

<Var>=PLCPB (<Value 1><Value 2>); PLC peripheral byte
<Var>=PLCFB (<Value 1><Value 2>); PLC flag byte

The status of an input-, output-, peripheral- or flag byte in the PLC is read into the
parameter defined with <Var>. The PLC No. is defined by <Value 1> and the byte address
by <Value 2>.

Example:

R52 =PLCIB (1,1); The status of the defined PLC input byte is read into R52.

If the command, read PLC peripheral byte (PLC PB) addresses a byte
which is not available in the PLC, the PLC goes into the STOP condition!
A “cold restart” is then necessary.

<Var> = PLCDBL (<Value 1>,<Value 2>,<Value 3>); PLC data word, left
<Var> = PLCDBR (<Value 1>,<Value 2>,<Value 3>) PLC data word, right

The status of a PLC data word, left or right, is read into the parameter defined with <Var>.
The PLC number is defined by <Value 1>, the number of the DB or DX by <Value 2> and
the data word number by <Value 3>.

Example:

R53 =PLCDBL (1,2,4); The status of the defined PLC data word, left, is read into R53.

5-56 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

5.3.5.10 Read PLC signal words into the R parameter

Var> = PLCIW (<Value 1>,<Value 2>,<Value 3>); PLC input word
Var> = PLCQW (<Value 1>,<Value 2>,<Value 3>); PLC output word

Var> = PLCPW (<Value 1>,<Value 2>,<Value 3>); PLC peripheral word
Var> = PLCFW (<Value 1>,<Value 2>,<Value 3>); PLC flag word

The status of an input-, output-, peripheral or flag word in the PLC is read into the
parameter defined with <Var>. The PLC number is defined by <Value 1> and the word
address by <Value 2>. The dimension identifier for <Value 3> specifies how the status of
the PLC signal word is to be read.

Definition of the dimension identifier <Value 3>:

<Value 3> Fixed point <Value 3> BCD
0 Value without decimal point 100 Value without decimal point
1 Value with decimal point 101 Value with decimal point
2 1 digit after the decimal point 102 1 digit after the decimal point
3 2 digits after the decimal point 103 2 digits after the decimal point
4 3 digits after the decimal point 104 3 digits after the decimal point
5 4 digits after the decimal point 105 4 digits after the decimal point
6 5 digits after the decimal point 106 5 digits after the decimal point
7 6 digits after the decimal point 107 6 digits after the decimal point
8 7 digits after the decimal point 108 7 digits after the decimal point
9 8 digits after the decimal point 109 8 digits after the decimal point
Example:

R50 = PLCIW (1,3,100); The status of the defined PLC input word is read into R50 in BCD.

If the command read PLC peripheral word (PLCPW) addresses a word
which is not available in the PLC, the PLC goes into the STOP
condition! A "cold restart” is necessary.

Var> = PLCT (<Value 1>,<Value 2>); PLC timer

The status of a timer in the PLC is read into a parameter defined with <Var>. It is read as a
value in seconds with 2 digits after the decimal point. The PLC number is defined by <Value
1>, and the timer address by <Value 2>.

Example:
R80 = PLCT (1,2); The status of the defined PLC timer is read into R80.
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.57

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

<Var> = PLCC (<Value 1>,<Value 2>); PLC counter

The status of a counter in the PLC is read into the parameter defined with <Var>. The PLC
number is defined by <Value 1> and the counter address by <Value 2>.

Example:
R81 = PLCC (1,2); The status of the defined PLC counter is read into R81.

5.3.5.11 Read PLC signal data words into the R parameter

<Var>=PLCDF (<Value 1>,<Value 2>,<Value 3>, PLC data word,

<Value 4>,<Value 5>); fixed point

The fixed point value of a data word or double word (serial or parallel) in the PLC is read
into the parameter defined with <Var>. The PLC number is specified by <Value 1>, the
number of DB or DX by<Value 2>, the data word number by <Value 3>, the number of
data words by<Value 4>. The dimension identifier <Value 5> specifies how the fixed point
value is to be read..

Definition of the dimension identifier <Value 5>:

<Value 5> Fixed point: - Data word_or double <Value 5> Fixed point: Double word, parallel
word, serial
0 Value without decimal point 10 Value without decimal point
1 Value with decimal point 11 Value with decimal point
2 1 digit after the decimal point 12 1 digit after the decimal point
3 2 digits after the decimal point 13 2 digits after the decimal point
4 3 digits after the decimal point 14 3 digits after the decimal point
5 4 digits after the decimal point 15 4 digits after the decimal point
6 5 digits after the decimal point 16 5 digits after the decimal point
7 6 digits after the decimal point 17 6 digits after the decimal point
8 7 digits after the decimal point 18 7 digits after the decimal point
9 8 digits after the decimal point 19 8 digits after the decimal point
Example:

R60=PLCDF (1,3,2,2,10); The fixed point value of the defined double word is read into R60.

5.58 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

<Var>=PLCDB (<Valuel>, <Value2><Value3>, PLC data word
<Value4>,<Value5>); BCD

The BCD value of the defined data words in the PLC is read into the parameter defined with
<Var>. The PLC number is defined by <Valuel>, the number of DB or DX by

<Value2>, the data word number by <Value3>, the number of data words by <Value 4>

and the dimension identifier by <Value5>.

The data words are either read in series or in parallel depending on the defined
number of data words <Value 4>:

<Value 4> BCD
1 A data word is read, dimension identifier <Value 5> has no significance.
2 Two data words are read in parallel, dimension identifier <Value 5> has no significance.
3 Three data words are read serially. The <Value 5> dimension identifier specifies how the BCD
value is to be read.

Definition of the dimension identifier <Value 5>:

<Value 5> BCD

100 Value without decimal point

101 Value with decimal point

102 1 digit after the decimal point

103 2 digits after the decimal point

104 3 digits after the decimal point

105 4 digits after the decimal point

106 5 digits after the decimal point

107 6 digits after the decimal point

108 7 digits after the decimal point

109 8 digits after the decimal point

Example:

R51 =PLCDB (1,2,10,1,100); The BCD value of the defined double word is read into R51.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.59
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.5 Data transfer: System memory into the R parameter

<Var>=PLCDG (<Valuel><Value><Value3>; PLC data word,

floating point

The floating-point value of the defined data words in the PLC is read into the parameter
defined with <Var>. Two data words are always read into the PLC serially. The PLC number
is defined by <Valuel>, the number of DB or DX by <Value2> and the data word number
by <Value3>.

Example:

R71=1; R72=100; R73=1; The floating point of the defined double word is read into R70.
R70 = PLCDG (R71,R72,R73);

5.3.5.12 Read alarms into the R parameter

<Var> = ALNP (); NC alarms

The NC alarms signaled in the control are read, and the numbers are sequentially deposited
starting from the <Var> variables, using this command.

Example:

R50 = ALNP (); The existing NC alarms are loaded starting at R50.

The associated channel number is added to the alarm number in the two
decimal places after the alarm number, so that the alarm number

as well as the channel number in which the alarm occurred,
is available in one R parameter.

The contents of the R parameter are interpreted as follows using an example:

R50 = 3004 . 01

Channel number

Alarm number

5-60 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.5 Data transfer: System memory into the R parameter

5.3.5.13 Read alarm pointer into the R parameter

<Var> = ALNPZ (); NC alarm pointer

The number of the entered NC alarms is read in the <Var> variable using this command.

Example:

R51 = ALNPZ (); The number of available NC alarms is read into R51.

5.3.5.14 Read system memory into the R parameter

<Var> = RSDA (<Valuel><Value2>,<Value3>); status of the axes

for digital drives

A bit from the status of axes for digital drives is read into the parameter defined with
<Var>.

The axis No. is specified by <Valuel>. The byte address (0 or 1) is defined in <Value2>.
The bit address is defined by <Value3>.

Example:

R50 = RSDA (1,0,2); The 2nd bit in byte 0 for the 1st axis is read into R50.

<Var> = RSDS (<Valuel><Value2><Value3>); spindle status

for digital drives

A bit from the spindle status for digital drives s read into the parameter defined with
<Var>.

The spindle No. is specified by <Valuel>. The byte address (0 to 3) is defined by
<Value2>. The bit address is specified by <Value3>.

Example:
R51 = RSDS (1,0,1); The 1st bit in the byte 0 for the 1st spindle is read into R51.
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-61

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.6 Data transfer: R parameter into the system memory

<Var> = RSDD (<Valuel><Value2>,<Value3>); unit status

for digital drives

A bit from the equipment status for digital drives is read into the parameter defined with
<Var>.

The unit No. (1 or 2) is specified by <Valuel>. The byte address (0 or 1) is defined in
<Value2>. The bit address is specified by <Value3>.

Example:

R52 =RSDD (1,1,3); The 3rd bit in byte 1 for the 1st unit is read into R52.

<Var> = AGS (<Valuel>); active gear stage

Depending on the spindle No., the active gear stage is read into the parameter defined with
<Var>.

The spindle number is specified by <Valuel>. The master spindle number is used as spindle
number if the programmed spindle number <Valuel> is equal to 0.

Example:
R65 =1; The active gear stage of the spindle with the number 1 is entered

into R65.
R60 = AGS (R65);

5.3.6 Data transfer: R parameter into the system memory

5.3.6.1 Transfer R parameter into the machine data

MDN (<Valuel>) = <Value>; NC machine data

The NC machine data <Valuel> is loaded via parameter, pointer or constant.

The machine datum number is defined by <Valuel>.

Example:

MDN (2241) = R90; The parameter R90 is loaded into the machine datum of the 1st
software limit switch for the 2nd axis in the positive direction.

5-62 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.6 Data transfer: R parameter into the system memory

MDNBY (<Valuel>) = <Value>; NC machine data, byte

The NC machine data byte <Valuel> is loaded via a parameter, pointer or constant.

The machine data byte number is defined by <Valuel>.

Example:

MDNBY (5001) = 11; The name of the angle, which is used in the control, is loaded into
the machine data byte (11=Address A).

MDNBI (<Valuel>,<Value2>) = <Value>; NC machine data, bit

The machine data bit is loaded via a parameter, pointer or constant, with 1 or 0.

The byte address is defined in <Valuel> and the bit address in <Value2>.
Example:

MDNBI (5400,0) = R92; The machine data bit is loaded via R92. This simultaneously defines
whether auxiliary functions are to be output to the PLC or not

MDZ (<Valuel><Value2>) = <Value>; cycles machine data

MDZBY (<Valuel><Value2>) = <Value>; cycles machine data, byte
MDZBI <Valuel>,<Value2>,<Value3>) = <Value>; cycles machine data, bit

The machine data for cycles can be loaded, as for the NC machine data, via parameter,
pointer, or constant.

The channel No. is selected using <Valuel>. When 0 is specified for channel-orientated
data, then its own channel is written into. The channel number is always specified with 0O for
the central data. The word or byte address is specified by <Value2> and the bit address by
<Value3>.

Examples:

MDZ (0,400) R93; The channel-orientated machine data for cycles is loaded into its

own channel via R93.

MDZBY (1,801) R94; The machine data byte for cycles in the 1st channel is loaded with

the contents of the PATTERN variables R94.

MDZBI (1,802,1)

R95; The 1st bit of the machine data byte for cycles is loaded with the
contents of the BOOLEAN variable R95.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-63
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.6 Data transfer: R parameter into the system memory

MDP (<Valuel>) = <Value>; PLC machine data

MDPBY (<Valuel>) = <Value>; PLC machine data, byte
MDPBI <Valuel><Value2>) = <Value>; PLC machine data, bit

The commands for LOADING the PLC machine data via parameter, pointer or constant
essentially operate the same as for LOADING NC machine data.

Examples:

MDP (20)

R93; The number of the 1st static M function for SINUMERIK System
810 is loaded via R93.

MDPBY (3000)

R94; The 1st PLC user data byte is loaded with the contents of the
PATTERN variables R94.

MDPBI (3001,2)

R95; The 2nd bit of the PLC user datum 3001 is loaded with the contents
of the BOOLEAN variable R95.

MDD (<Valuel>) = <Value> ; drives machine data

MDDBY (<Valuel><Value2>) = <Value> ; drives machine data, byte
MDDBI <Valuel>,<Value2>,<Value3>) =<Value>; drives machine data, bit

The machine data for drives can be loaded, as for NC machine data, via parameter, pointer
or constant.

The word address is selected with <Valuel>. <Value2> is used to define whether a low
byte (0) or high byte (1) is to be read. The bit address is specified by <Value3>.

Examples:

MDD (1200) R60; The machine datum for the 1st axis is loaded via R60.

MDDBY (2441,0)

R61; The low byte of the machine datum for the 2nd axis is loaded via
the PATTERN variable R61.

MDDBI (2442,0,2)= R62; The 2nd bit in the low byte of the machine datum for the 3rd axis is
loaded via the BOOLEAN variable R62.

5-64 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.6 Data transfer: R parameter into the system memory

5.3.6.2 Transfer R parameter into the setting data

SEN (<Valuel>) = <Value>; NC setting data

SENBY (<Valuel>) = <Value>; NC setting data, byte
SENBI (<Valuel>, <Value2>) = <Value>; NC setting data, bit

The NC setting data can be loaded, as for machine data, as value, byte, or bit.
Examples:

SEN (3041)

R80; The maximum operating field limiting of the 2nd axis is loaded with
the contents of parameter R80.

SENBY (5013)

R81; The transmission format for the first V24 interface for data output is
loaded with 9600 baud via R81 (R81=11000111).

SENBI (5001,0)

R82; The display of the workpiece-related actual value system is
activated via R82. (R82=1).

SEZ (<Valuel><Value2>) = <Value>; cycles setting data

SEZBY (<Valuel>,<Value2>) = <Value>; cycles setting data, byte
SEZBI (<Valuel>, <Value2>,<Value3>) = <Value>; cycles setting data, bit

The cycles setting data can be loaded, as for machine data, as value, byte, or bit.

Examples:

SEZ (1,400) R50; The cycles setting data is loaded via variable R50.

SEZBY (0,802)

R51; The cycles setting data byte is loaded via the PATTERN variable
R51.

SEZBI (0,802,2) = R52; The 2nd bit of the cycles setting data byte is loaded via the
BOOLEAN variable R52.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-65
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.6 Data transfer: R parameter into the system memory

5.3.6.3 Write R parameter into the tool offsets

The individual tool offset ranges are structured as represented in Section 5.3.5.3.

TOS (<Valuel>, <Value2>, <Value3>) = <Value>; tool offset

The individual offset values can be loaded with the command LOAD tool offset value via para-
meter, pointer or constant.

The desired TO range is defined by <Valuel>. With the SINUMERIK System 850/880, O is
always specified here as only one tool offset range is present. For SINUMERIK System
850/880, 0 is written into the TO area which is assigned to the channel via the machine data,
at input.

The desired D No. is selected with <Value2>. The desired P No. is selected with
<Value3>.

Example:

TOS (1,2,3) = R80; In TO range 1, the tool length in the 2nd axis is loaded with the
contents of R80 in offset memory D2.

TOAD (<Valuel>, <Value2>, <Value3>) = <Value>; additive tool

The individual P Nos. are additively changed via parameter, pointer or constant with this
command.

The desired TO range is defined with <Valuel>. With the SINUMERIK System 810/820, 0 is

always specified here because only one tool offset range is present. For SINUMERIK System
850/880, the value in the TO range, which is assigned to the channel via the machine datum,
is additively changed when a 0 is specified.

The desired D No. is selected with <Value2>. The desired P No. is selected with
<Value3>.

Example:

TOAD (1,2,3) = 50; In TO range 1, the constant 50 is added to the tool length in offset
memory D2 for the 2nd axis.

Depending on the NC machine data bits, the offset memories P2 and P5

are loaded as radius or diameter value.

5-66 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.6 Data transfer: R parameter into the system memory

5.3.6.4 Write R parameter into the zero offsets

ZOA (<Valuel>, <Value2>, <Value3>) = <Value>; settable ZO

The settable zero offsets are loaded via R parameter, pointer or constant.

The desired zero offset (G54=1 to G57=4) is selected with <Valuel>, and the desired axis
with <Value2>. <Value3> defines the range into which the value is loaded (coarse
value=0 and fine value=1).

Example:
ZOA (1,2,0) = 500; The coarse value of the 1st settable 0 offset (G54) in the 2nd axis is
loaded with the constant 500.

ZOFA (<Valuel>, <Value2>, <Value3>) = <Value>; additive

settable ZO

The individual axis values of the settable zero offsets are additively changed via parameter,
pointer or constant.

The desired zero offset (G54=1 to G57=4), is selected with <Valuel>, and the desired

axis with <Value2>. <Value3> defines whether the coarse or fine value of the settable

zero offset is to be changed additively

Example:
ZOFA (1,2,0) =-50; The coarse value of the 1st settable zero offset (G54) in the Z axis is
reduced by the amount 50 when loading the constant.

Depending on the NC machine data bits, the zero offsets are loaded as
radius or diameter value.

ZOPR (<Valuel>, <Value2>) = <Value>; programmable ZO

The individual axis values of the programmed zero offsets are loaded via parameter, pointer
or constant. The desired zero offset G58=1 and G59=2 is selected with <Valuel>, and the
desired axis with <Value2>.

Example:

ZOPR (1,1) = 50;

ZOPR (1,2) = 20; The 1st programmed zero offset is loaded with constants in the 1st and
2nd axes.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-67

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.6 Data transfer: R parameter into the system memory

ZOD (<Value2>) = <Value>; DRF offset

The individual axis values of the handwheel offset (DRF offset) are loaded via parameter,
pointer or constant.

The desired axis is selected with <Value2>.

Example:

Z0D (2) = R61; The handwheel offset of the 2nd axis is loaded with the contents of
R61.

ZOPS (<Value2>) = <Value>; PRESET offset

The PRESET offsets of the individual axes are loaded via parameter, pointer, or constant. The
actual values of the individual axes can thus be changed.

The desired axis is selected by <Value2>.
Example:

ZOPS (1) = 100; The actual value of the 1st axis is set to 100 with the constant.

Depending on the NC machine data bits, the programmed zero offsets,
the DRF and PRESET offsets are loaded as radius or diameter value.
The PRESET offset is always effective after program end (M2, M30) or

“reset”. The "set actual value in the program” function cannot be
realized with the PRESET offset.

ZOADW (<Valuel> <Value2><Value3>) = <Value>; settable
coordinate rotation

The angle of rotation of the settable coordinate rotation is loaded via R parameter, pointer
or constant.

The channel No. is selected with <Valuel>. The angle of rotation is loaded in its own
channel when 0 is specified.

The desired zero offset (G54=1 to G57=4), is defined by <Value2>, and the angle No. by
<Value3>. At the present time, <Value3> is defined with 1.

Example:

ZOADW (0,2,1) = R50; The angle of rotation of the settable coordinate rotation in its own
channel for the 2nd zero offset is loaded via R50.

5-68 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.6 Data transfer: R parameter into the system memory

ZOFADW (<Valuel><Value2>,<Value3>) = <Value>; additive,

settable coordinate
rotation

The angle of the settable coordinate rotation is additively changed via R parameter, pointer
or constant.

The channel No. is selected by <Valuel> . The angle of rotation is loaded into its own
channel if a 0 is specified. The desired zero offset (G54=1 to G57=4), is defined by
<Value2>, and the angle No. by <Value3>. At the present time, <Value3> is defined with
1.

Example:

ZOFADW (2,1,1) = 10; The angle of rotation of the settable coordinate rotation in the 2nd
channel for the 1st zero offset is increased by the amount 10 when
loading the constants.

When writing from system memories from other channels, which are not
located on the same NC CPU, the "CL 800 error” alarm signal is output
to the control. Only those channels can be written into which are
processed by the same NC CPU, as the selected channel.

ZOPRDW (<Valuel>,<Value2><Value3>) = <Value>; programmable
coordinate rotation

The angle of rotation of the programmable coordinate rotation is loaded via R parameter,
pointer or constant.

The channel No. is selected with <Valuel>. The angle of rotation is loaded into its own
channel if 0 is specified. The desired zero offset (G58=1 and G59=2), is determined by
<Value2>, and the angle No. by <Value3>. At the present time <Value3> is defined
with 1.

Example:

ZOPRDW (1,2,1) = R55; The angle of rotation of the programmable coordinate rotation in the
1st channel for the 2nd zero offset is loaded via R55.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-69
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.6 Data transfer: R parameter into the system memory

ZOFPRDW (<Valuel><Value2>,<Value3>) = <Value>; additive

programmable
coordinate rotation

The angle of rotation of the programmable coordinate rotation is additively changed via R
parameter, pointer or constant.

The channel No. is selected with <Valuel>. The angle of rotation is loaded into its own
channel when 0 is specified. The desired zero offset (G58=1 and G59=2), is defined by
<Value2>, and the angle No. by <Value3>. At the present time <Value3> is defined

with 1.

Example:

ZOFPRDW (2,1,1)=10; The angle of rotation of the programmable coordinate rotation in the
2nd channel for the 1st zero offset is increased by 10 when the
constants are loaded.

When writing from system memories from other channels, which are not
located on the same NC CPU, the "CL 800 error” alarm signal is output

to the control. Only those channels can be written into which are
processed by the same NC CPU as the selected channel.

5.3.6.5 Write R parameter into the programmed setpoints

PRAP (<Value3>) = <Value>; programmed axis position

The travel of each axis is programmed via parameter, pointer or constant.
The axis is defined with <Value3>. Depending on the NC machine data bits, the travel is
specified as either radius or diameter.

Example:
PRAP (2) = 100; The 2nd axis travel is programmed via a constant.

PRSS (<Value3>) = <Value>; programmed spindle speed

The speed of each spindle is programmed via parameter, pointer or constant. The spindle
No. is defined with <Value3>. If the programmed spindle No. is 0, then the number of the
master spindle in the current channel is used as spindle number.

Example:

R50 =1,

PRSS (R50) = 200; The 1st spindle speed is programmed via a constant.

5.-70 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.6 Data transfer: R parameter into the system memory

PRAD () = <Value>; programmed radius

The address defined for the programmed radius is entered via parameter, pointer or
constant.

Example:

PRAD () =2; The value 2 is assigned to the radius via a constant.

PANG () = <Value>; programmed angle

The address defined for the programmed angle is entered via parameter, pointer or constant.

Example:

PANG () = R60; The angle is entered via R60.

PRIP (<Value3>) = <Value>; programmable interpolation parameter

The interpolation parameter of each axis is programmed via parameter, pointer or constant.
The axis is defined with <Value3>. The programmed sequence of the interpolation
parameters must coincide with the programmed sequence of the axes.

Example:
(:G02:); PRAP (1)=R50; PRAP (2)=R51; PRIP(1)=R52; PRIP(2)=R53; LF;

Programming a circular block with the programmed interpolation
parameter.

PCDA (<Valuel><Value2>,<Value3>) = <Value>; programmable control

words for digital axis drives

A bit of the programmed control words for digital axis drives can be loaded via parameter,
pointer or constant.

The axis No. is selected with <Valuel>. The byte address (0 or 1) is defined in <Value2>.
The bit address (4 to 6) is specified with <Value3>.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.71
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.6 Data transfer: R parameter into the system memory

Example:

LF; PCDA (1,1,6) = 1; PRAP (1) = 100; LF;

The 6th bit in byte 1 for the 1st axis (travel to end stop) is
loaded.

When travelling to end stop, travel must be programmed in the same
block using the PRAP command or DIN programming.

PCDS(<Valuel>,<Value2>,<Value3>) = <Value>; Programmable control
words for digital
spindle drives

A bit of the programmed control words for digital spindle drives can be loaded via
parameter, pointer or constant.

The spindle No. is selected with <Valuel>. The byte address (0 to 5) is defined in
<Value2>. At the present time the bit address <Value3> is not defined.

5.3.6.6 Write R parameter into the PLC signal bits

PLCF (<Valuel><Value2>,<Value3>) = <Value>; PLC flag bit

The status of a flag bit in the PLC is loaded via parameter, pointer or constant.

The PLC No. is specified with <Valuel>, the byte address with <Value2> and the bit
address with <Value3>.

Example:

PLCF (1,2,0) = 0; The status of the defined PLC flag bit is loaded with O.

PLCW (<Valuel><Value2><Value3> <Value4>)=<Val.>; PLC data word bit

The status of a data word bit in the PLC is loaded via parameter, pointer or constant.

The PLC number is defined with <Valuel>, the number of the DB or DX with <Value2>,
the data word number with <Value3> and the bit address with <Value4>.

5.72 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.6 Data transfer: R parameter into the system memory

Example:

R60=1; R62=2; R63=4; The status of the defined PLC data word bit is loaded with 1.
PLCW (R60,R62,R63,2) = 1;

5.3.6.7 Write R parameter into the PLC signal bytes

PLCFB (<Valuel>,<Value2>) = <Value>; PLC flag byte

The status of a flag byte in the PLC is loaded via parameter, pointer or constant.
The PLC number is defined with <Valuel>, and the byte address with <Value2>.
Example:

PLCFB (1,1) =01100111; The status of the defined PLC flag byte is loaded with the
constants.

PLCDBL (<Valuel><Value2>,<Value3>) = <Value>; PLC data word, left

PLCDBR (<Valuel><Value2>,<Value3>) = <Value>; PLC data word, right

The status of a data word , left or right , in the PLC is loaded via parameter, pointer or
constant.

The PLC number is defined with <Valuel>, the number of the DB or DX with <Value2>
and the data word number with <Value3>.

Example:
R53=10010110;
PLCDBL (1,2,4) = R53; The status of the defined PLC data word, left is loaded via R53.

5.3.6.8 Write R parameter into the PLC signal words

PLCFW (<Valuel><Value2>,<Value3>) = <Value>; PLC flag word

The status of a flag word in the PLC is loaded via parameter, pointer or constant.

The PLC number is defined with <Valuel> and the word address by <Value2>. The
dimension identifier <Value3> specifies how the PLC flag word status is to be loaded.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.73
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.6 Data transfer: R parameter into the system memory

Definition of the dimension identifier <Value3>:

<Value3> Fixed point <Value3> BCD

0 Value without decimal point 100 Value without decimal point
1 Value with decimal point 101 Value with decimal point
2 1 digit after the decimal point 102 1 digit after the decimal point
3 2 digits after the decimal point 103 2 digits after the decimal point
4 3 digits after the decimal point 104 3 digits after the decimal point
5 4 digits after the decimal point 105 4 digits after the decimal point
6 5 digits after the decimal point 106 5 digits after the decimal point
7 6 digits after the decimal point 107 6 digits after the decimal point
8 7 digits after the decimal point 108 7 digits after the decimal point
9 8 digits after the decimal point 109 8 digits after the decimal point

Example:

PLCFW (1,3,100) = 2219; The status of the defined PLC flag word is loaded in BCD via a
constant.

5.3.6.9 Write R parameter into the PLC signal data words

PLCDF (<Valuel><Value2><Value3>, PLC data word,

<Value4><Value5>) = <Value>; fixed point

The fixed-point value of a data word or double word (serial or parallel) is loaded into the
PLC via parameter, pointer or constant.

The PLC number is defined by <Valuel>, the number of the DB or DX by <Value2>, the
data word number by <Value3>, and the number of data words by <Value4>.

The dimension identifier <Value5> specifies how the fixed-point value of the data word or
double word is to be loaded.

5-74 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.6 Data transfer: R parameter into the system memory

Definition of the dimension identifier <Value5>:

<Value 5> Fixed point: Data word_or double <Value 5> Fixed point: Double word, parallel
word, serial
0 Value without decimal point 10 Value without decimal point
1 Value with decimal point 11 Value with decimal point
2 1 digit after the decimal point 12 1 digit after the decimal point
3 2 digits after the decimal point 13 2 digits after the decimal point
4 3 digits after the decimal point 14 3 digits after the decimal point
5 4 digits after the decimal point 15 4 digits after the decimal point
6 5 digits after the decimal point 16 5 digits after the decimal point
7 6 digits after the decimal point 17 6 digits after the decimal point
8 7 digits after the decimal point 18 7 digits after the decimal point
9 8 digits after the decimal point 19 8 digits after the decimal point
Example:

PLCDF (1,3,2,2,10) = 24500; The fixed-point value of the defined PLC double word is loaded
via a constant.

