
SINUMERIK

SINUMERIK 840D sl / 828D
Basic Functions

Function Manual

Valid for

Control
SINUMERIK 840D sl / 840DE sl / 828D

CNC software Version 4.8 SP3

08/2018
6FC5397-0BP40-6BA2

Preface
Fundamental safety
instructions 1
A2: Various NC/PLC
interface signals and
functions

2

A3: Axis monitoring functions 3
A5: Protection zones 4
B1: Continuous-path mode,
Exact stop, Look Ahead 5
B2: Acceleration 6
F1: Travel to fixed stop 7
G2: Velocities, setpoint /
actual value systems, closed-
loop control

8
H2: Auxiliary function outputs
to PLC 9
K1: Mode group, channel,
program operation, reset
response

10
K2: Axis Types, Coordinate
Systems, Frames 11
N2: Emergency stop 12
P1: Transverse axes 13
P3: Basic PLC program for
SINUMERIK 840D sl 14
P4: PLC for SINUMERIK
828D 15
R1: Referencing 16
S1: Spindles 17
V1: Feedrates 18
W1: Tool offset 19
Z1: NC/PLC interface signals 20
Appendix A

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in
this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

Document order number: 6FC5397-0BP40-6BA2
Ⓟ 08/2018 Subject to change

Copyright © Siemens AG 1994 - 2018.
All rights reserved

Preface

SINUMERIK documentation
The SINUMERIK documentation is organized into the following categories:

● General documentation/catalogs

● User documentation

● Manufacturer/service documentation

Additional information
You can find information on the following topics at the following address (https://
support.industry.siemens.com/cs/de/en/view/108464614):

● Ordering documentation/overview of documentation

● Additional links to download documents

● Using documentation online (find and search in manuals/information)

If you have any questions regarding the technical documentation (e.g. suggestions,
corrections), please send an e-mail to the following address
(mailto:docu.motioncontrol@siemens.com).

mySupport/Documentation
At the following address (https://support.industry.siemens.com/My/ww/en/documentation),
you can find information on how to create your own individual documentation based on
Siemens' content, and adapt it for your own machine documentation.

Training
At the following address (http://www.siemens.com/sitrain), you can find information about
SITRAIN (Siemens training on products, systems and solutions for automation and drives).

FAQs
You can find Frequently Asked Questions in the Service&Support pages under Product
Support (https://support.industry.siemens.com/cs/de/en/ps/faq).

SINUMERIK
You can find information about SINUMERIK at the following address (http://www.siemens.com/
sinumerik).

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 3

https://support.industry.siemens.com/cs/de/en/view/108464614
https://support.industry.siemens.com/cs/de/en/view/108464614
mailto:docu.motioncontrol@siemens.com
https://support.industry.siemens.com/My/ww/en/documentation
http://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/de/en/ps/faq
http://www.siemens.com/sinumerik
http://www.siemens.com/sinumerik

Target group
This publication is intended for:

● Project engineers

● Technologists (from machine manufacturers)

● System startup engineers (Systems/Machines)

● Programmers

Benefits
The function manual describes the functions so that the target group knows them and can
select them. It provides the target group with the information required to implement the
functions.

Standard version
This documentation only describes the functionality of the standard version. Extensions or
changes made by the machine tool manufacturer are documented by the machine tool
manufacturer.

Other functions not described in this documentation might be executable in the control. This
does not, however, represent an obligation to supply such functions with a new control or when
servicing.

Further, for the sake of simplicity, this documentation does not contain all detailed information
about all types of the product and cannot cover every conceivable case of installation, operation
or maintenance.

Technical Support
Country-specific telephone numbers for technical support are provided in the Internet at the
following address (https://support.industry.siemens.com/sc/ww/en/sc/2090) in the "Contact"
area.

Information on the structure and contents

Structure
This Function Manual is structured as follows:

● Inner title (page 3) with the title of the Function Manual, the SINUMERIK controls as well
as the software and the version for which this version of the Function Manual is applicable
and the overview of the individual functional descriptions.

● Description of the functions in alphabetical order (e.g. A2, A3, B1, etc.)

Preface

Basic Functions
4 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

https://support.industry.siemens.com/sc/ww/en/sc/2090

● Appendix with:

– List of abbreviations

– Documentation overview

● Index of terms

Note

For detailed descriptions of data and alarms see:
● For machine and setting data:

Detailed machine data description
● For NC/PLC interface signals:

NC Variables and Interface Signals List Manual
● For alarms:

Diagnostics Manual

Notation of system data
The following notation is applicable for system data in this documentation:

Signal/Data Notation Example
NC/PLC interface
signals

... NC/PLC interface signal:
<signal address> (<signal name>)

When the new gear stage is engaged, the following NC/PLC
interface signals are set by the PLC program:
DB31, ... DBX16.0-2 (actual gear stage A to C)
DB31, ... DBX16.3 (gear is changed)

Machine data ... machine data:
<Type><Number> <Complete Des‐
ignator> (<Meaning>)

Master spindle is the spindle stored in the machine data:
MD20090 $MC_SPIND_DEF_MASTER_SPIND (position of de‐
letion of the master spindle in the channel)

Setting data ... setting data:
<Type><Number> <Complete Des‐
ignator> (<Meaning>)

The logical master spindle is contained in the setting data:
SD42800 $SC_SPIND_ASSIGN_TAB[0] (spindle number con‐
verter)

Note
Signal address

The description of functions include as <signal address> of an NC/PLC interface signal, only
the address valid for SINUMERIK 840D sl. The signal address for SINUMERIK 828D should
be taken from the data lists "Signals to/from ..." at the end of the particular description of
functions.

Preface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 5

Quantity structure
Explanations concerning the NC/PLC interface are based on the absolute maximum number
of the following components:

● Mode groups (DB11)

● Channels (DB21, etc.)

● Axes/spindles (DB31, etc.)

Data types
The control provides the following data types that can be used for programming in part
programs:

Type Meaning Value range
INT Signed integers -2,147,483,648 ... +2,147,483,647
REAL Numbers with decimal point ≈ ±5.0*10-324 … ≈ ±1.7*10+308

BOOL Boolean values TRUE (≠0) , FALSE (0)
CHAR ASCII characters and bytes 0 ... 255 or -128 ... 127
STRING Character string, null-terminated Maximum of 400 characters + /0

(no special characters)
AXIS Axis names All axis names available in the control

system
FRAME Geometrical parameters for moving, rotating, scaling, and

mirroring

Arrays
Arrays can only be formed from similar elementary data types. Up to 3-dimensional arrays are
possible.

Example: DEF INT ARRAY[2, 3, 4]

Number systems
The following number systems are available:

● Decimal: DEF INT number = 1234 or DEF REAL number = 1234.56
● Hexadecimal: DEF INT number = 'H123ABC'
● Binary: DEF INT number = 'B10001010010'

Querying REAL variables
We recommend that querying REAL or DOUBLE variables in NC programs and synchronized
actions is programmed as limit value evaluation.

Example: Querying the actual value of an axis for a specific value

Program code Comment
DEF REAL AXPOS = 123.456
IF ($VA_IM[<axis>] - 1ex-6) <= AXPOS <= ($VA_IM[<axis>] + 1ex-6) ; actual position
 ... == AXPOS

Preface

Basic Functions
6 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
ELSE
 ... <> AXPOS
ENDIF

Preface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 7

Preface

Basic Functions
8 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Table of contents

Preface...3

1 Fundamental safety instructions...37

1.1 General safety instructions...37

1.2 Warranty and liability for application examples..37

1.3 Industrial security...38

2 A2: Various NC/PLC interface signals and functions...41

2.1 Brief description...41

2.2 NC/PLC interface signals...41
2.2.1 General information..41
2.2.2 Ready signal to PLC..43
2.2.3 Status signals to PLC...43
2.2.4 Signals to/from the operator panel front...46
2.2.5 Signals to channel..48
2.2.6 Signals to axis/spindle..48
2.2.7 Signals from axis/spindle...57
2.2.8 Signals to axis/spindle (digital drives)..59
2.2.9 Signals from axis/spindle (digital drives)..60

2.3 Functions..62
2.3.1 Screen refresh behavior for overload - only 840D sl..62
2.3.2 Settings for involute interpolation - only 840D sl..63
2.3.3 Activate DEFAULT memory - only 840D sl..65
2.3.4 Read and write PLC variable - only 840D sl..66
2.3.5 Access protection via password and keyswitch...69
2.3.5.1 Password...71
2.3.5.2 Keyswitch positions (DB10, DBX56.4 to 7)..73
2.3.5.3 Parameterizable protection levels..74
2.3.6 Switching over motor/drive data sets...74
2.3.6.1 General Information...74
2.3.6.2 Formatting interfaces...75
2.3.6.3 Request interface...76
2.3.6.4 Display interface...76
2.3.6.5 Example...76
2.3.6.6 Overview of the interfaces..77
2.3.6.7 Supplementary conditions..79

2.4 Examples...79
2.4.1 Parameter set changeover...79

2.5 Data lists..81
2.5.1 Machine data..81
2.5.1.1 Display machine data...81
2.5.1.2 NC-specific machine data..81
2.5.1.3 Channelspecific machine data...82

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 9

2.5.1.4 Axis/spindlespecific machine data...82
2.5.2 System variables..83
2.5.3 Signals...83
2.5.3.1 Signals to NC...83
2.5.3.2 Signals from NC...83
2.5.3.3 Signals to operator panel front...84
2.5.3.4 Signals from operator panel front...84
2.5.3.5 Signals to channel..85
2.5.3.6 Signals from channel..85
2.5.3.7 Signals to axis/spindle..85
2.5.3.8 Signals from axis/spindle...85

3 A3: Axis monitoring functions...87

3.1 Contour monitoring...87
3.1.1 Contour error..87
3.1.2 Following-error monitoring...88

3.2 Positioning, zero speed and clamping monitoring..90
3.2.1 Correlation between positioning, zero-speed and clamping monitoring.................................90
3.2.2 Positioning monitoring..90
3.2.3 Zero-speed monitoring...92
3.2.4 Parameter set-dependent exact stop and standstill tolerance...92
3.2.5 Clamping monitoring..93
3.2.5.1 Function...93
3.2.5.2 Machine data..93
3.2.5.3 NC/PLC interface signals...94
3.2.5.4 Fault responses..95
3.2.5.5 "Automatic stop to release the clamping" clamping function..95
3.2.5.6 "Time-optimized release of the clamping" clamping function...96
3.2.5.7 "Automatic stop to set the clamping" clamping function...98
3.2.5.8 Supplementary conditions..99

3.3 Speed-setpoint monitoring...102

3.4 Actual-velocity monitoring..103

3.5 Measuring system monitoring..104
3.5.1 Encoder-limit-frequency monitoring...106
3.5.2 Plausibility check for absolute encoders..107
3.5.3 Customized error reactions..109

3.6 Limit-switch monitoring...112
3.6.1 Hardware limit switch...112
3.6.2 Software limit switch...113

3.7 Working area limitation monitoring...115
3.7.1 General..115
3.7.2 Working area limitation in BCS..117
3.7.3 Working area limitation in WCS/SZS...119
3.7.4 Example: Working area limitation in WCS/SZS...122

3.8 Parking a machine axis..125

3.9 Parking the passive position measuring system..127
3.9.1 Function...127
3.9.2 Supplementary conditions..130

Table of contents

Basic Functions
10 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3.9.3 Example: Changing an attachment head for a direct position measuring system...............131
3.9.4 Example: Changing an attachment head for two direct position measuring systems..........136
3.9.5 Example: Measuring system switchover when encoders are missing in certain parts of

the range..140

3.10 Switching over encoder data sets..143

3.11 Data lists..146
3.11.1 Machine data..146
3.11.1.1 NC-specific machine data..146
3.11.1.2 Channelspecific machine data...146
3.11.1.3 Axis/spindlespecific machine data...147
3.11.2 Setting data..148
3.11.2.1 Axis/spindlespecific setting data..148
3.11.3 Signals...148
3.11.3.1 Signals to axis/spindle..148
3.11.3.2 Signals from axis/spindle...149

4 A5: Protection zones..151

4.1 Function...151

4.2 Commissioning...157
4.2.1 Machine data..157

4.3 Programming..158
4.3.1 Defining protection zones (CPROTDEF, NPROTDEF)..158
4.3.2 Activating/deactivating protection zones (CPROT, NPROT)...161
4.3.3 Checking for protection zone violation, working area limitation and software limit

switches (CALCPOSI)..165

4.4 Special situations...174
4.4.1 Temporary enabling of protection zones..174
4.4.2 Behavior in the AUTOMATIC and MDA modes...175
4.4.3 Behavior in JOG mode...176

4.5 Boundary conditions...179

4.6 Example...180
4.6.1 Protection zone on a lathe...180
4.6.2 Protection zone definition in the part program...181
4.6.3 Protection zone definition with system variables..181
4.6.4 Activating protection zones..189

4.7 Data lists..189
4.7.1 Machine data..189
4.7.1.1 NC-specific machine data..189
4.7.1.2 Channelspecific machine data...190
4.7.2 Signals...190
4.7.2.1 Signals to channel..190
4.7.2.2 Signals from channel..190

5 B1: Continuous-path mode, Exact stop, Look Ahead...191

5.1 Brief Description...191

5.2 Exact stop mode..193

5.3 Continuous-path mode...197

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 11

5.3.1 General functionality..197
5.3.2 Velocity reduction according to overload factor...199
5.3.3 Rounding..201
5.3.3.1 Rounding according to a path criterion (G641)..204
5.3.3.2 Rounding in compliance with defined tolerances (G642/G643)...206
5.3.3.3 Rounding with maximum possible axial dynamic response (G644).....................................209
5.3.3.4 Rounding of tangential block transitions (G645)..212
5.3.3.5 Rounding and repositioning (REPOS)...213
5.3.4 LookAhead...214
5.3.4.1 Standard functionality...214
5.3.4.2 Free-form surface mode: Extension function...219

5.4 Dynamic adaptations..223
5.4.1 Smoothing of the path velocity...223
5.4.2 Adaptation of the dynamic path response..227
5.4.3 Determination of the dynamic response limiting values...231
5.4.4 Interaction between the "smoothing of the path velocity" and "adaptation of the path

dynamic response" functions...232
5.4.5 Dynamic response mode for path interpolation..235
5.4.6 Free-form surface mode: Basic functions..237

5.5 Compressor functions..241
5.5.1 Compression of linear, circular and rapid traverse blocks...241
5.5.1.1 Function...241
5.5.1.2 Commissioning...243
5.5.1.3 Programming..245
5.5.1.4 Supplementary conditions..246
5.5.2 Compression of short spline blocks...246

5.6 Contour/Orientation tolerance..248
5.6.1 Commissioning...248
5.6.1.1 Parameter assignment...248
5.6.2 Programming..249
5.6.2.1 Programming contour/orientation tolerance (CTOL, OTOL, ATOL).....................................249
5.6.2.2 Programming contour/orientation tolerance (CTOL, OTOL, ATOL) Additional information....252

5.7 Rapid traverse movements..253
5.7.1 Function...253
5.7.1.1 Rapid traverse..253
5.7.1.2 Interpolation response of path axes for rapid traversing movements..................................254
5.7.1.3 Tolerances for rapid traverse movements..256
5.7.1.4 Rapid traverse override..256
5.7.2 Commissioning...257
5.7.2.1 Parameter assignment...257
5.7.3 Programming..257
5.7.3.1 Activating rapid traverse (G0)..257
5.7.3.2 Switch on/off linear interpolation for rapid traverse movements (RTLION, RTLIOF)...........259
5.7.3.3 Adapt tolerance factor for rapid traverse movements (STOLF)...260

5.8 RESET behavior..262

5.9 Supplementary conditions..263
5.9.1 Block change and positioning axes..263
5.9.2 Block change delay..263

5.10 Data lists..263

Table of contents

Basic Functions
12 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

5.10.1 Machine data..263
5.10.1.1 General machine data..263
5.10.1.2 Channelspecific machine data...264
5.10.1.3 Axis/spindlespecific machine data...265
5.10.2 Setting data..266
5.10.2.1 Channelspecific setting data..266
5.10.3 Signals...266
5.10.3.1 Signals from channel..266
5.10.3.2 Signals from axis/spindle...266

6 B2: Acceleration...267

6.1 Brief description...267
6.1.1 General information..267
6.1.2 Features...267

6.2 Functions..269
6.2.1 Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-specific)......................269
6.2.1.1 General Information...269
6.2.1.2 Parameterization..270
6.2.1.3 Programming..271
6.2.2 Constant travel time (channel-specific)..272
6.2.2.1 General Information...272
6.2.2.2 Parameterization..273
6.2.3 Acceleration matching (ACC) (axis-specific)..274
6.2.3.1 General Information...274
6.2.3.2 Programming..274
6.2.4 Acceleration margin (channel-specific)..275
6.2.4.1 General Information...275
6.2.4.2 Parameterization..275
6.2.5 Path-acceleration limitation (channel-specific)...275
6.2.5.1 General Information...275
6.2.5.2 Parameterization..276
6.2.5.3 Programming..276
6.2.6 Path acceleration for real-time events (channel-specific)..277
6.2.6.1 General Information...277
6.2.6.2 Programming..278
6.2.7 Acceleration with programmed rapid traverse (G00) (axis-specific)....................................279
6.2.7.1 General Information...279
6.2.7.2 Parameterization..279
6.2.8 Acceleration with active jerk limitation (SOFT/SOFTA) (axis-specific).................................280
6.2.8.1 General Information...280
6.2.8.2 Parameterization..280
6.2.9 Excessive acceleration for non-tangential block transitions (axis-specific)..........................280
6.2.9.1 General Information...280
6.2.9.2 Parameterization..281
6.2.10 Acceleration margin for radial acceleration (channel-specific)...281
6.2.10.1 General Information...281
6.2.10.2 Parameterization..282
6.2.11 Jerk limitation with path interpolation (SOFT) (channel-specific)...283
6.2.11.1 General Information...283
6.2.11.2 Parameterization..285
6.2.11.3 Programming..285
6.2.12 Jerk limitation with single-axis interpolation (SOFTA) (axis-specific)...................................286

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 13

6.2.12.1 Parameterization..286
6.2.12.2 Programming..287
6.2.13 Path-jerk limitation (channel-specific)..287
6.2.13.1 General Information...287
6.2.13.2 Parameterization..288
6.2.13.3 Programming..288
6.2.14 Path jerk for real-time events (channel-specific)..289
6.2.14.1 General Information...289
6.2.14.2 Programming..290
6.2.15 Jerk with programmed rapid traverse (G00) (axis-specific)...291
6.2.15.1 General Information...291
6.2.15.2 Parameterization..291
6.2.16 Excessive jerk for block transitions without constant curvature (axis-specific)....................291
6.2.16.1 General Information...291
6.2.16.2 Parameterization..292
6.2.17 Velocity-dependent jerk adaptation (axis-specific)...292
6.2.18 Jerk filter (axis-specific)..294
6.2.18.1 General Information...294
6.2.18.2 Parameterization..296
6.2.19 Kneeshaped acceleration characteristic curve...297
6.2.19.1 Function: Adaptation to the motor characteristic curve..297
6.2.19.2 Function: Effects on the path acceleration...298
6.2.19.3 Function: Substitute curve..298
6.2.19.4 Parameterization..301
6.2.19.5 Programming: Channel-specific activation (DRIVE)..304
6.2.19.6 Programming: Axis-specific activation (DRIVEA)...304
6.2.19.7 Boundary conditions...305
6.2.20 Acceleration and jerk for JOG motions..306
6.2.20.1 Parameterization..306
6.2.20.2 Supplementary conditions..307

6.3 Examples...308
6.3.1 Acceleration...308
6.3.1.1 Path velocity characteristic...308
6.3.2 Jerk..310
6.3.2.1 Path velocity characteristic...310
6.3.3 Acceleration and jerk..311
6.3.4 Knee-shaped acceleration characteristic curve...313
6.3.4.1 Activation..313

6.4 Data lists..314
6.4.1 Machine data..314
6.4.1.1 NC-specific machine data..314
6.4.1.2 Channel-specific machine data..314
6.4.1.3 Axis/spindlespecific machine data...314
6.4.2 Setting data..315
6.4.2.1 Channelspecific setting data..315
6.4.3 System variables..315

7 F1: Travel to fixed stop...317

7.1 Brief description...317

7.2 Detailed description..318
7.2.1 Programming..318

Table of contents

Basic Functions
14 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

7.2.2 Functional sequence..320
7.2.2.1 Selection..320
7.2.2.2 Fixed stop is reached...321
7.2.2.3 Fixed stop is not reached...323
7.2.2.4 Deselection..324
7.2.3 Behavior during block search...327
7.2.4 Behavior for reset and function abort...330
7.2.5 Behavior with regard to other functions..330
7.2.6 Setting data..331
7.2.7 System variables..333
7.2.8 Alarms..334
7.2.9 Travel with limited torque/force FOC..335

7.3 Examples...338

7.4 Data lists..340
7.4.1 Machine data..340
7.4.1.1 Axis/spindlespecific machine data...340
7.4.2 Setting data..340
7.4.2.1 Axis/spindle-specific setting data...340
7.4.3 Signals...341
7.4.3.1 Signals to axis/spindle..341
7.4.3.2 Signals from axis/spindle...341

8 G2: Velocities, setpoint / actual value systems, closed-loop control..343

8.1 Brief description...343

8.2 Velocities, traversing ranges, accuracies...343
8.2.1 Velocities..343
8.2.2 Traversing ranges..345
8.2.3 Positioning accuracy of the control system ...346
8.2.4 Input/display resolution, computational resolution...346
8.2.5 Scaling of physical quantities of machine and setting data..348

8.3 System of units, metric/inch...351
8.3.1 Function...351
8.3.1.1 Parameterized and programmed system of units..351
8.3.1.2 Extended system of units functionality...352
8.3.1.3 System of units switchover at the user interface..352
8.3.2 Commissioning...354
8.3.3 Programming..358
8.3.3.1 Switching over the system of units (G70/G71/G700/G710)...358

8.4 Setpoint/actual-value system...362
8.4.1 General information..362
8.4.2 Setpoint and encoder assignment..364
8.4.3 Adapting the motor/load ratios...368
8.4.4 Speed setpoint output..370
8.4.5 Machine data of the actual value system...372
8.4.6 Actual-value resolution...373
8.4.6.1 Machine data of the actual value resolution...373
8.4.6.2 Example: Linear axis with linear scale...376
8.4.6.3 Example: Linear axis with rotary encoder on motor...377
8.4.6.4 Example: Linear axis with rotary encoder on the machine...378
8.4.6.5 Example: Rotary axis with rotary encoder on motor..379

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 15

8.4.6.6 Example: Rotary axis with rotary encoder on the machine..380
8.4.6.7 Example: Intermediate gear with encoder on the tool..381

8.5 Closed-loop control..382
8.5.1 General information..382
8.5.2 Parameter sets of the position controller..385

8.6 Optimization of the control...386
8.6.1 Position controller, position setpoint filter: Balancing filter...386
8.6.2 Position controller, position setpoint filter: Jerk filter..390
8.6.3 Position controller, position setpoint filter: Phase filter...392
8.6.4 Position controller: injection of positional deviation..394
8.6.5 Position control with proportional-plus-integral-action controller..395

8.7 Data lists..398
8.7.1 Machine data..398
8.7.1.1 Displaying machine data..398
8.7.1.2 NC-specific machine data..398
8.7.1.3 Channelspecific machine data...398
8.7.1.4 Axis/spindlespecific machine data...399
8.7.2 Signals...400
8.7.2.1 Signals from the NC...400
8.7.2.2 Signals to NC...400

9 H2: Auxiliary function outputs to PLC...401

9.1 Brief description...401
9.1.1 Function...401
9.1.2 Definition of an auxiliary function...402
9.1.3 Overview of the auxiliary functions...402

9.2 Predefined auxiliary functions..408
9.2.1 Overview: Predefined auxiliary functions...408
9.2.2 Overview: Output behavior...419
9.2.3 Parameterization..422
9.2.3.1 Group assignment..422
9.2.3.2 Type, address extension and value...423
9.2.3.3 Output behavior..424

9.3 Userdefined auxiliary functions..428
9.3.1 Parameterization..430
9.3.1.1 Maximum number of user-defined auxiliary functions..430
9.3.1.2 Group assignment..430
9.3.1.3 Type, address extension and value...430
9.3.1.4 Output behavior..432

9.4 Associated auxiliary functions..432

9.5 Type-specific output behavior..434

9.6 Priorities of the output behavior for which parameters have been assigned........................436

9.7 Programming an auxiliary function...437

9.8 Programmable output duration...438

9.9 Auxiliary function output to the PLC...440

9.10 Auxiliary functions without block change delay..440

Table of contents

Basic Functions
16 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

9.11 M function with an implicit preprocessing stop...441

9.12 Response to overstore...442

9.13 Behavior during block search...443
9.13.1 Auxiliary function output during type 1, 2, and 4 block searches...443
9.13.2 Assignment of an auxiliary function to a number of groups...444
9.13.3 Time stamp of the active M auxiliary function..446
9.13.4 Determining the output sequence..446
9.13.5 Output suppression of spindle-specific auxiliary functions...448
9.13.6 Auxiliary function output with a type 5 block search (SERUPRO).......................................451
9.13.7 ASUB at the end of the SERUPRO..455

9.14 Implicitly output auxiliary functions...461

9.15 Information options...462
9.15.1 Group-specific modal M auxiliary function display...463
9.15.2 Querying system variables...464

9.16 Supplementary conditions..466
9.16.1 General constraints..466
9.16.2 Output behavior..467

9.17 Examples...468
9.17.1 Extension of predefined auxiliary functions..468
9.17.2 Defining auxiliary functions..470

9.18 Data lists..474
9.18.1 Machine data..474
9.18.1.1 NC-specific machine data..474
9.18.1.2 Channelspecific machine data...475
9.18.2 Signals...476
9.18.2.1 Signals to channel..476
9.18.2.2 Signals from channel..476
9.18.2.3 Signals to axis/spindle..478
9.18.2.4 Signals from axis/spindle...478

10 K1: Mode group, channel, program operation, reset response..479

10.1 Product brief...479

10.2 Mode group..481
10.2.1 Mode group stop..484
10.2.2 Mode group reset...484

10.3 Mode types and mode type change...485
10.3.1 Monitoring functions and interlocks of the individual modes..490
10.3.2 Mode change...490

10.4 Channel..491
10.4.1 Start inhibit, global and channel-specific..494

10.5 Program test...495
10.5.1 Program execution without setpoint outputs..496
10.5.2 Program execution in single-block mode...497
10.5.3 Program execution with dry run feedrate...499
10.5.4 Skip part-program blocks...501

10.6 Workpiece simulation...502

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 17

10.7 Block search, types 1, 2, and 4:...503
10.7.1 Description of the function..505
10.7.2 Block search in connection with other NCK functions..507
10.7.2.1 ASUB after and during block search..507
10.7.2.2 PLC actions after block search..508
10.7.2.3 Spindle functions after block search..508
10.7.2.4 Reading system variables for a block search...509
10.7.3 Automatic start of an ASUB after a block search...510
10.7.4 Cascaded block search..511
10.7.5 Examples for block search with calculation..513
10.7.6 Supplementary conditions..517
10.7.6.1 Compressor functions (COMPON, COMPCURV, COMPCAD)...517

10.8 Block search Type 5 (SERUPRO)...517
10.8.1 Description of the function..517
10.8.2 Repositioning to the contour (REPOS)..521
10.8.2.1 Repositioning with controlled REPOS..528
10.8.3 Accelerate block search...529
10.8.4 SERUPRO ASUB...531
10.8.5 Selfacting SERUPRO...534
10.8.6 Locking a program section for "Continue machining at the contour"...................................535
10.8.7 Behavior during POWER ON, mode change and RESET...538
10.8.8 Supplementary conditions..539
10.8.8.1 STOPRE in the target block...539
10.8.8.2 SPOS in target block..540
10.8.8.3 Travel to fixed stop (FXS)..540
10.8.8.4 Travel with limited torque/force (FOC)...541
10.8.8.5 Synchronous spindle..541
10.8.8.6 Couplings and master-slave...542
10.8.8.7 Axis functions...545
10.8.8.8 Gear stage change...546
10.8.8.9 Superimposed motion..547
10.8.8.10 NC/PLC interface signals...547
10.8.8.11 Making the initial settings more flexible..548
10.8.8.12 Compressor functions (COMPON, COMPCURV, COMPCAD)...548
10.8.9 System variable..549

10.9 Program operation...549
10.9.1 Initial settings...550
10.9.1.1 Machine data..550
10.9.1.2 Programming..551
10.9.2 Selection and start of an NC program..554
10.9.3 Program interruption..556
10.9.4 Channel reset...557
10.9.5 Program status...558
10.9.6 Channel status...559
10.9.7 Responses to operator and program actions...560
10.9.8 Example of a timing diagram for a program run...561
10.9.9 Program jumps...562
10.9.9.1 Return jump to the start of the program (GOTOS)...562
10.9.10 Program section repetitions...564
10.9.10.1 Programming..564
10.9.11 Event-driven program call (PROG_EVENT)..570

Table of contents

Basic Functions
18 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.9.11.1 Function...570
10.9.11.2 Parameterization..574
10.9.11.3 Programming..578
10.9.11.4 Boundary conditions...579
10.9.11.5 Examples...579
10.9.12 Influencing the stop events by stop delay areas..581
10.9.12.1 Function...581
10.9.12.2 Parameterization..584
10.9.12.3 Programming..584
10.9.12.4 Supplementary conditions..586

10.10 Asynchronous subprograms (ASUPs)...587
10.10.1 Function...587
10.10.1.1 Execution sequence of an ASUP in program mode...590
10.10.1.2 ASUP with REPOSA..591
10.10.1.3 NC response..592
10.10.2 Commissioning: Machine data...593
10.10.2.1 NC-spec.: Mode-group-specific NC/PLC interface signals and operating mode

switchover..593
10.10.2.2 NC-spec.: ASUP start enable...594
10.10.2.3 NC-spec.: Effectiveness of the parameterized start enables...594
10.10.2.4 Channel-spec.: Start enable despite non-referenced axes..595
10.10.2.5 Channel-spec.: Start enable despite read-in disable...595
10.10.2.6 Channel-spec.: Continuous execution despite single block...596
10.10.2.7 Channel-spec.: Refreshing the display..596
10.10.3 Programming: System variables..597
10.10.3.1 REPOS option ($P_REPINF)...597
10.10.3.2 Activation event ($AC_ASUP)..597
10.10.4 Programming (SETINT, PRIO)...597
10.10.5 Restrictions..599
10.10.6 Examples...600

10.11 User-specific ASUB for RET and REPOS..601
10.11.1 Function...601
10.11.2 Parameter assignment...601
10.11.3 Programming..602

10.12 Perform ASUB start for user alarms...603
10.12.1 Function...603
10.12.2 Activation..604
10.12.3 Examples...605
10.12.3.1 User ASUB from reset - example 1..605
10.12.3.2 User ASUB from reset - example 2..606
10.12.3.3 User ASUB with M0...607
10.12.3.4 User ASUB with stop..608
10.12.3.5 User ASUB from stopped...609

10.13 Single block..610
10.13.1 Parameterization..611
10.13.2 Programming..613
10.13.2.1 Deactivating/activating single block machining (SBLOF, SBLON).......................................613
10.13.2.2 Supplementary conditions..613
10.13.2.3 Examples...614
10.13.3 Mode group-specific single block type A / B..617

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 19

10.13.4 Supplementary conditions..618
10.13.4.1 SBL2 single block type and block-related synchronized actions..618
10.13.4.2 Programmed stop (M0), single block and single block type switchover...............................618

10.14 Program control..618
10.14.1 Function selection from the user interface or PLC user program...619
10.14.2 Activation of skip levels..620
10.14.3 Adapting the size of the interpolation buffer...621
10.14.4 Program display modes via an additional basic block display...623
10.14.5 Basic block display for ShopMill/ShopTurn..623
10.14.6 Structure for a DIN block..626
10.14.7 Execution from external...629
10.14.8 Executing external subprograms (EXTCALL)..631

10.15 Execution from external storage (EES) (option)...634
10.15.1 Function...634
10.15.2 Commissioning...637
10.15.2.1 Configuring the drives..637
10.15.2.2 Global part program memory (GDIR)...639
10.15.2.3 Settings for file handling in the part program for EES..640
10.15.2.4 Memory configuration...642
10.15.3 Supplementary conditions..643

10.16 Process Datashare - output to an external device/file..643
10.16.1 Function...643
10.16.2 Commissioning...644
10.16.3 Programming..647
10.16.4 Supplementary conditions..651

10.17 System settings for power-up, RESET / part program end and part program start.............652
10.17.1 Tool withdrawal after POWER ON with orientation transformation......................................656

10.18 Replacing functions by subprograms...659
10.18.1 Overview..659
10.18.2 Replacement of M, T/TCA and D/DL functions..660
10.18.2.1 Replacement of M functions...660
10.18.2.2 Replacing T/TCA and D/DL functions..662
10.18.2.3 System variable..665
10.18.2.4 Example: Replacement of an M function...666
10.18.2.5 Example: Replacement of a T and D function..669
10.18.2.6 Behavior in the event of a conflict..670
10.18.3 Replacement of spindle functions..671
10.18.3.1 General information..671
10.18.3.2 Replacement of M40 - M45 (gear stage change)...672
10.18.3.3 Replacement of SPOS, SPOSA, M19 (spindle positioning)...673
10.18.3.4 System variable..674
10.18.3.5 Example: Gear stage change...675
10.18.3.6 Example: Spindle positioning...677
10.18.4 Properties of the subprograms...680
10.18.5 Restrictions..682

10.19 Renaming/locking NC commands..682

10.20 Program runtime / part counter..684
10.20.1 Program runtime..685
10.20.1.1 Function...685

Table of contents

Basic Functions
20 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.20.1.2 Commissioning...688
10.20.1.3 Supplementary conditions..690
10.20.1.4 Examples...690
10.20.2 Workpiece counter...691
10.20.2.1 Function...691
10.20.2.2 Commissioning...692
10.20.2.3 Supplementary conditions..693
10.20.2.4 Examples...694

10.21 Data lists..695
10.21.1 Function...695
10.21.2 Machine data..696
10.21.2.1 General machine data..696
10.21.2.2 Channel-specific machine data..698
10.21.2.3 Axis/spindlespecific machine data...701
10.21.3 Setting data..701
10.21.3.1 Channelspecific setting data..701
10.21.4 Signals...701
10.21.4.1 Signals to NC...701
10.21.4.2 Signals to mode group...702
10.21.4.3 Signals to NC...702
10.21.4.4 Signals to channel..702
10.21.4.5 Signals from channel..703
10.21.4.6 Signals to NC...704
10.21.4.7 Signals from axis/spindle...704

11 K2: Axis Types, Coordinate Systems, Frames...705

11.1 Brief description...705
11.1.1 Axes...705
11.1.2 Coordinate systems...707
11.1.3 Frames...708

11.2 Axes...711
11.2.1 Overview..711
11.2.2 Machine axes...712
11.2.3 Channel axes...713
11.2.4 Geometry axes...713
11.2.5 Special axes...713
11.2.6 Path axes...714
11.2.7 Positioning axes...714
11.2.8 Main axes...715
11.2.9 Synchronized axes...716
11.2.10 Axis configuration...718
11.2.11 Link axes..720

11.3 Zeros and reference points..721
11.3.1 Reference points in working space..721
11.3.2 Position of coordinate systems and reference points...723

11.4 Coordinate systems...724
11.4.1 Overview..724
11.4.2 Machine coordinate system (MCS)..726
11.4.2.1 Actual value setting with loss of the referencing status (PRESETON)................................727
11.4.2.2 Actual value setting without loss of the referencing status (PRESETONS).........................732

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 21

11.4.3 Basic coordinate system (BCS)...737
11.4.4 Basic zero system (BZS)..739
11.4.5 Settable zero system (SZS)...741
11.4.6 Workpiece coordinate system (WCS)..742
11.4.7 Additive offsets...743
11.4.7.1 External work offsets..743
11.4.7.2 DRF offset..744
11.4.7.3 Reset behavior...744
11.4.8 Axis-specific overlay ($AA_OFF)...745
11.4.8.1 Function...745
11.4.8.2 Commissioning...745
11.4.8.3 Programming: Deselecting overlays axis-specifically (CORROF).......................................746

11.5 Frames...749
11.5.1 Frame types...749
11.5.2 Frame components..750
11.5.2.1 Translation...750
11.5.2.2 Fine offset..751
11.5.2.3 Rotation Overview (geometry axes only)...752
11.5.2.4 Rotation with a Euler angles: ZY'X" convention (RPY angles)...753
11.5.2.5 Rotation with a Euler angles: ZX'Z" convention...758
11.5.2.6 Rotation in any plane...759
11.5.2.7 Scaling...760
11.5.2.8 Mirroring...761
11.5.2.9 Chain operator...761
11.5.2.10 Programmable axis name..761
11.5.2.11 Coordinate transformation..763
11.5.3 Data management frames and active frames..763
11.5.3.1 Overview..763
11.5.3.2 Activating data management frames..765
11.5.3.3 NCU-global and channel-specific frames...766
11.5.4 Frame chain and coordinate systems..767
11.5.4.1 Overview..767
11.5.4.2 Relative coordinate systems..768
11.5.4.3 Selectable SZS..770
11.5.4.4 Manual traversing of geometry axes either in the WCS or in the SZS

($AC_JOG_COORD)...771
11.5.4.5 Suppression of frames...772
11.5.5 Frames of the frame chain...773
11.5.5.1 Overview..773
11.5.5.2 Settable frames ($P_UIFR[<n>])..774
11.5.5.3 Grinding frames $P_GFR[<n>]...776
11.5.5.4 Channel-specific basic frames[<n>]...780
11.5.5.5 NCU-global basic frames $P_NCBFR[<n>]...781
11.5.5.6 Active complete basic frame $P_ACTBFRAME...782
11.5.5.7 Programmable frame $P_PFRAME...783
11.5.5.8 Channelspecific system frames...785
11.5.6 Implicit frame changes...787
11.5.6.1 Switching geometry axes...787
11.5.6.2 Selecting and deselecting transformations: General..790
11.5.6.3 Selecting and deselecting transformations: TRANSMIT..791
11.5.6.4 Selecting and deselecting transformations: TRACYL..797
11.5.6.5 Selecting and deselecting transformations: TRAANG...802

Table of contents

Basic Functions
22 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.5.6.6 Adapting active frames...808
11.5.6.7 Mapped Frames...808
11.5.7 Predefined frame functions..813
11.5.7.1 Inverse frame...813
11.5.7.2 Additive frame in frame chain...815
11.5.8 Functions..816
11.5.8.1 Setting zeros, workpiece measuring and tool measuring...816
11.5.8.2 Axis-specific external work offset...817
11.5.8.3 Toolholder..817
11.5.9 Subprograms with SAVE attribute (SAVE)...827
11.5.10 Data backup...828
11.5.11 Positions in the coordinate system...829
11.5.12 Control system response ..829
11.5.12.1 POWER ON...829
11.5.12.2 Mode change...830
11.5.12.3 Channel reset / part program end..830
11.5.12.4 Part program start..834
11.5.12.5 Block search...834
11.5.12.6 REPOS...834

11.6 Workpiece-related actual value system...835
11.6.1 Overview..835
11.6.2 Use of the workpiece-related actual value system...835
11.6.3 Special reactions..837

11.7 Restrictions..839

11.8 Examples...839
11.8.1 Axes...839
11.8.2 Coordinate systems...841
11.8.3 Frames ...843

11.9 Data lists..845
11.9.1 Machine data..845
11.9.1.1 Displaying machine data..845
11.9.1.2 NC-specific machine data..845
11.9.1.3 Channel-specific machine data..846
11.9.1.4 Axis/spindlespecific machine data...847
11.9.2 Setting data..847
11.9.2.1 Channelspecific setting data..847
11.9.3 System variables..847
11.9.4 Signals...849
11.9.4.1 Signals from channel..849
11.9.4.2 Signals to axis/spindle..849
11.9.4.3 Signals from axis/spindle...849

12 N2: Emergency stop...851

12.1 Brief Description...851

12.2 Relevant standards..851

12.3 Emergency stop control elements..852

12.4 Emergency stop sequence...853

12.5 Emergency stop acknowledgement...854

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 23

12.6 Data lists..856
12.6.1 Machine data..856
12.6.1.1 Axis/spindlespecific machine data...856
12.6.2 Signals...857
12.6.2.1 Signals to NC...857
12.6.2.2 Signals from NC...857
12.6.2.3 Signals to BAG...857

13 P1: Transverse axes...859

13.1 Function...859

13.2 Parameterization..862

13.3 Programming..865

13.4 Supplementary conditions..866

13.5 Examples...867

13.6 Data lists..868
13.6.1 Machine data..868
13.6.1.1 Channelspecific machine data...868
13.6.1.2 Axis/spindlespecific machine data...868

14 P3: Basic PLC program for SINUMERIK 840D sl...869

14.1 Brief description...869

14.2 Key data of the PLC CPU..871

14.3 PLC operating system version...872

14.4 PLC mode selector...872

14.5 Reserve resources (timers, counters, FC, FB, DB, I/O)...873

14.6 Commissioning hardware configuration of the PLC CPU..873

14.7 Starting up the PLC program...873
14.7.1 Installation of the basic program..873
14.7.2 Application of the basic program..874
14.7.3 Version codes..875
14.7.4 Machine program...876
14.7.5 Data backup...876
14.7.6 PLC series startup, PLC archive..877
14.7.7 Software upgrade...880
14.7.8 I/O modules (FM, CP modules)..881
14.7.9 Troubleshooting...882

14.8 Coupling of the PLC CPU..882
14.8.1 General information..882
14.8.2 Properties of the PLC CPU..883
14.8.3 Interface with integrated PLC...883
14.8.4 Diagnostic buffer on PLC...885

14.9 Interface structure..886
14.9.1 PLC/NCK interface...886
14.9.2 Interface PLC/HMI..892
14.9.3 PLC/MCP/HHU interface..897

Table of contents

Basic Functions
24 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.10 Structure and functions of the basic program..899
14.10.1 Startup and synchronization of NCK PLC..901
14.10.2 Cyclic operation (OB1)...901
14.10.3 Time-interrupt processing (OB35)..903
14.10.4 Process-interrupt processing (OB 40) ...904
14.10.5 Diagnostic alarm, module failure processing (OB82, OB86)..904
14.10.6 Response to NCK failure..905
14.10.7 Functions of the basic program called from the user program...906
14.10.8 Symbolic programming of user program with interface DB..909
14.10.9 M decoding acc. to list..911
14.10.10 PLC machine data..915
14.10.11 Configuration machine control panel, handheld unit, direct keys...918
14.10.12 Switchover of machine control panel, handheld unit..927

14.11 SPL for Safety Integrated...929

14.12 Assignment overview...929
14.12.1 Assignment: NCK/PLC interface..929
14.12.2 Assignment: FB/FC..929
14.12.3 Assignment: DB...930
14.12.4 Assignment: Timers...931

14.13 PLC functions for HMI (DB19)..931
14.13.1 Channel selection...931
14.13.2 Program selection..933
14.13.3 Activating the key lock..936
14.13.4 Operating area numbers..936
14.13.5 Screen numbers...936
14.13.5.1 Screen numbers: JOG, manual machine...937
14.13.5.2 Screen numbers: Reference point approach...942
14.13.5.3 Screen numbers: MDA...942
14.13.5.4 Screen numbers: AUTOMATIC..942
14.13.5.5 Screen numbers: Parameters operating area..943
14.13.5.6 Screen numbers: Program operating area...944
14.13.5.7 Screen numbers: Program manager operating area..945
14.13.5.8 Screen numbers: Diagnostics operating area..945
14.13.6 HMI monitor..945

14.14 PLC functions for drive components on the integrated PROFIBUS.....................................947
14.14.1 Overview..947
14.14.2 Performing a start-up...947
14.14.3 Example...948

14.15 Memory requirements of the basic PLC program..949

14.16 Basic conditions and NC VAR selector..952
14.16.1 Supplementary conditions..952
14.16.1.1 Programming and parameterizing tools...952
14.16.1.2 SIMATIC documentation required..954
14.16.1.3 Relevant SINUMERIK documents...954
14.16.2 NC VAR selector..955
14.16.2.1 Overview..955
14.16.2.2 Description of functions..957
14.16.2.3 Startup, installation...964

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 25

14.17 Block descriptions..965
14.17.1 FB1: RUN_UP - basic program, start section...965
14.17.2 FB2: GET - read NC variable...973
14.17.3 FB3: PUT - write NC variables...981
14.17.4 FB4: PI_SERV - request PI service..988
14.17.4.1 List of available Pl services..992
14.17.4.2 PI service: ASUP ...993
14.17.4.3 PI service: CANCEL...994
14.17.4.4 PI service: CONFIG...994
14.17.4.5 PI service: DIGION...995
14.17.4.6 PI service: DIGIOF...995
14.17.4.7 PI service: FINDBL...995
14.17.4.8 PI service: LOGIN..996
14.17.4.9 PI service: LOGOUT..996
14.17.4.10 PI service: NCRES...996
14.17.4.11 PI service: SELECT...997
14.17.4.12 PI service: SETUDT...997
14.17.4.13 PI service: SETUFR...998
14.17.4.14 PI service: RETRAC...998
14.17.4.15 PI service: CRCEDN..999
14.17.4.16 PI service: CREACE..1000
14.17.4.17 PI service: CREATO..1000
14.17.4.18 PI service: DELECE...1000
14.17.4.19 PI service: DELETO...1001
14.17.4.20 PI service: MMCSEM...1001
14.17.4.21 PI service: TMCRTO..1002
14.17.4.22 PI service: TMFDPL...1004
14.17.4.23 PI service: TMFPBP...1005
14.17.4.24 PI service: TMGETT...1006
14.17.4.25 PI service: TMMVTL...1007
14.17.4.26 PI service: TMPOSM..1008
14.17.4.27 PI service: TMPCIT..1009
14.17.4.28 PI service: TMRASS..1010
14.17.4.29 PI service: TRESMO..1010
14.17.4.30 PI service: TSEARC...1011
14.17.4.31 PI service: TMCRMT..1014
14.17.4.32 PI service: TMDLMT..1015
14.17.4.33 PI service: POSMT...1015
14.17.4.34 PI service: FDPLMT...1016
14.17.5 FB5: GETGUD - read GUD variable..1017
14.17.6 FB7: PI_SERV2 - request PI service..1025
14.17.7 FB9: MtoN - operator panel switchover..1026
14.17.8 FB10: Safety relay (SI relay)..1031
14.17.9 FB11: Brake test..1033
14.17.10 FB29: Signal recorder and data trigger diagnostics...1039
14.17.11 FC2 : GP_HP - basic program, cyclic section..1042
14.17.12 FC3: GP_PRAL - basic program, interruptdriven section...1044
14.17.13 FC5: GP_DIAG - basic program, diagnostic alarm and module failure..............................1046
14.17.14 FC6: TM_TRANS2 - transfer block for tool management and multitool.............................1048
14.17.15 FC7: TM_REV - transfer block for tool change with revolver...1049
14.17.16 FC8: TM_TRANS - transfer block for tool management..1052
14.17.17 FC9: ASUP - start of asynchronous subprograms...1058

Table of contents

Basic Functions
26 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.17.18 FC10: AL_MSG - error and operating messages...1061
14.17.19 FC12: AUXFU - call interface for user with auxiliary functions...1063
14.17.20 FC13: BHGDisp - display control for handheld unit...1064
14.17.21 FC17: YDelta - star-delta switchover...1068
14.17.22 FC18: SpinCtrl - spindle control...1071
14.17.23 FC19: MCP_IFM - transfer of MCP signals to interface...1081
14.17.24 FC21: Transfer - data exchange NC/PLC..1088
14.17.24.1 Function...1088
14.17.24.2 Declaration of the function...1089
14.17.24.3 Explanation of formal parameters..1089
14.17.24.4 Function 1, 2: Signals synchronized actions to / from Channel...1089
14.17.24.5 Function 3, 4: Fast data exchange PLC-NC..1091
14.17.24.6 Function 5: Update control signals to channel...1094
14.17.24.7 Function 6: Update control signals to axes..1095
14.17.24.8 Function 7: Update control signals to axes..1095
14.17.25 FC22: TM_DIR - direction selection for tool management...1095
14.17.26 FC24: MCP_IFM2 - transferring MCP signals to the interface...1098
14.17.27 FC25: MCP_IFT - transfer of MCP/OP signals to interface..1101
14.17.28 FC26: HPU_MCP - transfer of HT 8 signals to the interface..1104
14.17.28.1 Overview of the NC/PLC interface signals of HT 8..1108
14.17.28.2 Overview of the NC/PLC interface signals of HT 8..1110
14.17.29 FC1005: AG_SEND - transfers data to Ethernet CP..1110
14.17.30 FC1006: AG_RECV - receives data from the Ethernet CP..1111

14.18 Signal/data descriptions...1112
14.18.1 Interface signals NCK/PLC, HMI/PLC, MCP/PLC..1112
14.18.2 Decoded M signals...1113
14.18.3 G commands..1114
14.18.4 Message signals in DB 2..1114

14.19 Notes on programming in STEP 7...1115
14.19.1 Copying data..1115
14.19.2 ANY and POINTER..1116
14.19.2.1 Use of POINTER and ANY in FC...1116
14.19.2.2 Use of POINTER and ANY in FB...1117
14.19.2.3 POINTER or ANY variable for transfer to FC or FB...1119
14.19.3 Multiinstance DB..1121
14.19.4 Strings..1122
14.19.5 Determining offset addresses for data block structures...1123
14.19.6 FB calls..1123

14.20 Data lists..1125
14.20.1 Machine data..1125
14.20.1.1 Display machine data...1125
14.20.1.2 NC-specific machine data..1125
14.20.1.3 Channelspecific machine data...1125
14.20.2 Signals...1126
14.20.2.1 Signals from operator panel...1126

15 P4: PLC for SINUMERIK 828D..1127

15.1 Overview..1127
15.1.1 PLC firmware...1127
15.1.2 PLC user interface...1127
15.1.2.1 Data that are cyclically exchanged...1129

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 27

15.1.2.2 Alarms and messages..1129
15.1.2.3 Retentive data..1130
15.1.2.4 Non-retentive data..1130
15.1.2.5 PLC machine data..1130
15.1.3 PLC key data..1130
15.1.4 PLC I/O, fast onboard inputs/outputs...1131
15.1.5 PLC Toolbox..1131
15.1.5.1 Star/delta changeover..1131

15.2 Fast on-board inputs and outputs..1131

15.3 Ladder Viewer, Ladder editor, and Ladder add-on tool..1133
15.3.1 Overview..1133
15.3.2 Parameterization..1134

15.4 PLC Programming Tool..1135

15.5 Data interface...1136
15.5.1 PLC-NC interface...1136
15.5.1.1 Mode signals..1136
15.5.1.2 NC channel signals..1138
15.5.1.3 Axis and spindle signals...1139
15.5.1.4 General NC signals..1140
15.5.1.5 PLC-NC fast data exchange..1140
15.5.2 PLC-HMI interface..1141
15.5.2.1 Program selection..1141
15.5.2.2 Operating area numbers..1144
15.5.2.3 Screen numbers...1145
15.5.2.4 HMI monitor..1153

15.6 Function interface...1154
15.6.1 Read/write NC variables..1154
15.6.1.1 User interface...1154
15.6.1.2 Job specification...1155
15.6.1.3 Job management: Start job..1156
15.6.1.4 Job management: Waiting for end of job...1157
15.6.1.5 Job management: Job completion...1157
15.6.1.6 Job management: Flow diagram..1158
15.6.1.7 Job evaluation..1158
15.6.1.8 Operable variables...1160
15.6.1.9 Specifying selected NC variables...1167
15.6.2 Program instance services (PI services)..1168
15.6.2.1 Job specification...1168
15.6.2.2 Job feedback..1169
15.6.2.3 PI service ASUB...1169
15.6.2.4 PI service LOGOUT...1171
15.6.2.5 PI service DATA_SAVE...1171
15.6.2.6 PI service TMMVTL..1172
15.6.2.7 PI services: Cycle diagram...1173
15.6.3 PLC user alarms..1173
15.6.3.1 User interface...1173
15.6.3.2 Activation interface of the user alarms...1174
15.6.3.3 Variables interface of the user alarms..1175
15.6.3.4 Configuring user alarms...1176
15.6.3.5 Export active alarm responses and cancel criteria...1178

Table of contents

Basic Functions
28 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.6.3.6 Acknowledgement interface of the user alarms...1179
15.6.3.7 Interface to HMI..1179
15.6.4 PLC axis control...1179
15.6.4.1 General information..1179
15.6.4.2 User interface: Preparing the NC axis as PLC axis...1181
15.6.4.3 User interface: Functionality...1182
15.6.4.4 Spindle positioning...1183
15.6.4.5 Rotate spindle..1185
15.6.4.6 Oscillate spindle...1187
15.6.4.7 Indexing axis..1188
15.6.4.8 Positioning axis metric...1190
15.6.4.9 Positioning axis inch...1191
15.6.4.10 Positioning axis metric with handwheel override..1192
15.6.4.11 Positioning axis inch with handwheel override...1194
15.6.4.12 Rotate spindle with automatic gear stage selection...1195
15.6.4.13 Rotate spindle with constant cutting rate [m/min]...1196
15.6.4.14 Rotate spindle with constant cutting rate [feet/min]..1198
15.6.4.15 Error messages..1199
15.6.5 Start ASUB...1201
15.6.5.1 Job start...1201
15.6.5.2 Job result..1201
15.6.5.3 Signal flow..1203
15.6.6 Channel selection on the HMI..1203

15.7 CNC lock function (option)...1205
15.7.1 Function...1205
15.7.2 Requirements...1206
15.7.3 Restrictions..1206
15.7.4 Protection from manipulation...1207
15.7.5 Initial creation of the CNC lock function...1207
15.7.6 Extending the CNC lock function...1211
15.7.7 Deactivating the CNC lock function..1213
15.7.8 Replacing a defective control system hardware (PPU)..1215
15.7.9 Replacing a defective CF card...1217
15.7.10 OEM PIN forgotten...1219
15.7.11 Other information...1220

16 R1: Referencing..1223

16.1 Brief Description...1223

16.2 Axisspecific referencing...1224

16.3 Channelspecific referencing...1226

16.4 Reference point appraoch from part program (G74)..1227

16.5 Referencing with incremental measurement systems..1228
16.5.1 Hardware signals...1228
16.5.2 Zero mark selection..1230
16.5.3 Time sequence...1231
16.5.4 Phase 1: Traversing to the reference cam...1232
16.5.5 Phase 2: Synchronization with the zero mark..1234
16.5.6 Phase 3: Traversing to the reference point..1239

16.6 Referencing with distance-coded reference marks..1241

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 29

16.6.1 General overview...1241
16.6.2 Basic parameter assignment..1242
16.6.3 Time sequence...1244
16.6.4 Phase 1: Travel across the reference marks with synchronization....................................1244
16.6.5 Phase 2: Traversing to the target point..1246

16.7 Referencing by means of actual value adjustment..1248
16.7.1 Actual value adjustment to the referencing measurement system.....................................1248
16.7.2 Actual value adjustment for measuring systems with distance-coded reference marks. ...1249

16.8 Referencing in follow-up mode...1250

16.9 Referencing with absolute encoders..1253
16.9.1 Information about the adjustment...1253
16.9.2 Calibration by entering a reference point offset...1254
16.9.3 Adjustment by entering a reference point value...1255
16.9.4 Automatic calibration with probe..1257
16.9.5 Adjustment with BERO...1259
16.9.6 Reference point approach with absolute encoders..1260
16.9.7 Reference point approach for rotary absolute encoders with equivalent zero mark..........1260
16.9.8 Enabling the measurement system..1262
16.9.9 Referencing variants not supported...1264

16.10 Automatic restoration of the machine reference..1264
16.10.1 Automatic referencing..1265
16.10.2 Restoration of the actual position...1266

16.11 Supplementary conditions..1268
16.11.1 Large traverse range..1268

16.12 Data lists..1269
16.12.1 Machine data..1269
16.12.1.1 NC-specific machine data..1269
16.12.1.2 Channelspecific machine data...1269
16.12.1.3 Axis/spindlespecific machine data...1269
16.12.2 Signals...1270
16.12.2.1 Signals to BAG...1270
16.12.2.2 Signals from BAG...1270
16.12.2.3 Signals to channel..1271
16.12.2.4 Signals from channel..1271
16.12.2.5 Signals to axis/spindle..1271
16.12.2.6 Signals from axis/spindle...1271

17 S1: Spindles...1273

17.1 Brief Description...1273

17.2 Modes..1274
17.2.1 Overview..1274
17.2.2 Mode change...1275
17.2.3 Control mode..1276
17.2.4 Oscillation mode...1279
17.2.5 Positioning mode..1279
17.2.5.1 General functionality..1279
17.2.5.2 Positioning from rotation..1286
17.2.5.3 Positioning from standstill..1291
17.2.5.4 "Spindle in position" signal for tool change..1295

Table of contents

Basic Functions
30 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.2.6 Axis mode..1296
17.2.6.1 General functionality..1296
17.2.6.2 Implicit transition to axis mode...1299
17.2.7 Initial spindle state..1302
17.2.8 Tapping without compensating chuck..1303
17.2.8.1 Function...1303
17.2.8.2 Programming..1303
17.2.8.3 Example: Tapping with G331 / G332...1305
17.2.8.4 Example: Output the programmed drilling speed in the current gear stage.......................1305
17.2.8.5 Example: Application of the second gear-stage data block...1306
17.2.8.6 Example: Speed is not programmed, the gearbox stage is monitored..............................1306
17.2.8.7 Example: Gearbox stage cannot be changed, gearbox stage monitoring.........................1306
17.2.8.8 Example: Programming without SPOS..1307
17.2.8.9 Special case: Direction of rotation reversal via NC/PLC interface signal in the NC

program..1307
17.2.9 Tapping with compensating chuck...1309
17.2.9.1 Function...1309
17.2.9.2 Programming..1309

17.3 Reference / synchronize..1311

17.4 Configurable gear adaptation...1315
17.4.1 Gear stages for spindles and gear change change...1315
17.4.2 Spindle gear stage 0..1326
17.4.3 Determining the spindle gear stage...1328
17.4.4 Parameter set selection during gear step change..1329
17.4.5 Intermediate gear...1332
17.4.6 Nonacknowledged gear step change...1333
17.4.7 Gear step change with oscillation mode..1334
17.4.8 Gear stage change at fixed position...1339
17.4.9 Configurable gear step in M70...1345
17.4.10 Suppression of the gear stage change for DryRun, program test and SERUPRO............1347

17.5 Additional adaptations to the spindle functionality that can be configured.........................1349

17.6 Selectable spindles..1351

17.7 Programming..1355
17.7.1 Programming from the part program..1355
17.7.2 Programming via synchronized actions...1359
17.7.3 Programming spindle controls via PLC with FC18 - only 840D sl......................................1359
17.7.4 Programming using NC/PLC interface signals...1360
17.7.4.1 Function...1360
17.7.4.2 Commissioning: Machine data...1361
17.7.4.3 Commissioning: NC/PLC interface signals..1362
17.7.4.4 Speed setpoint (SD43200)...1362
17.7.4.5 Entering a constant cutting rate (SD43202)...1363
17.7.4.6 Entering the spindle speed type for the master spindle (SD43206)...................................1364
17.7.5 External programming (PLC, HMI)...1365

17.8 Spindle monitoring...1366
17.8.1 Permissible speed ranges..1366
17.8.2 Axis/spindle stationary...1367
17.8.3 Spindle in setpoint range..1367
17.8.4 Minimum / maximum speed of the gear stage...1368

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 31

17.8.5 Diagnosis of spindle speed limitation...1369
17.8.6 Maximum spindle speed..1371
17.8.7 Maximum encoder limit frequency...1372
17.8.8 End point monitoring..1374
17.8.9 M40: Automatic gear stage selection for speeds outside the configured switching

thresholds...1375

17.9 Spindle with SMI 24 (Weiss spindle)..1377
17.9.1 General Information...1377
17.9.2 Sensor data..1378
17.9.3 Clamped state..1380
17.9.4 Additional drive parameters...1381

17.10 Supplementary conditions..1382
17.10.1 Changing control parameters...1382

17.11 Examples...1382
17.11.1 Automatic gear step selection (M40)..1382

17.12 Data lists..1383
17.12.1 Machine data..1383
17.12.1.1 NC-specific machine data..1383
17.12.1.2 Channelspecific machine data...1383
17.12.1.3 Axis/spindlespecific machine data...1384
17.12.2 Setting data..1385
17.12.2.1 Channelspecific setting data..1385
17.12.2.2 Axis/spindle-specific setting data...1386
17.12.3 signals..1386
17.12.3.1 Signals to axis/spindle..1386
17.12.3.2 Signals from axis/spindle...1387

18 V1: Feedrates...1389

18.1 Brief description...1389

18.2 Path feedrate F..1390
18.2.1 Feedrate type G93, G94, G95..1392
18.2.2 Type of feedrate G96, G961, G962, G97, G971..1395
18.2.3 Feedrate for thread cutting (G33, G34, G35, G335, G336) ..1399
18.2.3.1 Feedrate with G33..1399
18.2.3.2 Linear increasing/decreasing thread pitch change with G34 and G351400
18.2.3.3 Acceleration behavior of the axis for G33, G34 and G35 ..1402
18.2.3.4 Programmed run-in and run-out path for G33, G34 and G35 (DITS, DITE)......................1404
18.2.3.5 Fast retraction during thread cutting..1406
18.2.3.6 Convex thread (G335, G336)...1410
18.2.4 Feedrate for tapping without compensating chuck (G331, G332)......................................1415
18.2.5 Feedrate for tapping with compensating chuck (G63)...1417
18.2.6 FGROUP and FGREF..1417

18.3 Feedrate for positioning axes (FA)...1420

18.4 Feedrate control...1421
18.4.1 Feedrate disable and feedrate/spindle stop...1421
18.4.2 Feedrate override via machine control panel...1423
18.4.3 Programmable feedrate override...1427
18.4.4 Dry run feedrate...1427
18.4.5 Multiple feedrate values in one block...1429

Table of contents

Basic Functions
32 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

18.4.6 Fixed feedrate values ..1435
18.4.7 Programmable feedrate characteristics...1437
18.4.8 Feedrate for chamfer/rounding FRC, FRCM..1438
18.4.9 Non-modal feedrate FB..1440
18.4.10 Influencing the single axis dynamic response ...1441

18.5 Supplementary conditions..1446

18.6 Data lists..1447
18.6.1 Machine data..1447
18.6.1.1 NC-specific machine data..1447
18.6.1.2 Channel-specific machine data..1447
18.6.1.3 Axis/Spindle-specific machine data..1448
18.6.2 Setting data..1448
18.6.2.1 Channel-specific setting data...1448
18.6.2.2 Axis/spindle-specific setting data...1449
18.6.3 Signals...1449
18.6.3.1 Signals to channel..1449
18.6.3.2 Signals from channel..1449
18.6.3.3 Signals to axis/spindle..1449
18.6.3.4 Signals from axis/spindle...1450

19 W1: Tool offset...1451

19.1 Brief description...1451

19.2 Tool..1453
19.2.1 General information..1453
19.2.2 Compensation memory structure...1456
19.2.3 Calculating the tool compensation...1457
19.2.4 Address extension for NC addresses T and M..1458
19.2.5 Free assignment of D numbers..1459
19.2.6 Compensation block in case of error during tool change...1465
19.2.7 Definition of the effect of the tool parameters..1468

19.3 Flat D number structure...1469
19.3.1 General information..1469
19.3.2 Creating a new D number (compensation block)...1469
19.3.3 D number programming...1470
19.3.4 Programming the T number...1472
19.3.5 Programming M6..1472
19.3.6 Program test...1473
19.3.7 Tool management or "Flat D number structure"...1474

19.4 Tool cutting edge..1475
19.4.1 General information..1475
19.4.2 Tool parameter 1: Tool type...1477
19.4.3 Tool parameter 2: Cutting edge position..1480
19.4.4 Tool parameters 3 - 5: Geometry - tool lengths...1482
19.4.5 Tool parameters 6 - 11: Geometry - tool shape...1483
19.4.6 Tool parameters 12 - 14: Wear - tool lengths...1485
19.4.7 Tool parameters 15 - 20: Wear - tool shape..1486
19.4.8 Tool parameters 21 - 23: Tool base dimension/adapter dimension...................................1486
19.4.9 Tool parameter 24: Undercut angle...1488
19.4.10 Tools with a relevant tool point direction..1489

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 33

19.5 2D tool radius compensation (2D-WRK)..1490
19.5.1 General information..1490
19.5.2 Selecting the TRC (G41/G42)..1491
19.5.3 Approach and retraction behavior (NORM/KONT/KONTC/KONTT)..................................1492
19.5.4 Smooth approach and retraction..1496
19.5.4.1 Function...1496
19.5.4.2 Parameters...1497
19.5.4.3 Velocities..1504
19.5.4.4 System variables..1506
19.5.4.5 Supplementary conditions..1506
19.5.4.6 Examples...1507
19.5.5 Deselecting the TRC (G40)..1510
19.5.6 Compensation at outside corners..1510
19.5.7 Compensation and inner corners...1514
19.5.8 Collision monitoring ("bottleneck detection")..1516
19.5.8.1 Function...1516
19.5.8.2 Parameterization..1517
19.5.8.3 Programming..1517
19.5.8.4 Supplementary conditions..1518
19.5.8.5 Example...1519
19.5.9 Slot shape recognition (option) - 840D sl only...1520
19.5.10 Blocks with variable compensation value...1522
19.5.11 Alarm behavior...1524
19.5.12 Intersection procedure for polynomials..1525
19.5.13 G461/G462 Approach/retract strategy expansion..1525

19.6 Keep tool radius compensation constant...1529

19.7 Toolholder with orientation capability...1532
19.7.1 General information..1532
19.7.2 Kinematic interaction and machine design...1539
19.7.3 Tool carrier with kinematic chains..1546
19.7.4 Inclined surface machining with 3 + 2 axes..1553
19.7.5 Machine with rotary work table...1555
19.7.6 Procedure when using toolholders with orientation capability..1558
19.7.7 Programming..1562
19.7.8 Supplementary conditions and control system response for orientation............................1563
19.7.9 Examples...1566
19.7.9.1 Example: Toolholder with orientation capability...1566
19.7.9.2 Example of toolholder with orientation capability with rotary table.....................................1566
19.7.9.3 Calculation of compensation values on a location-specific and workpiece-specific basis..1569
19.7.9.4 Example: Tool carrier with orientation capability via kinematic chain................................1571

19.8 Modification of the offset data for rotatable tools...1574
19.8.1 Introduction..1574
19.8.2 Rotating turning tools...1575
19.8.2.1 Cutting edge position, cut direction, and angle for turning tools..1575
19.8.2.2 Modifications during the rotation of turning tools..1578
19.8.3 Rotation of milling and drilling tools..1582
19.8.3.1 Cutting edge position for milling and tapping tools...1582
19.8.3.2 Modifications during rotation of milling and tapping tools...1583
19.8.4 Commissioning...1583
19.8.4.1 Parameter assignment...1583

Table of contents

Basic Functions
34 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.8.5 Programming..1586
19.8.5.1 Calculating orientations (ORISOLH)..1586
19.8.5.2 Calculating orientations (ORISOLH): Further information..1590
19.8.5.3 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK)..1594
19.8.5.4 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK):

Further information...1596
19.8.6 Example...1599

19.9 Incrementally programmed compensation values..1601
19.9.1 G91 extension..1601
19.9.2 Traversing in the direction of tool orientation (MOVT)...1602

19.10 Assignment of tool length components to geometry axes..1604
19.10.1 Assignment according to tool type and working plane...1604
19.10.2 Assignment when changing plane...1604
19.10.3 Assignment independent of tool type...1605

19.11 Paraxial tool orientation..1606
19.11.1 Basic tool orientation..1606
19.11.2 Tool orientation for plane change...1606

19.12 Parameterizable basic tool orientation...1608
19.12.1 Function...1608
19.12.2 Commissioning...1608
19.12.2.1 Activation..1608
19.12.2.2 Parameterization..1609
19.12.3 Programming..1610
19.12.4 Examples...1611

19.13 Special handling of tool compensations...1613
19.13.1 Relevant setting data...1613
19.13.2 Mirroring tool lengths..1614
19.13.3 Mirroring wear lengths..1615
19.13.4 Tool lengths in the WCS, allowing for the orientation..1616
19.13.5 Tool length offsets in tool direction...1617
19.13.6 Special characteristics of orientable tool carriers...1621

19.14 Sum offsets and setup offsets..1622
19.14.1 General information..1622
19.14.2 Description of function..1623
19.14.3 Activation..1626
19.14.4 Examples...1631
19.14.5 Upgrades for Tool Length Determination...1632
19.14.5.1 Calculation of compensation values on a location-specific and workpiece-specific basis..1632
19.14.5.2 Functionality of the individual wear values...1636

19.15 Working with tool environments...1639
19.15.1 Save tool environment (TOOLENV)...1640
19.15.2 Delete tool environment (DELTOOLENV)..1642
19.15.3 Read T, D and DL number (GETTENV)...1643
19.15.4 Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)..1644
19.15.5 Read tool lengths and/or tool length components (GETTCOR)...1644
19.15.6 Change tool components (SETTCOR)...1650

19.16 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX) ..1662

19.17 Supplementary conditions..1665

Table of contents

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 35

19.17.1 Flat D number structure...1665
19.17.2 SD42935 expansions...1665
19.17.3 Scratching..1666

19.18 Data lists..1666
19.18.1 Machine data..1666
19.18.1.1 NC-specific machine data..1666
19.18.1.2 Channelspecific machine data...1666
19.18.1.3 Axis/spindlespecific machine data...1668
19.18.2 Setting data..1668
19.18.2.1 Channelspecific setting data..1668
19.18.3 Signals...1669
19.18.3.1 Signals from channel..1669

20 Z1: NC/PLC interface signals...1671

A Appendix...1673

A.1 List of abbreviations...1673

A.2 Documentation overview..1682

Glossary...1683

Index...1705

Table of contents

Basic Functions
36 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Fundamental safety instructions 1
1.1 General safety instructions

WARNING

Danger to life if the safety instructions and residual risks are not observed

If the safety instructions and residual risks in the associated hardware documentation are not
observed, accidents involving severe injuries or death can occur.
● Observe the safety instructions given in the hardware documentation.
● Consider the residual risks for the risk evaluation.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings

As a result of incorrect or changed parameterization, machines can malfunction, which in turn
can lead to injuries or death.
● Protect the parameterization (parameter assignments) against unauthorized access.
● Handle possible malfunctions by taking suitable measures, e.g. emergency stop or

emergency off.

1.2 Warranty and liability for application examples
Application examples are not binding and do not claim to be complete regarding configuration,
equipment or any eventuality which may arise. Application examples do not represent specific
customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated
correctly. Application examples do not relieve you of your responsibility for safe handling when
using, installing, operating and maintaining the equipment.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 37

1.3 Industrial security

Note
Industrial security

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the Internet if and to the extent such a connection is necessary
and only when appropriate security measures (e.g. firewalls and/or network segmentation) are
in place.

For additional information on industrial security measures that may be implemented, please
visit:

Industrial security (http://www.siemens.com/industrialsecurity)

Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed at:

Industrial security (http://www.siemens.com/industrialsecurity)

Further information is provided on the Internet:

Industrial Security Configuration Manual (https://support.industry.siemens.com/cs/ww/en/
view/108862708)

Fundamental safety instructions
1.3 Industrial security

Basic Functions
38 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/ww/en/view/108862708
https://support.industry.siemens.com/cs/ww/en/view/108862708

WARNING

Unsafe operating states resulting from software manipulation

Software manipulations (e.g. viruses, trojans, malware or worms) can cause unsafe operating
states in your system that may lead to death, serious injury, and property damage.
● Keep the software up to date.
● Incorporate the automation and drive components into a holistic, state-of-the-art industrial

security concept for the installation or machine.
● Make sure that you include all installed products into the holistic industrial security concept.
● Protect files stored on exchangeable storage media from malicious software by with

suitable protection measures, e.g. virus scanners.
● Protect the drive against unauthorized changes by activating the "know-how protection"

drive function.

Fundamental safety instructions
1.3 Industrial security

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 39

Fundamental safety instructions
1.3 Industrial security

Basic Functions
40 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

A2: Various NC/PLC interface signals and functions 2
2.1 Brief description

Contents
The PLC/NC interface comprises a data interface on one side and a function interface on the
other. The data interface contains status and control signals, auxiliary and G commands, while
the function interface is used to transfer jobs from the PLC to the NC.

This Description describes the functionality of interface signals, which are of general relevance
but are not included in the descriptions of functions.

● Asynchronous events

● Status signals

● PLC variable (read and write)

2.2 NC/PLC interface signals

2.2.1 General information

NC/PLC interface
The NC/PLC interface comprises the following parts:

● Data interface

● Function interface

Data interface
The data interface is used for component coordination:

● PLC user program

● NC

● HMI (operator control component)

● MCP (machine control panel)

Data exchange is organized by the basic PLC program.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 41

Cyclic signal exchange
The following interface signals are transferred cyclically, i.e. in the clock grid of the OB1, by
the basic PLC program:

● NC and operator-panel-front-specific signals

● Mode-group-specific signals

● Channel-specific signals

● Axis/spindle-specific signals

NC and operator-panel-front-specific signals (DB10)
PLC to NC:

● Signals for influencing the CNC inputs and outputs

● Keyswitch signals (and password)

NC to PLC:

● Actual values of CNC inputs

● Setpoints of CNC outputs

● Ready signals from NC and HMI

● NC status signals (alarm signals)

Channel-specific signals (DB21, ...)
PLC to NC:

● Control signal "Delete distance-to-go"

NC to PLC:

● NC status signals (NC alarm active)

Axis/spindle-specific signals (DB31, etc.)
PLC to NC:

● Control signals to axis/spindle (e.g. follow-up mode, servo enable, etc.)

● Control signals to drive (bytes 20, 21)

NC to PLC:

● Status signals from axis/spindle (e.g. position controller active, current controller active,
etc.)

● Control signals from drive (bytes 93, 94)

Function interface
The function interface is generated by function blocks (FB) and function calls (FC). Function
requests, e.g. to traverse axes, are sent from the PLC to the NC via the function interface.

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
42 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

References
● Description of the basic PLC program:

→ Function Manual, Basic Functions, Basic PLC Program (P3)

● Description of the event-driven signal exchange (auxiliary and G commands):
→ Function Manual, Basic Functions; Auxiliary Function Output to PLC (H2)

● Overview of all interface signals, functional and data components:
→ List Manual 2

2.2.2 Ready signal to PLC

DB10 DBX104.7 (NC-CPU ready)
The NC CPU is ready and registers itself cyclically with the PLC.

DB10 DBX108.3 (operating software ready)
SINUMERIK Operate is ready and registers itself cyclically with the NC.

DB10 DBX108.5 (drives in cyclic operation)
Precondition: For all machine axes of the NC, the associated drives are in the cyclic operation.
That is, they cyclically exchange PROFIdrive telegrams with the NC.

DB10 DBX108.6 (drive ready)
Precondition: For all machine axes of the NC, readiness of the associated drives and also the
third-party drives is signaled via PROFIBUS:

DB31, ... DBX93.5 == 1 (drive ready)

DB10 DBX108.7 (NC ready)
The NC is ready.

2.2.3 Status signals to PLC

DB10 DBX103.0 (remote diagnosis active)
The HMI component reports to the PLC that the remote diagnostics (option) is active, i.e.
controlling is performed via an external PC.

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 43

DB10 DBX109.6 (air temperature alarm)
The ambient temperature or fan monitoring function has responded.

DB10 DBX109.7 (NC battery alarm)
The battery voltage has dropped below the lower limit value. The control can still be operated.
A control system shutdown or failure of the supply voltage will result in loss of data.

DB10 DBX109.0 (NC alarm pending)
The NC signals that at least one NC alarm is pending. The channel-specific interface can be
scanned to see which channels are involved and whether this will cause a machining stop.

DB21, ... DBX36.6 (channel-specific NC alarm is pending)
The NC sends this signal to the PLC to indicate that at least one NC alarm is pending for the
affected channel.

DB21, ... DBX36.7 (NC alarm with machining stop pending)
The NC sends this signal to the PLC to indicate that at least one NC alarm that has interrupted
or aborted the current part program processing is active for the relevant channel.

DB21, ... DBX39.1 (NC alarm with program stop)
With interface signal DB21, ... DBX39.1 (NC alarm with program stop), the NC signals to the
PLC that at least one NC alarm is pending for the affected channel that is blocking the program
from advancing.

The signal is reset as soon as the alarm responses that activated the signal are no longer
active. This depends on the reset conditions of the alarms.

Signal chart of alarms with stop response
Interface signal DB21, ... DBX39.1 is always set when an alarm with a stop response is
generated. No distinction is made between the various stop responses:

● Stop on path, reset signal "NC ready" (DB10 DBX108.7).

● Stop all axes of the mode group, reset signal "Mode group ready" (DB11 DBX6.3)

● Immediate stop on the path.

● Interpreter is stopped, content of IPO buffer is processed.

● Stop at the end of the block.

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
44 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

① Alarm with stop response is generated.
NC/PLC interface signal DB21, ... DBX39.1 (NC alarm with program stop) is set for the affected
channel.

② The alarm stops program execution (machining stops).
③ When the alarm is reset, interface signal DB21, ... DBX39.1 is also reset.

Figure 2-1 Signal chart of alarms with stop response

Signal chart of alarms with alarm response "NC Start disable"
Alarms with alarm response "NC Start disable" are also taken into account.

Alarms with this response prevent execution of the following sequences:

● Start of a part program/teach in start/continuation of a jog movement with the "NC START"
key.

● Start of a part program from the part program of another channel.

● Start of an ASUB from the "Reset" state (in JOG or AUTOMATIC mode).

● Start of an ASUB from the "interrupted" state in JOG mode.

● Cascaded search after a successfully completed search

● Start of a search from the reset state (search type 1,2,4)

● Start of a search from the "interrupted" state (search type 1,2,4)

● Start of SERUPRO (search type 5)

● Start of a simulation search (search type 102)

If one of these sequences is aborted in response to a pending alarm with alarm response "NC
Start disable", interface signal DB21.DBX39.1 is set.

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 45

① Alarm with alarm response "NC start disable" is generated.
② The NC program executed to the end.
③ NC start / ASUB start / Search is triggered. Because the alarm has not yet been cleared, NC/

PLC interface signal DB21, ... DBX39.1 (NC alarm with program stop) is set for the affected
channel.

 When the alarm is reset, interface signal DB21, ... DBX39.1 is also reset.
Figure 2-2 Signal chart of alarms with alarm response "NC Start disable"

Note
Allow ASUB start

With machine data MD20194 $MC_IGNORE_NONCSTART_ASUP, interrupt inputs can be
parameterized such that an assigned ASUB is even started if an alarm with alarm response
"NC Start disable" is pending (see Chapter "Perform ASUB start for user alarms (Page 603)").
In this case, interface signal DB21, ... DBX39.1 (alarm with program stop) is not set.

2.2.4 Signals to/from the operator panel front

DB19 DBX0.0 (brighten screen)
The screen blanking is disabled.

DB19 DBX0.1 (darken screen)
The operator panel screen is darkened.

If the interface signal is used to actively darken the screen:

● It is no longer possible to switch the screen bright again on the keyboard (see below).

● The first keystroke on the operator panel front already triggers an operator action.

Note

In order to prevent accidental operator actions when the screen is darkened via the interface
signal, we recommend disabling the keyboard at the same time.

DB19 DBX0.1 = 1 AND DB19 DBX0.2 = 1 (key disable)

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
46 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Screen darkening via keyboard / automatic screen saver
If no keys are pressed on the operator panel front within the assigned time (default = 3 minutes):
MD9006 $MM_DISPLAY_SWITCH_OFF_INTERVAL (time for screen darkening)
, the screen is automatically darkened.

The screen lights up again the first time a button is pressed following darkening. Pressing a
button to lighten the screen does not generate an operator action.

Parameterization:

● DB19 DBX0.1 = 0

● MD9006 $MM_DISPLAY_SWITCH_OFF_INTERVAL > 0

DB19 DBX0.2 (key disable)
All inputs via the connected keyboard are inhibited.

DB19 DBX 0.3 / 0.4 (Delete cancel alarms / Delete recall alarms)
Request to delete all currently pending alarms with Cancel or Recall delete criterion. Deletion
of the alarms is acknowledged via the following interface signals:

● DB19 DBX20.3 (cancel alarm deleted)

● DB19 DBX20.4 (recall alarm deleted)

DB19 DBX0.7 (actual value in WCS / MCS)
Switching over of actual-value display between machine and workpiece coordinate system:

● DB19 DBX0.7 = 0: Machine coordinate system (MCS)

● DB19 DBX0.7 = 1: Workpiece coordinate system (WCS)

DB19 DBB13 (control of the file transfer)
Order byte for controlling the program selection of PLC. The orders relate to the program
specified via the following interface signals:

● DB19 DBX16.0-6 (program selection from the PLC: index of the program list)

● DB19 DBB17 (program selection from the PLC: program index in the program list)

DB19 DBB16 (program selection from the PLC: index of the program list)
Control byte for specifying the program list.

DB19 DBB17 (program selection from the PLC: program index in the program list)
Control byte for specifying the program number.

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 47

DB19 DBB26 (program selection from the PLC: status signals)
Status byte for the actual data transfer status.

DB19 DBB27 (program selection from the PLC: error identification)
Output byte for the error values for data transfer.

References
For more information about the program selection of the PLC, see:

● Program selection (Page 933) for SINUMERIK 840D sl

● Program selection (Page 1141) for SINUMERIK 828D

2.2.5 Signals to channel

DB21, ... DBX6.2 (delete distance-to-go)
The rising edge on the interface signal generates a stop on the programmed path in the
corresponding NC channel with the currently active path acceleration. The path distance-to-
go is then deleted and the block change to the next part-program block is enabled.

2.2.6 Signals to axis/spindle

DB31, ... DBX1.0 (drive test travel enable)

NOTICE

Specifications for the drive test

It is the sole responsibility of the machine manufacturer / system startup engineer to take
suitable action / carry out appropriate tests to ensure that the machine axis can be traversed
during the drive test without putting personnel or machinery at risk.

If machine axes are traversed by special test functions such as "function generator", an explicit
drive-test-specific enable is requested for the motion:

DB31, ... DBX61.0 = 1 (drive test travel request)

The motion is carried out once the motion is enabled:

DB31, ... DBX1.0 == 1 (drive test travel enable)

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
48 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB31, ... DBX1.3 (axis/spindle disable)

Stationary axis
If the interface signal is set for a stationary axis, all travel request are ignored as of this time.

The travel requests are retained. If the axis disable is canceled when a traversing request is
pending DB31, ... DBX1.3 = 0 the motion is carried out.

Traversing axis
If the interface signal is set for a traversing axis, the axis is stopped using the currently active
brake characteristic. If the interface signal is reset while the travel request is still present,
traversing is continued.

Spindle
● Open-loop control mode: Speed setpoint zero is output immediately

● Positioning mode: See "Stationary axis" / "Traversing axis" above

DB31, ... DBX1.4 (follow-up mode)
The interface signal is only effective with the DB31, ... DBX2.1 (controller enable) interface
signal

DB31, ... DBX2.1 DB31, ... DBX1.4 Mode
1 Ineffective In closed-loop control
0 1 Follow-up
0 0 Hold

Follow-up
In follow-up mode, the set position of the machine axis is continuously corrected to the actual
position (set position = actual position).

Feedback: DB31, ... DBX61.3 == 1 (follow-up active)

During follow-up mode, clamping or standstill monitoring are not active.

Note

If the DB31, ... DBX2.1 (controller enable) interface signal is set during follow-up mode,
repositioning to the last programmed position is performed with REPOSA (approach on a
straight line with all axes) when the NC program is active. In all other cases, all subsequent
motions start at the actual position.

Hold
In "Hold" mode, the set position of the machine axis does not follow the actual position. If the
machine axis is moved away from the set position, the difference between the set position and
the actual position increases constantly (following error). The following error is suddenly
corrected if the controller enable is set without complying with the axial acceleration
characteristic (speed jump).

Feedback: DB31, ... DBX61.3 == 0 (follow-up active)

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 49

During "hold", clamping or standstill monitoring are active.

Note

The following error is suddenly corrected if the controller enable is set without complying with
the axial acceleration characteristic (speed jump).

Application example
Positioning response of machine axis Y following clamping when "controller enable" is set.
Clamping pushed the machine axis from the actual position Y1 to the clamping position Yk.

Figure 2-3 Effect of controller enable and follow-up mode

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
50 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 2-4 Trajectory for clamping and "hold"

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 51

Figure 2-5 Trajectory for clamping and "follow-up"

Drives with analog setpoint interface
A drive with an analog setpoint interface is capable of traversing the machine axis with an
external setpoint. If "follow-up mode" is set for the machine axis, the actual position continues
to be acquired. Once follow-up mode has been cancelled, referencing is not required.

The following procedure is recommended:

1. Activate follow-up mode:
DB31, ... DBX2.1 = 0 (controller enable)
DB31, ... DBX1.4 = 1 (follow-up mode) (in the same or preceding OB1 cycle)
→ The axis/spindle is operating in follow-up mode

2. Deactivate external controller enable and external speed setpoint
→ Axis/spindle moves with external setpoint
→ NC continues to detect the actual position and corrects the set position to the actual
position

3. Deactivate external controller enable and cancel external speed setpoint
→ Axis/spindle stops

4. Cancelling follow-up mode
DB31, ... DBX2.1 = 1 (controller enable)
DB31, ... DBX1.4 = 0 (follow-up mode)
→ NC synchronizes to actual position. The next traversing motion begins at this position.

Note

"Follow-up mode" does not have to be cancelled because it only has an effect in
combination with "controller enable".

Cancelling follow-up mode

Once follow-up mode has been cancelled, the machine axis does not have to be referenced
again if the maximum permissible encoder limit frequency of the active measuring system was

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
52 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

not exceeded during follow-up mode. If the encoder limit frequency is exceeded, the controller
will detect this:

● DB31, ... DBX60.4 / 60.5 = 0 (referenced/synchronized 1/2)

● Alarm: "21610 Encoder frequency exceeded"

Note

If "follow-up mode" is deactivated for a machine axis, which is part of an active
transformation (e.g. TRANSMIT), this can generate motions as part of repositioning
(REPOS) other machine axes involved in the transformation.

Monitoring

If a machine axis is in follow-up mode, the following monitoring mechanisms will not act:

● Standstill monitoring

● Clamping monitoring

● Positioning monitoring

Effects on other interface signals:

● DB31, ... DBX60.7 = 0 (position reached with exact stop fine)

● DB31, ... DBX60.6 = 0 (position reached with exact stop coarse)

DB31, ... DBX1.5/1.6 (position measuring system 1/2)
Two measuring systems can be connected to one machine axis, e.g.

● Indirect motor measuring system

● Direct measuring system on load

Only one measuring system can be active at any one time. All closed-loop control, positioning
operations, etc. involving the machine axis always relate to the active measuring system.

Figure 2-6 Position measuring systems 1 and 2

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 53

Functionality of the "Position measuring system 1 / 2" interface signals in conjunction with the
"Controller enable":

DB31, ...
DBX1.5

DB31, ...
DBX1.6

DB31, ...
DBX2.1

Function

1 Any 1 Position measuring system 1 active
0 1 1 Position measuring system 2 active
0 0 0 "Parking" active
0 0 1 Spindle without position measuring system

(speed-controlled)
1 → 0 0 → 1 1 Switchover: Position measuring system 1 → 2
0 → 1 1 → 0 1 Switchover: Position measuring system 2 → 1

DB31, ... DBX2.1 (controller enable)
Setting the controller enable closes the machine axis position control loop. The machine axis
is in position control mode.

DB31, ... DBX2.1 == 1

Cancelling the controller enable opens the machine axis position control loop and, subject to
a delay, the machine axis speed control loop:

DB31, ... DBX2.1 == 0

Activation methods

The closed-loop controller enable for a machine axis is influenced by:

● NC/PLC interface signal:

– DB31, ... DBX2.1 (controller enable)

– DB31, ... DBX21.7 (pulse enable)

– DB31, ... DBX93.5 (drive ready)

– DB10, DBX56.1 (emergency stop)

● NC-internal
Alarms that trigger cancellation of the controller enable on the machine axes. The alarm
responses are described in:
References:
Diagnostics Manual

Cancelling the controller enable when the machine axis is at standstill:

● The machine axis position control loop opens

● DB31, ... DBX61.5 == 0 (position controller active)

Cancelling the controller enable when the machine axis is in motion:

If a machine axis is part of an interpolatory path motion or coupling and the controller enable
for this is cancelled, all axes involved are stopped with a fast stop (speed setpoint = 0) and an
alarm is displayed:

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
54 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Alarm: "21612 Controller enable reset during motion"

● The machine axis is decelerated taking into account the parameterized duration of the
braking ramp for error states with a fast stop (speed setpoint = 0):
MD36610 $MA_AX_EMERGENCY_STOP_TIME (max. duration of the braking ramp in the
event of errors)
An alarm is displayed:
Alarm: "21612 Controller enable reset during motion"

Note

The controller enable is cancelled at the latest when the cut-off delay expires:

MD36610 $MA_AX_EMERGENCY_STOP_TIME

● The machine axis position control loop opens. Feedback via interface signal:
DB31, ... DBX61.5 == 0 (position controller active).
The time for the parameterized cut-off delay of the controller enable is started by the
machine data:
MD36620 $MA_SERVO_DISABLE_DELAY_TIME (OFF delay of the controller enable)

● As soon as the actual speed has reached the zero speed range, the drive controller enable
is cancelled. Feedback via interface signal:
DB31, ... DBX61.6 == 0 (speed controller active)

● The actual position value of the machine axis continues to be acquired by the controller.

● At the end of the braking operation, the machine axis is switched to follow-up mode,
regardless of the corresponding NC/PLC interface signal. Standstill and clamping
monitoring are not effective. See the description above for the interface signal:
DB31, ... DBX1.4 (follow-up mode).

Synchronizing the actual value (reference point approach)

Once the controller enable has been set, the actual position of the machine axis does not need
to be synchronized again (reference point approach) if the maximum permissible limit
frequency of the measuring system was not exceeded during the time in which the machine
axis was not in position-control mode.

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 55

Figure 2-7 Cancelling the controller enable when the machine axis is in motion

DB31, ... DBX2.2 (distance-to-go/spindle reset (axis/spindle-specific))
"Delete distance-to-go" is effective in AUTOMATIC and MDI modes only in conjunction with
positioning axes. The positioning axis is decelerated to standstill following the current brake
characteristic. The distance-to-go of the axis is deleted.

Spindle reset

For a detailed description of the spindle reset, see Section "S1: Spindles (Page 1273)".

DB31, ... DBX9.0 / 9.1 / 9.2 (controller parameter set)
Request for activation of the specified controller parameter set.

Controller parameter set DBX9.2 DBX9.1 DBX9.0
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
56 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Controller parameter set DBX9.2 DBX9.1 DBX9.0
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Parameter set changeover must be enabled via the machine data (not required for spindles):

MD35590 $MA_PARAMSET_CHANGE_ENABLE = 1 or 2

For detailed information on the parameter set changeover, see Section "Parameter set
selection during gear step change (Page 1329)".

Parameter set changeover when machine axis is in motion

The response to a parameter set changeover depends on the consequential change in the
closed-loop control circuit gain factor KV:

MD32200 $MA_POSCTRL_GAIN (servo gain factor)

● "Identical servo gain factors (KV)" or "position control not active":
The NC responds immediately to the parameter set changeover. The parameter set is also
changed during the motion.

● "Unequal servo gain factors (KV)" or "position control not active":
To ensure a relatively jerk-free changeover, the parameter set changeover does not take
place until the axis is "stopped", i.e. the assigned standstill velocity has been reached or
exceeded:
DB31, ... DBX61.4 = 1 (axis/spindle stationary)
MD36060 $MA_STANDSTILL_VELO_TOL (threshold velocity/speed "axis/spindle
stationary")

Parameter set changeover from the part program

For parameter set changeover from the part program, the user (machine manufacturer) must
define corresponding user-specific auxiliary functions and evaluate them in the PLC user
program. The PLC user program will then set the changeover request on the corresponding
parameter set.

For detailed information on the auxiliary function output, see Section "H2: Auxiliary function
outputs to PLC (Page 401)".

DB31, ... DBX9.3 (parameter set specification disabled by NC)
If the interface signal is set, a request for a parameter set changeover (DB31, ... DBX9.0 / 9.1 /
9.2) is ignored.

2.2.7 Signals from axis/spindle

DB31, ... DBX61.0 (drive test travel request)
If machine axes are traversed by special test functions such as "function generator", an explicit
drive-test-specific enable is requested for the movement:

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 57

DB31, ... DBX61.0 == 1 (drive test travel request)

The motion is carried out once the motion is enabled:

DB31, ... DBX1.0 == 1 (drive test travel enable)

DB31, ... DBX61.3 (follow-up active)
The machine axis is in follow-up mode.

DB31, ... DBX61.4 (axis/spindle stationary (n < nmin)
"Axis/spindle stationary" is set by the NC if:

● No new setpoints are to be output AND

● The actual speed of the machine axis is lower than the parameterized zero speed:
MD36060 $MA_STANDSTILL_VELO_TOL (threshold velocity axis stationary)

DB31, ... DBX61.5 (position controller active)
The machine axis position control loop is closed and position control is active.

DB31, ... DBX61.6 (speed controller active)
The machine axis speed control loop is closed and speed control is active.

DB31, ... DBX61.7 (current controller active)
The machine axis current control loop is closed and current control is active.

DB31, ... DBX69.0 / 69.1 / 69.2 (parameter set servo)
Active parameter set Coding accordingly:

DB31, ... DBX9.0 / 9.1 / 9.2 (controller parameter set selection)

DB31, ... DBX76.0 (lubrication pulse)
Following a control POWER ON/RESET, the signal status is 0 (FALSE).

The "lubrication pulse" is inverted (edge change), as soon as the machine axis has covered
the parameterized traversing distance for lubrication:

MD33050 $MA_LUBRICATION_DIST (distance for lubrication by PLC)

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
58 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

2.2.8 Signals to axis/spindle (digital drives)

DB31, ... DBX21.0 - 4 (motor/drive data set: selection)
The PLC issues a request to the drive to switch over to a new motor and/or drive data set.

The interface can be flexibly parameterized using: DB31,DBX130.0 - 4 (see Chapter
"Switching over motor/drive data sets (Page 74)")

The active motor and/or drive data set is indicated using: DB31, ... DBX93.0 - 4

Note
Main spindle drive

For a main spindle drive, only motor data sets 1 and 2 are valid when switching over between
a star and delta connection.
● Motor data set 1: Star
● Motor data set 2: Delta

DB31, ... DBX21.5 (motor has been selected)
The PLC user program sends this signal to the drive to indicate successful motor selection.
The pulses are then enabled by the drive.

DB31, ... DBX21.6 (request integrator disable, speed controller)
The PLC user program inhibits the integrator of the speed controller for the drive. The speed
controller is switched over from a PI to P controller.

If the speed controller integrator disable is activated, compensations might take place in certain
applications (e.g. if the integrator was already holding a load while stationary).

Feedback signal via: DB31, ... DBX93.6 = 1 (integrator disable, speed controller)

DB31, ... DBX21.7 (request pulse enable)
The pulse enable for the drive module is only requested if all enable signals (hardware and
software) are pending:

● Trigger equipment enable

● Controller and pulse enable

● Pulse enable (safe operating stop)

● Stored hardware input

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 59

● Setpoint enable

● "Ready to run state"

– No drive alarm (DClink1 error)

– DC link connected

– Ramp-up completed

Feedback signal via: DB31, ... DBX93.7 (pulses enabled)

2.2.9 Signals from axis/spindle (digital drives)

DB31, ... DBX92.1 (ramp-function generator disable active)
The drive signals back to the PLC that ramp-function-generator fast stop is active. The drive
is thus brought to a standstill without the ramp function (with speed setpoint 0).

DB31, ... DBX93.0 - 4 (motor/drive data set: display)
The drive signals back the active motor and drive data set to the PLC.

The interface can be flexibly parameterized using: DB31,DBX130.0 - 4 (see Chapter
"Switching over motor/drive data sets (Page 74)")

The request to switch over motor and/or drive data set is realized using: DB31, ... DBX21.0 -
4

DB31, ... DBX93.5 (drive ready)
Checkback signal indicating that the drive is ready. The conditions required for traversing the
axis/spindle are fulfilled.

DB31, ... DBX93.6 (integrator disable, speed controller)
The speed-controller integrator is disabled. The speed controller has thus been switched from
PI to P controller.

DB31, ... DBX93.7 (pulses enabled)
The pulse enable for the drive module is available. The axis/spindle can now be traversed.

DB31, ... DBX94.0 (motor temperature prewarning)
The temperature of the motor is higher than the set motor temperature warning threshold (drive
parameter p0604).

See also note below for "DB31, ... DBX94.1 (heat sink temperature prewarning)".

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
60 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB31, ... DBX94.1 (heat sink temperature prewarning)
The temperature of the heat sink in the power unit is outside the permissible range. If the
overtemperature remains, the drive switches itself off after approx. 20 s.

Note
Temperature prewarning DB31, ... DBX94.0 and DBX94.1

The interface signals are derived from the following signals of the cyclic drive telegram:
● Case 1: Temperature warning in the message word

– DB31, ... DBX94.0 = MELDW, bit 6 (no motor overtemperature warning)
– DB31, ... DBX94.1 = MELDW, bit 7 (no thermal overload in power unit warning)

● Case 2: Warning of warning class B (only in interface mode "SIMODRIVE 611U", p2038 = 1)
DB31, ... DBX94.0 == 1 and DBX94.1 == 1, if the following applies:
Cyclic drive telegram, status word 1 (ZSW1), bits 11/12 == 2 (warning class B)

The interface signals are derived from the warning of warning class B if there is no specific
information from the message word.

An alarm is displayed. Alarm number = 200.000 + alarm value (r2124)

For a detailed description of the motor temperature monitoring setting, see:

References:
● S120 Commissioning Manual, Section "Commissioning" > "Temperature sensors for

SINAMICS components"
● S120 Function Manual, Section "Monitoring and protective functions"
● S120 List Manual

– MELDW, bit 6 ≙ BO: r2135.14 → function diagram: 2548, 8016
– MELDW, bit 7 ≙ BO: r2135.15 → function diagram: 2548, 2452, 2456, 8016

DB31, ... DBX94.2 (run-up completed)
The actual speed value is within the parameterized tolerance band again after changing the
speed setpoint. The run-up procedure is now completed.

Any subsequent speed fluctuations, also outside the tolerance band, e.g. due to load changes,
will not affect the interface signal.

DB31, ... DBX94.3 (|Md| < Mdx)
The absolute value of the current torque |Md| is less than the parameterized threshold torque
Mdx (torque threshold value 2, p2194).

The threshold torque is set as a percentage [%] of the current speed-dependent torque
limitation.

DB31, ... DBX94.4 (|nact| < nmin)
The actual speed value nact is less than nmin (speed threshold value 3, p2161).

A2: Various NC/PLC interface signals and functions
2.2 NC/PLC interface signals

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 61

DB31, ... DBX94.5 (|nact| < nx)
The actual speed value nact is less than nx (speed threshold value 2, p2155).

DB31, ... DBX94.6 (nact = nset)
The actual speed value is within the tolerance band (p2163) surrounding the speed setpoint.

DB31, ... DBX95.7 (warning of warning class C is pending)
The drive signals that a warning of warning class C is pending.

2.3 Functions

2.3.1 Screen refresh behavior for overload - only 840D sl
There are part programs, where the main run must wait until the preprocessing run provides
new blocks.

Preprocessing run and display refresh compete for NC processor time.

The following machine data can be used to set how the NC should behave if the preprocessing
run is too slow:

MD10131 $MN_SUPPRESS_SCREEN_REFRESH

Value Meaning
0 If the preprocessing run of a channel is too slow, the display is not refreshed in all channels.
1 If the preprocessing run of a channel is too slow, the display is only refreshed in the time critical channels in order

to obtain processor time for the preprocessing run.
2 Display refresh is not suppressed.

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
62 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

2.3.2 Settings for involute interpolation - only 840D sl

Introduction
The involute of the circle is a curve traced out from the end point on a "piece of string" unwinding
from the curve. Involute interpolation allows trajectories along an involute.

Figure 2-8 Involute (unwound from base circle)

Programming
A general description of how to program involute interpolation can be found in:

References:
Programming Manual, Fundamentals

In addition to the programmed parameters, machine data is relevant in two instances of involute
interpolation; this data may need to be set by the machine manufacturer / end user.

Accuracy
If the programmed end point does not lie exactly on the involute defined by the starting point,
interpolation takes place between the two involutes defined by the starting and end points (see
illustration below).

The maximum deviation of the end point is determined by the machine data:

MD21015 $MC_INVOLUTE_RADIUS_DELTA (end point monitoring for involute)

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 63

Figure 2-9 MD21015 specifies the max. permissible deviation

Limit angle
If AR is used to program an involute leading to the base circle with an angle of rotation that is
greater than the maximum possible value, an alarm is output and program execution aborted.

Figure 2-10 Limited angle of rotation towards base circle

The alarm display can be suppressed using the following parameter settings:

MD21016 $MC_INVOLUTE_AUTO_ANGLE_LIMIT = TRUE (automatic angle limitation for
involute interpolation)

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
64 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The programmed angle of rotation is then also limited automatically and the interpolated path
ends at the point at which the involute meets the base circle. This, for example, makes it easier
to program an involute which starts at a point outside the base circle and ends directly on it.

Tool radius compensation
2 1/2 D tool radius compensation is the only tool radius compensation function permitted for
involutes. If 3D tool radius compensation is active (both circumferential and face milling), when
an involute is programmed, machining is interrupted with alarm 10782.

With 2 1/2 D tool radius compensation, the plane of the involute must lie in the compensation
plane. or else alarm 10781 will be generated. It is however permissible to program an additional
helical component for an involute in the compensation plane.

Dynamic response
Involutes that begin or end on the base circle have an infinite curvature at this point. To ensure
that the velocity is adequately limited at this point when tool radius compensation is active,
without reducing it too far at other points, the "Velocity limitation profile" function must be
activated:

MD28530 $MC_MM_PATH_VELO_SEGMENTS > 1 (number of memory elements for limiting
the path velocity)

A setting of 5 is recommended. This setting need not be made if only involute sections are
used which have radii of curvature that change over a relatively small area.

2.3.3 Activate DEFAULT memory - only 840D sl

GUD start values
The DEF... / REDEF... NC commands can be used to assign default settings to global user
data (GUD). To make these default values available at the parameterized initialization time,
e.g. with the attribute INIPO, after power on, they must be saved permanently in the system.
The required memory space must be enabled using the following machine data:

MD18150 $MM_GUD_VALUES_MEM (non-volatile memory space for GUD values)

References:

● Function Manual, Extended Functions; S7: "Memory Configuration"

● Programming Manual, Job Planning

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 65

2.3.4 Read and write PLC variable - only 840D sl

High-speed data channel
For high-speed exchange of information between the PLC and NC, a memory area is reserved
in the communications buffer on these modules (dual-port RAM). Variables of any type (I/O,
DB, DW, flags) may be exchanged within this memory area.

The PLC accesses this memory using 'Function Calls' (FC) while the NC uses system variables.

Organization of memory area
The user's programming engineer (NC and PLC) is responsible for organizing (structuring) this
memory area.

Every storage position in the memory can be addressed provided that the limit is selected
according to the appropriate data format (i.e. a DWORD for a 4-byte limit, a WORD for a 2-
byte limit, etc.).

The memory is accessed via the data type and the position offset within the memory area.

Access from NC
System variables are available in the NC for fast access to PLC variables from a part program
or synchronized action. The data is read/written directly by the NC. The data type results from
the identifier of the system variables. The position within the memory area is specified as index
in bytes.

System variable Data type Value range
$A_DBB[<index>] Byte (8 bits) 0 <= x <= 255
$A_DBW[<index>] Word (16 bits) -32768 <= x <= 32767
$A_DBD[<index>] Double word (32 bits) -2147483648 <= x <= 2147483647
$A_DBR[<index>] Floating point (32 bits) ±(1.5·10−45 <= x <= 3.4·1038)

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
66 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Access from PLC
The PLC uses function calls (FC) to access the memory. The data is read and written
immediately in the DPR with the FC and not just at the beginning of the PLC cycle. Data type
and position in the memory area are transferred as parameters to the FC.

Figure 2-11 Communications buffer (DPR) for NC/PLC communication

Supplementary conditions
● The structuring of the DPR memory area is the sole responsibility of the user. No checks

are made for matching configuration.

● A total of 4096 bytes are available in the input and output directions.

● Single-bit operations are not supported and must be linked back to byte operations by the
user.

● Since the contents of variables are manipulated directly in the communications buffer, the
user must remember that intermediate changes in values occur as a result of multiple
access operations where a variable is evaluated several times or when variables are linked
(i.e. it may be necessary to store values temporarily in local variables or R parameters or
to set up a semaphore).

● The user's programming engineer is responsible for coordinating access operations to the
communications buffer from different channels.

● Data consistency can be guaranteed only for access operations up to 16 bits (byte and
word). The user is solely responsible for ensuring consistent transmission of 32-bit variables
(double and real). A simple semaphore mechanism is available in the PLC for this purpose.

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 67

● The PLC stores data in 'Little Endian' format in the DPR.

● Values transferred with $A_DBR are subject to data conversion and hence to loss of
accuracy. The data format for floating-point numbers is DOUBLE (64 bits) in the NC, but
only FLOAT (32 bits) in the PLC. The format used for storage in the dual-port RAM is
FLOAT. Conversion takes place respectively before/after storage in the dual-port RAM.
If a read/write access is made from the NC to a variable in the dual-port RAM, the conversion
is performed twice. It is impossible to prevent differences between read and written values
because the data is stored in both formats.
Example
Bypassing the problem by means of comparison on "EPSILON" (minor deviation)

Program code
N10 DEF REAL DBR
N12 DEF REAL EPSILON = 0.00001
N20 $A_DBR[0]=145.145
N30 G4 F2
N40 STOPRE
N50 DBR=$A_DBR[0]
N60 IF (ABS(DBR/145.145-1.0) < EPSILON) GOTOF ENDE
N70 MSG ("error")
N80 M0
N90 END:
N99 M30

Activation
The maximum number of simultaneously writable output variables is adjustable via:
MD28150 $MC_MM_NUM_VDIVAR_ELEMENTS (number of elements for writing PLC
variables)

Example
A variable of type WORD is to be transferred from the PLC to the NC.

The position offset within the NC input (PLC output area) should be the 4th byte. The position
offset must be a whole-number multiple of the data width.

Writing from PLC:

Program code Comment
. . .
CALL FC21 (
Enable :=M10.0, ; if TRUE, then FC21 active
Funct :=B#16#4,
S7Var :=P#M 104.0 WORD1,
IVAR1 :=04,
IVAR2 :=-1,
Error :=M10.1,

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
68 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
ErrCode :=MW12);
. . .
)

Reading in part program

Program code Comment
. . .
PLCDATA = $A_DBW[4]; ; Read a word
. . .

Behavior during POWER ON, block search
The DPR communications buffer is initialized during "POWER ON".

During a "block search", the PLC variable outputs are collected and transferred to the DPR
communications buffer with the approach block (analogous to writing of analog and digital
outputs).

Other status transitions have no effect in this respect.

References
A detailed description of the data exchange by the PLC with FC 21 can be found in:

SINUMERIK 840D sl: Section "Function (Page 1088)"

2.3.5 Access protection via password and keyswitch

Access authorization
Access to functions, programs and data is useroriented and controlled via 8 hierarchical
protection levels. These are subdivided into:

● Password levels for Siemens, machine manufacturer and end user

● Keyswitch positions for end user

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 69

Multi-level security concept
A multi-level security concept to regulate access rights is available in the form of password
levels and keyswitch settings.

Protection level Type User Access to (examples)
0 Password Siemens All functions, programs and

data
1 Password Machine manufacturer: De‐

velopment
defined functions, programs
and data;
for example: entering options

2 Password Machine manufacturer: Start‐
up engineer

defined functions, programs
and data;
for example: Bulk of machine
data

3 Password End user: Service Assigned functions, pro‐
grams and data

4 Keyswitch position 3 End user: Programmer, ma‐
chine setter

less than the protection level
0 to 3; established by the ma‐
chine manufacturer or end
user

5 Keyswitch position 2 End user: Skilled operator
without programming knowl‐
edge

less than the protection level
0 to 3; established by the end
user

6 Keyswitch position 1 End user: Trained operator
without programming knowl‐
edge

Example:
Program selection only, tool
wear entry, and work offset
entry

7 Keyswitch position 0 End user: Semi-skilled oper‐
ator

Example:
no inputs and program selec‐
tion possible,
only machine control panel
operable

Access features
● Protection level 0 provides the greatest number of access rights, protection level 7 the least.

● If certain access rights are granted to a protection level, these protection rights automatically
apply to any higher protection levels.

● Conversely, protection rights for a certain protection level can only be altered from a higher
protection level.

● Access rights for protection levels 0 to 3 are permanently assigned by Siemens and cannot
be altered (default).

● Access rights can be set by querying the current keyswitch positions and comparing the
passwords entered. When a password is entered it overwrites the access rights of the
keyswitch position.

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
70 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Options can be protected on each protection level. However, option data can only be
entered in protection levels 0 and 1.

● Access rights for protection levels 4 to 7 are only suggestions and can be altered by the
machine tool manufacturer or end user.

2.3.5.1 Password

Set password
The password for a protection level (0 – 3) is entered via the HMI user interface.

Operating area "Commissioning" > "Password" > "Set password"

Delete password
Access rights assigned by means of setting a password remain effective until they are explicitly
revoked by deleting the password:

Operating area "Commissioning" > "Password" > "Delete password"

Change password
The password for a protection level (0 – 3) is changed via the HMI user interface.

Operating area "Commissioning" > "Password" > "Change password"

Note
Warm restart

Access rights and password status (set/deleted) are not affected by a warm restart!

New password
A password may contain up to eight characters. We recommend that you confine yourself to
the characters available on the operator panel front when selecting the password.

Where a password consists of less than eight characters, the additional characters are
interpreted as blanks.

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 71

When assigning a new password, the rules for assigning secure passwords must be taken into
account.

Note
Assigning secure passwords

Observe the following rules when assigning new passwords:
● When assigning new passwords, make sure that you do not assign passwords that can be

easily guessed, e.g. simple words, key combinations that can be easily guessed, etc.
● Passwords must always contain a combination of upper-case and lower-case letters as

well as numbers and special characters. Passwords must comprise at least eight
characters. PINS must comprise an arbitrary sequence of digits.

● Wherever possible and where it is supported by the IT systems, a password must always
have a character sequence as complex as possible.

Further rules for the assignment of secure passwords can be found at Federal Office for
Information Security (Bundesamt für Sicherheit in der Informationstechnik, abbreviated as
BSI). (https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/International/
GSK_15_EL_EN_Draft.pdf?__blob=publicationFile&v=2)

You can use a program for password management for assistance when dealing with
passwords. With its help, you can save passwords and PINs in encrypted form, manage them
and generate secure passwords.

Defaults
 As standard, the following passwords are effective for protection levels 1 - 3:

● Protection level 1: SUNRISE

● Protection level 2: EVENING

● Protection level 3: CUSTOMER

NOTICE

A cold restart reset the passwords to the default settings

After a cold restart (the NC powers up and standard machine data is loaded), the passwords
of protection levels 1 - 3 are again reset to the default settings. For security reasons, after a
cold restart we urgently recommend that the default settings of the passwords are changed.

References
● "SINUMERIK 840D sl Basic Software and Operating Software" Commissioning Manual,

Section "SINUMERIK Operate (IM9)" > "General settings" > "Access levels".

● Commissioning Manual, "Commissioning CNC: NC, PLC, Drive"; Section "Requirements
for commissioning" > "Switch-on and power up" and "Access levels"

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
72 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/International/GSK_15_EL_EN_Draft.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/International/GSK_15_EL_EN_Draft.pdf?__blob=publicationFile&v=2

2.3.5.2 Keyswitch positions (DB10, DBX56.4 to 7)

Keyswitch
The keyswitch has four positions, to which protection levels 4 to 7 are assigned. The keyswitch
comprises a number of keys in a variety of colors which can be set to different switch positions.

Figure 2-12 Switch positions 0 to 3

Switch positions
Switch position 0 has the most restricted access rights. Switch position 3 has the least restricted
access rights.

DB10, DBX56.4 / .5 / .6 / .7 (switch positions 0 / 1 / 2 / 3)

Machine-specific enables for access to programs, data and functions can be assigned to the
switch positions. For detailed information, please refer to:

References

● CNC Commissioning Manual: NC, PLC, Drives, Fundamentals,
Section: Basics on the protection levels

● Commissioning Manual SINUMERIK Operate (IM9); General Settings,
Section: Access levels

Default settings via the PLC user program
The keyswitch positions are transferred to the NC/PLC interface via the basic PLC program.
The corresponding interface signals can be modified via the PLC user program. In this context,
from the point of view of the NC, only one switch position should ever be active, i.e. the
corresponding interface signal set to 1. If, from the point of view of the NC, a number of switch
positions are active at the same time, switch position 3, i.e. the keyswitch position with the
least restricted access rights, will be activated internally by the NC.

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 73

2.3.5.3 Parameterizable protection levels

Parameterizable protection level
The parameter level can be freely parameterized for a variety of functions and data areas. The
protection level is set via operator-panel machine data, designated as follows:
$MM_USER_CLASS_<Function_DataArea>

Examples:

$MM_USER_CLASS_READ_TOA Read tool offsets
$MM_USER_CLASS_WRITE_TOA Write tool offsets
$MM_USER_CLASS_READ_PROGRAM Read part programs
$MM_USER_CLASS_WRITE_PROGRAM Write/edit part programs

Default values
On delivery or following standard commissioning, with very few exceptions, the default value
for the protection level will be set to 7, i.e. the lowest protection level.

2.3.6 Switching over motor/drive data sets

2.3.6.1 General Information

Motor and drive data sets
For optimum adaptation to the particular machining situation or because of different machine
configurations, it may be necessary that several different data sets are available in a drive for
motors, drive parameters and encoders. The creation of the basic data sets of the drive objects
is performed during startup with the aid of the "Drive wizard".

Note
References

Commissioning Manual: CNC: NC, PLC, Drive, Section "Commissioning NC-controlled drives"

The following duplication and management of the data sets is performed via the user interface:

SINUMERIK Operate: Operating area "Start-up" > "Drive system" > "Drives" > "Data sets"

The activation of the motor data set (MDS) or drive data set (DDS) required for a machine axis
in a specific machining situation, must be made from the PLC user program via the interfaces
described below.

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
74 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Axial NC/PLC interface
The interfaces in the axial NC/PLC interface for switching the motor and drive data sets is
divided into three areas:

● Formatting interface (Page 75)

● Request interface (Page 76)

● Display interface (Page 76)

2.3.6.2 Formatting interfaces

Formatting
The formatting interface is used to set which bits of the request and display interface are used
to address the motor data sets (MDS) and which are used to address the drive data sets (DDS):

DB31, ... DBX130.0 - 4, with bit x = <value>

<value> Meaning
0 Bit position for motor data set (MDS) – or invalid bit position
1 Bit position for drive data set (DDS)

Motor and drive data sets in the drive
Formatting depends on the number of motor data sets (MDS) and drive data sets (DDS) in the
drive. The number can be determined using the following drive parameters:

● p0130 (number of motor data sets)

● p0180 (number drive data sets)

Validity of the interfaces
After powering up, as soon as the control has received all the required information from the
drive and this has been evaluated by the NC, the request (Page 76) and display interfaces
(Page 76) are shown as valid:

DB31, ... DBX130.7 == 1 (request and display interfaces valid)

If no or incompatible information is transferred from the drive, the request and display interfaces
are shown as invalid.

Note

With invalid request and display interfaces, it however remains the sole responsibility of the
user / machine manufacturer to perform a data set switchover via the invalid request and
display interfaces.

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 75

See also
Example (Page 76)

Overview of the interfaces (Page 77)

2.3.6.3 Request interface
The switchover to a new motor (MDS) and/or drive data sets (DDS) is requested via the
interface:

DB31, ... DBX21.0 - .4 = <MDS/DDS index>

Value range
Addressing a motor or drive data set n, with n = 1, 2, 3, ..., is realized based on its index i, with
i = n - 1 = 0, 1, 2, ...

● Motor data sets: MDS[0, 1, 2, ... 15]

● Drive data sets: DDS[0, 1, 2, ... 31]

Formatting interfaces
Formatting the request interface, i.e. which bits are used to address the motor data sets (MDS)
– and which are used to address the drive data sets (DDS) is set via the formatting interface
(Page 75).

Motor and drive data sets in the drive
The number of motor data sets (MDS) and drive data sets (DDS) in the drive can be determined
using the following drive parameters:

● p0130 (number of motor data sets)

● p0180 (number drive data sets)

Motor data set (MDS) for main spindle drives
For main spindle drives, the following association applies:

● MDS[0] → star operation

● MDS[1] → delta operation

2.3.6.4 Display interface
The active motor data set (MDS) and drive data set (DDS) are displayed via the interface:

DB31, ... DBX93.0 - .4 == <MDS / DDS index>

Value range and formatting are identical to the request interface (Page 76).

2.3.6.5 Example
Two motor data sets (MDS) and two drive data sets (DDS) are available in the drive for each
motor data set. This corresponds to "No.": 9 of the possible data set combinations displayed
in the Figure 2-13 Principle of the motor/drive data set switchover (Page 78).

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
76 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Format
Bit positions for drive data set switchover (DDS):

● DB31, ... DBX130.0 == 1

Bit positions for motor data set switchover (MDS):

● DB31, ... DBX130.1 == 0

Invalid bit positions:

● DB31, ... DBX130.2 == 0

● DB31, ... DBX130.3 == 0

● DB31, ... DBX130.4 == 0

Interfaces of the drive data sets (DDS)
Relevant bit positions of the request and display interfaces:

● DB31, ... DBX21.0 / DBX93.0

– DB31, ... DBX21.0 / DBX93.0 == 0 ⇒ 1st drive data set DDS[0]

– DB31, ... DBX21.0 / DBX93.0 == 1 ⇒ 2nd drive data set DDS[1])

Interfaces of the motor data sets (MDS)
Relevant bit positions of the request and display interfaces:

● DB31, ... DBX21.1 / DBX93.1

– DB31, ... DBX21.1 / DBX93.1 == 0 ⇒ 1st motor data set MDS[0]

– DB31, ... DBX21.1 / DBX93.1 == 1 ⇒ 2nd motor data set MDS[1])

Invalid bit positions (MDS/DDS)
Invalid bit positions of the request and display interfaces:

● DB31, ... DBX21.1 / DBX93.2 == 0

● DB31, ... DBX21.1 / DBX93.3 == 0

● DB31, ... DBX21.1 / DBX93.4 == 0

See also
Overview of the interfaces (Page 77)

2.3.6.6 Overview of the interfaces

Table 2-1 Configurable MDS / DDS combinations

Number of MDS (motors) Number of DDS (drives) per MDS
1 1 ... 32
2 1, 2, 4, 8, 16
3 1, 2, 4, 8

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 77

Number of MDS (motors) Number of DDS (drives) per MDS
4 1, 2, 4, 8
5 1, 2, 4
6 1, 2, 4
7 1, 2, 4
8 1, 2, 4
9 1, 2

10 1, 2
11 1, 2
12 1, 2
13 1, 2
14 1, 2
15 1, 2
16 1, 2

MDS Number of motor data sets
DDS per MDS Number of drive data sets per motor data set
DB31, ... DBX21.x Request interface
DB31, ... DBX93.x Display interface
DB31, ... DBX130.x Formatting interface

Figure 2-13 Principle of the motor/drive data set switchover

A2: Various NC/PLC interface signals and functions
2.3 Functions

Basic Functions
78 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

2.3.6.7 Supplementary conditions

Variable number of drive data sets for the "last" motor data set
The "last" motor data set is the motor data set with the highest number or index.

Generally, the same number of drive data sets is created for each motor data set (number of
"DDS per MDS") in the drive. Only the "last" motor data set can differ from this; any number
(a) of drive data sets can be parameterized:

1 ≤ a ≤ (number of "DDS per MDS")

Example
4 motor data sets (MDS) and 8 drive data sets (DDS) per motor data set (DDS per MDS) are
to be parameterized. This corresponds to "No.": 22 of the possible data set combination
displayed in the Figure 2-13 Principle of the motor/drive data set switchover (Page 78):

● Motor data sets: MDS[0], MDS[1], ... MDS[3] ("last" motor data set)

● Drive data sets per motor data set: DDS[0] ... DDS[7]

The number of drive data sets for the individual motor data sets is therefore:

Motor data set (MDS) Number of drive data sets (DDS) per motor data set (MDS)
MDS[0] ... MDS[2] 8

MDS[3] 1 - 8

Switchover instant: Drive parameter set
In principle it is possible to switch over drive parameter sets at any point in time. While an axis
is traversing, especially when switching over speed controller parameters and the motor speed
scaling, torque jumps/steps can occur. We therefore recommend that a drive parameter set is
only switched over for stationary states, especially when the axis is at a standstill.

See also
Overview of the interfaces (Page 77)

2.4 Examples

2.4.1 Parameter set changeover

Parameter set changeover
A parameter set changeover is performed to change the position control gain (KVfactor) from
KV = 4.0 to KV = 0.5 for machine axis X1.

A2: Various NC/PLC interface signals and functions
2.4 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 79

Preconditions
The parameter set changeover must be enabled by the machine data:

MD35590 $MA_PARAMSET_CHANGE_ENABLE [AX1] = 1 or 2 (parameter set change
possible)

The 1st parameter set for machine axis X1 is set, in accordance with machine data with index
"0" NC/PLC interface:

DB31, … DBX9.0 - DBX9.2 = 0 (controller parameter set)

Parameter-set-dependent machine data
Parameter-set-dependent machine data are set as follows:

Machine data Comment
MD32200 $MA_POSCTRL_GAIN [0, AX1] = 4.0 KV setting for parameter set 1
MD32200 $MA_POSCTRL_GAIN [1, AX1] = 2.0 KV setting for parameter set 2
MD32200 $MA_POSCTRL_GAIN [2, AX1] = 1.0 KV setting for parameter set 3
MD32200 $MA_POSCTRL_GAIN [3, AX1] = 0.5 KV setting for parameter set 4
MD32200 $MA_POSCTRL_GAIN [4, AX1] = 0.25 KV setting for parameter set 5
MD32200 $MA_POSCTRL_GAIN [5, AX1] = 0.125 KV setting for parameter set 6
MD31050 $MA_DRIVE_AX_RATIO_DENOM [0, AX1] = 3 Denominator load gearbox for parameter set 1
MD31050 $MA_DRIVE_AX_RATIO_DENOM [1, AX1] = 3 Denominator load gearbox for parameter set 2
MD31050 $MA_DRIVE_AX_RATIO_DENOM [2, AX1] = 3 Denominator load gearbox for parameter set 3
MD31050 $MA_DRIVE_AX_RATIO_DENOM [3, AX1] = 3 Denominator load gearbox for parameter set 4
MD31050 $MA_DRIVE_AX_RATIO_DENOM [4, AX1] = 3 Denominator load gearbox for parameter set 5
MD31050 $MA_DRIVE_AX_RATIO_DENOM [5, AX1] = 3 Denominator load gearbox for parameter set 6
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [0, AX1] = 5 Counter load gearbox for parameter set 1
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [1, AX1] = 5 Counter load gearbox for parameter set 2
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [2, AX1] = 5 Counter load gearbox for parameter set 3
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [3, AX1] = 5 Counter load gearbox for parameter set 4
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [4, AX1] = 5 Counter load gearbox for parameter set 5
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [5, AX1] = 5 Counter load gearbox for parameter set 6
MD35130 $MA_AX_VELO_LIMIT [0...5, AX1] Setting for each parameter set*)
MD32800 $MA_EQUIV_CURRCTRL_TIME [0..5, AX1] Setting for each parameter set*)
MD32810 $MA_EQUIV_SPEEDCTRL_TIME [0..5, AX1] Setting for each parameter set*)
MD32910 $MA_DYN_MATCH_TIME [0...5, AX1] Setting for each parameter set*)
*) The appropriate line must be specified separately for each parameter set according to the applicable syntax rules.

A2: Various NC/PLC interface signals and functions
2.4 Examples

Basic Functions
80 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Switchover
In order to switch over the position-control gain, the PLC user program selects the 4th
parameter set for machine axis X1.

● Request by PLC user program:
DB31, … DBX9.0 – DBX9.2 = 3 (parameter set servo)

– A request to change over to the 4th parameter set is sent for machine axis AX1.

– The parameter set is changed over once a delay has elapsed.

– Parameter set 4 is now active, in accordance with machine data with index "3"

● Feedback by NC:
DB31, … DBX69.0 – DBX69.2 = 3 (parameter set servo)

– The NC confirms/acknowledges the parameter-set changeover.

2.5 Data lists

2.5.1 Machine data

2.5.1.1 Display machine data

Number Identifier: $MM_ Description
SINUMERIK Operate
9000 LCD_CONTRAST Contrast
9001 DISPLAY_TYPE Monitor type
9004 DISPLAY_RESOLUTION Display resolution
9006 DISPLAY_SWITCH_OFF_INTERVAL Time for screen darkening

2.5.1.2 NC-specific machine data

Number Identifier: $MN_ Description
10350 FASTIO_DIG_NUM_INPUTS Number of active digital NC input bytes
10360 FASTIO_DIG_NUM_OUTPUTS Number of active digital NC output bytes
10361 FASTIO_DIG_SHORT_CIRCUIT Short-circuit digital inputs and outputs
11120 LUD_EXTENDED_SCOPE Activate global program variables (PUD)
11270 DEFAULT_VALUES_MEM_MSK Active.

Function: Save DEFAULT values of GUD.
18150 MM_GUD_VALUES_MEM Reserve memory space for GUD

A2: Various NC/PLC interface signals and functions
2.5 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 81

2.5.1.3 Channelspecific machine data

Number Identifier: $MC_ Description
21015 INVOLUTE_RADIUS_DELTA NC start disable without reference point
21016 INVOLUTE_AUTO_ANGLE_LIMIT Automatic angle limitation for involute interpolation
27800 TECHNOLOGY_MODE Technology in channel
28150 MM_NUM_VDIVAR_ELEMENTS Number of write elements for PLC variables
28530 MM_PATH_VELO_SEGMENTS Number of storage elements for limiting path velocity

in block

2.5.1.4 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30350 SIMU_AX_VDI_OUTPUT Output of axis signals for simulation axes
33050 LUBRICATION_DIST Lubrication pulse distance
35590 PARAMSET_CHANGE_ENABLE Parameter set definition possible from PLC
36060 STANDSTILL_VELO_TOL Maximum velocity/speed when axis/spindle stationary
36610 AX_EMERGENCY_STOP_TIME Length of the braking ramp for error states
36620 SERVO_DISABLE_DELAY_TIME Cutout delay servo enable

A2: Various NC/PLC interface signals and functions
2.5 Data lists

Basic Functions
82 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

2.5.2 System variables

Names Description
$P_FUMB Unassigned part program memory (Free User Memory Buffer)
$A_DBB[n] Data on PLC (data type BYTE)
$A_DBW[n] Data on PLC (WORD type data)
$A_DBD[n] Data on PLC (DWORD type data)
$A_DBR[n] Data on PLC (REAL type data)

2.5.3 Signals

2.5.3.1 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Keyswitch setting 0 to 3 DB10.DBX56.4 - 7 DB2600.DBX0.4 - 7

2.5.3.2 Signals from NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Remote diagnostics active (HMI alarm is pending) DB10.DBX103.0 -
AT box ready DB10.DBX103.5 -
HMI temperature limit DB10.DBX103.6 -
HMI battery alarm DB10.DBX103.7 -
NC ready DB10.DBX104.7 -
Operator panel 2: "ready" DB10.DBX108.1 -
Operator panel at MPI: "ready" DB10.DBX108.2 -
Operator panel at OPI: "ready" DB10.DBX108.3 DB2700.DBX2.3
Drives in cyclic operation DB10.DBX108.5 DB2700.DBX2.5
Drives ready DB10.DBX108.6 DB2700.DBX2.6
NC Ready DB10.DBX108.7 DB2700.DBX2.7
NC alarm is active DB10.DBX109.0 DB2700.DBX3.0
NCU heat sink temperature alarm DB10.DBX109.5 -
Air temperature alarm DB10.DBX109.6 DB2700.DBX3.6
NC battery alarm DB10.DBX109.7 -

A2: Various NC/PLC interface signals and functions
2.5 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 83

2.5.3.3 Signals to operator panel front

Signal name SINUMERIK 840D sl SINUMERIK 828D
Brighten screen DB19.DBX0.0 -
Darken screen DB19.DBX0.1 DB1900.DBX5000.1 1)

Key disable DB19.DBX0.2 DB1900.DBX5000.2
Delete cancel alarms DB19.DBX0.3 -
Delete recall alarms DB19.DBX0.4 -
Actual value in the WCS, (1) / MCS (0) DB19.DBX0.7 DB1900.DBX5000.7
Part program: Unload DB19.DBX13.5 -
Part program: Load DB19.DBX13.6 -
Part program: Selection DB19.DBX13.7 DB1700.DBX1000.7
File system active (0) / passive (1) DB19.DBX14.7 -
Program selection from the PLC: index of the program list DB19.DBB16 2) DB1700.DBB1001 2)

Program selection from the PLC: program index in the pro‐
gram list

DB19.DBB17 DB1700.DBB1002

Mode change disable DB19.DBX44.0 -

1) For SINUMERIK 828D, the bright/dark control is realized using DB1900.DBX5000.1:
 DB1900.DBX5000.1=0: Screen bright
 DB1900.DBX5000.1=1: Screen dark
 DB1900.DBX5000.0 has no significance for the screensaver function.
2) Bit 7: Always 1

2.5.3.4 Signals from operator panel front

Signal name SINUMERIK 840D sl SINUMERIK 828D
Screen is dark DB19.DBX20.1 -
User interface: Simulation active DB19.DBX20.6 DB1900.DBX0.6
Switch over MCS/WCS DB19.DBX20.7 DB1900.DBX0.7
Program selection of PLC status signals: Job completed DB19.DBX26.1 DB1700.DBX2000.1
Program selection of PLC status signals: Error DB19.DBX26.2 DB1700.DBX2000.2
Program selection of PLC status signals: Active DB19.DBX26.3 DB1700.DBX2000.3
Program selection of PLC status signals: Unloading DB19.DBX26.5 -
Program selection of PLC status signals: Loading DB19.DBX26.6 -
Program selection of PLC status signals: Selection DB19.DBX26.7 DB1700.DBX2000.7
FC9: Start "Measuring in JOG" DB19.DBX42.0 -
FC9 Out: Active DB19.DBX45.0 -
FC9 Out: Done DB19.DBX45.1 -
FC9 Out: Error DB19.DBX45.2 -
FC9 Out: StartErr DB19.DBX45.3 -

A2: Various NC/PLC interface signals and functions
2.5 Data lists

Basic Functions
84 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

2.5.3.5 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Delete distancetogo (channelspecific) DB21,DBX6.2 DB320x.DBX6.2

2.5.3.6 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Channel-specific NC alarm pending DB21,DBX36.6 DB330x.DBX4.6
NC alarm with machining stop is pending DB21, … .DBX36.7 DB330x.DBX4.7
NC alarm with program stop DB21, … .DBX39.1 DB330x.DBX7.1
Overstore active DB21,DBX318.7 -

2.5.3.7 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Axis/spindle disable DB31,DBX1.3 DB380x.DBX1.3
Follow-up mode DB31,DBX1.4 DB380x.DBX1.4
Position measuring system 1 DB31,DBX1.5 DB380x.DBX1.5
Position measuring system 2 DB31,DBX1.6 DB380x.DBX1.6
Controller enable DB31,DBX2.1 DB380x.DBX2.1
Delete distance-to-go (axis-specific) / spindle reset DB31,DBX2.2 DB380x.DBX2.2
Motor/drive data set: Selection DB31,DBX21.0 - 4 DB380x.DBX4001.0 - 4
Motor being selected DB31,DBX21.5 DB380x.DBX4001.5
Request integrator disable, speed controller DB31,DBX21.6 DB380x.DBX4001.6
Request pulse enable DB31,DBX21.7 DB380x.DBX4001.7

2.5.3.8 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Referenced/synchronized, encoder 1/2 DB31,DBX60.4/5 DB390x.DBX0.4/5
Traversing command minus/plus DB31,DBX64.6/7 DB390x.DBX4.6/7
Follow up active DB31,DBX61.3 DB390x.DBX1.3
Axis/spindle stationary (n < nmin) DB31,DBX61.4 DB390x.DBX1.4
Position controller active DB31,DBX61.5 DB390x.DBX1.5
Speed controller active DB31,DBX61.6 DB390x.DBX1.6
Current controller active DB31,DBX61.7 DB390x.DBX1.7
Lubrication pulse DB31,DBX76.0 DB390x.DBX1002.0
Ramp-function generator disable active DB31,DBX92.1 DB390x.DBX4000.1
Motor/drive data set: Display DB31,DBX93.0 - 4 DB390x.DBX4001.0 - 4

A2: Various NC/PLC interface signals and functions
2.5 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 85

Signal name SINUMERIK 840D sl SINUMERIK 828D
Drive ready DB31,DBX93.5 DB390x.DBX4001.5
Integrator disable, speed controller DB31,DBX93.6 DB390x.DBX4001.6
Pulses enabled DB31,DBX93.7 DB390x.DBX4001.7
Motor temperature prewarning DB31,DBX94.0 DB390x.DBX4002.0
Heat sink temperature prewarning DB31,DBX94.1 DB390x.DBX4002.1
Run-up completed DB31,DBX94.2 DB390x.DBX4002.2
|Md| < Mdx DB31,DBX94.3 DB390x.DBX4002.3
|nact| < nmin DB31,DBX94.4 DB390x.DBX4002.4
|nact| < nx DB31,DBX94.5 DB390x.DBX4002.5
nact = nset DB31,DBX94.6 DB390x.DBX4002.6
Alarm of alarm class C is active DB31,DBX95.7 -
Motor/drive data set: Formatting DB31,DBX130.0 - 4 DB390x.DBX4008.0 - 4
Motor/drive data set: Formatting is valid DB31, ... DBX130.7 DB390x.DBX4008.7

A2: Various NC/PLC interface signals and functions
2.5 Data lists

Basic Functions
86 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

A3: Axis monitoring functions 3
3.1 Contour monitoring

3.1.1 Contour error
Contour errors are caused by signal distortions in the position control loop.

Signal distortions can be linear or non-linear.

Linear signal distortions
Linear signal distortions are caused by:

● Speed and position controller not being set optimally

● Different servo gain factors (KV) of the feed axes involved in creating the path
With the same servo gain factor (KV) for two linear-interpolated axes, the actual position
follows the set position along the same path but with a time delay. With different servo gain
factors (KV), a parallel offset arises between the set and actual path.

● Unequal dynamic response of the feed drives
Unequal drive dynamic responses lead to path deviations especially on contour changes.
Circles are distorted into ellipses by unequal dynamic responses of the two feed drives.

Non-linear signal distortions
Non-linear signal distortions are caused by:

● Activation of the current limitation within the machining area

● Activation of the limitation of the speed setpoint

● Backlash within and/or outside the position control loop
When traversing a circular path, contour errors occur primarily due to the reversal error and
friction.
During motion along straight lines, a contour error arises due to a reversal error outside the
position control loop, e.g. due to a tilting milling spindle. This causes a parallel offset
between the actual and the set contour. The shallower the gradient of the straight line, the
larger the offset.

● Nonlinear friction behavior of slide guides

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 87

3.1.2 Following-error monitoring

Function
In control engineering terms, traversing along a machine axis always produces a certain
following error, i.e. a difference between the set and actual position.

The following error that arises depends on:

● Position control loop gain
MD32200 $MA_POSCTRL_GAIN (servo gain factor)

● Maximum acceleration
MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)

● Maximum velocity
MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

● With activated feedforward control:
Precision of the path model and the parameters:
MD32610 $MA_VELO_FFW_WEIGHT (factor for the velocity feedforward control)
MD32800 $MA_EQUIV_CURRCTRL_TIME (equivalent time constant current control loop
for feedforward control)
MD32810 $MA_EQUIV_SPEEDCTRL_TIME (equivalent time constant speed control loop
for feedforward control)

In the acceleration phase, the following error initially increases when traversing along a
machine axis. After a time depending on the parameterization of the position control loop, the
following error then remains constant in the ideal case. Due to external influences, more or
less large fluctuations in the following error always arise during a machining process. To
prevent these fluctuations in the following error from triggering an alarm, a tolerance range
within which the following error may change must be defined for the following-error monitoring:

MD36400 $MA_CONTOUR_TOL (Contour monitoring tolerance range)

Figure 3-1 Following-error monitoring

A3: Axis monitoring functions
3.1 Contour monitoring

Basic Functions
88 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Effectiveness
The following-error monitoring only operates with active position control and the following axis
types:

● Linear axes with and without feedforward control

● Rotary axes with and without feedforward control

● Position-controlled spindles

Fault
If the configured tolerance limit is exceeded, the following alarm appears:

25050 "Axis <Axis name> Contour monitoring"

The affected axis/spindle is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

A3: Axis monitoring functions
3.1 Contour monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 89

3.2 Positioning, zero speed and clamping monitoring

3.2.1 Correlation between positioning, zero-speed and clamping monitoring

Overview
The following overview shows the correlation between the positioning, zero speed and
clamping monitoring functions:

3.2.2 Positioning monitoring

Function
At the end of a positioning operation:

● Set velocity = 0 AND

● DB31, ... DBX64.6/7 (motion command minus/plus) = 0

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
90 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

checks the position monitoring to ensure that the following error of every participating machine
axis is smaller than the exact-stop fine tolerance during the delay time.

MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

MD36020 $MA_POSITIONING_TIME (delay time exact stop fine)

After reaching "Exact stop fine", the position monitoring is deactivated.

Note

The smaller the exact stop fine tolerance is, the longer the positioning operation takes and the
longer the time until block change.

Rules for MD setting

MD36010 $MA_STOP_LIMIT_FINE MD36020 $MA_POSITIONING_TIME
Large Can be selected relatively short
Small Must be selected relatively long

MD32200 $MA_POSCTRL_GAIN
(servo gain factor)

MD36020 $MA_POSITIONING_TIME

Small Must be selected relatively long
Large Can be selected relatively short

Effectiveness
The position monitoring only operates with active position control and the following axis types:

● Linear axes

● Rotary axes

● Position-controlled spindles

Fault
If the configured position-monitoring time is exceeded, the following alarm appears:

25080 "Axis <Axis name> Position monitoring"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 91

3.2.3 Zero-speed monitoring

Function
At the end of a positioning operation:

● Set velocity = 0 AND

● DB31, ... DBX64.6/7 (motion command minus/plus) = 0

checks the zero-speed monitoring to ensure that the following error of every participating
machine axis is smaller than the standstill tolerance during the delay time.

MD36040 $MA_STANDSTILL_DELAY_TIME (zero-speed monitoring delay time)

MD36030 $MA_STANDSTILL_POS_TOL (standstill tolerance)

After reaching the required exact-stop state, the positioning operation is completed:

DB31, ... DBX60.6/7 (position reached with exact stop coarse/fine) = 1

The position-monitoring function is deactivated and is replaced by the zero-speed monitoring.

Zero-speed monitoring monitors the adherence to the standstill tolerance. If no new travel
request is received, the machine axis must not depart from the standstill tolerance.

Effectiveness
The zero-speed monitoring only operates with active position control and the following axis
types:

● Linear axes

● Rotary axes

● Position-controlled spindles

Fault
If the delay time and/or the standstill tolerance is exceeded, the following alarm appears:

25040 "Axis <Axis name> Zero-speed monitoring"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

3.2.4 Parameter set-dependent exact stop and standstill tolerance
For adaptation to different machining situations and/or axis dynamics, e.g.:

● Operating state A: High precision, long machining time

● Operating state B: Lower precision, shorter machining time

● Changing of the mass relationships after gear change

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
92 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

the positioning tolerances:

● MD36000 $MA_STOP_LIMIT_COARSE (exact stop coarse)

● MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

● MD36030 $MA_STANDSTILL_POS_TOL (standstill tolerance)

can be weighted with a common factor depending on the parameter set:

MD36012 $MA_STOP_LIMIT_FACTOR (exact stop coarse/fine and standstill factor)

Because the factor applies in common for all three position tolerances, the relationship
between the values remains constant.

3.2.5 Clamping monitoring

3.2.5.1 Function
For machine axes that are mechanically clamped upon completion of a positioning operation,
a displacement of the axis from the position setpoint can result from the clamping process.
Setting the NC/PLC interface signal DB31, ... DBX2.3 (clamping in progress) causes the
clamping tolerance (MD36050 $MA_CLAMP_POS_TOL) rather than the standstill tolerance
(MD36030 $MA_STANDSTILL_POS_TOL) to be monitored for the duration of the clamping
process. Alarm 26000 "clamping monitoring" is issued if the clamping tolerance is overshot.

Alarm delay time
If a time-limited overshooting of the clamping tolerance is permitted, an alarm delay time must
be specified via machine data MD36051 $MA_CLAMP_POS_TOL_TIME. The alarm is then
output only after expiration of the parameterized time when the clamping tolerance is overshot.
No alarm is output when the clamping tolerance is undershot again after expiration of the time.
The time is restarted when the clamping tolerance is overshoot again.

To permit a response to overshooting the clamping tolerance prior to expiration of the alarm
delay time, the axis-specific NC/PLC interface signal DB31, ... DBX102.3 (clamping tolerance
overshot) is set. The signal is reset again when the clamping tolerance is undershot.

3.2.5.2 Machine data

Clamping tolerance
The clamping tolerance, which is higher than the standstill tolerance, is entered in machine
data:

MD36050 $MA_CLAMP_POS_TOL[<axis>] = <clamping tolerance>

Alarm delay time
If a time-limited overshooting of the clamping tolerance is tolerated, the maximum permissible
alarm delay time must be specified in the machine data.

MD36051 $MA_CLAMP_POS_TOL_TIME[<axis>] = <alarm delay time>

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 93

When the clamping tolerance is exceeded, alarm 26000 "Clamping monitoring" is only
displayed after the alarm delay time has elapsed.

An alarm is not output, if the clamping tolerance is fallen below again before the alarm delay
time lapses.

The alarm delay time is restarted when the clamping tolerance is exceeded again.

Special clamping functions
The special clamping functions that automate the release and set of the part program execution
sequence are activated bit-by-bit using machine data:

MD36052 $MA_STOP_ON_CLAMPING[<Achse>], <bit> = <value>

<Bit> <Val‐
ue>

Meaning

0 Automatic stop to release the clamping
0 Not active
1 Active

1 Optimized clamping release
0 Not active
1 Active, precondition: Bit 0 == 1

2 Automatic stop to set the clamping
0 Not active
1 Active

3.2.5.3 NC/PLC interface signals

Activating the clamping monitoring
The clamping monitoring is activated by setting the NC/PLC interface signal:

DB31, ... DBX2.3 = 1 (clamping in progress)

Overshooting the clamping tolerance
Overshooting the clamping tolerance is indicated with the NC/PLC interface signal:

DB31, ... DBX102.3 == 1 (clamping tolerance overshot)

The signal is set when the clamping tolerance is overshot within the alarm delay time.

The signal is reset when the clamping tolerance is undershot within the alarm delay time or
the follow-up mode is activated for the axis.

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
94 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3.2.5.4 Fault responses
Fault responses when the clamping tolerance is exceeded:

● Alarm 26000 "Clamping monitoring" is indicated

● The axis is brought to a standstill with the parameterized maximum acceleration:
MD32300 $MA_MAX_AX_ACCEL
Whereby, the maximum duration of the braking ramp for error states is monitored:
MD36610 $MA_AX_EMERGENCY_STOP_TIME

● Follow-up mode is activated for the axis:
DB31, ... DBX61.3 == 1

● The "clamping tolerance exceeded" signal is reset:
DB31, ... DBX102.3 == 0

3.2.5.5 "Automatic stop to release the clamping" clamping function
The "Automatic stop to release the clamping" clamping function adds an NC-internal stop
before the traversing block of the clamping axis for continuous-path mode.

The stop is not effective or the continuous-path mode is not interrupted if the controller enable
signal (DB31, ... DBX2.1) of the clamping axis is set prior to the block change.

If the controller enable signal of the clamping axis is not set prior to the block change, the stop
acts.

Parameterization
MD36052 $MA_STOP_ON_CLAMPING[<clamping axis>] = 'H01'

Requirements/assumptions
● If, for the clamping axis there is a traversing command (DB31, ... DBX64.6 / .7), then the

clamping is released by the PLC user program.

● The following relationship must exist between the controller enable signal (DB31, ...
DBX2.1) and the clamping of the clamping axis:

Controller enable ⇒ Clamping axis
not set ⇒ Clamped

Set ⇒ Not clamped

Example:

Program code Comment
N100 G0 X0 Y0 Z0 A0 G90 G54 F500 ; Approach initial state
N101 G641 ADIS=.1 ADISPOS=5 ; Activate continuous-path mode
N210 G1 X10 ; Traversing block
N220 G1 X5 Y20 ; "
N310 G0 Z50 ; Positioning block
N410 G0 A90 ; " (clamping axis)
N510 G0 X100 ; "
N520 G0 Z2 ; "

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 95

Program code Comment
N610 G1 Z-4 ; Traversing block
N620 G1 X0 Y-20 ; "

Schematic change of the NC/PLC interface signals and states for the N310 and N410 blocks:

① NC: The automatically inserted stop causes a stop at the N310 block end.
② NC → PLC: After the block change, the travel command for the clamping axis is set.

PLC: The clamping is released based on the travel command.
③ PLC → NC: The clamping pressure is removed appropriately. The clamping axis is enabled for

traversal.

3.2.5.6 "Time-optimized release of the clamping" clamping function
The "Time-optimized release of the clamping" clamping function in conjunction with the
"Automatic stop to release the clamping" clamping function" for continuous-path mode
requests the release of the clamping NC-internal by the Look Ahead setting of the travel
command for the clamping axis. The travel command is set only when until the traversal of the
clamping axis, positioning (G0 blocks) but no processing (G1 blocks) is performed.

To obtain the reference to the traversing block of the clamping axis, the travel command
prefixes a maximum of two rapid traverse blocks (G0), including any internally generated
intermediate blocks, to the traversing block.

Activation
MD36052 $MA_STOP_ON_CLAMPING[<clamping axis>] = 'H03'

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
96 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Requirements/assumptions
● If, for the clamping axis there is a traversing command (DB31, ... DBX64.6 / .7), then the

clamping is released by the PLC user program.

● While other axes are traversing with rapid traverse (G0), the clamping axis must not be
clamped.

Example:

Program code Comment
N100 G0 X0 Y0 Z0 A0 G90 G54 F500 ; Approach initial state
N101 G641 ADIS=.1 ADISPOS=5 ; Activate continuous-path mode
N210 G1 X10 ; Machining block
N220 G1 X5 Y20 ; "
N310 G0 Z50 ; Positioning block
N410 G0 A90 ; " (clamping axis)
N510 G0 X100 ; "
N520 G0 Z2 ; "
N610 G1 Z-4 ; Machining block
N620 G1 X0 Y-20 ; "

Schematic change of the NC/PLC interface signals and states for the N220 to N410 blocks:

① NC → PLC: The travel command for the clamping axis is set because of the block change.
PLC: The clamping is released based on the travel command.

② PLC → NC: The clamping pressure is removed appropriately. The clamping axis is enabled for
traversal.

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 97

3.2.5.7 "Automatic stop to set the clamping" clamping function
The clamping process takes a while. In continuous-path mode, an explicit stop of the traversing
must be provided by programming, e.g. G09, G60 or auxiliary function output, so that the
clamping is reliably active before machining started.

The "Automatic stop to set the clamping" clamping function stops the traversing automatically
in continuous-path mode. Clamping motion is stopped before or in the next machining block
(traversing block without rapid traverse G0), if the clamping axis has not clamped up until then.
The criterion that clamping has taken place and additional traversing motion has been enabled
is the setting of the channel-specific feedrate override by the PLC user program not equal to
0% (DB21, ... DBB4 ≠ 0%)

Activation
MD36052 $MA_STOP_ON_CLAMPING[<clamping axis>] = 'H04'

Requirements/assumptions
● If, for the clamping axis, there is no traversing command (DB31, ... DBX64.6 / .7), then the

clamping isclosed by the PLC user program.

● While other axes are traversing with rapid traverse (G0), the clamping axis must not be
clamped.

● If the channel-specific feedrate override is not equal to 0% (DB21, ... DBB4 ≠ 0%), then the
clamping axis is clamped.

Example

Program code Comment
N100 G0 X0 Y0 Z0 A0 G90 G54 F500 ; Approach initial state
N101 G641 ADIS=.1 ADISPOS=5 ; Activate continuous-path mode
N210 G1 X10 ; Machining block
N220 G1 X5 Y20 ; "
N310 G0 Z50 ; Positioning block
N410 G0 A90 ; " (clamping axis)
N510 G0 X100 ; "
N520 G0 Z2 ; "
N610 G1 Z-4 ; Machining block
N620 G1 X0 Y-20 ; "

Schematic change of the NC/PLC interface signals and states for the N410 to N610 blocks:

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
98 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

① NC → PLC: The travel command for the clamping axis is reset because of the block change.
② PLC: The clamping is initiated
③ PLC → NC: The clamping pressure is sufficiently large to reset the controller enable
④ PLC → NC: Enable the N610 machining by setting the channel-specific feedrate override not

0%.

3.2.5.8 Supplementary conditions
Interrupted continuous-path mode

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 99

If during the above-described clamping functions, the continuous-path mode and thus also the
"LookAhead" function is interrupted by blocks without traversing (e.g. output of an M function
M82/M83), the functions behave as follows:

● Clamping function: "Time-optimized release of the axis clamping"
(MD36052 $MA_STOP_ON_CLAMPING[<axis>] = 'B011')
The function no longer acts because the travel command is set in Look Ahead mode only
for blocks with active continuous-path mode. The output of the M function M82 in block
N320 of the sample program below stops the traversing and so interrupts the continuous-
path mode.
The Look Ahead stopping on N410 by the function is not necessary because stopping
occurs anyway by N320.

● Clamping function: "Automatic stop to set the clamping":
(MD36052 $MA_STOP_ON_CLAMPING[<axis] = 'B100')
The function generates a stop irrespective of M83 that is executed as a function of "feedrate
override 0%". The axis is thus stopped before the first machining block.

Note
Using clamping functions without clamping

The following clamping functions can also be used independent of clamping the axis:
● "Automatic stop to release the clamping":

MD36052 $MA_STOP_ON_CLAMPING[<axis>] = 'B001'
Behavior: A stop is made in the current block on the path when the controller enable
(DB31, ... DBX2.1) for the parameterized <axis> is not set, but it is traversed in one of the
following blocks.

● "Automatic stop to set the clamping":
MD36052 $MA_STOP_ON_CLAMPING[<axis>] = 'B100'
Behavior: A stop is made in the current block on the path when at the transition from rapid
traverse blocks (G0) to traversing blocks (G1), the channel-specific feedrate override
(DB21, ... DBB4) is 0%.

In both cases it is ensured that the path motion in continuous-path mode is already stopped
before the start of the relevant part program block and not just within the block.

Table 3-1 Sample program: Interrupted continuous-path mode

Program code Comment
N100 G0 X0 Y0 Z0 A0 G90 G54 F500 ; Approach initial state
N101 G641 ADIS=.1 ADISPOS=5 ; Activate continuous-path mode
N210 G1 X10 ; Traversing block
N220 G1 X5 Y20 ; "
N310 G0 Z50 ; Rapid traverse block
N320 M82 ; Interrupt continuous-path mode
N410 G0 A90 ; Rapid traverse block
N420 M83 ; Interrupt continuous-path mode
N510 G0 X100 ; Rapid traverse block
N520 G0 Z2 ; "

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
100 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N610 G1 Z-4 ; Traversing block
N620 G1 X0 Y-20 ; "

Block change criterion: Clamping tolerance
After activation of clamping monitoring (DB31, ... DBX2.3), the block change criterion for
traversing blocks in which the stop is made at the end of the block, the clamping tolerance
rather than the exact stop condition acts for the clamping axis:

MD36050 $MA_CLAMP_POS_TOL (clamping tolerance with interface signal "Clamping
active")

Behavior for releasing the clamping
If the clamping axis was moved by the clamping process from the position setpoint, it is returned
by the NC to the position setpoint after releasing the clamping and setting the (DB31, ...
DBX2.1) controller enable signal. Repositioning depends on whether "Follow-up mode" was
activated for the axis during the clamping process:

● DB31, ... DBX1.4 == 0 (follow-up mode not active) ⇒ Abrupt by the position controller

● DB31, ... DBX1.4 == 1 (follow-up mode active) ⇒ interpolatory method

Note

The following data can be evaluated by the PLC user program as the criterion for activating
the follow-up mode (DB31, ... DBX1.4):
● DB31, ... DBX60.6/.7 (position reached with coarse/fine exact stop)
● Actual position of the clamping axis

Follow-up mode
The clamping monitoring is not active in follow-up mode

DB31, ... DBX1.4 == 1 (follow-up mode).

A3: Axis monitoring functions
3.2 Positioning, zero speed and clamping monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 101

3.3 Speed-setpoint monitoring

Function
The speed setpoint comprises:

● Speed setpoint of the position controller

● Speed setpoint portion of the feedforward control (with active feedforward control only)

● Dift compensation (only for drives with analog setpoint interface)

Figure 3-2 Speed setpoint calculation

The speed-setpoint monitoring ensures by limiting the control or output signal (10 V for analog
setpoint interface or rated speed for digital drives) that the physical limitations of the drives are
not exceeded:

MD36210 $MA_CTRLOUT_LIMIT (maximum speed setpoint)

Figure 3-3 Speed setpoint limitation

Speed-setpoint monitoring delay
To prevent an error reaction from occurring in every speed-limitation instance, a delay time
can be configured:

A3: Axis monitoring functions
3.3 Speed-setpoint monitoring

Basic Functions
102 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD36220 $MA_CTRLOUT_LIMIT_TIME (speed-setpoint monitoring delay)

Only if the speed limitation is required for longer than the configured time does the
corresponding error reaction occur.

Effectiveness
The speed-setpoint monitoring is only active for closed-loop position-controlled axes and
cannot be deactivated.

Fault
If the configured delay time is exceeded, the following alarm appears:

25060 "Axis <Axis name> Speed-setpoint limitation"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

Note

Upon reaching the speed-setpoint monitoring, the position feedback loop of the axis becomes
non-linear due to the limitation. Contour errors result if the axis is involved in generating the
contour.

3.4 Actual-velocity monitoring

Function
The actual-velocity monitoring checks that the actual velocity of a machine axis/spindle does
not exceed the configured threshold:

MD36200 $MA_AX_VELO_LIMIT (velocity-monitoring threshold)

The threshold should be 10-15% above the configured maximum velocity.

● For axes:
MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

● For spindles:
MD35110 $MA_GEAR_STEP_MAX_VELO_LIMIT[n] (maximum speed of gear stage)

If you use this setting the speed will not normally exceed the velocity-monitoring threshold
(exception: Drive error).

Activation
The actual-velocity monitoring is activated as soon as the active measuring system returns
valid actual values (encoder limit frequency not exceeded).

A3: Axis monitoring functions
3.4 Actual-velocity monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 103

Effectiveness
The actual-velocity monitoring only operates with active position control and the following axis
types:

● Linear axes

● Rotary axes

● Open-loop-controlled and position-controlled spindles

Fault
If the threshold is exceeded, the following alarm is displayed:

25030 "Axis <Axis name> Actual-velocity alarm limit"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

3.5 Measuring system monitoring
The NC has no direct access to the measuring system hardware, therefore measuring system
monitoring is mainly performed by the drive software.

Monitoring functions in the drive
● Monitoring of hardware faults (e.g. measuring system failure, wire breakage)

● Zero mark monitoring

References:
Drive Functions SINAMICS S120

Measuring system monitoring functions carried out in the drive are mapped on the NC alarms
(alarm 25000 and following) or NC reactions (e.g. abort of referencing or on-the-fly measuring).
The exact behavior of the NC depends on the setting in the machine data:

A3: Axis monitoring functions
3.5 Measuring system monitoring

Basic Functions
104 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD36310 $MA_ENC_ZERO_MONITORING

Value Meaning
= 0 Monitoring of HW faults: ON

If a hardware fault is detected in the active measuring system,
POWER ON alarm 25000 is displayed:
"Axis <Axis name> Hardware fault active encoder"
The affected axis is stopped via the configured braking ramp in
follow-up mode:
MD36610 $MA_AX_EMERGENCY_STOP_TIME (maximum time
for braking ramp when a fault occurs)
If a hardware fault is detected in the passive measuring system,
alarm 25001 is displayed:
"Axis <Axis name> Hardware fault passive encoder"
There is no further alarm response.

Zero-mark monitoring: OFF
Alarms 25020 and 25021 (see below) are suppressed.

= 100 No zero-mark monitoring as well as hiding of all encoder monitoring functions (i.e. in addition to alarm
25020 (25021)), alarms 25000 (25001) and 25010 (25011) are suppressed.

> 0 but < 100 Monitoring of HW faults: ON (see above)
Zero-mark monitoring: ON

If zero-mark monitoring is tripped in the active measuring system,
alarm 25020 is displayed:
"Axis <Axis name> Zero-mark monitoring active encoder"
The affected axis is stopped via the configured braking ramp in
follow-up mode:
MD36610 $MA_AX_EMERGENCY_STOP_TIME (maximum time
for braking ramp when a fault occurs)
If zero-mark monitoring is tripped in the passive measuring system,
alarm 25021 is displayed:
"Axis <Axis name> Zero-mark monitoring passive encoder"
There is no further alarm response.

> 100 Monitoring of HW faults: ON with attenuated error message:
The POWER ON alarm 25000 is replaced by the reset alarm 25010
and the reset alarm 25001 replaced by the cancel alarm 25011.

Zero-mark monitoring: ON (see above)

For details on the alarms, see:

References:
Diagnostics Manual

Note

For hardware faults, the referencing status of the machine axis is reset:

DB31, ... DBX60.4/5 (referenced/synchronized 1/2) = 0

A3: Axis monitoring functions
3.5 Measuring system monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 105

Monitoring functions in the NC
● Encoder-limit-frequency monitoring

● Plausibility check for absolute encoders

3.5.1 Encoder-limit-frequency monitoring

Function
The NC encoder-limit-frequency monitoring is based on the configuration and telegram
information of the drive. It monitors that the encoder frequency does not exceed the configured
encoder limit frequency:

MD36300 $MA_ENC_FREQ_LIMIT (encoder limit frequency)

Encoder-limit-frequency monitoring always refers to the active measuring system selected in
the NC/PLC interface:

DB31, ... DBX1.5/1.6 (position measuring system 1/2)

Effectiveness
The encoder limit frequency is operative for:

● Linear axes

● Rotary axes

● Open-loop-controlled and position-controlled spindles

A3: Axis monitoring functions
3.5 Measuring system monitoring

Basic Functions
106 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Fault
Upon exceeding of the encoder limit frequency, the following occurs:

● Message to the PLC:
DB31, ... DBX60.2 or 60.3 = 1 (encoder limit frequency exceeded 1 or 2)

● Spindles
Spindles are not stopped but continue to turn with speed control.
If the spindle speed is reduced so much that the encoder frequency passes below the
encoder limit frequency, the actual value system of the spindle is automatically
resynchronized.

● Axes
The following alarm is displayed:
21610 "Channel <Channel number> Axis <Axis name> Encoder <Encoder number >
Frequency exceeded"
The affected axis is stopped via the configured braking ramp in follow-up mode:
MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

Note

If the encoder limit frequency is exceeded, a position-controlled machine axis must be re-
referenced (see Section "R1: Referencing (Page 1223)").

3.5.2 Plausibility check for absolute encoders

Function
With absolute encoders (MD30240 $MA_ENC_TYPE = 4), absolute values supplied by the
measuring system are used to check the plausibility of the actual value.