PLCDB (<Valuel><Value2><Value3>, PLC data word,

<Value4><Value5>) = <Value>; BCD

The BCD value is loaded into the defined PLC data words via parameter pointer or constant.

The PLC number is defined with <Valuel>, the number of the DB or DX by <Value2>,
the data word number with <Value3>, the number of data words with <Value4>
and the dimension identifier with <Value5>.

Data is loaded serially or in parallel depending on the defined number of data words
<Value4>.

<Value4> BCD
1 A data word is read, dimension identifier <Value 5> has no meaning.
2 Two data words are read in parallel, dimension identifier <Value 5> has no meaning.
3 Three data words are serially read. The dimension identifier <Value 5> specifies how the BCD
value is to be read.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.75
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.6 Data transfer: R parameter into the system memory

Definition of the dimension identifier <Value5>:

<Value 5> BCD

100 Value without decimal point
101 Value with decimal point
102 1 digit after the decimal point
103 2 digits after the decimal point
104 3 digits after the decimal point
105 4 digits after the decimal point
106 5 digits after the decimal point
107 6 digits after the decimal point
108 7 digits after the decimal point
109 8 digits after the decimal point

Example:

PLCDB (1,2,10,1,100) = 2413; The BCD value of the defined PLC data word is loaded via a
constant.

PLCDG (<Valuel><Value2><Value3> = <Value>; PLC data word,

floating point

The floating-point value is loaded in the defined PLC data words via parameter, pointer or
constant. Two data words are always serially loaded in the PLC.

The PLC number is defined with <Valuel>, the number of the DB or DX with <Value2>
and the data word number with <Value3>.

Example:

PLCDG (1,100,1) =21; The constant is loaded as floating-point value in the defined data
words.

5-76 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.6 Data transfer: R parameter into the system memory

5.3.6.10 Write R parameter into the alarms

ALNZ () = <Value>; cycle alarms

A cycle alarm at the control can be displayed with this command. The alarm number is
specified with parameter, constant or pointer with <Value>.

Example:

ALNZ () = 4001, The cycle alarm is displayed at the control.

5.3.6.11 Write R parameter into the system memory

SATC (<Valuel><Value2>) = <Value>; spindle acceleration

time constant

The spindle acceleration constant is changed via parameter, pointer or constant.

The spindle acceleration time constant specified under <Value> does not overwrite the
values specified in the machine data, but an internal data location. The machine data is again
active after thread machining has been cancelled (e.g. G0O...), after machine data change,
after RESET and after POWER ON. If the programmed spindle acceleration time constant
<Value> is less than 4, this value is automatically increased to 4.

The spindle number is defined with <Valuel> and the gear stage with <Value2>. If the
programmed spindle number <Valuel> is zero, the master spindle number in the current
channel is used as spindle number.

Example:

R50=5; R51=12; The system memory for the spindle acceleration constant of the 1st
spindle of gear stage 5 is loaded with the corresponding value K for
12.

SATC (1,R50) = R51;

Determining the spindle acceleration constant K:

8191 * IPO sampling time

<Value>+2+2

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.77
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.7 Mathematical and logical functions

5.3.7 Mathematical and logical functions

5.3.7.1 Value assignment with arithmetic operations

<Var> = (<Valuel> <Value2>); addition
<Var> = (<Valuel> <Value2>); subtraction

<Var> = (<Valuel> <Value2>); multiplication
<Var> = (<Valuel> <Value2>); division

The result of an arithmetic operation is assigned to the parameter <Var>.
Example:
PROGRAM 50;

PAR INTEGER: R10, R11, R12,R13:=Name;
LOCAL INTEGER: R50, R51, R52;

BEGIN
R50 =17,
R51 = 4;

R52 = 3;

R10 = R50 + R51;
(* contents R10 equals 21 *)

R11 = R10 - R51;
(* contents R11 equals 17 *)

R12 = R10 * R11;
(* contents R12 equals 357 *)

Name = R12 / R52;
(* contents R13 (name) equals 119 *)

END.

Extended arithmetic for arithmetic operations

A variable can be defined by arithmetic operations via the extended arithmetic.

5-78 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.7 Mathematical and logical functions

<Var>=<Valuel>+,- *or/<Value2>{+,- *or/<Value3>. .<Valuen>};

The variable is defined by a chain calculation of arithmetic operations. Multiplication and
division have priority over addition and subtraction. This can be modified by the applicable use
of parentheses. A variable, constant or function (SIN, COS etc.) can be substituted for

<Value (1-n)>.

Example:

PROGRAM 81,

PAR REAL: R10:= Z_VALUE, R20, R30;
LOCAL REAL: R51;

BEGIN
Z_VALUE =Z_VALUE+ R20 - R30;

Z VALUE = SIN (Z_VALUE) + 5:

Z VALUE = (Z_VALUE + R20) - R30;

Z VALUE = (Z_VALUE + 5/3) - 10 /80.009;
R51 = Z_VALUE;

END.

5.3.7.2 Arithmetic functions

<Var> = ABS (<Value>); generate absolute amount

The ABS statement loads the absolute amount of a specified quantity <Value> into
parameter <Var>.

Example:

LOCAL INTEGER: R50;
LOCAL REAL: R51,R52;

R50 = ABS(-253);

(* contents R50 =+253 *)
R51 = ABS(R52) (*e.g. R52=-3.8435);
(* contents R51 =+3.8435 *)

The ABS statement does not influence the data type, i.e. an integral

or real value remains an integral or real value, even after the
command has been processed.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.79
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.7 Mathematical and logical functions

<Var> = SQRT (<Value>); square root

The SQRT statement extracts the square root of a specified quantitiy <Value>.

When this statement is applied, the real and integral data types can be used.

Example:

R60 = SQRT(25);

(* contents R60 = 5%)

R61 = SQRT(R60);

(* contents R61 = the square root of 5 *)

It is not posible to extract the square root of a negative quantitiy!

<Var> = SQRTS (<Valuel><Value2>); root of the sum of the square

The SQRTS statement takes the root of the sum of (<Value 1>2 + <Value 2>2).

Example:

R61 = 10;
R62 = SQRTS(5,R61);
(* contents R62 = 11.1803 *)

5-80 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.7 Mathematical and logical functions

5.3.7.3 Arithmetic procedures

increment

The INC statement increments the variable index by one.

Example:

R70=1; (* R70 has index value 1 *)
INC (R70); (* R70 has index value 2 *):

DEC (<Var>); decrement

The DEC statement decrements the variable index by one.

Example:

R70 =1, (* R70 has index value 1 *)
DEC (R70); (* R70 has index value 0 *)

TRUNC (<Var>); integral part

The TRUNC statement forms the integral part of a variable of the real data type (without
rounding off).

Example:
PROGRAM 55;
LOCAL REAL: R60, R70;
BEGIN
R60 = 1.9;
TRUNC(R60);
(* contents R60 = 1*)
R70 =-2.3;
TRUNC(R70)
(* contents R70 = 2 %)

END.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 581
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.7 Mathematical and logical functions

5.3.7.4 Trigonometric functions

<Var> = SIN (<Value>);

The SIN statement generates the sine of an angle whose magnitude is specified by
<Value> .

The result is stored in variable <Var>. The SIN statement operates with integral and real
arguments over the range -360° to+360°.

Example:

R10 = SIN (45) ;
(* contents R10 =0.70710678 *)

R60 = 15.55;
R10 = SIN (R60) ;
(* contents R10 = 0.26807920 *)

<Var> = COS (<Value>);

The COS statement generates the cosine of an angle whose magnitude is specified by
<Value>.

The result is stored in the relevant variable <Var>. The COS statement operates with
integral and real arguments over the range -360° to +360°.

Example:

R11 = COS (45) ;
(* contents R11 =0.70710678 *)

R72=30;
R12 = COS (R72) ;
(* contents R12 = 0.86602540 *)

<Var> = TAN (<Value>); tangent

The TAN statement generates the tangent of an angle whose magnitude is specified by
<Value>.

The result is stored in the relevant variable<Var>. The TAN statement operates with integral
and real arguments over the range 0° to +/-89.999999°,

+/- 90.00001° to 269,9999°, +/- 270.0001° to +/- 360°.

Example:

R12 = TAN (45) ;
(* contents R12=17%)

5-82 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.7 Mathematical and logical functions

<Var> = ARC SIN (<Value>); arc sine

The ARC SIN statement (arc sine function) is the inverse trigonometric function of the sine
function.

The result of the statement is the computed angle in degrees, and is stored in the variable
<Var>.

Example:

R10 = ARC SIN (0.70710678) ;
(* contents R10 =45 *)

<Var> = ANGLE (< Valuel><Value2>); angle formed by two

vector components

The ANGLE statement computes, from the two vectors <Valuel> and <Value2>
an angle, which is stored in variable <Var>.

L S A R70 = <Value 1> = +30

BN

R72 = <Var> = 159.444°

« \

A

Example:

R70 = 30; R71 = -80;
R72 = ANGLE (R70,R71);
(* R72 has the value 159.444 *)

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-83
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.7 Mathematical and logical functions

5.3.7.5 Logarithmic functions

<Var> = LN (<Value>); natural logarithm

The LN statement (natural logarithm) forms the natural logarithm of the specified variable
<Value>.

The result of the statement is stored in variable <Var>.
Example:

R80 = LN (10);
(*contents of R80 = 2.3025846 *)

<Value> must be greater than 0.

<Var> = INV LN (<Value>);

exponential function

The INV LN statement (exponential function) raises the specified variable <Value> to the
power of e.

The result of the logarithmic operation is stored in variable <Var>.
Example:

R80 = INV LN (2.5);
(*contents of R80 = 12.182496 *)

The value must be in the range -268.43545 to 18.420681.

5-84 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.7 Mathematical and logical functions

5.3.7.6 Logical functions

The logical OR-XOR-AND-NAND statements combine all bit positions of pattern variables
<Varl> and <Value> .

The result of the logic operation is stored in variable <Var>.

The truth table for the logic operations has the following form:

For the PATTERN data type

<Var>=<Var 1> OR <Value>; OR
<Var> = <Var 1> XOR <Value>; EXCLUSIVE-OR
<Var> = <Var 1> AND <Value>; AND
<Var> = <Var 1> NAND <Value>; NOT-AND
<Var> = NOT <Value>; NEGATION

Bit position 0-7 Result of logic op. of <Varl> with <Value>
Varl Value OR XOR AND NAND
0 0 0 0 0 1
1 0 1 1 0 1
0 1 1 1 0 1
1 1 1 0 1 0

The logical NOT statement inverts the status of all bit positions of the PATTERN variable
<Value> and stores the result in a variable <Var>.

Example:

PROGRAM 59;

LOCAL PATTERN: R50, R51, R52, R53,
R54, R55,R56

BEGIN

R50 = B00101100; R51 = B10110011,

R52 = R50 OR R51;

(* contents of R52 = B10111111 *)
R53 = R50 XOR R51;

(* contents of R53 = B10011111 *)
R54 = R50 AND R51;

(* contents of R54 = B0O0100000 *)
R55 = R50 NAND R51;

(* contents of R55 = B11011111 *)

R56 = NOT R50;
(* contents of R56 = B11010011 *)
END.
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-85

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.7 Mathematical and logical functions

<Var> = <Var 1> ORB <Value>;

<Var> = <Var 1> XORB <Value>; EXCLUSIVE-OR BIT
<Var> = <Var 1> ANDB <Value>; AND BIT
<Var> = <Var 1> NANDB <Value>; NOT-AND BIT
<Var> = NOTB <Value> NEGATION BIT

The logical ORB-XORB-ANDB-NANDB statements combine the bits of the BOOLEAN
variables <Varl> and <Value> with each other.

The logical NOTB statement inverts the statuses of BOOLEAN variable <Value>. The result
of the logic operation is stored in variables <Var>.

Example:
PROGRAM 60;

LOCAL BOOLEAN: R50, R51, R52, R53, R54, R55, R56;
BEGIN

R50 = 1;

R51 = 0;

R52 = R50 ORB R51; (* contents of R52 =1 *)
R53 = R50 XORB R51; (* contents of R53 = 0 *)
R54 = R50 ANDB R51; (* contents of R54 = 0 *)
R55 = R50 NANDB R51; (* contents of R55 = 1 *)
R56 = NOTB R50; (* contents of R56 = 0 *)

END.

Extended arithmetic for arithmetic functions

A variable can also be defined by chaining several logical functions. The desired priority is
achieved by using parentheses.

Example:
PROGRAM 82;

PAR PATTERN: R10, R15, R20;
PAR BOOLEAN: R25, R30;

BEGIN
R30 =R 10 OR R20 AND R15;

R10 = NOTB R30;
R30 = NOT (R10 OR B11101101) AND B00011111;
R30 = NOTB (R10 NANDB R25),

END.

5-86 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.7 Mathematical and logical functions

5.3.7.7 Logical procedures

CLEAR BIT (<Var>.<Const.>); clear bit

A particular bit in the bittern pattern of an R parameter is cleared (i.e. assigned 0) with the
CLEAR BIT statement. The variable <Var>, containing the bit pattern, and the bit number
<Const> of the bit to be cleared (a digit between 0 . . . 7) must be specified in the
command.

Example:
LOC:AL PATTERN: R60;
BEG:IN
;?60 = B01100111,;
:CLEAR BIT (R60.6); (*the bit pattern of R60 is B00100111 *);

END.

For this statement, the R parameter must be of the PATTERN data type.

SET BIT (<Var>.<Const.>); set bit

A particular bit in the bit pattern of an R parameter is set (loaded with "1”) with the SET BIT
statement. The relevant variable <Var>, and the bit number <Const> (a digit between
0...7) must be specified in the command.

Example:
LOCAL PATTERN: R70;

BEGIN
R70 = B0O000000O:

SET BIT (R70.2); (*the bit pattern of R70 is BOO000100 *);

END.

For this statement, the R parameter must be of the PATTERN data type.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5.87
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.8 NC-related functions

5.3.8 NC-related functions

5.3.8.1 Changing the program and machine reference points

POS MSYS ; specifying a position referred

to the machine actual value system

A position, referred to the machine actual value system, is specified with the POS MSYS
statement (position machine actual value system) and is approached by the specified axes.
The command is only effective blockwise. As many axes can be specified as the NC can
simultaneously traverse.

The axis numbers 1...24 are available. The assignment of the axis number to the axis address
is specified in the NC machine data 2000-2039. The axis positions to be approached are
programmed using the DIN code or PRAP statement.

All zero point-, PRESET-, and the DRF offsets are suppressed with the POS-MSYS statement,
i.e. the tool offsets must be cancelled for approaching a fixed machine point.

Example:
Approaching the fixed tool change point X=1000 and Z=500
PROGRAM 508;

LOCAL REAL:R50:= POS_X, R51:= POS_Z,
R53:= X, R54:= Z;

BEGIN
POS_X =1000; POS_Z =500;LF;
POS MSYS; PRAP (X) = POS_X; PRAP (Z) = POS_Z; LF;
(*the programmed tool change point X=1000 and Z=500 referred to the machine zero

point are approached*)

END.

Additional block limits are generated in the target code with "LF;".

5-88 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.8 NC-related functions

5.3.8.2 Single functions

<Varl> = REP REF (<Var2>); prepare reference

With the PREP REF statement (prepare reference), a contour programmed in a subroutine
(also Sprint contouring) is broken down into individual blocks: Data is stored in R parameters.

The contour element is stored in a total of eight R parameters, from R parameter <Var 1>
(Rn).

The prepare reference requires a total of four R parameters as input data. The first of these R
parameters is specified with <vVar 2> (Rm).

The input control parameter (Rm+3) must be set to "1” before the 1st PREP REF call. The
first contour element of the subroutine is stored in R parameters beginning with the starting
point (Rm+1, Rm+2) . This point is not programmed in the subroutine. The subroutine should
only contain the geometrical values of the contour.

The command PREP REF sets the control parameter to "0”, so that the values from the next
contour element are loaded with each subsequent PREP REF call.

If PREP REF detects the "subroutine end”, the output control parameter (Rn+7) is automati-
cally setto "1” or "2".

Prerequisite

1. Contour in the subroutine
2. Starting points
3. Control parameter (Rm+3) =1

Parameter

<Var2>: Rm Subroutine number is deposited in the contour
Rm+1 Starting point of the contour, vertical to the axis
Rm+2 Starting point of the contour, horizontal to the axis
Rm+3 Input control parameter

Permissible parameter range: "Rm = R0-R197 and R900-R997”

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-89
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.8 NC-related functions

PREP REF loads in:

<Var 1>: Rn Block starting point, vertical axis (2nd axis of the G16 plane)
Rn+1 Block starting point, horizontal axis (1st axis of the G16 plane)
Rn+2 Block end point, vertical axis
Rn+3 Block end point, horizontal axis
Rn+4 Interpolation parameter for vertical axis
Rn+5 Interpolation parameter for horizontal axis
Rn+6 G-function
Rn+7 Output control parameter

Rn+7 = 0: block without M17
Rn+7 = 1: block with M17
Rn+7 = 2:only M17 in block

Permissible parameter range "Rn = R0-R192 and R900-R992".

The interpolation parameters determine the distance from the starting point of the
circle to the center of the circle in the axis coordinates.

The G-function determines the interpolation type (e.g. G01, G02, . . .).

Example: refer to intersection computation "INT SEC”

Varl> = INT SEC (<Var 2>, <Var 3>); intersection computation

The intersection with a contour element is determined with the INT SEC statement (inter-
section computation).

The intersection computation requires a total of eight parameters as input data for the first
contour element. The first R parameter number is specified with <Var 2> (Rn). The second
contour, starting at <Var 3> (Rr) is not realized at the present time, however an R parameter
must be specified under <Var 3> at programming. The output data of the intersection compu-
tation is deposited in a total of three R parameters, starting at R parameter <Var 1> (Rm).
Both axis values is required to determine the intersection. The output data of the reference
preparation is used as input data for the intersection computation. The intersection compu-
tation can be used in conjunction with the prepare reference PREP REF.

<Var2>:. Rn Block starting point, vertical axis (2nd axis of the G16 plane)
Rn+1 Block starting point, horizontal axis (1st axis of the G16 plane)
Rn+2 Block end point, vertical axis
Rn+3 Block end point, horizontal axis
Rn+4 Interpolation parameter for vertical axis
Rn+5 Interpolation parameter for horizontal axis
Rn+6 G-function
Rn+7 Control parameter

5-90 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.8 NC-related functions

Permissible parameter range’"Rn=R0-R192 and R900-R992".

The interpolation parameters determine the distance from the starting point of the circle to
the center of the circle in the axis coordinates.

The G-function determines the interpolation type (e.g. G01, G02,...).

INTEL SEC loads in:

<Var1>: Rm=1 Intersection found
Rm=0 Intersection not found
Rm+1 Intersection, vertical axis (2nd axis of the G16 plane)
Rm+2 Intersection, horizontal axis (1st axis of the G16 plane)

Permissible parameter range "/Rm=R0-R197 and R900-R997”

The second contour, starting at <Var3> is not realized at the present time, however a R
parameter must be specified under <Var3>.

The intersection computation can be used in conjunction with the prepare reference (PREP
REF).

The output data of the reference preparation is used as input data for the intersection
computation (refer to example). The intersection computation requires both axis values of the
destination point to determine the intersection.

Example for intersection computation with INT SEC statement:

The object is to find the intersection, for example with a programmed contour at
Y =250 mm.

Y A

400 4—----+
|
i

300 }—----dtocmeme S
I

250 ——---—-~+ l <
! | intersection

200 ! !
| |

A ! ,

I I
| |

100 - ! | N5
I

10 e i i , ,
| | | | | | L
| | | | | | >
100 200 300 400 500 600 700 750 X
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 591

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.8 NC-related functions

Contour subroutine:

L20
N5 X400 Y50 B100 LF
N10 X300 Y300 LF

N15 X100 Y400 M17 LF

Main program:
PROGRAM 30;

LOCAL REAL: R50:=subroutine_No, R51:=A_con_Y, R52:=A_con_X,
R53:=start_ref, R54:=contour_1,
R62:=contour_2, R70:=S_travelled,
R71:=intersection_Y, R72:=intersection_X;
(* R50 to R53 input data PREP REF *)
(* R54 to R61 output data PREP REF, which are simultaneously the input data from INT
SEC¥)
(* R62to R69 input data from INT SEC *)
(* R70to R72 output data from INT SEC *)

BEGIN

LF; (: GO Y250 X750 :); LF; (* with rapid traverse
to starting point *)
subroutine_No0=20; A_con_X=750; A _con_Y=50;
start_ref=1; S_travelled=0;
WHILE S_travelled=0 DO
BEGIN
LF; contour_1=PREP REF (subroutine_No); LF;
S_travelled=INT SEC (contour_1, contour_2);
(: Y250 X0 3); (* destination point *)
END;
(* result of intersection computation is stored in intersection_Y(R71)
and intersection _X (R72) from R parameter S_travelled (R70)
For this example: intersection_X=320
intersection_Y=250 *)

END.

5-92 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.8 NC-related functions

<Var> = PREP CYC; preparation for cycles

The PREP CYC statement (preparation for cycles) is a function which stores two assertations
in a total of two R parameters, from R parameter <Var> onwards:

Rn This is loaded with a numerical value which corresponds to the safety clearance of 1
mm in the current input format
Rn = 1 for metric (G71)
Rn=0.03937 for inch (G70)

Rn+l1 Rn+1=1 radius programming, 1st axis
Rn+1=2 diameter program, 1st axis
(dependent on the NC machine datum)

Permissible parameter range Rn=R0-R98 and R900-R998

Example:

PROGRAM 500;

LOCAL REAL; R52, R53;

BEGIN

(* G71is active *)

(* diameter programming is current *)
R52 = PREP CYC;

(* contentsof R52=1 *)
(* contents of R53=2 *)

END.

STOP DEC;

stop decoding until
buffer is empty

During program processing, several program blocks are decoded in advance in the controller
and loaded into the NC buffers. This results in faster program processing but can lead to a
faulty program run in conjunction with NC commands (read actual value, measure, data
transfer NC-PLC). The STOP DEC statement (stop decoding) stops pre-decoding of the

NC blocks, present after the statement, until the block is processsed with the STOP DEC
statement. This ensures that the buffers are empty and the information required in the next NC
blocks is available.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-93
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.8 NC-related functions

For the following information from the interface control, the STOP DEC statement must be
programmed if required in the NC blocks which follow:

¢ Machine data

e Setting data

¢ Tool offsets

e Zero offsets

¢ R parameters

e "Mirror image " signal

The STOP-DEC command must be programmed prior to each "read actual value” in its own
channel and after each "measure”.

Example:

(: M942);
(* part number is transferred from the PLC to R60 *)
STOP DEC;
(* current part number can be evaluated in the next NC block *)
IF R60 > 100 THEN
(* branching according to part number *)
BEGIN
(: G54 X... Y...2); (* NV1 %
END;
ELSE
BEGIN
(: G55 X... Y...)); (* NV2 %
END;
ENDIF;

The STOP DEC statement must always be in its own NC block in the
target code. This is automatically taken into account by the compiler

from software release V 2.0 onwards. STOP DEC cannot be
programmed if SRK/FRK is selected (also refer to STOP DEC 1).

STOP DEC1,; stop decoding until buffer
is empty for coordinate rotation

If the rotation angle of the selectable or programmable coordinate rotation is loaded using the

CL 800 language, this angle value is immediately used for the calculation. This can mean, that
this angle was already calculated in previous traverse blocks. If the angle is only to be valid at
the next block, then all previous blocks must be executed (empty buffer).

5-94 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.8 NC-related functions

This can also be attained with SRK/FRK selected by programming STOP DECL1. The
decoding is then only re-activated when all buffers are empty up to coordinate rotation.

Example:

STOP DEC1;
ZOADW (0, 1, 1) = 30;

The STOP DEC1 statement must always be in its own block in the
target code. The STOP DEC command can also be used instead

of the STOP DEC1 command, however in this case SRK/FRK
must be previously cancelled.

enable for softkey start

A subroutine start via softkey can be configured with the softkey function 69. The program
enable for softkey start is realized with the ESS command which must be located at the start
of the statement part in the program.

Example:

PROGRAM 1,
CHANNEL NC 1,

PAR INTEGER: RO, R25, R49;
LOCAL INTEGER: R50;

BEGIN
ESS; (* enable subroutine start for softkey *)
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-95

SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.8 NC-related functions

5.3.8.3 Measuring functions

<Var>=MEAS M (<Value>); flying measurement relative

to machine zero

The actual values of the traversing axis are detemined at the instant of an input signal from the
measuring sensor with the MEAS M statement. The actual values are detected directly from
the measuring circuit of the control on identification of the switching edge of the measuring
sensor. The actual values are deposited starting from parameter <Var> with increasing axis
number, and are referred to the machine zero.

For rotary axes, the result is deposited, starting from parameter <Var> (Rn), in a total of two

R parameters, depending on an NC machine data bit.

The following R parameterrs are loaded:
Rn = Position within a rotation
Rn+1 = Number of rotations

Finally, the control generates a "delete remaining travel” i.e. the remaining travel (setpoint-
actual value differences) of all axes are deleted. Setpoint O is specified as step function from
the control.

The braking travel of the axis is still traversed, i.e. the following errors are reduced. Thus, the
next traversing blocks must be programmed in the absolute dimension (G90).

The sensed actual values of the traversing axes at the instant of measurement are deposited,
with increasing axis number, starting at the parameter defined with <Var>.
The measuring input number (1 or 2) is input with <Value>.

The axes travel (command positions) are programmed in the same NC block using DIN code
or PRAP statement. The command positions of the axes are referred to the tool zero.

Example:
PROGRAM 605;

LOCAL REAL: R70:=X_COMMAND, R71:=Z_COMMAND,
R72:=DIFF_X, R73:=DIFF_zZ,
R93:=X_ACT, R94:=Z_ACT;
BEGIN
X_COMMAND=100; Z_COMMAND=200; LF;
X_ACT=MEAS M (1); PRAP (1)=X_COMMAND; PRAP (2)=Z_COMMAND; LF;
STOP DEC;
DIFF_X=X_COMMAND-X_ACT;
DIFF_Z=Z_COMMAND-Z_ACT;
END.

Also refer to STOP DEC statement (Section 5.3.8.2). GOO or GO1 must be

active at the flying measurement. A maximum of 2 axes can be
simultaneously measured

5-96 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.8 NC-related functions

5.3.8.4 Program influence

REL (<Valuel>, <Value2>); read-in inhibit via
external input

This command stops program processing until the defined external input is available.

The external input is defined with the byte address (1 or 2) <Valuel> and the bit address
(0...7) <Value2>.

Example:

LF; REL (1, 2); (: GO0 G90 X5 Z20:); LF;

If the external input has "0” signal, the program is stopped after the position has been
reached. Program processing is continued if the level at the external input changes from "0”
to "1".

The processing is not interrupted if a "1” signal was already present.

INTA (<Valuel>, <Value2>, <Value3>); axis-specific remaining

travel delete via external input

This command permits an axis-specific remaining travel delete , dependent on the signal
level of the defined external input.

The axis in which the remaining travel is to be deleted is defined with <Valuel>. Remaining
travel delete is realized for all axes programmed in the block when a 0 is input.

The external input is defined with the byte address (1 or 2) <Value2> and the bit address
(0...7) <Value3>. If the bit address <Value2> is positive, scanning is for a "1” signal, and
when it is negative, scanning is for a "0” signal.

Example:

LF, INTA (1, 1, 0); (:X20 Z10 F100:); LF;

The block end criterium is fulfilled when the travel motion is interrupted by the defined external
signal or the programmed position is reached.

If axis-specific remaining travel delete is identified for an axis

which is in an interpolation relationship with another axis,
then both axes are stopped.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-97
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.9 1/O statements

5.3.9 1/O statements

5.3.9.1 NC I/O functions

WRT PIC (<Value4>, <Value5>); menu selection from NC program

Menus (displays with softkey texts) can be called up from the user or standard sector from the
NC program using this command. <Value4> is used to define as to whether the menu is to
be called from the user sector or standard sector:

<Value4> = 0 : User sector
= 1 : Standard sector

The menu number is specified by <Value5>.