During the check, the NC compares the cyclic position value held in the position control cycle
clock based on the incremental information from the encoder with a new position value
generated directly from the absolute and incremental information and checks that the
calculated position difference does not exceed the permissible deviation.

MD36310 $MA_ENC_ZERO_MONITORING (permissible deviation in 1/2 coarse increments
between the absolute and the incremental encoder track)

Note

The plausibility check of absolute encoders specifically detects all deviations caused by dirt
on the absolute track or by faults when transferring the absolute value. However, small errors
in the incremental track (burst interference, impulse errors) are not detected. In such instances
the plausibility check only responds to deviations in the millimeter range. This form of
monitoring should therefore serve as additional monitoring to assist the diagnosis of absolute-
position faults.

A3: Axis monitoring functions
3.5 Measuring system monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 107

Note
Rotary absolute encoders

If the plausibility check is to be used for a rotary absolute encoder, the SINAMICS parameter
p0979 must be taken into account when setting the modulo range (MD34220
$MA_ENC_ABS_TURNS_MODULO).

Note
Upgrading the NC software

If the plausibility check is activated in absolute encoders (MD36310 > 0), the existing MD36310
settings must be checked and, if necessary, increased during an upgrade of the NC software.

Zero mark diagnostics
With absolute encoders, the permissible deviation must be determined for the plausibility check
during commissioning. This can be performed via the machine data:

MD36312 $MA_ENC_ABS_ZEROMON_WARNING (zero-mark monitoring warning threshold)

Value Meaning
0 No zero mark diagnostics
> 0 Permissible deviation in 1/2 coarse increments between the absolute and the incremental

encoder track

Procedure when commissioning the system:
1. Deactivate zero-mark monitoring:

MD36310 $MA_ENC_ZERO_MONITORING = 0

2. Activate zero-mark diagnostics:
MD36312 $MA_ENC_ABS_ZEROMON_WARNING = 1

3. Move axis and monitor system variable $VA_ENC_ZERO_MON_ERR_CNT (number of
detected limit value violations).

4. If $VA_ENC_ZERO_MON_ERR_CNT ≠ 0:
Increase MD36312 value and repeat step 3.

5. If $VA_ENC_ZERO_MON_ERR_CNT = 0 (over a longer period of time!):
The correct value for MD36310 is located! Apply the value from MD36312 to MD36310 and
then set MD36312 to "0".

Note

Depending on the rigidity of the machine (minimal load masses / moments of inertia are
optimum) and the controller settings, the control play "oscillates" with varying degrees of
intensity. Account must be taken of this by entering machine-specific limit values in MD36310.

A3: Axis monitoring functions
3.5 Measuring system monitoring

Basic Functions
108 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Error case
Alarm 25020

If the plausibility check is tripped in the active measuring system, alarm 25020 is displayed:

"Axis <Axis name> Zero-mark monitoring active encoder"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

Alarm 25021

If the plausibility check is tripped in the passive measuring system, alarm 25021 is displayed:

"Axis <Axis name> Zero-mark monitoring passive encoder"

There is no further alarm response.

Note

In the event of a fault, the adjustment of the absolute encoder is lost and the axis is no longer
referenced. The absolute encoder must be readjusted (see Section "Referencing with absolute
encoders (Page 1253)").

Note

Errors in the incremental track that cannot be detected with amplitude monitoring can cause
position deviations in the millimeter range. The deviation depends on the lattice pitch/line count
and the traversing velocity of the axis when the error occurs.

Complete position monitoring is only possible through redundancy, i.e. through comparison
with an independent second measuring system.

3.5.3 Customized error reactions

Customized zero-mark monitoring
The default alarm and reaction behavior of the zero-mark monitoring can be adapted in
absolute measuring systems (MD30240 $MA_ENC_TYPE = 4) with the aid of system
variables. This allows you to perform your own monitoring using a synchronized action or OEM
application and to use all of the reaction options available in this application, e.g.:

● Transmit alarm

● Use cycles (e.g. approach tool-change position)

● ...

Example:

Users can adjust the alarm and reaction behavior so that when machining an expensive
workpiece, which could be damaged if the axis is stopped as a result of an alarm, machining

A3: Axis monitoring functions
3.5 Measuring system monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 109

stops before the machining quality of the workpiece is assessed using appropriate
synchronized action commands.

Effectiveness
Customized monitoring can be activated in parallel to or as an alternative to standard zero-
mark monitoring, depending on the setting in machine data:

MD36310 $MA_ENC_ZERO_MONITORING

Value Meaning
0 If only user-specific monitoring is to be implemented, the default zero-mark monitoring

must be deactivated:
MD36310 = 0
and
MD36312 = 0

> 0 Customized monitoring and standard zero-mark monitoring operate in parallel.
100 All encoder monitoring functions are deactivated.

If both monitoring functions are active (MD36310 > 0), you can perform cascaded monitoring.

Example:

If a value falls below the threshold specified in MD36310, customized monitoring triggers a
prewarning; standard zero-marking monitoring will only detect a fault if the threshold is
exceeded and will then deactivate automatically.

A3: Axis monitoring functions
3.5 Measuring system monitoring

Basic Functions
110 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variables
You can implement customized error reactions using the following system variables:

System variable Meaning
$VA_ENC_ZERO_MON_ERR_CNT[<n>,<axis>] Number of detected limit value violations.

Contains the current number of detected limit value violations
when comparing the absolute and the incremental encoder
tracks.
The value is reset to 0 at:
● POWER ON
● Selection/deselection of parking
Reset does not cause a reset.

$VA_ABSOLUTE_ENC_DELTA_INIT[<n>,<axis>] Initial difference for absolute encoders.
Contains the initial difference between the last buffered absolute
position in the static NC memory and the current absolute posi‐
tion.
Format of the difference value: Number of internal increments
(see MD10200 $MN_INT_INCR_PER_MM or MD10210
$MN_INT_INCR_PER_DEG)
The value is updated at:
● POWER ON
● Warm restart
● Deselection of parking
● Return below the encoder limit frequency
There is no reset at reset.

<n>: Encoder number
<axis>: Axis name

A3: Axis monitoring functions
3.5 Measuring system monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 111

3.6 Limit-switch monitoring
Overview of the end stops and possible limit-switch monitoring:

3.6.1 Hardware limit switch

Function
A hardware limit switch is normally installed at the end of the traversing range of a machine
axis. It serves to protect against accidental overtravelling of the maximum traversing range of
the machine axis while the machine axis is not yet referenced.

If the hardware limit switch is triggered, the PLC user program created by the machine
manufacturer sets the corresponding interface signal:

DB31, ... DBX12.0/1 = 1 (hardware limit switch minus/plus)

Parameterization
The braking behavior of the machine axis upon reaching the hardware limit switch is
configurable via the machine data:

MD36600 $MA_BRAKE_MODE_CHOICE (braking behavior on hardware limit switch)

Value Meaning
0 Braking with the configured axial acceleration
1 Rapid stop (set velocity = 0)

A3: Axis monitoring functions
3.6 Limit-switch monitoring

Basic Functions
112 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Effectiveness
The hardware limit-switch monitoring is active after the controller has ramped up in all modes.

Effect
Upon reaching the hardware limit switch, the following occurs:

● Alarm 21614 "Channel <channel number> axis <axis name> hardware limit switch
<direction>"

● The machine axis is braked according to the configured braking behavior.

● If the axis/spindle is involved in interpolation with other axes/spindles, these are also braked
according to their configured braking behavior.

● The traversing keys of the affected machine axis are blocked based on the direction.

3.6.2 Software limit switch

Function
Software limit switches serve to limit the traversing range of a machine axis. Per machine axis
and per traversing direction, two (1st and 2nd) software limit switches are available:

MD36100 POS_LIMIT_MINUS (1st software limit switch minus)

MD36110 POS_LIMIT_PLUS (1st software limit switch plus)

MD36120 POS_LIMIT_MINUS2 (2nd software limit switch minus)

MD36130 POS_LIMIT_PLUS2 (2nd software limit switch plus)

By default, the 1st software limit switch is active. The 2nd software limit switch can be activated
for a specific direction with the PLC user program:

DB31, ... DBX12.2 / 12.3 (2nd software limit switch minus/plus)

Effectiveness
The software limit switches are active:

● Immediately after the successful referencing of the machine axis.

● In all operating modes.

Supplementary conditions
● The software limit switches refer to the machine coordinate system.

● The software limit switches must be inside the range of the hardware limit switches.

● The machine axis can be moved to the position of the active software limit switch.

A3: Axis monitoring functions
3.6 Limit-switch monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 113

● PRESET
After use of the function PRESET, the software limit-switch monitoring is no longer active.
The machine must first be re-referenced.

● Endlessly rotating rotary axes
No software limit-switch monitoring takes place for endlessly rotating rotary axes:
MD30310 $MA_ROT_IS_MODULO == 1 (modulo conversion for rotary axis and spindle)
Exception: Setup-rotary axes

Effects
Automatic operating modes (AUTOMATIC, MDI)

● Without transformation, without overlaid motion, unchanged software limit switch:
A part program block with a programmed traversing motion that would lead to overrunning
of the software limit switch is not started.

● With transformation:
Different reactions occur depending on the transformation type:

– Behavior as above.
or

– The part program block with a programmed traversing motion that would lead to
overrunning of the software limit switch is started. The affected machine axis stops at
the active software limit switch. The other machine axes participating in the traversing
motion are braked. The programmed contour is left during this process.

● With overlaid motion
The part program block with a programmed traversing motion that would lead to overrunning
of the software limit switch is started. Machine axes that are traveling with overlaid motion
or have traveled with overlaid motion stop at the active software limit switch in question.
The other machine axes participating in the traversing motion are braked. The programmed
contour is left during this process.

Manual operating modes

● JOG without transformation
The machine axis stops at the software limit switch position.

● JOG with transformation
The machine axis stops at the software limit switch position. Other machine axes
participating in the traversing motion are braked. The preset path is left during this process.

General

● Changing of the software limit switch (1st ↔ 2nd software limit switch)
If the actual position of the machine axis after changing lies behind the software limit switch,
it is stopped with the maximum permissible acceleration.

● Overrunning the software limit switch in JOG mode
If the position of the software limit switch is reached and renewed pressing of the traversing
button should cause further travel in this direction, an alarm is displayed and the axis is not
traversed farther:
Alarm 10621 "Channel <channel number> axis <axis name> is at software limit switch
<direction>"

A3: Axis monitoring functions
3.6 Limit-switch monitoring

Basic Functions
114 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3.7 Working area limitation monitoring

3.7.1 General

Function
The "working area limitation" function can be used to limit the traversing range of a channel's
geometry and special axes to a permissible operating range. The function monitors compliance
with working area limits both in AUTOMATIC mode and in JOG mode.

The following versions are available:

● Working area limitation in the Basic Coordinate System (BCS)
The traversing range limits are specified relative to the Basic Coordinate System.

● Working area limitation in the workpiece coordinate system (WCS) or adjustable zero
system (AZS)
The traversing range limits are specified relative to the workpiece coordinate system or to
the adjustable zero system.

The two types of monitoring are independent of each other. If they are both active at the same
time, the traversing range limit which most restricts the access will take effect, depending on
the direction of travel.

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 115

Reference point at the tool
Taking into account the tool data (tool length and tool radius) and therefore the reference point
at the tool when monitoring the working area limitation depends on the status of the
transformation in the channel:

● Transformation inactive
Without transformations during traversing motion with an active tool the position of the tool
tip P is monitored, i.e. during the monitoring the tool length is considered automatically.
Consideration of the tool radius must be activated separately:
MD21020 $MC_WORKAREA_WITH_TOOL_RADIUS (Consideration of the tool radius in
the working area limitation)

● Transformation active
In the case of certain transformations the monitoring of the working area limitation may
differ from the behavior without transformation:

– The tool length is a component of the transformation
($MC_TRAFO_INCLUDES_TOOL_X = TRUE):
In this case the tool length is not considered, i.e. the monitoring refers to the tool carrier
reference point.

– Transformation with change in orientation:
In the case of transformations with changes in orientation, monitoring is always based
on the tool center point. MD21020 has no influence.

Note

The machine data $MC_TRAFO_INCLUDES_TOOL_... is analyzed only in certain
transformations. Condition for a possible evaluation is that the orientation of the tool
with respect to the base coordinate system cannot be changed by the transformation.
With standard transformations, the condition is only fulfilled for the "inclined axis" type
of transformation.

Response
Automatic operating modes

● With / without transformation
The parts program block with a programmed traversing motion that would lead to
overrunning of the working area limits is not executed.

● With superimposed motion
The axis, which would violate the working area limitation due to a superimposed motion, is
braked with maximum acceleration and without jerk limits (BRISK), and will come to a stop
in the position of the working area limitation. Other axes involved in the movement are
braked according to current acceleration behavior (e.g. SOFT). The path correlation may
be lost due to different braking accelerations (contour violation).

Manual operating modes

● JOG with / without transformation
The axis is positioned at the working area limitation and then stopped.

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
116 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Powerup response
If an axis moves outside the permissible working area when activating the working area limits,
it will be immediately stopped with the maximum permissible acceleration.

Overrunning of the working area limitation in JOG mode
In JOG mode, an axis is moved to no further than its working area limit by the control system.
When the traverse button is pressed again, an alarm is displayed and the axis does not traverse
any further.

Geo-axis replacement
Through the following machine data it is adjustable, whether during geometry axis change the
active working area limitation is retained or deactivated:

MD10604 $MN_WALIM_GEOAX_CHANGE_MODE = <value>

<value> Meaning
0 The working area limitation is deactivated during the geometry axis change.
1 The working area limitation remains activated during the geometry axis change.

3.7.2 Working area limitation in BCS

Application
Using the "working area limitation in BCS", the working area of a machine tool is limited so
that the surrounding devices (e.g. tool revolver, measuring stations) are protected against
damage.

Working area limits
The lower and upper working area limits of each axes are adjusted through setting data or
programmed through part program commands:

Working area limitation through setting data

The adjustments are done through the immediately effective axis-specific setting data:

SD43420 $SA_WORKAREA_LIMIT_PLUS (working area limitation plus)

SD43430 $SA_WORKAREA_LIMIT_MINUS (working area limitation minus)

Programmed working area limitation

The programming is done using the G commands:

G25 X… Y… Z… lower working area limitation
G26 X… Y… Z… upper working area limitation

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 117

Figure 3-4 Programmed working area limitation

The programmed working area limitation has priority and overwrites the values entered in
SD43420 and SD43430.

Activation/Deactivation
Working area limitation through setting data

The activation/deactivation of the working area limitation for each axis takes place in a direction-
specific manner via the immediately effective setting data:

SD43400 $SA_WORKAREA_PLUS_ENABLE (working area limitation active in the positive
direction)

SD43410 $SA_WORKAREA_MINUS_ENABLE (working area limitation active in the negative
direction)

Value Meaning
0 The working area limitation in positive or negative direction is switched off.
1 The working area limitation in positive or negative direction is active.

Programmed working area limitation

Activation or deactivation of the overall "working area limitation in the BCS" is arranged via
part program commands:

WALIMON Working area limitation ON
or
WALIMOF Working area limitation OFF

Changing the working area limitation
Working area limitation through setting data

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
118 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

HMI user interface: Operating area "Parameter"

● Automatic modes:

– Changes: Possible only in the RESET state

– Effectiveness: Immediately

● Manual operating modes:

– Changes: Always possible

– Effectiveness: At the start of the next traversing motion

Programmed working area limitation

The working area limitation can be changed in the part program via G25 or G26 <Axis name>
<value>. The change takes effect immediately.

The new working area limitation value is retained after NC RESET and POWER ON if the back-
up process has been activated in the NC's retentive data storage for SD43420 and SD43430:

MD10710 $MN_PROG_SD_RESET_SAVE_TAB[0] = 43420

MD10710 $MN_PROG_SD_RESET_SAVE_TAB[1] = 43430

Reset position
The reset position for the working area limitation (WALIMON or WALIMOF) is configurable via:

MD20150 $MC_GCODE_RESET_VALUES (reset setting of the G groups)

3.7.3 Working area limitation in WCS/SZS

Application
The "working area limitation" in the WCS/SZS enables a flexible workpiece-specific limitation
of the traversing range of the channel axes in the workpiece coordinate system (WCS) or
settable zero system (SZS). It is intended mainly for use in conventional lathes.

Requirement
The channel axes must be referenced.

Working area limitation group
In order that the axis-specific working area limits do not have to be rewritten for all channel
axes when switching axis assignments, e.g. when switching transformations or the active
frame on/off, working area limitation groups are available.

A working area limitation group comprises the following data:

● Working area limits for all channel axes

● Reference system of the working area limitation

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 119

The number of the working area limitation groups is set channel-specific in the machine data:

MD28600 $MC_MM_NUM_WORKAREA_CS_GROUPS

Maximum 10 working area limitation groups are possible per channel.

Set working area limits
The working area limits within a channel are set for each channel axis via the following system
variables:

● $P_WORKAREA_CS_LIMIT_PLUS[<WALimNo>, <Ax>]

● $P_WORKAREA_CS_LIMIT_MINUS[<WALimNo>, <Ax>]

with
:

<WALimNo> = Working area limitation group

 Value range: 0 (group 1) ... 9 (group 10)
 <Ax> = Channel axis name

Enable working area limits
The working area limits within a channel are enabled for each channel axis via the following
system variables:

● $P_WORKAREA_CS_PLUS_ENABLE[<WALimNo>, <Ax>]

● $P_WORKAREA_CS_MINUS_ENABLE[<WALimNo>, <Ax>]

with
:

<WALimNo> = Working area limitation group

 Value range: 0 (group 1) ... 9 (group 10)
 <Ax> = Channel axis name

Using the direction-specific enable, it is possible to limit the working range for an axis in just
one direction.

There is no activation through the enable.

Select reference system
The reference system for a working area limitation group within a channel is set via the following
system variable:

$P_WORKAREA_CS_COORD_SYSTEM[<WALimNo>] = <value>

with
:

<WALimNo> = Working area limitation group

 Value range: 0 (group 1) ... 9 (group 10)

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
120 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<value> Meaning
1 The reference system is the WCS.
3 The reference system is the SZS.

Activation of working area limits
The working area limits of a working area limitation group are activated in the part program
with the G command WALCS<n>.

with
:

<n> = Number of the working area limitation group

 Value range: 1 ... 10

Deactivation of working area limits
The working area limits of a working area limitation group active in the channel are deactivated
in the part program with the G command WALCS0.

Change working area limits
The working area limits can be changed at any time via the system variables mentioned above.
Changes take effect with the next activation of the working area limitation group (WALCSn).

Data storage
The system variables of the working area limits are stored retentively in the static memory of
the NC.

Note

For the storage of the limiting values for the linear axes, the default setting is considered for
the system of units (MD10240 $MN_SCALING_SYSTEM_IS_METRIC).

Data backup
The system variables of the working area limits can be backed up in separate files:

● _N_CHx_WAL
To save the system variable values for channel x.

● _N_COMPLETE_WAL
To save the system variable values for all channels.

Note

The system variables of the working area limits are part of the "_N_INITIAL_INI" file.

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 121

Behavior in JOG mode
Initial situation:

● In JOG mode, several geometry axes traverse simultaneously (e.g. using several
handwheels).

● A rotating frame is active between the basic coordinate system (BCS) and the reference
coordinate system of the working area limitation (WCS or SZS).

Behavior when a working area limitation responds:

● The traversing motions of the geometry axes that are not affected are continued.

● The affected geometry axis is stopped at the working area limit.

Setting the initial setting
The working area limitation group that is to take effect at ramp up, reset or part program end
and part program start is predefined channel-specifically via the machine data:

MD20150 $MC_GCODE_RESET_VALUE[59] = <n>

with
:

<n> = Number of the working area limitation group

 Value range: 1 ... 10

The following setting determines whether the pre-selected working area limitation acts for ramp
up and reset or part program end:

MD20152 $MC_GCODE_RESET_MODE[59] = <value>

<value> Meaning
0 The working area group takes effect in accordance with MD20150 (default setting).
1 The last active working area group remains active.

3.7.4 Example: Working area limitation in WCS/SZS

Assumption

Channel axes
Four axes are defined in the channel:

● Linear axes: X, Y, Z

● Rotary axis: A (not modulo)

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
122 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Requirements

Channel axes
Four axes are defined in the channel:

● Linear axes: X, Y, Z

● Rotary axis: A (not modulo)

Working area limitation groups
Three working area limitation groups should be available in the channel:

MD28600 $MC_MM_NUM_WORKAREA_CS_GROUP = 3

From these three working area limitation groups, two groups are defined in the following.

Coordinate systems
● Working area limitation group 1: Working area limitation in the adjustable zero system

(AZS).

● Working area limitation group 2: Working area limitation in the workpiece coordinate system
(WCS).

Working area limitation group 1
● X axis in the plus direction: 10 mm

● X axis in the minus direction: No limitation

● Y axis in the plus direction: No limitation

● Y axis in the minus direction: 25 mm

● Z axis in the plus direction: No limitation

● Z axis in the minus direction: No limitation

● A axis in the plus direction: 10 degrees

● A axis in the minus direction: -40 degrees

Definitions via system variables in the NC program.

Program code
; Working area limitation group 1
$P_WORKAREA_CS_COORD_SYSTEM[1] = 3 ; working area limitation in the
SZS
$P_WORKAREA_CS_PLUS_ENABLE[1,X] = TRUE
$P_WORKAREA_CS_LIMIT_PLUS[1,X] = 10
$P_WORKAREA_CS_MINUS_ENABLE[1,X] = FALSE
$P_WORKAREA_CS_PLUS_ENABLE[1,Y] = FALSE
$P_WORKAREA_CS_MINUS_ENABLE[1,Y] = TRUE
$P_WORKAREA_CS_LIMIT_MINUS[1,Y] = 25
$P_WORKAREA_CS_PLUS_ENABLE[1,Z] = FALSE
$P_WORKAREA_CS_MINUS_ENABLE[1,Z] = FALSE

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 123

Program code
$P_WORKAREA_CS_PLUS_ENABLE[1,A] = TRUE
$P_WORKAREA_CS_LIMIT_PLUS[1,A] = 10
$P_WORKAREA_CS_MINUS_ENABLE[1,A] = TRUE
$P_WORKAREA_CS_LIMIT_MINUS[1,A] = -40

Working area limitation group 2
● X axis in the plus direction: 10 mm

● X axis in the minus direction: No limitation

● Y axis in the plus direction: 34 mm

● Y axis in the minus direction: -25 mm

● Z axis in the plus direction: No limitation

● Z axis in the minus direction: -600 mm

● A axis in the plus direction: No limitation

● A axis in the minus direction: No limitation

Definitions via system variables in the NC program.

Program code
; Working area limitation group 2
$P_WORKAREA_CS_COORD_SYSTEM[2] = 1 ; working area limitation in the
WCS
$P_WORKAREA_CS_PLUS_ENABLE[2,X] = TRUE
$P_WORKAREA_CS_LIMIT_PLUS[2,X] = 10
$P_WORKAREA_CS_MINUS_ENABLE[2,X] = FALSE
$P_WORKAREA_CS_PLUS_ENABLE[2,Y] = TRUE
$P_WORKAREA_CS_LIMIT_PLUS[2,Y] = 34
$P_WORKAREA_CS_MINUS_ENABLE[2,Y] = TRUE
$P_WORKAREA_CS_LIMIT_MINUS[2,Y] = –25
$P_WORKAREA_CS_PLUS_ENABLE[2,Z] = FALSE
$P_WORKAREA_CS_MINUS_ENABLE[2,Z] = TRUE
$P_WORKAREA_CS_LIMIT_PLUS[2,Z] = –600
$P_WORKAREA_CS_PLUS_ENABLE[2,A] = FALSE
$P_WORKAREA_CS_MINUS_ENABLE[2,A] = FALSE

Activation
The working area limitation groups are activated in the NC program using command
WALCS<x>, with x: Number of the working area limitation group

A3: Axis monitoring functions
3.7 Working area limitation monitoring

Basic Functions
124 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3.8 Parking a machine axis
If a machine axis is brought into the"Parking" state, then for this particular axis, no encoder
actual values are acquired, and all of the monitoring functions described in the preceding
sections (measuring system, standstill, clamping monitoring, etc.) are deactivated.

Activation / deactivation

Activate parking
The "Parking" function is activated for a machine axis by resetting the axis-specific NC/PLC
interface signals for the position measuring systems and the controller enable:

● DB31, ... DBX1.5 = 0 (position measuring system 1)

● DB31, ... DBX1.6 = 0 (position measuring system 2)

● DB31, ... DBX2.1 = 0 (controller enable)

The encoder status of the position measuring system of the axis is then set to "Not referenced":

● DB31, ... DBX60.4 = 0 (referenced / synchronized, position measuring system 1)

● DB31, ... DBX60.5 = 0 (referenced/synchronized, position measuring system 2)

The following further NC/PLC interface signals are also reset:

● DB31, ... DBX61.5 = 0 (position controller active)

● DB31, ... DBX61.6 = 0 (speed controller active)

● DB31, ... DBX61.7 = 0 (current controller active)

● DB31, ... DBX93.7 = 0 (pulses enabled)

● DB31, ... DBX102.5 = 0 (position measuring system 1 activated)

● DB31, ... DBX102.6 = 0 (position measuring system 2 activated)

Deactivate parking
The "Parking" function is deactivated for a machine axis by setting the axis-specific NC/PLC
interface signals for the position measuring system to be activated and the controller enable:

● DB31, ... DBX1.5 = 1 (position measuring system 1)
or
DB31, ... DBX1.6 = 1 (position measuring system 2) = 1

● DB31, ... DBX2.1 = 1 (controller enable) = 1

The position control for the machine axis becomes active again at the current position.

A3: Axis monitoring functions
3.8 Parking a machine axis

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 125

The encoder state of the position measuring systems depends on the measuring system type:

● Incremental position measuring system ⇒ "not referenced" state

– DB31, ... DBX60.4 = 0 (referenced / synchronized, position measuring system 1)

– DB31, ... DBX60.5 = 0 (referenced/synchronized, position measuring system 2)

● Absolute position measuring system ⇒ "referenced/synchronized" state

– DB31, ... DBX60.4 = 1 (referenced / synchronized, position measuring system 1)

– DB31, ... DBX60.5 = 1 (referenced/synchronized, position measuring system 2)

The following NC/PLC interface signals are also set again:

● DB31, ... DBX61.5 = 1 (position controller active)

● DB31, ... DBX61.6 = 1 (speed controller active)

● DB31, ... DBX61.7 = 1 (current controller active)

● DB31, ... DBX93.7 = 1 (pulses enabled)

● DB31, ... DBX102.5 = 1 (position measuring system 1 activated)

● DB31, ... DBX102.6 = 1 (position measuring system 2 activated)

Incremental position measuring systems
After deactivation of the "parking" state, incremental position measuring systems have to be
referenced before they have "referenced" encoder status.

WARNING

Incorrect synchronization of the position measuring system caused by offset of the actual
machine axis position

If changes have been made to the position measuring system during "parking" that require a
change to the parameterized machine data, for example, another encoder has been mounted,
the position measuring system must be completely remeasured and referenced See Section
"R1: Referencing (Page 1223)."

Machine axis without position measuring system
For a machine axis without a position measuring system (speed-controlled spindle), a status
equivalent to "parking" is activated by canceling the controller enable:

● DB31, ... DBX2.1 = 0 (controller enable)

A3: Axis monitoring functions
3.8 Parking a machine axis

Basic Functions
126 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3.9 Parking the passive position measuring system

3.9.1 Function
Contrary to the "Parking a machine axis (Page 125)" function, for which all position measuring
systems of a machine axis are deactivated, using the "Park the passive position measuring
system" function, users have the option, of only "parking" the passive position measuring
system of a machine axis (i.e. to deactivate the encoder evaluation and monitoring in the drive
and in the control), while the active position measuring system can remain operational.

Note

For an explanation of active/passive measuring system, refer to "Setpoint/actual-value
system (Page 362)".

Application
The "Park passive measuring system" function can, for example, be used in the following cases:

● Changing attachment heads with and without integrated encoder
Using the "Park passive position measuring system" function, it is possible to mount
attachment heads alternating with and without integrated encoder for different machining
tasks on the main spindle, without the missing encoder signals initiating drive and control
faults.
See also:

– Example: Changing an attachment head for a direct position measuring system
(Page 131)

– Example: Changing an attachment head for two direct position measuring systems
(Page 136)

● Using linear position measuring systems, which are not available over the complete
traversing range of a machine axis
Using the "Park passive position measuring system" function, it is possible to pass through
the range outside the linear position measuring system, without the missing encoder signals
initiating drive and control faults.
See also:

– "Example: Measuring system switchover when encoders are missing in certain parts
of the range (Page 140)".

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 127

Activation / deactivation

Activation
The passive position measuring system of a machine axis is parked under the following
conditions:

● "Park passive position measuring system" function is active for the measuring system:
MD31046 $MA_ENC_PASSIVE_PARKING[<n>] = 1
with <n> = 0 (position measuring system 1) or 1 (position measuring system 2)

Note

MD31046 is not active:
● for axes with fewer than two encoders:

MD30200 $MA_NUM_ENCS < 2
● for simulated encoders:

MD30240 $MA_ENC_TYPE = 0

Note

For position measuring systems, which are used as motor measuring systems, the "Park
passive position measuring system" function should be deactivated (MD31046 = 0)!

and

● The user sets the following NC/PLC interface signal to "0":
DB31, ... DBX1.5 (position measuring system 1) = 0
or
DB31, ... DBX1.6 (position measuring system 2) = 0

The controller then sets the status for the activation state of the position measuring system to
"0":

DB31, ... DBX102.5 (position measuring system 1 activated) == 0

or

DB31, ... DBX102.6 (position measuring system 2 activated) == 0

The position measuring system is now no longer monitored and updated.

Deactivation
"Park" is deactivated if the user activates the position measuring system:

DB31, ... DBX1.5 (position measuring system 1) = 1

or

DB31, ... DBX1.6 (position measuring system 2) = 1

The controller then sets the status for the activation state of the position measuring system
back to "1":

DB31, ... DBX102.5 (position measuring system 1 activated) == 1

or

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
128 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB31, ... DBX102.6 (position measuring system 2 activated) == 1

Note

Switching over to a parked position measuring system takes longer than to a non-parked
position measuring system. Because of the time taken, we recommend switching over while
the axes are stationary.

Position of the position measuring system

Absolute position measuring systems
For absolute position measuring systems, the position after deactivating "park" corresponds
to the actual absolute encoder position.

The position measuring system is referenced:

DB31, ... DBX60.4 (referenced/synchronized, position measuring system 1) == 1

or

DB31, ... DBX60.5 (referenced/synchronized, position measuring system 2) == 1

Incremental position measuring systems
For incremental position measuring systems, the position after deactivating "park" always
corresponds to the last deactivation position of the position measuring system.

Switching over to the parked position measuring system is only realized if the parameterized
permissible deviation between the actual values of the two position measuring systems (see
MD36500 $MA_ENC_CHANGE_TOL) is not exceeded. Otherwise, users must apply the "Park
a machine axis" function, in which case such a check is not made.

The position measuring system is not referenced:

DB31, ... DBX60.4 (referenced/synchronized, position measuring system 1) == 0

or

DB31, ... DBX60.5 (referenced/synchronized, position measuring system 2) == 0

Incremental position measuring systems with position transfer
Alternatively, for incremental position measuring systems, when the "Park passive position
measuring system" is active (MD31046 $MA_ENC_PASSIVE_PARKING[<n>] = 1) it is
possible, after deactivating "Park" to transfer the position, and where relevant, also the
"Referenced" status, from the previously active position measuring system.

For every position measuring system of a machine axis, this function can be activated using
machine data:

MD34210 $MA_ENC_REFP_STATE[<n>]

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 129

with <n> = 0 (position measuring system 1) or 1 (position measuring system 2)

Value Meaning
1 Only the position from the previous active position measuring system is transferred.

The position measuring system is not referenced:
DB31, ... DBX60.4 (referenced/synchronized, position measuring system 1) == 0
or
DB31, ... DBX60.5 (referenced/synchronized, position measuring system 2) == 0

2 Position and "Referenced" status are transferred from the previously active position measur‐
ing system.
The position measuring system is referenced:
DB31, ... DBX60.4 (referenced/synchronized, position measuring system 1) == 1
or
DB31, ... DBX60.5 (referenced/synchronized, position measuring system 2) == 1

Note

Position and "Referenced" status of the previously active position measuring system are only
transferred for incremental position measuring systems, depending on MD34210
$MA_ENC_REFP_STATE[<n>] – and only when the "Park passive position measuring system"
function is active (MD31046 $MA_ENC_PASSIVE_PARKING[<n>] = 1).

The transferred position has the accuracy of the previous active position measuring system.
The position measuring system should be rereferenced if this accuracy is not adequate.

WARNING

Incorrect synchronization of the position measuring system caused by offset of the actual
machine axis position

If changes have been made to the position measuring system during "parking" that require a
change to the parameterized machine data, for example, another encoder has been mounted,
the position measuring system must be completely remeasured and referenced See Chapter
"R1: Referencing (Page 1223)".

3.9.2 Supplementary conditions

Interaction with "dual position feedback"
The "Park passive position measuring system" function cannot be used in conjunction with the
"dual position feedback" function (MD32960 $MA_POSCTRL_DUAL_FEEDBACK_TIME > 0).

Interaction with "position difference input"
The "Park passive position measuring system" function cannot be used in conjunction with the
"position difference input" function (MD32950 $MA_POSCTRL_DAMPING > 0).

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
130 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Interaction with APC (option for SINUMERIK 840D sl)
The "Park passive measuring system" function cannotbe used in conjunction with the
"Advanced positioning control (APC)" drive function.

Interaction with encoder safety protection concept
Only the 1 encoder safety protection concept can be used in conjunction with the "Park passive
position measuring system" function.

Interaction when connecting and disconnecting at the DRIVE-CLiQ
If, instead of the encoder cable, the DRIVE-CLiQ cables, e.g. between the SMC and Motor
Module are unplugged and plugged, such encoders can only be unparked without fault via the
"Parking a machine axis (Page 125)" function.

3.9.3 Example: Changing an attachment head for a direct position measuring system

Initial situation
● Attachment head "A" has an encoder E2.

● Attachment head "B" does not have an encoder.

● Spindle "SP" has an encoder E1.

● One of the following two telegram types is configured in MD13060
$MN_DRIVE_TELEGRAM_TYPE (standard telegram type for PROFIdrive):

– Telegram 116 (motor encoder + an external encoder)
or

– Telegram 136 (motor encoder + an external encoder, and torque precontrol)

● The following position measuring systems are configured in the spindle "SP":

– Motor encoder E1 as position measuring system 1

– Direct encoder E2 as position measuring system 2

● Attachment head "A" with encoder E2 is currently mounted on the spindle.

● Position measuring system 2 is the active measuring system:
DB31, ... DBX1.6 = 1
Position measuring system 1 is passive.

● The "Park passive position measuring system" function is:

– Not active for position measuring system 1:
MD31046 $MA_ENC_PASSIVE_PARKING [0] = 0

– Active for position measuring system 2:
MD31046 $MA_ENC_PASSIVE_PARKING [1] = 1

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 131

Objective
The user would like to change from attachment head "A" to attachment head "B."

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
132 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Execution

① Before changing an attachment head, the user must deactivate all position measuring systems
of the machine axis using the "Parking a machine axis (Page 125)" function:
DB31, ... DBX1.5 (position measuring system 1) = 0
DB31, ... DBX1.6 (position measuring system 2) = 0
The controller then resets the status signals for the position measuring systems:
DB31, ... DBX102.5 (position measuring system 1 activated) == 0
DB31, ... DBX102.6 (position measuring system 2 activated) == 0

② The user waits for the status signals and only now removes the attachment head "A" from the
spindle. This electrically disconnects the encoder cable between the attachment head "A" and
coupling. The absence of encoder E2 does not generate any NC or drive faults.

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 133

③ Attachment head "B" is now mounted on the spindle.
④ The user only activates position measuring system 1:

DB31, ... DBX1.5 (position measuring system 1) = 1
The control then sets the status signal:
DB31, ... DBX102.5 (position measuring system 1 activated) == 1
The "Park passive position measuring system" function is active for position measuring system
2. This means that position measuring system 2 does not become passive, but remains in the
"Park" state.

Objective
The user now wishes to remount attachment head "A" again.

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
134 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Execution

① Using the "Park machine axis" function, the user deactivates position measuring system 1:
DB31, ... DBX1.5 (position measuring system 1) = 0
The controller then resets the status signal for the position measuring system:
DB31, ... DBX102.5 (position measuring system 1 activated) == 0

② The user waits for the status signal and only now removes the attachment head "B" from the
spindle.

③ Attachment head "A" is now mounted on the spindle.
④ The user activates position measuring system 2:

DB31, ... DBX1.6 (position measuring system 2) = 1
As a consequence, position measuring system 1 is also simultaneously activated; This is be‐
cause the "Park passive position measuring system" function is not active for position measuring
system 1 (motor measuring system!). Position measuring system 1 becomes a passive position
measuring system.
The controller then sets the status signals for the position measuring systems:
DB31, ... DBX102.5 (position measuring system 1 activated) == 1
DB31, ... DBX102.6 (position measuring system 2 activated) == 1

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 135

3.9.4 Example: Changing an attachment head for two direct position measuring
systems

Initial situation
● Attachment head "A" has an encoder E3.

● Attachment head "B" does not have an encoder.

● Spindle "SP" has two encoders E1 and E2.

● One of the following two telegram types is configured in MD13060
$MN_DRIVE_TELEGRAM_TYPE (standard telegram type for PROFIdrive):

– Telegram 118 (two external encoders)
or

– Telegram 138 (two external encoders, plus torque precontrol)

References:
For information with regard to the encoder assignment, see:
Commissioning Manual, CNC Commissioning: NC, PLC, Drive;
Section: "Communication between the NC and the drive" > "Drives: Assign axis"

● The following position measuring systems are configured in the spindle "SP":

– Direct encoder E2 as position measuring system 1

– Direct encoder E3 as position measuring system 2

● Attachment head "A" with encoder E3 is currently mounted on the spindle.

● Position measuring system 2 is the active measuring system:
DB31, ... DBX1.6 = 1
Position measuring system 1 is passive.

● The "Park passive position measuring system" function is:

– Not active for position measuring system 1:
MD31046 $MA_ENC_PASSIVE_PARKING [0] = 0

– Active for position measuring system 2:
MD31046 $MA_ENC_PASSIVE_PARKING [1] = 1

Objective
The user would like to change from attachment head "A" to attachment head "B."

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
136 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Execution

① Before changing an attachment head, the user must deactivate all position measuring systems
of the machine axis using the "Parking a machine axis (Page 125)" function:
DB31, ... DBX1.5 (position measuring system 1) = 0
DB31, ... DBX1.6 (position measuring system 2) = 0
The controller then resets the status signals for the position measuring systems:
DB31, ... DBX102.5 (position measuring system 1 activated) == 0
DB31, ... DBX102.6 (position measuring system 2 activated) == 0

② The user waits for the status signals and only now removes the attachment head "A" from the
spindle. This electrically disconnects the encoder cable between the attachment head "A" and
coupling. The absence of encoder E3 does not generate any NC or drive faults.

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 137

③ Attachment head "B" is now mounted on the spindle.
④ The user only activates position measuring system 1:

DB31, ... DBX1.5 (position measuring system 1) = 1
The control sets the status signal:
DB31, ... DBX102.5 (position measuring system 1 activated) == 1
The "Park passive position measuring system" function is active for position measuring system
2. This means that position measuring system 2 does not become passive, but remains in the
"Park" state.

Objective
The user now wishes to remount attachment head "A" again.

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
138 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Execution

① Using the "Park machine axis" function, the user deactivates position measuring system 1:
DB31, ... DBX1.5 (position measuring system 1) = 0
The controller then resets the status signal for the position measuring system:
DB31, ... DBX102.5 (position measuring system 1 activated) == 0

② The user waits for the status signal and only now removes the attachment head "B" from the
spindle.

③ Attachment head "A" is now mounted on the spindle.
④ The user activates position measuring system 2:

DB31, ... DBX1.6 (position measuring system 2) = 1
As a consequence, position measuring system 1 is also simultaneously activated; This is be‐
cause the "Park passive position measuring system" function is not active for position measuring
system 1. Position measuring system 1 becomes a passive position measuring system.
The controller then sets the status signals for the position measuring systems:
DB31, ... DBX102.5 (position measuring system 1 activated) == 1
DB31, ... DBX102.6 (position measuring system 2 activated) == 1

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 139

3.9.5 Example: Measuring system switchover when encoders are missing in certain
parts of the range

In the following example, the direct linear position measuring system is only available in the
machining zones, while only the motor measuring system is available outside the machining
zones.

Initial situation
● Linear axis "X" has two incremental encoders:

– Motor encoder E1

– Direct linear encoder E2

● Direct linear encoder E2 is only available in the machining range.

● One of the following two telegram types is configured in MD13060
$MN_DRIVE_TELEGRAM_TYPE (standard telegram type for PROFIdrive):

– Telegram 116 (motor encoder + an external encoder)
or

– Telegram 136 (motor encoder + an external encoder, and torque precontrol)

● The following position measuring systems are configured for the machine axis:

– Motor encoder E1 as position measuring system 1

– Direct linear encoder E2 as position measuring system 2

● When the machine is switched on, the user activates both position measuring systems:

– DB31, ... DBX1.5 (position measuring system 1) = 1

– DB31, ... DBX1.6 (position measuring system 2) = 1

When both position measuring systems are simultaneously activated, then the control
selects position measuring system 1 as active position measuring system.

● Position measuring system 2 is selected for machining:

– DB31, ... DBX1.5 (position measuring system 1) = 0

– DB31, ... DBX1.6 (position measuring system 2) = 1

● The "Park passive position measuring system" function is:

– Not active for position measuring system 1:
MD31046 $MA_ENC_PASSIVE_PARKING [0] = 0

– Active for position measuring system 2:
MD31046 $MA_ENC_PASSIVE_PARKING [1] = 1

● Transfer of the position and the "referenced" status is activated for position measuring
system 2:
MD34210 $MA_ENC_REFP_STATE[1] = 2

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
140 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Objective
When passing through the range outside linear position measuring system E2, the missing
encoder signals should not initiate any faults in the drive and in the control.

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 141

Execution

① Before the table reaches the end of the linear position measuring system, a switchover must be
made to the motor measuring system. The user does this by activating both position measuring
systems:
DB31, ... DBX1.5 (position measuring system 1) = 1
DB31, ... DBX1.6 (position measuring system 2) = 1
Using the "Park passive position measuring system" function, the linear position measuring
system, which is passive after the measuring system switchover, is parked by the control.
The control resets the status signal:
DB31, ... DBX102.6 (position measuring system 2 activated) == 0
The user waits for the status signal before continuing to traverse in the range outside the linear
position measuring system.

② Traversing through the range outside the linear position measuring system with the motor meas‐
uring system.

A3: Axis monitoring functions
3.9 Parking the passive position measuring system

Basic Functions
142 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

③ If the table returns to the linear position measuring system range, at standstill, the user switches
from the motor measuring system to the linear position measuring system:
DB31, ... DBX1.5 (position measuring system 1) = 0
DB31, ... DBX1.6 (position measuring system 2) = 1
The control sets the status signal:
DB31, ... DBX102.6 (position measuring system 2 activated) == 1
The motor measuring system becomes a passive position measuring system.

Result
Both position measuring systems are referenced. The position of the linear position measuring
system corresponds to the position of the motor measuring system at the switchover instant.
The linear position measuring system must be rereferenced if the position accuracy is not
sufficient.

3.10 Switching over encoder data sets

Application
Different attachment heads may be used in succession on one and the same power unit in
order to perform different machining tasks.

One motor data set (MDS) and one encoder data set (EDS) must be programmed for each
attachment head that is equipped with a motor or an encoder. These data sets must be
switched over in the PLC program whenever the attachment head is changed. An MDS/EDS
switchover can only be implemented indirectly in this regard via switchover of the drive data
set (DDS).

Function

NOTICE

Machine damage

If the following drive parameters and machine data have different settings, the axis might not
traverse at the programmed speed or to the programmed position.

The machine data must be changed simultaneously and consistently with encoder data
switchover in the parked state.

Encoder data switchover in the control is limited to the following SINAMICS drive parameters.

● p0408 (rotary encoder pulse number)

● p0418 (fine resolution of encoder emulation Gx_XIST1 (in bits))

● p0419 (fine resolution absolute value Gx_XIST2 (in bits))

With these parameters, it is possible to switch over encoder data sets with the same encoder
type but a different number of encoder pulses.

A3: Axis monitoring functions
3.10 Switching over encoder data sets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 143

Switchover in the control is activated in the following machine data:

MD31700 $MA_ENC_EDS_ACTIVE (activate EDS use)

Value Meaning
0 Encoder data set switchover EDS is not used.
1. Encoder data set switchover EDS is used.

A machine data item is provided for each of the drive parameters p0408, p0418, and p0419,
which must be parameterized in accordance with the active encoder data set:

● MD31710 $MA_ENC_RESOL_EDS (encoder pulses per revolution for EDS use)

● MD31720 $MA_ENC_PULSE_MULT_EDS (encoder multiplication (high resolution) for
EDS use)

● MD31730 $MA_ABS_INC_RATIO_EDS (absolute encoder: ratio between absolute
resolution and incremental resolution for EDS use)

Effectiveness
If MD31700 $MA_ENC_EDS_ACTIVE = 1, the following machine data no longer take effect:

● MD30260 $MA_ABS_INC_RATIO (absolute encoder: ratio between absolute resolution
and incremental resolution)

● MD31020 $MA_ENC_RESOL (encoder pulses per revolution)

● MD31025 $MA_ENC_PULSE_MULT (encoder multiplication (high resolution))

The drive data switchover in DB3x.DBX21.0 - 4 also switches over the encoder data sets.
Switchover is performed in the parked state (see Chapter "Parking a machine axis
(Page 125)" and "Parking the passive position measuring system (Page 127)").

Note

If MD31700 $MA_ENC_EDS_ACTIVE = 1, no plausibility check between the values set in the
drive and control is performed.

NC/PLC interface signal:

● DB31, ... DBX21.7 (pulse enable)

● DB31, ... DBX21.6 (integrator inhibit, speed controller)

● DB31, ... DBX21.5 (motor selection)

● DB31, ... DBX21.0 - 4 (request for switchover of a motor and/or drive data set)
The interface can be flexibly parameterized using: DB31,DBX130.0 - 4

A3: Axis monitoring functions
3.10 Switching over encoder data sets

Basic Functions
144 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Supplementary conditions
SINUMERIK supplementary conditions

● Only machine data for rotary encoders are available.

● Traversing range extension for absolute-value encoders
MD30270 $MA_ENC_ABS_BUFFERING = 0 is not permissible.

SINAMICS supplementary conditions are described in the following documentation.

References
SINAMICS S120 Function Manual Drive Functions;
"Basic information about the drive system" > "Data sets"

● Chapter "DDS: Drive Data Set"

● Chapter "EDS: Encoder Data Set"

Other machine data
In addition to the machine data of the axis monitoring function, the following additional machine
data should be set or checked:

All machine axes
● MD31030 $MA_LEADSCREW_PITCH (leadscrew pitch)

● MD31050 $MA_DRIVE_AX_RATIO_DENOM (denominator load gearbox)

● MD31060 $MA_DRIVE_AX_RATIO_NUMERA (numerator load gearbox)

● MD31070 $MA_DRIVE_ENC_RATIO_DENOM (denominator measuring gearbox)

● MD31080 $MA_DRIVE_ENC_RATIO_NUMERA (numerator measuring gearbox)

● MD32810 $MA_EQUIV_SPEEDCTRL_TIME (equivalent time constant speed control loop
for feedforward control)

● Encoder resolution: see Section "G2: Velocities, setpoint / actual value systems, closed-
loop control (Page 343)".

Machine axes with analog speed setpoint interface
● MD32260 $MA_RATED_VELO (rated motor speed)

● MD32250 $MA_RATED_OUTVAL (rated output voltage)

A3: Axis monitoring functions
3.10 Switching over encoder data sets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 145

3.11 Data lists

3.11.1 Machine data

3.11.1.1 NC-specific machine data

Number Identifier: $MN_ Description
10604 WALIM_GEOAX_CHANGE_MODE Working area limitation during switchover of geometry

axes
10710 PROG_SD_RESET_SAVE_TAB Setting data to be updated

3.11.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20150 GCODE_RESET_VALUES Initial setting of the G groups
21020 WORKAREA_WITH_TOOL_RADIUS Allowance for tool radius with working area limitation
24130 TRAFO_INCLUDES_TOOL_1 Tool handling with active 1st transformation
24230 TRAFO_INCLUDES_TOOL_2 Tool handling with active 2nd transformation
24330 TRAFO_INCLUDES_TOOL_3 Tool handling with active 3rd transformation
24426 TRAFO_INCLUDES_TOOL_4 Tool handling with active 4th transformation
24436 TRAFO_INCLUDES_TOOL_5 Tool handling with active 5th transformation
24446 TRAFO_INCLUDES_TOOL_6 Tool handling with active 6th transformation
24456 TRAFO_INCLUDES_TOOL_7 Tool handling with active 7th transformation
24466 TRAFO_INCLUDES_TOOL_8 Tool handling with active 8th transformation
24476 TRAFO_INCLUDES_TOOL_9 Tool handling with active 9th transformation
24486 TRAFO_INCLUDES_TOOL_10 Tool handling with active 10th transformation
25106 TRAFO_INCLUDES_TOOL_11 Tool handling with active 11th transformation
25116 TRAFO_INCLUDES_TOOL_12 Tool handling with active 12th transformation
25126 TRAFO_INCLUDES_TOOL_13 Tool handling with active 13th transformation
25136 TRAFO_INCLUDES_TOOL_14 Tool handling with active 14th transformation
25146 TRAFO_INCLUDES_TOOL_15 Tool handling with active 15th transformation
25156 TRAFO_INCLUDES_TOOL_16 Tool handling with active 16th transformation
25166 TRAFO_INCLUDES_TOOL_17 Tool handling with active 17th transformation
25176 TRAFO_INCLUDES_TOOL_18 Tool handling with active 18th transformation
25186 TRAFO_INCLUDES_TOOL_19 Tool handling with active 19th transformation
25196 TRAFO_INCLUDES_TOOL_20 Tool handling with active 20th transformation
28600 MM_NUM_WORKAREA_CS_GROUPS Number of coordinate system-specific working area

limitations

A3: Axis monitoring functions
3.11 Data lists

Basic Functions
146 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3.11.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30200 NUM_ENCS Number of encoders
30240 ENC_TYPE Encoder type of the actual value acquisition (actual position value)
30260 ABS_INC_RATIO Absolute encoder: ratio between absolute value and incremental value

resolution
30270 ENC_ABS_BUFFERING Absolute encoder: Traversing range extension
30310 ROT_IS_MODULO Modulo conversion for rotary axis / spindle
30800 WORK_AREA_CHECK_TYPE Type of checking of working area limits
31020 ENC_RESOL Encoder pulses per revolution
31025 ENC_PULSE_MULT Encoder multiplication (high resolution)
31046 ENC_PASSIVE_PARKING Parking the passive position measuring system
31700 ENC_EDS_ACTIVE Activate EDS use
31710 ENC_RESOL_EDS Encoder pulses per revolution for EDS use
31720 ENC_PULSE_MULT_EDS Encoder multiplication (high resolution) for EDS use
31730 ABS_INC_RATIO_EDS Absolute encoder: Ratio between the absolute resolution and the in‐

cremental resolution for EDS use
32200 POSCTRL_GAIN [n] KV factor
32250 RATED_OUTVAL Rated output voltage
32260 RATED_VELO Rated motor speed
32300 MAX_AX_ACCEL Maximum axis acceleration
32800 EQUIV_CURRCTRL_TIME Equivalent time constant current control loop for feedforward control
32810 EQUIV_SPEEDCTRL_TIME Equivalent time constant speed control loop for feedforward control
32910 DYN_MATCH_TIME [n] Time constant for dynamic response adaptation
34210 ENC_REFP_STATE Encoder status
35160 SPIND_EXTERN_VELO_LIMIT Spindle speed limitation via PLCC
36000 STOP_LIMIT_COARSE Exact stop coarse
36010 STOP_LIMIT_FINE Exact stop fine
36020 POSITIONING_TIME Delay time exact stop fine
36030 STANDSTILL_POS_TOL Zero speed tolerance
36040 STANDSTILL_DELAY_TIME Delay time zero-speed monitoring
36050 CLAMP_POS_TOL Clamping tolerance with IS "Clamping active"
36052 STOP_ON_CLAMPING Special functions for clamped axis
36060 STANDSTILL_VELO_TOL Maximum velocity/speed "Axis/spindle stationary"
36100 POS_LIMIT_MINUS 1st software limit switch minus
36110 POS_LIMIT_PLUS 1st software limit switch plus
36120 POS_LIMIT_MINUS2 2nd software limit switch minus
36130 POS_LIMIT_PLUS2 2nd software limit switch plus
36200 AX_VELO_LIMIT Threshold value for velocity monitoring
36210 CTRLOUT_LIMIT Maximum speed setpoint
36220 CTRLOUT_LIMIT_TIME Delay time for speed-setpoint monitoring
36300 ENC_FREQ_LIMIT Encoder limit frequency

A3: Axis monitoring functions
3.11 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 147

Number Identifier: $MA_ Description
36302 ENC_FREQ_LIMIT_LOW Encoder limit frequency for encoder resynchronization
36310 ENC_ZERO_MONITORING Zero mark monitoring
36312 ENC_ABS_ZEROMON_WARNING Zero-mark monitoring warning threshold
36400 CONTOUR_TOL Tolerance band contour monitoring
36500 ENC_CHANGE_TOL Maximum tolerance for position actual value switchover
36510 ENC_DIFF_TOL Measuring system synchronism tolerance
36600 BRAKE_MODE_CHOICE Braking behavior at hardware limit switch
36610 AX_EMERGENCY_STOP_TIME Maximum duration of the braking ramp for faults
36620 SERVO_DISABLE_DELAY_TIME Cutout delay controller enable

3.11.2 Setting data

3.11.2.1 Axis/spindlespecific setting data

Number Identifier: $SA_ Description
43400 WORKAREA_PLUS_ENABLE Working area limitation active in positive direction
43410 WORKAREA_MINUS_ENABLE Working area limitation active in negative direction
43420 WORKAREA_LIMIT_PLUS Working area limitation plus
43430 WORKAREA_LIMIT_MINUS Working area limitation minus

3.11.3 Signals

3.11.3.1 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Follow-up mode DB31,DBX1.4 DB380x.DBX1.4
Position measuring system 1 / 2 DB31,DBX1.5/6 DB380x.DBX1.5/6
Controller enable DB31,DBX2.1 DB380x.DBX2.1
Clamping in progress DB31,DBX2.3 DB380x.DBX2.3
Velocity/spindle speed limitation DB31,DBX3.6 DB380x.DBX3.6
Feed stop/spindle stop DB31,DBX4.3 DB380x.DBX4.3
Hardware limit switch minus / hardware limit switch plus DB31,DBX12.0/1 DB380x.DBX1000.0/1
Software limit switch minus / 2nd software limit switch plus DB31,DBX12.2/3 DB380x.DBX1000.2/3
Motor/drive data set: DB31,DBX21.0 - 4 DB380x.DBX4001.0 - 4
Motor being selected DB31,DBX21.5 DB380x.DBX4001.5
Speed controller integrator disable DB31,DBX21.6 DB380x.DBX4001.6
Pulse enable DB31,DBX21.7 DB380x.DBX4001.7

A3: Axis monitoring functions
3.11 Data lists

Basic Functions
148 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3.11.3.2 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Encoder limit frequency exceeded 1 / 2 DB31,DBX60.2/3 DB390x.DBX0.2
Referenced/synchronized 1/2 DB31,DBX60.4/5 DB390x.DBX0.4/5
Travel command minus/plus DB31,DBX64.6/7 DB390x.DBX4.6/7
Position measuring system 1/2 activated DB31, ... DBX102.5/6 DB390x.DBX5006.5/6
Motor/drive data set: DB31,DBX130.0 - 4 DB390x.DBX4008.0 - 4

A3: Axis monitoring functions
3.11 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 149

A3: Axis monitoring functions
3.11 Data lists

Basic Functions
150 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

A5: Protection zones 4
4.1 Function

Protection zones are static or moveable in 2- or 3-dimensional ranges within a machine to
protect machine elements against collisions - and must be defined by the user.

The following elements can be protected:

● Fixed machine elements (e.g. tool magazine, probe that can be swiveled).

● Moving machine elements that belong to the tool (e.g. tool, tool holder)

● Moving machine elements that belong to the workpiece (e.g. parts of the workpiece,
clamping table, clamping shoe, spindle chuck, tailstock).

In order that it is guaranteed that the machine element is protected, the protection zones must
be defined so that they completely envelope the element to be protected.

Protection zone monitoring is channel-specific, i.e. all the active protection zones of a channel
monitor one another for collisions.

During automatic execution of part programs in the AUTOMATIC or MDA mode, the NC checks
at the start of every part program block whether a collision between protection zones can occur
upon moving along the programmed path.

After manual deactivation of an active protection zone, traversing can be performed in this
zone. After leaving the protection zone, the protection zone automatically becomes active
again.

① Tool-related protection zone
② Workpiece-related protection zone

Figure 4-1 Example of protection zones on a milling machine

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 151

Defining protection zones
A protection zone can be 2 or 3 dimensional, and defined using polylines with a maximum of
10 corner points and arcs as contour elements. The definition can be made using commands
in the part program (see "Defining protection zones (CPROTDEF, NPROTDEF) (Page 158)")
or using system variables. All of the contour elements lie in the plane that can be selected with
G17, G18 or G19.

3rd dimension
Extending the protection zone in the 3rd dimension can be limited between - ∞ and + ∞:

● -∞ to +∞

● -∞ up to the upper limit

● Lower limit to +∞

● Lower limit to upper limit

Coordinate system
The definition of a protection zone takes place with reference to the geometry axis of a channel
and therefore in the basic coordinate system (BCS).

Reference
● Tool-related protection zones

Coordinates for tool-related protection zones must be specified as absolute values referred
to the tool holder reference point F.

● Workpiece-related protection zones
Coordinates for workpiece-related protection zones must be specified as absolute values
referred to the zero point of the basic coordinate system (BCS).

Note

If no tool-related protection zone is active, the tool path is checked against the workpiece-
related protection zones.

If no workpiece-oriented protection area is active, then there is no protection zone monitoring.

Orientation
The orientation of the protection zones is determined by the plane definition (abscissa/
ordinate), in which the contour is described, and the axis perpendicular to the contour (vertical
axis).

The orientation of the protection zones must be the same for the tool- and workpiece-related
protection zones.

A5: Protection zones
4.1 Function

Basic Functions
152 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Machine/channel-specific protection zones
● Machine-specific protection zones

Data for machine specific protection zones are defined once in the control. These protection
zones can be activated by all channels.

● Channel-specific protection zones
Data for channel-specific protection zones are defined in a channel. These protection zones
can be activated only by this channel.

System variable
When the protection zones are defined using commands in the part program, the protection
zone data is stored in system variables. The system variables can also be written directly so
that the definition of protection areas can also be performed directly in the system variables.
The same supplementary conditions apply for the definition of the contour of a protection zone
as for a protection zone definition using commands in the part program (see "Defining
protection zones (CPROTDEF, NPROTDEF) (Page 158)").

The protection zone definitions cover following system variables:

System variable Type Meaning
$SN_PA_ACTIV_IMMED[<n>]
$SC_PA_ACTIV_IMMED[<n>]

BOOL Activation type
The protection zone is active / not active immediately
after the control system has been powered up and the
axes referenced.
FALSE Not immediately active
TRUE Immediately active

$SN_PA_T_W[<n>]
$SC_PA_T_W[<n>]

INT Protection zone type
0 Workpiece-related protection zone
1 Reserved
2 Reserved
3 Tool-related protection zone

$SN_PA_ORI[<n>]
$SC_PA_ORI[<n>]

INT Orientation of the protection zone, i.e. polygon definition
in the plane of:
0 1st and 2nd geometry axis
1 3rd and 1st geometry axis
2 2nd and 3rd geometry axis

$SN_PA_LIM_3DIM[<n>]
$SC_PA_LIM_3DIM[<n>]

INT Type of limitation in the 3rd dimension
0 No limitation
1 Limitation in plus direction
2 Limitation in minus direction
3 Limitation in positive and negative directions

$SN_PA_PLUS_LIM[<n>]
$SC_PA_PLUS_LIM[<n>]

REAL Value of the limit in the positive direction in the 3rd di‐
mension

$SN_PA_MINUS_LIM[<n>]
$SC_PA_MINUS_LIM[<n>]

REAL Value of the limit in the minus direction in the 3rd dimen‐
sion

$SN_PA_CONT_NUM[<n>]
$SC_PA_CONT_NUM[<n>]

INT Number of valid contour elements

A5: Protection zones
4.1 Function

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 153

System variable Type Meaning
$SN_PA_CONT_TYP[<n>, <i>]
$SC_PA_CONT_TYP[<n>, <i>]

INT Contour type[<i>], contour type (G1, G2, G3) of the <i>th
contour element

$SN_PA_CONT_ABS[<n>, <i>]
$SC_PA_CONT_ABS[<n>, <i>]

REAL End point of the contour[<i>], abscissa value

$SN_PA_CONT_ORD[<n>, <i>]
$SC_PA_CONT_ORD[<n>, <i>]

REAL End point of the contour[<i>], ordinate value

$SN_PA_CENT_ABS[<n>, <i>]
$SC_PA_CENT_ABS[<n>, <i>]

REAL Center point of the circular contour[<i>], absolute abscis‐
sa value

$SN_PA_CENT_ORD[<n>, <i>]
$SC_PA_CENT_ORD[<n>, <i>]

REAL Center point of the circular contour[i], absolute ordinate
value

$SN_... are system variables for NC and machine-specific protection zones.
$SC_... are system variables for channel-specific protection zones.
The index "<n>" corresponds to the number of the protection zone: 0 = 1st protection zone
The index "<i>" corresponds to the number of the contour element: 0 = 1st contour element
The contour elements must be defined in ascending order.

Note

The system variables of the protection zone definitions are not restored with REORG!

Data of the protection zone definitions
Data storage

The protection zone definitions are stored in the following files:

File Blocks
_N_NCK_PRO Data block for machine-specific protection zones
_N_CHAN1_PRO Data block for channel-specific protection zones in channel 1
_N_CHAN2_PRO Data block for channel-specific protection zones in channel 2

Data backup

The protection zone definitions are saved in the following files:

File Blocks
_N_INITIAL_INI All data blocks of the protection zones
_N_COMPLETE_PRO All data blocks of the protection zones
_N_CHAN_PRO All data blocks of the channel-specific protection zones

Activating, preactivating and deactivating protection zones

Activation state
The activation state of a protection zone can have the following values:

● Activated

● Preactivated

A5: Protection zones
4.1 Function

Basic Functions
154 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Preactivated with conditional stop

● Deactivated

The activation state is always channel-specific even for machine specific protection zones.

Activating, preactivating and deactivating in the part program
The activation state of a protection zone can be changed in the part program at any time using
commands (see "Activating/deactivating protection zones (CPROT, NPROT) (Page 161)").

Note

A protection zone is only taken into account after the referencing of all geometry axes of the
channel in which it has been activated.

Protection zones that are to be activated at a later time from the PLC user program (see below)
must be preactivated in the part program:

Preactivated protection zones are displayed via the following NC/PLC interface signals:

● DB21, ... DBX272.0 - 273.1 (machine-specific protection zone 1 - 10 preactivated) == 1

● DB21, ... DBX274.0 - 275.1 (channel-specific protection zone 1 - 10 preactivated) ==== 1

Preactivated with conditional stop

NOTICE

Protection zone violation possible

If a preactivated protection zone with conditional stop is not activated in good time, the NC
may no longer be able to stop before the protection zone in good time because the braking
distance after the activation point has not been taken into account.

In the case of a preactivated protection zone with conditional stop, a traversing motion is not
stopped before this if the traversing motion goes into the protection zone. A stop is only
performed when the protection zone has been activated. This behavior is to enable
uninterrupted machining controlled by the user when the protection zone is only required
temporarily.

Activating using NC/PLC interface signals
Only protection zones that have been preactivated via the part program can be activated in
the PLC user program via the NC/PLC interface signals:

● DB21, ... DBX8.0 - 9.1 (activate machine-specific protection zone 1 - 10) = 1

● DB21, ... DBX10.0 - 11.1 (activate channel-specific protection zone 1 - 10) = 1

The activation of preactivated protection zones must be performed prior to the traversing
motion of the geometry axes! If the activation is performed during the traversing motion, these
protection zones are not taken into account in the current traversing motion. Response:

● Alarm "10704 "Protection zone monitoring is not guaranteed"

● DB21, ... DBX39.0 (protection-zone monitoring not guaranteed) = 1

A5: Protection zones
4.1 Function

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 155

Note

The activation of preactivated protection zones must be performed prior to the traversing
motion of the geometry axes!

Deactivating using NC/PLC interface signals
Only protection zones that have been preactivated via a part program and activated via the
NC/PLC interface signals, can be deactivated again via the NC/PLC interface signals:

● DB21, ... DBX8.0 to DBX9.1 (activate machine-specific protection zone 1 - 10) = 0

● DB21, ... DBX10.0 to DBX11.1 (activate channel-specific protection zone 1 - 10) = 0

Protection zones that have been activated directly via a part program cannot be deactivated
from the PLC user program.

Automatic deactivation for transformation change/geometry axis interchange
In the default setting, when changing a transformation, or for a geometry axis interchange, the
active protection zones are automatically deactivated. On the other hand, if active protection
zones should remain active, then the bit-coded machine data MD10618
$MN_PROTAREA_GEOAX_CHANGE_MODE must be correspondingly adapted (see
"Machine data (Page 157)").

Activation state in special system states

Block search with calculation
For block search with calculation, the last programmed activation state of a protection zone is
always taken into account.

Program test
In the AUTOMATIC and MDI modes, activated and preactivated protection zones are also
monitored in the "Program test" state.

NC RESET and end of program
The activation state of a protection zone is retained even after NC-RESET and program end.

Display of protection zone violations
Violations of activated protection zones or possible violations of preactivated protection zones,
if they would be activated, are displayed using the following NC/PLC interface signals:

● DB21, ... DBX276.0 - 277.1 (machine-specific protection zone 1 - 10 violated) == 1

● DB21, ... DBX278.0 - 279.1 (channel-specific protection zone 1 - 10 violated) == 1

A5: Protection zones
4.1 Function

Basic Functions
156 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Checking for protection zone violation
Function CALCPOSI can be used to check whether geometry axes can traverse a specified
path without violating a protection zone (see "Checking for protection zone violation, working
area limitation and software limit switches (CALCPOSI) (Page 165)").

4.2 Commissioning

4.2.1 Machine data

Memory requirements
The memory required for protection zones is parameterized via the following machine data:

● Persistent memory

– MD18190 $MN_MM_NUM_PROTECT_AREA_NCK (number of available machine-
specific protection zones)

– MD28200 $MC_MM_NUM_PROTECT_AREA_CHAN (number of available channel-
specific protection zones)

● Dynamic memory

– MD28210 $MC_MM_NUM_PROTECT_AREA_ACTIVE (maximum number of
protection zones that can be activated simultaneously in the channel)

– MD28212 $MC_MM_NUM_PROTECT_AREA_CONTUR (maximum number of
definable contour elements per protection zone)

Response for a transformation change/geometry axis interchange
The following machine data can be used to define as to whether, when changing a
transformation or for a geometry axis interchange, active protection zones should be kept or
deactivated:

MD10618 $MN_PROTAREA_GEOAX_CHANGE_MODE

Bit Value Meaning
0 0 The active protection zones are deactivated during the transformation change.

1 The active protection zones remain active during the transformation change.
1 0 The active protection zones are deactivated during the geometry axis change.

1 The active protection zones remain active during the geometry axis change.

A5: Protection zones
4.2 Commissioning

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 157

4.3 Programming

4.3.1 Defining protection zones (CPROTDEF, NPROTDEF)
Protection zones, which protect machine elements against collisions, are defined in the part
program in blocks. These contain the following elements:

1. Definition of the machining plane
Before the actual protection zone definition, the machining plane must be selected, to which
the contour description of the protection zone refers.

2. Start of the definition
Depending on the particular NC command, either a channel-specific or machine-specific
protection zone is created.

3. Contour description of the protection zone
The contour of a protection zone is defined with traversing motion. These are not executed
and have no connection to previous or subsequent geometry descriptions. They only define
the protection zone.

4. End of definition

Syntax

DEF INT <Var>
G17/G18/G19
CPROTDEF/NPROTDEF(<n>,<t>,<AppLim>,<AppPlus>,<AppMinus>)
G0/G1/... X/Y/Z...
...
EXECUTE(<Var>)

Meaning

DEF INT <Var>: Definition of a local help variable, of the INTEGER data type
<Var>: Name of the Help variable
G17/G18/G19: Machining plane

Note:
It is not permissible to change the machining plane before the
end of the definition. Programming the applicate is not permitted
between start and end of the definition.

CPROTDEF(): Predefined procedure to define a channel-specific protection
zone

NPROTDEF(): Predefined procedure to define a machine-specific protection
zone

<n>: Number of defined protection zone
Data type: INT

A5: Protection zones
4.3 Programming

Basic Functions
158 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<t>: Type of protection zone
Data type: BOOL
Value: TRUE Tool-related protection zone

FALSE Workpiece-related protection zone
<AppLim>: Type of limitation in the third dimension

Data type: INT
Value: 0 No limitation

1 Limit in plus direction
2 Limit in minus direction
3 Limit in positive and negative direction

<AppPlus>: Value of the limit in the positive direction in the 3rd dimension
Data type: REAL

<AppMinus>: Value of the limit in the negative direction in the 3rd dimension
Data type: REAL

G0/G1/... X/Y/Z... ... : The contour of a protection zone is specified with up to 11 tra‐
versing movements in the selected machining plane. The first
traversing movement is the movement to the contour. The last
point in the contour description must always coincide with the
first point of the contour description.
The valid protection zone is the zone left of the contour:
● Internal protection zone

The contour of an internal protection zone must described
in the counterclockwise direction.

● External protection zones (permitted only for workpiece-
related protection zones)
The contour for an external protection zone must be
described in the clockwise direction.

The following contour elements are permissible:
● G0, G1 for straight contour elements
● G2 for circle segments in the clockwise direction

Permissible only for workpiece-related protection zones.
Not permissible for tool-related protection zones because
they must be convex.

● G3 for circular segments in the counter-clockwise direction
Note:
A protection zone cannot be described by a complete circle. A
complete circle must be divided into two semicircles.
Note:
The sequence G2 → G3 or G3 → G2 is not permissible! A short
G1 block must be inserted between the two circular blocks.

EXECUTE(<Var>): Predefined procedure that marks the end of the definition
A switch is made back to normal program processing with
EXECUTE.

Example
See example under "Activating/deactivating protection zones (CPROT, NPROT) (Page 161)".

A5: Protection zones
4.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 159

Additional information

Machine-specific protection zones
A machine-specific protection zone or its contour is defined using the geometry axis, i.e.
referenced to the basic coordinate system (BCS) of a channel. In order that correct protection-
zone monitoring can take place in all channels in which the machine-specific protection zone
is active, the basic coordinate system (BCS) of all of the channels involved must be identical:

● position of the coordinate origin referred to the machine zero

● Orientation of the coordinate axes

Reference point for contour description
● Tool-related protection zones

Coordinates for tool-related protection zones must be specified as absolute values referred
to the tool holder reference point F.

● Workpiece-related protection zones
Coordinates for workpiece-related protection zones must be specified as absolute values
referred to the zero point of the basic coordinate system (BCS).

Protection zones symmetrical around the center of rotation
For protection zones symmetrical around the axis or rotation (e.g. spindle chuck), you must
describe the complete contour and not only the contour up to the center of rotation.

Tool-related protection zones
Tool-related protection zones must always be convex. If a concave protected zone is desired,
this should be subdivided into several convex protection zones.

① Convex protection zones
② Concave protection zones (not permissible!)
F Toolholder reference point

A5: Protection zones
4.3 Programming

Basic Functions
160 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

General conditions
During the definition of a protection zone, the following functions must not be active or used:

● Tool radius compensation (cutter radius compensation, tool nose radius compensation)

● Transformation

● Reference point approach (G74)

● Fixed point approach (G75)

● Dwell time (G4)

● Block search stop (STOPRE)

● End of program (M17, M30)

● M functions: M0, M1, M2

4.3.2 Activating/deactivating protection zones (CPROT, NPROT)
Protection zones previously defined in the part program can be activated at any time – or can
be preactivated for subsequent activation by the PLC user program. Active protection zones
can be deactivated at any time.

When activating or preactivating, it is also possible to relatively shift the reference point of the
protection zone.

Note

A protection zone is only taken into account after the referencing of all geometry axes of the
channel in which it has been activated.

Note
Monitoring protection zones

If a tool-related protection area is not active, the tool path is checked against the workpiece-
related protection zones.

If no workpiece-oriented protection zone is active, then there is no protection zone monitoring.

Syntax
CPROT(<n>,<Status>,<XMov>,<YMov>,<ZMov>)
NPROT(<n>,<Status>,<XMov>,<YMov>,<ZMov>)

Meaning

CPROT: Predefined procedure to activate a channel-specific protection
zone

NPROT: Predefined procedure to activate a machine-specific protection
zone

A5: Protection zones
4.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 161

<n>: Number of the protection zone
Data type: INT

<Status>: The channel-specific activation status is set using this parameter
Data type: INT
Value: 0 Deactivate protection zone

1 Preactivate protection zone
2 Activate protection zone
3 Preactivate protection zone with conditional

stop
<XMov>,<YMov>,<ZMov>: Additive offset values in the X/Y/Z direction

The offset can take place in 1, 2, or 3 dimensions. The offset values
refer to:
● The machine zero for a workpiece-related protection zone
● The tool carrier reference point F for a tool-specific protection

zone
Data type: REAL

Example
Possible collision of a milling cutter with the measuring probe is to be monitored on a milling
machine. The position of the measuring probe is to be defined by an offset when the function
is activated.

The following protection zones are defined for this:

● A machine-specific and a workpiece-related protection zone for both the measuring probe
holder (n-PZ1) and the measuring probe itself (n-PZ2).

● A channel-specific and a tool-related protection zone for the milling cutter holder (c-PZ1),
the cutter shank (c-PZ2) and the milling cutter itself (c-PZ3).

The orientation of all protection zones is in the Z direction.

The position of the reference point of the measuring probe on activation of the function must
be X = -120, Y = 60 and Z = 80.

A5: Protection zones
4.3 Programming

Basic Functions
162 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

① Name for the protection zone of the probe
F Toolholder reference point

Program code Comment
DEF INT PROTZONE ; Definition of a Help variable
G17 ; machining plane XY

; defining protection zones:
NPROTDEF(1,FALSE,3,10,–10) ; protection zone n–PZ1
G01 X0 Y–10
X40
Y10
X0
Y-10
EXECUTE(PROTZONE)
NPROTDEF(2,FALSE,3,5,–5) ; protection zone n–PZ2
G01 X40 Y–5
X70
Y5
X40
Y-5
EXECUTE(PROTZONE)
CPROTDEF(1,TRUE,3,0,–100) ; protection zone c–PZ1
G01 X–20 Y–20
X20
Y20
X-20
Y-20
EXECUTE(PROTZONE)

A5: Protection zones
4.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 163

Program code Comment
CPROTDEF(2,TRUE,3,–100,–150) ; protection zone c–PZ2
G01 X0 Y–10
G03 X0 Y10 J10
X0 Y–10 J–10
EXECUTE(PROTZONE)
CPROTDEF(3,TRUE,3,–150,–170) ; protection zone c–PZ3
G01 X0 Y–27.5
G03 X0 Y27.5 J27.5
X0 Y27.5 J–27.5
EXECUTE(PROTZONE)

; activating protection zones:
NPROT(1,2,–120,60,80) ; activate protection zone n–PZ1 with offset
NPROT(2.2,–120,60,80) ; activate protection zone n–PZ2 with offset
CPROT(1,2,0,0,0) ; activate protection zone c–PZ1
CPROT(2,2,0,0,0) ; activate protection zone c–PZ2
CPROT(3,2,0,0,0) ; activate protection zone c–PZ3

Further information

Activation status after the control powers up
A protection zone can already be active after the control system powers up and the axes have
been referenced. This is the case if, for the protection zone, the following system variable is
set to TRUE:

● $SN_PA_ACTIV_IMMED[<n>] (for machine-specific protection zone) or

● $SC_PA_ACTIV_IMMED[<n>] (for channel-specific protection zone)
Index "<n>" corresponds to the number of the protection zone: 0 = 1. Protection zone

The protection zone is activated with status = 2 – and without offset.

Multiple activation of a protection zone
A machine-specific protection zone can be active simultaneously in several channels (e.g.
protection zone of a tailstock where there are two opposite sides). The protection zones are
only monitored if all geometry axes have been referenced.

A protection zone cannot be activated simultaneously with different offsets in a single channel.

Protection zone monitoring for active tool radius compensation
For active tool radius compensation, a functioning protection zone monitoring is only possible
if the plane of the tool radius compensation is identical to the plane of the protection zone
definitions.

A5: Protection zones
4.3 Programming

Basic Functions
164 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

4.3.3 Checking for protection zone violation, working area limitation and software limit
switches (CALCPOSI)

Function
In the workpiece coordinate system (WCS), the CALCPOSI function checks whether, starting
from the starting position, the geometry axes can be traversed a specified distance without
violating active limits. For the case that the distance cannot be fully traversed because of limits,
a positive, decimal-coded status value and the maximum possible traversing distance are
returned.

Definition
INT CALCPOSI(VAR REAL[3] <Start>, VAR REAL[3] <Dist>, VAR REAL[5]
<Limit>, VAR REAL[3] <MaxDist>, BOOL <MeasSys>, INT <TestLim>)

Syntax
<Status> = CALCPOSI(VAR <Start>, VAR <Dist>, VAR <Limit>, VAR
<MaxDist>, <MeasSys>, <TestLim>)

Meaning

CALCPOSI(...): Predefined function for testing limit violations regarding the geometry axes
Preprocessing
stop:

No

Alone in the block: Yes

A5: Protection zones
4.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 165

<status>:
(Part 1)

Function return value. Negative values indicate error states.
Data type: INT
Value range: -8 ≤ x ≤ 100000
Value: 0 The distance can be traversed completely.

-1 At least one component is negative in <Limit>.
-2 Error in a transformation calculation.

Example: The traversing distance passes through a singu‐
larity so that the axis positions cannot be defined.

-3 The specified traversing distance <Dist> and the maximum
possible traversing distance <MaxDist> are linearly depend‐
ent.
Note
Can only occur in conjunction with <TestLim>, bit 4 == 1.

-4 The projection of the traversing direction contained in <Dist>
on to the limitation surface is the zero vector, or the traversing
direction is perpendicular to the violated limitation surface.
Note
Can only occur in conjunction with <TestLim>, bit 5 == 1.

-5 In <TestLim>, bit 4 == 1 AND bit 5 == 1
-6 At least one machine axis that has to be considered for

checking the traversing limits has not been referenced.
-7 Collision avoidance function: Invalid definition of the kine‐

matic chain or the protection zones.
-8 Collision avoidance function: This command cannot be exe‐

cuted because of insufficient memory.
<status>:

(Part 2)
Units digit

Note
If several limits are violated simultaneously, the limit with the greatest restriction
on the specified traversing distance is signaled.
Value: 1 Software limit switches are limiting the traversing distance

2 Working area limits are limiting the traversing distance
3 Protection zones are limiting the traversing distance
4 Collision avoidance function: Protection zones are limiting

the traversing path
Tens digit

Value: 1x The initial value violates the limit
2x The specified straight line violates the limit.

This value is returned even if the end point does not violate
any limit itself, but the path from the starting point to the end
point would cause a limit value to be violated (e.g. by passing
through a protection zone, curved software limit switches in
the WCS for non-linear transformations, e.g. transmit).

A5: Protection zones
4.3 Programming

Basic Functions
166 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<status>:
(Part 3)

Hundreds digit
Value: 1xx AND units digit == 1 or 2:

The positive limit value has been violated.
AND units digit == 3 1):
An NC-specific protection zone has been violated.

2xx AND units digit == 1 or 2:
The negative limit value has been violated.
AND units digit == 3 1):
A channel-specific protection zone is violated.

<status>:
(Part 4)

Thousands digit
Value: 1xxx AND units digit == 1 or 2:

Factor with which the axis number is multiplied that violates
the limit. Numbering of the axes begins with 1.
Reference:
● Software limit switches: Machine axes
● Working area limitation: Geometry axes
AND units digit == 3 1):
Factor with which the number of the violated protection zone
is multiplied.

<status>:
(Part 5)

Hundred thousands digit
Value: 0xxxxx Hundred thousands digit == 0: <Dist> remains unchanged

1xxxxx A direction vector is returned in <Dist>, which defines the
further motion direction on the limitation surface.
Can only occur with the following supplementary conditions:
● Software limit switch or working area limit violated (not in

the starting point)
● A transformation is not active
● <TestID>, bit 4 or bit 5 == 1

<Start>: Reference to a vector with the start positions:
● <Start> [0]: 1st geometry axis
● <Start> [1]: 2nd geometry axis
● <Start> [2]: 3rd geometry axis
Parameter type: Input
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

A5: Protection zones
4.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 167

<Dist>: Reference to a vector.
Input: Incremental traversing distance
● <Dist> [0]: 1st geometry axis
● <Dist> [1]: 2nd geometry axis
● <Dist> [2]: 3rd geometry axis
Output (only for set hundred thousands digit in <Status>):
 <Dist> contains a unit vector v as output value which defines the further tra‐

versing direction in the WCS.
Case 1: Formation of vector v for <TestID>, bit 4 == 1
The input vectors <Dist> and <MaxDist> span the motion plane. This plane
is cut by the violated limitation surface. The intersecting line of the two planes
defines the direction of vector v.The orientation (sign) is selected so that the
angle between the input vector <MaxDist> and v is not greater than 90 de‐
grees.
Case 2: Formation of vector v for <TestID>, bit 5 == 1
Vector v is the unit vector in the projection direction of the traversing vector
contained in <Dist> on the limitation surface. If the projection of the traversing
vector on the limitation surface is the zero vector, an error is returned.

Parameter type: Input/output
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

<Limit>: Reference to an array of length 5.
● <Limit> [0 - 2]: Minimum clearance of the geometry axes to the limits:

– <Limit> [0]: 1st geometry axis
– <Limit> [1]: 2nd geometry axis
– <Limit> [2]: 3rd geometry axis
The minimum clearances are observed with:
– Working area limitation: No restrictions
– Software limit switches: If no transformation is active, or a transformation

is active in which a clear assignment of the geometry axes to the linear
machine axes is possible, e.g. 5-axis transformations.

● <Limit> [3]: Contains the minimum clearance for linear machine axes which,
for example, cannot be assigned a geometry axis because of a non-linear
transformation. This value is also used as limit value for the monitoring of the
conventional protection zones and the collision avoidance protection zones.

● <Limit> [4]: Contains the minimum clearance for rotary machine axes which,
for example, cannot be assigned a geometry axis because of a non-linear
transformation.
Note
This value is only active for the monitoring of the software limit switches for
special transformations.

Parameter type: Input
Data type: VAR REAL [5]
Value range: -max. REAL value ≤ x[n] ≤ +max. REAL value

A5: Protection zones
4.3 Programming

Basic Functions
168 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<MaxDist>: Reference to a vector with the incremental traversing distance in which the speci‐
fied minimum clearance of an axis limit is not violated by any of the relevant ma‐
chine axes:
● <Dist> [0]: 1st geometry axis
● <Dist> [1]: 2nd geometry axis
● <Dist> [2]: 3rd geometry axis
If the traversing distance is not restricted, the contents of this return parameter
are the same as the contents of <Dist>.
For <TestID>, bit 4 == 1: <Dist> and <MaxDist>
<MaxDist> and <Dist> must contain vectors as input values that span a motion
plane. The two vectors must be mutually linearly independent. The absolute value
of <MaxDist> is arbitrary. For the calculation of the motion direction, see the de‐
scription for <Dist>.
Parameter type: Output
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

<MeasSys>: Measuring system (inch/metric) for position and distance specifications (optional)
Data type: BOOL
Value: FALSE

(De‐
fault)

System of units corresponding to the currently active G com‐
mand from the G group 13 (G70, G71, G700, G710).
Note
If G70 is active and the basic system is metric (or G71 is
active and the basic system is inch), the system variables
$AA_IW and $AA_MW are provided in the basic system and,
if used, must be converted for CALCPOSI.

TRUE System of units according to the set basic system:
MD52806 $MN_ISO_SCALING_SYSTEM

<TestLim>: Bit-coded selection of the limits to be monitored (optional)
Data type: INT
Default value: Bits 0, 1, 2, 3, 6, 7 == 1 (207)
Bit Decimal Meaning
0 1 Software limit switch
1 2 Working area limitation
2 4 Activated conventional protection zones
3 8 Preactivated conventional protection zones
4 16 With violated software limit switches or working area limits in

<Dist>, return the traversing direction as in Case 1 (see
above).

5 32 With violated software limit switches or working area limits in
<Dist>, return the traversing direction as in Case 2 (see
above).

6 64 Activated collision avoidance protection zones
7 128 Preactivated collision avoidance protection zones
8 256 Pairs of activated and preactivated collision avoidance pro‐

tection zones
1) If several protection zones are violated, the protection zone with the greatest restriction on the speci‐
fied traversing distance is returned.

A5: Protection zones
4.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 169

Example

Limitations

In the example, the active software limit switches and working area limits in the X-Y plane and
the following three protection zones are displayed:

● C2: Tool-related, channel-specific protection zone, active, circular, radius = 2 mm

● C4: Workpiece-related, channel-specific protection zone, preactivated, square, side length
= 10 mm

● N3: Machine-specific protection zone, active, rectangular, side length = 10 mm x 15 mm

NC program
The protection zones and working area limits are defined first in the NC program. The
CALCPOSI() function is then called with different parameter assignments.

Program code
N10 DEF REAL _START[3]
N20 DEF REAL _DIST[3]
N30 DEF REAL _LIMIT[5]
N40 DEF REAL _MAXDIST[3]
N50 DEF INT _PA
N60 DEF INT _STATUS

A5: Protection zones
4.3 Programming

Basic Functions
170 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code
: toolrelated protection zone C2
N70 CPROTDEF(2, TRUE, 0)
N80 G17 G1 X-2 Y0
N90 G3 I2 X2
N100 I-2 X-2
N110 EXECUTE(_PA)
; workpiece-related protection zone C4
N120 CPROTDEF(4, FALSE, 0)
N130 G17 G1 X0 Y15
N140 X10
N150 Y25
N160 X0
N170 Y15
N180 EXECUTE(_PA)
; machine-specific protection zone N3
N190 NPROTDEF(3, FALSE, 0)
N200 G17 G1 X10 Y5
N210 X25
N220 Y15
N230 X10
N240 Y5
N250 EXECUTE(_PA)
; activate or preactivate protection zones
N260 CPROT(2, 2, 0, 0, 0)
N270 CPROT(4, 1, 0, 0, 0)
N280 NPROT(3, 2, 0, 0, 0)
; define working area limits
N290 G25 XX=-10 YY=-10
N300 G26 XX=20 YY=21
N310 _START[0] = 0.
N320 _START[1] = 0.
N330 _START[2] = 0.
N340 _DIST[0] = 35.
N350 _DIST[1] = 20.
N360 _DIST[2] = 0.
N370 _LIMIT[0] = 0.
N380 _LIMIT[1] = 0.
N390 _LIMIT[2] = 0.
N400 _LIMIT[3] = 0.
N410 _LIMIT[4] = 0.
N420 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST)
N430 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,3)
N440 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,1)
N450 _START[0] = 5.
N460 _START[1] = 17.
N470 _START[2] = 0.
N480 _DIST[0] = 0.
N490 _DIST[1] =-27.
N500 _DIST[2] = 0.
N510 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,14)
N520 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,, 6)
N530 _LIMIT[1] = 2.

A5: Protection zones
4.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 171

Program code
N540 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,, 6)
N550 _START[0] = 27.
N560 _START[1] = 17.1
N570 _START[2] = 0.
N580 _DIST[0] =-27.
N590 _DIST[1] = 0.
N600 _DIST[2] = 0.
N610 _LIMIT[3] = 2.
N620 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,12)
N630 _START[0] = 0.
N640 _START[1] = 0.
N650 _START[2] = 0.
N660 _DIST[0] = 0.
N670 _DIST[1] = 30.
N680 _DIST[2] = 0.
N690 TRANS X10
N700 AROT Z45
N710 _STATUS = CALCPOSI(_START,_DIST, _LIMIT, _MAXDIST)
; delete frames from N690 and N700 again
N720 TRANS
N730 _START[0] = 0.
N740 _START[1] = 10.
N750 _START[2] = 0.
; vectors_DIST and _MAXDIST define the motion plane
N760 _DIST[0] = 30.
N770 _DIST[1] = 30.
N780 _DIST[2] = 0.
N790 _MAXDIST[0] = 1.
N800 _MAXDIST[1] = 0.
N810 _MAXDIST[2] = 1.
N820 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,17)
N830 M30

Results of CALCPOSI()

N... <status> <MaxDist>[0] ≙ X <MaxDist>[1] ≙ Y Remarks
420 3123 8.040 4.594 N3 is violated.
430 1122 20.000 11.429 No protection zone monitoring,

working area limitation is violated.
440 1121 30.000 17.143 Only software limit monitoring is still active.
510 4213 0.000 0.000 Starting point violates C4
520 0000 0.000 -27.000 Preactivated C4 is not monitored. The

specified distance can be traversed com‐
pletely.

540 2222 0.000 -25.000 Because _LIMIT[1] = 2, the traversing dis‐
tance is restricted by the working area limi‐
tation.

A5: Protection zones
4.3 Programming

Basic Functions
172 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N... <status> <MaxDist>[0] ≙ X <MaxDist>[1] ≙ Y Remarks
620 4223 -13.000 0.000 Clearance to C4 is a total of 4 mm due to

C2 and _LIMIT[3]. Clearance C2 → N3 of
0.1 mm does not result in limitation of the
traversing distance.

710 1221 0.000 21.213 Frame with translation and rotation active.
The permissible traversing distance in
_DIST applies in the shifted and rotated
WCS.

820 102121 18.000 18.000 The software limit switch of the Y axis is
violated. The calculation of a further tra‐
versing direction is requested with <_TES‐
TLIM> = 17. This direction is in _DIST
(0.707, 0.0, 0.707). It is valid because the
hundred thousands digit is set in <_STA‐
TUS>.

Additional information

"Referenced" axis status
All machine axes considered by CALCPOSI() must be homed.

Circle-related distance specifications
All circle-related distance specifications are always interpreted as radius specifications. This
must be taken into account particularly for transverse axes with activated diameter
programming (DIAMON/DIAM90).

Traversing distance reduction
If the specified traversing distance of an axis is limited, the traversing distance of the other
axes is also reduced proportionally in the <MaxDist> return value. The resulting end point is
therefore still on the specified path.

Rotary axes
Rotary axes are only monitored when they are not modulo rotary axes.

It is permissible that no software limit switches, working area limits or protection zones are
defined for one or more of the relevant axes.

Software limit switch and working area limitation status
Software limit switches and working area limits are only taken into account if they are active
during the execution of CALCPOSI(). The status can be influenced, for example, via:

● Machine data: MD21020 $MC_WORKAREA_WITH_TOOL_RADIUS

● Setting data: $AC_WORKAREA_CS_...

● NC/PLC interface signals DB31, ... DBX12.2 / 3

● Commands: WALIMON / WALIMOF

A5: Protection zones
4.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 173

Software limit switches and transformations
With CALCPOSI(), the positions of the machine axes (MCS) cannot always be uniquely
determined from the positions of the geometry axes (WCS) during various kinematic
transformations (e.g. TRANSMIT) because of ambiguities at certain positions of the traversing
distance. In normal traversing operation, the uniqueness generally results from the history and
the condition that a continuous motion in the WCS must correspond to a continuous motion in
the MCS. Therefore, when monitoring the software limit switches, the machine position at the
time when CALCPOSI() is executed is used to resolve the ambiguity in such cases.

Note
Preprocessing stop

When using CALCPOSI() in conjunction with transformations, it is the sole responsibility of
the user to program a preprocessing stop (STOPRE) with the preprocessing before
CALCPOSI() for the synchronization of the machine axis positions.

Protection zone clearance and conventional protection zones
With conventional protection zones, there is no guarantee that the safety clearance set in
parameter <Limit>[3] is maintained for all protection zones during a traversing movement
on the specified path. It is only guaranteed that no protection zone will be violated when the
end point returned in <Dist> is extended by the safety clearance in the traversing direction.
However, the straight line can pass very close to a protection zone.

Protection zone clearance and collision avoidance protection zones
With collision avoidance protection zones, there is a guarantee that the safety clearance set
in parameter <Limit>[3] is maintained for all protection zones during a traversing movement
on the specified traversing path.

The safety clearance specified in parameter <Limit>[3] only takes effect when the following
applies:

<Limit>[3] > (MD10619 $MN_COLLISION_TOLERANCE)

If bit 4 is set in parameter <TestLim> (calculation of the ongoing traversing direction), then
the direction vector received in <DIST> is only valid when the hundred thousands digit is set
in the function return value (<status>). If a direction such as this cannot be determined, either
because protection zones were violated, or because a transformation is active, then the input
value in <DIST> remains unchanged. An additional error message is not output.

4.4 Special situations

4.4.1 Temporary enabling of protection zones
If a protection zone violation occurs when starting or during a traversing motion, under certain
circumstances, the protection zone can be enabled, i.e. for temporary traversing. In
AUTOMATIC and MDA mode as well as in JOG mode, the temporary enabling of protection
zones is performed via operator actions.

A5: Protection zones
4.4 Special situations

Basic Functions
174 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

See also:

● Behavior in the AUTOMATIC and MDA modes (Page 175)

● Behavior in JOG mode (Page 176)

Note

Temporarily enabling protection zones is only possible for workpiece-related protection zones.
Tool-related protection zones must either be deactivated in the part program or via the NC/
PLC interface in the "Preactivated" state.

Temporary enabling of a protection zone is terminated after the following events:

● When the control system powers up

● AUTOMATIC or MDA mode: The end of the block is outside the protection zone

● JOG mode: The end of the traversing motion is outside the protection zone

● The protection zone is activated

4.4.2 Behavior in the AUTOMATIC and MDA modes
In AUTOMATIC and MDA mode, no traversing motion is enabled into or through active
protection zones:

● A traversing motion that would lead from outside into an active protection zone, is stopped
at the end of the last block located outside the protection zone.

● A traversing motion that begins within an active protection zone is not started.

Temporary enabling of protection zones
If a traversing motion is stopped in AUTOMATIC or MDA mode because of a protection zone
violation, this is indicated to the operator by an alarm. If the operator decides that the traversing
motion can be continued, the crossing of protection zones can be enabled.

The enabling is only temporarily and is performed by triggering NC start:

DB21, ... DBX7.1 (NC start) = 1

An alarm is displayed for each violated protection zone. An NC start signal must be triggered
by the operator for each protection zone to be enabled.

The traversing motion is continued when all protection zones that have resulted in the stopping
of the traversing motion, have been enabled.

Continuation of a traversing motion without temporary enabling
A traversing motion was stopped with an alarm because of a protection zone violation. If the
relevant protection zone is set to the "Preactivated" state via the NC/PLC interface, the
traversing motion can be continued with NC start, without the protection zone being temporarily
enabled.

A5: Protection zones
4.4 Special situations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 175

Increased protection against the enabling of protection zones
If the enabling of a protection zone is to be protected better than just by using an NC start,
then this must be realized by the machine manufacturer or user in the PLC user program.

4.4.3 Behavior in JOG mode

Simultaneous traversing of several geometry axes
In JOG mode, traversing motions can be performed simultaneously in several geometry axes.
The traversing range of every participating geometry axis is limited axis-specifically at the start
of the traversing motion with regard to the traversing range limits (software limit switches,
working area limitation, etc.) and active protection zones. However, safe monitoring of all active
protection zones cannot be guaranteed. The following is provided as feedback to the user:

● Alarm 10704 "Protection zone monitoring is not guaranteed"

● DB31, ... DBX39.0 (protection-zone monitoring not guaranteed) = 1

After the end of the traversing motion, the alarm is cleared automatically.

If the current position is within an activated or preactivated protection zone, then the following
actions are triggered:

● Alarm message 10702 "NC protection zone violated during manual mode" or 10703
"Channel-specific protection zone violated during manual mode" is output – specifying the
violated protection zone and the traversing axis.

● Further traversing motion is disabled.

● The following NC/PLC interface signal is set for the protection zone involved:
DB21, … DBX276.0 – 277.1 (machine-specific protection zone 1 - 10 violated) == 1
or
DB21, ... DBX278.0 – 279.1 (channel-specific protection zone 1 - 10 violated) == 1

To continue, see paragraph "Temporary enabling of protection zones".

Example:
Three activated protection zones and simultaneous traversing of two geometry axes:

A5: Protection zones
4.4 Special situations

Basic Functions
176 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 4-2 Motion range of the geometry axes at the start time

At the start time of traversing motion of axes X and Y, the axis-specific traversing range limits
are determined from the start time:

● X axis

– Positive traversing direction: Protection zone 2

– Negative traversing direction: Absolute traversing range limit (e.g. software limit
switches)

● Y axis

– Positive traversing direction: Protection zone 1

– Negative traversing direction: Absolute traversing range limit (e.g. working area
limitation)

The resulting maximum traversing range at the start time does not take protection zone 3 into
account. As a consequence, protection zone 3 could be violated.

Note

Activated and preactivated protection zones are also monitored in the manual operating modes
JOG, INC and DRF.

A5: Protection zones
4.4 Special situations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 177

Limiting the traversing motion of an axis
If the traversing motion of an axis is limited as a protection zone has been reached, then alarm
10706 "NC protection zone reached during manual mode" or 10707 "Channel-specific
protection zone reached during manual mode" is output, specifying the protection zone
reached and the traversing axis. It is assured that no protection zone will be violated when an
axis is traversing in JOG. (This response is analogous to approaching software limit switches
or a working area limitation.)

The alarm is reset:

● When an axis is traversed that does not lead into the protection zone.

● When the protection zone is enabled.

● When the control powers up.

If an axis starts to move towards a protection zone when it is at a protection zone limit, then
alarm 10706 or 10707 is output, and motion is not started.

Temporary enabling of protection zones
If traversing motion is started within an activated protection zone, or at the limit of an activated
protection zone, then alarm 10702 "NC protection zone violated during manual mode" or 10703
"Channel-specific protection zone violated during manual mode" is output – specifying the
violated protection zone and the traversing axis – and motion is not started. The traversing
motion can be performed when the relevant protection zone is temporarily enabled. The
following actions must be performed for this:

● Generate a positive edge at the NC/PLC interface signal:
DB21, ... DBX1.1 (enable protection zone)

● Start the same traversing motion again

Note

The NC/PLC interface signal "Protection zone violated" is set when the temporarily enabled
protection zone is traversed:

DB21, … DBX276.0 – 277.1 (machine-specific protection zone 1 - 10 violated) == 1

or

DB21, ... DBX278.0 – 279.1 (channel-specific protection zone 1 - 10 violated) == 1

The enable signal is reset if a motion is started that does not lead into the enabled protection
zone.

If further protection zones are affected by the traversing motion, additional alarms 10702 or
10703 are displayed for each protection zone. The protection zones displayed in the alarms
can be enabled by creating further positive edges on the NC/PLC interface signal DB21, ...
DBX1.1:

Behavior at change of operating mode
The protection zones temporarily enabled in JOG mode are retained after a change to
AUTOMATIC or MDI mode. The temporary enable signals set the in the AUTOMATIC or MDI
mode are also retained after a change to JOG mode.

A5: Protection zones
4.4 Special situations

Basic Functions
178 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Reset of an enable
The enable signal is reset internally and on the NC/PLC interface at the next standstill of a
geometry axis for which the temporarily enabled protection zone has been completely exited:

DB21, … DBX276.0 – 277.1 (machine-specific protection zone 1 - 10 violated) == 0

or

DB21, ... DBX278.0 – 279.1 (channel-specific protection zone 1 - 10 violated) == 0

4.5 Boundary conditions

Restrictions in protection-zone monitoring
In the following cases, protection area monitoring is notpossible:

● Traversing motion of orientation axes

● Fixed machine-specific protection zones for face transformation (TRANSMIT) or cylindrical
surface transformation (TRACYL).
Exception: Protection areas that are symmetrical around the axis of rotation of the spindle
axis. Here, no DRF offset must be active.

● Mutual monitoring of tool-related protection areas

Positioning axes
For positioning axes, only the programmed block end point is monitored. Alarm 10704
"Protection zone monitoring is not guaranteed" is output while a positioning axis traverses:

Axis interchange
With regard to the protection zones after an axis replacement, the starting position is the last
position approached in the relinquishing channel. Traversing motion in the channel taking over
is not taken into account. For this reason, you must ensure that an axis replacement is not
performed from a position with protection zone violation.

If an axis intended for the axis interchange is not active in a channel, the position of the axis
last approached in the channel is taken as the current position. If this axis has not yet been
traversed in the channel, 0.0 is taken as the position.

Behavior for superimposed motions
Superimposed motions that are included in the main run, cannot be taken into account by the
block preparation with regard to the active protection zones.

This results in the following reactions:

● Alarm 10704 "Protection zone monitoring is not guaranteed"

● DB31, ... DBX39.0 = 1 (protection area monitoring not guaranteed)

A5: Protection zones
4.5 Boundary conditions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 179

4.6 Example

4.6.1 Protection zone on a lathe
The following internal protection zones are to be defined for a turning machine:

● one machine-specific and workpiece-related protection zone for the spindle chuck, without
limitation in the 3rd dimension

● one channel-specific protection zone for the workpiece, without limitation in the 3rd
dimension

● one channel-specific, tool-related protection zone for the tool holder, without limitation in
the 3rd dimension

The workpiece zero is placed at machine zero to define the protection zone for the workpiece.

When activated, the protection zone is then offset by 100 mm in the Z axis in the positive
direction.

A5: Protection zones
4.6 Example

Basic Functions
180 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

4.6.2 Protection zone definition in the part program

Part program excerpt for protection zone definition:

Program code Comment
DEF INT AB
G18 ; Working plane ZX
NPROTDEF(1,FALSE,0,0,0) ; Start of definition: Protection zone for spindle

chuck
G01 X100 Z0 ; Contour description: Traversing motion along the

contour
G01 X-100 Z0 ; Contour description: 1st Contour element
G01 X-100 Z110 ; Contour description: 2nd Contour element
G01 X100 Z110 ; Contour description: 3rd Contour element
G01 X100 Z0 ; Contour description: 4th Contour element
EXECUTE(AB) ; End of definition: Protection zone for spindle

chuck
CPROTDEF(1,FALSE,0,0,0) ; Start of definition: Protection zone for work-

piece
G01 X80 Z0 ; Contour description: Traversing motion along the

contour
G01 X-80 Z0 ; Contour description: 1st Contour element
G01 X-80 Z40 ; Contour description: 2nd Contour element
G01 X80 Z40 ; Contour description: 3rd Contour element
G01 X80 Z0 ; Contour description: 4th Contour element
EXECUTE(AB) ; End of definition: Protection zone for workpiece
CPROTDEF(2,TRUE,0,0,0) ; Start of definition: Protection zone for tool-

holder
G01 X0 Z-50 ; Contour description: Traversing motion along the

contour
G01 X-190 Z-50 ; Contour description: 1st Contour element
G03 X-210 Z-30 I-20 ; Contour description: 2nd Contour element
G01 X-210 Z20 ; Contour description: 3rd Contour element
G01 X0 Z50 ; Contour description: 4th Contour element
G01 X0 Z-50 ; Contour description: 5th Contour element
EXECUTE(AB) ; End of definition: Protection zone for toolholder

4.6.3 Protection zone definition with system variables

Machine-specific protection zone for the spindle chuck

System variable Val‐
ue

Description

$SN_PA_ACTIV_IMMED[0] 0 Protection zone for spindle chuck not immediately active
$SN_PA_T_W[0] 0 The protection zone for the spindle chuck is workpiece-related

A5: Protection zones
4.6 Example

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 181

System variable Val‐
ue

Description

$SN_PA_ORI[0] 1 Orientation of the protection zone: 1 = 3rd and 1st geometry
axis

$SN_PA_LIM_3DIM[0] 0 Type of limitation in the 3rd dimension: 0 = No limit
$SN_PA_PLUS_LIM[0] 0 Value of the limit in the positive direction in the 3rd dimension
$SN_PA_MINUS_LIM[0] 0 Value of the limit in the minus direction in the 3rd dimension
$SN_PA_CONT_NUM[0] 4 Number of valid contour elements
$SN_PA_CONT_TYP[0,0] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone for spindle chuck, contour element 1
$SN_PA_CONT_TYP[0,1] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone for spindle chuck, contour element 2
$SN_PA_CONT_TYP[0,2] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone for spindle chuck, contour element 3
$SN_PA_CONT_TYP[0,3] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone for spindle chuck, contour element 4
$SN_PA_CONT_TYP[0,4] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone for spindle chuck, contour element 5
$SN_PA_CONT_TYP[0,5] 0 Contour type[<i>] : 0 = not defined,

protection zone for spindle chuck, contour element 6
$SN_PA_CONT_TYP[0,6] 0 Contour type[<i>] : 0 = not defined,

protection zone for spindle chuck, contour element 7
$SN_PA_CONT_TYP[0,7] 0 Contour type[<i>] : 0 = not defined,

protection zone for spindle chuck, contour element 8
$SN_PA_CONT_TYP[0,8] 0 Contour type[<i>] : 0 = not defined,

protection zone for spindle chuck, contour element 9
$SN_PA_CONT_TYP[0,9] 0 Contour type[<i>] : 0 = not defined,

protection zone for spindle chuck, contour element 10
$SN_PA_CONT_ORD[0,0] -100 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 1
$SN_PA_CONT_ORD[0,1] -100 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 2
$SN_PA_CONT_ORD[0,2] 100 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 3
$SN_PA_CONT_ORD[0,3] 100 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 4
$SN_PA_CONT_ORD[0,4] 0 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 5
$SN_PA_CONT_ORD[0,5] 0 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 6
$SN_PA_CONT_ORD[0,6] 0 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 7
$SN_PA_CONT_ORD[0,7] 0 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 8
$SN_PA_CONT_ORD[0,8] 0 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 9
$SN_PA_CONT_ORD[0,9] 0 End point of contour[<i>], ordinate value

protection zone for spindle chuck, contour element 10

A5: Protection zones
4.6 Example

Basic Functions
182 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable Val‐
ue

Description

$SN_PA_CONT_ABS[0,0] 0 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 1

$SN_PA_CONT_ABS[0,1] 110 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 2

$SN_PA_CONT_ABS[0,2] 110 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 3

$SN_PA_CONT_ABS[0,3] 0 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 4

$SN_PA_CONT_ABS[0,4] 0 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 5

$SN_PA_CONT_ABS[0,5] 0 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 6

$SN_PA_CONT_ABS[0,6] 0 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 7

$SN_PA_CONT_ABS[0,7] 0 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 8

$SN_PA_CONT_ABS[0,8] 0 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 9

$SN_PA_CONT_ABS[0,9] 0 End point of contour[<i>], abscissa value
protection zone for spindle chuck, contour element 10

$SN_PA_CENT_ORD[0,0] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 1

$SN_PA_CENT_ORD[0.1] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 2

$SN_PA_CENT_ORD[0,2] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 3

$SN_PA_CENT_ORD[0,3] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 4

$SN_PA_CENT_ORD[0,4] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 5

$SN_PA_CENT_ORD[0,5] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 6

$SN_PA_CENT_ORD[0,6] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 7

$SN_PA_CENT_ORD[0,7] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 8

$SN_PA_CENT_ORD[0,8] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 9

$SN_PA_CENT_ORD[0,9] 0 Center point of circular contour[<i>], ordinate value
protection zone for spindle chuck, contour element 10

$SN_PA_CENT_ABS[0,0] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 1

$SN_PA_CENT_ABS[0.1] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 2

$SN_PA_CENT_ABS[0,2] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 3

A5: Protection zones
4.6 Example

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 183

System variable Val‐
ue

Description

$SN_PA_CENT_ABS[0,3] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 4

$SN_PA_CENT_ABS[0,4] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 5

$SN_PA_CENT_ABS[0,5] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 6

$SN_PA_CENT_ABS[0,6] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 7

$SN_PA_CENT_ABS[0,7] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 8

$SN_PA_CENT_ABS[0,8] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 9

$SN_PA_CENT_ABS[0,9] 0 Center point of circular contour[<i>], abscissa value
protection zone for spindle chuck, contour element 10

Channel-specific protection zone for the workpiece

System variable Val‐
ue

Remark

$SC_PA_ACTIV_IMMED[0] 0 Protection zone for workpiece not immediately active
$SC_PA_TW[0] 0 Protection zone for workpiece is workpiece-related
$SC_PA_ORI[0] 1 Orientation of the protection zone: 1 = 3rd and 1st geometry

axis
$SC_PA_LIM_3DIM[0] 0 Type of limitation in the 3rd dimension: 0 = no limitation
$SC_PA_PLUS_LIM[0] 0 Value of the limit in the positive direction in the 3rd dimension
$SC_PA_MINUS_LIM[0] 0 Value of the limit in the minus direction in the 3rd dimension
$SC_PA_CONT_NUM[0] 4 Number of valid contour elements
$SC_PA_CONT_TYP[0,0] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone workpiece, contour element 1
$SC_PA_CONT_TYP[0,1] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone workpiece, contour element 2
$SC_PA_CONT_TYP[0,2] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone workpiece, contour element 3
$SC_PA_CONT_TYP[0,3] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone workpiece, contour element 4
$SC_PA_CONT_TYP[0,4] 1 Contour type[<i>] : 1 = G1 for straight line,

protection zone workpiece, contour element 5
$SC_PA_CONT_TYP[0,5] 0 Contour type[<i>] : 0 = not defined,

protection zone for workpiece, contour element 6
$SC_PA_CONT_TYP[0,6] 0 Contour type[<i>] : 0 = not defined,

protection zone for workpiece, contour element 7
$SC_PA_CONT_TYP[0,7] 0 Contour type[<i>] : 0 = not defined,

protection zone for workpiece, contour element 8
$SC_PA_CONT_TYP[0,8] 0 Contour type[<i>] : 0 = not defined,

protection zone for workpiece, contour element 9
$SC_PA_CONT_TYP[0,9] 0 Contour type[<i>] : 0 = not defined,

protection zone for workpiece, contour element 10

A5: Protection zones
4.6 Example

Basic Functions
184 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable Val‐
ue

Remark

$SC_PA_CONT_ORD[0,0] -80 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 1

$SC_PA_CONT_ORD[0,1] -80 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 2

$SC_PA_CONT_ORD[0,2] 80 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 3

$SC_PA_CONT_ORD[0,3] 80 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 4

$SC_PA_CONT_ORD[0,4] 0 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 5

$SC_PA_CONT_ORD[0,5] 0 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 6

$SC_PA_CONT_ORD[0,6] 0 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 7

$SC_PA_CONT_ORD[0,7] 0 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 8

$SC_PA_CONT_ORD[0,8] 0 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 9

$SC_PA_CONT_ORD[0,9] 0 End point of contour[<i>], ordinate value
protection zone for workpiece, contour element 10

$SC_PA_CONT_ABS[0,0] 0 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 1

$SC_PA_CONT_ABS[0,1] 40 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 2

$SC_PA_CONT_ABS[0,2] 40 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 3

$SC_PA_CONT_ABS[0,3] 0 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 4

$SC_PA_CONT_ABS[0,4] 0 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 5

$SC_PA_CONT_ABS[0,5] 0 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 6

$SC_PA_CONT_ABS[0,6] 0 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 7

$SC_PA_CONT_ABS[0,7] 0 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 8

$SC_PA_CONT_ABS[0,8] 0 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 9

$SC_PA_CONT_ABS[0,9] 0 End point of contour[<i>], abscissa value
protection zone for workpiece, contour element 10

$SC_PA_CENT_ORD[0,0] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 1

$SC_PA_CENT_ORD[0,1] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 2

$SC_PA_CENT_ORD[0,2] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 3

A5: Protection zones
4.6 Example

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 185

System variable Val‐
ue

Remark

$SC_PA_CENT_ORD[0,3] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 4

$SC_PA_CENT_ORD[0,4] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 5

$SC_PA_CENT_ORD[0,5] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 6

$SC_PA_CENT_ORD[0,6] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 7

$SC_PA_CENT_ORD[0,7] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 8

$SC_PA_CENT_ORD[0,8] 0 Center point of circular contour[<i>], ordinate value
protection zone for workpiece, contour element 9

$SC_PA_CENT_ORD[0,9] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 10

$SC_PA_CENT_ABS[0,0] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 1

$SC_PA_CENT_ABS[0,1] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 2

$SC_PA_CENT_ABS[0,2] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 3

$SC_PA_CENT_ABS[0,3] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 4

$SC_PA_CENT_ABS[0,4] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 5

$SC_PA_CENT_ABS[0,5] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 6

$SC_PA_CENT_ABS[0,6] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 7

$SC_PA_CENT_ABS[0,7] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 8

$SC_PA_CENT_ABS[0,8] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 9

$SC_PA_CENT_ABS[0,9] 0 Center point of circular contour[<i>], abscissa value
protection zone for workpiece, contour element 10

Channel-specific protection zone for the tool holder

System variable Val‐
ue

Remark

$SC_PA_ACTIV_IMMED[1] 0 Protection zone for tool holder not immediately active
$SC_PA_TW[1] 3 Protection zone for the tool holder is tool-related
$SC_PA_ORI[1] 1 Orientation of the protection zone: 1 = 3rd and 1st geometry

axis
$SC_PA_LIM_3DIM[1] 0 Type of limitation in the 3rd dimension: 0 = no limitation
$SC_PA_PLUS_LIM[1] 0 Value of the limit in the positive direction in the 3rd dimension
$SC_PA_MINUS_LIM[1] 0 Value of the limit in the minus direction in the 3rd dimension
$SC_PA_CONT_NUM[1] 5 Number of valid contour elements

A5: Protection zones
4.6 Example

Basic Functions
186 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable Val‐
ue

Remark

$SC_PA_CONT_TYP[1,0] 1 Contour type[<i>] : 1 = G1 for straight line,
protection zone tool holder, contour element 1

$SC_PA_CONT_TYP[1,1] 3 Contour type[<i>] : 3 = G3 for circle element, counter clockwise,
protection zone for tool holder, contour element 2

$SC_PA_CONT_TYP[1,2] 1 Contour type[<i>] : 1 = G1 for straight line,
protection zone for tool holder, contour element 3

$SC_PA_CONT_TYP[1,3] 1 Contour type[<i>] : 1 = G1 for straight line,
protection zone for tool holder, contour element 4

$SC_PA_CONT_TYP[1,4] 1 Contour type[<i>] : 1 = G1 for straight line,
protection zone for tool holder, contour element 5

$SC_PA_CONT_TYP[1,5] 0 Contour type[<i>] : 0 = not defined,
protection zone for tool holder, contour element 6

$SC_PA_CONT_TYP[1,6] 0 Contour type[<i>] : 0 = not defined,
protection zone for tool holder, contour element 7

$SC_PA_CONT_TYP[1,7] 0 Contour type[<i>] : 0 = not defined,
protection zone for tool holder, contour element 8

$SC_PA_CONT_TYP[1,8] 0 Contour type[<i>] : 0 = not defined,
protection zone for tool holder, contour element 9

$SC_PA_CONT_TYP[1,9] 0 Contour type[<i>] : 0 = not defined,
protection zone for tool holder, contour element 10

$SC_PA_CONT_ORD[1,0] -190 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 1

$SC_PA_CONT_ORD[1,1] -210 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 2

$SC_PA_CONT_ORD[1,2] -210 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 3

$SC_PA_CONT_ORD[1,3] 0 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 4

$SC_PA_CONT_ORD[1,4] 0 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 5

$SC_PA_CONT_ORD[1,5] 0 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 6

$SC_PA_CONT_ORD[1,6] 0 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 7

$SC_PA_CONT_ORD[1,7] 0 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 8

$SC_PA_CONT_ORD[1,8] 0 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 9

$SC_PA_CONT_ORD[1,9] 0 End point of contour[<i>], ordinate value
protection zone for tool holder, contour element 10

$SC_PA_CONT_ABS[1,0] -50 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 1

$SC_PA_CONT_ABS[1,1] -30 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 2

$SC_PA_CONT_ABS[1,2] 20 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 3

A5: Protection zones
4.6 Example

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 187

System variable Val‐
ue

Remark

$SC_PA_CONT_ABS[1,3] 50 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 4

$SC_PA_CONT_ABS[1,4] -50 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 5

$SC_PA_CONT_ABS[1,5] 0 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 6

$SC_PA_CONT_ABS[1,6] 0 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 7

$SC_PA_CONT_ABS[1,7] 0 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 8

$SC_PA_CONT_ABS[1,8] 0 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 9

$SC_PA_CONT_ABS[1,9] 0 End point of contour[<i>], abscissa value
protection zone for tool holder, contour element 10

$SC_PA_CENT_ORD[1,0] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 1

$SC_PA_CENT_ORD[1,1] -190 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 2

$SC_PA_CENT_ORD[1,2] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 3

$SC_PA_CENT_ORD[1,3] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 4

$SC_PA_CENT_ORD[1,4] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 5

$SC_PA_CENT_ORD[1,5] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 6

$SC_PA_CENT_ORD[1,6] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 7

$SC_PA_CENT_ORD[1,7] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 8

$SC_PA_CENT_ORD[1,8] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 9

$SC_PA_CENT_ORD[1,9] 0 Center point of circular contour[<i>], ordinate value
protection zone for tool holder, contour element 10

$SC_PA_CENT_ABS[1,0] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 1

$SC_PA_CENT_ABS[1,1] -30 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 2

$SC_PA_CENT_ABS[1,2] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 3

$SC_PA_CENT_ABS[1,3] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 4

$SC_PA_CENT_ABS[1,4] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 5

$SC_PA_CENT_ABS[1,5] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 6

A5: Protection zones
4.6 Example

Basic Functions
188 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable Val‐
ue

Remark

$SC_PA_CENT_ABS[1,6] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 7

$SC_PA_CENT_ABS[1,7] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 8

$SC_PA_CENT_ABS[1,8] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 9

$SC_PA_CENT_ABS[1,9] 0 Center point of circular contour[<i>], abscissa value
protection zone for tool holder, contour element 10

4.6.4 Activating protection zones

Part program excerpt for activating protection zones for spindle chuck, workpiece, and tool
holder:

Program code Comment
NPROT(1,2,0,0,0) ; Protection zone: Spindle chuck
CPROT(1,2,0,0,100) ; Protection zone: Workpiece with 100 mm offset in the

Z axis
CPROT(2,2,0,0,0) ; Protection zone: Toolholder

4.7 Data lists

4.7.1 Machine data

4.7.1.1 NC-specific machine data

Number Identifier: $MN_ Description
10618 PROTAREA_GEOAX_CHANGE_MODE Response for a transformation change and geometry

axis interchange
18190 MM_NUM_PROTECT_AREA_NCK Number of available machine-specific protection zones

A5: Protection zones
4.7 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 189

4.7.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
28200 MM_NUM_PROTECT_AREA_CHAN (SRAM) Number of available channel-specific protection zones
28210 MM_NUM_PROTECT_AREA_ACTIVE Maximum number of protection zones that can be acti‐

vated simultaneously in the channel
28212 MM_NUM_PROTECT_AREA_CONTUR Maximum number of definable contour elements in the

channel

4.7.2 Signals

4.7.2.1 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Enable protection zones DB21,DBX1.1 DB320x.DBX1.1
Feed disable DB21,DBX6.0 DB320x.DBX6.0
Activate machine-specific protection zones 1 ... 8 DB21,DBX8.0 ... 7 DB320x.DBX8.0 ... 7
Activate machine-specific protection zone 9 DB21,DBX9.0 DB320x.DBX9.0
Activate machine-specific protection zone 10 DB21,DBX9.1 DB320x.DBX9.1
Activate channel-specific protection zones 1 ... 8 DB21,DBX10.0 ... 7 DB320x.DBX10.0 ... 7
Activate channelspecific protection zone 9 DB21,DBX11.0 DB320x.DBX11.0
Activate channelspecific protection zone 10 DB21,DBX11.1 DB320x.DBX11.1

4.7.2.2 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Machine-specific protection zones 1 ... 8 preactivated DB21,DBX272.0 ... 7 DB330x.DBX8.0 ... 7
Machine-specific protection zone 9 preactivated DB21,DBX273.0 DB330x.DBX9.0
Machine-specific protection zone 10 preactivated DB21,DBX273.1 DB330x.DBX9.1
Channel-specific protection zones 1 ... 8 preactivated DB21,DBX274.0 ... 7 DB330x.DBX10.0 ... 7
Channelspecific protection zone 9 preactivated DB21,DBX275.0 DB330x.DBX11.0
Channelspecific protection zone 10 preactivated DB21,DBX275.1 DB330x.DBX11.1
Machine-specific protection zones 1 ... 8 preactivated DB21,DBX276.0 ... 7 DB330x.DBX12.0 ... 7
Machine-specific protection zone 9 violated DB21,DBX277.0 DB330x.DBX13.0
Machine-specific protection zone 10 violated DB21,DBX277.1 DB330x.DBX13.1
Channel-specific protection zone 1 ... 8 violated DB21,DBX278.0 ... 7 DB330x.DBX14.0 ... 7
Channelspecific protection zone 9 violated DB21,DBX279.0 DB330x.DBX15.0
Channelspecific protection zone 10 violated DB21,DBX279.1 DB330x.DBX15.1

A5: Protection zones
4.7 Data lists

Basic Functions
190 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

B1: Continuous-path mode, Exact stop, Look Ahead 5
5.1 Brief Description

Exact stop or exact stop mode
In exact stop traversing mode, all axes involved in the traversing motion (except axes of modal
traversing modes) are decelerated at the end of each block until they come to a standstill. The
transition to the next block occurs only when all axes involved in the traversing motion have
reached their programmed target position depending on the selected exact stop criterion.

Continuous-path mode
In the continuous-path mode, the NC attempts to keep the programmed path velocity as
constant as possible. In particular, deceleration of the path axes at the block limits of the part
program is to be avoided.

LookAhead
LookAhead is a function for optimizing the continuous path mode.

Smooth and uniform machining of workpieces is necessary to ensure a high-quality surface
finish. For this reason, path velocity variations should be avoided during machining whenever
possible. Without LookAhead, the NC only takes the traversing block immediately following
the current traversing block into consideration when determining the possible path velocity. If
the following block contains only a short path, the NC must reduce the path velocity (decelerate
in the current block) to be able to stop in time at the end of the next block, if necessary.

When the NC "looks ahead" over a configurable number of traversing blocks following the
current traversing block, a much higher path velocity can be attained under certain
circumstances because the NC now has considerably more traversing blocks and more path
available for calculation.

This has the following advantages:

● Machining with higher path velocities on average

● Improved surface quality by avoiding deceleration and acceleration

Smoothed path velocity
"Smoothing the path velocity" is a function especially for applications (such as high speed
milling in mold and die making) that require an extremely steady and consistent path velocity.
Deceleration and acceleration processes that would cause high-frequency excitation of
machine resonances are avoided with the "Smoothing the path velocity" function.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 191

This has the following advantages:

● Improved surface quality and shorter machining time by avoiding excitation of machine
resonances.

● Constant profile of path velocity and cutting rates by avoiding "unnecessary" acceleration
processes, i.e. acceleration processes that do not greatly improve the program run time.

Adaptation of the dynamic path response
In addition to "smoothing the path velocity", "dynamic path response adaptation" is another
function for avoiding high-frequency excitations of machine resonances while optimizing the
dynamic path response at the same time. To achieve this, highly frequency changes in path
velocity are automatically executed with lower jerk or acceleration values than the dynamic
response limit value parameterized in the machine data.

Thus, with low-frequency changes in the path velocity, the full dynamic response limit values
apply, whereas with high-frequency changes, only the reduced dynamic response limit values
act due to the automatic dynamic response adaptation.

Dynamic response mode for path interpolation
Optimizing the path dynamic response also includes the technology-specific dynamic response
settings which are preset for different machining technologies (including tapping, roughing,
smoothing) and can be activated in the part program by calling the respective dynamic
response mode.

Free-form surface mode
Any fluctuation in curvature or torsion leads to a change in path velocity. This generally results
in unnecessary decelerating and accelerating while machining free-form surface workpieces,
which may adversely affect the quality of the surfaces of the workpieces.

The following functions are available for machining free-form surfaces.

● "Free-form surface mode: Basic functions"
This makes the definition of the path velocity profile "less sensitive" to fluctuations in
curvature and torsion.

● "Free-form surface mode: Extension function"
This extension in standard LookAhead functionality is used to calculate the path velocity
profile while machining free-form surfaces.

The advantages of free-form surface mode lie in a more homogeneous workpiece surface and
lower machine stress levels.

Compressing linear blocks
When a workpiece design is completed with a CAD/CAM system, the CAD/CAM system
generally also compiles the corresponding part program to create the workpiece surface. To
do so, most CAD/CAM systems use linear blocks to describe even curved sections of the
workpiece surface. Many interpolation points are generally necessary to maintain the required
contour accuracy. This results in many linear blocks, typically with very short paths.

B1: Continuous-path mode, Exact stop, Look Ahead
5.1 Brief Description

Basic Functions
192 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The "Compressor function" uses polynomial blocks to perform a subsequent approximation of
the contour specified by the linear blocks. During this process, an assignable number of linear
blocks is replaced by a polynomial block.

Advantages:

● Reduction of the number of traversing blocks

● Increased path velocity

● Increased surface quality

● Continuous block transitions

Compressing short spline blocks
A spline defines a curve, which comprises 2nd or 3rd degree polynomials With spline
interpolation, the control system can generate a smooth curve characteristic from only a few
specified interpolation points of a set contour.

The advantages of the spline interpolation as compared to the linear interpolation are:

● Reduction of the number of required part program blocks for describing a curved contour.

● Soft characteristic that reduces the stress on the mechanical system, even between part
program blocks.

The disadvantages of spline interpolation as compared to linear interpolation are:

● For a spline curve no exact curve characteristic, but only a tolerance band can be specified,
within which the spline curve should lie.

As with linear interpolation, the processing of splines can produce such short blocks that the
path velocity must be reduced to enable interpolation of the spline blocks. This is also the case,
when the spline has a long, smooth curve. The "Compression of short spline blocks" function
allows you to combine these spline blocks such that the resulting block length is sufficient and
does not reduce the path velocity.

5.2 Exact stop mode

Exact stop or exact stop mode
In the exact stop traversing mode, all path axes and special axes involved in the traversing
motion that are not traversed modally, are decelerated at the end of each block until they come
to a standstill. The transition to the next block occurs only when all axes involved in the
traversing motion have reached their programmed target position depending on the selected
exact stop condition.

This results in the following response are obtained:

● The program run time is considerably longer compared to continuous path mode due to
the deceleration of the axes and the wait time until "Exact stop" status is reached for all
machine axes involved.

● In exact stop mode, undercuts can occur on the workpiece surface during machining.

B1: Continuous-path mode, Exact stop, Look Ahead
5.2 Exact stop mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 193

Exact stop condition
The following exact stop conditions can be set:

● "Exact stop coarse"

● "Exact stop fine"

● "Interpolator end"

Application
Exact stop mode should always be used when the programmed contour must be executed
exactly.

Activation
In a program, exact stop operation can be specified using the following commands, either
modal or for specific blocks:

Command Meaning
G60 Exact stop operation is effective from the current modal block.
G9 Exact stop operation is effective in the current block.

Exact stop conditions - "Exact stop coarse" and "Exact stop fine"
The exact stop condition "coarse" or "fine" is fulfilled by a machine axis if its current following
error is less than or equal to the tolerance range around the setpoint position, parameterized
in the machine data:

● MD36000 $MA_STOP_LIMIT_COARSE (exact stop coarse)

● MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

Figure 5-1 Tolerance window of exact stop conditions

B1: Continuous-path mode, Exact stop, Look Ahead
5.2 Exact stop mode

Basic Functions
194 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

The tolerance windows of the exact stop conditions "Exact stop coarse" and "Exact stop fine"
should be assigned in such a way that the following requirement is fulfilled:

"Exact stop coarse" > "Exact stop fine"

Exact stop condition, "Interpolator end"
With exact stop condition "Interpolator end", the block change to the next block takes place as
soon as all path axes and non-modal special axes involved in the traversing motion have
reached the position programmed in the block in terms of the setpoint value. That is, the
interpolator has executed the block.

The actual position and the following error of the relevant machine axes are not taken into
consideration for exact stop condition "Interpolator end". Thus, depending on the dynamic
response of the machine axes, this can result in a relatively large smoothing of the contour at
the block changes in comparison to the exact stop conditions "Exact stop coarse" and "Exact
stop fine".

Activating the programmable exact stop conditions
The programmable exact stop conditions are activated using the following commands:

Command Exact stop condition
G601 Exact stop fine
G602 Exact stop coarse
G603 Interpolator end

Block change depending on exact stop condition
The figure below illustrates the block change timing in terms of the selected exact stop
condition.

Figure 5-2 Block change depending on exact stop condition

B1: Continuous-path mode, Exact stop, Look Ahead
5.2 Exact stop mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 195

Weighting factor for exact stop conditions
A parameter set-dependent evaluation of the exact stop conditions can be specified via the
following axis-specific machine data:

MD36012 $MA_STOP_LIMIT_FACTOR[<Parameter set>] = <Value>

The evaluation factor is applied to the values of the following machine data:

● MD36000 $MA_STOP_LIMIT_COARSE

● MD36010 $MA_STOP_LIMIT_FINE

● MD36030 $MA_STANDSTILL_POS_TOL

Application examples
● Adaptation of the positioning response to different mass ratios, such as after a new gearbox

stage has been selected.

● Reduction in positioning time, depending on various machining states, such as roughing
and finishing

Parameterizable input of the effective exact stop conditions
The exact stop conditions for the commands of the 1st G group be permanently is specified.
As a consequence, programmed exact stop conditions are no longer effective.

Exact stop conditions can be set independently of one another for the following commands:

● Rapid traverse G0
● All other commands of the 1st G group

The exact stop condition is set on a channel-for-channel basis using the following decimal-
coded machine data:

MD20550 $MC_EXACT_POS_MODE = <Z><E>

Z E Effective exact stop condition
0 0 Programmed exact stop condition
1 1 G601 (Exact stop window fine)
2 2 G602 (Exact stop window coarse)
3 3 G603 (Interpolator end)

E (ones position): Setting the exact stop condition für rapid traverse.
Z (tens position): Setting the exact stop condition for all other commands of the 1st G group.

Example
MD20550 $MC_EXACT_POS_MODE = 02

● <E> = 2: With rapid traverse, exact stop condition G602 (exact stop window coarse) is
always active, irrespective of any programming.

● <Z> = 0: When traversing with all other commands of the 1st G group, the programmed
exact stop condition is effective.

B1: Continuous-path mode, Exact stop, Look Ahead
5.2 Exact stop mode

Basic Functions
196 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Block change behavior for block transitions from G0 ↔ non-G0 to continuous path mode
For the continuous path mode, the block change behavior between rapid traverse and non
rapid traverse blocks (G0 ↔ non-G0) can be set using the following machine data:

MD20552 $MC_EXACT_POS_MODE_G0_TO_G1 = <Value>

<Value> Meaning
0 No additional stop at the block transition.
1 Stop at the block transition.

The behavior corresponds to G601 (exact stop window, fine)
2 Stop at the block transition.

The behavior corresponds to G602 (exact stop window, coarse)
3 Stop at the block transition.

The behavior corresponds to G603 (interpolator end)
4 No stop at the block transition.

For the continuous path mode, for block changes from G0 → non-G0, in the G0 block, the
actual value of the feedrate correction of the subsequent non-G0 block is predicatively taken
into account. Depending on the axis dynamic performance and the path length of the current
block, the block change is executed with the exact or the best possible adapted velocity of
the following block.

5 No stop at the block transition.
For the continuous path mode, for block changes from G0 → non-G0 and non-G0 → G0, the
current value of the feedrate correction (G0 → non-G0) or the rapid traverse contour (non-
G0 → G0) of the following block is predicatively taken into account. Depending on the axis
dynamic performance and the path length of the current block, the block change is executed
with the exact or the best possible adapted velocity of the following block.

5.3 Continuous-path mode

5.3.1 General functionality

Continuous-path mode
In the continuous-path mode, the path velocity is not decelerated for the block change in order
to permit the fulfillment of an exact stop criterion. The objective of this mode is to avoid rapid
deceleration of the path axes at the block-change point so that the axis velocity remains as
constant as possible when the program moves to the next block. To achieve this objective, the
"LookAhead" function is also activated when the continuous-path mode is selected.

Continuous-path mode causes the smoothing and tangential shaping of angular block
transitions by local changes in the programmed contour. The extent of the change relative to
the programmed contour can be limited by specifying the overload factor or rounding criteria.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 197

Continuous-path mode:

● Contour rounding.

● Reduces machining times by eliminating braking and acceleration processes that are
required to fulfill the exact-stop criterion.

● Improves cutting conditions because of the more constant velocity.

Continuous-path mode is suitable if:

● A contour must be traversed as quickly as possible (e.g. with rapid traverse).

● The exact contour may deviate from the programmed contour within a specific tolerance
for the purpose of obtaining a continuous contour

Continuous-path mode is not suitable if:

● A contour is to be traversed precisely.

● An absolutely constant velocity is required.

Implicit exact stop
In some cases, an exact stop needs to be generated in continuous-path mode to allow the
execution of subsequent actions. In such situations, the path velocity is reduced to zero.

● If auxiliary functions are output before the traverse motion, the previous block is only
terminated when the selected exact-stop criterion is fulfilled.

● If auxiliary functions are to be output after the traverse motion, they are output after the
interpolator end of the block.

● If an executable block (e.g. starting of a positioning axis) contains no travel information for
the path axes, the previous block is terminated on reaching the selected exact-stop criterion.

● If a positioning axis is declared to be the geometry axis, the previous block is terminated
at the interpolator end when the geometry axis is programmed.

● If a synchronized axis is programmed that was last programmed as a positioning axis or
spindle (initial setting of the special axis is positioning axis), the previous block is ended at
the interpolator end.

● If the transformation is changed, the block previously processed is terminated with the
active exact-stop criterion.

● A block is terminated on interpolator end if the following block contains the changeover of
the acceleration profile BRISK/SOFT (see Section "B2: Acceleration (Page 267)").

● If the "empty buffer" function is programmed, the previous block is terminated when the
selected exact-stop criterion is reached.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
198 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Velocity = 0 in continuous-path mode
Regardless of the implicit exact stop response, the path motion is braked down to zero velocity
at the end of the block in cases where:

● Positioning axes are programmed with the instruction POS, and their traversing time
exceeds that of the path axes. The block change occurs when the "exact stop fine" of the
positioning axes is reached.

● The time taken to position a spindle programmed with the instruction SPOS is longer than
the traversing time of the path axes. The block change is carried out when the "exact stop
fine" of the positioning spindle is reached.

● The current block contains traversing commands for geometry axes and the following block
traversing commands for synchronized axes or, alternatively, the current block contains
traversing commands for synchronized axes and the subsequent block traversing
commands for geometry axes.

● Synchronization is required.

5.3.2 Velocity reduction according to overload factor

Function
The function lowers the path velocity in continuou-path mode until the non-tangential block
transition can be traversed in one interpolation cycle while respecting the deceleration limit
and taking an overload factor into account.

With the reduced velocity, axial jumps in velocity are produced with a non-tangential contour
at the block transition. These jumps in velocity are also performed by the coupled motion
synchronized axes. The jump in velocity prevents the path velocity dropping to zero. This jump
is performed if the axial velocity was reduced with the axial acceleration to a velocity from
which the new setpoint can be reached with the jump. The magnitude of the setpoint jump can
be limited using an overload factor. Because the magnitude of the jump is axial, the minimum
jump of the path axes which are active during the block change is considered during block
transition.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 199

Figure 5-3 Axial velocity change on block transition

With a practically tangential block transition, the path velocity is not reduced if the permissible
axial accelerations are not exceeded. This means that very small bends in the contour (e.g.
0.5°) are overtraveled directly.

Overload factor
The overload factor restricts step changes in the machine axis velocity at block ends. To ensure
that the velocity jump does not exceed the maximum load on the axis, the jump is derived from
the acceleration of the axis.

The overload factor indicates the extent by which the acceleration of the machine axis
(MD32300 $MA_MAX_AX_ACCEL) may be exceeded for an IPO-cycle.

The velocity jump results as follows:

Velocity jump = axis acceleration * (overload factor-1) * interpolator cycle.

The overload factor is saved in the machine data:

MD32310 $MA_MAX_ACCEL_OVL_FACTOR (overload factor for axial velocity jumps)

Factor 1.0 means that only tangential transitions with finite velocity can be traversed. For all
other transitions, the velocity is reduced to zero by changing the setpoint. This behavior is

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
200 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

equivalent to the function "Exact stop with interpolator end". This is undesirable for continuous-
path mode, so the factor must be set to greater than 1.0.

Note

For startup and installation, please note that the factor must be reduced if the machine is likely
to be subject to vibrations during angular block transitions and rounding is not to be used.

By setting the following machine data, the block transitions are rounded independent of the
set overload factor with G641/G642:

MD20490 $MC_IGNORE_OVL_FACTOR_FOR_ADIS

Activation/deactivation
Continuous-path mode with a reduction in speed according to the overload factor can be
activated in any NC part program block by the modal command G64.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode G64 can be deactivated by selecting:

● Modal exact stop G60

● Rounding G641, G642, G643, G644 or G645

Implicit continuous-path mode
If it is not possible to insert rounding blocks in continuous-path mode with rounding G641 due
to the very short block path lengths (e.g. zero-clocked blocks), the mode is switched over to
continuous-path mode G64.

5.3.3 Rounding

Function
The "Rounding" function adds intermediate blocks (positioning blocks) along a programmed
contour (path axes) at non-continuous (angular) block transitions so that the resulting new
block transition is continuous (tangential).

Synchronized axes
The rounding considers not only the geometry axes but also all synchronous axes. Although
a continuous block transition cannot be created for both axis types concurrently for the parallel
travel of path and synchronous axes. In this case, to favor path axes that always travel exactly,
only an approximately continuous block transition is created for synchronous axes.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 201

Rounding for G64
Rounding is performed even when to observe the dynamic-response limits at the block
transition, a speed is required that for G64 exceeds the permitted speed at the block transition
(see Section "Velocity reduction according to overload factor (Page 199)" "Overload factor").

Impact on synchronization conditions
The use of rounding shortens the programmed blocks between which the rounding block(s)
are added. The programmed block boundary disappears and are then no longer available as
criterion for any synchronization conditions (e.g. auxiliary function output parallel to motion,
stop at block end).

Note

We recommend that when the "Rounding" function is used, synchronization conditions apply
to the end of the block before the rounding location rather than the end of the inserted rounding
block. The following block would then not be started and with a stop at the block end, the
contour of the following block can still be changed manually.

Exceptions
In the following cases, no rounding occurs at the block transition, for example, between the
N10 blocks after N20, i.e. no rounding block is added:

Implicit stopping of the traversing motion
Possible causes:

● Auxiliary function output active before the traversing motion for N20

● N20 does not contain any traversing motion for path axes

● In N20, an axis that was previously a positioning axis traverses as a path axis for the first
time

● In N20, an axis that was previously a path axis traverses as a positioning axis for the first
time

● Geometry axes traverse in N10 but not in N20

● Geometry axes traverse in N20 but not in N10

● Activation of thread-cutting G33 in N20

● Change from BRISK and SOFT

● Transformation-relevant axes are not completely assigned to the path motion (e.g. for
oscillation axes, positioning axes).

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
202 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The insertion of the rounding block would slow part program machining overproportionally
Possible causes:

● A program or program section consists of a number of very short traversal blocks (≈ 1
interpolator cycle / traversal block; because each traversal block requires at least one
interpolator cycle, the inserted intermediate block would almost double the machining time)

● G64 (path control operation without rounding) without speed reduction active for block
change

● The parameterized overload factor (MD32310 $MA_MAX_ACCEL_OVL_FACTOR) permits
the traversal of the programmed contour without the path speed needing to be reduced.
See also: MD20490 $MC_IGNORE_OVL_FACTOR_FOR_ADIS

Path parameters inhibit the rounding
Possible causes:

● G641 (path control operation with rounding in accordance with the path criterion) is active
but rapid traverse is active (G0) AND ADISPOS == 0 (rounding separation for G0)

● G641 (path control operation with rounding in accordance with the path criterion) is active
but rapid traverse is not active AND ADIS == 0 (rounding separation for path functions G1,
G2, G3, ...)

● G642 or G643 (path control operation with rounding while observing defined tolerances) is
active but all tolerances == zero

N10 or N20 does not contain traversing motion (zero block).
Normally no zero blocks are created. Exceptions:

● Active synchronous action

● Program jumps

Impact on synchronization conditions
The programmed blocks between which the rounding contour is added are shortened during
rounding. The original programmed block boundary disappears and is then no longer available
for any synchronization conditions (e.g. auxiliary function output parallel to motion, stop at
block end).

Note

We recommend that when the "Rounding" function is used, synchronization conditions apply
to the end of the block before the rounding location rather than the end of the inserted rounding
block. The following block would then not be started and with a stop at the block end, the
contour of the following block can still be changed.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 203

5.3.3.1 Rounding according to a path criterion (G641)

Function
In continuous-path mode with rounding according to a path criterion, the size of the rounding
area is influenced by the path criteria ADIS and ADISPOS.

The path criteria ADIS and ADISPOS describe the maximum distances which a rounding block
can occupy before and after a block.

Note

Acute angles produce rounding curves with a large degree of curvature and therefore cause
a corresponding reduction in velocity.

Note

ADISPOS is programmed in the same way as ADIS, but must be used specifically for
movements in rapid traverse mode G0.

Scope of the path criterion
● ADIS or ADISPOS must be programmed. If the default is "zero", G641 behaves like G64.

● If only one of the blocks involved is rapid traverse G0, the smaller rounding distance applies.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
204 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● If a very small value is used for ADIS, the controller must make sure that every interpolated
block, even an intermediate rounding block, contains at least one interpolation point. The
maximum path velocity is thereby limited to ADIS / interpolator cycle.

● Irrespective of ADIS and ADISPOS, the rounding area is limited by the block length.
In blocks with short distances (distance < 4* ADIS and < 4 * ADISPOS respectively), the
rounding distance is reduced so that a traversable part of the original block is retained. The
remaining length depends on the axis path and is approximately 60% of the distance still
to be traversed in the block. ADIS or ADISPOS is therefore reduced to the remaining 40%
of the distance to be traversed. This algorithm prevents a rounding block being inserted for
a very small change in contour. In this case, switchover to continuous-path mode G64 is
automatic until rounding blocks can be inserted again.

Figure 5-4 Path with limitation of ADIS

Activation/deactivation
Continuous-path mode with rounding based on a path criterion can be activated in any NC
part program block by the modal command G641. Before or on selection, the path criteria
ADIS/ADISPOS must be specified.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode with rounding based on a path criterion (G641) can be deactivated by
selecting:

● Modal exact stop (G60)

● Continuous-path mode G64, G642, G643, G644 or G645

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 205

Program example

Program code Comment
N1 G641 Y50 F10 ADIS=0.5 ; Continuous-path mode with rounding based on a path

criterion (rounding clearance: 0.5 mm)
N2 X50
N3 X50.7
N4 Y50.7
N5 Y51.4
N6 Y51.0
N7 X52.1

5.3.3.2 Rounding in compliance with defined tolerances (G642/G643)

Function
In continuous-path mode involving rounding in compliance with defined tolerances, the
rounding normally takes place while adhering to the maximum permissible path deviation.
Instead of these axis-specific tolerances, the maintenance of the maximum contour deviation
(contour tolerance) or the maximum angular deviation of the tool orientation (orientation
tolerance) can be configured.

Activation
Continuous-path mode with rounding in compliance with defined tolerances can be activated
in any NC part program block by the modal command G642 or G643.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode with rounding in compliance with defined tolerances (G642/G643) can
be deactivated by selecting:

● Modal exact stop (G60)

● Continuous-path mode G64, G641, G644 or G645

Differences between G642 - G643
With regard to their rounding behavior, commands G642 and G643 differ as follows:

G642 G643
With G642, the rounding path is determined on the
basis of the shortest distance for rounding all axes.
This value is taken into account when generating
a rounding block.

In the case of G643, each axis may have a differ‐
ent rounding path. The rounding travels are taken
into account axis-specifically and block-internally
(⇒ no separate rounding block).

With G642, the rounding area results from the
smallest tolerance setting.

Very different specifications for the contour toler‐
ance and the tolerance of the tool orientation can
only have effect with G643.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
206 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameterization
Maximum path deviation

The maximum path deviation permitted with G642/G643 is set for each axis in the machine
data:

MD33100 $MA_COMPRESS_POS_TOL

Contour tolerance and orientation tolerance

The contour tolerance and orientation tolerance are set in the channel-specific setting data:

SD42465 $SC_SMOOTH_CONTUR_TOL (maximum contour deviation)

SD42466 $SC_SMOOTH_ORI_TOL (maximum angular deviation of the tool orientation)

The settings data can be programmed in the NC program and can in this way be specified
differently for each block transition.

Note

The setting data SD42466 $SC_SMOOTH_ORI_TOL is effective only in active orientation
transformation.

Rounding behavior

Rounding behavior with G642 and G643 is configured via the machine data:

MD20480 $MC_SMOOTHING_MODE (rounding behavior with G64x)

The units positions (E) define the behavior for G643, the tens positions (Z) the behavior for
G642:

Value E or Z Meaning
0 All axes:

Rounding by maintaining the maximum permitted path deviation:
MD33100 $MA_COMPRESS_POS_TOL

1 Geometry axes:
Rounding by maintaining the contour tolerance:
SD42465 $SC_SMOOTH_CONTUR_TOL
Remaining axes:
Rounding by maintaining the maximum permitted path deviation:
MD33100 $MA_COMPRESS_POS_TOL

2 Geometry axes:
Rounding by maintaining the orientation tolerance:
SD42466 $SC_SMOOTH_ORI_TOL
Remaining axes:
Rounding by maintaining the maximum permitted path deviation:
MD33100 $MA_COMPRESS_POS_TOL

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 207

Value E or Z Meaning
3 Geometry axes:

Rounding by maintaining the contour tolerance and the orientation tolerance:
SD42465 $SC_SMOOTH_CONTUR_TOL
SD42466 $SC_SMOOTH_ORI_TOL
Remaining axes:
Rounding by maintaining the maximum permitted path deviation:
MD33100 $MA_COMPRESS_POS_TOL

4 All axes:
The rounding length programmed with ADIS or with ADISPOS is used (as in case of
G641).
Any axis-specific tolerance or contour and orientation tolerance specifications are
ignored.

Profile for limit velocity

The use of a velocity profile for rounding in compliance with defined tolerances is controlled
via the hundreds position in MD20480:

Value Meaning
< 100: A profile of the limit velocity is calculated within the rounding area, based on the defined

maximum values for acceleration and jerk on the participating axes or path.
This can lead to an increase in the path velocity in the rounding area and therefore to the
acceleration of the participating axes.

≥100: A profile of the limit velocity is not calculated for rounding blocks with G641/G642. A
constant velocity limit is specified instead.
This prevents the participating axes being accelerated into the rounding area during
rounding with G641/G642. However, in certain cases, this setting can cause the rounding
blocks to be traversed too slowly, especially in large rounding areas.
1xx: No velocity profile for G641
2xx: No velocity profile for G642

Note

MD28530 $MC_MM_PATH_VELO_SEGMENTS (number of memory elements for limiting the
path velocity)

Supplementary conditions
Restriction for protection zones with active radius compensation and tool orientation:

Although tool radius compensation is applied for a tool orientation, which is not perpendicular
to one of the three datum planes of the basic coordinate system, the protection zones are not
rotated onto the corresponding plane.

For G643 the following must apply:

MD28530 $MC_MM_PATH_VELO_SEGMENTS > 0 (number of memory elements for limiting
the path velocity)

If this condition is met, then it must be applicable for all axes:

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
208 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD35240 $MC_ACCEL_TYPE_DRIVE = FALSE (acceleration characteristic DRIVE for axes
on/off)

5.3.3.3 Rounding with maximum possible axial dynamic response (G644)

Function
Maximizing the dynamic response of the axes is key to this type of continuous-path mode with
rounding.

Note

Rounding with G644 is only possible if:
● All the axes involved contain only a linear motion in both the observed blocks.
● No kinematic transformation is active

In case an involved axis contains a polynomial (polynomial programmed, spline active,
compressor active) or a kinematic transformation is active, the block transition is rounded with
G642.

Activation
Continuous-path mode with rounding with the maximum possible axial dynamic response can
be activated in any NC part program block by the modal command G644.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode with rounding with the maximum possible axial dynamic response
(G644) can be deactivated by selecting:

● Modal exact stop (G60)

● Continuous-path mode G64, G641, G642, G643 or G645

Parameterization
Rounding behavior with G644 is configured via the thousands and tens of thousands places
in the machine data:

MD20480 $MC_SMOOTHING_MODE (rounding behavior with G64x)

Value Meaning

Thousand's place:
0xxx: When rounding with G644, the maximum deviations for each axis specified by the following

machine data are respected:
MD33100 $MA_COMPRESS_POS_TOL
If the dynamics of the axis permit, then any specified tolerance is not utilized.

1xxx: Input the maximum rounding path by programming ADIS=... or ADISPOS=...(as for G641)

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 209

Value Meaning
2xxx: Input the maximum possible frequencies of each axis in the rounding area using the ma‐

chine data:
MD32440 $MA_LOOKAH_FREQUENCY (smoothing frequency for LookAhead)
The rounding area is defined so that no frequencies in excess of the specified maximum
can occur while the rounding motion is in progress.

3xxx: Any axis that has a velocity jump at a corner traverses around the corner with the maximum
possible dynamic response (maximum acceleration and maximum jerk).
SOFT:
If SOFT is active, the maximum acceleration and the maximum jerk of each axis is main‐
tained.
BRISK:
If BRISK is active, only the maximum acceleration and not the maximum jerk of each axis
is maintained.
With this setting, neither the maximum deviations nor the rounding distance are checked.
The resulting deviations or rounding distances are determined exclusively by the dynamic
limits of the respective axis and the current path velocity.

4xxx: As in case of 0xxx, the maximum deviations of each axis specified with the following ma‐
chine data are used:
MD33100 $MA_COMPRESS_POS_TOL
Contrary to 0xxx, the specified tolerance is also utilized, if possible. Therefore, the axis does
not attain its maximum possible dynamics.

5xxx: As in case of 1xxx, the maximum possible rounding path is specified through programming
of ADIS=... or ADISPOS= respectively.
Contrary to 1xxx, the specified rounding path is also utilized, if possible. Therefore, the axes
involved do not attain their maximum possible dynamics.

Ten thousands digit
0xxxx The velocity profiles of the axes in the rounding area are determined without jerk limiting

for BRISK and with jerk limiting for SOFT.
1xxxx The velocity profiles of the axes in the rounding area are always determined with jerk limit‐

ing, regardless of whether BRISK or SOFT is active.

When specifying the maximum axial deviations (MD33100 $MA_COMPRESS_POS_TOL) or
the maximum rounding distance (ADIS / ADISPOS) the available rounding path is normally
not used, if permitted by the dynamics of the axes involved. Through this, the length of the
rounding path depends on the active path feedrate. In case of lower path speeds, one gets
lower deviations from the programmed contours. However, it can be set that in these cases
the specified maximum axial deviation or the specified rounding distance is utilized, if possible.
In this case the deviations depend on the programmed contour independent of the
programmed path feedrate.

Note

Apart from the ones mentioned, the following limitation can also become active additionally:

The rounding distance cannot exceed half the length of the original participating blocks.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
210 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Jerk limitation
The smoothing of the velocity jump on each axis and thus the shape of the rounding path
depends on whether an interpolation is performed with or without jerk limitation.

Without jerk limitation the acceleration of each axis reaches its maximum value in the entire
rounding area.

With jerk limitation, the jerk of each axis is limited to its maximum value within the rounding
area. The rounding motion thus generally consists of three phases:

● Phase 1
During phase 1, each axis builds up its maximum acceleration. The jerk is constant and
equal to the maximum possible jerk on the respective axis.

● Phase 2
During phase 2, the maximum permissible acceleration is applied.

● Phase 3
During phase 3, which is the last phase, the acceleration of each axis is reduced back to
zero with the maximum permissible jerk.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 211

5.3.3.4 Rounding of tangential block transitions (G645)

Function
In continuous-path mode with rounding, rounding blocks are also only generated on tangential
block transitions if the curvature of the original contour exhibits a jump in at least one axis.

The rounding motion is defined here so that the acceleration of all axes involved remains
smooth (no jumps) and the parameterized maximum deviations from the original contour
(MD33120 $MA_PATH_TRANS_POS_TOL) are not exceeded.

In the case of angular, non-tangential block transitions, the rounding behavior is the same as
with G642 (see Section "Rounding in compliance with defined tolerances (G642/G643)
(Page 206)").

Activation/deactivation
Continuous-path mode with rounding of tangential block transitions can be activated in any
NC part program block by the modal command G645.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode with rounding of tangential block transitions (G645) can be deactivated
by selecting:

● Modal exact stop (G60)

● Continuous-path mode G64, G641, G642, G643 or G644

Comparison between G642 and G645
When rounding with G642, the only block transitions rounded are those which form a corner,
i.e. the velocity of at least one axis jumps. However, if a block transition is tangential, but there
is a jump in the curvature, no rounding block is inserted with G642. If this block transition is
traversed with finite velocity, the axes experience some degree of jump in acceleration which
(with the jerk limit activated!) may not exceed the parameterized limit (MD32432
$MA_PATH_TRANS_JERK_LIM). Depending on the level of the limit, the path velocity at the
block transition may be greatly reduced as a result. This constraint is avoided by using G645
because the rounding motion is defined here in such a way that no jumps occur in acceleration.

Parameterization
The following machine data indicates the maximum permissible path deviation for each axis
during rounding with G645:

MD33120 $MA_PATH_TRANS_POS_TOL

This value is only of relevance to tangential block transitions with variable acceleration. When
angular, non-tangential block transitions are rounded, (as with G642) the tolerance from
MD33100 $MA_COMPRESS_POS_TOL becomes effective.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
212 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

See also
Free-form surface mode: Basic functions (Page 237)

5.3.3.5 Rounding and repositioning (REPOS)
If the machining in the area of the rounding contour is interrupted, a REPOS operation
cannot be used to position again directly on the rounding contour. In this case, positioning can
be made only on the programmed contour.

Example
Programmed: Two traversing blocks N10 and N20 with programmed rounding G641.

The traversing motion is interrupted in the rounding area. The axes, e.g. manually, are then
traversed to the REPOS start point. Depending on the selected REPOS mode, the
repositioning on the contour is made at the points ①, ② or ③.

RMBBL Repositioning at the start of the interrupted traversal block
RMIBL Repositioning at the interruption location
RMEBL Repositioning at the end of the interrupted traversal block
RMNBL Repositioning at the next contour point
① Block start N10
② To the REPOS start point of the next contour point
③ Block end N10 / block start N20

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 213

5.3.4 LookAhead

5.3.4.1 Standard functionality

Function
LookAhead is a function which is active in continuous-path mode (G64, G64x) and determines
a foreseeable velocity control for multiple NC part program blocks over and beyond the current
block.

Note

LookAhead is only available for path axes, not for spindles and positioning axes.

If a part program contains consecutive blocks with very small paths, only one velocity is
reached per block without LookAhead, enabling deceleration of the axes at the end of the block
while maintaining acceleration limits. This means that the programmed velocity is not reached
at all. With LookAhead, however, it is possible to implement the acceleration and deceleration
phase over multiple blocks with approximately tangential block transitions, thereby achieving
a higher feedrate with shorter distances.

Figure 5-5 Velocity control with short distances and exact stop G60 or continuous-path mode G64 with LookAhead

Deceleration to velocity limits is possible with LookAhead such that violation of the acceleration
and velocity limit is prevented.

LookAhead takes plannable velocity limits into consideration such as:

● Exact stop at block end

● Velocity limit in the block

● Acceleration limit in the block

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
214 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Velocity limit on block transition

● Synchronization with block change at block transition.

Mode of operation
LookAhead carries out a block-specific analysis of velocity limits and specifies the required
brake ramp profile based on this information. LookAhead is adapted automatically to block
length, braking capacity and permissible path velocity.

For safety reasons, the velocity at the end of the last prepared block must initially be assumed
to be zero because the next block might be very small or be an exact-stop block, and the axes
must have been stopped by the end of the block.

With a series of blocks with high set velocity and very short paths, the speed can be increased
in each block depending on the velocity value currently calculated by the LookAhead function
in order to achieve the required set velocity. After this it can be reduced so that the velocity at
the end of the last block considered by the LookAhead function can be zero. This results in a
serrated velocity profile (see the following fig.) which can be avoided by reducing the set
velocity or increasing the number of blocks considered by the LookAhead function.

Figure 5-6 Example for modal velocity control (number of blocks considered by the LookAhead
function = 2)

Activation/deactivation
LookAhead is activated by selecting continuous-path mode G64, G641, G642, G643, G644
or G645.

Selecting the exact stop which works on a non-modal basis enables rounding to be interrupted
(G09).

LookAhead is deactivated by selecting the modal exact stop (G60).

Parameterization
Number of blocks

To achieve reliable axis traversal in continuous-path mode, the feedrate must be adapted over
several blocks. The number of blocks considered by the LookAhead function is calculated
automatically and can, if required, be limited by a machine data. The default setting is "1",
which means that LookAhead only considers the following block for velocity control.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 215

Because LookAhead is especially important for short blocks (relative to the deceleration path),
the number of blocks required is of interest for LookAhead braking. It is sufficient to consider
the path length to be equal to the deceleration path that is required to brake from maximum
velocity to standstill.

For a machine with a low axial acceleration of a = 1 m/s2 and a high feedrate of vpath = 10 m/
min, the following number of nLookAhead blocks are allocated to the controller where it has has
an attainable block cycle time of TB = 10 ms:

nLookAhead = Deceleration path/Block length = (vpath
2 / (2a)) / (vpath * TB) = 9

Considering these conditions, it is advisable to adapt the feedrate over 10 blocks. The number
of blocks entered for the LookAhead function forecast does not change the LookAhead
algorithm and memory requirement.

Since the machining velocity is very often set to a lower value than the maximum velocity in a
program, more blocks than are required would be predicted, overloading the processor
unnecessarily. For this reason, the required number of blocks is derived from the velocity which
is calculated from the following multiplication:

● Programmed velocity * MD12100 $MN_OVR_FACTOR_LIMIT_BIN
(when using a binary-coded feedrate override switch)

● Programmed velocity * MD12030 $MN_OVR_FACTOR_FEEDRATE[30]
(when using a Gray-coded feedrate override switch)

The value for MD12100 or the 31st override value for MD12030 defines the dynamic response
reserves which the velocity control provides for when the path feedrate is overshot.

Note

The 31st override value for MD12030 should correspond to the highest override factor which
is actually used.

Note

The number of blocks considered by the LookAhead function is limited by the possible number
of NC blocks in the IPO buffer.

Velocity profiles

In addition to the fixed, plannable velocity limitations, LookAhead can also take account of the
programmed velocity. This makes it possible to achieve a lower velocity by applying
LookAhead beyond the current block.

● Determination of the following block velocity
One possible velocity profile contains the determination of the following block velocity.
Using information from the current and the following NC block, a velocity profile is calculated
from which, in turn, the required velocity reduction for the current override is derived.
The calculated maximum value of the velocity profile is limited by the maximum path velocity.
With this function it is possible to initiate a speed reduction in the current block taking
override into account such that the lower velocity of the following block can be achieved. If
the reduction in velocity takes longer than the travel time of the current block, the velocity
is further reduced in the following block. Velocity control is only ever considered for the
following block.
The function is activated via the machine data:
MD20400 $MC_LOOKAH_USE_VELO_NEXT_BLOCK

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
216 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Value Meaning
TRUE Function active
FALSE Function not active

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 217

● Definition of override points
If the velocity profile of the following block velocity is not sufficient because, for example,
very high override values (e.g. 200%) are used or a constant cutting rate G96/G961 is
active, with the result that the velocity must be further reduced in the following block,
LookAhead provides a way of reducing the programmed velocity over several NC blocks.
By defining override points, LookAhead calculates a limiting velocity profile for each value.
The required velocity reductions for the current override are derived from these profiles.
The calculated maximum value of the velocity profile is limited by the maximum path velocity.
The upper point should cover the velocity range that will be reached by the maximum value
set in the machine data:
MD12030 $MN_OVR_FACTOR_FEEDRATE[n] (evaluation of the path feedrate override
switch)
It can also be reached via the value of the machine data:
MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary-coded override switch)
In this way, a reduction of the velocity continuing into the block in which it is programmed
can be avoided.
If velocity reductions across block boundaries are required at a 100% override, a point
should be set in the lower override range as well.
The number of override points used per channel is specified in the machine data:
MD20430 $MC_LOOKAH_NUM_OVR_POINTS (number of override switch points for
LookAhead)
The associated points are stored in the machine data:
MD20440 $MC_LOOKAH_OVR_POINTS (override switch points for LookAhead)
Example:
Limiting velocity characteristics, whereby:

– Override = 50%, 100% or 150%

– Number of LookAhead blocks = 4

– MD20430 $MC_LOOKAH_NUM_OVR_POINTS = 2

– MD20440 $MC_LOOKAH_OVR_POINTS = 1.5, 0.5

– MD20400 $MC_LOOKAH_USE_VELO_NEXT_BLOCK = 1

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
218 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

A combination of both procedures (determination of following block velocity and determination
of override points) can be used to calculate the velocity profiles and is generally advisable
because the preset machine data for these functions already takes the widest range of override-
dependent velocity limits into account.

Note

If neither of the procedures has been activated, the setpoint velocity is always applied in the
current block.

Note

Plannable velocity limits restrict override-specific velocity limits.

Relief factor with block cycle problems

Block cycle problems are encountered in cases where the traversing distances of the NC
blocks to be processed are so short that the LookAhead function has to reduce the machine
velocity to provide enough time for block processing. In this situation, constant braking and
acceleration of path motion may occur.

Velocity fluctuations of this type can be dampened by specifying a relief factor:

MD20450 $MC_LOOKAH_RELIEVE_BLOCK_CYCLE (relieving factor for the block cycle
time)

Supplementary conditions
Axis-specific feed stop/axis disable

Axis-specific feed stop and axis-specific axis disable are ignored by LookAhead.

If an axis is to be interpolated that should on the other hand be made stationary by axis-specific
feed stop or axis disable, LookAhead does not stop path motion before the block in question
but decelerates in the block itself.

If this response is not wanted, an axis-specific feed stop can be transferred to a channel-
specific feed stop via the PLC to stop the path immediately (see also Section "Function
(Page 93)").

5.3.4.2 Free-form surface mode: Extension function

Function
The "Free-form surface mode: Extension function" is an extension of the Look Ahead standard
functionality and is used to calculate the path velocity profile during free-form surface
machining (see also Section "Free-form surface mode: Basic functions (Page 237)").

Its use optimizes the continuous-path mode as follows:

● Symmetry between the acceleration and deceleration profiles

● Uniform acceleration process, even with changing jerk or acceleration limits

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 219

● Uniform acceleration process of target velocity profiles, irrespective of the degree to which
they can or cannot be started with the specified dynamic response limit

● Look Ahead braking to lower setpoint velocities

Uniformity and compliance with the dynamic response limit guarantee that the setpoint velocity
profiles are smoothed to a homogeneous velocity profile on the part. This serves to minimize
the effect of following errors on the quality of the surface.

Advantages
● Greater uniformity in the surface of the workpiece

● Lower machine load

Applications
The "Free-form surface mode: Extension function" is used to machine workpieces which
primarily comprise free-form surfaces.

Note

As better results are not achieved for standard machining applications, standard Look Ahead
functionality should be used in these cases.

Activation
The function is only effective:

● In AUTOMATIC

● In the "Acceleration with jerk limit (SOFT)" mode

Parameterization

Working memory
The memory for the "Free-form surface mode: Extended function" is configured via the
machine data:

MD28533 $MC_MM_LOOKAH_FFORM_UNITS = <value>

The required memory depends on the part program, the block lengths, the axis dynamic
response, as well as on an active kinematic transformation.

The following setting applies as a guideline for machining free-form surfaces: MD28533 = 18

Note

Due to the additional storage requirements, MD28533 should only be set for the channels in
which free-form surfaces are being machined.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
220 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Number of NC blocks in the IPO buffer
It is generally advisable to significantly increase the configured number of NC blocks in the
interpolation buffer when using the "Free-form surface mode: Extension function":

MD28060 $MC_MM_IPO_BUFFER_SIZE > 100

If the block memory capacity is too low, this may diminish the uniformity of the path-velocity
profile.

Activation/deactivation
The function can be switched on or off independently for every dynamic response mode (see
Section "Dynamic response mode for path interpolation (Page 235)"):

MD20443 $MC_LOOKAH_FFORM[<n>]= <value>

Index <n> Dynamic response mode <value> Free-form surface mode: Extension
function

0 Standard dynamic response set‐
tings (DYNNORM)

0 Off
1 On

1 Positioning mode, tapping
(DYNPOS)

0 Off
1 On

2 Roughing (DYNROUGH) 0 Off
1 On

3 Finishing (DYNSEMIFIN) 0 Off
1 On

4 Smooth finishing (DYNFINISH) 0 Off
1 On

The "Free-form surface mode: Extension function" is typically only active if the "Free-form
surface mode: Basic functions" are also active. Therefore, the settings in
MD20443 $MC_LOOKAH_FFORM[<n>] should correspond to the settings in
MD20606 $MC_PREPDYN_SMOOTHING_ON[<n>].

The standard Look Ahead functionality is active in the dynamic response modes in which the
"Free-form surface mode: Extension function" is switched off.

Programming
Generally speaking, the "Free-form surface mode: Extension function" becomes effective as
a result of a change in the dynamic response mode in the part program.

Example
The following parameters are assumed:

MD20443 $MC_LOOKAH_FFORM[0] = 0

MD20443 $MC_LOOKAH_FFORM[1] = 0

MD20443 $MC_LOOKAH_FFORM[2] = 1

MD20443 $MC_LOOKAH_FFORM[3] = 1

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 221

MD20443 $MC_LOOKAH_FFORM[4] = 1

Change of the dynamic response mode in the part program:

Program code Comment
N10 DYNPOS ; Activate DYNPOS dynamic response

mode.
Standard Look Ahead functionality is
active in the DYNPOS dynamic re-
sponse mode.

...
N100 G17 G54 F10000
N101 DYNFINISH ; Activate DYNFINISH dynamic re-

sponse mode.
The "Free-form surface mode: Exten-
sion functions" are active in the
DYNFINISH dynamic response mode.

N102 SOFT G642
N103 X-0.274 Y149.679 Z100.000 G0
N104 COMPCAD
...
N1009 Z4.994 G01
N10010 X.520 Y149.679 Z5.000
N10011 X10.841 Y149.679 Z5.000
N10012 X11.635 Y149.679 Z5.010
N10013 X12.032 Y149.679 Z5.031
M30

Note

When switching between the standard Look Ahead functionality and the "Free-form surface
mode: Extension function" or vice versa, continuous-path mode is interrupted by an interpolator
stop.

Supplementary conditions

Automatic function switchover
Use of the following functions results in an automatic switchover to standard Look Ahead
functionality:

● Thread cutting/tapping (G33, G34, G35, G331, G332, G63)

● Path master-value coupling

● Punching, nibbling

● Cartesian PTP travel

The "Free-form surface mode: Extension function" is then switched on again automatically.

B1: Continuous-path mode, Exact stop, Look Ahead
5.3 Continuous-path mode

Basic Functions
222 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Using the commands of G group group 15 (feed types)
The following feed types are not recommended in conjunction with the "Free-form surface
mode: extension function" function:

● Feedrate per revolution (G95, G96, G97, etc.)

● Inverse-time feedrate (G93)

Use of FLIN
The FLIN feedrate profile cannot be used in conjunction with the "Free-form surface mode:
extension function" function:

Influence of feedrate overrides
Feedrate overrides (via a machine control panel, $AC_OVR, ...) can extend the traverse time
over standard Look Ahead functionality considerably.

Interaction with rapid traverse motion (G0)
G0 blocks which are interspersed during free-form surface machining do not switch the Look
Ahead functionality over (from the "Free-form surface mode: Extended function" to the
standard Look Ahead functionality or vice versa). This means that even though the standard
dynamic response setting (DYNNORM) is effective with G0, the standard Look Ahead
functionality which is preset for DYNNORM (→ MD20443 $MC_LOOKAH_FFORM[0]) does
not automatically become effective as well. By retaining the Look Ahead functionality which is
currently active, a more homogeneous velocity profile is achieved, particularly since G0 and
polynomial blocks are usually smoothed and connected by rounding.

5.4 Dynamic adaptations

5.4.1 Smoothing of the path velocity

Introduction
The velocity control function utilizes the specified axial dynamic response. If the programmed
feedrate cannot be achieved, the path velocity is brought to the parameterized axial limit values
and the limit values of the path (velocity, acceleration, jerk). This can lead to repeated braking
and acceleration on the path.

If a short acceleration takes place during a machining function with high path velocity, and is
thus followed almost immediately by braking, the reduction in the machining time is only
minimal. Acceleration of this kind can, however, have undesirable effects if, for example, it
results in machine resonance.

In some applications in mold making, especially in the case of high-speed cutting, it is desirable
to achieve a constant path velocity. In these cases, it can therefore be reasonable to sacrifice
transient acceleration processes in favor of a smoother tool path velocity.

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 223

Function
If the "smoothing the path velocity" function is active, a smoothing factor, which determines
the maximum permissible productivity loss, takes effect with a view to achieving smoother path
velocity control: Acceleration processes which contribute less than this factor to a shorter
program runtime are not performed. Account is only taken of acceleration processes whose
frequencies lie above the configurable limit frequencies of of the axes involved.

Benefits:

● Avoidance of excitations of possible machine resonance due to continuous, transient
braking and acceleration processes (in the area of less IPO cycles).

● Avoidance of constantly varying cutting rates due to acceleration which brings no significant
shortening of the program running time.

Note

The smoothing of the path velocity does not lead to contour errors.

Variations in axis velocity due to curvatures in the contour at constant path velocity may
continue to occur and are not reduced with this function.

Variations in path velocity due to the input of a new feedrate are not changed either. This
remains the responsibility of the programmer of the subprogram.

Requirements
● The smoothing of the path velocity is only effective in continuous-path mode with

LookAhead over multiple blocks with SOFT and BRISK. Smoothing is not effective with G0.

● The controller's cycle times must be configured in such a way that preprocessing can
prepare sufficient blocks to enable an acceleration process to be analyzed.

Activation/deactivation
The "smoothing of the path velocity" function is activated/deactivated with the machine data:

MD20460 $MC_LOOKAH_SMOOTH_FACTOR (smoothing factor for LookAhead)

Value Meaning
0.0 Smoothing of the path velocity not active (default)
> 0 Smoothing of the path velocity active

A change in the MD setting is only made effective through NEW CONF.

Parameterization
Smoothing factor

The smoothing factor is set via the channel-specific machine data:

MD20460 $MC_LOOKAH_SMOOTH_FACTOR (smoothing factor for LookAhead)

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
224 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The percentage value defines how much longer a processing step without accelerations/
decelerations may be than the corresponding step with accelerations/decelerations.

This would be a "worst-case" value, if all accelerations within the part program, except the
initial approach motion, were smoothed. The actual extension will always be smaller, and may
even be 0, if the criterion is not met by any of the accelerations. Values between 50 and 100%
may also be entered without significantly increasing the machining time.

Consideration of the programmed feed

The path velocity can be smoothed with or without taking the programmed feedrate into
consideration. The selection is made via the machine data:

MD20462 $MC_LOOKAH_SMOOTH_WITH_FEED (path smoothing with programmed
feedrate)

Value Meaning
0 Programmed feedrate is not taken into consideration.
1 Programmed feedrate is considered (default setting).

When considering the programmed feedrate, the specified smoothing factor (see MD20460)
is maintained better when the override is 100%.

Axis-specific limit frequencies

The axis-specific limit frequencies are defined via the machine data:

MD32440 $MA_LOOKAH_FREQUENCY (smoothing frequency for LookAhead)

Acceleration and deceleration processes, which run with a high frequency, are smoothed
depending upon the parameterization of the following machine data or else are reduced in
dynamics:

MD20460 $MC_LOOKAH_SMOOTH_FACTOR (smoothing factor for LookAhead)

MD20465 $MC_ADAPT_PATH_DYNAMIC (adaptation of the dynamic path response)

For further information on MD20465, see Section "Adaptation of the dynamic path response
(Page 227)".

Note

If vibrations are generated in the mechanical system of an axis and if the corresponding
frequency is known, MD32440 should be set to a value smaller than this frequency.

The needed resonance frequencies can be calculated using the built-in measuring functions.

Mode of operation
The minimum value for MD32440 is calculated as fpath on the basis of the axes involved in the
path. For the smoothing only those acceleration processes are taken into consideration, in
which the start and the end velocity of this motion are reached within the time given below:

t = t2 - t1 = 2 / fpath

These acceleration processes are dispensed with if the resulting extension in the processing
time does not exceed the limit specified in excess of the smoothing factor (MD20460).

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 225

Example
The following parameters are assumed:

MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 10%

MD32440 $MA_LOOKAH_FREQUENCY[AX1] = 20 Hz

MD32440 $MA_LOOKAH_FREQUENCY[AX2] = 20 Hz

MD32440 $MA_LOOKAH_FREQUENCY[AX3] = 10 Hz

The path involves the three axes X = AX1, Y = AX2, Z = AX3.

The minimum value of MD32440 for these three axes is thus 10 Hz. This means that any
acceleration, which is completed within a period of t2 - t1 = 2/10 Hz = 200 ms, is examined. The
time t2 is the time it takes to reach velocity v1 again following an acceleration process starting
from velocity v1. The extending of the execution time is also only considered within this range.

If the time t2 - t1 is greater than 200 ms or if the additional program execution time t3 - t2 is more
than 10% (= MD20460) of t2 - t1, the following time characteristic applies:

Figure 5-7 Characteristic of time-optimum path velocity (without smoothing)

If, however, the time t2 - t1 is less than 200 ms or if the additional program execution time
t3 - t2 is no more than 10% of t2 - t1, the following time characteristic applies:

Figure 5-8 Characteristic of the smoothed path velocity

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
226 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

5.4.2 Adaptation of the dynamic path response

Function
Highly dynamic acceleration and deceleration processes during machining can cause
excitation of mechanical vibrations of machine elements and consequently a reduction of the
surface quality of the workpiece.

The dynamic response of the acceleration and deceleration processes can be adapted to the
machine conditions using the "adaptation of the dynamic path response" function.

Note

The "adaptation of the dynamic path response" function only concerns the resulting path and
not the deceleration and acceleration processes of the individual axes involved in the path.
For this reason, critical deceleration and acceleration processes of the axes with respect to
the excitation of mechanical vibrations can occur due to discontinuous contour profiles or
kinematic transformations, even with a constant path velocity profile.

Effectiveness
The "adaptation of the dynamic path response" function is only effective during path motions:

● Continuous-path mode (G64, G64x)
In continuous-path mode, the optimal effect of the dynamic response adaptation is attained
with an active 100% override. Considerable deviations from this value or functions that
cause the path axes to decelerate (e.g. auxiliary function outputs to the PLC) greatly reduce
the desired action.

● Exact stop (G60)

In addition, the "adaptation of the dynamic path response" function is not active during path
motions:

● Programmed rapid traverse (G0)

● Changes in the override value

● Stop requests during motion (e.g. NC Stop, NC Reset)

● "Velocity-dependent path acceleration" function (DRIVE) is active

Activation/deactivation
The function is activated/deactivated with the machine data:

MD20465 $MC_ADAPT_PATH_DYNAMIC (adaptation of the dynamic path response)

Value Meaning
= 1.0 Dynamic adaptation not active (default setting)
> 1.0 Dynamic adaptation active

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 227

When activation takes place, the "smoothing the path velocity" function is always activated
internally in continuous-path mode as well (see Section "Smoothing of the path velocity
(Page 223)").

If the smoothing factor (MD20460 $MC_LOOKAH_SMOOTH_FACTOR) is set to 0%
(= function deactivated; default!), a smoothing factor of 100% is used as a substitute. For a
smoothing factor other than 0%, the set value takes effect.

Parameterization
Adaptation factor of the dynamic path response

Via the adaptation factor of the dynamic path response, temporary changes in the path velocity
are executed with smaller dynamic response limit values.

The adaptation factor is to be set on a channel-specific basis:

● For traversing motions with acceleration without jerk limitation (BRISK) via:
MD20465 $MC_ADAPT_PATH_DYNAMIC[0]
→ The adaptation factor acts on the acceleration.

● For traversing motions with acceleration with jerk limitation (SOFT) via:
MD20465 $MC_ADAPT_PATH_DYNAMIC[1]
→ The adaptation factor acts on the jerk.

Axis-specific limit frequencies

The dynamic response limiting should only be active during deceleration and acceleration
processes that trigger mechanical vibrations larger than a specific limiting frequency, thus
causing excitation of machine resonances.

This limit frequency from which the dynamic response limiting activates, is specified on an axis-
specific basis via the machine data:

MD32440 $MA_LOOKAH_FREQUENCY (smoothing frequency for LookAhead)

For further information, see Section "Smoothing of the path velocity (Page 223)".

Mode of operation
During processing and via all the axes involved in the path, the controller cyclically establishes
the minimum of all the limit frequencies to be the limit frequency (f) for the adaptation of the
dynamic response and calculates the relevant time window (tadapt) from this:

tadapt = 1 / f

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
228 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The size of the relevant time window tadapt determines the further behavior:

1. The time needed to change the velocity is less than tadapt:
The acceleration rates are reduced by a factor > 1 and ≤ the value written in machine data:
MD20465 ADAPT_PATH_DYNAMIC (adaptation of the path dynamics)
The reduction in acceleration rate increases the time taken to change the velocity.
The following cases are different:

– The acceleration rate is reduced with a value less than MD20465 so that the process
lasts for tadapt [s]. The permitted reduction does not need to be fully utilized.

– The acceleration time is reduced with the value written in MD20465. The process lasts
less than tadapt despite the reduced acceleration. The permitted reduction was fully
utilized.

2. The time needed to change the velocity is greater than tadapt:
No dynamic response adaptation is required.

Example
The following example is intended to show the effect of the "adaptation of the dynamic path
response" function on traversing motions with acceleration and without jerk limitation (BRISK).

The following parameters are assumed:

MD20465 $MC_ADAPT_PATH_DYNAMIC[0] = 1.5
MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 1.0
MD32440 $MA_LOOKAH_FREQUENCY[AX1] = 20 Hz TAX1 = 1/20 Hz = 50 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX2] = 10 Hz TAX2 = 1/10 Hz = 100 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX3] = 20 Hz TAX3 = 1/20 Hz = 50 ms

Note

To illustrate the effect of dynamic response adaptation, the value for the smoothing factor
(MD20460) is set to "1", whereby the "smoothing of the path velocity" function is practically
deactivated.

The path involves the three axes X = AX1, Y = AX2, Z = AX3.

For path motions in which axis AX2 is involved, all deceleration and acceleration processes
that would last less than TAX2 are adapted.

If only axes AX1 and/or AX3 are involved in path motions, all deceleration and acceleration
processes that would last less than TAX1 = TAX3 are adapted.

The relevant time window is marked tadapt... in the figures below.

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 229

Figure 5-9 Path velocity profile optimized for time without smoothing or dynamic adaptation response

Figure 5-10 Path velocity profile with adaptation of dynamic path response

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
230 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Intervals t0 - t1 and t2 - t3: The acceleration process between t0 - t1 and the deceleration
process between t2 - t3 are extended in terms of time to tadapt01
or tadapt23 as a result of the acceleration being adapted.

Interval t4 - t5: The acceleration process between t4 - t5 is executed with an
acceleration reduced by the maximum adaptation factor of 1.5.
However, the acceleration process is completed before time
tadapt45.

Interval t6 - t7: The deceleration process between t6 - t7 remains unchanged
as it lasts longer than tadapt67.

5.4.3 Determination of the dynamic response limiting values
In addition to determining the natural frequency of the path axes for assigning parameters to
the axis-specific limit frequencies (MD32440 $MA_LOOKAH_FREQUENCY), the
implementation of the "adaptation of the dynamic path response" function also requires
dynamic response limits to be determined for velocity, acceleration and jerk.

Procedure
The determination of the dynamic response limits for the traversing of path axes by means of
acceleration with jerk limiting (SOFT) is described below. This procedure can be applied by
analogy to the case of acceleration without jerk limiting (BRISK).

1. Deactivate the "adaptation of the dynamic path response" function:
MD20465 $MC_ADAPT_PATH_DYNAMIC[1] = 1

2. Observe the positioning behavior of each path axis at different traversing velocities. When
doing so, set the jerk such that the desired positioning tolerance is maintained.

Note

The higher the traversing velocity from which the positioning process is started, the higher
in general the jerk can be set.

3. Use the maximum permissible jerk determined for the least critical traversing velocity:
MD32431 $MA_MAX_AX_JERK (maximum jerk)

4. Determine the FAPD factor for all of the path axes using:
FAPD = (largest determined jerk) / (smallest determined jerk)

Note

The smallest determined jerk is the value for the jerk during the most critical traversing
velocity.

5. Enter the largest FAPD factor that was determined via all the path axes as the value for the
adaptation factor for the path dynamic response:
MD20465 $MC_ADAPT_PATH_DYNAMIC[1] = FAPD

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 231

5.4.4 Interaction between the "smoothing of the path velocity" and "adaptation of the
path dynamic response" functions

The following examples serve to illustrate the interaction between the "smoothing of the path
velocity" and "adaptation of the path dynamic response" functions in continuous-path mode.

Example 1
Acceleration mode: BRISK

The path involves the 3 axes X = AX1, Y = AX2, Z = AX3.

The following parameters are assumed:

MD20465 $MC_ADAPT_PATH_DYNAMIC[0] = 3
MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 80.0
MD32440 $MA_LOOKAH_FREQUENCY[AX1] = 20 TAX1 = 1/20 Hz = 50 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX2] = 20 TAX2 = 1/20 Hz = 50 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX3] = 20 TAX3 = 1/20 Hz = 50 ms

Figure 5-11 Path velocity profile optimized for time without smoothing or dynamic adaptation response

Figure 5-12 Path velocity profile with smoothing of the path velocity and adaptation of dynamic path
response

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
232 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Effects of smoothing on path velocity:

Interval t1 - t2: The acceleration and deceleration process between t1 and t2 does not
take place because the lengthening of the machining time without the
acceleration process to v12 is less than the resulting time if a smoothing
factor of 80 % is applied.

Interval t3 - t5: The acceleration and braking profile between t3 and t5 does not fulfill this
condition or takes longer than the parameterized smoothing time
TAxn = 2/20 Hz = 100 ms.

Effects of the dynamic response adaptation:

Interval t3 - t4: The acceleration process between t3 and t4 is shorter than
MIN(TAXn) = 1/20 Hz = 50 ms and is, therefore, executed with an acceler‐
ation reduced by an adaptation factor of 3.

Interval up to t1: The acceleration up to t1 left over after path smoothing is stretched to the
time period up to t1' by the dynamic response adaptation.

Note

The example shows that those acceleration or deceleration processes that are not eliminated
by the smoothing of the path velocity can be subsequently optimized by adapting the dynamic
path response. For this reason, both functions should always be activated, if possible.

Example 2
Acceleration mode: SOFT

The path involves the 3 axes X = AX1, Y = AX2, Z = AX3.

The following parameters are assumed:

MD20465 $MC_ADAPT_PATH_DYNAMIC[1] = 1
MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 0.0
MD32440 $MA_LOOKAH_FREQUENCY[AX1] = 10 TAX1 = 1/20 Hz = 100 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX2] = 10 TAX2 = 1/20 Hz = 100 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX3] = 20 TAX3 = 1/20 Hz = 50 ms

This leads to a path velocity profile which is optimized in terms of time without smoothing the
path velocity or adapting the dynamic path response:

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 233

The parameter assignment is changed as follows:

MD20465 $MC_ADAPT_PATH_DYNAMIC[1] = 4
MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 1.0

This results in a path velocity profile with adaptation of the dynamic path response and with
minimum, and thus virtually deactivated, smoothing of the path velocity:

The smoothing factor is set to 0% instead of 1% (in accordance with the default!):

MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 0.0

A smoothing factor of 100% comes into effect with this parameter assignment.

This gives rise to a path velocity profile with smoothing of the path velocity and adaptation of
dynamic path response:

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
234 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

5.4.5 Dynamic response mode for path interpolation

Function
Technology-specific, dynamic response settings can be saved in machine data and can be
activated in the part program via the commands from G group 59 (dynamic response mode
for path interpolation).

Command Activates the dynamic response settings for:
DYNNORM Standard dynamic response settings
DYNPOS Positioning mode, tapping
DYNROUGH Roughing
DYNSEMIFIN Finishing
DYNFINISH Smooth finishing

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 235

Note

The dynamic response of the path axes alone is determined by the commands from G group
59 (dynamic response mode for path interpolation). They have no effect on:
● Positioning axes
● PLC axes
● Command axes
● Motions based on axis coupling
● Overlaid motions with handwheel
● JOG motions
● Reference point approach (G74)
● Fixed-point approach (G75)
● Rapid traverse motion (G0)

The standard dynamic response setting (DYNNORM) always takes effect for these axis
motions.

Application
By switching the dynamic response settings, roughing can be optimized in terms of time and
smoothing can be optimized in terms of the surface, for example.

Parameterization

Axis-specific dynamic response settings:
● MD32300 $MA_MAX_AX_ACCEL[<n>] (axis acceleration)

● MD32310 $MA_MAX_ACCEL_OVL_FACTOR[<n>] (overload factor for axial jumps in
velocity)

● MD32431 $MA_MAX_AX_JERK[<n>] (maximum axial jerk for path motion)

● MD32432 $MA_PATH_TRANS_JERK_LIM[<n>] (maximum axial jerk at the block transition
in continuous-path mode)

● MD32433 $MA_SOFT_ACCEL_FACTOR[<n>] (scaling of the acceleration limitation with
SOFT)

Channel-specific dynamic response settings:
● MD20600 $MC_MAX_PATH_JERK[<n>] (path-related maximum jerk)

● MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL[<n>] (influence of path curvature on
path acceleration)

● MD20603 $MC_CURV_EFFECT_ON_PATH_JERK[<n>] (influence of path curvature on
path jerk)

where index <n> =0 for DYNNORM
 1 for DYNPOS

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
236 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 2 for DYNROUGH
 3 for DYNSEMIFIN
 4 for DYNFINISH

Note

Writing the machine data without an index places the same value in all field elements of the
relevant machine data.

Reading the machine data without an index always supplies the value of the field with index
0.

Suppressing G commands
It is recommended that G commands from G group 59 (dynamic response mode for path
interpolation) which are not intended for use should be suppressed via the following machine
data:

MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[<n>] (list of reconfigured NC
commands)

If a suppressed G command is used, an alarm is displayed. This prevents machine data that
has not been parameterized taking effect.

Example
The G commands DYNPOS and DYNSEMIFIN can be suppressed with the following settings:

● MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[0]="DYNPOS"

● MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[1]=" "

● MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[2]="DYNSEMIFIN"

● MD10712 $MN_ NC_USER_CODE_CONF_NAME_TAB[3]=" "

References
You can find detailed information about programming the G commands from G group 59
(dynamic response mode for path interpolation) in:
References:
Programming Manual, Job Planning; Section: Path traversing behavior

5.4.6 Free-form surface mode: Basic functions

Introduction
In applications in tool and mold making, it is important that the surfaces on the workpiece are
as uniform as possible. This requirement is generally more important than the precision of the
surface of the workpiece.

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 237

Workpiece surfaces which lack uniformity can be attributable to the following causes, for
example:

● The part program for manufacturing the workpiece contains a non-uniform geometry. This,
most notably, affects the profile of the curvature and torsion.

Note

The curvature k of a contour is the inverse of radius r of the adapted circle in a contour
point (k = 1/r). The torsion is the change in curvature (first derivative).

As a result of the lack of uniformity in geometry, the machine's dynamic response limits are
reached during processing of the part program, and needless deceleration and acceleration
processes occur. Depending on the extent of the effective over-travel of the axes, this leads
to different deviations in contours.

● Needless deceleration and acceleration processes can trigger machine vibrations which
result in unwanted marks on the workpiece.

There are various options available for eliminating these causes:

● Use a CAD/CAM system
The part programs generated by CAD/CAM systems contain a very uniform curvature and
torsion profile, preventing needless reductions in path velocity.

● Specify the maximum path velocity in such a way that unwanted geometric fluctuations in
the curvature and torsion profile have no effect.

Function
"Free-form surface mode: Basic functions" can be used to make the definition of path velocity
limits insensitive to small geometric fluctuations in curvature and torsion without exceeding the
machine's dynamic limits in terms of the acceleration and jerk of the axes.

This has the following advantages:

● Greater uniformity in the profile of the path velocity

● Greater uniformity in the surface of the workpiece

● Reduction in the processing time (if the dynamic response of the machine permits it)

Applications
The function is used to process workpieces which primarily comprise free-form surfaces.

Requirements
The function can only be activated if the requisite memory capacity is reserved during memory
configuration:

MD28610 $MC_MM_PREPDYN_BLOCKS = 10

The value entered prescribes the number of blocks which have to be taken into consideration
in the determination of the path velocity (velocity preparation).
A sensible value is "10".

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
238 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

If MD28610 has a value of "0", only the motions of the axes in a particular block are taken into
consideration when determining the maximum velocity of the path for that block. If the geometry
of neighboring blocks is also taken into consideration when determining the velocity of the path
(value > 0), a more uniform profile in path velocity is achieved.

Activation/deactivation
The function can be switched on or off independently for every dynamic response mode (see
Section "Dynamic response mode for path interpolation (Page 235)"):

MD20606 $MC_PREPDYN_SMOOTHING_ON[<n>] = <value>

Index <n> Dynamic response mode <value> Free-form surface mode: Basic func‐
tions

0 Standard dynamic response set‐
tings (DYNNORM)

0 Off
1 On

1 Positioning mode, tapping
(DYNPOS)

0 Off
1 On

2 Roughing (DYNROUGH) 0 Off
1 On

3 Finishing (DYNSEMIFIN) 0 Off
1 On

4 Smooth finishing (DYNFINISH) 0 Off
1 On

Note

Due to the additional storage requirements, the function should only be activated in the relevant
processing channels.

Parameterization
Change in the contour sampling factor

The secant error which occurs during the interpolation of curved contours is dependent on the
following factors:

● Curvature

● Interpolator clock cycle (display in the MD10071 $MN_IPO_CYCLE_TIME)

● Velocity with which the relevant contour is traversed

The maximum possible secant error is defined for each axis in the machine data:

MD33100 $MA_COMPRESS_POS_TOL (maximum tolerance with compression)

If the set interpolator clock cycle is not sufficiently small, the max. path velocity may be reduced
in the case of contours with greater curvature. This is necessary for ensuring that the surface
of the workpiece is also produced with an adequate degree of precision in this case.

By changing the contour sampling factor, the time interval with which a curved contour is
sampled in the interpolator (contour sampling time) can be set differently than the interpolator

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 239

clock cycle. A contour sampling time which is shorter than the interpolator clock cycle can
prevent a reduction in path velocity in the case of contours with greater curvature.

The contour sampling factor is set with the machine data:

MD10682 $MN_CONTOUR_SAMPLING_FACTOR

The effective contour sampling time is calculated as follows:

Ts = f * T1

where: Ts = Effective contour sampling time
T1 = Interpolator clock cycle
f = Contour sampling factor (value from MD10682)

The default contour sampling factor is "1", i.e. the contour sampling time equals the interpolator
clock cycle.

The contour sampling factor can be both greater or less than "1".

If a value less than "1" is set, monitoring of contour sampling precision is disabled.

The set sampling time must not be below the configured minimum contour sampling time:

MD10680 $MN_MIN_CONTOUR_SAMPLING_TIME

Note

MD10680 is specifically set for every controller model and cannot be changed.

Programming
Depending on the setting in machine data MD20606 $MC_PREPDYN_SMOOTHING_ON,
"Free-form surface mode: Basic functions" can be switched on and off in the part program by
changing the active dynamic response mode.

Example:

By assigning the parameters MD20606 $MC_PREPDYN_SMOOTHING_ON[2-4] = 1 and
MD20606 $MC_PREPDYN_SMOOTHING_ON[0-1] = 0, the function can be switched on via
the commands DYNROUGH, DYNSEMIFIN, and DYNFINISH and switched off via the commands
DYNNORM and DYNPOS.

See also
Rounding of tangential block transitions (G645) (Page 212)

Velocity-dependent jerk adaptation (axis-specific) (Page 292)

Free-form surface mode: Extension function (Page 219)

B1: Continuous-path mode, Exact stop, Look Ahead
5.4 Dynamic adaptations

Basic Functions
240 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

5.5 Compressor functions

5.5.1 Compression of linear, circular and rapid traverse blocks

5.5.1.1 Function
CAD/CAM systems generate a large number of linear and circular blocks, some of which with
very short path lengths, to describe complex contours. The maximum possible path velocity
is frequently limited by the block change time. As of a certain path velocity, not enough new
traversing blocks can be prepared in the preprocessing and switched to the main run.

Compressing linear blocks
Compressor functions replace consecutive linear blocks with polynomial blocks having the
longest possible path lengths while maintaining a parameterizable contour precision. This has
the following advantages:

● Reduction of the number of traversing blocks

● Increasing the path velocity

● Increasing the surface quality

● Continuous block transitions

The compressor functions with their most important properties/attributes that are available are
listed in the following table:

Compressors Function Continuity at block tran‐
sitions

Notes about use

COMPON COMPON creates
from up to 10 consecu‐
tive linear blocks, type
"G01 X... Y... Z... F..."
a polynomial block.

Continuous velocity

COMPCURV the same as COMPON Continuous velocity
and acceleration

B1: Continuous-path mode, Exact stop, Look Ahead
5.5 Compressor functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 241

Compressors Function Continuity at block tran‐
sitions

Notes about use

COMPCAD COMPCAD can create
a polynomial block
from any number of
consecutive linear
blocks.

Continuous velocity
and acceleration

COMPCAD is very processor and memory-intensive.
It is therefore recommended that COMPCAD only be
used where measures to improve surface quality were
not successful in the CAD/CAM program.

COMPSURF the same as COMP‐
CAD

Continuous velocity
and acceleration

Using COMPSURF, even better results can be ob‐
tained than with COMPCAD. However, just the same
as for COMPCAD, COMPSURF takes up a lot of com‐
putation time and memory space.
By using COMPSURF, for example for inclined line-by-
line finishing programs, poor data quality and/or irreg‐
ular point distribution in the CAD/CAM program, signif‐
icantly improved workpiece surfaces can be achieved.
In addition, COMPSURF facilitates a direction-inde‐
pendent identical smoothing of the milling paths that
can be deactivated; this significantly increases the sur‐
face quality for bidirectional milling tools.

If commands that are not traverse commands (e.g. auxiliary function output), are programmed
in and between the traversing blocks to be compressed, compression is interrupted.

The maximum tolerable deviation of the calculated path to the programmed positions can be
specified in machine data for all compressor functions (see "Parameterization (Page 243)").
Unlike COMPON and COMPCURV, the parameterized tolerances are not used in different
directions in neighboring paths with COMPCAD and COMPSURF.

Compression of circular and rapid traverse blocks
In addition to the compression of linear blocks, all compressor functions also allow rapid
traverse blocks (G0 blocks) to be compressed. On the other hand, circular blocks can only be
compressed using the COMPCAD compressor function.

The compression of circular and/or rapid traverse blocks is set for specific channels using the
hundreds position in machine data:

MD20482 $MC_COMPRESSOR_MODE = <value>

Value Meaning
0xx Circular blocks and G0 blocks are not compressed. This is compatible with earlier SW

versions.
1xx Circular blocks are linearized and compressed by COMPCAD.

Advantage:
The compressor function operates more precisely and therefore creates generally better
surfaces.
Disadvantage:
The compressor function is more sensitive to defects in the NC programs. For reasons of
compatibility it might therefore be necessary to keep the setting 0xx.

B1: Continuous-path mode, Exact stop, Look Ahead
5.5 Compressor functions

Basic Functions
242 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Value Meaning
2xx G0 blocks are compressed - it is possible that a different tolerance becomes effective (see

"Tolerances for rapid traverse movements (Page 256)").
Advantage:
As a result that the tolerance has been set higher and the compression of G0 infeed motion,
these can be more quickly and more fluidly executed.

3xx Combination of the two previous options: Circular blocks as well as G0 blocks are com‐
pressed.

Activation / deactivation
Compressor functions COMPON, COMPCURV, COMPCAD and COMPSURF are activated/
deactivated using the G commands of G group 30 (see "Programming (Page 245)").

5.5.1.2 Commissioning

Parameterization

Axis-specific machine data

Number Identifier $MA_ Meaning
MD33100 COMPRESS_POS_TOL Maximum permissible axis-specific path deviation

with compression

Channel-specific machine data

Number Identifier $MC_ Meaning
MD20170 COMPRESS_BLOCK_PATH_LIMIT Maximum traversing length of an NC block that

can be compressed
MD20171 SURF_BLOCK_PATH_LIMIT Maximum traversing length of a compressible NC

block for compression with COMPSURF
MD20172 COMPRESS_VELO_TOL Maximum permissible deviation from feedrate for

compression
MD20173 SURF_VELO_TOL Maximum permissible deviation from feedrate for

compression with COMPSURF
MD20482 COMPRESSOR_MODE Principle of operation of the compressor
MD20484 COMPRESSOR_PERFORMANCE Compressor performance
MD20485 COMPRESS_SMOOTH_FACTOR Smoothing factor for compression with COMP‐

CAD for the particular dynamic response mode
MD20486 COMPRESS_SPLINE_DEGREE Spline degree for compression with COMPCAD

for the particular dynamic response mode
MD20487 COMPRESS_SMOOTH_FACTOR_2 Smoothing factor for rotary axes for compression

with COMPCAD for the particular dynamic re‐
sponse mode

B1: Continuous-path mode, Exact stop, Look Ahead
5.5 Compressor functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 243

Number Identifier $MC_ Meaning
MD28071 MM_NUM_SURF_LEVELS Dimensioning the COMPSURF function (DRAM)
MD28072 MM_MAXNUM_SURF_GROUPS Dimensioning the COMPSURF function regarding

axis groups (DRAM)

Channel-specific setting data

Number Identifier $SC_ Meaning
SD42470 CRIT_SPLINE_ANGLE Corner angle limit for compression with COMP‐

CAD
SD42471 MIN_CURV_RADIUS Minimum radius of curvature for compression with

COMPCAD
SD42472 MIN_SURF_RADIUS Minimum radius of curvature for compression with

COMPSURF
SD42473 ACTNUM_SURF_GROUPS Number of axis groups for COMPSURF
SD42475 COMPRESS_CONTUR_TOL Maximum permissible contour deviation with com‐

pression
SD42476 COMPRESS_ORI_TOL Maximum deviation of the tool orientation for com‐

pression
Note:
Only for active orientation transformation!

SD42477 COMPRESS_ORI_ROT_TOL Maximum deviation of the tool rotation for com‐
pression
Note:
Only for 6-axis machines with rotatable tool!

Note
Corner limit angle and compressor function COMPCAD

The corner limit angle for the compressor function COMPCAD set via the setting data SD42470
$SC_CRIT_SPLINE_ANGLE is only used as an approximate measure for corner detection.
By evaluating the plausibility, the compressor can also identify flatter block transitions as
corners and larger angles as outliers.

Recommended settings for tool and mold making with Advanced Surface / Top Surface
Compressor functions are very important in milling of free-form surfaces in tool and mold
making. If they are used as part of the option "Advanced Surface" or "Top Surface" for which
a license is required, please observe the setting recommendations!

Special test programs are available in the SIOS portal for checking the set machine and setting
data:

● Test programs for Advanced Surface (https://support.industry.siemens.com/cs/ww/en/view/
78956392)

● Test programs for Top Surface (https://support.industry.siemens.com/cs/ww/en/view/
109738423)

B1: Continuous-path mode, Exact stop, Look Ahead
5.5 Compressor functions

Basic Functions
244 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

https://support.industry.siemens.com/cs/ww/en/view/78956392
https://support.industry.siemens.com/cs/ww/en/view/78956392
https://support.industry.siemens.com/cs/ww/en/view/109738423
https://support.industry.siemens.com/cs/ww/en/view/109738423

5.5.1.3 Programming

Activating/deactivating NC block compression (COMPON, COMPCURV, COMPCAD, COMPSURF,
COMPOF)

The functions to compress linear blocks (and dependent on the parameterization, also circular
and/or rapid traverse blocks) are activated/deactivated using G commands of G group 30. The
commands are modal.

Syntax

COMPON / COMPCURV / COMPCAD / COMPSURF
...
COMPOF

Meaning

COMPON: Activating the compressor function COMPON
COMPCURV: Activating the compressor function COMPCURV
COMPCAD: Activating the compressor function COMPCAD
COMPSURF: Activating the compressor function COMPSURF
COMPOF : Deactivating the currently active compressor function

Note

The rounding function G642 and jerk limitation SOFT further improve the surface quality. These
commands must be written at the beginning of the program.

Example: COMPCAD

Program code Comment
N10 G00 X30 Y6 Z40
N20 G1 F10000 G642 ; Activation: Rounding function G642
N30 SOFT ; Activation: Jerk limitation SOFT
N40 COMPCAD ; Activation: Compressor function COMPCAD
N50 STOPFIFO
N24050 Z32.499 ; 1st traversing block
N24051 X41.365 Z32.500 ; 2nd traversing block
...
N99999 X... Z... ; last traversing block
COMPOF ; compressor function off.
...

B1: Continuous-path mode, Exact stop, Look Ahead
5.5 Compressor functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 245

5.5.1.4 Supplementary conditions

Orientation transformation (TRAORI)
When orientation transformation is active, the compressor functions can also compress motion
blocks for tool orientation and tool rotation.

Reference:
Function Manual, Special Functions; Chapter "F2: Multi-axis transformation" > "Orientation" >
"Compression of the orientation"

Block search with calculation
If the target block for block search type 2 or type 4 (block search with calculation to ...) is in a
program section in which a compressor function is active, positions are approached on the
path calculated by the compressor on repositioning. These positions must precisely match the
positions on the path programmed in the part program.

Part program blocks, which are replaced by compression, cannot be found as target block in
the block search. Alarm 15370 "Search target not found" is output.

5.5.2 Compression of short spline blocks

Function
When spline blocks are generated to describe complex contours using CAD/CAM systems,
spline blocks with very short path lengths occur between spline blocks with long path lengths.
These force the control to significantly reduce the path velocity. The functions for the
compression of short spline blocks generate new spline blocks with the longest possible path
lengths.

Availability

System Availability
SINUMERIK 840D sl Standard (basic scope)
SINUMERIK 828D Option

Commissioning

Activation
The compression of short spline blocks can be activated for the following spline types:

● BSPLINE

● BSPLINE/ORICURVE

● CSPLINE

B1: Continuous-path mode, Exact stop, Look Ahead
5.5 Compressor functions

Basic Functions
246 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

It is activated in the channel-specific machine data:

MD20488 $MC_SPLINE_MODE, bit <n> = <value>

Bit <value> Spline type Compressing short spline blocks
0 0 BSPLINE Not active

1 BSPLINE Active
1 0 BSPLINE/ORICURVE Not active

1 BSPLINE/ORICURVE Active
2 0 CSPLINE Not active

1 CSPLINE Active

Supplementary conditions
● If commands that are not traverse commands, e.g. auxiliary function outputs, are

programmed in and between the traversing blocks to be compressed, the spline blocks
cannot be combined.

● The maximum number of blocks that can be combined into a program section in succession,
depends on the parameterized size of the block memory available in the block preparation.
MD28070 $MC_MM_NUM_BLOCKS_IN_PREP (number of blocks for block preparation)

Example
To achieve a higher path velocity when executing the traversing blocks, compression for short
spline blocks is activated for BSPLINE interpolation:

MD20488 $MC_SPLINE_MODE, Bit 0 = 1

Program code Comment
N10 G1 G64 X0 Y0 Z0 F1000 ; Initial setting
N20 G91 F10000 BSPLINE ; Activation: B spline
N30 X0.001 Y0.001 Z0.001 ; From here: Combine short spline blocks
N40 X0.001 Y0.001 Z0.001
...

B1: Continuous-path mode, Exact stop, Look Ahead
5.5 Compressor functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 247

5.6 Contour/Orientation tolerance

5.6.1 Commissioning

5.6.1.1 Parameter assignment

Machine data

Contour tolerance / orientation tolerance
MD33100 $MA_COMPRESS_POS_TOL[<axis>] = <value> (maximum tolerance with
compression)

Via the axis-specific machine data, the maximum permitted contour deviation (contour
tolerance) or angle deviation of the tool orientation (orientation tolerance) of each axis is set.
The machine data is effective with the following functions:

● Rounding: G642, G643, G644, G645

● Compressor: COMPON, COMPCURV, COMPCAD, COMPSURF

● The higher the value, the more short blocks can be compressed into a long block.

The machine data is not effective for smoothing function G641. For G641, the path distance
to the block transition, which can be programmed with ADIS or ADISPOS, is effective.

Smoothing mode
MD20480 $MC_SMOOTHING_MODE (rounding behavior with G64x)

Compressor mode
MD20482 $MC_COMPRESSOR_MODE (mode of compression)

Smoothing G645
MD33120 $MA_PATH_TRANS_POS_TOL (maximum contour deviation for smoothing G645)

Effective for rounding tangential, but not continuously curved block transitions (e.g. circle -
straight line)

Setting data

Channel-specific contour tolerance
SD42465 $SC_SMOOTH_CONTUR_TOL (maximum contour deviation)

Channel-specific orientation tolerance
SD42466 $SC_SMOOTH_ORI_TOL (maximum angular deviation of the tool orientation)

Channel-specific orientation tolerance for smoothing with OST
SD42676 $SC_ORI_SMOOTH_TOL (tolerance for smoothing with orientation on rounding)

B1: Continuous-path mode, Exact stop, Look Ahead
5.6 Contour/Orientation tolerance

Basic Functions
248 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Channel-specific orientation tolerance for smoothing orientation using ORISON
SD42678 $SC_ORISON_TOL (tolerance for smoothing the orientation)

5.6.2 Programming

5.6.2.1 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)
Addresses CTOL, OTOL and ATOL can be used to adapt the machining tolerances -
parameterized using machine and setting data - for compressor functions, smoothing and
orientation smoothing in the part program.

The programmed tolerance values are valid until they are reprogrammed or deleted by
assigning a negative value. Further, they are deleted at the end of the program or a reset The
parameterized tolerance values become effective again after deletion.

Syntax
CTOL=<Value>
OTOL=<Value>
ATOL[<Axis>]=<Value>

Meaning

CTOL: Address to program the contour tolerance
Applications: ● All compressor functions

● All rounding types except G641 and G644
Preprocessing stop: No
Effective: Modal
<Value>: The value for the contour tolerance is specified as a length.

Type: REAL
Unit: inch/mm (dependent on the current dimensions

setting)
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

B1: Continuous-path mode, Exact stop, Look Ahead
5.6 Contour/Orientation tolerance

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 249

OTOL: Address to program the orientation tolerance
Applications: ● All compressor functions

● ORISON orientation smoothing
● All smoothing types except G641, G644 and OSD

Preprocessing stop: No
Effective: Modal
<Value>: The value for the orientation tolerance is specified as an angle.

Type: REAL
Unit: degrees
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

ATOL: Address for programming an axis-specific tolerance
Applications: ● All compressor functions

● ORISON orientation smoothing
● All smoothing types except G641, G644 and OSD

Preprocessing stop: No
Effective: Modal
<Axis>: Name of the channel axis to which the programmed tolerance will

apply
<Value>: The value for the axis tolerance will be specified as a length or an

angle dependent on the axis type (linear or rotary axis).
Type: REAL
Unit: For linear axes: inch/mm (dependent on

the current dimensions set‐
ting)

For rotary axes: degrees
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

Note

The channel-specific tolerance values programmed with CTOL and OTOL have higher priority
than the axis-specific tolerance values programmed with ATOL.

Note
Scaling frames

Scaling frames affect programmed tolerances in the same way as axis positions; in other
words, the relative tolerance remains the same.

B1: Continuous-path mode, Exact stop, Look Ahead
5.6 Contour/Orientation tolerance

Basic Functions
250 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example

Program code Comment
COMPCAD G645 G1 F10000 ; Activate COMPCAD compressor function.
X... Y... Z... ; The machine and setting data is applied here.
X... Y... Z...
X... Y... Z...
CTOL=0.02 ; A contour tolerance of 0.02 mm is applied start-

ing from here.
X... Y... Z...
X... Y... Z...
X... Y... Z...
ASCALE X0.25 Y0.25 Z0.25 ; A contour tolerance of 0.005 mm is applied start-

ing from here.
X... Y... Z...
X... Y... Z...
X... Y... Z...
CTOL=–1 ; The machine and setting data is applied again

starting from here.
X... Y... Z...
X... Y... Z...
X... Y... Z...

B1: Continuous-path mode, Exact stop, Look Ahead
5.6 Contour/Orientation tolerance

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 251

5.6.2.2 Programming contour/orientation tolerance (CTOL, OTOL, ATOL) Additional information

System variables

Reading with preprocessing stop
Using the following system variables, the currently active tolerances can be read in the part
program and synchronized action:

● $AC_CTOL
Channel-specific contour tolerance effective when the actual main run block was
preprocessed.
If no contour tolerance is effective, $AC_CTOL will return the root of the sum of the squares
of the tolerances of the geometry axes.

● $AC_OTOL
Channel-specific orientation tolerance effective when the actual main run block was
preprocessed.
If no orientation tolerance is effective, $AC_OTOL will return the root of the sum of the
squares of the tolerances of the orientation axes during active orientation transformation.
Otherwise, it will return the value "-1."

● $AA_ATOL[<axis>]
Axis-specific contour tolerance effective when the actual main run block was preprocessed.
If no contour tolerance is active, $AA_ATOL[<geometry axis>] returns the contour tolerance
divided by the root of the number of geometry axes.
If an orientation tolerance and an orientation transformation are active
$AA_ATOL[<orientation axis>] will return the orientation tolerance divided by the root of
the number of orientation axes.

Note

If now tolerance values have been programmed, the $A variables are not differentiated enough
to distinguish the tolerance of the individual functions.

Circumstances like this can occur if the machine data and the setting data set different
tolerances for compressor functions, smoothing and orientation smoothing. The system
variables then return the greatest value occurring with the functions that are currently active.
For example, if a compressor function is active with an orientation tolerance of 0.1° and
ORISON orientation smoothing with 1°, the $AC_OTOL variable will return the value "1." If
orientation smoothing is deactivated, $AC_OTOL returns a value value "0.1."

Reading without preprocessing stop
Using the following system variables, the currently active tolerances can be read in the part
program:

● $P_CTOL
Currently active channel-specific contour tolerance.

● $P_OTOL
Currently active channel-specific orientation tolerance.

● $PA_ATOL
Currently active axis-specific contour tolerance.

B1: Continuous-path mode, Exact stop, Look Ahead
5.6 Contour/Orientation tolerance

Basic Functions
252 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Supplementary conditions
The tolerances programmed with CTOL, OTOL and ATOL also affect functions that indirectly
depend on these tolerances:

● Limiting the chord error in the setpoint value calculation

● The basic functions of the free-form surface mode

The following smoothing functions are not affected by the programming of CTOL, OTOL and
ATOL:

● Smoothing the orientation with OSD
OSD does not use a tolerance, it uses a distance from the block transition.

● Smoothing with G644
G644 is not used for smoothing, it is used for optimizing tool changes and other motion not
involving machining.

● Smoothing with G645
G645 virtually always behaves like G642 and, thus, uses the programmed tolerances. The
tolerance value from machine data MD33120 $MA_PATH_TRANS_POS_TOL is only used
in uniformly tangential block transitions with a jump in curvature, e.g. a tangential circle/
straight line transition. The rounding path at these points may also be located outside the
programmed contour, where many applications are less tolerant. Furthermore, it generally
takes a small, fixed tolerance to compensate for the sort of changes in curvature which
need not concern the NC programmer.

5.7 Rapid traverse movements

5.7.1 Function

5.7.1.1 Rapid traverse
During rapid traversing, programmed tool movements are carried out at the fastest possible
traversing velocity.

The velocity of the rapid traversing is defined separately for each axis (see "Parameter
assignment (Page 257)").

Application
Rapid traversing movements are used for the following tasks, for example:

● Quickly positioning of the tool

● Passing around the workpiece

● Approaching tool change points

● Retracting the tool

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 253

Note

Rapid traversing movements are not suitable for workpiece machining!

Activation
Rapid traverse is activated by programming of G0 in the part program (see "Programming
(Page 257)").

5.7.1.2 Interpolation response of path axes for rapid traversing movements

Liner/non-linear interpolation
Path axes can be traversed in linear or non-linear interpolation mode in rapid traverse
movement.

① Path for rapid traverse with linear interpolation
② Single axis movements for rapid traverse with non-linear interpolation

Linear interpolation
Properties:

● The path axes are interpolated together.

● The tool movement programmed with G0 is executed at the highest possible velocity (rapid
traverse).

● The rapid traverse velocity is defined separately for each axis.

● If the rapid traverse movement is executed simultaneously on several axes, the rapid
traverse speed is determined by the axis which requires the most time for its section of the
path.

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
254 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Linear interpolation is always performed in the following cases:

● For a G command combination with G0 that does not allow positioning axis motion, e.g.:
G40, G41, G42, G96, G961 and MD20750 $MC_ALLOW_G0_IN_G96 == FALSE

● With a combination of G0 and G64.

● When a compressor or transformation is active.

● In point-to-point (PTP) travel mode.

● When a contour handwheel is selected (FD = 0).

● In case of an active frame with rotation of geometry axes.

● If nibbling is active for geometry axes.

Non-linear interpolation
Properties:

● Each path axis interpolates as a single axis (positioning axis) independently of the other
axes at the axis-specific rapid traverse velocity.

● The channel-specific "Delete distance-to-go" command via the PLC and synchronized
action is applied to all positioning axes that were programmed as path axes.

In non-linear interpolation, with reference to the axis-specific jerk, one of the following two
settings applies alternatively:

● Positioning axis commands BRISKA, SOFTA, DRIVEA

● Machine data:

– MD32420 $MA_JOG_AND_POS_JERK_ENABLE

– MD32430 $MA_JOG_AND_POS_MAX_JERK

The existing system variables which refer to the distance-to-go ($AC_PATH, $AC_PLTBB and
$AC_PLTEB) are supported.

CAUTION

Risk of collision

Since the tool movement for non-linear interpolation can differ from the tool movement for
linear interpolation, synchronous actions relative to the coordinates of the path movement
may not become active.

Selection of interpolation type
The type of interpolation which is to be in effect for rapid traverse movements is preset by
machine data (see "Parameter assignment (Page 257)").

Independently of the default setting, the desired interpolation response can also be set in the
part program (see "Switch on/off linear interpolation for rapid traverse movements (RTLION,
RTLIOF) (Page 259)").

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 255

5.7.1.3 Tolerances for rapid traverse movements
The tolerances for rapid traverse movements can be set differently from the workpiece
machining tolerances by specifying a G0 tolerance factor.

Advantage
Larger tolerances for rapid traverse movements (G0 tolerance factor > 1) allow G0 blocks to
be traversed through faster.

Preconditions
The G0 tolerance factor is only effective, if the following conditions are fulfilled:

● One of the following functions is active:

– Compressor functions COMPON, COMPCURV, COMPCAD or COMPSURF

– Smoothing function G642 or G645

– Orientation smoothing OST

– Orientation smoothing ORISON

– Smoothing for path-relevant orientation ORIPATH

● Several (≥ 2) consecutive G0 blocks in the part program.
For a single G0 block, the G0 tolerance factor is not effective, as at the transition from a
non G0 motion to a G0 motion (and vice versa), the "lower tolerance" always applies
(workpiece machining tolerance)!

Definition of the G0 tolerance factor
The tolerance factor for rapid traverse movements is preset via machine data to be channel-
specific (see "Parameter assignment (Page 257)").

The preset tolerance factor can be temporarily adapted by programming in the part program
(see "Adapt tolerance factor for rapid traverse movements (STOLF) (Page 260)").

5.7.1.4 Rapid traverse override
With the rapid traverse override switch on the machine control panel, the operator can reduce
the rapid traverse velocity by percentages on-site and with immediate effect.

An active rapid traverse correction has an effect on all path axes that are traversed in rapid
traverse mode with linear or non-linear interpolation and are assigned to the current channel.

For further information, see "Feedrate override via machine control panel (Page 1423)".

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
256 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

5.7.2 Commissioning

5.7.2.1 Parameter assignment

Rapid traverse velocity
The rapid traverse velocity corresponds to the maximum permitted axis velocity, which is
defined for each axis via the following machine data:

MD32000 $MA_MAX_AX_VELO (maximum axis velocity) will still apply even after the coupling
is activated

Interpolation response for rapid traverse movements
The interpolation response for rapid traverse movements is channel-specifically preset for via
the machine data:

MD20730 $MC_G0_LINEAR_MODE = <Value> (interpolation behavior with G0)

<value> Meaning
0 In the rapid traversing mode (G0) the non-linear interpolation is active.

Path axes are traversed as positioning axes.
1 In the rapid traversing mode (G0) the linear interpolation is active.

The path axes are interpolated together.

G0 tolerance factor
The tolerance factor for rapid traverse movements is channel-specifically set via the machine
data:

MD20560 $MC_G0_TOLERANCE_FACTOR (tolerance factor for G0)

The tolerance factor can be both greater or less than 1.0. If the factor is equal to 1.0 (default
value), then the same tolerances are active for rapid traverse movements as for non-rapid
traverse movements. Normally, the tolerance factor is set to > 1.0.

5.7.3 Programming

5.7.3.1 Activating rapid traverse (G0)
The traversing of the path axes at rapid traversing velocity is activated with the G command
G0.

Syntax
G0 X… Y… Z…
G0 RP=… AP=…

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 257

Meaning

G0: Traversing the axis with rapid traverse velocity
Effective: Modal

X... Y... Z...: Specifying the end point in Cartesian coordinates
RP=... AP=... : Specifying the end point in polar coordinates

Examples

Example 1: Milling

Program code Comment
N10 G90 S400 M3 ; Absolute dimension input, spindle clockwise
N20 G0 X30 Y20 Z2 ; Approach the starting position
N30 G1 Z-5 F1000 ; Tool infeed
N40 X80 Y65 ; Traversing along a straight line
N50 G0 Z2
N60 G0 X-20 Y100 Z100 M30 ; Retract tool, end of program

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
258 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example 2: Turning

Program code Comment
N10 G90 S400 M3 ; Absolute dimension input, spindle clockwise
N20 G0 X25 Z5 ; Approach the starting position
N30 G1 G94 Z0 F1000 ; Tool infeed
N40 G95 Z-7.5 F0.2
N50 X60 Z-35 ; Traversing along a straight line
N60 Z-50
N70 G0 X62
N80 G0 X80 Z20 M30 ; Retract tool, end of program

5.7.3.2 Switch on/off linear interpolation for rapid traverse movements (RTLION, RTLIOF)
Independently of the default setting (MD20730 $MC_G0_LINEAR_MODE), the interpolation
response for rapid traverse movements can also be set in the part program using the
commands of the G group 55.

Syntax

RTLIOF
...
RTLION

Meaning

RTLIOF: G command for switching off the linear interpolation
⇒ In the rapid traversing mode (G0), the non-linear interpolation is active. All of
the path axes reach their end points independently of one another.
Effective: Modal

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 259

RTLION: G command for switching on the linear interpolation
⇒ In the rapid traversing mode (G0), the linear interpolation is active. All of the
path axes reach their end points simultaneously.
Effective: Modal

Note
Preconditions for RTLIOF

To ensure, with RTLIOF non-linear interpolation, the following conditions must be fulfilled:
● No transformation (TRAORI, TRANSMIT, etc.) active.
● G60 active (stop at the block end).
● No compressor active (COMPOF).
● No tool radius compensation active (G40).
● No contour handwheel selected.
● No nibbling active.

If one of these conditions is not met, linear interpolation is as with RTLION.

Example

Program code Comment
 ; Linear interpolation is the default:
 ; MD20730 $MC_GO_LINEAR_MODE == TRUE
...
N30 RTLIOF ; Switch off linear interpolation.
N40 G0 X0 Y10 ; G0 blocks are traversed using non-linear inter-

polation.
N50 G41 X20 Y20 ; TRC active ⇒ G0 blocks are traversed using lin-

ear interpolation.
N60 G40 X30 Y30 ; TRC not active ⇒ G0 blocks are traversed using

non-linear interpolation.
N70 RTLION ; Switch on linear interpolation.
...

Further information

Reading the current interpolation behavior
The current interpolation behavior can be read via the system variables $AA_G0MODE.

5.7.3.3 Adapt tolerance factor for rapid traverse movements (STOLF)
The tolerance factor for rapid traverse movements (G0), which is preset using machine data
(MD20560 $MC_G0_TOLERANCE_FACTOR), can be adapted in the part program by
programming STOLF. In this case, the value in the machine data is not changed. After reset
or end of part program, the tolerance factor set in the machine data becomes effective again.

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
260 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Syntax
STOLF=<value>

Meaning

STOLF: Address to program a tolerance factor for rapid traverse movements
Applications: ● Compressor functions COMPON, COMPCURV, COMPCAD

and COMPSURF
● Smoothing functions G642 and G645
● Orientation smoothing OST
● Orientation smoothing ORISON
● Smoothing for path-relevant orientation ORIPATH

Preprocessing stop: No
Effective: Modal
<Value>: Tolerance factor

The tolerance factor can be both greater or less than 1.0. If the
factor is equal to 1.0 (default value), then the same tolerances are
active for rapid traverse movements as for non-rapid traverse
movements. Normally, the tolerance factor is set to > 1.0.
Type: REAL
Range of val‐
ues:

≥ 0: Tolerance value
< 0: The programmed tolerance value is de‐

leted
⇒ The tolerance value parameterized in
the machine data becomes effective
again.

Example

Program code Comment
COMPCAD G645 G1 F10000 ; Compressor function COMPCAD
X... Y... Z... ; The machine and setting data apply here.
X... Y... Z...
X... Y... Z...
G0 X... Y... Z...
G0 X... Y... Z... ; Machine data $MC_G0_TOLERANCE_FACTOR (e.g. =3) is ef-

fective here, i.e. a smoothing tolerance of:
$MC_G0_TOLERANCE_FACTOR * $MA_COMPRESS_POS_TOL

CTOL=0.02
STOLF=4
G1 X... Y... Z... ; A contour tolerance of 0.02 mm is applied starting

from here.
X... Y... Z...
X... Y... Z...
G0 X... Y... Z...

B1: Continuous-path mode, Exact stop, Look Ahead
5.7 Rapid traverse movements

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 261

Program code Comment
X... Y... Z... ; From here, a G0 tolerance factor of 4 applies, i.e. a

contour tolerance of 0.08 mm.

Additional information

Reading of the tolerance factor currently in effect
The tolerance factor for rapid traverse movements effective in the part program or in the current
IPO block can be read using system variables.

● In synchronized actions or with preprocessing stop in the part program via system variable:

 $AC_STOLF Active G0 tolerance factor
G0 tolerance factor, which was effective when processing the ac‐
tual main run block.

● Without preprocessing stop in the part program via system variable:

 $P_STOLF Programmed G0 tolerance factor

If no value with STOLF is programmed in the active part program, then these two system
variables supply the value set using MD20560 $MC_G0_TOLERANCE_FACTOR.

If no rapid traverse (G0) is active in a block, then these system variables always supply a value
of 1.

5.8 RESET behavior

MD20150
With the reset (channel or mode group reset), the initial setting parameterized channel-
specifically becomes effective for all G groups:

MD20150 $MC_GCODE_RESET_VALUES (initial setting of the G groups)

The following G groups are of relevance to "continuous-path mode, exact stop, LookAhead":

● Group 10: Exact stop - continuous-path mode

● Group 12: Block-change criterion for exact stop

● Group 21: Acceleration profile

● Group 30: NC block compression

● Group 59: Dynamic response mode for path interpolation

For detailed information on setting initial states, see Section "K1: Mode group, channel,
program operation, reset response (Page 479)."

B1: Continuous-path mode, Exact stop, Look Ahead
5.8 RESET behavior

Basic Functions
262 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

5.9 Supplementary conditions

5.9.1 Block change and positioning axes
If path axes are traversed in continuous path mode in a part program, traversing positioning
axes can also simultaneously affect both the response of the path axes and the block change.

A detailed description of the positioning axes can be found in:
References:
Function Manual, Extended Functions; Positioning axes (P2)

5.9.2 Block change delay
Even if all path axes and special axes traversing in the part program block have satisfied their
specific block transition criteria, the block change can still be delayed due to other unsatisfied
conditions and/or active functions:

Examples:

● Missing auxiliary function acknowledgement by the PLC

● Non-existent following blocks

● Active function "Empty buffer"

Effects

If a block change cannot be executed in continuous path mode, all axes programmed in this
part program block (except cross-block traversing special axes) are stopped. In this case,
contour errors do not occur.

The stopping of path axes during machining can cause undercuts on the workpiece surface.

5.10 Data lists

5.10.1 Machine data

5.10.1.1 General machine data

Number Identifier: $MN_ Description
10110 PLC_CYCLE_TIME_AVERAGE Average PLC acknowledgment time
10680 MIN_CONTOUR_SAMPLING_TIME Minimum contour sampling time
10682 CONTOUR_SAMPLING_FACTOR Contour sampling factor
10712 NC_USER_CODE_CONF_NAME_TAB List of reconfigured NC commands
12030 OVR_FACTOR_FEEDRATE Evaluation of the path feedrate override switch

B1: Continuous-path mode, Exact stop, Look Ahead
5.10 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 263

Number Identifier: $MN_ Description
12100 OVR_FACTOR_LIMIT_BIN Limit for binary-coded override switch
18360 MM_EXT_PROG_BUFFER_SIZE FIFO buffer size for execution from external source

(DRAM)

5.10.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20150 GCODE_RESET_VALUES Basic setting of the groups
20170 COMPRESS_BLOCK_PATH_LIMIT Maximum traversing length of an NC block that can be

compressed
20171 SURF_BLOCK_PATH_LIMIT Maximum traversing length of an NC block for com‐

pression with COMPSURF
20172 COMPRESS_VELO_TOL Maximum permissible deviation from path feed for com‐

pression
20173 SURF_VELO_TOL Maximum permissible deviation from path feed for com‐

pression with COMPSURF
20400 LOOKAH_USE_VELO_NEXT_BLOCK LookAhead following block velocity
20430 LOOKAH_NUM_OVR_POINTS Number of override switch points for LookAhead
20440 LOOKAH_OVR_POINTS Override switch points for LookAhead
20443 LOOKAH_FFORM Activating the extended LookAhead
20450 LOOKAH_RELIEVE_BLOCK_CYCLE Relief factor for the block cycle time
20455 LOOKAH_FUNCTION_MASK Special LookAhead functions
20460 LOOKAH_SMOOTH_FACTOR Smoothing factor for LookAhead
20462 LOOKAH_SMOOTH_WITH_FEED Smoothing with programmed feed
20465 ADAPT_PATH_DYNAMIC Adaptation of path dynamic response
20480 SMOOTHING_MODE Rounding behavior with G64x
20482 COMPRESSOR_MODE Principle of operation of the compressor
20484 COMPRESSOR_PERFORMANCE Compressor performance
20485 COMPRESS_SMOOTH_FACTOR Smoothing factor for compression with COMPCAD for

the particular dynamic mode
20486 COMPRESS_SPLINE_DEGREE Spline degree for compression with COMPCAD for the

particular dynamic mode
20487 COMPRESS_SMOOTH_FACTOR_2 Smoothing factor for rotary axes for compression with

COMPCAD for the particular dynamic mode
20488 SPLINE_MODE Setting for spline interpolation
20490 IGNORE_OVL_FACTOR_FOR_ADIS G641/G642 independent of the overload factor
20550 EXACT_POS_MODE Exact-stop conditions with G0/G1
20552 EXACT_POS_MODE_G0_TO_G1 Exact stop criterion for rapid traverse transitions in the

continuous path mode
20560 G0_TOLERANCE_FACTOR G0 tolerance factor
20600 MAX_PATH_JERK Pathrelated maximum jerk
20602 CURV_EFFECT_ON_PATH_ACCEL Influence of path curvature on path dynamic response
20603 CURV_EFFECT_ON_PATH_JERK Influence of path curvature on path jerk

B1: Continuous-path mode, Exact stop, Look Ahead
5.10 Data lists

Basic Functions
264 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Number Identifier: $MC_ Description
20606 PREPDYN_SMOOTHING_ON Activation of the curvature smoothing
20730 G0_LINEAR_MODE Interpolation behavior with G0
28060 MM_IPO_BUFFER_SIZE Number of NC blocks in IPO buffer (DRAM)
28070 MM_NUM_BLOCKS_IN_PREP Number of NC blocks for block preparation (DRAM)
28071 MM_NUM_SURF_LEVELS Dimensioning the COMPSURF function (DRAM)
28072 MM_MAXNUM_SURF_GROUPS Dimensioning the COMPSURF function regarding axis

groups (DRAM)
28520 MM_MAX_AXISPOLY_PER_BLOCK Maximum number of axis polynomials per block
28530 MM_PATH_VELO_SEGMENTS Number of storage elements for limiting path velocity

in block
28533 MM_LOOKAH_FFORM_UNITS Memory for extended LookAhead
28540 MM_ARCLENGTH_SEGMENTS Number of storage elements for arc length function rep‐

resentation per block
28610 MM_PREPDYN_BLOCKS Number of blocks for velocity preparation

5.10.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
32000 MAX_AX_VELO Maximum axis velocity
32310 MAX_ACCEL_OVL_FACTOR Overload factor for axial velocity jumps
32431 MAX_AX_JERK Maximum axial jerk when traversing along the path
32432 PATH_TRANS_JERK_LIM Maximum axial jerk at the block transition in continuous-

path mode
32433 SOFT_ACCEL_FACTOR Scaling of acceleration limitation for SOFT
32434 G00_ACCEL_FACTOR Scaling of acceleration limitation for G00
32435 G00_JERK_FACTOR Scaling of axial jerk limitation for G00
32440 LOOKAH_FREQUENCY Smoothing limit frequency for LookAhead
33100 COMPRESS_POS_TOL Maximum deviation with compensation
33120 PATH_TRANS_POS_TOL Maximum deviation when rounding with G645
35240 ACCEL_TYPE_DRIVE DRIVE acceleration characteristic for axes on/off
36000 STOP_LIMIT_COARSE Exact stop coarse
36010 STOP_LIMIT_FINE Exact stop fine
36012 STOP_LIMIT_FACTOR Exact stop coarse/fine factor and zero speed monitoring
36020 POSITIONING_TIME Delay time exact stop fine

B1: Continuous-path mode, Exact stop, Look Ahead
5.10 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 265

5.10.2 Setting data

5.10.2.1 Channelspecific setting data

Number Identifier $SC_ Description
42465 SMOOTH_CONTUR_TOL Max. contour deviation during rounding
42466 SMOOTH_ORI_TOL Max. deviation of the tool orientation during rounding
42470 CRIT_SPLINE_ANGLE Corner angle limit for compression with COMPCAD
42471 MIN_CURV_RADIUS Minimum radius of curvature for compression with

COMPCAD
42472 MIN_SURF_RADIUS Minimum radius of curvature for compression with

COMPSURF
42473 ACTNUM_SURF_GROUPS Number of axis groups for COMPSURF
42475 COMPRESS_CONTUR_TOL Maximum permissible contour deviation with compres‐

sion
42476 COMPRESS_ORI_TOL Maximum deviation of the tool orientation for compres‐

sion
Note:
Only for active orientation transformation!

42477 COMPRESS_ORI_ROT_TOL Maximum deviation of the tool rotation for compression
Note:
Only for 6-axis machines with rotatable tool!

42676 ORI_SMOOTH_TOL Tolerance for smoothing of the orientation when
smoothing

42678 ORISON_TOL Smoothing tolerance of the orientation

5.10.3 Signals

5.10.3.1 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
All axes stationary DB21,DBX36.3 DB330x.DBX4.3

5.10.3.2 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Position reached with exact stop coarse DB31,DBX60.6 DB390x.DBX0.6
Position reached with exact stop fine DB31, … .DBX60.7 DB390x.DBX0.7

B1: Continuous-path mode, Exact stop, Look Ahead
5.10 Data lists

Basic Functions
266 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

B2: Acceleration 6
6.1 Brief description

6.1.1 General information

Scope of functions
The Description of Functions covers the following sub-functions:

● Acceleration

● Jerk

● Kneeshaped acceleration characteristic

Acceleration and jerk

The effective acceleration and jerk can be optimally matched to the machine and machining
situation concerned using axis- and channel-specific programmable maximum values,
programmable acceleration profiles in part programs and synchronized actions, and dynamic
adaptations and limitations.

Kneeshaped acceleration characteristic

The knee-shaped acceleration characteristic means that, in the case of machine axes featuring
a motor (in particular stepper motors) with a torque characteristic that is highly dependent upon
speed, acceleration can be set at the level required to ensure optimum utilization of the motor
whilst at the same time protecting it against overload.

6.1.2 Features

Acceleration
Axis-specific functions:

● Programmable maximum acceleration value

● Acceleration profile that can be selected via part-program instruction:
Acceleration without jerk limitation (BRISKA)

● Setting of maximum value using part-program instruction (ACC)

● Specific maximum value for programmed rapid traverse (G00).

● Specific maximum value for traverse with active jerk limitation

● Excessive acceleration for non-tangential block transitions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 267

Channel-specific functions:

● Acceleration profile that can be selected via part-program instruction:
Acceleration without jerk limitation (BRISK)

● Programmable constant travel time for the purpose of avoiding extreme sudden acceleration

● Programmable acceleration margin for overlaid traversing

● Adjustable acceleration limitation

● Adjustable acceleration for specific real-time events

● Programmable acceleration margin for radial acceleration

Jerk
Axis-specific functions:

● Acceleration profile that can be selected via part-program instruction:
Acceleration with jerk limitation (SOFTA)

● Programmable maximum jerk value for single-axis interpolation

● Programmable maximum jerk value for path interpolation

Channel-specific functions:

● Acceleration profile that can be selected via part-program instruction:
Acceleration with jerk limitation (SOFT)

● Adjustable jerk limitation

● Adjustable path jerk for specific real-time events

● Specific maximum value for programmed rapid traverse (G00)

● Excessive jerk for block transitions without constant curvature

Kneeshaped acceleration characteristic
A knee-shaped acceleration characteristic is parameterized using the following characteristic
data:

● Maximum velocity vmax

● Maximum acceleration amax

● Creep velocity vred

● Creep acceleration ared

● Nature of the acceleration reduction (constant, hyperbolic, linear)

B2: Acceleration
6.1 Brief description

Basic Functions
268 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6.2 Functions

6.2.1 Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-specific)

6.2.1.1 General Information

General Information
In the case of acceleration without jerk limitation (jerk = infinite) the maximum value is applied
for acceleration immediately. As regard to acceleration with jerk limitation, it differs in the
following respects:

● Advantages
Shorter processing times with the same maximum values for velocity and acceleration.

● Disadvantages
Increased load on the machine's mechanical components and risk of inducing high-
frequency and difficult-to-control mechanical vibrations.

Acceleration profile

amax: Maximum acceleration value
vmax: Maximum velocity value
t: Time

Figure 6-1 Velocity and acceleration schematic for stepped acceleration profile

The following features of the acceleration profile can be identified from the figure above:

● Time: t0
Sudden acceleration from 0 to +amax

● Interval: t0 - t1
Constant acceleration with +amax; linear increase in velocity

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 269

● Time: t1
Sudden acceleration from 2 * amax with immediate switchover from acceleration to braking

Note

The sudden acceleration can normally be avoided by specifying a constant velocity time
(see Section "Constant travel time (channel-specific) (Page 272)").

● Interval: t1 - t2
Constant acceleration with -amax; linear decrease in velocity

6.2.1.2 Parameterization

Maximum axial acceleration for path motions
The maximum axial acceleration for path motions can be set for the specific technology for
each machine axis via the following machine data:

MD32300 $MA_MAX_AX_ACCEL[<parameter set index>]

mit <parameter set index> = 0, 1, 2 ... (max. parameter set number - 1)

For the technology-specific parameter sets, see Chapter "Dynamic response mode for path
interpolation (Page 235)".

The path parameters are calculated by the path planning of the preprocessing so that the
parameterized maximum values of the machine axes involved in the path are not exceeded.

Note

It is possible for the maximum value to be exceeded in connection with specific machining
situations (see Chapters "Acceleration matching (ACC) (axis-specific) (Page 274)" and "Path
acceleration for real-time events (channel-specific) (Page 277)").

Maximum axial acceleration for positioning axis motions
With positioning axis motions, one of the two following maximum values is effective depending
on the set positioning axis dynamic response mode:

● MD32300 $MA_MAX_AX_ACCEL [0] (maximum axial acceleration for path motions in the
dynamic response mode DYNNORM)

● MD32300 $MA_MAX_AX_ACCEL [1] (maximum axial acceleration for path motions in the
dynamic response mode DYNPOS)

The positioning axis dynamic response mode is set in the NC-specific machine data:

MD18960 $MN_POS_DYN_MODE = <mode>

<mode> Meaning
0 Effective maximum axial acceleration: MD32300 $MA_MAX_AX_ACCEL[0]
1 Effective maximum axial acceleration: MD32300 $MA_MAX_AX_ACCEL[1]

B2: Acceleration
6.2 Functions

Basic Functions
270 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Maximum axial acceleration for JOG motions
See Chapter "Acceleration and jerk for JOG motions (Page 306)".

6.2.1.3 Programming

Path acceleration without jerk limitation (BRISK)

Syntax
BRISK

Functionality
The BRISK part-program instruction is used to select the "without jerk limitation" acceleration
profile for the purpose of path acceleration.

G group: 21

Effective: Modal

Reset response
The channel-specific initial setting is activated via a reset:

MD20150 $MC_GCODE_RESET_VALUES[20]

Supplementary conditions
If the acceleration profile is changed in a part program during machining (BRISK/SOFT) an
exact stop is performed at the end of the block.

Single-axis acceleration without jerk limitation (BRISKA)

Syntax
BRISKA (axis{,axis})

Function
The BRISKA part-program command is used to select the "without jerk limitation" acceleration
profile for single-axis movements (JOG, JOG/INC, positioning axis, reciprocating axis, etc.).

G group: -

Effectiveness: Modal

Axis:
● Value range: Axis name of the channel axes

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 271

Axis-specific initial setting
Acceleration without jerk limitation can be set as the axis-specific initial setting for single-axis
movements:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE = FALSE

Reset behavior
The axis-specific initial setting is activated via a reset:

MD32420 $MA_JOG_AND_POS_ENABLE

6.2.2 Constant travel time (channel-specific)

6.2.2.1 General Information

Overview
For acceleration without jerk limitation, an acceleration jump of 2 * amax occurs when changing
from acceleration and braking. To prevent this acceleration jump, a channel-specific constant
traversing time can be parameterized. The constant traversing time specifies the time for
constant velocity traversing between the acceleration and the braking phase:

MD20500 $MC_CONST_VELO_MIN_TIME (minimum time with constant velocity)

Note

Constant traversing time does not act for:
● Active function: LookAhead
● In traversal blocks with a traversal time less than or equal to the interpolation cycle.

B2: Acceleration
6.2 Functions

Basic Functions
272 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

1: Curve with constant traversing time
2: Curve without constant traversing time
amax: Maximum acceleration value
vmax: Maximum velocity value
t: Time

Figure 6-2 Principle characteristic for an abrupt acceleration

The above figure shows the effect of the constant traversing time:

● Instant: t1
End of the acceleration phase with acceleration jump 1 * amax

● Interval: t1 - t2
Acceleration 0; constant velocity over the parameterized constant traversing time

● Instant: t2
Start of the braking phase with acceleration jump 1 * amax

The instants t0, t1' and t2' indicate the associated curve that would have resulted without
constant traversing time.

6.2.2.2 Parameterization
The constant travel time is parameterized for specific channels using machine data:

MD20500 $MC_CONST_VELO_MIN_TIME
(minimum time with constant velocity)

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 273

6.2.3 Acceleration matching (ACC) (axis-specific)

6.2.3.1 General Information

Function
Using the ACC command, the currently effective maximum axis acceleration parameterized in
the acceleration-specific machine data can be reduced for a specific axis. The reduction is in
the form of a percentage factor, which is specified when programming the command.

For instance, reducing the maximum possible axis acceleration in a machining segment can
be used to prevent mechanical vibration as a result of high machining forces.

Effectiveness
Reducing the acceleration with ACC is effective for all interpolation types in the AUTOMATIC
and MDI operating modes – and for the dry run feedrate.

Acceleration reduction is not effective:

● in the JOG mode

● During the machine function REF (reference point approach).

● If, as a result of a fault that has been detected, the axis is stopped with a fast stop (setpoint
= 0).

6.2.3.2 Programming

Syntax
ACC[<axis>]=<reduction factor>
ACC[SPI(<spindle number>)]=<reduction factor>
ACC(S<spindle number>)=<reduction factor>

Meaning

<ACC>: Command for the axis-specific reduction of the currently maximum possible
acceleration, derived from the machine data
Effectiveness: Modal

<axis>: Channel axis name of path axis
Data type: AXIS
Value range: Channel axis names

SPI(<spindle
number>):

The SPI(...) function converts the spindle number into the corresponding
channel axis name.

S<spindle
number>:

Spindle name in the channel

B2: Acceleration
6.2 Functions

Basic Functions
274 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Further information

System variable
The acceleration reduction (set using ACC), currently active in the channel, can be read on
an axis-for-axis basis using:

$AA_ACC[<axis>]

Reset response
The acceleration reduction set using ACC can be kept after a channel reset or after the end
of the program. The parameterization is performed via:

MD32320 $MA_DYN_LIMIT_RESET_MASK

6.2.4 Acceleration margin (channel-specific)

6.2.4.1 General Information

General information
Under normal circumstances, preprocessing makes maximum use of the parameterized
maximum values of the machine axes for the purpose of path acceleration. In order that an
acceleration margin may be set aside for overlaid movements, e.g., within the context of the
"Rapid lift away from the contour" function, path acceleration can be reduced by a
programmable factor. When, for example, a factor of 0.2 is applied, preprocessing will only
use 80% of the maximum possible path acceleration. 20% is set aside as an acceleration
margin for overlaid movements.

6.2.4.2 Parameterization
Parameters for the acceleration margin are assigned for each channel by means of machine
datum:
MD20610 $MC_ADD_MOVE_ACCEL_RESERVE
(acceleration margin for overlaid motions)

6.2.5 Path-acceleration limitation (channel-specific)

6.2.5.1 General Information

General Information
To enable a flexible response to the machining situations concerned, setting data can be used
to limit the path acceleration calculated during preprocessing for specific channels:

SD42500 $SC_SD_MAX_PATH_ACCEL (maximum path acceleration)

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 275

The value specified in the setting data is only taken into account if it is smaller than the path
acceleration calculated during preprocessing.

The limitation must be activated for specific channels using setting data:

SD42502 $SC_IS_SD_MAX_PATH_ACCEL = TRUE

6.2.5.2 Parameterization
Parameterization is carried out for specific channels using setting data:

SD42500 $SC_SD_MAX_PATH_ACCEL (maximum path acceleration)

SD42502 $SC_IS_SD_MAX_PATH_ACCEL (activation of path-acceleration limitation)

6.2.5.3 Programming

Limit value

Syntax
$SC_SD_MAX_PATH_ACCEL = limit value

Functionality
The path-acceleration limitation can be adjusted for the situation by programming the setting
data.

Limit value:
● Value range: ≥ 0

● Unit: m/s2

Application:

● Part program

● Static synchronized action

Switch ON/OFF

Syntax
$SC_IS_SD_MAX_PATH_ACCEL = value

Functionality
The path-acceleration limitation can be activated/deactivated by programming the setting data.

B2: Acceleration
6.2 Functions

Basic Functions
276 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameter: Value
● Value range: TRUE, FALSE

Application:

● Part program

● Static synchronized action

6.2.6 Path acceleration for real-time events (channel-specific)

6.2.6.1 General Information

General Information
So that no compromise has to be made between machining-optimized acceleration on the one
hand and time-optimized acceleration in connection with the following real-time events on the
other:

● NC Stop / NC Start

● Changing the feedrate override

● Changing the velocity default for "safely reduced velocity" within the context of the "Safety
Integrated" function

For the real-time events mentioned above, the path acceleration can be specified using a
channel-specific system variable:

$AC_PATHACC = path acceleration
Real-time event acceleration will only be active for the duration of the change in velocity in
respect of one of the real-time events specified above.

Limitation
If the specified path acceleration exceeds the capabilities of the machine axes that are of
relevance for the path, a limit will be imposed on the path acceleration within the controller so
that the resulting axial acceleration (ares) is restricted to less than 2x the parameterized
maximum axial value (amax).

ares = 2 * amax, with amax = MD32300 $MA_MAX_AX_ACCEL

Note

Path acceleration for real-time events is enabled, irrespective of the radial acceleration.

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 277

Effectiveness

Effective Real-time event acceleration is only enabled in AUTOMATIC and MDA operating modes
in conjunction with the following real-time events:
● NC Stop / NC Start
● Override changes
● Changing the velocity default for "safely reduced velocity" within the context of the

"Safety Integrated" function
Not effective Path acceleration for real-time events is ineffective for changes in path velocity that are

attributable to path planning during preprocessing for the channel, such as contour
curvatures, corners, kinematic transformation limitations, etc.
Real-time-event path acceleration is ineffective if the programmed value is smaller than
the path acceleration calculated during preprocessing for the path section concerned.

Programming
For information about programming system variables in the part program or synchronized
actions, see Section "Programming (Page 278)".

6.2.6.2 Programming

Syntax
$AC_PATHACC = path acceleration

Functionality
Real-time-event path acceleration is set via the channel-specific system variables.

Parameter: Path acceleration
● Value range: Path acceleration ≥ 0

● Unit: m/s2

Deactivation: $AC_PATHACC = 0
Application:

● Part program

● Static synchronized action

Reset response
Real-time-event path acceleration is deactivated on reset.

Supplementary conditions
Programming $AC_PATHACC in the part program automatically triggers a preprocessing stop
with REORG (STOPRE).

B2: Acceleration
6.2 Functions

Basic Functions
278 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6.2.7 Acceleration with programmed rapid traverse (G00) (axis-specific)

6.2.7.1 General Information

Frequently, the acceleration for the machine axes involved in the machining process must be
set lower than the machine's performance capability officially allows because of the
supplementary conditions associated with the specific process concerned.

For time-optimized traversing of the machine axes with programmed rapid traverse (part-
program instruction G00), a specific maximum value can be programmed for the axis-specific
acceleration.

JOG setup mode
This function does not affect acceleration in respect of a rapid traverse override in JOG setup
mode.

6.2.7.2 Parameterization

The maximum value for axis-specific acceleration with programmed rapid traverse is
parameterized (G00) using the axis-specific machine data:

MD32434 $MA_G00_ACCEL_FACTOR
(scaling of the acceleration limitation with G00)

This is used to generate the maximum value for axis-specific acceleration with programmed
rapid traverse (G00) that is taken into account by the path planning component during
preprocessing:

Acceleration[axis] =
MD32300 $MA_MAX_AX_ACCEL * MD32434 $MA_G00_ACCEL_FACTOR

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 279

6.2.8 Acceleration with active jerk limitation (SOFT/SOFTA) (axis-specific)

6.2.8.1 General Information

Function
Compared with acceleration without jerk limitation, acceleration with jerk limitation results in a
certain degree of time loss, even when the same maximum acceleration value is used. To
compensate for this time loss, a specific maximum value can be programmed for the axis-
specific acceleration as far as traversing of the machine axes with active jerk limitation (SOFT/
SOFTA) is concerned.

The maximum value for acceleration with active jerk limitation is parameterized using a factor
calculated in relation to the axis-specific maximum value. This is used to generate the
maximum value for axis-specific acceleration with active jerk limitation that is taken into
account by the path planning component during preprocessing:

Acceleration[axis] =
MD32300 $MA_MAX_AX_ACCEL * MD32433 $MA_SOFT_ACCEL_FACTOR

6.2.8.2 Parameterization
The maximum value for acceleration with active jerk limitation (SOFT/SOFTA) is parameterized
using the axis-specific machine data:

MD32434 $MA_SOFT_ACCEL_FACTOR
(scaling of the acceleration limitation with SOFT)

6.2.9 Excessive acceleration for non-tangential block transitions (axis-specific)

6.2.9.1 General Information

Function
In the case of non-tangential block transitions (corners), the programmable controller may have
to decelerate the geometry axes significantly in order to ensure compliance with the
parameterized axis dynamics. For the purpose of reducing/avoiding deceleration in connection
with non-tangential block transitions, a higher level of axis-specific acceleration can be enabled.

Excessive acceleration is parameterized using a factor calculated in relation to the axis-specific
maximum value. This is used to generate the maximum value for axis-specific acceleration
with non-tangential block transitions that is taken into account by the path planning component
during preprocessing:

Acceleration[axis] =
MD32300 $MA_MAX_AX_ACCEL * MD32310 $MA_MAX_ACCEL_OVL_FACTOR

B2: Acceleration
6.2 Functions

Basic Functions
280 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6.2.9.2 Parameterization
Excessive acceleration for non-tangential block transitions is parameterized using the axis-
specific machine data:
MD32310 $MA_MAX_ACCEL_OVL_FACTOR
(overload factor for velocity jumps)

6.2.10 Acceleration margin for radial acceleration (channel-specific)

6.2.10.1 General Information

Overview
In addition to the path acceleration (tangential acceleration), radial acceleration also has an
effect on curved contours. If this is not taken into account during parameterization of the path
parameters, the effective axial acceleration during acceleration and deceleration on the curved
contour can, for a short time, reach 2x the maximum value.

Effective axial acceleration =
Path acceleration + radial acceleration =
2 * (MD32300 $MA_MAX_AX_ACCEL)

Figure 6-3 Radial and path acceleration on curved contours

The channel-specific machine data:
MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL
(influence of path curvature on dynamic path response)
can be used to set the proportion of the axis-specific acceleration that is to be taken into
account for radial acceleration.

When, for example, a value of 0.75 is applied, 75% of the axis-specific acceleration will be
made available for radial acceleration and 25% for path acceleration.

The corresponding maximum values are generally calculated as follows:

Radial acceleration =
MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL * MD32300 $MA_MAX_AX_ACCEL

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 281

Path acceleration =
(1 - MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL) * MD32300 $MA_MAX_AX_ACCEL

Example
The following machine parameters apply:

● MD32300 $MA_MAX_AX_ACCEL for all geometry axes: 3 m/s

● Maximum path velocity with a path radius of 10 mm due to mechanical constraints of the
machine: 5 m/min.

The radial acceleration is calculated as follows:

The acceleration margin is set as follows:

Linear motions
The acceleration margin referred to above is ineffective in the case of linear motions (linear
interpolation) without active kinematic transformation.

6.2.10.2 Parameterization
The proportion of maximum available axis acceleration to be taken into account as an
acceleration margin for radial acceleration on curved contours is parameterized using the
channel-specific machine data:

MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL
(influence of path curvature on dynamic path response)

B2: Acceleration
6.2 Functions

Basic Functions
282 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6.2.11 Jerk limitation with path interpolation (SOFT) (channel-specific)

6.2.11.1 General Information

Overview
As far as the functionality described in the rest of this document is concerned, constant
acceleration, i.e., acceleration with jerk limitation (jerk = infinite value), is the assumed
acceleration profile. In the case of acceleration with jerk limitation, linear interpolation is applied
in respect of acceleration from 0 to the maximum value.

Advantages
Minimal load on the machine's mechanical components and low risk of high-frequency and
difficult-to-control mechanical vibrations thanks to constant excessive acceleration.

Disadvantages
Longer machining times compared with stepped acceleration profile when the same maximum
velocity and acceleration values are used.

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 283

Acceleration profile

rmax: Maximum jerk value
amax: Maximum acceleration value
vmax: Maximum velocity value
t: Time

Figure 6-4 Jerk, acceleration and velocity schematic with jerk limitation acceleration profile

The following features of the acceleration profile can be identified from the figure above:

● Interval: t0 - t1
Constant jerk with +rmax; linear increase in acceleration; quadratic increase in velocity

● Interval: t1 - t2
Constant acceleration with +amax; linear increase in velocity

● Interval: t2 - t3
Constant jerk with -rmax; linear decrease in acceleration; quadratic decrease in excessive
velocity until maximum value +vmax is reached

● Interval: t3 - t4
Constant jerk with +rmax; linear increase in braking acceleration; quadratic decrease in
velocity

● Interval: t4 - t5
Constant braking acceleration with -amax; linear decrease in velocity

● Interval: t5 - t6
Constant jerk with -rmax; linear decrease in braking acceleration; quadratic decrease in
velocity reduction until zero velocity is reached v = 0

B2: Acceleration
6.2 Functions

Basic Functions
284 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6.2.11.2 Parameterization

Maximum jerk value for path motions (axis-specific)
The maximum axial jerk for path motions can be set for the specific technology for each
machine axis via the following machine data:

MD32431 $MA_MAX_AX_JERK[<parameter set index>]

With <parameter set index> = 0, 1, 2 ... (max. parameter set number - 1)

For the technology-specific parameter sets, see Section "Dynamic response mode for path
interpolation (Page 235)".

The path parameters are calculated by the path planning of the preprocessing so that the
parameterized maximum values of the machine axes involved in the path are not exceeded.

Note

It is possible for the maximum value to be exceeded in connection with specific machining
situations (see Section "Path jerk for real-time events (channel-specific) (Page 289)").

Maximum jerk value for path motions (channel-specific)
In addition to the axis-specific setting, the maximum jerk value can also be specified as channel-
specific path parameter via the following machine data:

MD20600 $MC_MAX_PATH_JERK (path-related maximum jerk)

In order to exclude the mutual influencing of axis and channel-specific maximum jerk values,
the channel-specific maximum value must be set to a value greater than the axial maximum
values.

6.2.11.3 Programming

Syntax
SOFT

Functionality
The SOFT part-program instruction is used to select the acceleration profile with jerk limitation
for the traversing operations of geometry axes in the channel.

G group: 21

Effective: Modal

Reset response
The channel-specific initial setting is activated via a reset:

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 285

MD20150 $MC_GCODE_RESET_VALUES[20]

Boundary conditions
If the acceleration mode is changed in a part program during machining (BRISK ↔ SOFT), a
block change is performed at the point of transition with an exact stop at the end of the block,
even in continuous-path mode.

6.2.12 Jerk limitation with single-axis interpolation (SOFTA) (axis-specific)

6.2.12.1 Parameterization

Basic setting of axis-specific jerk limitation
Acceleration with jerk limitation can be set as the axis-specific initial setting:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE== TRUE

Maximum axis-specific jerk for positioning axis movements
When traversing positioning axes with active jerk limitation, the value from one of the following
machine data takes effect as the maximum axis-specific jerk:

● MD32430 $MA_JOG_AND_POS_MAX_JERK (maximum axis-specific jerk)

● MD32431 $MA_MAX_AX_JERK [0] (maximum axis-specific jerk for path motions in the
dynamic response mode DYNNORM)

● MD32431 $MA_MAX_AX_JERK [1] (maximum axis-specific jerk for path motions in
dynamic response mode DYNPOS)

The machine data to be used is determined by the set positioning axis dynamic response mode:

MD18960 $MN_POS_DYN_MODE = <mode>

<mode> Meaning
 The following applies as the maximum axis-specific jerk for positioning axis motions:
0 MD32430 $MA_JOG_AND_POS_MAX_JERK

With active G75 (fixed-point approach): MD32431 $MA_MAX_AX_JERK[0]
1 MD32431 $MA_MAX_AX_JERK[1]

Maximum axial jerk for JOG motions
See Chapter "Acceleration and jerk for JOG motions (Page 306)".

B2: Acceleration
6.2 Functions

Basic Functions
286 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6.2.12.2 Programming

Syntax
SOFTA (Axis {Axis})

Functionality
The SOFTA part-program command is used to select acceleration with jerk limitation for single-
axis movements (positioning axis, reciprocating axis, etc.)

G group: -

Effectiveness: Modal

Axis:

● Value range: Axis name of the channel axes

Axis-specific initial setting
Acceleration with jerk limitation can be set as the axis-specific initial setting for single-axis
movements:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE = TRUE

Reset behavior
The axis-specific initial setting is activated via a reset:

MD32420 $MA_JOG_AND_POS_ENABLE

6.2.13 Path-jerk limitation (channel-specific)

6.2.13.1 General Information

Overview
To enable a flexible response to the machining situations concerned, setting data can be used
to limit the path jerk calculated during preprocessing for specific channels:

SD42510 $SC_SD_MAX_PATH_JERK (maximum path jerk)

The value specified in the setting data is only taken into account in the channel if it is smaller
than the path jerk calculated during preprocessing.

The limitation must be activated for specific channels using setting data:

SD42512 $SC_IS_SD_MAX_PATH_JERK = TRUE

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 287

6.2.13.2 Parameterization
Parameterization is carried out for specific channels using setting data:

SD42510 $SC_SD_MAX_PATH_JERK (maximum path jerk)

SD42512 $SC_IS_SD_MAX_PATH_JERK
(activation of path-jerk limitation)

6.2.13.3 Programming

Maximum path jerk

Syntax
$SC_SD_MAX_PATH_JERK = jerk value

Functionality
The path-jerk limitation can be adjusted for the situation by programming the setting data.

Jerk value:

● Value range: ≥ 0

● Unit: m/s3

Application:

● Part program

● Static synchronized action

Switch ON/OFF

Syntax
$SC_IS_SD_MAX_PATH_JERK = value

Functionality
The path-jerk limitation can be activated/deactivated by programming the setting data.

Parameter: Value
● Value range: TRUE, FALSE

B2: Acceleration
6.2 Functions

Basic Functions
288 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Application:

● Part program

● Static synchronized action

6.2.14 Path jerk for real-time events (channel-specific)

6.2.14.1 General Information

Overview
So that no compromise has to be made between machining-optimized jerk on the one hand
and time-optimized jerk in connection with the following real-time events on the other:

● NC Stop / NC Start

● Changing the feedrate override

● Changing the velocity default for "safely reduced velocity" within the context of the "Safety
Integrated" function

for the real-time events mentioned, the path jerk can be specified using a channel-specific
system variable:

$AC_PATHJERK = path jerk

Path jerk for real-time events will only be active for the duration of the change in velocity in
respect of one of the real-time events specified above.

Limitation
As the jerk is not a physical variable of any relevance to the drive, no limit is imposed on the
jerk set.

Effectiveness

Effective Path jerk for real-time events is only enabled in AUTOMATIC and MDA operating
modes in conjunction with the following real-time events:
● NC Stop / NC Start
● Override changes
● Changing the velocity default for "safely reduced velocity" within the context of the

"Safety Integrated" function
Not effective Path jerk for real-time events is ineffective for changes in the path velocity that are

attributable to path planning during preprocessing for the channel, such as contour
curvatures, corners, kinematic transformation limitations, etc.
Path jerk for real-time events is ineffective if the programmed value is smaller than
the path jerk calculated during preprocessing for the path section concerned.

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 289

Programming
For the purpose of setting the jerk for real-time events in accordance with the acceleration, the
system variables can be set as follows:

$AC_PATHJERK = $AC_PATHACC/smoothing time

● $AC_PATHACC: Path acceleration [m/s2]
Smoothing time: Freely selectable, e.g. 0.02 s

For information about programming system variables in the part program or synchronized
actions, see Section "Programming (Page 290)".

6.2.14.2 Programming

Syntax
$AC_PATHJERK = path jerk

Functionality
The path jerk for real-time events is set via the channel-specific system variables.

Jerk value:

● Value range: Path jerk ≥ 0

● Unit: m/s3

Application:

● Part program

● Static synchronized action

Reset behavior
The function is deactivated on reset.

Boundary conditions
Programming $AC_PATHJERK in the part program automatically triggers a preprocessing
stop with REORG (STOPRE).

B2: Acceleration
6.2 Functions

Basic Functions
290 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6.2.15 Jerk with programmed rapid traverse (G00) (axis-specific)

6.2.15.1 General Information

Overview
Frequently, the maximum jerk for the machine axes involved in the machining process must
be set lower than the machine's performance capability officially allows because of the
supplementary conditions associated with the specific process concerned.

For time-optimized traversing of the machine axes with programmed rapid traverse (part-
program instruction G00), a specific maximum value can be programmed for the axis-specific
jerk.

JOG setup mode
This function does not affect jerk in respect of a rapid traverse override in JOG setup mode.

6.2.15.2 Parameterization
The maximum value for axis-specific jerk with programmed rapid traverse is parameterized
(G00) using the axis-specific machine data:

MD32434 $MA_G00_ACCEL_FACTOR
(scaling of the acceleration limitation with G00)

This is used to generate the maximum value for axis-specific jerk with programmed rapid
traverse (G00) that is taken into account by the path planning component during preprocessing:

Jerk[axis] =
MD32431 $MA_MAX_AX_JERK * MD32435 $MA_G00_JERK_FACTOR

6.2.16 Excessive jerk for block transitions without constant curvature (axis-specific)

6.2.16.1 General Information

Overview
In the case of block transitions without constant curvature (e.g. straight line > circle), the
programmable controller has to decelerate movement of the geometry axes significantly in
order to ensure compliance with the parameterized axis dynamics. For the purpose of reducing/
avoiding deceleration in connection with block transitions without constant curvature, a higher
level of axis-specific jerk can be enabled.

The excessive jerk is parameterized using a dedicated axis-specific maximum value.

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 291

6.2.16.2 Parameterization
The excessive jerk for block transitions without constant curvature is parameterized using the
axis-specific machine data:

MD32432 $MA_PATH_TRANS_JERK_LIM
(excessive jerk for block transitions without constant curvature)

6.2.17 Velocity-dependent jerk adaptation (axis-specific)

Function
The dynamic path response results from the parameterized, constant axial maximum values
for velocity, acceleration and jerk of the axes involved in the path:

● MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

● MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)

● MD32431 $MA_MAX_AX_JERK (max. axial jerk for path motion)

For contours with non-constant curvature (torsion), as for example in connection with free-form
surfaces, fluctuations in the path velocity, particularly in the upper velocity range, can result
mainly due to the axial jerk. The fluctuations of the path velocity lead to adverse affects in the
surface quality.

The influence of the axial jerk on the path velocity is decreased for contours with non-constant
curvature through a velocity-dependent increase of the permissible axial jerk. Fluctuations in
the path velocity can be avoided with the appropriate parameterization.

The velocity-dependent increase of the permissible axial jerk has no effect on the maximum
possible path acceleration and path jerk. These result from the constant axial maximum values
parameterized in the in the machine data even when jerk adaptation is active.

As both curvature and torsion are zero in the case of linear motion, the velocity-dependent jerk
adaptation has no effect with linear motions.

Availability
The "velocity-dependent jerk adaptation" function is available independent of the function
"Free-form surface mode: Basic functions (Page 237)".

B2: Acceleration
6.2 Functions

Basic Functions
292 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameterization
The "Velocity-dependent jerk adaptation" function is parameterized with the following machine
data:

● MD32437 $MA_AX_JERK_VEL0[<n>] = <threshold valuelower>
Lower velocity threshold of the jerk adaptation. Velocity-dependent jerk adaptation takes
effective as of this velocity.
The lower velocity threshold can be set separately via index n for each dynamic response
mode (see Section "Dynamic response mode for path interpolation (Page 235)"):

● MD32438 $MA_AX_JERK_VEL1[<n>] = <threshold valueupper>
Upper velocity threshold of the jerk adaptation. The velocity-dependent jerk reaches its
maximum value jmax parameterized with MD32439 $MA_MAX_AX_JERK_FACTOR at this
velocity.
The upper velocity threshold can be set separately via index n for each dynamic response
mode (see Section "Dynamic response mode for path interpolation (Page 235)"):

● MD32439 $MA_MAX_AX_JERK_FACTOR = <factor>
Factor for the parameterization of the maximum velocity-dependent jerk jmax on reaching
the upper velocity threshold MD32438 $MA_AX_JERK_VEL1[<n>]:
jmax = (MD32431 $MA_MAX_AX_JERK) * (MD32439 $MA_MAX_AX_JERK_FACTOR)
The velocity-dependent jerk adaptation is active at a value > 1.0.
The velocity-dependent jerk adaptation is inactive at a value = 1.0.

v0: MD32437 $MA_AX_JERK_VEL0
v1: MD32438 $MA_AX_JERK_VEL1
j0: MD32431 $MA_MAX_AX_JERK
j1: MD32439 $MA_MAX_AX_JERK_FACTOR * MD32431 $MA_MAX_AX_JERK

Figure 6-5 Axial jerk as a function of the axis velocity

Note

The velocity-dependent jerk adaptation is only active, if:

MD32439 $MA_MAX_AX_JERK_FACTOR > 1.0

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 293

Example
Example of parameter assignment:

● MD32437 $MA_AX_JERK_VEL0 = 3000 mm/min

● MD32438 $MA_AX_JERK_VEL1 = 6000 mm/min

● MD32439 $MA_MAX_AX_JERK_FACTOR[AX1] = 2.0

● MD32439 $MA_MAX_AX_JERK_FACTOR[AX2] = 3.0

● MD32439 $MA_MAX_AX_JERK_FACTOR[AX3] = 1.0

Effect
● The velocity-dependent jerk adaptation becomes active for the 1st and 2nd axis, while the

function for the 3rd axis is not active.

● The parameterized jerk is effective at axis velocities in the range of 0 to 3000 mm/min.

● The maximum jerk is linearly increased for axis velocities in the range 3000 mm/min to
6000 mm/min.

● The maximum permitted jerk of the 1st axis is, for axis velocities greater than 6000 mm/
min, increased by a factor of 2 - for the 2nd axis, by factor of 3.

● The parameterized values apply in each dynamic response mode.

6.2.18 Jerk filter (axis-specific)

6.2.18.1 General Information

Overview
In certain application scenarios, e.g. when milling free-form surfaces, it may be beneficial to
smooth the position setpoint characteristics of the machine axes. This enables surface quality
to be improved by reducing the mechanical vibrations generated in the machine.

For the purpose of smoothing the position setpoint characteristic of a machine axis, a jerk filter
can be activated at position controller level, independently of the channel- and axis-specific
jerk limitations taken into account at interpolator level.

The effect of the jerk filter must be as strong as possible without having an unacceptable impact
on contour accuracy. The filter should also have as "balanced" a smoothing effect as possible,
i.e. if the same contour is traversed forwards and backwards, the contour smoothed by the
filter should be as similar as possible in both directions.

To enable the jerk filter to be optimally matched to the machine conditions, various filter modes
are available:

● 2nd-order filter (PT2)

● Sliding mean value generation

● Bandstop filter

B2: Acceleration
6.2 Functions

Basic Functions
294 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Mode: 2nd-order filter
Owing to the fact that it is a simple low-pass filter, "2nd-order filter" mode can only meet the
requirements specified above where relatively small filter time constants (around 10 ms) are
concerned. When used in conjunction with larger time constants, impermissible contour
deviations are soon manifest. The effect of the filter is relatively limited.

This filter mode offers advantages if very large filter time constants are needed and contour
accuracy is only of secondary importance (e.g. positioning axes).

For historical reasons, this filter mode is set as the default.

Mode: Sliding mean value generation
Where minimal contour deviations are required, filter time constants within the range of 20-40
ms can be set using the "sliding mean value generation" filter mode. The smoothing effect is
largely symmetrical.

The display of the calculated servo gain factor (KV) in the user interface, shows smaller values
than would normally be appropriate for the filter. The contour accuracy is in fact higher than
the displayed servo gain factor (KV) appears to suggest.

When changing from "2nd-order filter" to "sliding mean value generation" filter mode, the
displayed servo gain factor (KV) may therefore drop (with identical filter time constant), even
though there is an improvement in contour accuracy.

Mode: Bandstop filter
The bandstop filter is a 2nd-order filter in terms of numerator and denominator:

where:
fZ: Numerator natural freq.
fN: Denominator natural freq.
DZ: Numerator damping
DN: Denominator damping

Since a vibration-capable filter setting is not expected to yield useful results in any case, as
with the jerk filter's "2nd-order filter" (PT2) low-pass filter (PT2) mode there is no setting option
for the denominator damping DN. The denominator damping DN is permanently set to 1.

The bandstop filter can be parameterized in two different ways:

● Real bandstop filter

● Bandstop filter with additional amplitude response increase/decrease at high frequencies

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 295

Real bandstop filter
The real bandstop filter is applied when identical numerator and denominator natural
frequencies are selected:

fZ = fN = fblock (blocking frequency)

If numerator damping setting = 0 is selected, the blocking frequency is equivalent to complete
attenuation. In this case the 3 dB bandwidth is calculated as follows:

f3 dB bandwidth = 2 * fblock

If instead of complete attenuation, a reduction by a factor of k is all that is required, then
numerator damping should be selected in accordance with k. In this case the above formula
for calculating the 3 dB bandwidth no longer applies.

Bandstop filter with additional amplitude response increase/decrease at high frequencies
In this case, the numerator and denominator natural frequencies are set to different values.
The numerator natural frequency determines the blocking frequency.

By selecting a lower/higher denominator natural frequency than the numerator natural
frequency, you can increase/decrease the amplitude response at high frequencies. An
amplitude response increase at high frequencies can be justified in most cases, as the
controlled system generally possesses a lowpass characteristic itself, i.e. the amplitude
response drops at high frequencies anyway.

Supplementary conditions
If too high a numerator natural frequency is selected, the filter is disabled. In this case the
limiting frequency fZmax depends on the position-control cycle:

6.2.18.2 Parameterization

Activation
The jerk filter is activated using the machine data:

MD32400 $MA_AX_JERK_ENABLE (axial jerk limitation)

The jerk filter is active in all operating modes and with all types of interpolation.

Filter mode
The filter mode is selected via the machine data:

B2: Acceleration
6.2 Functions

Basic Functions
296 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD32402 $MA_AX_JERK_MODE

Value Filter mode
1 2nd-order filter
2 Sliding mean value generation
3 Bandstop filter

Time constant
The time constant for the axial jerk filter is set with the machine data:

MD32410 $MA_AX_JERK_TIME

The jerk filter is only effective when the time constant is greater than a position-control cycle.

6.2.19 Kneeshaped acceleration characteristic curve

6.2.19.1 Function: Adaptation to the motor characteristic curve
Various motor types, particularly stepper motors, have a torque characteristic that is highly
dependent on the speed with a steep decline in the torque in the upper speed range. For
optimal utilization of the motor characteristic, the acceleration of the associated NC axis must
be reduced as of a specific speed.

① Normal range
② Reducing range
nred Speed as of which traversing is done with reduced torque
nmax Maximum speed
Mmax Maximum torque
Mred Torque at nmax (corresponds to acceleration reduction)

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 297

Characteristic curve types
As a controller-internal emulation of the torque characteristic curve of the motor, the following
characteristic curve types can be selected for the reducing range (see chapter
"Parameterization (Page 301)"):

● Constant torque characteristic

● Hyperbolic torque characteristic

● Linear torque characteristic

6.2.19.2 Function: Effects on the path acceleration
The path acceleration characteristic curve results from the types of characteristic curve for the
axes that are of relevance for the path. If axes with different types of characteristic curve are
interpolated together, the acceleration profile for the path acceleration will be determined on
the basis of the reduction type that is most restrictive.

The following order of priorities applies, whereby 1 = top priority:

1. Acceleration reduction: 0 = constant characteristic

2. Acceleration reduction: 1 = hyperbolic characteristic

3. Acceleration reduction: 2 = linear characteristic

4. No acceleration reduction effective
A situation where no acceleration reduction is active arises for example when:
MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT = 1
and / or
MD35230 $MA_ACCEL_REDUCTION_FACTOR = 0

Note

Machine axes featuring stepper motor and DC drive can be interpolated together.

6.2.19.3 Function: Substitute curve
If the programmed path cannot be traversed with the acceleration curve parameterized in the
machine data of the participating axes, e.g. if kinematic transformation and acceleration types
BRISK or SOFT are active, a substitute curve is generated by reducing the dynamic limit values.
The reduced dynamic limit values are calculated to ensure that the substitute characteristic
curve provides the best possible compromise between maximum velocity and constant
acceleration.

B2: Acceleration
6.2 Functions

Basic Functions
298 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Substitute characteristic curve with linear path sections
Limitation to this value is applied if the programmed path velocity is greater than that at which
15 % of the maximum acceleration capacity is still available (v15%a). Consequently, 15 % of the
maximum acceleration capacity/motor torque always remains available, whatever the
machining situation.

① Normal range
② Reducing range
③ Locked area
aers: Substitute characteristic curve constant acceleration
a15% Minimal constant acceleration

a15% = 0.15 * (amax - ared) + ared

vers Substitute characteristic curve velocity
vprog Programmed velocity
v15%a Velocity at a15%

Figure 6-6 Substitute path characteristic curve: Linear path

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 299

Substitute characteristic curve with curved path sections
In the case of curved path sections, normal and tangential acceleration are considered
together. The path velocity is reduced so that only up to 25 % of the speed-dependent
acceleration capacity of the axes is required for normal acceleration. The remaining 75 % of
the acceleration capacity is set aside for the tangential acceleration, i.e., deceleration/
acceleration on the path.

① Normal range
② Reducing range
aN Normal acceleration
aers: Substitute characteristic curve constant acceleration
vers Substitute characteristic curve velocity
r Path radius

Figure 6-7 Substitute path characteristic curve: Curved path

Block transitions with continuous-path mode
If continuous-path mode is active, non-tangential block transitions result in axial velocity jumps
when the programmed path velocity is used for traversing.

As a result, the path velocity is controlled in such a way that prevents any axial velocity
proportion from exceeding the creep velocity vred at the time of the block transition.

Deceleration ramp with continuous-path mode and LookAhead
In the case of consecutive traversing blocks with short paths, an acceleration or deceleration
operation may be spread over several part program blocks.

In such a situation the "LookAhead" function also takes into account the parameterized speed-
dependent acceleration characteristic.

B2: Acceleration
6.2 Functions

Basic Functions
300 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

① Normal range ⇒ a = amax

② Reducing range ⇒ a < amax

③ Constant travel range ⇒ a = 0 m/s2

④ Brake application point
vred: Creep velocity
vmax Maximum velocity
Nx Traversing block with block number Nx

Figure 6-8 Deceleration with LookAhead

6.2.19.4 Parameterization

Path axis

Parameter assignment
The parameterization of the axis-specific velocity limit, above which the reduced acceleration
acts as an axis for traversing movements, is done via the machine data:

MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT = <speed limit>

Single axis

Activation
The activation of the axis-specific velocity limit, above which the reduced acceleration acts as
a single axis for traversing movements, is done via machine data:

MD35240 $MA_ACCEL_TYPE_DRIVE = TRUE

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 301

Parameter assignment
The following machine data is relevant for parameterizing the axis-specific acceleration
characteristic curve above the configured velocity limit:

● MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

● MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT = <speed limit>
From the parameterized velocity, the reduced acceleration is in effect>

● MD35230 $MA_ACCEL_REDUCTION_FACTOR = <reduction factor>
Beyond the reduction speed, interpolation between the maximum and minimum
acceleration occurs up to the maximum speed. The minimum acceleration is calculated as:
minimum acceleration = maximum acceleration * (1 - reduction factor)

● MD35242 $MA_ACCEL_REDUCTION_TYPE (see paragraph below: "Selection of the
torque characteristic curve")

● MD32300 $MA_MAX_AX_ACCEL (Maximum axis acceleration)

Selection of the torque characteristic curve
The following characteristic curve types can be selected for the reducing range via the machine
data as a controller-internal emulation of the torque characteristic curve of the motor:

MD35242 $MA_ACCEL_REDUCTION_TYPE = <value>

Value Meaning
0 Constant torque characteristic
1 Hyperbolic torque characteristic
2 Linear torque characteristic

B2: Acceleration
6.2 Functions

Basic Functions
302 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The following figures show the principal velocity and acceleration characteristic curves for the
respective types of characteristic curve:

● Constant torque characteristic (value = 0)

● Hyperbolic torque characteristic (value = 1)

● Linear torque characteristic (value = 2)

Characteristic parameters
The characteristic curve parameters result from the following machine data:

① Normal range
② Reducing range
vmax $MA_MAX_AX_VELO
vred $MA_ACCEL_REDUCTION_SPEED_POINT * $MA_MAX_AX_VELO
amax $MA_MAX_AX_ACCEL
ared (1 - $MA_ACCEL_REDUCTION_FACTOR) * $MA_MAX_AX_ACCEL

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 303

6.2.19.5 Programming: Channel-specific activation (DRIVE)

Functionality
The axis-specific velocity limit, above which the reduced acceleration acts as an axis for
traversing movements, is activated with the command DRIVE.

Syntax
DRIVE

Meaning

DRIVE: Channel-specific switch-on of the reduced acceleration above the parameter‐
ized velocity limit
G group: 21
Basic position: MD20150 $MC_GCODE_RESET_VALUES[20]
Effectiveness: Modal

Supplementary conditions

Characteristic changeover
If the acceleration reduction is active due to the programming of DRIVE and the acceleration
profile is changed over by SOFT or BRISK, traversing is then done with a substitute
characteristic with reduced dynamic limit values.

With the re-programming of DRIVE, the reduction in acceleration can be re-activated beyond
the parameterized velocity limit.

See also
Parameterization (Page 301)

6.2.19.6 Programming: Axis-specific activation (DRIVEA)

Functionality
The axis-specific velocity limit, above which the reduced acceleration acts as a single axis for
traversing movements, is activated for the programmed axes with the pre-defined procedure
DRIVEA().

Syntax
DRIVEA(<Axis_1>, <Axis_2>, ...)

B2: Acceleration
6.2 Functions

Basic Functions
304 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Meaning

DRIVEA: Axis-specific activation of the parameterized knee-shaped acceleration char‐
acteristic curve.
Effectiveness: Modal

<axis_x>: Axis for which the parameterized knee-shaped acceleration characteristic
curve is to be activated.
Data type: AXIS
Value range: Channel axis names

Supplementary conditions
If the knee-shaped acceleration characteristic curve is parameterized for an axis, then this
becomes the default acceleration profile for traversing operations.

If the effective acceleration profile is changed for a specific axis using the SOFTA or BRISKA
part-program commands, then an appropriate substitute characteristic curve is used in place
of the knee-shaped acceleration characteristic curve.

It is possible to switch back to the knee-shaped acceleration characteristic curve for a specific
axis by programming DRIVEA.

6.2.19.7 Boundary conditions

Single axis interpolation
After activating the knee-shaped acceleration characteristic curve in case of single-axis
interpolations (positioning axis, oscillating axis, manual traversing, etc.), the machine axis is
traversed exclusively in the mode DRIVEA .

It is not possible to switch over the acceleration profile via the following part program
instructions:

● Abrupt acceleration changes (BRISKA)

● Acceleration with jerk limitation (SOFTA)

Path interpolation
If for a machine axis involved in a programmed path, the knee-shaped acceleration
characteristic curve parameterized without the part program instruction DRIVE is active, then
a substitute characteristic curve with reduced dynamic limit values is determined for the path.

Kinematic transformation
The knee-shaped acceleration characteristic curve is not considered in an active kinematic
transformation. With internal control, a switchover is done to acceleration without jerk limitation
(BRISK) and a substitute characteristic curve becomes active for the path acceleration.

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 305

6.2.20 Acceleration and jerk for JOG motions

The axis-specific acceleration and jerk limitation values also take effect in JOG mode.

It is also possible to limit acceleration and jerk channel-specifically for manual traversing of
geometry and orientation axes. This enables better handling of the kinematics that generate
Cartesian motions entirely via rotary axes (robots).

6.2.20.1 Parameterization

Axis-specific limitation of acceleration and jerk

Maximum axis-specific acceleration
The maximum acceleration for manual traversing of an axis is defined in machine data:

MD32300 $MA_MAX_AX_ACCEL [0] (maximum axis-specific acceleration for path motions in
dynamic response mode DYNNORM)

Note

Only the dynamic response mode DYNNORM is always effective for JOG mode.

See also Chapter "Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-
specific) (Page 269)".

Basic setting of axis-specific jerk limitation
Acceleration with jerk limitation can be specified as the axis-specific basic setting for JOG
mode:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE== TRUE

Maximum axis-specific jerk
For JOG motions with active jerk limitation, the value from the following machine data takes
effect as the maximum axis-specific jerk:

MD32430 $MA_JOG_AND_POS_MAX_JERK (maximum axis-specific jerk)

See also Chapter "Jerk limitation with single-axis interpolation (SOFTA) (axis-specific)
(Page 286)".

Channel-specific limitation of acceleration and jerk

Maximum acceleration when manually traversing geometry axes
The maximum acceleration when manually traversing geometry axes can be specified for each
channel via the machine data:

MD21166 $MC_JOG_ACCEL_GEO [<geometry axis>]

B2: Acceleration
6.2 Functions

Basic Functions
306 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

With <geometry axis> = 0, 1, 2

Note

With MD21166 $MC_JOG_ACCEL_GEO [<geometry axis>], there is no direct limitation to
MD32300 $MA_MAX_AX_ACCEL.

Note

When a transformation is active, MD32300 $MA_MAX_AX_ACCEL determines the maximum
possible axis-specific acceleration.

Maximum jerk when manually traversing geometry axes
The maximum jerk when manually traversing geometry axes in the SOFT acceleration mode
(acceleration with jerk limitation) can be specified for each channel via the machine data:

MD21168 $MC_JOG_JERK_GEO [<geometry axis>]

With <geometry axis> = 0, 1, 2

Note

MD21168 $MC_JOG_JERK_GEO acts only when the axis-specific jerk limitation in JOG mode
has been enabled for the base machine axes:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE [<axis>] == TRUE

With MD21168 = 0, instead of the channel-specific jerk limitation, the axis-specific limit value
from MD32430 $MA_JOG_AND_POS_MAX_JERK is effective.

Maximum jerk when manually traversing orientation axes
The maximum jerk when manually traversing orientation axes can be specified for each
channel via the machine data:

MD21158 $MC_JOG_JERK_ORI [<orientation axis>]

For MD21158 to take effect, the channel-specific jerk limitation for the manual traversing of
orientation axes must be enabled via the following machine data:

MD21159 $MC_JOG_JERK_ORI_ENABLE == TRUE

6.2.20.2 Supplementary conditions

Behavior for the manual traversing of geometry axes with active rotation
When manually traversing geometry axes in the SOFT acceleration mode (acceleration with
jerk limitation), the value from MD32430 $MA_JOG_AND_POS_MAX_JERK is also used with
active rotation or active orientable tool carrier.

B2: Acceleration
6.2 Functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 307

Part program instruction SOFTA / BRISKA / DRIVEA
The part program instruction SOFTA(<axis1>,<axis2>, ...) is also effective in JOG
mode, i.e. the maximum axis-specific jerk from MD32430 $MA_JOG_AND_POS_MAX_JERK
is effective for the specified axes when traversing in JOG mode (exactly as when setting
MD32420 $MA_JOG_AND_POS_JERK_ENABLE [<axis>] == TRUE).

Note

On the other hand, the SOFT part program instruction has no effect on JOG mode.

As with SOFTA, the part program instructions BRISKA and DRIVEA are also effective in JOG
mode, i.e. the acceleration is without jerk limitation, even when MD32420
$MA_JOG_AND_POS_JERK_ENABLE is set to "TRUE" for the relevant machine axes.

Note

Manual traversing of orientation axes is not affected by BRISKA/SOFTA/DRIVEA.

See also
Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-specific) (Page 269)

Jerk limitation with single-axis interpolation (SOFTA) (axis-specific) (Page 286)

6.3 Examples

6.3.1 Acceleration

6.3.1.1 Path velocity characteristic
The following example shows the path velocity characteristic, based on programmed traversing
motion and the actions initiated in a part program segment.

Part program extract

Program code
; Synchronized action: Acceleration switchover depending on fast input 1
($A_IN[1]):
N53 ID=1 WHEN $A_IN[1] == 1 DO $AC_PATHACC = 2.*$MA_MAX_AX_ACCEL[X]
; Synchronized action: Test override profile (simulation of external
interventions):
N54 ID=2 WHENEVER ($AC_TIMEC > 16) DO $AC_OVR=10
N55 ID=3 WHENEVER ($AC_TIMEC > 30) DO $AC_OVR=100
;Approach
N1000 G0 X0 Y0 BRISK

B2: Acceleration
6.3 Examples

Basic Functions
308 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code
N1100 TRANS Y=-50
N1200 AROT Z=30 G642
; Contour
N2100 X0 Y0
N2200 X = 70 G1 F10000 RNDM=10 ACC[X]=30 ACC[Y]=30
N2300 Y = 70
N2400 X0
N2500 Y0

Path velocity characteristic

 Acceleration profile: BRISK
1: Accelerate to 100% of path velocity (F10000) in accordance with acceleration default: ACC (N2200...)
2: Brake to 10% of path velocity as a result of override modification ($AC_OVR) in accordance with real-time accel‐

eration $AC_PATHACC (N53/N54...)
3: Accelerate to 100% of path velocity as a result of override modification ($AC_OVR) in accordance with real-time

acceleration $AC_PATHACC (N53/N55...)
4: Brake to block end velocity for intermediate smoothing block in accordance with acceleration default: ACC (N2200...)
5: Speed limitation as a result of smoothing (see 9)
6: Accelerate to 100% of path velocity ($AC_OVR) in accordance with acceleration default: ACC (N2300...)
7: Decelerate as a result of override modification at a rate of acceleration that is in accordance with real-time accel‐

eration $AC_PATHACC (N53/N54...)
8: Accelerate to 100% of path velocity as a result of override modification ($AC_OVR) in accordance with real-time

acceleration $AC_PATHACC (N53/N55...)
9: Intermediate block inserted within the control as a result of the programmed smoothing (RNDM) (N2200...)

Figure 6-9 Switching between path acceleration specified during preprocessing and real-time acceleration

B2: Acceleration
6.3 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 309

6.3.2 Jerk

6.3.2.1 Path velocity characteristic
The following example shows the characteristic of path velocity and jerk based on programmed
traversing motion and the actions initiated in a part program segment.

Part program extract

Program code
; Setting of path acceleration and path jerk in the event of external
intervention:
N0100 $AC_PATHACC = 0.0
N0200 $AC_PATHJERK = 4.0 * ($MA_MAX_AX_JERK[X] + $MA_MAX_AX_JERK[Y]) / 2.0
; Synchronized action: varying the override (simulation of external
interventions)
N0530 ID=1 WHENEVER ($AC_TIMEC > 16) DO $AC_OVR=10
N0540 ID=2 WHENEVER ($AC_TIMEC > 30) DO $AC_OVR=100
;Approach
N1000 G0 X0 Y0 SOFT
N1100 TRANS Y=-50
N1200 AROT Z=30 G642
; Contour
N2100 X0 Y0
N2200 X = 70 G1 F10000 RNDM=10
N2300 Y = 70
N2400 X0
N2500 Y0

B2: Acceleration
6.3 Examples

Basic Functions
310 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Characteristic of path velocity and jerk

 Acceleration profile: SOFT
1: Jerk according to $MA_MAX_AX_JERK[..]
2: Jerk according to $AC_PATHJERK
3: Jerk according to $MA_MAX_AX_JERK[..] (approach block end velocity)
4: Velocity limiting using arcs
5: Jerk according to $AC_PATHJERK

Figure 6-10 Switching between path jerk specified during preprocessing and $AC_PATHJERK

6.3.3 Acceleration and jerk
The following example shows the characteristic of velocity and acceleration of the X axis based
on the programmed traversing motion of the part program extract. Further, which of the velocity
and acceleration-relevant machine data are decisive for which section of the contour.

Part program extract

Program code Comment
N90 F5000 SOFT G64 ; Continuous-path mode, jerk-limited acceleration
N100 G0 X0 Y0 Z0 ; Rapid traverse
N110 G1 X10 ; Straight line
N120 G3 CR=5 X15 Y5 ; Circular arc, radius 5 mm, block transition: Tangential
N130 G3 CR=10 X5 Y15 ; Circular arc, radius 10 mm, block transition: Tangential
N140 G1 X-5 Y17.679 ; Straight line, 15° kink

B2: Acceleration
6.3 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 311

Contour

Figure 6-11 Contour of the part program extract

Velocity and acceleration characteristic

Figure 6-12 Velocity and acceleration characteristic curves X axis

B2: Acceleration
6.3 Examples

Basic Functions
312 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6.3.4 Knee-shaped acceleration characteristic curve

6.3.4.1 Activation
The example illustrates how the knee-shaped acceleration characteristic curve is activated on
the basis of the machine data and a part program extract.

Machine data

Machine data Value
MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT[
X]

= 0.4

MD35230 $MA_ACCEL_REDUCTION_FACTOR[X] = 0.85
MD35242 $MA_ACCEL_REDUCTION_TYPE[X] = 2
MD35240 $MA_ACCEL_TYPE_DRIVE[X] = TRUE
MD35220
$MA_ACCEL_REDUCTION_SPEED_POINT[Y]

= 0.0

MD35230 $MA_ACCEL_REDUCTION_FACTOR[Y] = 0.6
MD35242 $MA_ACCEL_REDUCTION_TYPE[Y] = 1
MD35240 $MA_ACCEL_TYPE_DRIVE[Y] = TRUE
MD35220
$MA_ACCEL_REDUCTION_SPEED_POINT[Z]

= 0.6

MD35230 $MA_ACCEL_REDUCTION_FACTOR[Z] = 0.4
MD35242 $MA_ACCEL_REDUCTION_TYPE[Z] = 0
MD35240 $MA_ACCEL_TYPE_DRIVE[Z] = FALSE

Activation by entering as channel-specific initial setting:

MC_GCODE_RESET_VALUE[20] = 3 (DRIVE)

Part program extract

Program code Comment
N10 G1 X100 Y50 Z50 F700 ; Path motion (X,Y, Z) with DRIVE
N15 Z20 ; Path motion (Z) with DRIVE
N20 BRISK ; Switchover to BRISK
N25 G1 X120 Y70 ; Path motion (Y, Z) with substitute

characteristic curve
N30 Z100 ; Path motion (Z) with BRISK
N35 POS[X] = 200 FA[X] = 500 ; Positioning motion (X) with DRIVEA
N40 BRISKA(Z) ; Activate BRISKA for Z
N40 POS[Z] = 50 FA[Z] = 200 ; Positioning motion (Z) with BRISKA
N45 DRIVEA(Z) ; Activate DRIVEA for Z
N50 POS[Z] = 100 ; Positioning motion (Z) with DRIVE
N55 BRISKA(X) ; results in error message

B2: Acceleration
6.3 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 313

6.4 Data lists

6.4.1 Machine data

6.4.1.1 NC-specific machine data

Number Identifier: $MN_ Description
18960 POS_DYN_MODE Type of positioning axis dynamic response

6.4.1.2 Channel-specific machine data

Number Identifier: $MC_ Description
20150 GCODE_RESET_VALUES Initial setting of the G groups
20500 CONST_VELO_MIN_TIME Minimum time with constant velocity
20600 MAX_PATH_JERK Path-related maximum jerk
20602 CURV_EFFECT_ON_PATH_ACCEL Influence of path curvature on path dynamic response
20610 ADD_MOVE_ACCEL_RESERVE Acceleration reserve for overlaid motions
21158 JOG_JERK_ORI Maximum jerk of the orientation axes when traversing in JOG
21159 JOG_JERK_ORI_ENABLE Initial setting of the channel-specific jerk limitation of orienta‐

tion axes for traversing in JOG mode
21166 JOG_ACCEL_GEO Maximum acceleration rate of the geometry axes when tra‐

versing in JOG
21168 JOG_JERK_GEO Maximum jerk of the geometry axes when traversing in JOG

6.4.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
32000 MAX_AX_VELO Maximum axis velocity
32300 MAX_AX_ACCEL Maximum axis acceleration
32310 MAX_ACCEL_OVL_FACTOR Overload factor for velocity jump
32320 DYN_LIMIT_RESET_MASK Reset behavior of dynamic limits
32400 AX_JERK_ENABLE Axial jerk limitation
32402 AX_JERK_MODE Filter type for axial jerk limitation
32410 AX_JERK_TIME Time constant for axial jerk filter
32420 JOG_AND_POS_JERK_ENABLE Basic setting for axial jerk limitation
32430 JOG_AND_POS_MAX_JERK Axial jerk for single axis motion
32431 MAX_AX_JERK Maximum axial jerk at the block change in continuous-

path mode

B2: Acceleration
6.4 Data lists

Basic Functions
314 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Number Identifier: $MA_ Description
32432 PATH_TRANS_JERK_LIM Max. axial jerk of a geometry axis at block boundary
32433 SOFT_ACCEL_FACTOR Scaling of acceleration limitation for SOFT
32434 G00_ACCEL_FACTOR Scaling of acceleration limitation for G0
32435 G00_JERK_FACTOR Scaling of axial jerk limitation for G0
32437 AX_JERK_VEL0 First velocity threshold for velocity-dependent jerk

adaptation
32438 AX_JERK_VEL1 Second velocity threshold for the velocity-dependent

jerk adaptation
32439 MAX_AX_JERK_FACTOR Factor to set the maximum jerk for higher velocities

(velocity-dependent jerk adaptation)
35220 ACCEL_REDUCTION_SPEED_POINT Speed for reduced acceleration
35230 ACCEL_REDUCTION_FACTOR Reduced acceleration
35240 ACCEL_TYPE_DRIVE DRIVE acceleration characteristic for axes on/off
35242 ACCEL_REDUCTION_TYPE Type of acceleration reduction

6.4.2 Setting data

6.4.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42500 SD_MAX_PATH_ACCEL Max. path acceleration
42502 IS_SD_MAX_PATH_ACCEL Analysis of SD 42500: ON/OFF
42510 SD_MAX_PATH_JERK Max. path-related jerk
42512 IS_SD_MAX_PATH_JERK Analysis of SD 42510: ON/OFF

6.4.3 System variables

Identifier Description
$AC_PATHACC Path acceleration for real-time events
$AC_PATHJERK Path jerk for real-time events

B2: Acceleration
6.4 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 315

B2: Acceleration
6.4 Data lists

Basic Functions
316 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

F1: Travel to fixed stop 7
7.1 Brief description

Function
With the "Travel to fixed stop" function, moving machine parts, e.g. tailstock or sleeve, can be
traversed so that they can apply a defined torque or force with respect to other machine parts
over any time period.

Characteristics
● Programmability using commands in the part program or synchronized action:

– Activating and deactivating the "Travel to fixed stop" function

– Setting the clamping torque

– Setting the monitoring window

● Manual intervention option using setting data:

– Activating and deactivating the "Travel to fixed stop" function

– Setting the clamping torque

– Setting the monitoring window

● Presettings using machine data

– Clamping torque

– Monitoring window

● Identifying the function status via NC/PLC interface signals

● Enable or acknowledgment options via NC/PLC interface signals

● Reading the reference and actual status of the function via system variable

● "Travel to fixed stop" is possible for axes and spindles.

● "Travel to fixed stop" is possible simultaneously for several axes and parallel to the
traversing of other axes.

● Multi-channel block search can be performed with calculation of all the required additional
data (SERUPRO).

● Simulated axis traversal in conjunction with "travel to fixed stop" and "torque reduction"
possible.

● "Vertical" axes can also be moved with FXS to a fixed stop.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 317

7.2 Detailed description

7.2.1 Programming

Function

Travel to fixed stop
The "Travel to fixed stop" function is controlled via the FXS, FXST and FXSW commands.

The activation can also be performed without traversing motion of the relevant axis. The torque
is immediately limited. The fixed stop is monitored as soon as the axis is traversed.

Note
Synchronized actions

The "Travel to fixed stop" function can also be controlled via synchronized actions.

References:
Function Manual, Synchronized Actions

Travel with limited torque/force
Travel with limited torque/force can be controlled via the FOCON, FOCOF and FOC commands
(see Section "Travel with limited torque/force FOC (Page 335)").

Syntax
FXS[<axis>]=<request>
FXST[<axis>]=<clamping torque>
FXSW[<axis>] = <window width>

Meaning

Parameter Meaning
FXS: "Travel to fixed stop" function, effectiveness: Modal
<Request>: 0 = switch off through

1 = switch on
FXST: Set clamping torque
<Clamping torque>: Clamping torque in % of the maximum drive torque.

SINAMICS S120: p2003
FXSW: Set monitoring window
<Window width>: Width of the tolerance window around the fixed stop

Unit: mm, inch or degrees
<axis>: Name of the channel axis, type: AXIS

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
318 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Changes to the torque limiting (FXST)
The torque limit value can be changed in each block. The change becomes effective before
executing the traversing motion programmed in the block. The torque limitation acts in addition
to the acceleration limitation (ACC).

Ramp-shaped change
A time can be set using the machine data, within which the torque limit value is linearly changed.

MD37012 $MA_FIXED_STOP_TORQUE_RAMP_TIME (time until the new torque limit is
reached)

Changes to the monitoring window (FXSW)
The monitoring window can be changed in each block. The change becomes effective before
executing the traversing motion programmed in the block.

When the monitoring window is changed, not only does the window width change, but also the
reference point of the window to the actual axis position.

"Travel to fixed stop" when the continuous-path mode is active (G64)
The following machine data can be used to set that with the selection of the (FXS) function
during active continuous-path mode (G64), no exact stop is triggered at the block change
(G60):

MD37060 $MA_FIXED_STOP_ACKN_MASK (monitoring PLC acknowledgements for travel
to fixed stop)

Bit Value Meaning
0 0 Start of the traversing motion without acknowledgement by the PLC

1 Start of the traversing motion after acknowledgement by the PLC

Supplementary conditions
● The traversing motion to the fixed stop can be programmed as a path- or block-related or

modal positioning axis motion.

● Travel to fixed stop can be be selected for several machine axes simultaneously.

● For a machine axis, which is traversed to a fixed stop, it is not permissible that
transformation, coupling and frame functions are active:

● The travel path and the activation of the function must be programmed in one block in the
part program.

● If "Travel to fixed stop" is activated via synchronized actions, the travel path and the
activation of the function can be programmed in separate blocks.

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 319

7.2.2 Functional sequence

7.2.2.1 Selection

Figure 7-1 Example of travel to fixed stop

Procedure
The NC detects that the function "Travel to fixed stop" is selected via the command
FXS[x]=1 and signals the PLC using the IS DB31, ... DBX62.4 ("Activate travel to fixed stop")
that the function has been selected.

If the machine data:

MD37060 $MA_FIXED_STOP_ACKN_MASK (monitoring PLC acknowledgements for travel
to fixed stop)

is set correspondingly, the system waits for the acknowledgement of the PLC using the IS
DB31, ... DBX3.1 ("Enable travel to fixed stop").

The programmed target position is then approached from the start position at the programmed
velocity. The fixed stop must be located between the start and target positions of the axis/
spindle. A programmed torque limit (clamping torque specified via FXST[<axis>]) is effective
from the start of the block, i.e. the fixed stop is also approached with reduced torque. Allowance
for this limitation is made in the NC through an automatic reduction in the acceleration rate.

If no torque has been programmed in the block or since the start of the program, then the value
is valid in the axis-specific machine data:

MD37010 $MA_FIXED_STOP_TORQUE_DEF (default for fixed stop clamping torque)

is entered.

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
320 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

7.2.2.2 Fixed stop is reached

Detecting the fixed stop
Detecting the fixed stop or identifying that the machine axis has reached the fixed stop can be
set using the following machine data:

MD37040 $MA_FIXED_STOP_BY_SENSOR = <value> (fixed stop detection via sensor)

<value> Meaning
0 The fixed stop has been reached when the contour deviation of the machine axis has ex‐

ceeded the value set in the machine data:
MD37030 $MA_FIXED_STOP_THRESHOLD (threshold for fixed stop detection)

1 An external sensor detects when the fixed stop has been reached and informs the control
via the following axial NC/PLC interface signal:
DB31, ... DBX1.2 == 1 (sensor for fixed stop)

2 The fixed stop has been reached, if one of the conditions, specified under <value> == 0
OR <value> == 1 applies.

Ineffective NC/PLC interface signals
When the axis is in the "Fixed stop reached" state, the following NC/PLC interface signals have
no effect:

● DB31, ... DBX1.3 (axis/spindle disable)

● DB31, ... DBX2.1 (controller enable)

Actions when the fixed stop is reached
The following actions are executed when the fixed stop is reached:

● The torque in the drive is increased up to the programmed clamping torque (FXST)

● The remaining distance to go is deleted

● The position setpoint is tracked

● The NC/PLC interface signal is set: DB31, ... DBX62.5 = 1 ("fixed stop reached")

● Executing a block change:

– Executing a block change when the fixed stop is reached: MD37060
$MA_FIXED_STOP_ACKN_MASK, Bit 1 = 0
The block change is immediately executed after reaching the fixed stop.

– Block change is only executed after the acknowledgment by the PLC user program:
MD37060 $MA_FIXED_STOP_ACKN_MASK, Bit 1 = 1
After reaching the fixed stop, the block is not changed until acknowledgment by the PLC
user program:
DB31, ... DBX1.1 == 1 (acknowledge fixed stop reached)

In order to also maintain the clamping torque after the block change, the NC still outputs a
setpoint for the machine axis.

● Activating the fixed stop monitoring or the monitoring window

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 321

Monitoring window
If, in the traversing block to the fixed stop or since the beginning of the program, no specific
value for the monitoring window is programmed with FXSW then the value set in the machine
data is active:

MD37020 $MA_FIXED_STOP_WINDOW_DEF (default for fixed stop monitoring window)

If the axis leaves the position it was in when the fixed stop was detected by more than the
specified window, then alarm 20093 "Fixed stop monitoring has responded" is displayed and
the "Travel to fixed stop" function is deselected.

The monitoring window must be selected by the user such that the alarm is activated only
when the axis leaves the fixed stop position.

NOTICE

"Fixed stop reached" and when the fixed stop breaks

As soon as the "fixed stop reached" state is identified, then a speed setpoint derived from the
axis-specific machine data servo gain factor (KV) (MD32200) and the threshold for the fixed
stop detection (MD37030) is entered for the drive. If the fixed stop breaks in this state, then
the axis accelerates until it reaches the monitoring window limit. The velocity that is then
reached is proportional to the values set in the specified machine data. For appropriately high
values, it is possible that the drive accelerates up to the maximum motor speed.

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
322 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Overview

Figure 7-2 Fixed stop is reached

7.2.2.3 Fixed stop is not reached

Alarm suppression
Alarms for various causes of breakage can be suppressed using the machine data:

MD37050 $MA_FIXED_STOP_ALARM_MASK = <value>

Value Description: Suppressed alarms
0 Alarm 20091 "Fixed stop not reached"
2 Alarm 20091 "Fixed stop not reached"

Alarm 20094 "Fixed stop aborted"
3 Alarm 20094 "Fixed stop aborted"

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 323

Actions in the case of a fault or breakage
The following actions are executed when a fault occurs or for a breakage:

● The NC/PLC interface signal is reset: DB31, ... DBX62.4 = 0 (activate travel to fixed stop)

● Depending on the setting in the machine data, the system waits for acknowledgment:

– MD37060 $MA_FIXED_STOP_ACKN_MASK

– DB31, ... DBX3.1 == 0 (enable travel to fixed stop)

● Withdrawing torque limits

● Executing a block change

Overview

Figure 7-3 Fixed stop is not reached

7.2.2.4 Deselection
The "travel to fixed stop" function is deselected using the command FXS[<axis>] = 0 in a
block of an NC program.

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
324 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Actions when deselecting the function
When deselecting the function, the following actions are executed:

● A preprocessing stop is initiated (STOPRE)

● The NC/PLC interface signals are reset

– DB31, ... DBX62.4 = 0 (activate travel to fixed stop)

– DB31, ... DBX62.5 = 0 (fixed stop reached)

● Depending on the machine data, the system waits for acknowledgment from the PLC user
program:

– MD37060 $MA_FIXED_STOP_ACKN_MASK

– DB31, ... DBX3.1 == 0 (enable travel to fixed stop)

– DB31, ... DBX1.1 == 0 (acknowledge fixed stop reached)

● Exiting the follow-up mode

● Axis resumes closed-loop position control

Pulse enable
The pulse enable or pulse inhibit can be canceled via:

● Drive: Via terminal EP (enable pulses)

● NC/PLC interface signal: DB31, ... DBX21.7 ("pulse enable")

The behavior at the fixed stop can be set via the following machine data:

MD37002 $MA_FIXED_STOP_CONTROL, bit 0 and bit 1 (sequence control for traversing to
fix stop)

Bit Val‐
ue

Meaning

0 Behavior for pulseinhibit at the fixed stop
0 "Travel to fixed stop" is aborted
1 "Travel to fixed stop" is interrupted, i.e. the drive is without power.

1 Behavior for pulseenable at the fixed stop
0 The torque is injected suddenly.
1 The torque is linearly ramped-up over the time specified in the machine data:

 MD37012 $MA_FIXED_STOP_TORQUE_RAMP_TIME

Special case: Deleting the pulse enable during deselection
If, during deselection, the function in state: "Waiting for PLC acknowledgements" the pulse
enable is deleted, the torque limit is reduced to 0. In this phase, if pulse enable is set again
torque is no longer established in the drive. Once the deselection has been completed the axis
can be traversed normally again.

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 325

Overview

① Traversing block with deselection FXS[<axis>]=0
Figure 7-4 Fixed stop deselection

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
326 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

7.2.3 Behavior during block search

Function

Block search with calculation
● If the target block is located in a program section in which the axis must stop at a fixed limit,

then the fixed stop is approached if it has not yet been reached.

● If the target block is located in the program section in which the axis must not stop at a fixed
limit, then the axis leaves the fixed stop if it is still positioned there.

● If the axis is in the "Fixed stop reached" state, message 10208 "Press NC start to continue
the program" is displayed. The program can be continued with NC start.

● Clamping torque FXST and monitoring window FXSW have the value that they have for
normal program processing at the start of the target block.

Block search without calculation
The FXS, FXST and FXSW commands are ignored during the block search.

Effectiveness of FOCON/FOCOF
The state of the modal-acting torque/force reduction FOCON/FOCOF is maintained during the
block search and is effective in the approach block.

Block search with FXS or FOC
The user selects FXS or FOC in a program area of the target block in order to acquire all states
and functions of the machining last valid. The NC starts the selected program in Program test
mode automatically. After the target block has been found, the NC stops at the beginning of
the target block, deselects Program test internally again and displays the Stop condition
"Search target found" in its block display.

CAUTION

SERUPRO approach does not really take the FXS command into account.

The approach to the programmed end position of the FXS block is only simulated without
torque limitation.

If FXS is located between the beginning of the program and the search target, the command
is not executed by the NC. The motion is only simulated up to the programmed end point.

The user can log the turning on and turning off of FXS in the part program. If necessary, the
user can start an ASUP in order to activate or deactivate FXS in this SERUPRO-ASUP.

System variable
The reference and actual state of the "travel to fixed stop" function can be read using the
following system variable:

● $AA_FXS (reference state)

● $VA_FXS (actual state)

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 327

SERUPRO: $AA_FXS (reference state)
During SERUPRO, $AA_FXS supplies the following values depending on the activation status
of the "Travel to fixed stop" function:

Activation status of the "travel to fixed stop" func‐
tion

System variable $AA_FXS ==

"Deactivated" 0 (axis not at fixed stop)
"Activated" 3 ("Travel to fixed stop" selection is active)

Note

During SERUPRO, the system variable $AA_FXS only supplies the values 0 and 3. As a result,
based on $AA_FXS, the program sequence can be changed with SERUPRO compared to the
normal program execution for program branches.

SERUPRO: $VA_FXS (actual state)
During SERUPRO, the variable $VA_FXS always supplies the real state of axis on the machine.

Example
The current state of the "Travel to fixed stop" function can be determined in the SERUPRO
ASUP via the system variables $AA_FXS and $VA_FXS, and the appropriate response
initiated:

Program code: FXS_SERUPRO_ASUP.MPF Comment
N100 WHEN ($AA_FXS[X]==3) AND ($VA_FXS[X]==0) DO
FXS[X]=1

; Reference=="Selection not active" AND
; Actual=="Axis not at fixed stop"
; => "Switch on"

N200 WHEN ($AA_FXS[X]==0) AND ($VA_FXS[X]==1) DO
FXS[X]=0

; Reference=="Axis not at fixed stop" AND
; Actual=="Fixed stop successfully approached"
; => "Switch on"

N1020 REPOSA ; Reapproaching the contour linearly with all axes

Displaying the REPOS offset
Once the search target has been found, for each axis, the actual state regarding the "Travel
to fixed stop" is displayed using the following NC/PLC interface signals:

● DB31, ... DBX62.4 (activate travel to fixed stop)

● DB31, ... DBX62.5 (fixed stop reached)

Example:
If the axis is at the fixed stop and the target block is available after deselection of FXS, the new
target position is displayed via DB31, ... DBX62.5 (fixed stop reached) as the REPOS offset.

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
328 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

REPOS and FXS
With REPOS, the functionality of FXS is repeated automatically and called FXS-REPOS in the
following. This sequence is comparable to the FXS_SERUPRO_ASUP.MPF program. Every
axis is taken into account and the torque last programmed before the search target is applied.

The user can treat FXS separately in a SERUPRO ASUP.

The following then applies:

Every FXS action executed in the SERUPRO ASUP automatically takes care of

$AA_FXS[<axis>] = $VA_FXS[<axis>].

This deactivates FXS-REPOS for axis X.

Deactivating FXS-REPOS
FXS-REPOS is deactivated by:

● An FXS synchronized action which refers to REPOSA
● $AA_FXS[X] = $VA_FXS[X] in the SERUPRO_ASUP

Note

A SERUPRO ASUP without FXS treatment or no SERUPRO ASUP results automatically
in FXS-REPOS.

CAUTION

Speed too high for FXS-REPOS

FXS-REPOS traverse all path axes together to the target position. Axes with and without
FXS treatment thus traverse together with the G command and feedrate valid in the target
block. As a result, the fixed stop may be approached in rapid traverse(G0) or higher velocity.

FOC-REPOS
FOC-REPOS behaves in the same way as FXS-REPOS.

A changing torque characteristic during the program preprocessing cannot be implemented
with FOC-REPOS.

Example
Axis X is traversed from position 0 to 100. FOC is switched on every 20 millimeters for 10
millimeters. The resulting torque characteristic is generated with non-modal FOC and cannot
be traced by FOC-REPOS. Axis X is traversed by FOC-REPOS with or without FOC in
accordance with the last programming before the target block.

For programming examples of FXS "Travel to fixed stop", see Section "Program test
(Page 495)".

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 329

7.2.4 Behavior for reset and function abort

NC reset
As long as the function is still not in the "Successful travel to fixed stop" state, the travel to
fixed stop can be aborted with NC reset.

Even when the fixed stop has already has been approached, but the specified stop torque not
yet fully reached, then the function can still be aborted with NC reset. The position setpoint of
the axis is synchronized with the current actual position.

As soon as the function is in the "Successful travel to fixed stop" state, the function also remains
active after the NC reset.

Function abort
A function abort can be triggered by the following events:

● Emergency stop

CAUTION

Dangerous machine situations possible for travel to limit stop

It must be ensured that no dangerous machine situations occur while travel to fixed stop
is active when an "Emergency stop" is triggered or reset.

For example, behavior when setting and canceling the pulse enable:
MD37002 $MA_FIXED_STOP_CONTROL, bit 0 (behavior for pulse disable at the stop)
● Bit 0 = 0: Travel to fixed stop is aborted
● Bit 0 = 1: Travel to fixed stop is interrupted, i.e. the drive is without power

Once the pulse disable is canceled again, the drive presses with the stop torque again.

Note

NC and drive have no power during "Emergency stop", i.e. the PLC must react.

● Functional state: "Fixed stop not reached"

● Functional state: "Fixed stop aborted"

● Aborted by the PLC user program:
DB31, ... DBX62.4 = 0 ("Activate travel to fixed stop")

● Cancellation of the pulse enable and machine data parameterization:
MD37002 $MA_FIXED_STOP_CONTROL, bit 0 = 0 (see above)

7.2.5 Behavior with regard to other functions

Measurement with delete distance-to-go
"Travel to fixed stop" (FXS) cannot be programmed in a block with "Measurement with delete
distance-to-go" (MEAS). Except when on function acts on a path axis while the other acts on a
positioning axis or both functions act on positioning axes.

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
330 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Contour monitoring
The axis contour monitoring function is inoperative while "Travel to fixed stop" is active.

Positioning axes
For "Travel to fixed stop" with positioning axes POSA, the block change is executed even when
the positioning axis has not yet reached the fixed stop by this time.

Vertical axes
The "Travel to fixed stop" function can be used for vertical axes even when alarms are active.

If a function-specific alarm occurs for a vertical axis when traveling to fixed stop, the NC/PLC
interface signal DB11, DBX6.3 (mode group ready) is not reset: This means that the
corresponding drive is not de-energized.

This corresponds to an electronic weight compensation for the vertical axis and can be
configured via the following machine data:

MD37052 $MA_FIXED_STOP_ALARM_REACTION

References
Further information on vertical axes can be found in:

● SINAMICS S120 Function Manual

● Function Manual, Extended Functions; Compensation (K3),
Section: Electronic counterweight

7.2.6 Setting data
The values programmed via the function-specific FXS, FXST and FXSW commands are written
block-synchronously to the following, immediately effective, axis-specific setting data:

Switching the function on/off
SD43500 $SA_FIXED_STOP_SWITCH (selection/deselection of travel to fixed stop)

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 331

Clamping torque
SD43510 $SA_FIXED_STOP_TORQUE (clamping torque)

Note
Clamping torque greater than 100%

A value for the clamping torque in SD43510 greater than 100% of the maximum motor torque
is only advisable for a short time. In addition, the maximum motor torque is limited by the drive.
For example, the following drive parameters have a limiting effect:
● p1520/p1521 upper torque limit/force limit / lower torque limit/force limit
● p1522/p1523 upper torque limit/force limit / lower torque limit/force limit
● p1530/p1531 power limit, motoring / power limit, regenerating
● p0640 current limit
● p0326 motor stall force correction factor

Detailed information on the drive parameters and the functions can be found in:

References
● SINAMICS S120/S150 List Manual
● SINAMICS S120 Function Manual

Monitoring window
SD43520 $SA_FIXED_STOP_WINDOW (monitoring window)

Default setting
The defaults for the setting data are set via the following machine data:

● Clamping torque:
 MD37010 $MA_FIXED_STOP_TORQUE_DEF (default clamping torque)

● Monitoring window:
 MD37020 $MA_FIXED_STOP_WINDOW_DEF (default monitoring window)

Effectiveness
The setting data for the clamping torque and monitoring window takes effect immediately. In
this way, the clamping state can be adapted to the machining situation at any time by the
operator or via the PLC user program.

References
Further detailed information on the machine and setting data can be found in:

List Manual, Detailed Machine Data Description

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
332 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

7.2.7 System variables

Reference/actual state
The reference and actual state of the "travel to fixed stop" function can be read using the
following system variables:

● $AA_FXS = <value> (status, "Travel to fixed stop" reference state)

● $VA_FXS = <value> (status, "Travel to fixed stop" actual state)

<val‐
ue>

Description

0 Axis is not at fixed stop
1 Fixed stop was successfully approached
2 Approach to fixed stop failed
3 Selection "Travel to fixed stop" is active.
4 Fixed stop was detected.
5 Travel to fixed stop deselection active

Additional information
If errors occurred when traversing to the fixed stop ($VA_FXS == 2), then additional information
is displayed in the following system variables:

● $VA_FXS_INFO = <value> (additional information when "traveling to fixed stop")

<val‐
ue>

Description

0 No additional information available
1 No approach motion programmed
2 Programmed end position reached, motion stopped
3 Cancellation using a reset, DB21, ... DBX7.7 == 1
4 Monitoring window was exited
5 Torque reduction rejected by drive
6 PLC has withdrawn the enable, DB31, ... DBX3.1 == 0 (travel to fixed stop enabled)

Application example for $AA_FXS
In order that a block change is executed, no alarm should be triggered when a fault occurs.
The cause is then determined using the system variable $VA_FXS_INFO and a specific
response initiated.

Requirement: MD37050 $MA_FIXED_STOP_ALARM_MASK = 0 (when traveling to fixed stop,
no alarm initiated)

Program code Comment
X300 Y500 F200 FXS[X1]=1 FXST[X1]=25 FXSW[X1]=5 ; Travel to fixed stop
IF $AA_FXS[X1] == 2 GOTOF FXS_ERROR ; IF fixed stop == reached

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 333

Program code Comment
 R100=$AA_IM[X1] ; THEN (normal case)
 IF R100 ... ; Evaluation of the
 ... ; actual position
 GOTOF PROG_END
FXS_ERROR: ; ELSE (error case)
 CASE($VA_FXS_INFO[X1]) OF 0 GOTOF LABEL_0 OF 1 GOTOF LABEL_1 ... ; Error handling
LABEL_0: ...
 GOTOF CASE_END
LABEL_1: ...
 GOTOF CASE_END
...
CASE_END:
...
PROG_END: M30 ; ENDIF end of program

7.2.8 Alarms

Alarm 20091 "Fixed stop not reached"
If the fixed stop position is not reached during travel to fixed stop, alarm 20091 "Fixed stop not
reached" is displayed and a block change executed.

Alarm 20092 "Travel to fixed stop is still active"
If there is a travel request or renewed function selection for the axis after the fixed stop has
been reached, alarm 20092 "Travel to fixed stop is still active" is displayed.

Alarm 20093 "Standstill monitoring at fixed stop has triggered"
If an axis has reached the fixed stop and is then moved out of this position by more than the
value specified in the setting data

SD43520 FIXED_STOP_WINDOW (fixed stop monitoring window)

alarm 20093 "Standstill monitoring at fixed stop has triggered" is displayed, travel to fixed stop
for this axis is deselected and the following system variable set:
$AA_FXS[x] = 2

Alarm 20094 "Function has been aborted"
The travel to fixed stop is aborted if the clamping torque can no longer be applied due to the
cancellation of the pulse enable, or the requested acknowledgement signal at the NC/PLC
interface has been reset:

● Acknowledgement signal required: MD37060 $MA_FIXED _STOP_ACKN_MASK, bit 0 = 1

● Acknowledgement signal: DB31, ... DBX3.1 == 0 (enable travel to fixed stop)

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
334 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Enabling the fixed stop alarms
The following machine data can be use to set whether the fixed stop alarms

● Alarm 20091 "Fixed stop not reached",

● Alarm 20094 "Fixed stop aborted"

are displayed:

MD37050 $MA_FIXED_STOP_ALARM_MASK (enable of the fixed stop alarms)

Settable functional behavior for fixed stop alarms
The following machine data can be used to set that the function is not aborted when function-
specific alarms occur:

● Alarm 20090 Travel to fixed stop not possible

● Alarm 20091 Fixed stop not reached

● Alarm 20092 Travel to fixed stop is still active

● Alarm 20093 Standstill monitoring at fixed stop has triggered

● Alarm 20094 Travel to fixed stop aborted

MD37052 $MA_FIXED_STOP_ALARM_REACTION (reaction to fixed stop alarms)

Alarm suppression after new programming
Travel to fixed stop can be used for simple measuring processes.

For example, it is possible to carry out a check for tool breakage by measuring the tool length
by traversing onto a defined obstacle. To do so, the fixed stop alarm must be suppressed.
When the function for clamping workpieces is then used "normally," the alarm can be activated
using part program commands.