Example:

WRT PIC (1, 20); The standard display for the data input/output is called.

RECALL PIC; return jump to the output menu

This statement can be used to jump back to the menu which was selected before WRT PIC
was called, after any menu was called with the WRT PIC statement.

Example:
For instance, at the present time the PLC status display is selected.
WRT PIC (1, 20); (* call the data input/output display *)

RECALL PIC; (* return to the PLC status display *)

5-98 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.9 1/O statements

5.3.9.2 General I/O functions,

select V24 interface

For data input/output it is necessary to preselect the applicable interface. This can be realized
with the command select V24 interface. The number of the V24 interface can be defined
with<Value>

Example:

PORT (1); The first V24 interface is selected for the input/output.

The interface selected via the operator panel is not influenced by this
command. Before data is output with statements OUTP ZOA, OUTP
DATA, OUTP ETX or input with the statement INP, the interface must be
selected in the program with the statement PORT.

OUTP ZOA (<Valuel>); zero offset output via V24

Zero point offsets or coordinate rotation angle can be output via V24 using this command.

The channel No. is defined with <Valuel>. The channel-independent settable zero point
offsets G54 to G57 are output when 0 is input, and when the channel No. is input, the
channel-specific rotation angle of the settable coordinate rotation of the defined channel is
output.

Example:

PORT (2); OUTP ZOA (0); The settable zero offsets are output through the second V24
interface.

The V24 interface must be selected with the PORT statement before
data output. A machine data bit is used to select as to whether the block

change is to be inhibited or not during the actual transfer. If the data to
be output is to be changed in the subsequent program section, then a
STOP DEC must be programmed after the command.

When 0 is specified, the channel-independent settable zero offsets (G54 to G57) are output in
the defined channel.

When a channel number is specified, the channel-specific angle of rotation of the settable
coordinate rotation is output in the defined channel.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-99
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.9 1/O statements

OUTP DATA (<Valuel>, <Valuel>, <Valuel>); output data via V24

Specific data can be output via V24 using this statement. <Value2> is used to specifiy the
data type:

<Value 2> Data type
1 Main programs
2 Subroutines
5 NC machine data
6 Tool offsets
8 Setting data
9 PLC machine data

The start address is defined with <Value3> and the end address of the data block with
<Value4>.

Example:

PORT (1); OUTP DATA (1, 1, 10); The existing parts program starting with program number 1
to 10 are output through the first V24 interface.

The V24 interface must be selected with the PORT statement before
data output. A machine data bit is used to select as to whether the block

change is to be inhibited or not during the actual transfer. If the data to
be output is to be changed in the subsequent program section, then a
STOP DEC must be programmed after the command.

OUTP PARA (<Valuel>, <Value3>, <Value4>); parameter output via V24

Individual R parameter blocks can be output via V24 using this command. The channel No. is
defined with <Valuel>.

R parameters are output from their own channel when 0 is input. The channel No. is always
specified with O for central variables. The start address of the R parameter block is defined
with <Value3> and the end address with <Value4>.

5-100 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 5 Command description
5.3.9 1/O statements

Example:

PORT (1); OUTP PARA (1, 100, 120); The parameter block (R100 to R120) from the 1st
channel is output via the first V24 interface.

The V24 interface must be selected with the PORT statement before
data output. A machine data bit is used to select as to whether the block
change is to be inhibited or not during the actual transfer. If the data to
be output is to be changed in the subsequent program section, then a

STOP DEC must be programmed after the command.

INP (<Value 2>); read-in data
via V24 ;

Data input can be started from the program via V24 with this command. Using <Value2>, a
check can be made using the command as to which data type is involved:

<Value 2> Data type
0 No data type check
1 Main programs
2 Subroutines
3 Clear programs
5 NC machine data
6 Tool offsets
7 Zero offsets
8 Setting data
9 PLC machine data
10 R parameters
Example:
PORT (1); INP (0); Data input is started via the first V24 interface

The V24 interface must be selected with the PORT statement before
data output. A machine data bit is used to select as to whether the block
change is to be inhibited or not during the actual transfer. If the data to

be output is to be changed in the subsequent program section, then a
STOP DEC must be programmed after the command.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 5-101
SINUMERIK WS 800 A, (PJ)

5 Command description 04.90
5.3.9 1/O statements

OUTP ETX; output ETX via V24

The end-of-transmission character ETX (e.g. 03H) can be output via the defined V24 interface
with this statement. Using setting data it can be determined, for each E24 interface, whether
the output is with or without trailer.

Example:

Setting data 5017.7=1

PORT (1); (* select first V24 interface*)
OUTP PARA (1, 100, 120); (* output R parameter *)
OUTP ETX; (* output ETX without trailer*)

5.3.9.3 Operator control functions

select channel No. for
screen display

The screen display is channel-specific and can be selected at the operator panel. This selec-
tion can be activated from the program with the command select channel number for
screen display . The channel No. is selected with <Value>.

Example:
CHAN = 2; The screen display is updated for channel 2.
5-102 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

Section 6

-Command summary-

Summary:

6.1 General statements for program configuration

6.2 Declarations

6.3 Repeat statements

6.4 Decision statements

6.5 Unconditional branching

6.6 Data transfer, general

6.7 Data transfer: System memory into the R parameter
6.8 Data transfer: R parameter into the system memory
6.9 Mathematical and logical functions

6.10 NC-specific functions

6.11

I/O statements

04.90 6 Command summary
6.1 General statements for program configuration

6 Command summary

The following SINUMERIK basic versions are valid for the SINUMERIK 810 control:
SINUMERIK 810 GA1/GA2/GA3
SINUMERIK 810G GA2/GA3

The SINUMERIK basic versions are valid for the SINUMERIK 820 control:
SINUMERIK 820 GA2/GA3

The functions for the SINUMERIK 805 and 840 controls are in preparation.

6.1 General statements for program configuration

Program frame statements
CL 800 statement Function 805(810(820(840(850(880
PROGRAM <Progr. number.>; Definition of a program *ox i
<Progr. number>: 810/820 = 1...999
850/880 = 1...9999
805 = ...
840 = ...
CHANNEL NC <Channel No.>; NC Channel No. #|# # | #
ESS; Enable for softkey start i
ID (<ID des.>); ID designation of subroutine x| * | o*
PW (<Password>); Password *ox i
BEGIN Start of statement part or block *ox i
END; End of statement block o o
END. End of statement part (program end) *o* o
LF; End of block o i
(*Remarks™) Remarks exclusively for CL 800 source *ox i
language (not passed on by compiler)
(:<DIN code>:); DIN code (passed on by the compiler) x| 1 *
Explanation:
* Function implemented
Function implemented, but skipped in the NC
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 6-1

SINUMERIK WS 800 A, (PJ)

6 Command overview 04.90
6.2 Declarations
6.2 Declarations
Reference to higher-level variables which are defined separately
CL 800 statement Function 805(810(820(840(850|880
CENTRAL: "<List name>"; Reference to list in which the central # | # # | #
variables are declared
GLOBAL: "<List name>"; Reference to lists in which the global # | # # | #
variables are declared channel-dependent
and channel- independent
Declaration of constants and variables in the subroutine
CL 800 statement Function 805(810(820]840(850|880
PAR INTEGER: Declaration of INTEGER transfer variables # | # #|#
R<Var No.> [:=<Var name>]
{,R<Var No.>[:=<Var name>]};
PAR REAL: Declaration of REAL transfer variables # | # #|#
R<Var No.> [:=<Var name>]
{,R<Var No.>[:=<Var name>]};
PAR PATTERN: Declaration of PATTERN transfer variables # | # #|#
R<Var No.>[:=<Var name>]
{,R<Var No.>[:=<Var name>]};
PAR BOOLEAN: Declaration of BOOLEAN transfer variables # | # #|#
R<Var No.>[:=<Var name>]
{,R<Var No.>[:=<Var name>]};
LOCAL INTEGER: Declaration of local INTEGER transfer # | # # | #
R<Var No.>[:=<Var name>] variables
{,R<Var No.>[:=<Var name>]};
LOCAL REAL: Declaration of local REAL transfer variables # | # # | #
R<Var No.> [:=<Var name>]
{,R<Var No.>[:=<Var name>]};
LOCAL PATTERN: Declaration of local PATTERN variables # | # #
R<Var No.>[:=<Var name>]
{,R<Var No.>[:=<Var name>]};
LOCAL BOOLEAN: Declaration of local BOOLEAN variables # | # # | #
R<Var No.>[:=<Var name>]
{,R<Var No.>[:=<Var name>]};
CONST: Declaration of constants # | # # | #
<Const. name>:=<Number>
{,<Const. name>:=<Number>};
POINTER: Declaration of R parameters as POINTERS # | # # | #
R<Var No.>[:=<Var name>]
{,R<Var No.>[:=<Var name>]};
LABEL: <Name> {,<Name>}; Label declaration # | # # | #
<Name>: Label for jump designation. In
the program the label is set
before the corresponding
statement.

Explanation :
* Function implemented

Function implemented, but skipped in the NC

6-2

© siemens AG 1990 All Rights Reserved

6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

6 Command overview
6.2 Declarations

Frame statement for declaration lists, central/global

CL 800 statement Function 805|810(820|840(850|880
EXTERNAL<List number>; Definition of an EXTERNAL file (contains #|# # | #
higher/level variables)
<List number>; 1...9999
CHANNEL NC or COM<Channel No.>; NC- or COM Channel No. #|# # | #
ID (<ID des.>); ID designation of subroutine #|# # | #
PW (<Password>); Password #|# # | #
ENDEXTERN End of declaration #|# # | #
Declaration of variables in EXTERNAL files
CL 800 statement Function 805|810(820|840(850|880
GLOBAL INTEGER: Declaration of global INTEGER variables #|# # | #
R<Var No.>[:=<Var name>] (channel-specific)
{,R<Var No.>[:=<Var name>]};
GLOBAL REAL: Declaration of global REAL variables # | # # | #
R<Var No.>[:=<Var name>] (channel-specific)
{,R<Var No.>[:=<Var name>]};
GLOBAL PATTERN: Declaration of global PATTERN variables # | # # | #
R<Var No.> [:=<Var name>] (channel-specific)
{,R<Var No.>[:=<Var name>]};
GLOBAL BOOLEAN: Declaration of global BOOLEAN variables # | # #
R<Var No.>[:=<Var name>] (channel-specific)
{,R<Var No.>[:=<Var name>]};
CENTRAL INTEGER: Declaration of central INTEGER variables #|# # | #
R<Var No.>[:=<Var name>]
{,R<Var No.>[:=<Var name>]};
CENTRAL REAL: Declaration of central REAL variables #|# # | #
R<Var No.>[:=<Var name>]
{,R<Var No.>[:=<Var name>]};
CENTRAL PATTERN: Declaration of central PATTERN variables #|# # | #
R<Var No.>[:=<Var name>]
{{R<Var No.>[:=<Var name>]};
CENTRAL BOOLEAN: Declaration of central BOOLEAN variables #|# # | #
R<Var No.>[:=<Var name>]
{,R<Var No.>[:=<Var name>]};
Explanation :
* Function implemented
Function implemented, but skipped over in the NC
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 6-3

SINUMERIK WS 800 A, (PJ)

6 Command summary 04.90
6.3 Repeat statements

6.3 Repeat statements
REPEAT loop
CL 800 statement Function 805|810(820(840(850|880
REPEAT <Statement>; Repeat statement with scanning of repeat * | * * | o*
UNTIL "Condition”; D condition at end
WHILE loop
CL 800 statement Function 805|810(820(840(850|880
WHILE "Condition” 1 Repeat statement with scanning of repeat i *|o*
DO <Statement>; condition at the start
WHILE INT loop
CL 800 statement Function 805|810(820(840(850|880
WHILE INT <Value 1>, <Value 2> Repeat statement with scanning of status of
DO <Statement>; a specific external input at the start o
FOR TO loop
CL 800 statement Function 805|810(820(840(850|880
FOR<Var>:= <Valuel>TO<Val.2>DO FOR TO loop (count loop, index is i *|o*
<Statement>; incremented)
FOR DOWNTO loop
CL 800 statement Function 805|810(820(840(850|880
FOR<Var>:= <Value 1>DOWNTO FOR DOWNTO loop (count loop, index is ** 1
<Value 2>DO decremented)
<Statement>;
Explanation:
* Function implemented
1) "Condition™ Comparison operator "Vop”
a) <Var>= Boolean variable = equal to
b) <Var>.<Const>=Bit from pattern (<Var>=pattern variable) <> not equal to
(<Const>= bhit number) > greater than
¢) <Var>"Vop” <Value> = Variable, pointer or constant >= greater than or equal to
d) Chain of conditions < less than
<= less than or equal to
6-4 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

6.4 Decision statements

6 Command summary
6.4 Decision statements

IF THEN ELSE branch

CL 800 statement

Function

805(810(820(840(850(880

IF "condition” 1)

THEN <Statement 1>;
[ELSE <Statement 2>;]
ENDIF;

IF THEN ELSE branch, with which the
program branches depending on
comparison between two variables based on
=, <> > >, <, <=

IF INT THEN ELSE branch

CL 800 statement

Function

805|810(820(840(850|880

IF INT <Value 1>, <Value 2>
THEN <Statement 1>;
[ELSE <Statement 2>;]
ENDIF;

IF THEN ELSE branch, with which the
program branches depending on the status
of an external input.

CASE branch

CL 800 statement

Function

805(810(820(840(850(880

[OTHERWISE :
ENDCASE;

CASE <Var> = <Value 1>=
<Statement 1>;

= <Value n>:
<Statement n>;
<Statement n+1>;]

CASE branch

6.5 Unconditional jump

Unconditional jump

CL 800 statement

Function

805|810(820(840(850|880

GOTO <Label>;

Unconditional jump to NC block

Explanation:
* Function implemented
1) "Condition”:

Comparison operator "Vop”

a) <Var>= Boolean variable = equal to
b) <Var>.<Const>=Bit from pattern (<Var>=Pattern variable) <> not equal to
(<Const>= Bit number) > greater than
c) <Var>"Vop” <Value> = Variable, pointer or constant >= greater than or equal to
d) Chain of conditions < less than
<= less than or equal to

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

6-5

6 Command summary
6.6 Data transfer, general

6.6 Data transfer, general

04.90

Data transfer: R parameter/R parameter

XCHG (<Varl>,<Var2>);

Exchange contents of variables

CL 800 statement Function Buf. mem. No. |805(810(820(840|850(|880

CLEAR (<Var>); Clear R parameter - ¥ x| *

<Var>=<Value>; Load variable with value - ** * | o*
* * * *

Data transfer: R parameter / input buffer memory for numerical variables

CL 800 statement Function Buf. mem. No. (805|810(820(840(850|880
CLEAR MIB Clear input buffer memory 0...149(249) O

(<Start input buffer mem. No.>, 0...499 * | o*
<End input buffer mem. No.);

<Var>=MIB Read input buffer memory 0...149(249) i

(<Input buffer mem. No.>); 0...499 **
MIB (<Input buffer Write into input buffer memory 0...149(249) x| *

memory No.>)=<Value>; 0...499 *|o*

Explanation:

* Function implemented

6-6

© siemens AG 1990 All Rights Reserved

6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

6.7 Data transfer: System memory into the R parameter

6 Command summary
6.7 Data transfer: System memory into the R parameter

Machine data

CL 800 statement Function Ch. No. Word or byte address Byte Bit addr. |[805 |810 | 820 | 840 | 850 | 880
<Var>= MDN NC machine data - 0 4999 - - * * ¥ *x
(<Word addr.>);
<Var>= MDNBY NC machine data, - 5000 6999 - - **x o
(<Byte addr.>); bytes
<Var>= MDNBI NC machine data, - 5000 6999 - 0.7 ** o
(<Byte addr.>,<Bit addr.>); bits
<Vars>= MDZ Cycle machine 0.16 |0.449, 1000..4149 - - *
(<Ch. No.>,<Word addr.>); data 0..8 0...449, 1000...4149 - - *
<Var>= MDZBY Cycle machine 0..16 |800..949, 7000...8049 - - *
(Ch. No.>,<Byte addr.>); data, bytes 0.8 800..949, 7000...8049 - - *
<Var>= MDZBI (<Ch. No.> Cycle machine 0..16 |800..949, 7000...8049 - *
<Byte addr. >, <Bit addr.>). data, bits 0..8 800..949, 7000...8049 - *
<Var>= MDP PLC machine data - 0 5999 - - * | *
(<Word addr.>); - 0 1999 - - **
<Var>= MDPBY PLC machine data, - 6000 8999 - - **
(<Byte addr.>); bytes - 2000 3999 - - * | *
<Var>= MDPBI PLC machine - 6000 8999 - o
(<Byte addr.>,<Bit addr.>); data, bits - 2000 3999 - * | *
<Var>= MDD Drive machine - 0x 256x 1) - - * *
(<Word addr.>); data 4000 4960
<Var>= MDDBY Drive machine - 244, 252x 1) 0/1 - *|*x
(<Word addr.>,<Byte>); data, bytes 4610 4630
<Var>=MDDBI (<Word Drive machine - 244x , 252x 1) on 0.7 **
addr.>, data, bits 4610 4630
<Byte>,<Bit addr.>);
Setting data
CL 800 statement Function Ch. No. Word or byte address Byte Bitaddr. |805 |810 | 820 840 | 850 | 880
<Var>= SEN NC setting data - 0 4999 - - | * I
(<Word addr.>);
<Var>= SENBY NC setting data, - 5000 9999 - - ** * | *
(<Byte addr.>); bytes
<Var>= SENBI NC setting data, - 5000 9999 - 0.7 x| * x| *
(<Byte addr.>,<Bit addr.>); bits
<Var>= SEZ Cycles setting 0..16 0 499 - - *
(<Ch. No.>,<Word addr.>); data 0..8 0 499 - - *
<Var>= SEZBY Cycles setting 0..16 800 949 - - *
(Ch. No.>,<Byte addr.>); data, bytes 0..8 800 949 - - *
<Var>= SEZBI (<Ch. No.>, Cycles setting 0..16 800 949 - *
<Byte addr.>,<Bit addr.>); data, bits 0.8 800 949 - *
Explanation:
* Function implemented
1) x=axis address
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 6-7

SINUMERIK WS 800 A, (PJ)

6 Command summary
6.7 Data transfer: System memory into the R parameter

04.90

Tool offsets

CL 800 statement Function TO range D No. T No. P No. 805 (810 | 820 | 840 (850 | 880
<Var>= TOS (<TO range.>, Tool offset 0..16 1...818 = 0..15 *
<D No.>,<P No.>); 0.8 | 1.409 - 0..15 *
0 1..99 - 0..7(9) * |
Zero offsets
CL 800 statement Function Ch. No. Group Axis No. Coarse/fine | 805 810 820 |840 | 850 | 880
<Var>= ZOA (<Group>, Settable zero offset - 1..24 0/1 *
<Axis No.>, (G54-G57) - 1.12 on *
<Coarseffine>); - 1.4 0/(1) ¥ *x
<Var>= ZOPR (<Group>, Programmable zero - lor2 1..24 - *
<Axis No.>); offset (G58, G59) - lor 2 1..12 - *
- lor2 1.4 - * | *
<Var>= ZOE (<Axis No..>); External zero offset - - 1..24 - *
from PLC - - 1.12 - *
- - 1.4 _ * | *
<Var>= ZOD (<Axis No.>); DRF offset - - 1..24 - *
- - 1.12 - *
- - 1.4 _ * | *
<Var>= ZOPS (<Axis No.>); PRESET offset - - 1..24 - *
- - 1.12 - *
- - 1.4 _ * | *
<Var>= ZOS (<Axis No.>); Total offset - - 1..24 - *
- - 1.12 - *
- - 1.4 _ * | *
<Var>= ZOADW (<Ch. No.>, Settable coordinate 0...16 - - *
<Group>, <Angle rotation 0..8 - - *
No.>); 0..3 - - x| *
<Var>= ZOPRDW (<Ch. No.>, Programmable 0..16 lor2 = - *
<Group>, <Angle coordinate rotation 0..8 lor2 - - *
No.>); 0..3 lor 2 - - x| *
Programmed setpoints
CL 800 statement Function Ch.No. | lmear [AxisNo. | Byte | Bit |g55(g10{g20 840|850 |880
rev. Spindle No. | addr. | addr.
<Var>= PRSS (<Ch. No.>, Programmed spindle 0..3 - 0.1 - - * *
<Spindle No.>); speed
<Var>= PRVC (<Ch. No.>, Programmed cutting 0..16 - = - - *
<Value 25); speed (Value 2=0) 0..8 - - - - *
1) _ _ _ * | %
<Var>= PCDA (Axis No.>, Programmed control - - 1.4 0/1 0..7 ¥ *
<Byte addr.>, word for digital axis
<Bit addr.>); drives - -
<Var>= PCDS (Spindle No.>, Programmed control - - 1 0.5] 0.7 * *
<Byte addr.>, word for digital spindle
<Bit addr.>); drives
Explanation:
* Function implemented
6-8 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

6 Command summary

6.7 Data transfer: System memory into the R parameter

Actual values

CL 800 statement Function Ch. No. AXiS No. Group 805 | 810 [820 | 840 | 850 880
Spindle No.
<Var>= ACPW (<Axis No.>); Axis position - 1..24 - *
workpiece-related - 1..12 - *
; 1.4 : * | *
<Var>= ACPM (<Axis No.>); Axis position - 1..24 - *
machine-related - 1..12 - *
- 1.4 - ¥ ox
<Var>= ACP (<Axis No.>); Actual axis position - 1..24 - *
- 1.12 - *
: * | *
<Var>= ACSP (<Spindle No.>); Actual spindle position - 0..6 - *
- 0.4 - *
} 0.2 _ * | *
<Var>= ACSS (<Spindle No.>); Actual spindle speed - 0..6 - *
- 0.4 - *
} 0.2 _ * | *
<Var>= ACAS (<Channel No.>); Axis number of the 0..16 - - *
current plane/master 0..8 - - *
spindle number 0..2 - - * *
<Var>= ACD (<Channel No.>); D function, actual 0...16 - - *
0.8 - - *
0 B _ * | *
<Var>= ACG (<Channel No.>, G function, actual 0...16 - 0..23 *
<Group>); 0..8 - 0..23 *
0 - 0..23 ¥ *x
Program data
CL 800 statement Function Ch. No. Bit addr. 805 | 810 | 820 [840 | 850 | 880
<Var>= SOB (<Channel No.>, Special bits 0...16,99 *
<Bit addr.>); 0..8,99 *
0..2,99 x| *
<Var>= PPCH; Actual channel No. - - * *
PLC signal bits
CL 800 statement Function PLC No. | DB/DXNo. | By addr | gy aqqr 1805|810 |820 |840 |850 880
Word addr.
<Var>= PLCI (<PLC No.>, PLC input bit 1.4 - 0..127 0.7 *
<Byte addr.>, 1.2 . 0..127 0.7 *
<Bit addr.>);
<Var>= PLCQ (<PLC No.>, PLC output bit 1.2 - 0..127 0..7 *
<Byte addr.>, - 0...127 0..7 *
<Bit addr.>);
<Var>= PLCF (<PLC No.>, PLC flag bit 1.2 - 0...255 0..7 *
<Byte addr.>, - 0...255 0..7 *
<Spindle No.>);
<Var>= PLCW (<PLC No.>, PLC data word bit 1.2 1...255/ 0...2043 0..15 *
<DB/ DX No.>, 1000...1255
<DW No>,<Bit addr.>); 1...255 0...255 0..15 *
Explanation:
* Function implemented
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 6-9

SINUMERIK WS 800 A, (PJ)

6 Command summary
6.7 Data transfer: System memory into the R parameter

04.90

PLC signal bytes

CL 800 statement Function PLCNo. | DB/DXNo. | Byeaddr (g g4 (805|810 |820 |840 [850 [880
Word addr.

<Var>= PLCIB (<PLC No.>, PLC input byte 1.4 - 0..127 *
<Byte addr.>); 1.2 - 0..127 *

<Var>= PLCQB (<PLC No.>, PLC output byte 1.4 - 0..127 *
<Byte addr.>); 1.2 - 0..127 *

<Var>= PLCPB (<PLC No.>, PLC peripheral byte 1.4 - 0..127 *
<Byte addr.>); 1.2 . 0..127 *

<Var>= PLCFB (<PLC No.>, PLC flag byte 1.4 - 0..255 *
<Byte addr.>); 1.2 - 0..255 *

<Var>= PLCDBL (<PLC No.>, PLC data word, left 1.4 1...255/ 0...2043 *
<DB/DX No.>, 1000...1255
<Word addr.>); 1.2 1..255 0..255 *

<Var>= PLCDBR (<PLC No.>, PLC data word, right 1.4 1...255/ 0...2043 *
<DB/DX=Nr.>, 1000...1255
<Word addr.>); 1.2 1..255 0..255 *

PLC signal words

Word addr.
CL 800 statement Function PLC No. | Timer addr. DIM ident. 805 (810 | 820 | 840 (850 | 880
Count. addr.