7.2.9 Travel with limited torque/force FOC

Function
Using the "Force Control" function to traverse with limited torque/force, when traversing, the
maximum permissible torque/force can be limited to a percentage of the maximum possible
axis torque. The limit value can be changed at any time, also while the axis is traversing. The
changes can be realized in the interpolator clock cycle, dependent on distance, time or on any
other variable. The "Force Control" function can also be programmed in synchronized actions.
The function can be permanently activated, or block related.

Programming

Syntax
FOCON[<axis>]
FOCOF[<axis>]

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 335

FOC[<axis>]

Meaning

Parameter Meaning
FOCON: Activate torque/force limiting
FOCOF: Deactivate torque/force limiting
FOC: Activate non-modal torque/force limiting
<axis>: Channel axis name, type: AXIS

Example

Program code Comment
N10 FOCON[X] ; Modal activation of the torque limit
N20 X100 Y200 FXST[X]=15 ; X travels with reduced torque (15%)
N30 FXST[X]=75 X20 ; Changing the torque to 75%,
N40 FOCOF[X] ; Disable torque limit

Parameterization

Machine data
● MD37010 $MA_FIXED_STOP_TORQUE_DEF (default for fixed stop clamping torque)

The value specified in the machine data is effective after activating the function, as long as
no explicit value is programmed using FXST.

● MD36042 $MA_FOC_STANDSTILL_DELAY_TIME (delay time standstill monitoring for
active torque/force limiting)

Permanent activation (FOCON/FOCOF)
Permanent activation of the "Force Control" function after POWER ON or RESET can be set
using the machine data:

MD37080 $MA_FOC_ACTIVATION_MODE, bit 0 and bit 1 (basic setting of the modal force/
torque limiting)

Bit Value Meaning
0 0 The "Force Control" function is not active after POWER ON.

1 The "Force Control" function is active after POWER ON.
1 0 The "Force Control" function is not active after RESET.

1 The "Force Control" function is active after RESET.

If a limiting torque or force is programmed using FXST = <value> before activation, then
this is effective from activation onwards.

If a limiting torque or force was not programmed using FXST = <value> before activation,
then the value specified in the machine data is effective as standard.

MD37010 $MA_FIXED_STOP_TORQUE_DEF (default for fixed stop clamping torque)

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
336 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Block-related activation (FOC)
The function for the actual block is activated using the FOC command.

Activating the function using a synchronized action takes effect up to the end of the current
part program block.

Priority of FXS before FOC
Activating the "Travel to fixed stop" function FXS has a higher priority than the "Force Control"
function. If "Travel to fixed stop" is active at the same time as "Force Control", then the first is
executed.

Deselecting the "Travel to fixed stop" function FXS cancels the clamping. A "Force Control"
function that is at same time permanently active, remains active.

System variable

Status of the "Force Control" function
The status of the "Force Control" function can be read using system variable $AA_FOC.

Changing the status of the "Travel to fixed stop" function FXS does not change the status of
the "Force Control" function.

$AA_FOC
Value Meaning

0 FOC not active
1 FOC modal active
2 FOC non-modal active

Status of torque limiting
The actual status of the torque limiting can be read using system variable
$VA_TORQUE_AT_LIMIT.

$VA_TORQUE_AT_LIMIT
Value Meaning

0 actually effective torque < torque limit value
1 actually effective torque == torque limit value

Restrictions
the "Force Control" function has the following restrictions:

● The change of the torque/force limitation representing itself as an acceleration limitation is
only taken into account in the traversing movement at block limits (see command ACC).

● Only FOC: No monitoring is possible from the NC/PLC interface to check that the active
torque limit has been reached.

F1: Travel to fixed stop
7.2 Detailed description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 337

● If the acceleration limitation is not adapted accordingly, an increase in the following error
occurs during the traversing motion.

● If the acceleration limitation is not adapted accordingly, the end-of-block position is possibly
reached later than specified in:
MD36040 $MA_STANDSTILL_DELAY_TIME.
The machine data:
MD36042 $MA_FOC_STANDSTILL_DELAY_TIME
is introduced for this and monitored in this status.

Possible application for link and container axes
All axes that can be traversed in a channel, i.e. also link axes and container axes, can be
traversed to fixed stop.

References:
Function Manual, Extended Functions; Several Operator Panels on multiple NCUs, Distributed
Systems (B3)

The status of the machine axis is kept in the case of a container rotation, i.e. a clamped machine
axis remains at the stop.

If a modal torque limitation has been activated with FOCON, this is kept for the machine axis
even after a container rotation.

7.3 Examples

Example 1: Travel to fixed stop with static synchronized actions
Travel to fixed stop (FXS) is initiated when requested via R parameter ($R1) in a static
synchronized action.

Program code Comment
N10 IDS=1 WHENEVER ; Static synchronized action 1:
(($R1==1) AND ; R1==1 (FXS for Y requested) AND
($AA_FXS[Y]==0)) DO ; Avoidance of multiple selection

; $AA_FXS[Y]==0 (axis not at limit): =>
$R1=0 FXS[Y]=1 ; reset $R1, activate FXS for Y
FXST[Y]=10 ; Limit torque: 10%
FA[Y]=200 ; Axial feedrate Y: 200
POS[Y]=150 ; Positioning movement Y

N11 IDS=2 WHENEVER ; Static synchronized action 2:
($AA_FXS[Y]==4) DO ; $AA_FXS[Y]==4 (limit detected): =>
FXST[Y]=30 ; Limit torque: 30%

N12 IDS=3 WHENEVER ; Static synchronized action 3:
($AA_FXS[Y]==1) DO ; $AA_FXS[Y]==1 (limit reached successfully): =>

F1: Travel to fixed stop
7.3 Examples

Basic Functions
338 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
FXST[Y]=$R0 ; Limit torque: Value from R parameter $R0

N13 IDS=4 WHENEVER ; Static synchronized action 4:
(($R3==1) AND ; R3==1: Deselection of FXS for Y requested
($AA_FXS[Y]==1)) DO ; $AA_FXS[Y]==1 (limit reached successfully): =>
FXS[Y]=0 ; Deselect FXS
FA[Y]=1000 POS[Y]=0 ; Positioning movement Y

N20 FXS[Y]=0 G0 G90 X0 Y0 ; Set initial settings: FXS deselected,

X and Y at initial position
N30 RELEASE(Y) ; Release Y for movements in synchronized actions
...
N60 GET(Y) Include axis Y back into the path group
...

Note
Avoidance of multiple selection for FXS

To avoid a multiple selection, we recommend that prior to activating FXS, query either the
$AA_FXS==0 system variable or a user-specific flag. See above, program example N10

Example 2: Traveling to fixed stop with block-related synchronized actions
"Travel to fixed stop" is activated from a specific position of the traversing motion of the
following block

Program code Comment
N10 G0 G90 X0 ; Starting position
N20 WHEN $AA_IW[X]>17 DO FXS[X]=1 ; Synchronized action: Actual position of

X axis > 17
; => activate FXS for axis X

N30 G1 F200 X100 ; Traversing motion for axis X

Note

A block-related synchronized action is processed in the following main program block.

F1: Travel to fixed stop
7.3 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 339

7.4 Data lists

7.4.1 Machine data

7.4.1.1 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
36042 FOC_STANDSTILL_DELAY_TIME Delay time, standstill monitoring for active torque/

force limiting
37000 FIXED_STOP_MODE Travel to fixed stop mode
37002 FIXED_STOP_CONTROL Sequence monitoring for travel to fixed stop
37010 FIXED_STOP_TORQUE_DEF Fixed stop clamping torque default setting
37012 FIXED_STOP_TORQUE_RAMP_TIME Time until the modified torque limit is reached
37020 FIXED_STOP_WINDOW_DEF Default for fixed stop monitoring window
37030 FIXED_STOP_THRESHOLD Threshold for fixed stop detection
37040 FIXED_STOP_BY_SENSOR Fixed stop detection via sensor
37050 FIXED_STOP_ALARM_MASK Enabling the fixed stop alarms
37052 FIXED_STOP_ALARM_REACTION Reaction to fixed stop alarms
37060 FIXED_STOP_ACKN_MASK Monitoring of PLC acknowledgments for travel to fixed

stop
37070 FIXED_STOP_ANA_TORQUE Torque limit on fixed stop approach for analog drives
37080 FOC_ACTIVATION_MODE. Initial setting of the modal torque/force limiting

7.4.2 Setting data

7.4.2.1 Axis/spindle-specific setting data

Number Identifier: $SA_ Description
43500 FIXED_STOP_SWITCH Selection of travel to fixed stop
43510 FIXED_STOP_WINDOW Fixed stop clamping torque
43520 FIXED_STOP_TORQUE Fixed stop monitoring window

F1: Travel to fixed stop
7.4 Data lists

Basic Functions
340 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

7.4.3 Signals

7.4.3.1 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Acknowledge fixed stop reached DB31,DBX1.1 DB380x.DBX1.1
Sensor for fixed stop DB31,DBX1.2 DB380x.DBX1.2
Axis/spindle disable DB31,DBX1.3 DB380x.DBX1.3
Controller enable DB31, … .DBX2.1 DB380x.DBX2.1
Travel to fixed stop enabled DB31, … .DBX3.1 DB380x.DBX3.1

7.4.3.2 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate travel to fixed stop DB31,DBX62.4 DB390x.DBX2.4
Fixed stop reached DB31,DBX62.5 DB390x.DBX2.5

F1: Travel to fixed stop
7.4 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 341

F1: Travel to fixed stop
7.4 Data lists

Basic Functions
342 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

G2: Velocities, setpoint / actual value systems, closed-
loop control 8
8.1 Brief description

The description of functions explains how to parameterize a machine axis in relation to:

● Actual-value/measuring systems

● Setpoint system

● Operating accuracy

● Travel ranges

● Axis velocities

● Control parameters

8.2 Velocities, traversing ranges, accuracies

8.2.1 Velocities

Maximum path and axis velocities and spindle speed
The maximum path and axis velocities and spindle speed are influenced by the machine
design, the dynamic response of the drive and the limit frequency of the actual-value acquisition
(encoder limit frequency).

The maximum axis velocity is defined in machine data:

MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

The maximum permissible spindle speed is specified using machine data:

MD35100 $MA_SPIND_VELO_LIMIT (maximum spindle speed)

For explanations, see Section "S1: Spindles (Page 1273)".

With a higher feedrate (resulting from programmed feedrates and feedrate override), the
velocity is limited to Vmax.

This automatic feedrate limiting can lead to a drop in velocity over several blocks with programs
generated by CAD systems with extremely short blocks.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 343

Example:
Interpolation cycle = 12 ms

N10 G0 X0 Y0; [mm]
N20 G0 X100 Y100; [mm]
⇒ Path length programmed in block = 141.42 mm

⇒ Vmax = (141.42 mm/12 ms) * 0.9 = 10606.6 mm/s = 636.39 m/min

Minimum path, axis velocity
The following restriction applies to the minimum path or axis velocity:

The computational resolution is defined using machine data:
MD10200 $MN_INT_INCR_PER_MM (computational resolution for linear positions)

or
MD10210 $MN_INT_INCR_PER_DEG (computational resolution for angular positions)

If Vmin is not reached, no traversing is carried out.

Example:
MD10200 $MN_INT_INCR_PER_MM = 1000 [incr/mm] ;

Interpolation cycle = 12 ms;

⇒ Vmin = 10 -3/(1000 incr/mm x 12 ms) = 0.005 mm/min;

The value range of the feedrates depends on the computational resolution selected.

For the standard assignment of machine data:

MD10200 $MN_INT_INCR_PER_MM
(computational resolution for linear positions) (1000 incr./mm)

or

MD10210 $MN_INT_INCR_PER_DEG

(computational resolution for angular positions) (1000 incr./deg.)

The following value range can be programmed with the specified resolution:

Range of values for path feed F and geometry axes:
Metric system: Inch system:
0.001 ≤ F ≤ 999,999.999
[mm/min, mm/rev, degrees/min, degrees/rev]

0.001 ≤ F ≤ 399,999.999 [inch/min, inch/rev]

G2: Velocities, setpoint / actual value systems, closed-loop control
8.2 Velocities, traversing ranges, accuracies

Basic Functions
344 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Range of values for feedrate for positioning axes:
Metric system: Inch system:
 0.001 ≤ FA ≤ 999,999.999
[mm/min, mm/rev, degrees/min, degrees/rev]

 0.001 ≤ FA ≤ 399,999.999
[inch/min, inch/rev]

Range of values for spindle speed S: 0.001 ≤ S ≤ 999,999.999 [rpm]

If the computational resolution is increased/decreased by a factor, then the value ranges
change accordingly.

8.2.2 Traversing ranges

Range of values of the traversing ranges
The range of values of the traversing range depends on the computational resolution selected.

For the standard assignment of machine data:

MD10200 $MN_INT_INCR_PER_MM

(computational resolution for linear positions) (1000 incr./mm)

or

MD10210 $MN_INT_INCR_PER_DEG

(computational resolution for angular positions) (1000 incr./deg.)

The following value range can be programmed with the specified resolution:

Table 8-1 Traversing ranges of axes

 G71 [mm, degrees] G70 [inch, degrees]
Range Range

Linear axes X, Y, Z, etc. ∓ 999,999.999 ∓ 399,999.999
Rotary axes A, B, C, etc. ∓ 999,999.999 ∓ 999,999.999
Interpolation parameters I, J, K ∓ 999,999.999 ∓ 399,999.999

The unit of measurement of rotary axes is always degrees.

If the computational resolution is increased/decreased by a factor of 10, the ranges of values
change accordingly.

The traversing range can be restricted by software limit switches and working areas (see
Section "A3: Axis monitoring functions (Page 87)").

For special features for a large traversing range for linear and rotary axes, see Section "R1:
Referencing (Page 1223)".

The traversing range for rotary axes can be limited via machine data.

References:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.2 Velocities, traversing ranges, accuracies

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 345

Function Manual, Extended Functions; Rotary Axes (R2)

8.2.3 Positioning accuracy of the control system

Actual-value resolution and computational resolution
The positioning accuracy of the control depends on the actual-value resolution (=encoder
increments/(mm or degrees)) and the computational resolution (=internal increments/(mm or
degrees)).

The coarse resolution of these two values determines the positioning accuracy of the control.

The input resolution, interpolator and position-control cycle selections have no effect on this
accuracy.

As well as limiting using MD32000, the control limits the maximum path velocity in relation to
the situation and according to the following formula:

8.2.4 Input/display resolution, computational resolution

Resolutions: Differences
Resolutions, e.g. resolutions of linear and angular positions, velocities, accelerations and jerk,
must be differentiated as follows:

● Input resolution
Data is input via the control panel or part programs.

● Display resolution
Data is displayed via the control panel.

● Computational resolution
Data input via the control panel or part program is displayed internally.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.2 Velocities, traversing ranges, accuracies

Basic Functions
346 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The input and display resolution is determined by the specified operator panel front used,
whereby the display resolution for position values with the machine data:

MD9004 $MM_DISPLAY_RESOLUTION (display resolution)

can be changed.

The machine data:

MD9011 $MM_DISPLAY_RESOLUTION_INCH (display resolution for INCH measuring
system)

can be used to configure the display resolution for position values with inch setting.

This allows you to display up to six decimal places with the inch setting.

For the programming of part programs, the input resolutions listed in the Programming Guide
apply.

The desired computational resolution is defined using the machine data:

MD10200 $MN_INT_INCR_PER_MM (computational resolution for linear positions)

and

MD10210 $MN_INT_INCR_PER_ DEG (computational resolution for angular positions).

It is independent of the input/display resolution but should have at least the same
resolution.

The maximum number of places after the decimal point for position values, velocities, etc., in
the part program and the number of places after the decimal point for tool offsets, zero offsets,
etc. (and therefore also for the maximum possible accuracy) is defined by the computational
resolution.

The accuracy of angle and linear positions is limited to the computational resolution by rounding
the product of the programmed value with the computational resolution to an integer number.

To make the rounding clear, powers of 10 should be used for the calculation resolution.

Example of rounding:
Computational resolution: 1000 incr./mm

Programmed path: 97.3786 mm

Effective value: 97.379 mm

Example of programming in the 1/10 μm range:
All the linear axes of a machine are to be programmed and traversed within the range of values
0.1 to 1000 μm.

⇒ In order to position accurately to 0.1 μm, the computational resolution must be set to ≥ 104

incr./mm.

⇒ MD10200 $MN_INT_INCR_PER_MM = 10000 [incr./mm]:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.2 Velocities, traversing ranges, accuracies

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 347

⇒ Example of related part program:

Program code Comment
N20 G0 X 1.0000 Y 1.0000 ; Axes travel to the position

X=1.0000 mm, Y=1.0000 mm;
N25 G0 X 5.0002 Y 2.0003 ; Axes travel to the position

X=5.0002 mm, Y=2.0003 mm

8.2.5 Scaling of physical quantities of machine and setting data

Input/output units
Machine and setting data with a physical unit are interpreted in the input/output units stated
below depending on whether the metric or inch system is selected:

Physical unit

Input/output units for standard basic system
Metric Inch

Linear position 1 mm 1 inch
Angular position 1 degree 1 degree
Linear velocity 1 mm/min 1 inch/min
Angular velocity 1 rpm 1 rpm
Linear acceleration 1 m/s2 1 inch/s2

Angular acceleration 1 rev./s2 1 rev./s2

Linear jerk 1 m/s3 1 inch/s3

Angular jerk 1 rev./s3 1 rev./s3

Time 1 s 1 s
Position controller servo gain 1/s 1/s
Revolutional feedrate 1 mm/rev inch/rev
Compensation value linear position 1 mm 1 inch
Compensation value angular position 1 degree 1 degree

Internally in the control, the following units are used, whatever basic system is selected:

Physical unit Unit
Linear position 1 mm
Angular position 1 degree
Linear velocity 1 mm/s
Angular velocity 1 deg./s
Linear acceleration 1 mm/s2

Angular acceleration 1 degree/s2

Linear jerk 1 mm/s3

Angular jerk 1 degree/s3

Time 1 s
Position controller servo gain 1/s

G2: Velocities, setpoint / actual value systems, closed-loop control
8.2 Velocities, traversing ranges, accuracies

Basic Functions
348 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Physical unit Unit
Revolutional feedrate 1 mm/degree
Compensation value linear position 1 mm
Compensation value angular position 1 degree

The user can define different input/output units for machine and setting data. This also requires
an adjustment between the newly selected input/output units and the internal units via the
following machine data:

● MD10220 $MN_SCALING_USER_DEF_MASK

● MD10230 $MN_SCALING_FACTORS_USER_DEF[n]

The following applies:

Selected I/O unit = (MD10230 $MN_SCALING_FACTORS_USER_DEF[n]) * internal unit

The selected I/O unit, expressed in the internal units 1 mm, 1 degree, and 1 s must therefore
be entered in machine data MD10230 $MN_SCALING_FACTORS_USER_DEF[n].

Example 1:
Machine data input/output of the linear velocities is to be in m/min instead of mm/min (initial
state).

G2: Velocities, setpoint / actual value systems, closed-loop control
8.2 Velocities, traversing ranges, accuracies

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 349

(The internal unit is mm/s)

⇒ The scaling factor for the linear velocities is to differ from the standard setting. For this,
in machine data:
MD10220 $MN_SCALING_USER_DEF_MASK
bit number 2 must be set.

 ⇒ MD10220 $MN_SCALING_USER_DEF_MASK = 'H4'; (bit no. 2 as hex value)

⇒ The scaling factor for the linear velocities is to differ from the standard setting. For this,
in machine data:
MD10220 $MN_SCALING_USER_DEF_MASK
bit number 2 must be set.

 ⇒ MD10220 $MN_SCALING_USER_DEF_MASK = 'H4'; (bit no. 2 as hex value)

⇒ The scaling factor is calculated using the following formula:

Index n defines the "linear velocity" in the "Scaling factors of physical quantities" list.

Example 2:
In addition to the change in Example 1, the machine data input/output of linear accelerations
must be in ft/s2 instead of m/s2 (initial state).
(The internal unit is mm/s2.)

Index 4 defines the "linear acceleration" in the "Scaling factors of physical quantities" list.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.2 Velocities, traversing ranges, accuracies

Basic Functions
350 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

8.3 System of units, metric/inch

8.3.1 Function

8.3.1.1 Parameterized and programmed system of units
SINUMERIK control systems can operate with a metric system of units as well as an inch
system of units.

Parameterized system of units (basic system)
The basic setting of the system of units (basic system) is set in machine data MD10240
$MN_SCALING_SYSTEM_IS_METRIC (see "Commissioning (Page 354)").

Depending on the basic system, all length-related data is interpreted either as metric or inch
system of units.

Metric system of units: mm, mm/min, m/s2, m/s3, mm/rev.
Inch system of units: inch, inch/min, inch/s2, inch/s3, inch/rev.

The basic system also defines the interpretation of the programmed F value for linear axes:

Feed type Metric system of units Inch system of units
G94 mm/min inch/min
G95 mm/rev. inch/rev.

Programmed system of units
Using the commands of G group 13 (system of units, inch/metric) within the part program, you
can toggle between the metric and inch system of units (see "Programming (Page 358)").

The programmed system of units and the basic system may be identical or different at any
time. Switchover of the system of units within a particular section of the part program could,
for example, be used to machine an inch thread on a workpiece within a metric basic system.

The reset setting of the G group is defined in machine data MD20150
$MC_GCODE_RESET_VALUES (see "Commissioning (Page 354)").

HMI display
Data relating to length is displayed as follows on the user interface:

 Display
in the basic system in the programmed system of

units
Machine data x
Data in the machine coordinate
system

x

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 351

 Display
in the basic system in the programmed system of

units
Tool data x
Work offsets x
Data in the workpiece coordinate
system

 x

NC/PLC interface
In the case of NC/PLC interface signals containing dimension information, e.g. feedrate for
path and positioning axes, data exchange is carried out with the PLC in the configured basic
system.

Reading in external part programs
If part programs, including data sets (work offsets, tool offsets, etc.), programmed in a system
of units other than the basic system are read in from an external source, then the basic system
must first be changed.

8.3.1.2 Extended system of units functionality
From SW 5 and higher, the system of units functionality has been extended, which significantly
simplifies toggling between systems of units.

The functions include:

● System of units switchover at the user interface (Page 352)

● New G commands G700/G710 (see "Programming (Page 358)")

● Data backup with system of units identifier INCH/METRIC (see "Commissioning
(Page 354)")

● Automatic data conversions when the system of units is changed, e.g. for

– Work offsets

– Compensation data (EEC, QEC)

– Tool offsets

– ...

For compatibility reasons, the extended system of units functionality must be activated using
a machine data (see "Commissioning (Page 354)").

8.3.1.3 System of units switchover at the user interface

Requirement
Extended system of units functionality is active (MD10260
$MN_CONVERT_SCALING_SYSTEM = 1; see "Commissioning (Page 354)")

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
352 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Function
The relevant softkey on the HMI in the "Machine" operating area is used to change the system
of units of the control system.

The system of units is only switched over under the following conditions:

● MD20110 $MC_RESET_MODE_MASK, bit 0 is set in every channel.

● All channels are in the Reset state.

● Axes do not currently traverse with JOG, DRF, or PLC.

● Constant grinding wheel peripheral speed (GWPS) is not active.

Actions such as part program start or mode change are disabled while the system of units is
being switched over.

The actual change in the system of units is made by writing all the necessary machine data
and subsequently activating them.

The following machine data are automatically switched over consistently for all configured
channels:

● MD10240 $MN_SCALING_SYSTEM_IS_METRIC

● MD20150 $MN_GCODE_RESET_VALUES

Reset position
When the system of units is switched over from the user interface, the reset position of the G
group 13 is automatically adapted to the actual system of units.

MD20150 $MC_GCODE_RESET_VALUES[12] = <actual system of units>

NCU link

Note

If several NCUs are linked by NCU link, the switchover has the same effect on all linked NCUs.
If the requirements for a switchover are not fulfilled on one of the connected NCUs, no
switchover will take place on any of the NCUs. It is assumed that when there is a NCU link,
interpolations between several NCUs will take place on the existing NCUs, whereby the
interpolations can provide correct results only if the same systems of units are used.

References:

Function Manual, Extended Functions; Section "B3: distributed systems"

System data
When the system of units is switched over, from the user's viewpoint, all length-related
specifications are converted to the new system of units automatically.

This includes:

● Positions

● Feedrates

● Accelerations

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 353

● Jerk

● Tool offsets

● Programmable, adjustable and external work offsets and DRF offsets

● Compensation values

● Protection zones

● Machine data

● JOG and handwheel factors

After the switchover, all of the above mentioned data is available in physical quantities.

Data, for which no unique physical units are defined, is not converted automatically.

This includes:

● R parameters

● GUDs (Global User Data)

● LUDs (Local User Data)

● PUDs (Program global User Data)

● Analog inputs/outputs

● Data exchange via FC21

The user is prompted to take the currently valid system of units MD10240
$MN_SCALING_SYSTEM_IS_METRIC into consideration.

NC/PLC interface
The current system of units setting can be read at the NC/PLC interface using the following
signal:

DB10 DBX107.7 (inch system of units)

The number of times that the system of units has been switched over since the last time the
control powered up can be read out using the following signal byte:

DB10 DBB71 (change counter, system of units inch/metric)

Starting value after the control powered up: 1

8.3.2 Commissioning

NC-specific machine data

Basic system
Das von der open loop control zu verwendende Basic system for the scaling
lengthndependinger physical Größen bei der data-input/output if predefined Monitor das
machine data:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
354 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD10240 $MN_SCALING_SYSTEM_IS_METRIC

Value Meaning
0 (= FALSE) Data relating to length is interpreted as inch data.
1 (= TRUE) Data relating to length is interpreted as metric data.

The system must be powered up again after changing this machine data as otherwise
associated machine data, which have physical units, will be incorrectly scaled.

The following procedure must be complied with:

● Changing the MD using manual entry:

– 1. Power up the system.

– 2. Machine data with physical units: Enter a value.

● The MD is changed using machine data.

– 1. Power up the system.

– 2. Load the machine data file once again so that the new physical units are taken into
account.

When changing MD10240, Alarm 4070 "Normalizing machine data has been changed" is
output.

Note

When changing over the system of units at a control system, all length-related data must be
converted consistently and completely into the other measuring system.

Conversion factor (NC-specific)
The factor for converting from metric into the inch system of units is set in machine data:

MD10250 $MN_SCALING_VALUE_INCH (conversion factor for inch)

Default value: 25.4

The conversion factor becomes active when selecting the non-metric basic system (MD10240
$MN_SCALING_SYSTEM_IS_METRIC = 0).

The following data are multiplied by the conversion factor:

● Length-related data for input/output (e.g. when uploading machine data, work offsets)

● Programmed F values for linear axes

● Programmed geometry of an axis (position, polynomial coefficients, radius for circle
programming, ...), if the system of units programmed with G70/G71 differs from the basic
system (MD10240 $MN_SCALING_SYSTEM_IS_METRIC).

Note

By changing the conversion factor, the control system can be adapted to customer-specific
systems of units.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 355

Extended system of units functionality
The extended system of units functionality can be activated using the following compatibility
machine data:

MD10260 $MN_CONVERT_SCALING_SYSTEM

Value Meaning
0 (= FALSE) Extended system of units functionality notactive (default setting; compatibility

to previous software releases)
1 (= TRUE) Extended system of units functionality active

When changing MD10240, Alarm 4070 "Normalizing machine data has been changed" is
output.

Data backup
Individual data sets that are read from the control system and contain data affected by the
system of units, are assigned an identifier during reading that indicates the current setting for
the system of units:

● MD10260 $MN_CONVERT_SCALING_SYSTEM

● MD10240 $MN_SCALING_SYSTEM_IS_METRIC

The identifier records in which system of units the data have been read out. This ensures that
no data sets are read into the control with a system of units other than that which is currently
set.

Since the identifier is also evaluated in part programs, these can also be "protected" against
operator errors as described above. You can therefore prevent part programs containing, e.g.
only metric data, from running on an inch system of units.

Archive and machine data sets are downward-compatible with the following setting:

MD11220 $MN_INI_FILE_MODE = 2

Note

The INCH/METRIC identifier is only generated if the compatibility machine data:

MD10260 $MN_CONVERT_SCALING_SYSTEM = TRUE

Note
Rounding machine data

All length-related machine data is rounded to the nearest 1 pm when writing in the inch system
of units (MD10240 $MN_SCALING_SYSTEM_IS_METRIC=0 and MD10260
$MN_CONVERT_SCALING_SYSTEM=1), to avoid rounding problems.

This corrects the loss of accuracy resulting from conversion to ASCII when reading out a data
backup in the inch system of units when the data is read back into the system.

Input resolution and computational resolution
The input and calculation resolution is defined as an internal number of increments per
millimeter.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
356 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD10200 $MN_INT_INCR_PER_MM

The precision of entry of linear positions is limited to the calculation resolution. The product of
the programmed position value and the calculation resolution is rounded up to the next integer.
To make the rounding clear and understandable, powers of 10 should be used for the
calculation resolution.

Example:

1 inch = 25.4 mm ⇒ 0.0001 inch = 0.00254 mm = 2.54 μm = 2540 nm

To be able to program and display the last 40 nm, a value of 100,000 must be parameterized
for the input and calculation resolution.

Only with this identical setting for both systems of units is it possible to change the system of
units without a significant loss of accuracy. Once MD10200 has been set to this value, it will
not need to be changed each time the measuring system is switched over.

System of units for positioning tables
The system of units for positional data of the indexing axis tables and switching points for
software cams is configured in machine data:

MD10270 $MN_POS_TAB_SCALING_SYSTEM

Reference:
Function Manual, Extended Functions; Chapter "N3: software cams, position switching
signals" and "T1: indexing axes"

User tool data
The physical units for user-defined tool and tool cutting edge data can be set in the following
machine data:

● MD10290 $MN_CC_TDA_PARAM_UNIT

● MD10292 $MN_CC_TOA_PARAM_UNIT

Note

When the system of units is switched over, all length-related tool data is converted to the new
system of units.

Channel-specific machine data

Reset position
For each channel, the reset position of G group 13 (system of units, inch/metric) is set in the
machine data:

MD20150 $MC_GCODE_RESET_VALUES[12] (reset position of G group 13)

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 357

Axis/spindle-specific machine data

Conversion factor (axis-specific)
To make pure positioning axes independent of G70/G71, a factor for converting from metric
into the inch system of units can be set in machine data:

MD31200 $MA_SCALING_FACTOR_G70_G71 (conversion factor when G70/G71 is active)

Default value: 25.4

Note

The conversion factor should be identical for all three geometry axes.

JOG and handwheel factor
The following machine data comprises two values containing axis-specific increment weighting
factors for each of the two system of units.

MD31090 $MA_JOG_INCR_WEIGHT

Depending on the actual setting in MD10240 SCALING_SYSTEM_IS_METRIC, the control
system automatically selects the appropriate value.

The user defines the two increment factors when the system is commissioned.

Example: Increment factors for the 1st axis

● Metric:
MD31090 $MA_JOG_INCR_WEIGHT[0 ; AX1] = 0.001 mm

● Inch:
MD31090 $MA_JOG_INCR_WEIGHT[1 ; AX1] = 0.00254 mm ≙ 0.0001 inch

In this way, MD31090 does not have to be written at every inch/metric switchover.

Remaining distances are not accumulated during incremental traversing with JOG when the
system of units is changed, since all internal positions always refer to mm.

System of units for sag compensation
The system of units for sag compensation is configured using machine data:

MD32711 $MA_CEC_SCALING_SYSTEM_METRIC

Reference:
Function Manual, Extended Functions; Chapter "K3: compensations:

8.3.3 Programming

8.3.3.1 Switching over the system of units (G70/G71/G700/G710)
Using the commands of G group 13 (inch/metric system of units) within a part program, you
can switch over between the metric and inch system of units.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
358 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Activation
In order that commands G700 and G710 are available, the extended system of units
functionality must be switched on (MD10260 $MN_CONVERT_SCALING_SYSTEM = 1).

Syntax
G70
G71
G700
G710

Meaning

G70: Activating the inch system of units
The inch system of units is used to read and write geometrical data in units of length.
Technological data in units of length (e.g. feedrates, tool offsets, adjustable work offsets,
machine data and system variables) is read and written using the parameterized basic sys‐
tem.
G group: 13
Initial setting: Settable via MD20150 $MC_GCODE_RESET_VALUES
Effectiveness: Modal

G71: Activating the metric system of units
The metric system of units is used to read and write geometrical data in units of length.
Technological data in units of length (e.g. feedrates, tool offsets, adjustable work offsets,
machine data and system variables) is read and written using the parameterized basic sys‐
tem.
G group: 13
Initial setting: Settable via MD20150 $MC_GCODE_RESET_VALUES
Effectiveness: Modal

G700: Activating the inch system of units
All geometrical and technological data in units of length is read and written using the inch
system of units.
G group: 13
Initial setting: Settable via MD20150 $MC_GCODE_RESET_VALUES
Effectiveness: Modal

G710: Activating the metric system of units
All geometrical and technological data in units of length is read and written using the metric
system of units.
G group: 13
Initial setting: Settable via MD20150 $MC_GCODE_RESET_VALUES
Effectiveness: Modal

NOTICE

Axis-specific data of rotary axes

Axis-specific data of rotary axes is read and written using the parameterized basic system.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 359

Example
The basic system is metric (MD10240 $MN_SCALING_SYSTEM_IS_METRIC = 1). However,
the workpiece drawing has dimensions shown in inches. This is the reason why within the part
program, the inch system of units is selected. After the inch dimensions have been processed,
the metric system of units is again selected.

Program code Comment
N10 G0 G90 X20 Y30 Z2 S2000 M3 T1 ; X=20 mm, Y=30 mm, Z=2 mm, F=rapid traverse

mm/min
N20 G1 Z-5 F500 ; Z=-5 mm, F=500 mm/min
N30 X90 ; X=90 mm
N40 G70 X2.75 Y3.22 ; programmed system of units: inch
 ; X=2.75 inch, Y=3.22 inch, F=500 mm/min
N50 X1.18 Y3.54 ; X=1.18 inch, Y=3.54 inch, F=500 mm/min
N60 G71 X20 Y30 ; programmed system of units: Metric
 ; X=20 mm, Y=30 mm, F=500 mm/min
N70 G0 Z2 ; Z=2 mm, F=rapid traverse mm/min
N80 M30 ; end of program

Additional information

Reading and writing data in the case of G70/G71 and G700/G710

Data area G70 / G71 G700 / G710
Read Write Read Write

Display, decimal places (WCS) P P P P
Display, decimal places (MCS) G G G G
Feedrates G G P P
Position data X, Y, Z P P P P

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
360 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Data area G70 / G71 G700 / G710
Read Write Read Write

Interpolation parameters I, J, K P P P P
Circle radius (CR) P P P P
Polar radius (RP) P P P P
Thread pitch P P P P
Programmable FRAME P P P P
Settable FRAMES G G P P
Basic frames G G P P
External work offsets G G P P
Axial preset offset G G P P
Working area limits (G25/G26) G G P P
Protection zones P P P P
Tool offsets G G P P
Length-related machine data G G P P
Length-related setting data G G P P
Length-related system variables G G P P
GUDs G G G G
LUDs G G G G
PUDs G G G G
R parameters G G G G
Siemens cycles P P P P
Jog/handwheel increment factor G G G G
P: Writing/reading is performed in the programmed system of units.
G: Writing/reading is performed in the configured basic system

Synchronized actions

Note
Reading position data in synchronized actions

If a system of units has not been explicitly programmed in the synchronized action (condition
component and/or action component) length-related position data in the synchronized action
will always be read in the parameterized basic system.

References: Function Manual, Synchronized Actions

G2: Velocities, setpoint / actual value systems, closed-loop control
8.3 System of units, metric/inch

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 361

8.4 Setpoint/actual-value system

8.4.1 General information

Control loop
A control loop with the following structure can be configured for every closed-loop controlled
axis/spindle:

Figure 8-1 Block diagram of a control loop

Setpoint output
A setpoint telegram can be output for each axis/spindle. The setpoint output to the actuator is
realized from the SINUMERIK 840D sl.

Actual-value acquisition
A maximum of two measuring systems can be connected for each axis/spindle, e.g. a direct
measuring system for machining processes with high accuracy requirements and an indirect
measuring system for high-speed positioning tasks.

The number of encoders used is recorded in the machine data:

MD30200 $MA_NUM_ENCS (number of encoders)

In the case of two actual-value branches, the actual value is acquired for both branches.

The active measuring system is always used for position control, absolute value calculation
and display. If both measuring systems are activated at the same time by the PLC interface,
positioning measuring system 1 is chosen internally by the controller.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
362 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Reference point approach is executed by the selected measuring system.

Every position measuring system must be referenced separately.

For explanations on encoder monitoring functions, see Section "A3: Axis monitoring
functions (Page 87)".

For an explanation of actual-value acquisition compensation functions, see:
References:
Function Manual, Extended Functions; Compensations (K3)

Switching between measuring systems
One can switch between the two measuring systems through the following NC/PLC interface
signals:

DB31, ... DBX1.5 (position measuring system 1)

DB31, ... DBX1.6 (position measuring system 2)

For further information, see Section "A2: Various NC/PLC interface signals and functions
(Page 41)".

It is possible to switch over measuring systems at any time, the axes do not have to be
stationary to do this. Switchover only takes place if a permissible deviation between the actual
values and the two measuring systems has not been violated.

The associated tolerance is entered in the machine data:

MD36500 $MA_ENC_CHANGE_TOL (max. tolerance on position actual value switchover)

On switchover, the current difference between position measuring system 1 and 2 is traversed
immediately.

Monitoring
The permissible deviation between the actual values of the two measuring systems is to be
entered in the machine data:

MD36510 $MA_ENC_DIFF_TOL

For the cyclic comparison of the two measuring systems used, this difference must not be
exceeded, as otherwise Alarm 25105 "Measuring systems deviate" is generated.

If the axis is not referenced (at least in the current control measuring system), then the related
monitoring is not active if MD36510 = 0 or if neither of the two measuring systems in the axis
is active/available.

Types of actual-value acquisition
The used encoder type must be defined through the following machine data:

MD30240 $MA_ENC_TYPE (type of actual-value acquisition (actual position value))

Simulation axes
The speed control loop of an axis can be simulated for test purposes.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 363

The axis "traverses" with a following error, similar to a real axis.

A simulation axis is defined by setting the two following machine data to "0":

MD30130 $MA_CTRLOUT_TYPE[n] (output value of setpoint)

MD30240 $MA_ENC_TYPE[n] (type of actual-value acquisition)

As soon as the standard machine data has been loaded, the axes become simulation axes.

The setpoint and actual value can be set to the reference point value with reference point
approach.

The machine data:

MD30350 $MA_SIMU_AX_VDI_OUTPUT (output of axis signals with simulation axes)

can be used to define whether the axis-specific interface signals are to be output on the PLC
during the simulation.

Actual-value correction
If actual-value corrections performed by the NC on the encoder selected for position control
do not influence the actual value of another encoder defined in the same axis, then this encoder
is to be declared as "independent" via the following machine data:

MD30242 $MA_ENC_IS_INDEPENDENT

Actual-value corrections include the following:

● Modulo treatment

● Reference point approach

● Measuring system comparison

● PRESET

8.4.2 Setpoint and encoder assignment

Setpoint marshalling
The following machine data is relevant for the setpoint assignment of a machine axis.

MD30100 $MA_CTRLOUT_SEGMENT_NR
Setpoint assignment: Bus segment
System Value Meaning
840D sl 5 PROFIBUS DP / PROFINET (default)

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
364 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD30110 $MA_CTRLOUT_MODULE_NR
Setpoint assignment: Drive number / module number
System Value Meaning
840D sl x The logical I/O address of the drive is assigned from MD13050

$MN_DRIVE_LOGIC_ADDRESS[n] via the drive number.
The drive number (x) results from the index (n) of MD13050:
x = n + 1
Note
The machine data is of no significance if the drive is simulated (MD30130
$MA_CTRLOUT_TYPE = 0).

MD30120 $MA_CTRLOUT_NR
Setpoint assignment: Setpoint output on drive module/module
System Value Meaning
840D sl 1 Modular drive at PROFIBUS / PROFINET with PROFIdrive profile (default)

MD30130 $MA_CTRLOUT_TYPE
Setpoint output type
System Value Meaning
840D sl 0 Simulation (operation without drive)

1 Setpoint output active

Encoder assignment
The following machine data is relevant for assigning the encoder information of the drive -
transferred in the PROFIdrive telegram - to the encoder inputs of the machine axis:

MD30210 $MA_ENC_SEGMENT_NR[n]
Actual value assignment, bus segment
System Value Meaning
840D sl 5 PROFIBUS DP / PROFINET

MD30220 $MA_ENC_MODULE_NR[n]
Actual value assignment: Drive number/measuring circuit number
System Value Meaning
840D sl x The logical I/O address of the drive is assigned from MD13050

$MN_DRIVE_LOGIC_ADDRESS[n] via the drive number.
The drive number (x) results from the index (n) of MD13050:
x = n + 1

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 365

MD30230 $MA_ENC_INPUT_NR[n]
Actual value assignment: Input on drive module/measuring circuit module
System Value Meaning
840D sl x Number of the encoder interface within the PROFIdrive telegram

Examples
PROFIdrive telegram 103
x = 1 → 1st encoder interface (G1_ZSW, G1_XIST1, G1_XIST2)
x = 2 → 2nd encoder interface (G2_ZSW, G2_XIST1, G2_XIST2)
PROFIdrive telegram 118
x = 1 → 1st encoder interface (G2_ZSW, G2_XIST1, G2_XIST2)
x = 2 → 2nd encoder interface (G3_ZSW, G3_XIST1, G3_XIST2)
Note:
For SINAMICS S120:
 - Encoder 1 (G1_...): Motor encoder
 - Encoder 2 (G2_...): Direct measuring system
 - Encoder 3 (G3_...): Additional measuring system

MD30240 $MA_ENC_TYPE[n]
Encoder type of the actual value acquisition (actual position value)
System Value Meaning
840D sl 0 Simulation (operation without encoder)

1 Incremental encoder
4 Absolute encoder

Note:
Corresponds to PROFIdrive parameter p979

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
366 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD30242 $MA_ENC_IS_INDEPENDENT[n, axis]
Encoder is independent
System Value Meaning
840D sl 0 The encoder is not independent.

1 The encoder is independent.
If the actual-value corrections, which are made for the encoder selected for the
position control, are not to influence the actual value of the second encoder
defined in the same axis, then this should be declared as independent.
Actual value corrections are:
● - Modulo treatment
● - Reference point approach
● - Measuring system alignment
● - PRESET

Example: One axis, two encoders, the 2nd encoder is independent
MD30200 $MA_NUM_ENCS[AX1] = 2
MD30242 $MA_ENC_IS_INDEPENDENT[0, AX1] = 0
MD30242 $MA_ENC_IS_INDEPENDENT[1, AX1] = 1
Selection, position measuring system 1 / 2: DB31.DBX1.5 / 1.6
If encoder 1 is selected for closed-loop position control, then the actual value
corrections are only performed on this encoder, as encoder 2 is independent.
If encoder 2 is selected for position control, then the actual value corrections are
performed on both encoders, as encoder 1 is not independent.
This means that the machine data only has an effect on the passive encoder of
a machine axis.

2 The passive encoder is dependent.
The actual encoder value is changed by the active encoder. In combination with
MD35102 $MA_REFP_SYNC_ENCS = 1, for reference point approach, the pas‐
sive encoder is aligned to the active encoder - but is NOT referenced.
In the referencing mode MD34200 $MA_ENC_REFP_MODE = 3 (distance-co‐
ded reference marks) the passive encoder is automatically referenced with the
next traversing motion after passing the zero mark distance. This is done inde‐
pendent of the actual operating mode setting.

3 The encoder is independent.
For modulo rotary axes, modulo actual value corrections are also performed in
the passive encoder.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 367

Note
Machine data index [n]

The machine data index [n] for encoder assignment has the following meaning:
● n = 0: First encoder assigned to the machine axis
● n = 1: Second encoder assigned to the machine axis

The assignment is made using machine data:
● MD30220 $MA_ENC_MODULE_NR[n]
● MD30230 $MA_ENC_INPUT_NR[n]

References
Commissioning Manual, CNC Commissioning: NC, PLC, Drive;
Section: "Communication between the NC and the drive" > "Drives: Assign axis"

8.4.3 Adapting the motor/load ratios

Gear types
The following gear types are available for adapting the mechanical ratios:

Gear type Activation Adaptation Installation location
Motor/load gear Parameter set Fixed configuration Gear unit
Measuring gear encoder Power On Sensor-dependent Sensor-side
Load intermediate gear unit Warm restart Load-dependent Tool-side

Local position of gear unit / encoder

Figure 8-2 Gear unit types and encoder locations

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
368 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Motor/load gear
The motor/load gear supported by SINUMERIK is configured via the following machine data:

● MD31060 $MA_DRIVE_AX_RATIO_NUMERA (numerator load gear)

● MD31050 $MA_DRIVE_AX_RATIO_DENOM (denominator load gear)

The transmission ratio is obtained from the numerator/denominator ratio of both machine data.
The associated parameter sets are used automatically as default by the control system to
synchronize the position controller with the relevant transmission ratios.

Since a gear stage change is not always carried out automatically, and there are also several
ways to request a gear stage change, the position controller is not always incorporated via
parameter sets.

Note

For further information about the parameter sets for gear stage change, see Section "S1:
Spindles (Page 1273)".

Intermediate gear
Additional, configurable load intermediate gears are also supported by the control system:

● MD31066 $MA_DRIVE_AX_RATIO2_NUMERA (intermediate gear numerator)

● MD31064 $MA_DRIVE_AX_RATIO2_DENOM (intermediate gear denominator)

Power tools generally have their "own" intermediate gear. Such variable mechanics can be
configured by multiplying the active intermediate gear and the motor/load gear.

CAUTION

Different gear transmission ratios for switching

Unlike the motor/load gear, there is no parameter set for the intermediate gear and, therefore,
no way of controlling the time-synchronized switchover to the part program or PLC (NC/PLC
interface). Part machining during gear change is, therefore, ruled out. It remains the task of
the user to match the synchronization of the relevant changed machine data to the
corresponding mechanical switchover and activate it. On switchover during a motion,
compensations cannot be ruled out due to jumps in the scaling factors. These are not
monitored for violation of the maximum acceleration.

Encoder directly at the tool
Another connection option is possible for a "tool-side encoder" on the intermediate gear by
configuring the following machine data:

MD31044 $MA_ENC_IS_DIRECT2

Encoder not directly at the tool
The following supplementary conditions apply to a gear change of the intermediate gear in
position-control mode: The gear ratio to be changed is incorporated in a re-scaling of the
encoder information in this case.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 369

In this case, the following applies to axes/spindles in positioning mode:

● A non-abrupt gear change is only possible at zero speed.
To do this, the tool-side position before and after a gear change are set equal for a change
in the ratio, since the mechanical position does not (or hardly) change during a gear stage
change.
Recommendation:
To avoid 21612 "Controller enable reset during motion", changeover should be carried out
"only at zero speed". It is still permissible and expedient to switch the axis or spindle to
speed-control or follow-up mode before or during a gear change.

Boundary conditions
If the encoder to be used for position control is connected directly at the tool, the gear stage
change only affects the physical quantities at the speed interface between the NC and the
drive of the motor/load gear. The internal parameter sets are not changed.

Reference point and machine reference

CAUTION

Loss of machine reference

The control cannot detect all situations that can lead to loss of the machine reference.
Therefore, it is the general responsibility of the commissioning engineer or user to initiate
explicit referencing of zero marker synchronization in such cases.

In the case of gear changes, it is not possible to make a statement about the effect of the
reference point or machine position reference on the encoder scaling. In such cases, the
control partially cancels the status "Axis referenced/synchronized".

If the machine reference has been lost, it must first be restored through an adjustment or
referencing of the lost machine reference.

See also
R1: Referencing (Page 1223)

8.4.4 Speed setpoint output

Control direction and travel direction of the feed axes
You must determine the travel direction of the feed axis before starting work.

Control direction

Before the position control is started up, the speed controller and current controller of the drive
must be started up and optimized.

Travel direction

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
370 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

With the machine data:

MD32100 $MA_AX_MOTION_DIR (travel direction),

the direction of motion of the axis can be reversed,

without affecting the control direction of the position control.

Speed setpoint adjustment
SINUMERIK 840D sl

In the case of speed setpoint comparison, the NC is informed which speed setpoint
corresponds to which motor speed in the drive, for parameterizing the axial control and
monitoring. This comparison is carried out automatically.

For PROFIBUS DP drives, alternatively, the manual speed setpoint comparison is also
possible.

● Manual comparison
In the machine data:
MD32250 $MA_RATED_OUTVAL
a value not equal to zero is entered.

Note

Velocity adjustment and maximum speed setpoint

Owing to the automatic speed setpoint comparison a velocity adjustment is not necessary
for SINUMERIK 840D sl!

Maximum speed setpoint
For SINUMERIK 840D sl, the maximum speed setpoint is defined as a percentage. 100%
means maximum speed setpoint or maximum speed for PROFIdrive drives (manufacturer-
specific setting parameters in the drive, e.g. p1082 for SINAMICS).

The output of the spindle speed is implemented in the NC for SINUMERIK 840D sl.

Data for five gear stages are realized in the controller.

These stages are defined by a minimum and maximum speed for the stage itself and by a
minimum and maximum speed for the automatic gear stage changeover. A new set gear stage
is output only if the new programmed speed cannot be traversed in the current gear stage.

With the machine data:

MD36210 $MA_CTRLOUT_LIMIT[n] (maximum speed setpoint)

the speed setpoint is restricted percentage-wise

Values up to 200% are possible.

When the speed is exceeded, an alarm is generated.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 371

Figure 8-3 Maximum speed setpoint

However, due to control processes, the axes should not reach their maximum velocity
(MD32000 $MA_MAX_AX_VELO) at 100% of the speed setpoint, but at 80% to 95%.

In case of axes, whose maximum speed is attained at around 80% of the speed setpoint range,
the default value (80%) of the machine data:

MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

can be taken over.

8.4.5 Machine data of the actual value system

Axis-specific machine data
To parameterize the actual value system, the following axis-specific machine data should be
set:

Encoder and parameter set-independent machine data:
$MA_

Meaning

MD30200 NUM_ENCS Number of encoders
MD30300 IS_ROT_AX Rotary axis / spindle
MD30310 ROT_IS_MODULO Modulo conversion for rotary axis / spindle
MD30320 DISPLAY_IS_MODULO 360-degree modulo display for rotary axis or

spindle
MD30330 MODULO_RANGE Size of the modulo range
MD30340 MODULO_RANGE_START Start position of the modulo range
MD31030 $MA_LEADSCREW_PITCH Leadscrew pitch
MD31064 $MA_DRIVE_AX_RATIO2_DENOM Intermediate gear denominator
MD31066 $MA_DRIVE_AX_RATIO2_NUMERA Intermediate gear numerator
MD32000 $MA_MAX_AX_VELO Maximum axis velocity

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
372 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Encoder-dependent machine data: $MA_ Meaning
MD30210 ENC_SEGMENT_NR[n] Actual value assignment: Number of bus

segments
MD30220 ENC_MODULE_NR[n] Actual value assignment: Drive number/

measuring circuit number
MD30230 ENC_INPUT_NR[n] Actual value assignment: Input on drive

module/measuring circuit module
MD30240 ENC_TYPE[n] Encoder type of the actual value acquisition

(actual position value)
MD30242 ENC_IS_INDEPENDENT[n] Encoder is independent
MD30244 ENC_MEAS_TYPE[n] Encoder measuring type
MD30250 ACT_POS_ABS[n] Internal encoder position
MD30260 ABS_INC_RATIO[n] Absolute encoder: Ratio between the abso‐

lute resolution and the incremental resolu‐
tion

MD30270 ENC_ABS_BUFFERING[n] Absolute encoder: Traversing range exten‐
sion

MD34090 $MA_REFP_MOVE_DIST_CORR[n] Reference point offset
MD34320 $MA_ENC_INVERS[n] Length measuring system is in the opposite

sense
n: Encoder index, with n = 0, 1, ... (1st encoder, 2nd encoder, ...)

Note

The "Activate machine data" can be activated either in the part program with the command
NEWCONF or via the user interface by pressing a softkey.

8.4.6 Actual-value resolution

8.4.6.1 Machine data of the actual value resolution
Depending where the measuring system (encoder) is mounted, the following measuring
system types should be taken into account:

● Load-side encoder: Direct measuring system (DM)

● Motor-side encoder: Indirect measuring system (IM)

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 373

Parameterizing the actual value resolution depending on the axis type (linear/rotary axis)
The control system calculates the actual value resolution based on the following machine data.

Machine data for calculating the actual value resolution

Linear axis Linear axis Rotary axis
Linear scale /

direct measuring
system

Indirect
measur‐

ing system

Direct
measuring

system:
Machine/

tool

Indirect
measur‐
ing sys‐

tem

Direct
measur‐
ing sys‐
tem: Ma‐
chine/tool

MD30300 $MA_IS_ROT_AX 0 0 0 1 1
MD31000 $MA_ENC_IS_LINEAR[n]
MD31010 $MA_ENC_GRID_POINT_DIST[n]
MD34320 $MA_ENC_INVERS[n]

1
Spacing

1)

0
-
-

0
-
-

0
-
-

0
-
-

MD31020 $MA_ENC_RESOL[n] - Pulses/
rev

Pulses/
rev

Pulses/
rev

Pulses/
rev

MD31025 $MA_ENC_PULSE_MULT[n] Encoder multipli‐
cation

MD31030 $MA_LEADSCREW_PITCH - mm/rev. mm/rev. - -
MD31040 $MA_ENC_IS_DIRECT[n] - / 1 0 1 0 1
MD31044 $MA_ENC_IS_DIRECT2[n] - / 1 0 1 0 1
MD31050 $MA_DRIVE_AX_RATIO_DENOM[n] - Load

rev.
- / 1 Load

rev.
2)

MD31060 $MA_DRIVE_AX_RATIO_NUMERA[n] - Motor
rev. if in‐

feed
gear avail‐

able

- / 1 Motor
rev.

2)

MD31070 $MA_DRIVE_ENC_RATIO_DENOM[n] - Encoder
rev.

Encoder
rev.

Encoder
rev.

Encoder
rev.

MD31080 $MA_DRIVE_ENC_RATIO_NUMERA[n] - Motor-
side en‐
coder 3)

Motor
rev.

Motor
rev.

Load
rev.

- Not relevant
1) For distance-coded measuring systems
2) These machine data are not required for encoder matching (path evaluation). However,

they must be entered correctly for the setpoint calculation! Otherwise the required servo
gain factor (KV) will not be set. The load revolutions are entered into machine data
MD31050 $MA_DRIVE_AX_RATIO_DENOM and the motor revolutions in machine data
MD31060 $MA_DRIVE_AX_RATIO_NUMERA.

3) The encoder on the motor side is a built-in encoder and, therefore, does not have a
measuring gear unit.
The transmission ratio is always 1:1.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
374 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Machine data of the actual value resolution
The actual-value resolution results from the design of the machine, whether gearboxes are
available and their gear ratio, the leadscrew pitch for linear axes and the resolution of the
encoder being used. The following machine data must be set for this on the control system:

Encoder and parameter set-independent machine data:
$MA_

Meaning

MD30300 IS_ROT_AX Axis is a rotary axis / spindle
MD31010 ENC_GRID_POINT_DIST Distance between reference marks of the

linear scale
MD31030 LEADSCREW_PITCH Leadscrew pitch
MD31064 DRIVE_AX_RATIO2_DENOM Denominator of attached gearbox
MD31066 DRIVE_AX_RATIO2_NUMERA Numerator of attached gearbox

Encoder-dependent machine data: $MA_ Meaning
MD31000 ENC_IS_LINEAR[n] Measuring system is a linear scale
MD31020 ENC_RESOL[n] Encoder pulses per revolution
MD31025 ENC_PULSE_MULT[n] Encoder multiplication (high resolution)
MD31040 ENC_IS_DIRECT[n] Direct or indirect measuring system
MD31044 ENC_IS_DIRECT2[n] Encoders installed at the attached gearbox
MD31070 DRIVE_ENC_RATIO_DENOM[n] Measuring gearbox denominator
MD31080 DRIVE_ENC_RATIO_NUMERA[n] Measuring gearbox numerator
n: Encoder index, with n = 0, 1, ... (1st encoder, 2nd encoder, etc.)

Parameter-set-dependent machine data: $MA_ Meaning
MD31050 $MA_DRIVE_AX_RATIO_DENOM[m] Denominator load gearbox
MD31060 $MA_DRIVE_AX_RATIO_NUMERA[m] Numerator load gearbox
m: Parameter set index, with m = 0, 1, ... (1st parameter set, 2nd parameter set, etc.)

Parameterizing the computational resolution
The ratio of control-internal computational resolution to the actual-value resolution is an
indication of how exactly the values calculated by the control system can be implemented on
the machine.

Computational resolution: Linear axes

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 375

Computational resolution: Rotary axes

Machine data

General machine data: $MN_ Meaning
MD10200 INT_INCR_PER_MM Computational resolution for linear positions
MD10210 INT_INCR_PER_DEG Computational resolution for angular posi‐

tions

Recommended setting
The above components and settings that are responsible for the actual-value resolution, should
be selected so that the actual-value resolution is higher than the parameterized computational
resolution.

8.4.6.2 Example: Linear axis with linear scale

Figure 8-4 Linear axis with linear scale

The ratio of the internal increments to the encoder increments per mm is calculated as follows:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
376 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

8.4.6.3 Example: Linear axis with rotary encoder on motor

Figure 8-5 Linear axis with rotary encoder on motor

The ratio of the internal increments to the encoder increments per mm is calculated as follows:

Example
Assumptions:

● Rotary encoder on the motor: 2048 pulses/revolution

● Internal pulse multiplication: 2048

● Gearbox, motor / ball screw: 5:1

● Leadscrew pitch: 10 mm/revolution

● Computational resolution: 10000 increments per mm

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 377

Machine data Value
MD30300 $MA_IS_ROT_AX 0
MD31000 $MA_ENC_IS_LINEAR[0] 0
MD31040 $MA_ENC_IS_DIRECT[0] 0
MD31020 $MA_ENC_RESOL[0] 2048
MD31025 $MA_ENC_PULSE_MULT 2048
MD31030 $MA_LEADSCREW_PITCH 10
MD31080 $MA_DRIVE_ENC_RATIO_NUMERA[0] 1
MD31070 $MA_DRIVE_ENC_RATIO_DENOM[0] 1
MD31060 $MA_DRIVE_AX_RATIO_NUMERA[0] 5
MD31050 $MA_DRIVE_AX_RATIO_DENOM[0] 1
MD10210 $MN_INT_INCR_PER_DEG 10000

An encoder increment corresponds to 0.004768 internal increments or 209.731543 encoder
increments correspond to an internal increment.

8.4.6.4 Example: Linear axis with rotary encoder on the machine

Figure 8-6 Linear axis with rotary encoder on the machine

The ratio of the internal increments to the encoder increments per mm is calculated as follows:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
378 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

8.4.6.5 Example: Rotary axis with rotary encoder on motor

Figure 8-7 Rotary axis with rotary encoder on motor

The ratio of the internal increments to the encoder increments per degree is calculated as
follows:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 379

Example
Assumptions:

● Rotary encoder on the motor: 2048 pulses/revolution

● Internal pulse multiplication: 2048

● Gearbox, motor / rotary axis: 5:1

● Computational resolution: 1000 increments per degree

Machine data Value
MD30300 $MA_IS_ROT_AX 1
MD31000 $MA_ENC_IS_LINEAR[0] 0
MD31040 $MA_ENC_IS_DIRECT[0] 0
MD31020 $MA_ENC_RESOL[0] 2048
MD31025 $MA_ENC_PULSE_MULT 2048
MD31080 $MA_DRIVE_ENC_RATIO_NUMERA[0] 1
MD31070 $MA_DRIVE_ENC_RATIO_DENOM[0] 1
MD31060 $MA_DRIVE_AX_RATIO_NUMERA[0] 5
MD31050 $MA_DRIVE_AX_RATIO_DENOM[0] 1
MD10210 $MN_INT_INCR_PER_DEG 1000

An encoder increment corresponds to 0.017166 internal increments or 58.254689 encoder
increments correspond to an internal increment.

8.4.6.6 Example: Rotary axis with rotary encoder on the machine

Figure 8-8 Rotary axis with rotary encoder on the machine

The ratio of the internal increments to the encoder increments per degree is calculated as
follows:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
380 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

8.4.6.7 Example: Intermediate gear with encoder on the tool

Figure 8-9 Intermediate gear with encoder directly on the rotating tool

The ratio of the internal increments to the encoder increments per degree is calculated as
follows:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.4 Setpoint/actual-value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 381

8.5 Closed-loop control

8.5.1 General information

Position control of an axis/spindle
The closed-loop control of an axis consists of the current and speed control loop of the drive
plus a higher-level position control loop in the NC.

The basic structure of an axis/spindle position control is illustrated below:

Figure 8-10 Principle representation of the setpoint processing and closed-loop control

For information on the jerk limitation, see Section "B2: Acceleration (Page 267)".

For a description of the feedforward control, backlash, friction compensation, and leadscrew
error compensation.

References:
Function Manual Extended Functions; Compensations (K3)

Fine interpolation
Using the fine interpolator (FIPO), the contour precision can be further increased by reducing
the staircase effect in the speed setpoint. You can set three different types of fine interpolation:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.5 Closed-loop control

Basic Functions
382 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD33000 $MA_FIPO_TYPE = <FIPO mode>

<FIPO mode> Meaning
1 Differential fine interpolation with mean value generation (smoothing) over an IPO

cycle
2 Cubic fine interpolation
3 Cubic fine interpolation optimized for use with the pre-control for the highest contour

precision

KV factor
In order that few contour deviations occur in the continuous-path mode, a high servo gain factor
(KV) is necessary:

MD32200 $MA_POSCTRL_GAIN[n]

However, if the servo gain factor (KV) is too high, instability, overshoot and possibly
impermissible high loads on the machine will result.

The maximum permissible servo gain factor (KV) depends on the following:

● Design and dynamics of the drive
(rise time, acceleration and braking capacity)

● Machine quality
(elasticity, oscillation damping)

● Position control cycle or speed control cycle for active DSC

The servo gain factor (KV) is defined as:

Dynamic response adaptation
Axes that interpolate with one another, but with different servo gain factors (KV) can be set to
the same following error using the dynamic adaptation function. This allows an optimum
contour accuracy to be achieved without loss of control quality by reducing the servo gain
factors (KV) to the dynamically weakest axis.

The function is activated via:

MD32900 $MA_DYN_MATCH_ENABLE = 1 (dynamic response adaptation)

The dynamic response adaptation is realized by entering a new equivalent time constant. It is
calculated from the difference in the equivalent time constant of the dynamically weakest axis
and the axis to be adapted:

MD32910 $MA_DYN_MATCH_TIME [n] = <difference in the equivalent time constant>

G2: Velocities, setpoint / actual value systems, closed-loop control
8.5 Closed-loop control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 383

Figure 8-11 Dynamic response adaptation

Example of a dynamic response adaptation of three axes without speed feedforward control

The equivalent time constant of the position control loop is:
Axis 1: 30 ms
Axis 2: 20 ms
Axis 3: 24 ms

With an equivalent time constant of 30 ms, axis 1 is the dynamically weakest axis.

This results in the following new equivalent time constants for the axes:

Axis 1: MD32910 $MA_DYN_MATCH_TIME = 0 ms
Axis 2: MD32910 $MA_DYN_MATCH_TIME = 30 ms - 20 ms = 10 ms
Axis 3: MD32910 $MA_DYN_MATCH_TIME = 30 ms - 24 ms = 6 ms

Approximation formulas for the equivalent time constant of the position control loop of an axis
The equivalent time constant Tequiv of the position control loop of an axis is approximately
calculated depending on the type of feedforward control:

● Without feedforward control:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.5 Closed-loop control

Basic Functions
384 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● With speed feedforward control:

● For combined torque/speed feedforward control

Note

If dynamic response adaptation is realized for a geometry axis, then all other geometry axes
must be set to the same dynamic response.

References:
Commissioning Manual CNC: NC, PLC, Drives

8.5.2 Parameter sets of the position controller
Six parameter sets per machine axis are available to quickly adapt the position control to the
changed machine properties during operation, e.g. a gear change of the spindle, or to adjust
the dynamic response to another axis, e.g. during tapping.

Machine data
A parameter set comprises the following machine data:

Number Identifier $MA_ Meaning
31050 DRIVE_AX_RATIO_DENOM Denominator load gearbox
31060 DRIVE_AX_RATIO_NUMERA Numerator load gearbox
32200 POSCTRL_GAIN Servo gain factor (KV)
32452 BACKLASH_FACTOR Backlash compensation
32610 VELO_FFW_WEIGHT Feedforward control factor
36012 STOP_LIMIT_FACTOR Exact stop coarse/fine factor and zero speed
32800 EQUIV_CURRCTRL_TIME Equivalent time constant, current control loop for feed‐

forward control
32810 EQUIV_SPEEDCTRL_TIME Equivalent time constant, speed control loop for feed

forward control
32910 DYN_MATCH_TIME Time constant for dynamic response adaptation
36200 AX_VELO_LIMIT Threshold value for velocity monitoring

G2: Velocities, setpoint / actual value systems, closed-loop control
8.5 Closed-loop control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 385

Tapping, thread cutting
For tapping or thread cutting, the following applies with regard to the parameter sets of axes:

● For machine axes that are not involved in tapping or thread cutting, parameter set 1 (index
= 0) is active. The other parameter sets do not have to be taken into account.

● For machine axes that are involved in tapping or thread cutting, the same parameter set
number as that of the current gear stage of the spindle is active.
All parameter sets correspond to the gear stages and must therefore be parameterized.

The current parameter set is displayed on the user interface at:

Operating Area "Diagnostics" > "Service axis"

Parameter sets during gear stage change
Each gear stage of a spindle is assigned a separate parameter set. The gear stage is selected
via the following NC/PLC interface signal:

DB31, ... DBX16.0 - 2 = <actual gear stage>

Actual gear stage DB31, ... DBX16.0 - 2 Parameter set
1st gear stage 000 2 (Index=1)
1st gear stage 001 2 (Index=1)
2nd gear stage 010 3 (Index=2)
3rd gear stage 011 4 (Index=3)
4th gear stage 100 5 (Index=4)
5th gear stage 101

110
111

6 (Index=5)

For further information on gear stages for spindles, see Section "S1: Spindles (Page 1273)".

8.6 Optimization of the control

8.6.1 Position controller, position setpoint filter: Balancing filter

Function
With feedforward control active, the position setpoint is sent through a so-called balancing filter
before it reaches the controller itself. It is thus possible to control the speed setpoint to 100%
in advance, without resulting in overshoots when positioning.

Activation
The feedforward control variant is selected and so also the filter activated using the axis-
specific machine data:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
386 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD32620 $MA_FFW_MODE (feedforward control mode)

Value Meaning
3 Speed precontrol
4 Combined torque/speed precontrol

Activating and deactivating via the part program
Part programs can be used to activate and deactivate the feedforward control for all axes,
using commands FFWON and FFWOF.

If the feedforward control of the individual axes should not be influenced by FFWON/FFWOF, the
setting in the following machine data must be changed for these axes:

MD32630 $MA_FFW_ACTIVATION_MODE (activate feedforward control from program)

Parameterization

Recommended setting for recommissioning
If recommissioning, or if default values have been loaded (switch position 1 on commissioning
switch and POWER ON), the following machine data default values apply:

● MD32620 $MA_FFW_MODE = 3

● MD32610 $MA_VELO_FFW_WEIGHT (feedforward control factor for the velocity
feedforward control) = 1

The balancing time for the speed feedforward control then just has to be adjusted in the
following machine data:

MD32810 $MA_EQUIV_SPEEDCTRL_TIME (equivalent time constant speed control loop for
feedforward control)

Setting the equivalent time constant of the speed control loop (MD32810)
We recommend that the axis be allowed to move in and out in "AUTOMATIC" mode with a
part program and that travel-in to the target position, i.e. the actual position value of the active
measuring system, be monitored with the servo trace.

The initial value for setting is the time constant of the speed control loop. This can be read
from the reference frequency characteristic of the speed control loop. In the frequent case of
a PI controller with speed setpoint smoothing, an approximate equivalent time can be read
from drive machine data p1414, p1415, p1416 and p1421.

This start value (e.g. 1.5 ms) is now entered:

MD32810 $MA_EQUIV_SPEEDCTRL_TIME = 0.0015

The axis then travels forward and backward and the operator monitors a greatly-magnified
characteristic of the actual position value at the target position.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 387

The following rules apply to making manual fine adjustments:

Monitoring Measure Effect
Overshoot Increase MD32810

The position controller responds more slowly.
⇒ The tendency to overshoot decreases.
Problem: The contour error (deviation from the program‐
med contour) increases at curves.

Excessively slow
approach

Reduce MD32810 The position controller responds faster.
⇒ The contour error at curves decreases.
Problem: The tendency to overshoot increases.

Note

The effects are similar to modification of the position controller gain (MD32200
$MA_POSCTRL_GAIN). They can be observed on the user interface in the operating section
"Diagnostics" > "Axis service" using the computed KV value.

MD32810 fine adjustment
Therefore, MD32810 should be assigned as small a value as possible, with the overshoot
setting the limit during positioning. Furthermore, the initial value is only modified slightly during
fine adjustment, typically by adding or deducting 0.25 ms.

For example, if the initial value is 1.5 ms, the optimum value calculated manually is usually
within the range 1.25 ms to 1.75 ms.

In the case of axes equipped with direct measuring systems (load encoders) and strong
elasticity, you may possibly accept small overshoots of some micrometers. These can be
reduced with the help of the position setpoint filter for dynamic response adaptation (MD32910
$MA_DYN_MATCH_TIME) and for jerk (MD32410 $MA_AX_JERK_TIME), which also reduces
the axis speed.

Identical axis data within an interpolation group
All the axes within an interpolation group should have identical settings in the following data:

● MD32200 $MA_POSCTRL_GAIN (adapted using MD32910)

● MD32620 $MA_FFW_MODE

● MD32610 $MA_VELO_FFW_WEIGHT

● MD32810 $MA_EQUIV_SPEEDCTRL_TIME (or MD32800
$MA_EQUIV_CURRCTRL_TIME) (dependent on the mechanical system and drive)

● MD32400 $MA_AX_JERK_ENABLE

● MD32402 $MA_AX_JERK_MODE

● MD32410 $MA_AX_JERK_TIME

The servo gain display (KV) of the user interface in operating section "Diagnostics" > "Axis
service" is used for checking.

Non-identical axis data within an interpolation group
If identical values are not possible for the above data, the following machine data can be used
to make an adjustment:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
388 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD32910 $MA_DYN_MATCH_TIME (time constant of dynamic response adaptation)

This allows the same servo gain value (KV) to be displayed.

Different servo gain display values (KV) usually point to the following:

● The gear ratios do not match in one or several axes.

● The feedforward control setting data does not match.

Setting the equivalent time constant of the current control loop (MD32800)
The activation of the torque feedforward control filter is performed with:

MD32620 $MA_FFW_MODE = 4

The same rules and recommendations apply to setting the time constant of the current control
loop MD32800 $MA_EQUIV_CURRCTRL_TIME as to the speed feedforward control.

Limitation to stiff machines
Experience has shown that this expenditure is only worthwhile in the case of very stiff
machines, and requires appropriate experience. The elasticities of the machine are often
excited due to the injection of the torque so strongly that the existing vibrations neutralize the
gain in contour accuracy.

In this case, it would be worth trying the function "Dynamic Stiffness Control" (DSC) as an
alternative:

MD32640 $MA_STIFFNESS_CONTROL_ENABLE = 1

Note

The following conditions apply to use of DSC:
● In the NC, no actual value inversion (MD32110 $MA_ENC_FEEDBACK_POL = -1) must

be parameterized. Actual-value inversion in the drive (SINAMICS parameter p0410) is
permissible.

● The function must be activated for all axes that are in an interpolation relationship (path
motion or coupling) (MD32640 = 1).

● If one of the axes is parameterized as a simulated axis (MD30130 $MA_CTRLOUT_TYPE
= 0, MD30240 $MA_ENC_TYPE = 0), DSC cannot be applied. In this case, the function
must be deactivated for all axes that are in an interpolation relationship (MD32640 = 0).

CAUTION

Exception error condition

An exception error condition may occur if p1192 is set for a non-existing measuring system
and DSC is activated!

For service situations in which an additional measuring system has to be disabled and DSC
is active, it must be assured that p1192 is also adapted.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 389

Control response with POWER ON, RESET, REPOS, etc.
In the case of POWER ON and RESET, as well as with "Enable machine data", the setting
data of the feedforward control is read in again (see the appropriate values of the relevant
machine data).

Mode change, block search and REPOS have no influence on the feedforward control.

8.6.2 Position controller, position setpoint filter: Jerk filter

Function
In some applications, such as when milling sculptured surfaces, it can be advantageous to
smooth the position setpoint curves using the jerk filter. The objective to optimize the surface
quality by minimizing the excitations of machine vibrations. The filter effect of the position
setpoints must be as strong as possible without impermissibly affecting contour accuracy. The
smoothing behavior of the filter must also be as "symmetrical" as possible, i.e. if the same
contour was to be traversed both forward and backward, the characteristic rounded by the
filter should be as similar as possible in both directions.

The effect of the filter can be monitored by means of the effective servo gain factor (KV), which
is displayed on the "Axis service" screen form. The filtering effect rounds the position setpoints
slightly, thus reducing the path accuracy so that with increasing filter time a smaller effective
servo gain factor (KV) is displayed.

Note

The jerk filter creates a dependent phase offset for each amplitude setting. Only the additional
use of the phase filter (see "Position controller, position setpoint filter: Phase filter (Page 392)")
permits a transparent setting of the axis dynamic response.

Activation
The function of the axis-specific jerk filter setpoint must be activated with the following machine
data:

MD32400 $MA_AX_JERK_ENABLE[<axis>] = "TRUE"

Parameterization

Filter type for axis-specific jerk limitation
The "floating averaging" filter type is normally used for the axis-specific jerk limitation:

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
390 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD32402 $MA_AX_JERK_MODE[<axis>] = 2

Note

If filter type MD32402 $MA_AX_JERK_MODE = 2 was not activated previously, "Power On"
must be initiated once. Otherwise, "Enable machine data" or "Reset" at the machine control
panel are sufficient.

Time constant for the axis-specific jerk filter
The time constant of the axis-specific jerk filter [s] is set in the machine data:

MD32410 $MA_AX_JERK_TIME[<axis>]

Fine adjustment
The fine adjustment of the jerk filter is carried out as follows:

1. Assess the traversing response of the axis (e.g. based on positioning processes with servo
trace).

2. Modify the filter time in MD32410 $MA_AX_JERK_TIME.

3. Activate the modified time via "Enable machine data" or RESET on the machine control
panel.

Deactivation
Disabling the jerk filter:

1. Block the filter calculation:
MD32400 $MA_AX_JERK_ENABLE = 0

2. Activate the interlock via "Enable machine data" or RESET on the machine control panel.

Boundary conditions

Filter times
The jerk filter is only effective when the time constant (MD32410) is greater than one position
control cycle.

Filter effect
● The display of the calculated servo gain factor (KV) in the "Axis service" screen form displays

smaller values than would be appropriate based on the filter effect.

● Path accuracy is better than the displayed servo gain (KV) suggests.
Therefore, on resetting MD32400 = 1 to MD32400 = 2, the displayed servo gain (KV) can
be reduced while retaining the same filter time, although the path accuracy improves.

Axes that are interpolating axes with one another
● must be set identically.

● Once an optimum value has been identified for these axes, the one with the longest filter
time should be used as the setting for all axes within the interpolation group.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 391

References
For further information on jerk limitation at the interpolator level, see Sections "Jerk limitation
with single-axis interpolation (SOFTA) (axis-specific) (Page 286)" and "Axis/spindlespecific
machine data (Page 314)".

8.6.3 Position controller, position setpoint filter: Phase filter

Function
The axis-specific phase filter setpoint (dead time / delay) implements a pure phase shifter with
which the setpoint phase response can be influenced. Together with the axis-specific jerk filter
setpoint (MD32402_$MA_AX_JERK_MODE[<axis>] = 2; see Section "Position controller,
position setpoint filter: Jerk filter (Page 390)") it is possible to adapt the amplitude response
and the phase response independently of one another to the dynamically weakest of several
axes, which should proceed along a programmed path together.

① Position controller cycle clock: 2 ms
② Time constant of the axis-specific phase filter setpoint: 19.2 ms

Figure 8-12 Effect of the axis-specific phase filter setpoint

Parameter assignment: Time constant
The time constant for the axis-specific phase filter setpoint can be set in the range:

(0 to 64) * position controller cycle clock (MD10061 $MN_POSCTRL_CYCLE_TIME)

The value of the time constants must be entered in seconds [s] in the machine data:

MD32895 $MA_DESVAL_DELAY_TIME[<Axis>]

Example: Position controller cycle clock: 2 ms ⇒ adjustable time constant: 0.0 to 0.128 s

Note

The time constant of the phase filter setpoint delays the axis' response characteristics for
tapping, retractions, and exact stops / block changes, etc. It is therefore recommended to set
the time constant as low as possible.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
392 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Limiting to a maximum value
A greater time constant than the permitted maximum value (64 * position controller cycle clock)
is limited internally to the maximum value. No message / alarm is displayed.

Parameter assignment: Activation
The function of the axis-specific phase filter setpoint must be activated with the following
machine data:

MD32890 $MA_DESVAL_DELAY_ENABLE[<Axis>] = "TRUE"

Examples
Assumption: Position controller cycle clock = 2 ms

1. MD32890 $MA_DESVAL_DELAY_ENABLE[<Axis>] = "FALSE"
MD32895 $MA_DESVAL_DELAY_TIME[<Axis>] = <Time constant>

– Phase filter setpoint: Not active

– Time constant: Irrelevant

2. MD32890 $MA_DESVAL_DELAY_ENABLE[<Axis>] = TRUE
MD32895 $MA_DESVAL_DELAY_TIME[<axis>] = 0.002

– Phase filter setpoint: Active

– Time constant: 2 ms ⇒ the setpoint output is delayed by a position controller cycle clock.

3. MD32890 $MA_DESVAL_DELAY_ENABLE[<Axis>] = TRUE
MD32895 $MA_DESVAL_DELAY_TIME[<axis>] = 0.256

– Phase filter setpoint: Active

– Set time constant: 256 ms;
maximum possible time constant: 64 * 2 ms = 128 ms
⇒ internally effective time constant: 128 ms

Supplementary conditions

SINUMERIK Safety Integrated
The phase filter setpoint delays the output of axis-specific setpoints; e.g. for retractions (ESR
for Stop E). However, the phase filter setpoint has no influence over shutdown processes; e.g.
the SBH activation time.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 393

8.6.4 Position controller: injection of positional deviation

Preconditions
● The function can only be used on axes with two encoders:

MD30200 $MA_NUM_ENCS = 2
One of the encoders must be parameterized as an indirect measuring system and the other
as a direct measuring system:

– Direct measuring system:
MD31040 $MA_ENC_IS_DIRECT[1]=1
The encoder for position actual-value acquisition is connected directly to the machine
(load encoder).

– Indirect measuring system:
MD31040 $MA_ENC_IS_DIRECT[0]=0
The encoder for position actual-value acquisition is located on the motor (motor
encoder).

● Telegram type 136 or 138 must be configured as standard telegram type for PROFIdrive
both in the drive and also in the NC (MD13060 $MN_DRIVE_TELEGRAM_TYPE).

Function
For active injected positional deviation, the difference position between the direct and the
indirect measuring system of an axis is determined and in accordance with the weighting-factor
setting is applied as additional current setpoint for the feedforward control in the position control
cycle. The resulting oscillation damping improves the stability and positioning behavior of the
axis.

Application
The function is used for axes with strong tendency to vibrate.

Effectiveness
The function acts only for axes with small natural frequency (to approximately 20 Hz).

Activation/parameterization
The function is activated by specifying the weighting factor:

MD32950 $MA_POSCTRL_DAMPING (damping of the speed control loop) = <value>

Value range: -100% ... +100%

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
394 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

An input value "100%" means: A supplementary torque in accordance with SINAMICS
parameter p2003 is applied when the determined position difference between the two
measuring systems reaches the following value:

● With linear motors: 1 mm

● With linear axis with rotary motor: MD31030 $MA_LEADSCREW_PITCH (leadscrew pitch)

● For rotary axis/spindle: 360 degrees

Standard setting is 0. In this case, the injection of positional deviation is inactive.

Note

The weighting factor MD32950 $MA_POSCTRL_DAMPING can be set on the basis of step
responses, for example.

If the control approaches the stability limit (vibration inclination increases), the parameter is
too large or the value has the incorrect sign.

8.6.5 Position control with proportional-plus-integral-action controller

Function
As standard, the core of the position controller is a P controller. It is possible to switch-in an
integral component for special applications (such as an electronic gear). The resulting
proportional-plus-integral-action controller then corrects the error between setpoint and actual
positions down to zero in a finite, settable time period when the appropriate machine data is
set accordingly.

CAUTION

Overshootings of the actual position for activated PI controller

In this instance, you must decide whether this effect is admissible for the application in
question. Knowledge of the control technology and measurements with servo trace are an
absolute prerequisite for using the function. If the appropriate machine data is incorrectly set,
then machines could be damaged due to instability.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 395

Procedure
1. First optimize the position control loop as a proportional-action controller using the tools

described in the previous subsections.

2. Increase the tolerances of the following machine data while measurements are being taken
to determine the quality of the position control with proportional-plus-integral-action
controller:

– MD36020 $MA_POSITIONING_TIME

– MD36030 $MA_STANDSTILL_POS_TOL

– MD36040 $MA_STANDSTILL_DELAY_TIME

– MD36400 $MA_CONTOUR_TOL

3. Activate the position control loop as a proportional-plus-integral-action controller by setting
the following machine data:
MD32220 $MA_POSCTRL_INTEGR_ENABLE ; set value 1
MD32210 $MA_POSCTRL_INTEGR_TIME ; integral time [sec.]
Effect of integral time:

– Tn → 0:
The control error is corrected quickly; however, the control loop can become instable.

– Tn → ∞:
Effectiveness of the integral component is almost 0. Behavior of the controller like a
pure proportional controller.

4. Find the right compromise for Tn between these two extreme cases for the application.

Note

Tn must not be chosen too near the stability limit because the occurrence of an instability
can cause machine damage.

It is therefore recommended to set Tn to no less than 1 s.

Use servo trace to trace the travel-in of an automatic program traveling to and from a target
position.

5. Set the servo trace to display the following:

– Following error

– Actual velocity

– Actual position

– Reference position

6. Reset the tolerance values in the following machine data to the required values, once the
optimum value for Tn has been identified:

– MD36020 $MA_POSITIONING_TIME

– MD36030 $MA_STANDSTILL_POS_TOL

– MD36040 $MA_STANDSTILL_DELAY_TIME

– MD36400 $MA_CONTOUR_TOL

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
396 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Supplementary conditions

DSC
If the integrator function is used, DSC (Dynamic Stiffness Control) must be switched off.

Example

Setting result after several iterative processes for KR and Tn.
Machine data settings:

● MD32220 $MA_POSCTRL_INTEGR_ENABLE = 1

● MD32210 $MA_POSCTRL_INTEGR_TIME = 0.003

● MD32200 $MA_POSCTRL_GAIN[1] = 5.0

Parameter set selection 0

Each of the following quantities - following error, actual velocity, actual position, and position
setpoint - has been recorded by servo trace. When traversing in JOG mode, the characteristic
of the individual data shown in the following figure was then drawn.

G2: Velocities, setpoint / actual value systems, closed-loop control
8.6 Optimization of the control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 397

8.7 Data lists

8.7.1 Machine data

8.7.1.1 Displaying machine data

Number Identifier: $MM_ Description
9004 DISPLAY_RESOLUTION Display resolution
9010 SPIND_DISPLAY_RESOLUTION Display resolution for spindles
9011 DISPLAY_RESOLUTION_INCH Display resolution for INCH system of measurement

8.7.1.2 NC-specific machine data

Number Identifier: $MN_ Description
10000 AXCONF_MACHAX_NAME_TAB Machine axis name
10050 SYSCLOCK_CYCLE_TIME System basic cycle
10070 IPO_SYSCLOCK_TIME_RATIO Factor for interpolator cycle
10060 POSCTRL_SYSCLOCK_TIME_RATIO Factor for position-control cycle
10200 INT_INCR_PER_MM Computational resolution for linear positions
10210 INT_INCR_PER_DEG Computational resolution for angular positions
10220 SCALING_USER_DEF_MASK Activation of scaling factors
10230 SCALING_FACTORS_USER_DEF Scaling factors of physical quantities
10240 SCALING_SYSTEM_IS_METRIC Basic system metric
10250 SCALING_VALUE_INCH Conversion factor for switchover to

inch system
10260 CONVERT_SCALING_SYSTEM Basic system switchover active
10270 POS_TAB_SCALING_SYSTEM Measuring system of position tables
10290 CC_TDA_PARAM_UNIT Physical units of the tool data for CC
10292 CC_TOA_PARAM_UNIT Physical units of the tool edge data for CC
13050 DRIVE_LOGIC_ADDRESS Logical drive addresses
13060 DRIVE_TELEGRAM_TYPE Standard message frame type for PROFIBUS DP
13070 DRIVE_FUNCTION_MASK DP function used
13080 DRIVE_TYPE_DP Drive type PROFIBUS DP

8.7.1.3 Channelspecific machine data

Number Identifier: $MC_ Description
20150 GCODE_RESET_VALUES Initial setting of the G groups

G2: Velocities, setpoint / actual value systems, closed-loop control
8.7 Data lists

Basic Functions
398 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

8.7.1.4 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30110 CTRLOUT_MODULE_NR Setpoint assignment: Drive number
30120 CTRLOUT_NR Setpoint assignment: Setpoint output on drive module
30130 CTRLOUT_TYPE Output type of setpoint
30200 NUM_ENCS Number of encoders
30220 ENC_MODULE_NR Actual value assignment: Drive module number
30230 ENC_INPUT_NR Actual value assignment: Input on the drive module
30240 ENC_TYPE Type of actual value acquisition (actual position value)
30242 ENC_IS_INDEPENDENT Encoder is independent
30300 IS_ROT_AX Rotary axis
31000 ENC_IS_LINEAR Direct measuring system (linear scale)
31010 ENC_GRID_POINT_DIST Distance between reference marks on linear scales
31020 ENC_RESOL Encoder pulses per revolution
31030 LEADSCREW_PITCH Leadscrew pitch
31040 ENC_IS_DIRECT Encoder is connected directly to the machine
31044 ENC_IS_DIRECT2 Encoder on intermediate gear
31050 DRIVE_AX_RATIO_DENOM Denominator load gear
31060 DRIVE_AX_RATIO_NUMERA Numerator load gear
31064 DRIVE_AX_RATIO2_DENOM Intermediate gear denominator
31066 DRIVE_AX_RATIO2_NUMERA Intermediate gear numerator
31070 DRIVE_ENC_RATIO_DENOM Measuring gear denominator
31080 DRIVE_ENC_RATIO_NUMERA Measuring gear numerator
31090 JOG_INCR_WEIGHT Weighting of increment for INC/handwheel
31200 SCALING_FACTOR_G70_G71 Factor for converting values when G70/G71 is active
32000 MAX_AX_VELO Maximum axis velocity
32100 AX_MOTION_DIR Travel direction
32110 ENC_FEEDBACK_POL Sign actual value (feedback polarity)
32200 POSCTRL_GAIN Servo gain factor (KV)
32210 POSCTRL_INTEGR_TIME Integrator time position controller
32220 POSCTRL_INTEGR_ENABLE Activation of integral component of position controller
32250 RATED_OUTVAL Rated output voltage
32260 RATED_VELO Rated motor speed
32450 BACKLASH Backlash
32500 FRICT_COMP_ENABLE Friction compensation active
32610 VELO_FFW_WEIGHT Feedforward control factor for speed feedforward con‐

trol
32620 FFW_MODE Feedforward control mode
32630 FFW_ACTIVATION_MODE Activate feedforward control from program
32650 AX_INERTIA Moment of inertia for torque feedforward control
32652 AX_MASS Axis mass for torque precontrol

G2: Velocities, setpoint / actual value systems, closed-loop control
8.7 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 399

Number Identifier: $MA_ Description
32711 CEC_SCALING_SYSTEM_METRIC System of measurement of sag compensation
32800 EQUIV_CURRCTRL_TIME Equivalent time constant current control loop for feed‐

forward control
32810 EQUIV_SPEEDCTRL_TIME Equivalent time constant speed control loop for feed‐

forward control
32890 DESVAL_DELAY_ENABLE Axis-specific phase filter setpoint
32895 DESVAL_DELAY_TIME Time constant for the axis-specific phase filter setpoint
32900 DYN_MATCH_ENABLE Dynamics matching
32910 DYN_MATCH_TIME [n] Time constant for dynamic response adaptation
32930 POSCTRL_OUT_FILTER_ENABLE Activation of low-pass filter at position controller output
32950 POSCTRL_DAMPING Damping of the speed control loop
33000 FIPO_TYPE Fine interpolator type
34320 ENC_INVERS[n] Length measuring system is inverse
35100 SPIND_VELO_LIMIT Maximum spindle speed
36200 AX_VELO_LIMIT [n] Threshold value for velocity monitoring
36210 CTRLOUT_LIMIT[n] Maximum speed setpoint
36400 AX_JERK_ENABLE Axis-specific jerk limitation
36410 AX_JERK_TIME Time constant for the axis-specific jerk filter
36500 ENC_CHANGE_TOL Max. tolerance for actual position value switching
36510 ENC_DIFF_TOL Measuring system synchronism tolerance
36700 ENC_COMP_ENABLE[n] Interpolatory compensation

8.7.2 Signals

8.7.2.1 Signals from the NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Change counter, inch/metric system of units DB10.DBB71 DB2700.DBB0015
Inch system of units DB10.DBX107.7 DB2700.DBX1.7

8.7.2.2 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Position measuring system 1 DB31,DBX1.5 DB38xx.DBX1.5
Position measuring system 2 DB31,DBX1.6 DB38xx.DBX1.6

G2: Velocities, setpoint / actual value systems, closed-loop control
8.7 Data lists

Basic Functions
400 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

H2: Auxiliary function outputs to PLC 9
9.1 Brief description

9.1.1 Function
Auxiliary functions permit activation of the system functions of the NC and PLC user functions.
Auxiliary functions can be programmed in:

● Part programs

● Synchronized actions

● User cycles

For detailed information on the use of auxiliary function outputs in synchronized actions, see:

References:
Function Manual, Synchronized Actions

Predefined auxiliary functions
Predefined auxiliary functions activate system functions. The auxiliary function is also output
to the NC/PLC interface.

The following auxiliary functions are predefined:

Type Function Example Meaning
M Additional function M30 End of program
S Spindle function S100 Spindle speed 100 (e.g. rpm)
T Tool number T3 Tool number 3
D, DL Tool offset D1 Tool cutting edge number 1
F Feedrate F1000 Feedrate 1000 (e.g. mm/min)

Userdefined auxiliary functions
User-defined auxiliary functions are either extended predefined auxiliary functions or user-
specific auxiliary functions.

Extension of predefined auxiliary functions

Extension of predefined auxiliary functions refers to the "address extensions" parameter. The
address extension defines the number of the spindle to which the auxiliary function applies.
The spindle function M3 (spindle right) is predefined for the master spindle of a channel. If a

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 401

2nd spindle is assigned to a channel, a corresponding user-defined auxiliary function must be
defined that extends the predefined auxiliary function.

Type Function Example Meaning
M Additional function M2=3 2nd spindle: Spindle right
S Spindle function S2=100 2nd spindle: Spindle speed = 100 (e.g. rpm)
T Tool number T2=3

User-specific auxiliary functions

User-specific auxiliary functions do not activate system functions. User-specific auxiliary
functions are output to the NC/PLC interface only. The functionality of the auxiliary functions
must be implemented by the machine manufacturer / user in the PLC user program.

Type Function Example Meaning
H1) Auxiliary function H2=5 User-specific function

1) Recommendation

9.1.2 Definition of an auxiliary function
An auxiliary function is defined by the following parameters:

● Type, address extension and value
The three parameters are output to the NC/PLC interface.

● Output behavior
The auxiliary function-specific output behavior defines for how long an auxiliary function is
output to the NC/PLC interface and when it is output relative to the traversing motion
programmed in the same part program block.

● Group assignment
An auxiliary function can be assigned to a particular auxiliary function group. The output
behavior can be defined separately for each auxiliary function group. This becomes active
if no auxiliary function-specific output behavior has been defined. Group membership also
affects output of an auxiliary function after block search.

For more detailed information on auxiliary function output to the NC/PLC interface, see Section
"P3: Basic PLC program for SINUMERIK 840D sl (Page 869)".

9.1.3 Overview of the auxiliary functions

M functions

M (special function)
Address extension Value
Range of values Meaning Value range 10) Type Meaning Number 8)

0 (implicit) --- 0 ... 99 INT Function 5
Range of values Meaning Value range 11) Type Meaning Number 8)

H2: Auxiliary function outputs to PLC
9.1 Brief description

Basic Functions
402 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

M (special function)
1 ... 20 Spindle number 1 ... 99 INT Function 5
Range of values Meaning Value range 12) Type Meaning Number 8)

0 ... 99 Any 100 ... 2147483647 INT Function 5
8) See "Meaning of footnotes" at the end of the overview.
10) For the value range 0 ... 99, the address extension is 0. Mandatory without address extension: M0, M1, M2, M17, M30
11) M3, M4, M5, M19, M70: The address extension is the spindle number, e.g. M2=5 ⇒ spindle stop (M5) for spindle 2.

 Without address extension, the M function acts on the master spindle.
12) User-specific M functions.

Use
Controlling machine functions in synchronism with the part program.

Additional information
● The following M functions have a predefined meaning: M0, M1, M2, M17, M30, M3, M4,

M5, M6, M19, M70, M40, M41, M42, M43, M44, M45.

● A dynamic NC/PLC interface signal for displaying the validity is assigned to the M functions
(M0 - M99). In addition, 64 additional signals can be assigned for user M functions (see
Section "P3: Basic PLC program for SINUMERIK 840D sl (Page 869)").

● For subprograms, machine data can be used to set whether an output of the M function
should be realized for the end of the part program M17, M2 or M30 to the PLC:
MD20800 $MC_SPF_END_TO_VDI (subprogram end to PLC)

● For the predefined M functions M40 – M45, only limited redefinition of the output
specification is possible.

● The predefined auxiliary functions M0, M1, M17, M30, M6, M4, M5 cannot be redefined.

● M function-specific machine data:

– MD10800 $MN_EXTERN_CHAN_SYNC_M_NO_MIN

– MD10802 $MN_EXTERN_CHAN_SYNC_M_NO_MAX

– MD10804 $MN_EXTERN_M_NO_SET_INT

– MD10806 $MN_EXTERN_M_NO_DISABLE_INT

– MD10814 $MN_EXTERN_M_NO_MAC_CYCLE

– MD10815 $MN_EXTERN_M_NO_MAC_CYCLE_NAME

– MD20094 $MC_SPIND_RIGID_TAPPING_M_NR

– MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR

– MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO

– MD22200 $MC_AUXFU_M_SYNC_TYPE

– MD22530 $MC_TOCARR_CHANGE_M_CODE

– MD22532 $MC_GEOAX_CHANGE_M_CODE

– MD22534 $MC_TRAFO_CHANGE_M_CODE

– MD22560 $MC_TOOL_CHANGE_M_CODE

H2: Auxiliary function outputs to PLC
9.1 Brief description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 403

S functions

S (spindle function)
Address extension10) Value
Range of values Meaning Range of values Type Meaning Number 8)

0 ... 20 Spindle number 5) 0 ... ± 3.4028 exp38 3) REAL Spindle speed 3
3) 5) 8) See "Meaning of footnotes" at the end of the overview
10) The master spindle of the channel is addressed if no address extension is specified.

Use
Spindle speed.

Additional information
● The S functions are assigned to the 3rd auxiliary function group as default setting.

● Without an address extension, the S functions refer to the master spindle of the channel.

● S function-specific machine data:
MD22210 $MC_AUXFU_S_SYNC_TYPE (output time of the S functions)

H functions
The functionality of an H function must be implemented in the PLC user program.

H (auxiliary function) 10)

Address extension Value
Range of values Meaning Range of values Type Meaning Number 8)

0 ... 99 Any - 2147483648 ...
+ 2147483647

INT Any 3

0 ... ± 3.4028 exp38 2) 3) 4) REAL
2) 3) 4) 8) See "Meaning of footnotes" at the end of the overview.

Use
User-specific auxiliary functions.

Additional information
H function-specific machine data:

● MD22110 $MC_AUXFU_H_TYPE_INT (type of H-auxiliary function is an integer)

● MD22230 $MC_AUXFU_H_SYNC_TYPE (output time of the H functions)

H2: Auxiliary function outputs to PLC
9.1 Brief description

Basic Functions
404 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

T functions
Tool names are not output at the NC/PLC interface.

T (tool number) 1) 5) 6)

Address extension Value
Range of values Meaning Range of values Type Meaning Number 8)

1 ... 12 Spindle number
(with active tool man‐
agement)

0 ... 32000
(also symbolic names for ac‐
tive tool management)

INT Selection of the tool 1

1) 5) 6) 8) See "Meaning of footnotes" at the end of the overview.

Use
Tool selection.

Additional information
● Identification of the tools, optionally via tool number or location number (see Section "W1:

Tool offset (Page 1451)").
References:
Function Manual Tool Management

● When T0 is selected, the current tool is removed from the toolholder but not replaced by a
new tool (default setting).

● T function-specific machine data:
MD22220 $MC_AUXFU_T_SYNC_TYPE (output time of the T functions)

D functions
The tool offset is deselected using D0. Default setting is D1.

D (tool offset)
Address extension Value
Range of values Meaning Range of values Type Meaning Number 8)

--- --- 0 ... 9 INT Selection of the tool
offset

1

8) See "Meaning of footnotes" at the end of the overview.

Use
Selection of the tool offset.

Additional information
● Initial setting: D1

● After a tool change, the default tool cutting edge can be parameterized via:
MD20270 $MC_CUTTING_EDGE_DEFAULT (basic position of the tool cutting edge
without programming)

H2: Auxiliary function outputs to PLC
9.1 Brief description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 405

● Deselection of the tool offset: D0

● D function-specific machine data:
MD22250 $MC_AUXFU_D_SYNC_TYPE (output time of the D functions)

DL functions
The additive tool offset selected with DL refers to the active D number.

DL (additive tool offset)
Address extension Value
Range of values Meaning Range of values Type Meaning Number 8)

--- --- 0 ... 6 INT Selection of the sum‐
med tool offset

1

8) See "Meaning of footnotes" at the end of the overview.

Use
Selection of the additive tool offset with reference to an active tool offset.

Additional information
● Initial setting: DL = 0

● DL values cannot be output to the PLC via synchronized actions.

● Default setting of the additive tool offset without an active DL function:
MD20272 $MC_SUMCORR_DEFAULT (basic setting of the additive offset without a
program)

● Deselection of the additive tool offset: DL = 0

● DL function-specific machine data:
MD22252 $MC_AUXFU_DL_SYNC_TYPE (output time DL functions)

F functions

F (feedrate)
Address extension Value
Range of values Meaning Range of values Type Meaning Number 8)

--- --- 0.001 ... 999 999.999 REAL Path feedrate 6
8) See "Meaning of footnotes" at the end of the overview.

Use
Path velocity.

Additional information
F function-specific machine data:

● MD22240 $MC_AUXFU_F_SYNC_TYPE (output time of F functions)

H2: Auxiliary function outputs to PLC
9.1 Brief description

Basic Functions
406 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

FA functions

FA (axes-specific feedrate)
Address extension Value
Range of values Meaning Range of values Type Meaning Number 8)

1 - 31 Axis number 0.001 ... 999 999.999 REAL Axial feedrate 6
8) See "Meaning of footnotes" at the end of the overview.

Use
Axis-specific velocity.

Additional information
F function-specific machine data:

● MD22240 $MC_AUXFU_F_SYNC_TYPE (output time of F functions)

Meaning of footnotes

1) If tool management is active, neither a T change signal nor a T word is output at the channel-
specific NC/PLC interface.

2) The type for the values can be selected by the user via MD22110 $MC_AUX‐
FU_H_TYPE_INT.

3) Because of the limited display options on the operator panel screens, the REAL type values
displayed are restricted to:
–999 999 999.9999 to 999 999 999.9999
The NC calculates internally but with complete accuracy.

4) The REAL values are rounded and output to the PLC when setting the machine data:
MD22110 $MC_AUXFU_H_TYPE_INT = 1 (type of H-auxiliary functions is an integer)
The PLC user program must interpret the value transferred according to the machine data
setting.

5) If the tool management is active, the meaning of the address extension can be parameter‐
ized. Address extension = 0 means the value must be replaced by that of the master spindle
number, i.e. it is equivalent to not programming the address extension.
Auxiliary functions M19 "Position spindle" collected during a block search are not output
to the PLC.

6) M6: Range of values of the address extension:
- without tool management: 0 ... 99
- with tool management: 0 ... maximum spindle number
0: To be replaced by the value of the master spindle number or master tool holder

7) If tool management is active, the auxiliary function M6 "Tool change" can only be program‐
med once in a part program block, irrespective the address extensions that are program‐
med.

8) Maximum number of auxiliary functions per part program block.

H2: Auxiliary function outputs to PLC
9.1 Brief description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 407

9.2 Predefined auxiliary functions

Function
Every pre-defined auxiliary function is assigned to a system function and cannot be changed.
If a pre-defined auxiliary function is programmed in a part program/cycle, then this is output to
the PLC via the NC/PLC interface and the corresponding system function is executed in the
NC.

Definition of a predefined auxiliary function
The parameters of the predefined auxiliary function are stored in machine data and can be
changed in some cases. All machine data, which are assigned to an auxiliary function, have
the same index <n>.

● MD22040 $MC_AUXFU_PREDEF_GROUP[<n>] (group assignment of predefined
auxiliary functions)

● MD22050 $MC_AUXFU_PREDEF_TYPE[<n>] (type of predefined auxiliary functions)

● MD22060 $MC_AUXFU_PREDEF_EXTENSION[<n>] (address extension for predefined
auxiliary functions)

● MD22070 $MC_AUXFU_PREDEF_VALUE[<n>] (value of predefined auxiliary functions)

● MD22080 $MC_AUXFU_PREDEF_SPEC[<n>] (output behavior of predefined auxiliary
functions)

9.2.1 Overview: Predefined auxiliary functions
Significance of the parameters listed in the following tables:

Parameter Meaning
Index <n> Machine data index of the parameters of an auxiliary function
Type MD22050 $MC_AUXFU_PREDEF_TYPE[<n>]
Address extension MD22060 $MC_AUXFU_PREDEF_EXTENSION[<n>]
Value MD22070 $MC_AUXFU_PREDEF_VALUE[<n>]
Group MD22040 $MC_AUXFU_PREDEF_GROUP[<n>]

Predefined auxiliary functions

General auxiliary functions, Part 1
System function Index <n> Type Address ex‐

tension
Value Group

Stop 0 M 0 0 1
Conditional stop 1 M 0 1 1

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
408 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

General auxiliary functions, Part 1
System function Index <n> Type Address ex‐

tension
Value Group

End of subprogram 2 M 0 2 1
3 M 0 17 1
4 M 0 30 1

Tool change 5 M (0) 6 1) (1)

Spindle-specific auxiliary functions, spindle 1
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 6 M 1 3 (2)
Spindle left 7 M 1 4 (2)
Spindle stop 8 M 1 5 (2)
Position spindle 9 M 1 19 (2)
Axis mode 10 M 1 70 2) (2)
Automatic gear stage 11 M 1 40 (4)
Gear stage 1 12 M 1 41 (4)
Gear stage 2 13 M 1 42 (4)
Gear stage 3 14 M 1 43 (4)
Gear stage 4 15 M 1 44 (4)
Gear stage 5 16 M 1 45 (4)
Spindle speed 17 S 1 -1 (3)

General auxiliary functions, Part 2
System function Index <n> Type Address ex‐

tension
Value Group

Feedrate 18 F 0 -1 (1)
Cutting edge selection 19 D 0 -1 (1)
DL 20 L 0 -1 (1)
Tool selection 21 T (0) -1 (1)
Stop (associated) 22 M 0 -1 3) 1
Conditional stop (associated) 23 M 0 -1 4) 1
End of subprogram 24 M 0 -1 5) 1
Nibbling 25 M 0 20 6) (10)
Nibbling 26 M 0 23 6) (10)
Nibbling 27 M 0 22 6) (11)
Nibbling 28 M 0 25 6) (11)
Nibbling 29 M 0 26 6) (12)
Nibbling 30 M 0 122 6) (11)
Nibbling 31 M 0 125 6) (11)
Nibbling 32 M 0 27 6) (12)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 409

Spindle-specific auxiliary functions, spindle 2
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 33 M 2 3 (72)
Spindle left 34 M 2 4 (72)
Spindle stop 35 M 2 5 (72)
Position spindle 36 M 2 19 (72)
Axis mode 37 M 2 70 2) (72)
Automatic gear stage 38 M 2 40 (74)
Gear stage 1 39 M 2 41 (74)
Gear stage 2 40 M 2 42 (74)
Gear stage 3 41 M 2 43 (74)
Gear stage 4 42 M 2 44 (74)
Gear stage 5 43 M 2 45 (74)
Spindle speed 44 S 2 -1 (73)

Spindle-specific auxiliary functions, spindle 3
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 45 M 3 3 (75)
Spindle left 46 M 3 4 (75)
Spindle stop 47 M 3 5 (75)
Position spindle 48 M 3 19 (75)
Axis mode 49 M 3 70 2) (75)
Automatic gear stage 50 M 3 40 (77)
Gear stage 1 51 M 3 41 (77)
Gear stage 2 52 M 3 42 (77)
Gear stage 3 53 M 3 43 (77)
Gear stage 4 54 M 3 44 (77)
Gear stage 5 55 M 3 45 (77)
Spindle speed 56 S 3 -1 (76)

Spindle-specific auxiliary functions, spindle 4
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 57 M 4 3 (78)
Spindle left 58 M 4 4 (78)
Spindle stop 59 M 4 5 (78)
Position spindle 60 M 4 19 (78)
Axis mode 61 M 4 70 2) (78)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
410 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Spindle-specific auxiliary functions, spindle 4
System function Index <n> Type Address ex‐

tension
Value Group

Automatic gear stage 62 M 4 40 (80)
Gear stage 1 63 M 4 41 (80)
Gear stage 2 64 M 4 42 (80)
Gear stage 3 65 M 4 43 (80)
Gear stage 4 66 M 4 44 (80)
Gear stage 5 67 M 4 45 (80)
Spindle speed 68 S 4 -1 (79)

Spindle-specific auxiliary functions, spindle 5
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 69 M 5 3 (81)
Spindle left 70 M 5 4 (81)
Spindle stop 71 M 5 5 (81)
Position spindle 72 M 5 19 (81)
Axis mode 73 M 5 70 2) (81)
Automatic gear stage 74 M 5 40 (83)
Gear stage 1 75 M 5 41 (83)
Gear stage 2 76 M 5 42 (83)
Gear stage 3 77 M 5 43 (83)
Gear stage 4 78 M 5 44 (83)
Gear stage 5 79 M 5 45 (83)
Spindle speed 80 S 5 -1 (82)

Spindle-specific auxiliary functions, spindle 6
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 81 M 6 3 (84)
Spindle left 82 M 6 4 (84)
Spindle stop 83 M 6 5 (84)
Position spindle 84 M 6 19 (84)
Axis mode 85 M 6 70 2) (84)
Automatic gear stage 86 M 6 40 (86)
Gear stage 1 87 M 6 41 (86)
Gear stage 2 88 M 6 42 (86)
Gear stage 3 89 M 6 43 (86)
Gear stage 4 90 M 6 44 (86)
Gear stage 5 91 M 6 45 (86)
Spindle speed 92 S 6 -1 (85)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 411

Spindle-specific auxiliary functions, spindle 7
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 93 M 7 3 (87)
Spindle left 94 M 7 4 (87)
Spindle stop 95 M 7 5 (87)
Position spindle 96 M 7 19 (87)
Axis mode 97 M 7 70 2) (87)
Automatic gear stage 98 M 7 40 (89)
Gear stage 1 99 M 7 41 (89)
Gear stage 2 100 M 7 42 (89)
Gear stage 3 101 M 7 43 (89)
Gear stage 4 102 M 7 44 (89)
Gear stage 5 103 M 7 45 (89)
Spindle speed 104 S 7 -1 (88)

Spindle-specific auxiliary functions, spindle 8
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 105 M 8 3 (90)
Spindle left 106 M 8 4 (90)
Spindle stop 107 M 8 5 (90)
Position spindle 108 M 8 19 (90)
Axis mode 109 M 8 70 2) (90)
Automatic gear stage 110 M 8 40 (92)
Gear stage 1 111 M 8 41 (92)
Gear stage 2 112 M 8 42 (92)
Gear stage 3 113 M 8 43 (92)
Gear stage 4 114 M 8 44 (92)
Gear stage 5 115 M 8 45 (92)
Spindle speed 116 S 8 -1 (91)

Spindle-specific auxiliary functions, spindle 9
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 117 M 9 3 (93)
Spindle left 118 M 9 4 (93)
Spindle stop 119 M 9 5 (93)
Position spindle 120 M 9 19 (93)
Axis mode 121 M 9 70 2) (93)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
412 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Spindle-specific auxiliary functions, spindle 9
System function Index <n> Type Address ex‐

tension
Value Group

Automatic gear stage 122 M 9 40 (95)
Gear stage 1 123 M 9 41 (95)
Gear stage 2 124 M 9 42 (95)
Gear stage 3 125 M 9 43 (95)
Gear stage 4 126 M 9 44 (95)
Gear stage 5 127 M 9 45 (95)
Spindle speed 128 S 9 -1 (94)

Spindle-specific auxiliary functions, spindle 10
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 129 M 10 3 (96)
Spindle left 130 M 10 4 (96)
Spindle stop 131 M 10 5 (96)
Position spindle 132 M 10 19 (96)
Axis mode 133 M 10 70 2) (96)
Automatic gear stage 134 M 10 40 (98)
Gear stage 1 135 M 10 41 (98)
Gear stage 2 136 M 10 42 (98)
Gear stage 3 137 M 10 43 (98)
Gear stage 4 138 M 10 44 (98)
Gear stage 5 139 M 10 45 (98)
Spindle speed 140 S 10 -1 (97)

Spindle-specific auxiliary functions, spindle 11
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 141 M 11 3 (99)
Spindle left 142 M 11 4 (99)
Spindle stop 143 M 11 5 (99)
Position spindle 144 M 11 19 (99)
Axis mode 145 M 11 70 2) (99)
Automatic gear stage 146 M 11 40 (101)
Gear stage 1 147 M 11 41 (101)
Gear stage 2 148 M 11 42 (101)
Gear stage 3 149 M 11 43 (101)
Gear stage 4 150 M 11 44 (101)
Gear stage 5 151 M 11 45 (101)
Spindle speed 152 S 11 -1 (100)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 413

Spindle-specific auxiliary functions, spindle 12
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 153 M 11 3 (102)
Spindle left 154 M 12 4 (102)
Spindle stop 155 M 12 5 (102)
Position spindle 156 M 12 19 (102)
Axis mode 157 M 12 70 2) (102)
Automatic gear stage 158 M 12 40 (104)
Gear stage 1 159 M 12 41 (104)
Gear stage 2 160 M 12 42 (104)
Gear stage 3 161 M 12 43 (104)
Gear stage 4 162 M 12 44 (104)
Gear stage 5 163 M 12 45 (104)
Spindle speed 164 S 12 -1 (103)

Spindle-specific auxiliary functions, spindle 13
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 165 M 13 3 (105)
Spindle left 166 M 13 4 (105)
Spindle stop 167 M 13 5 (105)
Position spindle 168 M 13 19 (105)
Axis mode 169 M 13 70 2) (105)
Automatic gear stage 170 M 13 40 (107)
Gear stage 1 171 M 13 41 (107)
Gear stage 2 172 M 13 42 (107)
Gear stage 3 173 M 13 43 (107)
Gear stage 4 174 M 13 44 (107)
Gear stage 5 175 M 13 45 (107)
Spindle speed 176 S 13 -1 (106)

Spindle-specific auxiliary functions, spindle 14
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 177 M 14 3 (108)
Spindle left 178 M 14 4 (108)
Spindle stop 179 M 14 5 (108)
Position spindle 180 M 14 19 (108)
Axis mode 181 M 14 70 2) (108)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
414 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Spindle-specific auxiliary functions, spindle 14
System function Index <n> Type Address ex‐

tension
Value Group

Automatic gear stage 182 M 14 40 (110)
Gear stage 1 183 M 14 41 (110)
Gear stage 2 184 M 14 42 (110)
Gear stage 3 185 M 14 43 (110)
Gear stage 4 186 M 14 44 (110)
Gear stage 5 187 M 14 45 (110)
Spindle speed 188 S 14 -1 (109)

Spindle-specific auxiliary functions, spindle 15
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 189 M 15 3 (111)
Spindle left 190 M 15 4 (111)
Spindle stop 191 M 15 5 (111)
Position spindle 192 M 15 19 (111)
Axis mode 193 M 15 70 2) (111)
Automatic gear stage 194 M 15 40 (113)
Gear stage 1 195 M 15 41 (113)
Gear stage 2 196 M 15 42 (113)
Gear stage 3 197 M 15 43 (113)
Gear stage 4 198 M 15 44 (113)
Gear stage 5 199 M 15 45 (113)
Spindle speed 200 S 15 -1 (112)

Spindle-specific auxiliary functions, spindle 16
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 201 M 16 3 (114)
Spindle left 202 M 16 4 (114)
Spindle stop 203 M 16 5 (114)
Position spindle 204 M 16 19 (114)
Axis mode 205 M 16 70 2) (114)
Automatic gear stage 206 M 16 40 (116)
Gear stage 1 207 M 16 41 (116)
Gear stage 2 208 M 16 42 (116)
Gear stage 3 209 M 16 43 (116)
Gear stage 4 210 M 16 44 (116)
Gear stage 5 211 M 16 45 (116)
Spindle speed 212 S 16 -1 (115)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 415

Spindle-specific auxiliary functions, spindle 17
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 213 M 17 3 (117)
Spindle left 214 M 17 4 (117)
Spindle stop 215 M 17 5 (117)
Position spindle 216 M 17 19 (117)
Axis mode 217 M 17 70 2) (117)
Automatic gear stage 218 M 17 40 (119)
Gear stage 1 219 M 17 41 (119)
Gear stage 2 220 M 17 42 (119)
Gear stage 3 221 M 17 43 (119)
Gear stage 4 222 M 17 44 (119)
Gear stage 5 223 M 17 45 (119)
Spindle speed 224 S 17 -1 (118)

Spindle-specific auxiliary functions, spindle 18
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 225 M 18 3 (120)
Spindle left 226 M 18 4 (120)
Spindle stop 227 M 18 5 (120)
Position spindle 228 M 18 19 (120)
Axis mode 229 M 18 70 2) (120)
Automatic gear stage 230 M 18 40 (122)
Gear stage 1 231 M 18 41 (122)
Gear stage 2 232 M 18 42 (122)
Gear stage 3 233 M 18 43 (122)
Gear stage 4 234 M 18 44 (122)
Gear stage 5 235 M 18 45 (122)
Spindle speed 236 S 18 -1 (121)

Spindle-specific auxiliary functions, spindle 19
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 237 M 19 3 (123)
Spindle left 238 M 19 4 (123)
Spindle stop 239 M 19 5 (123)
Position spindle 240 M 19 19 (123)
Axis mode 241 M 19 70 2) (123)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
416 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Spindle-specific auxiliary functions, spindle 19
System function Index <n> Type Address ex‐

tension
Value Group

Automatic gear stage 242 M 19 40 (125)
Gear stage 1 243 M 19 41 (125)
Gear stage 2 244 M 19 42 (125)
Gear stage 3 245 M 19 43 (125)
Gear stage 4 246 M 19 44 (125)
Gear stage 5 247 M 19 45 (125)
Spindle speed 248 S 19 -1 (124)

Spindle-specific auxiliary functions, spindle 20
System function Index <n> Type Address ex‐

tension
Value Group

Spindle right 249 M 20 3 (126)
Spindle left 250 M 20 4 (126)
Spindle stop 251 M 20 5 (126)
Position spindle 252 M 20 19 (126)
Axis mode 253 M 20 70 2) (126)
Automatic gear stage 254 M 20 40 (128)
Gear stage 1 255 M 20 41 (128)
Gear stage 2 256 M 20 42 (128)
Gear stage 3 257 M 20 43 (128)
Gear stage 4 258 M 20 44 (128)
Gear stage 5 259 M 20 45 (128)
Spindle speed 260 S 20 -1 (127)

Toolholder-specific auxiliary functions, T auxiliary functions
System function Index <n> Type Address ex‐

tension
Value Group

Tool selection 261 T 1 -1 129
Tool selection 262 T 2 -1 130
Tool selection 263 T 3 -1 131
Tool selection 264 T 4 -1 132
Tool selection 265 T 5 -1 133
Tool selection 266 T 6 -1 134
Tool selection 267 T 7 -1 135
Tool selection 268 T 8 -1 136
Tool selection 269 T 9 -1 137
Tool selection 270 T 10 -1 138
Tool selection 271 T 11 -1 139
Tool selection 272 T 12 -1 140

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 417

Toolholder-specific auxiliary functions, T auxiliary functions
System function Index <n> Type Address ex‐

tension
Value Group

Tool selection 273 T 13 -1 141
Tool selection 274 T 14 -1 142
Tool selection 275 T 15 -1 143
Tool selection 276 T 16 -1 144
Tool selection 277 T 17 -1 145
Tool selection 278 T 18 -1 146
Tool selection 279 T 19 -1 147
Tool selection 280 T 20 -1 148

Toolholder-specific auxiliary functions, M6 auxiliary functions
System function Index <n> Type Address ex‐

tension
Value Group

Tool change 281 M 1 6 1) 149
Tool change 282 M 2 6 1) 150
Tool change 283 M 3 6 1) 151
Tool change 284 M 4 6 1) 152
Tool change 285 M 5 6 1) 153
Tool change 286 M 6 6 1) 154
Tool change 287 M 7 6 1) 155
Tool change 288 M 8 6 1) 156
Tool change 289 M 9 6 1) 157
Tool change 290 M 10 6 1) 158
Tool change 291 M 11 6 1) 159
Tool change 292 M 12 6 1) 160
Tool change 293 M 13 6 1) 161
Tool change 294 M 14 6 1) 162
Tool change 295 M 15 6 1) 163
Tool change 296 M 16 6 1) 164
Tool change 297 M 17 6 1) 165
Tool change 298 M 18 6 1) 166
Tool change 299 M 19 6 1) 167
Tool change 300 M 20 6 1) 168

Legend:
() The value can be changed.
1) The value is depends on the machine data:

MD22560 $MC_TOOL_CHANGE_M_MODE (M function for tool change)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
418 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

2) The value can be preset with a different value using the following machine data:
MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR (M function for switching over to con‐
trolled axis mode (ext. mode))
MD20094 $MC_SPIND_RIGID_TAPPING_M_NR (M function for switching over to control‐
led axis mode)
Note
The value 70 is always output at the PLC.

3) The value is set using machine data:
MD22254 $MC_AUXFU_ASSOC_M0_VALUE (additional M function for program stop)

4) The value is set using machine data:
MD22256 $MC_AUXFU_ASSOC_M1_VALUE (additional M function for conditional stop)

5) The value is set using machine data:
MD10714 $MN_M_NO_FCT_EOP (M function for spindle active after reset)

6) The value is set using machine data:
MD26008 $MC_NIBBLE_PUNCH_CODE (definition of M functions)

9.2.2 Overview: Output behavior
Significance of the parameters listed in the following table:

Parameter Meaning
Index <n> Machine data index of the parameters of an auxiliary function
Output behavior MD22080 $MC_AUXFU_PREDEF_SPEC[<n>], Bits 0 ... 18

Bits 19 ... 31: Reserved

Output behavior of the predefined auxiliary functions

System function Index <n>
 Output behavior, bit

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Stop 0 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
Conditional stop 1 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
End of subroutine 2 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)

3 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
4 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)

Tool change 5 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Spindle right 6 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Spindle left 7 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Spindle stop 8 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Spindle positioning 9 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Axis mode 10 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Automatic gear stage 11 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 1 12 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 419

System function Index <n>
 Output behavior, bit

Gear stage 2 13 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 3 14 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 4 15 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 5 16 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Spindle speed 17 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (1) (0) (0) (0) 0 (0) (1)
Feed 18 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (1) (0) 0 (1) 0 (0) (1)
Cutting edge selection 19 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (0) (1) 0 (0) 0 (0) (1)
DL 20 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (0) (1) 0 (0) 0 (0) (1)
Tool selection 21 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (0) (1) 0 (0) 0 (0) (1)
Stop (associated) 22 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
Conditional stop (asso‐
ciated)

23 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)

End of subroutine 24 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
Nibbling 25 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 26 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 27 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 28 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 29 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 30 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 31 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 32 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)

() The value can be changed.

Significance of the bits

Bit Meaning
0 Acknowledgement "normal" after an OB1 cycle

An auxiliary function with normal acknowledgment is output to the NC/PLC interface at the beginning of the OB1 cycle.
The auxiliary function-specific change signal indicates to the PLC user program that the auxiliary function is valid.
The auxiliary function is acknowledged as soon as organization block OB1 has run once. This corresponds to a
complete PLC user cycle.
The auxiliary function with normal acknowledgment is output in synchronism with the part program block in which it
is programmed. If execution of the parts program block, e.g. path and/or positioning axis movements, is completed
before acknowledgment of the auxiliary function, the block change is delayed until after acknowledgment by the PLC.
In continuous-path mode, a constant path velocity can be maintained in conjunction with an auxiliary function with
normal acknowledgment, if the auxiliary function is output by the PLC during the traversing motion and before reaching
the end of the block.

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
420 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Bit Meaning
1 Acknowledgement "quick" with OB40

An auxiliary function with quick acknowledgment is output to the NC/PLC interface before the next OB1 cycle. The
auxiliary function-specific change signal indicates to the PLC user program that the auxiliary function is valid.
The auxiliary function is acknowledged immediately by the PLC basic program in the next OB40 cycle. Acknowledg‐
ment of the auxiliary function is not confirmation that the corresponding PLC user function has been executed. The
auxiliary function is still executed in the OB1 cycle. Next output of the auxiliary functions to the PLC is therefore not
possible until after this OB1 cycle has run completely. This is noticeable in continuous-path mode (drop in path velocity)
especially if auxiliary functions with quick acknowledgment are output in several consecutive part program blocks.
With auxiliary functions with quick acknowledgment, it cannot be guaranteed that the PLC user program will respond
in synchronism with the block.
Note
Parameterization of the output behavior of auxiliary functions as "quick auxiliary functions" is only possible in con‐
junction with user-defined auxiliary functions.

2 No predefined auxiliary function
A predefined auxiliary function is treated like a user-defined auxiliary function with this setting. The auxiliary function
then no longer triggers the corresponding system function but is only output to the PLC.
Example:
Reconfiguration of the "Position spindle" auxiliary function (index 9) to a user-defined auxiliary function with normal
acknowledgment and output prior to the traversing motion.
MD22080 $MC_AUXFU_PREDEF_SPEC [9] = 'H25' (100101B)

3 No output to the PLC
The auxiliary function is not output to the PLC.

4 Spindle response after acknowledgement by the PLC
The associated system function is only executed after acknowledgment by the PLC.

5 Output prior to motion
The auxiliary function is output to the PLC before the traversing motions programmed in the part program block (path
and/or block-related positioning axis movements).

6 Output during motion
The auxiliary function is output to the PLC during the traversing motions programmed in the part program block (path
and/or block-related positioning axis movements).

7 Output at block end
The auxiliary function is output to the PLC after the traversing motions programmed in the part program block have
been completed (path and/or block-related positioning axis movements).

8 Not output after block search, types 1, 2, 4
Block search, types 1, 2, 4: The auxiliary function collected during the block search is not output.

9 Collection during block search with program test (type 5, SERUPRO)
For a block search with program test, the auxiliary function is collected group-specific in the following system variables:
● $AC_AUXFU_M_VALUE[<n>]
● $AC_AUXFU_M_EXT[<n>]
● $AC_AUXFU_M_STATE[<n>]

10 No output during block search with program test (type 5, SERUPRO)
For block search with program test, the auxiliary function is not output to the PLC.

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 421

Bit Meaning
11 Cross-channel auxiliary function (SERUPRO)

For block search with program test (SERUPRO), the help function is collected on a cross-channel basis in the global
list of the auxiliary functions.
Note
For each auxiliary function group, only the last auxiliary function of the group is always collected.

12 Output performed via synchronized action (read only)
The bit is set if the auxiliary function was output to the PLC via a synchronized action.

13 Implicit auxiliary function (read-only)
The bit is set if the auxiliary function was implicitly output to the PLC.

14 Active M01 (read only)
The bit is set if the auxiliary function, for active M01, was output to the PLC.

15 No output during positioning test run
During the run-in test, the auxiliary function is not output to the PLC.

16 Nibbling off
17 Nibbling on
18 Nibbling

Note

In the case of auxiliary functions for which no output behavior has been defined, the following
default output behavior is active:
● Bit 0 = 1: Output duration one OB1 cycle
● Bit 7 = 1: Output at block end

9.2.3 Parameterization

9.2.3.1 Group assignment
The handling of the auxiliary functions for a block search is defined using the group assignment
of an auxiliary function. The 168 auxiliary function groups available are subdivided into
predefined and user-definable groups:

Predefined groups: 1 ... 4 10 ... 12 72 ... 168
User-defined groups: 5 ... 9 13 ... 71

Each predefined auxiliary function is assigned, as standard, to an auxiliary function group. For
most pre-defined auxiliary functions, this assignment can be changed using the following
machine data:

MD22040 $MC_AUXFU_PREDEF_GROUP[<n>] (group assignment of predefined auxiliary
functions)

If an auxiliary function is not assigned to any group, then a value of "0" should be entered into
the machine data.

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
422 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

For the pre-defined auxiliary functions with the following indices <n>, the group assignment
cannot be changed: 0, 1, 2, 3, 4, 22, 23, 24

Note
1. Auxiliary function group and block search

Auxiliary functions of the 1st auxiliary function group are, for a block search, only collected,
but not output.

9.2.3.2 Type, address extension and value
An auxiliary function is programmed via the type, address extension and value parameters
(see Section "Programming an auxiliary function (Page 437)").

Type
The identifier of an auxiliary function is defined via the "type," e.g.:

"M" For additional function
"S" For spindle function
"F" For feed

The setting is made via the following machine data:

MD22050 $MC_AUXFU_PREDEF_TYPE[<n>] (type of predefined auxiliary functions)

Note

The "type" cannot be changed for predefined auxiliary functions.

Address extension
The "address extension" of an auxiliary function is for addressing different components of the
same type. In the case of predefined auxiliary functions, the value of the "address extension"
is the spindle number to which the auxiliary function applies.

The setting is made via the following machine data:

MD22060 $MC_AUXFU_PREDEF_EXTENSION[<n>] (address extension for predefined
auxiliary functions)

Grouping together auxiliary functions

To assign an auxiliary function for all spindles of a channel to the same auxiliary function group,
the value "-1" is entered for the "address extension" parameter.

Example:

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 423

The auxiliary function M3 (machine data index = 6) is assigned to the second auxiliary function
group for all the channel's spindles.

MD22040 $MC_AUXFU_PREDEF_GROUP[6] = 2
MD22050 $MC_AUXFU_PREDEF_TYPE[6] = "M"
MD22060 $MC_AUXFU_PREDEF_EXTENSION[6] = -1
MD22070 $MC_AUXFU_PREDEF_VALUE[6] = 3

Value
The parameters "value" and "type" define the meaning of an auxiliary function, i.e. the system
function that is activated on the basis of this auxiliary function.

The "value" of an auxiliary function is defined in the machine data:

MD22070 $MC_AUXFU_PREDEF_VALUE[<n>] (value of predefined auxiliary functions)

Note

The "value" cannot be changed for a predefined auxiliary function. For some predefined
auxiliary functions, the "value" can be reconfigured via additional machine data (see Section
"Associated auxiliary functions (Page 432)").

9.2.3.3 Output behavior
Parameter "Output behavior" defines when the predefined auxiliary function is output to the
NC/PLC interface and when it is acknowledged by the PLC.

The setting is done via the following machine data:

MD22080 $MC_AUXFU_PREDEF_SPEC[<n>] (output behavior of predefined auxiliary
functions)

Output behavior relative to motion
Output prior to motion

● The traversing motions (path and/or block-related positioning axis movements) of the
previous part program block end with an exact stop.

● The auxiliary functions are output at the beginning of the current parts program block.

● The traversing motion of the actual part program block (path and/or positioning axis motion)
is only started after acknowledgment of the auxiliary functions by the PLC:

– Output duration one OB1 cycle (normal acknowledgment): after one OB1 cycle

– Output duration one OB40 cycle (quick acknowledgment): after one OB40 cycle

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
424 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Output during motion

● The auxiliary functions are output at the beginning of the traversing motions (path and/or
positioning axis movements).

● The path velocity of the current parts program block is reduced so that the time to the end
of the block is greater than the time to acknowledgment of the auxiliary functions by the
PLC.

– Output duration one OB1 cycle (normal acknowledgment): one OB1 cycle

– Output duration one OB40 cycle (quick acknowledgment): one OB40 cycle

Output after motion

● The traversing motions (path and/or block-related positioning axis movements) of the
current part program block end with an exact stop.

● The auxiliary functions are output after completion of the traversing motions.

● The block change is performed after acknowledgment of the auxiliary functions by the PLC:

– Output duration one OB1 cycle (normal acknowledgment): after one OB1 cycle

– Output duration one OB40 cycle (quick acknowledgment): after one OB40 cycle

Examples of different output behavior
The following figures illustrate the differing behavior regarding:

● Output and acknowledgment of the auxiliary function

● Spindle response (speed change)

● Traverse movement (velocity change)

The binary values specified in the diagrams under "Output behavior" refer to the parameterized
output behavior (MD22080).

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 425

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
426 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

H2: Auxiliary function outputs to PLC
9.2 Predefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 427

9.3 Userdefined auxiliary functions
There are two uses for user-defined auxiliary functions:

● Extension of predefined auxiliary functions

● User-specific auxiliary functions

Extension of predefined auxiliary functions
Because there is only one set of machine data for the predefined auxiliary functions, they can
only ever be used to address one spindle of the channel. To address further spindles, user-
defined auxiliary functions must be parameterized to supplement the predefined auxiliary
functions.

Extension of predefined auxiliary functions refers to the "address extensions" parameter. The
number of the spindle that the auxiliary function refers to is entered in the "address extension"
parameter.

H2: Auxiliary function outputs to PLC
9.3 Userdefined auxiliary functions

Basic Functions
428 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The relevant predefined auxiliary functions can be extended for the following system functions:

System function Type
 Address extension 1)

 Value
Tool change M 1 6
Spindle right M 1 3
Spindle left M 1 4
Spindle stop M 1 5
Position spindle M 1 19
Axis mode M 1 70
Automatic gear stage M 1 40
Gear stage 1 M 1 41
Gear stage 2 M 1 42
Gear stage 3 M 1 43
Gear stage 4 M 1 44
Gear stage 5 M 1 45
Spindle speed S 1 -1
Tool selection T 1 -1

1) Address extension = 1 is the default value used in the auxiliary functions predefined in the machine
data

Example:

Extension of the predefined auxiliary function for the system function "spindle right" for the
second and third spindle of the channel.

Auxiliary function "spindle right" for the second spindle of the channel:
MD22010 $MC_AUXFU_ASSIGN_TYPE[n] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[n] = 2
MD22030 $MC_AUXFU_ ASSIGN_VALUE[n] = 3

Auxiliary function "spindle right" for the third spindle of the channel:
MD22010 $MC_AUXFU_ ASSIGN_TYPE[m] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[m] = 3
MD22030 $MC_AUXFU_ ASSIGN_VALUE[m] = 3

User-specific auxiliary functions
User-specific auxiliary functions have the following characteristics:

● User-specific auxiliary functions only activate user functions.

● No system functions can be activated by user-specific auxiliary functions.

H2: Auxiliary function outputs to PLC
9.3 Userdefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 429

● A user-specific auxiliary function is output to the PLC according to the parameterized output
behavior.

● The functionality of a user-specific auxiliary function is implemented by the machine
manufacturer/user in the PLC user program.

9.3.1 Parameterization

9.3.1.1 Maximum number of user-defined auxiliary functions
The maximum number of user-defined auxiliary function per channel can be parameterized
via the machine data:

MD11100 $MN_AUXFU_MAXNUM_GROUP_ASSIGN (maximum number of user-defined
auxiliary functions)

9.3.1.2 Group assignment
The handling of the auxiliary functions for a block search is defined using the group assignment
of an auxiliary function. The 168 auxiliary function groups available are subdivided into
predefined and user-definable groups:

Predefined groups: 1 ... 4 10 ... 12 72 ... 168
User-defined groups: 5 ... 9 13 ... 71

Every user-defined auxiliary function is assigned as standard to the 1st auxiliary function group.
The assignment can be changed using the following machine data:

MD22000 $MC_AUXFU_ASSIGN_GROUP[<n>] (group assignment of user-defined auxiliary
functions)

If an auxiliary function is not assigned to any group, then a value of "0" should be entered into
the machine data.

Note
1. Auxiliary function group and block search

Auxiliary functions of the 1st auxiliary function group are, for a block search, only collected,
but not output.

9.3.1.3 Type, address extension and value
An auxiliary function is programmed via the type, address extension and value parameters
(see Section "Programming an auxiliary function (Page 437)").

H2: Auxiliary function outputs to PLC
9.3 Userdefined auxiliary functions

Basic Functions
430 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Type
The name of an auxiliary function is defined via the "type".

The identifiers for user-defined auxiliary functions are:

Type Identifier Meaning
"H" Auxiliary function User-specific auxiliary functions
"M" Special function Extension of predefined auxiliary func‐

tions"S" Spindle function
"T" Tool number

The setting is made via the following machine data:

MD22010 $MC_AUXFU_ASSIGN_TYPE[<n>] (type of user-defined auxiliary functions)

Address extension
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[<n>] (address extension user-defined
auxiliary functions)

The functionality of the address extension is not defined in user-specific auxiliary functions. It
is generally used to distinguish between auxiliary functions with the same "value".

Grouping together auxiliary functions

If all the auxiliary functions of the same type and value are assigned to the same auxiliary
function group, a value of "-1" must be entered for the "address extension" parameter.

Example:

All user-specific auxiliary functions with the value "= 8" are assigned to the tenth auxiliary
function group.

MD22000 $MC_AUXFU_ASSIGN_GROUP [1] = 10
MD22010 $MC_AUXFU_ ASSIGN_TYPE [1] = "H"
MD22020 $MC_AUXFU_ ASSIGN_EXTENSION [1] = -1
MD22030 $MC_AUXFU_ ASSIGN_VALUE [1] = 8

Value
MD22030 $MC_AUXFU_ASSIGN_VALUE[<n>] (value of user-defined auxiliary functions)

The functionality of the "value" parameter is not defined in user-specific auxiliary functions.
The value is generally used to activate the corresponding PLC user function.

Grouping together auxiliary functions

If all the auxiliary functions of the same type and address extension are assigned to the same
auxiliary function group, a value of "-1" must be entered for the "value" parameter.

Example:

H2: Auxiliary function outputs to PLC
9.3 Userdefined auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 431

All user-specific auxiliary functions with the address extension "= 2" are assigned to the
eleventh auxiliary function group.

MD22000 $MC_AUXFU_ASSIGN_GROUP [2] = 11
MD22010 $MC_AUXFU_ ASSIGN_TYPE [2] = "H"
MD22020 $MC_AUXFU_ ASSIGN_EXTENSION [2] = 2
MD22030 $MC_AUXFU_ ASSIGN_VALUE [2] = -1

9.3.1.4 Output behavior
The "output behavior" of user-defined auxiliary functions can be parameterized via the machine
data:

MD22035 $MC_AUXFU_ASSIGN_SPEC[<n>] (output behavior of user-defined auxiliary
functions)

For a description of the individual output parameters, see the "Output behavior (Page 424)"
section of the predefined auxiliary functions. The information given there can be applied
analogously to the output behavior of user-defined auxiliary functions.

9.4 Associated auxiliary functions

Function
Associated help functions are user-defined help functions with the same properties as the
corresponding predefined help functions. User-defined auxiliary functions can be associated
for the following predefined auxiliary functions:

● M0 (programmed stop)

● M1 (optional stop)

G group
An associated help function is assigned to the G group of the corresponding predefined help
function.

Parameterization
Association of a user-defined auxiliary function with one of the predefined auxiliary functions
mentioned is set in the machine data:

● MD22254 $MC_AUXFU_ASSOC_M0_VALUE (associated M function for "Programmed
stop")

● MD22256 $MC_AUXFU_ASSOC_M1_VALUE (associated M function for "Optional stop")

H2: Auxiliary function outputs to PLC
9.4 Associated auxiliary functions

Basic Functions
432 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Selection
Selection of "Associated help function" (M-1) is made via the SINUMERIK Operate user
interface in the operating area "Automatic" > "Program control" by setting the HMI/PLC
interface signal DB21, ... DBX24.4.

Depending on the value of the FB1 parameter MMCToIf, the interface signal is transmitted
from the basic PLC program to the NC/PLC interface signal DB21, ... DBX30.5:

● "TRUE": Transmission

● "FALSE": No transmission

By default, the value of the parameter is "TRUE".

Note
Selection option via user interface SINUMERIK Operate

The selection of an associated help function is only displayed in the "Automatic" > "Program
control" operating area if it is parameterized in the machine data.

Application
Associated auxiliary functions can be used in:

● Main program

● Subprogram

● Cycle

Note

Associated auxiliary functions may not be used in synchronized actions.

NC/PLC interface signals
In the case of an associated user-defined auxiliary function, the same signals are output to the
NC/PLC interface as for the corresponding predefined auxiliary function. To distinguish which
auxiliary function has actually been programmed, the value of the user-defined auxiliary
function ("value" parameter) is output as the value of the auxiliary function. This means it is
possible to distinguish between predefined and user-defined auxiliary functions in the PLC
user program.

NC/PLC interface signals for associated help functions:

● DB21, ... DBX24.4 (associated help function selected)

● DB21, ... DBX30.5 (activate associated help function)

● DB21, ... DBX318.5 (associated help function active)

H2: Auxiliary function outputs to PLC
9.4 Associated auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 433

Boundary conditions
Please note the following boundary conditions:

● A user-defined auxiliary function may not be associated a multiple number of times.

● It is not permissible to associate predefined auxiliary functions (e.g. M3, M4, M5 etc.).

Examples
1. Associating the user-defined auxiliary function M111 for M0:

MD22254 $MC_AUXFU_ASSOC_M0_VALUE = 111
The user-defined auxiliary function M111 therefore has the same functionality as M0.

2. Associating the user-defined auxiliary function M222 for M1:
MD22256 $MC_AUXFU_ASSOC_M1_VALUE = 222
The user-defined auxiliary function M222 therefore has the same functionality as M1.

9.5 Type-specific output behavior

Function
The output behavior of auxiliary functions relative to a traversing motions programmed in the
parts program block can be defined type-specifically.

Parameter assignment
Parameters are assigned to type-specific output behavior via the machine data:

MD22200 $MC_AUXFU_M_SYNC_TYPE (output time for M functions)

MD22210 $MC_AUXFU_S_SYNC_TYPE (output time for S functions)

MD22220 $MC_AUXFU_T_SYNC_TYPE (output time for T functions)

MD22230 $MC_AUXFU_H_SYNC_TYPE (output time for H functions)

MD22240 $MC_AUXFU_F_SYNC_TYPE (output time for F functions)

MD22250 $MC_AUXFU_D_SYNC_TYPE (output time for D functions)

MD22252 $MC_AUXFU_DL_SYNC_TYPE (output time for DL functions)

The following output behaviors can be parameterized:

MD $MC_AUXFU_xx_SYNC_TYPE = <value>

Value Output behavior
0 Output prior to motion
1 Output during motion
2 Output at block end
3 No output to the PLC
4 Output according to the output behavior defined with MD22080

H2: Auxiliary function outputs to PLC
9.5 Type-specific output behavior

Basic Functions
434 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

For a description of the various output behaviors, see the section titled "Output behavior
(Page 424)".

Note

For the output behavior that can be set for each type of auxiliary function, please refer to the
"Detailed Description of Machine Data" Parameter Manual.

Example
Output of auxiliary functions with different output behaviors in a part program block with
traverse movement.

Output behavior for which parameters have been assigned:

MD22200 $MC_AUXFU_M_SYNC_TYPE = 1 ⇒ M function:
Output during motion

MD22220 $MC_AUXFU_T_SYNC_TYPE = 0 ⇒ T function:
Output prior to motion

MD22230 $MC_AUXFU_H_SYNC_TYPE = 2 ⇒ H function:
Output at the end of the block

Parts program block:

Program code
...
N10 G01 X100 M07 H5 T5
...

Time sequence for auxiliary function output:

H2: Auxiliary function outputs to PLC
9.5 Type-specific output behavior

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 435

9.6 Priorities of the output behavior for which parameters have been
assigned

The following priorities must be observed for the following areas in connection with the
parameterized output behavior of an auxiliary function:

● Output duration (normal / quick acknowledgement)

● Output relative to motion (prior to / during / after the motion)

As a general rule, the parameterized output behavior with lower priority becomes active if no
output behavior with higher priority has been parameterized.

Output duration
The following priorities apply to the output duration:

Priority Output behavior Defined via:
Highest Auxiliary function-specific Part program instruction: QU(…)

(see Section "Programmable output duration (Page 438)")
↓

Auxiliary function-specific MD22035 $MC_AUXFU_ASSIGN_SYNC[<n>]
MD22080 $MC_AUXFU_PREDEF_SYNC[<n>]

↓ Group-specific MD11110 $MC_AUXFU_GROUP_SPEC[<n>]
Lowest Not defined Default output behavior: Output duration one OB1 cycle

Output relative to motion
The following rules apply to output relative to motion:

Priority Output behavior Defined via:
Highest

Auxiliary function-specific MD22035 $MC_AUXFU_ASSIGN_SYNC[<n>]
MD22080 $MC_AUXFU_PREDEF_SYNC[<n>]

↓ Group-specific MD11110 $MC_AUXFU_GROUP_SPEC[<n>]
↓ Type-specific MD22200 $MC_AUXFU_M_SYNC_TYPE

MD22210 $MC_AUXFU_S_SYNC_TYPE
MD22220 $MC_AUXFU_T_SYNC_TYPE
MD22230 $MC_AUXFU_H_SYNC_TYPE
MD22240 $MC_AUXFU_F_SYNC_TYPE
MD22250 $MC_AUXFU_D_SYNC_TYPE
MD22252 $MC_AUXFU_DL_SYNC_TYPE

Lowest Not defined Default output behavior: Output at block end

Note
Part program blocks without path motion

In a part program block without a path motion (even those with positioning axes and spindles),
the auxiliary functions are all output immediately in a block.

H2: Auxiliary function outputs to PLC
9.6 Priorities of the output behavior for which parameters have been assigned

Basic Functions
436 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

9.7 Programming an auxiliary function

Syntax
An auxiliary function is programmed in a part program block with the following syntax:
<Type>[<Address extension>=]<Value>

Note

If no address extension is programmed, the address extension is implicitly set = 0.

Predefined auxiliary functions with the address extension = 0 always refer to the master spindle
of the channel.

Symbolic addressing
The values for the "address extension" and "value" parameters can also be specified
symbolically. The symbolic name for the address extension must then be stated in brackets.

Example:

Symbolic programming of the auxiliary function M3 (spindle right) for the 1st spindle:

Program code Comment
DEF SPINDEL_NR=1 ; 1st spindle in the channel
DEF DREHRICHTUNG=3 ; Clockwise rotation
N100 M[SPINDEL_NR]=DREHRICHTUNG ; in accordance with: M1=3

Note

If you use symbolic names to program an auxiliary function, the symbolic name is not
transferred when the auxiliary function is output to the PLC. The corresponding numerical value
is transferred instead.

Examples
Example 1: Programming of predefined auxiliary functions

Program code Comment
N10 M3 ; "Spindle clockwise" for the master spindle of the channel.
N20 M0=3 ; "Spindle clockwise" for the master spindle of the channel.
N30 M1=3 ; "Spindle clockwise" for the 1st spindle of the channel.
N40 M2=3 ; "Spindle clockwise" for the 2nd spindle of the channel.

H2: Auxiliary function outputs to PLC
9.7 Programming an auxiliary function

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 437

Example 2: Programming examples of auxiliary functions with the corresponding values for
output to the PLC

Program code Comment
DEF Coolant=12 ; Output to the PLC: - - -
DEF Lubricant=130 ; Output to the PLC: - - -
H[coolant]=lubricant ; Output to the PLC: H12=130
H=coolant ; Output to the PLC: H0=12
H5 ; Output to the PLC: H0=5
H=5.379 ; Output to the PLC: H0=5.379
H17=3.5 ; Output to the PLC: H17=3.5
H[coolant]=13.8 ; Output to the PLC: H12=13.8
H='HFF13' ; Output to the PLC: H0=65299
H='B1110' ; Output to the PLC: H0=14
H5.3=21 ; Error

9.8 Programmable output duration

Function
User-specific auxiliary functions, for which the output behavior "Output duration of an OB1
cycle (slow acknowledgment)" was parameterized, can be defined for individual outputs via
the part program guide QU (Quick) for auxiliary functions with quick acknowledgment.

Syntax
An auxiliary function with quick acknowledgment is defined in a part program block with the
following syntax:
<Type>[<Address extension>]=QU(<Value>)

Example
Different behavior for the output of the auxiliary functions M100 and M200 in a part program.
The output behavior of the auxiliary functions is parameterized as follows:

● M100

– Output duration one OB1 cycle (slow acknowledgment)

– Output during motion

● M200

– Output duration one OB1 cycle (slow acknowledgment)

– Output prior to motion

H2: Auxiliary function outputs to PLC
9.8 Programmable output duration

Basic Functions
438 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N10 G94 G01 X50 M100 ; Output of M100: During motion

; Acknowledgment: Slow
N20 Y5 M100 M200 ; Output of M200: Piror to motion

; Output of M100: During motion
; Acknowledgment: Slow

N30 Y0 M=QU(100) M=QU(200) ; Output of M200: Piror to motion
; Output of M100: During motion
; Acknowledgment: Fast

N40 X0
N50 M100 M200 ; Output of M200: Immediately 1)

; Output of M100: Immediately 1)
; Acknowledgment: Slow

M17

1) Without a traversing motion, auxiliary functions are always output to the PLC immediately.

The following figure shows the time sequence of the part program. Please note the time
difference during the processing of part program blocks N20 and N30.

H2: Auxiliary function outputs to PLC
9.8 Programmable output duration

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 439

9.9 Auxiliary function output to the PLC

Function
On output of an auxiliary function to the PLC, the following signals and values are transferred
to the NC/PLC interface:

● Change signals

● "Address extension" parameter

● "Value" parameter

Data areas in the NC/PLC interface
The change signals and values of the auxiliary functions are within the following data areas in
the NC/PLC interface:

● Change signals for auxiliary function transfer from NC channel:
DB21, ... DBB58 - DBB67

● Transferred M and S functions:
DB21, ... DBB68 - DBB112

● Transferred T, D and DL functions:
DB21, ... DBB116 - DBB136

● Transferred H and F functions:
DB21, ... DBB140 - DBB190

● Decoded M signals (M0 - M99):
DB21, ... DBB194 - DBB206 (dynamic M functions)

For information on the access procedure to the NC/PLC interface, see Section "P3: Basic PLC
program for SINUMERIK 840D sl (Page 869)".

A detailed description of the above data areas in the NC/PLC interface can be found in:

References:
List Manual, Lists, Book 2; PLC User Interfaces,
Section: Channel-specific signals (DB 21 - DB 30)"

9.10 Auxiliary functions without block change delay

Function
For auxiliary functions with parameterized and/or programmed output behavior, too:

● "Output duration one OB40 cycle (quick acknowledgment)"

● "Output before the motion" or "Output during the motion"

there may be drops in velocity in continuos-path mode (short traverse paths and high
velocities). This the system has to wait for acknowledgment of the auxiliary function by the

H2: Auxiliary function outputs to PLC
9.10 Auxiliary functions without block change delay

Basic Functions
440 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

PLC toward the end of the block. To avoid these velocity drops, the block change can be made
irrespective of whether such auxiliary functions have been acknowledged:

Parameter assignment
Suppression of the block change delay with quick auxiliary functions is set via the machine
data:

MD22100 $MC_AUXFU_QUICK_BLOCKCHANGE (block change delay with quick auxiliary
functions)

Value Meaning
0 In the case of quick auxiliary function output to the PLC, the block change is delayed until

acknowledgment by the PLC (OB40).
1 In the case of quick auxiliary function output to the PLC, the block change is not delayed.

Boundary conditions
Synchronism of auxiliary functions that are output without a block change delay is no longer
ensured for the part program block in which they are programmed. In the worst case scenario,
acknowledgment comes one OB40 cycle and execution of the auxiliary function comes one
OB1 cycle after the change to the next part program block.

9.11 M function with an implicit preprocessing stop

Function
Triggering a preprocessing stop in conjunction with an auxiliary function can be programmed
explicitly via the STOPRE part program command. Always triggering a preprocessing stop in
M function programming can be parameterized for each M function via the following machine
data:

MD10713 $MN_M_NO_FCT_STOPRE[<n>] (M function with preprocessing stop)

Example
The user-defined M function M88 is intended to trigger a preprocessing stop.

Parameterization:

MD10713 $MN_M_NO_FCT_STOPRE [0] = 88

Application:

Part program (extract)

Program code Comment
...
N100 G0 X10 M88 ; Traversing motion and implicit preprocessing stop via M88.

H2: Auxiliary function outputs to PLC
9.11 M function with an implicit preprocessing stop

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 441

Program code Comment
N110 Y=R1 ; N110 is only interpreted after the traversing motion has

been completed and the M function has been acknowledged.
...

Supplementary conditions
If a subprogram is called indirectly via an M function in a part program in one of the following
ways, no preprocessing stop is performed:

● MD10715 $MN_M_NO_FCT_CYCLE (M function to be replaced by subprogram)

● M98 (ISO dialect T / ISO dialect M)

9.12 Response to overstore

Overstore
On the SINUMERIK operator interface, before starting the following functions:

● NC START of a part program

● NC START to resume an interrupted part program

the auxiliary functions that are output at the start can be changed by the "Overstore" function.

Possible applications include:

● Addition of auxiliary functions after block search

● Restoring the initial state to position a part program

Types of auxiliary functions that can be overstored
The following types of auxiliary functions can be overstored:

● M (special function)

● S (spindle speed)

● T (tool number)

● H (aux. function)

● D (tool offset number)

● DL (additive tool offset)

● F (feed)

Duration of validity
An overstored auxiliary function, e.g. M3 (spindle right), is valid until it is overwritten by another
auxiliary function from the same auxiliary function group, by additional overstoring or by
programming in a part program block.

H2: Auxiliary function outputs to PLC
9.12 Response to overstore

Basic Functions
442 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

9.13 Behavior during block search

9.13.1 Auxiliary function output during type 1, 2, and 4 block searches

Output behavior
In the case of type 1, 2, and 4 block searches, the auxiliary functions are collected on the basis
of specific groups. The last auxiliary function in each auxiliary function group is output after
NC-START in a separate part program block before the actual reentry block, and has the
following output behavior:

● Output duration of one OB1 cycle (normal acknowledgement)

● Output prior to motion

Output control
Whether or not the auxiliary function is output to the PLC after a block search can be configured
via bit 8 of the machine data:

● MD22080 $MC_AUXFU_PREDEF_SPEC[<n>]
(output behavior of predefined auxiliary functions)
where <n> = system function index (0 ... 32)

● MD22035 $MC_AUXFU_ASSIGN_SPEC[<n>]
(output behavior of user-defined auxiliary functions)
where <n> = auxiliary function index (0 ... 254)

● MD11110 $MN_AUXFU_GROUP_SPEC[<n>]
(output behavior of the auxiliary functions in a group)
where <n> = group index (0 ... 63)

Bit Value Meaning
10 0 Output during type 1, 2, and 4 block searches

1 No output during type 1, 2, and 4 block searches

This behavior does not affect the display and does not affect variables
$AC_AUXFU_STATE[<n>], $AC_AUXFU_VALUE[<n>], and $AC_AUXFU_EXT[<n>].
The auxiliary functions are always regarded as collected after a block search, even though
they are not output to the PLC.

During collection, an auxiliary function that is not output after a block search also overwrites
an auxiliary function whose bit 8 is not set.

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 443

The user can scan the collected auxiliary functions after a block search and, under certain
circumstances, output them again by means of the subprogram or synchronized actions.

Note

The following auxiliary functions are not collected:
● Auxiliary functions which are not assigned to any auxiliary function group.
● Auxiliary functions which are assigned to the first auxiliary function group.

Overstorage of auxiliary functions
After completion of a block search, the collected auxiliary functions are ouput on the next NC-
START. If it is necessary to output additional auxiliary functions, they can be added via the
"Overstore" function (see Section "Response to overstore (Page 442)").

M19 behavior (position spindle)
After a block search, the last spindle positioning command programmed with M19 is always
carried out, even if other spindle-specific auxiliary functions are programmed between the part
program with M19 and the target block. Setting the necessary spindle enables must therefore
be derived from the interface signals of the traverse commands in the PLC user program:

DB31, ... DBX64.6/64.7 (traversing command minus/plus)

In this case, the spindle-specific auxiliary functions M3, M4, and M5 are not suitable because
they might not be output to the PLC until after the spindle positioning.

For detailed information on the block search, see Section "K1: Mode group, channel, program
operation, reset response (Page 479)".

9.13.2 Assignment of an auxiliary function to a number of groups

Function
User-defined auxiliary functions can also be assigned to multiple groups via the group
assignment (MD22000 $MC_AUXFU_ASSIGN_GROUP). During the block search these
auxiliary functions are collected for all the configured groups.

Note

Predefined auxiliary functions can only be assigned to one group.

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
444 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example
The DIN includes the following M-commands for coolant output:

● M7: Coolant 2 ON

● M8: Coolant 1 ON

● M9: Coolants 1 and 2 OFF

Consequently, both coolants can also be active together:

● If M7 and M8 are collected in two separate groups (e.g. groups 5 and 6)

● If M9 has to be assigned to these two groups, e.g.

– Group 5: M7, M9

– Group 6: M8, M9

Parameterization:

MD11100 $MN_AUXFU_MAXNUM_GROUP_ASSIGN = 4

MD22000 $MC_AUXFU_ASSIGN_GROUP [0] = 5

MD22000 $MC_AUXFU_ASSIGN_GROUP [1] = 5

MD22000 $MC_AUXFU_ASSIGN_GROUP [2] = 6

MD22000 $MC_AUXFU_ASSIGN_GROUP [3] = 6

MD22010 $MC_AUXFU_ASSIGN_TYPE [0] = M

MD22010 $MC_AUXFU_ASSIGN_TYPE [1] = M

MD22010 $MC_AUXFU_ASSIGN_TYPE [2] = M

MD22010 $MC_AUXFU_ASSIGN_TYPE [3] = M

MD22020 $MC_AUXFU_ASSIGN_EXTENSION [0] = 0

MD22020 $MC_AUXFU_ASSIGN_EXTENSION [1] = 0

MD22020 $MC_AUXFU_ASSIGN_EXTENSION [2] = 0

MD22020 $MC_AUXFU_ASSIGN_EXTENSION [3] = 0

MD22030 $MC_AUXFU_ASSIGN_VALUE [0] = 7

MD22030 $MC_AUXFU_ASSIGN_VALUE [1] = 9

MD22030 $MC_AUXFU_ASSIGN_VALUE [2] = 8

MD22030 $MC_AUXFU_ASSIGN_VALUE [3] = 9

MD22035 $MC_AUXFU_ASSIGN_SPEC [0] = 'H121'

MD22035 $MC_AUXFU_ASSIGN_SPEC [1] = 'H121'

MD22035 $MC_AUXFU_ASSIGN_SPEC [2] = 'H121'

MD22035 $MC_AUXFU_ASSIGN_SPEC [3] = 'H121'

Part program (section):

Program code
...

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 445

Program code
N10 ... M8
N20 ... M9
N30 ... M7
...

During the block search, the auxiliary function M9 is collected for groups 5 and 6.

Scan of the collected M auxiliary functions:

M function of the fifth group: $AC_AUXFU_M_VALUE [4] = 7

M function of the sixth group: $AC_AUXFU_M_VALUE [5] = 9

9.13.3 Time stamp of the active M auxiliary function
When outputting collected auxiliary functions following a block search, attention must be paid
to the sequence during collecting. For this reason, each group is assigned a time stamp which
can be queried on a group-specific basis by way of the system variable below:

$AC_AUXFU_M_TICK[<n>] (time stamp of the active M auxiliary function)

9.13.4 Determining the output sequence

Function
The following predefined procedure is provided to simplify the process of determining the
output sequence of M auxiliary functions for the programmer:
AUXFUMSEQ(VAR INT _NUM_IN, VAR INT _M_IN[], VAR INT _EXT_IN[], VAR
INT _NUM_OUT, VAR INT _M_OUT[], VAR INT _EXT_OUT[])

Input parameters:
VAR INT _NUM_IN: Number of relevant M commands
VAR INT _M_IN[]: Field of relevant M codes
VAR INT _EXT_IN[]: Field of relevant M address extensions

Output parameters:
VAR INT _NUM_OUT: Number of determined M codes
VAR INT _M_OUT[]: Field of determined M codes
VAR INT _EXT_OUT[]: Field of determined M address extensions

The function determines the sequence in which the M auxiliary functions, which have been
collected on a group-specific basis, are output for the predefined M codes. The sequence is
determined from the collection times $AC_AUXFU_M_TICK[<n>] (see Section "Time stamp of
the active M auxiliary function (Page 446)").

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
446 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

A particular M code is only taken into account once, even if it belongs to more than one group.
If the number of relevant M commands is less than or equal to 0, all the collected M codes are
output. The number of relevant M commands is limited to 64.

Example
M commands for coolant output:

● M7: Coolant 2 ON

● M8: Coolant 1 ON

● M9: Coolants 1 and 2 OFF

Group assignment:

● Group 5: M7, M9

● Group 6: M8, M9

Part program (section):

Program code
...
N10 ... M8
N20 ... M9
N30 ... M7
...

During block searches, the auxiliary functions are collected on the basis of specific groups.
The last auxiliary function in an auxiliary function group is output to the PLC following a block
search:

● Group 5: M7

● Group 6: M9

If they are output in the sequence M7 → M9, no coolant is then active. However, coolant 2
would be active during the execution of the program. Therefore, the correct output sequence
for the M auxiliary functions is determined with an ASUP which contains the predefined
procedure AUXFUMSEQ(…):

Program code
DEF INT _I, _M_IN[3], _EXT_IN[3], _NUM_OUT, _M_OUT[2], _EXT_OUT[2]
_M_IN[0]=7 _EXT_IN[0]=0
_M_IN[1]=8 _EXT_IN[1]=0
_M_IN[2]=9 _EXT_IN[2]=0
AUXFUMSEQ(3,_M_IN,_EXT_IN,_NUM_OUT,_M_OUT,_EXT_OUT)
FOR _I = 0 TO _NUM_OUT-1
 M[_EXT_OUT[_I]]=_M_OUT[_I]
ENDFOR

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 447

9.13.5 Output suppression of spindle-specific auxiliary functions

Function
In certain situations, such as a tool change, it may be necessary not to output the spindle-
specific auxiliary functions collected during the block search in action blocks, but to delay
output, for example, until after a tool change. The automatic output of the spindle-specific
auxiliary functions after a block search may be suppressed for this purpose. Output can then
be performed manually later by overstoring or by an ASUP.