<Var>= PLCIW (<PLC No.>, PLC input word 1.4 0...126 0...9, 100...109 *
<Word addr.>, 1. 0...126 0...9, 100...109 *
<DIM ident.>;

<Var>= PLCQW (<PLC No.>, PLC output word 1.4 0..126 0...9, 100...109 *
<Word addr.>, 1. 0...126 0...9, 100...109 *
<DIM ident.>);

<Var>= PLCPW (<PLC No.>, PLC peripheral word 1.4 0..126 0...9, 100...109 *
<Word addr.>, 1. 0...126 0...9, 100...109 *
<DIM ident.>);

<Var>= PLCFW (<PLC No.>, PLC flag word 1.4 0...254 0...9, 100...109 *
<Word addr.>, 1. 0...254 0...9, 100...109 *
<DIM ident.>);

<Var>= PLCT (<PLC No.>, PLC timer 1.4 0..127 - *
<Timer addr.>); 1. 0...254 - *

<Var>= PLCC (PLC No.>, PLC counter 1.4 0...127 - *
<Counter addr.>);; 1. 0..254 - *

Explanation:
*

Function implemented

6-10

© siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

04.90

6 Command summary
6.7 Data transfer: System memory into R parameter

PLC signal data words

CL 800 statement Function PLC No| DB/DX No. |Word No. g\(;v DIMident. | go5 (810 [820 [840 | 850 | 880
<Var>= PLCDF (<PLC- No.>, PLC data word, 1.4 1...255/ 0...2043 1,2 0...9, *
<DB/DX No.>, fixed point 1000...1255 10...19,
<Word No.>, 1.2 1..255 0.255 | 12 | 0.9, *
<No.DW>, 10...19
<DIM ident.>);
<Var>= PLCDB (<PLC No.>, PLC data word, BCD 1.4 1...255/ 0...2043 | 1..3 | 100...109 *
<DB/DX No.>, 1000...1255
<Word No.>, 1.2 1...255 0...255 1..3 | 100...109 *
<No.DW>,
<DIM ident.>);
<Var>= PLCDG (<PLC No.>, PLC data word, 1.4 1...255/ 0...2043 - *
<DB/DX No.>, floating point 1000...1255
<Word No.>); 1.2 1...255 0...255 - *
Alarms
CL 800 statement Function Ch. No. 805 | 810 [820 [840 | 850 880
<Var>= ALNP (); NC alarms - O
Alarm pointers
CL 800 statement Function Ch. No. 805 | 810 [820 [840 | 850 880
<Var>= ALNPZ(); NC alarm pointer - * |
System memory
) Axis No.) 805 |810 | 820 | 840 | 850 [880
CL 800 statement Function Spindle |Byte Bit addr.
No. addr.
Unit No.
<Var>= RSDA (<Axis No..>, Axis status for digital 1.4 0/1 0..7 * *
<Byte addr.>, drives
<Bit addr.>);
<Var>= RSDS (<Spindle No.>, Spindle status for 1 0.3 0..7 * *
<Byte addr.>, digital drives
<Bit addr.>);
<var>= RSDD (<Unit No.>, Unit status for digital 112 on 0..7 x| *
<Byte addr.>, drives
<Bit addr.>);
<Var>= AGS (<Spindle No.>); Active gearstage 0/1 * *
Explanation:
* Function realized
© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 6-11

SINUMERIK WS 800 A, (PJ)

6 Command summary 04.90
6.8 Data transfer: R parameter into system memory
6.8 Data transfer: R parameter into system memory
Machine data
CL 800 statement Function Ch. No. Word or byte addr. Byte Bit addr. |[805 810 | 820 | 840 | 850 | 880
MDN NC machine - 0 .. 4999 - * * * *
(<Word addr.>)=<Val.>; data
MDNBY NC machine data, - 5000 6999 - i **x
(<Byte addr.>)=<Val.>; bytes
MDNBI (<Byte addr.>, NC machine data, - 5000 6999 0.7 * | * **
<Bit addr.>) =<Value>; bits
MDZ (<Channel No.>, Cycle machine 0..16 |0..449, 1000..4149 - - *
<Word addr.>) =<Val.>; data 0..8 0...449, 1000...4149 - - *
MDZBY (<Channel No.>, Cycle machine 0..16 | 800..949, 7000...8049 - - *
<Byte addr.>) =<Val.>; data, bytes 0..8 800..949, 7000...8049 - - *
MDZBI (<Channel No.>, Cycle machine 0..16 | 800..949, 7000...8049 - *
<Byte addr>,<Bit addr.>) data, bits 0..8 800..949, 7000...8049 - *
=<Value>;
MDP PLC machine - 0 .. 5999 - ¥
(<Word addr.>) =<Val.>; data N 0 .. 1999 - * *
MDPBY PLC machine data, - 6000 8999 - o
(<Byte addr.>) =<Val.>; bytes - 2000 3999 - * *
MDPBI (<Byte addr.>, PLC machine data, - 6000 8999 o
<Bit addr.>) =<Value>; bits - 2000 3999 I
MDD Drive machine - 88x .. 256x 1) - - * *
(<Word addr.>) =<Val.>; data 4220 4960
MDDBY (<Word addr.>, Drive machine - 244x 4610 1 on - x| *
<Byte>) =Value>; data, bytes
MDDBI Drive machine . 244x , 4610 1 o1 0.7 * |
(<Word addr.>,<Byte>, data, bits
<Bit addr.>)=<Value>;
Setting data
CL 800 statement Function Ch. No. Word or byte addr. Byte Bit addr. | 805 [810 | 820 840 | 850 | 880
SEN NC setting data - 0 .. 4999 - x| * I
(<Word addr.>) =<Val.>;
SENBY (<Byte addr.>) NC setting data, - 5000 9999 - * | * **
=<Value>; bytes
SENBI (<Byte addr.>, NC setting data, - 5000 9999 0.7 * | * **
<Bit addr.>) =<Value>; bits
SEZ (<Channel No.>, Cycle setting data 0..16 0 499 - - *
<Word addr.>) =<Val.>; Cycles setting 0..8 0 .. 499 - - *
SEZBY (Channel No.>, data,bytes 0...16 800 .. 949 - - *
<Byte addr.>) =<Val.>; Cycles setting 0..8 800 .. 949 - - *
SEZBI (<Channel No.>, data,bits 0...16 800 .. 949 - *
<Byte addr.> <Bit 0..8 800 .. 949 - *
addr.>) =<Value>;

Explanation:
*

1) x=Axis address

6-12

Function implemented

© siemens AG 1990 All Rights Reserved

6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

6 Command summary

6.8 Data transfer: R parameter into system memory

Tool offset

CL 800 statement Function TO area D No. T No. P No. 805 (810 | 820 | 840 | 850 (880

TOS (<TO area><D No.>, Tool offset 0..16 | 1..818 - 0..15 O
<P No.>) =<Value>; 0..8 1...409 - 0..15

0 1..99 - 0..7(9) *|*

TOAD (<TO area><D No.>, Additive tool offset 0.16 | 1..818 - 0..15 o

<P No.>) =<Value>; 0...8 1...409 - 0...15
0 1..99 - 0..7(9) x|

Zero offset

CL 800 statement Function Ch. No. Group Axis No. Coarse/fine |805 |810 | 820 [840 850 | 880

ZOA Adjustable zero offset - 1.4 1..24 0/1 *
(<Group>,<Axis No.>, (G54-G57) - 1.4 1..12 0/1 *
<coarseffine>) =<Value>; - 1.4 1.4 0/(1) * *

ZOFA Adjustable zero offset - 1.4 1..24 0/1 *
(<Group>,<Axis No.>, (G54-G57) additive - 1.4 1..12 0/1 *
<coarseffine>) =<Value>; - 1.4 1.4 0/(1) * *

ZOPR Programmable zero - 1od.2 1..24 - *
(<Group>,<Axis No.>) offset (G58, G59) - 1o0d.2 1..12 - *
=<value>; - 1od2 1.4 - ¥ *x

Z0D DRF offset - - 1..24 - *
(<Axis No.>,) =<Value>; - - 1...12 - *

- - 1.4 - ¥

ZOPS PRESET offset - - 1.24 - *

(<Axis No.>,) =<Value>; - - 1.12 - *
- - 1.4 - *|*

ZOADW (<Ch. No.>, Adjustable 0..16 1.4 - - *
<Group>,<Ch. No., coordinates rotation 0..8 1.4 - - *
Angle No.>) =<Value>; 0.3 1.4 - - * *

ZOFADW (<Ch. No.>, Adjustable 0..16 1.4 - - *
<Group>,<Angle No.>) coordinates rotation 0..8 1.4 - - *
=<Value>; additive 0..3 1.4 - - * *

ZOPRDW (<Ch. No.>, Programmable 0..16 1o0d.2 - - *
<Group>,<Angle No.>) coordinates rotation 0..8 1od.2 - - *
=<Value>; absolute 0..3 1od.2 - - * *

ZOFPRDW (<Ch. No.>, Programmable 0..16 1od.2 - - *
<Group>,<Angle No.>) coordinates rotation 0..8 1od.2 - - *
=<value>; additive 0.3 1od.2 - - * | *

Explanation:
* Function implemented
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 6-13

SINUMERIK WS 800 A, (PJ)

6 Command summary 04.90
6.8 Data transfer: R parameter into system memory
Programmed setpoints
CL 800 statement Function Ch. No. Linear/ | AxisNo. | Byte | Bit |g55 1510|820 {840 |850 |880
rev. Spindle No. | addr. | addr.
PRAP (<Axis No.>) =<Value>; Programmed axis - - 1..24 - - *
position - - 1..12 - - *
. . 1.4 . : * | *
PRSS (<Spindle No.>) =<Value>; Programmed spindle 0,1 - - * *
speed
PRAD ()=<Value>; Programmed radius - - - - - * * * *
PANG ()=<Value>; Programmed angle = - - - B * * * *
PRIP (<Axis No.>) =<Value>; Programmed - - 1.24 - - *
interpolation parameter - - 1..12 - - *
- - 1.4 - - * | *
PCDA (<Axis No.>, Progr. control word for - - 1.4 0/1 4..6 * *
<Byte addr.>, <Bit addr.>) digital axis drive
PCDS Progr. control word for - - 1 0..5 | undef. * *
(<Spindle No.>,<Byte addr.>, digital spindle drive
<Bit addr.>) =<Value>;
PLC signal bits
. Byte addr. "
CL 800 statement Function PLC No. DB/DX No. Bitaddr. |805 810 | 820 [840 850 | 880
Word addr.
PLCF (<PLC No.>,<Byte addr.>, PLC flag bit 1.4 - 0..255 *
<Bit addr.>) =<Value>; 1... - 0...255 *
PLCW (<PLC No.>, PLC data word bit 1.4 1...255/ 0...2043 .15 *
<DB/DX No.>, <DW No.>, 1000...1255
<Bit addr.>) =<Value>; 1.2 1..255 0..255 .15 *
PLC signal bytes
CL 800 statement Function PLCNo. | DB/DXNo. | Byteaddr gy g4 (805|810 |820 |840 [850 [880
Word addr.
PLCFB (<PLC No.>, PLC flag byte 1.4 - 0...255 *
<Byte addr.>,) =<Value>; 1. - 0...255 *
PLCDBL PLC data word, left 1.4 1...255/ 0...2043 *
(<PLC No.>,<DB/DX No.>, 1000...1255
<Word addr.>)=<Value>; 1.2 1..255 0..255 *
PLCDBR PLC data word, right 1.4 1...255/ 0...2043 *
(<PLC No.>, <DB/DX No.>, 1000...1255
<Word addr.>) =<Value>; 1.2 1..255 0...255 *
PLC signal words
CL 800 statement Function PLC No. | Word addr. Dim ident. 805 (810 | 820 | 840 (850 | 880
PLCFW(<PLC No.><Word addr>, PLC flag word 1.4 0..254 0...9, 100...109 *
<DIM ident.>) =<Value>; 0...254 0...9, 100...109 *

Explanation:
* Function implemented

6-14

© siemens AG 1990 All Rights Reserved

6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

6 Command summary
6.8 Data transfer: R parameter into system memory

PLC signals, data words

CL 800 statement Function PLC No.| DB/DX No. | Word No g\(;v DIMident. | go5 (810 [820 [840 | 850 | 880
PLCDF(<PLC No.>,<DB/DX No.>, PLC data word, fixed 1.4 1...255/ 0...2043 1,2 0...9, *
<Word No.>,<Qty. DW>, point 1000...1255 10...19
<DIM ident.>) =<Value>:; 1.2 1..255 0.255 | 12 0..9, *
10...19
PLCDB(<PLC No>,<DB/DX No.>, PLC data word, BCD 1.4 1...255/ 0...2043 1..3 | 100...109 *
<Word No.>,<Qty. DW>, 1000...1255
<DIM ident.>) =<Value>; 1.2 1...255 0...255 1..3 | 100...109 *
PLCDG(<PLC No>,<DB/DX No.>, PLC data word, floating 1.4 1...255/ 0...2043 - - *
<Word No.>) =<Value>; point 1000...1255
1.2 1.255 | 0.285 | - - *
Alarms
CL 800 statement Function Alarm No. 805 | 810 [820 [840 | 850 880
ALNZ () = <Alarm No.>; Cycle alarms 4000...4299, 5000...5299 *
4000...4299, 5000...5209 ¥ *
System memory
CL 800 statement Function Spindle No. Gear stage 805 (810 | 820 | 840 | 850 (880
SATC (<Spindle No.>, Spindle acceleration 0,1 1.8 * *
<Gear stage>) =<Value>; time constant
Explanation:
* Function implemented
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 6-15

SINUMERIK WS 800 A, (PJ)

6 Command summary 04.90

6.9 Mathematical and logical functions

6.9 Mathematical and logical functions
Value assignment, arithmetic operations
CL 800 statement Function 805|810(820(840(850|880
<Var>=<Value 1> + <Value 2>; Addition * [* * [*
<var>=<Value 1> - <Value 2>; Subtraction o o
<Var>=<Value 1> * <Value 2>; Multiplication x| x|
<Var>=<Value 1> | <Value 2>; Division * [* * [*
(chain calculation and parentheses also
permitted)
Arithmetic functions
CL 800 statement Function 805|810(820(840(850|880
<Var>=ABS (<Value >); Generate absolute value i *o*
<Var>=SQRT(<Value >); Square root * | * * | o*
<Var>=SQRTS (<Val. 1>,<Val. 2>); Root of sum of squares o * | o*
Arithmetic procedures
CL 800 statement Function 805|810(820(840(850|880
INC (<Var>); Increment | * i
DEC (<Var>); Decrement ** ¥
TRUNC (<Var>); Integral part * | o* i
Trigonometric functions
CL 800 statement Function 805|810(820(840(850|880
<var>=SIN (<Value >); Sine x| * i
<Var>=COS (<Vvalue >); Cosine i *|o*
<Var>=TAN (<Value >); Tangent 0 ¥
<var>=ARC SIN (<Value >); Arc sine *|* i
<Var>=ANGLE (<Val. 1>,<Val. 2>); Angle between two vector components I * | o*
Logarithmic functions
CL 800 statement Function 805|810(820(840(850|880
<Var>=LN (<Value >); Natural logarithm O *o*
<Var>=INV LN (<Value >); Exponential function 1

Explanation:
* Function implemented

6-16 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

6 Command summary

6.10 NC-specific functions

Logical functions

CL 800 statement Function 805(810(820(840(850(880
PATTERN data type
<Var>=<Varl> OR <Value>; OR *o* o
<Var>=<Varl> XOR <Value>; EXCLUSIVE-OR x| * *|o*
<Var>=<Varl> AND <Value>; AND i | *
<Var>=<Varl> NAND <Value>; NAND *o* O
<Var>=NOT <Wert>; NOT i I
BOOLEAN data type
<Var>=<Varl> ORB <Value>; OR bit i | *
<Var>=<Varl> XORB <Value>; EXCLUSIVE-OR bit ¥ * **
<Var>=<Varl> ANDB <Value>; AND bit i I
<Var>=<Var1> NANDB <Value>; NAND bit *o* I
<Var>=NOTB <Value>; NOT bit x| * * [*
Logical procedures
CL 800 statement Function 805(810(820(840(850|880
CLEAR BIT (<Var>.<Bit No.>); Clear bit * | o* **
SET BIT (<Var>.<Bit No.>); Set bit *ox o

6.10 NC-specific functions
Changing the program and machine reference points
CL 800 statement Function 805(810(820(840(850(880
POS MSYS; Input of a position referred to the machine *o* O

actual value system (effective block by
block)

Explanation:

* Function implemented

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 6-17

SINUMERIK WS 800 A, (PJ)

6 Command summary
6.10 NC-specific functions

04.90

Single functions

CL 800 statement Function 805|810(820(840(850(880
<Varl>=PREP REF (<Vvar2>); Reference preparation I *o*
Varl:output data from Varl onwards
Var2:input data from Var2 onwards
<Var1>=INT SEC (<Var2>,<Var3>); Intersection computation o *o*
Varl:output data from Varl onwards
Var2:first contour from Var2 onwards
Var3:2nd contour from Var3 onwards 2)
<Var> = PREP CYC; Prepare start for cycles o o
Var:output data from Var onwards
STOP DEC; Stop decoding until buf. mem.empty ** *|o*
STOP DEC1; Stop decoding until buffer memory is empty i ¥
at coordinate rotation
Measurement functions
CL 800 statement Function 805|810(820(840(850|880
<Var>=MEAS M (<Value>); Flying measurement actual value *|o* o
relative to machine data
Var: data stored from R parameter onwards
Value: No. of measuring input (effective
block-by-block for all programmed
axes)
Program influence
CL 800 statement Function 805|810(820(840(850|880

REL (<Valuel>,<Value2>);

INTA (<Valuel><Value2>,<Value3>);

Read-in inhibit via external input
Valuel : byte address 1 or 2
Value2 : bit address 0...7

Axis-specific clear remaining path via

external input

Valuel : axis number 0...4
Value2 : byte address 1 or 2
Valuel : bit address +/- 0...7

Explanation:
* Function implemented
2) atthe present time not possible

6-18

© siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

04.90

6.11

I/O statements

6

Command summary
6.11 1/O statements

NC I/O functions

screen display

CL 800 statement Function Range Menu No. 805 | 810 [820 | 840 | 850 | 880
WRT PIC (<Range>,<Menu No.>); Menu selection from NC 0/1 1..254 * *
program
. o * | *
RECALL PIC Return jump to initial - -
menu
1/0 functions, general
CL 800 statement Function No. V24 [Ch. No. Data type 805 (810 | 820 | 840 | 850 (880
PORT (<No. V24>); Select V24 interface 1/2 - - * *
QOUTP ZOA (<Channel No.>); Output zero offsets via - 0..3 - * *
V24
OUTP DATA <Data type>, Output data via V24 - - 1.9 **
<Start addr.>,
<End addr.>);
OUTP PARA (<Channel No.>, Parameter output via V24 - 0..3 - * *
<Start addr.>,
<End addr.>);
INP (<Data type>); Read-in data via V24 - - 0..10 **
OUTP ETX; Output ETX via V24 - - - *|*
Operator control functions
CL 800 statement Function No. V24 [Ch. No. Data type 805 | 810 [820 [840 | 850 | 880
CHAN = <Channel No.>; Select channel No. for - 1..3 * *

Explanation:

* Function implemented

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

6-19

Section 7

-Examples-
Overview:
7.1 Program structure overview
7.2 Program nesting for IF THEN ELSE branching
7.3 Program example: Hole pattern
7.4 Program example: Deep-hole drilling cycle

04.90

7 Examples

7.1 Program structure overview

» CL 800 programming

(**** Program header ****)

PROGRAM 150;

CHANNEL NC 0;

ID (0-EXAMPLE-25.02.86-KUB-*SIEMENS*850-3);

(**** Declaration part ****)

CENTRAL: "VARCEN”; (* Reference to variables which are *)
GLOBAL: "LISTE1"; (* declared in separate lists *)

7 Examples
7.1 Program structure overview

PAR REAL:R0O:=Name, R10:=X_value; (* Variables which are declared in
the program *)

LOCAL REAL:R60:=z_value, R61:=y value;
(**** Statement part ****)
BEGIN
y_value= X_value+ Name * 2
z_value= SIN (y_value) + Name;
(:NOTE:); (* DIN programming *)

(* Further statements in the statement part *)

END.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

7-1

7 Examples 04.90
7.2 Program nesting for IF THEN ELSE branching

7.2 Program nesting for IF THEN ELSE branching

¢ Flow diagram

* Statements *

v

Then R10 > R11 Else
Then AJ Else
< R14>=RI15 J
\4 \4 \ 4
* Statement 1 * * Statement 2 * * Statement 3 *

»ld
L il

\ 4

* Statements *

e Structogram

R10>R11
Then Else
R14>=R15
* Statement 1* h |
Then Else
* Statement 2 * * Statement 3 *
* Statements *

7-2 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

7 Examples

7.3 Program example: Hole pattern

» CL 800-Programming
(**** Program header ****)

PROGRAM 30;
CHANNEL NC 1;

ID (0-EXAMPLE25-...):;
PW (NEST);

(**** Declaration part ****)

PAR REAL: R10, R11, R14, R15;
'(**** Statement part ***¥)

BEGIN

IF R10 > R11 THEN
BEGIN
< Statements >;
END;
ELSE
IF R14 > =15 THEN
BEGIN
< Statements >;
END;
ELSE

ENDIF;
ENDIF;

END.

7.3 Program example: Hole pattern

* Flow diagram

* |nitialization *
* Approach starting point *
* Call up machining program *

A
No._act. <No. >

<
y
t.

no

yes

A 4

PRAP (1)=x_value; PRAP (2)=y_value;
* Call machining program *
No._act.=No._act.+1

END |

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

7-3

7 Examples 04.90
7.3 Program example: Hole pattern

e Structogram

* |nitialization *
* Starting point *
* Call up machining program *

No._act <number

PRAP (1) = x_value; PRAP (2)=y_value

* Call machining program *

No._act. =No._act.+1

e CL 800-Programming

(**** Program header ****)

PROGRAM 101;

CHANNEL NC 4;

ID (0-HOLE PATTERN-25.02.86-HFH-PJP: PC16/11);

(**** Declaration part ****)

PAR REAL: R20:=subroutine_No.,R21:=start_X,R22:=start_Y,
R30:=distance,R31:=alpha;

PAR INTEGER: R32:=number;

LOCAL REAL: R60:=x_value,R61:=y_value,R62:=beta;
LOCAL INTEGER: R70:=No._act.;

(**** Statement part ****)
BEGIN
No._act.=1 (* Initialization *)

y_value=SIN (Alpha) * distance;
x_value=SIN (90 - Alpha) * distance; LF;

(:G90 G00:); PRAP (1)=start_X; PRAP (2)=start_Y; LF; (* Approach starting point *)
(:G01 F200 L=R20 P1:); LF; (* Call machining program *)
WHILE No._act. < number DO
BEGIN
LF; (:G91 GO0O0:); PRAP (1)=x_value; PRAP (2)=y_value; LF;
(:G01 F200 L=R20 P1:); LF; (* Call machining program *)
No._act. =No._act.+1
END;
END.
7-4 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 7 Examples
7.4 Program example: Deep-hole drilling cycle

7.4 Program example: Deep-hole drilling cycle

* Flow diagram

* Safety distance in R78 *

* Rapid traverse to starting point *
* First drilling depth absolute *

* Endpoint for cut distribution *

v

l then act._depth> end_deg else

< A 4

|

e_depth=start_Z+distance_1

act._depth>end deg >
yes

* Drill with 3rd axis *

* Rapid traverse depth *

* Dwell time at drill depth *
* Return to starting point *
* Calc. value for scan *

then ¢

else
—< value > DEG_ref. >j
v

* New depth absolute™ | | . Neyy drill depth
* Rapid traverse to absolute *
old drill depth *

| 8

* Remaining drill depth *
* Half remaining drill depth *
* New drill depth absolute *

<
|‘

no
count>0 >

¢ yes

* Drill to current depth *

* New rapid traverse depth *
* Dwell time at drill depth *

* Return to starting point *

v

then
Q act._depth > drill_E else

\ 4

* Dwell time at
starting point *

| <> Count=Count -1

v v

* End of cycle *

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 7-5
SINUMERIK WS 800 A, (PJ)

7 Examples 04.90
7.4 Program example: Deep-hole drilling cycle

e Structogram

* Safety distance in R78 *

* Rapid traverse to starting point *
* First drill depth, absolute *

* Endpoint for cut distribution *

act._depth > end_deg

THEN ELSE
act._depth> end_deg e_depth = start_z+distance_1

act._depth> end_deg

* Drill with 3rd axis *

* Rapid traverse depth *

* Dwell time at drill depth *

* Return to starting point *

* Calculated value for scan *

value> deg_ref.

Then Else
* New depth, * New drill depth,
absolute * absolute *

* Rapid traverse
to old drill depth *

* Remaining drilling depth *
* Half remaining drilling depth *
* New drilling depth, absolute *

Counter >0

* Drill to current depth *

* New rapid traverse depth *
* Dwell time at drill depth *

* Return to starting point *

act._depth>drill_E
Then

* Dwell time at starting point *

Count=Count -1

End of cycle

7-6 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

» CL 800-Programming

(**** Program header ****)

PROGRAM 81;

CHANNEL NC 2;

ID (O-TDRILL-25.02.86-HFH-CYCLE/B/850/);
PW (GENERAL);

(**** Declaration part ****)

7 Examples
7.4 Program example: Deep-hole drilling cycle

PAR REAL: R22:=start_Z,R24:=deg_ref, R25:=drill_1,R26:=drill_E,

R27:=dwell_A, R28:dwell_B;
R62:=act._depth, R63:=end_deg, R64:=value, R77,

LOCAL REAL:

R78=dist._1, R66:=remain., R68:=e_depth;

LOCAL INTEGER: R67, R93:=counter;
(**** Statement part ****)
BEGIN

counter= 2; LF;

R77=PREP CYC; LF;

(:GO0 G64 G90:); PRAP (3)=start_Z; LF;
act._depth=start_Z - drill_1;

end_deg= drill_E + Deg_ref;
value=drill_1; LF;

IF act._depth> end_deg THEN
WHILE act._depth> end_deg DO
BEGIN

LF; (:G1:); PRAP (3) = act._depth; LF;
e_depth=act._depth+dist._1; LF;
(:G4 F=R27:); LF;
(:G0:); PRAP (3)=start_Z; LF;
(:G4 F=R28:); LF
value=value- deg_ref.;

IF value> deg_ref. THEN
BEGIN

LF; act._depth=act._depth-value; LF;

(:GO0:); PRAP (3)=e_depth; LF;
END;
ELSE act._depth=act._depth- deg_ref;
ENDIF;
END;
ELSE e_depth=start_Z+dist._1;
ENDIF;

remain.=e_depth - dist._1;remain.=remain.- drill_E;

remain.=remain./ 2;
act._depth= drill_E +remain.;

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

(*Safety distance in R78%)
(*Rapid traverse to start point*)
(*First drilling depth. absolute*)
(*Endpoint for cut distribution*)

(*Scan whether cut distribution*)

(*Drill with 3rd axis*)

(*Rapid traverse depth*)
(*Dwell time at drilling depth*)
(Return to starting point*)
(*Dwell time at starting point*)
(*Computed value for scan*)

(*New depth, absolute*)
(*Rapid traverse to old drilling depth*)

(*New drilling depth, absolute*)

(*Intermediate calculation®)

(*Remaining drilling depth*)
(*Half-remaining drilling depth?*)
(*New drilling depth, absolute*)

7-7

7 Examples
7.4 Program example: Deep-hole drilling cycle

WHILE counter> 0 DO
BEGIN
LF; (:G1:); PRAP (3) = act._depth; LF;
e_depth=act._depth+ 1; LF;
(:G4 F=R27:); LF;
(:G0:); PRAP (3)=start_zZ; LF;
IF act._depth>drill_E THEN
BEGIN
LF; (:G4 F=R28:); LF;
act._depth=drill_E;
END;
ENDIF
count=count - 1;
END;

END.

7-8

04.90

(*Drilling loop*)

(*Drill to current depth*)

(*New rapid traverse depth*)
(*Dwell time at drilling depth*)
(*Return to start point*)

(*Last drilling depth reached?*)

(*Dwell time at the start point*)

(*End of cycle*)

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

Section 8

-Using the interactive editor-

Overview:
8.1 General
8.2 Interactive editor operating modes

8.2.1 Functions in the display mode
8.2.2 Functions in the command mode

04.90 8 Interactive editor operation
8.1 General

8 Using the interactive editor

8.1 General

After the editor has been called using the "interactive operation” menu, the editor and the
source file are read into the main memory.
The following window is displayed if the source file still does not exist.

Note:

CL 800.ZPQ:

File not available.

Setup again?

The new source file (e.g. CL 800.ZPQ) is stored, if the pad

re——"

| Yes | is selected.

L———a

Finally, the first screen page and the status line of the editor are output, after which the editor
waits for an input.

A terminated line is immediately analyzed. The cursor is positioned at the next line if it was
error-free, otherwise it remains at the line analyzed as erronous, at that position where an error
was found. An error message is issued. The error can be corrected immediately and
processing continued.

For very large files (more than 700 lines) it may be necessary to store data in temporary files
in order to create space in the main memory. With this type of data management, the word
WAIT always appears in inverse video near the actual cursor position and the cursor itself is
switched-off. No further input should be made until the data management is completed
(whereby the word WAIT disappears and the cursor reappears), in order to be able to respond
to possible errors.

Data management normally lasts 1-3 seconds; however it can be significantly longer for
lengthy operations, such as long jumps in the file. The editor does not accept any inputs
during this time.

© Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02 8-1
SINUMERIK WS 800 A, (PJ)

8 Interactive editor operation 04.90
8.2 Interactive editor operating modes

8.2 Interactive editor operating modes
The editor has two possible modes:

¢ Display mode
¢ Command mode

In the display mode , the selected file is edited. Data can be created, deleted and modified in
this mode. The cursor can be positioned and text inserted. The line is analyzed when termina-
ted with the RETURN key. In the event of an error, the cursor is positioned where the error
was found.

A blank line (1) and status line (2) are located under the data where the current file position is
displayed .

Example :

INTERACTIVE PROCESSING: WS 800A/LOADED 1

Vv0.01 SHIFT+F1=HELP

IF ERROR_NR=0 THEN
BEGIN
D_NR2=TOS(TO_RANGE, DELETE_D, 10);
R86=0;
R87=16;
WHILE R86<R87 DO
BEGIN
TOS (TO_RANGE, DELETE_D, R86)=0;
R86=R86+R98;
END;
WHILE D_NR2<>0 DO
BEGIN
DELETE_D=0O_NR2;
D_NR2=TOS(TO_RANGE, DELETE_D, 10);
R86=0;
R87=16;
WHILE R86<R87 DO
BEGIN

8-2 © Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 8 Interactive editor operation
8.2 Interactive editor operating modes

In the command mode the file can be viewed (scrolled) without analysis. Editor commands
can be input. The so-called command prompt ™*” identifies when the command mode is ready
for input.