Parameterization
Suppression of the automatic output of the spindle-specific auxiliary functions after a block
search is set via machine data:

MD11450 $MN_SEARCH_RUN_MODE (behavior after a block search)

Bit Value Meaning
2 0 The output of the spindle-specific auxiliary functions is performed in the action blocks.

1 Output of the auxiliary functions is suppressed in the action blocks.

System variables
The spindle-specific auxiliary functions are always stored in the following system variables
during block searches, irrespective of the parameter assignment described above:

System variable Description
$P_SEARCH_S [<n>] Accumulated spindle speed

Value range: 0 ... Smax
$P_SEARCH_SDIR [<n>] Accumulated spindle direction of rotation

Value range: 3, 4, 5, -5, -19, 70
$P_SEARCH_SGEAR [<n>] Accumulated spindle gear stage M function

Value range: 40 ... 45
$P_SEARCH_SPOS [<n>] Accumulated spindle position

Value range: 0 ... MD30330 $MA_MODULO_RANGE
(size of the module range)

or
Accumulated traversing path
Value range: -100,000,000 ... 100,000,000

$P_SEARCH_SPOSMODE [<n>] Accumulated position approach mode
Value range: 0 ... 5

For later output of the spindle-specific auxiliary functions, the system variables can be read in
an ASUP, for example, and output after the action blocks are output:

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
448 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB21, ... DBX32.6 = 1 (last action block active)

Note

The contents of the system variables $P_S, $P_DIR and $P_SGEAR may be lost after block
search due to synchronization operations.

For more detailed information on ASUP, block search and action blocks, see Section "K1:
Mode group, channel, program operation, reset response (Page 479)".

Example
Block search for contour with suppression of output of the spindle-specific auxiliary functions
and start of an ASUP after output of action blocks.

Parameterization: MD11450 $MN_SEARCH_RUN_MODE, bit 2 = 1

After the block search on N55, the ASUP is started.

Part program:

Program code Comment
N05 M3 S200 ; Spindle 1:
N10 G4 F3
N15 SPOS=111 ; Spindle 1 is positioned to 111 degrees in the ASUP
N20 M2=4 S2=300 ; Spindle 2:
N25 G4 F3
N30 SPOS[2]=IC(77) ; Spindle 2 traverses incrementally through 77 degrees
N55 X10 G0 ; Target block
N60 G4 F10
N99 M30

ASUP:

Program code Comment
PROC ASUP_SAVE
MSG ("Output of the spindle functions")
DEF INT SNR=1
AUSG_SPI:
M[SNR]=$P_SEARCH_SGEAR[SNR] ; Output gear stage.
S[SNR]=$P_SEARCH_S[SNR] ; Output speed (for M40, a suitable

gear stage is determined).
M[SNR]=$P_SEARCH_SDIR[SNR] ; Output direction of rotation, posi-

tioning or axis mode.
SNR=SNR+1 ; Next spindle.
REPEAT AUSG_SPI P=$P_NUM_SPINDLES-1 ; For all spindles.
MSG("")
REPOSA
RET

Explanation of example

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 449

If the number of spindles is known, outputs of the same type can be written in one part program
block to reduce program runtime.

Output of $P_SEARCH_SDIR should be made in a separate part program block because
spindle positioning or switchover to axis mode in conjunction with the gear change can cause
an alarm.

If the ASUP which has been started is ended with REPOSA, spindle 1 remains at position 111
degrees, while spindle 2 is repositioned at position 77 degrees.

If a different response is required, the program sequence for block search (for example) "N05
M3 S..." and "N30 SPOS[2] = IC(...)" requires special treatment.

Whether block search is active can be ascertained in the ASUP via the system variable
$P_SEARCH.
$P_SEARCH==1 ; Block search active
In the case of incremental positioning after speed control operation, the path to be traversed
is defined but, in some cases, the final position reached only becomes known during
positioning. This is the case, for example, during position calibration on crossing the zero mark
when switching on position control. For this reason, the distance programmed after the zero
position is accepted as the REPOS position (REPOSA in the ASUP).

Supplementary conditions
Collected S values

The meaning of an S value in the part program depends on the feed type that is currently active:

G93, G94, G95, G97, G971: The S value is interpreted as the speed
G96, G961: The S value is interpreted as a constant cutting rate

If the feed operation is changed (e.g. for a tool change) before output of the system variable
$P_SEARCH_S, the original setting from the target block in the part program must be restored
to avoid use of the wrong type of feed.

Collected direction of rotation

For output of the direction of rotation, the system variable $P_SEARCH_SDIR is assigned
default value "-5" at the start of the block search. This value has no effect on output.

This ensures that the last spindle operating mode is retained for a block search across program
sections in which spindles are not programmed with a direction of rotation, positioning or axis
mode.

The programming of M19, SPOS, and SPOSA is collected as "M-19" (internal M19) in the
system variables $P_SEARCH_SDIR as an alternative to M3, M4, M5, and M70.

For the output of "M-19", the positioning data is read internally from the system variables
$P_SEARCH_SPOS and $P_SEARCH_SPOSMODE. Both system variables can also be
written to, in order, for example, to make corrections.

Note

Because of the assignments described above (e.g. M[<n>] = $P_SEARCH_SDIR[<n>]), the
values "-5" and "19" generally remain hidden from the user and only have to be observed in
the case of special evaluation of the system variables in the ASUP.

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
450 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

9.13.6 Auxiliary function output with a type 5 block search (SERUPRO)

Output behavior
In the case of type 5 block searches (SERUPRO), an auxiliary function can be output to the
PLC during the block search and/or collected on a group-specific basis in the following system
variables:

● $AC_AUXFU_PREDEF_INDEX[<n>] (index of a predefined auxiliary function)

● $AC_AUXFU_TYPE[<n>] (type of auxiliary function)

● $AC_AUXFU_STATE[<n>] (output state of the auxiliary function)

● $AC_AUXFU_EXT[<n>] (address extension of the auxiliary function)

● $AC_AUXFU_VALUE[<n>] (value of the auxiliary function)

For a description of the system variables, see Section "Querying system variables (Page 464)".

Output control
Whether an auxiliary function is output to the PLC during a type 5 block search (SERUPRO)
and/or collected on a group-specific basis in the following system variables can be configured
via bits 9 and 10 of the machine data:

● MD22080 $MC_AUXFU_PREDEF_SPEC[<n>]
(output behavior of predefined auxiliary functions)
where <n> = system function index (0 ... 32)

● MD22035 $MC_AUXFU_ASSIGN_SPEC[<n>]
(output behavior of user-defined auxiliary functions)
where <n> = auxiliary function index (0 ... 254)

● MD11110 $MN_AUXFU_GROUP_SPEC[<n>]
(output behavior of the auxiliary functions in a group)
where <n> = group index (0 ... 63)

Bit Value Meaning
9 0 No collection during type 5 block searches (SERUPRO)

1 Collection during type 5 block searches (SERUPRO)
10 0 Output during type 5 block searches (SERUPRO)

1 No output during type 5 block searches (SERUPRO)

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 451

Output counter
The user can output the collected auxiliary functions to the PLC on a channel-by-channel basis
in the block search ASUP. For the purposes of serialized output via multiple channels, the
three output counters are changed across all the channels each time an auxiliary function is
output:

System variable Meaning
$AC_AUXFU_TICK[<n>,<m>] Output counter of the active auxiliary function

Index Meaning
<n> Group index (0 … 63)
<m> Output counter (0 ... 2)

Val‐
ue

Meaning

0 Output sequence counter (all outputs within an IPO
cycle)

1 Package counter within an output sequence in the
IPO cycle

2 Auxiliary function counter within a package

Explanation
● An auxiliary function package comprises a maximum of ten auxiliary functions.

● Two packages can be processed per IPO cycle in each channel during SERUPRO because
synchronized actions are processed in this cycle.

● An output sequence of up to a maximum of 20 packages (2 packages per channel * 10
channels) can be processed within an IPO cycle across all channels.

The encoding indicates how many auxiliary function packages and, within these, how many
auxiliary functions have been processed during the same IPO cycle:

● Auxiliary functions which have been collected in one IPO cycle have the same sequence
counter.

● Auxiliary functions which have been collected in one package (block or synchronized action)
all have the same package counter.

The total on the auxiliary function counter increases every time an auxiliary function is collected.

Global list of auxiliary functions
At the end of SERUPRO, the auxiliary functions collected on a group-specific basis in the
individual channels are entered in a cross-channel list with the channel number and group
index according to their counter state.

System variable 1) Meaning
$AC_AUXFU_TICK[<n>,<m>] Counter value
$AN_AUXFU_LIST_CHANNO[<n>] 2) Channel number
$AN_AUXFU_LIST_GROUPINDEX[<n>] 2) Group index
1) Value range index <n>: 0 ... MAXNUM_GROUPS * MAXNUM_CHANNELS - 1
2) The system variables can be read and written.

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
452 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The global list is structured on the basis of the sequence in which the search target was found.
It is intended to be used as a system proposal for auxiliary functions to be output in the following
ASUP at the end of SERUPRO. If an auxiliary function is not to be output, the corresponding
group index is to be set to "0".

Behavior regarding spindle auxiliary functions
Following the start of the block search, all the channels collect the auxiliary functions in the
channel variables on a group-specific basis. In order to perform a far-reaching restoration of
the spindle state in the SERUPRO target block using the collected auxiliary functions, the last
active auxiliary function in any group of spindle auxiliary functions must characterize the state
of the spindle in the target block. In the case of transitions in spindle states, obsolete auxiliary
functions are deleted or, if necessary, implicit auxiliary functions are entered.

All the spindle auxiliary functions from the global auxiliary function list must correspond to the
spindle states achieved in the target block to enable the auxiliary functions to be processed
when the list is output and to ensure that no alarms or unintended spindle states are requested
which could prevent the continuation of the part program.

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 453

This affects the groups of auxiliary functions for any spindle configured in the system, whereby
the spindle number corresponds to an auxiliary function's address extension.

Group a: M3, M4, M5, M19, M70
Group b: M40, M41, M42, M43, M44, M45
Group c: S

Deleting obsolete auxiliary functions

In the functions below, the auxiliary functions from group a are deleted for the spindle
concerned:

● For the following spindle when a generic coupling, such as COUPON, TRAILON, EGON,
etc. is switched on

Generating implicit auxiliary functions from group a

In the functions below, the auxiliary functions from group a are generated implicitly for the
spindle concerned:

● For the following spindle when the synchronous spindle coupling is switched off

– COUPOF generates M3, M4 and S or M5 in the main run depending on the coupling
situation.

– COUPOF(S<n>, S<m>, POS) and COUPOFS(S<n>, S<m>, POS, POS) generate M3,
M4 and S.

– COUPOFS generates M5 in the main run.

– COUPOFS(S<n>, S<m>, POS) generates M19 in the main run.
The implicit M19 ("SPOS[<address extension>] = IC(0)" in the ASUP) activates the
positioning mode without a traversing motion.

● M70 is generated during a traversing motion as an axis or during the transition to axis mode
by selecting a transformation during which the spindle enters as an axis.

● M5 is generated during SPCOF.

Note

Within the context of the "axis interchange" and "axis container rotation" functions, the auxiliary
functions for programming the spindle must always be specified in a way which ensures
compatibility with the actual (motor) state during interchange/rotation. A distinction is made
here between the axis interchange and axis container mechanisms.

Example of axis container rotation:

An axis container has four spindles, each assigned to a separate channel (1 - 4). M3 S1000
is always programmed in channel 1, and an axis container rotation is then executed. The other
channels do not perform any spindle programming. After the 3rd axis container rotation and
the 4th spindle programming, M3, all four spindles rotate clockwise at a speed of 1000 rpm. If
the end of the SERUPRO now lies within this range, every ASUP for a channel is expected to
contain an M3 S1000 for the local spindle.

During interchange however, the collected auxiliary functions may only be assigned to the
channel where the spindle is currently located.

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
454 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Cross-channel auxiliary function
An auxiliary function can also be collected on a cross-channel basis in the global auxiliary
function list in the case of type 5 block searches (SERUPRO). Only the last auxiliary function
collected from this group (highest counter state) is entered in the global list.

The appropriate configuring is performed with the following machine data:

● MD22080 $MC_AUXFU_PREDEF_SPEC[<n>], Bit 11
(output behavior of predefined auxiliary functions)
where <n> = system function index

● MD22035 $MC_AUXFU_ASSIGN_SPEC[<n>], Bit 11
(output behavior of user-defined auxiliary functions)
where <n> = auxiliary function index

● MD11110 $MN_AUXFU_GROUP_SPEC[<n>], Bit 11
(output behavior of the auxiliary functions in a group)
where <n> = group index

Bit Value Meaning
11 0 Channel-specific collection

1 Cross-channel collection

The spindle auxiliary functions are filtered out beforehand at the end of the block search
depending on the spindle state. The channel data is updated accordingly. The global auxiliary
function list can be processed sequentially in the ASUPs at the end of the SERUPRO, and the
sorted auxiliary functions can be output with channel synchronization.

Querying the last auxiliary function collected
The index of the last auxiliary function collected in the global list can be queried using the
system variable $AN_AUXFU_LIST_ENDINDEX.

9.13.7 ASUB at the end of the SERUPRO

Function
After completing the block search with the program test (SERUPRO), before starting the
subsequent processing, the auxiliary functions collected during the block search must be
output. For this purpose, during the block search, the auxiliary functions are collected in a
global list. The SERUPRO end ASUPs generate the corresponding part program blocks
channel-specific from this list. This ensures that the collected auxiliary functions can be output
both channel-specific as well as cross-channel in the correct sequence. A fully functional
SERUPRO end ASUP is a component of the NC software.

Users/machinery construction OEMs can change the SERUPRO end ASUP. The
subsequently described functions support processing the global list of auxiliary functions and
generating the part program blocks required for synchronized auxiliary function output.

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 455

Function AUXFUSYNC(...)
Function:

The function AUXFUSYNC generates a complete part program block as string from the global
list of auxiliary functions at each call. The part program block either contains auxiliary functions
or commands to synchronize auxiliary function outputs (WAITM, G4, etc.).

The function triggers a preprocessing stop.

Syntax:
PROC AUXFUSYNC(VAR INT <NUM>, VAR INT <GROUPINDEX>[10], VAR
STRING[400] <ASSEMBLED>)
Parameters:

<NUM>: Contains information about the part program block, supplied in param‐
eter <ASSEMBLED> or the auxiliary functions contained in it.
Value range: -1, 0, 1 ... 10

 Value Meaning
 ≥1 Number of auxiliary functions contained in the part program block
 0 Part program block without auxiliary functions, e.g. WAITM, G4
 -1 End identifier. The global list of auxiliary functions has been com‐

pletely processed for the actual channel.
<GROUP INDEX>: Contains the indices of the auxiliary function groups contained in the

part program block. With index = number of the auxiliary function group
- 1

<ASSEMBLED>: Contains the complete part program block for the channel-specific SER‐
UPRO end ASUP as string.

Further information:

If auxiliary functions were collected via a synchronized action, two NC blocks are generated.
One NC block to output the auxiliary functions. An executable NC block via which the NC block
is transported to the main run to output the auxiliary functions:

1. Output of the auxiliary functions via synchronized action, e.g.: WHEN TRUE DO M100 M102
2. Executable NC block, e.g.: G4 F0.001

Function AUXFUDEL(...)
Function:

The function AUXFUDEL deletes the specified auxiliary function from the global list of auxiliary
functions channel-specific for the calling channel. Deletion is realized by setting the
corresponding group index ...GROUPINDEX[n] to 0.

The function must be called before calling AUXFUSYNC.

The function triggers a preprocessing stop.

Syntax:

PROC AUXFUDEL(CHAR <TYPE>, INT <EXTENSION>, REAL <VALUE>, INT
<GROUP>)

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
456 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameters:

<TYPE>: Type of auxiliary function to be deleted
<EXTENSION>: Address extension of the auxiliary function to be deleted
<VALUE>: Value of auxiliary function to be deleted
<GROUP>: Number of the auxiliary function group

Function AUXFUDELG(...)
Function:

The function AUXFUDELG deletes all auxiliary functions of the specified auxiliary function
group from the global list of auxiliary functions channel-specific for the calling channel. Deletion
is realized by setting the corresponding group index ...GROUPINDEX[n] to 0.

The function must be called before calling AUXFUSYNC.

The function triggers a preprocessing stop.

Syntax:
PROC AUXFUDELG(INT <GROUP>)
Parameters:

<GROUP>: Number of the auxiliary function group

Multi-channel block search

NOTICE

Multi-channel block search and AUXFUDEL / AUXFUDELG

If, for a multi-channel block search in the SERUPRO end ASUPs, auxiliary functions with
AUXFUDEL / AUXFUDELG are deleted from the global list of auxiliary functions, before
calling the AUXFUSYNC function, the channels involved must be synchronized. The
synchronization ensures that before calling the AUXFUSYNC, all delete requests are
processed and a consistent list is available.

Examples
Two examples for configuring a user-specific SERUPRO end ASUP.

Example 1: Deleting auxiliary functions and generating the auxiliary function output with
AUXFUSYNC(...)

Program code Comment
N10 DEF STRING[400] ASSEMBLED=""
N20 DEF STRING[31] FILENAME="/_N_CST_DIR/_N_AUXFU_SPF"
N30 DEF INT GROUPINDEX[10]
N40 DEF INT NUM
N60 DEF INT ERROR

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 457

Program code Comment
N90
N140 AUXFUDEL("M",2,3,5) ; M2=3 (5th auxiliary function group) delete
N150
N170 AUXFUDELG(6) ; Delete the collected auxiliary function of the

; 6th group.
N180
N190 IF ISFILE(FILENAME)
N210 DELETE(ERROR,FILENAME) ; Delete the FILENAME file
N220 IF (ERROR<>0) ; Error evaluation
N230 SETAL(61000+ERROR)
N240 ENDIF
N250 ENDIF
; CAUTION!
; If, for a multi-channel block search, auxiliary functions with AUXFUDEL/AUXFUDELG
; are deleted from the global list of auxiliary functions, before the loop to
; generate the subprogram FILENAME with AUXFUSYNC, the channels must be synchronized.
 The synchronization ensures that all delete requests were processed
; in all channels and a consistent list is available.
; Example: WAITM(99,1,2,3)
N270 LOOP
N300 AUXFUSYNC(NUM,GROUPINDEX,ASSEMBLED) ; Generate a part program block
N310
N320 IF (NUM==-1) ; All auxiliary functions of the channel

; have been executed.
N340 GOTOF LABEL1
N350 ENDIF
N380 WRITE(ERROR,FILENAME,ASSEMBLED) ; Write a part program block to file FILENAME.
N390 IF (ERROR<>0) ; Error evaluation
N400 SETAL(61000+ERROR)
N410 ENDIF
N430 ENDLOOP
N440
N450 LABEL1:
N460
N480 CALL FILENAME ; Execute a generated subprogram.
N490
N510 DELETE(ERROR,FILENAME) ; Delete the file again after execution.
N520 IF (ERROR<>0)
N530 SETAL(61000+ERROR)
N540 ENDIF
N550
N560 M17

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
458 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example 2: Deleting auxiliary functions and generating the auxiliary function output without
AUXFUSYNC(...)

Program code Comment
N0610 DEF STRING[400] ASSEMBLED=""
N0620 DEF STRING[31] FILENAME="/_N_CST_DIR/_N_AUXFU_SPF"
N0630 DEF INT GROUPINDEX[10]
N0640 DEF INT NUM
N0650 DEF INT LAUF
N0660 DEF INT ERROR
N0670 DEF BOOL ISQUICK
N0680 DEF BOOL ISSYNACT
N0690 DEF BOOL ISIMPL
...
N0760 AUXFUDEL("M",2,3,5) ; M2=3 (5th auxiliary function group) delete
N0770
N0790 AUXFUDELG(6) ; Delete the collected auxiliary function of the

; 6th group.
N0800
N0810 IF ISFILE(FILENAME)
N0830 DELETE(ERROR,FILENAME) ; File already exists and must be

; deleted.
N0840 IF (ERROR<>0)
N0850 SETAL(61000+ERROR)
N0860 ENDIF
N0870 ENDIF
N0880
; CAUTION!
; If, for a multi-channel block search, auxiliary functions with AUXFUDEL/AUXFUDELG
; are deleted from the global list of auxiliary functions, before the loop to
; generate the subprogram FILENAME with AUXFUSYNC, the channels must be synchronized.
 The synchronization ensures that all delete requests were processed
; in all channels and a consistent list is available.
; Example: WAITM(99,1,2,3)
N0890 LOOP
N0920 AUXFUSYNC(NUM,GROUPINDEX,ASSEMBLED) ; Procedure to generate

; auxiliary function blocks from the global
; auxiliary function list.

N0930
N0940 IF (NUM==-1) ; All auxiliary functions of the channel

; have been executed.
N0960 GOTOF LABEL1
N0970 ENDIF
N0980
N1000 IF (NUM>0) ; If auxiliary functions are output,

; the block is generated.

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 459

Program code Comment
N1010
N1020 ASSEMBLED=""
N1030
N1050 FOR LAUF=0 TO NUM-1 ; Collected auxiliary functions for a

; block.
N1060
N1080 IF GROUPINDEX[LAUF]<>0 ; Auxiliary functions deleted from the

; global list have the group index 0.
N1090
N1100 ISQUICK=$AC_AUXFU_SPEC[GROUPINDEX[LAUF]] BAND'H2'
N1110
N1120 ISSYNACT=$AC_AUXFU_SPEC[GROUPINDEX[LAUF]] BAND'H1000'
N1130
N1140 ISIMPL=$AC_AUXFU_SPEC[GROUPINDEX[LAUF]] BAND'H2000'
N1150
N1180 IF ISSYNACT ; Assemble a block for the M auxiliary

; function output
N1190 ASSEMBLED= ASSEMBLED << "WHEN TRUE DO "
N1200 ENDIF
N1210 ; Implicitly generated M19 is mapped to SPOS[SPI(<Spindle no.>)] = IC(0)
N1230 IF (ISIMPL AND ($AC_AUXFU_VALUE[GROUPINDEX[LAUF]==19))
N1240 ASSEMBLED= ASSEMBLED << "SPOS[SPI(" <<
 $AC_AUXFU_EXT[GROUPINDEX[LAUF]] << ")=IC(0)"
N1260 ELSE
N1270 ASSEMBLED= ASSEMBLED << "M[" << $AC_AUXFU_EXT[GROUPINDEX[LAUF]] << "]="
N1280
N1290 IF ISQUICK
N1300 ASSEMBLED= ASSEMBLED << "QU("
N1310 ENDIF
N1320
N1330 ASSEMBLED= ASSEMBLED << $AC_AUXFU_VALUE[GROUPINDEX[LAUF]]
N1340
N1350 IF ISQUICK
N1360 ASSEMBLED= ASSEMBLED << ")"
N1370 ENDIF
N1380 ENDIF
N1400 ENDIF
N1420 ENDFOR
N1430
N1450 WRITE(ERROR,FILENAME,ASSEMBLED) ; Write an auxiliary function block to a file.
N1460
N1470 IF ISSYNACT
N1480 ASSEMBLED="G4 F0.001"
N1490 WRITE(ERROR,FILENAME,ASSEMBLED)

H2: Auxiliary function outputs to PLC
9.13 Behavior during block search

Basic Functions
460 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N1500 ENDIF
N1510
N1520 ELSE
N1540 WRITE(ERROR,FILENAME,ASSEMBLED) ; Write an auxiliary function block to a file.
N1550 ENDIF
N1560
N1570 ENDLOOP
N1580
N1590 LABEL1:
N1600
N1620 CALL FILENAME ; Execute a generated subprogram.
N1630
N1650 DELETE(ERROR,FILENAME) ; Delete the file again after execution.
N1660 IF (ERROR<>0)
N1670 SETAL(61000+ERROR)
N1680 ENDIF
N1690
N1700 M17

9.14 Implicitly output auxiliary functions

Function
Implicitly output auxiliary functions are auxiliary functions which have not been programmed
explicitly and which are also output by other system functions (e.g. transformation selection,
tool selection, etc.). These implicit auxiliary functions do not lead to any system function;
instead, the M codes are collected according to output behavior parameters assigned to them
and/or are output to the PLC.

H2: Auxiliary function outputs to PLC
9.14 Implicitly output auxiliary functions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 461

Parameterization
The M codes for auxiliary functions to be output implicitly are defined with the machine data:

● MD22530 $MC_TOCARR_CHANGE_M_CODE (M code at toolholder change)
This machine data value indicates the number of the M code which is output when a
toolholder is activated at the NC/PLC interface.
If the value is positive, the unchanged M code is always output.
If the value is negative, the number of the toolholder is added to the machine data value,
and this number is output.

● MD22532 $MC_GEOAX_CHANGE_M_CODE (M code when switching the geometry
axes)
Number of the M code which is output when the geometry axes on the NC/PLC interface
are switched.

● MD22534 $MC_TRAFO_CHANGE_M_CODE (M code in the case of transformation
changes)
Number of the M code which is output during a transformation switch of the geometry axes
at the NC/PLC interface.

Note

No M code is output if the number of the M code being output or the MD22530/MD22532/
MD22534 value is between 0 and 6, or is either 17 or 30. Whether or not an M code which
is generated in this manner leads to conflicts with other functions is not monitored.

Output behavior
In the case of implicitly output auxiliary functions, bit 13 is set in machine data MD22080 or
MD22035 (output behavior of predefined or user-defined auxiliary functions).

This bit can be queried via the system variable $AC_AUXFU_SPEC[<n>].

Implicitly output auxiliary function M19
To achieve uniformity in terms of how M19 and SPOS or SPOSA behave at the NC/PLC
interface, auxiliary function M19 can be output to the NC/PLC interface in the event of SPOS
and SPOSA (see Section "General functionality (Page 1279)").

The implicitly output auxiliary function M19 is collected during the block search.

9.15 Information options
Information about auxiliary functions (e.g. about the output status) is possible via:

● The group-specific modal M auxiliary function display on the user interface

● Querying system variables in part programs and synchronized actions

H2: Auxiliary function outputs to PLC
9.15 Information options

Basic Functions
462 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

9.15.1 Group-specific modal M auxiliary function display

Function
The output status and acknowledgment status of M auxiliary functions can be displayed on
the user interface on a group-specific basis.

Requirements
To implement function-oriented acknowledgment and display of M auxiliary functions, the
auxiliary functions must be managed in the PLC and, thus, in the user program itself. Therefore,
it is up to the PLC programmer to program the acknowledgment of these auxiliary functions.
The programmer must know which auxiliary functions in which group have to be acknowledged.

Standard
M auxiliary functions that are not managed by means of the PLC are identified by the NC as
"transferred" and output to the PLC. There is no functional acknowledgment for these auxiliary
functions. All M-auxiliary functions collected after a block search are also displayed so that the
operator knows which auxiliary functions will be output after a start following a block search.

PLC activities
In the case of auxiliary function groups that are managed by the PLC itself, the PLC user
program must acknowledge all auxiliary functions of this group at Transfer and End of
function. The PLC programmer must know all the auxiliary functions of these groups.

Miscellaneous
Only the group-specific M auxiliary functions are displayed. The block-by-block display is also
retained. Up to 15 groups can be displayed, whereby only the last M function of a group that
was either collected or output to the PLC is displayed for each group. The M functions are
presented in various display modes depending on their status:

Status Display mode
Auxiliary function is collected Inverted with yellow font
Auxiliary function is output from NC to PLC Inverted
Auxiliary function has been transferred from NC to PLC and
transport acknowledgment has taken place

Black font on gray background

Auxiliary function is managed by the PLC and has been
taken over directly by the PLC

Black font on gray background

Auxiliary function is managed by the PLC and the function
acknowledgment has taken place

Black font on gray background

H2: Auxiliary function outputs to PLC
9.15 Information options

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 463

Display update
The display is organized in such a way that the collected auxiliary functions are always output
first, before those managed by the PLC and before those managed by the NC. A collected
auxiliary function is marked as collected until it has been output from the NC to the PLC. PLC-
managed auxiliary functions are retained until they are substituted by another auxiliary
function. At a reset, only the collected auxiliary functions and the NC-managed auxiliary
functions are deleted.

9.15.2 Querying system variables

Function
Auxiliary functions can be queried on a group-specific basis via system variables in the part
program and via synchronized actions:

$AC_AUXFU_... [<n>] = <Value>

System variable Meaning
$AC_AUXFU_PREDEF_INDEX[<n>] <Value>: Index of the last auxiliary function collected for

an auxiliary function group (block search) or the
last predefined auxiliary function to be output
Type
:

INT

If no auxiliary function has been output yet for the
specified group or if the auxiliary function is a
user-defined auxiliary function, the variable sup‐
plies the value "-1".

<n>: Group index (0 … 63)
Note:
A predefined auxiliary function can be uniquely identified via
this variable.

$AC_AUXFU_TYPE[<n>] <Value>: Type of the last auxiliary function collected for an
auxiliary function group (block search) or the last
auxiliary function to be output
Type
:

CHAR

<n>: Group index (0 … 63)
$AC_AUXFU_EXT[<n>]
or or M function-specific:
$AC_AUXFU_M_EXT[<n>]

<Value>: Address extension of the last auxiliary function
collected for an auxiliary function group (block
search) or the last auxiliary function to be output
Type
:

INT

<n>: Group index (0 … 63)

H2: Auxiliary function outputs to PLC
9.15 Information options

Basic Functions
464 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable Meaning
$AC_AUXFU_VALUE[<n>]
or or M function-specific:
$AC_AUXFU_M_VALUE[<n>]

<Value>: Value of the last auxiliary function collected for
an auxiliary function group (block search) or the
last auxiliary function to be output
Type
:

REAL

<n>: Group index (0 … 63)
$AC_AUXFU_SPEC[<n>] Value: Bit-encoded output behavior according to

MD22080/MD22035 (or QU programming) of the
last auxiliary function collected for an auxiliary
function group (block search) or the last auxiliary
function to be output
Type
:

INT

<n>: Group index (0 … 63)
Note:
This variable can be used to determine whether the auxiliary
function should be output with a fast acknowledgment.

$AC_AUXFU_STATE[<n>]
or or M function-specific:
$AC_AUXFU_M_STATE[<n>]

<Value>: Output state of the last auxiliary function collec‐
ted for an auxiliary function group (block search)
or the last auxiliary function to be output
Type: INT
Value range: 0 ... 5
0: Auxiliary function does not exist
1: M-auxiliary function was collected via a

block search
2: M-auxiliary function has been output to the

PLC
3: M-auxiliary function has been output to the

PLC and the transport acknowledgment has
taken place

4: M-auxiliary function is managed by the PLC
and has been taken over by the PLC

5: M-auxiliary function is managed by the PLC,
and the function acknowledgment has taken
place

<n>: Group index (0 … 63)

Example
All M-auxiliary functions of the 1st group are to be stored in the order of their output:
id=1 every $AC_AUXFU_M_STATE[0]==2 do $AC_FIFO[0,0]=
$AC_AUXFU_M_VALUE[0]

References
For further information on the system variables, see:

List Manual, System Variables

H2: Auxiliary function outputs to PLC
9.15 Information options

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 465

9.16 Supplementary conditions

9.16.1 General constraints

Spindle replacement
Because the auxiliary functions are parameterized channel-specifically, if function: "spindle
replacement" is used, the spindle-specific auxiliary function must be parameterized
immediately in all channels that use the spindles.

Tool management
If tool management is active, the following constraints apply:

● T and M<k> functions are not output to the PLC.
Note
k is the parameterized value of the auxiliary function for the tool change (default: 6):
MD22560 $MC_TOOL_CHANGE_M_CODE (auxiliary function for tool change)

● If no address extension is programmed, the auxiliary function refers to the master spindle
or the master tool holder of the channel.
Definition of the master spindle:

– MD20090 $MC_SPIND_DEF_MASTER_SPIND

– Part program instruction: SETMS

Definition of the master tool holder

– MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER

– Part program instruction: SETMTH

Maximum number of auxiliary functions per part program block
A maximum of 10 auxiliary functions may be programmed in one part program block.

DL (additive tool offset)
The following restrictions apply to the DL function:

● Only one DL function can be programmed per part program block.

● If DL functions are used in synchronous actions, parameter: "Value" is not output to the
PLC.

H2: Auxiliary function outputs to PLC
9.16 Supplementary conditions

Basic Functions
466 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

9.16.2 Output behavior

Thread cutting
During active thread cutting G33, G34 and G35, the following output behavior is always active
for the spindle-specific auxiliary functions:

● M3 (spindle right)

● M4 (spindle left)

● Output duration of one OB40 cycle (quick acknowledgement)

● Output during motion

The spindle-specific auxiliary function M5 (spindle stop) is always output at the end of the block.
The part program block that contains M5 is always ended with exact stop, i.e. even during
active continuous-path mode.

Synchronized actions
With output auxiliary functions from synchronized actions, the parameterized output behavior
is ignored except for the following parameters:

● Bit0: Output duration of one OB1 cycle (normal acknowledgement)

● Bit1: Output duration of one OB40 cycle (quick acknowledgement)

Auxiliary functions: M17 or M2/M30 (end of subprogram)
In its own part program block

If one of the auxiliary functions M17, M2 or M30 is programmed as the only auxiliary function
in a part program block and an axis is still in motion, the auxiliary function is not output to the
PLC until after the axis has stopped.

Overriding the parameterized output behavior

The parameterized output behavior of the auxiliary functions M17 or M2/M30 is overridden by
the output behavior that is determined in the following machine data:

MD20800 $MC_SPF_END_TO_VDI, bit 0 (subprogram end / stop to PLC)

Bit Value Meaning
0 0 The auxiliary functions M17 or M2/M30 (subprogram end) are not output to the PLC. Con‐

tinuous-path mode is not interrupted at the end of the subprogram
1 The auxiliary functions M17 or M2/M30 (subprogram end) are output to the PLC.

Auxiliary function: M1 (conditional stop)
Overriding the parameterized output behavior

The parameterized output behavior of the auxiliary function M1 is overridden by the output
behavior defined in the following machine data:

H2: Auxiliary function outputs to PLC
9.16 Supplementary conditions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 467

MD20800 $MC_SPF_END_TO_VDI, bit 1 (subprogram end / stop to PLC)

Bit Value Meaning
1 0 The auxiliary function M01 (conditional stop) is always output to the PLC. A quick ac‐

knowledgement is ineffective, because M01 is permanently assigned to the first auxiliary
function group and is therefore always output at the end of the block.

1 The auxiliary function M01 (conditional stop) is only output to the PLC, if the function:
"Programmed stop" is activated via the HMI user interface.
In the case of a quick acknowledgement, the M1 is output to the PLC during the motion.
While the function is not active, this does not interrupt continuous-path mode.

Part program blocks without traversing motion
In a part program block without a traversing motion, all auxiliary functions are output in a block
immediately, irrespective of their parameterized output behavior.

Spindle-specific auxiliary function output only as information for the PLC user program
In certain controller situations, e.g. at the end of a block search, the collected spindle-specific
auxiliary functions (e.g. M3, M4, M5, M19, M40...M45, M70) is output to the NC/PLC interface
only for information purposes for the PLC user program. The controller generates a part
program block (action block) in which the collected auxiliary functions are entered with a
negative address extension. The corresponding system functions are then not executed.

Example: M(-2) = 41 request gear stage change for the 2nd spindle

9.17 Examples

9.17.1 Extension of predefined auxiliary functions

Task
Parameter assignment of auxiliary functions M3, M4, and M5 for the second spindle of the
channel

Parameter assignment: M3
Requirements:

● Machine data index: 0 (first user-defined auxiliary function)

● auxiliary function group: 5

● Type and value: M3 (spindle right)

H2: Auxiliary function outputs to PLC
9.17 Examples

Basic Functions
468 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Address extension: 2 as appropriate for the 2nd spindle of the channel

● Output behavior:

– Output duration one OB1 cycle (normal acknowledgment)

– Output prior to motion

Parameter assignment:

MD22000 $MC_AUXFU_ASSIGN_GROUP[0] = 5
MD22010 $MC_AUXFU_ASSIGN_TYPE [0] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION [0] = 2
MD22030 $MC_AUXFU_ASSIGN_VALUE [0] = 3
MD22035 $MC_AUXFU_ASSIGN_SPEC [0] = 'H21'

Parameter assignment: M4
Requirements:

● Machine data index: 1 (second user-defined auxiliary function)

● auxiliary function group: 5

● Type and value: M4 (spindle left)

● Address extension: 2 as appropriate for the 2nd spindle of the channel

● Output behavior:

– Output duration one OB1 cycle (normal acknowledgment)

– Spindle response following acknowledgment

– Output during motion

Parameter assignment:

MD22000 $MC_AUXFU_ASSIGN_GROUP [1] = 5
MD22010 $MC_AUXFU_ASSIGN_TYPE [1] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION [1] = 2
MD22030 $MC_AUXFU_ASSIGN_VALUE [1] = 4
MD22035 $MC_AUXFU_ASSIGN_SPEC [1] = 'H51'

Parameter assignment: M5
Requirements:

● Machine data index: 2 (third user-defined auxiliary function)

● auxiliary function group: 5

● Type and value: M5 (spindle stop)

H2: Auxiliary function outputs to PLC
9.17 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 469

● Address extension: 2 as appropriate for the 2nd spindle of the channel

● Output behavior:

– Output duration one OB1 cycle (normal acknowledgment)

– Spindle response following acknowledgment

– Output at block end

Parameter assignment:

MD22000 $MC_AUXFU_ASSIGN_GROUP [2] = 5
MD22010 $MC_AUXFU_ASSIGN_TYPE [2] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION [2] = 2
MD22030 $MC_AUXFU_ASSIGN_VALUE [2] = 5
MD22035 $MC_AUXFU_ASSIGN_SPEC [2] = 'H91'

9.17.2 Defining auxiliary functions

Task
Parameterization of the auxiliary function-specific machine data for a machine with the
following configuration:

Spindles

● Spindle 1: Master spindle

● Spindle 2: Second spindle

Gear stages

● Spindle 1: 5 gear stages

● Spindle 2: No gear stages

Switching functions for cooling water on/off

● Spindle 1

– "On" = M50

– "Off" = M51

● Spindle 2

– "On" = M52

– "Off" = M53

H2: Auxiliary function outputs to PLC
9.17 Examples

Basic Functions
470 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Requirements
Spindle 1 (master spindle)

Note
Default assignments
● The auxiliary functions M3, M4, M5, M70 and M1=3, M1=4, M1=5, M1=70 of spindle 1

(master spindle) are assigned as standard to the 2nd auxiliary function group.
● All S and S1 values of spindle 1 (master spindle) are assigned as standard to the

3rd auxiliary function group.

● The gear stage last programmed is to be output after block search. The following auxiliary
functions are assigned for this reason to the 9th auxiliary function group:

– M40, M41, M42, M43, M44, M45

– M1=40, M1=41, M1=42, M1=43, M1=44, M1=45

● The auxiliary functions M3, M4, M5, M70 and M1=3, M1=4, M1=5, M1=70 (2nd auxiliary
function group) and S and S1 values (3rd auxiliary function group) should possess the
following output behavior:

– Output duration one OB40 cycle (quick acknowledgment)

– Output prior to motion

● The auxiliary functions for gear changeover M40 to M45 and M1=40 to M1=45 (9th auxiliary
function group) should have the following output behavior:

– Output duration of one OB1 cycle (normal acknowledgment)

– Output prior to motion

Spindle 2

● Only one M function for directional reversal may be programmed in one block. The direction
of rotation last programmed is to be output after block search. The following auxiliary
functions are assigned for this reason to the 10th auxiliary function group:

– M2=3, M2=4, M2=5, M2=70

● All S2 values are assigned to the 11th auxiliary function group.

● The auxiliary functions M2=3, M2=4, M2=5, M2=70 (10th auxiliary function group) and S2
values (11th auxiliary function group) should have the following output behavior:

– Output duration one OB40 cycle (quick acknowledgment)

– Output prior to motion

H2: Auxiliary function outputs to PLC
9.17 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 471

Cooling water

● It is not permissible to switch the cooling water on and off in one part program block. After
a block search, the cooling water will be switched on or off. The following auxiliary functions
are assigned for this reason, e.g. to the 12th or 13th auxiliary function group:

– 12th auxiliary function group: M50, M51

– 13th auxiliary function group: M52, M53

● The auxiliary functions M50, M51 (12th auxiliary function group) and M52, M53
(13th auxiliary function group) should have the following output behavior:

– Output duration of one OB1 cycle (normal acknowledgment)

– Output prior to motion

Parameterization of the machine data
The machine data is parameterized by appropriate programming within a part program.

Program code Comment
$MN_AUXFU_MAXNUM_GROUP_ASSIGN=21 ; Number of user-defined auxiliary functions

per channel

$MN_AUXFU_GROUP_SPEC[1]='H22' ; Output behavior of the 2nd auxiliary func-

tion group
$MN_AUXFU_GROUP_SPEC[2]='H22' ; Output behavior of the 3rd auxiliary func-

tion group
$MN_AUXFU_GROUP_SPEC[8]='H21' ; Output behavior of the 9th auxiliary func-

tion group

$MC_AUXFU_ASSIGN_TYPE[0]="M" ; Description of the 1st auxiliary function:

M40
$MC_AUXFU_ASSIGN_EXTENSION[0]=0
$MC_AUXFU_ASSIGN_VALUE[0]=40
$MC_AUXFU_ASSIGN_GROUP[0]=9
 ; ... (and analogously for the 2nd - 5th auxil-

iary functions)
$MC_AUXFU_ASSIGN_TYPE[5]="M" ; Description of the 6th auxiliary function:

M45
$MC_AUXFU_ASSIGN_EXTENSION[5]=0
$MC_AUXFU_ASSIGN_VALUE[5]=45
$MC_AUXFU_ASSIGN_GROUP[5]=9

$MC_AUXFU_ASSIGN_TYPE[6]="M" ; Description of the 7th auxiliary function:

M1=40
$MC_AUXFU_ASSIGN_EXTENSION[6]=1
$MC_AUXFU_ASSIGN_VALUE[6]=40
$MC_AUXFU_ASSIGN_GROUP[6]=9
 ; . . . (and analogously for the 8th - 11th

auxiliary functions)

H2: Auxiliary function outputs to PLC
9.17 Examples

Basic Functions
472 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
$MC_AUXFU_ASSIGN_TYPE[11]="M" ; Description of the 12th auxiliary function:

M1=45
$MC_AUXFU_ASSIGN_EXTENSION[11]=1
$MC_AUXFU_ASSIGN_VALUE[11]=45
$MC_AUXFU_ASSIGN_GROUP[11]=9

$MN_AUXFU_GROUP_SPEC[9] = 'H22' ; Output behavior of the 10th auxiliary func-

tion group

$MC_AUXFU_ASSIGN_TYPE[12]="M" ; Description of the 13th auxiliary function:

M2=3
$MC_AUXFU_ASSIGN_EXTENSION[12]=2
$MC_AUXFU_ASSIGN_VALUE[12]=3
$MC_AUXFU_ASSIGN_GROUP[12]=10

$MC_AUXFU_ASSIGN_TYPE[13]="M" ; Description of the 14th auxiliary function:

M2=4
$MC_AUXFU_ASSIGN_EXTENSION[13]=2
$MC_AUXFU_ASSIGN_VALUE[13]=4
$MC_AUXFU_ASSIGN_GROUP[13]=10

$MC_AUXFU_ASSIGN_TYPE[14]="M" ; Description of the 15th auxiliary function:

M2=5
$MC_AUXFU_ASSIGN_EXTENSION[14]=2
$MC_AUXFU_ASSIGN_VALUE[14]=5
$MC_AUXFU_ASSIGN_GROUP[14]=10

$MC_AUXFU_ASSIGN_TYPE[15]="M" ; Description of the 16th auxiliary function:

M2=70
$MC_AUXFU_ASSIGN_EXTENSION[15]=2
$MC_AUXFU_ASSIGN_VALUE[15]=70
$MC_AUXFU_ASSIGN_GROUP[15]=10

$MN_AUXFU_GROUP_SPEC[10]='H22' ; Specification of the 11th auxiliary function

group

$MC_AUXFU_ASSIGN_TYPE[16]="S" ; Description of the 17th auxiliary function:

S2=<all values>
$MC_AUXFU_ASSIGN_EXTENSION[16]=2
$MC_AUXFU_ASSIGN_VALUE[16]=-1
$MC_AUXFU_ASSIGN_GROUP[16]=11

$MN_AUXFU_GROUP_SPEC[11]='H21' ; Specification of the 12th auxiliary function

group

H2: Auxiliary function outputs to PLC
9.17 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 473

Program code Comment
$MC_AUXFU_ASSIGN_TYPE[17]="M" ; Description of the 18th auxiliary function:

M50
$MC_AUXFU_ASSIGN_EXTENSION[17]=0
$MC_AUXFU_ASSIGN_VALUE[17]=50
$MC_AUXFU_ASSIGN_GROUP[17]=12

$MC_AUXFU_ASSIGN_TYPE[18]="M" ; Description of the 19th auxiliary function:

M51
$MC_AUXFU_ASSIGN_EXTENSION[18]=0
$MC_AUXFU_ASSIGN_VALUE[18]=51
$MC_AUXFU_ASSIGN_GROUP[18]=12

$MN_AUXFU_GROUP_SPEC[12]='H21' ; Specification of the 13th auxiliary function

group

$MC_AUXFU_ASSIGN_TYPE[19]="M" ; Description of the 20th auxiliary function:

M52
$MC_AUXFU_ASSIGN_EXTENSION[19]=0
$MC_AUXFU_ASSIGN_VALUE[19]=52
$MC_AUXFU_ASSIGN_GROUP[19]=13

$MC_AUXFU_ASSIGN_TYPE[20]="M" ; Description of the 21st auxiliary function:

M53
$MC_AUXFU_ASSIGN_EXTENSION[20]=0
$MC_AUXFU_ASSIGN_VALUE[20]=53
$MC_AUXFU_ASSIGN_GROUP[20]=13

9.18 Data lists

9.18.1 Machine data

9.18.1.1 NC-specific machine data

Number Identifier: $MN_ Description
10713 M_NO_FCT_STOPRE M function with preprocessing stop
10714 M_NO_FCT_EOP M function for spindle active after NC RESET
10715 M_NO_FCT_CYCLE M function to be replaced by subroutine
11100 AUXFU_MAXNUM_GROUP_ASSIGN Maximum number of user-defined auxiliary functions

per channel

H2: Auxiliary function outputs to PLC
9.18 Data lists

Basic Functions
474 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Number Identifier: $MN_ Description
11110 AUXFU_GROUP_SPEC Group-specific output behavior
11450 SEARCH_RUN_MODE Behavior after a block search

9.18.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20110 RESET_MODE_MASK Definition of control initial setting after part program

start.
20112 START_MODE_MASK Definition of control initial setting after powerup and on

RESET or at end of part program
20270 CUTTING_EDGE_DEFAULT Basic setting of tool cutting edge without programming
20800 SPF_END_TO_VDI Subroutine end / Stop at PLC
22000 AUXFU_ASSIGN_GROUP Group assignment of user-defined auxiliary functions
22010 AUXFU_ASSIGN_TYPE Type of user-defined auxiliary functions
22020 AUXFU_ASSIGN_EXTENSION Address extension for user-defined auxiliary functions
22030 AUXFU_ASSIGN_VALUE Value of user-defined auxiliary functions
22035 AUXFU_ASSIGN_SPEC Output behavior of user-defined auxiliary functions
22040 AUXFU_PREDEF_GROUP Group assignment of predefined auxiliary functions
22050 AUXFU_PREDEF_TYPE Type of predefined auxiliary functions
22060 AUXFU_PREDEF_EXTENSION Address extension for predefined auxiliary functions
22070 AUXFU_PREDEF_VALUE Value of predefined auxiliary functions
22080 AUXFU_PREDEF_SPEC Output behavior of predefined auxiliary functions
22100 AUXFU_QUICK_BLOCKCHANGE Block change delay with quick auxiliary functions
22110 AUXFU_H_TYPE_INT Type of H auxiliary functions
22200 AUXFU_M_SYNC_TYPE M functions output time
22210 AUXFU_S_SYNC_TYPE S functions output time
22220 AUXFU_T_SYNC_TYPE T functions output time
22230 AUXFU_H_SYNC_TYPE H functions output time
22240 AUXFU_F_SYNC_TYPE F functions output time
22250 AUXFU_D_SYNC_TYPE D functions output time
22252 AUXFU_DL_SYNC_TYPE DL functions output time
22254 AUXFU_ASSOC_M0_VALUE Additional M function for program stop
22256 AUXFU_ASSOC_M1_VALUE Additional M function for conditional stop
22530 TOCARR_CHANGE_M_CODE M code for change of tool holder
22532 GEOAX_CHANGE_M_CODE M code for replacement of geometry axes
22534 TRAFO_CHANGE_M_CODE M code for change of tool holder
22560 TOOL_CHANGE_M_CODE Auxiliary function for tool change

H2: Auxiliary function outputs to PLC
9.18 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 475

9.18.2 Signals

9.18.2.1 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate associated M01 DB21,DBX30.5 DB320x.DBX14.5

9.18.2.2 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
M function 1 - 5 change DB21,DBX58.0-4 DB250x.DBX4.0-4
M function 1 - 5 not decoded DB21,DBX59.0-4 -
S function 1 - 3 change DB21,DBX60.0-2 DB250x.DBX6.0
S function 1 - 3 quick DB21,DBX60.4-6 -
T function 1 - 3 change DB21,DBX61.0-2 -
T function 1 - 3 quick DB21,DBX61.4-6 -
D function 1 - 3 change DB21,DBX62.0-2 DB250x.DBX10.0
D function 1 - 3 quick DB21,DBX62.4-6 -
DL function change DB21,DBX63.0 -
DL function quick DB21,DBX63.4 -
H function 1 - 3 change DB21,DBX64.0-2 DB250x.DBX12.0-2
H function 1 - 3 quick DB21,DBX64.4-6 -
F function 1 - 6 change DB21,DBX65.0-5 -
M function 1 - 5 quick DB21,DBX66.0-4 -
F function 1 - 6 quick DB21,DBX67.0-5 -
Extended address M function 1 (16 bit int) DB21,DBB68-69 DB250x.DBB3004
M function 1 (DInt) DB21,DBB70-73 DB250x.DBD3000
Extended address M function 2 (16 bit int) DB21,DBB74-75 DB250x.DBB3012
M function 2 (DInt) DB21,DBB76-79 DB250x.DBD3008
Extended address M function 3 (16 bit int) DB21,DBB80-81 DB250x.DBB3020
M function 3 (DInt) DB21,DBB82-85 DB250x.DBD3016
Extended address M function 4 (16 bit int) DB21,DBB86-87 DB250x.DBB3028
M function 4 (DInt) DB21,DBB88-91 DB250x.DBD3024
Extended address M function 5 (16 bit int) DB21,DBB92-93 DB250x.DBB3036
M function 5 (DInt) DB21,DBB94-97 DB250x.DBD3032
Extended address S function 1 (16 bit int) DB21,DBB98-99 DB250x.DBB4004
S function 1 (real) DB21,DBB100-103 DB250x.DBD4000
Extended address S function 2 (16 bit int) DB21,DBB104-105 DB250x.DBB4012
S function 2 (real) DB21,DBB106-109 DB250x.DBD4008
Extended address S function 3 (16 bit int) DB21,DBB110-111 DB250x.DBB4020
S function 3 (real) DB21,DBB112-115 DB250x.DBD4016

H2: Auxiliary function outputs to PLC
9.18 Data lists

Basic Functions
476 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal name SINUMERIK 840D sl SINUMERIK 828D
Extended address T function 1 (16 bit int) DB21,DBB116-117 -
T function 1 (integer) DB21,DBB118-119 DB250x.DBD2000
Extended address T function 2 (16 bit int) DB21,DBB120-121 -
T function 2 (integer) DB21,DBB122-123 -
Extended address T function 3 (16 bit int) DB21,DBB124-125 -
T function 3 (integer) DB21,DBB126-127 -
Extended address D function 1 (8 bit int) DB21,DBB128 -
D function 1 (8 bit int) DB21,DBB129 DB250x.DBD5000
Extended address D function 2 (8 bit int) DB21,DBB130 -
D function 2 (8 bit int) DB21,DBB131 -
Extended address D function 3 (8 bit int) DB21,DBB132 -
D function 3 (8 bit int) DB21,DBB133 -
Extended address DL function (8 bit int) DB21,DBB134 -
DL function (real) DB21,DBB136 -
Extended address H function 1 (16 bit int) DB21,DBB140-141 DB250x.DBB6004
H function 1 (real or DInt) DB21,DBB142-145 DB250x.DBD6000
Extended address H function 2 (16 bit int) DB21,DBB146-147 DB250x.DBB6012
H function 2 (REAL or DInt) DB21,DBB148-151 DB250x.DBD6008
Extended address H function 3 (16 bit int) DB21,DBB152-153 DB250x.DBB6020
H function 3 (real or DInt) DB21,DBB154-157 DB250x.DBD6016
Extended address F function 1 (16 bit int) DB21,DBB158-159 -
F function 1 (real) DB21,DBB160-163 -
Extended address F function 2 (16 bit int) DB21,DBB164-165 -
F function 2 (real) DB21,DBB166-169 -
Extended address F function 3 (16 bit int) DB21,DBB170-171 -
F function 3 (real) DB21,DBB172-175 -
Extended address F function 4 (16 bit int) DB21,DBB176-177 -
F function 4 (real) DB21,DBB178-181 -
Extended address F function 5 (16 bit int) DB21,DBB182-183 -
F function 5 (real) DB21,DBB184-187 -
Extended address F function 6 (16 bit int) DB21,DBB188-189 -
F function 6 (real) DB21,DBB190-193 -
Dynamic M function: M00 - M07 DB21,DBB194 DB250x.DBB1000
Dynamic M function: M08 - M15 DB21,DBB195 DB250x.DBB1001
Dynamic M function: M16 - M23 DB21,DBB196 DB250x.DBB1002
Dynamic M function: M24 - M31 DB21,DBB197 DB250x.DBB1003
Dynamic M function: M32 - M39 DB21,DBB198 DB250x.DBB1004
Dynamic M function: M40 - M47 DB21,DBB199 DB250x.DBB1005
Dynamic M function: M48 - M55 DB21,DBB200 DB250x.DBB1006
Dynamic M function: M56 - M63 DB21,DBB201 DB250x.DBB1007
Dynamic M function: M64 - M71 DB21,DBB202 DB250x.DBB1008

H2: Auxiliary function outputs to PLC
9.18 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 477

Signal name SINUMERIK 840D sl SINUMERIK 828D
Dynamic M function: M72 - M79 DB21,DBB203 DB250x.DBB1009
Dynamic M function: M80 - M87 DB21,DBB204 DB250x.DBB1010
Dynamic M function: M88 - M95 DB21,DBB205 DB250x.DBB1011
Dynamic M function: M96 - M99 DB21,DBX206.0-3 DB250x.DBB1012.0-3
Associated M00/M01 active DB21,DBX318.5 DB330x.DBX4002.5

9.18.2.3 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
F function for positioning axis (real) DB31,DBB78-81 -

9.18.2.4 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
M function for spindle (Int) DB21,DBB86-87 DB370x.DBD0000
S function for spindle (real) DB21,DBB88-91 DB370x.DBD0004

H2: Auxiliary function outputs to PLC
9.18 Data lists

Basic Functions
478 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

K1: Mode group, channel, program operation, reset
response 10
10.1 Product brief

Channel
An NC channel represents the smallest unit for manual traversing of axes and automatic
processing of part programs. At any one time, a channel will always be in a particular mode,
e.g. AUTOMATIC, MDI, or JOG. A channel can be regarded as an independent NC.

Mode group
A channel always belongs to a mode group. A mode group can also consist of several channels.

A mode group can be identified by the fact that all channels of the mode group are always in
the same mode at a particular time, e.g. AUTOMATIC, MDI, or JOG. This is ensured through
the NC internal mode logic.

A mode group can be regarded as an independent multi-channel NC.

Channel gaps
When channels are configured, placeholder channels can be provided in order to create as
uniform a configuration as possible over machines in a series. Only the channels that are
actually used are then activated.

Program test
The following options are available for testing or moving in position a new part program.

● Program execution without setpoint outputs

● Program execution in singleblock mode

● Program execution with dry run feedrate

● Skip part program blocks

● Block search with or without calculation.

Block search
The block search function enables the following program simulations for locating specific
program points:

● Type 1 without calculation at contour

● Type 2 with calculation at contour

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 479

● Type 4 with calculation at block end point

● Type 5 automatic start of the selected program point with calculation of all required data
from history

● Automatic start of an ASUP after a block search

● Cascaded block search

● Cross-channel block search in "Program test" mode

Program operation
The execution of part programs or part program blocks in AUTOMATIC or MDI modes is
referred to as program operation. During execution, the program sequence can be controlled
by PLC interface signals and commands.

For each channel, basic settings or channel-specific machine data can be specified. These
basic settings affect, for example, G groups and auxiliary function output.

A part program can be selected only if the relevant channel is in the Reset state.

Furthermore, all further program runs are handled by PLC interface signals and the
corresponding commands.

● Start of part program or part program block

● Part program calculation and program control

● RESET command, program status, and channel status

● Responses to operator and program actions

● Eventdriven program calls

Asynchronous subprograms (ASUPs), interrupt routines
Interrupt inputs allow the NC to interrupt the the current part program execution so that it can
react to more urgent events in interrupt routines or ASUPs.

Single block
With the single-block function, the user can execute a part program block-by-block.

There are 3 types of setting for the single-block function:

● SLB1: = IPO single block

● SLB2: = decode single block

● SLB3: = stop in cycle

Basic block display
A second basic block display can be used with the existing block display to display all blocks
that produce an action on the machine.

The actually approached end positions are shown as an absolute position. The position values
refer either to the workpiece coordinate system (WCS) or the settable zero system (SZS).

K1: Mode group, channel, program operation, reset response
10.1 Product brief

Basic Functions
480 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program execution from external source
When complex workpieces are machined, the NC may not have enough memory for the
programs. Using the function "Execution from external source" or "EES (execution from
external storage) enables part programs to be called and executed from an external memory
(e.g. from the hard disk).

Behavior after POWER ON, Reset, ...
The control-system response after:

● Power up (POWER ON)

● Reset/part program end

● Part program start

can be modified for functions, such as G commands, tool length compensation, transformation,
coupled axis groupings, tangential follow-up, programmable synchronous spindle for certain
system settings through machine data.

Subprogram call with M, T and D functions
For certain applications, it may be advantageous to replace M, T or D functions as well as a
few NC language commandsSPOS, SPOSA, by a subprogram call. This can be used, for
example, to call the tool change routine.

Relevant machine data can be used to define and control subprograms having M, T or D
functions. For example, for a gear stage change.

Program runtime/part counter
Information on the program runtime and the part count is provided to assist the machine tool
operator.

The functions defined for this purpose are not identical to the functions of tool management
and are intended primarily for systems without tool management.

10.2 Mode group

Mode group
In a mode group, multiple channels if an NC are grouped together to form one processing unit.
In principle, it is an independent "NC" within an NC.

K1: Mode group, channel, program operation, reset response
10.2 Mode group

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 481

A mode group is essentially characterized by the fact that all channels assigned to it are any
instant are always in the same mode (AUTOMATIC, JOG, MDI).

Note

This description continues on the assumption that there is one mode group and one channel.

Functions that need several channels, e.g. "Axis interchange" function, are described in:
References:
Function Manual, Extended Functions; "K5: Cross-channel program coordination" and "K10:
Cross-channel axis interchange"

Parameterization
A channel is assigned to a mode group in the machine data:

MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP[<channel index>] = mode group
number

All channels with the same mode group number form one mode group.

Note

A NC always comprises one mode group with one channel by default. It is not possible to
parameterize an NC without a channel.

Mode-group-specific NC/PLC interface signals
The mode-group-specific NC/PLC interface signals are in data block DB11.

K1: Mode group, channel, program operation, reset response
10.2 Mode group

Basic Functions
482 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The mode-group-specific NC/PLC interface essentially comprises the following interface
signals:

● Request signals PLC → NC

– Mode group reset

– Mode group stop axes plus spindles

– Mode group stop

– Mode changeover inhibit

– Mode: JOG, MDI, AUTOM.

– Single block: Type A, Type B

– Machine function REF, REPOS, TEACH IN, INC x

● NC → PLC status signals

– Mode strobe: JOG, MDI, AUTOMATIC

– Machine function strobe: REF, REPOS, TEACH IN

– All channels in the reset state

– Mode group has been reset

– Mode group Ready

– Active mode: JOG, MDI, AUTOMATIC

– Active machine function: REF, REPOS, TEACH, INC x

Activated and non-activated channels, channel gaps

Activated channel
A channel with a mode group number ≠ 0 is an active channel.

Non-activated channel
A channel with a mode group number 0 is a non-activated channel. It does not take up any
memory internally in the control.

Channel gaps
A channel with a mode group number 0 is not only a non-activated channel. It is also a so-
called channel gap in the sequence of the channels.

The advantage of channel gaps is that the configuration data can be kept largely identical in
a series of similar machines. For the specific commissioning, only those channels are activated

K1: Mode group, channel, program operation, reset response
10.2 Mode group

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 483

that are required for the machine in question. The unoccupied memory can be freely used as
additional user memory.

Table 10-1 Example

Machine data Meaning
MD10010 $MN_AS‐
SIGN_CHAN_TO_MODE_GROUP[0] = 1

Channel 1, mode group 1

MD10010 $MN_AS‐
SIGN_CHAN_TO_MODE_GROUP[1] = 2

Channel 2, mode group 2

MD10010 $MN_AS‐
SIGN_CHAN_TO_MODE_GROUP[2] = 0

Channel 3, not used

MD10010 $MN_AS‐
SIGN_CHAN_TO_MODE_GROUP[3] = 1

Channel 4, mode group 1

MD10010 $MN_AS‐
SIGN_CHAN_TO_MODE_GROUP[4] = 2

Channel 5, mode group 2

See also
K2: Axis Types, Coordinate Systems, Frames (Page 705)

S1: Spindles (Page 1273)

10.2.1 Mode group stop

Function
The following NC/PLC interface signals are used to stop the traversing motions of the axes or
of the axes and spindles in all mode group channels and to interrupt part program execution:

DB11 DBX0.5 (mode group stop)

DB11 DBX0.6 (mode group stop, axes plus spindles)

10.2.2 Mode group reset

Function
A mode group reset is requested via a mode group-specific NC/PLC interface signal:

DB11 DBX0.7 = 1 (mode group reset)

K1: Mode group, channel, program operation, reset response
10.2 Mode group

Basic Functions
484 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Effect
Effect on the channels of mode group:

● Part program preparation (preprocessing) is stopped.

● All axes and spindles are decelerated to zero speed according to their acceleration curves
without contour violation.

● Any auxiliary functions not yet output to the PLC are no longer output.

● The preprocessing pointers are set to the interruption point, and the block pointers are set
to the beginning of the appropriate part programs.

● All initial settings (e.g. the G commands) are set to the parameterized values.

● All alarms with "Channel reset" criterion are canceled.

If all the channels of the mode group are in reset state, then:

● All alarms with "Mode group reset" cancel criterion are canceled.

● The NC/PLC interface indicates completion of the mode group reset and the mode group's
readiness to operate:
DB11 DBX6.7 (all channels in the reset state)
DB11 DBX6.3 = 1 (mode group ready)

10.3 Mode types and mode type change

Unique mode
All channels of a mode group are always in the same mode:

● AUTOMATIC

● JOG

● MDI

If individual channels are assigned to different mode groups, a channel switchover activates
the corresponding mode group. This allows mode changes to be initiated via a channel
switchover.

Modes
The following modes are available:

● AUTOMATIC
Automatic execution of part programs:

– Part program test

– All channels of the mode group can be active at the same time.

● JOG in Automatic
JOG in AUTOMATIC is an extension of AUTOMATIC mode intended to simplify use. JOG
can be executed without leaving AUTOMATIC mode if boundary conditions so permit.

K1: Mode group, channel, program operation, reset response
10.3 Mode types and mode type change

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 485

● JOG
Manual traversing of axes via traversing keys of the machine control panel or via a
handwheel connected to the machine control panel:

– Channel-specific signals and interlocks are taken into account for motions executed by
means of an ASUP or via static synchronized actions.

– Couplings are taken into account.

– Every channel in the mode group can be active.

● MDI
Manual Data Automatic (the blocks are entered via the user interface)

– Restricted execution of part programs and part program sections.

– Part program test

– A maximum of one channel per mode group can be active (applies only to TEACH IN).

– Axes can only be traversed manually in subordinate machine functions such as JOG,
REPOS or TEACH IN.

Applies to all modes

Cross-mode synchronized actions
Modal synchronized actions can be executed by means of IDS in all modes for the following
functions parallel to the channel:

● Command axis functions

● Spindle functions

● Technology cycles

Selection
The user can select the desired mode by means of softkeys on the user interface.

This selection (AUTOMATIC, MDI, or JOG) is forwarded to the PLC on the NC/PLC interface,
but is not activated:
DB11 DBX4.0, 0.1, 0.2 (strobe mode)

Activation and priorities
The mode of the mode group is activated via the NC/PLC interface:

DB11 DBX0.0, 0.1, 0.2 (mode)

If several modes are selected at the same time, the following priority applies:

Priority Mode Mode group signal (NC → PLC)
1st priority, high JOG DB11 DBX0.2
2nd priority, medium MDI DB11 DBX0.1
3rd priority, low AUTOMATIC DB11 DBX0.0

K1: Mode group, channel, program operation, reset response
10.3 Mode types and mode type change

Basic Functions
486 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Display
The current mode of the mode group is displayed via the NC/PLC interface:

DB11 DBX6.0, 0.1, 0.2 (active mode)

Mode group signal (NC → PLC) Active operating mode
DB11 DBX6.2 JOG
DB11 DBX6.1 MDI
DB11 DBX6.0 AUTOMATIC

Machine functions
Machine functions can be selected within a mode that also apply within the mode group:

● Machine functions within the JOG mode

– REF (reference point approach)

– REPOS (repositioning)

– JOG retract (retraction motion in the tool direction)

● Machine functions within the MDI mode

– REF (reference point approach)

– REPOS (repositioning)

– TEACHIN (teach-in of axis positions)

NC/PLC interface signals
● DB11 DBX5.0, 0.1, 0.2 (machine function strobe): Requirement

● DB11 DBX1.0, 0.1, 0.2 (machine function): Activation

● DB11 DBX7.0-2 (active machine function): Feedback signal

Channel states
● Channel reset

The machine is in its initial state. This is defined by the machine manufacturer's PLC
program, e.g. after POWER ON or at the end of the program.

● Channel active
A program has been started, and the program is being executed or a reference point
approach is in progress.

● Channel interrupted
The running program or reference point approach has been interrupted.

Functions within modes
Modes are supplemented through user-specific functions. The individual functions are
technology- and machine-independent and can be started and/or executed from the three
channel states "Channel reset", "Channel active" or "Channel interrupted".

K1: Mode group, channel, program operation, reset response
10.3 Mode types and mode type change

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 487

Supplementary condition for the TEACH IN machine function
TEACH IN is not permissible for leading or following axes of an active axis grouping, e.g. for:

● Gantry-axis grouping or a gantry axis pair

● Coupled-axis grouping of master and slave axis

JOG in Automatic
JOG in AUTOMATIC mode is permitted if the mode group is in "RESET" state and the axis is
jog-capable. "RESET" state for the mode group means:

● All channels are in the "RESET" state

● All programs are canceled

● DRF is not active in any channel

An axis is JOG-capable if it is not in any of the following states:

● PLC axis as concurrent positioning axis (request of the axis from the PLC)

● Command axis (the axis has been programmed by a synchronized action and the motion
has not been completed yet)

● Rotating spindle (spindle rotating despite RESET)

● An asynchronous reciprocating axis

Note: The "jog-capable" property is independent of the "JOG in AUTOMATIC" function.

Activation
The function "JOG in AUTOMATIC" can be activated with the machine data:

MD10735 $MN_JOG_MODE_MASK

● Before POWER ON, the following machine data must be set:
MD10735 $MN_JOG_MODE_MASK, bit 0 = 1

● The user switches to AUTO (PLC user interface DB11 DBX0.0 = 0→1 edge). "JOG in
AUTOMATIC" is then active if the NC previously had channel state "RESET" and program
state "Aborted" in all mode group channels. The axis in question must also be "jog-capable".
DRF must be deactivated (if not already deactivated).

● RESET is initiated or the running program is finished with M30/M2 in all mode group
channels that do not have channel state "Reset" and program state "Aborted".

● The relevant axis is automatically made "JOG-capable" (e.g. axis interchange: PLC → NC).

Note: In most applications, the axes to be traversed are "JOG-capable" and with the switchover
to AUTOMATIC, "JOG in AUTOMATIC" is also active.

Characteristics
● The +/– keys cause a JOG motion, and the mode group is switched internally to JOG. (i.e.

"Internal JOG").

● Moving the handwheels causes a JOG motion, and the mode group is switched internally
to JOG, unless DRF is active.

K1: Mode group, channel, program operation, reset response
10.3 Mode types and mode type change

Basic Functions
488 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● An ongoing JOG motion is not complete until the end position of the increment has been
reached (if this has been set) or the motion has been aborted with "Delete distance-to-go".
In this way an increment can be stopped using Stop and then moved to the end using Start.
The NC remains in "Internal JOG" during this time. A partial increment is possible, but it
must not be interrupted using Stop. There is a mode in which releasing the travel key causes
interruption within an increment.

● Without any JOG motion, "JOG in AUTOMATIC" responds in the same way as "Automatic".
In particular, the Start key starts the selected part program and the appropriate HMI softkey
initiates a block search.

● If JOG motion is active, the NC is internally in JOG mode, and, thus, a block search request
is refused and a Start cannot start the part program. Start starts any remaining increment
or has no effect.

● While a mode group axis is being traversed in JOG mode, the mode group remains
internally in JOG mode.
Comment: This phase can begin with the JOG motion of an axis and end with the end of
the JOG motion of another axis.

● Axis interchange is not possible for an axis with active JOG movement (the axis might
change the mode group). The NC blocks any axis interchange attempt.

● The PLC user interface indicates "Automatic" mode:

– DB11 DBX6.0, 6.1, 6.2 = 1

– DB11 DBX7.0, 7.1, 7.2 = 0

● In "JOG in AUTOMATIC", the NC/PLC interface displays whether the mode group is in
"Mode group RESET".

– DB11 DBX6.4 (mode group has been reset, mode group 1)

– DB11 DBX26.4 (mode group has been reset, mode group 2)

– DB11 DBX46.4 (mode group has been reset, mode group 3)

● In "JOG in AUTOMATIC", the NC/PLC interface displays whether the NC has automatically
switched to "Internal JOG".

– DB11 DBX6.5 (NC internal JOG active, mode group 1)

– DB11 DBX26.5 (NC internal JOG active, mode group 2)

– DB11 DBX46.5 (NC internal JOG active, mode group 3)

Supplementary conditions

"JOG in AUTOMATIC" can only switch internally to JOG if the mode group is in the "mode
group reset" status, i.e. it is not possible to jog immediately in the middle of a stopped program.
The user can jog in this situation by pressing the JOG key or the Reset key in all channels of
the mode group.

Selecting AUTOMATIC disables the INC keys and the user can/must press the INC keys again
to select the desired increment. If the NC switches to "Internal JOG", the selected increment
is retained.

If the user attempts to jog the geometry or orientation axes, the NC switches to "Internal JOG"
and the movement executed. Several axes can be physically moved in this way; they must all
be "JOG-capable".

K1: Mode group, channel, program operation, reset response
10.3 Mode types and mode type change

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 489

Following the JOG motion, the NC deactivates "Internal JOG" again and selects AUTO mode
again. The internal mode change is delayed until the movement is complete. This avoids
unnecessary multiple switching operations, e.g. when using the handwheel. The PLC can only
rely on the "Internal JOG active" PLC signal.

The NC will then switch to "Internal JOG" even if the axis is not enabled.

See also
R1: Referencing (Page 1223)

10.3.1 Monitoring functions and interlocks of the individual modes

Channel status determines monitoring functions

Monitoring functions in operating modes

Different monitoring functions are active in individual operating modes. These monitoring
functions are not related to any particular technology or machine.

In a particular mode only some of the monitoring functions are active depending on the
operating status. The channel status determines which monitoring functions are active in which
mode and and in which operating state.

Interlocking functions in operating modes

Different interlocks can be active in the different operating modes. These interlocking functions
are not related to any particular technology or machine.

Almost all the interlocks can be activated in every mode, depending on the operating status.

10.3.2 Mode change

Introduction
A mode change is requested and activated via the mode group interface (DB11). A mode group
will either be in AUTOMATIC, JOG, or MDI mode, i.e. it is not possible for several channels of
a mode group to take on different modes at the same time.

What mode transitions are possible and how these are executed can be configured in the PLC
program on a machine-specific basis.

Note

The mode is not changed internally until the signal "Channel status active" is no longer pending.
For error-free mode change however, all channels must assume a permissible operating mode.

K1: Mode group, channel, program operation, reset response
10.3 Mode types and mode type change

Basic Functions
490 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Possible mode changes
The following table shows possible mode changes for a channel:

 AUTOMATIC JOG MDI
 AUTO MDI Manual traversing AUTO

Reset Inter‐
rupted

Reset Inter‐
rupted

Inter‐
rupted

Reset Inter‐
rupted

Active Inter‐
rupted

AUTOMATIC X X X
JOG X X X X X
MDI X X X X

Possible mode changes are indicated by an "X".

Special cases
● Error during mode change

If a mode change request is rejected by the system, the error message "Operating mode
cannot be changed until after NC Stop" is output. This error message can be cleared without
changing the channel status.

● Mode change disable
A mode change can be prevented by means of interface signal:
DB11, DBX0.4 (mode change disable).

This suppresses the mode change request.
The user must configure a message to the operator indicating that mode change is disabled.
No signal is issued for this by the system.

● Mode change from MDI to JOG
If all channels of the mode group are in Reset state after a mode change from MDI to JOG,
the NC switches from JOG to AUTO. In this state, part program commands START or
INIT can be executed.
If a channel of the mode group is no longer in Reset state after a mode change, the part
program command START is rejected and Alarm 16952 is issued.

10.4 Channel
In a channel of the NC, the part programs defined by the user are executed.

The following properties characterize a channel:

● A channel is always assigned to a mode group (Page 481) (BAG).

● A channel can only execute one part program at any point in time.

● Machine, geometry, and special axes and spindles are assigned to a channel. Only these
can be traversed via the part program executed in the channel.

● A channel consists of the internal units

– Preprocessing (program decoding and block preparation)

– Main run (path and axis interpolation).

K1: Mode group, channel, program operation, reset response
10.4 Channel

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 491

● A channel has an interface with the PLC. Via this NC/PLC interface, the PLC user program
can read various channel-specific status data and write requests to the channel.

● Channel-specific tool offsets (Page 1451) are active in a channel.

● Channel-specific coordinate systems (Page 724) are active in a channel.

● Each channel has a unique channel name by default. The defined channel name can be
changed in machine data:
MD20000 $MC_CHAN_NAME = "<channel name>"

Multiple channels can be combined to form a mode group. The channels of a mode group are
always in the same mode (AUTOMATIC, JOG, MDI).

Channel configuration
Channels can be filled with their own channel name via the following machine data:

MD20000 $MC_CHAN_NAME (channel name)

The various axes are then assigned to the available channels via machine data. There can be
only one setpoint-issuing channel at a time for an axis/spindle. The axis/spindle actual value
can be read by several channels at the same time. The axis/spindle must be registered with
the relevant channel.

The following channel-specific settings can also be made using machine data:

● Position of deletions or the basic program settings of G groups via the machine data:
MD20150 $MC_GCODE_RESET_VALUES (reset setting of the G groups)

● Auxiliary function groups regarding the combination and the output time.

● Transformation conditions between machine axes and geometry axes.

● Other settings for the execution of a part program.

Change in the channel assignment
An online change in the channel configuration cannot be programmed in a part program or
PLC user program. Changes in the configuration must be made via the machine data. The
changes become effective only after a new POWER ON.

Container axes and link axes
An axis container combines a group of axes in a container. These axes are referred to as
container axes. This involves assigning a pointer to a container slot (ring buffer location within
the relevant container) to a channel axis. One of the axes in the container is located temporarily
in this slot.

Each machine axis in the axis container must be assigned at all times to exactly one channel
axis.

Link axes can be assigned permanently to one channel or dynamically (by means of an axis
container switch) to several channels of the local NCU or the other NCU. A link axis is a non-
local axis from the perspective of one of the channels belonging to the NCU to which the axis
is not physically connected.

K1: Mode group, channel, program operation, reset response
10.4 Channel

Basic Functions
492 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The assignment between the link axes and a channel is implemented as follows:

● For permanent assignment using machine data:
Allow the direct logic machine axis image to show link axes.

● For dynamic assignment:
Allow the axis container slot machine data to show link axes.

Further information on link axes and container axes can be found in:
References:
Function Manual, Extended Functions; Several Operator Panel Fronts and Multiple NCUs,
Distributed Systems (B3)

Interface signals
The signals of the 1st channel are located in the NC/PLC interface in DB21, the signals from
channel 2 are located in DB22. The channel or channels can be monitored and controlled from
the PLC or NC.

Channel-specific technology specification
The technology used can be specified for each channel:

MD27800 $MC_TECHNOLOGY_MODE

In the delivery state, machine data is active for milling as standard.

Spindle functions using a PLC
In addition to function block FC18, spindle functions can also be started and stopped via the
axial NC/PLC interface signals in parallel to part programs that are running.

Requirements:

● Channel status: "Interrupted" or "RESET"

● Program status: "Interrupted" or "canceled"

The following functions can be controlled from the PLC via interface signals:

● Stop (corresponds to M5)

● Start with clockwise direction of rotation (corresponds to M3)

● Start with counter-clockwise direction of rotation (corresponds to M4)

● Select gear stage

● Positioning (corresponds to M19)

For several channels, the spindle started by the PLC is active in the channel to which it is
assigned at the start.

For more information on the special spindle interface, see Section "S1: Spindles (Page 1273)."

K1: Mode group, channel, program operation, reset response
10.4 Channel

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 493

PLC-controlled single-axis operations
An axis can also be controlled from the PLC instead of from a channel. For this purpose, the
PLC requests the axis from the NC via the NC/PLC interface:

DB31, ... DBX28.7 = 1 (PLC controls axis)

The following functions can be controlled from the PLC:

● Cancel axis/spindle sequence (equivalent to delete distance-to-go)

● Stop or interrupt axis/spindle

● Resume axis/spindle operation (continue the motion sequence)

● Reset axis/spindle to the initial state

For more information on the channel-specific signal exchange (PLC → NC), see Section "P3:
Basic PLC program for SINUMERIK 840D sl (Page 869)."

The exact functionality of independent single-axis operations is described in:

References:
Function Manual, Extended Functions; Positioning Axes (P2)

10.4.1 Start inhibit, global and channel-specific

Function
In ShopMill/ShopTurn, a program can only be started by default in the machine area. Starting
a program in any of the other areas (e.g. tools) is prevented by a global start lock (PI service).

The automated start lock sequences can be deactivated using a NC/PLC interface signal.

NC/PLC interface signals

Deactivate start lock
An active start lock is deactivated with the interface signal:

DB21, ... DBX7.5 (deactivate start lock)

Machine data
The machine data is used to set an alarm if a start is requested with the start lock set:

MD11411 $MN_ENABLE_ALARM_MASK, bit 6

OPI variables

Variable Description
startLockState Status of the global start lock
chanStartLockState Status of the channel-specific start lock

K1: Mode group, channel, program operation, reset response
10.4 Channel

Basic Functions
494 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Variable Description
startRejectCounter Start counter for a global start lock
startLockCounter Start counter for a channel-specific start lock

PI services

Setting the start lock (_N_STRTLK)
The start lock can be set either globally or on a channel-for-channel basis using the PI service
_N_STRTLK.

● Global start lock
If the global start lock is set, then the start of an NC program is locked in all channels. An
already running NC program is not influenced. Only the next start of an NC program is
locked.

● Channel-specific start lock
As a result of the channel-specific start lock, the start of an NC program is only locked in
the AUTOMATIC mode and in the "Reset" channel state.

Reset of the global or channel-specific start lock (_N_STRTUL)
With the PI service _N_STRTUL, the start lock can be reset, either globally or for specific
channels.

10.5 Program test
Several control functions are available for testing a new part program. These functions are
provided to reduce danger at the machine and time required for the test phase. Several
program functions can be activated at the same time to achieve a better result.

Test options
The following test options are described below:

● Program execution without setpoint outputs

● Program execution in singleblock mode

● Program execution with dry run feedrate

● Skip part program blocks

● Block search with or without calculation.

K1: Mode group, channel, program operation, reset response
10.5 Program test

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 495

10.5.1 Program execution without setpoint outputs

Function
In the "Program test" status, a part program is executed without the output of axis or spindle
setpoints.

The user can use this to check the programmed axis positions and auxiliary function outputs
of a part program. This program simulation can also be used as an extended syntax check.

Selection
This function is selected via the operator interface in the "Program control" menu.

The selection sets the following interface signal:

DB21, ... DBX25.7 (program test selected)

This does not activate the function.

Activation
The function is activated via interface signal:

DB21, ... DBX1.7 (activate program test)

Display
The corresponding field on the operator interface is reversed and the interface signal in the
PLC as a checkback of the active program test:

DB21, ... DBX33.7 (program test active)

Program start and program run
When the program test function is active, the part program can be started and executed (incl.
auxiliary function outputs, wait times, G command outputs, etc.) via the interface signal:

DB21, ... DBX7.1 (NC-Start)

The safety functions such as software limit switches, working area limits continue to be valid.

The only difference compared to normal program operation is that an internal axis disable is
set for all axes (including spindles). The machine axes do not move, the actual values are
generated internally from the setpoints that are not output. The programmed velocities remain
unchanged. This means that the position and velocity information on the operator interface is

K1: Mode group, channel, program operation, reset response
10.5 Program test

Basic Functions
496 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

exactly the same as that output during normal part program execution. The position control is
not interrupted, so the axes do not have to be referenced when the function is switched off.

Note

The signals for exact stop DB31, ... DBX60.6/60.7 (exact stop coarse/fine) mirror the actual
status on the machine.

They are only canceled during program testing if the axis is pushed out of its set position (the
set position remains constant during program testing).

With signal DB21, ... DBX33.7 (program test active) both the PLC program and the part
program can use variable $P_ISTEST to decide how to react or branch in response to these
signals during testing.

Note
Dry run feedrate

"Program execution without axis motion" can also be activated with the function "Dry run
feedrate". With this function, part program sections with a small programmed feedrate can be
processed in a shorter time.

Note
Tool management

Because of the axis disable, the assignment of a tool magazine is not changed during program
testing. A PLC application must be used to ensure that the integrity of the data in the tool
management system and the magazine is not corrupted. The toolbox diskettes contain an
example of the basic PLC program.

10.5.2 Program execution in single-block mode

Function
In case of "Program execution in single-block mode" the part program execution stops after
every program block. If tool cutter radius compensation or a tool nose radius correction is
selected, processing stops after every intermediate block inserted by the controller.

The program status switches to "Program status stopped".

The channel status remains active.

The next part program block is processed on NC Start.

Application
The user can execute a part program block-by-block to check the individual machining steps.
Once the user decides that an executed part program block is functioning correctly, the next
block can be called.

K1: Mode group, channel, program operation, reset response
10.5 Program test

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 497

Single-block types
The following single block types are differentiated:

● Decoding single block
With this type of single block, all blocks of the part program (even the pure computation
blocks without traversing motions) are processed sequentially by "NC Start".

● Action single block (initial setting)
With this type of single block, the blocks that initiate actions (traversing motions, auxiliary
function outputs, etc.) are processed individually.
Blocks that were generated additionally during decoding (e.g. for cutter radius
compensation at acute angles) are also processed individually in single-block mode.
Processing is however not stopped at calculation blocks as these do not trigger actions.

The single-block types are determined via the user interface in the menu "Program controls".

CAUTION

Function feature for single-block type series

In a series of G33/G34/G35 blocks, a single block is only operative if "dry run feed" is selected.

Calculation blocks are not processed in single-step mode (only if single decoding block is
active).

SBL2 is also ineffective with G33/G34/G35.

Selection
It is possible to select the single-block mode:

● Via the machine control panel (key "Single Block")

● Via the user interface
For an exact procedure, see:
References:
Operating Manual of the installed HMI application

Activation
The function is activated through the PLC basic program via the interface signal:

DB21, ... DBX0.4 (activate single block)

Display
Active single-block mode is indicated by a reversal in the relevant field in the status line on the
user interface.

Because of the single-block mode, as soon as the part program processing has processed a
part program block, the following interface signal is set:

DB21, ... DBX35.3 (program status interrupted)

K1: Mode group, channel, program operation, reset response
10.5 Program test

Basic Functions
498 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Processing without single-block stop
Despite the selected single-block mode, a processing without the single-block stop can be set
for specific program runs, e.g. for:

● Internal ASUBs

● User ASUBs

● Intermediate blocks

● Block search group blocks (action blocks)

● Init blocks

● Subprograms with DISPLOF
● Non-reorganizable blocks

● Non-repositionable blocks

● Reposition block without travel information

● Tool approach block.

The setting is made via the following machine data:

MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (prevent single-block stop)

References:
List Manual, Detailed Description of the Machine Data

10.5.3 Program execution with dry run feedrate

Function
The "Program processing with drive run feedrate" function is used to test the coordination of
the NC program, selected in the channel, with the PLC user program, external signals and/or
other channels of the NC, for example. The NC program is executed precisely corresponding
to the programmed commands, functions and traversing velocity. To reduce program
processing time during the test, traversing motion can be executed faster by activating the
drive run feedrate. For example, for G01, G02, G03, G33, G34, G35, G95 the test feedrate
applies instead of the programmed feedrate.

The dry run feedrate is selected at the user interface in the AUTOMATIC and MDA modes,
and can be activated when automatic operation is interrupted or at the end of the block. The
activation is realized from the PLC user program via the NC/PLC interface.

For further information on influencing the feedrate, see Chapter "V1: Feedrates (Page 1389)".

NOTICE

Destroyed tool or workpiece as a result of excessively high cutting velocities

When a workpiece is machined with the "Program processing with dry run feedrate" function
active, it is possible that cutting velocities are obtained that lie outside the permissible range.
These high velocities can destroy the tool and/or workpiece.

K1: Mode group, channel, program operation, reset response
10.5 Program test

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 499

Parameterization

Dry run feedrate
The dry run feedrate effective in the channel is set using:

SD42100 $SC_DRY_RUN_FEED = <dry run feedrate>

Note
Revolutional feedrate

The dry run feedrate also replaces the programmed revolutional feedrate in program blocks
with G95.

Dry run settings
The selection criterion for the feedrate effective that is effective for "Program processing with
dry run feed rate" is set using:

SD42101 $SC_DRY_RUN_FEED_MODE = <value>

<Val‐
ue>

Meaning

0 The maximum from SD42100 and the programmed feedrate are effective as dry run feedrate.
1 The minimum from SD42100 and the programmed feedrate are effective as dry run feedrate.
2 SD42100 is effective as dry run feedrate.
10 As for a value of 0, except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63).

For these functions, the programmed feedrate applies.
11 As for a value of 1, except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63).

For these functions, the programmed feedrate applies.
12 As for a value of 2, except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63).

For these functions, the programmed feedrate applies.

Activation

Selection
The function is selected at the user interface via the operating area "Machine" > Operating
mode "AUTOMATIC" or "MDA" > "Program control " > "Dry run feedrate".

The following NC/PLC interface signal is set to request that the PLC user program activates
the function:

DB21, ... DBX24.6 = 1 (dry run feedrate selected)

Activation
To request that the NC activates the function, the PLC user program must set the following
NC/PLC interface signal:

DB21, ... DBX0.6 = 1 (activate dry run feedrate)

K1: Mode group, channel, program operation, reset response
10.5 Program test

Basic Functions
500 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Feedback signal
DRY is displayed on the user interface in the status display of the "Machine" operating area
as feedback signal for the machine operator that the function is active in the NC.

References
Detailed information on using the "Program processing with dry run feedrate" function is
available in:

● Operating Manual, Turning

● Operating Manual, Milling

Bullet points: Program control, dry run feedrate, DRY

10.5.4 Skip part-program blocks

Function
When testing or breaking in new programs, it is useful to be able to disable or skip certain part
program blocks during program execution. For this, the respective records must be marked
with a slash.

Figure 10-1 Skipping part program blocks

Selection
This function is selected via the operator interface in the "Program control" menu.

K1: Mode group, channel, program operation, reset response
10.5 Program test

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 501

The selection sets the following interface signal:

DB21, ... DBX26.0 (skip block selected)

This does not activate the function.

Activation
The function is activated via the interface signal:

DB21, ... DBX2.0 (activate skip block)

Note

The "Skip part programs" function remains active during block searches.

Display
Activated "Skip block" function is indicated by a reversal of the relevant field on the operator
interface.

10.6 Workpiece simulation

Function
The actual part program is completely calculated in the tool simulation and the result is
graphically displayed in the user interface. The result of programming is verified without
traversing the machine axes. Incorrectly programmed machining steps are detected at an early
stage and incorrect machining on the workpiece prevented.

Simulation NC
The simulation uses its own NC instance (simulation NC). Therefore, before a simulation is
started, the real NC must be aligned to the simulation NC. With this alignment, all active
machine data is read out of the NC and read into the simulation NC. The NC and cycle machine
data is included in the active machine data.

K1: Mode group, channel, program operation, reset response
10.6 Workpiece simulation

Basic Functions
502 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Compile cycles in simulation (only 840D sl)
Up to SW 4.4, no compile cycles are supported, as of SW 4.4 and higher only selected compile
cycles (CC) are supported for the workpiece simulation. The machine data of the supported
compile cycles is aligned once after the control has powered-up. An alignment with "simulation
start" does not take place!

Note

In part programs, CC-specific language commands and machine data of unsupported CCs
cannot be used (see also paragraph "CC-commands in the part program").

Special motion of supported CCs (OEM transformations) are - under certain circumstances -
incorrectly displayed.

CC-commands in the part program
Language commands in the part program of compile cycles that are not supported
(OMA1 ... OMA5, OEMIPO1/2, G810 ... G829, own procedures and functions) therefore result
in an alarm message and cancellation of the simulation without any individual handling.

Solution: Individually handle the missing CC-specific language elements in the part program
($P_SIM query). Example:

Program code Comment
N1 G01 X200 F500
IF (1==$P_SIM)
N5 X300 ; CC not active for simulation.
ELSE
N5 X300 OMA1=10
ENDIF

10.7 Block search, types 1, 2, and 4:

Function
Block search offers the possibility of starting part program execution from almost any part
program block.

This involves the NC rapidly performing an internal run through the part program (without
traversing motions) to the selected target block during block search. Here, every effort is made
to achieve the exact same control status as would result at the target block during normal part
program execution (e.g. with respect to axis positions, spindle speeds, loaded tools, NC/PLC
interface signals, variable values) in order to be able to resume automatic part program
execution from the target block with minimum manual intervention.

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 503

Block search types
● Type 1: Block search without calculation

Block search without calculation is used to find a part program block in the quickest possible
way. No calculation of any type is performed. The control status at the target block remains
unchanged compared to the status before the start of the block search.

● Type 2: Block search with calculation at contour
Block search with calculation at contour is used to enable the programmed contour to be
approached in any situation. On NC Start, the start position of the target block or the end
position of the block before the target block is approached. This is traversed up to the end
position. Processing is true to contour.

● Type 4: Block search with calculation at block end point
Block search with calculation at block end point is used to enable a target position (e.g. tool
change position) to be approached in any situation. The end position of the target block or
the next programmed position is approached using the type of interpolation valid in the
target block. This is not true to contour.
Only the axes programmed in the target block are moved. If necessary, a collision-free
initial situation must be created manually on the machine in "JOG REPOS" mode before
the start of further automatic part program execution.

● Type 5: Block search with calculation in "Program test" (SERUPRO) mode
SERUPRO (search run by programtest) is a cross-channel block search with calculation.
Here, the NC starts the selected part program in "Program test" mode. On reaching the
target block, the program test is automatically deselected. This type of block search also
enables interactions between the channel in which the block search is being performed and
synchronized actions as well as with other NC channels.
See Section "Block search Type 5 (SERUPRO) (Page 517)".

Note

For further explanations regarding the block search, see Section "Behavior during block
search (Page 443)."

Subsequent actions
After completion of a block search, the following subsequent actions may occur:

● Type 1 - Type 5: Automatic Start of an ASUP
When the last action block is activated, a user program can be started as an ASUP.

● Type 1 - Type 4: Cascaded block search
A further block search with a different target specification can be started from "Search target
found".

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
504 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.7.1 Description of the function

Basic sequence for type 2 or type 4
1. User: Activation of the block search type 2 or type 4 (block search with calculation to ...)

via the operator interface

2. Search for the target block with collection of auxiliary functions

3. Stop after "Search target found ⇒ display of alarm 10208 "Continue program with NC start"

4. User: NC start to execute the action block s⇒ DB21, ... DBX7.1 = 1 (NC start)

5. Execution of the action blocks

6. Last action block is activated ⇒ Automatic start of /_N_CMA_DIR/_N_PROG_EVENT_SPF
(default) as an ASUB.

7. Last ASUP block (REPOSA) is activated ⇒ DB21, ... DBX32.6 = 1 (last action block active)

8. Optional: Execution of user-specific requirements via PLC user program

9. Display of the alarm 10208 "Continue program with NC start"?

10.User: Continue program with NC start ⇒ DB21, ... DBX7.1 = 1 (NC start)

Search target not found
If the search target is not found, alarm 15370 "Search target not found during block search" is
displayed and the block search is canceled.

Time sequence

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 505

Action blocks
During a block search type 2 or type 4 (block search with calculation to ...), actions such as
tool (T, D), spindle (S), feedrate programming or M function outputs are collected. With NC
start to execute the action blocks, the collected actions are output to the PLC.

Note

With NC start for the action blocks, the spindle programming collected during block search
type 2 or type 4 (block search with calculation to ...) (S value, M3 / M4 / M5 / M19, SPOS) becomes
active.

The user has to ensure in the PLC user program that the tool can be operated or the spindle
programming is reset or not output:

DB31, ... DBX2.2 = 1 (spindle reset) .

Supplementary conditions

Continuation mode after block search type 4
If initial programming of an axis is performed incrementally to a block search type 4 (block
search with calculation to block end point), the programmed incremental value can be added
to the position value collected up to the search target or to the current actual value of the axis.
The setting is made via:

SD42444 $SC_TARGET_BLOCK_INCR_PROG

The setting data is evaluated with NC start for outputting the action blocks.

Single block
If you do not wish to stop after each action block after the search target during block search
type 2 or type 4 (block search with calculation to ...) is found and while function "Single block"
(DB21, ... DBX0.4 == 1 (activate single block)) is active, this behavior can be deactivated in
machine data:

MD10702 $MN_IGNORE_SINGLEBLOCK_MASK, Bit 3 = 1 (ignore signal block for action
blocks)

Interface signal "start block active"
The interface signal is only set during block search type 2 (block search with calculation to
contour):

● DB21, ... DBX32.4 = 1 (approach block active)

For block search type 4 (block search with calculation to block end point), the interface signal
is not set because no approach block is generated here (approach block equal to target block).

Type of interpolation of the target block
For a block search type 4 (block search with calculation to block end point), the start movement
is performed in the interpolation type valid in the target block. For interpolation types other than
linear interpolation (G0 or G1), the start movement can be canceled with an alarm (e.g. circle
end point error in circular interpolation G2 or G3).

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
506 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.7.2 Block search in connection with other NCK functions

10.7.2.1 ASUB after and during block search

Block search type 2 and type 4: Synchronization of the channel axes
If an ASUP is started after a block search type 2 or type 4 (block search with calculation to ...)",
the actual positions of all channel axes are synchronized.

Effect
If the following system variables are read in the ASUP, they contain the following values:

● $P_EP: Current actual position of the channel axis in the WCS

● $AC_RETPOINT: Collected block search position of the channel axis in the WCS

Block search type 2: ASUP completion
For block search type 2 (block search with calculation at contour), the following command
REPOSA (reapproach to the contour; linear; all channel axes) must be programmed by
completion of the ASUP.

Effect
● All channel axes are moved to their search position that was collected during the block

search.

● $P_EP == "collected block search position of the channel axis (WCS)"

Block search type 4: REPOS behavior
After block search type 4 (block search with calculation to block end point), no automatic
repositioning is triggered during the period described by the beginning and end by the REPOS
command:

● Begin: NC/PLC interface signals DB21, ... DBX32.6 == 1 (last action block active)

● End: Continuing program execution with NC start.

The start point of the approach movement are the current positions of the channel axes at the
time of the NC start command. The end point results from the other transversing movements
programmed in the part program.

For block search type 4, no approach movement is generated by the NC.

Effect:
● After exiting the ASUP, the system variable $P_EP (programmed end position) contains

the actual position, at which the channel axes were positioned by the ASUP or manually
(mode: JOG).
$P_EP == "current actual position of the channel axis in the WCS

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 507

10.7.2.2 PLC actions after block search
If all action blocks have been executed by the NC and actions by the PLC, e.g. starting an
ASUP to perform a tool change, or of the operator, e.g. restore, are possible, the following
channel-specific NC/PLC interface signal is set:

● DB21, ... DB32.6 = 1 (last action block active)

Parameterizing the time of alarm output
To inform the operator that NC start is required in the channel to continue program execution,
alarm 10208 "Continue program with NC start" is displayed.

When the alarm is displayed can be set via machine data:
MD11450 $MN_SEARCH_RUN_MODE, Bit 0 = <value>

<value> Meaning
0 With the change of the last action block after a block search, the following takes place:

● Execution of the part program is stopped
● DB21, ... DBB32.6 = 1 (last action block active)
● Display alarm 10208

1 With the change of the last action block after a block search, the following takes place:
● Execution of the part program is stopped
● DB21, ... DBB32.6 = 1 (last action block active)
● Only display alarm 10208 if DB21, ... DBX1.6 == 1 (PLC action ended)

In combination with the alarm, the following interface signals are set:

● DB21, ... DBX36.7 = 1 (NC alarm with machining standstill is pending)

● DB21, ... DBX36.6 = 1 (NC alarm channel-specific is pending)

10.7.2.3 Spindle functions after block search

Control system response and output
Whether the spindle-specific auxiliary functions collected during block search are automatically
output to the PLC in the action block or user-specifically at a later time can be set in

MD11450 $MN_SEARCH_RUN_MODE, Bit 2 = <value>

<value> Meaning
0 Output of spindle-specific auxiliary functions collected during block search (M3, M4, M5, M19,

M70) in action blocks.
1 The spindle-specific auxiliary functions collected during block search are not output in the

action block.
They can be output at a later time, for example, in an ASUP. The spindle-specific auxiliary
functions collected are stored in system variables:

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
508 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variables
The spindle-specific auxiliary functions collected during block search are stored in the following
system variables:

System variable Description
$P_SEARCH_S [<n>] The spindle speed or cutting speed last programmed
$P_SEARCH_SDIR [<n>] Spindle direction last programmed
$P_SEARCH_SGEAR [<n>] Gear stages last programmed M function
$P_SEARCH_SMODE [<n>] Spindle mode last programmed
$P_SEARCH_SPOS [<n>] Spindle position or traverse path last programmed by means of

M19, SPOS or SPOSA
$P_SEARCH_SPOSMODE [<n>] Position approach mode last programmed by means of M19,

SPOS, or SPOSA
 <n>: Spindle number

For later output of the spindle-specific auxiliary functions, the system variables can be read,
for example, in an ASUB, and output after output of the action blocks:

DB21, ... DBX32.6 == 1 (last action block active)

Note

The contents of the system variables $P_S, $P_DIR and $P_SGEAR may be lost after block
search due to synchronization operations.

For more detailed information on ASUB, block search and action blocks, see Sections "Output
suppression of spindle-specific auxiliary functions (Page 448)" and "Program test (Page 495)."

10.7.2.4 Reading system variables for a block search
In part programs, values can be read from the areas processing, main run, or servo/drive via
system variables:

$P_... Preprocessing-related system variables contain programmed values
$A_... Main-run-related system variables contain current values
$V_... Servo/drive-related system variables contain current values

Because no blocks enter the main run during a block search of type 2 and type 4 (block search
with calculation to ...), main run and servo/drive-related system variables are not changed
during the block search. Where necessary, for these system variables, the block search must
specially handled in the NC program by querying whether a block search is active $P_SEARCH
(block search active).

Preprocessing-related system variables provide correct values in all search types.

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 509

10.7.3 Automatic start of an ASUB after a block search

Parameter assignment

Making the function effective
The automatic ASUB start after a block search is activated by the following MD setting:

MD11450 $MN_SEARCH_RUN_MODE, bit 1 = 1

Program to be activated
In the default setting, the program _N_PROG_EVENT_SPF is activated from the directory
_N_CMA_DIR as ASUB after the block search by changing the last action block. If another
program is to be activated, then the name of this user program must be entered in the following
machine data:

MD11620 $MN_PROG_EVENT_NAME

Behavior when the single-block processing is set
The following channel-specific machine data are used to set whether the activated ASUP will
be processed without interruption although single-block processing is set or whether single-
block processing will be activated:

MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK, bit 4 = <value>

<value> Meaning
0 Single-block processing is active.
1 Single-block processing is suppressed.

Behavior when the read-in disable is set
The channel-specific machine data is used to set whether the ASUP will be processed without
interruption although read-in disable (DB21, ... DBX6.1 = 1) is set, or whether the read-in
disable will be effective:

MD20107 $MC_PROG_EVENT_IGN_INHIBIT, Bit 4 = <value>

<value> Meaning
0 Read-in disable is active.
1 Read-in disable is suppressed.

Note

For more information on parameterizing MD11620, MD20108, and MD20107, see Section
"Parameterization (Page 574)."

Programming
The event by which the ASUP has been started is stored in the system variable
$P_PROG_EVENT. On automatic activation after a block search, $P_PROG_EVENT returns
the value "5."

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
510 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Sequence
Sequence of automatic start of an ASUB after a block search

1. User: Activation of the block search type 2 or type 4 (block search with calculation to ...)
via the operator interface

2. Search for the target block with collection of auxiliary functions

3. Stop after "Search target found ⇒ display of alarm 10208 "Continue program with NC start"

4. User: NC start to execute the action block s⇒ DB21, ... DBX7.1 = 1 (NC start)

5. Execution of the action blocks

6. Last action block is activated ⇒ Automatic start of /_N_CMA_DIR/_N_PROG_EVENT_SPF
(default) as an ASUB.

7. Last ASUP block (REPOSA) is activated ⇒ DB21, ... DBX32.6 = 1 (last action block active)

8. Optional: Execution of user-specific requirements via PLC user program

9. Display of the alarm 10208 "Continue program with NC start"?

Note

With MD11450 $MN_SEARCH_RUN_MODE, Bit 0 == 1, alarm 10208 will only be output
after enabling by the PLC user program (DB21, ... DBX1.6 = 1 (PLC action ended)).

10.User: Continue program with NC start ⇒ DB21, ... DBX7.1 = 1 (NC start)

10.7.4 Cascaded block search

Functionality
The "Cascaded block search" function can be used to start another block search from the
status "Search target found". The cascading can be continued after each located search target
as often as you want and is applicable to the following block search functions:

● Type 1 block search without calculation

● Type 2 block search with calculation at contour

● Type 3 block search with calculation at block end point

Note

Another "cascaded block search" can be started from the stopped program execution only
if the search target has been found.

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 511

Activation
The "cascaded block search" is configured in the existing machine data:
MD11450 $MN_SEARCH_RUN_MODE

● The cascaded block search is enabled (i.e. several search targets can be specified)
with Bit 3 = 0 (FALSE).

● For compatibility reasons, the cascaded block search can be disabled with Bit 3 = 1 (TRUE).
By default, the cascaded block search is set with Bit 3 = 0.

Execution behavior

Search target found, restart block search

When the search target is reached, the program execution is stopped and the search target
displayed as current block. After each located search target, a new block search can be
repeated as often as you want.

Changing the search target specifications

You can change the search target specifications and block search function before every block
search start.

Example: Execution sequence with cascaded block search
● RESET

● Block search up to search target 1

● Block search up to search target 2 → "Cascaded block search"

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
512 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● NC Start for output of the action blocks → Alarm 10208

● NC Start → Continue program execution

Figure 10-2 Chronological order of interface signals

10.7.5 Examples for block search with calculation

Selection
From the following examples, select the type of block search that corresponds to your task.

Type 4 block search with calculation at block end point
Example with automatic tool change after block search with active tool management:

1. Set machine data:
MD11450 $MN_ SEARCH_RUN_MODE to 1
MD11602 $MN_ASUP_START_MASK Bit 0 = 1 (ASUP Start from stopped state)

2. Select ASUP "BLOCK_SEARCH_END" from PLC via FB4 (see also Section "P3: Basic
PLC program for SINUMERIK 840D sl (Page 869)").

3. Load and select part program "WORKPIECE_1".

4. Block search to block end point, block number N220.

5. HMI signals "Search target found".

6. NC Start for output of action blocks.

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 513

7. With the PLC signal:
DB21... DB32.6 (last action block active),
the PLC starts ASUP "BLOCK_SEARCH_END" via FC9 (see also Section "P3: Basic PLC
program for SINUMERIK 840D sl (Page 869)").

8. After the end of the ASUP (can be evaluated, e.g. via M function M90 to be defined, see
example for block N1110), the PLC sets signal
DB21, ... DBX1.6 (PLC action complete).
Alternatively, NC/PLC interface signal:
DB21-DB30 DBB318 bit 0 (ASUP is stopped)
can be scanned.
As a result, Alarm 10208 is displayed, i.e. other actions can now be performed by the
operator.

9. Manual operator actions (JOG, JOG-REPOS, overstoring)

10.Continue part program with NC Start.

Figure 10-3 Approach motion for block search to block end point (target block N220)

Note

"Block search at contour" with target block N220 would generate an approach motion to
the tool change point (start point of the target block).

Type 2 block search with calculation at contour
Example with automatic tool change after block search with active tool management:

1. to 3. Same as example for Type 4 block search
4. Block search at contour, block number N260
5. to 10. Same as example for Type 4 block search

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
514 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 10-4 Approach motion for block search at contour (target block N260)

Note

"Block search to block end point" with target block N260 would result in Alarm 14040 (circle
end point error).

Part programs for Type 4 and Type 2
PROC WORKPIECE_1

Program code Comment
; Main program
...
;Machine contour section 1 with "CUTTER_1"tool
...
N100 G0 G40 X200 Y200 ; Deselect radius compensation
N110 Z100 D0 ; Deselect length correction
;End of contour section 1
;
;Machine contour section 2 with "CUTTER_2"tool
N200 T="CUTTER_2" ; Preselect tool
N210 WZW ; Call tool change routine
N220 G0 X170 Y30 Z10 S3000 M3 D1 ; Approach block for contour section 2
N230 Z-5 ; Infeed
N240 G1 G64 G42 F500 X150 Y50 ; Start point of contour
N250 Y150
N260 G2 J50 X100 Y200
N270 G1 X50
N280 Y50
N290 X150
N300 G0 G40 G60 X170 Y30 ; Deselect radius compensation

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 515

Program code Comment
N310 Z100 D0 ; Deselect length correction
End of contour section 2
...
M30
PROC WZW
;Tool change routine
N500 DEF INT TNR_AKTIV ; Variable for active T number
N510 DEF INT TNR_VORWAHL ; Variable for preselected T number
N520 TNR_AKTIV = $TC_MPP6[9998,1] ; Read T number of active tool
N530 GETSELT(TNR_VORWAHL) ; Read T number of preselected tool
;
;Execute tool change only if tool is not yet active
N540 IF TNR_AKTIV == TNR_VORWAHL GOTOF ENDE
N550 G0 G40 G60 G90 SUPA X450 Y300 Z300 D0 ; Approach tool change point
N560 M6 ; Execute tool change
;
END: M17
PROC SUCHLAUF_ENDE SAVE
;ASUP for calling the tool change routine after block search
N1000 DEF INT TNR_AKTIV ; Variable for active T number
N1010 DEF INT TNR_VORWAHL ; Variable for preselected T number
N1020 DEF INT TNR_SUCHLAUF ; Variable for T number determined in

; block search
N1030 TNR_AKTIV = $TC_MPP6[9998,1] ; Read T number of active tool
N1040 TNR_SUCHLAUF = $P_TOOLNO ; Read T number determined by block

search
N1050 GETSELT(TNR_VORWAHL) ; Read T number of preselected tool
N1060 IF TNR_AKTIV ==TNR_SUCHLAUF GOTOF ASUP_ENDE
N1070 T = $TC_TP2[TNR_SUCHLAUF] ; T selection by tool name
N1080 WZW ; Call tool change routine
N1090 IF TNR_VORWAHL == TNR_SUCHLAUF GOTOF ASUP_ENDE
N1100 T = $TC_TP2[TNR_VORWAHL] ; Restore T preselection by tool name
ASUP_ENDE:
N1110 M90 ; Feedback to PLC
N1120 REPOSA ; ASUP end

K1: Mode group, channel, program operation, reset response
10.7 Block search, types 1, 2, and 4:

Basic Functions
516 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.7.6 Supplementary conditions

10.7.6.1 Compressor functions (COMPON, COMPCURV, COMPCAD)
● If the target block for block search type 2 or type 4 (block search with calculation to ...) is

in a program section in which a compressor function (COMPON, COMPCURV, COMPCAD) is
active, positions are approached on the path calculated by the compressor on repositioning.
These positions must precisely match the positions on the path programmed in the part
program.

● If programmed blocks are eliminated from the part program during compression, these
blocks will not be found at the target block in the block search ⇒ Alarm 15370 "Search target
not found."

10.8 Block search Type 5 (SERUPRO)

10.8.1 Description of the function
Block search type 5, block search with calculation in the "Program test" mode (SERUPRO,
"Search-Run by Program test") enables a cross-channel block search with calculation at a
selectable interruption point. Taking into account existing program coordination commands,
all the status data required to continue the program in the interrupted channels is determined
during SERUPRO and then the NC and PLC set to a state permitting the program continuation.

Before repositioning with subsequent continuation of the program execution, all the output
states that may still be required can be automatically generated via a user-specific ASUP.

Channels
In combination with the HMI, SERUPRO is provided for the following channels:

● For the current SERUPRO channel only (1)

● For all channels with the same workpiece name as the SERUPRO channel (2)

● For all channels with the same mode group as the SERUPRO channel (3)

● For all channels of the NCU (4)

The scope of channels for SERUPRO is selected by means of configuration file maschine.ini,
in Section [BlockSearch]:

Section [BlockSearch] Enable block search function for HMI and select block search configuration
SeruproEnabled=1 ;SERUPRO softkey available for HMI. Default value is (1)
SeruproConfig=1 ;Number (1) to (4) of above indicated channel grouping. Default value is (1)

All other channels started with SERUPRO are operated in "Self-Acting SERUPRO" mode.
Only the channel in which a target block has been selected can be started with a block search
in SERUPRO mode.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 517

Activation
SERUPRO is activated via the HMI. SERUPRO is operated using the "Prog.Test Contour"
softkey.

SERUPRO uses REPOS to approach the target block.

Chronological sequence of SERUPRO
1. Via HMI, softkey "Pog. test contour" and the search target are operated.

2. The NC now automatically starts the selected program in "Program test" mode.

– In this mode, axes are not traversed.

– Auxiliary functions $A_OUT and the direct PLC IO are output.

– The auxiliary functions of the target block are not output.

3. The NC stops at the beginning of the target block, deselects the program test internally,
and displays the stop condition "Wait: Search target found".

4. If the user-specific ASUP "PROG_EVENT.SPF" is available, it is started automatically.

5. Repositioning is performed with the next NC start (REPOS).
The REPOS operation is performed via a system ASUP and can be extended using the
"Editable ASUP" function.

Boundary conditions for block search SERUPRO
The SERUPRO function may only be activated in "AUTOMATIC" mode and may only be
aborted in program state (channel state RESET).

If in normal mode only the PLC starts commonly several channels, then this can be simulated
by SERUPRO in each channel.

With machine data setting:
MD10708 $MN_SERUPRO_MASK, bit 1 = 0,
alarm 16942: "Channel %1 Start program command action %2<ALNX> not possible"
aborts the simulation if part program command START is used.

Machine data:
MD10707 $MN_PROG_TEST_MASK
allows shutdown in the stopped state and has no effect on the SERUPRO operation. The
default setting allows program testing to be deactivated only in the RESET state.

Note

After program testing has been deactivated, a REPOS operation is initiated that is subject to
the same restrictions as a SERUPRO approach operation. Any adverse effects can be inhibited
using an ASUP.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
518 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Controlling SERUPRO behavior
For the functions listed below as an example, the SERUPRO behavior can be set specifically
for the NC:

● Programmed stop (M0)

● Program coordination command START
● Group SERUPRO

● Cross-channel exiting of SERUPRO

● Override

MD10708 $MN_SERUPRO_MASK = <behavior with SERUPRO>

Channel-specific basic settings for SERUPRO
The channel-specific basic settings are normally specified with the following machine data
after a part program start:

MD20112 $MC_START_MODE_MASK= basic settings>

You can specify your own basic settings for SERUPRO which replace the basic settings from
MD20112:

MD22620 $MN_START_MODE_MASK_PRT = <SERUPRO basic settings>

The SERUPRO basic settings must be explicitly released via:

MD22621 $MC_ENABLE_START_MODE_MASK_PRT = 1

NC/PLC interface signal "Block search via program test is active"
The block search via program test is displayed using the NC/PLC interface signal:
DB21, ... DBX318.1 == 1

The interface signal is set from the start of the block search until the target block is inserted
into the main run.

For user-defined ASUP after the SERUPRO operation
 Note

If the machine manufacturer decides to start an ASUP after the SERUPRO operation as
described in point 7, the following must be observed:

Stopped status acc. to point 6:
Machine data:
MD11602 $MN_ASUP_START_MASK
and
MD11604 $MN_ASUP_START_PRIO_LEVEL
allow the NC to start the ASUP from the stopped status automatically via the FC9 block.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 519

Acknowledgment of FC9 only after completion of REPOS block:
The ASUP can only be signaled as complete from the FC9 block with "ASUP Done" if the
REPOS block has also been completed.

Deselection of assigned REPOS operation after point 8:
The start of the ASUP deselects the assigned REPOS operation!

Therefore, the ASUP should be ended with REPOSA in order to retain the REPOS operation.

Deleting an unwanted REPOS operation:
The unwanted REPOS operation is deleted by completing the ASUP with M17 or RET.

Special handling of ASUP:
As a basic rule, an ASUP that ends with REPOS and is started from stopped state receives
special treatment.

The ASUP stops automatically before the REPOS block and indicates this via:

DB21, ... DBX318.0 (ASUP is stopped)

Automatic ASUP start
The ASUP in path:
/_N_CMA_DIR/_N_PROG_EVENT_SPF
is started automatically in SERUPRO approach with machine data:
MD11450 $MN_SEARCH_RUN_MODE, bit 1 = 1
according to the following sequence:

1. The SERUPRO operation has been performed completely.

2. The user presses "NC start".

3. The ASUP is started.

4. The NC stops automatically before the REPOS part program command and the
message "Press NC start to continue the program" appears.

5. The user presses "NC start" again.

6. The NC executes the repositioning motion and continues the part program at the target
block.

Note

The automatic ASUP start with MD11450 requires Starts to continue the program.

The procedure is in this respect similar to other block search types.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
520 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.8.2 Repositioning to the contour (REPOS)

The "Reposition to the contour" (REPOS) function can be used to continue an interrupted
machining at the interrupted location. Unlike REPOS, SERUPRO permits the "refetching" or
"repetition" of a program section. For this purpose, once SERUPRO has found the target block,
the contour is positioned at the location selected with REPOS mode and the machining
continued.

SERUPRO: Set REPOS response
The REPOS behavior, i.e. the behavior in the repositioning block, is set with the following
machine data:
MD11470 $MN_REPOS_MODE_MASK = <REPOS mode>

<REPOS mode>
Bit Value Meaning
0 0 An interrupted delay time is repeated

1 An interrupted delay time is continued
1 - Reserved
2 0 DB31, ... DBX10.0 (REPOS delay) not considered in the repositioning deceleration

block.
1 DB31, ... DBX10.0 (REPOS delay) considered in the repositioning deceleration

block.
3 0 SERUPRO: Only path axes traverse in the repositioning block

1 SERUPRO: Path and positioning axes traverse concurrently in the repositioning
block

4 0 REPOS: Only path axes traverse in the repositioning block
1 REPOS: Path and positioning axes traverse concurrently in the repositioning block

5 0 During the interruption, changed feedrates and spindle speeds act only after the
first part program block following the interruption location

1 Modified feedrates and spindle speeds during the interruption are valid immedi‐
ately from the interruption point onward, i.e. they are already valid in the residual
block and are given priority. This behavior relates to every REPOS operation.

6 0 SERUPRO: In the repositioning block, neutral axes and positioning spindles tra‐
verse as path axes.

1 SERUPRO: In the repositioning block, neutral axes and positioning spindles tra‐
verse as command axes.
Neutral axes and positioning spindles are repositioned after SERUPRO.
For neutral axes, where it is not permissible to reposition them, the REPOS delay
must be set: DB31, ... DBX10.0 = 1 (REPOS delay)

7 0 The REPOS delay is not enabled.
1 The REPOS delay is enabled.

Axes with active REPOS delay (DB31, ... DBX10.0 == 1), which are neither ge‐
ometry nor orientation axes, are not traversed when repositioning.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 521

CAUTION

Risk of collision

MD11470 $MN_REPOS_MODE_MASK, Bit 3 or Bit 4 = 1

The user alone is responsible for ensuring that the concurrent traversal of the axes in the
repositioning block does not cause any collision on the machine.

Repositioning with controlled REPOS
The REPOS mode can be specified for the path axes via the NC/PLC interface:

DB21, ... DBX31.0 - 2 (REPOS mode)

The REPOS mode is programmed in the NC program, and defines the approach behavior (see
Section "Repositioning with controlled REPOS (Page 528)").

The REPOS behavior of individual axes can also be controlled via NC/PLC interface signals,
and must be enabled using machine data:
MD11470 $MN_REPOS_MODE_MASK BIT 2=1.

Path axes cannot be influenced individually. For all other axes that are not geometry axes,
REPOS of individual axes can be prevented temporarily and also delayed. NC/PLC interface
signals can be used to subsequently re-enable or to continue blocking individual channel axes
that REPOS would like to traverse.

DANGER

Risk of collision

Signal DB31, ... DBX2.2 (delete distance-to-go) produces the following dangerous behavior
when function "Prevent repositioning of individual axes" is selected:

MD11470 $MN_REPOS_MODE_MASK.bit 2 == 1

As long as an axis is programmed incrementally after the interruption, the NC approaches
different positions than those approached with no interruption.

See the example below: Axis is programmed incrementally

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
522 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example: Rotary axis A is programmed incrementally
Rotary axis A is the fourth machine axis.

● Rotary axis A is positioned at 11° before the REPOS operation.
In the interruption block, i.e. in the target block of SERUPRO, rotary axis A should be moved
to 27°.
Any number of blocks later, rotary axis A is moved incrementally through 5°:
N1010 POS[A]=IC(5) FA[A]=1000
When interface signal DB34 DBX10.0 = 1 is set (REPOS delay), rotary axis A is not moved
in the REPOS operation, and is moved with N1010 to 32°. The user may have to consciously
acknowledge the movement from 11° to 27°.

DANGER

Risk of collision

As, after the interruption, the axis is incrementally programmed, it moves to 16° instead
of 32°.

● Starting axes individually
The REPOS behavior for SERUPRO approach with several axes is selected with:
MD11470 $MN_REPOS_MODE_MASK.BIT 3 = 1
The NC commences SERUPRO approach with a block that moves all positioning axes to
the programmed end and the path axis to the target block.
The user starts the individual axes by selecting the appropriate feedrate enables. The target
block is then executed.

● Repositioning positioning axes in the repositioning block
Positioning axes are not repositioned in the residual block but rather in the repositioning
block, and their effect is not limited to the block search via program test on SERUPRO
approach.
MD11470 $MN_REPOS_MODE_MASK.bit 3 = 1: for block search via program test
(SERUPRO)
MD11470 $MN_REPOS_MODE_MASK.bit 4 = 1: for each REPOS

Note

If neither bit 3 nor bit 4 is set, in that this phase non-path axes are repositioned in the residual
block.

Delayed approach of axis with REPOS offset
If the axis-specific interface signal DB31, ... DBX10.0 (REPOS delay) is set with the positive
edge of DB21, ... DBX31.4 (REPOS mode change), the REPOS offset for this axis is only
traversed through when programmed the next time.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 523

Whether this axis is currently subject to a REPOS offset can be read via synchronized actions
with $AA_REPOS_DELAY.

CAUTION

Risk of collision

DB31, ... DBX10.0 (REPOS delay) have no effect on machine axes, which form a path.

Whether an axis is a path axis can be determined using DB31, ... DBX76.4 (path axis).

Acceptance timing of REPOS SIGNALS
With the positive edge of DB21, ... DBX31.4 (REPOS mode change), the following REPOS
signals are transferred into the NC:

● Channel-specific: DB21, ... DBX31.0 - 2 (REPOS mode)

● Axis-specific: DB31, ... DBX10.0 (REPOS delay)

The level of the REPOS signals refers to the actual main run block. There are two different
cases:

1. One repositioning block of a currently active REPOS operation is contained in the main run.
The active REPOS operation is canceled, restarted and the REPOS offsets are influenced
by the REPOS signals mentioned above:

2. No repositioning block of a currently active REPOS operation is contained in the main run.
Each future REPOS operation wanting to reapproach the current main program block is
influenced by the REPOS signals mentioned above.

Note

In a running ASUP, DB21, ... DBX31.4 (REPOS mode change) does not act on the final
REPOS, unless the signal is inadvertently set at the instant in time that the REPOS blocks are
being executed.

In the 1st case, the signal is allowed only in the stopped state.

Response to RESET:
● The NC has already acknowledged the PLC signal:

DB21, ... DBX31.4 == 1 (REPOS mode change) AND
DB21, ... DBX319.0 == 1 (REPOS mode change acknowledgment)
If, in this situation, a channel reset occurs, then the active REPOS mode is cleared:
DB21, ... DBX319.1 - 3 = 0 (active REPOS mode)

● The NC has still not acknowledged the PLC signal:
DB21, ... DBX31.4 == 1 (REPOS mode change) AND
DB21, ... DBX319.0 == 0 (REPOS mode change acknowledgment)
If, in this situation, a channel reset occurs, then acknowledgment of the REPOS mode
change and the active REPOS mode are cleared:
DB21, ... DBX319.0 = 0 (REPOS mode change acknowledgment)
DB21, ... DBX319.1 - 3 = 0 (active REPOS mode)

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
524 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Controlling SERUPRO approach with NC/PLC interface signals
The SERUPRO approach can be used with:DB21, ... DBX31.4 (REPOS mode change) and
the associated signals in the following phases:

● From "Search target found" to "Start SERUPRO ASUP"

● From "SERUPO-ASUP stops automatically before REPOS" to "Target block is executed"

While the SERUPRO ASUP is being executed, e.g. in the program section before the REPOS
operation, the interface signal does not affect the SERUPRO positioning

REPOS operations with NC/PLC interface signals
Control REPOS mit NC/PLC interface signals

REPOS offsets can be influenced with the following NC/PLC interface signals:

● DB21, ... DBX31.0 - 2 (REPOS mode)

● DB21, ... DBX31.4 (REPOS mode change)

● DB31, ... DBX10.0 (REPOS delay)

● DB31, ... DBX72.0 (REPOS delay)

REPOS acknowledgment signals
The following NC/PLC interface signals can be used to acknowledge from the NC, functions
that control the REPOS response via PLC:

● DB21, ... DBX319.0 (REPOS mode change acknowledgment)

● DB21, ... DBX319.1 - 3 (active REPOS mode)

● DB21, ... DBX319.5 (REPOS acknowledgment delay)

● DB31, ... DBX70.0 (REPOS offset)

● DB31, ... DBX70.1 (REPOS offset valid)

● DB31, ... DBX70.2 (REPOS delay acknowledgment)

● DB31, ... DBX76.4 (path axis)

For further information, see "REPOS offset in the interface"

REPOS acknowledgment operations
If the NC recognizes a REPOS mode change (DB21, ... DBX31.4 == 1), then this is
acknowledged by the PLC with DB21, ... DBX319.0 = 1.

Note

If the NC has not yet acknowledged interface signal DB21, ... DBX31.4 (REPOS MODE
CHANGE) with interface signal DB21, ... DBX319.0 (REPOS mode change acknowledgment)
, then a channel reset in this situation causes the program to be canceled, and the REPOS,
which is to be used to control the REPOS mode, is not executed.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 525

A REPOS mode issued from the PLC is acknowledged by the NC using the following interface
signals:

● DB21, ... DBX319.1 - 3 (active REPOS mode)

● DB31, ... DBX10.0 (REPOS delay)

● DB31, ... DBX70.2 (REPOS delay acknowledgment)

Example
● Instant in time ②: An NC program in block N20 is stopped with an NC stop. All axes are

braked along their parameterized braking ramps to standstill.

● Instant in time ③: After the PLC user program has set the "REPOS mode", the NC accepts
the REPOS mode with the 0/1 edge of "REPOS mode change".

● Instant in time ④: "REPOS mode change acknowledgment" remains set until the ASUP is
initiated.

● Instant in time ⑤: The REPOS operation begins in the ASUP.

● Instant in time ⑥: The residual block of the ASUP is reloaded.

Figure 10-5 REPOS sequence in part program with timed acknowledgment signals from NC

NC sets acknowledgment again
Phase with REPOSPATHMODE still active (residual block of the program stopped at → Time
(2) is not yet completely executed).

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
526 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

As soon as the REPOS repositioning motion of the ASUP is executed, the NC sets the "Repos
Path Mode Ackn" again (→ Time (5)). If no REPOSPATHMODE has been preselected via an
NC/PLC interface signal, the programmed REPOS mode is displayed.

"Repos Path Mode Ackn" is canceled when the residual block is activated (→ Time (6)).
 The part program block N30 following the block at → Time (2) is resumed.

Interface signal:
DB31, ... DBX70.2 (REPOS delay acknowledgment) is analogously defined.

DB31, ... DBX70.1 (REPOS offset valid) = 1, if:

DB21, ... DBX319.1-319.3 (active REPOS mode) = 4 (RMNBL).

Valid REPOS offset
At the end of the SERUPRO operation, the user can read out the REPOS offset via the axis/
spindle NC/PLC interface signal (NC→PLC):
DB31, ... DBX70.0 (REPOS offset).

The effects of this signal on the relevant axis are as follows:

Value 0: No REPOS offset is applied.
Value 1: REPOS offset is applied.

Range of validity
Interface signal:
DB31, ... DBX70.0 (REPOS offset)
is supplied at the end of the SERUPRO operation.

The REPOS offset is invalidated at the start of a SERUPRO ASUP or the automatic ASUP
start.

Updating the REPOS offset in the range of validity
Between the SERUPRO end and SERUPRO start, the axis can be moved in JOG mode with
a mode change.

In JOG mode, the user manually moves the axis over the REPOS offset path in order to set
interface signal:
DB31, ... DBX70.0 (REPOS offset) to the value 0.

Within the range of validity, the axis can also be traversed using FC18, whereby the interface
signal
DB31, ... DBX70.0 (REPOS offset) is continuously updated.

Displaying the range of validity
The range of validity of the REPOS offset is indicated with interface signal:

DB31, ... DBX70.1 (REPOS offset valid)

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 527

It is indicated whether the REPOS offset calculation was valid or invalid:

Value 0: The REPOS offset of this axis is calculated correctly.
Value 1: The REPOS offset of this axis cannot be calculated, as the REPOS has not yet

occurred, e.g. it is at the end of the ASUP, or no REPOS is active.

REPOS offset after an axis interchange
The group signal:DB21, ... DBX319.5 (REPOS delay) can be used to determine whether a
valid REPOS offset has taken place:

Value 0: All axes currently controlled by this channel have either no REPOS offset or their
REPOS offsets are invalid.

Value 1: Miscellaneous.

REPOS offset with synchronized synchronous spindle coupling
When repositioning with SERUPRO, processing continues at the point of interruption. If a
synchronous spindle coupling was already synchronized, there is no REPOS offset of the
following spindle and no synchronization path is present. The synchronization signals remain
set.

Search target found on block change
The axis-specific NC/PLC interface signal DB31, ... DBX76.4 (path axis) is 1 if the axis is part
of the path grouping.

This signal shows the status of the current block to be executed during block change.
Subsequent status changes are ignored.

If the SERUPRO operation is ended with "Search target found", DB31, ... DBX76.4 (path axis)
refers to the target block.

10.8.2.1 Repositioning with controlled REPOS
Once SERUPRO has been used to find the target block, prior to continuing the interrupted
program, a REPOS operation for repositioning the contour is performed. The REPOS mode
"Reposition at the block start point of the target block" (RMBBL) is active by default. The
REPOS mode can be defined user-specific via the NC/PLC interface:

DB21, ... DBX31.0 - .2 (REPOS mode)

Reference:
A detailed description of the interface signals can be found in the NC Variables and Interface
Signals List Manual

REPOS mode RMNBL repositioning to the next point on the path
in the RMNBL REPOS mode, positioning is made for the REPOS start position from the next
nearest contour point.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
528 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example
The program is interrupted at any point in the block N110. The axes were then traversed to
position (A), e.g. manually. Once SERUPRO has found target block N110, the REPOS
operation with REPOS mode RMNBL is performed. With regard to the REPOS start position
(A), point (B) is the next nearest point of the contour. The REPOS operation is completed when
point (B) is reached. The programmed contour of the interrupted program is traversed again
starting at point (B).

Specifying the REPOS mode via the NC/PLC interface
The REPOS mode can be specified via the following NC/PLC interface signal:
DB21, ... DBX31.0 - .2 (REPOS mode)

Note

RMNBL is a general REPOS extension and it is not restricted to SERUPRO.

RMIBL and RMBBL behavior identically for SERUPRO.

DB21, ... DBX31.0 - .2 (REPOS mode) affects only the traversing motion of the path axes.

The behavior of the other axis can be changed individually using interface signal DB31, ...
DBX10.0 (REPOSDELAY). The REPOS offset is not applied immediately, but only when it is
next programmed.

For further information on the programming of the repositioning point, see:

References:
Programming Manual, Job Planning; Path Behavior, Section: Repositioning on contour

10.8.3 Accelerate block search

Machine data settings
The speed of execution of the SERUPRO operation can be influenced via the following
machine data.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 529

MD22600 $MC_SERUPRO_SPEED_MODE = <value>

<Value> Meaning
0 Program test with block search velocity / dry run feedrate:

● Axes: MD22601 $MC_SERUPRO_SPEED_FACTOR * dry run feedrate
● Spindles: MD22601 $MC_SERUPRO_SPEED_FACTOR * programmed speed
Dynamic limitations of axes / spindles are not considered.

1 Program test with programmed velocity:
● Axes: Dry run feedrate
● Spindles: Programmed speed
Dynamic limitations of axes / spindles are considered.

2 Program test with dry run feedrate
Under program test, traversing is performed with the programmed velocity / speed.
Dynamic limitations of axes / spindles are considered.

3 Program test with block search velocity
Under program test, traversing is performed with the following velocity:
● Axes: MD22601 $MC_SERUPRO_SPEED_FACTOR * programmed feedrate
● Spindles: MD22601 $MC_SERUPRO_SPEED_FACTOR * programmed speed.
Dynamic limitations of axes / spindles are not considered.
Note
When revolutional feedrate is active (e.g. G95), the programmed feedrate is not multiplied
by MD22601 $MC_SERUPRO_SPEED_FACTOR but only the programmed spindle speed.
This results, here too, in an increase in the effective path velocity by MD22601 $MC_SER‐
UPRO_SPEED_FACTOR.

Supplementary conditions

Main axes
MD22600 $MC_SERUPRO_SPEED_MODE acts on the following main run axes with
SERUPRO:

● PLC axes

● Command axes

● Positioning axes

● Reciprocating axes

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
530 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Synchronized actions

NOTICE

Actions of synchronized action may not be executed with SERUPRO

Because during SERUPRO other actual values (e.g. axis positions) are generated internally
that are different from those in normal program execution, with SERUPRO, conditions of
synchronized actions that check the actual values (e.g. axis positions) are no longer
recognized as true (TRUE) and that the action part of the synchronized action is therefore
not executed.

Revolutional feedrate
Effects of MD22601 $MC_SERUPRO_SPEED_FACTOR during DryRun:

● Switchover of G95/G96/G961/G97/G971 to G94
● Tapping and thread cutting: Normal dry run velocity.

Tapping without compensating chuck
● With "tapping without compensating chuck" (G331/G332), the spindle is interpolated under

position control in a path grouping. The drilling depth (linear axis), the thread pitch, and
speed (spindle) are defined.
During dry run, the velocity of the linear axis is specified, the speed remains constant, and
the pitch is adjusted.
After SERUPRO, a position for the spindle results that is deviates from normal mode
because the spindle has revolved fewer times in SERUPRO.

10.8.4 SERUPRO ASUB

SERUPRO ASUP special points
Special points should be noted for SERUPRO ASUP with regard to:

● Reference point approach: Referencing via part program G74
● Tool management: Tool change and magazine data

● Spindle ramp-up: On starting a SERUPRO ASUP

G74 reference point approach
If command G74 (reference point approach) is programmed between the program start and
the search target, this will be ignored by the NC.

SERUPRO approach does not take this G74 command into account!

Tool management
If tool management is active, the following setting is recommended:

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 531

MD20310 $MC_TOOL_MANAGEMENT_MASK Bit 20 = 0

The tool management command generated during the SERUPRO operation is thus not output
to the PLC!

The tool management command has the following effect:

● The NC acknowledges the commands automatically.

● No magazine data is changed.

● Tool data is not changed.
Exception:
The tool enabled during the test mode can assume 'active' state. In this way, the wrong tool
may be on the spindle after the SERUPRO operation.
Remedy:
The user starts a SERUPRO ASUP that is actually traversed. Prior to the start, the user
can start an ASUP that loads the correct tool.

SERUPRO operation: Functionality: In sequence steps 2. to 6.
SERUPRO ASUP: Functionality: The sequence of step 7.

In addition, machine data setting MD20310 $MC_TOOL_MANAGEMENT_MASK Bit 11 = 1 is
required because the ASUP may have to repeat a T selection.

Systems with tool management and auxiliary spindle are not supported by SERUPRO!

Example
Tool change subprogram

Program code Comment
PROC L6 ; Tool change routine
N500 DEF INT TNR_AKTUELL ; Variable for active T number
N510 DEF INT TNR_VORWAHL ; Variable for preselected T number

 ; Determine current tool
N520 STOPRE ; In program testing
N530 IF $P_ISTEST ; From the program context
N540 TNR_AKTUELL = $P_TOOLNO ; The "current" tool is read
N550 ELSE ; Otherwise, the tool of the spindle is read out.
N560 TNR_AKTUELL = $TC_MPP6[9998,1] ; Read tool T number on the spindle
N570 ENDIF

N580 GETSELT(TNR_VORWAHL) ; Read T number of the preselected tool of the master spindle

; Execute tool change only if tool is not yet current
N590 IF TNR_AKTUELL <> TNR_VORWAHL ; Approach tool change point
N600 G0 G40 G60 G90 SUPA X450 Y300
Z300 D0

N610 M206 ; Execute tool change
N620 ENDIF
N630 M17

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
532 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

ASUP for calling the tool change routine after type 5 block search

Program code Comment
PROC ASUPWZV2
N1000 DEF INT TNR_SPINDEL ; Variable for active T number
N1010 DEF INT TNR_VORWAHL ; Variable for preselected T number
N1020 DEF INT TNR_SUCHLAUF ; Variable for T number determined in block search
N1030 TNR_SPINDEL = $TC_MPP6[9998,1] ; Read tool T number on the spindle
N1040 TNR_SUCHLAUF = $P_TOOLNO ; Read T number determined by block search,

i.e. this tool determines the
current tool offset

N1050 GETSELT(TNR_VORWAHL) ; Read T number of preselected tool
N1060 IF TNR_SPINDEL ==TNR_SUCHLAUF GOTOF AS-
UP_ENDE1

N1070 T = $TC_TP2[TNR_SUCHLAUF] ; T selection by tool name
N1080 L6 ; Call tool change routine

N1085 ASUP_ENDE1:
N1090 IF TNR_VORWAHL == TNR_SUCHLAUF GOTOF AS-
UP_ENDE

N1100 T = $TC_TP2[TNR_VORWAHL] ; Restore T preselection by tool name

N1110 ASUP_ENDE:
N1110 M90 ; Feedback to PLC
N1120 REPOSA ; ASUP end

In both of the programs PROC L6 and PROC ASUPWZV2, the tool change is programmed
with M206 instead of M6.
ASUP "ASUPWZV2" uses different system variables to detect the progress of the program
($P_TOOLNO) and represent the current status of the machine ($TC_MPP6[9998,1]).

Spindle ramp-up
When the SERUPRO ASUP is started, the spindle is not accelerated to the speed specified
in the program because the SERUPRO ASUP is intended to move the new tool into the correct
position at the workpiece after the tool change.

A spindle ramp-up is performed with SERUPRO ASUP as follows:

● SERUPRO operation has finished completely.

● The user starts the SERUPRO ASUP via function block FC 9
 in order to ramp up the spindle.

● The start after M0 in the ASUP does not change the spindle status.

● SERUPRO ASUP automatically stops before the REPOS part program block.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 533

● The user presses START.

● The spindle accelerates to the target block state if the spindle was not programmed
differently in the ASUP.

Note

Modifications for REPOS of spindles:

The transitions of speed control mode and positioning mode must be taken into
consideration in the event of modifications in SERUPRO approach and spindle functionality.

For further information on the operating mode switchover of spindles, see Section "Modes
(Page 1274)".

10.8.5 Selfacting SERUPRO

Self-acting SERUPRO
The channel-specific function "Self-acting SERUPRO" allows a SERUPRO sequence without
having to previously define a search target in a program of the associated SERUPRO channels.

A special channel, the "serurpoMasterChan", can also be defined for each "Self-acting
SERUPRO". A search target can be defined in this channel.

The "Self-acting SERUPRO" function supports the SERUPRO cross-channel block search.

Function
The "Self-acting SERUPRO" operation cannot be used to find a search target. If the search
target is not reached, then no channel is stopped. However, in certain situations the channel
is temporarily stopped. Generally, the channel waits for another channel. Examples are: Wait
marks, couplings or axis interchange.

The wait phase occurs:
During this wait phase, the NC checks the "seruproMasterChan" channel whether it has
reached a search target. The wait phase is exited when a search target is not reached.

If the search target is reached,
the SERUPRO operation is also ended in the channel. The "seruproMasterChan" channel
must have been started in normal SERUPRO mode.

No wait phase occurs:
"Self-acting SERUPRO" is ended by M30 of the part program.

The channel is now in the Reset state again.

There is no SERUPRO approach.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
534 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Starting a group of channels
If a group of channels is only started with "Self-acting SERUPRO", then all channels are ended
with "RESET".

Exception:
A channel waits for a partner channel that has not been started at all.

A cross-channel block search can be carried out as follows:

● Via the HMI, the user selects the channels that must work together (channel group).

● The user selects a particularly important channel from the channel group for which a search
target is to be explicitly selected (target channel).

● The HMI will then start SERUPRO on the target channel and "Self-acting SERUPRO" in
the remaining channels of the channel group.

The operation is complete when every relevant channel has deleted "seruproActive".

 "Self-acting SERUPRO" accepts no master channel on another NCU.

Activation
"Self-acting SERUPRO" is activated via the HMI as a block search start for the Type 5 block
search for target channel "seruproMasterChan".

A search target is not specified for the dependent channels started from the target channel.

10.8.6 Locking a program section for "Continue machining at the contour"

Programmed interrupt pointer
If because of manufacturing and/or process-related reasons, "Continue machining at the
contour" may not be possible within a certain program section at a program abort, this program
section can be locked for the target block of a block search.

If after a program abort there is a block search for the interruption point within the locked
program section for "Continue machining at the contour", the last executable block (main run
block) before the start of the locked section is used by the control as target block (hold block).

Programming

Syntax
IPTRLOCK()

Functionality
Marks the beginning of the program section as of which "Continue machining at the contour"
is locked. The next executable block (main run block) in which IPTRLOCK becomes active is
now used as target block for a block search with "Continue machining at the interruption point",
until the release with IPTRUNLOCK. This block is referred to as the hold block in the following.

Effectiveness: Modal

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 535

Syntax
IPTRUNLOCK()
Marks the end of the program section locked for "Continue machining at the contour". As of
the next executable block (main run block) in which IPTRLOCK becomes active, the current
block is used again as target block for a block search with "Continue machining at the
interruption point". This block is referred to as the release block in the following.

Effectiveness: Modal

Example

Program code Comment
...
N010 IPTRLOCK() ; Locked area: Start
N020 R1=R1+1
N030 G4 F1 ; Hold block
... ; Locked area
N200 IPTRUNLOCK() ; Locked area: End
N220 R1=R1+1
N230 G4 F1 ; Release block
...

Supplementary conditions
● IPTRLOCK acts within a program (*.MPF, *.SPF) at the most up to the end of the program

(M30, M17, RET). IPTRUNLOCK implicitly becomes active at the end of the program.

● Multiple programming of IPTRLOCK within a program does not have a cumulative effect.
With the first programming of IPTRUNLOCK within the program or when the end of the
program is reached, all previous IPTRLOCK calls are terminated.

● If there is a subprogram call within a locked area, "Continue machining at the contour" is
also locked for this and all following subprogram levels. The lock also cannot be cancelled
within the called subprogram through explicit programming of IPTRUNLOCK.

Example: Nesting of locked program sections in two program levels
With the activation of the "Continue machining at the contour" lock in PROG_1, "Continue
machining at the contour" is also locked for PROG_2 and all following program levels.

Program code Comment
PROC PROG_1 ; Program 1
...
N010 IPTRLOCK()
N020 R1=R1+1
N030 G4 F1 ; Hold block
... ; Locked area: Start
N040 PROG_2 ; Locked area
... ; Locked area: End
N050 IPTRUNLOCK()

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
536 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N060 R2=R2+2
N070 G4 F1 ; Release block
...

Program code Comment
PROC PROG_2 ; Program 2
N210 IPTRLOCK() ; Ineffective due to program 1
...
N250 IPTRUNLOCK() ; Ineffective due to program 1
...
N280 RET ; Ineffective due to program 1

Example 3: Multiple programming of IPTRLOCK

Program code Comment
PROC PROG_1 ; Program 1
...
N010 IPTRLOCK()
N020 R1=R1+1
N030 G4 F1 ; Hold block
... ; Locked area: Start
N150 IPTRLOCK() ; Locked area
... ; Locked area
N250 IPTRLOCK() ; Locked area
... ; Locked area: End
N360 IPTRUNLOCK()
N370 R2=R2+2
N380 G4 F1 ; Release block
...

System variable
The status of the current block can be determined via the system variable $P_IPTRLOCK:

$P_IPTRLOCK Meaning
FALSE The current block is not within a program section locked for "Continue machining

at the contour"
TRUE The current block is within a program section locked for "Continue machining at

the contour"

Automatic function-specific "Continue machining at the contour" lock
For various couplings, the activation/deactivation of the "Continue machining at the contour"
lock can be performed automatically channel-specifically with the activation/deactivation of the
coupling:

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 537

MD22680 $MC_AUTO_IPTR_LOCK, bit x

Bit Val‐
ue

Meaning

0 Electronic gear (EGON / EGOF)
1 Automatic "Continue machining at the contour" lock is active
0 Automatic "Continue machining at the contour" lock is not active

1 Axial master value coupling (LEADON / LEADOF)
1 Automatic "Continue machining at the contour" lock is active
0 Automatic "Continue machining at the contour" lock is not active

This program section begins with the last executable block before the activation and ends with
the deactivation.

The automatic interrupt pointer is not active for couplings that were activated or deactivated
via synchronized actions.

Example: Automatically declaring axial master value coupling as search-suppressed:

Program code Comment
N100 G0 X100
N200 EGON(Y,"NOC",X,1,1) ; Search-suppressed program section starts.
N300 LEADON(A,B,1)
...
N400 EGOFS(Y)
...
N500 LEADOF(A,B) ; Search-suppressed program section ends.
N600 G0 X200

A program abort within search-suppressed program section (N200 - N500) always provides
the interrupt pointer with N100.

NOTICE

Unwanted state caused by function overlappings

If there is an overlap of the "Programmable interrupt pointer" and "Automatic interrupt pointer"
functions via machine data, the NC selects the largest possible search-suppressed area.

A program may need a coupling for almost all of the runtime. In this case, the automatic
interrupt pointer would always point to the start of the program and the SERUPRO function
would in fact be useless.

10.8.7 Behavior during POWER ON, mode change and RESET

SERUPRO is inactive at Power On. The operating mode change is permitted during
SERUPRO. RESET aborts SERUPRO, the internally selected program test is deselected
again. SERUPRO cannot be combined with other block search types.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
538 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.8.8 Supplementary conditions

10.8.8.1 STOPRE in the target block
The STOPRE block receives all modal settings from the preceding block and can, therefore,
apply conditions in advance in relation to the following actions:

● Synchronize program line currently processing with the main run.

● Derive modal settings for SERUPRO in order, for example, to influence this REPOS motion
on approach of SERUPRO.

Example: Position a Z axis by specifying an X axis setpoint.
When block "G1 F100 Z=$AA_IM[X]" is interpreted, the preceding STOPRE block ensures
synchronization with the main run. The correct setpoint of the X axis is thus read via $AA_IM
to move the Z axis to the same position.

Example: Read and correctly calculate external work offset.

N10 G1 X1000 F100
N20 G1 X1000 F500
N30 G1 X1000 F1000
N40 G1 X1000 F5000
N50 SUPA G1 F100 X200 ; move external work offset to 200
N60 G0 X1000
N70 ...

Via an implicit STOPRE before N50, the NC can read and correctly calculate the current work
offset.
For a SERUPRO operation on the N50 search target, repositioning is on the implicit STOPRE
in the SERUPRO approach and the velocity is determined from N40 with F5000.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 539

Implicit preprocessing stop
Situations in which an implicit preprocessing stop is issued:

1. In all blocks in which one of the following variable access operations occurs:

– Programming of a system variable beginning with $A...

– Programming of a system variable beginning with attribute SYNR/SYNRW

2. For the following commands:

– Part program MEACALC, MEASURE commands

– Programming of SUPA (suppress frame and online corrections)

– Programming of CTABDEF (start of the curve table definition)

– Part program WRITE/DELETE command (write/delete file)

– Before the first WRITE/DELETE command of a sequence of such commands

– Part program EXTCALL command

– Part program GETSELT, GETEXET commands

– For tool and active FTOCON tool fine correction

3. For the following command processing:

– End processing of a type 1 block search ("block search without calculation")

– End processing of a type 2 block search with calculation ("block search at contour end
point")

10.8.8.2 SPOS in target block
If a spindle is programmed with M3/M4 and a switch made to SPOS in the target block, the
spindle is switched to SPOS at the end of the SERUPRO operation ("Search target found"
status).

DB31, ... DBX84.5 = TRUE (active spindle mode: positioning mode)

10.8.8.3 Travel to fixed stop (FXS)
During repositioning (REPOS), the "Travel to fixed stop" function (FXS) is repeated
automatically. Every axis is taken into account. The torque programmed last before the search
target is used as torque.

System variable
The system variables for "Travel to fixed stop" have the following meaning with SERUPRO:

● $AA_FXS: Progress of the program simulation

● $VA_FXS: Real machine state

The two system variables always have the same values outside the SERUPRO function.

ASUP
A user-specific ASUP can be activated for SERUPRO.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
540 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

References
For detailed information on the SERUPRO block search, see Section "Detailed description
(Page 318)".

10.8.8.4 Travel with limited torque/force (FOC)
During repositioning (REPOS), the "Travel with limited torque/force" function (FOC) is repeated
automatically. Every axis is taken into account. The torque programmed last before the search
target is used as torque.

System variable
The system variables for "Travel with limited torque/force" have the following meaning with
SERUPRO:

● $AA_FOC: Progress of the program simulation

● $VA_FOC: Real machine state

Supplementary condition
A changing torque characteristic cannot be implemented during repositioning.

Example
A program traverses axis X from 0 to 100 and switches "Travel with limited torque/force"
(FOC) on every 20 increments for 10 increments. This torque characteristic is usually generated
with non-modal FOC and cannot be performed during repositioning (REPOS). Instead, axis X
is traversed from 0 to 100 with or without limited torque/force in accordance with the last
programming.

References
For detailed information on the SERUPRO block search, see Section "Detailed description
(Page 318)".

10.8.8.5 Synchronous spindle

The synchronous spindle can be simulated.
The synchronous spindle operation with main spindle and any number of following spindles
can be simulated in all existing channels with SERUPRO.

For further information about synchronous spindles, see:

References:

Function Manual, Extended Functions; Synchronous Spindle (S3)

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 541

10.8.8.6 Couplings and master-slave

Setpoint and actual value couplings
The SERUPRO operation is a program simulation in Program Test mode with which setpoint
and actual value couplings can be simulated.

Specifications for EG simulation
For simulation of EG, the following definitions apply:

1. Simulation always takes place with setpoint coupling.

2. If not all leading axes are under SERUPRO, the simulation is aborted with Alarm 16952
"Reset Clear/No Start". This can occur with cross-channel couplings.

3. Axes that have only one encoder from the NC point of view and are moved externally,
cannot be simulated correctly. These axes must not be integrated in couplings.

CAUTION

Incorrect simulation

In order to be able to simulate couplings correctly, they must have been switched off
previously.

This can be performed with machine data MD10708 $MA_SERUPRO_MASK.

Specifications for coupled axes
The SERUPRO operation simulates coupled axes always assuming that they are setpoint
couplings. In this way, the end points are calculated for all axes that are used as target points
for SERUPRO approach. The coupling is also active with "Search target found". The path from
the current point to the end point is carried out for SERUPRO approach with the active coupling.

LEADON
The following specifications apply for the simulation of axial master value couplings:

1. Simulation always takes place with setpoint coupling.

2. SERUPRO approach takes place with active coupling and an overlaid motion of the
following axis in order to reach the simulated target point.

The following axis that is moved solely by the coupling cannot always reach the target point.
In SERUPRO approach, an overlaid linear motion is calculated for the following axis to
approach the simulated point!

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
542 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Reaching simulated target point for LEAD with JOG
At the time of "Search target found", the coupling is already active, especially for the JOG
motions. If the target point is not reached, SERUPRO approach can be used to traverse the
following axis with active coupling and an overlaid motion to the target point.

Note

For further information on the repositioning of axis couplings, see Section "Repositioning to
the contour (REPOS) (Page 521)".

Master-slave
A system ASUP can be started automatically after the block search has finished. In this ASUP,
the user can control the coupling state and the associated axis positions subsequently. The
required information is provided via the following system variables:

System variable Description
$P_SEARCH_MASLD[<slave axis>] Position offset between slave and master axis when the

link is closed.
$AA_MASL_STAT[<slave axis>] Current state of a master/slave coupling
$P_SEARCH_MASLC[<slave axis>] Status: The state of the coupling was changed during

the block search
The system variables are deleted when the coupling is switched on with MASLON.

Note

The coupled axes must be in the same channel when the block search is executed.

References
Further information on the master-slave coupling can be found in:

Function Manual, Special Functions; Section "TE3: Speed/torque coupling, master-slave"

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 543

Example
● System ASUP

– Path and name: /_N_CMA_DIR/PROGEVENT.SPF

– Master axis: X

– Slave axis: Y

Program code
PROG PROGEVENT
 N10 IF(($S_SEARCH_MASLC[Y]< >0) AND ($AA_MASL_STAT[Y]< >0))
 N20 MASLOF(Y)
 N30 SUPA Y = $AA_IM[X] - $P_SEARCH_MASLD[Y]
 N40 MASLON(Y)
 N50 ENDIF
 N60 REPOSA
 ...
RET

● Machine data
To ensure that the ASUP starts automatically, the following machine data must be set:

– NC-specific machine data:
 - MD11604 $MN_ASUP_START_PRIO_LEVEL = 100
 - MD11450 $MN_SEARCH_RUN_MODE = 'H02'

– Channel-specifically for the channel in which the ASUP is started or generally for all
channels:
 - MD20105 $MC_PROG_EVENT_IGN_REFP_LOCK, bit<n> = TRUE
 n: For all required event-driven program calls (prog events)
 - MD20115 $MC_IGNORE_REFP_LOCK_ASUP, bit<n> = TRUE
 n: For all required user interrupts

NOTICE

System interrupts

MD20115 $MC_IGNORE_REFP_LOCK_ASUP, bits 8 to 31 enable the system
interrupts.

Bit 8 / interrupt 9 starts an ASUP that contains traversing motions.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
544 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Axis couplings
● Acceleration of the processing speed and leading axis and following axes in different

channels
For a leading axis whose following axes are assigned to a different channel than that of the
leading axis, the setting for acceleration of the execution speed has no effect (MD22601
(Page 529)$MC_SERUPRO_SPEED_FACTOR):

● Coupled motion
The coupled motion function (TRAILON) is supported by SERUPRO.
For further information on coupled motion with TRAILON and TRAILOF, see:
References:

– Function Manual, Special Functions; Axis Couplings (M3)

– Programming Manual, Job Planning; Section "Axis couplings"

● Gantry axes
The gantry axis function is supported by SERUPRO.
For further information on the functionality of gantry axes, see:
References:
Function Manual, Special Functions; Section "G1: Gantry axes"

● Tangential control
The tangential follow-up of individual axes function is supported by SERUPRO.
Additional information about the tangential control can be found in:
References:
Function Manual, Special Functions; Section "T3: Tangential control"

10.8.8.7 Axis functions

SERUPRO conditions
The special conditions for SERUPRO must be observed with axis enable, autonomous axis
operations, and axis replacement.

Axis enable
The axial interface DB31, ... DBX3.7 ("Program test axis/spindle enable") controls the axis
enables if no closed-loop controller enable is to (or can) be issued at the machine and is active
only during the program test or when SERUPRO is active.

It is possible to issue this enable via interface signal PLC → NC
DB31, ... DBX3.7 (program test axis/spindle enable). If the real servo enable is missing during
program test or SERUPRO, the effect on the axes/spindles is as follows:

● As soon as the simulated program run intends to move an axis/spindle, the message
"Waiting for axis enable" or "Waiting for spindle enable" is displayed and the simulation is
stopped.

● If during a simulated motion, NC/PLC interface signal DB31, ... DBX3.7 (program test axis/
spindle enable) is then canceled, alarm 21612: "Channel %1 axis %2 NC/PLC interface
signal 'controller enable' reset during motion" is activated.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 545

Autonomous axis operations
Autonomous single-axis operations are axes controlled by the PLC that can also be simulated
on SERUPRO. During SERUPRO operation, as in normal operation, the PLC can take over
or give up control of an axis. If required, this axis can also be traversed using FC18. The PLC
takes over control of the axis before the approach block and is responsible for positioning this
axis. This is valid for all block search types.

For further information about autonomous single-axis operations, see:

References:
Function Manual, Extended Functions; Positioning Axes (P2)

Axis replacement
Problem: A program moves an axis and gives up control before the target block with WAITP(X).
X is thus not subject to REPOS and the axis is not taken into account in SERUPRO approach.

Via the machine data MD11470 $MN_REPOS_MODE_MASK, the following behavior can be
achieved for SERUPRO-REPOS:

The neutral axes are moved as "command axes" in the SERUPRO-REPOS. The axis
interpolates without a path context even if it was last programmed as a path axis. In this
scenario, the velocity results from MD32060 $MA_POS_AX_VELO. After SERUPRO
approach, this axis is again neutral.

Neutral axes that are however not allowed to be repositioned must receive the axial NC/PLC
interface signal "REPOSDELAY". This deletes the REPOS movement.

Example:

After SERUPRO, one axis is deliberately moved in the synchronized action via technology
cycles. The command axes are always moved in the approach block, never in the target block.
The target block can only be changed if all command axes have been moved to the end.

CAUTION

The PLC-controlled axis is not repositioned

Axes enabled by RELEASE(X) before the target block are not repositioned.

10.8.8.8 Gear stage change

Operational sequences
The gear stage change (GSC) requires physical motions from the NC in order to be able to
engage a new gear.
In the SERUPRO operation, no gear stage change is required and is carried out as follows:

Some gears can only be changed when controlled by the NC, since either the axis must
oscillate or a certain position must be approached beforehand.

The gear stage change can be suppressed selectively for DryRun, program test, and
SERUPRO using bits 0 to 2 in MD35035 $MA_SPIND_FUNCTION_MASK.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
546 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The gear stage change must then be performed in REPOS; this will work even if the axis
involved is to be in "speed control mode" at the target block. In other cases, the automatic gear
stage change is denied with an alarm if, for example, the axis was involved in a transformation
or coupling between the gear stage change and the target block.

Note

For further information on gear stage changes in DryRun, Program test and SERUPRO, see
Section "S1: Spindles (Page 1273)".

10.8.8.9 Superimposed motion

Only SERUPRO
If "overlaid movements" are used, only the block search via program test (SERUPRO) can be
used, since the overlaid movements are interpolated accordingly in the main run. This applies
in particular to $AA_OFF.

Velocity profile instead of maximum axis velocity
During Program test, a velocity profile must be used, which allows "superimposed movements"
to be interpolated during the main run. It is thus not possible to interpolate at the maximum
axis velocity.

The axis velocity is set in "Dry run feedrate" mode using
SD42100 $SC_DRY_RUN_FEED.

The velocity of the SERUPRO operation is selected using
MD22600 $MC_SERUPRO_SPEED_MODE.

10.8.8.10 NC/PLC interface signals

REPOS offset available
If a REPOS offset has resulted for an axis during SERUPRO, this is displayed via the axial NC/
PLC interface at the end of the SERUPRO operation:

DB31, ...DBX70.0 == 1 (REPOS offset available)

Validity of the REPOS offset
The REPOS offset becomes invalid at the start of a SERUPRO ASUB or NC start to resume
the machining:

DB31, ... DBX70.1 == 1 (REPOS offset invalid)

The axis can be traversed manually in JOG mode or via the PLC user program using FC 18
between the end of the SERUPRO operation and NC start to resume the machining. If the
REPOS offset is traversed completely, the interface signal is reset.

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 547

10.8.8.11 Making the initial settings more flexible

Basic setting / basic SERUPRO setting
Machine data MD20112 $MC_START_MODE_MASK defines the basic setting of the control
for part program start with respect to the G codes (especially the current plane and settable
zero offset), tool length compensation, transformation, and axis couplings. The special option
exists for the SERUPRO operation of using MD22620
$MC_ENABLE_START_MODE_MASK_PRT to select a basic setting that differs from the
normal part program start. The new setting must therefore be stored in the machine data:

MD22620 $MC_START_MODE_MASK_PRT

The meaning of the bits of MD22620 is identical to those of MD20112
$MC_START_MODE_MASK.

Example:
The synchronous spindle coupling at the beginning of the SERUPRO operation is retained for
the part program start.

 ; Synchronous spindle cou-
pling not configured

$MC_START_MODE_MASK = 'H400' ; will be switched off
$MC_START_MODE_MASK_PRT = 'H00' ; remains active
$MC_ENABLE_START_MODE_MASK_PRT = 'H01' ; $MC_START_MODE_MASK_PRT is

evaluated in SERUPRO instead
of $MC_START_MODE_MASK

10.8.8.12 Compressor functions (COMPON, COMPCURV, COMPCAD)
● If the target block for block search type 2 or type 4 (block search with calculation to ...) is

in a program section in which a compressor function (COMPON, COMPCURV, COMPCAD) is
active, positions are approached on the path calculated by the compressor on repositioning.
These positions must precisely match the positions on the path programmed in the part
program.

● If programmed blocks are eliminated from the part program during compression, these
blocks will not be found at the target block in the block search ⇒ Alarm 15370 "Search target
not found."