INTERACTIVE PROCESSING: WS 800A/LOADED 1

V0.01 SHIFT+F1=HELP

BEGIN
D_NR2=TOS(TO_RANGE, DELETE_D, 10);
R86=0;

R87=16;
WHILE R86<R87 DO
BEGIN
TOS (TO_RANGE, DELETE_D, R86)=0;
R86=R86+R98:
END;
WHILE D_NR2<>0 DO
BEGIN
DELETE_D=0O_NR2;
D_NR2=TOS(TO_RANGE, DELETE_D, 10);
R86=0;
R87=16;
WHILE R86<R87 DO
BEGIN

LIN 58 COL 15 REM 64

Mode change:

The display mode and command mode are selected with the F1 function key.
F1 I This key is located in the function keypad. However, as no analysis is

realized in the command mode, the current file position is again selected
which was available when the display mode was exited, when the display
mode is again selected with the function key F1. If scrolling had taken place,
then this position will be generally different than the pseudo cursor position.
The pseudo cursor always marks the current position in the file, and consists
of the inverse-video representation of the current character, whose position in
the file is to be displayed in the status line. The JP command must be input
(jump to pseudo cursor), if a jump is to be made explicitly to this position
(which may require program re-analysis).

© Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02 8-3
SINUMERIK WS 800 A, (PJ)

8 Interactive editor operation 04.90
8.2 Interactive editor operating modes

Help mask:

Contrary to the WS 800 configuring station, there is no second second screen available for a
help mask. Thus, in the editor mode, a help screen can be called at any time.

The editor mode is briefly interrupted using the key sequence G SHIFT I F1 l

and a help mask is inserted with the following commands.

F1 Mode change SHIFT+F1 Help information

F2 Insertion on/off SHIFT+F2 Cut line

F3 Save data SHIFT+F3 -

F4 Last command active SHIFT+F4 Copy line

F5 Undo SHIFT+F5 Delete line from cursor onwards
F6 - SHIFT+F6 Paste line

F7 Jump left by one word SHIFT+F7 Jump to line start

F8 Jump right by one word SHIFT+F8 Jump to end of line

F9 - SHIFT+F9 Delete line

F10 - SHIFT+F10 -

1. Help mask

When the

commands which can only be used in the command mode.

Cycle editor commands

EQ End without storage

EX End with storage

us Save without end

LD Load file

JP Jump to pseudo cursor position

LOCn Jump to line n
| (+/-/In) Automatic indentation
(Onloff indentation n)

2. Help mask

The display mode is again selected after terminating with

8-4 © Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 8 Interactive editor operation
8.2.1 Functions in the display mode

8.2.1 Functions in the display mode

In addition to entering alphanumeric characters, a whole series of functions can be executed in
the display mode. If not otherwise specified, the functions are permitted in the display mode
and in the command mode, however their effect can be different.

In the following, <CR> always means the carriage return + line feed, generated by actuating
the RETURN key.

Cursor control functions:

:I Shift cursor one line up. The column position in the new line is governed by
T the line length and the current column position (the cursor can never be
positioned to the right of the end of line). Only a limited number of lines can
be rapidly be gone back (at the present time: 9 lines), as the analysis must
be reset for this function. If this number is exceeded, then the program must
be re-analyzed from the start of file. In order to prevent this happening
erronously, the operator is requested to confirm the return jump.

Return further with restart of analysis? (Y/N)

When "Y” is input, the program is re-analyzed from the start up to the jump
destination; the processing is indicated in the last line with the line number of
the just processed line. This key is only permissible in the display mode.

by the line length and the current column position (the cursor can never be
positioned to the right of the end of line). It is only positioned, if the current
line has been terminated with <CR>. The current line is analyzed, and in
the event of an error, the cursor is re-positioned on the current line. This key
is only permissible in the display mode.

II Shift cursor one line down. The column position in the new line is governed

:I Shift cursor one column to the right. At the end of a line, terminated
—_—
with <CR>, this key acts like the 1 I key, the cursor is however

positioned at the beginning of the new line.

:I Shift cursor one column to the left. At the beginning of line, this key acts
—

like the T l key, however the cursor is positioned at the end

of the previous line.

© Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02 8-5
SINUMERIK WS 800 A, (PJ)

8 Interactive editor operation 04.90
8.2.1 Functions in the display mode

RETURN key
4J Return
With the insertion mode cancelled, the cursor is positioned at the

first character of the next line. If the current line was not
terminated with <CR>, the termination is executed. The entire
line is analyzed.

With the insertion mode selected, a carriage return +line feed is
inserted at the cursor position, the remainder of the is line written
into a newly inserted line and the cursor positioned at the first
character of the new line. The terminated line is analyzed.

In the event of an error, the cursor is re-positioned to the column
where the error was identified.

When <CR> is inserted at the end or start of a line, a blank line
is inserted before or after the current line, whereby the cursor is
either positioned at the beginning of the inserted blank line (when
inserting at the end of line) or at the first character of the current
line (when inserting at the start of the line).

Jump to line start

{) SHIFT F7

Position cursor at the first character in the current line.

Jump to end of line

F8

2] L

{) SHIFT

Position cursor at the end of the current line.

Jump left by one word

= [

Position cursor at the beginning of word to the left.

A word is defined as a character sequence, which is limited by the
character: space ,<>,;.()[]"'*+-/$%. Thiscommand is
valid extending beyond the end of line.

Jump right by one word

2]

Position the cursor at the beginning of the word to the right.
This command also positions the cursor to the next line.

8-6 © Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90
Delete functions:

' Back l
N

H SHIFTI

Gy
S

{ sHIFT I ?I
{ SHIFT I ?I

Other functions:

8 Interactive editor operation
8.2.1 Functions in the display mode

BACKSPACE key
Delete character to the left of the cursor.
At the start of a line this key acts like T

Thus, <CR> at the end of the previous line is not deleted.

SHIFT + BACKSPACE key

Delete current character

The <CR> at the end of the line can also be deleted with this
function. The next line, if present, is then attached to the current
line. If the line is too long so that it cannot be completely attached
(the line length is limited to one display line), then it is split. The
line section which cannot be attached remains on the next line.

Delete line from cursor position

Delete current line from and including the cursor position to the
end of line.

Delete line

Delete the complete current line.
Any existing lines which follow lines are scrolled up. The cursor is
then positioned at the first character of the next scrolled line.

These functions are only permitted in the display mode.

EI

Insertion on/off

Insertion mode switched-on/off

With the insertion mode switched-on, the INSERT word appears in
the status line in inverse video. The default setting is with the
insertion mode switched-off .

© Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02 8-7
SINUMERIK WS 800 A, (PJ)

8 Interactive editor operation
8.2.1 Functions in the display mode

=]

{) SHIFT I

?'

{) SHIFT

i

F4

z]

{) SHIFT

i

?'

8-8

04.90

Save file

Save data

The file is saved, and the file start is reloaded. The command
mode is active, and the file start appears on the screen after this
function is selected. The pseudo cursor is located at the first
character. With function key F1 the file position is reselected at
which data save took place. A jump to the the pseudo cursor
position is only possible with the JP command. This function
allows a particularly fast return jump to the beginning of file from a
position located near the end of file.

Cut line

Transfer current line to an internal memory.
This function is required in order to shift the current line to another

file position.
H SHIFTI F9 I

The visible effect is the same as

(delete complete current line).

Copy line

Store current line. Contrary to

this line remains. This function is required to copy the current line
to another file position. There is no visible effect.

Paste line

Insert stored line at the cursor position. The line, stored with

{) SHIFT I F2 or

ted before the current line (in this version, still independent of
the cursor position in the current line). If a line was not stored

{}SHlFTI ?I or ?I

then a blank line is inserted. The cursor is then located at the
first character of the inserted line.

G SHIFT F4 is inser-

with {) SHIFT

© Siemens AG 1989 All Rights Reserved 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 8 Interactive editor operation
8.2.1 Functions in the display mode

Undo
F5
Cancel line change.

As long as the current line has only been edited, all changes since the line
has been selected can be cancelled with this function. (If the line was exited,
then this of course is no longer possible). The cursor is then positioned at the
first character of the current line.

Error messages appear in the display mode for :
» llegal entries,
» entries, which would exceed the maximum line length,

e errors occuring during memory update
» error messages from the analysis function

Example:

INTERACTIVE PROCESSING: WS 800A/LOADED 1

Vv0.01 SHIFT+F1=HELP

IF FEHL_NR=0 THEN
BEGIN
D_NR2=TOS(TO_RANGE, DELETE_D, 10);
R86=0;
R87=16;
WHILE R86<R87 DO
BEGIN
TOS (TO_RANGE, DELETE_D, R86)=0;
R86=R86+R98;
END;
WHILE D_NR2<>0 DO
BEGIN
DELETE_D=D_NR2;
D_NR2=TOS(TO_RANGE, DELETE_D, 10);
R86=0;
R87=16;
WHILE R86<R87 DO
BEGIN

LIN 58 COL 15 REM
>> E206 Function not implemented <<

© Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02 8-9
SINUMERIK WS 800 A, (PJ)

8 Interactive editor operation 04.90
8.2.2 Functions in the command mode

8.2.2 Functions in the command mode

Essentially, editing is allowed in the command mode the same as in the display mode.
However, this is with the restriction that the cursor can only be moved along the current
command line. In this case, the maximum permissible command line length should be noted.
Otherwise, deletion, insertion etc. are permitted.

If not otherwise stipulated, the following functions are permitted in both the command and
display mode.

Cursor control functions:

Shift cursor one column to the right, but not further than the column following
the last character of the currently displayed command.

Shift cursor one column to the left, but not further than the start of the
command.

Jump one word to the left
F7

Shift cursor to the start of the command.

Jump one word to the right

Shift cursor after the last character of the currently displayed command.

RETURN key
Return

e = ntign

Execute displayed command. The function is independent of the current
cursor position in the command line.

The screen display is scrolled up by one line, and the cursor is positioned at
the start of the last display line. When the command was correctly executed,
only the command prompt ™*” appears (if the command does not result in a
changeover to the display mode). If an error occurs, the appropriate error
message appears and the cursor is re-positioned to the beginning of the
executed command. A blank command input is permitted.

8-10 © Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

Page
Up

Page
Down

]

0,

()

Delete functions:

)
&)

N

{ sHIFT

=
=m

8 Interactive editor operation
8.2.2 Functions in the command mode

Page back by one screen page. The paging function permits the
file to be viewed without analysis. Paging is such that the
uppermost data line becomes the lowest data line after paging.
Thus, there is no loss of cohesion between two screen pages.
The pseudocursor marks the current file position specified in the
status line. The position of the real cursor remains unchanged.
This function is only permitted in the command mode as it is
executed without analysis.

Page forwards by one page. Paging is such that the bottom data
line at the start becomes the uppermost data line after paging.
Thus, there is no loss of cohesion between the two pages. The
pseudocursor marks the current file position specified in the status
line. The positon of the real cursor remains unchanged. This

command is only permitted in the command mode as it is
executed without analysis.

HOME key

Position the pseudocursor at the beginning of the file.

END key

Position the pseudocursor at the end of file.

BACKSPACE key

Delete the character to the left of the cursor, but no further than
the beginning of command.

SHIFT + BACKSPACE key

Delete current character.

Delete line from cursor position

Delete command from and including the cursor position and up to
the end of the command.

Delete line

Delete entire command.

© Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02 8-11
SINUMERIK WS 800 A, (PJ)

8 Interactive editor operation 04.90
8.2.2 Functions in the command mode

Other functions:

Activate last command
F4

The last executed command is activated.

The last executed command is displayed in the command line from the cursor
position onwards. If the insertion mode is selected, an insertion is made after
the cursor position. Display or insertion is not realized if this means that the
maximum length of the command line is exceeded (an error message
appears). The cursor is then positioned after the command displayed or
inserted. It should be noted that the command is first executed after
depressing the RETURN key. "Activation” in this case, is only the display!
This function is only permitted in the command mode.

Insertion on/off
F2

Insertion mode on/off.

When the insertion mode is selected, the word INSERT appears in the status
line, in inverse video. The default setting is with the insertion mode
switched-out .

Cycle editor commands:
EQ Exit with Quit

Editor terminated without storage.
The user should again confirm this entry. The screen is cleared and the
editor terminated (the header lines are not deleted).

EX EXit

Edited file stored and editor terminated.
The screen is cleared after storage (the header lines are not deleted).

us Update and Save

Save edited file.

In this case, the editor is not terminated. After successful saving, the
beginning of the file is displayed on the screen. The pseudocursor is
positioned at the first character.

This command provides the fastest possibility of jumping from end of file to
the start of the file in a large file.

8-12 © Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

LD

JP

Loc n

| (+/-In)

8 Interactive editor operation
8.2.2 Functions in the command mode

Load file

The LD function permits a file to be reloaded, without the editor having to be

exitted.

"Load file” sequence:

* Input LD in the command line.
The question appears as to whether the old file should be first saved or
not.

e Input Y or N in order to acknowledge save.
The request to input the complete file name appears in the command line
(path designation and extension).

» The required file is loaded after the complete file name is entered. The
editor automatically returns to the screen mode.

An error message is displayed if the file does not exist. The editor however

remains in the command mode.

Jump to pseudo cursor

Jump to the pseudo cursor position.

This commands causes the display mode to be selected. If the pseudo cursor
position is different from the current position before the transition into the
command mode, the program must be re-analyzed up to the jump
destination. The completion of this re-analysis is signaled with the line
number of the currently analyzed line.

Position pseudo cursor to specified line.
Automatic indent

The automatic indent function only functions in the interactive mode . This
allows the program structure, i.e. the current nesting level in the program, to
be made visible. Indentation by one step is made for each new level. This
allows nested check structures to be clearly represented. The automatic
indent only functions correctly when new blocks are also written into a new
line, as the analysis is activated linewise (e.g. a BEGIN or END must always
be written in a new line).

Activation:
Input: In (with n=0......... 8)

The function is activated using the command I. The number of blanks, which
are automatically generated at each indent level at the start of line is
specified with the digit n. Standard indentation is with three blanks when I+
is input. This can be disabled by | -. The current set number is displayed in
the editor status line.

Note:

The function is switched-out when the editor is called. Automatic indent is
executed from that instant onwards where the function is activated, i.e.
indentation is not realized backwards from the start of the file.

© Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02 8-13
SINUMERIK WS 800 A, (PJ)

8 Interactive editor operation 04.90
8.2.2 Functions in the command mode

Error messages appear in the command mode for:
¢ lllegal inputs,
e inputs, where the maximum length of a command would be exceeded,

e when errors occur during memory update,
« when erronous or non-interpretable commands are input.

Example :

INTERACTIVE PROCESSING: WS 800A/LOADED1

SHIFT+F1=HELP

BEGIN
D_NR2=TOS(TO_RANGE, DELETE_D, 10);
R86=0;
R87=16;
WHILE R86<R87 DO
BEGIN
TOS (TO_RANGE, DELETE_D, R86)=0;
R86=R86+R98;
END;
WHILE D_NR2<>0 DO
BEGIN
DELETE_D=0_NR2;
D_NR2=TOS(TO_RANGE, DELETE_D, 10);
R86=0;
R87=16;
WHILE R86<R87 DO
BEGIN

LIN 58 COL 15 REM 64 NEST 6
E208 Key only permitted in screen mode <<

8-14 © Siemens AG 1989 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

Section 9

-Cycle editor error messages-

Overview:

9.1

9.2

9.21
9.2.2
9.2.3

General

Error message list
Warning messages
User error messages
System error messages

04.90 9 Cycle editor error messages
9.1 General

9 Cycle editor error messages

9.1 General
The cycle editor differentiates between three message groups:

* Warning messages
Cycle editor messages, which are displayed as warnings, should not be evaluated as
faults/errors, but as cautionary notes to the user.

» User error messages
If the user makes an illegal input of a cycle program or an external data file then this is
displayed as user error by the cycle editor.

* System error messages
If a system error occurs during cycle processing, then this is displayed by the cycle editor.
With only a few exceptions, system errors cannot be rectified by the user.

In the interactive editor, the messages in the message line are displayed as follows on the
screen.

W x x x Error text

Error number

Warning messages

e.g. W001 warning: Comment text open!

E X X X Error text

Error number

User error messages

e.g. E037, variable name not declared

S x x X Error text

Error number

System error messages

e.g. S062, incorrect constant in the symbol list

All the possible cycle editor messages are listed on the subsequent pages. Most of them are
self-explanatory, however several require more detailed explanation.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 9-1
SINUMERIK WS 800 A, (PJ)

9 Cycle editor error messages
9.2.1 Warning messages

9.2 Error message list

9.2.1 Warning messages

04.90

file has an error, or it is not terminated with

"END”.

Message Error text Notes

No.

W001 Warning: Comment text open! In the previous lines a comment text was
opened with ' (* ', which was not closed up to
the current line.

W002 Warning: DIN code open! In the previous lines a DIN code was opened
with * (: " which was not closed up to the
current line.

W010 File was not compiled! An object code is not generated if the edited

9.2.2 User error messages

l'\\l/lgssage Error text

EO0O01 " expected

E002 " expected

E003 "= expected

E004 "=" expected

E005 (" expected

E006 ")” expected

EO007 "[" expected

E008 "]” expected

E009 "" expected

EO010 ".” expected

EO11 "PROGRAM” expected
E012 "CHANNEL” expected

EO013 "NC” or "COM” expected
EO014 "EXTERNAL” expected
EO015 "CENTRAL” expected

EO016 "GLOBAL” expected

EO017 "OTHERWISE” or "/ENDCASE" expected
EO019 "ELSE” or "ENDIF” expected
E020 "M” expected

EO021 "SEC” expected

E022 "MSYS” expected

9-2 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 9 Cycle editor error messages
9.2.2 User error messages
I\N/Ig'ssage Error text
E023 "DO” expected
E024 "UNTIL" expected
E025 "WITH” expected
E026 "FOR” expected
E027 Constant expected
E028 String expected
E029 File name expected
EO030 Comparison operator expected
EO031 Blank or other separator expected
E032 Ident. designation incorrect
EO33 Password incorrect
EO034 File name not correct
EO35 Only one file name possible per line
EO36 Variable name double
EO37 Variable name not declared
EO38 Variable name exceeds 25 characters
E039 Variable names in program header are illegal
E040 Number at the start of a variable name illegal
EO41 Parameter not declared
E042 Parameter doubled
E043 Parameter in program header illegal
EO044 R parameter with bit in declaration illegal
E045 % in string illegal
E046 String exceeds 120 characters
EO047 Bit information not permissible
E048 Real numbers in program header illegal
E049 Real number outside limits
EO050 Integer number outside limits
EO51 Bit pattern outside limits
E052 Maximum of 5 digits before the decimal point permitted
E053 Character illegal
E054 Symbol cannot be used
EO55 End of comment text without start
E056 DIN code end without start

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

9-3

9 Cycle editor error messages 04.90
9.2.2 User error messages

I\N/Igssage Error text

EO057 DIN code end:) must be located in one line
E058 Maximum block level exceeded

E059 Maximum indent level exceeded

E060 Program was not correctly terminated
EO061 Syntax error

E100 Label used twice

E200 File not available

The following Exxx error messages are caused by incorrect editor operation.

Message Error text Notes
No.
E201 Command unknown
E202 Command too long A command must have a maximum of 75
characters
E203 Incorrect command syntax
E204 Function not implemented
E205 Character illegal
E206 Key only permitted in the
display mode
E207 Key only permitted in the
command mode
E208 Line length maximum one A screen line is maximum of 79 characters
screen line long (not including the line terminating
character
E209 Search term not found
E300 File cannot be compiled This message appears on the screen if a
cycle, which is error-free, is compiled through
the pull-down menu "special functions”, but is
not terminated with 'END. <CR>.
94 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

9.2.3 System error messages

System errors which cannot be rectified

9 Cycle editor error messages
9.2.3 System error messages

Message Error text Notes

No.

S001 System error, function

identification unknown

S002 System error editor mode

unknown

S003 System error at initialization

S004 System error queue cannot be

read

S005 System error queue cannot be

written

S006 System error at set wait flag

S007 System error at system text

access

S008 System error: too little space in

main memory

S009 Main memory full The editor cannot be started if the main
memory is full.

S010 Floppy disk full The cycle editor has no possibility of
configuring the memory. The cycle editor must
be exited in order to create space on the
floppy disk.

S011 Temporary memory defective This message indicates a serious non-
removable error in the editor. Under certain
circumstances, the CMD file is destroyed. A
remedy is to reload the complete cycle editor
program.

S012 File access error File access errors always indicate a significant
error in the file maintenance system of the
operating system and cannot be rectified by
the user.

S013 Bdos error Bdos errors are operating system errors The
error type is indicated by an error identifier
(this is important for error
diagnostics !).

S020 Limiter list not available

S021 Internal file not terminated

with EOF
S022 Analysis exceeds > 64 Kbyte

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

9-5

9 Cycle editor error messages
9.2.3 System error messages

04.90

Message Error text Notes
No.
S025 System error when writing in
string
S026 Compiler flag faulty
S028 Compiler error: Stack empty
S029 Compiler error: Stack full
S030 CL 800 source file cannot be
opened
S031 CL 800 destination file cannot
be opened
S032 CL 800 destination file cannot
be closed
S033 Read error in CL 800 source
file
S034 Search key missing from
CL800 source file
S035 Write error in CL 800 target file
S040 Internal file cannot be opened
S041 Internal file cannot be closed
S042 Unexpected end of internal file
(TAKE)
S043 Unexpected end of internal file
(SEARCH)
S044 Incorrect numeric
representation in internal file
S045 Temp. target file cannot be
opened
S046 Temp. target file cannot be
closed
S050 lllegal label for GOTO
statement
S051 "ENDEXTERN" not found
S052 Expected system location
assignment missing
S060 Too many constants in the
constants file
S061 Incorrect constant in the
constants file
9-6 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 9 Cycle editor error messages
9.2.3 System error messages
Message Error text Notes
No.
S062 Incorrect constant in the
symbol list
S063 Unknown group assignment
(procedure No. 5)
S064 Excessive block length of
destination code
S065 Memory space cannot be
released
S070 Overflow of arithmetic buffer
S071 Stack overflow with arithmetic
resolution
S072 General error with arithmetic
resolution
S073 Beginning of arithmetic
statement not found
S074 End of arithmetic statement
not found
S075 Label to programmed GOTO
missing
SYSTEM TEXT: FATAL This message appears in the event of a fatal
ERROR error in the central text access of the WS800
system. The error type is indicated by an error
identifier (this is important for error
diagnostics).

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02 9-7

9 Cycle editor error messages
9.2.3 System error messages

System errors which can be removed

04.90

Message Error text Notes
No.
S100 Overflow, E symbol list The maximum number of declarations of nine-
digit constants is exceeded
S101 Overflow, symbol list The maximum number of declarations is
exceeded. No further R parameters, variable
names, constants etc. can be declared.
Remedy: Several variable names should be
eliminated.
S102 Overflow, constant buffer Remedy: Insert blank line
S103 Overflow, internal buffer Remedy: Insert blank line
S104 Overflow, constant buffer fora | The maximum number of digits and strings
line within a line has been exceeded.
Remedy: Separate the line
S105 Maximum number of words per | Only a limited number of words can be
line reached processed per line.
Remedy: Separate the line
S120 Block number too high as a The maximum number of block numbers within
result of program branching a nesting level of a program branching type,
which is generated by the code generator, is
exceeded.
Remedy: Insert an additional block or eliminate
a block level.
S125 Too few intermediate locations
for bracketing
S126 Too few intermediate locations
for multiplication and division
before addition and subtraction
S127 Too few intermediate locations | There are no longer sufficient intermediate
for functions locations for arithmetic and logical assignments
or conditions.
Remedy: Separate assignments or conditions
S200 Printer cannot be addressed
9-8 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

Section 10

-Object code-
Overview:
10.1 Structure of the @ code
10.1.1 Subdivision into main groups
10.1.2 Operands after the @ function
10.1.3 Notation
10.2 General statements for the program structure
10.3 Program branching
104 General data transfer
10.5 Data transfer: System memory into the R parameter
10.6 Data transfer: R parameter into the system memory
10.7 File handling, general: (in preparation)
10.8 Mathematical and logical functions
10.9 NC-specific functions

10.10

I/O statements

04.90 10 Object code
10.1.1 Subdivision into main groups

10 Object code

10.1 Structure of the @ code

The @ code consists of three digits which are interpreted as follows:

@1 2 3 Three-digit @ code

Last (third) digit determines the special function , or
defines the comparison operator for program
branching

Middle (second) digit for subdivision of the main
groups into subgroups

First digit to differentiate between main groups

10.1.1 Subdivision into main groups

First digit of the

@ code Function

General statement for program structure

Program branching

Data transfer, general

Data transfer, system locations into the R parameter
Data transfer, R parameter into the system memory
File handling, general (in preparation)

Mathematical and logical functions

NC specific functions

I/O statements

O NO O~ WNEO

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 10-1
SINUMERIK WS 800 A, (PJ)

10 Object code 04.90
10.1.2 Operands after the @ function

10.1.2 Operands after the @ function

The @ code requires supplementary information (operands) for its function. These operands
are defined using the following letters:

K... Constants
R... R parameter (register)
P... Pointer variable (pointer)

The value defined by constant K is fixed in the program and cannot be changed (direct value
specification).

The value located in an R parameter can be changed by the program (indirect value
specification).

The pointer points to a parameter in which the address of the parameter is located and to the
contents to which the function should be applied (indirect value specification).

Example for @ code with operands:
@201 R13 P50

Pointer P50, with address information of the source
register

R parameter R13, target register

@ code for the "general data transfer” function

Load the contents of the source register, whose address is located in register R37, into target
register R13.

10.1.3 Notation

The @ code requires a rigid notation. The three-digit @ code in the command list is followed
by a series of notation specifications, which are located in angled brackets (see Section 10.2).
The individual notations have the following meaning:

<Const> direct value specification (constant K)

<R-Par> indirect value specification (R parameter)

<Var> indirect value specification (R parameter or pointer)

<Value > composite value specification (constant, R parameter or pointer)

10-2 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 10 Object code
10.2 General statements for the program structure
10.2 General statements for the program structure

The main group 0 is subdivided as follows:

0 X
@ y Three-digit @ code

Save several R parameters
Save a parameter area
Retrieve several R parameters
Retrieve an R parameter area

R onveo

Save R parameters

0: Main group 0

These commands are used if R parameters are processed in a subroutine, which could
already possibly be used in a higher level. If a push command (@ 040 or @ 041) is written at
the start of subroutine, the values are saved, and the specified R parameter is set with the
value "0".

The original status is re-established with a pop command (@ 042 or @ 043) at the end of the
subroutine.

Program header statement

@ code CL 800 statement Function

%SPFnr PROGRAM <Progr. number>; Program definition

@0of ESS; Enable for softkey start

M17 END; End of program

LF LF; End of block
(*Comments*®) Comments exclusively for

CL 800 source language.

<DIN code> (:<DIN code>:) ; DIN code (is passed through by
the compiler).
(Text) (:(Text))) ; Note in the NC program

Save R parameters: Main group 0/subgroup 4

@ code CL 800 statement Function
@040 <Const><R Par 1>... Push Save the specified local

<R Par n> R parameters in the stack
@041 <R Par 1><R Par 2> Push block Save a group of local

not at the R parameters in the stack

@042 <Const><R Par 1>... Pop CL 800 level Fetch saved R parameters from

<R Par n> the stack
@043 <R Par 1><R Par 2> Pop block Fetch group of saved

R parameters from the stack

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 10-3
SINUMERIK WS 800 A, (PJ)

10 Object code 04.90
10.3 Program branching

10.3 Program branching

Three-digit @ code

no comparison operator

= equal to

<> notequal to

> greater than

>= greater than or equal to
< less than

=< less than or equal to
true (true for Boolean variable)
not

ONoORONEO

Unconditional jump

CASE branching (Vop=1)

IF THEN ELSE branching
WHILE loop

REPEAT loop

FOR TO loop

FOR DOWNTO loop

IF INT THEN ELSE branching
WHILE INT loop

=

Main group 1

Notes to main group 1:

The block numbers generated by the compiler always have four digits. Thus, a maximum of
three-digit block numbers are available in the CL800 program.

The block number generated from the compiler has the following structure:

N x vy zz

zz: Block No. in the level

Nesting level 0 to 9)

<

from CASE branching

from IF THEN ELSE branching
from WHILE loop

from REPEAT loop

from FOR TO loop

from FOR DOWNTO loop

from GOTO statement (label)

from IF INT THEN ELSE branching
from WHILE INT loop

104 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

10 Object code
10.3 Program branching

Unconditional jump: Main groupl/ subgroup O

@ code CL 800 statement

Function

@100 <Const, +/- block No.> GOTO <Label>;

Unconditional jump to
NC block

CASE branching: Main group 1/ subgroup 1

<Value n><Const,block No. for state. n >

@100 <Const,block No., cont. without =<Value n>:<Statement n>;
statement n+1>

N1... <Statement 1> [OTHERWISE:<Statement n+1>;]
@100 <Const, block No. continuation> ENDCASE;

N1... <Statement n>

@100 <Const, block No. continuation>
[N1... <Statementn+1>]
N1... <Continuation>

@ code CL 800 statement Function
@111 <Var> <Value 1><Const, block No. for CASE <Var> CASE branching
Statement 1> = <Value 1>:<Statement 1>;

IF THEN ELSE branching: Main group 1 / subgroup 2

[@100 <Const,block No., continuation>
N2... <Statement 2>]

[ELSE <Statement 2>;]

@ code CL 800 statement Function
@12x <Var><Value ><Const. block No. IF "condition” 1) IF THEN ELSE
statement 2 w/out cont.><Statement 1> THEN <Statement 1> branching

X --> comparison

continuation><Statement >
@100 <Const. block No. start>
N3... <Continuation>

ENDIF; operator (Vop)
N2... <Continuation>
WHILE loop: Main group 1/ subgroup 3
@ code CL 800 statement Function
N3... <Block No. start> WHILE "condition” 1) Repeat statement with
@13x <Var> <Value ><Const. block No., DO <Statement >; scanning of repeat

condition at the start.
X --> comparison
operator (Vop)

1) "Condition™: a) <Var>= Boolean variable
b) <Var>.<Const> = Bit from pattern
c) <Var>"Vop” <Value>
d) Extended condition

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

10-5

10 Object code
10.3 Program branching

04.90

REPEAT loop: Main group 1 / subgroup 4

@ code

CL 800 statement

Function

N4... <Block No. start>

<Statement>;
@14x <Var><Value ><Const, block No. start>
N4... <Continuation>

REPEAT
<Statement>;
UNTIL "Condition”; 1)

Repeat statement with
scanning of the repeat
condition at the end

X --> comparison
operator (Vop)

FOR TO loop: Main group 1/ subgroup 5

@ code

CL 800 statement

Function

<Var> = <Value 1>

N5... <Block No. start>

@151 <Var><Value 2><Const. block No. cont.>
<Statement>
@620 <Var>
@100 <Const, block No. start>

N5... <Continuation>

FOR <Var>= <Value 1> TO
<Value 2>

DO <Statement>;

Counting loop with
statement repetition
from index <Value 1>
up to <Value 2>. The
variable index is
incremented at each
pass.

FOR DOWNTO loop: Main group 1/ subgroup 6

@ code

CL 800 statement

Function

<Var> = <Value 1>

N6... <Block No. start>

@161 <Var><Value 2><Const. block No. cont.>
<Statement>

@621 <Vvar>
@100 <Const. block No. start>

N6... <Continuation>

FOR <Var>= <Value
1>DOWNTO
<Value 2>:

DO <Statement>;

Counting loop with
statement repetition
from index <Value 1>
to <Value 2>. The
variable index is
decremented at each
pass.

IF THEN ELSE branch: Main group 1 / subgroup 8

@ code

CL 800 statement

Function

@187 <Value 1><Value 2><Const. block No.
statement 2 without cont.>

<Statementl1>
[@100 <Const. block No. continuation>
N8... <Statement2>]
N8... <Continuation>

@188 <Value 1><Value 2><Const. block No.
statement 2 or continuation>

<Statement1>
[@100 <Const. block No., continuation>
N8... <Statement2>]
N8... <Continuation>

IF INT <Value 1>,<Value 2>
THEN <Statement1>;
[ELSE <Statement2>;]
ENDIF;

IF INT NOT <Value 1>,<Value 2>
THEN <Statement1>;

[ELSE <Statement2>;]

ENDIF;

IF THEN ELSE branch
with scanning of a
specific external input
for "1” signal.

IF THEN ELSE branch
with scanning of a
specific external input
for "0” signal.

10-6

© siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

04.90

10 Object code

10.4 General data transfer

WHILE INT loop: Main group 1 / subgroup 9

@ code

CL 800 statement

Function

N9... <Block No. start>

@197<Val. 1><Val. 2><Const. block No. cont.>
<Statement>
@100 <Const. block No. start>

N9... <Continuation>

N9... <Block No. start>

@197<Val. 1><Val. 2><Const. block No. cont.>
<Statement>
@100 <Const. block No. start>

N9... <Continuation>

WHILE INT <Value 1>,<Value 2>

DO <Statement> ;

WHILE INT <Value 1>,<Value 2>

DO <Statement> ;

Repeat statement with
scanning of a specific
external input at the
start for "1” signal

Repeat statement with
scanning of a specific
external input at the
start for "0” signal.

10.4 General data transfer

Main group 2 (general data transfer) is subdivided as follows:

@2 x vy

Three-digit @ code

y:

0:

Special function

Data transfer, R parameter/R parameter
Data transfer, R parameter/input buffer memory

Main group 2

Data transfer/R parameter: Main group 2 / subgroup 0

@ code

CL 800 statement

Function

@200 <Var>

CLEAR (<Var>);

Clear variable

@201 <Var><Value >

<Var>=<Value >;

Load variable with
value

@202 <Varl><Var2>

XCHG (<Varl>,<Var2>);

Exchange contents of
the variables

@203 <Varl><Var2><Const>

Read bit from bit
pattern

© Siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-7

10 Object code 04.90
10.5 Data transfer: System memory into the R parameter

Data transfer R parameter / input buffer memory for numerical variable main group 2/ subgroup 1

@ code CL 800 statement Function
@210 <Value3><Value4> CLEAR MIB Clear input buf. mem.:
(<Value3>,<Valued>); Value3:Input buf. start

address 0..499
Value4:Input buf. mem.
final address 0..499

@211 <Var><Valuel> <Var>=MIB (<Valuel>); Read input buf.mem.
Valuel:Input buffer
memory No. 0...499

@212 <Valuel><Value> MIB (<Value>)=<Value>; Write input buf. mem.
Valuel:lnput buf. mem.
No. 0...499

10.5 Data transfer: System memory into the R parameter

The main group 3 (data transfer: System memory into the R parameter) is structured as
follows:

@ 3 x vy Three-digit @ code

Special functions

Machine data

Setting data

Tool offsets

Zero offsets
Programmed setpoints
External setpoints
Actual values
Program data

PLC signal bits

PLC signal bytes

PLC signal words

PLC signal data words
Alarms

Alarm pointer

System memory

P2 TRLOXNITARWNEO

3: Main group 3

10-8 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

10 Object code

10.5 Data transfer: System memory into the R parameter

Transfer machine data into R parameter: Main group 3 / subgroup 0

@ code CL 800 statement Function
@300 <Var><Valuel> <Var>= MDN (<Valuel>), NC machine data
Valuel: Word addr. 0...4999
@301 <Var><Valuel> <Var>= MDNBY (<Valuel>); NC machine data, bytes
Valuel: Byte addr. 5000...6999
@302 <Var><Valuel><Value2> <Var>= MDNBI (<Valuel>, NC machine data, bits
<Value2>); Valuel: Byte addr. 5000...6999
Value2: Bit addr. 0...7
@303 <Var><Valuel><Value2> <Var>= MDZ (<Valuel>, Cycle machine data
<Value2>); Valuel: Chan. No. 0...16
Value2: Word addr.
- Ch.-orient. 0...449
- Central 1000...4149
@304 <Var><Valuel><Value2> <Var>= MDZBY (<Valuel>, Cycle machine data, bytes
<Value2>); Valuel: Chan. No. 0...16
Value2: Byte addr.
-Chan.-orient.
800..949
-Central 7000...8049
@305 <Var>= MDZBI (<Valuel>, Cycle machine data, bits
<Var><Valuel><Value2><Value3> <Value2>, Valuel: Chan. No. 0...16
<Value3>); Value2: Byte addr.
-Ch.-orient. 800..949
-Central 7000...8049
Value3: Bit addr. 0...7
@306 <Var><Valuel> <Var>= MDP (<Valuel>); PLC machine data
Valuel: 850/880=Word addr.
0-5999
810=Word addr. 0-1999
@307 <Var><Valuel> <Var>= MDPBY (<Valuel>); PLC machine data, bytes
Valuel: 850/880=Word addr.
6000-8999
810=Word addr. 2000-3999
@308 <Var><Valuel><Value2> <Var>= MDPBI (<Valuel>, PLC machine data, bits
<Value2>); Valuel: 850/880=Word addr.
6000-8999
810=Word addr. 2000-3999
Value2: Bit addr. 0...7
@309 <Var><Valuel> <Var>= MDD (<Valuel>); Drives machine data
Valuel: Word addr. 0...4960
@30a <Var><Valuel><Value2> <Var>= MDDBY (<Valuel>, Drives machine data, bytes
<Value2>); Valuel: Word addr.
2440...4630
Value2: 0 = low byte
1 = high byte
@30b <Var>= MDDBI (<Valuel>, Drives machine data, bits
<Var><Valuel><Value2><Value3> <Value2>, Valuel: Word addr.
<Value3>); 2440...4630
Value2: 0 = low byte
1 = high byte
Wert3: Bit addr. 0...7

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-9

10 Object code

10.5 Data transfer: System memory into the R parameter

04.90

Transfer setting data into the R parameter: Main group 3 / subgroup 1

@ code

CL 800 statement

Function

@310 <Var><Valuel>

<Var>= SEN (<Valuel>);

NC setting data
Valuel :Word addr. 0...4999

@311 <Var><Valuel>

<Var>= SENBY (<Valuel>);

NC setting data, bytes
Valuel :Byte addr.
5000...9999

@312 <Var><Valuel><Value2>

<Var>= SENBI (<Valuel>,
<Value2>);

NC setting data, bits
Valuel :Byte addr.
5000...9999
Value2 :Bitaddr. 0...7

@313 <Var><Valuel><Value2>

<Var>= SEZ (<Valuel>,
<Value2>);

Cycles setting data
Valuel :Chan. No. 0...16
Value2 :Word addr.
- Chan.-orientated 0...449

@314 <Var><Valuel><Value2>

<Var>= SEZBY (<Valuel>,
<Value2>);

Cycles setting data, bytes
Valuel :Chan. No.0...16
Value2 :Byte addr.

- Chan.-orient. 800...949

@315

<Var><Valuel><Value2><Value3>

<Var>= SEZBI (<Valuel>,
<Value2>,<Value3>);

Cycles setting data, bits
Valuel : Chan. No. 0...16
Value2 : Byte addr.

- Chan.-orient. 800...949
Value3 : Bit addr. 0...7

Transfer tool offsets into the R parameter: Main group 3 / subgroup 2

@ code

CL 800 statement

Function

@320

<Var><Valuel><Value2><Value3>

<Var>= TOS (<Valuel>,
<Value2>,<Value3>);

Tool offset
Valuel: TO range 0...16
Value2: D No. 1...818
Value3: P No. 0...15

10-10

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

10 Object code

10.5 Data transfer: System memory into the R parameter

Transfer zero offsets into the R parameter: Main group 3 / subgroup 3

<Var><Valuel><Value2><Value3>

<Value2>,<Value3>);

@ code CL 800 statement Function
@330 <Var>= ZOA (<Valuel>, Settable zero offset
<Var><Valuel><Value2><Value3> <Value2>,<Value3>); (G54-G57)
Valuel :Gr. 1..4 (G54-G57)
Value2 :Axis No. 1...24
Value3 :Coarse/fine (0/1)
@331 <Var><Valuel><Value2> <Var>= ZOPR (<Valuel>, Programmable zero offset
<Value2>); (G58, G59)
Valuel:Gr.1o0.2 (G58 0.G59)
Value2 :Axis No. 1...24
@332 <Var><Value2> <Var>= ZOE (<Value2>); External zero offset from PLC
Value2 :Axis No. 1...24
@333 <Var><Value2> <Var>= ZOD (<Value2>); DRF offset
Value2 :Axis No. 1...24
@334 <Var><Value2> <Var>= ZOPS (<Value2>); PRESET offset
Value2 :Axis No. 1...24
@336 <Var><Value2> <Var>= ZOS (<Value2>); Sum of all offsets
Value2 :Axis No. 1...24
@337 <Var>= ZOADW (<Valuel>, Settable coordiante rotation
<Var><Valuel><Value2><Value3> <Value2>,<Value3>); (G54-G57)
Valuel :Chan. No. 0...16
Value2 :Gr. 1...4 (G54-G57)
Value3 :Angle No.
@338 <Var>= ZOPRDW (<Valuel>, Program. coordinate rotation

(G58, G59)
Valuel :Chan. No. 0...16
Value2:Gr. 1 0. 2 (G58, G59)
Value3 :Angle No.

Read programmed setpoints into the R parameter: Main group 3 / subgroup 4

<Var><Valuel><Value2><Value3>

<Value2>,<Value3>);

@ code CL 800 statement Function
@342 <Var><Valuel><Value3> <Var>= PRSS (<Valuel>, Programmed spindle speed
<Value3>); Valuel :Chan. No. 0...16
Value3 :Spindle No. 0...6
@345 <Var><Valuel><Value2> <Var>= PRVC (<Valuel>, Programmed cutting speed
<Value2>); Valuel :Chan. No. 0...16
Value2 :0 =G96
@34b <Var>= PCDA (<Valuel>, Programmed control words for
<Var><Valuel><Value2><Value3> <Value2>,<Value3>); digital axis drive
Valuel :Axis No. 1...24
Value2 :Byte addr. 0 or 1
Value3 :Bit addr. 0...7
@34c <Var>= PCDS (<Valuel>, Programmed control words for

digital spindle drives
Valuel :Spindle No. 1...10
Value2 :Byte addr. 0...5
Value3 :Bit addr. 0...7

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-11

10 Object code

10.5 Data transfer: System memory into the R parameter

04.90

Read actual values into the R parameter: Main group 3 / subgroup 6

@ code CL 800 statement Function
@360 <Var><Value2> <Var>= ACPW (<Value2>); Actual axis position, workpiece-
related
Value2 :Axis No. 1...24
@361 <Var><Value2> <Var>= ACPM (<Value2>); Actual axis position, machine-

related
Value2 :Axis No. 1...24

@362 <Var><Value2>

<Var>= ACP (<Value2>);

Actual axis position
Value2 :Axis No. 1...24

@363 <Var><Value2>

<Var>= ACSP (<Value2>);

Actual spindle position
Value2 :Spindle No. 0...6

@364 <Var><Value2>

<Var>= ACSS (<Value2>);

Actual spindle speed
Value2 :Spindle No. 0...6

@367 <Var><Valuel>

<Var>= ACAS (<Valuel>);

Axis No. of the actual
plane/leading spindle No.
Valuel :Channel No. 0...16

@36a <Var><Valuel>

<Var>= ACD (<Valuel>);

Actual D-function
Valuel :Channel No. 0...16

@36b <Var><Valuel><Value3>

<Var>= ACG (<Valuel>,
<Value3>);

Actual G-function
Valuel :Channel No. 0...16
Value3 :Group 0...23

Read program data into the R parameter: Main group 3 / subgroup 7

@ code

CL 800 statement

Function

@371 <Var><Valuel><Value3>

<Var>= SOB (<Valuel>,
<Value3>);

Special bits
Valuel:channel-dependent bitg
=Channel No. 0-n

channel-independent
bits = 99
Value3: BitNo.0...7

@372 <Var>

<Var>= PPCH;

Actual channel No. for program

10-12

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

10 Object code
10.5 Data transfer: System memory into the R parameter

Read PLC signal bits into the R parameter: Main group 3 / subgroup 8

@ code

CL 800 statement

Function

@380
<Var><Valuel><Value2><Value3>

<Var>= PLCI (<Valuel>,
<Value2>,<Value3>);

PLC input bit
Valuel :PLC No. 1...4
Value2 :Byte addr. 0...127
Value3 :Bit No. 0...7

@381
<Var><Valuel><Value2><Value3>

<Var>= PLCQ (<Valuel>,
<Value2>,<Value3>);

PLC output bit
Valuel :PLC No. 1...4
Value2 :Byte addr. 0...127
Value3 :Bit No. 0...7

@382
<Var><Valuel><Value2><Value3>

<Var>= PLCF (<Valuel>,
<Value2>,<Value3>);

PLC flag bit
Valuel :PLC No. 1...4
Value2 :Byte addr. 0...255
Value3 :Bit No. 0...7

@383
<Var><Valuel><Value2><Value3>
<Value4>

<Var>= PLCW (<Valuel>,
<Value2>,<Value3>,
<Value4>);

PLC data word bit
Valuel :PLC No. 1...4
Value2 :DB No. 1...255
DX No. 1000...1255
Value3 :DW No. 0...2043
Value4 :Bit No. 0...15

Read PLC signal bytes into the R parameter: Main group 3 / subgroup 9

@ code

CL 800 statement

Function

@390 <Var><Valuel><Value2>

<Var>= PLCIB (<Valuel>,
<Value2>);

PLC input byte
Valuel :PLC No. 1...4
Value2 :Byte addr. 0...127

@391 <Var><Valuel><Value2>

<Var>= PLCQB (<Valuel>,
<Value2>);

PLC output byte
Valuel :PLC No. 1...4
Value2 :Byte addr. 0...127

@392 <Var><Valuel><Value2>

<Var>= PLCPB (<Valuel>,
<Value2>);

PLC peripheral byte
Valuel :PLC No.1..4
Value2 :Byte addr. 0...127

@393 <Var><Valuel><Value2>

<Var>= PLCFB (<Valuel>,
<Value2>);

PLC flag byte
Valuel :PLC No. 1...4
Value2 :Byte addr. 0...255

@394
<Var><Valuel><Value2><Value3>

<Var>= PLCDBL (<Valuel>,
<Value2>,<Value3>);

PLC data word, left
Valuel :PLC No. 1...4
Value2 :DB No. 1...255
DX No. 1000...1255
Value3 :DW No. 0...2043

@395
<Var><Valuel><Value2><Value3>

<Var>= PLCDBR (<Valuel>,
<Value2>,<Value3>);

PLC data word, right
Valuel :PLC No. 1...4
Value2 :DB No. 1...255
DX No. 1000...1255
Value3 :DW No. 0...2043

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-13

10 Object code

10.5 Data transfer: System memory into the R parameter

04.90

Read PLC signal words into the R parameter: Main group 3 / subgroup a

@ code

CL 800 statement

Function

@3a0

<Var><Valuel><Value2><Value3>

<Var>= PLCIW (<Valuel>,
<Value2>,<Value3>);

PLC input word
Valuel: PLC No.1..4
Value2: Word addr. 0...126
Value3: DIM ident.
0... 9fixed point
100...109 BCD

@3al

<Var><Valuel><Value2><Value3>

<Var>= PLCQW (<Valuel>,
<Value2>,<Value3>);

PLC output word
Valuel: PLC No. 1..4
Value2: Word addr. 0...126
Value3: DIM ident.
0... 9fixed point
100...109 BCD

@3a2

<Var><Valuel><Value2><Value3>

<Var>= PLCPW (<Valuel>,
<Value2>,<Value3>);

PLC peripheral word
Valuel: PLC No.1..4
Value2: Word addr. 0...126
Value3: DIM ident.
0... 9fixed point
100...109 BCD

@3a3

<Var><Valuel><Value2><Value3>

<Var>= PLCFW (<Valuel>,
<Value2>,<Value3>);

PLC flag word
Valuel: PLC No.1..4
Value2: Word addr. 0...254
Value3: DIM ident.
0...999 fixed point
100...109 BCD

@3a4 <Var><Valuel><Value2>

<Var>= PLCT (<Valuel>,
<Value2>);

PLC timer
Valuel: PLC No.1...4
Value2: Timer addr. 0...255

@3a5 <Var><Valuel><Value2>

<Var>= PLCC (<Valuel>,
<Value2>);

PLC timer
Valuel: PLC No. 1..4
Value2: Counter addr. 0...255

10-14

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

10 Object code

10.5 Data transfer: System memory into the R parameter

Read PLC signal data words into the R parameter: Main group 3/ subgroup b

@ code CL 800 statement Function
@3b0 <Var>= PLCDF (<Valuel>, PLC data word, fixed point
<Var><Valuel><Value2><Value3> <Value2>,<Value3>, Valuel: PLC No. 1...4
<Value4><Value5> <Value4>,<Value5>); Value2: DB No. 1...255
DX No. 1000...1255
Value3: DW No. 0...2043
Value4: No. of DW 1 or 2
Value5: DIM ident.
0...9 serial
10...19 parallel
@3bl <Var>= PLCDB (<Valuel>, PLC data word BCD
<Var><Valuel><Value2><Value3> <Value2>,<Value3>, Valuel: PLC No. 1..4
<Value4><Value5> <Value4>,<Value5>); Value2: DB No. 1...255
DX No. 1000...1255
Value3: DW No. 0...2043
Value4: No.of DW 1...3
Value5: DIM ident.
100...109 parallel
@3b2 <Var>= PLCDG (<Valuel>, PLC data word, floating point
<Var><Valuel><Value2><Value3> <Value2>,<Value3>); Valuel: PLC No.1...4
Value2: DB No. 1...255
DX No. 1000...1255
Value3: DW No. 0...2043
Read alarms into the R parameter: Main group 3/ subgroup c
@ code CL 800 statement Function
@3c0 <Var> <Var>= ALNP (); NC alarms
Read alarm pointer into the R parameter: Main group 3/ subgroup d
@ code CL 800 statement Function
@3d0 <Var> <Var>= ALNPZ (); NC alarm pointer

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-15

10 Object code

10.6 Data transfer: R parameter into the system memory

04.90

Read system memory into R parameter: Main group 3 / subgroup e

@ code

CL 800 statement

Function

@3el
<Var><Valuel><Value2><Value3>

<Var>= RSDA (<Valuel>,
<Value2>,<Value3>);

Axis status for digital drives
Valuel: Axis No. 1 ...to
Value2: Byte addr.0 or 1
Value3: Bitaddr. 0 ...7

@3e2
<Var><Valuel><Value2><Value3>

<Var>= RSDS (<Valuel>,
<Value2>,<Value3>);

Spindle status for digital drives
Valuel: Spindle No.1...10
Value2: Byte addr.0 ... 3
Value3: Bitaddr. 0...7

@3e3
<Var><Valuel><Value2><Value3>

<Var>= RSDD (<Valuel>,
<Value2>,<Value3>);

Equipment status for dig. drives
Valuel: UnitNo. 1or2
Value2: Byte addr. 0 or 1
Value3: Bitaddr. 0 ...7

@3e4 <Var><Valuel>

<Var>= AGS (<Valuel>);

Active gear stage
Valuel: Spindle No. O ... 6

10.6 Data transfer: R parameter into the system memory

Main group 4 (data transfer: R parameter into the system memory) is structured as follows:

@4 x vy

All @ commands of this main group have <Value> as last notation.

Three-digit @ code

Special function

Machine data
Setting data
Tool offsets
Zero offsets

PLC signal bits
PLC signal bytes
Alarms

System memory

QOO RrRWONEO

4: Main group 4

Programmed setpoints

Thus, the numerical value to be transferred is either defined directly with a constant, or
indirectly through an R parameter or pointer.

10-16

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

10 Object code

10.6 Data transfer: R parameter into the system memory

Transfer R parameter into the machine data: Main group 4 / subgroup 0

@ code

CL 800 statement

Function

@400 <Valuel><Value>

MDN (<Valuel>) = <Value>;

NC machine data
Valuel:Addr. 0...4999

@401 <Valuel><Value> MDNBY (<Valuel>) = NC machine data, bytes
<Value>; Valuel:Addr. 5000...6999

@402 <Valuel><Value2><Value> MDNBI (<Valuel><Value2>) NC machine data, bits
=<Value>; Valuel:Byte addr. 5000...6999

Value2: Bit addr. 0...7

@403 <Valuel><Value2><Value>

MDZ (<Valuel>,<Value2>)
=<Value>;

Cycle machine data
Valuel:Channel No. 0...16
Value2:Word addr.

- Chan. orient. 0...449
- Central 1000...4149

@404 <Valuel><Value2><Value>

MDZBY (<Valuel><Value2>)
=<Value>;

Cycle machine data, bytes
Valuel:Channel No. 0...16
Value2:Byte addr.

- >Chan. orient. 800...949
- >Central 7000...8049

@405 <Valuel><Value2><Value3>
<Value>

MDZBI (<Valuel><Value2>,
<Value3>) =<Value>;

Cycle machine data, bits
Valuel:Channel No. 0...16
Value2:Byte addr.

- >Chan. orient. 800...949
- >Central 7000...8049
Value3:Bit addr. 0...7

@406 <Valuel><Value>

MDP (<Valuel>) =<Value>;

PLC machine data
Valuel:
850/880=Addr.0...5999
810=Addr. 0...1999

@407 <Valuel><Value>

MDPBY (<Valuel>) =<Value>;

PLC machine data, bytes
Valuel:
850/880=byte addr.
6000...8999
810=Byte addr. 2000...3999

@408 <Valuel><Value2><Value>

MDPBI (<Valuel><Value2>)
=<Value>;

PLC machine data, bits
Valuel:
850/880=byte addr.
6000...8999
810=byte addr. 2000...3999
Value2:Bit addr. 0...7

@409 <Valuel><Value>

MDD (<Valuel>) =<Value>;

Drives machine data
Valuel:Word addr. 880...4960

@40a <Valuel><Value2><Value>

MDDBY (<Valuel>,<Value2>)
=<Value>;

Drives machine data, bytes
Valuel:Word addr. 2440...4610
Value2:0=Low byte

1=High byte

@40b <Valuel><Value2><Value3>
<Value>

MDDBI (<Valuel><Value2>,
<Value3>) =<Value>;

Drives machine data, bits
Valuel:Word addr. 2440...4610
Value2:0=Low byte

1=High byte
Value3: Bit addr. 0...7

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-17

10 Object code

10.6 Data transfer: R parameter into the system memory

04.90

Transfer R parameter into the setting data: Main group 4 / subgroup 1

@ code

CL 800 statement

Function

@410 <Valuel><Value>

SEN (<Valuel>) =<Value>;

NC setting data
Valuel: addr.. 0...4999

@411 <Valuel><Value>

SENBY (<Valuel>) =<Value>;

NC setting data, bytes
Valuel: Byte addr.
5000...9999

@412 <Valuel><Value2><Value>

SENBI (<Valuel>,<Value2>)
=<Value>;

NC setting data, bits
Valuel: Byte addr.
5000...9999
Value2: Bit-Adr. 0...7

@413 <Valuel><Value2><Value>

SEZ (<Valuel><Value2>)
=<Value>;

Cycle setting data
Valuel: Chan. No. 0...16
Value2: Word addr.
- Chan. orient. 0...499

@414 <Valuel><Value2><Value>

SEZBY (<Valuel>,<Value2>)
=<Value>;

Cycle setting data, bytes
Valuel: Chan. No. 0...16
Value2: Byte addr.

- Chan. orient. 800...949

@415
<Valuel><Value2><Value3><Value>

SEZBI (<Valuel><Value2>,
<Value3>) =<Value>;

Cycle setting data, bits
Valuel: Chan. No. 0...165
Value2: Byte addr.

- Chan. orient. 800...949
Value3: Bit addr. 0...7

Write R parameter into the tool offset: Main group 4 / subgroup 2

@ code

CL 800 statement

Function

@420 <Valuel><Value2><Value3>
<Value>

TOS (<Valuel>,<Value2>,
<Value3>) =<Value>;

Tool offset
Valuel: TO range 0...16
Value2: D No. 1...818
Value3: P No.