K1: Mode group, channel, program operation, reset response
10.8 Block search Type 5 (SERUPRO)

Basic Functions
548 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.8.9 System variable
Overview of the system variables relevant for SERUPRO:

System variable Meaning
$AC_ASUP, bit 20 ASUP activation reason:

$AC_ASUP, Bit 20 == 1 ⇒ system ASUP active, reason: SERUPRO search goal
reached

$AC_SERUPRO SERUPRO status:
$AC_SERUPRO == 1 ⇒ SERUPRO is active

$P_ISTEST Program test status:
SERUPRO active ⇒ $P_ISTEST == 1

$P_SEARCHL Most recently active block-search type:
$P_SEARCHL == 5 from the start of SERUPRO to reset or end of program

$AC_REPOS_PATH_MODE REPOS mode for repositioning the contour after a SERUPRO

10.9 Program operation

Definition
Program mode is present when in the AUTOMATIC or MDI operating modes, NC programs
or PC program blocks are processed.

NC/PLC interface signals
The program mode can be influenced by the PLC user program via mode group- and channel-
specific NC/PLC interface signals or returns the appropriate feedbacks to the PLC user
program.

A function-specific overview of the NC/PLC interface signals can be found in:

References
● Function Manual, Basic Functions; Section "Z1: NC/PLC interface signals

● Function Manual, Extended Functions; Section "Z2: NC/PLC interface signals

● Function Manual, Special Functions; Section "Z3: NC/PLC interface signals

An overview of all NC/PLC interface signals can be found in:

References
List Manual, NC Variable and Interface Signals; Section "Interface signals - Overview".

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 549

10.9.1 Initial settings

Basic settings can be programmed in channel-specific machine data for each channel. These
basic settings affect, for example, G groups and auxiliary function output.

Auxiliary function output
The timing for output of auxiliary functions can be predefined via machine data
AUXFU_x_SYNC_TYPE (MD22200, 22210, 22220, 22230, 22240, 22250, 22260), (output
timing for M, S, T, H, F, D, E functions). For more detailed explanations, see Section "H2:
Auxiliary function outputs to PLC (Page 401)".

G groups
An initial programming setting can be specified for each of the available G groups using
MD20150 $MC_GCODE_RESET_VALUES (reset state of G groups). This basic setting is
automatically active during program start or in Reset until it is deselected by a G command
from the same G group.

Via MD22510 $MC_GCODE_GROUPS_TO_PLC (G commands which are output to interface
NC-PLC after block change / RESET), the output of the G commands to the PLC interface can
be activated.

References
A list of G groups with the associated G commands can be found in:

Programming Manual, Fundamentals

Basic configurations of the NC language scope for SINUMERIK solution line
For SINUMERIK 840D sl, certain basic configurations of the NC language scope can be
generated (configurable) via machine data. The options and functions of the NC language
scope is specially tailored (configured) to the needs of the user.

10.9.1.1 Machine data

NC language scope
The way that non-active options and functions should be handled with language commands
can be set with the following machine data:

MD10711 $MN_NC_LANGUAGE_CONFIGURATION = <value>

Value Meaning
0 All language commands are available. Whether or not the needed function is activated can only be recognized

upon execution.
1 All language commands are available.

Language commands for non-enabled options are recognized during the program interpretation ⇒ Alarm 12553
"Option/function is not active".

2 Only the language commands of the enabled options are available.
Language commands for non-enabled options are recognized during the program interpretation ⇒ Alarm 12550
"Name not defined or option/function available".

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
550 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Value Meaning
3 All language commands are available.

Language commands of not activated functions are recognized during the program interpretation ⇒ Alarm 12553
"Option/function is not active".
Example:
1. Option set for the cylinder surface transformation.
2. The cylinder surface transformation in the machine data MD24100 $MC_TRAOF_TYPE_1 is not activated
3. Alarm 12553 is issued already when programming the TRACYL command.

4 Only the language commands of the active functions are available.
Language commands of non-active functions are not recognized ⇒ Alarm 12550 "Name not defined or option/
function not available".
Note
Whether the associated language commands are generally unavailable in the Siemens language or whether
this is true only on the corresponding system cannot be distinguished in this scenario.

10.9.1.2 Programming
The function "STRINGIS(...)" checks whether the specified character string is available as
element of the NC programming language in the actual language scope.

The following elements of the NC programming language can be checked:

● G commands of all existing G groups

● DIN or NC addresses

● Functions

● Procedures

● Keywords

● System data, such as machine data $M... , setting data $S... or option data $O...

● System variables $A... , $V... , $P...

● Arithmetic parameters R...

● Cycle names of activated cycles

● GUD and LUD variables

● Macro names

● Label names

Definition
INT STRINGIS(STRING <name>)

Syntax
<return value> = STRINGIS(<name>)

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 551

Meaning

STRINGIS(): Test function with return value
<name>: Character string to be tested

<return
value>:

The return value is coded in the first three decimal places yxx
000 The specified string is not an element of the current language scope 1).
100 The specified string is an element of the NC programming language, but

currently cannot be programmed (option/function is inactive).
2xx The specified string is a programmable element of the current language

scope (option/function is active).
Detailed information is contained in the first and second decimal places:

xx Meaning
01 DIN address or NC address2)

02 G command (e.g. G04, INVCW)
03 Function with return value
04 Function without return value
05 Keyword, e.g. DEFINE
06 Machine ($M...), setting ($S...) or option data ($O...)
07 System parameter, e.g. system variable ($...) or arithmetic param‐

eter (R...)
08 Cycle (the cycle must be loaded to the NC and the cycle program

must be active 3))
09 GUD variable (the GUD variable must be defined in the GUD defi‐

nition files and the GUD variables activated)
10 Macro name (the macro must be defined in the macro definition

files and macros activated) 4)

11 LUD variable of the actual part program
12 ISO G command (ISO language mode must be active)

400 The specified string is an NC address that was not identified as DIN ad‐
dress or NC address (xx==01) or macro name (xx==10), and is not G or R
2)

y00 No specific assignment possible
1) Depending on the control, under certain circumstances, only a subset of the Siemens NC language
commands are known, e.g. SINUMERIK 802D sl. For these controls, for strings that are principally
Siemens NC language commands, a value of 0 is returned. This behavior can be changed using
MD10711 $MN_NC_LANGUAGE_CONFIGURATION. If MD10711 = 1, then a value of 100 is always
returned for Siemens NC language commands.
2) NC addresses are the following letters: A, B, C, E, I, J, K, Q, U, V, W, X, Y, Z. These NC addresses
can also be programmed with an address extension. The address extension can be specified when
checking with STRINGIS. Example: 201 == STRINGIS("A1").
The letters: D, F, H, L, M, N, O, P, S, T are NC addresses or auxiliary functions that are defined by the
user. A value of 400 is always returned for these. Example: 400 == STRINGIS("D"). These NC ad‐
dresses cannot be specified with address extension when checking with STRINGIS.
Example: 000 == STRINGIS("M02"), but 400 == STRINGIS("M").
3) Names for cycle parameters cannot be checked with STRINGIS.
4) Address defined as macro, e.g. G, H, M, L, is identified as macro.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
552 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Examples
In the following examples it is assumed that the specified NC language element, unless noted
otherwise, can in principle be programmed in the control.

1. String "T" is defined as auxiliary function:
400 == STRINGIS("T")
000 == STRINGIS ("T3")

2. String "X" is defined as axis:
201 == STRINGIS("X")
201 == STRINGIS("X1")

3. String "A2" is defined as NC address with extension:
201 == STRINGIS("A")
201 == STRINGIS("A2")

4. String "INVCW" is defined as named G command:
202 == STRINGIS("INVCW")

5. String "$MC_GCODE_RESET_VALUES" is defined as machine data:
206 == STRINGIS("$MC_GCODE_RESET_VALUES")

6. String "GETMDACT" is an NC language function:
203 == STRINGIS("GETMDACT ")

7. String "DEFINE" is a keyword:
205 == STRINGIS("DEFINE")

8. String "$TC_DP3" is a system parameter (tool length component):
207 == STRINGIS("$TC_DP3")

9. String "$TC_TP4" is a system parameter (tool size):
207 == STRINGIS("$TC_TP4")

10.String "$TC_MPP4" is a system parameter (magazine location status):

– Tool magazine management is active: 207 == STRINGIS("$TC_MPP4") ;

– Tool magazine management is not active: 000 == STRINGIS("$TC_MPP4")
See also the paragraph below: Tool magazine management.

11.String "MACHINERY_NAME" is defined as GUD variable:
209 == STRINGIS("MACHINERY_NAME")

12.String "LONGMACRO" is defined as macro:
210 == STRINGIS("LONGMACRO")

13.String "MYVAR" is defined as LUD variable:
211 == STRINGIS("MYVAR")

14.String "XYZ" is a command that is not known in the NC, GUD variable, macro or cycle name:
000 == STRINGIS("XYZ")

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 553

Supplementary conditions

Tool magazine management
If the tool magazine management function is not active, STRINGIS() supplies the system
parameters of the tool magazine management, independent of the machine data

● MD10711 $MN_NC_LANGUAGE_CONFIGURATION

always a value of 000.

ISO Mode
If the "ISO Mode" function is active:

STRINGIS() checks the specified string initially as SINUMERIK G command:

● MD18800 $MN_MM_EXTERN_LANGUAGE (activation of external NC languages)

● MD10880 $MN_ MM_EXTERN_CNC_SYSTEM (control system to be adapted)

For active "ISO Mode", STRINGIS() checks the specified character string first whether it
belongs to the SINUMERIK G command.

If the string is not a SINUMERIK G command, it is subsequently checked whether it is an ISO
G command.

Programmed switchover of the ISO Mode
Programmed switchovers with the G290 (SINUMERIK mode) and G291 (ISO Mode)
commands have no effect on STRINGIS().

10.9.2 Selection and start of an NC program

NC/PLC interface signals

Selection
An NC program can be selected only if the relevant channel is in the reset status.

● DB21, ... DBX35.7 == 1 (reset)

Start
An NC program is started by two different events:

1. DB21, ... DBX7.1 = 1 (NC start), the signal is normally initiated by pressing the "NC start"
key on the machine control panel.

2. START command in an NC program of another active channel. The channel must be in the
AUTOMATIC or MDI mode and in the "reset" or "interrupted" status.

– DB21, ... DBX35.7 == 1 (reset)

– DB21, ... DBX35.6 == 1 (interrupted)

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
554 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Initial conditions
An NC program can be started only when the following initial conditions are satisfied.

● DB11 DBX4.4 == 1 (mode group ready)

● DB11 DBX0.7 == 0 (mode group reset)

● DB21, ... DBX1.7 == 0 (activate program test)

● DB21, ... DBX7.0 == 0 (NC start lock)

● DB21, ... DBX7.2 == 0 (NC stop at block limit)

● DB21, ... DBX7.3 == 0 (NC stop)

● DB21, ... DBX7.4 == 0 (NC stop, axes plus spindles)

● DB21, ... DBX7. 7 == 0 (reset)

● DB10 DBX56.1 == 0 (emergency stop)

● No axis or NC-specific alarm may be pending

Execution of command
The part program or the part program block is automatically executed and the following
interface signals are set:

● DB21, ... DBX35.5 (channel status reset)

● DB21, ... DBX35.0 (program status running)

The program is processed until the end of the program has been reached or the channel is
interrupted or aborted by a STOP or RESET command.

References
A detailed description of the interface signals can be found in the NC Variables and Interface
Signals List Manual.

Alarms
Under certain conditions the START command will have no effect and one of the following
alarms will be triggered:

● 10200 "No NC Start permitted with active alarm"

● 10202 "No NC Start permitted with active command"

● 10203 "No NC Start permitted for non-referenced axes"

References:
Diagnostics Manual, Alarms

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 555

10.9.3 Program interruption

NC/PLC interface signals

Requirements
A program interruption is performed only when the channel and the NC program are active:

● DB21, ... D35.5 == 1 (channel: active)

● DB21, ... D35.0 == 1 (program: running)

Program interruption
The program processing can be interrupted by the following events:

● DB21, ... DBX7.2 == 1 (NC stop at block limit)

● DB21, ... DBX7.3 == 1 (NC stop)

● DB21, ... DBX7.4 == 1 (NC stop, axes plus spindles)

● DB21, ... DBX2.0 == 1 (single block)

● Programmed M00 or M01 command in the processed NC program

The channel and the NC program are then in the "interrupted" status:

● DB21, ... D35.6 == 1 (channel interrupted)

● DB21, ... D35.3 == 1 (program interrupted)

References
A detailed description of the interface signals can be found in the NC Variables and Interface
Signals List Manual.

Sequence
The following actions are performed when a program interruption is detected:

● Interrupt the program processing:

– At the next block limit for the following events: "NC stop at block limit", M00, M01 or
single block

– Immediately: All other events

● The traversing axes of the channel are stopped via a braking ramp. The braking of the axes
can extend over several blocks.

● The block indicator shows the current block at the point of interruption.

● The auxiliary functions that have not been output before the point of interruption are no
longer output.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
556 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Possible actions in the interrupt state
Various functions can be performed in the channel during a part program interruption, for
example:

● Overstoring
References
Operating Manual for SINUMERIK Operate, Section "Machine workpiece" > "Overstoring"

● Block search
References
Function Manual, Basic Functions; Section "Mode group, channel, program operation, reset
response (K1)" > "Block search" or "Block search type 5 SERUPRO"

● Repositioning to the contour (REPOS)
References
Function Manual, Basic Functions; Section "Mode group, channel, program mode, reset
response (K1)" > "Block search type 5 SERUPRO" > "REPOS" > "Repositioning with
controlled REPOS"

● Oriented tool retraction
References

– Programming Manual, Job Planning; Section "Tool offsets"

– Description of Functions, Basic Functions; Section "Tool offsets (W1)" > "Orientable
toolholders" > ""

● ASUP (see Section "Asynchronous subprograms (ASUPs) (Page 587)").

● DRF function, offset of the workpiece zero
References
Function Manual, Extended Functions; Manual traversing and manual handwheel
traversing (H1)

● Continue the interrupted NC program

– START command from another channel
References
 Programming Manual, Job Planning; Section "Flexible NC programming" > "Program
coordination (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)"

– NC/PLC interface:
DB21, ... DBX7.1 = 1 (NC start)

10.9.4 Channel reset

Function
A channel reset causes an NC program being processed in automatic mode or program block
being processed in the MDI mode to be terminated.

The NC program or the program block cannot be continued at the point of interruption. After
completion of the channel reset, all axes and spindles of the channel are in the "exact stop"
status (exception: follow-up mode).

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 557

Sequence
The NC reset causes the following actions to be performed in the channel:

● The program preparation is stopped immediately.

● Axes and spindles are braked via their parameterized braking ramps to standstill.

● Any auxiliary functions of the current block not yet output are no longer output to the PLC.

● The block indicator is reset to the start of the selected NC program.

● All reset alarms of the channel are cleared from the display.

Rules
● A channel reset is performed in any channel state.

● A channel reset is not aborted by any other command.

NC/PLC interface signals

Request: Channel reset
A channel reset is requested via the following NC/PLC interface signals:

● DB21, … DBX7.7 = 1 (reset)

Request: Mode group reset
A mode group reset initiates a channel reset in all channels of a mode group.

A mode group reset is requested via the following NC/PLC interface signals:

● DB11, ... DBX0.7 = 1 (mode group reset)

Feedback: Channel reset completed
● DB21, … DBX35.7 == 1 (channel state reset)

Feedback: Mode group reset completed
● DB11, ... DBX6.5 == 1 (mode group reset)

References
A detailed description of the interface signals can be found in the NC Variables and Interface
Signals List Manual.

10.9.5 Program status
The status of the selected NC program is displayed in the interface for each channel.

All program states can occur in the AUTOMATIC and MDI modes. In all other modes or
machine functions, the program status is aborted or interrupted.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
558 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

NC/PLC interface signals
The following program states are displayed at the NC/PLC interface (DB21, ...):

● DB21, ... DBX35.4 ("aborted")

● DB21, ... DBX35.3 ("interrupted")

● DB21, ... DBX35.2 ("stopped")

● DB21, ... DBX35.1 ("waiting")

● DB21, ... DBX35.0 ("running")

A detailed description of the interface signals can be found in the NC Variables and Interface
Signals List Manual.

Status changes
The program status is influenced by commands, NC/PLC interface and alarms. Starting at the
"running" program status, the table shows the following status based on the associated event.

Initial status of the program: "running"
Event Following status of the program

Abor‐
ted

Inter‐
rupted

Stop‐
ped

Wait‐
ing

Run‐
ning

DB21, ... DBX7.7 (reset) x
DB21, ... DBX7.3 (NC stop) x
DB21, ... DBX7.2 (NC stop at the block limit) x
DB21, ... DBX7.4 (NC stop, axes and spindles) x
DB21, ... DBX6.1 (read-in disable) x
DB21, ... DBX6.0 (feedrate stop) x
DB21, ... DBX12.3 / 16.3 / 20.3 (feedrate stop, geo axis
1 / 2 / 3)

 x

DB21, ... DBB4; feedrate override = 0% x
DB31, ... DBX4.3 (feed/spindle stop) x
DB21, ... DBX194.2 / DBX197.6 (M02 / M30 in the block) x
DB21, ... DBX194.0 / DBX194.1 (M00 / M01 in the block) x
DB21, ... DBX0.4 (single block) x
DB21, ... DBX6.2 (delete distance-to-go) x
Auxiliary functions output to PLC but not yet acknowl‐
edged

 x

WAIT command in the program x
Alarm with "NOREADY" system response x

10.9.6 Channel status
The channel status for each channel is displayed in all operating modes at the NC/PLC
interface (DB21, ...).

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 559

NC/PLC interface signals
The channel states are indicated by the following signals in the NC/PLC interface:

● DB21, ... DBX35.7 ("reset")

● DB21, ... DBX35.6 ("interrupted")

● DB21, ... DBX35.5 ("active")

A detailed description of the interface signals can be found in the NC Variables and Interface
Signals List Manual.

Status changes
The channel status is influenced by commands and NC/PLC interface signals. Starting at the
"active" channel status, the table shows the following status based on the associated event.

Initial status of the channel: "active"
Event Following status of the channel

"Reset" "Interrupted" "Active"
DB21, ... DBX7.7 (reset) x
DB21, ... DBX7.3 (NC stop) x
DB21, ... DBX7.2 (NC stop at the block limit) x
DB21, ... DBX7.4 (NC stop, axes and spindles) x
DB21, ... DBX6.1 (read-in disable) x
 DB21, ... DBX6.0 (feedrate stop) x
 DB21, ... DBX12/16/20.3 (feedrate stop, geometry axis
1/2/3)

 x

DB21, ... DBB4; feedrate override = 0% x
DB31, ... DBX4.3 (feed/spindle stop) x
DB21, ... DBX194.2/DBX197.6 (M02/M30 in the block) x
DB21, ... DBX194.0/DBX194.1 (M00/M01 in the block) x
DB21, ... DBX0.4 (single block) x
DB21, ... DBX6.2 (delete distance-to-go) x
Auxiliary functions output to PLC but not yet acknowl‐
edged

 x

WAIT command in the program x

The "active" channel status is achieved when an NC program or NC program block is being
executed or when axes are traversed in JOG mode.

10.9.7 Responses to operator and program actions

Status transitions
The following table shows the channel and program states that result after certain operator
and program actions.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
560 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The left-hand part of the table lists the various states of the channel and of the program selected
in the channel, and the active operating mode.

The right-hand part of the table lists the operating/program actions and the following status.

Status Channel sta‐
tus

Program status Operating
mode

Operating or program action => following status

R U A R U S W A A M J
1 x x x RESET ⇒ 4
2 x x x RESET ⇒ 5
3 x x x RESET ⇒ 6
4 x x x NC start ⇒ 13; mode change ⇒ 5 or 6
5 x x x NC start ⇒ 14; mode change ⇒ 4 or 6
6 x x x Direction key ⇒ 15; mode change ⇒ 4 or 5
7 x x x NC start ⇒ 14
8 x x x NC start ⇒ 15
9 x x x NC start ⇒ 13; mode change ⇒ 10 or 11

10 x x x NC start ⇒ 16; mode change ⇒ 9 or 11
11 x x x Direction key ⇒ 17; mode change ⇒ 9 or 10
12 x x x NC start ⇒ 13; mode change ⇒ 10 or 11
13 x x x NC stop ⇒ 12
14 x x x NC stop ⇒ 7; for block end ⇒ 5
15 x x x NC stop ⇒ 8; for JOG end ⇒ 6
16 x x x NC stop ⇒ 10; for block end ⇒ 10
17 x x x NC stop ⇒ 11; for JOG end ⇒ 11
18 x x x Reset ⇒ 4; wait for other channel ⇒ 18

Channel status Program status Modes
R → aborted R → aborted A → automatic
U → interrupted U → interrupted M → MDI
A → running S → stopped J → JOG
 W → waiting
 A → running

10.9.8 Example of a timing diagram for a program run

Program code
N10 G01 G90 X100 M3 S1000 F1000 M170
N20 M0

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 561

Figure 10-6 Signal characteristics during the program

10.9.9 Program jumps

10.9.9.1 Return jump to the start of the program (GOTOS)

Function
With the function "Jump back to start of the program" the control jumps back from a part
program to the beginning of the program. The program is then processed again.

As compared to the function "Program jumps to jump marks", with which a repeated processing
of the program can also be implemented, the function "Jump back to the start of the program"
offers the following advantages:

● The programming of a jump mark at the start of the program is not necessary.

● The program restart can be controlled through the NC/PLC interface signal:
DB21, ... DBX384.0 (control program branching)

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
562 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● The timer for the program runtime can be reset to "0" at the restart of the program.

● The timer for workpiece counting can be incremented by "1" at program restart.

Application example
The function is used, if the processing of subsequent workpieces is to be done through an
automatic program restart, e.g. in case of turning machine with bar loader/changer.

NC/PLC interface signals
The jump back takes place only when the following NC/PLC interface signal is set:

DB21, ... DBX384.0 (control program branching) = 1

Parameterization
Program runtime

The runtime of the selected NC program is stored in the system variable $AC_CYCLE_TIME.
When starting a new program, the system variable is automatically reset to "0" (see Section
" Program runtime (Page 685) ")

Via the following machine data it can be set that the system variable $AC_CYCLE_TIME is
reset to "0" even in case of a program restart through the function "jump back to start of
program":

MD27860 $MC_PROCESSTIMER_MODE.Bit 8 = <value> (activate the program runtime
measurement)

Bit Value Meaning
8 0 $AC_CYCLE_TIME is not reset to "0" by the function "jump back to start of pro‐

gram".
1 $AC_CYCLE_TIME is reset to "0" by the function "jump back to start of program".

Note

In order that the setting of bit 8 can become effective, the measurement of the current program
runtime must be active (MD27860 bit 1 = 1).

Workpiece count

After the part program end (M02 / M30) has been attained, the activated workpiece counters
($AC_TOTAL_PARTS / $AC_ACTUAL_PARTS / $AC_SPECIAL_PARTS) are incremented by
"1" (see Section "Workpiece Counter (Page 695)").

Via the following machine data it can be set that the activated workpiece counter is incremented
even in case of a program restart through the function "jump back to start of program":

MD27880 $MC_PART_COUNTER.Bit <n> = <value> (activating the workpiece counter)

Bit Value Meaning: In case of a program restart through the function "jump back to start of
program", the workpiece counter:

7 0 $AC_TOTAL_PARTS is not incremented.
1 $AC_TOTAL_PARTS is incremented.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 563

Bit Value Meaning: In case of a program restart through the function "jump back to start of
program", the workpiece counter:

11 0 $AC_ACT_PARTS is not incremented.
1 $AC_ACT_PARTS is incremented.

15 0 $AC_SPECIAL_PARTS is not incremented.
1 $AC_SPECIAL_PARTS is incremented.

Programming

Syntax
GOTOS

Meaning

GOTOS: Return to the start of the current program
Preprocessing
stop:

Yes

Effective: Non-modal

Example:

Programming Comment
N10 ... ; Start of the program
...
IF ...
 N100 GOTOS Return to the program start (N10)
ENDIF
...
RET

10.9.10 Program section repetitions

10.9.10.1 Programming
The program section repetition permits the repetition of program sections within an NC
program.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
564 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The program lines or program sections to be repeated are identified by jump markers (labels).

Note
Jump markers (labels)

Jump markers are always located at the beginning of a block. If a program number exists, the
jump marker is located immediately after the block number.

The following rules apply when naming jump markers:
● Number of characters:

– Minimum 2
– Maximum 32

● Permissible characters are:
– Letters
– Digits
– Underscores

● The first two characters must be letters or underscores.
● The name of the jump marker is followed by a colon (":").

Syntax

1. REPEATB: Repeat single program line

<jump marker>: ...
...
REPEATB <jump marker> P=<n>

2. REPEAT + jump marker: Repeat program section between jump marker and REPEAT
statement

<jump marker>: ...
...
REPEAT <jump marker> P=<n>

3. REPEAT + jump marker_1 + jump marker_2: Repeat section between two jump markers

<start jump marker>: ...
...
<end jump marker>: ...
...
REPEAT <start jump marker> <end jump marker> P=<n>

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 565

Note

It is not possible to nest the REPEAT statement with the two jump markers in parentheses. If
the <start jump marker> appears before the REPEAT statement and the <end jump
marker> is not reached before the REPEAT statement, the section between the <start
jump marker> and the REPEAT statement will be repeated.

4. REPEAT + jump marker + ENDLABEL: Repeat section between jump marker and
ENDLABEL:

<jump marker>: ...
...
ENDLABEL: ...
...
REPEAT <jump marker> P=<n>

Note

It is not possible to nest the REPEAT statement with the <jump marker> and the
ENDLABEL in parentheses. If the <jump marker> appears before the REPEAT statement and
the ENDLABEL is not reached before the REPEAT statement, the section between the <jump
marker> and the REPEAT statement will be repeated.

Meaning

REPEATB: Command for repeating a program line
REPEAT: Command for repeating a program section
<jump marker>: The <jump marker> identifies:

● REPEATB: The program line to be repeated
● REPEAT: The start of the program section to be repeated
The program line identified by the <jump marker> can appear before or
after the REPEAT/REPEATB statement. The search initially commences to‐
wards the start of the program. If the jump marker is not found in this direction,
the search continues in the direction towards the end of the program.
Exception:
If the program section between the jump marker and the REPEAT statement
needs to be repeated (see 2. under Syntax), the program line identified by
the <jump marker> has to appear before the REPEAT statement, since in
this case the search runs only towards the beginning of the program.
If the line with the <jump marker> contains further statements, they are
executed again on each repetition.

ENDLABEL: Keyword that marks the end of a program section to be repeated.
If the line with the ENDLABEL contains further statements, they are executed
again on each repetition.
ENDLABEL can be used more than once in the program.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
566 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

P: Address for specifying the number of repetitions
Note:
If no number is specified for P=<n>, the program section is repeated just once.

<n>: Number of repetitions
Type: INT
The program section to be repeated is repeated <n> times. After the last
repetition, the program is resumed at the program line following the REPEAT/
REPEATB command.

Examples

Example 1: Repeat individual program line

Program code Comment
N10 POSITION1: X10 Y20
N20 POSITION2: CYCLE(0,,9,8) ;Position cycle
N30 ...
N40 REPEATB POSITION1 P=5 ; Execute block N10 five times.
N50 REPEATB POSITION2 ; Execute block N20 once.
N60 ...
N70 M30

Example 2: Repeat program section between jump marker and REPEAT statement:

Program code Comment
N5 R10=15
N10 Begin: R10=R10+1 ; Start of the program section
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10
N50 X=-R10
N60 Y=-R10
N70 Z=10+R10
N80 REPEAT BEGIN P=4 ; Execute section from N10 to N70 four times.
N90 Z10
N100 M30

Example 3: Repeat section between two jump markers

Program code Comment
N5 R10=15
N10 Begin: R10=R10+1 ; Start of the program section
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10
N50 X=-R10
N60 Y=-R10

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 567

Program code Comment
N70 END: Z=10 ; End of the program section
N80 Z10
N90 CYCLE(10,20,30)
N100 REPEAT BEGIN END P=3 ; Execute section from N10 to N70 three times.
N110 Z10
N120 M30

Example 4: Repeat section between jump marker and ENDLABEL

Program code Comment
N10 G1 F300 Z-10
N20 BEGIN1: ; Start program section 1
N30 X10
N40 Y10
N50 BEGIN2: ; Start program section 2
N60 X20
N70 Y30
N80 ENDLABEL: Z10
N90 X0 Y0 Z0
N100 Z-10
N110 BEGIN3: X20 ; Start program section 3
N120 Y30
N130 REPEAT BEGIN3 P=3 ; Execute section from N110 to N120 three times.
N140 REPEAT BEGIN2 P=2 ; Execute section from N50 to N80 twice.
N150 M100
N160 REPEAT BEGIN1 P=2 ; Execute section from N20 to N80 twice.
N170 Z10
N180 X0 Y0
N190 M30

Example 5: Milling, drilling position with different technologies

Program code Comment
N10 CENTER DRILL() ; Load centering drill.
N20 POS_1: ; Start program section 1; drilling position 1
N30 X1 Y1
N40 X2
N50 Y2
N60 X3 Y3
N70 ENDLABEL:
N80 POS_2: ; Start program section 2; drilling position 2
N90 X10 Y5
N100 X9 Y-5
N110 X3 Y3
N120 ENDLABEL: ; End program sections 1 and 2

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
568 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N130 DRILL() ; Drilling cycle
N140 THREAD(6) ; Threading cycle
N150 REPEAT POS_1 ; Repeat program section once from POS_1 up to ENDLABEL.
N160 DRILL() ; Drilling cycle
N170 THREAD(8) ; Threading cycle
N180 REPEAT POS_2 ; Repeat program section once from POS_2 up to ENDLABEL.
N190 M30

Further information
● Program section repetitions can be nested. Each call uses a subprogram level.

● If M17 or RET is programmed while processing a program section repetition, the program
section repetition is canceled. The program is resumed at the block following the REPEAT
line.

● In the actual program display, the program section repetition is displayed as a separate
subprogram level.

● If the level is canceled during the program section processing, the program resumes at the
point after the program section repetition call.
Example:

Program code Comment
N5 R10=15
N10 BEGIN: R10=R10+1 ;Width
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10 ; Interrupt level
N50 X=-R10
N60 Y=-R10
N70 END: Z10
N80 Z10
N90 CYCLE(10,20,30)
N100 REPEAT BEGIN END P=3
N120 Z10 ; Resume program execution.
N130 M30

● Check structures and program section repetitions can be used in combination. There should
be no overlap between the two, however. A program section repetition should appear within
a check structure branch or a check structure should appear within a program section
repetition.

● If jumps and program section repetitions are mixed, the blocks are executed purely
sequentially. For example, if a jump is performed from a program section repetition,
processing continues until the programmed end of the program section is found.
Example:

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 569

Program code
N10 G1 F300 Z-10
N20 BEGIN1:
N30 X=10
N40 Y=10
N50 GOTOF BEGIN2
N60 ENDLABEL:
N70 BEGIN2:
N80 X20
N90 Y30
N100 ENDLABEL: Z10
N110 X0 Y0 Z0
N120 Z-10
N130 REPEAT BEGIN1 P=2
N140 Z10
N150 X0 Y0
N160 M30

Note

The REPEAT statement should appear after the traversing block.

10.9.11 Event-driven program call (PROG_EVENT)

10.9.11.1 Function

Function
The "Event-driven program call" (PROG_EVENT) function starts, for the occurrence of a
selected event in the NC, a user-specific NC program (PROG_EVENT-program).

Application examples
Initial setting for functions or initialization of system or user variables.

Events
The triggering events are selected with the machine data MD20108
$MC_PROG_EVENT_MASK (see Section "Parameterization (Page 574)").

PROG_EVENT program
The name of the PROG_EVENT program is set with the machine data
MD11620 $MN_PROG_EVENT_NAME up (see Section "Parameterization (Page 574)").

The PROG_EVENT program is executed in the channel in which the event occurred.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
570 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The PROG_EVENT program is executed with the lowest priority and so can be interrupted by
a user ASUP.

Processing sequences

Processing sequence when activated by an event: Program start
Initial state:

Channel: Reset status
Mode: AUTOMATIC (optional: Overstore (active)

MDI
TEACH IN

1. A program starts in the channel

2. Initialization sequence with evaluation of:

– MD20112 $MC_START_MODE_MASK

3. Implicit call of the PROG_EVENT program as a subprogram

4. Processing of the data part of the main program

5. Processing of the program part of the main program

Processing sequence when activated by an event: Program end
Initial state

Channel: Active
Mode: AUTOMATIC (optional: Overstore (active)

MDI
TEACH IN

1. In the channel, the end of program block is exchanged in the executed program.

2. End of program is executed, evaluation of the following machine data:

– MD20110 $MC_RESET_MODE_MASK

– MD20150 $MC_GCODE_RESET_VALUES

– MD20152 $MC_GCODE_RESET_MODE

3. Implicit call of the PROG_EVENT program as ASUP

4. A reset is executed in the channel, evaluation of the following machine data:

– MD20110 $MC_RESET_MODE_MASK

– MD20150 $MC_GCODE_RESET_VALUES

– MD20152 $MC_GCODE_RESET_MODE

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 571

Sequence when activated by an event: Channel reset
Initial state:

Channel: Any
Mode: Any

1. Control activates reset-sequence with evaluation of machine data:

– MD20110 $MC_RESET_MODE_MASK

– MD20150 $MC_GCODE_RESET_VALUES

– MD20152 $MC_GCODE_RESET_MODE

2. Implicit call of the PROG_EVENT program as ASUP

3. Control activates reset-sequence with evaluation of machine data:

– MD20110 $MC_RESET_MODE_MASK

– MD20150 $MC_GCODE_RESET_VALUES

– MD20152 $MC_GCODE_RESET_MODE

Sequence when activated by an event: Power-up of the NC
1. Control activates after power-up reset-sequence with evaluation of machine data:

– MD20110 $MC_RESET_MODE_MASK

– MD20150 $MC_GCODE_RESET_VALUES

– MD20152 $MC_GCODE_RESET_MODE

2. Implicit call of the PROG_EVENT program as ASUP

3. Control activates reset-sequence with evaluation of machine data:

– MD20110 $MC_RESET_MODE_MASK

– MD20150 $MC_GCODE_RESET_VALUES

– MD20152 $MC_GCODE_RESET_MODE

NC/PLC interface signals Change of "program status" and "channel status"
The following diagrams show the changes of the various NC/PLC interface signals for "program
status" and "channel status" during the event-driven program call sequence.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
572 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal sequence when activated by program start and program end

Signal sequence when activated by a channel reset

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 573

NC/PLC interface signals: DB21, ... DBX35.4 (program status aborted) and DB21, ... DBX35.7 (channel
status reset)

● The interface signals are set only when the PROG_EVENT program has completed again.

● The interface signals are not set between:

– Program end and PROG_EVENT program start

– Channel reset and PROG_EVENT program start

NC/PLC interface signals DB21, ... DBX376.0 ... 4 (triggering events)
The initiating event is displayed using interface signals DB21, ... DBX376.0 ... 4:

Bit Value Event
0 1 Program start from channel state "Reset"
1 1 End of program
2 1 Channel reset
3 1 Powering-up of the NC
4 1 1. Program start after block search (see "Automatic start of an ASUP after block

search (Page 510)")

If the PROG_EVENT program has completed or been canceled with a channel reset, the
interface signals are cleared again.

The interface signals are available for at least the duration of a PLC cycle.

10.9.11.2 Parameterization

Event selection
The events that start the PROG_EVENT program are set channel-specific using the machine
data:

MD20108 $MC_PROG_EVENT_MASK.Bit <n> = 1

Bit <value> Meaning: Event
0 1 Part program start
1 1 Part program end
2 1 Channel reset
3 1 Power-up
5 1 Safety program during power-up

Note

MD20108 $MC_PROG_EVENT_MASK is not evaluated in the simulation.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
574 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

PROG_EVENT program
The PROG_EVENT program (default: _N_PROG_EVENT_SPF) must be loaded and enabled.

Default setting
As default setting, when an event occurs, user program _N_CMA_DIR/
_N_PROG_EVENT_SPF is executed.

The PROG_EVENT program must be loaded and enabled.

User-specific setting
If, for an event, a different PROG_EVENT program than the default setting is to be executed,
the NC program name must be entered into the following machine data:

MD11620 $MN_PROG_EVENT_NAME = <program name>

Search path
The PROG_EVENT program must be located in one of the following cycle directories. The
following search path is passed through when the parameterized event occurs:

1. /_N_CUS_DIR/ (user cycles)

2. /_N_CMA_DIR/ (manufacturer cycles)

3. /_N_CST_DIR/ (standard cycles)

The first program found with the name specified in MD11620 $MN_PROG_EVENT_NAME is
executed.

Note
● The specified program name is checked syntactically as in case of a subprogram name,

i.e. the first two characters must be letters or underscores (no digits). Prefix (_N_) and suffix
(_SPF) of the program names are added automatically, if not specified.

● The same protection mechanisms that can be activated for cycles (protection levels for
writing, reading, etc.) are activated.

Behavior when starting a user ASUP
The behavior of the function "event-driven program call" upon start of a user ASUP from the
reset channel state can be set channel-specific with the machine data:

MD20109 $MC_PROG_EVENT_MASK_PROPERTIES.Bit 0 = <value>

Bit Value Meaning
0 0 The PROG_EVENT program is started when one of the events parameterized with

MD20108 occurs.
1 The PROG_EVENT program is not started when one of the events parameterized

with MD20108 occurs.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 575

Behavior when the single-block processing is set
The behavior of the "event-driven program call" function for set single-block processing can
be set channel-specific with the following machine data:

MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK.Bit <n> = <value>

Bit Value Meaning: In the PROG_EVENT program, the single-block processing for event:
0 0 Part program start: acts

1 Part program start: is suppressed
1 0 Part program end: acts

1 Part program end: is suppressed
2 0 Channel reset: acts

1 Channel reset: is suppressed
3 0 Power-up: acts

1 Power-up: is suppressed

If the single-block processing is suppressed, the PROG_EVENT program is processed without
interruption.

Note
● MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK affects all single-block processing

types.
● The single-block processing in the PROG_EVENT program can be disabled with the

following setting:
MD10702 $MN_IGNORE_SINGLEBLOCK_MASK, bit 0 = 1 (prevent single-block stop)
The settings in MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK then do not act.

Behavior when the read-in disable is set
The behavior of the "event-driven program call" function in case of set read-in disable
(DB21, ... DBX6.1 = 1) can be set channel-specific for each initiating event with the following
machine data:

MD20107 $MC_PROG_EVENT_IGN_INHIBIT.Bit <n> = <value>

Bit Value Meaning: In the PROG_EVENT program, the read-in disable for event:
0 0 Part program start: acts

If the PROG_EVENT program is terminated with the RET command, no executable
block is created

1 Part program start: is suppressed
If the PROG_EVENT program is terminated with the RET command, an executable
block analog to M17 is created.

1 0 Part program end: acts
1 Part program end: is suppressed

2 0 Channel reset: acts
1 Channel reset: is suppressed

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
576 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Bit Value Meaning: In the PROG_EVENT program, the read-in disable for event:
3 0 Power-up: acts

1 Power-up: is suppressed

Suppress updating of the display of the program and channel states.
To prevent flickering when displaying the program and channel states on the HMI user
interface, the display refresh can be suppressed for the execution of the normally very brief
PROG_EVENT program. The program and the channel status before activation of the
PROG_EVENT program then remain visible in the display.

MD20192 $MC_PROG_EVENT_IGN_PROG_STATE.Bit <n> = <value>

Bit Value Meaning: While processing the PROG_EVENT program, the refresh of the display
of the program and channel states for event:

1 0 Part program end: Not suppressed
1 Part program end: Suppressed

2 0 Channel reset: Not suppressed
1 Channel reset: Suppressed

3 0 Power-up: Not suppressed
1 Power-up: Suppressed

Note

The system variables $AC_STAT and $AC_PROG are not affected by this function, i.e. in the
running event-driven user program, $AC_STAT is set to "active" and $AC_PROG to "running".

NC/PLC interface signals DB21, ... DBX35.0-7 ("Program state ..." and "Channel state ...")
also remain unaffected.

Response for DB21, ... DBX7.2 / 3 / 4 (NC stop ...)
The response of the "event-driven program call" function for "NC stop", "NC stop at block limit"
and "NC stop axes plus spindle" can be set channel-specific for the part program end, channel
reset and ramp up events with the following machine data:

MD20193 $MC_PROG_EVENT_IGN_STOP.Bit <n> = <value>

Bit Value Meaning: The PROG_EVENT-program for NC stop and event
1 0 Part program end: is stopped/prevented

1 Part program end: is processed completely
2 0 Channel reset: is stopped/prevented

1 Channel reset: is processed completely
3 0 Power-up: is stopped/prevented

1 Power-up: is processed completely

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 577

Application example
An edge change of the interface signal DB21, ... DBX7.3 (NC stop) initiated by the operator
by pressing the NC Stop key during a channel reset or power-up is ignored during the execution
of the PROG_EVENT program and so an undesired stop behavior at the machine is prevented.

Note

Programming DELAYFSTON/DELAYFSTOF in the PROG_EVENT program cannot replace the
behavior set with MD20193. NC stop before executing the DELAYFSTON command can still
cause an interruption.

10.9.11.3 Programming

PROG_EVENT program

End of program
The following must be kept in mind, if the user program is to be activated through the part
program start.

● The user program must be ended with M17 or RET.

● A return jump with the REPOS command is not permissible.

Block display
The display can be suppressed in the current block display using the DISPLOF attribute in the
PROC statement.

Communication to the PLC user program
User M functions programmed in the PROG_EVENT program can inform the PLC user
program, e.g. about the processing status of the PROG_EVENT program.

System variable

Query for triggering event
The initiating event can be queried in the PROG_EVENT program with the following system
variables:

<value> = $P_PROG_EVENT (event-driven program call active)

Value Meaning: Activation by
1 Part program start
2 Part program end
3 Channel reset
4 Power-up
5 After output of the last action block after Block search (see "Automatic Start of an ASUP after

block search (Page 510)")

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
578 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Query of the current channel
The channel in which the PROG_EVENT program is processed can be determined with the
following system variables:

<value> = $P_CHANNO (query the current channel number)

Note

The PROG_EVENT program is processed in the channel in which the initiating event occurred.

Power-up is an event that takes place concurrently in all channels.

10.9.11.4 Boundary conditions

Emergency stop / alarm
If an emergency stop or a mode group / NC-specific alarm is present for a channel reset or
after power-up, the PROG_EVENT program is processed only after the emergency stop or the
error has been acknowledged in all channels.

Note

The "power-up" event occurs in all channels concurrently.

10.9.11.5 Examples

Example 1: Call the PROG_EVENT program for all events

Parameterization

MD20108 $MC_PROG_EVENT_MASK = 'H0F' Call of _N_PROG_EVENT_SPF for:
● Part program start
● Part program end
● Channel reset
● Power-up

Programming

Program code Comment
PROC PROG_EVENT DISPLOF
; Processing for part program start
IF ($P_PROG_EVENT==1)
 MY_GUD_VAR=0 ; Initialize GUD variable
 RET
ENDIF

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 579

Program code Comment
; Processing for part program end and channel reset
IF ($P_PROG_EVENT==2) OR
($P_PROG_EVENT==3)

 DRFOF ; Deactivate DRF offsets
 IF $MC_CHAN_NAME=="CHAN1"
 CANCEL(2) ; Clear modal synchronized action 2
 ENDIF
 RET
ENDIF
; Sequence for power-up
IF ($P_PROG_EVENT==4)
 IF $MC_CHAN_NAME=="CHAN1"
 IDS=1 EVERY $A_INA[1]>5.0 DO
$A_OUT[1]=1

 ENDIF
 RET
ENDIF
RET

Example 2: ; Call the PROG_EVENT program for channel reset

Parameterization

MD20108 $MC_PROG_EVENT_MASK = 'H04' Call of _N_PROG_EVENT_SPF for:
● Operator panel reset

Programming

Program code Comment
PROC PROG_EVENT DISPLOF
N10 DRFOF ; Deactivate DRF offsets
N20 M17

Example 3: Initialization of the function

Parameterization
Machine data assignment, extract from the commissioning file (_N_INITIAL_INI)

Program code Comment
...
CHANDATA(3) ; Initialization for channel 3
$MC_PROG_EVENT_IGN_INHIBIT='H01F'
$MC_PROG_EVENT_MASK='H04' ; Event: Channel reset
...

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
580 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Meaning
The PROG_EVENT program _N_CMA_DIR/_N_PROG_EVENT_SPF is started for channel
reset in the 3rd channel and processed until program end, irrespective of whether or not the
read-in disable is activated or deactivated.

10.9.12 Influencing the stop events by stop delay areas

10.9.12.1 Function

Stop delay area
The response to a stop event can be influenced by the conditioned interruptible area in the
NC program. Such a program area is called a stop delay area.

Within the stop delay areas there should be no stop and the feedrate should not be changed.
Stops do not take effect until the program section has been completed.

This has the following advantages:

● A program section is processed without a drop in velocity.

● If the user aborts the program after a stop with reset, the aborted program block is after the
protected section. This program block is a suitable search target for a subsequent block
search.

● The following main run axes are not stopped as long as a stop delay area is in progress:

– Command axes

– Positioning axes that travel with POSA

Application
Example: Machining a thread.

Definition
The definition of a stop delay area is made in the part program with the predefined
DELAYFSTON and DELAYFSTOF procedures (see "Programming (Page 584)").

Stop events
Overview of the events that cause a stop:

Event Reaction
DB21, ... DBX7.7 (reset) or DB11 DBX20.7 (mode group reset) Immediate
NC program: M30 Alarm 16954
User interrupt to start an ASUP:
 FC 9 or DB10 DBB1 (setting the digital NC inputs for the PLC)

Delayed

DB21, ... DBX6.2 / DB31, ... DBX2.2 (clear distance-to-go) channel/axis-spe‐
cific

Immediate

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 581

Event Reaction
DB21, ... DBX6.3 (clear the number of subprogram repetitions) Delayed
DB21, ... DBX6.4 (program level abort) Delayed
Stop because of single block
● In the stop delay area:

The NC stops at the end of the 1st block outside the stop delay area.
● Single block is active before the stop delay area:

NC stops at each block limit, i.e. also in the stop delay area:
DB21, ... DBX7.2 (NC stop at the block limit)
This deselects the stop delay area!

Delayed

DB11 DBX21.7 (activate single-block type A) Delayed
DB11 DBX21.6 (activate single-block type B) Delayed
DB21, ... DBX7.4 (NC stop) and DB11 DBX0.6 (mode group stop, axes plus
spindles)

Immediate

DB21, ... DBX7.3 (NC stop at block limit) and DB11 DBX0.5 (mode group
stop)

Delayed

NC program: Stop because of empty overstore buffer Alarm 16954
NC program: Programmed or implicit STOPRE Alarm 16954
NC program: M0 or M1 Alarm 16954
DB21, ... DBX7.2 (NC stop at the block limit) Delayed
Subprogram end should always deselect the stop delay area. System error
NC program: WAITM Alarm 16954
NC program: WAITE Alarm 16954
NC program: INIT with parameter "S" Alarm 16954
NC program: MMC (STRING, CHAR) Alarm 16954
DB21, ... DBB26 (activate/deactivate skip block) Delayed
DB21, ... DBB26 (deactivate skip block) Delayed
DB21, ... DBX0.6 (activate DryRun) Delayed
DB21, ... DBX0.6 (deactivate DryRun) Delayed
DB21, ... DBX6.1 (read-in disable) Delayed
Alarm: Alarm configuration STOPATENDBYALARM Immediate
Alarm: Alarm configuration STOPBYALARM Immediate
Internal: Stop after alarm for empty IPO buffer Immediate
Internal: Stop after alarm for empty IPO buffer Immediate
NC program: Alarm 16954 for LFON Alarm 16954
NC program: WAITMC Alarm 16954
NC program: NEWCONF Alarm 16954
NC program: NEWCONF Alarm 16954
OPI: PI "_N_SETUDT" Delayed
Extended stop and retract Delayed
DB31, ... DBX3.0 (accept external work offset) Delayed
OPI: PI "_N_FINDST" STOPRUN Alarm 16955
Alarms with NOREADY response Immediate

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
582 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Event Reaction
DB21, ... DBX7.2 == 1 (NC stop at block limit)
DB21, ... DBX7.3 == 1 (NC stop)
DB21, ... DBX7.4 == 1 (NC stop, axes plus spindles)

Delayed

DB21, ... DBX6.1 == 1 (read-in disable) Delayed
DB21, ... DBX2.0 == 1 (single block) Delayed
Reaction
● Immediate

Stops immediately, even in the stop delay area. Designated as a "hard stop event".
● Delayed

Does not stop (even short-term) until after the stop delay area. Is known as a "soft stop event".
● Alarm 16954

Program is aborted because illegal program commands have been used in the stop delay area.
● Alarm 16955

Program is continued, an illegal action occurred in the stop delay area.
● Alarm 16957

The program area (stop delay area) enclosed by DELAYFSTON and DELAYFSTOF could not be
activated. As a result, every stop will take effect immediately and is not subject to a delay! This will
always occur when the deceleration begins before the stop delay area but ends within the stop
delay area. Likewise, if the stop delay area is entered with an override of 0, the stop delay area also
cannot be activated. (Example: A G4 before the stop delay area allows the user to reduce the
override to 0. The next block in the stop delay area then begins with override 0 and the described
alarm situation occurs.)
Note
MD11411 $MN_ENABLE_ALARM_MASK (activation of warnings) Bit 7 activates this alarm.

Note

Some NC events are stopped for only a short time, in order to perform a switching operation,
and restart immediately. This includes, e.g. an interrupt that stops the NC program briefly in
order to start the associated ASUP. These events are also allowed in the stop delay area,
however they are pushed back to its end and are thus considered "soft stop events".

Note

If a "hard" stop event coincides with the "stop delay area", the entire "stop delay area" is
deselected! Thus, if any other stop occurs in this program section, it will be stopped
immediately. A new program setting (new DELAYFSTON) must be made in order to start a
new stop delay area.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 583

10.9.12.2 Parameterization

Machine data

Stop response for G331/G332
For tapping without compensating chuck (G331, G332), the stop response can be set as
follows:

MD11550 $MN_STOP_MODE_MASK

Bit Value Meaning
0 0 (default) Results in an implicit stop delay range if G331/G332 is active - and path

motion or a dwell time (G4) was also programmed.
1 A stop while G331/G332 is active is possible in the following situations:

● The continuous path mode is interrupted (G64).
● A dwell time (G4) is programmed between the G33x blocks.
NC commands DELAYFSTON and DELAYFSTOF must be used to define a
stop delay range.

10.9.12.3 Programming

Defining a stop delay range (DELAYFSTON, DELAYFSTOF)
The predefined DELAYFSTON and DELAYFSTOF procedures are used to define a
conditionally interruptible range in the part program (stop delay range).

Note

DELAYFSTON and DELAYFSTOF are not permitted in synchronized actions!

Syntax

DELAYFSTON
...
DELAYFSTOF

Meaning

DELAYFSTON: Defining the start of a stop delay range
Alone in the block: Yes

DELAYFSTOF: Define the end of the stop delay area
Alone in the block: Yes

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
584 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Programming example
The following program block is repeated in a loop:

Program code
...
N99 MY_LOOP:
N100 G0 Z200
N200 G0 X0 Z200
N300 DELAYFSTON
N400 G33 Z5 K2 M3 S1000
N500 G33 Z0 X5 K3
N600 G0 X100
N700 DELAYFSTOF
N800 GOTOB MY_LOOP
...

In the following diagram it can be seen that the user pressed "Stop" in the stop delay range,
and the NC started braking outside the stop delay range, i.e. in block N100. That causes the
NC to stop at the beginning of N100.

Additional information

End of subprogram
DELAYFSTOF is activated implicitly at the end of the subprogram in which DELAYFSTON is
called.

Nesting
If subprogram 1 calls subprogram 2 in a stop delay area, the whole of subprogram 2 is a stop
delay area. In particular, DELAYFSTOF in subprogram 2 has no effect.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 585

Example:

Program code Comment
N10010 DELAYFSTON ; Blocks with N10xxx program level 1.
N10020 R1 = R1 + 1
N10030 G4 F1 ; Stop delay area starts.
...
N10040 subprogram2
...
... ; Interpretation of subprogram 2.
N20010 DELAYFSTON ; Ineffective, repeated start, 2nd level.
...
N20020 DELAYFSTOF ; Ineffective, end at another level.
N20030 RET
N10050 DELAYFSTOF ; Stop delay end of range at the same level.
...
N10060 R2 = R2 + 2
N10070 G4 F1 ; Stop delay area ends. From now, stops act immediately.

System variables
The following system variables can be queried to determine whether part program processing
is currently in a stop delay area:

● in the part program with $P_DELAYFST

● in synchronized actions with $AC_DELAYFST

Value Meaning
0 Delay stop range not active
1 Delay stop area active

10.9.12.4 Supplementary conditions

Overlap
If two stop delay areas overlap, one from DELAYFSTON/DELAYFSTOF and the other from
MD11550 $MN_STOP_MODE_MASK, the largest possible stop delay area will be generated.

Dwell time (G4)
G4 is permitted in the stop delay area. Other part program commands that cause a stop in the
meantime (e.g. WAITM) are not permitted and trigger the alarm 16954.

Override
If the override is changed before a stop delay area, the override takes effect in the stop delay
area.

K1: Mode group, channel, program operation, reset response
10.9 Program operation

Basic Functions
586 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

If the override is changed in the stop delay area, the change takes effect after the stop delay
area.

Note
Override = 0

If the override is reduced to 0 before a stop delay area, the stop delay area cannot be activated.

Feed disable
DB21, ... DBX6.0 The feed disable has no effect in the stop delay area; the program does not
stop until after the stop delay area.

Single block
If the single block is activated in the stop delay area, the NC stops at the end of the first block
outside the stop delay area.

If the single block is already selected before the stop delay area, the NC stops at each block
limit, i.e. also in the stop delay area! This deselects the stop delay area.

10.10 Asynchronous subprograms (ASUPs)

10.10.1 Function

Note

The terms "asynchronous subprogram", "ASUP" and "interrupt routine" used interchangeably
in the description below refer to the same functionality.

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 587

General
Asynchronous subprograms (ASUPs) are NC programs that are started in an NC channel as
response to asynchronous events (interrupt input signals, process and machine states). The
activation of an ASUP interrupts an NC program currently executing. The NC program can be
continued at the interrupt position when the ASUP ends.

The NC program being executed in the channel can be protected from being interrupted by
an ASUP either completely or only in sections. See Section "Programming (SETINT, PRIO)
(Page 597)" "Flexible programming".

Definition
To make an ASUP (interrupt routine) from an NC program, the NC program must be assigned
an interrupt signal via the SETINT command (see Section "Programming (SETINT, PRIO)
(Page 597)") or via the "ASUP" PI service (see Section "PI service: ASUP (Page 993)").

Interrupt signals
● A total of eight I/O inputs are available as interrupt signals.

● The I/O input signals can be influenced via the PLC user program.

● The first four I/O inputs are the four fast inputs of the NCU module. The signal states can
be read via the NC/PLC interface in the DB10 data block. The input signals can also be
locked via the NC/PLC interface in the DB10 data block.

For further information about PLC control of the fast NC inputs (interrupt signals) see Section
"P3: Basic PLC program for SINUMERIK 840D sl (Page 869)".

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
588 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

References:
Function Manual, Extended Functions; A4: Digital and analog NC I/O

Call

During program mode
During program mode, i.e. in AUTOMATIC or MDI mode, an ASUP can always be called.

Outside the program mode
Outside the program mode, an ASUP can be called in the following modes, machine functions
and states:

● JOG, JOG REF

● MDI Teach In, MDI Teach In REF, MDI Teach In JOG, MDI REF, MDI JOG

● AUTOMATIC, program states "stopped", "ready"

● Axis state "Not referenced"

If an ASUP is started during JOG or JOG REF, the current traversing is aborted.

Activation
An ASUP is activated via:

● 0/1 edge of the interrupt signal, triggered by a 0/1 edge at the associated fast NC input

● Call of the "Function call ASUP" (see Section "P3: Basic PLC program for SINUMERIK
840D sl (Page 869)")

● Setting an output via synchronized action which is parameterized on an interrupt via short-
circuit (see "Examples (Page 600)")
References:
Function Manual, Synchronized Actions

Display
The activation of an ASUP is shown channel-specifically with the following NC/PLC interface
signal:

DB21, … DBX378.0 == 1 (ASUP active)

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 589

10.10.1.1 Execution sequence of an ASUP in program mode
1. Decelerating the axes

Upon activation of the ASUP, all machine axes are decelerated to a standstill according to
the deceleration ramp (MD32300 $MA_MAX_AX_ACCEL), and the axis positions are
saved.

2. Reorganization
In addition to decelerating the axes, the previously decoded calculation blocks are
calculated back to the interruption block, i.e. all the variables, frames and G commands are
assigned the value that they would have at the point of interruption if the part program had
not been previously decoded. These values are also buffered so they remain available after
the end of the ASUP.
Exceptions where no reorganization is possible:

– In thread cutting blocks

– With complex geometries (e.g. spline or radius compensation)

3. Processing the ASUP
The ASUP is started automatically on completion of the reorganization.
The ASUP is processed as a normal subprogram (nesting depth, etc.).

4. End of the ASUP
After the end identifier (M02, M30, M17) of the ASUP has been processed, the axis traverses
by default to the end position programmed in the part program block following the
interruption block.
A REPOS statement must have been programmed at the end of the ASUP if return
positioning to the point of interruption is required, e.g. N104 REPOSL M17

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
590 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.10.1.2 ASUP with REPOSA
If an NC program is stopped by an NC stop or alarm, and an ASUP with REPOSA is
subsequently initiated from the PLC user program using FC9, then typically, the following
sequence is obtained:

● The ASUP and/or the traversing motion programmed in it are executed:

– Program status: "Stopped"

– DB21, ... DBX318.0 (ASUP is stopped) = 1

● A new stop is executed before repositioning to the contour (REPOS).

● The operator initiates an NC start to reposition to the contour (REPOS):

– DB21, ... DBX318.0 (ASUP is stopped) = 0

– The reapproach movement is executed.

● At the end of the reapproach motion, the FC9 acknowledge signal "ASUP done" is set and
the path of the interrupted NC program is continued.

Note

The NC/PLC interface signal DB21, ... DBX318.0 (ASUP is stopped) is set only in the
following case:

Interrupt in the program mode and in the "interrupted" channel state.

Note

For ASUPs without REPOS, the FC9 acknowledge signal "ASUP done" and the reset of
the NC/PLC interface signal DB21, ... DBX318.0 = 0 (ASUP is stopped) coincide from a
timing perspective.

Figure 10-7 Schematic sequence: ASUP with REPOSA

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 591

10.10.1.3 NC response
The different responses in the various states for channel, mode group or NC on an activated
ASUP are listed in the following table:

Status ASUP start Control system response
Program is active Interrupt, (PLC) 1. Fast retraction or stop axes

2. Interrupt the program for the duration of the ASUP
3. Approach of the interruption point, if REPOS in ASUP
4. Continuation of the part program

Reset Interrupt, (PLC) The ASUP is executed like a main program. Reset (without M30) is exe‐
cuted at the end of the ASUP. The next control system status depends on
the following machine data:
MD20110 $MC_RESET_MODE_MASK
MD20112 $MC_START_MODE_MASK
References:
Function Manual Basic Functions; Axes, Coordinate Systems, Frames
(K2), Section: "Workpiece-related actual-value system"

Program mode (AUTO‐
MATC or MDI)
+ channel stopped

Interrupt, (PLC) ASUP is executed. At the end of the ASUP the STOP state is reapplied.
If REPOS in the ASUP:
● The ASUP processing is stopped before the approach block.
● The approach movement can be initiated with the Start key.

Start key Once the ASUP has been executed, processing of the interrupted pro‐
gram is resumed.

Manual mode
+ channel stopped

Interrupt, (PLC) Control system assumes the status "internal program execution mode" for
the addressed channel (not evident externally) and then activates the AS‐
UP. The selected operating mode remains valid. The original status is
resumed after execution of the ASUP (M17).

JOG
AUTO Teach-In
AUTO Teach reference
point.

Interrupt, (PLC) Stop processing, evaluate:
MD11602 $MN_ASUP_START_MASK
MD11604 $MN_ASUP_START_PRIO_LEVEL
Internal switchover to "internal program execution mode" if appropriate,
activate ASUP, restore status prior to ASUP start.
Any LIFTFAST defined with SETINT is not activated in JOG mode.

MDI JOG,
MDI Teach-In,
MDI Teach reference point.

Interrupt, (PLC)

Manual mode
+ channel running

Interrupt, (PLC) The current active motion is stopped. The distance-to-go is deleted. The
remaining sequence of operations is the same as for "Manual mode,
channel stopped".

User alarm 65500 - 65999,
channel in reset

Interrupt, (PLC) When the following machine data is set, the user ASUP is processed
despite the "NC Start disable" alarm response:
MD20194 $MC_IGNORE_NONCSTART_ASUP

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
592 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Status ASUP start Control system response
Processing of INITIAL.INI Not possible The signal "Interrupt request not possible" is generated.
Block search
Alarm that cannot be re‐
moved by NC Start.
Digitalizing active
Channel in fault condition
User alarm other
than 65500 - 65999,
channel in reset,
MD20194 not active

Not possible The "request was canceled because of an alarm" signal is generated.

10.10.2 Commissioning: Machine data

10.10.2.1 NC-spec.: Mode-group-specific NC/PLC interface signals and operating mode switchover
The machine data specifies the effectiveness of the mode-group-specific NC/PLC interface
signals of DB11 and the channels in which an operating mode switchover is performed:

MD11600 $MN_BAG_MASK = <Value>

Val‐
ue

Meaning

0 The mode-group-specific NC/PLC interface signals of DB11 are effective.
An internal operating mode switchover is performed in all channels of the mode group.

1 The mode-group-specific NC/PLC interface signals of DB11 are not effective.
An internal operating mode switchover is performed only in the channel in which an ASUP is
active.

2 The mode-group-specific NC/PLC interface signals of DB11 are effective.
An internal operating mode switchover is performed only in the channel in which an ASUP is
active.

3 The mode-group-specific NC/PLC interface signals of DB11 are not effective.
An internal operating mode switchover is performed only in the channel in which an ASUP is
active.

Note
Multi-channel systems

If the "Manual traversing during an ASUP interruption in JOG mode" function is to be possible
in multi-channel systems (see below), MD11600 $MN_BAG_MASK must be set to "2" or "3".

See also
Programming (SETINT, PRIO) (Page 597)

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 593

10.10.2.2 NC-spec.: ASUP start enable
With the machine data, you can specify which stop reasons are to be ignored for an ASUP
start:

MD11602 $MN_ASUP_START_MASK, <Bit> = <Value>

Bit Val‐
ue

Meaning

0 0 The ASUP is not started when a stop is present from the Stop key, M0 or M01.
1 The ASUP is started even when a stop is present from the Stop key, M0 or M01.

2 0 When an ASUP is started, the channel-specific machine data is effective when there is
a read-in disable in the channel:
● MD20107 $MC_PROG_EVENT_IGN_INHIBIT
● MD20116 $MC_IGNORE_INHIBIT_ASUP

1 The start of a user or system ASUP is enabled in all channels of the NC even when there
is a read-in disable in the relevant channel.
The settings in the channel-specific machine data are not effective:
● MD20107 $MC_PROG_EVENT_IGN_INHIBIT
● MD20116 $MC_IGNORE_INHIBIT_ASUP
Notice
The start enable is active in all channels of the NC despite a read-in disable. Not only
for the user, but also for the system ASUPs. It is therefore strongly recommended that
the channel-specific enables are used instead of the NC-specific enable.

3 0 If an ASUP was started in JOG mode and interrupted by an NC stop, axes cannot be
traversed manually in this state.

1 If an ASUP was started in JOG mode and interrupted by an NC stop, axes can be
traversed manually in this state.
The ASUP can be continued with NC start. A REPOS operation is then performed auto‐
matically.
Note
If more than one channel is parameterized in the control, the following machine data
must also be set:
MD11600 $MN_BAG_MASK, bit 1 = 1

Manual start enable
If an ASUP is not started automatically due to the parameterized start enables, the ASUP can
still be started via NC/PLC interface signal (DB21, ... DBX7.1) from the PLC user program or
by manual actuation of NC start.

Note

The ASUP for "fast retraction from the contour" (LIFTFAST) is started in every case.

10.10.2.3 NC-spec.: Effectiveness of the parameterized start enables
With the machine data, you set up to which ASUP priority (Page 597), starting from the highest
priority, the settings in MD11602 $MN_ASUP_START_MASK are effective:

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
594 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD11604 $MN_ASUP_START_PRIO_LEVEL = <ASUP priority>

Example
MD11604 $MN_ASUP_START_PRIO_LEVEL = 5

The settings in MD11602 $MN_ASUP_START_MASK are effective for ASUPs of priorities 1
→ 5.

10.10.2.4 Channel-spec.: Start enable despite non-referenced axes
With the machine data, you can set for which interrupts the associated ASUP is started despite
the parameterized "NC start disable without reference point" function (MD20700
$MC_REFP_NC_START_LOCK):

MD20115 $MC_IGNORE_REFP_LOCK_ASUP, bit (1 - <Interrupt>) = TRUE

NOTICE

System interrupts

With MD20115 $MC_IGNORE_REFP_LOCK_ASUP, bits 8 - 31, the ASUPs assigned to the
system interrupts are enabled.

Bit 8 / interrupt 9 starts an ASUP that contains traversing motions.
NC-specific ASUP start enable

If MD11602 $MN_ASUP_START_MASK, bit 2 == TRUE, the ASUP start enable is set for all
channels of the NC despite the parameterized channel-specific "NC start disable without
reference point" function (MD20700 $MC_REFP_NC_START_LOCK). It is therefore strongly
recommended that the channel-specific enable is used instead of the NC-specific enable.

10.10.2.5 Channel-spec.: Start enable despite read-in disable
With the machine data, you can set for which interrupts the associated ASUP is started despite
the read-in disable present in the channel (DB21, ... DBX6.1):

MD20116 $MC_IGNORE_INHIBIT_ASUP, bit (1 - <Interrupt>) = TRUE

NOTICE

System interrupts

With MD20116 $MC_IGNORE_INHIBIT_ASUP, bits 8 - 31, the ASUPs assigned to the
system interrupts are enabled.

Bit 8 / interrupt 9 starts an ASUP that contains traversing motions.
NC-specific ASUP start enable

If MD11602 $MN_ASUP_START_MASK, bit 2 == TRUE, the channel-specific settings in
MD20116 $MC_IGNORE_INHIBIT_ASUP are ignored in all channels of the NC. It is therefore
strongly recommended that the channel-specific enable is used instead of the NC-specific
enable.

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 595

10.10.2.6 Channel-spec.: Continuous execution despite single block
With the machine data, you can set for which interrupts the associated ASUP is executed
continuously, i.e. without block-by-block interruption, despite active single block processing in
the channel (DB21, ... DBX0.4):

MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP, bit (1 - <Interrupt>) = TRUE

Supplementary conditions
The settings in MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP are only active for a single
block SBL1 (main run single block).

NOTICE

System interrupts

With MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP, bits 8 - 31, the ASUPs assigned to
the system interrupts are enabled.

Bit 8 / interrupt 9 starts an ASUP that contains traversing motions.
NC-specific ASUP start enable

If MD10702 $MN_IGNORE_SINGLEBLOCK_MASK, bit 1 == TRUE, the channel-specific
settings in MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP are ignored in all channels of
the NC. It is therefore strongly recommended that the channel-specific enable is used instead
of the NC-specific enable.

10.10.2.7 Channel-spec.: Refreshing the display
With the machine data, you can set that the display is not refreshed while the ASUP is being
executed to avoid a flickering of the display of the program and the channel states on the user
interface when executing a very short ASUP:

MD20191 $MC_IGN_PROG_STATE_ASUP, bit (1 - <Interrupt>) = TRUE

Note
NC/PLC interface signal

The following NC/PLC interface signal is set when executing an ASUP with suppressed display:

DB21, … DBX378.1 = 1 ("silent" ASUP active)

System variables and NC/PLC interface signals
The system variables and NC/PLC interface signals for the program state and the channel
state are not affected by the suppression of the display during the execution of an ASUP:

● $AC_STAT (channel state)

● $AC_PROG (program state)

● DB21, ... DBX35.5 - 7 (channel state)

● DB21, ... DBX35.0 - 4 (program state)

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
596 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.10.3 Programming: System variables

10.10.3.1 REPOS option ($P_REPINF)
In conjunction with ASUPs, program execution sequences can be generated for which there
is no unambiguous return to a repositioning point on the contour (REPOS).

The system variable can be used to read in the ASUP whether a REPOS is possible.

<value> = $P_REPINF

Value Meaning
0 Repositioning with REPOS not possible because:

● Not called in the ASUP
● ASUP ran from reset state
● ASUP ran from JOG

1 Repositioning with REPOS possible in ASUP

10.10.3.2 Activation event ($AC_ASUP)
The following information with regard to the event that caused the activation of the ASUP can
be read via the $AC_ASUP system variable:

● The reason why the ASUP was activated, e.g. Bit 0: User interrupt "ASUP with Blsync"

● How the ASUP was activated, e.g. Bit 0: NC/PLC interface signal, digital-analog interface

● How is it possible to continue, e.g. Bit 0: Freely selectable REORG or RET

10.10.4 Programming (SETINT, PRIO)

Assignment: Interrupt to the NC program
The SETI command assigns an NC program to an interrupt. This makes the NC program into
an ASUP.

Syntax
SETINT(<n>) <NC program>

Meaning

SETINT: Assignment of an NC program to an interrupt signal
<n>: Number of the interrupt signal

Value range: 0, 1, 2, ... 8
<NC program>: Program name

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 597

Example

Program code Comment
N20 SETINT(3) LIFT_Z ; IF input 3 == 1

; THEN start ASUP "LIFT_Z"

Together with SETINT additionally the following statements can be programmed:

● LIFTFAST
When the interrupt signal arrives, a "Fast retraction of the tool from the contour" is performed
before the ASUP starts. The motion direction for the fast retraction is specified by the
program statement ALF.

● BLSYNC
Upon receiving the interrupt signal, the current program block is processed and only then
is the ASUP started.

Note

The assignment interrupt signal ↔ part program is cleared when the following happens:
● Channel in Reset state
● CLRINT statement in the part program

Priorities
If several interrupts are activated by SETINT in an NC program, the assigned NC programs
or ASUPs must be assigned different priorities.

Syntax
PRIO=<value>

Meaning

PRIO: Keyword for defining the priority of the interrupt
<value>: Priority: 1, 2, 3 ... 128. Whereby 1 is the highest priority.

Example

Program code Comment
N20 SETINT(3) PRIO=2 LIFT_Z ; IF input 3 == 1

; THEN start ASUP "LIFT_Z"
N30 SETINT(2) PRIO=3 LIFT_X ; IF INPUT 2 == 1

; THEN start ASUP "LIFT_X"

The ASUPs are executed in the sequence of the priority values if the inputs 2 and 3 have
switched simultaneously:

1. "LIFT_Z"

2. "LIFT_Z"

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
598 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Additional interrupt-specific commands

Command Meaning
SAVE If the SAVE command is used in an ASUP, the G commands, frames and

transformations active in the interrupted NC program before the interrup‐
tion take effect again at the end of the ASUP.

DISABLE
ENABLE

The DISABLE ENABLE command pair can be set to protect program sec‐
tions from being interrupted by ASUPs.
The assignment of an interrupt signal to an NC program made with
SETINT is retained.
The ASUP is then started with the next 0/1 edge of the interrupt signal after
ENABLE.

CLRINT(<n>) Delete the assignment of interrupt signals n to the NC program assigned
with SETI.

References
Programming Manual, Job Planning; Section: "Flexible NC Programming" > "Interrupt routine
(ASUP)"

See also
Programming (Page 602)

10.10.5 Restrictions

Cross-mode ASUP start

Settings to be checked
● MD11600 $MN_BAG_MASK

● MD11604 $MN_ASUP_START_PRIO_LEVEL

● Interrupt assignment priority

Recommended settings
NC-specific machine data:

● MD11600 $MN_BAG_MASK = 'H3'

Note

Note with this setting, that the mode-group-specific NC/PLC interface signals of DB11 no
longer affect the channel in which the ASUP is executed. If this behavior is not desired,
alternatively the setting MD11600 $MN_BAG_MASK = 'H2' can be used (see
"Commissioning: Machine data (Page 593)").

MD11602 $MN_ASUP_START_MASK = 'H5'

● MD11604 $MN_ASUP_START_PRIO_LEVEL = 7

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 599

Channel-specific machine data for the channel in which the ASUP is started or generally for
all channels:

● MD20105 $MC_PROG_EVENT_IGN_REFP_LOCK, bit <n> = TRUE
<n>: For all required event-driven program calls (prog events)

● MD20115 $MC_IGNORE_REFP_LOCK_ASUP, bit <n> = TRUE
<n>: For all required user interrupts

NOTICE

System interrupts

With MD20115 $MC_IGNORE_REFP_LOCK_ASUP, bits 8 - 31, the system interrupts are
enabled.

Bit 8 / interrupt 9 starts an ASUP that contains traversing motions.

10.10.6 Examples

Activation of an ASUP by an interrupt from a synchronized action
1. Parameterize two active digital I/O bytes:

– MD10350 $MN_FASTIO_DIG_NUM_INPUTS = 2

– MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS = 2

2. Parameterize a short-circuit with OR operation from output 9 to input 9:

– Input 1, input byte 2 = (output 1, output byte 2) OR (HW input signal 1, input byte 2):
MD10361 $MN_FASTIO_DIG_SHORT_CIRCUIT[0] = 'H0102B102'

3. Assign the HW input byte to the SETINT interrupt programming:

– Input byte 2:
MD21210 $MC_SETINT_ASSIGN_FASTIN = 2

4. Define input as ASUP trigger:

– Input 1 in the second input byte, i.e. absolute input 9, starts the SYNCASUP program
SETINT(1) PRIO=1 SYNCASUP

5. Define a synchronized action to set the output:

– Synchronized action with ID 1 always sets output 9 to 1 when the value of the
standardized path parameter becomes >= 0.5:
IDS=1 EVERY $$AC_PATHN >= 0.5 DO $A_OUT[9]=1
The short-circuit of output 9 to input 9 causes interrupt 1 and the "SYNC" NC program
to be started as ASUP.

K1: Mode group, channel, program operation, reset response
10.10 Asynchronous subprograms (ASUPs)

Basic Functions
600 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.11 User-specific ASUB for RET and REPOS

10.11.1 Function

Function
The control software includes a Siemens-specific ASUP to implement the NC program end
(RET) and repositioning on the contour (REPOS) functions. The machine tool manufacturer
can replace the system ASUP with a user-specific ASUP.

DANGER

Programming fault

The machine manufacturer has sole responsibility for ensuring the correct operation of the
user-specific ASUP that replaces the Siemens-specific ASUP ("ASUP.SYF").

10.11.2 Parameter assignment

Installation

ASUP name
The user-specific ASUP must be given the following name:

● _N_ASUP_SPF

ASUP directories
The user-specific ASUP "_N_ASUP_SPF" must be stored in one of the two directories:

● _N_CMA_DIR (manufacturer directory)

● _N_CUS_DIR (user directory)

Activation and search path
Bits 0 and 1 of the following machine data specify the event for which the user-specific ASUP
"_N_ASUP_SPF" is activated.

Bit 2 specifies the search start for activation of the user-specific ASUP "_N_ASUP_SPF".

K1: Mode group, channel, program operation, reset response
10.11 User-specific ASUB for RET and REPOS

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 601

MD11610 $MN_ASUP_EDITABLE, bit 0, 1, 2 = <value>

Bit Value Meaning
0 and 1 0 The user-specific ASUP is activated neither for program end (RET) nor for repo‐

sitioning on the contour (REPOS).
1 The user-specific ASUP is activated for RET.

The system-specific ASUP is activated for REPOS.
2 The system-specific ASUP is activated for RET.

The user-specific ASUP is activated for REPOS.
3 The user-specific ASUP is activated for RET and REPOS.

2 0 The user-specific ASUP is searched for first in the user directory _N_CUS_DIR.
1 The user-specific ASUP is searched for first in the manufacturer directory

_N_CMA_DIR.

Defining a level of protection
If a user-specific ASUP is to be used for RET and/or REPOS (MD11610
$MN_ASUP_EDITABLE ≠ 0), a protection level can be defined for the user-specific routine
"_N_ASUP_SPF". The level of protection can have values in the range 0 - 7. The setting is
made via the following machine data:

MD11612 $MN_ASUP_EDIT_PROTECTION_LEVEL <protection level of the user-specific
ASUP>

For further information about protection levels, refer to:
References:
Commissioning Manual; level of protection concept

Behavior when the single-block processing is set
The following machine data specifies that the system-specific ASUP and the user-specific
ASUP "_N_ASUP_SPF" should be processed without interruption, despite active single-block
processing:

MD10702 $MN_IGNORE_SINGLEBLOCK_MASK, bit 0 = <value>

Bit Value Meaning
0 0 For active single-block mode, a stop is made in every ASUP.

1 For active single-block mode, the ASUP is processed without interruption.

10.11.3 Programming

Determining the cause of the ASUB activation
The cause of the activation of the ASUB can be read bit-coded via the system variable
$AC_ASUP.

K1: Mode group, channel, program operation, reset response
10.11 User-specific ASUB for RET and REPOS

Basic Functions
602 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Continuation
When using the system ASUB, the behavior for the continuation after execution of the actions
is permanently specified within the ASUB:

● System ASUB 1 → continuation with RET (subprogram return)

● System ASUB 2 → continuation with REPOS (repositioning)

The description of the system variables specifies the behavior with regard to the system ASUB
for each cause at "Continued for".

Note
Continued for user-specific ASUB

It is recommended for user-specific ASUBs that the appropriate continuation of the system
ASUB be retained.
Cause: Change of operating mode ($AC_ASUP, bit 9 == 1)

At a change of operating mode, the continuation depends on the machine data:

MD20114 $MC_MODESWITCH_MASK (interruption of MDA through mode change)
● Bit 0 == 0: System ASUB 1 → continuation with RET
● Bit 0 == 1: System ASUB 2 → continuation with REPOS

References
A detailed description of the system variables can be found in:

List Manual, System Variables

10.12 Perform ASUB start for user alarms

10.12.1 Function

Description
An ASUP can be initiated in various situations, either by the user, the system or event-
controlled. A user alarm with the "NC Start disable" alarm response prevents the ASUP start
in some situations. For a pending alarm response, a user ASUP from reset acknowledges with
the alarm 16906.

K1: Mode group, channel, program operation, reset response
10.12 Perform ASUB start for user alarms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 603

With the appropriate setting of a channel-specific machine data it is possible to start and
perform an ASUP although a user alarm with the alarm response "NC Start disable" is active.
The alarm response is overridden for the ASUP start and permits its execution.

Note

NC alarms with the "NC Start disable" alarm response are not affected by the override. A user
ASUP from reset is still not possible and will be rejected with the alarm 16906.

User alarms that can be overridden
The number range for the user alarms that can be overridden is classified as follows:

Number range Effect Delete
65000 - 65499 Display, NC Start disable Reset
65500 - 65999 Display, NC Start disable (not for ASUPs for set MD20194) Reset
66000 - 66999 Display, NC Start disable, motion standstill after executing

the pre-decoded blocks
Reset

67000 - 67999 Display Cancel
68000 - 68999 Display, NC Start disable, immediate interpolator stop Reset
69000 - 69999 Display, NC Start disable, stop at next block end Reset

Note

Although it is possible to override the "NC Start disable" alarm response for the following alarm
number ranges, the other responses of the associated alarms ensure for the stop conditions.
The stop conditions cannot be overridden with the function described in this section:
● 66000 - 66999
● 68000 - 68999
● 69000 - 69999

10.12.2 Activation

Setting
Each ASUP channel can be set separately with the following channel-specific machine data:

MD20194 $MC_IGNORE_NONCSTART_ASUP (ASUP start permitted despite pending alarm
response "NC Start disable" for certain user alarms)

A change of the MD setting acts only with the NEWCONF part program command or from the
user interface per softkey.

K1: Mode group, channel, program operation, reset response
10.12 Perform ASUB start for user alarms

Basic Functions
604 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Sequence
The normal sequence for the ASUP start has the following form:

● Set machine data appropriate with MD20194 $MC_IGNORE_NONCSTART_ASUP and
activate with NEWCONF.

● Start the part program.
A user alarm from the number ranges that can be overridden appears, e.g. alarm 65500.
This can occur from a synchronized action or with a part program command.

● Despite alarm, the part program is processed to the program end M02, M30 or M17.
The Reset channel state is active.

● A started user ASUP from reset is now performed.

Note

An ASUP start from a running or stopped part program is also permitted for a pending "NC
Start disable" alarm response. It is irrelevant whether a user alarm or an NC alarm with the
"NC Start disable" alarm response is involved.

Note

If the part program is stopped during the processing of the user ASUP, the ASUP can no longer
be continued with the NC Start key, e.g. for M0 in the ASUP or for user stop. The "NC Start
disable" alarm response is rejected with the alarm 16906. The previously generated user alarm
can be acknowledged only with reset.

10.12.3 Examples

10.12.3.1 User ASUB from reset - example 1
MD20194 is not set in the application

Main program

Program code
N10 G90 G0 Z10
N20 SETAL(65500)
N30 X100
N40 Z0
N50 M30

User ASUB

Program code
N110 G91 G0 X-10 Z5

K1: Mode group, channel, program operation, reset response
10.12 Perform ASUB start for user alarms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 605

Program code
N120 X20
N130 REPOSA

Sequence

The block N10 is processed. The alarm 65500 appears that contains the "Display" and "NC
Start disable" alarm responses. The part program does not stop as result. The block N30 is
loaded and processed. If the user ASUB is used in the block middle, it is performed despite
pending "NC Start disable" alarm response. The REPOSA resumes at the program interruption
and processes the part program to the program end M30. If the user ASUB is now used, it will
be rejected with alarm 16906. The NC state is reset.

10.12.3.2 User ASUB from reset - example 2
The application is the normal case, MD20194 is set.

Main program

Program code
N4 $MC_IGNORE_NONCSTART_ASUP=1
N6 NEWCONF
N10 G90 G0 Z10
N20 SETAL(65500)
N30 X100
N40 Z0
N50 M30

K1: Mode group, channel, program operation, reset response
10.12 Perform ASUB start for user alarms

Basic Functions
606 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

User ASUB

Program code
N110 G91 G0 X-10 Z5
N120 X20
N130 REPOSA

Sequence

The machine data MD20194 $MC_IGNORE_NONCSTART_ASUP is set for ASUB channel 1
and activated with NEWCONF. The block N10 is processed. The alarm 65500 appears that
contains the "Display" and "NC Start disable" alarm responses. The part program does not
stop as result. The block N30 is loaded and processed. If the user ASUB is used in the block
middle, it is performed despite pending "NC Start disable" alarm response. The REPOSA
resumes at the program interruption and processes the part program to the program end
M30. If the user ASUB is now used, it is repeated because of the set machine data MD20194.

10.12.3.3 User ASUB with M0
MD20194 is set in the application.

Main program

Program code
N4 $MC_IGNORE_NONCSTART_ASUP=1
N6 NEWCONF
N10 G90 G0 Z10
N20 SETAL(65500)
N30 X100
N40 Z0
N50 M30

K1: Mode group, channel, program operation, reset response
10.12 Perform ASUB start for user alarms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 607

User ASUB

Program code
N110 G91 G0 X-10 Z5
N120 X10
N122 M0
N124 X10
N130 REPOSA

Sequence

The machine data MD20194 $MC_IGNORE_NONCSTART_ASUP is set for ASUB channel 1
and activated with NEWCONF. The block N10 is processed. The alarm 65500 appears that
contains the "Display" and "NC Start disable" alarm responses. The part program does not
stop as result. The block N30 is loaded and processed. If the user ASUB is used in the block
middle, it is performed despite pending "NC Start disable" alarm response. The part program
stops at block N122 because of M0. The ASUB can no longer be continued when the NC Start
key is pressed. The "NC Start disable" alarm response is rejected with the alarm 16906. The
previously generated 65500 alarm can be acknowledged only with reset.

10.12.3.4 User ASUB with stop
MD20194 is set in the application.

Main program

Program code
N4 $MC_IGNORE_NONCSTART_ASUP=1
N6 NEWCONF
N10 G90 G0 Z10
N20 SETAL(65500)
N30 X100
N40 Z0

K1: Mode group, channel, program operation, reset response
10.12 Perform ASUB start for user alarms

Basic Functions
608 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code
N50 M30

User ASUB

Program code
N110 G91 G0 X-10 Z5
N120 X20
N130 REPOSA

Sequence

The machine data MD20194 $MC_IGNORE_NONCSTART_ASUP is set for ASUB channel 1
and activated with NEWCONF. The block N10 is processed. The alarm 65500 appears that
contains the "Display" and "NC Start disable" alarm responses. The part program does not
stop as result. The block N30 is loaded and processed. If the user ASUB is used in the block
middle, it is performed despite pending "NC Start disable" alarm response. If the NC Stop key
is pressed for N120 in the block middle, the ASUB stops. The ASUB can no longer be continued
when the NC Start key is pressed. The "NC Start disable" alarm response is rejected with the
alarm 16906. The previously generated 65500 alarm can be acknowledged only with reset.

10.12.3.5 User ASUB from stopped
MD20194 is or not set in the application.

Main program

Program code
N10 G90 G0 Z10
N20 SETAL(65500)
N30 X50
N35 M0
N38 X100

K1: Mode group, channel, program operation, reset response
10.12 Perform ASUB start for user alarms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 609

Program code
N40 Z0
N50 M30

User ASUB

Program code
N110 G91 G0 X-10 Z5
N120 X20
N130 REPOSA

Sequence

The block N10 is processed. The alarm 65500 appears that contains the "Display" and "NC
Start disable" alarm responses. The part program does not stop as result. The block N30 is
loaded and processed. The part program stops at block N35 because of M0. The NC state is
stopped. If the user ASUB is now used, it is performed despite the stopped NC state and
pending "NC Start disable" alarm response. It does not matter whether or not the machine
data MD20194 $MC_IGNORE_NONCSTART_ASUP is set. After block N120, the ASUB
remains stationary before REPOSA. Repositioning is possible only at the next NC Start. The
NC Start, however, is rejected with the alarm 16906 because of the "NC Start disable" alarm
response. The previously generated 65500 alarm can be acknowledged only with reset.

10.13 Single block
The "Single block" function allows an NC program to be executed block by block (non-modally)
in three different ways.

K1: Mode group, channel, program operation, reset response
10.13 Single block

Basic Functions
610 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The following single block types are available:

● "SBL1: single block coarse" (stop after each main run block)
After each completely executed main program block, the NC program and/or processing
is stopped.

● "SBL2: calculation block" (stop after each decoded block)
After each decoded block, the NC program and/or processing is stopped.
If several main run blocks are generated from a decoded block, a stop is made after each
main run block.

Note
Thread cutting blocks

For thread cutting blocks, the NC program is not stopped and machining is not stopped.

● "SBL3: single block fine" (stop after each decoded block, also in a cycle)
As with SBL2, however, the NC program is stopped and machining is stopped after each
block, also within a cycle.

User interface: Selecting the single block type
The SBL1, SBL2 or SBL3 single block type is selected from the HMI user interface:

Operating area "Machine" > "Influence prog." > Menu: "Program control"

10.13.1 Parameterization

Interface signals

Activation
The "single block" function is activated on a channel-specific basis using the NC/PLC interface
signal:

DB21, ... DBX0.4 (activate single block)

K1: Mode group, channel, program operation, reset response
10.13 Single block

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 611

Machine data

Deactivate single block machining (MD10702, MD20106, MD20117)
● Using the machine data, for certain machining situations and program types it can be

selected that in spite of active single block function, a stop is not made:
MD10702 $MN_IGNORE_SINGLEBLOCK_MASK

Note
● By programming (Page 613) SBLON/SBLOFwithin an ASUB or subprogram, single block

machining can be explicitly activated/deactivated.
● For single block type "SBL2: calculation block" the machine data only acts for system

ASUBs, user ASUBs and subprograms with attribute DISPLOF.

● The behavior of event-driven program calls (program events) regarding a single block, is
set using:
MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK

● The behavior of interrupt programs (ASUB) regarding a single block, is set using:
MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP
If an ASUP is activated during the single block, execution of the ASUP is completed. The
single block does not act until after the ASUP or in the first main program block in which
single-block suppression is not activated. If for a transition from ASUB to the NC program
the path velocity is too large so that braking to standstill in the following block is not possible,
e.g. for active continuous-path mode G64, the deceleration may extend over several
following blocks.

Note

By programming (Page 613) SBLON within an ASUB, in this case single block machining
cannot be reactivated.

Setting data

Debug mode for single block "SBL2: calculation block" (SD42200)
As a result of the leading decoding of the blocks, the reference between the main block-related
actual block display and the displayed variable values can be lost at the user interface. It is
possible under certain circumstances that variable values are displayed that are not plausible.

With the following channel-specific setting data, for an active single block "SBL2: calculation
block" a preprocessing stop can be executed for each block. This suppresses the premachining
of part program blocks and maintains the relationship between the current block display and
the variable values display.

SD42200 $SC_SINGLEBLOCK2_STOPRE (activate debug mode for SBL2)

Note
Contour deviation

When executing traversing blocks, single block type "SBL2: calculation block" in the debug
mode contour deviations can occur.

K1: Mode group, channel, program operation, reset response
10.13 Single block

Basic Functions
612 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.13.2 Programming

10.13.2.1 Deactivating/activating single block machining (SBLOF, SBLON)

Deactivating single block machining for the complete NC program:
If deactivating single block machining (SBLOF) is programmed in the first of line (PROC) of a
main program, then this remains valid until the end of the NC program or until the NC program
is canceled. The NC program is then executed without stopping when in the single block mode.

If deactivating single block machining (SBLOF) is programmed in the first of line (PROC) of a
subprogram, then this remains valid until the end of the NC program or until the NC program
is canceled. With the programmed return command, the decision is made whether to stop at
the end of the subprogram:

● Return jump with M17: Stop at the end of the subprogram

● Return jump with RET: No stop at end of subprogram

Deactivating single block machining within the NC program
If the deactivation of single block machining (SBLOF) is programmed in a block within an NC
program, then single block machining is deactivated from this block onward up to the next
programmed activation of single block machining (SBLON) - or at the end of the active
subprogram level.

Syntax
SBLOF
SBLON

Meaning

SBLOF: Predefined procedure to deactivate single block machining
Alone in the block: yes, possible in the PROC block
Effective: Modal

SBLON: Predefined procedure to activate single block machining
Alone in the block: Yes
Effective: Modal

10.13.2.2 Supplementary conditions

Single block suppression and block display
The current block display can be suppressed in subprograms using DISPLOF. If DISPLOF is
programmed together with SBLOF, then for single block stops within the subprogram, the
subprogram call is displayed.

K1: Mode group, channel, program operation, reset response
10.13 Single block

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 613

Special issues relating to various single block types
● "SBL2: calculation block" AND MD10702 $MN_IGNORE_SINGLEBLOCK_MASK, bit 12

== 1:
A stop is not made in the SBLON block.

● "SBL3: single block fine": command SBLOF is suppressed

Single block suppression for asynchronous subprograms (ASUB)
In order that an ASUB is executed without stopping, even when single block machining is
active, PROC together with SBLOF must be programmed in the first program line of the ASUB.

Example

Program code Comment
N10 PROC ASUP1 SBLOF DISPLOF
N20 IF $AC_ASUP=='H200'
N30 RET ; No REPOS for mode change.
N40 ELSE
N50 REPOSA ; REPOS in all other cases.
N60 ENDIF

10.13.2.3 Examples

Example 1: Single-block suppression within a program

Program code Comment
N10 G1 X100 F1000
N20 SBLOF ; Deactivate single block.
N30 Y20
N40 M100
N50 R10=90
N60 SBLON ; activate single block
N70 M110
N80 ...

The range between N20 and N60 is handled just like a block when the single block mode is
activated.

Example 2: Subprogram without stopping

Main program

Program code
...
N100 G1 X10 G90 F200
N120 X-4 Y6
N130 CYCLE1

K1: Mode group, channel, program operation, reset response
10.13 Single block

Basic Functions
614 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code
N140 G1 X0
N150 M30

Subprogram

Program code Comment
N100 PROC CYCLE1 DISPLOF SBLOF ; Suppress single block
N110 R10=3*SIN(R20)+5
N120 IF (R11 <= 0)
N130 SETAL(61000)
N140 ENDIF
N150 G1 G91 Z=R10 F=R11
N160 M17

Even when single block machining is active, the cycle is completely executed.

Example 3: ASUB with single block suppression and not visible
Processing a ASUB started by the PLC user program should not be interrupted, even when
single block machining is active. Further, the ASUB should not be visible.

Program code
N100 PROC NV SBLOF DISPLOF ; single block and display suppression
N110 CASE $P_UIFRNUM OF
 0 GOTOF _G500
 1 GOTOF _G54
 2 GOTOF _G55
 3 GOTOF _G56
 4 GOTOF _G57
 DEFAULT GOTOF END
N120 _G54: G54 D=$P_TOOL T=$P_TOOLNO
N130 RET
N140 _G54: G55 D=$P_TOOL T=$P_TOOLNO
N150 RET
N160 _G56: G56 D=$P_TOOL T=$P_TOOLNO
N170 RET
N180 _G57: G57 D=$P_TOOL T=$P_TOOLNO
N190 RET
N200 END: D=$P_TOOL T=$P_TOOLNO
N210 RET

K1: Mode group, channel, program operation, reset response
10.13 Single block

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 615

Example 4: Specific stopping in the subprogram
Assumptions:

● Single-block execution is active.

● MD10702 $MN_IGNORE_SINGLEBLOCK_MASK, bit12 = 1

Main program

Program code Comment
N10 G0 X0 ; single block stop
N20 X10 ; single block stop
N30 CYCLE ; Traversing block generated by the cycle.
N50 G90 X20 ; single block stop
M30

Subprogram

Program code Comment
PROC CYCLE SBLOF ; single block suppression
N100 R0 = 1
N110 SBLON ; no single stop due to MD10702, bit12 = 1
N120 X1 ; single block stop
N140 SBLOF
N150 R0 = 2
RET

Example 5: Single-block suppression for program nesting
Assumption: Single-block execution is active.

Program code Comment
N10 X0 F1000 ; single block stop
N20 UP1(0)
 PROC UP1(INT _NR) SBLOF ; deactivate single block for UP1
 N100 X10
 N110 UP2(0)
 PROC UP2(INT _NR)
 N200 X20
 N210 SBLON ; activate single block
 N220 X22 ; single block stop
 N230 UP3(0)
 PROC UP3(INT _NR)
 N300 SBLOF ; deactivate single block.
 N305 X30
 N310 SBLON ; activate single block
 N320 X32 ; single block stop
 N330 SBLOF ; deactivate single block.

K1: Mode group, channel, program operation, reset response
10.13 Single block

Basic Functions
616 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
 N340 X34
 N350 M17 ; single block stop (M17)
 N240 X24 ; single block stop (N210)
 N250 M17 ; single block stop (M17)
 N120 X12
 N130 M17 ; single block stop (M17)
N30 X0 ; single block stop
N40 M30 ; single block stop

10.13.3 Mode group-specific single block type A / B
For a mode group-specific single block, in a channel (control channel) the NC program is
executed in single blocks. In the control channel, single block must be activated using the NC/
PLC interface signal (DB21 ... DBX0.4).

In the other channels of the mode group (dependent channels), the particular NC program is
executed block by block corresponding to the single block type A or B selected corresponding
to the mode group using the NC/PLC interface signal (DB11 DBX1.6 / 7). In the dependent
channels, it is not permissible that the NC/PLC interface signal (DB21 ... DBX0.4) is set.

Single block type A / B
● Single block type A: If the control channel stops, then also the dependent channels

immediately stop, comparable with NC stop.

● Single block type B: If the control channel stops, then also the dependent channels stop at
the particular end of block, comparable with NC stop at the block limit.

Interface signals

Control channel
● DB21, ... DBX0.4 (activate single block)

All channels of the mode group
● DB21, ... DBX7.1 (NC Start)

Mode group
● DB11 DBX1.6 (single block, type B)

● DB11 DBX1.7 (single block, type A)

Schematic execution sequence for single block type A
Precondition: All mode group channels are in the "Reset" or "Interrupted" state.

1. PLC user program: Select single block in the control channel, DB21 ... DBX0.4 = 1

2. PLC user program: Select single block type A for the mode group, DB11 DBX1.7 = 1

K1: Mode group, channel, program operation, reset response
10.13 Single block

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 617

3. PLC user program: All channels of the mode group start, DB21 ... DBX0.4 = 1

4. The control channel stops at the end of the block.

5. All dependent channels receive an internal signal to immediately stop machining.

6. All mode group channels are in the "Interrupted" state once all of the dependent channels
have reached the particular end of the braking phase.

Schematic execution sequence for single block type B
Precondition: All mode group channels are in the "Reset" or "Interrupted" state.

1. PLC user program: Select single block in the control channel, DB21 ... DBX0.4 = 1

2. PLC user program: Select single block type B for the mode group, DB11 DBX1.6 = 1

3. PLC user program: All channels of the mode group start, DB21 ... DBX0.4 = 1

4. The control channel stops at the end of the block.

5. All dependent channels receive an internal signal to stop machining at the end of the block.

6. All mode group channels are in the "Interrupted" state once all of the dependent channels
have reached the particular end of the block.

10.13.4 Supplementary conditions

10.13.4.1 SBL2 single block type and block-related synchronized actions
For single block type "SBL2: calculated block" for a block-related synchronized action, the next
stop is only executed after the next main program block. No stop is made in the initial blocks
located between the synchronized action and the next main program block.

10.13.4.2 Programmed stop (M0), single block and single block type switchover
Initial situation: In a channel, an NC program is stopped by an M0 programmed in it, and in
the channel a single block is active (DB21, ... DBX0.4 == 1)

If, in this situation the single block type is toggled between SBL1 or SBL3 and SBL2 at the
user interface several times, then alarm 16922 "Maximum nesting depth exceeded" is
displayed.

10.14 Program control

Options
1. Function selection (via operator interface or PLC)

2. Activation of skip levels

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
618 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3. Adapting the size of the interpolation buffer

4. Program display modes via an additional basic block display

5. Execution from external source (buffer size and number)

6. Execution from external subroutines

10.14.1 Function selection from the user interface or PLC user program

Sequence
Selection of a function is made via the SINUMERIK Operate user interface in the "Automatic"
> "Program control" operating area by setting the corresponding selection signal in the HMI/
PLC interface.

Depending on the value of FB1 parameter MMCToIf, the selection signal of the HMI/PLC
interface signal is transmitted from the basic PLC program to the corresponding activation
signal of the NC/PLC interface:

● "TRUE": Transmission

● "FALSE": No transmission

By default, the value of the parameter MMCToIf == "TRUE".

User-specific activation
A function may also be activated user-specifically with the PLC user program directly by setting
the corresponding activation signal in the NC/PLC interface.

The FB1 parameter MMCToIf must thus be set to "FALSE", otherwise the NC/PLC interface
would be overwritten with the values of the HMI/PLC interface.

Feedback
An acknowledgment is returned for some functions upon activation (refer to the following table).

NC/PLC interface signals

Table 10-2 Program control: Interface signals

Function Selection (HMI → PLC) Activation (PLC → NC) Feedback (NC → PLC)
"Skip block" (SKP) /0 - /7
"Skip block" (SKP) /8 - /9

DB21, ... DBX26.0 - 7
DB21, ... DBX27.0 - 1

DB21, ... DBX2.0 - 7
DB21, ... DBX31.6 - 7

Dry run feed rate (DRY) DB21, ... DBX24.6 DB21, ... DBX0.6 DB21, ... DBX318.6
"Rapid traverse override" (RG0) DB21, ... DBX25.3 DB21, ... DBX6.6 ---
Single block (SBLx) Preselection of SBL1, SBL2 or SBL3 via program control display of HMI

SBL1 "Single block main run" Machine control panel
(MCP):
EB n + 5, bit 2

DB21, ... DBX0.4 ---
SBL2 "Decoding single block"
SBL3 "In cycle"

Programmed stop (M01) DB21, ... DBX24.5 DB21, ... DBX0.5 DB21, ... DBX32.5

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 619

Function Selection (HMI → PLC) Activation (PLC → NC) Feedback (NC → PLC)
Associated help function (M-1) DB21, ... DBX24.4 DB21, ... DBX30.5 DB21, ... DBX318.5
Handwheel offset (DRF) DB21, ... DBX24.3 DB21, ... DBX0.3 DB21, ... DBX33.3
Program test (PRT) DB21, ... DBX25.7 DB21, ... DBX1.7 DB21, ... DBX33.7

References
● NC Variables and Interface Signals List Manual

● Operating Manual, HMI Advanced "Machine operating area"

10.14.2 Activation of skip levels

Function
It is possible to skip blocks which are not to be executed every time the program runs. Blocks
to be skipped are indicated in the part program by the character "/" before the block number.

The skip levels in the part program are specified by "/0" to "/9".

Only one skip level can be specified for each part program block.

Parameterization
The number of skip levels is defined using machine data:

MD51029 $MM_MAX_SKP_LEVEL (max. number of skip levels in the NC program)

Programming
Blocks which are not to be executed in every program pass (e.g. program test blocks) can be
skipped according to the following schematic.

Program code Comment
/N005 ; Block skipped, (DB21, ... DBX2.0) 1st skip level
/0 N005 ; Block skipped, (DB21, ... DBX2.0) 1st skip level
/1 N010 ; Block skipped, (DB21, ... DBX2.1) 2nd skip level
/2 N020 ; Block skipped, (DB21, ... DBX2.2) 3rd skip level
/3 N030 ; Block skipped, (DB21, ... DBX2.3) 4th skip level
/4 N040 ; Block skipped, (DB21, ... DBX2.4) 5th skip level
/5 N050 ; Block skipped, (DB21, ... DBX2.5) 6th skip level
/6 N060 ; Block skipped, (DB21, ... DBX2.6) 7th skip level
/7 N070 ; Block skipped, (DB21, ... DBX2.7) 8th skip level
/8 N080 ; Block skipped, (DB21, ... DBX31.6) 9th skip level
/9 N090 ; Block skipped, (DB21, ... DBX31.7) 10th skip level

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
620 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Activation
The 10 skip levels "/0" to "/9" are activated by the PLC by setting the PLC → NC interface
signals.

The function is activated from the HMI via the "Program control" menu in the "Machine"
operating area:

● For skip levels "/0" to "/7":
Via the interface HMI → PLC DB21, ... DBB26 (skip block selected).

● For skip levels "/8" to "/9":
Via the interface HMI → PLC DB21, ... DBX27.0 to DBX27.1.

References:
Operating Manual

Note

The levels to be skipped can only be changed when the control is in the STOP/RESET state.

10.14.3 Adapting the size of the interpolation buffer

MD28060
The channel-specific interpolator executes prepared blocks from the interpolation buffer during
the part program run. The maximum number of blocks requiring space in the interpolation
buffer at any given point in time is defined by the memory configuring MD28060
$MM_IPO_BUFFER_SIZE (number of NC blocks in the IPO buffer (DRAM)). For some
applications it may be meaningful not to use the full buffer capacity in order to minimize the
"interval" between preparation and interpolation.

SD42990
The number of blocks in the interpolation buffer can be restricted dynamically to a smaller
value than in MD28060 $MC_MM_IPO_BUFFER_SIZE (number of NC blocks in the IPO buffer
(DRAM)), minimum 2 blocks, with the setting data SD42990
$SC_MAX_BLOCKS_IN_IPOBUFFER (max. number of blocks in the IPO buffer).

Values of setting data SD42990 $SC_MAX_BLOCKS_IN_IPOBUFFER:

Value Effect
< 0 No interpolation buffer limit active.

The max. possible IPO buffer as set in MD 28060: MM_IPO_BUFFER_SIZE is
activated.

or 1 The minimum permissible IPO buffer with two blocks is activated.
< MM_IPO_BUFFER_SIZE The IPO buffer is activated with no more than the maximum specified number

of blocks.
>= MM_IPO_BUFFER_SIZE The IPO buffer is activated with the number of blocks specified in MD 28060:

MM_IPO_BUFFER_SIZE.

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 621

Note

If SD42990 $SC_MAX_BLOCKS_IN_IPOBUFFER is set in the part program, the interpolation
buffer limitation takes effect immediately if the block with the SD is being preprocessed by the
interpreter.

This means that the limitation of the IPO buffer may take effect a few blocks before the intended
limitation (see also MD 28070 $MC_MM_NUM_BLOCKS_IN_PREP).

To avoid premature activation and to make the limitation of the IPO buffer take effect in
synchronism with the block, a STOPRE (preprocessing stop) must be programmed before the
SD is set in the part program.

Validity
SD42990 $SC_MAX_BLOCK_IN_IPOBUFFER has global, channel-specific validity and can
also be modified in a part program. This modified value is retained at the end of the program.
If this setting data is to be reset again on defined events, a so-called event-driven program
must be created to do this. For example, this setting data could always be set to a predefined
value on RESET.

Application
The IPO buffer limitation can be used whenever the number of blocks between block
preparation and interpolation must be minimized, e.g. when actual positions in the part program
must be read and processed for other purposes.

Example

N10 ...
N20 ...
..........
N100 $SC_MAX_BLOCKS_IN_IPOBUFFER = 5 ; Limitation of the IPO buffer to

five NC blocks
N110 ...
N120 ...
............
N200 $SC_MAX_BLOCKS_IN_IPOBUFFER = -1 ; Cancellation of the IPO buffer

limitation
N210 ...
............

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
622 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.14.4 Program display modes via an additional basic block display

Basic block display (only for ShopMill/ShopTurn)
A second so-called basic block display can be used with the existing block display to show all
blocks that produce an action on the machine.

LookAhead basic block display
The actually approached end positions are shown as an absolute position. The position values
refer either to the workpiece coordinate system (WCS) or the settable zero system (SZS).

The number of LookAhead display blocks stored in the display buffer depends on the number
of prepared blocks in the NC preprocessing buffer in the relevant processing state. If a
preprocessing stop is processed, the number of display blocks is reduced to zero and increases
again after the stop is acknowledged. In the case of REORG events (e.g. mode change, ASUP
start), the display blocks stored for LookAhead are deleted and preprocessed again afterwards.

Processed values
Values processed in the basic block display coincide with the:

● Selected tools

● Feedrate and spindle speed

● Actually approached position values
Exceptions:
With active tool radius compensation, deviations can occur.
For modulo axes, the programmed value is displayed in the basic block display. This value
can also lie outside the modulo range.

Note

Generally the positions are represented in the WCS or the SZS.

The basic block display can be activated or deactivated with setting data

SD42750 $SC_ABSBLOCK_ENABLE.

10.14.5 Basic block display for ShopMill/ShopTurn

Configure basic block display
The basic block display can be configured via the following machine data:

NC machine data for basic block display Meaning:
MD28400 $MC_MM_ABSBLOCK Activate basic block display
MD28402 $MC_MM_ABSBLOCK_BUF‐
FER_CONF[2]

Size of the display buffer

Machine data display Position values to be set:

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 623

MD9004 $MM_DISPLAY_RESOLUTION for metric dimensional notation
MD9011 $MM_DISPLAY_RESOLUTION_INCH for imperial dimensional notation
MD9010 $MM_SPIND_DISPLAY_RESOLUTION Coordinate system to be set for spindles dis‐

play resolution
MD9424 $MM_MA_COORDINATE_SYSTEM for WCS or SZS actual value display

This display machine data is copied to NC machine data
MD17200 $MN_GMMC_INFO_UNIT[0] (global HMI information) to MD17200
$MN_GMMC_INFO_UNIT[3]. This permits access from the NC to this display machine data.

Activation
The basic block display is activated by MD 28400 $MC_MM_ABSBLOCK (activate block
display with absolute values) by means of Power On. If MD28400 $MC_MM_ABSBLOCK is
set to 1, a channel-specific display buffer (FIFO) is created during power-up.

Size of display buffer (FIFO) = (MD28060 $MC_MM_IPO_BUFFER_SIZE (number of NC
blocks in the IPO buffer) + MD28070 $MC_MM_NUM_BLOCKS_IN_PREP (number of blocks
for the block preparation)) multiplied by 128 bytes. For the standard machine data setting, this
represents a size of 6 KB.

Optimize the size of display buffer:
The memory requirement can be optimized by entering a value between 128 and 512. The
display blocks prepared in the display buffer are transferred to the HMI via a configurable
upload buffer.

The maximum size of the upload buffer is obtained by multiplying (MD28402
$MC_MM_ABSBLOCK_BUFFER_CONF[0] +
MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[1] + 1) by the block length configured in
MD28400 $MC_MM_ABSBLOCK.

The number of blocks before the current block is configured in
MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[0] and the number of blocks after the
current block is configured in MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[1].

Supplementary conditions
If the length of a display block configured in MD28400 $MC_MM_ABSBLOCK is exceeded,
this display block is truncated accordingly. To represent this, the "..." string is appended to the
block end.

For preprocessed cycles
(MD10700 $MN_PREPROCESSING_LEVEL > 1 (program preprocessing level)), the display
block contains only axis positions.

Additional supplementary conditions for the basic block display:

● Modal synchronized action blocks with absolute values are
not taken into account.

● The basic block display is deactivated during block search with or without calculation.

● Polar coordinate programming is not shown in Cartesian system.

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
624 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Radius/diameter values
Diameter values shown in the basic block display and position display may be needed as a
radius for internal calculation. These values for measurements in radius/diameter according
to G group 29 can be manipulated using the following options:

● G command DIAMCYCOF (extension of channel-specific diameter programming)
This G command deactivates the channel-specific diameter programming during the cycle
execution. In this way, calculations in the cycle can always be made in the radius. The
position display and the basic block display are continued according to the state of the
diameter programming before DIAMCYCOF.
In the basic block display, the last displayed value is retained.

● G command DIACYCOFA[AX] (axis-specific diameter programming)
This G command deactivates the axis-specific diameter programming during the cycle
execution. In this way, calculations in the cycle can always be made in the radius. In the
position display and in the basic block display, this continues according to the state of the
diameter programming before DIACYCOFA[AX] indicator.
In the basic block display, the last displayed value is retained.

● MD27100 $MC_ABSBLOCK_FUNCTION_MASK (parameterize the block display with
absolute values)

Bit0 = 1 Setpoints of the transverse axis are always displayed as diameter values
in the basic block display.

Behavior for active compressor
Two display blocks are generated for active compressor with G group 30 not equal to COM.
The

● first contains the G command of the active compressor, the

● second contains the string "..." as character for missing display blocks

Example:

G0 X10 Y10 Z10 ; block still prepared for the basic block display
COMPCAD ; compressor for optimized surface quality (CAD program)
... ; String as sign that the display blocks are missing

To prevent bottlenecks of the NC performance, the basic block display is disabled
automatically. As a sign that the display blocks are missing, a display block with the string "..."
is generated.
All display blocks are always generated in the single block.

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 625

10.14.6 Structure for a DIN block

Structure of display block for a DIN block
Basic structure of display block for a DIN block

● Block number/label

● G command of the first G group
(only if changed as compared to the last machine function block).

● Axis position
(sequence corresponding to MD20070 $MC_AXCONF_MACHAX_USED (machine axis
number valid in the channel)).

● Further modal G commands
(only if changed as compared to the last machine function block).

● Other addresses as programmed.

The display block for the basic block display is directly derived from the programmed part
program blocks according to the following rules:

● Macros are expanded.

● Skip identifiers and comments are omitted.

● Block number and labels are transferred from the original block, but omitted if DISPLOF is
active.

● The number of decimal places is defined in display machine data MD 9004, MD 9010 and
MD 9011 via the HMI.

HMI display machine data Access in the NC machine data
MD9004 $MM_DISPLAY_RESOLUTION MD17200 $MN_GMMC_INFO_NO_UNIT[0]
MD9011 $MM_DISPLAY_RESOLUTION_INCH MD17200 $MN_GMMC_INFO_NO_UNIT[1]
MD9010 $MM_SPIND_DISPLAY_RESOLU‐
TION

MD17200 $MN_GMMC_INFO_NO_UNIT[2]

MD9424 $MM_MA_COORDINATE_SYSTEM MD17200 $MN_GMMC_INFO_NO_UNIT[3]

● Programmed axis positions are represented as absolute positions in the coordinate system
(WCS / SZS) specified in MD9424 $MM_MA_COORDINATE_SYSTEM (coordinate system
for actual value display)

Note

The modulo correction is omitted for modulo axes, which means that positions outside the
modulo range can be displayed. It also means that the basic block display differs from the
position display in which values are always modulo-converted.

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
626 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Examples
Comparisons between display block (original block) and basic block display:

● Programmed positions are displayed as absolute.
The addresses AP/RP are displayed with their programmed values.

Original block: Display block:
N10 G90 X10.123 N10 X10.123
N20 G91 X1 N20 X11.123

● Address assignments (non-DIN addresses) are displayed in the form <address> =
<constant>.

Original block: Display block:
N110 R1 = -67.5 R2 = 7.5
N130 Z = R1 RND = R2 N130 Z-67.5 RND = 7.5

● Address indices (address extensions) are displayed as constants <address> [<constant>]
= <constant>.

Original block: Display block:
N220 DEF AXIS AXIS_VAR = X
N240 FA[AXIS_VAR] = R2 N240 FA[X] = 1000

● DIN addresses without address extension are displayed in the form
<din_address> <constant>.

Original block: Display block:
N410 DEF REAL FEED = 1.5
N420 F = FEED N420 F1.5

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 627

The following applies for H functions: Each programmed value is display irrespective of the
output type to the PLC.
(MD22110 $MC_AUXFU_H_TYPE_INT (type of H auxiliary function is integer)).

● For Tool selection by tool command
Display information is generated in the form T<value> or T=<string>. If an address
extension has been programmed, this is displayed as well.
If several spindles have been configured or the "Tool change via master toolholder" function
(MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER (toolholder number)) is active,
the T number is always output with address extension.
If no address extension has been programmed, the number of the master spindle or the
master toolholder is used instead (T<spindle_number/tool_holder>=).

● For the Spindle programming via S, M3, M4, M5, M19, M40 - M45 and M70 (or MD 20094
$MC_SPIND_RIGID_TAPPING_M_NR (M function for switching over in the controlled axis
operation)) the following regulation applies regarding the address extension:
If an address extension has been programmed, then this is also resolved.
If several spindles have been configured, then the address extension is also output.
If no address extension has been programmed, the number of the master spindle is used
(S<spindle_number>=).

● Indirect G command programming in form G[<group>] = <expression> is substituted by
the corresponding G command.

Original block: Display block:
N510 R1=2
N520 G[8]= R1 N520 G54

● Modal G commands that do not generate an executable block are collected and output with
the display block of the next executable block if permitted by the syntax (DIN block). If this
is not the case (e.g. predefined subprogram call TRANSMIT), a separate display block
containing the modified G commands is placed in front of the next executable block.

Original block: Display block:
N610 G64 G64
N620 TRANSMIT N620 TRANSMIT

● A display block is always generated for part program lines in which the addresses F and
FA appear (including for MD22240 $MC_AUXFU_F_SYNC_TYPE = 3 (output time of the
F functions)).

Original block: Display block:
N630 F1000 N630 F1000
N640 X100 N640 X100

● The display blocks generated for the block display are derived directly from the programmed
part program blocks. If intermediate blocks (e.g. tool radius compensation G41/G42, radius/
chamfer RNDM, RND, CHF, CHR) are generated in the course of contour preprocessing,
these are assigned the display information from the part program block on which the motion
is based.

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
628 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Original block: Display block:
N710 Y157.5 G42 N710 Y157.5 G42
N720 Z-67.5 RND=7.5 N720 Z-67.5 RND=7.5

● With the EXECTAB command (processing a table of contour elements), the block
generated by EXECTAB is shown in the display block.

Original block: Display block:
N810 EXECTAB (KTAB[5]) N810 G01 X46.147 Z-25.38

● With the EXECSTRING command, the block generated via EXECSTRING is displayed in
the display block.

Original block:
N910 DEF STRING[40] PROGSTRING = "N905 M3 S1000 G94 Z100 F1000 G55"
N920 EXECSTRING(PROGSTRING)

Original block:
N905 Z100 G55 G94 M3 S1000 F1000

10.14.7 Execution from external

Function
The "execution from external source" function can be used to execute programs from an
external program memory that cannot be saved in the NC memory due to their size.

Note

Protected cycles (_CPF files) can not be executed from an external program memory.

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 629

External program memory
External program memory can be found on the following data carriers:

● Local drive

● Network drive

● USB drive

Note

Only the USB interfaces on the operator panel front or the TCU can be used as interface
for the processing of an external program on a USB drive.

NOTICE

Tool/workpiece damage caused by the USB FlashDrive

It is recommended that a USB-FlashDrive is not used for the execution of an external
subprogram. A communication interruption to the USB FlashDrive during the execution of
the subprogram due to contact problems, failure, abort through trigger or unintentional
unplugging, results in an immediate machining stop. The tool and/or workpiece could be
damaged.

Applications
● Direct execution from external programs

In principle, any program that is accessible via the directory structure of the interface in the
"Execution from external" HMI mode can be selected and executed.

● Execution of external subprograms from the part program
The external subprogram is called through the part program command EXTCALL with
specification of a call path (optional) and the subprogram name (→ see "Executing external
subprograms (EXTCALL) (Page 631)").

Parameter assignment
A reloading memory (FIFO buffer) must be reserved in the dynamic NC memory for executing
a program in "execution from external source" mode.

Size of FIFO buffer
The size of the FIFO buffer is set in the machine data:

MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE (FIFO buffer size for processing from
external)

Note
Programs with jump commands

For external programs that contain jump commands (GOTOF, GOTOB, CASE, FOR, LOOP,
WHILE, REPEAT, IF, ELSE, ENDIF etc.) the jump destinations must lie within the post loading
memory.

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
630 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note
ShopMill/ShopTurn programs

The contour descriptions added at the file end mean the ShopMill and ShopTurn programs
must be stored completely in the read-only memory.

Number of FIFO buffers
One FIFO buffer must be provided for each one of the programs that are executed
simultaneously in "execution from external source" mode.

The number of FIFO buffers is set in the machine data:

MD18362 $MN_MM_EXT_PROG_NUM (number of externally executed program levels
executable simultaneously)

Behavior on reset, power-on
External program calls are aborted using reset and power-on and the particular FIFO buffers
are erased.

A main program selected from an external program memory is selected again automatically
after a power-on if the same program memory is still available and execution of EXTCALL calls
has been activated in MD9106 $MM_SERVER_EXTCALL_PROGRAMS.

10.14.8 Executing external subprograms (EXTCALL)

Function
Individual machining steps for producing complex workpieces may involve program sequences
that require so much memory that they cannot be stored in the NC memory.

In such cases, the user has the option of executing the program sequences as subprograms
from an external program memory in the "Execution from external source" mode with the help
of the EXTCALL part program command.

Preconditions
The following preconditions are applicable to the execution from external subprograms:

● The subprograms must be accessible via the directory structure of the operator interface.

● A reloading memory (FIFO buffer) must be reserved for each subprogram in the dynamic
NC memory.

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 631

Note
Subprograms with jump commands

For external subprograms that contain jump commands (GOTOF, GOTOB, CASE, FOR, LOOP,
WHILE, REPEAT, IF, ELSE, ENDIF etc.) the jump destinations must lie within the post loading
memory.

The size of the post loading memory is set via:

MD18360 MM_EXT_PROG_BUFFER_SIZE
ShopMill/ShopTurn programs

The contour descriptions added at the file end mean the ShopMill and ShopTurn programs
must be stored completely in the read-only memory.

Parameterization
The path for the external subprogram directory can be preset using setting data:

SD42700 $SC_EXT_PROG_PATH (program path for the EXTCALL external subprogram
call)

The entire path of the program to be called along with the subprogram path or name specified
during programming is derived therefrom.

Programming
An external subprogram is called by means of parts program command EXTCALL.

Syntax: EXTCALL("<path/><program name>")

Parameter:

 <path>: Absolute or relative path data (optional)
 Type: STRING

 <program name>: The program name is specified without prefix "_N_".

The file extension ("MPF", "SPF") can be attached to program names
using the "_" or "." character (optional).

 Type: STRING

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
632 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note
Path specification: Short designations

The following short designations can be used to specify the path:
● LOCAL_DRIVE: for local drive
● CF_CARD: for CompactFlash Card
● USB: for USB front connection

CF_CARD: and LOCAL_DRIVE: can be alternatively used.

EXTCALL call with absolute path name

If the subprogram exists at the specified path, it will be executed following the EXTCALL call.
If it does not exist, program execution is canceled.

EXTCALL call with relative path name / without path name

In the event of an EXTCALL call with a relative path name or without a path name, the available
program memories are searched as follows:

● If a path name is preset in SD42700 $SC_EXT_PROG_PATH, the data specified in the
EXTCALL call (program name or with relative path name) is searched for first, starting from
this path. The absolute path results from linking the following characters:

– The path name preset in SD42700

– The "/" character as a separator

– The subprogram path or name programmed in EXTCALL
● If the called subprogram is not found at the preset path, the data specified in the

EXTCALL call is then searched for in the user-memory directories.

● The search ends when the subprogram is found for the first time. If the search does not
produce any hits, the program is canceled.

Example
Execute from local drive

Main program:

Program code
N010 PROC MAIN
N020 ...
N030 EXTCALL ("ROUGHING")
N040 ...
N050 M30

External subprogram:

Program code
N010 PROC ROUGHING

K1: Mode group, channel, program operation, reset response
10.14 Program control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 633

Program code
N020 G1 F1000
N030 X= ... Y= ... Z= ...
N040 ...
...
...
N999999 M17

The "MAIN.MPF" main program is stored in NC memory and is selected for execution.

The "SCHRUPPEN.SPF" or "SCHRUPPEN.MPF" subprogram to be subsequently loaded is
on the local drive in the directory "/user/sinumerik/data/prog/WKS.DIR/WST1.WPD".

The subprogram path is preset in SD42700:

SD42700 $SC_EXT_PROG_PATH = "LOCAL_DRIVE:WKS.DIR/WST1.WPD"

Note

Without the path being specified in the SD42700, the EXTCALL operation for this example
would have to be programmed as follows:

EXTCALL("LOCAL_DRIVE:WKS.DIR/WST1.WPD/SCHRUPPEN")

10.15 Execution from external storage (EES) (option)

10.15.1 Function

Note

To use the function, the "Expanded CNC user storage" or "Execute from external storage
(EES)" licensed option is required!

Function
Using the EES (Execution from External Storage) function, users have the option of having
the NCK execute programs directly from an external program storage.

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
634 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The following drives are available as external memory:

Drive Symbolic name 1) SINUMERIK 840D sl SINUMERIK 828D
NC Extend
(previously "Lo‐
cal drive")

CF_CARD
LOCAL_DRIVE
SYS_DRIVE

CF card of NCU
or

Local hard disk of a PCU

System CF card of the PPU

USER CF CF_CARD
LOCAL_DRIVE

- User CF card of the PPU

Network drive
Statically managed USB drive

1) For SINUMERIK 840D sl, the symbolic names LOCAL_DRIVE, CF_CARD, and SYS_DRIVE are
permanently assigned to the drive NC Extend (⇒ NC Extend can be addressed via LOCAL_DRIVE,
CF_CARD, and SYS_DRIVE).
For SINUMERIK 828D, the assignment of the symbolic names LOCAL_DRIVE, CF_CARD and
SYS_DRIVE to NC Extend can be configured. In this way, the system CF card of the PPU can also
be addressed via the symbolic names LOCAL_DRIVE and CF_CARD if, for example, no USER CF
drive exists.

NOTICE

Tool/workpiece damage caused by the USB FlashDrive

A USB FlashDrive cannot be recommended when executing an external program. A
communication abort to the USB FlashDrive during the execution of the program due to
contact problems, failure, abort through trigger or unintentional unplugging, results in an
uncontrolled stop of the machining. The tool and/or workpiece could be damaged.

Requirements
The following prerequisites apply when using EES:

● The "Expanded CNC user storage" or "Execute from external storage (EES)" licensed
option must be set.

● The drives, which are used at the control as external memory, must be configured as a
logical drives (see "Commissioning (Page 637)").

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 635

Operating mode
Depending on the option available and the drive configuration, various EES operating modes
are possible. The active operating mode of a control is displayed using machine data MD18045
$MN_EES_MODE_INFO.

MD18045 Operating mode Option External memory
SINUMERIK 840D sl SINUMERIK 828D

= 0 EES not active - -
= 1 Local EES active 6FC5800-0AP77-0YB0

CNC user memory expan‐
ded

The use of EES on an NCU
is limited to the expanded
user memory (100 MB) of

the CF card.
If EES is used on a PCU, the
entire free memory can be

used by NC Extend.

The use of EES is limited to
the expanded user storage
(100 MB) of the system CF

card.

EES via network or USB is not possible.
6FC5800-0AP12-0YB0
additional HMI user memo‐
ry on CF card of NCU.

If EES is used on an NCU,
with the additional option,
the local user memory can
be expanded up to 6 GB (de‐

pending on MD9111).
If EES is used on a PCU, the
additional option is not re‐

quired.

-

= 2 Global EES active 6FC5800-0AP75-0YB0
Execution from external
storage (EES)

EES can be used for all
available external storage.

EES can be used for all
available external storage.

Note:
EES via network additional‐
ly requires enabling the HMI

function "Network drive
management" (MD19730

Bit 2 = 1).
6FC5800-0AP12-0YB0
additional HMI user memo‐
ry on CF card of NCU.

If EES is used on an NCU,
with the additional option,
the local user memory can
be expanded up to 6 GB (de‐

pending on MD9111).
If EES is used on a PCU, the
additional option is not re‐

quired.

-

= 5 Local EES active
+
Global part program
memory

The same as MD18045 = 1, only that on the expanded user memory a global part
program memory (Page 639) is set up.

= 6 Global EES active
+
Global part program
memory

The same as MD18045 = 2, only that on an external user memory a global part program
memory (Page 639) is set up.

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
636 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Properties
The EES function can replace the "Execution from external (Page 629)" and "Executing
external subprograms (EXTCALL) (Page 631)" functions.

The EES function has the following advantages:

● Standard program handling throughout the system

● No restrictions regarding the commands that can be used
The restrictions on "execution from external source" and "execution of external
subprograms (EXTCALL)", e.g. no backward jumps, limitation of the jump distance of jump
commands by the size of the reload memory, are eliminated with EES.

● Programs can be moved between different program storages (NC, GDIR, external drive)
significantly easier.

● There are practically no restrictions regarding the part program size and the number of
programs (this is only limited by the capacity of the external data memory).

● Uniform syntax for the subprogram call, independent of the storage location of the
subprogram (an EXTCALL call is not required).

● Network drives can be used jointly by more than one station (PCU/NCU). Prerequisite is a
uniform drive configuration for these stations. This results in a uniform view of the programs
for all stations.

● Because of the uniform view of the external program storage for all stations, changes to
the programs stored there consistently apply to all stations.

10.15.2 Commissioning

10.15.2.1 Configuring the drives
To use the EES function, the drives used with the control system must be declared.

References:

● Commissioning Manual, base software and operating software

● Universal/Turning/Milling/Grinding Operating Manual

After activating the new drive configuration, the programs can be freely distributed among the
available drives.

Note

All the previous drives may no longer be available in the newly created drive configuration.
Access to the programs on these drive is then no longer possible.

Remedy: First copy the programs stored on these drives to a drive that can still be accessed.

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 637

Note

Because protected cycles (_CPF files) are only executed from the NC part program memory
for system reasons, they cannot be stored for execution on an external program memory.

The previous NC part program memory with the MPF.DIR, SPF.DIR and WKS.DIR directories
is not absolutely necessary when using EES. A system can also be configured without using
the NC part program memory.

NOTICE

Executing programs that are not visible

Even if the NC part program memory was removed from the drive configuration, it is always
still available in the system itself. This especially means that when executing the program it
is possible that programs that still exist there are inadvertently executed from the SPF.DIR.

Remedy: If the system is configured without NC part program memory in the drive
configuration, any programs still stored there should be deleted manually.

If the NC part program memory is still to be used, then it should not be completely removed
from the system, only assigned an appropriate protection level when required.

Drives can be shared by more than one station (PCU/NCU). A standard drive configuration for
these stations means that there is a standard program view that is independent of the particular
station.

Note

The CF card of an NCU/PPU cannot be used by several stations.

Example:

Several NCUs jointly use a program memory on the local hard disk of the PCU
(LOCAL_DRIVE).

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
638 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

If external program memories are used together at different stations in the EES mode, then
the following rules must be observed.
● A program cannot be simultaneously edited from several stations.
● Programs, which are being executed, can no longer be changed.

SINUMERIK 840D sl only
For operation with an external HMI, the drives must be configured on the external HMI! The
drive configuration (logdrive.ini) must be loaded into the corresponding NCU from the external
HMI. A softkey is available for the transfer on the dialog for the drive configuration.

In systems in which multiple NCs work together, the drive configuration must be identical for
all NCs. This is achieved by distributing the logdrive.ini file to all of the NCUs listed in the
mmc.ini file. The configurations existing there are therefore overwritten.

10.15.2.2 Global part program memory (GDIR)
When declaring the drives, one of the drives can be designated the global part program
memory (GDIR).

References:
Operating Manual; Section: "Managing programs" > "Setting up drives"

The system automatically creates the MPF.DIR, SPF.DIR and WKS.DIR directories on the
drive that acts as the GDIR. These three directories form the GDIR.

The GDIR only plays a role for the EES function. Depending on the drive configuration, the
GDIR replaces or extends the NC part program memory. However, it is not mandatory to set
up a GDIR for the EES operation.

The directories and files of the GDIR can be addressed in the part program in the same way
as in the passive file system. Therefore, a compatible relocation of an NC program with path
specification is possible for the passive file system to the GDIR.

The GDIR extends the search path for subprograms, which are called without specifying an
absolute path.

GDIR replaces the NC part program memory
If the NC part program memory is completely empty in the MPF.DIR, SPF.DIR and WKS.DIR
directories, then the GDIR replaces the NC part program memory. The previous NC search
path is emulated 1:1 by the GDIR.

Selecting the main program on an external archive/data storage medium
Search sequence for the subprograms:

1. Actual directory on an external archive/data storage medium

2. SPF.DIR in the GDIR memory

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 639

3. The drive referenced using CALLPATH

4. Cycles

GDIR extends the NC part program memory
When the NC part program memory is not empty in the MPF.DIR, SPF.DIR and WKS.DIR
directories, then the search sequence for the subprograms depends on where the main
program is archived (active directory).

Selecting the main program in the NC part program memory (MPF.DIR or xxx.WPD in
WKS.DIR)
Search sequence for the subprograms:

1. Actual directory in the NC part program memory

2. SPF.DIR in the NC part program memory

3. The drive referenced using CALLPATH

4. Cycles

Selecting the main program on an external archive/data storage medium released for EES
Search sequence for the subprograms:

1. Actual directory on an external archive/data storage medium

2. SPF.DIR in the NC part program memory

3. SPF.DIR in GDIR

4. The drive referenced using CALLPATH

5. Cycles

Note

To define the search sequence, also see MD11625 $MN_FILE_ONLY_WITH_EXTENSION
and MD11626 $MN_CYCLES_ONLY_IN_CYCDIR!

Note

An external drive can also be referenced using the CALLPATH statement.

10.15.2.3 Settings for file handling in the part program for EES

Program names unique throughout the system
If external program memories are used together at different stations in EES mode, file
operations performed simultaneously on different stations (WRITE, DELETE, …) result in
access conflicts. To avoid such access conflicts, we recommend setting up a name space for
file names on each station that is unique throughout the system.

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
640 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Name space unique throughout the system
A name space for file names that is unique throughout the system is achieved, for example,
by associating the file names with the EES-specific name of the NC parameterized in the
machine data and the channel number of the channel in which the program is executed. For
example, when the program is executed, the following code generates the file name (MYFILE
_NC1_1.SPF), which is unique throughout the system, by appending the EES-specific name
of the NC (NC1) and the channel number (channel 1) to the program name.
$MN_EES_NC_NAME="NC1"
N10 DEF STRING[31] FILENAME
N20 FILENAME="MYFILE_" << $MN_EES_NC_NAME << "_" << $P_CHANNO <<
".SPF"

Parameterization
The EES-specific name of the NC is set in the NC-specific machine data:

MD10125 $MN_EES_NC_NAME = <NC name>

Note
Name of the NC unique throughout the system

To avoid access conflicts, the EES-specific name of the NC must be unique throughout the
system. The responsibility for this resides exclusively with the user/machine manufacturer.

When calling the program, only search for files with file ID
In order to speed up the program search for subprogram calls during EES operation, we
recommend that you limit the search to files with file ID (e.g. SPF, MPF, etc.).

MD11625 $MN_FILE_ONLY_WITH_EXTENSION = 1

Note

MD11625 has no effect on the program search when processing external subprograms with
EXTCALL.

Reference:
Description of the search path for the subprogram call, see the Programming Manual Job
Planning.

Only search for programs with interface in the cycle directories
In order to speed up the program search for subprogram calls during EES operation, we
recommend the search for subprograms which have created an interface description (by
means of PROC statement), and whose interface description was generated from the one of
the cycle directories (CUS, CMA, CST) be limited to the cycle directories:

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 641

MD11626 $MN_CYCLES_ONLY_IN_CYCDIR = 1

Note

MD11626 has no effect on subprograms whose interface was created using an EXTERNAL
declaration. A search is made in all program directories.

NOTICE

No search success for cycles outside the cycle directories

Cycles in the current directory and global subprogram directory are no longer found with the
setting MD11626 = 1!

Remedy: Always store cycles in the cycle directories.

10.15.2.4 Memory configuration

Reducing the end user program memory in the passive file system
With active EES, the end user program memory in the passive file system can be reduced:

MD18352 $MN_MM_U_FILE_MEM_SIZE (end user memory for part programs / cycles / files)

The released memory can then be used, for example, for tool data or manufacturer cycles
(MD18353 $MN_MM_M_FILE_MEM_SIZE).

References:
For detailed information on the memory configuration, see Function Manual, Extended
Functions

Releasing reload memory
The EES function can replace the "Execution from external source" and "Execution of external
subprograms (EXTCALL)" functions.

In order to execute subprograms from part programs with EXTCALL calls with EES instead of
the "Execution of external subprograms (EXTCALL)" function, the EXTCALL calls must be
changed to CALL calls, and the path specifications adapted if required.

After a complete changeover, the reload memory (FIFO buffer) required for the "Execution
from external source" and "Execution of external subprograms (EXTCALL)" can be released:

MD18362 $MN_MM_EXT_PROG_NUM (number of externally executed program levels
executable simultaneously) = 0

K1: Mode group, channel, program operation, reset response
10.15 Execution from external storage (EES) (option)

Basic Functions
642 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.15.3 Supplementary conditions

Teach in
In the EES mode, it is not possible to use the "Teach In" function in the AUTOMATIC operating
mode.

10.16 Process Datashare - output to an external device/file

10.16.1 Function
With the "Process DataShare" function, it is possible to write data from a part program to an
external device or to an external file; for instance, to log production data or to control additional
equipment at a control system.

Availability
The function is available:

● Only in the real NC (not in the SNC and VNC simulation software).

● Only in part programs (not in synchronized actions).

● Parallel in all machining channels of the NC for all available (configured) output devices.

External devices/files
External devices/files can be:

● Files on the local CF card
Local CF card is the memory referred to from the HMI using the symbolic identifier
LOCAL_DRIVE. For SINUMERIK 840D sl this is the local drive, for SINUMERIK 828D, the
user CF card.

Note

For SINUMERIK 840D sl, the option "Additional xxx MB HMI user memory on CF card of
the NCU" is required for output to the LOCAL_DRIVE device. For SINUMERIK 828D a user
CF card must be available and an option is not required.

● Files on a network drive

● V.24 interface

Note

For SINUMERIK 840D sl, the NCU option module RS232 interface is required for output at
the V.24 interface. For SINUMERIK 828D output is realized at the integrated V.24 interface
(precondition: MD51233 $MNS_ENABLE_GSM_MODEM = 0).

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 643

Maximum number of opened external devices
More than one external device/file can also be assigned in a part program / channel. A
maximum of ten output devices can be simultaneously opened across all NC channels. In
addition, there are two entries reserved for Siemens cycles.

A maximum of five jobs may be active simultaneously to the output devices.

Usage mode
For each output device, when opening the device, it can be specified as to whether the device
is to be exclusively used by just one channel or whether several channels can output to the
device ("shared" mode).

Behavior for part program end / channel reset
With part program end and channel reset, all of the external devices/files that have been
opened in the channel are closed.

Use of the function for data transfer to the control

NOTICE

Data security

If the Process Datashare function is used to send data from an external device via the
Ethernet‐X130 interface to the control, there is the possibility that the data on the control could
be falsified by a third-party and is no longer consistent. When using the function, ensure that
the network is protected against access by third-parties.

10.16.2 Commissioning
The external devices to be used are configured in the /oem/sinumerik/nck/extdev.ini or /user/
sinumerik/nck/extdev.ini file. If both files are available, then the entries in the user area have
priority. The file can be updated in the operating area COMMISSIONING under
SYSTEMDATEN/CF card.

Note

It is not necessary to configure in the extdev.ini file when using LOCAL_DRIVE and
CYC_DRIVE. The two devices are always available as soon as the corresponding option is
set or the user CompactFlash card is available.

The external devices to be used are defined/listed in the section [ExternalDevices] of the
extdev.ini file. A serial device (/dev/v24) and up to nine files or directories (/dev/ext/1…9) can
be specified as device. The Linux notation is used when specifying devices. Lines, which start
with ";", are comments and are overread.

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
644 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

With the exception of /dev/v24, the devices can be declared as directory path - terminated with
an attached "/" – or as file path – i.e. with attached fully qualified path, ending with a file name
(without a terminating "/"). When used in a part program, a file name (path) must also be
specified for a device with directory path.

Except for /dev/v24, a device is defined using the three items separated by a comma for
"Server", "Path" and the optional "Write mode".

For the files or directories (this then applies to all files in the directory), it can be specified as
to whether the file should be overwritten after it has been opened ("O" = Overwrite) or whether
the outputs should be attached to the file ("A" = Append). The default value is "A". A file/
directory that does not exist is newly created when opening.

For the device V.24 interface, only the settings for baud rate, data bits, stop bits, parity, protocol
and possibly end are specified in this sequence.

For files that are generated/saved on the LOCAL_DRIVE, LOCAL_DRIVE_MAX_FILESIZE
data can be used to set a maximum file size in bytes - this is then valid as standard for all files.
The file size is checked when executing an EXTOPEN command in Append mode. Optionally,
the write mode ("O" = Overwrite, "A" = Append) can be defined using the
LOCAL_DRIVE_FILE_MODE data. The default value is "A".

Note

A copy template for the extdev.ini configuration file is available in the /siemens/sinumerik/nck
directory.

Note

Changes to the extdev.ini file only become effective after an NC restart/boot.

Note
USB devices

For SINUMERIK 828D, "usb" (without partition data!) can also be defined as target for a USB
device inserted at the front. The device at the USB can be addressed from the part program
only directly using a symbolic device identifier "/dev/ext/x".

For SINUMERIK 840D sl, only statically connected USB interfaces of a TCU can be configured
as USB devices. The configuration is realized using the SERVER:/PATH type as specification
for "Server" in the sense above, whereby SERVER is the TCU name and /PATH designates
the USB interface. The USB interfaces of a TCU are addressed using "dev0-0", "dev0-1",
"dev1-0". The path data always starts with "/Partition", whereby the partition can be specified
using a two-digit partition number or its partition name – and where required, is extended with
a file path up to the required target, e.g.:

/dev/ext/8 = "TCU4:/dev0-0, /01/, A"

/dev/ext/8 = "TCU4:/dev0-0, /01/mydir.dir/"

/dev/ext/8 = "TCU4:/dev0-0, /myfirstpartition/Mydir.dir/myfile.txt, O"

Example
[ExternalDevices]

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 645

; Comment line

; example for V24

; /dev/v24 = "9600, 8, 1, none, rts [, etx]"

; examples for network drives

; /dev/ext/1 = "//[USERNAME[/DOMAIN][%PASSWORD]@]SERVER/SHARE/, /, A"

; /dev/ext/2 = "//[USERNAME[/DOMAIN][%PASSWORD]@]SERVER/SHARE, /myfile.txt, O"

; /dev/ext/3 = "//[USERNAME[/DOMAIN][%PASSWORD]@]SERVER/SHARE, /mydir/, A"

; /dev/ext/4 = "SERVER:/dev0-0, /01/, A"

; …

; SINUMERIK 828 only (USB)

; /dev/ext/9 = "usb, / [, O]"

; default: Partition number = 1

; SIEMENS only

; /dev/cyc/1= "//[USERNAME[/DOMAIN][%PASSWORD]@]SERVER/SHARE, /mydir/, A"

; /dev/cyc/2= "//[USERNAME[/DOMAIN][%PASSWORD]@]SERVER/SHARE/mydir, /, A"

LOCAL_DRIVE_MAX_FILESIZE = 50000

LOCAL_DRIVE_FILE_MODE = "O"

Effectiveness of the EXTOPEN parameter <WriteMode>
By specifying the write mode, when configuring in the extdev.ini file as well as for an EXTOPEN
call, authorization conflicts can occur, which are then acknowledged with EXTOPEN - possibly
with error:

Value from extdev.ini Value of the EXTOPEN parameter
"OVR" "APP" -

"O" O Error O
"A" Error A A
- O A A
 Explanation:

O: "Overwrite" mode is active.
A: "Append" mode is active.
Error: EXTOPEN call is acknowledged with error.

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
646 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

LOCAL_DRIVE: File attribute
The files created with EXTOPEN on LOCAL_DRIVE are allocated the following file attributes:

● Owner: "user" Read/write rights set
● Group: "operator" Read/write rights set

10.16.3 Programming
The writing of data from a part program to an external device/file is performed in three steps:

1. Open the external device/file
The external device/file is opened for the channel for writing using the EXTOPEN command.

2. Writing data
The output data can be processed using the string functions of the NC language, e.g.
SPRINT. The WRITE command is used for writing.

3. Close the external device/file
The external device/file assigned in the channel is released again using the EXTCLOSE
command, when the end of the program is reached (M30) or for a channel reset.

Syntax

DEF INT <Result>
DEF STRING[<n>] <Output>
…
EXTOPEN(<Result>,<ExtDev>,<SyncMode>,<AccessMode>,<WriteMode>)
…
<Output>="data output"
WRITE(<Result>,<ExtDev>,<Output>)
…
EXTCLOSE(<Result>,<ExtDev>)

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 647

Meaning

EXTOPEN: Pre-defined procedure to open an external device/file
<Result>: Parameter 1: Result variable

By using the result variable value, it can be evaluated in the program as to wheth‐
er the operation was successful and processing is then appropriately continued.
Type: INT
Values: 0 No error

1 External device cannot be opened
2 External device is not configured
3 External device with invalid path configured
4 No access rights for external device
5 Usage mode: External device already "exclusively" occupied
6 Usage mode: External device already being "shared"
7 File length longer than LOCAL_DRIVE_MAX_FILESIZE
8 Maximum number of external devices has been exceeded
9 Option for LOCAL_DRIVE not set
11 V.24 interface has already been assigned with Easy-Message

function (only 828D)
12 Write mode: Data contradicts extdev.ini
16 Invalid external path has been programmed
22 External device not mounted

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
648 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<ExtDev>: Parameter 2: Symbolic identifier for the external device/file to be opened
Type: STRING
The symbolic identifier comprises:
1. the logical device name
2. where relevant, followed by a file path (attached using "/").
The following logical device names have been defined:
"LOCAL_DRIVE": Local CF card (pre-defined)
"CYC_DRIVE": Reserved drive name for use in SIEMENS cycles (pre-

defined)
"/dev/ext/1", ...
"/dev/ext/9":

Available network drives
Note:
It is necessary to configure in the extdev.ini file!

"/dev/cyc/1",
"/dev/cyc/2":

Reserved drive names for use in SIEMENS cycles
Note:
It is necessary to configure in the extdev.ini file!

"/dev/v24": V.24 interface
Note:
It is necessary to configure in the extdev.ini file!

File path:
● A file path must be specified for "LOCAL_DRIVE" and "CYC_DRIVE" e.g.

"LOCAL_DRIVE/my_dir/my_file.txt"
● The logical device names "/dev/ext/1...9" and "/dev/cyc/1...2" can be

configured:
– To already refer to a file, in which case only the logical device names may

be specified, e.g.:
"/dev/ext/4"

– Or to a directory, in which case a file path must be specified, e.g.:
"/dev/ext/5/my_dir/my_file.txt"

● It is not permissible that a file path is attached to "/dev/v24".
Note:
For the logical device names "/dev/ext/1...9", "/dev/v24" and "/dev/cyc/1...2" up‐
percase/lowercase is ignored; uppercase/lowercase is significant for specifying
a path to a file. Only uppercase letters are permissible for "LOCAL_DRIVE" and
"CYC_DRIVE".

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 649

<SyncMode>: Parameter 3: Processing mode for the WRITE commands to this device/file
Type: STRING
Values: "SYN": Synchronous writing

Program execution is stopped until the write operation
has been completed.
Successfully completing the synchronous write opera‐
tion can be checked by evaluating the error variables of
the WRITE command.

"ASYN": Asynchronous writing
Program execution is not interrupted by the WRITE
command.
Note.
In this mode, the result variable of the WRITE command
does not provide any information and always has the
value 0 (no error). In this particular mode, there is no
certainty that the WRITE command was successful.

<AccessMode>: Parameter 4: Usage mode for this device/file
Type: STRING
Values: "SHARED": Device/file is requested in the "shared" mode. Other

channels can also use the device, i.e. also open in this
mode.

"EXCL": Device/file is exclusively used in the channel; no other
channel can use the device.

<WriteMode>:

Parameter 5: Write mode for the WRITE commands to this file/device (optional)
Type: STRING
Values: "APP": Attaching

The file is always kept regarding its contents; write calls
are attached at the end.

"OVR": Overwrite
The contents of the file are deleted and re-generated
using the subsequent write calls.

Note:
Using this parameter, the write mode configured in the extdev.ini file cannot be
overwritten. In the case of a conflict, then the EXTOPEN call is acknowledged
with error.

WRITE: Pre-defined procedure to write output data

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
650 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

EXTCLOSE: Pre-defined procedure to close an external device/file that has been opened
<Result>: Parameter 1: Result variable

Type: INT
Values: 0 No error

16 Invalid external path has been programmed
21 Error when closing the external device

<ExtDev>: Parameter 2: Symbolic identifier for the external device/file description to be
closed, see EXTOPEN!
Note:
The identifier must be identical to the identifier specified in the EXTOPEN call!

Example

Program code
N10 DEF INT RESULT
N20 DEF BOOL EXTDEVICE
N30 DEF STRING[80] OUTPUT
N40 DEF INT PHASE
N50 EXTOPEN(RESULT,"LOCAL_DRIVE/my_file.txt","SYN","SHARED")
N60 IF RESULT > 0
N70 MSG("Error for EXTOPEN:" << RESULT)
N80 ELSE
N90 EXTDEVICE=TRUE
N100 ENDIF
…
N200 PHASE=4
N210 IF EXTDEVICE
N220 OUTPUT=SPRINT("End phase: %D",PHASE)
N230 WRITE(RESULT,"LOCAL_DRIVE/my_file.txt",OUTPUT)
N240 ENDIF
…

10.16.4 Supplementary conditions

Effect on continuous path mode
The EXTOPEN, WRITE and EXTCLOSE commands trigger a preprocessing stop and
therefore interrupt the continuous path mode.

K1: Mode group, channel, program operation, reset response
10.16 Process Datashare - output to an external device/file

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 651

Behavior during block search
During "block search with calculation" with WRITE, no output is made. However, the EXTOPEN
and EXTCLOSE commands are collected and set active with NC start after the search target
was reached. The following WRITE commands therefore find the same environment as for the
normal program processing.

For a block search with calculation in the (SERUPRO) "Program test" mode, EXTOPEN,
WRITE and EXTCLOSE are executed just the same as for normal program processing.

10.17 System settings for power-up, RESET / part program end and part
program start

Concept
The behavior of the control can be set via the machine data for the following events:

● Run-up (power-on)

● Reset / part program end

● Part program start

The control-system response after: Can be set with:
Run-up (power on) *) MD20110 $MC_RESET_MODE_MASK

MD20144 $MC_TRAFO_MODE_MASK
MD20150 $MC_GCODE_RESET_VALUES

RESET / part program end MD20110 $MC_RESET_MODE_MASK
MD20150 $MC_GCODE_RESET_VALUES
MD20152 $MC_GCODE_RESET_MODE

Part program start MD20112 $MC_START_MODE_MASK
MD20110 $MC_RESET_MODE_MASK

*) see also POWER ON (Page 829)

K1: Mode group, channel, program operation, reset response
10.17 System settings for power-up, RESET / part program end and part program start

Basic Functions
652 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System settings after run-up
MD20110 $MC_RESET_MODE_MASK, bit 0 = 0 or 1

Figure 10-8 System settings after run-up (power-on)

K1: Mode group, channel, program operation, reset response
10.17 System settings for power-up, RESET / part program end and part program start

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 653

System settings after reset / part program end and part program start
MD20110 $MC_RESET_MODE_MASK, bit 0 = 0 or 1

Figure 10-9 System settings after reset / part program end and part program start

K1: Mode group, channel, program operation, reset response
10.17 System settings for power-up, RESET / part program end and part program start

Basic Functions
654 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

G command effective after run-up and reset / part program end
The G code that is effective in every G group after run-up (power-on) and reset / part program
end is set in the following machine data:

MD20150 $MC_GCODE_RESET_VALUES[<G group>] = <default-G code>

MD20152 $MC_GCODE_RESET_MODE[<G group>] = <value>

Value Description: Per G group
0 The default G command from MD20150 $MC_GCODE_RESET_VALUES takes effect.
1 The last active/current G command takes effect.

Control basic setting after run-up, reset / part program end and part program start
The control basic setting after run-up (power-on), reset / part program end and part program
start is defined in the following machine data:

● MD20110 $MC_RESET_MODE_MASK (definition of the control basic setting after run-up
and reset / part program end)

● MD20112 $MC_START_MODE_MASK (definition of the control basic setting after part
program start)

References
Detailed Machine Data Description

Relevant machine data

Machine data Meaning
MD20120 $MC_TOOL_RESET_VALUE Tool length compensation during run-up, reset / part program

end
MD20121 $MC_TOOL_PRESEL_RESET_VALUE Preselect tool on Reset
MD20130 $MC_CUTTING_EDGE_RESET_VALUE Tool cutting-edge length compensation on run-up
MD20140 $MC_TRAFO_RESET_VALUE Run-up transformation data block
MD20144 $MC_TRAFO_MODE_MASK Selection of the kinematic transformation function
MD20150 $MC_GCODE_RESET_VALUES Basic setting of the G groups
MD20152 $MC_GCODE_RESET_MODE Reset behavior of the G groups
MD21330 $MC_COUPLE_RESET_MODE_1 Coupling cancellation response
MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB Assignment of geometry axis to channel axis
MD20118 $MC_GEOAX_CHANGE_RESET Allow automatic geometry axis change

Example

Activate reset setting on reset:
● MD20110, bit 0 = 1

● MD20112 = 0

K1: Mode group, channel, program operation, reset response
10.17 System settings for power-up, RESET / part program end and part program start

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 655

Transformation remains with reset / part program start:
● MD20110, bit 0 = 1

● MD20110, bit 7 = 1

● MD20112 = 0

Tool length compensation is retained after reset / part program start:
● MD20110, bit 4 = 1

● MD20110, bit 6 = 1

● MD20112 = 0

Active level (bit 4) and settable frame (bit 5) remain active after reset and are reset on part
program start:
● MD20110, bit 4 = 1

● MD20110, bit 5 = 1

● MD20112, bit 4 = 1

● MD20112, bit 5 = 1

Note
MD20110/MD20112, bit 5 and bit 6

If MD20110/MD20112 are parameterized so that tool length compensation or a frame is
active on a part program start in the automatic or MDI mode, the first programming of the
axes must use absolute measurements (because of the traversing of the offset).

Exception: With MD42442/MD42440 the offsetting process for G91 is suppressed.

10.17.1 Tool withdrawal after POWER ON with orientation transformation

Function
If a part program with a machining operation with tool orientation is aborted due to a power
failure or reset, it is possible to select the previously active transformation and generate a
frame in the direction of the tool axis after the control has run up (power on). The tool can then
be retracted in JOG mode by means of a retraction movement towards the tool axis.

Requirement
The active measuring systems must have a machine reference for all the machine axes
involved in the transformation. See Section "Automatic restoration of the machine reference
(Page 1264)".

K1: Mode group, channel, program operation, reset response
10.17 System settings for power-up, RESET / part program end and part program start

Basic Functions
656 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameterization
The following machine data must be set so that the last active transformation is retained after
POWER ON:

● MD20144 $MC_TRAFO_MODE_MASK, bit 1 = 1

● MD20110 $MC_RESET_MODE_MASK, bit 0 = 1

● MD20110 $MC_RESET_MODE_MASK, bit 7 = 1

See also Section "System settings for power-up, RESET / part program end and part program
start (Page 652)".

Programming

Wait for machine reference WAITENC
With the command WAITENC, the system waits channel-specific in a program until there is a
valid machine reference for all the active measuring systems of the parameterized axes. See
the "Requirement" section above. The parameter assignment of the axes is performed via:

MD34800 $MA_WAIT_ENC_VALID = 1

Application
In the user program (…/_N_CMA_DIR/_N_PROG_EVENT_SPF) to be called event-controlled
when running up (requirement: MD20108 bit 3 = 1), the system must wait using the command
WAITENC until the valid axis positions are available.

A frame that positions the tool axis in the direction of the X, Y or Z axis can then be generated
using the NC language command TOROTX/TOROTY/TOROTZ.

Example
Orientation transformation and orientation axes with incremental encoders.

Configuration: Meaning:
MD10720 $MN_OPERATING_MODE_DEFAULT [0] = 6 Run-up in JOG mode.
MD30240 $MA_ENC_TYPE [0, <axis>] = 1 Incremental measuring system.
MD34210 $MA_ENC_REFP_STATE [0, <axis>] = 3 Enable the restoration of axis positions for incre‐

mental encoders.
MD20108 $MC_PROG_EVENT_MASK = ’H9’ Activate event-controlled using program

PROG_EVENT during run-up and at the start of
the part program.

MD20152 $MC_GCODE_RESET_MODE [52] = 1 Obtain TOFRAME via reset.
MD20110 $MC_RESET_MODE_MASK = ’HC1’ Obtain transformation and tool offset via reset.
MD20144 $MC_TRAFO_MODE_MASK = ’H02’ Obtain transformation via POWER OFF.

Event-driven user program (…/_N_CMA_DIR/_N_PROG_EVENT_SPF):

Program code Comment
;

Example with activation of the frame, which aligns the WCS in the tool direction, when running up and
resetting with part program start.

K1: Mode group, channel, program operation, reset response
10.17 System settings for power-up, RESET / part program end and part program start

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 657

Program code Comment
IF $P_PROG_EVENT == 4 ; Run-up
 IF $P_TRAFO <> 0 ; Transformation has been selected.
 WAITENC ; Wait for valid axis positions of the orientation axes.
 TOROTZ ; Rotate the Z axis of the WCS towards the tool axis.
 ENDIF
 M17
ENDIF

IF $P_PROG_EVENT == 1 ; Start of the part program.
 TOROTOF ; Reset the tool frame.
 RET
ENDIF

The WAITENC command essentially corresponds to the following program sequence (example
for 5-axis machine with AB kinematics):

Program code Comment
WHILE TRUE ; Wait for a measuring system.
 IF (($AA_ENC_ACTIVE[X]==TRUE) AND ($AA_ENC_ACTIVE[Y]==TRUE) AND ($AA_ENC_ACTIVE[Z]==TRUE) AND

($AA_ENC_ACTIVE[A]==TRUE) AND ($AA_ENC_ACTIVE[B]==TRUE)) GOTOF GET_LABEL
 ENDIF
 G4 F0.5 ; 0.5 s wait time
ENDWHILE
:Position synchronization
GET_LABEL: GET(X,Y,Z,A,B,)

Continuing machining

AUTOMATIC mode
For automatic execution of programs in the AUTOMATIC mode, all the machine axes, whose
actual position of the active measuring system has been restored, must be referenced.

MDI mode and overstore
In the MDI mode and for the overstore function, machining can also be performed, without
referencing the axes, with restored positions. To do this, NC start with restored positions must
be enabled explicitly for a specific channel:

MD20700 $MC_REFP_NC_START_LOCK = 2

Supplementary condition

Axes with incremental encoders and without actual value buffering
It is to be assumed that axes with incremental encoders and without actual value buffering are
clamped with sufficient speed in the event of a power failure to prevent them drifting from their
last position setpoint.

K1: Mode group, channel, program operation, reset response
10.17 System settings for power-up, RESET / part program end and part program start

Basic Functions
658 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.18 Replacing functions by subprograms

10.18.1 Overview

Function
User-specific auxiliary functions (e.g. M101) do not trigger any system functions. They are only
output to the NC/PLC interface. The functionality of the auxiliary function must be implemented
by the user / machine manufacturer in the PLC user program. A description will be provided
as to how a user-specific subprogram call can be configured (replacement subprogram)
instead of the output to NC/PLC interface, which is the default setting.

Function M101 is then still programmed in the part program. However, when executing the
part program, the substitute subprogram is called. Therefore, the NC replaces the function by
a subprogram call. This results in the following advantages:

● When adapting to the production process, an existing, tested and proven part program can
still be used, unchanged. The changes required are then shifted into the user-specific
subprograms.

● The functionality can be implemented within the substitute subprogram with the full
functional scope of the NC language.

● The communication overhead between NC and PLC is not required.

Functions that can be replaced
The following functions can be replaced by subprograms:

Auxiliary functions
M Switching functions
T Tool selection
TCA Tool selection independent of the tool status
D Tool offset
DL Additive tool offset

Spindle-related functions during active synchronous spindle coupling
M40 Automatic gear stage change
M41 - M45 Gear stage selection 1 ... 5
SPOS Spindle positioning
SPOSA Spindle positioning
M19 Spindle positioning

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 659

10.18.2 Replacement of M, T/TCA and D/DL functions

10.18.2.1 Replacement of M functions

General Information
The following conditions are applicable for replacing the M functions:

● Per block only one M function is replaced.

● A block in which an M function is to be replaced, must not contain the following elements:

– M98

– Modal subprogram call

– Subprogram return

– Part program end

● M functions that trigger system functions must not be replaced by a subprogram (see
Section "Non-replaceable M functions").

Parameterization

M function and subprogram
M functions and the replacement subprograms are parameterized in the following machine
data:

● MD10715 $MC_M_NO_FCT_CYCLE[<Index>] = <M function number>

● MD10716 $MC_M_NO_FCT_CYCLE_NAME[<Index>] = "<subprogram name>"

The M function and the corresponding replacement subprogram are connected through the
same index.

Example: M function M101 is replaced by subprogram SUB_M101 and M function M102 by
SUB_M102:

MD10715 $MC_M_NO_FCT_CYCLE[0] = 101
MD10716 $MC_M_NO_FCT_CYCLE_NAME[0] = "SUB_M101"

MD10715 $MC_M_NO_FCT_CYCLE[1] = 102
MD10716 $MC_M_NO_FCT_CYCLE_NAME[1] = "SUB_M102"

System variable for transferring information
For a freely selectable M function, information regarding the M function that has been replaced
and additional functions (T, TCA, D, DL) for evaluation in the replacement subprogram are
made available via the system variable (see Section "System variable (Page 665)"). The data
contained in the system variables refers to the block in which the M function to be replaced is
programmed.

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
660 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The M function is selected with the index of machine data MD10715
$MC_M_NO_FCT_CYCLE[<Index>] in which the M function to be replaced has been
parameterized:

MD10718 $MC_M_NO_FCT_CYCLE_PAR = <Index>

Note

For an M function replacement with transfer of information via system variable, the address
extension and function value of the M function must be programmed as constant values.

Permissible programming:
● M<function value>
● M=<function value>
● M[<address extension>]=<function value>
Illegal programming:
● M=<variable1>
● M[<variable2>]=<variable1>

Programming
Rules for replacing M functions:

● The replacement subprogram is called at the block end

● Within the replacement subprogram, no M functions are replaced

● In an ASUB, the M function is also replaced if the ASUB was started within the replacement
subprogram.