@423 <Valuel><Value2><Value3>
<Value>

TOAD (<Valuel><Value2>,
<Value3>) =<Value>;

Tool offset, additive
Valuel: TO range 0...16
Value2: D No. 1...818
Value3: P No. 0...15

10-18

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

10 Object code
10.6 Data transfer: R parameter into the system memory

Write R parameter into the zero offsets: Main group 4 / subgroup 3

@ code

CL800 statement

Function

@430 <Valuel><Value2><Value3>
<Value>

ZOA (<Valuel><Value2>,
<Value3>) =<Value>;

Settable zero offset, various
Valuel: Group 1...4
(G54...G57)
Value2: Axis No. 1...24
Value3: Coarse/fine(0/1)

@431 <Valuel><Value2><Value3>
<Value>

ZOFA (<Valuel>,<Value2>,
<Value3>) =<Value>;

Settable zero offset, additive
Valuel: Group 1...4
(G54...G57)
Value2: Axis No. 1...24
Value3: Coarse/fine(0/1)

@432 <Valuel><Value2><Value>

ZOPR (<Valuel><Value2>)
=<Value>;

Programmable zero offset,
various
Valuel: Group 1 or 2
(G58 0. G59)
Value2: Axis No. 1...24

@434 <Value2><Value>

ZOD (<Value2>) =<Value>;

DRF offset
Value2: Axis No. 1...24

@435 <Value2><Value>

ZOPS (<Value2>) =<Value>;

PRESET offset
Value2: Axis No. 1...24

@437
<Valuel><Value2><Value3><Value>

ZOADW (<Valuel><Value2>,
<Value3>)=<Value>;

Settable coordinate rotation
(G54-G57)
Valuel: Chan. No. 0...16
Value2: Group 1...4
(G54-G57)
Value3: Angle No.

@438
<Valuel><Value2><Value3><Value>

ZOFADW (<Valuel><Value2>,
<Value3>)=
<Value>;

Settable coordinate rotation
(G54-G57) additive
Valuel: Chan. No. 0...16
Value2: Group 1...4
(G54-G57)
Value3: Angle No.

@439

ZOPRDW (<Valuel>,<Value2>,

Programmable coordinate

<Valuel><Value2><Value3><Value> <Value3>)= rotation (G58, G59)
<Value>; Valuel: Chan. No. 0...16
Value2: Group 1 or 2
(G58, G59)
Value3: Angle No.
@43a ZOFPROW (<Valuel>, Programmable coordinate
<Valuel><Value2><Value3><Value> <Value2>, rotation (G58, G59) additive
<Value3>)= Valuel: Chan. No. 0...16
<Value>; Value2: Group 1 or 2

(G58, G59)
Value3: Angle No.

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-19

10 Object code

10.6 Data transfer: R parameter into the system memory

04.90

Write R parameter into the programmed setpoints: Main group 4 / subgroup 4

@ code

CL800 statement

Function

@440 <Value3><Value>

PRAP (<Value3>) =<Value>;

Programmed axis position
Value3 :Axis No. 1...24

@442 <Value3><Value>

PRSS (<Value3>) =<Value>;

Programmed spindle speed
Value3 :Axis No. 0...6

@446 <Value>

PRAD () =<Value>;

Programmed radius

@447 <Value>

PANG () =<Value>;

Programmed angle

@448 <Value3><Value> PRIP (<Value3>) =<Value>; Progr. interpolation parameter
Value3 :Axis No. 1...24
@44b PCDA (<Valuel>,<Value2>, Programmed control words for

<Valuel><Value2><Value3><Value>

<Value3>)=<Value>;

digital axis drives
Valuel :Axis No. 1...24
Value2 :Byte addr. 0 od. 1
Value3 :Bit addr. 4...6

@44c
<Valuel><Value2><Value3><Value>

PCDS (<Valuel>,<Value2>,
<Value3>)=<Value>;

Programmed control words for
digital spindle drives
Valuel :Spindle No. 1...10
Value2 :Byte addr. 0...5
Value3 :Bit addr. undefined

Write R parameter into the PLC signal bits: Main group 4/subgroup 8

@ code

CL800 statement

Function

@482
<Valuel><Value2><Value3><Value>

PLCF (<Valuel><Value2>,
<Value3>)=<Value>;

PLC flag bit
Valuel :PLC No. 1...4
Value2 :Byte addr. 0...255
Value3 :Bit No. 0...7

@482 <Valuel><Value2><Value3>
<Value4><Value>

PLCW (<Valuel>,<Value2>,
<Value3>,<Value4>)
=<Value>;

PLC data word bit
Valuel :PLC No. 1...4
Value2 :DB No. 1...255
DX No. 1000..1255
Value3 :DW No. 0...2043
Value4 :Bit No. 0...15

10-20

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

10 Object code

10.6 Data transfer: R parameter into the system memory

Write R parameter into the PLC signals bytes: Main group 4/subgroup 9

@ code

CL 800 statement

Function

@493 <Valuel><Value2><Value>

PLCFB (<Valuel><Value2>)
=<Value>;

PLC flag byte
Valuel: PLC No. 1..4
Value2: Byte addr. 0...255

@494
<Valuel><Value2><Value3><Value>

PLCDBL (<Valuel>,<Value2>,
<Value3>)=<Value>;

PLC data word, left
Valuel: PLC No. 1..4
Value2: DB No. 1...255

DX No. 1000...1255
Value3: DW No. 0...2043

@495
<Valuel><Value2><Value3><Value>

PLCDBR (<Valuel><Value2>,
<Value3>)
=<Value>;

PLC data word, right
Valuel: PLC No. 1..4
Value2: DB No. 1...255

DX No. 1000...1255
Value3: DW No. 0...2043

Write R parameter into the PLC signal word: Main group 4 / subgroup a

@ code

CL800 statement

Function

@4a3
<Valuel><Value2><Value3>
<Value>

PLCFW (<Valuel>,<Value2>,
<Value3>) =<Value>;

PLC flag word
Valuel: PLC No. 1.4
Value2: Word addr. 0...254
Value3: DIM ident. 0...9 fixed
point
100...109 BCD

Write R parameter into the PLC signal data word: Main group 4 / subgroup b

@ code

CL 800 statement

Function

@4b0 <Valuel><Value2><Value3>
<Value4><Value5><Value>

PLCDF (<Valuel><Value2>,
<Value3>,<Value4>,
<Value5>)=<Value>;

PLC data word, fixed point
Valuel: PLC No. 1...4
Value2: DB No. 1...255

DX No. 1000...1255
Value3: DW No. 0...2043
Value4: No. of DW 1 or 2
Value5: DIM ident.

0.. 9 serial
10 ... 19 parallel

@4b1 <Valuel><Value2><Value3>
<Value4><Value5><Value>

PLCDB (<Valuel><Value2>,
<Value3>,<Value4>,
<Value5>)=<Value>;

PLC data word, BCD
Valuel: PLC No. 1...4
Value2: DB No. 1...255
DX No. 1000...1255
Value3: DW No. 0...2043
Value4: No.of DW 1...2
Value5: DIM ident.
100...109 BCD

@4b2 <Valuel><Value2><Value3>
<Value>

PLCDG (<Valuel><Value2>,
<Value3>)=<Value>;

PLC data word, floating point
Valuel: PLC No. 1...4
Value2: DB No. 1...255

DX No. 1000..1255
Value3: DW No. 0...2043

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-21

10 Object code 04.90
10.7 File handling, general:

Write R parameter into the alarms: Main group 4 / subgroup ¢
@ code CL 800 statement Function
@4c0 <Value> ALNZ () =<Value>; Cycle alarms
Value: Alarm No.
880: 4000...4299
5000...5299
810/820/850: 4000...4299
5000...5099
Write R parameter into the system memory: Maingroup 4 / subgroup e
@ code CL 800 statement Function
@4el <Valuel><Value2><Value> SATC (<Valuel><Value2>) Spindle acceleration time
=<Value>; constant
Valuel: Spindle No. 0...6
Value2: Gear stage 1...8
Value3: Spindle acceleration
time constant:
0...16000
10.7 File handling, general: (in preparation)
10-22 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 10 Object code

10.8 Mathematical and logical functions

10.8 Mathematical and logical functions

Main group 6 (mathematical and logical functions) is structured as follows:

@ 6 x vy Three digit @ code

Special function

Value assignment with arithmetic operations
Arithmetic functions

Arithmetic procedures

Trigonometric functions

Logarithmic functions

Logical functions

Logical procedures

Boolean comparison assignment

NoghwhRO

6: Main group 6

Value assignment with arithmetic operations: Main group 6 / subgroup 0

@ is not required in this subgroup. A chain calculation with several notations is permissible on the righthand side of
the equation.

@ code CL 800 statement Function

<Var> = <Valuel> +<Value2> <Var>=<Valuel>+<Val.2> Addition

<Var> = <Valuel> -<Value2> <Var>=<Valuel> -<Val.2> Subtraction

<Var> = <Valuel> * <Value2> <Var>=<Valuel> * <Val.2> Multiplication

<Var> = <Valuel>/ <Value2> <Var>=<Valuel>/ <Val.2> Division

Arithmetic functions: Main group 6 / subgroup 1

@ code CL 800 statement Function

@610 <Var><Value> <Var>= ABS (<Value>); Generate abs. value
@613 <Var><Value> <Var>= SQRT (<Value>); Square root

@614 <Var><Valuel><Value2> <Var>= SQRTS (<Valuel>, Root of sum of squares

<Value2>);

Arithmetic procedures: Main group 6 / subgroup 2

@ code CL 800 statement Function
@620 <Var> INC (<Var>); Increment
@621 <Var> DEC (<Var>); Decrement
@622 <Var> TRUNC (<Var>); Integral part

© Siemens AG 1990 All Rights Reserved
SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-23

10 Object code

10.8 Mathematical and logical functions

04.90

Trigonometric functions: Main group 6 / subgroup 3

@ code CL 800 statement Function
@630 <Var><Value> <Var>= SIN (<Value>); Sine
@631 <Var><Value> <Var>= COS (<Value>); Cosine
@632 <Var><Value> <Var>= TAN (<Value>); Tangent
@634 <Var><Value> <Var>= ARCSIN (<Value>); Arc sine

@637 <Var><Valuel><Value2>

<Var>= ANGLE (<Valuel>,

Angle between 2 vector

<Valuel>); components
Logarithmic functions: Main group 6 / subgroup 4
@ code CL 800 statement Function
@640 <Var><Value> <Var>= LN (<Value>); Natural logarithm
@641 <Var><Value> <Var>= INV LN (<Value>); Exponential function
Logical functions: Main group 6 / subgroup 5
@ code CL 800 statement Function
For pattern:
@650 <Var><Varl><Value> <Var>=<Varl>OR<Value>; OR

@651 <Var><Varl><Value>

<Var>=<Varl>XOR<Value>;

EXCLUSIVE OR

<Value>;

@652 <Var><Varl><Value> <Var>=<Var1>AND<Value>; AND
@653 <Var><Varl><Value> <Var>=<Var1>NAND NAND
<Value>;
@654 <Var><Value> <Var>=NOT <Value>; NOT
For Boolean or bits:
@655 <Var><Varl><Value> <Var>=<Var1>ORB OR bit

@656 <Var><Varl><Value>

<Var>=<Varl>XORB

EXKLUSIVE OR bit

<Value>;

@657 <Var><Varl><Value> <Var>=<Varl>ANDB AND bit
<Value>;

@658 <Var><Varl><Value> <Var>=<Var1>NANDB NAND bit
<Value>;

@659 <Var><Value> <Var>=NOTB <Value>; NOT bit

10-24

© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90 10 Object code
10.9 NC-specific functions

Logical procedures: Main group 6 / subgroup 6

@ code CL 800 statement Function

@660 <Var><Const> CLEAR BIT (<Var>.<Const>); Clear bit in PATTERN
Const = Bit No. 0...7

@661 <Var><Const> SET BIT (<Var>.<Const>); Set bit
Const=Bit No. 0...7

Boolean comparison assignment: Main group 6 / subgroup 7

@ code CL 800 statement Function

@67x <Varl><Var2><Value> The Boolean variable VAR1 is
set to "1” if the comparison of
VAR2 and value is fulfilled.
Comparison operator "Vop”.
No comparison operator

= equal

<> notequal to

greater than

>= greater than, equal to
< lessthan

<= less than, equal to

@ a A whROo
Y

10.9 NC-specific functions

The main group 7 (NC-specific functions) is structured as follows:

@7 x vy Three-digit @ code

Special function

0: Changing the program and machine reference
points

Individual functions

Measuring functions

3. Program influence

7. Main group 7

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 10-25
SINUMERIK WS 800 A, (PJ)

10 Object code
10.9 NC-specific functions

04.90

Changing program and machine reference points: Main group 7 / subgroup 0

@ code

CL800 statement

Function

@706

POS MSYS;

Positions in the block ref. to the
machine actual value system.

Individual functions: Main group 7 / subgroup 1

@ code

CL 800 statement

Function

@710 <Varl><Var2>

<Varl>= PREP REF (<Var2>);

Reference preparation
Varl:Output data from Varl
Var2:Input data from Var2

@711 <Varl><Var2><Var3>

<Varl>=INT SEC (<Var2>,
<Var3>)

Intersection computation.
Varl:Output data from Varl
Var2:1st contour from Var2
Var3:2nd contour from Var3
(not possible at present)

@713 <Var> <Var>=PREP CYC, Start preparation for cycles
Var:Output data from Var

@714 STOP DEC; Stop decoding until buffer
memory empty

@715 STOP DEC1, Stop decoding until buffer

memory is empty at coordinate
rotation

Measuring functions: Main group 7 / subgroup 2

@ code

CL 800 statement

Function

@720 <Var><Value>

<Var>=MEAS M <Value>;

Actual value referred to

machine zero. Command

position of the axes referred to

the workpiece 0. Flying

measurement

Var : Data stored from

Value: No. of measuring input 1
or 2.

Program influence: Main group 7 / subgroup 3

@ code

CL 800 statement

Function

@730 <Valuel><Value2>

REL (<Valuel><Value2>);

Read inhibit via ext. input
Valuel:Byte addr. 1 or 2
Value2:Bit addr. 0...7

@736 <Valuel><Value2><Value3>

INTA (<Valuel><Value2>,
<Value3>);

Axis-specific remaining travel
delete via external input
Valuel:Axis No. 0...24
Value2:Byte addr. 1 or 2
Value3:Bit addr. +/- 0...7

10-26

© siemens AG 1990 All Rights Reserved

6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90

10.10 1/O statements

Main group a (l/O statements) is structured as follows:

@ a x vy

three-digit @ code

Special function

1: 1/O function NC

2. 1/O functions, general

10 Object code
10.10 /O statements

3: Operator control functions

a: Maingroup a

1/0 functions NC: Main group a / subgroup 1

@ code

CL 800 statement

Function

@al5 <Valued4><Value5>

WRT PIC
(<Value4>,<Value5>);

Menu selection from NC progr.
Value4:0=User area
1=Standard area
Value5:Menu No. 1...254

@alb

RECALL PIC;

Return jump to output menu

1/0 functions, general: Main group a / subgroup 2

@ code

CL 800 statement

Function

@a20 <Value>

PORT (<Value>);

Select V24 interface
Value: No. V24 interface 1...4

@a25 <Valuel>

OUTP ZOA (<Valuel>);

Output zero offset via V24
Valuel: Chan. No. 0...16

@a26 <Value2><Value3><Value4>

OUTP DATA (<Value2>,
<Value3>,<Value4>);

Output data via V24
Value2: Data type 1...9
Value3: Start address
Value4: Final address

@a27 <Valuel><Value3><Value4>

OUTP PARA (<Valuel>,
<Value3>,<Value4>);

Parameter output via V24
Valuel: Chan. No. 0...16
Value3: Start address
Value4: Final address

@a28 <Value2>

INP (<Value2>);

Read-in data via V24
Value2: Data type 0...10

@a29

OUTP ETX;

Output ETX via V24

Operator control functions: Main group a / subgroup 4

@ code

CL 800 statement

Function

@a40 <Value>

CHAN (<Value>);

Select the channel No. for the
screen display
Value: Chan. No. 1...16

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

10-27

Section 11

-Appendix-
Overview:
111 Alphabetic keyword index/CL 800 names
11.2 Terminology
11.3 Overview of functions implemented according to the software releases
114 Weighting of operators
115 G-group classification

04.90

11 Appendix

11 Appendix

11.1 Alphabetic keyword index/CL 800 names

11.1 Alphabetic keyword index/CL 800 names

Command Function Command Comm"’?”d Object
overview | description code
ABS Absolute amount (abs. value generation) 6-16 5-79 10-23
ACAS Axis No. of the current plane/master spindle No. 6-9 5-52 10-12
ACD D-function, actual 6-9 5-53 10-12
ACG G-function, actual 6-9 5-53 10-12
ACP Current axis position 6-9 5-50 10-12
ACPM Axis position, machine-related, 6-9 5-50 10-12
ACPW Axis position, workpiece-related 6-9 5-49 10-12
ACSP Actual spindle position 6-9 5-51 10-12
ACSS Actual spindle speed 6-9 5-51 10-12
AGS Active gear stage 6-11 5-62 10-16
ALNP NC alarms 6-11 5-60 10-15
ALNPZ NC alarm pointer 6-11 5-61 10-15
ALNZ Cycle alarms 6-15 5-77 10-22
AND And function 6-17 5-85 10-24
ANDB And function bit 6-17 5-86 10-24
ANGLE Angle from two vector components 6-16 5-83 10-24
ARC SIN Arc sine 6-16 5-83 10-24
Addition Tool assignment using addition 6-16 5-78 10-23
BEGIN Start of the statement part 6-1 5-1
BOOLEAN Boolean data type 6-2 5-86
CASE Case branching 6-5 5-34 10-5
CENTRAL Reference to a list, which is declared in the central 6-2 5-13
variables
CHAN Selection of the channel No. for screen display 6-19 5-102 10-27
CHANNEL NC or COM channel No. 6-1 5-4
CLEAR Clear R parameter 6-6 5-38 10-7
CLEAR BIT Clear bit 6-17 5-87 10-25
© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 111

SINUMERIK WS 800 A, (PJ)

11 Appendix 04.90
11.1 Alphabetic keyword index/CL 800 names
Command Function Command Com’.“"’?”d Object
overview | description code
CLEAR MIB Clear input buffer memory 6-6 5-39 10-8
CONST Constants 6-2 5-8
COSs Cosine 6-16 5-82 10-24
DEC Decrement 6-16 5-81 10-23
DIN-Code DIN commands 6-1 5-3 10-3
Division Value assignment through division 6-16 5-78 10-23
END. End of the statement part 6-1 5-1
END; End of a group statement or a statement block 6-1 5-1 10-3
ENDEXTERN [End of declaration 6-3 5-10
ESS Enable for softkey start 6-1 5-4 10-3
EXTERNAL Definition of an external file 6-3 5-10
FOR Repeat statement for decrementing counter loop 6-4 5-26 10-6
DOWNTO
FORTO Repeat statement for incrementing counter loop 6-4 5-27 10-6
GLOBAL Reference to lists, in which global variables are 6-2 5-11
declared
GOTO Unconditional jump 6-5 5-37 10-5
ID Ident. designation 6-1 5-5
IF INT THEN IF INT THEN ELSE branching 6-5 5-33 10-6
ELSE
IF THEN IF THEN ELSE branching 6-5 5-29 10-6
ELSE
INC Increment 6-16 5-81 10-23
INP Read-in data through V24 6-19 5-101 10-27
INTA Axis-specific remaining travel delete via external 6-18 5-97 10-26
input
INT SEC Intersection computation 6-18 5-90 10-26
INTEGER Integral data type 6-2
INV LN Exponential function 6-16 5-84 10-24
Kommentar Comments in the program 6-1 5-2 10-3
LABEL Label for jump destination 6-2 5-10
LF End of block 6-1 5-2 10-3
LN Natural logarithm 6-16 5-84 10-24
11-2 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERI

K WS 800 A, (PJ)

04.90 11 Appendix
11.1 Alphabetic keyword index/CL 800 names
Command Function Command Com'.’”‘?”d Object
overview | description code

LOCAL Local variable 6-2 5-8
MDD Drives machine data 6-7, 6-12 5-42, 5-64 10-9, 10-17
MDDBI Drives machines data, bits 6-7, 6-12 5-42, 5-64 10-9, 10-17
MDDBY Drives machines data, bytes 6-7, 6-12 5-42, 5-64 10-9, 10-17
MDN NC machine data 6-7, 6-12 5-40, 5-62 10-9, 10-17
MDNBI NC machine data, bits 6-7, 6-12 5-40, 5-63 10-9, 10-17
MDNBY NC machine data, bytes 6-7, 6-12 5-40, 5-63 10-9, 10-17
MDP PLC machine data 6-7, 6-12 5-41, 5-64 10-9, 10-17
MDPBI PLC machine data, bits 6-7, 6-12 5-41, 5-64 10-9, 10-17
MDPBY PLC machine data, bytes 6-7, 6-12 5-41, 5-64 10-9, 10-17
MDZ Cycles machine data 6-7, 6-12 5-41, 5-63 10-9, 10-17
MDZBI Cycles machine data, bits 6-7, 6-12 5-41, 5-63 10-9, 10-17
MDZBY Cycles machine data, bytes 6-7, 6-12 5-41, 5-63 10-9, 10-17
MEAS M Flying measurement (referred to machine zero) 6-18 5-96 10-26
MIB Input buffer memory 6-6 5-39 10-8
Multiplik. Value assignment through multiplication 6-16 5-78 10-23
NAND Not and function 6-17 5-85 10-24
NANDB Not and function bit 6-17 5-86 10-24
NOT Negation 6-17 5-85 10-24
NOTB Negation bit 6-17 5-86 10-24
OR Or function 6-17 5-85 10-24
ORB Or function bit 6-17 5-86 10-24
OUTP DATA | Output data via V24 6-19 5-100 10-27
OUTP ETX Output EXT via V24 6-19 5-102 10-27
OUTP PARA Parameter output via V24 6-19 5-100 10-27
OUTP ZOA Output zero offsets via V24 6-19 5-99 10-27
PANG Programmed angle 6-14 5-71 10-20
PAR Transfer variable 6-2 5-7
PATTERN Pattern data type 6-2 11-8 10-25
PCDA Programmed control word for digital axis drives 6-8, 6-14 5-49, 5-71 10-11, 10-20
PCDS Programmed control word for digital spindle drives 6-8, 6-14 5-49, 5-72 10-11, 10-20

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 11-3

SINUMERIK WS 800 A, (PJ)

11 Appendix 04.90

11.1 Alphabetic keyword index/CL 800 names
Command Function Command Com’.“"’?”d Object

overview | description code
PLCC PLC counter 6-10 5-58 10-14
PLCDB PLC data word, BCD 6-11, 6-15 5-59, 5-75 10-15, 10-21
PLCDBL PLC data word, left 6-10, 6-14 5-56, 5-73 10-13, 10-21
PLCDBR PLC data word, right 6-10, 6-14 5-56, 5-73 10-13, 10-21
PLCDF PLC data word, fixed point 6-11, 6-15 5-58, 5-74 10-15, 10-21
PLCDG PLC data word, floating point 6-11, 6-15 5-60, 5-76 10-15, 10-21
PLCF PLC flag bit 6-9, 6-14 5-55, 5-72 10-13, 10-20
PLCFB PLC flag byte 6-10, 6-14 5-56, 5-73 10-13, 10-21
PLCFW PLC flag word 6-10, 6-14 5-57,5-73 10-14, 10-21
PLCI PLC input bit 6-9 5-55 10-13
PLCIB PLC input byte 6-10 5-56 10-13
PLCIW PLC input word 6-10 5-57 10-14
PLCPB PLC peripheral byte 6-10 5-56 10-13
PLCPW PLC peripheral word 6-10 5-57 10-14
PLCQ PLC output bit 6-9 5-55 10-13
PLCQB PLC output byte 6-10 5-56 10-13
PLCQW PLC output word 6-10 5-57 10-14
PLCT PLC timer 6-10 5-57 10-14
PLCW PLC data word bit 6-9, 6-14 5-55, 5-72 10-13, 10-20
POINTER Pointer variable 6-2 5-9
PORT Select V24 interface 6-19 5-99 10-27
POS MSYS Input a position referred to the machine actual 6-17 5-88 10-26
value system

PPCH Current channel No. for program 6-9 5-55 10-12
PRAD Programmed radius 6-14 5-70 10-20
PRAP Programmed axis position 6-14 5-70 10-20
PREP CYC Start preparation for cycles 6-18 5-93 10-26
PREP REF Reference position 6-18 5-89 10-26
PRIP Programmed interpolation parameter 6-14 5-71 10-20
PROGRAM Definition of a program 6-1 5-3 10-3
PRSS Programmed spindle speed 6-8, 6-14 5-47,5-70 10-11, 10-20

114 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERI

K WS 800 A, (PJ)

04.90 11 Appendix
11.1 Alphabetic keyword index/CL 800 names
Command Function Command Com'.’”‘?”d Object
overview | description code
PRVC Programmed cutting speed 6-8 5-47 10-11
PW Password 6-1 5-66
R<Var-Nr.> R parameter number 6-2 11-8 10-3
REAL Real data type 6-2 11-8
RECALL PIC | Return jump to output menu 6-19 5-98 10-27
REL Read-in inhibit via external input 6-18 5-97 10-26
REPEAT Repeat statement with scan of the repeat condition 6-4 5-14 10-6
at the end
RSDA Axis status for digital drives 6-11 5-61 10-16
RSDD Unit status for digital drives 6-11 5-62 10-16
RSDS Spindle status for digital drives 6-11 5-61 10-16
SATC Spindle acceleration time constant 6-15 5-77 10-22
SEN NC setting data 6-7, 6-12 5-42, 5-65 10-10, 10-18
SENBI NC setting data, bit 6-7, 6-12 5-42, 5-65 10-10, 10-18
SENBY NC setting data, byte 6-7, 6-12 5-42, 5-65 10-10, 10-18
SET BIT Set bit 6-17 5-87 10-25
SEZ Cycles setting data 6-7, 6-12 5-43, 5-65 10-10. 10-18
SEZBI Cycles setting data, bits 6-7, 6-12 5-43, 5-65 10-10, 10-18
SEZBY Cycles setting data, bytes 6-7, 6-12 5-43, 5-65 10-10, 10-18
SIN Sine 6-16 5-82 10-24
SOB Special bit 6-9 5-54 10-12
SQRT Square root 6-16 5-80 10-23
SQRTS Root of sum of squares 6-16 5-80 10-23
STOP DEC Stop decoding until input buffer memory empty 6-18 5-93 10-26
STOP DECI Stop decoding until input buffer memory empty at 6-18 5-94 10-26
coordinate rotation
Subtraktion Value assignment through subtraction 6-16 5-78 10-23
TAN Tangent 6-16 5-82 10-24
TOAD Tool offset, additive 6-13 5-66 10-18
TOS Tool offset 6-8, 6-13 5-43, 5-66 10-10, 10-18
TRUNC Integral part 6-16 5-81 10-23
VOP Comparison operands 11-9
© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 115

SINUMERIK WS 800 A, (PJ)

11 Appendix 04.90
11.1 Alphabetic keyword index/CL 800 names
Command Function Command Com’.“"’?”d Object
overview | description code
Var Variable 6-2 11-8
Var-Name Definition of a variable, name 6-2 11-9
WHILE Repeat statement with scan of the repeat condition 6-4 5-19 10-4
at the start
WHILE INT Repeat statement with scan of an external input at 6-4 5-23 10-7
the start
Wert Value of a variable 6-4
WRT PIC Menu selection from the NC program 6-19 5-98 10-27
XCHG Exchanging variable contents 6-6 5-38 10-7
XOR Exclusive-or function 6-17 5-85 10-24
XORB Exclusive-or function bit 6-17 5-86 10-24
ZOA Settable zero offset (G54-G57) 6-8, 6-13 5-44, 5-67 10-11, 10-19
ZOADW Settable coordinate rotation (G54-57) 6-8, 6-13 5-46, 5-68 10-11, 10-19
Z0D DRF offset 6-8, 6-13 5-45, 5-68 10-11, 10-19
ZOE External zero offset 6-8 5-45 10-11
ZOFA Settable zero offset (G54-G57), additive 6-13 5-67 10-19
ZOFADW Settable coordinate rotation (G54-G57), additive 6-13 5-69 10-19
ZOFPRDW Progr. coordinate rotation (G58,G59), additive 6-13 5-70 10-11, 10-19
ZOPR Programmable zero point offset (G58, G59) 6-8, 6-13 5-45, 5-67 10-11, 10-19
ZOPRDW Programmable coordinate rotation (G58, G59) 6-8, 6-13 5-47, 5-69 10-11, 10-19
ZOPS Preset offset 6-8, 6-13 5-46, 5-68 10-11, 10-19
Z0S Sum of all offsets 6-8 5-46 10-11
116 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERI

K WS 800 A, (PJ)

04.90 11 Appendix
11.2 Terminology

11.2 Terminology

BOOLEAN

Boolean type variables are bits, which can only have the value 1 or O.