M functions that cannot be replaced
The following M functions trigger system functions as pre-defined auxiliary functions and must
not be replaced by a subprogram:

● M0 ... M5

● M17, M30,

● M19

● M40 ... M45

● M98, M99 (only for MD18800 $MN_MM_EXTERN_LANGUAGE ≠ 0)

User-specific M functions parameterized via machine data must also not be replaced by a
subprogram as they also trigger system functions.

Machine data Meaning
MD10714 $MN_M_NO_FCT_EOP M function for spindle active after RE‐

SET
MD10804 $MN_EXTERN_CHAN_M_NO_SET_INT M function for ASUB activation (exter‐

nal mode)

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 661

Machine data Meaning
MD10806 $MN_EXTERN_CHAN_M_NO_DISABLE_INT M function for ASUB deactivation (ex‐

ternal mode)
MD10814 $MN_EXTERN_M_NO_MAC_CYCLE Macro call via M function
MD20094 $MC_SPIND_RIGID_TAPPING_M_NR M function for switchover to controlled

axis mode
MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR M function for switchover to controlled

axis mode (external mode)
MD22254 $MC_AUXFU_ASSOC_M0_VALUE Additional M function for program stop
MD22256 $MC_AUXFU_ASSOC_M1_VALUE Additional M function for conditional

stop
MD26008 $MC_NIBBLE_PUNCH_CODE Definition of M functions (for nibble-spe‐

cific)
MD26012 $MC_PUNCHNIB_ACTIVATION Activation of punching and nibbling

functions

Note
Exception

The M function parameterized with MD22560 $MC_TOOL_CHANGE_M_CODE (tool change
with M function) must not be replaced with a subprogram.

10.18.2.2 Replacing T/TCA and D/DL functions

Supplementary conditions
For replacing functions T, TCA, D and DL, the following supplementary conditions apply:

● A maximum of one function replacement is active per block.

● A block with the function replacement must not contain the following elements:

– M98

– Modal subprogram call

– Subprogram return

– Part program end

● If the multitool slot number is programmed with address MTL for the multitool select with
T = slot number, the T replacement also replaces the MTL address. The programmed
values can be queried in the replacement subprogram using the $C_MTL_PROG and
$C_MTL system variables.

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
662 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameterization: Replacement subprogram
The replacement subprogram is specified function-specific in the machine data:

Function Machine data
T MD10717 $MN_T_NO_FCT_CYCLE_NAME
TCA MD15710 $MN_TCA_CYCLE_NAME
D/DL MD11717 $MN_D_NO_FCT_CYCLE_NAME

Note

It is recommended that the same subprogram is used to replace T, TCA and D/DL functions.

Parameterization: Behavior regarding D or DL function with simultaneous T function
When D or DL and T functions are simultaneously programmed in a block, the D or DL number
is either transferred as parameter to the replacement subprogram or the D or DL function is
executed before calling the replacement subprogram. The behavior is configurable via:

MD10719 $MN_T_NO_FCT_CYCLE_MODE (parameterization of the T function replacement)

Bit Value Meaning
0 0 The D or DL number is available in the subprogram in the form of a system variable

(initial state).
1 The D or DL number is calculated directly in the block.

Note:
This function is only active if the tool change was configured with M function:
MD22550 $MC_TOOL_CHANGE_MODE = 1
otherwise the D or DL values are always transferred.

System variable for transferring information
The replacement subprogram is provided with all of the information relevant to the functions
programmed in the block via system variables (see Section "System variable (Page 665)").

The data contained in the system variables refers to the block in which the function to be
replaced was programmed.

Parameterization: Time that the replacement subprogram is called
The call time of the replacement subprogram is set via:

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 663

MD10719 $MN_T_NO_FCT_CYCLE_MODE, bit 1 and bit 2

Bit 2 Bit 1 Time that the replacement subprogram is called
0 0 At the end of the block

After the replacement subprogram has been executed, the interpretation is resumed
with the program line following the line that triggered the replacement operation.

0 1 At block start
After the replacement subprogram has been executed, the program line, which re‐
sulted in the replacement subprogram being called, is interpreted. The T address
and the D or DL address and the M function for the tool change are no longer pro‐
cessed.

1 - At block start and block end
The replacement program is called twice.

System variable for the call time
System variable $P_SUB_STAT can be used to read whether the substitution is active, and if
so, when the replacement subprogram – referred to the block – was called up:

Value Meaning
0 Replacement not active
1 Replacement active, subprogram call is made at the block start
2 Replacement active, subprogram call is made at the block end

Example: Replacement of the T function

Parameterization Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 0 Tool change with T function
MD10717 $MN_T_NO_FCT_CYCLE_NAME = "MY_T_CYCLE" Name of the subprogram to re‐

place the T function
MD10719 $MN_T_NO_FCT_CYCLE_MODE = 0 Call time: End of block

Programming Comment
N110 D1 ; D1
N120 G90 G0 X100 Y100 Z50 ; D1 is active.
N130 D2 X110 Z0 T5 ; D1 remains active. The T function is replaced

at the block end with the MY_T_CYCLE subprogram
call. D2 provides MY_T_CYCLE in a system varia-
ble.

A detailed example for replacement of the T function can be found in Section: "Examples of
M/T function replacement at a tool change (Page 666)".

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
664 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.18.2.3 System variable

General Information
The replacement subprogram is provided with all of the information relevant to the functions
programmed in the block (T or TCA, D or DL, M) via system variables.

Exception
D or DL number is not transferred if:

● MD10719 $MN_T_NO_FCT_CYCLE_MODE, bit 0 = 1

● MD22550 $MC_TOOL_CHANGE_MODE = 1

AND

● D or DL are programmed together with the T or M function in a block.

CAUTION

Values do not act

The values provided for the replacement subprogram in the system variables are not yet
effective. It is the sole responsibility of the user / machine manufacturer to resolve this by
using the appropriate programming in the replacement subprogram.

System variable

System variable Meaning
$C_M_PROG TRUE, if the M function has been programmed
$C_M For $C_M_PROG == TRUE, contains the value of address M

We must differentiate between two cases here:
● $C_M supplies the value if, for the tool change with M function,

a subprogram is configured with parameter transfer:
MD10715 MN_M_NO_FCT_CYCLE

● If only one subprogram is configured for the addresses T and/
or D/DL and if in the program the M function for the tool change
is programmed together with one of the addresses to be
replaced, then $C_M supplies the value: MD22560
$MC_TOOL_CHANGE_M_CODE

$C_AUX_VALUE[0] Value of the replaced M function
$C_ME For $C_M_PROG == TRUE, contains the value of the address

extension of the M function
$C_AUX_EXT[0] Address extension of the M function (identical to $C_ME)
$C_AUX_IS_QUICK[0] TRUE, if the M function was programmed with quick output to the

PLC
$C_T_PROG TRUE, if the T function was programmed
$C_T For $C_T_PROG == TRUE, contains the value of the T function

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 665

System variable Meaning
$C_TE Contains for:

● $C_T_PROG == TRUE
● $C_TS_PROG == TRUE
the value of the address extension of the T function

$C_TS_PROG TRUE, if for the T or TCA replacement, a tool name has been
programmed.

$C_TS For $C_TS_PROG == TRUE, contains the tool name program‐
med for the T or TCA replacement

$C_TCA TRUE, if the TCA replacement is active
$C_DUPLO_PROG TRUE, if the duplo number of the TCA replacement has been

programmed
$C_DUPLO For $C_DUPLO_PROG == TRUE, contains the value of the pro‐

grammed duplo number
$C_THNO_PROG TRUE, if the toolholder/spindle number of the TCA replacement

has been programmed
$C_THNO For $C_THNO_PROG == TRUE, contains the value of the pro‐

grammed toolholder/spindle number
$C_D_PROG TRUE, if the D function has been programmed
$C_D For $C_D_PROG == TRUE, contains the value of the D function
$C_DL_PROG TRUE, if the DL function was programmed
$C_DL For $C_DL_PROG == TRUE, contains the value of the DL function
$P_SUB_STAT Block-related time when the replacement subprogram is called
$C_MTL_PROG TRUE if address MTL has been programmed
$C_MTL For $C_MTL_PROG == TRUE, contains the value of address MTL

10.18.2.4 Example: Replacement of an M function

Example 1
The function M6 is replaced by calling the subprogram "SUB_M6".

The information relevant for a tool change should be transferred using system variables.

Parameterization

Machine data Meaning
MD10715 $MN_M_NO_FCT_CYCLE[2] = 6 Tool change with M6
MD10716 $MN_M_NO_FCT_CYCLE_NAME[2] = "SUB_M6" Replacement subpro‐

gram for M6
MD10718 $MN_M_NO_FCT_CYCLE_PAR = 2 Information transfer

using system variables

Main program

Programming Comment
PROC MAIN

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
666 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Programming Comment
... ;
N10 T1 D1 M6 ; M6 is replaced by subprogram "SUB_M6"

;
... ;
N90 M30

Subprogram "SUB_M6"

Programming Comment
PROC SUB_M6
N110 IF $C_T_PROG==TRUE ; IF address T is programmed
N120 T[$C_TE]=$C_T ; Execute T selection
N130 ENDIF ; ENDIF
N140 M[$C_ME]=6 ; Execute tool change.
N150 IF $C_D_PROG==TRUE ; IF address D is programmed
N160 D=$C_D ; Execute D selection
N170 ENDIF ; ENDIF
N190 M17

Example 2
The new tool is prepared for changing with the T function. The tool change is only realized
with function M6. The T function is replaced by calling the subprogram "MY_T_CYCLE". The
D / DL number is transferred to the subprogram.

Parameterization

Parameterization Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 1 Tool change prepared with T

function
MD10717 $MN_T_NO_FCT_CYCLE_NAME = "MY_T_CYCLE" Replacement subprogram
MD10719 $MN_T_NO_FCT_CYCLE_MODE = 0 Transfer of the D/DL number

Main program

Program code Comment
N210 D1 ;
N220 G90 G0 X100 Y100 Z50 ; D1 is active.
N230 D2 X110 Z0 T5 ; D1 remains active, programmed D2 is transferred

; to the subprogram as variable
N240 M6 ; Execute tool change

Example 3
The new tool is prepared for changing with the T function. The tool change is only realized
with function M6. The T function is replaced by calling the subprogram "MY_T_CYCLE". The
D / DL number is not transferred to the subprogram.

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 667

Parameterization

Parameterization Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 1 Tool change prepared with T

function
MD10717 $MN_T_NO_FCT_CYCLE_NAME = "MY_T_CYCLE" Replacement subprogram
MD10719 $MN_T_NO_FCT_CYCLE_MODE = 1 No transfer of the D/DL number

Main program

Program code Comment
N310 D1
N320 G90 G0 X100 Y100 Z50 ; D1 is active.
N330 D2 X110 Z0 T5 ; D2 is active and is not transferred as variable

to
; the replacement subprogram.

N340 M6 ; Execute tool change.

Example 4
The functions T and M6 are replaced by the subprogram "MY_T_CYCLE".

The parameters are transferred to the subprogram when replacing M6.

If M6 is programmed together with D or DL in the block, the D or the DL number is also
transferred as parameter to the subprogram if no transfer of the D/DL number has been
parameterized:

MD10719 $MN_T_NO_FCT_CYCLE_MODE = 1

Parameterization

Configuration Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 1 Tool change with M function
MD22560 $MC_TOOL_CHANGE_M_CODE = 6 M code for tool change
MD10715 $MC_M_NO_FCT_CYCLE[3] = 6 M function to be replaced
MD10716 $MC_M_NO_FCT_CYCLE_NAME[3] = "MY_T_CYCLE" Replacement subprogram for

the M function
MD10717 $MN_T_NO_FCT_CYCLE_NAME = "MY_T_CYCLE" Replacement subprogram for

the T function
MD10718 $MN_M_NO_FCT_CYCLE_PAR = 3 Parameter transfer to the

replacement subprogram for M6
MD10719 $MN_T_NO_FCT_CYCLE_MODE = 1 No transfer of the D/DL number

Main program

Program code Comment
N410 D1
N420 G90 G0 X100 Y100 Z50 ; D1 is active.
N330 D2 X110 Z0 T5 M6 ; D1 remains active, D2 and T5 are transferred to

the M6 replacement subprogram as variable.

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
668 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.18.2.5 Example: Replacement of a T and D function
The functions T and D are replaced by calling the subprogram "D_T_SUB_PROG". The
following should also be true for the example:

● The tool change is realized with address T.

● The subprogram is called at the start of the block.

● The tool management is not active.

● Axis B is an indexing axis with Hirth gearing.

Parameterization

Machine data Meaning
MD11717 $MN_D_NO_FCT_CYCLE_NAME = "D_T_SUB_PROG" Replacement subpro‐

gram
for D function

MD10717 $MN_T_NO_FCT_CYCLE_NAME = "D_T_SUB_PROG" Replacement subpro‐
gram
for M function

MD10719 $MN_T_NO_FCT_CYCLE_MODE = 'H2' Call at block start
MD22550 $MC_TOOL_CHANGE_MODE = 0 Tool change with T

function

Main program

Programming Comment
PROC MAIN
... ;
N10 G01 F1000 X10 T1=5 D1 ; T and D function replaced by calling

; "D_T_SUB_PROG" at start of block
... ;
N90 M30

Subprogram "D_T_SUB_PROG"

Programming Comment
N1000 PROC D_T_SUB_PROG DISPLOF SBLOF

N4100 IF $C_T_PROG==TRUE ; IF address T is programmed
N4120 POS[B]=CAC($C_T) ; Approach indexing position
N4130 T[$C_TE]=$C_T ; Select tool (T selection)
N4140 ENDIF ; ENDIF

N4300 IF $C_T_PROG==TRUE ; IF address D is programmed
N4320 D=$C_D ; Select offset (D selection)

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 669

Programming Comment
N4330 ENDIF ; ENDIF

N4400 IF $C_DL_PROG==TRUE ; IF address DL is programmed
N4420 D=$C_DL ; Select insert offset
N4430 ENDIF ; ENDIF

N9999 RET

10.18.2.6 Behavior in the event of a conflict

Conflict case
A conflict is present if several functions are programmed in one block and the functions should
be replaced with different subprograms:

● Addresses D and DL replaced with subprogram:
MD11717 $MN_FCT_CYCLE_NAME = "D_SUB_PROG"

● Address T replaced with subprogram:
MD10717 $MN_FCT_CYCLE_NAME = "T_SUB_PROG"

● M function M6 replaced with subprogram:
MD10715 $MN_M_NO_FCT_CYCLE[0] = 6
MD10716 $MN_M_NO_FCT_CYCLE_NAME[0] = "M6_SUB_PROG"
MD10718 $MN_M_NO_FCT_CYCLE_PAR = 0
MD22550 $MC_TOOL_CHANGE_MODE = 1
MD22560 $MC_TOOL_CHANGE_M_CODE = 6

Resolution
A conflict is resolved corresponding to the following table:

The following are programmed in one program line: Called subprogram:
D and/or DL T or TCA M6

– – x M6_SUB_PROG
– x – T_SUB_PROG
– x x M6_SUB_PROG
x – – D_SUB_PROG
x – x M6_SUB_PROG
x x – T_SUB_PROG
x x x M6_SUB_PROG

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
670 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

10.18.3 Replacement of spindle functions

10.18.3.1 General information

Function
When a coupling is active the following spindle functions can be replaced for leading spindles:

● M40: Automatic gear stage change

● M41 ... M45 Programmed gear stage change

● SPOS, SPOSA and M19: Spindle positioning

Boundary conditions
● To replace a spindle function, the following conditions must be met:

– The programmed spindle must be the leading spindle of an active coupling.

– Leading and following spindle are located in the same channel. This is only detected if
the leading spindle is located in the channel in which the coupling was closed. If the
leading spindle is changed to another channel, a gear stage change or positioning of
this spindle does not call the replacement subprogram.

– A programmed gear stage change must result in a real gear stage change. For this
purpose, the programmed and active gear stage must differ.

● In a block, only one spindle function can be replaced. Multiple replacements lead to the
termination of the program processing. The spindle functions, which are to be replaced,
must then be distributed over several blocks.

Parameterization

Spindle function
The spindle functions to be replaced by the subprogram are selected in the machine data:

MD30465 $MA_AXIS_LANG_SUB_MASK

Bit Meaning
0 Gear-stage change automatic (M40) and directly (M41-M45)

Val‐
ue

Meaning

0 No replacement
1 Replacement through the subprogram set in MD15700 and MD15702

1 Spindle positioning with SPOS / SPOSA / M19
Val‐
ue

Meaning

0 No replacement
1 Replacement through the subprogram set in MD15700 and MD15702

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 671

Subprogram: Name
The name of the replacement subprogram is entered in the machine data:

MD15700 $MN_LANG_SUB_NAME = "<subprogram name>"

Subprogram: Path
The path of the replacement subprogram is set in the machine data:

MD15702 $MN_LANG_SUB_PATH = <value>

Value Meaning
0 Manufacturer cycle folder: /_N_CMA_DIR
1 User cycle folder: /_N_CUS_DIR
2 Siemens cycle folder: /_N_CST_DIR

System variable: Time that the replacement subprogram is called
The time that the replacement subprogram is called can be read using the system variable
$P_SUB_STAT:

Value Meaning
0 Replacement not active
1 Replacement active, subprogram call is made at the block start
2 Replacement active, subprogram call is made at the block end

Block processing
If the replacement subprogram is called at the block start, after processing the replacement
subprogram, the block that initiated the call is processed. The replaced commands are no
longer processed.

If the replacement subprogram is called at the block end, the block that initiated calling the
replacement subprogram is first processed without the commands to be replaced. The
replacement subprogram is then subsequently called.

10.18.3.2 Replacement of M40 - M45 (gear stage change)

Function
When a coupling is active, the commands for gear stage change (M40, M41 ... M45) of the
leading spindle are replaced by calling a user-specific subprogram.

Parameterization

Activation
● MD30465 $MA_AXIS_LANG_SUB_MASK, bit 0 = 1

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
672 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Time that the subprogram is called
● M40

The time of the call cannot be set. The replacement subprogram is always called at the
block start.

● M41 ... M45
The call time depends on the configured output behavior of the auxiliary function to the PLC
(see below MD22080):

– Output before or during motion: Subprogram call at the start of the block.

– Output after motion: Subprogram call at the end of the block

MD22080 $MC_AUXFU_PREDEF_SPEC[12 ... 16] (output behavior for M41 ... M45)

Bit Value Meaning
5 1 Output of the auxiliary function before the motion
6 1 Output of the auxiliary function during the motion
7 1 Output of the auxiliary function after the motion

System variable to transfer information
The replacement subroutine is provided with all of the information relevant to the functions
programmed in the block via system variables (see Chapter "System variable (Page 674)").
The data refer exclusively to the block, in which the function to be replaced has been
programmed.

10.18.3.3 Replacement of SPOS, SPOSA, M19 (spindle positioning)

Function
When a coupling is active, the positioning commands (SPOS, SPOSA or M19) of a leading
spindle are replaced by calling a user-specific subprogram (replacement subprogram).

Application example
When machining workpieces in parallel on a double-spindle machine, the spindles are coupled
through a coupling factor not equal to 1. When changing the tool, they must be brought to the
same position. The replacement subprogram opens the coupling, separately positions the
spindles at the tool change position and then recloses the coupling.

Parameterization

Activation
● MD30465 $MA_AXIS_LANG_SUB_MASK, bit 1 = 1

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 673

Time that the replacement subprogram is called
● SPOS, SPOSA

The time of the call cannot be set. The replacement subprogram is always called at the
block start.

● M19
The call time depends on the configured output behavior of the auxiliary function to the PLC
(see below MD22080):

– Output before or during motion: Subprogram call at the start of the block.

– Output after motion: Subprogram call at the end of the block

MD22080 $MC_AUXFU_PREDEF_SPEC[9]
Bit Value Meaning
5 1 Output of the auxiliary function before the motion
6 1 Output of the auxiliary function during the motion
7 1 Output of the auxiliary function after the motion

System variable for transferring information
The replacement subroutine is provided with all of the information relevant to the functions
programmed in the block via system variables (see Chapter "System variable (Page 674)").
The data refer exclusively to the block, in which the function to be replaced has been
programmed.

10.18.3.4 System variable

System variable Meaning
$P_SUB_AXFCT TRUE, if M40, M41 ... M45 replacement is active
$P_SUB_GEAR Programmed or calculated gear stage

Outside the replacement subprogram: Gear stage of the master spindle
$P_SUB_AUTOGEAR TRUE, if M40 was active in the block that had initiated the replacement

operation.
Outside the replacement subprogram: Actual setting in the interpreter

$P_SUB_LA Contains the axis name of the leading spindle of the active coupling, which
had triggered the replacement operation.
Note
If the variable is used outside the replacement subprogram, program pro‐
cessing is cancelled with an alarm.

$P_SUB_CA Contains the axis name of the following spindle of the active coupling, which
had triggered the replacement operation.
Note
If the variable is called outside the replacement subprogram, program pro‐
cessing is cancelled with an alarm.

$P_SUB_AXFCT Contains the active replacement types corresponding to MD30465
$MA_AXIS_LANG_SUB_MASK

$P_SUB_SPOS TRUE, if the SPOS replacement is active

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
674 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable Meaning
$P_SUB_SPOSA TRUE, if the SPOSA replacement is active
$P_SUB_M19 TRUE, if the M19 replacement is active
$P_SUB_SPOSIT Contains the programmed spindle position

Note
If the variable is called outside the replacement subprogram, program pro‐
cessing is cancelled with an alarm.

$P_SUB_SPOSMODE Contains the position approach mode for the programmed spindle position:
Value Meaning

0 No change of the position approach mode
1 AC
2 IC
3 DC
4 ACP
5 ACN
6 OC
7 PC

Note:
If the variable is called outside the replacement subprogram, program pro‐
cessing is cancelled with an alarm.

$P_SUB_STAT Block-related time when the replacement subprogram is called

10.18.3.5 Example: Gear stage change
In the subprogram, all commands to change the gear stage M40, M41 ... M45 are replaced.

Parameterization

Machine data Meaning
MD15700 $MN_LANG_SUB_NAME = "LANG_SUB" Subprogram
MD15702 $MN_LANG_SUB_PATH = 0 Manufacturer's folder
MD22080 $MC_AUXFU_PREDEF_SPEC[12] = 'H21' M41: Output prior to motion
MD22080 $MC_AUXFU_PREDEF_SPEC[13] = 'H21' M42: Output prior to motion
MD22080 $MC_AUXFU_PREDEF_SPEC[13] = 'H21' M43: Output prior to motion
MD22080 $MC_AUXFU_PREDEF_SPEC[15] = 'H21' M44: Output prior to motion
MD22080 $MC_AUXFU_PREDEF_SPEC[16] = 'H21' M45: Output prior to motion
MD30465 $MA_AXIS_LANG_SUB_MASK[AX5] =
'H0001'

Replace gear change commands

Main program

Programming Comment
PROC MAIN
N110 COUPON(S2,S1) ; Close the synchronous spindle coupling

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 675

Programming Comment
N120 G01 F100 X100 S5000 M3 M43 ; Subprogram call due to M43
N130 M40 ; Switch on automatic gear stage change
N140 M3 S1000 ; Subprogram call due to S1000

; and as a result an initiated automatic
; gear stage change

N9999 M30

Replacement subprogram "LANG_SUB", version 1
Optimized for simplicity and velocity by directly addressing the spindles (S1: Leading spindle,
S2: Following spindle).

Programming Comment
N1000 PROC LANG_SUB DISPLOF SBLOF
N1100 IF($P_SUB_AXFCT ==1) ; Replacement due to gear stage change
N1140 DELAYFSTON ; Start of stop delay area
N1150 COUPOF(S2,S1) ; Open synchronous spindle coupling
N1160 ;gear stage change separately for leading and following spindles
N1170 M1=$P_SUB_GEAR M2=$P_SUB_GEAR
N1180 DELAYFSTON ; End of stop delay area
N1190 COUPON(S2,S1) ; Close the synchronous spindle coupling
N1200 ENDIF
...
N9999 RET

Replacement subprogram "LANG_SUB", version 2
Flexibility through indirect addressing using the system variable (leading spindle: $P_SUB_LA,
Folgespindel: $P_SUB_CA).

Programming Comment
N1000 PROC LANG_SUB DISPLOF SBLOF
N1010 DEF AXIS _LA ; Bit memory for leading axis / leading spindle
N1020 DEF AXIS _CA ; Bit memory for following axis / following

spindle
N1030 DEF INT _GEAR ; Bit memory for gear stage

N1100 IF($P_SUB_AXFCT==1) ; Replacement due to gear stage change
N1110 _GEAR=$P_SUB_GEAR ; Gear stage to be activated
N1120 _LA=$P_SUB_LA ; Axis name of the leading spindle
N1130 _CA=$P_SUB_CA ; Axis name of the following spindle
N1140 DELAYFSTON ; Start of stop delay area
N1150 COUPOF(_CA,_LA) ; Open synchronous spindle coupling
N1160 ;gear stage change for leading and following spindles
N1170 M[AXTOSPI(_LA)]=_GEAR M[AXTOSPI(_CA)]=_GEAR

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
676 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Programming Comment
N1180 DELAYFSTOF ; End of stop delay area
N1190 COUPON(_CA,_LA) ; Close the synchronous spindle coupling
N1200 ENDIF
...
N9999 RET

10.18.3.6 Example: Spindle positioning
In the subprogram, only the replacement of commands SPOS and SPOSA is explicitly executed.
Additional replacements should be supplemented in essentially the same fashion.

Parameterization

Machine data Meaning
MD30465 $MA_AXIS_LANG_SUB_MASK[AX5] =
'H0002'

Replace positioning commands

MD22080 $MC_AUXFU_PREDEF_SPEC[9] = 'H0021' Output of M19 to the PLC before mo‐
tion

Setting data Meaning
SD43240 $SA_M19_SPOS[AX5] = 260 Spindle position for M19 = 260
SD43250 $SA_M19_SPOSMODE[AX5] = 4 Position approach mode for M19:

"Approach in the positive direction
(ACP)"

Main program

Programming Comment
PROC MAIN
...
N210 COUPON(S2,S1) ; Activate synchronous spindle coupling
N220 SPOS[1]=100 ; Position leading spindle with SPOS
...
N310 G01 F1000 X100 M19 ; Position leading spindle with M19

Replacement subprogram "LANG_SUB", version 1
Optimized for simplicity and velocity by directly addressing the spindles (S1: Leading spindle,
S2: Following spindle).

Programming Comment
N1000 PROC LANG_SUB DISPLOF SBLOF
N2100 IF($P_SUB_AXFCT==2)

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 677

Programming Comment
N2110 ;Replacement of SPOS/SPOSA/M19 for active synchronous spindle coupling
N2185 DELAYFSTON ; Start of stop delay area
N2190 COUPOF(S2,S1) ; Open synchronous spindle coupling
N2200 ; Position leading and following spindles
N2210 IF($P_SUB_SPOS==TRUE) OR ($P_SUB_SPOSA==TRUE)
N2220 ;SPOS and SPOSA are mapped to SPOS
N2230 CASE $P_SUB_SPOSMODE OF \
 0 GOTOF LABEL1_DC \
 1 GOTOF LABEL1_IC \
 2 GOTOF LABEL1_AC \
 3 GOTOF LABEL1_DC \
 4 GOTOF LABEL1_ACP \
 5 GOTOF LABEL1_ACN \
 DEFAULT GOTOF LABEL_ERR
LABEL1_DC: SPOS[1]=DC($P_SUB_SPOSIT) SPOS[2]=DC($P_SUB_SPOSIT)
 GOTOF LABEL1_CONT
LABEL1_IC: DELAYFSTOF
 SPOS[1]=IC($P_SUB_SPOSIT) SPOS[2]=IC($P_SUB_SPOSIT)
 DELAYFSTON
 GOTOF LABEL1_CONT
LABEL1_AC: SPOS[1]=AC($P_SUB_SPOSIT) SPOS[2]=AC($P_SUB_SPOSIT)
 GOTOF LABEL1_CONT
LABEL1_ACP: SPOS[1]=ACP($P_SUB_SPOSIT) SPOS[2]=ACP($P_SUB_SPOSIT)
 GOTOF LABEL1_CONT
LABEL1_ACN: SPOS[1]=ACN($P_SUB_SPOSIT) SPOS[2]=ACN($P_SUB_SPOSIT)
LABEL1_CONT:
N2250 ELSE ; Position the spindle with M19
N2270 M1=19 M2=19 ; Leading and following spindles
N2280 ENDIF ; End replacement SPOS, SPOSA
N2285 DELAYFSTOF ; End of stop delay area
N2290 COUPON(S2,S1) ; Activate synchronous spindle coupling
N2410 ELSE
N2420 ;from here processing further replacements
...
N3300 ENDIF ; End replacements
...
N9999 RET ; Normal end of program
LABEL_ERR: SETAL(61000) ; Error has occurred

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
678 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Replacement subprogram "LANG_SUB", version 2
Flexibility through indirect addressing using the system variable (leading spindle: $P_SUB_LA,
Folgespindel: $P_SUB_CA).

Programming Comment
N1000 PROC LANG_SUB DISPLOF SBLOF
N1010 DEF AXIS _LA ; Leading axis/spindle
N1020 DEF AXIS _CA ; Following axis/spindle
N1030 DEF INT _LSPI ; Leading spindle number (programmed

; spindle)
N1040 DEF INT _CSPI ; Following spindle number
...
N2100 IF($P_SUB_AXFCT==2)
N2110 ; Replacement of SPOS/SPOSA/M19 for active ; synchronous spindle coupling
N2120 _LA=$P_SUB_LA ; Axis name of the leading spindle
N2130 _CA=$P_SUB_CA ; Axis name of the following spindle
N2140 _LSPI=AXTOSPI(_LA) ; Number of the leading spindle
N2180 _CSPI=AXTOSPI(_LA) ; Number of the following spindle
N2185 DELAYFSTON ; Start of stop delay area
N2190 COUPOF(_CA,_LA) ; Deactivate synchronous spindle coupling
N2200 ; Position leading and following spindles:
N2210 IF($P_SUB_SPOS==TRUE) OR ($P_SUB_SPOSA==TRUE)
N2220 ;SPOS and SPOSA are mapped to SPOS
N2230 CASE $P_SUB_SPOSMODE OF
 0 GOTOF LABEL1_DC \
 1 GOTOF LABEL1_IC \
 2 GOTOF LABEL1_AC \
 3 GOTOF LABEL1_DC \
 4 GOTOF LABEL1_ACP \
 5 GOTOF LABEL1_ACN \
 DEFAULT GOTOF LABEL_ERR
LABEL1_DC: SPOS[_LSPI]=DC($P_SUB_SPOSIT) SPOS[_CSPI]=DC($P_SUB_SPOSIT)
 GOTOF LABEL1_CONT
LABEL1_IC: DELAYFSTOF
 SPOS[_LSPI]=IC($P_SUB_SPOSIT) SPOS[_CSPI]=IC($P_SUB_SPOSIT)
 DELAYFSTON
 GOTOF LABEL1_CONT
LABEL1_AC: SPOS[_LSPI]=AC($P_SUB_SPOSIT) SPOS[_CSPI]=AC($P_SUB_SPOSIT)
 GOTOF LABEL1_CONT
LABEL1_ACP: SPOS[_LSPI]=ACP($P_SUB_SPOSIT) POS[_CSPI]=ACP($P_SUB_SPOSIT)
 GOTOF LABEL1_CONT
LABEL1_ACN: SPOS[_LSPI]=ACN($P_SUB_SPOSIT) POS[_CSPI]=ACN($P_SUB_SPOSIT)
LABEL1_CONT:
N2250 ELSE ; Position spindles with M19
N2270 M[_LSPI]=19 M[_CSPI]=19

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 679

Programming Comment
N2280 ENDIF
N2285 DELAYFSTOF ; End of stop delay area
N2290 COUPON(_CA,_LA) ; Activate synchronous spindle coupling
N2410 ELSE
N2420 ;from here processing further replacements
...
N3300 ENDIF
...
N9999 RET ; Normal end of program
LABEL_ERR: SETAL(61000) ; Error has occurred

10.18.4 Properties of the subprograms

General rules
● The subprogram called when making the replacement can contain the command PROC and

the attribute SBLOF and DISPLOF.

● The replacement is also made in the ISO language mode. However, the replacement
subprograms are exclusively processed in the standard language mode (Siemens). There
is an implicit switchover into the standard language mode. The original language mode is
reselected with the return jump from the replacement subprogram.

● System variables are exclusively used to transfer information to the replacement
subprogram. Transfer parameters are not possible.

● The behavior for a single block and attribute SBLOF depends on the setting in:
MD10702 IGNORE_SINGLEBLOCK_MASK, bit 14 (prevent single-block stop)

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
680 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Value Meaning
0 The replacement subprogram behaves like a "normal" subprogram:

● Return jump with M17: Stop at the end of the subprogram
Note
The output of the M function at the PLC depends on:
MD20800 $MC_SPF_END_TO_VDI, bit 0 (subprogram end to PLC)
 - Bit 0 = 0: No output
 - Bit 0 = 1: M17 is output to the PLC.

● Return jump with RET: No stop at the end of the replacement subprogram
1 In the block, in which the replacement subprogram is called, only one stop is made. Regardless

of whether:
● The subprogram was called at the block start and/or at the block end
● Other subprograms are called in the subprogram
● The subprogram is exited with M17 or RET
The single-block stop takes place for the replacement of M functions at the end of the replace‐
ment subprogram.
For the replacement of T and D/DL functions, the time of the single-block stop depends on
when the subprogram is called:
● Call at block start: Single-block stop at the end of the block
● Call at the block end: Single-block stop at the end of the replacement subprogram

● For replacement subprograms with the attribute DISPLOF in the block display, the program
line is displayed as actual block, which resulted in the subprogram being called.

● In the replacement subprogram, areas or the complete replacement subprogram can be
protected against interruptions, such as NC stop, read-in inhibit etc., using the
DELAYFSTON and DELAYFSTOF commands.

● Replacements do not occur recursively, i.e. the function that has led to the replacement
subprogram call is no longer replaced if it is programmed again in the replacement
subprogram.

Output of auxiliary functions to PLC
When replacing auxiliary functions, calling the replacement subprogram does not initiate that
the auxiliary function is output to the PLC. The auxiliary function is only output if the auxiliary
function is reprogrammed in the replacement subprogram.

Behavior during block search
The replacement subprogram is also called in the block search modes "Block search with
calculation" and "Block search with calculation in the program test mode" (SERUPRO). Any
special features must be implemented in the replacement subprogram using the system
variable: $P_SEARCH, $AC_SERUPRO.

Regarding collecting actions for "block search with calculation", replacement subprograms
behave just like "normal" subprograms.

K1: Mode group, channel, program operation, reset response
10.18 Replacing functions by subprograms

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 681

10.18.5 Restrictions
● Function replacements are not permitted in:

– Synchronized actions

– Technology cycles

● There must be no blockwise synchronized actions in front of a block that contains functions
at the beginning to be replaced. See the paragraph below "Example for: Non-modal
synchronized actions".

● Only the actions required for the respective replacements can be performed in the
replacement subprogram.

● In a block, in which the replacement subprogram is called at the block end, the following
should be observed:

– No modal subprogram call should be active

– No subprogram return jump should be programmed

– No program end should be programmed

Note

The controller does not monitor whether the function to be replaced has been realized
in the replacement subprogram.

Example of: Non-modal synchronized actions
MD30465 $MA_AXIS_LANG_SUB_MASK, bit 0 = 1 (gear stage change)

Program code
...
N1000 WHENEVER $AA_IM[X2] <= $AA_IM[X1] + 0.5 DO $AA_OVR[X1]=0
N1010 G1 X100 M43
...

If, in block N1010, the function M43 initiates that a replacement subprogram is called,
machining is interrupted and an alarm is output.

10.19 Renaming/locking NC commands

Function
The machine manufacturer or end user can change the names of existing NC commands with
the "Rename/lock NC commands" function.

K1: Mode group, channel, program operation, reset response
10.19 Renaming/locking NC commands

Basic Functions
682 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Application
The function can be used for the following purposes:

● Improve the readability of part programs

● Lock NC commands

● User-specific extension of NC functions

Parameterization
The renaming/locking of NC commands is made via the machine data:

MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[<n>] (list of reconfigured NC codes)

An even index [<n>] contains the original name of the command. The following uneven index
contains the new name of the command.

Note

For SINUMERIK 828D, the entries in the even indexes (original command name) are
predefined and cannot be changed. Only the uneven indexes (new command name) can be
written.

An empty string ("") as new name means that there is no new name for the command.
Consequently, the command is locked and can no longer be programmed.

Changes in MD10712 take effect on Power On.

Examples

Example 1 (840D sl): Rename command G00 and deactivate G01
MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[0] = "G00"

MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[1] = "RAPIDTRAVERSE"

MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[2] = "G01"

MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[3] = ""

After activation with Power On, rapid traverse can no longer be programmed with the G00
command, but only with the RAPIDTRAVERSE command. G01 can no longer be programmed.

Example 2 (828D): Change the preassigned value for SINUMERIK 828D
To adapt to the ISO dialect mode, the indexes [0] to [7] are preassigned for the SINUMERIK
828D so that the G505 and G506 commands are renamed as G58 and G59. Originally G58
and G59 were programmable frames, G505 and G506 were settable frames. The renaming
makes G58 and G59 into settable frames.

K1: Mode group, channel, program operation, reset response
10.19 Renaming/locking NC commands

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 683

If this preassignment is not desired, and G58 and G59 should remain programmable frames,
the renaming must be undone as follows:

Index for MD10712 Command name
Predefined New

[0] "G58" "G58"
[1] "" "G58"
[2] "G59" "G59"
[3] "" "G59"
[4] "G505" "G505"
[5] "G58" "G505"
[6] "G506" "G506"
[7] "G59" "G506"

Example 3 (828D): Rename the _TCA command as TC
The TC command for SINUMERIK 828D is renamed as standard as _TCA. The TCA function
has a cycle. If this cycle is not used, the _TCA command must be renamed again as TC:

MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[8] = "_TCA"

MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[9] = "TCA"

Example 4 (828D): Reroute the existing command to a user-specific cycle.
The existing WAITM command should be replaced by a cycle in which user-specific functions
are available.

1. Rename the existing WAITM command with MD10712 as _WAITM:
MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[20] = "WAITM"
MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[21] = "_WAITM"

2. Create a part program with the name WAITM.
The interface for PROC WAITM must be identical with that for the NC function WAITM.
This part program now replaces the existing WAITM NC function. Every WAITM command
from the part program, also those from Siemens cycles and Shopmill/Shopturn cycles, calls
the user-specific WAITM subprogram. In this WAITM subprogram, the user-specific
functions are executed and, if required, the renamed _WAITM NC function called.

Program code Comment
N5 PROC WAITM(<flag no.>,<channel no.>)
... ; User-specific functions
N100 _WAITM(<flag no.>,<channel no.>)
... ; User-specific functions
M30

10.20 Program runtime / part counter
Information on the program runtime and workpiece counter are provided to support the
machine tool operator.

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
684 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

This information can be processed as system variables in the NC and/or PLC program. This
information is also available to be displayed on the operator interface.

10.20.1 Program runtime

10.20.1.1 Function
The "Program runtime" function provides various timers to monitor technological processes,
which can be read into the part program and into synchronized actions via system variables.
There are two types of timers:

1. Standard timers
Standard timers are always active

2. Timers that can be activated
Timers that can be activated must be activated via machine data.

Standard timers

Time since the last control power-up

System variable Meaning
$AN_SETUP_TIME Time since the last control power-up with default values in minutes.

Is automatically reset to "0" in each control power-up with default values.
$AN_POWERON_TIME Time since the last normal control power-up ("warm restart") in minutes.

Is automatically reset to "0" in each normal control power-up.

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 685

Program runtime
The timers to measure the program runtimes are only available in AUTOMATIC mode.

System variable (channel-specific) Description
$AC_ACT_PROG_NET_TIME Actual net runtime of the current program in seconds

Net runtime means that the time, in which the program was stopped, has been
deducted.
If, in the AUTOMATIC operating mode, a part program is restarted from the
RESET channel state, then $AC_ACT_PROG_NET_TIME is automatically reset
to "0".
Additional properties:
● The reset button does not reset $AC_ACT_PROG_NET_TIME back to "0",

but rather only stops the timer.
● When starting an ASUB, $AC_ACT_PROG_NET_TIME is set to "0" and also

counts the runtime of the ASUB. At the end of an ASUB, it behaves just the
same as for the RESET button: The timer is only held, but is not set to "0".

● $AC_ACT_PROG_NET_TIME is not reset when starting an event-controlled
program (PROG_EVENT).
The program runtime is only counted further if it involves a start, M30 or a
search PROG_EVENT.

● The behavior of $AC_ACT_PROG_NET_TIME for GOTOS and override =
0% can be parameterized using MD27850 (refer to Section
"Parameterization")

Tip:
With $AC_PROG_NET_TIME_TRIGGER, $AC_ACT_PROG_NET_TIME can
be manipulated further.

$AC_OLD_PROG_NET_TIME Net runtime in seconds of the program that has just been correctly ended
"Correctly ended" means that the program was not interrupted with RESET, but
instead ended properly with M30.
If a new program is started, $AC_OLD_PROG_NET_TIME remains unscanned,
till M30 is reached again.
Additional properties:
● $AC_OLD_PROG_NET_TIME is set to "0" if the currently selected program

is edited.
● $AC_OLD_PROG_NET_TIME is not changed at the end of an ASUB or an

event-controlled program (PROG_EVENT).
Tip:
The implied copying process of $AC_ACT_PROG_NET_TIME after
$AC_OLD_PROG_NET_TIME takes place only when
$AC_PROG_NET_TIME_TRIGGER is not written.

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
686 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable (channel-specific) Description
$AC_OLD_PROG_NET_TIME_COUNT Changes to $AC_OLD_PROG_NET_TIME

After POWER ON, $AC_OLD_PROG_NET_TIME_COUNT is at "0".
$AC_OLD_PROG_NET_TIME_COUNT is always increased if the control has
newly written to $AC_OLD_PROG_NET_TIME.
If the user terminates the running program with RESET,
$AC_OLD_PROG_NET_TIME and $AC_OLD_PROG_NET_TIME_COUNT re‐
main unchanged.
With $AC_OLD_PROG_NET_TIME_COUNT it can thus be ascertained, wheth‐
er $AC_OLD_PROG_NET_TIME was written.
Example:
If two programs running consecutively have the same runtime and were ended
correctly, then the user can identify this via the changed value in
$AC_OLD_PROG_NET_TIME_COUNT.

$AC_PROG_NET_TIME_TRIGGER Trigger for the selective measurement of program sections.
The function is triggered by the writing of the value to the variable:
Val‐
ue

Function

0 Not active
1 Terminates the measurement

● $AC_OLD_PROG_NET_TIME = $AC_ACT_PROG_NET_TIME
● $AC_ACT_PROG_NET_TIME = 0 and then continues to run

2 Starts the measurement
● $AC_ACT_PROG_NET_TIME = 0
● $AC_OLD_PROG_NET_TIME is not changed

3 Stops the measurement
● $AC_OLD_PROG_NET_TIME is not changed
● $AC_ACT_PROG_NET_TIME is not changed

4 Continues the stopped measurement
● $AC_ACT_PROG_NET_TIME continues to run
● $AC_OLD_PROG_NET_TIME is not changed

All system variables are reset to 0 as a result of POWER ON!

Note
Residual time for a workpiece

If the same workpieces are machined one after the other then using the following timer values
the remaining residual time for a workpiece can be determined.
● Processing time for the last workpiece produced (see $AC_OLD_PROG_NET_TIME)
● Current processing time (see $AC_ACT_PROG_NET_TIME)

The residual time is displayed on the user interface in addition to the current processing time.

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 687

Note
Using STOPRE

The system variables $AC_OLD_PROG_NET_TIME and
$AC_OLD_PROG_NET_TIME_COUNT do not generate any implicit preprocessing stop. This
is uncritical when used in the part program if the value of the system variables comes from the
previous program run. However, if the trigger for the runtime measurement
($AC_PROG_NET_TIME_TRIGGER) is written very frequently and as a result
$AC_OLD_PROG_NET_TIME changes very frequently, then an explicit STOPRE should be
used in the part program.

Timers that can be activated

Program runtime
The timers to measure the program runtimes are only available in AUTOMATIC mode.

System variable (channel-spe‐
cific)

Description

$AC_OPERATING_TIME Total runtime of NC programs in Automatic mode (in s)
In the automatic mode, the runtimes of all programs between NC start and end of pro‐
gram / reset are summed up.
The default is not to count in NC stop and override = 0%. Continued counting can be acti‐
vated at an override of 0% via MD27860.
The value is automatically reset to "0" every time the control powers up.

$AC_CYCLE_TIME Runtime of the selected NC program (in seconds)
The runtime between NC Start and end of program / NC reset is measured in the selected
NC program.
The default is not to count in NC stop and override = 0%. Continued counting can be acti‐
vated at an override of 0% via MD27860.
The value is automatically reset to "0" every time a new NC program starts up. MD27860
can be set to ensure that this value will be deleted even if there is a jump to the beginning
of the program with GOTOS or in the event of ASUBs and PROG_EVENTs starting.

$AC_CUTTING_TIME Processing time in seconds
The runtime of the path axes (at least one is active) is measured in all NC programs between
NC Start and end of program / NC reset without rapid traverse active. MD27860 can be
used to set whether measuring should only be conducted when the tool is active or inde‐
pendent of the tool state.
The measurement is interrupted when a dwell time is active.
The value is automatically reset to "0" every time the control powers up with default values.

10.20.1.2 Commissioning

Activation/deactivation
The timer that can be activated is switched-in/switched-out using machine data:

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
688 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD27860 $MC_PROCESSTIMER_MODE, bit 0 - 2 = <value>

Bit Value Meaning
0 0 Timer for $AC_OPERATING_TIME not active.

1 Timer for $AC_OPERATING_TIME active.
1 0 Timer for $AC_CYCLE_TIME not active.

1 Timer for $AC_CYCLE_TIME active.
2 0 Timer for $AC_CUTTING_TIME not active.

1 Timer for $AC_CUTTING_TIME active.

Parameterization

Behavior of the timer that is always active
The behavior of the timer that is always active for GOTOS and override = 0% is set using
machine data:

MD27850 $MC_PROG_NET_TIMER_MODE

Bit Value Meaning
0 0 $AC_ACT_PROG_NET_TIME is not reset to "0" in case of a jump with GOTOS to the

program start (initial setting).
1 With a jump with GOTOS to the start of the program, $AC_ACT_PROG_NET_TIME is

reset to "0", the value is first saved in $AC_OLD_PROG_NET_TIME and the program
counter $AC_OLD_PROG_NET_TIME_COUNT is incremented.

1 0 $AC_ACT_PROG_NET_TIME is not increased for override = 0%. This means that the
program runtime is measured without the time for which the override was set to "0"
(basic setting).

1 $AC_ACT_PROG_NET_TIME is also increased for override = 0%. This means that the
program runtime is measured with the time for which the override was set to "0".

Behavior of the timer that can be activated
The behavior of the timer that can be activated for certain functions (e.g. test run feedrate,
program test) is set using machine data:

MD27860 $MC_PROCESSTIMER_MODE

Bit Value Meaning
4 0 No measurement during active dry run feedrate.

1 Measurement during active dry run feedrate.
5 0 No measurement during program test.

1 Measurement during program test.
6 Only for bit 1 = 1 (timer for $AC_CYCLE_TIME is active)

0 $AC_CYCLE_TIME is reset to "0" also in case of Start through ASUB and
PROG_EVENTs.

1 $AC_CYCLE_TIME is not reset to "0" in case of Start through ASUB and
PROG_EVENTs.

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 689

Bit Value Meaning
7 Only for bit 2 = 1 (timer for $AC_CUTTING_TIME is active)

0 Timer for $AC_CUTTING_TIME counts only for the active tool.
1 Timer for $AC_CUTTING_TIME counts independent of the tool.

8 Only for bit 1 = 1 (timer for $AC_CYCLE_TIME is active)
0 $AC_CYCLE_TIME is not reset to "0" in case of a jump with GOTOS to the program

start.
1 $AC_CYCLE_TIME is reset to "0" in case of a jump with GOTOS to the program start.

9 Only for bit 0, 1 = 1 (timer for $AC_OPERATING_TIME and $AC_CYCLE_TIME are active)
0 Counting of the program runtime is not continued at an override of 0%.
1 Counting of the program runtime continues at an override of 0%.

10.20.1.3 Supplementary conditions

Block search
No program runtimes are determined through block searches.

REPOS
The duration of a REPOS process is added to the current processing time
($AC_ACT_PROG_NET_TIME).

10.20.1.4 Examples

Example 1: Parameterization of the runtime measurement via MD27860
Activating the runtime measurement for the active NC program and hence no measurement
in case of active dry run feedrate and program test:

MD27860 $MC_PROCESSTIMER_MODE = 'H2'

Activating the measurement for the tool action time and measurement also with active dry run
feedrate and program test.

MD27860 $MC_PROCESSTIMER_MODE = 'H34'

Activating the measurement for the total runtime and the processing time with an active tool,
including measurement with a program test:

MD27860 $MC_PROCESSTIMER_MODE = 'H25'

Activating the measurement for the total runtime and the machining time (independent of the
tool), including measurement with a program test:

MD27860 $MC_PROCESSTIMER_MODE = 'Ha5'

Activating the measurement for the processing time with an active tool, including
measurements at an override = 0%, but not with a trial run feed active:

MD27860 $MC_PROCESSTIMER_MODE = 'H22'

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
690 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example 2: Measuring the duration of "mySubProgrammA"

Program code
...
N50 DO $AC_PROG_NET_TIME_TRIGGER=2
N60 FOR ii= 0 TO 300
N70 mySubProgrammA
N80 DO $AC_PROG_NET_TIME_TRIGGER=1
N95 ENDFOR
N97 mySubProgrammB
N98 M30

After the program has processed line N80, the net runtime of "mySubProgrammA" is located
in $AC_OLD_PROG_NET_TIME.

The value from $AC_OLD_PROG_NET_TIME:

● Is kept beyond M30.

● Is updated each time the loop is run through.

Example 3: Measuring the duration of "mySubProgrammA" and "mySubProgrammC"

Program code
N10 DO $AC_PROG_NET_TIME_TRIGGER=2
N20 mySubProgrammA
N30 DO $AC_PROG_NET_TIME_TRIGGER=3
N40 mySubProgrammB
N50 DO $AC_PROG_NET_TIME_TRIGGER=4
N60 mySubProgrammC
N70 DO $AC_PROG_NET_TIME_TRIGGER=1
N80 mySubProgrammD
N90 M30

10.20.2 Workpiece counter

10.20.2.1 Function
Various counters with a range of values from 0 to 999,999,999 are available with the
"Workpiece counter" function in the form of channel-specific system variables. Read and write
access to the system variables is possible.

The following channel-specific machine data can be used to control counter activation, counter
reset timing and the counting algorithm.

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 691

System variables for workpiece counting

System variable Meaning
$AC_REQUIRED_PARTS Number of workpieces to be produced (setpoint number of workpieces)

In this counter the number of workpieces at which the actual workpiece
count ($AC_ACTUAL_PARTS) will be reset to "0" can be defined.
MD27880 can be used to activate the generation of the display alarm:
"Channel %1 workpiece target = %2 reached"
and of the channel-specific NC/PLC interface signal:
DB21, DBX317.1 (workpiece target reached)
.

$AC_TOTAL_PARTS Total number of completed workpieces (actual workpiece total)
This counter specifies the total number of workpieces produced since
the start time. The value is only automatically reset to "0" when the
control runs up with default values.

$AC_ACTUAL_PARTS Number of completed workpieces (actual workpiece total)
This counter registers the total number of workpieces produced since
the start time. On condition that $AC_REQUIRED_PARTS > 0, the
counter is automatically reset to "0" when the required number of work‐
pieces ($AC_REQUIRED_PARTS) is reached.

$AC_SPECIAL_PARTS Number of workpieces selected by the user
This counter supports user-specific workpiece counts. An alarm can be
defined to be output when the setpoint number of workpieces is reached
($AC_REQUIRED_PARTS). Users must reset the counter themselves.

Note

All workpiece counters are set to "0" when the control runs up with default values and can be
read and written independent of their activation.

10.20.2.2 Commissioning

Activation
The workpiece counter is activated with the machine data:

MD27880 $MC_PART_COUNTER (activation of workpiece counters)

Bit Value Meaning
0 1 $AC_REQUIRED_PARTS is active
1 0 Alarm/signal output for: $AC_ACTUAL_PARTS = $AC_REQUIRED_PARTS

1 Alarm/signal output for: $AC_SPECIAL_PARTS = $AC_REQUIRED_PARTS
4 1 $AC_TOTAL_PARTS is active.
5 0 $AC_TOTAL_PARTS is incremented by the value "1" through M02/M30.

1 $AC_TOTAL_PARTS is incremented by the value "1" through the M command defined
with MD27882[0].

6 0 $AC_TOTAL_PARTS is also active for program test / block search.
7 1 $AC_TOTAL_PARTS is incremented by the value "1" upon a jump back with GOTOS.

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
692 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Bit Value Meaning
8 1 $AC_ACTUAL_PARTS is active
9 0 $AC_ACTUAL_PARTS is incremented by the value "1" through M02/M30.

1 $AC_ACTUAL_PARTS is incremented by the value "1" through the M command de‐
fined with MD27882[1].

10 0 $AC_ACTUAL_PARTS is also active for program test / block search.
11 1 $AC_ACTUAL_PARTS is incremented by the value "1" upon a jump back with GOTOS.
12 1 $AC_SPECIAL_PARTS is active.
13 0 $AC_SPECIAL_PARTS is incremented by the value "1" through M02/M30.

1 $AC_SPECIAL_PARTS is incremented by the value 1 through the M command defined
with MD27882[2].

14 0 $AC_SPECIAL_PARTS is also active for program test / block search.
15 1 $AC_SPECIAL_PARTS is incremented by the value "1" upon a jump back with

GOTOS.

Parameter assignment

Workpiece counting with user-defined M command
If the corresponding bit is set in MD27880, then the count pulse can be triggered via a user-
defined M command parameterized via the following machine data instead of via the end of
program M2/M30.

MD27882 $MC_PART_COUNTER_MCODE[<n>] (workpiece counting with user-defined M
command)

<n> Meaning
0 MD27882[0] defines the M command in which $AC_TOTAL_PARTS is incremented.
1 MD27882[1] defines the M command in which $AC_ACTUAL_PARTS is incremented.
2 MD27882[2] defines the M command in which $AC_SPECIAL_PARTS is incremented.

The respective workpiece counter is incremented by "1", when a user-defined M command is
called.

Protection level for workpiece counting
Using the following machine data, the protection level for activating/deactivating the workpiece
counting at the user interface is set.

MD51074 $MN_ACCESS_WRITE_WPC_COUNTER = <protection level>

10.20.2.3 Supplementary conditions

Mode change / NC RESET
The counters are not affected by a mode change or NC RESET.

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 693

$AC_REQUIRED_PARTS ≤ 0
Where $AC_REQUIRED_PARTS ≤ 0 and MD27880 $MC_PART_COUNTER, bit 0 = 1, the
counting procedure and the identity comparison set with MD27880 are not conducted for all
the active counters.

10.20.2.4 Examples

Activation of the workpiece counter $AC_REQUIRED_PARTS:
● MD27880 $MC_PART_COUNTER = 'H3'

$AC_REQUIRED_PARTS is active

Display alarm for: $AC_REQUIRED_PARTS == $AC_SPECIAL_PARTS

Activation of the workpiece counter $AC_TOTAL_PARTS:
● MD27880 $MC_PART_COUNTER = 'H10'

● MD27882 $MC_PART_COUNTER_MCODE[0] = 80

$AC_TOTAL_PARTS is active; the counter is incremented by the value 1 with each M02.

$MC_PART_COUNTER_MCODE[0] has no significance.

Activation of the workpiece counter $AC_ACTUAL_PARTS:
● MD27880 $MC_PART_COUNTER = 'H300'

● MD27882 $MC_PART_COUNTER_MCODE[1] = 17

$AC_TOTAL_PARTS is active; the counter is incremented by a value of "1" with each M17.

Activation of the workpiece counter $AC_SPECIAL_PARTS:
● MD27880 $MC_PART_COUNTER = 'H3000'

● MD27882 $MC_PART_COUNTER_MCODE[2] = 77

$AC_SPECIAL_PARTS is active.

With each M77 the following is realized: $AC_SPECIAL_PARTS + 1

Deactivation of the workpiece counter $AC_ACTUAL_PARTS:
● MD27880 $MC_PART_COUNTER = 'H200'

● MD27882 $MC_PART_COUNTER_MCODE[1] = 50

$AC_ACTUAL_PARTS is inactive

Activation of all counters:
● MD27880 $MC_PART_COUNTER = 'H3313'

● MD27882 $MC_PART_COUNTER_MCODE[0] = 80

● MD27882 $MC_PART_COUNTER_MCODE[1] = 17

● MD27882 $MC_PART_COUNTER_MCODE[2] = 77

$AC_REQUIRED_PARTS is active

K1: Mode group, channel, program operation, reset response
10.20 Program runtime / part counter

Basic Functions
694 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Display alarm for: $AC_REQUIRED_PARTS == $AC_SPECIAL_PARTS

$AC_TOTAL_PARTS is active; the counter is incremented by the value 1 with each M02.

$MC_PART_COUNTER_MCODE[0] has no significance.

$AC_ACTUAL_PARTS is active; the counter is incremented by a value of "1" with each M17.

$AC_SPECIAL_PARTS is active; the counter is incremented by a value of "1" with each M77.

Workpiece counter $AC_ACTUAL_PARTS is not processed during the program test / block
search:
● MD27880 $MC_PART_COUNTER = 'H700'

● MD27882 $MC_PART_COUNTER_MCODE[1] = 75

$AC_ACTUAL_PARTS is active; the counter is incremented by a value of "1" with each M75,
apart from during the program test and search.

Cancellation of the count modes in the MD27880 $MC_PART_COUNTER with bit 0 = 1:
● MD27882 $MC_PART_COUNTER_MCODE[0] = 41

● MD27882 $MC_PART_COUNTER_MCODE[1] = 42

● MD27882 $MC_PART_COUNTER_MCODE[2] = 43

Program code Comment
...
N100 $AC_REQUIRED_PARTS=-10 ; value <0: Set counting.
N200 M41 M43 ; no counting.
N300 M42
...
N500 $AC_REQUIRED_PARTS=52 ; value > 0: Counting in accordance with MD27880

activated.
N501 M43 ; counting.
N502 M42 M41 ; counting.
...

10.21 Data lists

10.21.1 Function
Various counters with a range of values from 0 to 999,999,999 are available with the
"Workpiece counter" function in the form of channel-specific system variables. Read and write
access to the system variables is possible.

The following channel-specific machine data can be used to control counter activation, counter
reset timing and the counting algorithm.

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 695

System variables for workpiece counting

System variable Meaning
$AC_REQUIRED_PARTS Number of workpieces to be produced (setpoint number of workpieces)

In this counter the number of workpieces at which the actual workpiece
count ($AC_ACTUAL_PARTS) will be reset to "0" can be defined.
MD27880 can be used to activate the generation of the display alarm:
"Channel %1 workpiece target = %2 reached"
and of the channel-specific NC/PLC interface signal:
DB21, DBX317.1 (workpiece target reached)
.

$AC_TOTAL_PARTS Total number of completed workpieces (actual workpiece total)
This counter specifies the total number of workpieces produced since
the start time. The value is only automatically reset to "0" when the
control runs up with default values.

$AC_ACTUAL_PARTS Number of completed workpieces (actual workpiece total)
This counter registers the total number of workpieces produced since
the start time. On condition that $AC_REQUIRED_PARTS > 0, the
counter is automatically reset to "0" when the required number of work‐
pieces ($AC_REQUIRED_PARTS) is reached.

$AC_SPECIAL_PARTS Number of workpieces selected by the user
This counter supports user-specific workpiece counts. An alarm can be
defined to be output when the setpoint number of workpieces is reached
($AC_REQUIRED_PARTS). Users must reset the counter themselves.

Note

All workpiece counters are set to "0" when the control runs up with default values and can be
read and written independent of their activation.

10.21.2 Machine data

10.21.2.1 General machine data

Displaying machine data

Number Identifier: $MM_ Description
SINUMERIK Operate

9421 MA_AXES_SHOW_GEO_FIRST Display geo axes of channel first
9422 MA_PRESET_MODE PRESET / basic offset in JOG.
9423 MA_MAX_SKP_LEVEL Maximum number of skip levels

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
696 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

NC-specific machine data

Number Identifier: $MN_ Description
10010 ASSIGN_CHAN_TO_MODE_GROUP Channel valid in mode group
10125 EES_NC_NAME NCU name for the generation of unique NC program

names in the EES mode
10280 PROG_FUNCTION_MASK Comparison commands ">" and "<"
10700 PREPROCESSING_LEVEL Program preprocessing level
10702 IGNORE_SINGLEBLOCK_MASK Prevent single block stop
10707 PROG_TEST_MASK Program test modes
10708 SERUPRO_MASK Block change modes
10710 PROG_SD_RESET_SAVE_TAB Setting data to be updated
10711 NC_LANGUAGE_CONFIGURATION Manner of handling the languages, whose related op‐

tion or function is not activated.
10713 M_NO_FCT_STOPRE M function with preprocessing stop
10715 M_NO_FCT_CYCLE M function to be replaced by subprogram
10716 M_NO_FCT_CYCLE_NAME Subroutine name for M function replacement
10717 T_NO_FCT_CYCLE_NAME Name of the tool change cycle for T function replace‐

ment
10718 M_NO_FCT_CYCLE_PAR M function replacement with parameters
10719 T_NO_FCT_CYCLE_MODE Parameter assignment for T function replacement
11450 SEARCH_RUN_MODE Block search parameter settings
11470 REPOS_MODE_MASK Repositioning properties
11600 BAG_MASK Mode group response to ASUB
11602 ASUP_START_MASK Ignore stop conditions for ASUB
11604 ASUP_START_PRIO_LEVEL Priorities, starting from which $MN_AS‐

UP_START_MASK is effective
11610 ASUP_EDITABLE Activating a user-specific ASUB program
11612 ASUP_EDIT_PROTECTION_LEVEL Protection level of user-specific ASUB program
11620 PROG_EVENT_NAME Program name for PROG_EVENT
11625 FILE_ONLY_WITH_EXTENSION When calling the program, only search for files with a

file ID
11626 CYCLES_ONLY_IN_CYCDIR Only search for programs with interface in the cycle

directories
11717 D_NO_FCT_CYCLE_NAME Subroutine name for D function replacement
15700 LANG_SUB_NAME Name for replacement subprogram
15702 LANG_SUB_PATH Call path for replacement subprogram
17200 GMMC_INFO_NO_UNIT Global HMI info (without physical unit)
17201 GMMC_INFO_NO_UNIT_STATUS Global HMI status info (without physical unit)
18045 EES_MODE_INFO Mode in which the EES function operates
18360 MM_EXT_PROG_BUFFER_SIZE FIFO buffer size for execution from external source

(DRAM)
18362 MM_EXT_PROG_NUM Number of program levels that can be processed si‐

multaneously from external

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 697

10.21.2.2 Channel-specific machine data

Basic machine data

Number Identifier: $MC_ Description
20000 CHAN_NAME Channel name
20050 AXCONF_GEOAX_ASSIGN_TAB Assignment of geometry axis to channel axis
20060 AXCONF_GEOAX_NAME_TAB Channel axis name in the channel
20070 AXCONF_MACHAX_USED Machine axis number valid in channel
20080 AXCONF_CHANAX_NAME_TAB Channel axis name in channel [channel axis no.]: 0...7
20090 SPIND_DEF_MASTER_SPIND Basic setting of master spindle in channel
20100 DIAMETER_AX_DEF Geometry axis with transverse axis function
20106 PROG_EVENT_IGN_SINGLEBLOCK Prog events ignore the single block
20107 PROG_EVENT_IGN_INHIBIT Prog events ignore the read-in disable
20108 PROG_EVENT_MASK Event-driven program calls
20109 PROG_EVENT_MASK_PROPERTIES Prog events properties
20114 MODESWITCH_MASK Setting for REPOS
20116 IGNORE_INHIBIT_ASUP Execute user ASUPs completely in spite of read-in dis‐

able
20117 IGNORE_SINGLEBLOCK_ASUP Process user ASUPs completely in spite of single-block

processing
20160 CUBIC_SPLINE_BLOCKS Number of blocks for C spline
20170 COMPRESS_BLOCK_PATH_LIMIT Maximum traversing length of NC block for compres‐

sion
20191 IGN_PROG_STATE_ASUP Do not display the execution of the interrupt routine on

the operator panel
20192 PROG_EVENT_IGN_PROG_STATE Do not display the execution of the program events on

the operator panel
20193 PROG_EVENT_IGN_STOP Prog events ignore the Stop key
20194 IGNORE_NONCSTART_ASUP ASUP start permitted despite pending alarm response

"NC Start disable" for certain user alarms
20210 CUTCOM_CORNER_LIMIT Max. angle for intersection calculation with tool radius

compensation
20220 CUTCOM_MAX_DISC Maximum value for DISC
20230 CUTCOM_CURVE_INSERT_LIMIT Maximum angle for intersection calculation with tool ra‐

dius compensation
20240 CUTCOM_MAXNUM_CHECK_BLOCKS Blocks for predictive contour calculation with tool radius

compensation
20250 CUTCOM_MAXNUM_DUMMY_BLOCKS Maximum number of blocks without traversing motion

for TRC
20270 CUTTING_EDGE_DEFAULT Basic setting of tool cutting edge without programming
20400 LOOKAH_USE_VELO_NEXT_BLOCK Look Ahead to programmed following block velocity
20430 LOOKAH_NUM_OVR_POINTS Number of override points for Look Ahead
20440 LOOKAH_OVR_POINTS Override switch points for LookAhead
20500 CONST_VELO_MIN_TIME Minimum time with constant velocity

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
698 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Number Identifier: $MC_ Description
20600 MAX_PATH_JERK Pathrelated maximum jerk
20610 ADD_MOVE_ACCEL_RESERVE Acceleration reserve for overlaid motions
20700 REFP_NC_START_LOCK NC start disable without reference point
20750 ALLOW_GO_IN_G96 G0 logic for G96, G961
20800 SPF_END_TO_VDI Subprogram end to PLC
21000 CIRCLE_ERROR_CONST Circle end point monitoring constant
21010 CIRCLE_ERROR_FACTOR Circle end point monitoring factor
21100 ORIENTATION_IS_EULER Angle definition for orientation programming
21110 X_AXIS_IN_OLD_X_Z_PLANE Coordinate system for automatic Frame definition
21200 LIFTFAST_DIST Traversing path for fast retraction from the contour
21210 SETINT_ASSIGN_FASTIN HW assignment of the ext. NC input byte for NC pro‐

gram interrupt:
21202 LIFTFAST_WITH_MIRROR Lift fast with mirror

Block search

Number Identifier: $MC_ Description
20128 COLLECT_TOOL_CHANGE Tool change commands to the PLC after block search
22600 SERUPRO_SPEED_MODE Velocity for block search type 5
22601 SERUPRO_SPEED_FACTOR Velocity factor for block search type 5
22621 ENABLE_START_MODE_MASK_PRT Switches MD22620: START_MODE_MASK_ PRT free

for SERUPRO block search run
22622 DISABLE_PLC_START Allow part program start via PLC
22680 AUTO_IPTR_LOCK Disable interrupt pointer

Reset response

Number Identifier: $MC_ Description
20110 RESET_MODE_MASK Initial setting after RESET / parts program end
20112 START_MODE_MASK Basic setting for NC start after part program start
20118 GEOAX_CHANGE_RESET Allow automatic geometry axis change
20120 TOOL_RESET_VALUE Tool length compensation when powering-up (RE‐

SET / part program end)
20121 TOOL_PRESEL_RESET_VALUE Preselected tool on RESET
20130 CUTTING_EDGE_RESET_VALUE Tool cutting edge length compensation when powering-

up (RESET / part program end)
20140 TRAFO_RESET_VALUE Transformation data set when powering-up (RE‐

SET / part program end)
20150 GCODE_RESET_VALUES Initial setting of the G groups
20152 GCODE_RESET_MODE Reset behavior of G groups

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 699

Number Identifier: $MC_ Description
20156 MAXNUM_GCODES_EXT Reset behavior of the external G groups
22620 START_MODE_MASK_PRT Initial setting at special NC Start after power-up and at

RESET

Auxiliary function settings

Number Identifier: $MC_ Description
22000 AUXFU_ASSIGN_GROUP Auxiliary function group
22010 AUXFU_ASSIGN_TYPE Auxiliary function type
22020 AUXFU_ASSIGN_EXTENSION Auxiliary function extension
22030 AUXFU_ASSIGN_VALUE Auxiliary function value
22200 AUXFU_M_SYNC_TYPE Output timing of M functions
22210 AUXFU_S_SYNC_TYPE Output timing of S functions
22220 AUXFU_T_SYNC_TYPE Output timing of T functions
22230 AUXFU_H_SYNC_TYPE Output timing of H functions
22240 AUXFU_F_SYNC_TYPE Output timing of F functions
22250 AUXFU_D_SYNC_TYPE Output timing of D functions
22400 S_VALUES_ACTIVE_AFTER_RESET S function active after RESET
22410 F_VALUES_ACTIVE_AFTER_RESET F function active after RESET
22510 GCODE_GROUPS_TO_PLC G commands that are output to the NC/PLC interface

on block change / RESET
22550 TOOL_CHANGE_MODE New tool offset for M function
22560 TOOL_CHANGE_M_CODE M function for tool change

Memory settings

Number Identifier: $MC_ Description
27900 REORG_LOG_LIMIT Percentage of IPO buffer for log file enable
28000 MM_REORG_LOG_FILE_MEM Memory size for REORG (DRAM)
28010 MM_NUM_REORG_LUD_MODULES Number of blocks for local user variables for REORG
28020 MM_NUM_LUD_NAMES_TOTAL Number of local user variables (DRAM)
28040 MM_LUD_VALUES_MEM Memory size for local user variables (DRAM)
28050 MM_NUM_R_PARAM Number of channelspecific R parameters (SRAM)
28060 MM_IPO_BUFFER_SIZE Number of NC blocks in IPO buffer (DRAM)
28070 MM_NUM_BLOCKS_IN_PREP Number of blocks for block preparation (DRAM)
28080 MM_NUM_USER_FRAMES Number of settable Frames (SRAM)
28090 MM_NUM_CC_BLOCK_ELEMENTS Number of block elements for compile cycles (DRAM)
28100 MM_NUM_CC_BLOCK_USER_MEM Size of block memory for compile cycles (DRAM)
28400 MM_ABSBLOCK Activating basis blocks with absolute values
28402 MM_ABSBLOCK_BUFFER_CONF Dimension size of upload buffer
28500 MM_PREP_TASK_STACK_SIZE Stack size of preparation task (DRAM)

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
700 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program runtime and workpiece counter

Number Identifier: $MC_ Description
27860 PROCESSTIMER_MODE Activate the runtime measurement
27880 PART_COUNTER Activate the workpiece counter
27882 PART_COUNTER_MCODE[] Workpiece counting via M command

10.21.2.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30465 AXIS_LANG_SUB_MASK Substitution of NC language commands
30550 AXCONF_ASSIGN_MASTER_CHAN Reset position of channel for axis change
30600 FIX_POINT_POS Fixed value positions of axes with G75
33100 COMPRESS_POS_TOL Maximum deviation with compensation

10.21.3 Setting data

10.21.3.1 Channelspecific setting data

Number Identifier: $SC_ Description
42000 THREAD_START_ANGLE Start angle for thread
42010 THREAD_RAMP_DISP Acceleration behavior of axis when thread cutting
42100 DRY_RUN_FEED Dry run feedrate
42200 SINGLEBLOCK2_STOPRE Activate debug mode for SBL2
42444 TARGET_BLOCK_INCR_PROG Continuation mode after block search with calculation
42700 EXT_PROG_PATH Program path for external subroutine call EXTCALL
42750 ABSBLOCK_ENABLE Enable basic block display
42990 MAX_BLOCKS_IN_IPOBUFFER Maximum number of blocks in the interpolation buffer

10.21.4 Signals

10.21.4.1 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Emergency stop DB10.DBX56.1 DB2600.DBX0.1

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 701

10.21.4.2 Signals to mode group

Signal name SINUMERIK 840D sl SINUMERIK 828D
AUTOMATIC mode DB11.DBX0.0 DB3000.DBX0.0
MDA mode DB11.DBX0.1 DB3000.DBX0.1
JOG mode DB11.DBX0.2 DB3000.DBX0.2
Mode change disable DB11.DBX0.4 DB3000.DBX0.4
Mode group stop DB11.DBX0.5 DB3000.DBX0.5
Mode group stop axes plus spindles DB11.DBX0.6 DB3000.DBX0.6
Mode group reset DB11.DBX0.7 DB3000.DBX0.7
Machine function teach in DB11.DBX1.0 DB3000.DBX1.0
Machine function REPOS DB11.DBX1.1 -
Machine function REF DB11.DBX1.2 DB3000.DBX1.2

10.21.4.3 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Selected mode AUTOMATIC DB11.DBX4.0 -
Selected mode MDA DB11.DBX4.1 -
Selected JOG mode DB11.DBX4.2 -
Selected machine function teach in DB11.DBX5.0 -
Selected machine function REPOS DB11.DBX5.1 -
Selected machine function REF DB11.DBX5.2 -
Active mode AUTOMATIC DB11.DBX6.0 DB3100.DBX0.0
Active mode MDA DB11.DBX6.1 DB3100.DBX0.1
Active mode JOG DB11.DBX6.2 DB3100.DBX0.2
Mode group ready DB11.DBX6.3 DB3100.DBX0.3
Mode group reset performed DB11.DBX6.4 DB3100.DBX0.4
NC internal JOG active DB11.DBX6.5 -
All channels in the reset state DB11.DBX6.7 DB3100.DBX0.7
Active machine function teach in DB11.DBX7.0 DB3100.DBX1.0
Active machine function REPOS DB11.DBX7.1 -
Active machine function REF DB11.DBX7.2 DB3100.DBX1.2

10.21.4.4 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate DRF DB21,DBX0.3 DB320x.DBX0.3
Activate single block DB21,DBX0.4 DB320x.DBX0.4
Activate M01 DB21,DBX0.5 DB320x.DBX0.5
Activate dry run feedrate DB21,DBX0.6 DB320x.DBX0.6

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
702 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal name SINUMERIK 840D sl SINUMERIK 828D
PLC action completed DB21,DBX1.6 -
Activate program test DB21,DBX1.7 DB320x.DBX1.7
Skip block levels: /0 to /7 DB21,DBX2.0-7 DB320x.DBX2.0-7
Read-in disable DB21,DBX6.1 DB320x.DBX6.1
Program level abort DB21,DBX6.4 DB320x.DBX6.4
NC start disable DB21,DBX7.0 DB320x.DBX7.0
NC start DB21,DBX7.1 DB320x.DBX7.1
NC Stop at block limit DB21,DBX7.2 DB320x.DBX7.2
NC stop DB21,DBX7.3 DB320x.DBX7.3
NC Stop axes plus spindles DB21,DBX7.4 DB320x.DBX7.4
Reset DB21,DBX7.7 DB330x.DBX3.7
REPOSPATHMODE DB21,DBX31.0-2 -
REPOSMODEEDGE DB21,DBX31.4 -

10.21.4.5 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
DRF selected DB21,DBX24.3 DB170x.DBX0.3
Select NC associated M01 DB21,DBX24.4 -
M01 selected DB21,DBX24.5 DB170x.DBX0.5
Dry run feedrate selected DB21,DBX24.6 DB170x.DBX0.6
REPOSPATHMODE 0 - 2 DB21,DBX25.0-2 -
Feedrate override selected for rapid traverse DB21,DBX25.3 DB170x.DBX1.3
REPOS MODE EDGE DB21,DBX25.4 -
Program test selected DB21,DBX25.7 DB170x.DBX1.7
Skip block selected: /0 - /7 DB21,DBX26.0-7 DB170x.DBX2.0-7
Skip block selected: /8 DB21,DBX27.0 DB170x.DBX3.0
Skip block selected: /9 DB21,DBX27.1 DB170x.DBX3.1
REPOSPATHMODE 0 - 2 DB21,DBX31.0-2 -
REPOS MODE EDGE DB21,DBX31.4 -
Skip block active /8 DB21,DBX31.6 DB320x.DBX15.6
Skip block active /9 DB21,DBX31.7 DB320x.DBX15.7
Execution from external active DB21,DBX32.0 DB330x.DBX0.0
Action block active DB21,DBX32.3 DB330x.DBX0.3
Approach block active DB21,DBX32.4 DB330x.DBX0.4
M0/M1 active DB21,DBX32.5 DB330x.DBX0.5
Last action block active DB21,DBX32.6 DB330x.DBX0.6
Block search active DB21,DBX33.4 DB330x.DBX1.4
M02/M30 active DB21,DBX33.5 DB330x.DBX1.5
Transformation active DB21,DBX33.6 DB330x.DBX1.6

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 703

Signal name SINUMERIK 840D sl SINUMERIK 828D
Program test active DB21,DBX33.7 DB330x.DBX1.7
Program state: Running DB21,DBX35.0 DB330x.DBX3.0
Program state: Waiting DB21,DBX35.1 DB330x.DBX3.1
Program state: Stopped DB21,DBX35.2 DB330x.DBX3.2
Program state: Interrupted DB21,DBX35.3 DB330x.DBX3.3
Program state: Aborted DB21,DBX35.4 DB330x.DBX3.4
Channel state: Active DB21,DBX35.5 DB330x.DBX3.5
Channel state: Interrupted DB21,DBX35.6 DB330x.DBX3.6
Channel state: Reset DB21,DBX35.7 DB330x.DBX3.7
Interrupt handling active DB21,DBX36.4 -
Channel is ready DB21,DBX36.5 DB330x.DBX4.5
Read-in enable is ignored DB21,DBX37.6 -
Stop at the end of block with SBL is suppressed DB21,DBX37.7 -
Number of the active G command of G group 1 – n (8-bit
integer)

DB21,DBB208-271 DB350x.DBB0-63

Workpiece setpoint reached DB21,DBX317.1 DB330x.DBX4001.1
ASUP is stopped DB21,DBX318.0 DB330x.DBX4002.0
Block search via program test is active DB21,DBX318.1 -
REPOS MODE EDGEACKN DB21,DBX319.0 -
Repos Path Mode Ackn: 0 - 2 DB21,DBX319.1-3 -
Repos DEFERAL Chan DB21,DBX319.5 -
Display of the triggering event in case of event-driven pro‐
gram call

DB21,DBX376.0-7 DB330x.DBB4004

ASUP is active DB21,DBX378.0 DB330x.DBB4006.0
ASUP with suppressed display update is active DB21,DBX378.1 DB330x.DBB4006.1

10.21.4.6 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
REPOSDELAY DB31,DBX10.0 -

10.21.4.7 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
REPOS offset DB31,DBX70.0 -
REPOS offset valid DB31,DBX70.1 -
REPOS Delay Ackn DB31,DBX70.2 -
REPOSDELAY DB31,DBX72.0 -
Path axis DB31,DBX76.4 DB390x.DBX1002.4

K1: Mode group, channel, program operation, reset response
10.21 Data lists

Basic Functions
704 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

K2: Axis Types, Coordinate Systems, Frames 11
11.1 Brief description

11.1.1 Axes

Machine axes
Machine axes are the axes that actually exist on a machine tool.

Channel axes
Every geometry axis and every special axis is assigned to a channel and, therefore, a channel
axis. Geometry axes and additional axes are always traversed in "their" channel.

Geometry axes
The three geometry axes always make up a fictitious rectangular coordinate system, the basic
coordinate system (BCS).

By using FRAMES (offset, rotation, scaling, mirroring), it is possible to image geometry axes
of the workpiece coordinate system (WCS) on the BCS.

Special axes
In contrast to geometry axes, no geometrical relationship is defined between the special axes.

Path axes
Path axes are interpolated together (all the path axes of a channel have a common path
interpolator).

All the path axes of one channel have the same acceleration phase, constant travel phase and
delay phase.

Positioning axes
Positioning axes are interpolated separately (each positioning axis has its own axis
interpolator). Each positioning axis has its own feedrate and acceleration characteristic.

Synchronized axes
Synchronous axes are interpolated together with path axes (all path axes and synchronous
axes of one channel have a common path interpolator).

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 705

All path axes and all synchronous axes of a channel have the same acceleration phase,
constant travel phase and deceleration phase.

Axis configuration
The machine data below are used to assign the geometry axes, special axes, channel axes
and machine axes as well as the names of the individual axis types:

MD20050 $MC_AXCONF_GEOAX_ASIGN_TAB (assignment of geometry axis to channel
axis)

MD20060 $MC_AXCONF_GEOAX_NAME_TAB (name of the geometry axis in the channel)

MD20070 $MC_AXCONF_MACHAX_USED (machine axis number valid in channel)

MD20080 $MC_AXCONF_CHANAX_NAME_TAB (name of the channel axis in the channel)

MD10000 $MN_AXCONF_MACHAX_NAME_TAB (machine axis name)

MD35000 $MA_SPIND_ASSIGN_TO_MACHAX (assignment of spindle to machine axis)

Replaceable geometry axes
The "Replaceable geometry axes" function allows the geometry axes in a grouping to be
replaced by other channel axes.

Axes that are initially configured as synchronous special axes in a channel can replace any
selected geometry axis in response to a program command.

Link axis
Link axes are axes, which are physically connected to another NCU and whose position is
controlled from this NCU. Link axes can be assigned dynamically to channels of another NCU.
Link axes are not local axes from the perspective of a particular NCU.

The axis container concept is used for the dynamic modification of the assignment to an NCU.
Axis replacement with GET and RELEASE from the part program is not available for link axes
across NCU boundaries.

The link axes are described in
References:
Function Manual, Extended Functions; Several Operator Panels on Multiple NCUs, Distributed
Systems (B3)

Axis container
An axis container is a circular buffer data structure, in which local axes and/or link axes are
assigned to channels. The entries in the circular buffer can be shifted cyclically.

In addition to the direct reference to local axes or link axes, the link axis configuration in the
logical machine axis image also allows references to axis containers.

This type of reference consists of:

● Axis container number

● A slot (circular buffer location within the corresponding container)

K2: Axis Types, Coordinate Systems, Frames
11.1 Brief description

Basic Functions
706 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The entry in a circular buffer location contains:

● A local axis
or

● A link axis

The axis container function is described in
References:
Function Manual, Extended Functions; Several Operator Panels on Multiple NCUs, Distributed
Systems (B3)

11.1.2 Coordinate systems

MCS
The machine coordinate system (MCS) has the following properties:

● It is defined by the machine axes.

● The machine axes can be perpendicular to each other to form Cartesian system or arranged
in any other way.

● The names of the machine axes can be defined.

● The machine axes can be linear or rotary axes.

BCS
The basic coordinates system (BCS) has the following properties:

● The geometry axes form a perpendicular Cartesian coordinate system.

● The BCS is derived from a kinematic transformation of the MCS.

BZS
The basic zero system (BZS) is the basic coordinate system with a basic offset.

SZS
The settable zero system (SZS) is the workpiece coordinate system with a programmable
frame from the viewpoint of the WCS. The workpiece zero is defined by the settable frames
G54 to G599.

WCS
The workpiece coordinate system (WCS) has the following properties:

● In the workpiece coordinate system all the axes coordinates are programmed (parts
program).

● It is made up of geometry axes and special axes.

K2: Axis Types, Coordinate Systems, Frames
11.1 Brief description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 707

● Geometry axes always form a perpendicular Cartesian coordinate system

● Special axes form a coordinate system without any geometrical relation between the special
axes.

● The names of the geometry axes and special axes can be defined.

● The workpiece coordinate system can be translated, rotated, scaled or mirrored with
FRAMES (TRANS, ROT, SCALE, MIRROR).
Multiple translations, rotational movements, etc., are also possible.

External work offset
The zero offset external has the following properties:

● At a time defined in the PLC, a predefined additional zero offset between the basic and the
workpiece coordinate systems is activated.

● The magnitudes of the offsets can be set by the following for each of the axes involved:

– PLC

– Operator panel

– Part program

● Activated offsets take effect at the instant the first motion block of the relevant axes is
processed after offset activation. The offsets are superimposed on the programmed path
(no interpolation).
The velocity, at which the zero offset external is applied, is as follows:
Programmed F value + 1/2 JOG velocity
The zero offset external is traversed at the end of G0 blocks.

● The activated offsets are retained after RESET and end of program.

● After POWER ON, the last active offset is still stored in the control but must be reactivated
by the PLC.

11.1.3 Frames
A frame is a closed calculation rule (algorithm) that translates one Cartesian coordinate system
into another.

Frame components
A frame consists of the following components:

Frame components Programmable with:
Offset Coarse offset TRANS

ATRANS (additive translation component)
CTRANS (work offset for multiple axes)
G58 (axial work offset)

Fine offset CFINE
G59 (axial work offset)

K2: Axis Types, Coordinate Systems, Frames
11.1 Brief description

Basic Functions
708 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Frame components Programmable with:
Rotation ROT / ROTS

AROT / AROTS
CROTS

Scaling SCALE
ASCALE

Mirroring MIRROR
AMIRROR

Figure 11-1 Frame components

Coarse and fine offsets
As the assignment of machine axes to channel axes and, in particular, to geometry axes, can
be different in all channels, there is consequently no unique cross-channel geometric
relationship between the channel axes. Therefore, only offset, scaling and mirroring is possible
for NCU-global frames. Rotations are not possible.

G58: Absolute axis-specific programmable work offset (coarse offset)
The absolute component of the translatory offset (coarse offset) is programmed axis-
specifically with G58. The additive component of the translatory offset (fine offset) is retained.

G59: Additive axis-specific programmable work offset (fine offset)
The additive component of the translatory offset (fine offset) is programmed axis-specifically
with G59. The absolute component of the translatory offset (coarse offset) is retained.

G59 can only be used when the fine offset has been released:

● MD18600 $MN_MM_FRAME_FINE_TRANS = TRUE

● MD24000 $MC_FRAME_ADD_COMPONENTS = TRUE

K2: Axis Types, Coordinate Systems, Frames
11.1 Brief description

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 709

Rotation
Orientations in space are defined via frame rotations as follows:

● Rotation with ROT defines the individual rotations for all geometry axes.

● Solid angles with ROTS, AROTS, CROTS define the orientation of a plane in space.

● Frame rotation with TOFRAME defines a frame with a Z axis pointing in the tool direction.

Scaling
SCALE is used to program the programmable scale factors for all geometry axes and special
axes.

If a new scaling is to be based on a previous scaling, rotation, translation or mirroring, then
ASCALE must be programmed.

Mirroring
The following machine data is used to set how the mirroring is to be performed:

MD10610 $MN_MIRROR_REF_AX

Concatenation
Frames and frame components can be combined using the concatenation operator ":". The
channel-specific active frame $P_ACTFRAME results, for example, from the chaining of all
active frames of the channel:

$P_ACTFRAME = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
$P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
$P_ACTBFRAME : $P_IFRAME : $P_GFRAME :
$P_TOOLFRAME : $P_WPFRAME : $P_TRAFRAME:
$P_PFRAME : $P_ISO4FRAME : $P_CYCFRAME

Supplementary conditions

Incremental dimensioning G91
Incremental programming with G91 is defined such that the offset value is traversed additively
to the incrementally programmed value when a work offset is selected.

The behavior depends on the setting in the setting data:

SD42440 $SC_FRAME_OFFSET_INCR_PROG (work offsets in frames)

Value Meaning
1 Work offset is applied on FRAME and incremental programming of an axis (= default setting).
0 Only the programmed path is traversed.

K2: Axis Types, Coordinate Systems, Frames
11.1 Brief description

Basic Functions
710 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Consistency
When writing, reading and activating frames, e.g. using channel coordination, the user is solely
responsible for achieving consistent behavior within the channels. Cross-channel activation of
frames is not supported.

11.2 Axes

11.2.1 Overview

Figure 11-2 Relationship between geometry axes, special axes and machine axes

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 711

Figure 11-3 Local and external machine axes (link axes)

11.2.2 Machine axes

Meaning
Machine axes are the axes that actually exist on a machine tool.

Figure 11-4 Machine axes X, Y, Z, B, S on a Cartesian machine

Application
The following can be machine axes:

● Geometry axes X, Y, Z

● Orientation axes A, B, C

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
712 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Loader axes

● Tool turrets

● Axes for tool magazine

● Axes for automatic tool changer

● Spindle sleeves

● Axes for pallet changers

● Etc.

11.2.3 Channel axes

Meaning
Each geometry axis and each special axis is assigned to a channel. Geometry axes and
additional axes are always traversed in "their" channel.

11.2.4 Geometry axes

Meaning
The three geometry axes always make up a fictitious rectangular coordinate system.

By using FRAMES (offset, rotation, scaling, mirroring), it is possible to image geometry axes
of the workpiece coordinate system (WCS) on the BCS.

Application
Geometry axes are used to program the workpiece geometry (the contour).

Plane selection G17, G18 and G19 (DIN 66217) always refers to the three geometry axes. That
is why it is advantageous to name the three geometry axes X, Y and Z.

11.2.5 Special axes

Significance
In contrast to geometry axes, no geometrical relationship is defined between the special axes.

Note

Geometry axes have an exactly defined relationship in the form of a rightangled coordinate
system.

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 713

Special axes are part of the basic coordinate system (BCS). With FRAMES (translation,
scaling, mirroring), special axes of the workpiece coordinate system can be mapped on the
basic coordinate system.

Application
Typical special axes are:

● Rotary axes

● Machine tool axes

● Tool revolver axes

● Loader axes

11.2.6 Path axes

Meaning
Path axes are interpolated together (all the path axes of a channel have a common path
interpolator).

All the path axes of one channel have the same acceleration phase, constant travel phase and
delay phase.

The feedrate programmed under address F (path feedrate) applies to all the path axes
programmed in a block, with the following exceptions:

● An axis has been programmed that has been defined as having no control over the path
velocity with instruction FGROUP.

● Axes programmed with instructions POS or POSA have an individual feedrate setting (axis
interpolator).

Application
Path axes are used to machine the workpiece with the programmed contour.

11.2.7 Positioning axes

Meaning
Positioning axes are interpolated separately (each positioning axis has its own axis
interpolator). Each positioning axis has its own feedrate and acceleration characteristic.
Positioning axes can be programmed in addition to path axes (even in the same block). Path
axis interpolation (path interpolator) is not affected by the positioning axes. Path axes and the
individual positioning axes do not necessarily reach their block end points at the same time.

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
714 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Instructions POS and POSA are used to program positioning axes and define block change
criteria:

● POS
Block change takes place when the path axes and positioning axes have reached their
block end points.

● POSA
Block change takes place when the path axes have reached their end of block position.
Positioning axes continue to traverse beyond block limits to their block end point.

Concurrent positioning axes differ from positioning axes in that they:

● Only receive their block end points from the PLC

● Can be started at any time (not at block limits)

● Do not affect the execution of current part programs.

Application
Typical positioning axes are:

● Loaders for moving workpieces away from machine

● Tool magazine/turret

Reference
For further information, see Section "P3: Basic PLC program for SINUMERIK 840D sl
(Page 869)" and "S1: Spindles (Page 1273)".

References:

● Function Manual, Extended Functions; Positioning Axes (P2)

● Function Manual, Special Functions; Gantry Axes (G1)

● Function Manual, Special Functions; Axis Couplings and ESR (M3)

● Function Manual, Extended Functions; Oscillation (P5)

● Function Manual, Synchronized Actions

11.2.8 Main axes

Meaning
A main axis is an axis that is interpolated by the main run.

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 715

This interpolation can be started as follows:

● From synchronized actions
(as command axes due to an event via block-related, modal or static synchronized actions)

● From the PLC via special function blocks in the basic PLC program
(named as a concurrent positioning axis or a PLC axis)

● Via the setting data or from the part program
(as an asynchronous or block-synchronous oscillating axis)

Channel control
An axis interpolated by the main axis reacts in terms of:

● NC stop

● Alarm handling

● Program control

● End of program

● RESET

Note

The response at the end of the program varies. The axis movement need not always be
completed and, therefore, may carry on beyond the end of the program.

Application
Certain axes in the main run can be decoupled at the channel response triggered by the NC
program sequence and controlled from the PLC. These axes are also interpolated in the main
run and respond independently for the channel and program sequence.

A PLC-controlled axis can then be controlled independently by the NC. This concerns the
following actions:

● The sequence for canceling the axis (equivalent to delete distancetogo)

● Stopping or interrupting the axis

● Continuing the axis (continue sequence of motion)

● Resetting the axis to its basic status

11.2.9 Synchronized axes

Meaning
Synchronous axes are components of the path axes, which are not referenced in order to
calculate the tool path velocity. They are interpolated together with path axes (all path axes
and synchronous axes of one channel have a common path interpolator).

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
716 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

All path axes and all synchronous axes of a channel have the same acceleration phase,
constant travel phase and deceleration phase.

The feedrate (path feedrate) programmed under address F applies to all the path axes
programmed in a block but not to the synchronous axes.

Synchronous axes take the same time to cover the programmed path as the path axes.

FGROUP command
The command FGROUP specifies whether the axis is a feed-defining path axis (used to calculate
the path velocity) or a synchronous axis (not used to calculate the path velocity).

Example

Program code Comment
N05 G00 G94 G90 M3 S1000 X0 Y0 Z0 ;
N10 FGROUP(X,Y) ; Axes X and Y are path axes,

 Z is a synchronous axis
N20 G01 X100 Y100 F1000 ; Progr. feedrate 1000 mm/min.

 Feedrate of axis X = 707 mm/min.
 Feedrate of axis Y = 707 mm/min.

N30 FGROUP (X) ; Axis X is a path axis,
axis Y is a synchronous axis

N20 X200 Y150 ; Progr. Feedrate 1000 mm/min
Feedrate of Axis X = 1000 mm/min
Feedrate of Axis Y is set to 500 mm/min,
because only half the distance is to be
traversed.

Note

The channel axis name must be used for the FGROUP command.

This is defined by the machine data:

MD20080 $MC_AXCONF_CHANAX_NAME_TAB (name of the channel axis in the channel)

Application
In the case of helical interpolation FGROUP can be programmed to determine whether:

● The programmed feedrate should be valid on the path
(all three programmed axes are path axes)

● The programmed feedrate should be valid on the circle
(two axes are path axes and the infeed axis is a synchronous axis)

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 717

11.2.10 Axis configuration

Assigning geometry, special, channel and machine axes and drives

Figure 11-5 Axis assignment

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
718 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 11-6 Drive assignment

Supplementary conditions
● Leading zeros for user-defined axis names are ignored:

MD10000 `$MN_AXCONF_MACHAX_NAME_TAB[0] = X01 corresponds to X1

● The geometry axes must be assigned to the channel axes in ascending order without any
gaps.

● All channel axes that are not geometry axes are special axes.

Channel axis gaps
Normally, each channel axis defined in machine data MD20080
$MC_AXCONF_CHANAX_NAME_TAB must be assigned a machine axis via MD20070
$MC_AXCONF_MACHAX_USED.

In order to simplify commissioning series of machines with a different number of machine axes,
channel axes may also be defined, which are not assigned to any machine axis. As a result,
gaps can occur in the numbering sequence of the channel axes.

Any channel axis gaps must be explicitly enabled:

MD11640 $MN_ENABLE_CHAN_AX_GAP = 1

Without being enabled, a value of 0 in machine data MD20070
$MC_AXCONF_MACHAX_USED stops the assignment of further channel axes to machine
axes.

Example
Channel axis B is not assigned to a machine axis.

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 719

Figure 11-7 Axis configuration with channel axis gap (excerpt)

Supplementary conditions
● Channel axes without assigned machine axes (channel axis gaps) are, regarding the

number and indexing of the channel axes, treated just like normal channel axes with
associated machine axes.

● If a channel axis without assigned machine axis (channel axis gap) is defined as geometry
axis, then this is rejected without an alarm.

11.2.11 Link axes

Meaning
A link axis is a machine axis that is not on the NCU from which it is traversed. The name of a
local machine axis is not entered in the machine data for the logical machine axis image of the
traversing NCU, but the NCU and machine axis name of the NCU to which it is physically
connected.

As an example, machine axis AX1 of NCU2 should be traversed from NCU1:

● NCU1: MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB[n] = NC2_AX1

Requirement
The NCUs involved must be connected using link communication as a requirement for using
link axes. The link axes and link communication functions are described in detail in:

References:
Function Manual, Extended Functions; Several Operator Panels on Multiple NCUs, Distributed
Systems (B3)

K2: Axis Types, Coordinate Systems, Frames
11.2 Axes

Basic Functions
720 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.3 Zeros and reference points

11.3.1 Reference points in working space

Zeros and reference points
The neutral position of the machine is obtained from the coordinate axes and the constructive
characteristics of the machine. The zero of the coordinate system is obtained by defining a
suitable reference point on the machine in its neutral position.

The position of the coordinate systems (MCS, BCS, BZS, SZS, WCS) is determined by means
of zeros.

Zero points Reference points
M = Machine zero R = Reference point

W = Workpiece zero T = Toolholder reference point

Machine zero M
The machine zero M defines the machine coordinate system MCS. All other reference points
refer to the machine zero.

Workpiece zero W
The workpiece zero W defines the workpiece coordinate system in relation to the machine
zero M. The programmed part-program blocks are executed in the workpiece coordinate
system WCS.

Reference point R
The position of the reference point R is defined by cam switches. Reference point R calibrates
the position measuring system.

With incremental encoders, the reference point must be approached every time the control
power is switched on. The control can only then work with the measuring system and transfer
all position values to the coordinate systems.

Toolholder reference point T
The toolholder reference point T is located on the toolholder locator. By entering the tool
lengths, the control calculates the distance between the tool tip (TCP Tool Center Position)
and the toolholder reference point.

K2: Axis Types, Coordinate Systems, Frames
11.3 Zeros and reference points

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 721

Example: Zeros and reference points on a turning machine

K2: Axis Types, Coordinate Systems, Frames
11.3 Zeros and reference points

Basic Functions
722 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.3.2 Position of coordinate systems and reference points

Control POWER ON
For incremental measuring probes, the reference point must be approached each time the
control is activated so that the control can transfer all position values to the coordinate system.

Figure 11-8 Position of coordinate systems by machine zero M and workpiece zero W

Figure 11-9 Position of reference point in relation to machine zero

K2: Axis Types, Coordinate Systems, Frames
11.3 Zeros and reference points

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 723

11.4 Coordinate systems

11.4.1 Overview

Definitions
DIN 66217 stipulates that when programming machine tools, right-angled, rectangular
(Cartesian) coordinate systems must be used. The positive directions of the coordinate axes
can be determined using the "right-hand rule".

Figure 11-10 Right_hand_rule

The coordinate system used when programming is referred to the workpiece. Programming is
realized independent of whether the tool or the workpiece is moved. When programming, it is
always assumed that the tool traverses relative to the coordinate system of the workpiece,
which is intended to be stationary.

Positive (clockwise) rotation of rotary axes can also be defined using the "right-hand rule". If
the thumb of the right hand points towards the positive direction of a coordinate axis (linear
axis), then the fingers point in the positive direction of rotation of the associated rotary axis.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
724 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 11-11 Clockwise, rectangular Cartesian coordinate system

Coordinate systems
The following coordinate systems are defined for machine tools:

Coordinate system Abbreviation Remark
Workpiece Coordinate System WCS Programming the traversing motion of the geome‐

try axes for machining the workpiece is written in
the WCS.

Settable Zero System SZS Coordinate transformation using frames:
WCS ⇒ SZS

Basic Zero System BZS Coordinate transformation using frames:
SZS ⇒ BZS:

Basic Coordinate System BCS Coordinate transformation using frames:
BZS ⇒ BCS:

Machine Coordinate System MCS Coordinate transformation using frames and kine‐
matic transformation:
BCS ⇒ MCS:
The programmed traversing motion of the geome‐
try axes in WCS is mapped to the machine axes
of MCS using frames and kinematic transforma‐
tions. A kinematic transformation is used to derive
the BCS from the MCS. In this way, functions such
as manual traverse, for example, are effective not
in the MCS but in the BCS.

Figure 11-12 Coordinate systems, frames, and kinematic transformations

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 725

11.4.2 Machine coordinate system (MCS)

Machine coordinate system (MCS)
The machine coordinate system (MCS) is made up of all physically available machine axes.

Figure 11-13 MCS with machine axes X, Y, Z, B, C (5-axis milling machine)

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
726 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 11-14 MCS with machine axes X, Z (turning machine)

Axial preset offset
The reference point of the control in the machine coordinate system (machine zero) can be
reset via the "Preset offset (PRESETON)" function.

CAUTION

Loss of the encoder adjustment

After a preset offset, the appropriate machine axis is in the "Not referenced" state! This means
that when using absolute encoders, the encoder adjustment is lost and must be performed
again (e.g. by calibration with a laser interferometer). The use of PRESETON in combination
with absolute encoders is therefore not recommended.

Note

We recommend that the function is only used for machine axes that do not require a reference
point.

In order to restore the original machine coordinate system, the machine axis must be re-
referenced, e.g. with G74 (reference point approach).

The machine axes are not moved with the preset offset.

References
● Programming Manual, Fundamentals

Section: "Supplementary commands" > "Reference point approach (G74)"

● Programming Manual, Job Planning
Section: "Coordinate transformations (FRAMES)" > "Preset offset (PRESETON)

11.4.2.1 Actual value setting with loss of the referencing status (PRESETON)

Function
The PRESETON() procedure sets a new actual value for one or more axes in the machine
coordinate system (MCS). This corresponds to work offset of the axis MCS. The axis is not
traversed.

A preprocessing stop with synchronization is triggered by PRESETON. The actual position is
not assigned until the axis is at standstill.

If the axis is not assigned to the channel for PRESETON, the next steps depend on the
replacement behavior parameterized in the following machine data:

MD30552 $MA_AUTO_GET_TYPE

Referencing status
By setting a new actual value in the machine coordinate system, the referencing status of the
machine axis is reset.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 727

DB31, ... DBX60.4/.5 = 0 (referenced/synchronized measuring system 1/2)

It is recommended that PRESETON only be used for axes that do not require a reference point.

To restore the original machine coordinate system, the measuring system of the machine axis
must be referenced again, e.g. through active referencing from the part program (G74).

CAUTION

Loss of the referencing status

By setting a new actual value in the machine coordinate system with PRESETON, the
referencing status of the machine axis is reset to "not referenced/synchronized".

Programming

Syntax
PRESETON(<axis_1>, <value_1> [, <axis_2>, <value_2>, ... <axis_8>,
<value_8>])

Meaning

PRESETON: Actual value setting with loss of the referencing status
Preprocessing
stop:

Yes

Alone in the block: Yes
<axis_x>: Machine axis name

Type: AXIS
Value range: Machine axis names defined in the channel

<value_x>: New actual value of the machine axis in the machine coordinate system
(MCS)
The input is made in the current valid system of units (inch/metric)
An active diameter programming (DIAMON) is taken into account
Type: REAL

System variable

$AC_PRESET
The axis-specific system variable $AC_PRESET provides the vector from the zero point of the
currently offset MCS' to the zero point of the original MCS0 after the referencing of the machine
axis.

$AC_PRESET<axis> = $AC_PRESET<axis> + "current actual position of the axis in the MCS"
- "PRESETON actual position"

The work offset can be undone with the system variables:

PRESETON(<axis>, $VA_IM + $AC_PRESET[<axis>]) ; "current actual
position of the axis in the MCS'" + "offsets"

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
728 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example

Program code
N10 G1 X10 F5000
N20 PRESETON(X, $AA_IM[X]+70) ; actual value = 10 + 70 = 80 =>
 ; $AC_PRESET = $AC_PRESET - 70

Supplementary conditions

Axes for which PRESETON must not be used
● Traversing path axes

● Traversing positioning axes

● Traversing command axes in spindle mode

● Traversing concurrent positioning axes (FC18)

● Axes involved in a transformation

● Axes on which one or more of the following safety Safety Integrated functions are active:

– Safe software limit switches (SE):
MD36901 $MA_SAFE_FUNCTION_ENABLE[<safe axis>], bit 1 = 1

– Safe software cams, safe cam track (SN):
MD36901 $MA_SAFE_FUNCTION_ENABLE[<safe axis>], bits 8 ... 15 = 1

● Reciprocating axes

● Hirth axes

● Synchronized axes of a gantry grouping

● Axes for which the reference point approach from the part program (G74) is active

● Slave axis of a speed/torque coupling (master-slave)

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 729

Geometry axes
● PRESETON can be used on a stationary geometry axis when a further geometry axis is not

being traversed in the channel at the same time.

● PRESETON can be used on a stationary geometry axis even when a further geometry axis
is being traversed in the channel at the same time, but this axis is in the "neutral axis" state
or traversing as a command axis.

Program code Comment
N10 G0 X0 Y0 ; X, Y: Geometry axes
N15 RELEASE(Y) ; Neutral axis
N20 PRESETON(Y,20) ; Actual position Y in the MCS

= 20
N30 G0 X40 ; Geometry axis X traverses
N40 M30

Example: Another geometry axis (X) simultaneously traverses in the "neutral axis" state

Program code Comment
N10 G0 X0 Y0 ; X, Y: Geometry axes
N20 POS[X]=40 FA[X]=1000 ; X command axis
N30 DO PRESETON(Y,20) ; Actual position Y in the MCS

= 20
N40 M30

Example: Geometry axis (X) traverses simultaneously as command axis

PLC-controlled axes
PRESETON can be used on PLC-controlled axes according to their current type.

Spindle states
The following table shows the reactions that occur when PRESETON is used on a spindle in a
synchronized action:

PRESETON in the NC program
Spindle mode Traversing sta‐

tus
Assigned to the NC

program
Main axis

Open-loop speed controlled mode In motion Alarm 22324 Alarm 22324
Stationary + +

Positioning mode SPOS In motion - +
Stationary + +

Positioning across block bounda‐
ries SPOSA

In motion Alarm 10610 -

Axis mode In motion - +
Stationary + +

+: Possible
-: Not possible

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
730 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Axis couplings
● Leading axes: The sudden change of the leading axis position caused by PRESETON is not

traversed in the following axes. The coupling is not changed.

● Following axes: Only the overlaid position component of the following axis is affected by
PRESETON.

Gantry grouping
If PRESETON is used on the guide axis of a gantry grouping, the work offset is also performed
in all synchronized axes of the gantry grouping.

Indexing axes
PRESETON can be used on indexing axes.

Software limit switches, operating range limit, protection areas
If the axis position is outside the specified limits after a work offset by PRESETON, an alarm is
not displayed until an attempt is made to traverse the axis.

Block search with calculation
PRESETON commands are collected during the block search and executed with the NC start
to continue the NC program.

Position-dependent NC/PLC interface signals
The status of the position-dependent NC/PLC interface signals is redetermined based on the
new actual position.

Example: Fixed point positions

● Parameterized fixed point positions: MD30600 $MA_FIX_POINT_POS[0...3] = <fixed point
position 1...4>

● NC/PLC interface signals DB31, ... DBX75.3 ... 5 (JOG approach fixed point: reached)

If the axis is at a fixed point position with the exact stop tolerance, the associated NC/PLC
interface signal is set. The NC/PLC interface signal is reset when the actual value is set by
PRESETON to a different value outside the exact stop tolerance around the fixed point position.

DRF offset
A DRF offset of the axis is deleted by PRESETON.

Overlaid movement $AA_OFF
An overlaid movement from a synchronized action with $AA_OFF is not affected by
PRESETON.

Online tool offset FTOC
An active online tool offset from a synchronized action with FTOC remains active even after
PRESETON.

Axis-specific compensations
Axis-specific compensations remain active after PRESETON.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 731

JOG mode
PRESETON must only be used on a stationary axis.

JOG mode, REF machine function
PRESETON must not be used.

11.4.2.2 Actual value setting without loss of the referencing status (PRESETONS)

Function
The PRESETONS() procedure sets a new actual value for one or more axes in the machine
coordinate system (MCS). This corresponds to work offset of the axis MCS. The axis is not
traversed.

A preprocessing stop with synchronization is triggered by PRESETONS. The actual position is
not assigned until the axis is at standstill.

If the axis for PRESETONS is not assigned to the channel, the next steps depend on the axis-
specific configuring of the axis replacement behavior:

MD30552 $MA_AUTO_GET_TYPE

Referencing status
By setting a new actual value in the machine coordinate system (MCS) with PRESETONS, the
referencing status of the machine axis is not changed.

Requirements
● Encoder type

PRESETONS is only possible with the following encoder types of the active measuring
system:

– MD30240 $MA_ENC_TYPE[<measuring system>] = 0 (simulated encoder)

– MD30240 $MA_ENC_TYPE[<measuring system>] = 1 (raw signal encoder)

● Referencing mode
PRESETONS is only possible with the following referencing modes of the active measuring
system:

– MD34200 $MA_ENC_REFP_MODE[<measuring system>] = 0 (reference point
approach not possible)

– MD34200 $MA_ENC_REFP_MODE[<measuring system>] = 1 (referencing of
incremental, rotary or linear measuring systems: zero pulse on the encoder track)

Commissioning

Axis-specific machine data
Actual value setting without loss of the referencing status (PRESETONS) must be set axis-
specifically:

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
732 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD30455 $MA_MISC_FUNCTION_MASK, bit 9 = 1

Note
PRESETON deactivated

Activation of the "Actual value setting withoutloss of the referencing status PRESETONS"
function deactivates the "Actual value setting with loss of the referencing status PRESETON"
function. The options mutually exclude each other.

Programming

Syntax
PRESETONS(<axis_1>, <value_1> [, <axis_2>, <value_2>, ... <axis_8>,
<value_8>])

Meaning

PRESETONS: Actual value setting with loss of the referencing status
Preprocessing
stop:

Yes

Alone in the block: Yes
<axis_x>: Machine axis name

Type: AXIS
Value range: Machine axis names defined in the channel

<value_x>: New current actual value of the machine axis in the machine coordinate
system (MCS)
The value refers to the active system of units (inch / metric)
An active diameter programming (DIAMON) is taken into account
Type: REAL

System variable

$AC_PRESET
The axis-specific system variable $AC_PRESET provides the vector from the zero point of the
currently offset MCS' to the zero point of the original MCS0 after the referencing of the machine
axis.

$AC_PRESET<axis> = $AC_PRESET<axis> + "current actual position of the axis in the MCS"
- "PRESETONS actual position"

The work offset can be undone with the system variables:

PRESETONS(<axis>, $VA_IM + $AC_PRESET[<axis>]) ; "current actual
position of the axis in the MCS'" + "offsets"

Example
Work offset of the X axis MCS by 70 units.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 733

The programmed end position of the X axis (command axis) is transformed to the new MCS
with PRESETONS.

Program code
N10 G1 X10 F5000
N20 PRESETONS(X, $AA_IM[X]+70) ; actual value = 10 + 70 = 80 =>
 ; $AC_PRESET = $AC_PRESET - 70

Supplementary conditions

Axes for which PRESETONS must not be used
● Traversing positioning axes

● Traversing command axes in spindle mode

● Traversing concurrent positioning axes (FC18)

● Axes involved in a transformation

● Traversing path axes

● Reciprocating axes

● Axes on which one or more of the following safety Safety Integrated functions are active:

– Safe software limit switches (SE):
MD36901 $MA_SAFE_FUNCTION_ENABLE[<safe axis>], bit 1 = 1

– Safe software cams, safe cam track (SN):
MD36901 $MA_SAFE_FUNCTION_ENABLE[<safe axis>], bits 8 ... 15 = 1

● Hirth axes

● Synchronized axes of a gantry grouping

● Axes for which the reference point approach from the part program (G74) is active

● Slave axis of a speed/torque coupling (master-slave)

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
734 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Geometry axes
● PRESETONS can be used on a stationary geometry axis when a further geometry axis is

not being traversed in the channel at the same time.

● PRESETONS can be used on a stationary geometry axis even when a further geometry axis
is being traversed in the channel at the same time, but this axis is in the "neutral axis" state
or traversing as a command axis.
Example: Another geometry axis (X) simultaneously traverses in the "neutral axis" state

Program code Comment
N10 G0 X0 Y0 ; X, Y: Geometry axes
N15 RELEASE(Y) 1) ; Neutral axis
N20 PRESETONS(Y,20) ; Actual position Y in the MCS

= 20
N30 G0 X40 ; Geometry axis X traverses
N40 M30
1) Note
The release of an axis in the action part of a synchronized action does not ensure that the release
is on time.
N20 ID=1 WHEN 20.0 < $AA_IM[X] DO RELEASE(Y) PRESETONS(Y,20) ; NOT
recommended!

Example: Another geometry axis (X) is traversing at the same time as command axis

Program code Comment
N10 G0 X0 Y0 ; X, Y: Geometry axes
N20 POS[X]=40 FA[X]=1000 ; X command axis
N30 PRESETONS(Y,20) ; Actual position Y in the MCS

= 20
N40 M30

PLC-controlled axes
PRESETONS can be used on PLC-controlled axes according to their current type.

Spindle states
The following table shows the reactions that occur when PRESETONS is used on a spindle in
a synchronized action:

PRESETONS in the NC program
Spindle mode Traversing sta‐

tus
Assigned to the NC

program
Main axis

Speed control mode In motion Alarm 22324 Alarm 22324
Stationary + +

Positioning mode SPOS In motion - +
Stationary + +

Positioning across block bounda‐
ries SPOSA

In motion Alarm 10610 -

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 735

PRESETONS in the NC program
Spindle mode Traversing sta‐

tus
Assigned to the NC

program
Main axis

Axis mode In motion - +
Stationary + +

+: Possible
-: Not possible

Axis couplings
● Leading axes: The sudden change of the leading axis position caused by PRESETONS is

not traversed in the following axes. The coupling is not changed.

● Following axes: Only the overlaid position component of the following axis is affected by
PRESETONS.

Gantry grouping
If PRESETONS is used on the guide axis of a gantry grouping, the work offset is also performed
in all synchronized axes of the gantry grouping.

Indexing axes
PRESETONS can be used on indexing axes.

Software limit switches, operating range limit, protection areas
If the axis position is outside the specified limits after a work offset by PRESETONS, an alarm
is not displayed until an attempt is made to traverse the axis.

Block search with calculation
PRESETONS commands are collected during the block search and executed with the NC start
to continue the NC program.

Position-dependent NC/PLC interface signals
The status of the position-dependent NC/PLC interface signals is redetermined based on the
new actual position.

Example: Fixed point positions

● Parameterized fixed point positions: MD30600 $MA_FIX_POINT_POS[0...3] = <fixed point
position 1...4>

● NC/PLC interface signals DB31, ... DBX75.3 ... 5 (JOG approach fixed point: reached)

If the axis is at a fixed point position with the exact stop tolerance, the associated NC/PLC
interface signal is set. The NC/PLC interface signal is reset when the actual value is set by
PRESETONS to a different value outside the exact stop tolerance around the fixed point position.

DRF offset
A DRF offset of the axis is deleted by PRESETONS.

Overlaid movement $AA_OFF
An overlaid movement from a synchronized action with $AA_OFF is not affected by
PRESETONS.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
736 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Online tool offset FTOC
An active online tool offset from a synchronized action with FTOC remains active even after
PRESETONS.

Axis-specific compensations
Axis-specific compensations remain active after PRESETONS.

JOG mode
PRESETONS must only be used on a stationary axis.

JOG mode, REF machine function
PRESETONS must not be used.

Synchronized actions
In a synchronized action for an axis, if several PRESETONS instructions are included, then only
the last instruction in the sequence from left to right is actually executed.

Example:

Program code
N10 ID=1 WHEN TRUE DO PRESETONS(X,40) PRESETONS(X,39) PRESETONS(X,38)
; This is equivalent to:
N10 ID=1 WHEN TRUE DO PRESETONS(X,38)

11.4.3 Basic coordinate system (BCS)

Basic coordinate system (BCS)
The basic coordinate system (BCS) consists of three mutually perpendicular axes (geometry
axes) as well as other special axes, which are not interrelated geometrically.

Machine tools without kinematic transformation
BCS and MCS always coincide when the BCS can be mapped onto the MCS withouth
kinematic transformation (e.g. TRANSMIT / face transformation, 5-axis transformation and up
to three machine axes).

On such machines, machine axes and geometry axes can have the same names.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 737

Figure 11-15 MCS=BCS without kinematic transformation

Machine tools with kinematic transformation
The BCS and MCS do not coincide when the BCS is mapped onto the MCS with kinematic
transformation (e.g. TRANSMIT / face transformation, 5-axis transformation or more than three
axes).

On such machines the machine axes and geometry axes must have different names.

Figure 11-16 Kinematic transformation between the MCS and BCS

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
738 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Machine kinematics
The workpiece is always programmed in a two- or three-dimensional, right-angled coordinate
system (WCS). However, such workpieces are being programmed ever more frequently on
machine tools with rotary axes or linear axes not perpendicular to one another. Kinematic
transformation is used to represent coordinates programmed in the workpiece coordinate
system (rectangular) in real machine movements.

References:
Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

Function Manual, Extended Functions; Kinematic Transformation (M1)

11.4.4 Basic zero system (BZS)

Basic zero system (BZS)
The basic zero system (BZS) is the basic coordinate system with a basic offset.

Figure 11-17 Basic offset between BCS and BZS

Basic offset
The basic offset describes the coordinate transformation between BCS and BZS. It can be
used, for example, to define the palette zero.

The basic offset comprises:

● External work offset

● DRF offset

● Superimposed motion

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 739

● Chained system frames

● Chained basic frames

Figure 11-18 Example of the use of the basic offset

The following applies:

● The user can change the basic offset from the part program, by means of an operator action
and from the PLC.

● If the basic offset is to take effect immediately, an ASUP can be started via the PLC using
FC9 in order to execute the appropriate G command.

Note

Recommendation to the machine manufacturer

For your own applications, use the 3rd basic offset onwards.

The 1st and 2nd basic offset are reserved for PRESET and the "Zero offset external".

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
740 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.4.5 Settable zero system (SZS)

Settable zero system (SZS)
The "settable zero system" (SZS) is the workpiece coordinate system WCS with a
programmable frame (viewed from the perspective of the WCS). The workpiece zero is defined
by the settable FRAMES G54 to G599.

Figure 11-19 Settable FRAME G54 ... G599 between BZS and SZS

Programmable offsets act on the "settable zero system". All programmable offsets refer to the
"settable zero system".

WCS actual-value display in WCS or SZS
The actual values of the axes in the machine coordinate system (MCS) or the WCS can be
displayed on the HMI operator interface. For displays in WCS, the actual values can also be
displayed in relation to the SZS. The corresponding parameterization takes place through the
machine data:

MD9424 $MM_MA_COORDINATE_SYSTEM (coordinate system for actual value display)

Value Meaning
0 Actual value display in relation to the WCS
1 Actual value display in relation to the SZS

Note
Display of the current coordinate system

When "Actual-value display in relation to the SZS" is active, the WCS is still displayed on the
HMI operator interface as the coordinate system to which the actual-value display relates.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 741

Example
Actual value display in relation to the WCS or SZS

Code (excerpt) Actual value display:
Axis X (WCS)

Actual value display:
Axis X (SZS)

N10 X100 100 100
N20 X0 0 0
N30 $P_PFRAME = CTRANS(X,10) 0 10
N40 X100 100 110

11.4.6 Workpiece coordinate system (WCS)

Workpiece coordinate system (WCS)
The workpiece coordinate system (WCS) is the programming basis.

Figure 11-20 Programmable FRAME between SZS and WCS

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
742 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.4.7 Additive offsets

11.4.7.1 External work offsets
The external work offset is a linear offset between the basic coordinate system (BCS) and the
basic zero system (BZS).

The external work offset $AA_ETRANS is effective in two ways depending on the machine
data parameterization:

1. The $AA_ETRANS system variable has a direct effect as offset value after activation by
the NC/PLC interface signal.

2. The value of the $AA_ETRANS system variable is taken into the system frame
$P:EXTFRAME and the data management frame $P_EXTFR after activation by the NC/
PLC interface signal. The active complete frame $P_ACTFRAME is then recalculated.

Machine data
In conjunction with the $AA_ETRANS system variable, a distinction is made between two
procedures which are selected via the following machine data:

MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit1 = <value>

<Value> Meaning
0 Function: Direct writing of $AA_ETRANS[<axis>] by the PLC, HMI or NC program.

Enable to traverse the work offset of $AA_ETRANS[<axis>] in the next possible traversing block: DB31, ...
DBX3.0

1 Function: Activation of the active system frame $P:EXTFRAME and the data management frame $P_EXTFR
Enable to traverse the work offset of $AA_ETRANS[<axis>] through: DB31, ... DBX3.0. The following is per‐
formed in the channel:
● Stop of all traversing movements in the channel (except command and PLC axes)
● Preprocessing stop with subsequent reorganization (STOPRE)
● Coarse offset of the active frame $P_EXTFRAME[<axis>] = $AA_ETRANS[<axis>]
● Coarse offset of the data management frame $P_EXTFR[<axis>] = $AA_ETRANS[<axis>]
● Recalculation of the active complete frame $P_ACTFRAME
● Traversing of the offset in the programmed axes.
● Continuation of the interrupted traversing movement or the NC program

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 743

Programming

Syntax
$AA_ETRANS[<axis>] = <value>

Meaning

$AA_ETRANS: System variable to buffer the external work offset
<axis>: Channel axis
<value>: Offset value

NC/PLC interface signal
Activation of the external work offset:

DB31, ... DBX3.0 = 0 → 1 ⇒ $P_EXTFRAME[<axis>] = $P_EXTFR[<axis>] =
$AA_ETRANS[<axis>]

Suppression: External work offset
● The SUPA command suppresses the external work offset while the block is being processed.

● Active external work offsets are suppressed for the duration of the reference point approach
through the G74 command (reference point approach) and the equivalent operator actions
in the reference point approach mode.

● With G74, i.e. "Automatic" or "MDI" mode, the previously active external work offset
automatically becomes active again with the next traversing movement in the block.

● After a mode change from the reference point approach mode, the NC/PLC interface signal
for the referenced axes must be set for reactivation.

11.4.7.2 DRF offset
The DRF offset enables the adjustment of an additive incremental work offset for geometry
and additional axes in the basic coordinate system through handwheel.

System variable
The DRF offset can be read from the axis-specific system variable:

$AC_DRF[<Axis>]

References
Function Manual, Extended Functions; Manual traversing and manual handwheel traversing
(H1); Section: DRF offset

11.4.7.3 Reset behavior
The reset and Power On behavior of the $P_EXTFRAME active frame and of the $P_EXTFR
data management frame can be set with machine data:

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
744 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Machine data
● The reset behavior for the system frame active of the $P_EXTFRAME external work offset

in the channel is set with the following machine data:

● MD24006 $MC_CHSFRAME_RESET_MASK, bit 1 = <value>

Value Meaning
The active system frame of the external work offset after channel/program end reset is:

0 Not active
1 Active

● The Power On behavior of the channel-specific system frame of the $P_EXTFR external
work offset of the data management is set with the following machine data:
MD24008 $MC_CHSFRAME_POWERON_MASK, bit 1 = <value>

Value Meaning
The $P_EXTFR system frame of the external work offset for Power On

0 Not deleted
1 Deleted

11.4.8 Axis-specific overlay ($AA_OFF)

11.4.8.1 Function
Axis-specific system variable $AA_OFF[<axis>] can specify an absolute position or an
incremental distance of the specified axis in a synchronous action, for example. The resulting
traversing motion is then executed in parallel with the traversing motions of the channel of the
axis.

$AA_OFF[<axis>] = <value>

11.4.8.2 Commissioning

Machine data

Parameterization of the overlaid motion
The following settings for the overlaid movement are made in the axis-specific machine data:

36750 $MA_AA_OFF_MODE, bit<n> = <value>

Bit Value Meaning
0 0 Interpretation of the value of $AA_OFF as the absolute position

1 Interpretation of the value of $AA_OFF as the incremental path
1 0 The overlaid movement is deselected for channel reset.

1 The overlaid movement maintained beyond channel reset.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 745

Bit Value Meaning
2 0 In JOG mode, an overlaid movement is not retracted.

1 In JOG mode, an overlaid movement is retracted.
3 0 A superimposed motion is interrupted for NC stop.

1 A superimposed motion is not interrupted for NC stop.

System variable

Integrated path of the axis overlay
The integrated value of the overlaid movement can be read from the axis-specific system
variable.

<value> = $AA_OFF_VAL[<axis>]

11.4.8.3 Programming: Deselecting overlays axis-specifically (CORROF)
The following axis-specific overlays are deleted with the CORROF procedure:

● Additive work offsets (DRF offsets) set via handwheel traversal

● Position offsets programmed via the $AA_OFF system variable

● Overlays of the tool orientation programmed via the $AC_OFF_... system variable

A preprocessing stop is initiated through the deletion of an overlay value and the position
component of the deselected overlaid movement is transferred to the position in the basic
coordinate system. Whereby, no axis is traversed.

The position value that can be read via the $AA_IM system variable (current MCS setpoint of
the axis) does not change in the machine coordinate system.

The position value that can be read via the $AA_IW system variable (current WCS setpoint of
the axis) changes in the workpiececoordinate system because it now contains the deselected
component of the overlaid movement.

Note

CORROF can be programmed in an NC program.

CORROF must not be programmed in a synchronized action.

Syntax
CORROF(<Axis>,"<String>"[,<Axis>,"<String>"])

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
746 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Meaning

CORROF: Procedure for the deselection of the following offsets and overlays of an axis:
● DRF offset
● Position offsets ($AA_OFF)
● Overlay of the tool orientation ($AC_OFF_...)
Effective‐
ness:

Modal

<Axis>: Axis identifier (channel, geometry or machine axis identifier)
Data type: AXIS

<String>: Character string for the definition of the overlay type
Data type: BOOL
Value Meaning
DRF DRF offset
AA_OFF Position offset ($AA_OFF)
OFF_ORI Overlay of the tool orientation ($AC_OFF_...)

Note
The deselection of the overlay of the tool orientation is performed by
deleting the axis-specific offsets of the orientation axes. An arbitrary
channel axis can be specified as <Axis> parameter.

Examples

Example 1: Axis-specific deselection of a DRF offset (1)
A DRF offset is generated in the X axis by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
N10 CORROF(X,"DRF") ; CORROF has the same effect as DRFOF here.
...

Example 2: Axis-specific deselection of a DRF offset (2)
A DRF offset is generated in the X and Y axes by DRF handwheel traversal. No DRF offsets
are operative for any other axes in the channel.

Program code Comment
; Only the DRF offset of the X axis is deselected; the DRF offset of the Y axis is
retained.
; With DRFOF, both offsets would have been deselected.
N10 CORROF(X,"DRF")
...

Example 3: Axis-specific deselection of a $AA_OFF position offset

Program code Comment
; A position offset == 10 is interpolated for the X axis.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 747

Program code Comment
N10 WHEN TRUE DO $AA_OFF[X]=10 G4 F5

...
; The position offset of the X axis is deselected: $AA_OFF[X]=0
; The X axis is not traversed.
; The position offset is added to the current position of the X axis.
N80 CORROF(X,"AA_OFF")
...

Example 4: Axis-specific deselection of a DRF offset and a $AA_OFF position offset (1)
A DRF offset is generated in the X axis by DRF handwheel traversal. No DRF offsets are
operative for any other axes in the channel.

Program code Comment
; A position offset of 10 is interpolated for the X axis.
N10 WHEN TRUE DO $AA_OFF[X]=10 G4 F5
...
; Only the DRF offset and the position offset of the X axis are deselected.
; The DRF offset of the Y axis is retained.
N70 CORROF(X,"DRF",X,"AA_OFF")
...

Example 5: Axis-specific deselection of a DRF offset and a $AA_OFF position offset (2)
A DRF offset is generated in the X and Y axes by DRF handwheel traversal. No DRF offsets
are operative for any other axes in the channel.

Program code Comment
; A position offset == 10 is interpolated for the X axis.
N10 WHEN TRUE DO $AA_OFF[X]=10 G4 F5
...
; The DRF offset of the Y axis and the position offset of the X axis are deselected.
; The DRF offset of the X axis is retained.
N70 CORROF(Y,"DRF",X,"AA_OFF")
...

Further information

$AA_OFF_VAL
Once the position offset has been deselected by means of $AA_OFF, system variable
$AA_OFF_VAL (integrated distance of axis overlay) for the corresponding axis will equal zero.

$AA_OFF in JOG mode
Also in JOG mode, if $AA_OFF changes, the position offset will be interpolated as an overlaid
movement if this function has been enabled via machine data MD 36750
$MA_AA_OFF_MODE.

K2: Axis Types, Coordinate Systems, Frames
11.4 Coordinate systems

Basic Functions
748 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

$AA_OFF in synchronized action
If a synchronized action which immediately resets $AA_OFF
(DO $AA_OFF[<axis>]=<value>) is active when the position offset is deselected using the
CORROF(<axis>,"AA_OFF"), then $AA_OFF will be deselected and not reset, and alarm
21660 will be displayed. However, if the synchronized action becomes active later, e.g. in the
block after CORROF, $AA_OFF will remain set and a position offset will be interpolated.

Automatic channel axis exchange
If an axis that is active in another channel has been programmed for a CORROF, it will be fetched
into the channel with an axis exchange (requirement: MD30552 $MA_AUTO_GET_TYPE > 0)
and the position offset and/or the DRF offset deselected.

11.5 Frames

11.5.1 Frame types
A frame is a data structure that contains values for offset (TRANS), fine offset (FINE), rotation
(ROT), mirroring (MIRROR) and scaling (SCALE) for axes.

When activating the frame, using the frame values, a static coordinate transformation for the
axes contained in the frame is performed using a defined algorithm.

Axis-specific frame
An axis-specific frame contains the frame values of an axis.

Example data structure of an axis-specific frame for geometry axis X:

Axis TRANS FINE ROT MIRROR SCALE
X 10.0 0.1 0.0 0 1

Channel-specific frame
A channel-specific frame contains frame values for all channel axes (geometry, special and
machine axes).

Rotations (ROT) are only included in the calculation for geometry axes.

A channel-specific frame is only active in the channel in which the frame is defined.

Example of the data structure of a channel-specific frame:

● Geometry axes: X, Y, Z

● Special axes: A

● Machine axes: AX1

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 749

Axis TRANS FINE ROT MIRROR SCALE
X 10.0 0.1 0.0 0 1
Y 0.0 0.0 0.0 1 1
Z 0.0 0.0 45.0 0 1
A 2.0 0.1 0.0 0 2
AX1 0.0 0.0 0.0 0 0

Global frame
A global frame contains the frame values for all machine axes.

A global frame is active in all channels of the NC.

Example data structure of global frame:

● Machine axes: AX1, ... AX5

Axis TRANS FINE ROT MIRROR SCALE
AX1 10.0 0.1 - 0 1
AX2 0.0 0.0 - 1 1
AX3 0.0 0.0 - 0 1
AX4 2.0 0.1 - 0 2
AX5 0.0 0.0 - 1 1

11.5.2 Frame components

11.5.2.1 Translation

Programming
The programming of the translation or coarse offset can be performed via the following
commands:

● Example of data management frames $P_UIFR
– Complete frame: $P_UIFR[<n>] = CTRANS(<K1>,<V1>[,<K2>,<V2>]

[,<K3>,<V3>])
with Km = coordinate x, y or z and Vm = offset m

– Frame component: $P_UIFR[<n>,<k>,TR] = <V>
with K = coordinate x, y or z and V = offset

● Example of programmable frame

– TRANS <K1> <V1> [<K2> <V2>][<K3> <V3>]
with Km = coordinate x, y or z and Vm = offset m

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
750 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Programs examples:

Program code Remark
$P_UIFR[1] = CTRANS(X,10,Y,10) Complete frame
$P_UIFR[1,X,TR] = 10 Frame components
TRANS X=10 Y=10 Programmable frame

Figure 11-21 Offset in the Z direction

11.5.2.2 Fine offset

Parameterization
The fine offset is enabled via the machine data:

MD18600 $MN_MM_FRAME_FINE_TRANS = <value>

Value Meaning
0 The fine offset cannot be entered or programmed.
1 Fine offset is possible for settable frames, basic frames and the programmable frame via

command or program.

Programming
The programming of the translation or coarse offset can be performed via the following
commands:

● Example of data management frames $P_UIFR
– Complete frame: $P_UIFR[<n>] = CFINE(<K1>,<V1>[,<K2>,<V2>]

[,<K3>,<V3>])
with Km = coordinate x, y or z and Vm = offset m

– Frame component: $P_UIFR[<n>,<K>,FI] = <V>
with K = coordinate x, y or z and V = offset

● Example of programmable frame

– TRANS <K1> <V1> [<K2> <V2>][<K3> <V3>]
with Km = coordinate x, y or z and Vm = offset m

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 751

Programming examples:

Program code Remark
$P_UIFR[1] = CTRANS(X,10,Y,10) Complete frame
$P_UIFR[1,X,TR] = 10 Frame components
TRANS X=10 Y=10 Programmable frame

11.5.2.3 Rotation Overview (geometry axes only)

Function
The direction of rotation around the coordinate axes is determined by means of a right-hand,
rectangular coordinate system with axes x, y and z. If the rotary motion is in a clockwise
direction when looking in the positive direction of the coordinate axis, the direction of rotation
is positive. A, B and C designate rotations whose axes are parallel to the coordinate axes.

The following figure shows the new position of the coordinate system x', y' and z' after the
rotation around z with γ = -45°

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
752 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameterization of the rotation sequence
The following machine data is used to set around which coordinate axes and in which order
the rotations are performed when more than one angle of rotation is programmed:

MD10600 $MN_FRAME_ANGLE_INPUT_MODE = <value>

Value Meaning
1 Euler angles in zy'x'' convention (RPY angles)
2 Euler angles in zx'z" convention

Note

For historical reasons, Euler angles in zx'z" convention can be used. However, it is strongly
recommended that only Euler angles in zy'x" convention (RPY angles) be used (see Section
Rotation with a Euler angles: ZY'X" convention (RPY angles) (Page 753)).

11.5.2.4 Rotation with a Euler angles: ZY'X" convention (RPY angles)
Euler angles in the ZY'X" convention are also called RPY angles. RPY is derived from rolling,
pitching and yawing:

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 753

For the ZY'X'' convention, the rotations are carried out in the following sequence:

Value range
With RPY angles, programmed values can only be unambiguously calculated back within the
following value ranges:

-180
-90
-180

≤
<
≤

x
y
z

≤
<
≤

180
90
180

Programming: Writing all rotation components
When programming the rotating components of a frame usingCROT, ROT or AROT, all rotating
components are always written to. Rotating components not explicitly programmed are
assigned a value of 0°.

Syntax
<frame> = CROT([<1st GAx>,<angle>,][<2nd GAx>,<angle>,][<3rd
GAx>,<angle>])
ROT [<1st GAx> <Angle>] [<2. GAx> <Angle>] [<3. GAx> <Angle>]
AROT [<1st GAx> <Angle>] [<2. GAx> <Angle>] [<3. GAx> <Angle>]

Meaning

CROT: Absolute rotation
<Frame>: Arbitrary active or data management frame
ROT: Absolute rotation

Reference frame: Programmable frame $P_PFRAME,
reference point: Zero point of the current workpiece coordinate system set
with G54 ... G57, G505 ... G599

AROT: Additive rotation
Reference frame: Programmable frame $P_PFRAME,
reference point: Zero point of the current workpiece coordinate system set
with G54 ... G57, G505 ... G599

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
754 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<nth GAx>: Name of the nth geometry axis around which rotation is to be performed
with the specified angle. The value 0° is implicitly set as angle of rotation
for a geometry axis that has not been programmed.
Assignment of geometry axis to rotary axis:

Geometry axis Rotary axis
1st geometry axis x''
2nd geometry axis y'
3rd geometry axis z

<angle>: Angle specification in degrees.
[...]: The data in square brackets are optional.

Programming: Writing to a rotation component
When explicitly programming a rotation component of a frame, only the programmed rotation
component is written. Rotation components that have not been programmed remain
unchanged.

Syntax
<frame>[<index>,<GAx>,RT] = <angle>

Meaning

<Frame>: Arbitrary active frame or data management frame
<Index>: Array index of the frame, e.g. $P_UIFR[0 ... n]
<GAx>: Name of the geometry axis around which rotation is to be performed with

the specified angle.
RT: Keyword for rotation "RoTation"
<Angle> Angle specification in degrees.

Reading back the rotation components
In general, the same values are obtained when reading back the rotation components of a
frame as those that were programmed:

Programmed Values when reading back
x, RT y, RT z, RT

<Frame> = CROT(X,45,Y,30,Z,-20) 45 30 -20

Values outside the value range
Programmed values outside a value range are mapped on the range limits:

Programmed Values when reading back
x, RT y, RT z, RT

<Frame> = CROT(X,190,Y,0,Z,-200) -170 0 160

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 755

Note

It is recommended that when writing the rotation components of the frame, the specified value
ranges are observed so that the same values are obtained when reading back the rotation
components.

Gimbal lock
Gimbal lock designates a geometric problem in which the rotation components can no longer
be unambiguously calculated back from the position vector. Gimbal lock occurs in RPY angles
with an angular position of the rotation component y = 90°. In this case, the rotation components
are converted by the control system after being written so that the following applies:

● Rotation component z = rotation component z - rotation component x

● Rotation component x = 0°

● Rotation component y = 90°

Programmed Values when reading back
x, RT y, RT z, RT

<Frame> = CROT(X,30,Y,90,Z,40) 0 90 40 - 30 = 10

CAUTION

Different values for reading back the rotation component z

Because of the different conversion times after writing the complete frame or the writing of
individual rotation components of a data management frame and the writing of individual
rotation components of an active frame, different values can be read back for rotation
component z.

Differences when writing the complete frame and frame components
Two cases must be distinguished when writing the rotation components of a frame:

1. Writing the complete frame: <Frame> = CROT(X,a,Y,b,Z,c)
When writing the complete frame, the conversion is immediately at the time of writing.

2. Writing individual rotation components, e.g. rotation around X: <Frame>[0,X,RT]= <a>
When writing individual rotation components, the conversion depends on the storage
location of the frame:

– Data management frames
With data management frames, the conversion is at the time of activation of the frame
based on the rotation components written by this time. With regard to the conversion of
a data management frame, a data management frame therefore behaves in the same
way after writing individual rotation components as when writing the complete frame.

– Active frames
In the case of active frames, the conversion is immediately at the time of writing of the
rotation component.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
756 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example
● Writing the complete frame

The conversion is made in each block after the complete frame has been written.

Programmed Values when reading back
x, RT y, RT z, RT

N10 <Frame> = CROT(X,0,Y,90,Z,90) 0 90 90
N20 <Frame> = CROT(X,90,Y,90) 0 90 -90 1)

N30 <Frame> = CROT(X,90,Y,90,Z,90) 0 90 0 1)

1) Different values compared to the writing of individual rotation components of an active frame

● Writing individual rotation components of a data management frame
The conversion is performed on the activation of the data management frame. In the
example, at any time after N30.

Programmed Values when reading back
x, RT y, RT z, RT

N10 <Data management frame>[0,X,RT] = 0
N20 <Data management frame>[0,Y,RT] = 90
N30 <Data management frame>[0,Z,RT] = 90

0 90 90

N10 <Data management frame>[0,X,RT] = 90
N20 <Data management frame>[0,Y,RT] = 90
N30 <Data management frame>[0,Z,RT] = 0

0 90 -90 1)

N10 <Data management frame>[0,X,RT] = 90
N20 <Data management frame>[0,Y,RT] = 90
N30 <Data management frame>[0,Z,RT] = 90

0 90 0 1)

1) Different values compared to the writing of individual rotation components of an active frame

● Writing individual rotation components of an active frame
Any required conversion is performed immediately on writing the rotation component.
The stored initial values of the active frame are: x = 0, y = 0, z = 0.

Programmed Values when reading back
x, RT y, RT z, RT

N10 <Active frame>[0,X,RT] = 0
N20 <Active frame>[0,Y,RT] = 90
N30 <Active frame>[0,Y,RT] = 90

0 90 90

N10 <Active frame>[0,X,RT] = 90
N20 <Active frame>[0,Y,RT] = 90
N30 <Active frame>[0,Y,RT] = 0

0 90 0 1)

N10 <Active frame>[0,X,RT] = 90
N20 <Active frame>[0,Y,RT] = 90
N30 <Active frame>[0,Y,RT] = 90

0 90 90 1)

1) Different values compared to the writing of the complete frame or the writing of individual rotation
components of a data management frame

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 757

11.5.2.5 Rotation with a Euler angles: ZX'Z" convention
With Euler angles, the rotations are in the order z, x', z".

Note
Recommended use

For historical reasons, Euler angles in zx'z" convention can be used. However, it is strongly
recommended that only Euler angles in zy'x" convention (RPY angles) be used (see Section
Rotation with a Euler angles: ZY'X" convention (RPY angles) (Page 753)).

Assignment of rotary axis to geometry axis

Rotary axis Geometry axis in channel
z 3rd geometry axis
x' 1st geometry axis
z'' 3rd geometry axis

Value range
Data from Euler angles can only be unambiguously calculated back within the following value
ranges:

0
-180
-180

<=
<=
<=

x
y
z

<
<=
<=

180
180
180

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
758 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

For data outside the specified value ranges, a modulo conversion is made referred to the value
of the particular range limit.

Note

It is recommended that when writing the rotation components of the frame, the specified value
ranges are observed so that the same values are obtained when reading back the rotation
components.

11.5.2.6 Rotation in any plane

CRPL - Constant Rotation Plane
The predefined function "Constant Rotation Plane" enables a rotation to be programmed for
a frame in an arbitrary plane (G17, G18, G19) without specifying the name of a geometry axis.
This enables rotations to be programmed in the third plane when only two geometry axes are
present in the channel due to the specific machine constellation.

Syntax
CRPL(<rotary axis>,<angle of rotation>)

Meaning

CRPL: Rotation in any plane
<rotary axis>:Axis around which the rotation is performed
 Type: INT
 Value Meaning
 0 Rotation in the active plane
 1 Rotation around Z
 2 Rotation around Y
 3 Rotation around X
<angle of
rotation>:

Angle in degrees through which the rotation is performed

 Type: REAL
 It is strongly recommended to observe the specified angular ranges. If the

limits are not observed, then an unambiguous reverse calculation is not
possible. Angles outside the limits are not rejected.

 RPY angle: X -180 <= <angle of rotation> <= 180
 Y -90 <= <angle of rotation> <= 90
 Z -180 <= <angle of rotation> <= 180
 ZX'Z" convention: X -180 <= <angle of rotation> <= 180
 Y 0 <= <angle of rotation> <= 180
 Z -180 <= <angle of rotation> <= 180

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 759

Chaining with frames
CRPL() can be chained with frames and known frame functions such as CTRANS(), CROT(),
CMIRROR(), CSCALE(), CFINE() etc.

Examples:

$P_PFRAME = $P_PFRAME : CRPL(0,30.0)
$P_PFRAME = CTRANS(X,10) : CRPL(1,30.0)
$P_PFRAME = CROT(X,10) : CRPL(2,30.0)
$P_PFRAME = CRPL(3,30.0) : CMIRROR(Y)

11.5.2.7 Scaling

Programming
The program commands below are used to program the scaling:

$P_UIFR[1] = CSCALE(x,1,y,1)
SCALE x = 1y = 1
$P_UIFR[1,x,sc] = 1

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
760 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.5.2.8 Mirroring

Programming
The program commands below are used to program a mirroring:

$P_UIFR[1] = CMIRROR(x,1,y,1)
MIRROR x = 1y = 1
$P_UIFR[1,x,mi] = 1

11.5.2.9 Chain operator
Frame components or complete frames can be combined into a complete frame using the
chain operator (:).

11.5.2.10 Programmable axis name
Geometry, channel and machine axis names can be used in the frame commands. The
programmed axis must be known to the channel-specific frames in the channel.

SPI
When programming frame commands, the SPI(<spindle number>) axis function can be
used in place of an axis name.

SPI(<spindle number>) forms the reference of the spindle to the channel axis.
→ refer to MD35000 $MA_SPIND_ASSIGN_TO_MACHAX[] (assignment of spindle to machine
axis)

The following frame commands can be programmed with SPI(spino):

CTRANS()
CFINE()
CMIRROR()
CSCALE()

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 761

A spindle can only be assigned to one rotary axis at a time. The CROT(..) function can
therefore not be programmed withSPI(), as only geometry axes are permitted forCROT().

The channel axis name or machine axis name of the axis belonging to the spindle is always
output when decompiling frames, even when axis names have been programmed in the part
program with SPI(..).

If the spindle is assigned e.g., to the Channel Axis A then the programming:

N10 $P_UIFR[1] = CTRANS(SPI(1),33.33,X,1):CSCALE(SPI(1),
33.33):CMIRROR(SPI(1))
during recompilation:

$P_UIFR[1]=CTRANS(X,1,A,33.33):CSCALE(A,33.33):CMIRROR(A)
If a spindle and an assigned axis are programmed in a frame command, then Alarm 16420
"Axis % multiply programmed" is output.

Example:

$P_UIFR[1] = CTRANS(SPI(1),33.33,X,1,A,44)
(The spindle is assigned to Axis A.)

Programming examples
$P_PFRAME[SPI(1),TR]=22.22
$P_PFRAME=CTRANS(X, axis value,Y,axis value,SPI(1),axis value)
$P_PFRAME=CSCALE(X,Scale,Y,scale,SPI(2),scale)
$P_PFRAME=CMIRROR(S1,Y,Z)
$P_UBFR=CTRANS(A,10):CFINE(SPI(1),0.1)

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
762 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.5.2.11 Coordinate transformation

The formulae below are used to discover the coordinate transformation for geometry axes:

V: Position vector in BCS
V': Position vector in WCS

11.5.3 Data management frames and active frames

11.5.3.1 Overview

Frame types
The following frame types are available:

● System frames ($P_PARTFR, ... see figure)

● Basic frames ($P_NCBFR[<n>], $P_CHBFR[<n>])

● Grinding frames ($P_GFR[<n>])
● Settable frames ($P_UIFR[<n>])

● Programmable frame ($P_PFRAME)

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 763

For all frame types except the programmable frame, one or more frames exist in the data
management (data management frames) in addition to the frame active in the channel. For
the programmable frame, only the frame active in the channel exists.

Writing frames
Data management frames and active frames can be written from the part program. Only data
management frames can be written via the user interface.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
764 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Archiving frames
Only data management frames can be archived.

11.5.3.2 Activating data management frames
Data management frames become active frames as a result of the following actions:

● "Settable frames" G group: G54 ... G57, G500, G505 ... G599
● "Grinding frames" G group: GFRAME0 ... GFRAME100
● RESET and MD20110 $MC_RESET_MODE_MASK, bit14 == 1 (the current setting of the

basic frame is retained)

● Transformation changeover

● Changing the geometry axis assignment GEOAX
● From the HMI with PI service "_N_SETUDT"

Activation from the HMI
The activation of a data management frame from the HMI with PI service "_N_SETUDT" only
becomes active in the channel after a hot restart for the current part program.

The activation is effective in the reset state if the following machine data is set:

MD9440 $MM_ACTIVATE_SEL_USER_DATA (set active offset immediately)

Activating system frames
System frames are activated by:

● Programming the corresponding system function in the part program

● Operator control at SINUMERIK Operate

Note
Modifying system frames of the data management

In principle, system frames of the data management can be modified by the cycle
programmer and activated using a G500, G54...G599 command. However, this option
should only be used with reservation.

Activating data management frames
The behavior when activating data management frames is set using the following machine
data:

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 765

MD24050 $MC_FRAME_SAA_MODE (save and activate data management frames)

Bit Val‐
ue

Meaning

0 0 @@@
1 ● Data management frames are only activated by programming the system variables

$P_CHBFRMASK, $P_NCBFRMASK and $P_CHSFRMASK.
● G500...G599 activates the appropriate settable frame.

1 0 Data management frames are implicitly described by functions, such as TOROT, PAROT,
external work offset and transformations.

1 Data management frames are not implicitly described by functions, such as TOROT,
PAROT,external work offset and transformations.

Activation of system frames via system variable $P_CHSFRMASK

The system frames of the data management can be activated using system variable
$P_CHSFRMASK. The value of the variables is specified as bit coded according to the
machine data:
MD28082 $MC_MM_SYSTEM_FRAME_MASK (system frames of the data management)

The corresponding system frame of the data management in the channel is activated by setting
a bit of system variable $P_CHSFRMASK to 1. For a value of 0, the currently active system
frame in the channel remains active.

Activating system frames after RESET

After RESET, the system frames in the channel are activated whose bits are set in the following
machine data:

MD24006 $MC_CHSFRAME_RESET_MASK (active system frames after Reset)

Activating system frames for TCARR, PAROT and TOROT, TOFRAME

The system frames for TCARR, PAROT and TOROT, TOFRAME are activated according to the
setting in the following machine data:

MD20150 $MC_GCODE_RESET_VALUES (initial setting of the G groups)

When changing over geometry axes using transformation selection/deselection or the GEOAX
command, the actual total frame $P_ACTFRAME is either deleted or is re-calculated using the
new geometry axis constellation and activated. The system frames and all other frames are
conditioned again in relation to the geometry axes.

11.5.3.3 NCU-global and channel-specific frames
● Settable frames and grinding frames can only be configured as NCU-global or channel-

specific frames.

● Basic frames can be configured as NCU-global and channel-specific frames.

● An NCU-global frame has the same effect in all channels of the NCU.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
766 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● All channels of an NCU can read and write NCU-global frames equally.

● As the assignment of machine axes to channel axes and, in particular, to geometry axes,
can be different in all channels, there is consequently no unique cross-channel geometric
relationship between the channel axes. Therefore, only offset, scaling and mirroring is
possible for NCU-global frames. Rotations are not possible.

Note
Program coordination

The coordination of channel-specific accesses to NCU-global frames is the sole responsibility
of the user. It is recommended that the commands for the program coordination be used.

References

Programming Manual, Job Planning; Section "Flexible NC programming" > "Program
coordination (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)"

11.5.4 Frame chain and coordinate systems

11.5.4.1 Overview
The figure below shows the frame chain for the current complete frame. The frame chain is
located between the basic coordinate system (BCS) and the workpiece coordinate system
(WCS).

The settable zero system (SZS) corresponds to the WCS transformed by the programmable
frame. The basic zero system (BZS) still includes the current settable frame. The system frame
for the external work offset exists only if it has been configured. Otherwise, the external work
offset is traversed as overlaid movement of the axis.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 767

WCS: Workpiece Coordinate System
SZS: Settable Zero System
BZS: Basic Zero System
BCS: Basic Coordinate System
MCS: Machine Coordinate System

Complete frame
The current complete frame $P_ACTFRAME results from the chaining of all active frames of
the frame chain:

$P_ACTFRAME = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
$P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
$P_ACTBFRAME : $P_IFRAME : $P_GFRAME :
$P_TOOLFRAME :$P_WPFRAME : $P_TRAFRAME :
$P_PFRAME :$P_ISO4FRAME : $P_CYCFRAME

11.5.4.2 Relative coordinate systems
Relative coordinate systems display the current setpoint positions of the axes which lie relative
to a specified reference point in the active displayed coordinate system. No programming can
be done regarding the relative coordinate systems. Only the axis positions in these systems
can be read via the system variables.

The new display coordinate systems lie relative to WCS and SZS coordinate system and result
through transformation of the WCS or SZS axis positions with the active system frame
$P_RELFRAME. The relative coordinate systems can not only be displaced linearly, but also
rotated, mirrored, compressed or expanded.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
768 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The position indicator for axis setpoints is done in WCS or in SZS. The configuring is done via
HMI machine data. Always only one display-coordinate system is active in the channel. For
this reason only one relative frame is provided which generates both relative coordinate
systems in the same ratio. The HMI displays the relative coordinates according to the
configuration.

Figure 11-22 Relative coordinate systems

The "Relative coordinate systems" function is activated with MD51036
$MNS_ENABLE_COORDINATE_REL=1.

The data maintenance frame $P_RELFR can be written in the part program and via BTSS. All
the frame components can be modified.

The active system frame $P_RELFRAME can be written in the part program and via BTSS.

The configuring of the system frame $P_RELFR is done via the following machine data:

Machine data Bit Meaning
MD28082 $MC_MM_SYSTEM_FRAME_MASK 11 Creation of $P_RELFR; with this, relative coordi‐

nate systems become existent.
MD28083 $MC_MM_SYSTEM_DATAFRAME_MASK 11 Data maintenance frame $P_RELFR
MD24006 $MC_CHSFRAME_RESET_MASK. 11 $P_RELFR becomes active at Reset
MD24007 $MC_CHSFRAME_RESET_CLEAR_MASK 11 $P_RELFR is deleted at Reset
MD24008 $MC_CHSFRAME_POWERON_MASK 11 $P_RELFR is deleted at PowerOn

The axis position in the relative coordinate system WCSRel can be read via the variable
$AA_PCS_REL[ax]. The variable can be read in part program, BTSS and via synchronized
actions.

The axis position in the relative coordinate system SZSRel can be read via the variable
$AA_ACS_REL[ax]. The variable can be read in part program, BTSS and via synchronized
actions.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 769

The setting of a relative reference point via the operator panel is done via the general command
interface for the workpiece and tool measuring. The system frame $P_RELFR for relative
coordinate systems is calculated and activated as follows:

● $AC_MEAS_TYPE = 14

● PI-services _N_SETUDT(6, 7)

An example of setting the relative axis positions can be found in:
References:
Function Manual, Extended functions; Measurement (M5),
Section "Measurement of geometry and special axes (meas. type 14, 15)"

11.5.4.3 Selectable SZS
Within a cycle, machining is performed in a cycle-specific workpiece coordinate system (WCS).
The cycle-specific WCS results from SZS transformed by the programmable frame
$P_PFRAME and/or cycle frame $P_CYCFRAME programmed for the cycle.

If a cycle is interrupted by a machine operator, e.g. through an NC stop, traversing should then
be performed in the original coordinate system (SZS) valid before the activation of the cycle.

Machine data
The specification how the SZS is to be calculated from the cycle-specific WCS is set via the
following machine data.

MD24030 $MC_FRAME_ACS_SET = <value>

<value> Meaning
0 SZS = WCS transformed with $P_TRAFRAME, $P_PFRAME, $P_ISO4FRAME and $P_CY‐

CFRAME
1 SZS = WCS transformed only with $P_CYCFRAME

① SZS = WCS transformed with $P_TRAFRAME, $P_PFRAME, $P_ISO4FRAME and $P_CY‐
CFRAME

② SZS = WCS transformed only with $P_CYCFRAME

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
770 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Effects
The reconfiguration of the SZS has an effect on:

● SZS-related actual values: Actual-value displays, system variables, e.g. $AA_IEN, etc.

● Manual traversing (JOG) of geometry axes in the SZS

11.5.4.4 Manual traversing of geometry axes either in the WCS or in the SZS ($AC_JOG_COORD)
Previously, geometry axes have been traversed manually in JOG mode in the WCS. In
addition, there is also the option to carry out this manual traversing in the SZS coordinate
system. The $AC_JOG_COORD variable enables the user to switch between manual
traversing in the WCS and SZS. The user can now select if he wants to traverse in the SZS
or the WCS.

During manual traversing in the JOG mode, the geometry axes can be traversed either in the
workpiece coordinate system (WCS) or in the settable zero system (SZS).

System variables
During manual traversing in the JOG mode, the geometry axes can be traversed either in the
workpiece coordinate system (WCS) or in the settable zero system (SZS). The selection is
made via the system variable $AC_JOG_COORD:

$AC_JOG_COORD = <value>

<Value> Meaning
0 Workpiece coordinate system (WCS)
1 Settable zero system (SZS)

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 771

11.5.4.5 Suppression of frames
Suppression of frames is performed channel-specifically via the commands G53, G135 and
SUPA described in the following. Activation of the frame suppression results in jumps in the
position display (HMI) as well as in the position values in system variables that refer to the
WCS, SZS or BZS. The behavior can be set via machine data.

Machine data
The behavior of position displays (HMI) and position values in system variables is specified
via the following machine data:

MD24020 $MC_FRAME_SUPPRESS_MODE, bit<n> = <value> (positions during frame
suppression)

Bit Val‐
ue

Meaning

0 0 Position values (OPI) with frame suppression 1)

1 Position values (OPI) without frame suppression 2)

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
772 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Bit Val‐
ue

Meaning

1 0 Position values in system variables with frame suppression 1)

1 Position values in system variables without frame suppression 2)

1) Jump of the position value
2) No jump of the position value

Programming

Com‐
mand

Meaning

G53: Nonmodal suppression of the following frames:
$P_TRAFRAME : $P_PFRAME : $P_ISO4FRAME : $P_CYCFRAME
$P_IFRAME : $P_GFRAME : $P_TOOLFRAME : $P_WPFRAME :

G153: Non-modal suppression of the frames as for G53 plus following frames:
$P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME : $P_ACTBFRAME
$P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :

SUPA: Implicit preprocessing stop and non-modal suppression of the frames as for G53 and
G135 plus following frames:
● Handwheel offsets (DRF)
● Overlaid movement
● External work offset

G500: Modal activation of the G500 frame. The G500 frame should normally be a zero frame.
DRFOF: Deactivation (deletion) of the handwheel offsets (DRF)

11.5.5 Frames of the frame chain

11.5.5.1 Overview
The following frames are available:

● Settable frames (G500, G54 ... G57, G505 ... G599)

● Grinding frames (GFRAME0 ... GFRAME100)

● Basic frames

● Programmable frame

● System frames

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 773

11.5.5.2 Settable frames ($P_UIFR[<n>])

Machine data

Channel-specific settable frames
The number of channel-specific settable frames is set with the following machine data:

MD28080 $MC_MM_NUM_USER_FRAMES = <number>

System variable index n = 0, 1, 2, ... <number> - 1

NCU-global settable frames
The number of NCU-global settable frames is set with the following machine data:

MD18601 $MN_MM_NUM_GLOBAL_USER_FRAMES = <number>

System variable index n = 0, 1, 2, ... <number> - 1

If the machine data has a value > 0, there are no channel-specific settable frames. The machine
data to set the channel-specific settable frames is then not evaluated.

Reset position of the G group of the settable frames
The reset position or which of the G commands of the settable frame-specific 8th G group take
effect after channel reset or Power On is set in:

MD20150 $MC_GCODE_RESET_VALUES[7] = <value>

Value G command
1 G500
2 G54
3 G55
4 G56
5 G57
6 G505
... ...

100 G599

Reset behavior of the grinding-specific G group
The reset behavior of the settable frame-specific 8th G group is set in:

MD20152 $MC_GCODE_RESET_MODE[7] = <value>

Value Meaning
After channel reset or part program end:

0 The settable frame-specific G command in accordance with MD20150 is active.
1 The currently active settable frame-specific G command remains active.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
774 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note
MD20110 $MC_RESET_MODE_MASK

The MD20152 $MC_GCODE_RESET_MODE machine data is evaluated only for:

MD20110 $MC_RESET_MODE_MASK, bit 0 == 1

System variables

$P_UIFR[<n>] (settable frames of the data management)
System variable $P_UIFR[<n>] can be used to read and write the settable frames of the data
management. The new values are not immediately active in the channel when writing a settable
frame of the data management. The activation in the channel only takes effect with the
programming of a work offset G500, G54...G599.

For NCU-global frames, the changed settable frame of the data management is active in each
channel of the NCU which executes a G500, G54..G599 command.

The settable frames in the data management are also stored during a data backup.

$P_IFRAME (active settable frame)
System variable $P_IFRAME can be used to read and write the settable frame active in the
channel. The new values are immediately active in the channel when writing the settable frame.

In the case of NCU-global settable frames, the changed active frame acts only in the channel
in which the new values were programmed. If the changed NCU-global settable frame is to be
active in all channels of the NCU, the settable frame active in the channel and the
corresponding settable frame of the data management must be written together:

$P_UIFR[<n>] = $P_IFRAME = <new value>

● $P_UIFR[<n>] (settable frame in the data management)

● $P_IFRAME (settable frame active in the channel)

For the changed settable frame to take effect in another channel, it must be activated in this
channel with the appropriate command, e.g. G54.