<Const>

e Direct value (constant)

» Bit No. for PATTERN variable
<Const-Name>

refer to <Var name>

<Data name>

refer to <Var name>, however max. of 8 characters

<Data type>

Before a variable is first used, its data type must always be specified in the declaration part.
The following basic types are in CL 800:

* INTEGER (integral numbers)
* REAL (real numbers)

« PATTERN (bit pattern)

+ BOOLEAN (bit)

File type

Character sequence (IBF, MBF, SPF, RPF, ZOF)

File designation

» For IBF: Character sequence or pointer (text variable)

* For the other files: Number, constant or pointer (R parameter)
INTEGER

Integer variables can include positive or negative integral numbers. The maximum number of
decades is eight. The value range is from 0 to+/- 99999999.

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 11-7
SINUMERIK WS 800 A, (PJ)

11 Appendix 04.90
11.2 Terminology

<List name>

refer to <Var name>, however a max. of 8 characters

Password

refer to Var name, however a max. of 8 characters

PATTERN

PATTERN type variables are binary numbers, which consist of eight individual bits. Each bit
can only have the value 1 or O.

Pattern type variables can thus be assigned a bit pattern inthe range

B0O0000000 to B11111111. A bit pattern is introduced with the character "B”, e.g. bit pattern:
B00010001.

REAL

Real number correspond, in CL 800, to normal decimal numbers in floating point,
representation. The value range is from+/- 0.00000001 to +/- 99999999.

e.g. real number: -123.27

R<Var No.>

Designation for a numerical variable (R parameter). The R parameter number is specified in
the "Var No.” term.

System memory name

Max. of 5 upper case letters for designating a system memory.

<Var>

« Designation for a numerical variable (R parameter).
« Designation for a pointer variable in which the address of a variable is located. Pointer
variables (pointers) are located in angled brackets '[<Var>]'.

11-8 © siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 11 Appendix
11.2 Terminology

<Var name>

Definition of a variable name. This provides the user with the possibility of assigning a
symbolic name to an R parameter. The variable name consists of a maximum of 25
characters, and the first character must be a letter. From the second character onwards, either
letters, digits or underline(_) can follow. Lower case letters can also be used.

If a variable name is longer than 8 characters, only the first 8 characters are evaluated to make
a distinction.

"/op”
The program run can be specifically influenced by scan conditions. Depending on the value of
the programmed variables and the comparison operator ("Vop”), a decision is made as to

whether the following program section is processed or skipped.

The following comparison operators are available:

> greater than

>= greater than or equal to
< less than

<= less than or equal to

= equal

<> unequal

<Value>

This is valid for both 'Const' and 'Var'

» Direct value (constant)

» Designation for a numerical variable (R parameter)

» Designation for a pointer variable, in which the address of a variable is located.
Pointer variables (pointer) are located in angled brackets '[<Var>]'.

Note for using the data types:

A variable assigned to a data type can only have values from the range

Exception: A REAL data type variable can be assigned an INTEGER value,

as the quantity of all INTEGER values represents a partial quantity of the

© Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 119
SINUMERIK WS 800 A, (PJ)

11 Appendix 04.90
11.3 Overview of functions implemented according to the software releases

11.3 Overview of functions implemented according to the software
releases

Note:
The software release for SINUMERIK 810 specified in brackets is valid for controls which
cannot be configured which were supplied before 3/88.

We reserve the right of modification!

WS800 Control types
@ code 800A | 800 [805*)| 810 | 810 | 810 | 810 [810G/[810G/| 820 | 820 [840 *)| 850 | 880
GALl | GA2 | GA3 |820G |820G | GA2 | GA3
GA2 | GA3

@00f 1 1

@040 <Const> <R par 1> ... <R par n> 1 |vi3 104)| 2 1 1 1 1 1 1 1 1
@041 <R par 1> <R par 2> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@042 <Const> <R par 1> ... <R par n> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@043 <R par 1> <R par 2> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@100 <Const> 1 |v1is 1 (04) 2 1 1 1 1 1 1 1 1
@100 <R par > 1)

@111 <var> <Valuel><Const1> 1 |vis 108 | 2 1 1 1 1 1 1 1 1

<Value2><Const2>
'<Value n><Const n>

@12x <Var><Value><Const> 1 |v1i3 2 1 1 1 1 1 1 1 1 1
@13x<Var><Value><Const> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@14x<Var><Value><Const> 1 |v20 2 1 1 1 2 1 2 1
@151 <Var><Value><Const> 1 |v20 2(05) | 2 1 1 1 1 1 1 1 1
@161<Var><Value><Const> 1 |v20 205 | 2 1 1 1 1 1 1 2 1
@18x<Valuel><Value2><Const> 1 1

@19x<Value2><Const> 1 1

@200 <Vvar> 1 |v1i3 1(04) 2 1 1 1 1 1 1 1 1
@201 <Var><Value> 1 |vi3 1 (04) 2 1 1 1 1 1 1 1 1
@202 <Varl><Var2> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1

1) No pointer possible, only <Const> can be specified at the CL 800 level
*) Function in preparation

11-10 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 11 Appendix
11.3 Overview of functions implemented according to the software releases

WS800 Control types
@ code 800A | 800 [805*)| 810 | 810 | 810 | 810 [810G/[810G/| 820 | 820 (840 *)| 850 | 880
GA1 | GA2 | GA3 [820G |820G [GA2 | GA3
GA2 | GA3

@203 <Varl><Var2><Const> 1 |V13 104)| 2 1 1 1 1 1 1 1 1
@210 <Value3><Value4> 3 2 1 1 1 2 1 3 3
@211 <var><Valuel> 1 [v2o 2 2 1 1 1 1 1 1 3 3
@212 <Valuel><Value> 1 |v20 2 3 1 1 1 1 1 1 3 3
@300 <Var><Valuel> 1 |Vv13 104)| 2 1 1 1 1 1 1 1 1
@301 <Var><Valuel> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@302 <Var><Valuel><Value2> 1 [vis 104) 2 1 1 1 1 1 1 1 1
@303 <Var><Valuel><Value2> 1 |Vv20 3 3
@304 <Var><Valuel><Value2> 1 |Vv20 3 3
@305 <Var><Valuel><Value2><Value3> 1 |v20 3 3
@306 <Var><Valuel> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@307 <Var><Valuel> 1 |v1is 1 (04) 2 1 1 1 1 1 1 1 1
@308 <Var><Valuel><Value2> 1 |Vv13 104)| 2 1 1 1 1 1 1 1 1
@309 <Var><Valuel> 1 |v20 3 2 1 2 1

@30a <Var><Valuel><Value2> 1 |v20 3 2 1 2 1

@30b <Var><Valuel><Value2><Value3> 1 |v20 3 2 1 2 1

@310 <Var><Valuel> 1 |vi3 2 1 1 1 1 1 1 1 1 1
@311 <Var><Valuel> 1 |Vv13 104)| 2 1 1 1 1 1 1 1 1
@312 <Var><Valuel><Value2> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@313 <Var><Valuel><Value2> 1 |v2o0 3 3
@314 <Var><Valuel><Value2> 1 |Vv20 3 3
@315 <Var><Valuel><Value2><Value3> 1 |v2o0 3 3
@320 <Var><Valuel><Value2> <Value3> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@330 <Var><Valuel><Value2><Value3> 1 |v1i3 1(04)| 2 1 1 1 1 1 1 1 1
@331 <Var><Valuel><Value2> 1 |v13 1(04)| 2 1 1 1 1 1 1 1 1
@332 <Var><Value2> 1 |Vv13 104)| 2 1 1 1 1 1 1 1 1
@333 <Var><Value2> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@334 <Var><Value2> 1 |v1i3 1(04) 2 1 1 1 1 1 1 1 1

*) Function in preparation
© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 11-11

SINUMERIK WS 800 A, (PJ)

11 Appendix 04.90
11.3 Overview of functions implemented according to the software releases
WS800 Control types
@ code 800A | 800 [805*)| 810 | 810 | 810 | 810 [810G/[810G/| 820 | 820 [840*)| 850 | 880
GAl | GA2 | GA3 (820G |820G | GA2 | GA3
GA2 | GA3

@336 <Var><Value2> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@337 <Var><Valuel><Value2><Value3> 1 |v20 2 2 1 1 1 1 1 1 3 3
@338 <Var><Valuel><Value2><Value3> 1 [v2o0 2 2 1 1 1 1 1 1 3 3
@342<Var><Valuel> <Value3> 3 2 1 2 1

@345<Var><Valuel> <Value2> 1 |v1i3 2(05) | 2 1 1 1 1 1 1 1 1
@34b <Var><Valuel><Value2><Value3> 1 |v2o0 3 2 1 2 1

@34c <Var><Valuel><Value2><Value3> 1 |v20 3 2 1 2 1

@360 <Var><Value2> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@361 <Var><Value2> 1 |vi3 1 (04) 2 1 1 1 1 1 1 1 1
@362 <Var><Value2> 1 |va21 3 3
@363 <Var><Value2> 1 |v20 2 (05) 2 1 1 1 1 1 1 2 1
@364 <Var><Value2> 1 |v20 2 (05) 2 1 1 1 1 1 1 2 2
@367 <Var><Valuel> 1 |v20 2 2 1 1 1 1 1 1 2 1
@36a <Var><Valuel> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@36b <Var><Valuel><Value3> 1 |v20 2 2 1 1 1 1 1 1 1 1
@371 <Var><Valuel><Value3> 1 |vi3 104)| 2 1 1 1 1 1 1 1 1
@372 <Var> 3 3
@380 <Var><Valuel><Value2><Value3> 1 |v20 3 3
@381 <Var><Valuel><Value2><Value3> 1 |v2o0 3 3
@382 <Var><Valuel><Value2><Value3> 1 |v2o0 3 3
@383 <Var><Valuel><Value2><Value3><Val.4> 1 [v2o0 3 3
@390 <Var><Valuel><Value2> 1 |v20 3 3
@391 <Var><Valuel><Value2> 1 |v2o0 3 3
@392 <Var><Valuel><Value2> 3 3
@393 <Var><Valuel><Value2> 1 [v2o0 3 3
@394 <Var><Valuel><Value2><Value3> 1 |v20 3 3
@395 <Var><Valuel><Value2><Value3> 1 |v20 3 3
@3a0 <Var><Valuel><Value2><Value3> 1 |v20 3 3

*) Function in preparation

11-12

© Siemens AG 1990 All Rights Reserved

6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 11 Appendix
11.3 Overview of functions implemented according to the software releases

WS800 Control types
@ code 800A | 800 [805*)| 810 | 810 | 810 | 810 [810G/[810G/| 820 | 820 (840 *)| 850 | 880
GA1 | GA2 | GA3 [820G |820G [GA2 | GA3
GA2 | GA3
@3al <Var><Valuel><Value2><Value3> 1 |v20 3 3
@3a2 <Var><Valuel><Value2><Value3> 1 |va1 3 3
@3a3 <Var><Valuel><Value2><Value3> 1 [v2o 3 3
@3a4 <Var><Valuel><Value2> 1 |v21 3 3
@3a5 <Var><Valuel><Value2> 1 |v21 3 3
@3b0 <Var><Valuel><Value2><Value3> 3 3
<Value4><Value5>
@3bl <Var><Valuel><Value2><Value3> 3 3
<Value4><Value5>
@3b2 <Vvar><Valuel><Value2><Value3> 3 3
@3c0 <Var> 1 |v2o0 3 3
@3d0 <Var> 1 |va20 3 3
@3el <Var><Valuel><Value2><Value3> 1 |v20 3 2 1 2 1
@3e2 <Var><Valuel><Value2><Value3> 1 |v20 3 2 1 2 1
@3e3 <Var><Valuel><Value2><Value3> 1 |v20 3 2 1 2 1
@3e4 <vVar><Valuel> 3 2 1 2 1
@400 <Valuel><Value> 1 |Vv13 104)| 2 1 1 1 1 1 1 1 1
@401 <Valuel><Value> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@402 <Valuel><Value2><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@403 <Valuel><Value2><Value> 1 [v2o 3 3
@404 <Valuel><Value2><Value> 1 |Vv20 3 3
@405 <Valuel><Value2><Value3><Value> 1 |v20 3 3
@406 <Valuel><Value> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@407 <Valuel><Value> 1 [vis 104) 2 1 1 1 1 1 1 1 1
@408 <Valuel><Value2><Value> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@409 <Valuel><Value> 1 |Vv20 3 2 1 2 1
@40a <Valuel><Value2><Value> 1 |v20 3 2 1 2 1
@40b <Valuel><Value2><Value3><Value> 1 |v20 3 2 1 2 1
@410 <Valuel><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
*) Function in preparation
© siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02 11-13

SINUMERIK WS 800 A, (PJ)

11 Appendix 04.90
11.3 Overview of functions implemented according to the software releases
WS800 Control types
@ code 800A | 800 [805*)| 810 | 810 | 810 | 810 [810G/[810G/| 820 | 820 [840*)| 850 | 880
GAl | GA2 | GA3 (820G |820G | GA2 | GA3
GA2 | GA3

@411 <Valuel><Value> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@412 <Valuel><Value2><Value> 1 |vi3 1(04) 2 1 1 1 1 1 1 1 1
@413 <Valuel><Value2><Value> 1 [v2o0 3 3
@414 <Valuel><Value2><Value> 1 |v20 3 3
@415 <Valuel><Value2><Value3><Value> 1 |v20 3 3
@420 <Valuel><Value2><Value3><Value> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@423 <Valuel><Value2><Value3><Value> 1 (vis 104 2 1 1 1 1 1 1 1 1
@430 <Valuel><Value2><Value3><Value> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@431 <Valuel><Value2><Value3><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@432 <Valuel><Value2><Value> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@434 <Value2><Value> 1 |v1i3 1(04) 2 1 1 1 1 1 1 1 1
@435 <Value2><Value> 1 |vi3 1 (04) 2 1 1 1 1 1 1 1 1
@437 <Valuel><Value2><Value3><Value> 1 |v20 2 2 1 1 1 1 1 1 3 3
@438 <Valuel><Value2><Value3><Value> 1 |v20 2 2 1 1 1 1 1 1 3 3
@439 <Valuel><Value2><Value3><Value> 1 |v20 2 2 1 1 1 1 1 1 3 3
@43a <Valuel><Value2><Value3><Value> 1 (v2o0 2 2 1 1 1 1 1 1 3 3
@440 <Wert3><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@442 <Wert3><Value> 3 2 1 2 1

@446 <Value> 1 |v2o0 1 (04) 2 1 1 1 1 1 1 1 1
@447 <Value> 1 |v20 104) | 2 1 1 1 1 1 1 1 1
@448 <Wert3><Value> 1 |va2o0 3 2 1 2 1 3 3
@44b <Valuel><Value2><Value3><Value> 1 |v20 3 2 1 2 1

@44c <Valuel><Value2><Value3><Value> 1 |v2o0 3 2 1 2 1

@482 <Valuel><Value2><Value3><Value> 1 |v20 3 3
@483 <Wertl><Wert2><Wert3><Wert4><Wert> 1 |va20 3 3
@493 <Valuel><Value2><Value> 1 |v20 3 3
@494 <Valuel><Value2><Value3><Value> 1 |v20 3 3
@495 <Valuel><Value2><Value3><Value> 1 |v20 3 3

*) Function in preparation

11-14

© Siemens AG 1990 All Rights Reserved

6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

04.90 11 Appendix
11.3 Overview of functions implemented according to the software releases

WS800 Control types
@ code 800A | 800 [805*)| 810 | 810 | 810 | 810 [810G/[810G/| 820 | 820 (840 *)| 850 | 880
GA1 | GA2 | GA3 [820G |820G [GA2 | GA3
GA2 | GA3
@4a3 <Valuel><Value2><Value3><Value> 1 |v20 3 3
@4h0 <Valuel><Value2><Value3><Value4> 3 3
<Value5><Value>
@4bl <Valuel><Value2><Value3><Value4> 3 3
<Value5><Value>

@4h2 <Valuel><Value2><Value3><Value> 3 3
@4c0 <Value> 1 [v2o 3 2 1 1 1 2 1 3 3
@4el <Valuel><Value2><Value> 3 2 1 2 1

@610 <Var><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@613 <Var><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@614 <vVar><Valuel><Value2> 1 [vis 104) 2 1 1 1 1 1 1 1 1
@620 <Var> 1 |v20 2 (05) 2 1 1 1 1 1 1 2 1
@621 <Var> 1 |v2o0 2 (05) 2 1 1 1 1 1 1 2 1
@622 <Var> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@630 <Var><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@631 <Var><Value> 1 |v1i3 1(04)| 2 1 1 1 1 1 1 1 1
@632 <Var><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@634 <Var><Value> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@637 <Var><Valuel><Value2> 1 |v1i3 1(04) 2 1 1 1 1 1 1 1 1
@640 <var><Value> 1 [vis 1 2 1 1 1 1 1 1 1 1
@641 <Var><Value> 1 |v20 2 1
@650 <Var><Varl><Value> 1 |Vv13 104)| 2 1 1 1 1 1 1 1 1
@651 <Var><Varl><Value> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@652 <Var><Varl><Value> 1 [vis 104) 2 1 1 1 1 1 1 1 1
@653 <Var><Varl><Value> 1 |v1is 1 (04) 2 1 1 1 1 1 1 1 1
@654 <Var><Value> 1 |v1i3 1 2 1 1 1 1 1 1 1 1
@655 <Var><Varl><Value> 1 |Vv13 1(04)| 2 1 1 1 1 1 1 1 1
@656 <Var><Varl><Value> 1 |v13 1 (04) 2 1 1 1 1 1 1 1 1
@657 <Var><Varl><Value> 1 |v1i3 1(04)| 2 1 1 1 1 1 1 1 1

*) Function in preparation
© Siemens AG 1990 All Rights Reserved 6ZB5 410-0DP02 11-15

SINUMERIK WS 800 A, (PJ)

11 Appendix 04.90
11.3 Overview of functions implemented according to the software releases

WS800 Control types
@ code 800A | 800 [805*)| 810 | 810 | 810 | 810 [810G/[810G/| 820 | 820 [840*)| 850 | 880
GAl | GA2 | GA3 (820G |820G | GA2 | GA3
GA2 | GA3
@658 <Var><Varl><Value> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@659 <Var><Value> 1 |vi3 1(04) 2 1 1 1 1 1 1 1 1
@660 <Var><Const> 1 |vi3 104)| 2 1 1 1 1 1 1 1 1
@661 <Var><Const> 1 |vi3 1 (04) 2 1 1 1 1 1 1 1 1
@67x <Varl><Var2><Value> 1 |v1i3 104)| 2 1 1 1 1 1 1 1 1
@706 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@710 <Varl><Var2> 1 |v1i3 1(04) 2 1 1 1 1 1 1 1 1
@711 <Varl><Var2><Var3> 1 |vi3 104)| 2 1 1 1 1 1 1 1 1
@713 <Var> 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@714 1 |v1i3 1 (04) 2 1 1 1 1 1 1 1 1
@715 2 2 1 1 1 1 1 1 3 3
@720 <Var><Value> 1 |vis3 1 (04) 2 1 1 1 1 1 1 1 1
@730 <Valuel><Value2> 1 1
@736 <Valuel><Value2><Value3> 1 1
@a1l5 <Value4><Value5> 1 1
@alb 1 1
@a20 <Value> 1 |v20 1 1
@a25 <Valuel> 1 1
@a26 <Value2><Value3><Value4> 1 1
@a27 <Valuel><Value3><Value4> 1 |v2o0 1 1
@a28 <Value2> 1 |v20 1 1
@a29 1 1
@a40 <Value> 1 |v2o0 1 1
*) Function in preparation
11-16 © Siemens AG 1990 All Rights Reserved ~ 6ZB5 410-0DP02

SINUMERIK WS 800 A, (PJ)

04.90

11.4

The following list indicates the weighting of logical and arithmetic operations:

Weighting of operators

Weighting ?g;éce Function
1. () Brackets
2. / Division
* Multiplication
3. - Subtraction
+ Addition
4, AND And
NAND Not and
5. OR Or
XOR Exclusive-or
6. = Equal to
> Greater than
< Less than
>= Greater than or
equal to
<= Less than or equal
7. to
< > Not equal to
ANDB And bit
NANDB Not-and bit
ORB Or bit
XORB Exclusive-or bit

11 Appendix

11.4 Weighting of operators

The weighting decreases going down the table. Using suitable bracketing, a lower-priority
command can be processed before a higher-priority command.

© Siemens AG 1990 All Rights Reserved

SINUMERIK WS 800 A, (PJ)

6ZB5 410-0DP02

1117

11 Appendix
11.5 G-group classification

115

G-group classification

The following table indicates the classification of the G-functions according to G-groups
for the ACG statement (or object code: @36b):

Internal G-group classification for @36b
Internal .
G-group G-functions
0 00 (011011 |02 |03 |33 |34 |35(06]12 (13| 05| 07
1 09
2 17 | 18 | 19 | 16
3 40 | 41 | 42
4 53
5 54 [55 | 56 | 57
6 04 (25|26 |58 |59 |92 | 74
7 60 [63 | 64 | 62
8 70 | 71
9 80 (81182 (83|84 |85(86 |87 |88|89
10 90 [91 | 68
11 94 [95 | 96 | 97
12 147 (247|347 | 148 [248 | 348 | 48 (110|111
13 50 | 51
850/880 810G/820G
14 150|151 (152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 27
15 130|131 180 (181|182 (183|184 |185
16 230 | 231 65 [66 | 67
17 330 | 331 196 | 197
18 930 (931|932 (933|934 163
G-groups 14-18 only preliminary
for 810G/820G!
840 805
14
15
16
17
18
11-18 © siemens AG 1990 All Rights Reserved

04.90

6ZB5 410-0DP02
SINUMERIK WS 800 A, (PJ)

	Contents
	Preliminary remarks
	Section 1 -Introduction-
	1.1 General
	1.2 Using the planning workstation
	1.2.1 File functions
	1.2.2 Special functions
	1.2.2.1 Interactive processing
	1.2.2.2 Compilation
	1.2.2.3 Cross-references

	Section 2 -Overview of variables-
	2.1 General
	2.2 R parameters
	2.2.1 Central and channel-orientated R parameters
	2.2.2 Channel-orientated R parameters

	2.3 System memory
	2.3.1 Machine data
	2.3.2 Setting data
	2.3.3 Tool offsets
	2.3.4 Zero offsets
	2.3.5 PLC signals

	Section 3 -Language notation-
	3.1 General
	3.2 CL 800 words
	3.3 Operands

	Section 4 -Structure of the CL 800 high-level language-
	4.1 Program structure
	4.2 Data structure

	Section 5 -Command description-
	5.0 Preliminary information
	5.1 Program frame statements
	5.1.1 General statements
	5.1.2 Program header

	5.2 Declarations
	5.2.1 Declaration of variables
	5.2.2 Declaration of variables in external lists

	5.3 Statements
	5.3.1 Repeat statements
	5.3.1.1 REPEAT loop
	5.3.1.2 WHILE loop
	5.3.1.3 WHILE INT loop
	5.3.1.4 FOR TO loop
	5.3.1.5 FOR DOWNTO loop

	5.3.2 Decision statements
	5.3.2.1 IF THEN ELSE branching
	5.3.2.2 IF INT THEN ELSE branching

	5.3.3 Unconditional branching
	5.3.3.1 Unconditional jump

	5.3.4 General data transfer
	5.3.4.1 Data transfer: R par./R par.
	5.3.4.2 Data transfer: R par./input buffer memory for numerical variable

	5.3.5 Data transfer: System memory into the R parameter
	5.3.5.1 Transfer machine data into the R parameter
	5.3.5.2 Transfer setting data into the R parameter
	5.3.5.3 Transfer tool offsets into the R parameter
	5.3.5.4 Transfer zero offsets into the R parameter
	5.3.5.5 Read programmed setpoints into the R parameter
	5.3.5.6 Read actual values into the R parameter
	5.3.5.7 Read program data into the R parameter
	5.3.5.8 Read PLC signal bits into the R parameter
	5.3.5.9 Read PLC signal bytes into the R parameter
	5.3.5.10 Read PLC signal words into the R parameter
	5.3.5.11 Read PLC signal data words into the R parameter
	5.3.5.12 Read alarms into the R parameter
	5.3.5.13 Read alarm pointer into the R parameter
	5.3.5.14 Read system memory into the R parameter

	5.3.6 Data transfer: R parameter into the system memory
	5.3.6.1 Transfer R parameter into the machine data
	5.3.6.2 Transfer R parameter into the setting data
	5.3.6.3 Write R parameter into the tool offsets
	5.3.6.4 Write R parameter into the zero offsets
	5.3.6.5 Write R parameter into the programmed setpoints
	5.3.6.6 Write R parameter into the PLC signal bits
	5.3.6.7 Write R parameter into the PLC signal bytes
	5.3.6.8 Write R parameter into the PLC signal words
	5.3.6.9 Write R parameter into the PLC signal data words
	5.3.6.10 Write R parameter into the alarms
	5.3.6.11 Write R parameter into the system memory

	5.3.7 Mathematical and logical functions
	5.3.7.1 Value assignment with arithmetic operations
	5.3.7.2 Arithmetic functions
	5.3.7.3 Arithmetic procedures
	5.3.7.4 Trigonometric functions
	5.3.7.5 Logarithmic functions
	5.3.7.6 Logical functions
	5.3.7.7 Logical procedures

	5.3.8 NC-related functions
	5.3.8.1 Changing the program and machine reference points
	5.3.8.2 Single functions
	5.3.8.3 Measuring functions
	5.3.8.4 Program influence

	5.3.9 I/O statements
	5.3.9.1 NC I/O functions
	5.3.9.2 General I/O functions,
	5.3.9.3 Operator control functions

	Section 6 -Command summary-
	6.1 General statements for program configuration
	6.2 Declarations
	6.3 Repeat statements
	6.4 Decision statements
	6.5 Unconditional jump
	6.6 Data transfer, general
	6.7 Data transfer: System memory into the R parameter
	6.8 Data transfer: R parameter into system memory
	6.9 Mathematical and logical functions
	6.10 NC-specific functions
	6.11 I/O statements

	Section 7 -Examples-
	7.1 Program structure overview
	7.2 Program nesting for IF THEN ELSE branching
	7.3 Program example: Hole pattern
	7.4 Program example: Deep-hole drilling cycle

	Section 8 -Using the interactive editor-
	8.1 General
	8.2 Interactive editor operating modes
	8.2.1 Functions in the display mode
	8.2.2 Functions in the command mode

	Section 9 -Cycle editor error messages-
	9.1 General
	9.2 Error message list
	9.2.1 Warning messages
	9.2.2 User error messages
	9.2.3 System error messages

	Section 10 -Object code-
	10.1 Structure of the @ code
	10.1.1 Subdivision into main groups
	10.1.2 Operands after the @ function
	10.1.3 Notation

	10.2 General statements for the program structure
	10.3 Program branching
	10.4 General data transfer
	10.5 Data transfer: System memory into the R parameter
	10.6 Data transfer: R parameter into the system memory
	10.7 File handling, general: (in preparation)
	10.8 Mathematical and logical functions
	10.9 NC-specific functions
	10.10 I/O statements

	Section 11 -Appendix-
	11.1 Alphabetic keyword index/CL 800 names
	11.2 Terminology
	11.3 Overview of functions implemented according to the software releases
	11.4 Weighting of operators
	11.5 G-group classification