$P_UIFRNUM (number of active settable frame)
System variable $P_UIFRNUM can be used to read the index <n> of the settable frame of the
data management active in the channel:

Settable frame active in the channel $P_IFRAME == $P_UIFR[$P_UIFRNUM]

$P_UIFRNUM $P_IFRAME == $P_UIFR[<n>], where n =
0 0
1 1
2 2
... ...
99 99

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 775

Programming

Commands for activating a settable frame in the channel
The programming of a G500, G54...G599 command activates the settable frame of the
$P_UIFR[<n>] data management in the channel or the active $P_IFRAME settable frame set
identical to the settable frame of the $P_UIFR[<n>] data management:

G<x> ⇒ $P_IFRAME = $P_UIFR[<n>]

Command Active settable frame $P_IFRAME
G500 $P_UIFR[0]
G54 $P_UIFR[1]
G55 $P_UIFR[2]
G56 $P_UIFR[3]
G57 $P_UIFR[4]
G505 $P_UIFR[5]

... ...
G599 $P_UIFR[99]

Supplementary conditions

Writing of settable frames through HMI/PLC
Only the settable frames of the data management can be written from the HMI or the PLC user
program.

11.5.5.3 Grinding frames $P_GFR[<n>]

Grinding frames are additional work offsets or "fit-dependent corrections" available particularly
for the grinding technology. They are added to the work offset of the adjustable frames
(Page 774).

Figure 11-23 Grinding frames

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
776 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Based on the base zero system (BZS), the settable zero system (SZS) results from the chaining
of the frames active in the channel:

$P_IFRAME: $P_GFRAME : $P_TOOLFRAME :$P_WPFRAME

Machine data

Number of channel-specific grinding frames
The number of channel-specific grinding frames is set in:

MD28079 $MN_MM_NUM_G_FRAMES = <number>

with <number> = 0, 1, 2, ... maximum number

Number of NCU-global grinding frames
The number of NCU-global grinding frames is set in:

MD18603 $MN_MM_NUM_GLOBAL_G_FRAMES = <number>

with <number> = 0, 1, 2, ... maximum number

If the machine data has a value > 0, there are no channel-specific grinding frames. The machine
data to set the channel-specific grinding frames is then not evaluated.

Reset position of the grinding-specific G group (64)
The reset position or which of the G commands of the grinding-specific 64th G group take
effect after channel reset or Power On is set in:

MD20150 $MC_GCODE_RESET_VALUES[63] = <value>

Value G command
1 GFRAME0 (zero frame)
2 GFRAME1
3 GFRAME2
... ...

101 GFRAME100

Reset behavior of the grinding-specific G group
The reset behavior of the grinding-specific 64th G group is set in:

MD20152 $MC_GCODE_RESET_MODE[63] = <value>

Value Meaning
After channel reset or part program end:

0 The grinding-specific G command in accordance with MD20150 is active.
1 The currently active grinding-specific G command remains active.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 777

Note
MD20110 $MC_RESET_MODE_MASK

The MD20152 $MC_GCODE_RESET_MODE machine data is evaluated only for:

MD20110 $MC_RESET_MODE_MASK, bit 0 == 1

System variables

$P_GFR[<n>] (grinding frames of the data management)
System variable $P_GFR[n] can be used to read and write the grinding frames of the data
management. The new values are not immediately active in the channel when writing a grinding
frame. The activation in the channel only takes effect with the programming of the appropriate
command GFRAME0...GFRAME100. For NCU-global frames, the changed frame only becomes
active in those channels of the NCU, which execute a GFRAME0 ... GFRAME100 command.

The grinding frames in the data management are also stored during a data backup.

Note
Display (SINUMERIK Operate)

The grinding frames of the data management are displayed in a separate window of the
SINUMERIK Operate user interface.
● References

Operating Manual Grinding; Section "Setting up the machine" > "Work offsets" > "Displaying
and editing seat-related fine offset"

Delete (SINUMERIK Operate)

The grinding frames of the data management can be deleted individually or, for example, after
a workpiece change, all together via the SINUMERIK Operate user interface.
● References

Operating Manual Grinding; Section "Setting up the machine" > "Work offsets" > "Displaying
and editing seat-related fine offset"

$P_GFRAME (active grinding frame)
The grinding frame active in the channel can be read from and written to the $P_GFRAME
system variable. The new values are immediately active in the channel when writing the active
grinding frame.

In the case of NCU-global grinding frames, the changed frame acts only in the channel in which
the new frame values were programmed.

If the changed NCU-global grinding frame is to be active in all channels of the NCU starting
from one channel, the $P_GFRAME grinding frame active in the grinding frame and the
grinding frame in the $P_GFR[<n>] data management must be written together:

$P_GFRAME = $P_GFR[<n>] = <new value>

For the changed grinding frame in the $P_GFR[<n>] data management to take effect in another
channel, it must be activated in this channel with the appropriate command GFRAME<n>.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
778 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

$P_GFRNUM (number of the active grinding frame)
System variable $P_GFRNUM can be used to read the index <n> of the grinding frame of the
data management active in the channel:

Grinding frame active in the channel $P_GFRAME == $P_GFR[$P_GFRNUM]

$P_GFRAME grinding frame activated with the G
command GFRAME<n>:

$P_GFRNUM

GFRAME0 0
GFRAME1 1
GFRAME2 2

... ...
GFRAME100 100

Programming

Command for activating a grinding frame in the channel
The programming of the GFRAME<n> command makes the associated grinding frame of the
$P_GFR[<n>] data management active in the channel. This sets the active $P_GFRAME
grinding frame identical to the $P_GFR[<n>] grinding frame of the data management:

GFRAME<n> ⇒ $P_GFRAME = $P_GFR[<n>]

Command Grinding frame activated in the channel
GFRAME0 $P_GFR[0] (null frame)
GFRAME1 $P_GFR[1]
... ...
GFRAME100 $P_GFR[100]

Syntax
GFRAME<n>

Meaning

GFRAME<n>: Activation of the grinding frame <n> of the data management
G group: 64
Basic position: MD20150 $MC_GCODE_RESET_VALUES[63]
Effective: Modal

<n>: Number of the grinding frame
Value range: 0, 1, 2, ... 100

Supplementary conditions

Writing of grinding frames through HMI/PLC
Only the grinding frames of the data management can be written from the HMI or the PLC user
program.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 779

11.5.5.4 Channel-specific basic frames[<n>]

Machine data

Number of channel-specific basic frames
The number of channel-specific basic frames is set with the following machine data:

MD28081 $MC_MM_NUM_BASE_FRAMES = <number>

System variable index n = 0, 1, 2, ... <number> - 1

System variables

$P_CHBFR[<n>] (channel-specific basic frames of the data management)
System variable $P_CHBFR[<n>] can be used to read and write the channel-specific basic
frames of the data management. The new values are not immediately active in the channel
when writing a channel-specific basic frame. The activation in the channel only takes effect
with the programming of the appropriate command G500, G54...G599.

The channel-specific basic frames in the data management are also stored during a data
backup.

$P_CHBFRAME[<n>] (active channel-specific basic frames)
System variable $P_CHBFRAME[<n>] can be used to read and write the active channel-
specific basic frames. When writing an active channel-specific basic frame, the new values
take effect immediately through the recalculation of the active complete basic frame
$P_ACTBFRAME.

System variables for compatibility reasons

$P_UBFR (first channel-specific basic frame of the data management)
The system variable is retained for reasons of compatibility, although it is redundant for the
$P_CHBFR[0] variables.

The basic frame with array index 0 is not activated simultaneously when writing to the
predefined $P_UBFR variable, but rather activation only takes place on execution of a G500,
G54,.G599 statement. For NCU-global frames, the changed frame only becomes active in
those channels of the NCU, which execute a G500, G54..G599 command. The variable is
used primarily for storing write operations to the basic frame on HMI or PLC. The variable can
also be read and written in the program.

$P_UBFR is identical to $P_CHBFR[0]. One basic frame always exists in the channel by
default, so that the system variable is compatible with older versions. If there is no channel-
specific basic frame, an alarm: "Frame: Statement not permitted" is output on a read or write
access.

$P_BFRAME (first active channel-specific basic frame)
The system variable is retained for reasons of compatibility, although it is redundant for the
$P_CHBFRAME[0] variables.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
780 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The predefined frame variable $P_BFRAME can be used to read and write the current basic
frame with the array index 0, which is valid in the channel, in the part program. The written
basic frame is immediately included in the calculation. In the case of NCU-global settable
frames, the modified frame acts only in the channel in which the frame was programmed. If
the frame is to be modified for all channels of an NCU, $P_UBFR and $P_BFRAME must be
written simultaneously. The other channels must then activate the corresponding frame, e.g.
with G54.

$P_BFRAME is identical to $P_CHBFRAME[0]. The system variable always has a valid default
value. If there is no channel-specific basic frame, an alarm: "Frame: Statement not permitted"
is output on a read or write access.

Supplementary conditions

Writing of basic frames from HMI/PLC
Only the basic frames of the data management can be written from the HMI or the PLC user
program.

11.5.5.5 NCU-global basic frames $P_NCBFR[<n>]

Machine data

Number of NCU-global basic frames
The number of NCU-global basic frames is set with the following machine data:

MD18602 $MN_MM_NUM_GLOBAL_BASE_FRAMES = <number>

System variable index n = 0, 1, 2, ... <number> - 1

System variables

$P_NCBFR[<n>] (NCU-global basic frames of the data management)
System variable $P_NCBFR[<n>] can be used to read and write the NCU-global basic frames
of the data management. The new values are not immediately active in the channel when
writing an NCU-global basic frame. The activation in the channel only takes effect with the
programming of the appropriate command G500, G54...G599.

The NCU-global basic frames in the data management are also stored during a data backup.

$P_NCBFRAME[<n>] (current NCU-global basic frames)
System variable $P_NCBFRAME[<n>] can be used to read and write the active NCU-global
basic frames. When writing an active NCU-global basic frame, the new values take effect
immediately through the recalculation of the active complete basic frame $P_ACTBFRAME.

If the changed NCU-global basic frame is to be active in all channels of the NCU starting from
one channel, the NCU-global basic frame active in the channel and the NCU-global frame in
the data management must be written together:

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 781

$P_NCBFR[<n>] = $P_NCBFRAME = <new value>

● $P_NCBFR[<n>] (NCU-global basic frame of the data management)

● $P_NCBFRAME (NCU-global basic frame active in the channel)

For the changed NCU-global frame to take effect in another channel, it must be activated in
this channel with the appropriate command G500, G54..G599.

Programming
A channel-specific settable frame of the data management $P_UIFR[<n>] becomes the
settable frame $P_IFRAME active in the channel through the appropriate command (G54 ...
G57, G505 ... G599 and G500).

Command Activation of the NCU-global and channel-specific
basic frames of the data management

G500 $P_CHBFR[0] : $P_NCBFR[0]
G54 $P_CHBFR[1] : $P_NCBFR[1]
G55 $P_CHBFR[2] : $P_NCBFR[2]
G56 $P_CHBFR[3] : $P_NCBFR[3]
G57 $P_CHBFR[4] : $P_NCBFR[4]

G505 $P_CHBFR[5] : $P_NCBFR[5]
... ...

G599 $P_CHBFR[99] : $P_NCBFR[99]

11.5.5.6 Active complete basic frame $P_ACTBFRAME

Function
All active NCU-global and channel-specific basic frames are combined into the complete basic
frame $P_ACTBFRAME:

$P_ACTBFRAME = $P_NCBFRAME[0] : ... : $P_NCBFRAME[<n>] :
 $P_CHBFRAME[0] : ... : $P_CHBFRAME[<n>]

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
782 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 11-24 Complete basic frame

Machine data

Reset response
Which basic frames are active after a reset (channel reset, end of program reset or Power On)
is set via the machine data:

MD20110 $MC_RESET_MODE_MASK, bit0 = 1 and bit14 = 1

● Bit 1 = 0: Default value ⇒ reset behavior corresponding to the setting of the further bits

● Bit14 = 0: The basic frames are completely deselected with reset.

● Bit14 = 1: With reset, the machine data settings are taken over in the system variables and
the basic frames selected therein become active:

– $P_NCBFRMASK = MD10613 $MN_NCBFRAME_RESET_MASK

– $P_CHBFRMASK = MD24002 $MC_CHBFRAME_RESET_MASK

Example

Machine data setting Active basic frames
$P_NCBFRMASK = MD10613 $MN_NCBFRAME_RE‐
SET_MASK = 'H81'

$P_NCBFRAME[0] :
$P_NCBFRAME[7]

Programming

Basic frame masks
The basic frames that are linked to form the complete basic frame are selected via the basic
frame masks $P_NCBFRMASK and $P_CHBFRMASK.

The appropriate basic frame is selected by setting a bit in the basic frame mask:

● $P_NCBFRMASK, bit 0, 1, 2, ... n ⇒ $P_NCBFRAME[0, 1, 2, ... n]
● $P_CHBFRMASK, bit 0, 1, 2, ... n ⇒ $P_NCHFRAME[0, 1, 2, ... n]
The basic frame masks $P_NCBFRMASK and $P_CHBFRMASK can only be read/written in the
NC program. The basic frame masks can be read via the OPI.

After writing a basic frame mask, the active complete basic frame $P_ACTBFRAME and
complete frame $P_ACTFRAME are recalculated.

Example

Program code Comment
$P_NCBFRMASK = 'H81' ; Active NCU-global basic frames: $P_NCBFRAME[0] :

$P_NCBFRAME[7]

11.5.5.7 Programmable frame $P_PFRAME
Programmable frames are available only as active frames.
This frame is reserved for the programmer.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 783

The programmable frame remains at RESET, if:

MD24010 $MC_PFRAME_RESET_MODE (reset mode for programmable frame) = 1

This functionality is especially important after a RESET if one still wants to retract out of an
oblique hole.

MIRROR
Mirrorings of a geometry axis were previously (up to SW-P4) related to a defined reference
axis only using the machine data:
MD10610 $MN_MIRROR_REF_AX
(reference axis for the mirroring).

From the user's point of view, this definition is difficult to understand. When mirroring the z
axis, the display showed that the x axis was mirrored and the y axis had been rotated through
180 degrees. When mirroring two axes this became even more complex and it was no longer
easy to understand, which axes had been mirrored and, which had not.

As of SW P5, there is the option to clearly display the mirroring of an axis. Mirroring is then
not mapped to mirroring of a reference axis and rotations of other axes.

This setting can be configured using:

MD10610 $MN_MIRROR_REF_AX = 0

MIRROR and AMIRROR are used to expand the programming of the programmable frame.
Previously, the specified value of the coordinate axis, e.g. the value 0 for MIRROR X0 was not
evaluated, but rather the AMIRROR had a toggle function, i.e. MIRROR X0 activates mirroring
and an additional AMIRROR X0 deactivates it. MIRROR always has an absolute effect and
AMIRROR an additive effect.

The
MD10612 $MN_MIRROR_TOGGLE = 0 ("Mirror Toggle")
machine data setting can be used to define that the programmed values are evaluated.
A value of 0, as inAMIRROR X0, deactivates the mirroring of the axis, and values not equal to
0 cause the axis to be mirrored if it is not already mirrored.

Reading or writing mirroring component-by-component is independent of the machine data:

MD10612 $MN_MIRROR_TOGGLE

A value = 0 means that the axis is not mirrored and a value = 1 means that the axis will always
be mirrored, irrespective of whether it has already been mirrored or not.

$P_NCBFR[0,x,mi]=1 ; x axis is always mirrored.
$P_NCBFR[0,x,mi]=0 ; x axis mirroring is OFF.

Axis-specific replacement G58, G59 (only 840D sl)
The translation component of the programmable frame is split into an absolute component and
a component for the total of all additively programmed translations. The absolute component
can be changed using TRANS, CTRANS or by writing the translation components, in which the
additive component is set to zero. G58 changes only the absolute translation component for
the specified axis; the total of additively programmed translations is retained.

G58 X... Y... Z... A... ...

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
784 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

G59 is used for axis-specific overwriting of the additively programmed translations for the
specified axes which were programmed with ATRANS.

G59 X... Y... Z... A... ...

Example

TRANS X10 Y10 Z10
ATRANS X5 Y5 ; Total translations X15 Y15 Z10
G58 X20 ; Total translations X25 Y15 Z10
G59 X10 Y10 ; Total translations X30 Y20 Z10

G58 and G59 can only be used if:

MD24000 $MC_FRAME_ADD_COMPONENTS (frame components for G58 / G59) == TRUE

The table below shows the effect of various program commands on the absolute and additive
translation.

 Coarse or absolute offset Fine or additive offset
TRANS X10 10 0
ATRANS X10 Unchanged alt_fine + 10
CTRANS(X,10) 10 0
CTRANS() 0 0
CFINE(X,10) 0 10
$P_PFRAME[X,TR] = 10 10 Unchanged
$P_PFRAME[X,FI] = 10 Unchanged 10
G58 X10 10 Unchanged
G59 X10 Unchanged 10

11.5.5.8 Channelspecific system frames
Channel-specific system frames are only written by system functions, such as actual value
setting, scratching, external work offset and inclined machining.

Machine data

Parameterization of the channel-specific system frames
Only channel-specific system frames whose system functions are actually used should be
configured for memory space reasons.

Per channel, each system frame occupies approx. 1 KB static and approx. 6 KB dynamic
memory.

The channel-specific system frames are parameterized in the following machine data:

MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit<n>

Bit Value System frame available:
0 1 $P_SETFR: Actual value setting and scratching
1 1 $P_EXTFR: External work offset via system frames

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 785

Bit Value System frame available:
2 1 $P_PARTFR: TCARR and PAROT with an orientable toolholder
3 1 $P_TOOLFR: TOROT and TOFRAME
4 1 $P_WPFR: Frame for workpiece reference points
5 1 $P_CYCFR: Frame for cycles
6 1 $P_TRAFR: Frame for selection and deselection of transformations
7 1 $P_ISO1FRAME : Frame for G51.1 mirroring (ISO)
8 1 $P_ISO2FRAME : Frame for G68 2DROT (ISO)
9 1 $P_ISO3FRAME : Frame for G68 3DROT (ISO)
10 1 $P_ISO4FRAME: Frame for G51 scale (ISO)
11 1 $P_RELFR: Frame for relative coordinate systems

Parameterization of the SZS (ACS) coordinate system
The following machine data is used to specify which system frames form the SZS (ACS)
coordinate system

MD24030 $MC_FRAME_ACS_SET = <value>

<value> Meaning: The SZS (ACS) coordinate system comprises
0 $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :$P_ISO1FRAME : $P_ISO2FRAME :

$P_ISO3FRAME :$P_ACTBFRAME : $P_IFRAME : $P_GFRAME : $P_TOOLFRAME :
$P_WPFRAME

1 $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :$P_ISO1FRAME : $P_ISO2FRAME :
$P_ISO3FRAME :$P_ACTBFRAME : $P_IFRAME : $P_GFRAME : $P_TOOLFRAME :
$P_WPFRAME : $P_TRAFRAME :$P_PFRAME : $P_ISO4FRAME

System variables

Channel-specific system frames of the data management
The channel-specific system frames of the data management can be read and written via the
following frame variables:

System variable Meaning: System frame of the data management for
$P_SETFR Actual value setting and scratching (Set Frame)
$P_EXTFR External work offset (Ext Frame)
$P_PARTFR TCARR and PAROT for orientable toolholder (Part Frame)
$P_TOOLFR TOROT and TOFRAME (Tool Frame)
$P_WPFR Workpiece reference points (WorkPiece Frame)
$P_CYCFR Cycles (Cycle Frame)
$P_TRAFRAME Transformations (Transformation Frame)
$P_ISO1FR G51.1 mirroring (ISO)
$P_ISO2FR G68 2DROT (ISO)
$P_ISO3FR G68 3DROT (ISO)
$P_ISO4FR G51 scale (ISO)
$P_RELFR Relative coordinate systems

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
786 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note
Cycle programming

The frame variables of the system frames are only for the cycle programming. Therefore, in
NC programs the system frames should not be written directly by the user, but rather only via
system functions such as TOROT, PAROT, etc.

Channelspecific active system frames
System variables of the active channel-specific system frames:

System variable Meaning: Active system frame for
$P_SETFRAME Actual value setting and scratching (Set Frame)
$P_EXTFRAME External work offset (Ext Frame)
$P_PARTFRAME TCARR and PAROT for orientable toolholder (Part Frame)
$P_TOOLFRAME TOROT and TOFRAME (Tool Frame)
$P_WPFRAME Workpiece reference points (WorkPiece Frame)
$P_CYCFRAME Cycles (Cycle Frame)
$P_TRAFRAME Transformations (Transformation Frame)
$P_ISO1FRAME G51.1 mirroring (ISO)
$P_ISO2FRAME G68 2DROT (ISO)
$P_ISO3FRAME G68 3DROT (ISO)
$P_ISO4FRAME G51 scale (ISO)
$P_RELFRAME Relative coordinate systems

If a channel-specific system frame of the data management is not parameterized, the following
applies for the corresponding active system frame: $P_<system frame> == null frame.

Channel-specific active SZS (ACS) complete frame
The system variable $P_ACSFRAME is used to read which system frames form the SZS (ACS)
coordinate system. The specification is made via the MD24030 $MC_FRAME_ACS_SET
machine data described above. See Subsection "Machine data" > "Parameterization of the
SZS (ACS) coordinate system"

System variable Meaning: Active system frame for
$P_ACSFRAME System frames that form the SZS (ACS) coordinate system in accordance with

the parameterization in MD24030 $MC_FRAME_ACS_SET

11.5.6 Implicit frame changes

11.5.6.1 Switching geometry axes
Which channel axes are the geometry axis of the channel can change by activating/
deactivating a transformation and with the GEOAX() command.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 787

Four different settings for handling the current $P_ACTFRAME complete frame can be made
with the following machine data:

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = <value>

<value> Meaning
0 Delete

The current complete frame is deleted when geometry axes are switched over, when trans‐
formations are selected and deselected, and on GEOAX().
The modified geometry axis configuration is not used until a new frame is activated.

1 New calculation on receipt of the rotations
The current complete frame is calculated again when the geometry axes are switched over,
whereby the frame components of the new geometry axes are effective. The rotations of the
geometry axes which were programmed before the switchover remain effective for the new
geometry axes.
For TRANSMIT, TRACYL and TRAANG, see Section "Selecting and deselecting transforma‐
tions: General (Page 790)".

2 New calculation only when no rotations were active
The current complete frame is calculated again when the geometry axes are switched over,
whereby the frame components of the new geometry axes are effective. If rotations are active
in the current basic frames, the current settable frame or the programmable frame before
the switchover, it is aborted with the alarm "Frame: Geometry axis switchover not allowed".
For TRANSMIT, TRACYL and TRAANG, see Section "Selecting and deselecting transforma‐
tions: General (Page 790)".

3 Transformation: Reset / GEOAX(): New calculation on receipt of the rotations
● Transformation: The current frame is deleted when selecting and deselecting

transformations.
● GEOAX(): With GEOAX(), the current complete frame is calculated again and the

translations, scalings and mirrorings of the new geometry axes come into effect. The
rotations of the geometry axes which were programmed before the switchover remain
effective for the new geometry axes.

The workpiece geometry is described by a coordinate system that is formed by the geometry
axes. A channel axis is assigned to each geometry axis and a machine axis is assigned to
each channel axis. An axis-specific frame exists for each machine axis (system frame, basic
frame, settable frame, programmable frame). If a different machine axis is assigned to a
geometry axis, the machine axis provides its own axis-specific frame components. The new
geometry in the channel is then generated by the new contour frames resulting from the new
geometry axes (up to three).

The current valid frames are calculated again on the geometry axis switchover and a resulting
complete frame is generated. The data management frames are not included unless they are
activated.

Example:
The channel axis A is to become a geometry axis X through geo axis substitution. The
substitution is to give the programmable frame a translation component of 10 in the X axis.
The current settable frame is to be retained.

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

Program code Comment
$P_UIFR[1] = CROT(X,10,Y,20,Z,30) ; Frame is retained after geo axis substitution.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
788 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
G54 ; Settable frame becomes active.
TRANS A10 ; Axial offset of A is also substituted.
GEOAX(1, A) ; A becomes the X axis

; $P_ACTFRAME = CROT(X,10,Y,20,Z,30) :
CTRANS(X10)

Several channel axes can become geometry axes on a transformation change.

Example:
Channel axes 4, 5 and 6 become the geometry axes of a 5axis transformation. The geometry
axes are thus all substituted before the transformation. The current frames are changed when
the transformation is activated. The axial frame components of the channel axes which become
geometry axes are taken into account when calculating the new WCS. Rotations programmed
before the transformation are retained. The old WCS is restored when the transformation is
deactivated. The most common application is probably that the geometry axes do not change
before and after the transformation and that the frames are to stay as they were before the
transformation.

Machine data

Program code
$MC_AXCONF_CHANAX_NAME_TAB[0] = "CAX"
$MC_AXCONF_CHANAX_NAME_TAB[1] = "CAY"
$MC_AXCONF_CHANAX_NAME_TAB[2] = "CAZ"
$MC_AXCONF_CHANAX_NAME_TAB[3] = "A"
$MC_AXCONF_CHANAX_NAME_TAB[4] = "B"
$MC_AXCONF_CHANAX_NAME_TAB[5] = "C"

$MC_AXCONF_GEOAX_ASSIGN_TAB[0] = 1
$MC_AXCONF_GEOAX_ASSIGN_TAB[1] = 2
$MC_AXCONF_GEOAX_ASSIGN_TAB[2] = 3

$MC_AXCONF_GEOAX_NAME_TAB[0] = "X"
$MC_AXCONF_GEOAX_NAME_TAB[1]="Y"
$MC_AXCONF_GEOAX_NAME_TAB[2] = "Z"

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[0]=4
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[1]=5
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[2]=6

$MC_TRAFO_AXES_IN_1[0] = 4
$MC_TRAFO_AXES_IN_1[1] = 5
$MC_TRAFO_AXES_IN_1[2] = 6
$MC_TRAFO_AXES_IN_1[3] = 1
$MC_TRAFO_AXES_IN_1[4] = 2

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 789

Program:

Program code
$P_NCBFRAME[0] = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6)
$P_CHBFRAME[0] = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6)
$P_IFRAME = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6):CROT(Z,45)
$P_PFRAME = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6):CROT(X,10,Y,20,Z,30)

Program code Comment
TRAORI ; Transformation sets GEOAX(4,5,6)
 ; $P_NCBFRAME[0] = CTRANS(X,4,Y,5,Z,6,CAX,1,CAY,2,CAZ,3)
 ; $P_ACTBFRAME =CTRANS(X,8,Y,10,Z,12,CAX,2,CAY,4,CAZ,6)
 ; $P_PFRAME = CTRANS(X,4,Y,5,Z,6,CAX,1,CAY,2,CAZ,3):CROT(X,10,Y,

20,Z,30)
 ; $P_IFRAME = CTRANS(X,4,Y,5,Z,6,CAX,1,CAY,2,CAZ,3):CROT(Z,45)
TRAFOOF ; Deactivation of the transformation sets GEOAX(1,2,3)
 ; $P_NCBFRAME[0] = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6)
 ; $P_CHBFRAME[0] = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6)
 ; $P_IFRAME = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6):CROT(Z,45)
 ; $P_PFRAME = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6):CROT(X,10,Y,20,Z,

30)

11.5.6.2 Selecting and deselecting transformations: General
As a rule, the assignment of geometry axes to the channel axes changes when selecting and
deselecting transformations. It is not possible to uniquely assign axis-specific frame
components to geometric contour frame components when carrying out transformations, in
which rotary axes become linear axes and vice versa. The contour frame must be conditioned
using special treatment for such non-linear transformations.

The mode, set with MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1 and 2, is
expanded in such a way as to take the above transformations into account.

When selecting transformations, the contour frame is connected to the axis-specific frames.
The virtual geometry axis of the TRANSMIT, TRACYL and TRAANG transformations is subject
to special treatment.

Note
Transformations with virtual axes

When selecting TRANSMIT or TRACYL, offsets, scaling and mirroring of the real Y axis are
not accepted in the virtual Y axis. Offsets, scaling and mirroring of the virtual Y axis are deleted
for TRAFOOF.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
790 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.5.6.3 Selecting and deselecting transformations: TRANSMIT

Transmit expansions
The machine data below can be used to take the axis-specific complete frame of the
TRANSMIT rotary axis, i.e. translation, mirroring and scaling, into account in the transformation:

● MD24905 $MC_TRANSMIT_ROT_AX_FRAME_1 = 1

● MD24955 $MC_TRANSMIT_ROT_AX_FRAME_2 = 1

A rotary axis offset can, for example, be entered by compensating the oblique position of a
workpiece in a frame within a frame chain. As a rule, this offset can also be included in the
transformation as an offset in the rotary axis. A C axis offset, as in the figure above, then leads
to corresponding X and Y values.

● MD24905 $MC_TRANSMIT_ROT_AX_FRAME_1 = 2

● MD24955 $MC_TRANSMIT_ROT_AX_FRAME_2 = 2

With this setting, the axis-specific offset of the rotary axis is taken account of in the
transformation up to the SZS. The axis-specific offsets of the rotary axis included in the SZS
frames are entered into the transformation frame as rotation. This setting is only effective if
the transformation frame has been configured.

Frame expansions:
The expansions described below are only valid for the following machine data settings:

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 2

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 791

The selection of transformation TRANSMIT produces a virtual geometry axis, coupled by way
of the rotary axis, which is merely included in the contour frame but does not have a reference
to an axis-specific frame. The geometric value results from the rotation of a rotary axis. All
other geometry axes accept their axis-specific components when the transformation is
selected.

Components:

● Translations
When selecting TRANSMIT, translations of the virtual axis are deleted. Translations of the
rotary axis can be taken into account in the transformation.

● Rotations
Rotations before the transformation are accepted.

● Mirrorings
Mirroring of the virtual axis is deleted. Mirroring of the rotary axis can be taken into account
in the transformation.

● Scalings
Scaling of the virtual axis is deleted. Scaling of the rotary axis can be taken into account in
the transformation.

Example: Machine data

; FRAME configurations

$MC_MM_SYSTEM_FRAME_MASK='H41' ; TRAFRAME, SETFRAME
$MC_CHSFRAME_RESET_MASK='H41' ; Frames are active after Reset.
$MC_CHSFRAME_POWERON_MASK='H41' ; Frames are deleted for Power On.

$MN_FRAME_GEOAX_CHANGE_MODE=1 ; Frames are calculated after switchover

of the geo axis.
$MC_RESET_MODE_MASK='H4041' ; Basic frame is not deselected after Re-

set.
;$MC_RESET_MODE_MASK='H41' ; Basic frame is deselected after Reset.

;$MC_GCODE_RESET_VALUES[7]=2 ; G54 is the default setting.
$MC_GCODE_RESET_VALUES[7]=1 ; G500 is the default setting.

$MN_MM_NUM_GLOBAL_USER_FRAMES=0
$MN_MM_NUM_GLOBAL_BASE_FRAMES=3

$MC_MM_NUM_USER_FRAMES=10 ; From 5 to 100
$MC_MM_NUM_BASE_FRAMES=3 ; From 0 to 8

$MN_NCBFRAME_RESET_MASK='HFF'
$MC_CHBFRAME_RESET_MASK='HFF'

$MN_MIRROR_REF_AX=0 ; No scaling when mirroring.
$MN_MIRROR_TOGGLE=0

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
792 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

$MN_MM_FRAME_FINE_TRANS=1 ; Fine offset
$MC_FRAME_ADD_COMPONENTS=TRUE ; G58, G59 is possible.

; TRANSMIT is the 1st transformation
$MC_TRAFO_TYPE_1=256

$MC_TRAFO_AXES_IN_1[0]=1
$MC_TRAFO_AXES_IN_1[1]=6
$MC_TRAFO_AXES_IN_1[2]=3
$MC_TRAFO_AXES_IN_1[3]=0
$MC_TRAFO_AXES_IN_1[4]=0

$MA_ROT_IS_MODULO[AX6]=TRUE;

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[0]=1
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[1]=6
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[2]=3

$MC_TRANSMIT_BASE_TOOL_1[0]=0.0
$MC_TRANSMIT_BASE_TOOL_1[1]=0.0
$MC_TRANSMIT_BASE_TOOL_1[2]=0.0

$MC_TRANSMIT_ROT_AX_OFFSET_1=0.0
$MC_TRANSMIT_ROT_SIGN_IS_PLUS_1=TRUE

$MC_TRANSMIT_ROT_AX_FRAME_1=1

; TRANSMIT is the 2nd transformation
$MC_TRAFO_TYPE_2=256

$MC_TRAFO_AXES_IN_2[0]=1
$MC_TRAFO_AXES_IN_2[1]=6
$MC_TRAFO_AXES_IN_2[2]=2
$MC_TRAFO_AXES_IN_2[3]=0
$MC_TRAFO_AXES_IN_2[4]=0

$MC_TRAFO_GEOAX_ASSIGN_TAB_2[0]=1
$MC_TRAFO_GEOAX_ASSIGN_TAB_2[1]=6
$MC_TRAFO_GEOAX_ASSIGN_TAB_2[2]=2

$MC_TRANSMIT_BASE_TOOL_2[0]=4.0
$MC_TRANSMIT_BASE_TOOL_2[1]=0.0
$MC_TRANSMIT_BASE_TOOL_2[2]=0.0

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 793

$MC_TRANSMIT_ROT_AX_OFFSET_2=19.0
$MC_TRANSMIT_ROT_SIGN_IS_PLUS_2=TRUE

$MC_TRANSMIT_ROT_AX_FRAME_2=1

Example: Part program

; Frame settings
N820 $P_UIFR[1] = ctrans(x,1,y,2,z,3,c,4)
N830 $P_UIFR[1] = $P_UIFR[1] : crot(x,10,y,20,z,30)
N840 $P_UIFR[1] = $P_UIFR[1] : cmirror(x,c)
N850
N860 $P_CHBFR[0] = ctrans(x,10,y,20,z,30,c,15)
N870

; Tool selection, clamping compensation, plane selection
N890 T2 D1 G54 G17 G90 F5000 G64 SOFT
N900

; Approach start position
N920 G0 X20 Z10
N930
N940 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,C,15)
N950 setal(61000)
N960 endif
N970 if $P_BFRAME <> $P_CHBFR[0]
N980 setal(61000)
N990 endif
N1000 if $P_IFRAME <>
CTRANS(X,1,Y,2,Z,3,C,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1010 setal(61000)
N1020 endif
N1030 if $P_IFRAME <> $P_UIFR[1]
N1040 setal(61000)
N1050 endif
N1060 if $P_ACTFRAME <>
CTRANS(X,11,Y,22,Z,33,C,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1070 setal(61000)
N1080 endif
N1090
N1100 TRANSMIT(2)
N1110
N1120 if $P_BFRAME <> CTRANS(X,10,Y,0,Z,20,CAZ,30,C,15)
N1130 setal(61000)
N1140 endif

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
794 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N1180 if $P_IFRAME <>
CTRANS(X,1,Y,0,Z,2,CAZ,3,C,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1190 setal(61000)
N1200 endif
N1240 if $P_ACTFRAME <>
CTRANS(X,11,Y,0,Z,22,CAZ,33,C,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1250 setal(61001)
N1260 endif
N1270
N1280
N1290 $P_UIFR[1,x,tr] = 11
N1300 $P_UIFR[1,y,tr] = 14
N1310
N1320 g54
N1330

; Set frame
N1350 ROT RPL=-45
N1360 ATRANS X-2 Y10
N1370

; Four-edge roughing
N1390 G1 X10 Y-10 G41 OFFN=1; allowance 1 mm
N1400 X-10
N1410 Y10
N1420 X10
N1430 Y-10
N1440

; Tool change
N1460 G0 Z20 G40 OFFN=0
N1470 T3 D1 X15 Y-15
N1480 Z10 G41
N1490

; Four-edge finishing
N1510 G1 X10 Y-10
N1520 X-10
N1530 Y10
N1540 X10
N1550 Y-10
N1560

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 795

; Deselect frame
 N2950 m30 N1580 Z20 G40
N1590 TRANS
N1600
N1610 if $P_BFRAME <> CTRANS(X,10,Y,0,Z,20,CAZ,30,C,15)
N1620 setal(61000)
N1630 endif
N1640 if $P_BFRAME <> $P_CHBFR[0]
N1650 setal(61000)
N1660 endif
N1670 if $P_IFRAME <>
TRANS(X,11,Y,0,Z,2,CAZ,3,C,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1680 setal(61000)
N1690 endif
N1730 if $P_ACTFRAME <>
TRANS(X,21,Y,0,Z,22,CAZ,33,C,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1740 setal(61001)
N1750 endif
N1760
N1770 TRAFOOF
N1780
N1790 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,C,15)
N1800 setal(61000)
N1810 endif
N1820 if $P_BFRAME <> $P_CHBFR[0]
N1830 setal(61000)
N1840 endif
N1850 if $P_IFRAME <>
TRANS(X,11,Y,2,Z,3,C,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1860 setal(61000)
N1870 endif
N1880 if $P_IFRAME <> $P_UIFR[1]
N1890 setal(61000)
N1900 endif
N1910 if $P_ACTFRAME <>
TRANS(X,21,Y,22,Z,33,C,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1920 setal(61002)
N1930 endif
N1940
N2010 $P_UIFR[1] = ctrans()
N2011 $P_CHBFR[0] = ctrans()
N2020 $P_UIFR[1] = ctrans(x,1,y,2,z,3,c,0)
N2021 G54
N2021 G0 X20 Y0 Z10 C0

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
796 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N2030 TRANSMIT(1)
N2040 TRANS x10 y20 z30
N2041 ATRANS y200
N2050 G0 X20 Y0 Z10
N2051 if $P_IFRAME <> CTRANS(X,1,Y,0,Z,3,CAY,2)
N2052 setal(61000)
N2053 endif
N2054 if $P_ACTFRAME <> CTRANS(X,11,Y,20,Z,33,CAY,2):CFINE(Y,200)
N2055 setal(61002)
N2056 endif
N2060 TRAFOOF
N2061 if $P_IFRAME <> $P_UIFR[1]
N2062 setal(61000)
N2063 endif
N2064 if $P_ACTFRAME <> CTRANS(X,11,Y,2,Z,33):CFINE(Y,0)
N2065 setal(61002)
N2066 endif

11.5.6.4 Selecting and deselecting transformations: TRACYL

TRACYL expansions:
The machine data below can be used to take the axis-specific complete frame of the TRACYL
rotary axis, i.e. the translation, fine offset, mirroring and scaling, into account in the
transformation:

● MD24805 $MC_TRACYL_ROT_AX_FRAME_1 = 1

● MD24855 $MC_TRACYL_ROT_AX_FRAME_2 = 1

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 797

A rotary axis offset can, for example, be entered by compensating the oblique position of a
workpiece in a frame within a frame chain. As a rule, this offset can also be included in the
transformation as an offset in the rotary axis or as a y offset. A C axis offset, as in the figure
above, then leads to corresponding X and Y values.

● MD24805 $MC_TRACYL_ROT_AX_FRAME_1 = 2

● MD24855 $MC_TRACYL_ROT_AX_FRAME_2 = 2

With this setting, the axis-specific offset of the rotary axis is taken account of in the
transformation up to the SZS. The axial offsets of the rotary axis included in the SZS frames
are entered into the transformation frame as offsets on the peripheral surface. This setting is
only effective if the transformation frame has been configured.

Frame expansions:
The expansions described below are only valid for the following machine data settings:

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 2

The selection of transformation TRACYL produces a virtual geometry axis on the peripheral
surface, coupled via the rotary axis, which is only taken into account in the contour frame but
does not have a reference to an axis-specific frame. All components of the virtual geometry
axis are deleted. All other geometry axes accept their axis-specific components when the
transformation is selected.

Components:

● Translations
When selecting TRACYL, translations of the virtual axis are deleted. Translations of the
rotary axis can be taken into account in the transformation.

● Rotations
Rotations before the transformation are accepted.

● Mirrorings
Mirroring of the virtual axis is deleted. Mirroring of the rotary axis can be taken into account
in the transformation.

● Scalings
Scaling of the virtual axis is deleted. Scaling of the rotary axis can be taken into account in
the transformation.

Example: Machine data

; FRAME configurations

$MC_MM_SYSTEM_FRAME_MASK = 'H41' ; TRAFRAME, SETFRAME
$MC_CHSFRAME_RESET_MASK = 'H41' ; Frames are active after Reset.
$MC_CHSFRAME_POWERON_MASK = 'H41' ; Frames are deleted for Power On.

$MN_FRAME_GEOAX_CHANGE_MODE = 1 ; Frames are calculated after switchover

of the geo axis.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
798 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

$MC_RESET_MODE_MASK = 'H4041' ; Basic frame is not deselected after Re-
set.

;$MC_RESET_MODE_MASK = 'H41' ; Basic frame is deselected after Reset.

;$MC_GCODE_RESET_VALUES[7] = 2 ; G54 is the default setting.
$MC_GCODE_RESET_VALUES[7] = 1 ; G500 is the default setting.

$MN_MM_NUM_GLOBAL_USER_FRAMES = 0
$MN_MM_NUM_GLOBAL_BASE_FRAMES = 3

$MC_MM_NUM_USER_FRAMES = 10 ; from 5 to 100
$MC_MM_NUM_BASE_FRAMES = 3 ; from 0 to 8

$MN_NCBFRAME_RESET_MASK = 'HFF'
$MC_CHBFRAME_RESET_MASK = 'HFF'

$MN_MIRROR_REF_AX = 0 ; No scaling when mirroring.
$MN_MIRROR_TOGGLE = 0
$MN_MM_FRAME_FINE_TRANS = 1 ; Fine offset
$MC_FRAME_ADD_COMPONENTS = TRUE ; G58, G59 is possible

; TRACYL with groove wall offset is the 3rd transformation

$MC_TRAFO_TYPE_3 = 513; TRACYL

$MC_TRAFO_AXES_IN_3[0] = 1
$MC_TRAFO_AXES_IN_3[1] = 5
$MC_TRAFO_AXES_IN_3[2] = 3
$MC_TRAFO_AXES_IN_3[3] = 2

$MC_TRAFO_GEOAX_ASSIGN_TAB_3[0] = 1
$MC_TRAFO_GEOAX_ASSIGN_TAB_3[1] = 5
$MC_TRAFO_GEOAX_ASSIGN_TAB_3[2] = 3

$MC_TRACYL_BASE_TOOL_1[0] = 0.0
$MC_TRACYL_BASE_TOOL_1[1] = 0.0
$MC_TRACYL_BASE_TOOL_1[2] = 0.0

$MC_TRACYL_ROT_AX_OFFSET_1 = 0.0
$MC_TRACYL_ROT_SIGN_IS_PLUS_1 = TRUE

$MC_TRACYL_ROT_AX_FRAME_1 = 1

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 799

Example: Part program

;Simple traversing test with groove side offset
N450 G603
N460

; Frame settings
N500 $P_UIFR[1] = CTRANS(x,1,y,2,z,3,b,4)
N510 $P_UIFR[1] = $P_UIFR[1] : CROT(x,10,y,20,z,30)
N520 $P_UIFR[1] = $P_UIFR[1] : CMIRROR(x,b)
N530
N540 $P_CHBFR[0] = CTRANS(x,10,y,20,z,30,b,15)
N550
N560 G54
N570

; Continuous-path mode with selected smoothing
N590 G0 x0 y0 z-10 b0 G90 F50000 T1 D1 G19 G641 ADIS=1 ADISPOS=5
N600
N610 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,B,15)
N620 setal(61000)
N630 endif
N640 if $P_BFRAME <> $P_CHBFR[0]
N650 setal(61000)
N660 endif
N670 if $P_IFRAME <>
TRANS(X,1,Y,2,Z,3,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N680 setal(61000)
N690 endif
N700 if $P_IFRAME <> $P_UIFR[1]
N710 setal(61000)
N720 endif
N730 if $P_ACTFRAME <>
TRANS(X,11,Y,22,Z,33,B,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N740 setal(61000)
N750 endif
N760

; Transformation ON
N780 TRACYL(40.)
N790
N800 if $P_BFRAME <> CTRANS(X,10,Y,0,Z,30,CAY,20,B,15)
N810 setal(61000)
N820 endif

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
800 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N830 if $P_CHBFR[0] <> CTRANS(X,10,Y,0,Z,30,CAY,20,B,15)
N840 setal(61000)
N850 endif
N860 if $P_IFRAME <>
TRANS(X,1,Y,0,Z,3,CAY,2,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N870 setal(61000)
N880 endif
N890 if $P_UIFR[1] <>
TRANS(X,1,Y,0,Z,3,CAY,2,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N900 setal(61000)
N910 endif
N920 if $P_ACTFRAME <>
TRANS(X,11,Y,0,Z,33,CAY,22,B,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N930 setal(61001)
N940 endif
N950
N960 $P_UIFR[1,x,tr] = 11
N970 $P_UIFR[1,y,tr] = 14
N980
N990 g54
N1000
N1010 if $P_BFRAME <> CTRANS(X,10,Y,0,Z,30,CAY,20,B,15)
N1020 setal(61000)
N1030 endif
N1040 if $P_BFRAME <> $P_CHBFR[0]
N1050 setal(61000)
N1060 endif
N1070 if $P_IFRAME <>
TRANS(X,11,Y,0,Z,3,CAY,2,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N1080 setal(61000)
N1090 endif
N1100 if $P_IFRAME <> $P_UIFR[1]
N1110 setal(61000)
N1120 endif
N1130 if $P_ACTFRAME <>
TRANS(X,21,Y,0,Z,33,CAY,22,B,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N1140 setal(61001)
N1150 endif
N1160

; Transformation off
N1180 TRAFOOF
N1190
N1200 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,B,15)
N1210 setal(61000)

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 801

N1220 endif
N1230 if $P_BFRAME <> $P_CHBFR[0]
N1240 setal(61000)
N1250 endif
N1260 if $P_IFRAME <>
TRANS(X,11,Y,2,Z,3,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N1270 setal(61000)
N1280 endif
N1290 if $P_IFRAME <> $P_UIFR[1]
N1300 setal(61000)
N1310 endif
N1320 if $P_ACTFRAME <>
TRANS(X,21,Y,22,Z,33,B,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)
N1330 setal(61002)
N1340 endif
N1350
N1360 G00 x0 y0 z0 G90
N1370
N1380 m30

11.5.6.5 Selecting and deselecting transformations: TRAANG

Frame expansions:

The expansions described below are only valid for the following machine data settings:

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 2

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
802 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Components:

● Translations
When selecting TRAANG, translations of the virtual axis are deleted.

● Rotations
Rotations before the transformation are accepted.

● Mirrorings
Mirrorings of the virtual axis are taken over.

● Scalings
Scalings of the virtual axis are taken over.

Example: Machine data

; FRAME configurations

$MC_MM_SYSTEM_FRAME_MASK = 'H1' ; SETFRAME
$MC_CHSFRAME_RESET_MASK = 'H41' ; Frames are active after RESET.
$MC_CHSFRAME_POWERON_MASK = 'H41' ; Frames are deleted for "Power On".

$MN_FRAME_GEOAX_CHANGE_MODE = 1 ; Frames are calculated after switchover

of the geo axis.

$MC_RESET_MODE_MASK = 'H4041' ; Basic frame is not deselected after RE-

SET.
;$MC_RESET_MODE_MASK = 'H41' ; Basic frame is deselected after RESET.

;$MC_GCODE_RESET_VALUES[7] = 2 ; G54 is the default setting.
$MC_GCODE_RESET_VALUES[7] = 1 ; G500 is the default setting.

$MN_MM_NUM_GLOBAL_USER_FRAMES = 0
$MN_MM_NUM_GLOBAL_BASE_FRAMES = 3

$MC_MM_NUM_USER_FRAMES = 10 ; from 5 to 100
$MC_MM_NUM_BASE_FRAMES = 3 ; from 0 to 8

$MN_NCBFRAME_RESET_MASK = 'HFF'
$MC_CHBFRAME_RESET_MASK = 'HFF'

$MN_MIRROR_REF_AX = 0 ; No scaling when mirroring.
$MN_MIRROR_TOGGLE = 0
$MN_MM_FRAME_FINE_TRANS = 1 ; Fine offset
$MC_FRAME_ADD_COMPONENTS = TRUE ; G58, G59 is possible.

; TRAANG is the 1st transformation

$MC_TRAFO_TYPE_1 = 1024

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 803

$MC_TRAFO_AXES_IN_1[0] = 4 ; Inclined axis
$MC_TRAFO_AXES_IN_1[1] = 3 ; Axis is parallel to z
$MC_TRAFO_AXES_IN_1[2] = 2
$MC_TRAFO_AXES_IN_1[3] = 0
$MC_TRAFO_AXES_IN_1[4] = 0

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[0]=4
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[1]=2
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[2] = 3

$MC_TRAANG_ANGLE_1 = 85.
$MC_TRAANG_PARALLEL_VELO_RES_1 = 0.
$MC_TRAANG_PARALLEL_ACCEL_RES_1 = 0.

$MC_TRAANG_BASE_TOOL_1[0] = 0.0
$MC_TRAANG_BASE_TOOL_1[1] = 0.0
$MC_TRAANG_BASE_TOOL_1[2] = 0.0

; TRAANG is the 2nd transformation

$MC_TRAFO_TYPE_2 = 1024

$MC_TRAFO_AXES_IN_2[0] = 4
$MC_TRAFO_AXES_IN_2[1] = 3
$MC_TRAFO_AXES_IN_2[2] = 0
$MC_TRAFO_AXES_IN_2[3] = 0
$MC_TRAFO_AXES_IN_2[4] = 0

$MC_TRAFO_GEOAX_ASSIGN_TAB_2[0] = 4
$MC_TRAFO_GEOAX_ASSIGN_TAB_2[1] = 0
$MC_TRAFO_GEOAX_ASSIGN_TAB_2[2] = 3

$MC_TRAANG_ANGLE_2 = -85.
$MC_TRAANG_PARALLEL_VELO_RES_2 = 0.2
$MC_TRAANG_PARALLEL_ACCEL_RES_2 = 0.2

$MC_TRAANG_BASE_TOOL_2[0] = 0.0
$MC_TRAANG_BASE_TOOL_2[1] = 0.0
$MC_TRAANG_BASE_TOOL_2[2] = 0.0

Example: Part program

; Frame settings
N820 $P_UIFR[1] = ctrans(x,1,y,2,z,3,b,4,c,5)

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
804 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N830 $P_UIFR[1] = $P_UIFR[1] : crot(x,10,y,20,z,30)
N840 $P_UIFR[1] = $P_UIFR[1] : cmirror(x,c)
N850
N860 $P_CHBFR[0] = ctrans(x,10,y,20,z,30,b,40,c,15)
N870

; Tool selection, clamping compensation, plane selection
N890 T2 D1 G54 G17 G90 F5000 G64 SOFT
N900

; Approach start position
N920 G0 X20 Z10
N930
N940 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,B,40,C,15)
N950 setal(61000)
N960 endif
N970 if $P_BFRAME <> $P_CHBFR[0]
N980 setal(61000)
N990 endif
N1000 if $P_IFRAME <>
TRANS(X,1,Y,2,Z,3,B,4,C,5):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1010 setal(61000)
N1020 endif
N1030 if $P_IFRAME <> $P_UIFR[1]
N1040 setal(61000)
N1050 endif
N1060 if $P_ACTFRAME <>
TRANS(X,11,Y,22,Z,33,B,44,C,20):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1070 setal(61000)
N1080 endif
N1090
N1100 TRAANG(,1)
N1110
N1120 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,CAX,10,B,40,C,15)
N1130 setal(61000)
N1140 endif
N1150 if $P_BFRAME <> $P_CHBFR[0]
N1160 setal(61000)
N1170 endif
N1180 if $P_IFRAME <>
CTRANS(X,1,Y,2,Z,3,CAX,1,B,4,C,5):CROT(X,10,Y,20,Z,30):CMIRROR(X,CAX,C)
N1190 setal(61000)
N1200 endif
N1210 if $P_IFRAME <> $P_UIFR[1]

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 805

N1220 setal(61000)
N1230 endif
N1240 if $P_ACTFRAME <>
TRANS(X,11,Y,22,Z,33,CAX,11,B,44,C,20):CROT(X,10,Y,20,Z,
30):CMIRROR(X,CAX,C)
N1250 setal(61001)
N1260 endif
N1270
N1280
N1290 $P_UIFR[1,x,tr] = 11
N1300 $P_UIFR[1,y,tr] = 14
N1310
N1320 g54
N1330

; Set frame
N1350 ROT RPL=-45
N1360 ATRANS X-2 Y10
N1370

; Four-edge roughing
N1390 G1 X10 Y-10 G41 OFFN=1; allowance 1 mm
N1400 X-10
N1410 Y10
N1420 X10
N1430 Y-10
N1440

; Tool change
N1460 G0 Z20 G40 OFFN=0
N1470 T3 D1 X15 Y-15
N1480 Z10 G41
N1490

; Four-edge finishing
N1510 G1 X10 Y-10
N1520 X-10
N1530 Y10
N1540 X10
N1550 Y-10
N1560

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
806 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

; Deselect frame
N1580 Z20 G40
N1590 TRANS
N1600
N1610 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,CAX,10,B,40,C,15)
N1620 setal(61000)
N1630 endif
N1640 if $P_BFRAME <> $P_CHBFR[0]
N1650 setal(61000)
N1660 endif
N1670 if $P_IFRAME <>
TRANS(X,11,Y,14,Z,3,CAX,1,B,4,C,5):CROT(X,10,Y,20,Z,30):CMIRROR(X,CAX,C)
N1680 setal(61000)
N1690 endif
N1700 if $P_IFRAME <> $P_UIFR[1]
N1710 setal(61000)
N1720 endif
N1730 if $P_ACTFRAME <>
TRANS(X,21,Y,34,Z,33,CAX,11,B,44,C,20):CROT(X,10,Y,20,Z,
30):CMIRROR(X,CAX,C)
N1740 setal(61001)
N1750 endif
N1760
N1770 TRAFOOF
N1780
N1790 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,B,40,C,15)
N1800 setal(61000)
N1810 endif
N1820 if $P_BFRAME <> $P_CHBFR[0]
N1830 setal(61000)
N1840 endif
N1850 if $P_IFRAME <>
TRANS(X,1,Y,14,Z,3,B,4,C,5):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1860 setal(61000)
N1870 endif
N1880 if $P_IFRAME <> $P_UIFR[1]
N1890 setal(61000)
N1900 endif
N1910 if $P_ACTFRAME <>
TRANS(X,11,Y,34,Z,33,B,44,C,20):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)
N1920 setal(61002)
N1930 endif
N1940
N1950 m30

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 807

11.5.6.6 Adapting active frames
The geometry axis constellation can change during the program processing or for RESET. The
number of existent geometry axes varies between zero to three. For non-existent geometry
axes, components in the active frames (e.g. rotations) can cause the active frames for these
axis constellations to become invalid. This is indicated with the "Channel %1 block %2 rotation
programmed for non-existent geometry axis" alarm. The alarm remains pending until the
frames have been changed appropriately.

The automatic adaptation of active frames can be activated with the following machine data:

MD24040 $MC_FRAME_ADAPT_MODE, bit<n> = <value>

Bit <value> Meaning
0 1 Rotations in active frames that rotate coordinate axes for which there are no ge‐

ometry axes, are deleted from the active frames.
1 1 Shearing angles in active frames are made orthogonal.
2 1 Scaling factors of all geometry axes in the active frames are set to 1.

All rotations in the active frames that could cause coordinate axis motions for non-existent
geometry axes are deleted with the following machine data:

MD24040 $MC_FRAME_ADAPT_MODE = 1

The data management frames are not changed in the process. Only the possible rotations are
accepted for the activation of data management frames.

Example:
No Y axis exists:

● MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[0] = 1

● MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[1] = 0

● MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[2] = 3

● $P_UIFR[1] = CROT(X,45,Y,45,Z,45)

Program code ; Comment
N390 G54 G0 X10 Z10 F10000
IF $P_IFRAME <> CROT(Y,45) ; Only the rotation around Y is transfer-

red
 SETAL(61000)
ENDIF

11.5.6.7 Mapped Frames

Overview
The "mapped frames" function supports the cross-channel consistent change of axis-specific
frames inside channel-specific or global data management frames. Using axis-specific
machine data, it is defined between which axes mapping is realized.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
808 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

If frame mapping is, e.g. active for machine axes AX1 and AX4, and the axis-specific frame of
axis AX1 is changed in a channel-specific data management frame (e.g. basic frame
$P_CHBFR[x]) (translation, fine translation, scaling, mirroring), then this frame data for AX1
and AX4 is transferred to all channel-specific data management frames (e.g. basic frame
$P_CHBFR[x]) in all channels in which they are parameterized as channel axes.

Frame mapping is not realized when changing the axis-specific frame data for the rotation.

Requirements
The following requirements must be fulfilled for frame mapping:

● The data management frames used for mapping must be configured:
MD28083 $MC_MM_SYSTEM_DATAFRAME_MASK (system frames)

● Channel-specific data management frames must be explicitly enabled for mapping:
MD10616 $MN_MAPPED_FRAME_MASK (enable frame mapping)

Note
For global data management frames, mapping is always carried out. An enable is not
required.

Parameterization
The parameterization of the mapping relationships is realized in the axis-specific machine data:

MD32075 $MA_MAPPED_FRAME[<AXn>] = "AXm"

AXn, AXm: Machine axis name with n, m = 1, 2, ... max. number of machine axes

Mapping rules
The following rules apply for frame mapping:

● The mapping is bidirectional.
An axis-specific frame can be written for axis AXn or AXm. The frame data is always
accepted and taken for the other axis.

● All parameterized mapping relationships are always evaluated.
When writing an axis-specific frame of axes AXn, all mapping relationships are evaluated
and the frame data accepted for all directly and indirectly involved axes.

● The mapping is global across all channels.
When writing an axis-specific frame of axis AXn or AXm for a channel-specific frame, the
frame data is accepted for all channels in which AXn or AXm are parameterized as channel
axes.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 809

● When writing an axis-specific frame using geometry or special axis name, the mapping
relationships are evaluated via the machine axes currently assigned to the geometry or
special axis.

● Mapping is frame-specific.
When writing an axis-specific frame, the frame data is only mapped within the same channel-
specific or global data management frame.

Note
Data consistency

The user / machine manufacturer is solely responsible for ensuring that after a frame is
written, consistent frame data is available in all channels, e.g. by using channel
synchronization.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
810 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 Description Parameterization: $MA_
① Simple mapping relationship:

AX1(K1) ↔ AX4(K2)
MAPPED_FRAME[<AX1>] = "AX4"

② Chained mapping relationships:
AX1(K1) ↔ AX4(K2) ↔ AX7(K3)

MAPPED_FRAME[<AX1>] = "AX4"
MAPPED_FRAME[<AX4>] = "AX7"

③ Mapping relationship to itself, with AX1 as chan‐
nel axis of channels 1, 2 and 3:
AX1(K1+K2+K3)

MAPPED_FRAME[<AX1>] = "AX1"

④ Mapping relationship between two axes, the
channel axes in two channels are:
AX1(K1+K2) ↔ AX4(K3+K4)

MAPPED_FRAME[<AX1>] = "AX4"

⑤ Chained mapping relationships where multiple
channel axes can be written in the same channel:
AX4(K1) ↔ AX7(K2) ↔ AX8(K2) ↔ AX5(K1)

MAPPED_FRAME[<AX4>] = "AX7"
MAPPED_FRAME[<AX7>] = "AX8"
MAPPED_FRAME[<AX8>] = "AX5"

Figure 11-25 Mapping examples

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 811

Activating the data management frame
Data management frames can be written in the part program and via the user interface of
SINUMERIK Operate. The following should be noted when activating the data management
frames in the channels written directly and via frame mapping:

● Writing in the part program
The data management frames must be explicitly activated in each channel (G500, G54 ...
G599)

● Writing via user interface
Data management frames are written via the user interface, e.g. by entering new work
offsets. A modified data management frame is immediately active in all of the involved
channels if none of these channels is in the "Channel active" state. The data management
frame is not active in any channel if one of the channels involved is in the "Channel active"
state. The activation must then be explicitly programmed in each channel in the part
program (G500, G54 ... G599). Or, the next time that the channel state changes, it becomes
active after "Channel reset".

Example
The following channels and channel axes are parameterized at a control:

● Channel 1

– Z: Geometry axis

– AX1: Machine axis of geometry axis Z

● Channel 2

– Z: Geometry axis

– AX4: Machine axis of geometry axis Z

The zero point of the Z axis should always be the same in both channels:

● Mapping relationship: $MA_MAPPED_FRAME[AX1] = "AX4"

Part programs in channel 1 and 2

Channel 1 Channel 2
... ...
N100 WAIT (10,1,2) N200 WAIT (10,1,2)
N110 $P_UIFR[1] = CTRANS(Z, 10)
N120 WAIT (20,1,2) N220 WAIT (20,1,2)
N130 G54 N230 G54
N140 IF ($P_IFRAME[0, Z, TR] <> 10) N230 IF ($P_IFRAME[0, Z, TR] <> 10)
N150 SETAL(61000) N250 SETAL(61000)
N160 ENDIF N260 ENDIF
... ...

Description:
N100 / N200 Channel synchronization for consistent writing and mapping of frame data

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
812 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N110 Writing of the settable data management frame $P_UIFR[1]:
Moving the zero point of the Z axis to 10 mm
Mapping the axis-specific frame data:
Channel1: Z ≙ AX1 ⇔ channel 2: Z ≙ AX4

N120 / N220 Channel synchronization for consistent activation of new frame data
N130 / N230 Activating the new frame data
N140 / N240 Checking the zero point of the Z axis for: 10 mm

11.5.7 Predefined frame functions

11.5.7.1 Inverse frame
The INVFRAME() function calculates the appropriate inverse frame from a frame.

Function description
The chaining between a frame and its inverse frame always produces a zero frame.
FRAME: INVFRAME(FRAME) ⇒ null frame
Frame inversion is an aid for coordinate transformations. Measuring frames are usually
calculated in the WCS. If you should wish to transform this calculated frame into another
coordinate system, i.e. the calculated frame should be entered into any desired frame within
the frame chain, then the calculations below should be used.

The new complete frame is a chain of the old complete frame and the calculated frame:

$P_ACTFRAME = $P_ACTFRAME: $AC_MEAS_FRAME
The new frame in the frame chain is therefore:

● Target frame is $P_SETFRAME:
$P_SETFRAME = $P_ACTFRAME: $AC_MEAS_FRAME: INVFRAME($P_ACTFRAME):
$P_SETFRAME

● The target frame is the nth channel basic frame $P_CHBFRAME[<n>]:
k = $MN_MM_NUM_GLOBAL_BASE_FRAMES
– For n = 0, TMP is resolved as:

TMP = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
$P_NCBFRAME[<0...k>]

– For n ≠ 0, TMP is resolved as:
TMP = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
$P_NCBFRAME[<0..k>] : $P_CHBFRAME[<0...n> - 1]

$P_CHBFRAME[<n>] = INVFRAME(TMP) : $P_ACTFRAME : $AC_MEAS_FRAME :
INVFRAME($P_ACTFRAME) : TMP : $P_CHBFRAME[<n>]

● The target frame is $P_IFRAME:
TMP = $P_PARTFRAME: $P_SETFRAME: $P_EXTFRAME: $P_BFRAME
$P_IFRAME = INVFRAME(TMP): $P_ACTFRAME: $AC_MEAS_FRAME:
INVFRAME($P_ACTFRAME) : TMP : $P_IFRAME

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 813

Example:
A frame calculated, for example, via a measuring function, must be entered in the current
SETFRAME such that the new complete frame is a chain of the old complete frame and the
measurement frame. The SETFRAME is calculated accordingly by means of frame inversions.

Program code Comment
DEF INT RETVAL
DEF FRAME TMP
$TC_DP1[1,1]=120 ; Type
$TC_DP2[1,1]=20. ; 0
$TC_DP3[1,1]= 10. ; (z) length correction vector
$TC_DP4[1,1]= 0. ; (y)
$TC_DP5[1,1]= 0. ; (x)
$TC_DP6[1,1]= 2. ; Radius
T1 D1
g0 x0 y0 z0 f10000
G54
$P_CHBFRAME[0] = CROT(Z,45)
$P_IFRAME[X,TR] = -SIN(45)
$P_IFRAME[Y,TR] = -SIN(45)
$P_PFRAME[Z,TR] = -45
$AC_MEAS_VALID = 0 ; Measure corner with four measuring

points
G1 X-1 Y-3 ; 1st Approach measuring point
$AC_MEAS_LATCH[0] = 1 ; 1st Store measuring point
G1 X5 Y-3 ; 2. Approach measuring point
$AC_MEAS_LATCH[1] = 1 ; 2. Store measuring point
G1 X-4 Y4 ; 3. Approach measuring point
$AC_MEAS_LATCH[2] = 1 ; 3. Store measuring point
G1 X-4 Y1 ; 4. Approach measuring point
$AC_MEAS_LATCH[3] = 1 ; 4. Store measuring point
$AA_MEAS_SETPOINT[X] = 0 ; Set position setpoint of the corner
$AA_MEAS_SETPOINT[Y] = 0
$AA_MEAS_SETPOINT[Z] = 0
$AC_MEAS_CORNER_SETANGLE = 90 ; Define setpoint angle of intersection
$AC_MEAS_WP_SETANGLE = 30
$AC_MEAS_ACT_PLANE = 0 ; Measuring plane is G17
$AC_MEAS_T_NUMBER = 1 ; Select tool
$AC_MEAS_D_NUMBER = 1
$AC_MEAS_TYPE = 4 ; Set measuring type on corner 1
RETVAL = MEASURE() ; Start measuring process
IF RETVAL <> 0
 SETAL(61000 + RETVAL)
ENDIF
IF $AC_MEAS_WP_ANGLE <> 30
 SETAL(61000 + $AC_MEAS_WP_ANGLE)

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
814 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
ENDIF
IF $AC_MEAS_CORNER_ANGLE <> 90
 SETAL(61000 + $AC_MEAS_CORNER_ANGLE)
ENDIF
; Transform measured frame and write to $P_SETFRAME so that a complete frame is cre-
ated,
; which linked from the old total frame results in the measurement frame.
$P_SETFRAME = $P_ACTFRAME: $AC_MEAS_FRAME: INVFRAME($P_ACTFRAME): $P_SETFRAME
$P_SETFR = $P_SETFRAME ; Describe system frames in data manage-

ment
G1 X0 Y0 ; Approach the corner
G1 X10 ; Retract the rectangle rotated about 30

degrees
Y10
X0
Y0
M30

11.5.7.2 Additive frame in frame chain
Measurements on the workpiece or calculations in the part program or cycle often produce a
frame that is applied additively to the active complete frame. This causes, for example, the
WCS and thus the programming zero point to be displaced and/or possibly rotated. The
measured frame so exists in a frame variable and has not yet been included in the frame chain
calculation.

Function description
The ADDFRAME() function calculates from the temporary frame the specified target frame
specified by the <STRING> parameter so that the new active $P_ACTFRAME complete frame
from the chaining of the old active complete frame with the temporary frame gives:

ERG = ADDFRAME(TMPFRAME,"$P_SETFRAME") ⇒ $P_SETFRAMEnew =
$P_SETFRAMEold ADD TMPFRAME and $P_ACTFRAMEnew = $P_ACTFRAMEold :
TMPFRAME

If an active frame has been specified as a target frame, the new complete frame becomes
active at the preprocessing stage.

If the target frame is a data management frame, the frame becomes active only when it is
activated explicitly in the channel, e.g. part program or cycle.

The function returns a return value for which a user-specific response is possible, e.g. in a
user cycle.

Programming

Syntax
INT ADDFRAME(<FRAME>,<STRING>)

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 815

Meaning

<FRAME>: Frame variable with the values to be included additively in the calculation
Type FRAME

<STRING>: The name of an active or data management frame:
● Active frames

"$P_CYCFRAME", "$P_ISO4FRAME", "$P_PFRAME",
"$P_WPFRAME", "$P_TOOLFRAME", "$P_IFRAME", "$P_GFRAME",
"$P_CHBFRAME[<n>]", "$P_NCBFRAME[<n>]", "$P_ISO1FRAME",
"$P_ISO2FRAME", "$P_ISO3FRAME", "$P_EXTFRAME",
"$P_SETFRAME", "$P_PARTFRAME"

● Data management frames
"$P_CYCFR", "$P_ISO4FR, "$P_TRAFR", "$P_WPFR", "$P_TOOLFR",
"$P_UIFR[<n>]", "$P_GFR", "$P_CHBFR[<n>]", "$P_NCBFR[<n>]",
"$P_ISO1FR, "$P_ISO2FR, "$P_ISO3FR, "$P_EXTFR", "$P_SETFR",
"$P_PARTFR"
Type STRING

Return value: Possible return values:
● 0: OK
● 1: Specified target (string) is wrong
● 2: Target frame is not configured
● 3: Rotation in frame is not permitted

Type INT

11.5.8 Functions

11.5.8.1 Setting zeros, workpiece measuring and tool measuring
Set actual value is initiated by means of an HMI operator action or via measuring cycles. The
calculated frame can be written to system frame SETFRAME. The position setpoint of an axis
in the WCS can be altered during set actual value.

The term "scratching" refers to both the workpiece and tool measurement. The position of the
workpiece can be measured in relation to an edge, a corner or a hole. To determine the zero
position of the workpiece or the hole, position setpoints can be added to the measured positions
in the WCS. The resulting offsets can be entered in a selected frame. In the tool measurement,
the length or radius of a tool can be measured using a measured reference part.

The measurements can be initiated by means of an operator action or via measuring cycles.
Communication with the NC takes place via predefined system variables. The calculation is
performed in the NC when a PI service is activated by means of an HMI operator action or via
a part program command from the measuring cycles. A tool and a plane can be selected as
a basis for the calculation. The calculated frame is entered in the result frame.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
816 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.5.8.2 Axis-specific external work offset

Machine data
The external work offset or the $P_EXTFRAME system frame is activated with the following
machine data:

MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 1 = TRUE

The magnitude for the external work offset can be specified manually via the HMI user
interface, and the PLC user program via OPI or programmed in the part program via the axial
system variable $AA_ETRANS[<axis>].

Activation
The external work offset is activated with the interface signal:
DB31, ... DBX3.0 (accept external work offset)

Behavior
Upon activation of the external work offset, the traversing movements of all axes, except
command and PLC axes, are stopped immediately and the advance is reorganized. The rough
offset of the current system frame and of the system frame in data management is set to the
value of the axial system variable $AA_ETRANS[<axis>]. Thereafter, the offset is traversed
first and then the interrupted movement is continued.

Behavior for incremental dimension
In case of active incremental dimension G91 and machine data:
MD42440 $MC_FRAME_OFFSET_INCR_PROG (work offset in frames) = 0
traversing the offset is done in the scope of the external work offset via system frame, despite
opposite configuring of the machine data, with the approach block, although it is specified by
a frame.

Note

The external work offset always acts absolutely.

11.5.8.3 Toolholder

Translations
With kinematics of type "P" and "M", the selection of a toolholder activates an additive frame
(table offset of the orientable toolholder) which takes into account the work offset as a result
of the rotation of the table. The work offset is entered in the system frame $P_PARTFR. In this
case the translatory component of this frame is overwritten. The other frame components are
retained.

The system frame $P_PARTFR must be enabled via the following machine data:

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 817

MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 2 = 1 (system frame for TCARR and
PAROT)

Note

Alternatively, the offset can also parameterized via machine data to record the table offset:

MD20184 $MC_TOCARR_BASE_FRAME_NUMBER = <number of the basic frame>

This option is only for compatibility reasons to older software versions. You are strongly
recommended not to use this procedure any longer.

A frame offset as a result of a toolholder change becomes effective immediately on selection
of TCARR=.... A change in the tool length, on the other hand, only becomes effective
immediately if a tool is active.

A frame rotation is not executed with the activation, or a rotation which is already active is not
changed. As in case T (only the tool can be rotated), the position of the rotary axes used for
the calculation is dependent on the command TCOFR/TCOABS and determined from the rotation
component of an active frame or from the $TC_CARR entries. Activation of a frame changes
the position in the workpiece coordinate system accordingly, without compensating motion by
the machine itself.

The ratios are shown in the figure below:

Figure 11-26 Frame on activation of a rotary table with TCARR

With kinematics of type M (tool and table are each rotary around one axis), the activation of a
toolholder with TCARR simultaneously produces a corresponding change in the effective tool
length (if a tool is active) and the work offset.

Rotations
Depending on the machining task, it is necessary to take into account not only a work offset
(whether as frame or as tool length) when using a rotary toolholder or table, but also a rotation.
However, the activation of an orientable toolholder never leads directly to a rotation of the
coordinate system.

If only the tool can be rotated, a frame can be defined for it using TOFRAME or TOROT.

With rotary tables (kinematics types P and M), activation with TCARR similarly does not lead
to an immediate rotation of the coordinate system, i.e. even though the zero point of the

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
818 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

coordinate system is offset relative to the machine, while remaining fixed relative to the zero
point of the workpiece, the orientation remains unchanged in space.

If the coordinate system needs to be fixed relative to the workpiece, i.e. not only offset relative
to the original position but also rotated according to the rotation of the table, then PAROT can
be used to activate such a rotation in a similar manner to the situation with a rotary tool.

With PAROT, the translations, scalings and mirroring in the active frame are retained, but the
rotation component is rotated by the rotation component of an orientable toolholder
corresponding to the table. The entire programmable frame including its rotation component
remains unchanged.

The rotation component that describes the rotation of the table is then either entered in the
system frame $PARTFR or in the basic frame parameterized with MD20184
$MC_TOCARR_BASE_FRAME_NUMBER:

$MC_MM_SYSTEM_FRAME_MASK, bit 2 = <value>

Value Meaning
1 Rotation component → $PARTFR
0 Rotation component → MD20184 $MC_TOCARR_BASE_FRAME_NUMBER

As with the note made in the description of the table offset, the second alternative here is not
recommended for use with new systems.

The rotation component of the part frame can be deleted with PAROTOF, irrespective of whether
this frame is in a basic or a system frame.
The translation component is deleted when a toolholder which does not produce an offset is
activated or a possibly active orientable toolholder is deselected with TCARR=0.

PAROT or TOROT take into account the overall orientation change in cases where the table or
the tool are oriented with two rotary axes. With mixed kinematics, only the corresponding
component caused by a rotary axis is considered. It is thus possible, for example, when using
TOROT, to rotate a workpiece such that an inclined plane lies parallel to the XY plane fixed in
space, whereby rotation of the tool must be taken into account in machining where any holes
to be drilled, for example, are not perpendicular to this plane.

Example
On a machine, the rotary axis of the table points in the positive Y direction. The table is rotated
by +45 degrees. PAROT defines a frame which similarly describes a rotation of 45 degrees
around the Y axis. The coordinate system is not rotated relative to the actual environment
(marked in the figure with "Position of the coordinate system after TCARR"), but is rotated by
-45 degrees relative to the defined coordinate system (position after PAROT). If this coordinate
system is defined with ROT Y-45, for example, and if the toolholder is then selected with active
TCOFR, an angle of +45 degrees will be determined for the rotary axis of the toolholder.

Language command PAROT is not rejected if no orientable toolholder is active. However, such
a call then produces no frame changes.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 819

Machining in direction of tool orientation
Particularly on machines with tools that can be oriented, traversing should take place in the
tool direction (typically, when drilling) without activating a frame (e.g. using TOFRAME or
TOROT), on which one of the axes points in the direction of the tool. This is also a problem if,
when carrying out inclined machining operations, a frame defining the inclined plane is active,
but the tool cannot be set exactly perpendicularly because an indexed toolholder (Hirth tooth
system) prevents free setting of the tool orientation. In these cases it is then necessary -
contrary to the motion actually requested perpendicular to the plane - to drill in the tool direction,
as the drill would otherwise not be guided in the direction of its longitudinal axis (tool breaks).

Incremental traversing
The end point for incremental traversing motion in the tool direction is programmed using MOVT
= <Value> or MOVT=IC(<Value>).

The positive traversing direction is defined from the tool tip to the tool adapter. Corresponding
to paraxial machining, e.g. with G91 Z

Absolute traversing
The end point for absolute incremental traversing motion in the tool direction is programmed
using MOVT=AC(<Value>).

In this case a plane is defined, which runs through the current zero point, and whose surface
normal vector is parallel to the tool orientation. MOVT then gives the position relative to this
plane (see figure). The reference plane is only used to calculate the end position. Active frames
are not affected by this internal calculation.

Programming with MOVT is independent of the existence of a toolholder that can be oriented.
The direction of the motion is dependent on the active plane.
It runs in the directions of the vertical axes, i.e. with G17 in Z direction, with G18 in Y direction
and with G19 in X direction. This applies when no orientable toolholder is active and for the
case of an orientable toolholder without rotary tool or with a rotary tool in its basic setting.

MOVT acts similarly for active orientation transformation (3-, 4-, 5-axis transformation).

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
820 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

If in a block with MOVT the tool orientation is changed simultaneously (e.g. active 5-axis
transformation by means of simultaneous interpolation of the rotary axes), the orientation at
the start of the block is decisive for the direction of motion of MOVT.
With an active 5-axis transformation, the path of the tool center point (TCP) is not affected by
the change of orientation, i.e. the path remains a straight line and its direction is determined
by the tool orientation at the start of the block.

If MOVT is programmed, linear or spline interpolation must be active (G0,G1, ASPLINE,
BSPLINE, CSPLINE). Otherwise, an alarm is produced.
If a spline interpolation is active, the resultant path is generally not a straight line, since the
end point calculated by MOVT is treated as if it had been programmed explicitly with X, Y, Z.

It is not permissible to program geometry axes in a block with MOVT.

Definition of frame rotations with solid angles
Where a frame is to be defined to describe a rotation around more than one axis, this is
achieved through chaining individual rotations. The subsequent rotation is realized in the newly
rotated coordinate system.

This applies both to programing in one block - and when configuring a frame in several
consecutive blocks:

● One block: N10 ROT X... Y... Z...
● Several consecutive blocks:

N10 ROT Y...
N20 AROT X...
N30 AROT Z...

Solid angle
Often, solid angles are specified in workpiece drawings to define inclined surfaces. Solid angles
are angles which the intersection lines of the inclined plane form with the main planes (X-Y, Y-
Z, Z-X planes) of the workpiece coordinate system (see diagram). The orientation of a plane
in space is defined unambiguously by specifying two solid angles. The third solid angle is
derived from the first two.

Rotations can be directly defined as solid angle using ROTS, AROTS and CROTS commands.

It is permissible to specify a single solid angle. The rotation which is performed with ROTS or
AROTS in this case is identical to that for ROT and AROT.

The two axes programmed in the command define a plane. The non-programmed axis defines
the associated third axis of a coordinate system. This also means that for the two programmed
axes, it is uniquely defined which is the first axis and which is the second axis. The definition
corresponds to the definition of a plane for G17/G18/G19.

The angle programmed with the axis letter of an axis of the plane then specifies the axis,
around which the other axis of the plane must be rotated in order to move this into the line of
intersection, which the rotated plane forms with the plane surrounded by the other and the
third axis. This definition ensures that, in the case that one of the two programmed angles is
towards zero, the defined plane enters the plane, which is created if only one axis is
programmed (e.g. with ROT or AROT).

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 821

I, ...,
IV

Quadrants 1 to 4

① Inclined plane as specification for the new G17 plane
α, β Solid angle of the inclined plane

Figure 11-27 Rotation around the solid angle

In the diagram, the solid angles are shown for an example of a plane in quadrants I to IV. The
inclined plane defines the alignment of the G17 plane after rotating the workpiece coordinate

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
822 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

system WCS. The sign of the solid angle specifies the direction around which the coordinate
system is rotated around the relevant axis.

1. Rotation around y:
Rotation of the workpiece coordinate system WCS around the y axis around the signed
angle α ⇒
The x' axis is aligned parallel (colinear) to the intersection lines of the xz plane with the
inclined plane

2. Rotation around x':
Rotation of the new workpiece coordinate system WCS around the x' axis around the signed
angle β ⇒

– The y' axis is aligned in parallel (colinear) to the intersection lines of the zy plane with
the inclined plane

– The z' axis is perpendicular to the inclined plane

– G17' lies in parallel to the inclined plane

The programming to align the G17 plane of the workpiece coordinate system WCS to the
inclined plane is, for each quadrant:

● Quadrant I: ROTS X<+α> Y<-β>

● Quadrant II: ROTS X<-α> Y<-β>

● Quadrant III: ROTS X<-α> Y<+β>

● Quadrant IV: ROTS X<+α> Y<+β>

Orientation
The specification of the solid angle does not define the orientation of the two-dimensional
coordinate system within the plane (i.e. the angle of rotation around the surface normal vector).
The position of the coordinate system is thus determined so that the rotated first axis lies in
the plane which is formed by the first and third axes of the non-rotated coordinate system.

This means that

● When programming X and Y, the new X axis lies in the original Z-X plane.

● When programming Z and X, the new Z axis lies in the original Y-Z plane.

● When programming Y and Z, the new Y axis lies in the original X-Y plane.

If the required coordinate system does not correspond to this basic setting, then an additional
rotation must be performed with AROT....

Parameterization: zy'x'' (RPY angle) or zx'z'' convention
The programmed solid angles are converted to the equivalent Euler angles according to the
the zy'x" convention (RPY angle) or zx'z" convention when entering depending on the following
machine data:

MD10600 $MN_FRAME_ANGLE_INPUT_MODE

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 823

Frame rotation in tool direction
With the language command TOFRAME, which also existed in older software versions, it is
possible to define a frame whose Z axis points in the tool direction.
An already programmed frame is then overwritten by a frame which describes a pure rotation.
Any work offsets, mirrorings or scalings existing in the previously active frame are deleted.
This response is sometimes interfering. It is often particularly practical to retain a work offset,
with which the reference point in the workpiece is defined.

The language command TOROT is then also used. This command overwrites only the rotation
component in the programmed frame and leaves the remaining components unchanged. The
rotation defined with TOROT is the same as that defined with TOFRAME.
TOROT is, like TOFRAME, independent of the availability of an orientable toolholder. This
language command is also especially useful for 5-axis transformations.

The new language command TOROT ensures consistent programming with active orientable
toolholders for each kinematics type.

TOFRAME or TOROT defines frames whose Z direction points in the tool direction. This definition
is suitable for milling, where G17 is usually active. However, particularly with turning or, more
generally, when G18 or G19 is active, it is desirable that frames which will be aligned on the X
or Y axis, can be defined. For this purpose, the following commands are available in G group
53:

● TOFRAMEX, TOFRAMEY, TOFRAMEZ
● TOROTX, TOROTY, TOROTZ
The appropriate frames can be defined with these commands. The functions of TOFRAME and
TOFRAMEZ or of TOROT and TOROTZ are identical to one another.

The frames resulting from TOROT or TOFRAME can be written in a separate system frame
($P_TOOLFR). The programmable frame is then retained unchanged.

● Requirement: MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 3 = 1

When programming TOROT or TOFRAME, etc. response is identical, with or without a system
frame. Differences occur when the programmable frame is processed further elsewhere.

Note

In new systems, it is recommended that only the intended system frame is used for frames
produced by the commands of G group 53.

Example
TRANS is programmed after TOROT. TRANS without specified parameters deletes the
programmable frame. In the variant without a system frame, this also deletes the frame
component of the programmable frame produced by TOROT, but if the TOROT component is in
the system frame, it is retained.

TOROT or TOFRAME, etc. are disabled with language command TOROTOF. TOROTOF deletes
the entire system frame $P_TOOLFR. If the programmable frame (old variant) and not the
system frame is described by commands TOFRAME, etc. TOROT only deletes the rotation
component and leaves the remaining frame components unchanged.

If a rotating frame is already active before language command TOFRAME or TOROT is activated,
a request is often made that the newly defined frame should deviate as little as possible from

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
824 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

the old frame. This is the case, for example, if a frame definition needs to be modified slightly
because the tool orientation cannot be set freely on account of Hirth-toothed rotary axes. The
language commands uniquely define the Z direction of the new frame.

Parameterization: Frame definition for TOFRAME, TOROT and PAROT (SD42980)
With the following setting data, the direction of the geometry axes of the actual machining
plane (G17: X and Y axis) for the frame definition is defined using TOFRAME, TOROT
(TOROTY, TOROTX) or PAROT.

For a frame calculation, the tool direction is defined, so that the tool direction and applicate
(G17: Z axis) of the frame are parallel and perpendicular to the machining plane.

Initially, rotation around the tool axis is arbitrary. Using the setting data, this free rotation can
be defined so that the newly defined frame deviates as little as possible from a previously
active frame.

In all cases where the setting data is not equal to zero, an active frame remains unchanged if
the tool direction of the old and the new frame match one another.

SD42980 $SC_TOFRAME_MODE

TCARR (request toolholder) and PAROT (align workpiece coordinate system on the workpiece)
TCARR uses the basic frame identified by following machine data:
MD20184 $MC_TOCARR_BASE_FRAME_NUMBER.

A system frame can be created for TCARR and PAROT alone, in order to avoid conflicts with
systems, which already use all the basic frames.

PAROT, TOROT and TOFRAME have previously changed the rotation component of the
programmable frames. In this case, it is not possible to shut down PAROT or TOROT separately.
On RESET, the programmable frame is deleted, which means that after changing the operating
mode to JOG, the rotation component of PAROT and TOROT is no longer available. The user
must also have unrestricted access to the programmable frame. Frames produced by PAROT
and TOROT must be able to be archived and reloaded via data backup.

The system frame for TCARR and PAROT is configured with:
MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 2 = 1

The following machine data is then no longer evaluated:
MD20184 $MC_TOCARR_BASE_FRAME_NUMBER

If the system frame for TCARR is configured, TCARR and PAROT describe that corresponding
system frame; otherwise the basic frame identified by machine data MD20184 is described.

With kinematics systems of the types P and M, TCARR will enter the table offset of the orientable
toolholder (work offset resulting from the rotation of the table) as a translation into the system
frame. PAROT converts the system frame so that a workpiece-related WCS results.

The system frames are stored retentively and therefore retained after a reset. The system
frames also remain active in the case of a mode change.

For the display, the commands PAROT and TOROT, TOFRAME are each assigned to a separate
G group.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 825

PAROTOF
PAROTOF is the switch off command for PAROT. This command deletes the rotations in the
system frame for PAROT. In so doing, the rotations in the current $P_PARTFRAME and in the
data management frame $P_PARTFR are deleted. The position of the coordinate system is
then recreated according to TCARR. PAROTOF is in the same G group as PAROT and appears
therefore in the G command display.

TOROT (align Z axis of the WCS by rotating the frame parallel to the tool orientation) and TOFRAME
(ditto.)

The system frame for TOROT and TOFRAME is activated via the following machine data:
MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 3 = 1

This system frame is located before the programmable frame in the frame chain.
The SZS coordinate system is located before the programmable frame.

TOROTOF
TOROTOF is the switch off command for TOROT and TOFRAME. This command deletes the
corresponding system frame. The current $P_TOOLFRAME and the data management frame
$P_TOOLFR are also deleted. TOROTOF is in the same G group as TOROT and TOFRAME and
appears therefore in the G command display.

Example
Use of an orientable toolholder with resolved kinematics.

N10 $TC_DP1[1,1]=120
N20 $TC_DP3[1,1]= 13 ; Tool length 13 mm
; Definition of toolholder 1:
N30 $TC_CARR1[1] = 0 ; X component of the 1st offset vector
N40 $TC_CARR2[1] = 0 ; Y component of the 1st offset vector
N50 $TC_CARR3[1] = 0 ; Z component of the 1st offset vector
N60 $TC_CARR4[1] = 0 ; X component of the 2nd offset vector
N70 $TC_CARR5[1] = 0 ; Y component of the 2nd offset vector
N80 $TC_CARR6[1] = -15 ; Z component of the 2nd offset vector
N90 $TC_CARR7[1] = 1 ; X component of the 1st axis
N100 $TC_CARR8[1] = 0 ; Y component of the 1st axis
N110 $TC_CARR9[1] = 0 ; Z component of the 1st axis
N120 $TC_CARR10[1] = 0 ; X component of the 2nd axis
N130 $TC_CARR11[1] = 1 ; Y component of the 2nd axis
N140 $TC_CARR12[1] = 0 ; Z component of the 2nd axis
N150 $TC_CARR13[1] = 30 ; Angle of rotation of 1st axis
N160 $TC_CARR14[1] = -30 ; Angle of rotation of 2nd axis
N170 $TC_CARR15[1] = 0 ; X component of the 3rd offset vector
N180 $TC_CARR16[1] = 0 ; Y component of the 3rd offset vector
N190 $TC_CARR17[1] = 0 ; Z component of the 3rd offset vector
N200 $TC_CARR18[1] = 0 ; X component of the 4th offset vector

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
826 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N210 $TC_CARR19[1] = 0 ; Y component of the 4th offset vector
N220 $TC_CARR20[1] = 15 ; Z component of the 4th offset vector
N230 $TC_CARR21[1] = A ; Reference for 1st axis
N240 $TC_CARR22[1] = B ; Reference for 2nd axis
N250 $TC_CARR23[1] = "M" ; Toolholder type
N260 X0 Y0 Z0 A0 B45 F2000
N270 TCARR=1 X0 Y10 Z0 T1 TCOABS ; Selection of orientable tool holder
N280 PAROT ; Rotation of table
N290 TOROT ; Rotation of z axis in tool orient.
N290 X0 Y0 Z0
N300 G18 MOVT=AC(20) ; Processing in G18 plane
N310 G17 X10 Y0 Z0 ; Processing in G17 plane
N320 MOVT=-10
N330 PAROTOF ; Deactivate rotation of table
N340 TOROTOF ; No longer align WCS with tool
N400 M30

11.5.9 Subprograms with SAVE attribute (SAVE)
For various frames, the behavior regarding subprograms can be set using the SAVE attribute.

Settable frames G54 to G599
The behavior of the adjustable frames can be set using MD10617
$MN_FRAME_SAVE_MASK.BIT0 :

● BIT0 = 0
If using the subprogram, only the values of the active adjustable frame are changed using
the system variable $P_IFRAME, but the G command is kept, then the change is also kept
after the end of the subprogram.

● BIT0 = 1
With the end of the subprogram, the adjustable frame, G command and values, active
before the subprogram call, are reactivated.

Basic frames $P_CHBFR[] and $P_NCBFR[]
The behavior of the basic frame can be set using MD10617
$MN_FRAME_SAVE_MASK.BIT1:

● BIT1 = 0
If the active basic frame is changed by the subprogram, the change remains effective even
after the end of the subprogram.

● BIT1 = 1
With the end of the subprogram the basic frame which is active before the subprogram call
is reactivated.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 827

Programmable frame
With the end of the subprogram the programmable frame active before the subprogram call is
reactivated.

System frames
If the system frames are changed by the subprogram, the change remains effective even after
the end of the subprogram.

11.5.10 Data backup

Data blocks
The data backup of the frames is performed in the following data blocks:

● Channel-specific frames ⇒ _N_CHAN<x>_UFR data blocks

● Global frames ⇒ _N_NC_UFR data block

Note
● It is strongly recommended that the following machine data is not changed between the

backup and restoration of the saved system frames. Otherwise, it is possible that the saved
system frames cannot be loaded.
MD28082 $MC_MM_SYSTEM_FRAME_MASK (configuration of channel-specific system
frames that are included in the channel calculation)

● The data backup is always performed in accordance with geometry axis assignments
currently valid in the channel rather than in accordance with the axis constellations originally
set in the machine data.

Data backup of system frames
Only the system frames created in the data management are considered for the data backup
of the system frames. These system frames were selected during the commissioning of the
control with the following machine data:

MD28083 $MC_MM_SYSTEM_DATAFRAME_MASK

Frames not created in the data management are not backed up.

Data backup of NC-global frames
A data backup of NC-global frames is performed only when at least one NC-global frame has
been parameterized in one of the following machine data items:

● MD18601 $MN_MM_NUM_GLOBAL_USER_FRAMES

● MD18602 $MN_MM_NUM_GLOBAL_BASE_FRAMES

● MD18603 $MN_MM_NUM_GLOBAL_G_FRAMES

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
828 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.5.11 Positions in the coordinate system
The current setpoint positions in the coordinate systems can be read via the following system
variables: The actual values can be displayed in the WCS, SZS, BZS or MCS via the PLC.
There is an Actual value display softkey in the MCS/WCS. The machine manufacturer can
specify on the PLC which coordinate system corresponds to the workpiece coordinate system
on a machine. The HMI requests the corresponding actual values form the NC.

$AA_IM[axis]

The setpoints in the machine coordinate system can be read for each axis with the
$AA_IM[axis] variable.

$AA_IEN[axis]

The setpoints in the settable zero system (SZS) can be read for each axis with the
$AA_IEN[axis] variable.

$AA_IBN[axis]

The setpoints in the basic zero system (BZS) can be read with the $AA_IBN[axis] variable.

$AA_IW[axis]

The setpoints in the workpiece coordinate system (WCS) can be read with the $AA_IW[axis]
variable.

11.5.12 Control system response

11.5.12.1 POWER ON

Frame Frame conditions after POWER ON
$P_PFRAME programmable frame Deleted.
$P_IFRAME settable frame Is retained, depending on:

● MD24080 $MC_USER_FRAME_POWERON_MASK, bit 0
● MD20152 $MC_GCODE_RESET_MODE[7]

$P_GFRAME grinding frame Is retained, depending on:
● MD24080 $MC_USER_FRAME_POWERON_MASK, bit 0
● MD20152 $MC_GCODE_RESET_MODE[63]

$P_ACTBFRAME complete basic
frame

Is retained, depending on:
● MD20110 $MC_RESET_MODE_MASK bit 0 and bit 14
Basic frames can be deleted via machine data:
● MD10615 $MN_NCBFRAME_POWERON_MASK
● MD24004 $MC_CHBFRAME_POWERON_MASK

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 829

Frame Frame conditions after POWER ON
System frames:
$P_PARTFRAME, $P_SET‐
FRAME, $P_ISO1FRAME,
$P_ISO2FRAME,
$P_ISO3FRAME, $P_TOOL‐
FRAME, $P_WPFRAME, $P_TRA‐
FRAME, $P_ISO4FRAME, $P_RE‐
LFRAME, $P_CACFRAME

Retained
Individual system frames can be deleted via machine data:
● MD24008 $MC_CHSFRAME_POWERON_MASK
Deletion of system frames is executed in the data management
on first priority.

$P_EXTFRAME external work off‐
set

Is retained, but has to be activated again.

DRF offset Deleted.

11.5.12.2 Mode change

System frames
The system frames are retained and remain active.

JOG mode
In JOG mode, the frame components of the current frame are only taken into account for the
geometry axes if a rotation is active. No other axis-specific frames are taken into account.

PLC and command axes
The response for PLC and command axes can be set via machine data:

MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED (frame or HL correction is not
permissible)

11.5.12.3 Channel reset / part program end

Reset behavior of the basic frames
The reset behavior of the basic frames is set via the machine data:

MD20110 $MC_RESET_MODE_MASK (definition of initial control settings after channel reset /
part program end)

Reset behavior of system frames
The system frames are retained in the data management after a channel reset / part program
end.

The machine data below can be used to configure the activation of individual system frames:

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
830 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD24006 $MC_CHSFRAME_RESET_MASK, bit<n> = <VALUE> (active system frames after
channel-reset / part program end)

Bit Value Meaning
0 1 System frame for actual value setting and scratching is active after channel reset /

part program end.
1 1 System frame for external work offset is active after channel reset / part program

end.
2 --- Is not evaluated.
3 --- Is not evaluated.
4 1 System frame for workpiece reference points is active after channel reset / part

program end.
5 1 System frame for cycles is active after channel reset / part program end.
6 --- Reserved, RESET response depends on MD20110 $MC_RESET_MODE_MASK.
7 1 System frame $P_ISO1FR is active after channel reset / part program end.
8 1 System frame $P_ISO2FR is active after channel reset / part program end.
9 1 System frame $P_ISO3FR is active after channel reset / part program end.
10 1 System frame $P_ISO4FR is active after channel reset / part program end.
11 1 System frame $P_RELFR is active after channel reset / part program end.

For bit<n> = 0, the associated system frame is not active.

Reset behavior of the system frames for TCARR, PAROT, TOROT and TOFRAME
The reset behavior of the system frames for TCARR, PAROT, TOROT and TOFRAME after channel
reset / part program end depends on the reset setting of the G commands.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 831

The setting is made with machine data:

● MD20110 $MC_RESET_MODE_MASK, bit<n> = <value>

Bit Value Meaning
0 0 The current system frame for TCARR and PAROT is retained.
0 1 Additional relevant machine data settings Effect

MD20152 $MC_GCODE_RESET_MODE[51] = 0 and
MD20150 $MC_GCODE_RESET_VALUES[51] = 1

PAROTOF

MD20152 $MC_GCODE_RESET_MODE[51] = 0 and
MD20150 $MC_GCODE_RESET_VALUES[51] = 2

PAROT

MD20152 $MC_GCODE_RESET_MODE[51] = 1 TCARR and
PAROT are re‐
tained.

MD20152 $MC_GCODE_RESET_MODE[52] = 0 and
MD20150 $MC_GCODE_RESET_VALUES[52] = 1

TOROTOF

MD20152 $MC_GCODE_RESET_MODE[52] = 0 and
MD20150 $MC_GCODE_RESET_VALUES[52] = 2

TOROT

MD20152 $MC_GCODE_RESET_MODE[52] = 0 and
MD20150 $MC_GCODE_RESET_VALUES[52] = 3

TOFRAME

MD20152 $MC_GCODE_RESET_MODE[52] = 1 TOROT and
TOFRAME are re‐
tained

Description of the further bits for bit 0 == 1
14 0 Chained complete basic frame is deleted.

1 The complete basic frame results from the following additional machine data:
MD24002 $MC_CHBFRAME_RESET_MASK, bit<n> = 1
n: The nth channel-specific basic frame is calculated into the chained complete
basic frame.
MD10613 $MN_NCBFRAME_RESET_MASK, bit<n> = 1
n: The nth NCU-global basic frame is calculated into the chained complete basic
frame.

TCARR and PAROT are two independent functions, which describe the same frame. With
PAROTOF, the component of TCARR is not activated for channel reset / part program end.

● MD20152 $MC_GCODE_RESET_MODE[] (RESET response of G groups)

● MD20150 $MC_GCODE_RESET_VALUES (RESET position of G groups)

Frame states after channel reset / part program end

Frame Status after channel reset / part program end
$P_PFRAME programmable frame Deleted.
$P_IFRAME settable frame Is retained, depending on:

● MD20110 $MC_RESET_MODE_MASK
● MD20152 $MC_GCODE_RESET_MODE[7]

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
832 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Frame Status after channel reset / part program end
$P_GFRAME grinding frame Is retained, depending on:

● MD20110 $MC_RESET_MODE_MASK
● MD20152 $MC_GCODE_RESET_MODE[63]

$P_ACTBFRAME complete basic
frame

Is retained, depending on:
● MD20110 $MC_RESET_MODE_MASK bit 0 and bit 14
● MD10613 $MN_NCBFRAME_RESET_MASK
● MD24002 $MC_CHBFRAME_RESET_MASK

System frames:
$P_PARTFRAME, $P_SETFRAME,
$P_ISO1FRAME, $P_ISO2FRAME,
$P_ISO3FRAME, $P_TOOLFRAME,
$P_WPFRAME, $P_TRAFRAME,
$P_ISO4FRAME, $P_RELFRAME,
$P_CACFRAME

Are retained, depending on:
● MD24006 $MC_CHSFRAME_RESET_MASK
● MD20150 $MC_GCODE_RESET_VALUES[<n>]

$P_EXTFRAME external work offset Retained
DRF offset Retained

Deletion of system frames
The system frames in the data management can be deleted for channel reset / part program
end with the following machine data:

MD24007 $MC_CHSFRAME_RESET_CLEAR_MASK, bit<n> = <value>

Bit Value Meaning
0 1 System frame for actual value setting and scratching is deleted for channel reset /

part program end.
1 1 System frame for external work offset is deleted for channel reset / part program

end.
2 --- Reserved, for TCARR and PAROT see MD20150 $MC_GCODE_RESET_VAL‐

UES[].
3 --- Reserved, for TOROT and TOFRAME see MD20150 $MC_GCODE_RESET_VAL‐

UES[].
4 1 System frame for workpiece reference points is deleted for channel reset / part

program end.
5 1 System frame for cycles is deleted for channel reset / part program end.
6 --- Reserved, RESET response depends on MD20110 $MC_RESET_MODE_MASK.
7 1 System frame $P_ISO1FR is deleted for channel reset / part program end.
8 1 System frame $P_ISO2FR is deleted for channel reset / part program end.
9 1 System frame $P_ISO3FR is deleted for channel reset / part program end.
10 1 System frame $P_ISO4FR is deleted for channel reset / part program end.
11 1 System frame $P_RELFR is deleted for channel reset / part program end.

For bit<n> = 0, the associated system frame is not deleted.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 833

11.5.12.4 Part program start

Frame conditions after part program start

Frame Condition after part program start
$P_PFRAME programmable frame Deleted.
$P_IFRAME settable frame Is retained depending on:

MD20112 $MC_START_MODE_MASK
$P_GFRAME grinding frame Is retained depending on:

MD20112 $MC_START_MODE_MASK
$P_ACTBFRAME complete basic frame Retained
System frames:
$P_PARTFRAME, $P_SETFRAME,
$P_ISO1FRAME, $P_ISO2FRAME,
$P_ISO3FRAME, $P_TOOLFRAME,
$P_WPFRAME, $P_TRAFRAME,
$P_ISO4FRAME, $P_RELFRAME,
$P_CACFRAME

Retained

$P_EXTFRAME external work offset Retained
DRF offset Retained

11.5.12.5 Block search

Block search with calculation
Data management frames are also modified when carrying out a block search with calculation.

Cancellation of block search
If a block search is aborted with channel reset, then the following machine data can be used
to set that all data management frames are reset to the value they had before the block search:

MD28560 $MC_MM_SEARCH_RUN_RESTORE_MODE, bit<n>

Bit Value Meaning
0 1 All frames in the data management are restored.

In case of cascaded block searches, the frames are set to the status of the previous block
search.

SERUPRO
The "SERUPRO" function is not supported.

11.5.12.6 REPOS
There is no special treatment for frames. If a frame is modified in an ASUB, it is retained in the
program. On repositioning with REPOS, a modified frame is included, provided the modification
was activated in the ASUB.

K2: Axis Types, Coordinate Systems, Frames
11.5 Frames

Basic Functions
834 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.6 Workpiece-related actual value system

11.6.1 Overview

Definition
The term "workpiece-related actual-value system" designates a series of functions that permit
the user:

● To use a workpiece coordinate system defined in machine data after powerup.
Features:

– No additional operations are necessary.

– Effective in JOG and AUTOMATIC modes

● To retain the valid settings for the following after end of program for the next part program:

– Active plane

– Settable frame (G54-G57)

– Kinematic transformation

– Active tool offset

● To change between work coordinate system and machine coordinate system via the user
interface.

● To change the work coordinate system by operator action (e.g., changing the settable frame
or the tool offset).

11.6.2 Use of the workpiece-related actual value system

Requirements, basic settings
The settings described in the previous Section have been made for the system.
The predefined setting after power-up of the HMI software is MCS.

Switchover to WCS
The change to the WCS via the user interface causes the axis positions relative to the origin
of the WCS to be displayed.

Switchover to MCS
The change to the MCS via the user interface causes the axis positions relative to the origin
of the MCS to be displayed.

K2: Axis Types, Coordinate Systems, Frames
11.6 Workpiece-related actual value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 835

Interrelationships between coordinate systems
The figure below shows the interrelationships between the machine coordinate system (MCS)
and the workpiece coordinate system (WCS).

Figure 11-28 Interrelationship between coordinate systems

For further information, see "H2: Auxiliary function outputs to PLC (Page 401)" and "W1: Tool
offset (Page 1451)".

References:

● Programming Guide Fundamentals

● Function Manual, Extended Functions; Kinematic Transformation (M1)

K2: Axis Types, Coordinate Systems, Frames
11.6 Workpiece-related actual value system

Basic Functions
836 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Function Manual, Special Functions; Axis Couplings and ESR (M3);
Section: Coupled motion, Section: Master value coupling

● Function Manual, Special Functions; Tangential Control (T3)

11.6.3 Special reactions

Overstore
Overstoring in RESET state of:

● Frames (zero offsets)

● Active plane

● Activated transformation

● Tool offset

immediately affects the actual-value display of all axes in the channel.

Entry via operator panel front
If operations on the operator panel are used to change the values for
"Active frame" (zero offsets, "Parameters" operating area)
and
"Active tool length compensation" ("Parameters" operating area)
, one of the following actions is used to activate these changes in the display:

● Press the RESET key.

● Reselect:

– Zero offset by the part program

– Tool offset by the part program

● Reset:

– Zero offset by overstoring

– Tool offset by overstoring

● Part program start

MD9440
If the HMI machine data
MD9440 ACTIVATE_SEL_USER_DATA
 for the operator panel front is set, the entered values become active immediately in RESET
state.

When values are entered in the part-program execution stop state, they become effective when
program execution continues.

K2: Axis Types, Coordinate Systems, Frames
11.6 Workpiece-related actual value system

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 837

Actual-value reading
If the actual value of $AA_IW is read in the WCS after activation of a frame (zero offset) or a
tool offset, the activated changes are already contained in the result read even if the axes have
not yet been traversed with the activated changes.

The actual values in the settable zero system (SZS) can be read from the part program for
each axis using the variable $AA_IEN[axis].

The actual values in the basic zero system (BZS) can be read from the part program for each
axis using the variable $AA_IBN[axis].

Actual-value display
The programmed contour is always displayed in the WCS.

The following offsets are added to the MCS:

● Kinematic transformation

● DRF offset/zero offset external

● Active frame

● Active tool offset of the current tool

Switchover by PLC
The actual values can be displayed in the WCS, SZS, BZS or MCS via the PLC. The PLC can
define, which coordinate system corresponds to the workpiece coordinate system on a
machine.

On MMC power-up the MCS is preset.
With the signal DB19 DBB0.7 "MCS/WCS switchover", it is also possible to switch from the
PLC to the WCS.

Transfer to PLC
Depending on machine data
MD20110 / MD20112, bit 1
, the auxiliary functions (D, T, M) are output to the PLC (or not) on selection of the tool length
compensation.

Note

If the WCS is selected from the PLC, an operator action can still be used to switch between
the WCS and MCS for the relevant mode.
However, when the mode and or area is changed, the WCS selected by the PLC is evaluated
and activated (see Section "K1: Mode group, channel, program operation, reset response
(Page 479)").

K2: Axis Types, Coordinate Systems, Frames
11.6 Workpiece-related actual value system

Basic Functions
838 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.7 Restrictions
There are no supplementary conditions to note.

11.8 Examples

11.8.1 Axes

Axis configuration for a 3axis milling machine with rotary table

1. Machine axis: X1 Linear axis
2. Machine axis: Y1 Linear axis
3. Machine axis: Z1 Linear axis
4. Machine axis: B1 Rotary table (for turning for multiface machining)
5. Machine axis: W1 Rotary axis for tool magazine (tool revolver)
6. Machine axis: C1 (Spindle)

1. Geometry axis: X (1. channel)
2. Geometry axis: Y (1. channel)
3. Geometry axis: Z (1. channel)
1. Special axis: B (1. channel)
2. Special axis: WZM (1. channel)
1. spindle: S1/C (1. channel)

K2: Axis Types, Coordinate Systems, Frames
11.8 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 839

Parameterization of the machine data

Machine data Value
MD10000 AXCONF_MACHAX_NAME_TAB[0] = X1
MD10000 AXCONF_MACHAX_NAME_TAB[1] = Y1
MD10000 AXCONF_MACHAX_NAME_TAB[2] = Z1
MD10000 AXCONF_MACHAX_NAME_TAB[3] = B1
MD10000 AXCONF_MACHAX_NAME_TAB[4] = W1
MD10000 AXCONF_MACHAX_NAME_TAB[5] = C1

MD20050 AXCONF_GEOAX_ASSIGN_TAB[0] = 1
MD20050 AXCONF_GEOAX_ASSIGN_TAB[1] = 2
MD20050 AXCONF_GEOAX_ASSIGN_TAB[2] = 3

MD20060 AXCONF_GEOAX_NAME_TAB[0] =X
MD20060 AXCONF_GEOAX_NAME_TAB[1] =Y
MD20060 AXCONF_GEOAX_NAME_TAB[2] =Z

MD20070 AXCONF_MACHAX_USED[0] = 1
MD20070 AXCONF_MACHAX_USED[1] = 2

K2: Axis Types, Coordinate Systems, Frames
11.8 Examples

Basic Functions
840 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Machine data Value
MD20070 AXCONF_MACHAX_USED[2] = 3
MD20070 AXCONF_MACHAX_USED[3] = 4
MD20070 AXCONF_MACHAX_USED[4] = 5
MD20070 AXCONF_MACHAX_USED[5] = 6

MD20080 AXCONF_CHANAX_NAME_TAB[0] =X
MD20080 AXCONF_CHANAX_NAME_TAB[1] =Y
MD20080 AXCONF_CHANAX_NAME_TAB[2] =Z
MD20080 AXCONF_CHANAX_NAME_TAB[3] = B
MD20080 AXCONF_CHANAX_NAME_TAB[4] = WZM
MD20080 AXCONF_CHANAX_NAME_TAB[5] = S1

MD30300 IS_ROT_AX[3] = 1
MD30300 IS_ROT_AX[4] = 1
MD30300 IS_ROT_AX[5] = 1

MD30310 ROT_IS_MODULO[3] = 1
MD30310 ROT_IS_MODULO[4] = 1
MD30310 ROT_IS_MODULO[5] = 1

MD30320 DISPLAY_IS_MODULO[3] = 1
MD30320 DISPLAY_IS_MODULO[4] = 1

MD20090 SPIND_DEF_MASTER_SPIND = 1

MD35000 SPIND_ASSIGN_TO_MACHAX[AX1] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX2] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX3] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX4] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX5] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX6] = 1

11.8.2 Coordinate systems

Configuration of a global basic frame
An NC with two channels is required. The following applies:

● Both channels can then write the global basic frame.

● The other channel recognizes the change when the global basic frame is activated again.

K2: Axis Types, Coordinate Systems, Frames
11.8 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 841

● Both channels can read the global basic frame.

● Both channels can activate the global basic frame independently.

Machine data

Machine data Value
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[0]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[1]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[2]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[3]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[4]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[5]

= X1
= X2
= X3
= X4
= X5
= X6

MD18602 $MN_MM_NUM_GLOBAL_BASE_FRAMES = 1
MD28081 $MC_MM_NUM_BASE_FRAMES = 1

Machine data for channel 1 Value Machine data for channel 1 Value
$MC_AXCONF_CHANAX_NAME_TAB[0]
$MC_AXCONF_CHANAX_NAME_TAB[1]
$MC_AXCONF_CHANAX_NAME_TAB[2]

= X
= Y
= Z

 $MC_AXCONF_CHANAX_NAME_TAB[0]
$MC_AXCONF_CHANAX_NAME_TAB[1]
$MC_AXCONF_CHANAX_NAME_TAB[2]

= X
= Y
= Z

$MC_AXCONF_MACHAX_USED[0]
$MC_AXCONF_MACHAX_USED[1]
$MC_AXCONF_MACHAX_USED[2]

= 1
= 2
= 3

 $MC_AXCONF_MACHAX_USED[0]
$MC_AXCONF_MACHAX_USED[1]
$MC_AXCONF_MACHAX_USED[2]

= 4
= 5
= 6

$MC_AXCONF_GEOAX_NAME_TAB[0]
$MC_AXCONF_GEOAX_NAME_TAB[1]
$MC_AXCONF_GEOAX_NAME_TAB[2]

= X
= Y
= Z

 $MC_AXCONF_GEOAX_NAME_TAB[0]
$MC_AXCONF_GEOAX_NAME_TAB[1]
$MC_AXCONF_GEOAX_NAME_TAB[2]

= X
= Y
= Z

$MC_AXCONF_GEOAX_ASSIGN_TAB[0]
$MC_AXCONF_GEOAX_ASSIGN_TAB[1]
$MC_AXCONF_GEOAX_ASSIGN_TAB[2]

= 1
= 2
= 3

 $MC_AXCONF_GEOAX_ASSIGN_TAB[0]
$MC_AXCONF_GEOAX_ASSIGN_TAB[1]
$MC_AXCONF_GEOAX_ASSIGN_TAB[2]

= 4
= 5
= 6

Part program in the 1st channel

Code (excerpt) ; Comment
. . .
N100 $P_NCBFR[0] = CTRANS(x, 10) ; Activation of the NC-global basic frame
. . .
N130 $P_NCBFRAME[0] = CROT(X, 45) ; Activation of the NC-global basic frame with rotation =>

; Alarm 18310, because rotations are not permitted for
; NC-global frames

. . .

K2: Axis Types, Coordinate Systems, Frames
11.8 Examples

Basic Functions
842 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Part program in the 2nd channel

Code (excerpt) ; Comment
. . .
N100 $P_NCBFR[0] = CTRANS(x, 10) ; The NC-global basic frame is also effective in the 2nd

channel
. . .
N510 G500 X10 ; Activate basic frame
N520 $P_CHBFRAME[0] = CTRANS(x, 10) ; Current frame of the 2nd channel is activated with an off-

set
. . .

11.8.3 Frames

Example 1
The channel axis is to be switched to a geometry axis by means of a geometry axis interchange.

The intention of the interchange is to give the programmable frame a translation component
of 10 in the X axis.

The current settable frame is to be retained:

FRAME_GEOAX_CHANGE_MODE = 1

Program code Comment
$P_UIFR[1] = CROT(X,10,Y,20,Z,30) ; Frame is retained after geometry axis interchange.
G54 ; Settable frame becomes active.
TRANS A10 ; Axis-specific offset of A is also interchanged.
GEOAX(1,A) ; A becomes the X axis
 ; $P_ACTFRAME = CROT(X,10,Y,20,Z,30) : CTRANS(X10)

Multiple channel axes can become geometry axes at the same time on a transformation
change.

Example 2
Channel axes 4, 5 and 6 become the geometry axes of a 5axis orientation transformation. The
geometry axes are thus all substituted before the transformation.

The current frames are changed when the transformation is activated.

The axis-specific frame components of the channel axes that become geometry axes are used
in the calculation of the new WCS. Rotations programmed before the transformation are
retained. The old WCS is restored when the transformation is deactivated.

K2: Axis Types, Coordinate Systems, Frames
11.8 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 843

The most common application is probably that the geometry axes do not change before and
after the transformation and that the frames are to stay as they were before the transformation.

Machine data:
$MN_FRAME_GEOAX_CHANGE_MODE = 1

$MC_AXCONF_CHANAX_NAME_TAB [0] = "CAX"
$MC_AXCONF_CHANAX_NAME_TAB [1] = "CAY"
$MC_AXCONF_CHANAX_NAME_TAB [2] = "CAZ"
$MC_AXCONF_CHANAX_NAME_TAB [3] = "A"
$MC_AXCONF_CHANAX_NAME_TAB [4] = "B"
$MC_AXCONF_CHANAX_NAME_TAB [5] = "C"

$MC_AXCONF_GEOAX_ASSIGN_TAB [0] = 1
$MC_AXCONF_GEOAX_ASSIGN_TAB [1] = 2
$MC_AXCONF_GEOAX_ASSIGN_TAB [2] = 3

$MC_AXCONF_GEOAX_NAME_TAB [0] = "X"
$MC_AXCONF_GEOAX_NAME_TAB [1] = "Y"
$MC_AXCONF_GEOAX_NAME_TAB [2] = "Z"

$MC_TRAFO_GEOAX_ASSIGN_TAB_1 [0] = 4
$MC_TRAFO_GEOAX_ASSIGN_TAB_1 [1] = 5
$MC_TRAFO_GEOAX_ASSIGN_TAB_1 [2] = 6

$MC_TRAFO_AXES_IN_1 [0] = 4
$MC_TRAFO_AXES_IN_1 [1] = 5
$MC_TRAFO_AXES_IN_1 [2] = 6
$MC_TRAFO_AXES_IN_1 [3] = 1
$MC_TRAFO_AXES_IN_1 [4] = 2

Program:

Program code Comment
$P_NCBFRAME[0] = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6)
$P_CHBFRAME[0] = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6)
$P_IFRAME = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6) : CROT(Z,45)
$P_PFRAME = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6) : CROT(X,10,Y,20,Z,30)
TRAORI ; Transformation sets GEOAX(4,5,6)
 ; $P_NCBFRAME[0] = CTRANS(X,4,Y,5,Z,6,CAX,1,CAY,2,CAZ,3)
 ; $P_ACTBFRAME = CTRANS(X,8,Y,10,Z,12,CAX,2,CAY,4,CAZ,6)
 ; $P_PFRAME = CTRANS(X,4,Y,5,Z,6,CAX,1,CAY,2,CAZ,3) : CROT(X,10,Y,20,Z,30)
 ; $P_IFRAME = CTRANS(X,4,Y,5,Z,6,CAX,1,CAY,2,CAZ,3) : CROT(Z,45)
TRAFOOF ; Deactivating transformation sets GEOAX (1,2,3)

K2: Axis Types, Coordinate Systems, Frames
11.8 Examples

Basic Functions
844 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
 ; $P_NCBFRAME[0] = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6)
 ; $P_CHBFRAME[0] = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6)
 ; $P_IFRAME = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6) : CROT(Z,45)
 ; $P_PFRAME = CTRANS(X,1,Y,2,Z,3,A,4,B,5,C,6) : CROT(X,10,Y,20,Z,30)

11.9 Data lists

11.9.1 Machine data

11.9.1.1 Displaying machine data

Number Identifier: $MM_ Description
SINUMERIK Operate

9242 MA_STAT_DISPLAY_BASE Numerical basis for display of moving
joint STAT

9243 MA_TU_DISPLAY_BASE Numerical basis for display of rotary
axis position TU

9244 MA_ORIAXES_EULER_ANGLE_NAME Display of orientation axes as Euler an‐
gle

9245 MA_PRESET_FRAMEIDX Value storage scratching and PRESET
9247 USER_CLASS_BASE_ZERO_OFF_PA Availability of basic offset in "Parame‐

ters" operating area
9248 USER_CLASS_BASE_ZERO_OFF_MA Availability of basic offset in Machine

operating area
9424 MA_COORDINATE_SYSTEM Coordinate system for actualvalue dis‐

play
9440 ACTIVE_SEL_USER_DATA Active data (frames) are immediately

operative after editing
9449 WRITE_TOA_LIMIT_MASK Applicability of MD9203 to edge data

and locationdependent offsets
9450 MM_WRITE_TOA_FINE_LIMIT Limit value for wear fine
9451 MM_WRITE_ZOA_FINE_LIMIT Limit value for offset fine

11.9.1.2 NC-specific machine data

Number Identifier: $MN_ Description
10000 AXCONF_MACHAX_NAME_TAB Machine axis name
10600 FRAME_ANGLE_INPUT_MODE Sequence of rotation in the frame
10602 FRAME_GEOAX_CHANGE_MODE Frames and switchover of geometry axes

K2: Axis Types, Coordinate Systems, Frames
11.9 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 845

Number Identifier: $MN_ Description
10610 MIRROR_REF_AX Reference axis for mirroring
10612 MIRROR_TOGGLE Change over mirror
10613 NCBFRAME_RESET_MASK ActiveNCU-global basic frame after reset
10615 NCBFRAME_POWERON_MASK Reset global basic frames after Power On
10617 FRAME_SAVE_MASK Behavior of frames for SAVE subprograms
10650 IPO_PARAM_NAME_TAB Name of interpolation parameters
10660 INTERMEDIATE_POINT_NAME_TAB Name of intermediate point coordinates for G2/G3
11640 ENABLE_CHAN_AX_GAP Channel axis gaps are allowed
18600 MM_FRAME_FINE_TRANS Fine offset for FRAME (SRAM)
18601 MM_NUM_GLOBAL_USER_FRAMES Number of globally predefined user frames (SRAM)
18602 MM_NUM_GLOBAL_BASE_FRAMES Number of global basic frames (SRAM)

11.9.1.3 Channel-specific machine data

Number Identifier: $MC_ Description
20050 AXCONF_GEOAX_ASSIGN_TAB Assignment geometry axis to channel axis
20060 AXCONF_GEOAX_NAME_TAB Geometry axis name in channel
20070 AXCONF_MACHAX_USED Machine axis number valid in channel
20080 AXCONF_CHANAX_NAME_TAB Channel axis name in the channel
20110 RESET_MODE_MASK Definition of basic control settings after RESET / TP end
20118 GEOAX_CHANGE_RESET Allow automatic geometry axis change
20126 TOOL_CARRIER_RESET_VALUE Active toolholder on RESET
20140 TRAFO_RESET_VALUE Transformation record on power-up (RESET / TP-End)
20150 GCODE_RESET_VALUES Initial setting of the G groups
20152 GCODE_RESET_MODE RESET response of the G groups
20184 TOCARR_BASE_FRAME_NUMBER Number of the basic frame for pickup of the table offset
21015 INVOLUTE_RADIUS_DELTA End point monitoring for evolvents (involutes)
22532 GEOAX_CHANGE_M_CODE M code for replacement of geometry axes
22534 TRAFO_CHANGE_M_CODE M code for transformation change
24000 FRAME_ADD_COMPONENTS Frame components for G58 and G59
24002 CHBFRAME_RESET_MASK RESET response of channel-specific basic frames
24004 CHBFRAME_POWERON_MASK Reset channel-specific basic frames after Power On
24006 CHSFRAME_RESET_MASK Active system frames after reset
24007 CHSFRAME_RESET_CLEAR_MASK Clear system frames on RESET
24008 CHSFRAME_POWERON_MASK Reset system frames after POWER ON
24010 PFRAME_RESET_MODE RESET mode for programmable frame
24020 FRAME_SUPPRESS_MODE Positions for frame suppression
24030 FRAME_ACT_SET SZS coordinate system setting
24040 FRAME_ADAPT_MODE Adapting active frames
24050 FRAME_SAA_MODE Saving and activating data management frames

K2: Axis Types, Coordinate Systems, Frames
11.9 Data lists

Basic Functions
846 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Number Identifier: $MC_ Description
24805 TRACYL_ROT_AX_FRAME_1 Rotary axis offset TRACYL 1
24855 TRACYL_ROT_AX_FRAME_2 Rotary axis offset TRACYL 2
24905 TRANSMIT_ROT_AX_FRAME_1 Rotary axis offset TRANSMIT1
24955 TRANSMIT_ROT_AX_FRAME_2 Rotary axis offset TRANSMIT2
28080 MM_NUM_USER_FRAMES Number of settable Frames (SRAM)
28081 MM_NUM_BASE_FRAMES Number of basic frames
28082 MM_SYSTEM_FRAME_FRAMES System frames (SRAM)
28560 MM_SEARCH_RUN_RESTORE_MODE Restore data after a simulation

11.9.1.4 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
32074 FRAME_OR_CORRPOS_NOTALLOWED FRAME or HL offset is not permitted
35000 SPIND_ASSIGN_TO_MACHAX Assignment spindle to machine axis

11.9.2 Setting data

11.9.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42440 FRAME_OFFSET_INCR_PROG Work offsets in frames
42980 TOFRAME_MODE Frame definition for TOFRAME, TOROT and PAROT

11.9.3 System variables

Identifier Description
$AA_ETRANS[axis] External work offset
$AA_IBN[axis] Actual value in basic zero coordinate system (BZS)
$AA_IEN[axis] Actual value in settable zero point coordinate system (SZS)
$AA_OFF[axis] Overlaid motion for programmed axis
$AC_DRF[axis] Handwheel override of an axis
$AC_JOG_COORD Coordinate system for manual traversing
$P_ACSFRAME Active frame between BCS and SZS
$P_ACTBFRAME Active complete basic frame
$P_ACTFRAME Active complete frame

K2: Axis Types, Coordinate Systems, Frames
11.9 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 847

Identifier Description
$P_BFRAME 1st active basic frame. Corresponds to $P_CHBFRAME[0]
$P_CHBFR[<n>] Data management frame: Basic frame can be activated via G500, G54...G599
$P_CHBFRAME[<n>] Active basic frame
$P_CHBFRMASK Basic frame mask in the channel
$P_CHSFRMASK System frame mask
$P_CYCFR Data management frame: System frame for cycles
$P_CYCFRAME Active system frame for cycles
$P_EXTFR Data management frame: System frame for work offset external
$P_EXTFRAME Active system frame for external work offset
$P_IFRAME Active settable frame
$P_ISO1FR Data management frame: System frame for ISO G51.1 mirroring
$P_ISO2FR Data management frame: System frame for ISO G68 2DROT
$P_ISO3FR Data management frame: System frame for ISO G68 3DROT
$P_ISO4FR Data management frame: System frame for ISO G51 Scale
$P_ISO1FRAME Active system frame for ISO G51.1 Mirroring
$P_ISO2FRAME Active system frame for ISO G68 2DROT
$P_ISO3FRAME Active system frame for ISO G68 3DROT
$P_ISO4FRAME Active system frame for ISO G51 Scale
$P_NCBFR[n] Data management frame: NCU-global basic frame in the data management,

can be activated via G500, G54...G599
$P_NCBFRAME[n] Active NCU-global basic frame
$P_NCBFRMASK Global basic frame mask
$P_PARTFR Data management frame: System frame for TCARR and PAROT
$P_PARTFRAME Active system frame for TCARR and PAROT with orientable toolholder
$P_PFRAME Active programmable frame
$P_SETFR Data management frame: System frame for actual value setting
$P_SETFRAME Active system frame for actual value setting
$P_TOOLFR Data management frame: System frame for TOROT and TOFRAME
$P_TOOLFRAME Active system frame for TOROT and TOFRAME
$P_TRAFRAME Data management frame: System frame for transformations
$P_TRAFRAME Active system frame for transformations
$P_UBFR 1st basic frame in the channel in the data management that is activated after

G500, G54...G599. Corresponds to $P_CHBFR[0].
$P_UIFR[n] Data management frame: Settable frame, can be activated via G500, G54 to

G599
$P_UIFRNUM Number of active settable frame
$P_WPFR Data management frame: System frame for the workpiece
$P_WPFRAME Active system frame for the workpiece

K2: Axis Types, Coordinate Systems, Frames
11.9 Data lists

Basic Functions
848 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

11.9.4 Signals

11.9.4.1 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
T function modification DB21,DBX61.0-.2 -
D function modification DB21,DBX62.0-.2 -
T function 1 DB21,DBB118-119 DB250x.DBD2000
D function 2 DB21,DBB129 DB250x.DBD5000
Number of active function G group 1 8 (bit int) DB21,DBB208 DB350x.DBB0
Number of active function G group 2 8 (bit int) DB21,DBB209 DB350x.DBB1
... ... …
Number of active function G group 29 8 (bit int) DB21,DBB236 DB350x.DBB28

11.9.4.2 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Accept zero offset external DB31,DBX3.0 -

11.9.4.3 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Spindle / rotary axis DB31,DBX60.0 DB390x.DBX0.0

K2: Axis Types, Coordinate Systems, Frames
11.9 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 849

K2: Axis Types, Coordinate Systems, Frames
11.9 Data lists

Basic Functions
850 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N2: Emergency stop 12
12.1 Brief Description

Function
The control system supports the machine manufacturer in implementing an emergency stop
function on the basis of the following functions:

● An emergency stop button is installed in a location easily accessible to the machine operator
on all SINUMERIK machine control panels. The functionality of the emergency stop button
includes the positive opening of electrical switching contacts and a mechanical self-
activating latching/locking.

● The emergency stop request to the NC is transmitted via the NC/PLC interface on the PLC.

● The Emergency Stop function must bring the machine to a standstill according to stop
category 0 or 1 (EN 60204).

● In the case of an emergency stop, all machine functions controlled by the PLC can be
brought to a safe state that can be set by the machine manufacturer.

● Unlatching the emergency stop button does not cancel the emergency stop state nor does
it initiate a restart.

● After the emergency stop state has been canceled, it is not necessary to reference the
machine axes or synchronize the spindles. The actual positions of the machine axes are
continuously tracked during the emergency stop sequence.

12.2 Relevant standards

Relevant standards
Compliance with the following standards is essential for the emergency stop function:

● EN ISO 12000-1

● EN ISO 12000-2

● EN 418

● EN 60204

Emergency stop
In accordance with EN 418, an emergency stop is a function that:

● Is intended to prevent or diminish developing or existing risks to operating personnel, and
damage to the machine or machined materials.

● Is triggered by a single action of a person, if the normal stop function is not suitable for it.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 851

Hazards
In the terms of EN 418, risks may arise from:

● Functional irregularities (machine malfunctions, unacceptable properties of the material to
be machined, human error, etc.).

● Normal operation.

Stadard EN ISO 12000-2
In accordance with the basic safety requirement of the EC Machinery Directive regarding
emergency stop, machines must be equipped with an energency stop device.

Exceptions

No emergency stop device is required on machines:

● Where an emergency stop device would not reduce the risk, either because the shutdown
time would not be reduced or because the measures to be taken would not be suitable for
controlling the risk.

● That are held and operated manually.

Note

The machine manufacturer is expressly directed to comply with the national and
international standards. The SINUMERIK controllers support the machine manufacturer in
the implementation of the emergency stop function according to the specifications in the
following function description. But the responsibility for the emergency stop function (its
triggering, sequence and acknowledgement) rests exclusively with the machine
manufacturer.

12.3 Emergency stop control elements

Emergency stop control elements
In accordance with EN 418, emergency stop control elements must be designed so that they
latch mechanically on their own and are easy for the operator and others to actuate in the
event of an emergency.

The following list includes some possible types of control elements:

● Mushroom pushbutton switches

● Wires/cables, cords, rods

● Puller grips

● In special cases: Foot switches without protective covers

N2: Emergency stop
12.3 Emergency stop control elements

Basic Functions
852 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Emergency stop button and control
Actuation of the emergency stop button or a signal derived directly from the button must be
routed to the controller (PLC) as a PLC input. In the PLC user program, this PLC input must
be forwarded to the NC on the interface signal:

DB10 DBX56.1 (Emergency stop)

Resetting of the emergency stop button or a signal derived directly from the button must be
routed to the controller (PLC) as a PLC input. In the PLC user program, this PLC input must
be forwarded to the NC on the interface signal:

DB10 DBX56.2 (Acknowledge emergency stop)

Connection conditions
For connecting the emergency stop button see:
References:
Operator Components Manual

12.4 Emergency stop sequence
After actuation of the emergency stop control element, the emergency stop device must
operate in the best possible way to prevent or minimize the danger.

"In the best possible way" means that the most favorable delay rate can be selected and the
correct stop category (defined in EN 60204) can be determined according to a risk assessment.

Emergency stop sequence in the NC
The predefined (in EN 418) sequence of internal functions implemented to obtain the
emergency stop state is as follows in the control system:

1. Part program execution is interrupted.
All machine axes are braked in the relevant axis-specific parameterized time:
MD36610 $MA_AX_EMERGENCY_STOP_TIME (time of braking ramp in event of
errors)
The maximum braking ramp that can be achieved thereby, is defned by the maximum brake
current of the respective drive. The maximum brake current is achieved by setting a setpoint
= 0 (fast braking).

2. Reset interface signal:
DB11 DBX6.3 (Mode group ready)

3. Set the interface signal:
DB10 DBX106.1 (emergency stop active)

4. Alarm 3000 "Emergency stop" is displayed.

N2: Emergency stop
12.4 Emergency stop sequence

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 853

5. After the expiry of a paramaterized delay time, the servo enables of machine axes are reset.
The setting of the delay time is programmed in machine data:
MD36620 $MA_SERVO_DISABLE_DELAY_TIME (OFF delay of the controller enable)
The following setting rule must be observed: MD36620 ≥ MD36610

6. All machine axes are switched in the follow-up mode within the controller.
The machine axes are no longer in position control.

Emergency stop sequence at the machine
The emergency stop sequence on the machine is determined solely by the machine
manufacturer.

Attention should be paid to the following points in connection to the sequence on the NC:

● The process in the NC is started using the interface signal:
DB10 DBX56.1 (Emergency stop)
After the machine axes have come to a standstill, the power supply must be interrupted, in
compliance with EN 418.

Note

The responsibility for interrupting the power supply rests with the machine manufacturer.

● The digital and analog outputs of the PLC I/O are not influenced by the emergency stop
sequence in the NC.
If individual outputs are required to attain a particular state or voltage level in the event of
an emergency stop, the machine manufacturer must implement this in the PLC user
program.

● The fast digital outputs of the NCK I/O system are not influenced by the emergency stop
sequence in the NC.
If individual outputs must assume a specific state in case of emergency stop, the machine
manufacturer must transmit the desired state to the NC in the PLC user program via
interface signals:
DB10 DBB4-7

Note

If the sequence in the NC is not to be executed as described above, then the interface
signal DB10 DBX56.1 (emergency stop) must not be set until an emergency stop state
defined by the machine manufacturer in the PLC user program is reached.

As long as the interface signal is not set and no other alarm is pending, all interface signals
are operative in the NC. Any emergency stop state defined by the manufacturer (including
axis-, spindle- and channel-specific emergency stop states) can therefore be assumed.

12.5 Emergency stop acknowledgement
The emergency stop control element may only be reset as a result of manual manipulation of
the emergency stop control element according to EN 418.

Resetting of the emergency stop control element alone must not trigger a restart command.

N2: Emergency stop
12.5 Emergency stop acknowledgement

Basic Functions
854 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

A machine restart must be impossible until all of the actuated emergency stop control elements
have been deliberately reset by hand.

Emergency stop acknowledgment
The EMERGENCY STOP state is only reset if the interface signal:DB10 DBX56.2
(acknowledge EMERGENCY STOP) is set followed by the interface signal:DB11, ... DBX0.7
(mode group reset).

Hence it can be noted that the interface signal DB10 DBX56.2 (acknowledge emergency stop)
and the interface signal DB21, ... DBX7.7 (Reset) together are set at least for so long until the
interface signal DB10 DBX106.1(emergency stop active) is reset.

Note

The emergency stop state cannot be reset with the interface signal DB21, ... DBX7.7 (Reset)
alone.

(1) DB10 DBX56.2 (acknowledge emergency stop) is inoperative
(2) DB21, ... DBX7.7 (Reset) is inoperative
(3) DB10 DBX56.2 and DB21, ... DBX7.7 reset DB10 DBX106.1 (emergency stop active)

Figure 12-1 Resetting the emergency stop state

N2: Emergency stop
12.5 Emergency stop acknowledgement

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 855

Effects
Resetting the emergency stop state has the following effects:

● Within the controller for all machine axes:

– The servo enables are set.

– The follow-up mode is canceled.

– The position control is activated.

● The following interface signals are set:
DB31, ... DBX60.5 (position control active)
DB11 DBX6.3 (mode group ready)

● The following interface signal is reset:
DB10 DBX106.1 (emergency stop active)

● Alarm 3000 "Emergency stop" is deleted.

● Part program processing is interrupted in all channels of the NC.

PLC and NC I/O
The PLC user program must switch the PLC and NC I/O back to the state for operation of the
machine.

POWER OFF / ON (supply off / on)
The emergency stop state can also be reset by switching the controller off and back on
(POWER OFF / ON).

Requirement:

During power-up of the controller the interface signal DB10 DBX56.1 (emergency stop) must
not be set.

12.6 Data lists

12.6.1 Machine data

12.6.1.1 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
36610 AX_EMERGENCY_STOP_TIME Length of the braking ramp for error states
36620 SERVO_DISABLE_DELAY_TIME Cutout delay servo enable

N2: Emergency stop
12.6 Data lists

Basic Functions
856 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

12.6.2 Signals

12.6.2.1 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Emergency stop DB10.DBX56.1 DB2600.DBX0.1
Acknowledge Emergency Stop DB10.DBX56.2 DB2600.DBX0.2

12.6.2.2 Signals from NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Emergency stop active DB10.DBX106.1 DB2700.DBX0.1

12.6.2.3 Signals to BAG

Signal name SINUMERIK 840D sl SINUMERIK 828D
Mode group RESET DB11.DBX0.7 DB3000.DBX0.7

N2: Emergency stop
12.6 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 857

N2: Emergency stop
12.6 Data lists

Basic Functions
858 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

P1: Transverse axes 13
13.1 Function

Transverse axis
Within the framework of "turning" technology, the transverse axis refers to the machine axis
that travels perpendicular to the axis of symmetry of the spindle, in other words, to longitudinal
axis Z.

Figure 13-1 Position of the transverse axis in the machine coordinate system

Geometry axis as transverse axis
Every geometry axis of a channel can be defined as a transverse axis.

For the geometry axis as a transverse axis, the following functions can be simultaneously or
separately permitted and activated:

● Programming and display in the diameter

● Reference axis for constant cutting speed G96/G961/G962

Several transverse axes in the channel
The introduction several transverse axes in the channel involves a functional decoupling of
diameter programming and reference axis for G96/G961/G962. Diameter programming and
reference axis for G96/G961/G962 can be active for different transverse axes (see table below).

 Programming and display
in the diameter

Reference axis for
G96 / G961 / G962

Permissible axis type: Geometry axis Linear channel
axes

Geometry axis

Selection in the channel: one m of 3 m of n one one of 3
Specific effect:
Machine data:

Channel
MD20100

Axis
MD30460

Channel
MD20100

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 859

 Programming and display
in the diameter

Reference axis for
G96 / G961 / G962

Programming: DIAM*
channel-specific modal
G group 29

SCC[<Axis>]
channel-specific modal
Reference axis for G96/G961/G962

Acceptance during axis re‐
placement:

DIAM*A[<Axis>]
axis-specific modal

Axis-specific non-modal dia‐
metral/radius programming:

DAC, DIC; RAC, RIC
blockwise axis-specific only programming

DIAM*: DIAMOF, DIAMON, DIAM90, DIAMCYCOF
DIAM*A[<Axis>]: DIAMOFA[<Axis>], DIAMONA[<Axis>], DIAM90A[<Axis>], DIACYCOFA[<Axis>], DIAMCHANA[<Axis>]
<Axis>: Axis name for geometry, channel or machine axis name

Note

Rotary axes are not permitted to serve as transverse axes.

Diameter-related data

DIAMON/DIAMONA[<Axis>]
After activation of the diameter programming with DIAMON/DIAMONA[<Axis>] (see
"Programming (Page 865)"), the following data refer to diameter dimensions:

● Display data of transverse axis in the workpiece coordinate system:

– Setpoint and actual position

– Distance-to-go

– REPOS offset

● "JOG" mode:

– Increment (INC) through incremental manual handwheel traversing (depending on the
active MD)

● Part program programming:

– End positions, independent of reference mode (G90 / G91)

– Interpolation parameters of circular-path programming (G2 / G3) if these are
programmed with part program instruction AC absolute.

● Actual values read with reference to the workpiece coordinate system (WCS):

– $AA_MW[<transverse axis>]
System variable of the measuring functions MEAS (measuring with delete distance-to-
go) and MEAW (measuring without delete distance-to-go)

– $P_EP[<transverse axis>]

– $AA_IW[<transverse axis>]

P1: Transverse axes
13.1 Function

Basic Functions
860 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DIAM90/DIAM90A[<Axis>]
After activation of the reference-mode-dependent diameter programming with DIAM90/
DIAM90A[<Axis>], the following data is always displayed in relation to diameter regardless
of the operating mode (G90/G91):

● Actual value

● Actual values read with reference to the workpiece coordinate system (WCS):

– $AA_MW[<transverse axis>]
System variable of the measuring functions MEAS (measuring with delete distance-to-
go) and MEAW (measuring without delete distance-to-go)

– $P_EP[<transverse axis>]

– $AA_IW[<transverse axis>]

DIAMCYCOF/DIACYCOFA[<Axis>]
With DIAMCYCOF / DIACYCOFA[<Axis>], a changeover to radius programming takes place
within the controller. The diameter programming status that was active before DIAMCYCOF or
DIACYCOFA[AX] continues to be displayed to the HMI.

Permanently radius-related data
For transverse axes, the following data is always entered, programmed and displayed in
relation to radius:

● Part program programming

– Interpolation parameters of circular-path programming with CIP

● Offsets:

– Tool offsets

– Programmable and configurable frames

– External work offset

– DRF and preset offset

– etc.

● Working area limitation

● Software limit switch

● Feedrate

● Display data with reference to the machine coordinate system

● Display data of the service images for axis, FSD and MSD

P1: Transverse axes
13.1 Function

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 861

Extended functions for data that is always radius-related:
The following applies for PLC axes, via FC18 or axes controlled exclusively from the PLC:

● The dimension for PLC axes in the radius also applies to several transverse axes with
diameter function and is independent of channel-specific or axis-specific diameter
programming.

● In the JOG mode (Inc) a PLC axis is subordinate to the channel status. If diameter
programming is active and MD20624 $MC_HANDWH_CHAN_STOP_COND bit 15 = 0,
only half the path of the specified increment is traversed.

13.2 Parameterization

Defining a geometry axis as a transverse axis
Defining a geometry axis as a transverse axis in the channel is realized using machine data:

MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function)

Example
MD20100 $MC_DIAMETER_AX_DEF="X" ; geometry axis X is the transverse axis in the
channel.

For this axis, diameter programming and assigning a constant cutting speed with G96 / G961 /
G962 are both permitted.

Several transverse axes in the channel
Defining additional transverse axes in the channel, for which the functionality of the axis-
specific diameter programming is permitted, is performed using the machine data:

MD30460 BASE_FUNCTION_MASK.Bit 2 = <Value>

Bit Value Meaning
2 0 Axis-specific diameter programming is not permitted.

1 Axis-specific diameter programming is permitted.

Note

The setting MD30460 bit 2 = 1 is only possible for linear axes.

Supplementary conditions
In a channel, a transverse axis can be defined as channel-specific (MD20100) and axis-specific
(MD30460, bit 2) axis at the same time. The channel-specific machine data has the higher
priority.

With MD20100, the following channel-specific functions are assigned to the transverse axis
during the run-up

P1: Transverse axes
13.2 Parameterization

Basic Functions
862 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The following axis-specific basic position is assigned to the transverse axis during the power-
up of the NC: "Transfer of the diameter programming channel status" DIAMCHANA[<Achse>]
With the release of the axis-specific diameter programming (MD30460, bit 2 = 1), the following
axis-specific operations can be used at the user's end:

● DIAMONA (axis-specific modal diameter programming: ON)

● DIAMOFA (axis-specific modal diameter programming: OFF)

● DIAM90A (axis-specific modal diameter programming for G90 and AC, radius programming
for G91 and IC)

● DIACYCOFA (axis-specific modal diameter programming: OFF in cycles)

● DIAMCHANA (transfer of the diameter programming channel status)

Dimensions for tool parameters
With the following channel-specific machine data, the following tool parameters can be
activated as diameter values for all of the transverse axes defined in the channel:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK.<Bit> = <value>

MD20360 $MC_TOOL_PARAMETER_DEF_MASK
Bit Value Meaning
1 1 Transverse axis tool length as a diameter
2 1 Alarm for wear or tool length as a diameter and plane change

3 1) 0 Work offset $P_EXTFRAME and frames
For transverse axes, work offsets in frames are always calculated as radius values.

1 The work offset (WO) in frames in the transverse axis as a diameter
The frame stores the work offsets internally as a radius value. There is no conversion
during a change of diameter to radius programming or vice versa.

4 1 Preset value as a diameter
5 1) 0 External work office (axis overlay)

For transverse axes, the external work offset is always calculated as a radius value.
1 External WO of the transverse axis as a diameter

There is no conversion during a change of diameter to radius programming or vice
versa.

6 1 Actual values of the transverse axis as a diameter
7 1 Display of actual values of the transverse axis as a diameter value

8 1) 1 Display of remaining path in WCS always as a radius
9 1) For all of the transverse axes for which it is set that the specifications of the handwheel are

path specifications (MD11346 $MN_HANDWH_TRUE_DISTANCE == 1), the following applies:
0 Half of the path of the specified handwheel increment is traveled if channel-specific

or axis-specific diameter programming is active for this axis.
1 Half of the path of the specified handwheel increment is always traveled.

10 1 Tool portion of an active tool carrier that can be oriented if no tool is active
11 1 Evaluation of $TC_DP6 as a diameter
12 1 Evaluation of $TC_DP15 as wear of the tool diameter

P1: Transverse axes
13.2 Parameterization

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 863

MD20360 $MC_TOOL_PARAMETER_DEF_MASK
Bit Value Meaning

13 1) 1 When jogging around circles, the circle center point coordinate is always a radius
value, see SD42690 $SC_JOG_CIRCLE_CENTRE

14 1) 1 For cycle masks, the absolute values of the transverse axis are always meant as the
radius.

15 1 Incremental values of the transverse axis for cycle masks as diameters
1) The function is dependent upon the settings in MD20100 $MC_DIAMETER_AX_DEF and MD30460
$MA_BASE_FUNCTION_MASK, bit 2

Behavior during manual handwheel traversing
The behavior during manual handwheel traversing (MD11346
$MN_HANDWH_TRUE_DISTANCE == 1 or 3) of a transverse axis while diameter
programming is active can be adjusted with the following machine data:

MD20624 $MC_HANDWH_CHAN_STOP_COND.Bit 15 = <value>

Bit Value Meaning
15 0 Only the half path of the specified increment is traveled.

1 The specified increment is traveled completely.

Displaying position values in the diameter
Position values of transverse axes are always displayed as diameter values, if:

MD27100 $MC_ABSBLOCK_FUNCTION_MASK, bit 0 = 1

Channel-specific basic position after power up, reset
The channel-specific basic position after power up or channel reset or the part program end
of G group 29 (DIAMON, DIAM90, DIAMOF, DIAMCYCOF) is defined by the machine data
MD20110 $MC_RESET_MODE_MASK.

MD20110 $MC_RESET_MODE_MASK, bit 0 = 0:

● Power-up: Basic position according to MD20150 $MC_GCODE_RESET_VALUE

● Channel reset or part program end: Basic position according to MD20150
$MC_GCODE_RESET_VALUES

MD20110 $MC_RESET_MODE_MASK, bit 0 = 1:

● After power-up: Basic position according to MD20150 $MC_GCODE_RESET_VALUE

● After channel reset or part program end: Basic position according to MD20152
$MC_GCODE_RESET_MODE

The user can set the respective desired status via an event-driven program call (ProgEvent).

If the basic position after the power-up is G96 / G961 / G962, a transverse axis must be defined
with MD20100 $MC_DIAMETER_AX_DEF, otherwise the alarm 10870 is displayed.

P1: Transverse axes
13.2 Parameterization

Basic Functions
864 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

To ensure that the reference axis for G96 / G961 / G962 is retained during a reset, end of part
program or start of part program, the following setting must be made:

● Channel reset or part program end: MD20110 $MC_RESET_MODE_MASK, bit 18 = 1

● Part program start: MD20112 $MC_START_MODE_MASK, bit 18 = 1

A reference axis for G96 / G961 / G962 can also be assigned without the parameterization of
a transverse axis in MD20100 via SCC[AX]. For this scenario, the constant cutting speed must
not already be activated with G96. For additional information, see the following:

References
Programming Manual Fundamentals, Feedrate Control and Spindle Motion
"Constant cutting rate (G96/G961/G962, G97/G971/G972, G973, LIMS, SCC)

13.3 Programming
Transverse axes can be programmed with respect to both diameter and radius. Generally,
they are diameter-related, i.e. programmed with doubled path dimension so that the
corresponding dimensional information can be transferred to the part program directly from
the technical drawings.

Figure 13-2 Transverse axis with diameter information (D1, D2)

Switching the diameter programming on/off

Channel-specific diameter programming
The activating or deactivating of the diameter programming is done via the modally active part
program statements of the G group 29:

● DIAMON: Diameter programming ON

● DIAMOF: Diameter programming OFF, in other words, radius programming ON

● DIAM90: Diameter or radius programming depending on the reference mode:

– Diameter programming ON in connection with absolute dimensioning G90
– Radius programming ON in connection with incremental dimensioning G91

● DIAMCYCOF: Radius programming for G90 and G91 ON, for the HMI, the last active G
command of this group remains active

P1: Transverse axes
13.3 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 865

Reference is made exclusively to the transverse axis of the channel.

Axis-specific diameter programming for several transverse axes in one channel

Note

The additionally specified axis must be activated via MD30460
$MA_BASE_FUNCTION_MASK with bit 2 = 1.

The axis specified must be a known axis in the channel. Geometry, channel or machine axes
are permitted.

Programming is not permitted in synchronized actions.

The following axis-specific modal statements can be programmed several times in a part
program block:

● DIAMONA[<Axis>]: Diameter programming for G90, G91, AC and IC ON

● DIAMOFA[<Axis>]: Diameter programming OFF, in other words, radius programming ON

● DIAM90A[<Axis>]: Diameter or radius programming depending on the reference mode:

– Diameter programming ON in connection with absolute dimensioning G90 and AC
– Radius programming ON in connection with incremental dimensioning G91 and IC

● DIACYCOFA[Axis]: Radius programming for G90 and G91 ON, for the HMI, the last
active G command of this group remains active

● DIAMCHANA[Axis]: Acceptance of diameter programming channel status

● DIAMCHAN: All axes with MD30460, bit 2 = 1 accept the diameter programming channel
status

Axis-specific modal statements have priority over the channel setting.

13.4 Supplementary conditions

Axis replacement
Due to a GET request from the parts program, the diameter programming status for an
additional transverse axis is accepted in the new channel during axis replacement using
RELEASE[<Axis>].

Axis replacement in synchronized actions
For axis replacement in synchronized actions, a transverse axis takes the status of the axis-
specific diameter programming with it into the new channel if:

● with MD30460, bit 2 = 1 axis-specific diameter programming is permitted for the transverse
axis.

● the transverse axis is not subordinated to the channel-specific diameter programming in
the releasing channel.

The active dimension can be queried via the system variable $AA_DIAM_STAT[<Axis>].

P1: Transverse axes
13.4 Supplementary conditions

Basic Functions
866 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Axis replacement via axis container rotation
By rotating the axis container, the assignment of a channel axis can change to assignment of
a machine axis. The current diameter programming status is retained however for the channel
axis after the rotation. This also applies to the current channel and axis status, because the
status is the same for all axes of the axis container at the time of the machine data "putting
into effect" the status from MD30460 $MA_BASE_FUNCTION_MASK.

13.5 Examples

Example 1
X is a transverse axis defined via MD20100 $MC_DIAMETER_AX_DEF.

Y is a geometry axis and U is an additional axis. These two axes are additional transverse
axes with diameter specifications defined in MD30460 $MA_BASE_FUNCTION_MASK with
bit 2 = 1.

DIAMON is not active after power up.

Program code Comment
N10 G0 G90 X100 Y50 ;no diameter programming is active
N20 DIAMON ;Channel-specific diameter programming, in effect for X
N30 Y200 X200 ;Dimensions: X in the diameter, Y in the radius
N40 DIAMONA[Y] ;axis-specific modal diameter programming,

;in effect for Y
N50 Y250 X300 ;Dimensions: X and Y in diameter
N60 DIAM90 ;Dimensions: X G90/AC in the diameter, G91/IC in the ra-

dius
N70 Y200 ;Y: continuing, axis-specific modal diameter programming
N75 G91 Y20 U=DIC(40) ;Dimensions: Y in the diameter, U non-modally IC in the

diameter
N80 X50 Y100 ;Dimensions: X in the radius (G91), Y in the diameter
N85 G90 X100 U200 ;Dimensions: X in the diameter, U in the radius
N90 DIAMCHANA[Y] ;Y accepts the channel status DIAM90
N95 G91 X100 Y100 ;Dimensions: X and Y in the radius(G91)
N100 G90 X200 Y200 ;Dimensions: X and Y in diameter

Example 2
Transverse axes with diameter specification applied as in the previous example.

X and Y are located in channel 1 and are also known in channel 2; i.e. permitted for axis
replacement.

Program code Comment
Channel 1
N10 G0 G90 X100 Y50 ;no diameter programming is active
N20 DIAMON ;Channel-specific diameter programming for X

P1: Transverse axes
13.5 Examples

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 867

Program code Comment
N30 Y200 X200 ;Dimensions: X in the diameter, Y in the radius
N40 DIAMONA[Y] ;Y axis-specific modal diameter programming
N50 Y250 X300 ;Dimensions: X and Y in diameter
N60 SETM(1) ;Synchronous marker 1
N70 WAIT(1,2) ;wait for synchronous marker 1 in channel 2
Channel 2
...
N50 DIAMOF ;channel 2 no diameter programming active
...
N100 WAIT(1,1) ;wait for synchronous marker 1 in channel 1
N110 GETD(Y) ;Axis replacement direct Y
N120 Y100 ;Y is the channel-specific diameter programming

;subordinated in channel 2; i.e. dimension in the radius

13.6 Data lists

13.6.1 Machine data

13.6.1.1 Channelspecific machine data

Number Identifier: $MC_ Description
20050 AXCONF_GEOAX_ASSIGN_TAB[n] Assignment of geometry axis to channel axis
20060 AXCONF_GEOAX_NAME_TAB[n] Channel axis name in the channel
20100 DIAMETER_AX_DEF Geometry axis with transverse axis function
20110 RESET_MODE_MASK Definition of the control basic setting after power-up and RE‐

SET / part program end
20112 START_MODE_MASK Definition of the control basic setting for NC start
20150 GCODE_RESET_VALUES[n] Basic setting of the G groups
20152 GCODE_RESET_MODE[n] G command basic setting at RESET / part program end
20360 TOOL_PARAMETER_DEF_MASK Definition of tool parameters
20624 HANDWH_CHAN_STOP_COND Definition of the behavior of the manual handwheel traversing
27100 ABSBLOCK_FUNCTION_MASK Parameterize block display with absolute values

13.6.1.2 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30460 BASE_FUNCTION_MASK Axis functions

P1: Transverse axes
13.6 Data lists

Basic Functions
868 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

P3: Basic PLC program for SINUMERIK 840D sl 14
14.1 Brief description

General
The PLC basic program organizes the exchange of signals and data between the PLC user
program and the NC, HMI and MCP areas. In the case of signals and data, a distinction is
made between the following groups:

● Cyclic signal exchange

● Event-driven signal exchange

● Messages

Cyclic signal exchange
The cyclically-exchanged signals consist primarily of bit arrays.

● They contain commands transferred from the PLC to the NC (such as start or stop) and
status information from the NC (such as program running, interrupted, etc.).

● The bit fields are organized into signals for:

– Mode group

– Channels

– Axes/spindles

– General NC signals

The cyclic exchange of data is performed by the basic program at the start of the PLC cycle
(OB1). This ensures, for example, that the signals from the NC remain constant throughout a
cycle.

Event-driven signal exchange NC → PLC
PLC functions that have to be executed as a function of the workpiece program are triggered
by auxiliary functions in the workpiece program. If a block with auxiliary functions is executed,
the type of auxiliary function determines whether the NC has to wait for this function to execute
(e.g. tool change) or whether the function will be executed together with the workpiece
machining process (e.g. tool loading on milling machines with chain magazine).

Data transfer must be as fast and yet as reliable as possible, in order to minimize the effect
on the NC processing. Data transfer is, therefore, interrupt- and acknowledgment-driven. The
basic program evaluates the signals and data, acknowledges this to the NC and transfers the
data to the application interface at the start of the cycle. If the data does not require user
acknowledgment, this does not affect NC processing.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 869

Event-driven signal exchange PLC → NC
An "event driven signal exchange PLC → NC" takes place whenever the PLC transfers a
request to the NC (e.g. traversing of an auxiliary axis). In this case, data transfer is also
acknowledgment-driven. When performed from the user program, this type of signal exchange
is triggered using a function block (FB) or function call (FC).

The associated FBs (Function Blocks) and FCs (Function Calls) are supplied together with the
basic program.

Messages
User messages are acquired and conditioned by the basic program. The message signals are
transferred to the basic program via a specified bit array. where they are evaluated and, if
message events occur, entered in the PLC's interrupt buffer by means of the ALARM S/SQ
functions. If an HMI (e.g. SINUMERIK Operate) is being used, the messages are transferred
to the HMI and displayed.

PLC/HMI data exchange
In this type of data exchange, the HMI takes the initiative, being referred to as the "client" on
the bus system. The HMI polls or writes data. The PLC processes these requests at the cycle
control point via the operating system. The PLC basic program is not involved in these
exchanges.

Note

The function of the machine is largely determined by the PLC program. Every PLC program
in the RAM can be edited with the programming device.

Know-how protection for user blocks
To protect the know-how contained in the the user blocks (OB, FB and FC), they can be
encoded with the SBP tool (SIMATIC block protection) contained in SIMATIC STEP 7. These
blocks can then no longer be opened, debugged and modified without specifying the password
for the encoding.

When encoding, the automation system on whose PLC-CPU the blocks are to be executed,
must be specified: SIMATIC and/or SINUMERIK PLC-CPU.

The handling of the blocks, e.g. loading to the CPU, is not affected by the encoding.

Requirement
SIMATIC STEP 7 as of Version 5.5 SP3

P3: Basic PLC program for SINUMERIK 840D sl
14.1 Brief description

Basic Functions
870 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.2 Key data of the PLC CPU

Key data of the PLC CPU
References:
The overview of the key data of the PLC CPU integrated in the SINUMERIK NCU can be found
in:
NCU 7x0.3 PN Manual, Section "Technical data"

Note
I/O addresses for integrated drives

The I/O addresses above 4096 are reserved for the integrated drives of the NCU and must
not assigned otherwise.

Functions of the basic PLC program

Scope
 Axes/spindles 31

Channels 10
Mode groups 10

Functions
 Status/control signals +

M decoders (M00-99) +
G group decoders +
Aux. function distributors +
Aux. function transfer, interrupt-driven +
M decoding acc. to list +
Move axes/spindles from PLC +
ASUP interface +
Error/operating messages +
Transfer MCP and HHU signals +
Display control handheld unit +
Read/write NC variables and GUD +
PI services +
Tool management +
Star/delta switchover +

M to N +
Safety Integrated +
Program diagnostics +

P3: Basic PLC program for SINUMERIK 840D sl
14.2 Key data of the PLC CPU

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 871

14.3 PLC operating system version
The PLC operating system version is displayed at:

● User interface of SINUMERIK Operate: "Operating area switchover" > "Diagnostics" >
"Version" ⇒ version data / system software NCU: Selection "PLC" > "Details" ⇒ version
data / system software NCU/PLC: The PLC operating system version is displayed in the
first line is at "PLC 3xx…".
Note
The displayed version is SINUMERIK-specific. It is not compatible with the basic SIMATIC
CPU.

● SIMATIC STEP 7, HW Config: In the properties of the PLC CPU in the SINUMERIK rack:
"Properties - CPU 3xx…" > "Order no. / firmware": xxxx / Vx.y.z
Note
The version of the basic SIMATIC CPU is displayed.

14.4 PLC mode selector
The PLC mode selector is located on the front of the NCU module. The following PLC operating
modes can be set via the PLC mode selector:

S 1) Meaning Remark
0 RUN-P The PLC program can be changed without activation of the password
1 RUN Only read access operations are possible using a programming device (PG). It

is not possible to make changes to the PLC program until the password has
been set.

2 STOP Processing the PLC program is stopped and all PLC outputs are set to substitute
values.

3 MRES The PLC is switched into the STOP state followed by a PLC general reset (de‐
fault data).

1) Switch position of the PLC mode selector

References
A detailed description of the position of the PLC mode selector on the front of the NCU module,
as well as its use in connection with NC and PLC general reset can be found in:

CNC Commissioning Manual: NC, PLC, Drive:

● Section "Switch-on/power-up" > "Operator control and display elements for power-up"

● Section "Switch-on/power-up" > "NC and PLC general reset"

● Section "General tips" > "Separate NC and PLC general reset"

P3: Basic PLC program for SINUMERIK 840D sl
14.4 PLC mode selector

Basic Functions
872 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.5 Reserve resources (timers, counters, FC, FB, DB, I/O)

Reserve resources (timers, counters, FC, FB, DB, I/O)
The components below are reserved for the basic program:

● Timer
No reservation

● Counter
No reservation

● FC, FB, DB
FC0 to FC29 and FB0 to FB29 are reserved for the basic program. The number range
between 1000 and 1023 is also reserved for FCs and FBs. DB1 to DB61, DB71 to DB80
are reserved for data blocks. The number range 1000 to 1099 is also reserved in addition
for DB. The data blocks of channels, axes/spindles and tool management functions that
are not activated may be assigned as desired by the user.

● I/O range
The PLC has an I/O address volume of 16384 bytes each for inputs and outputs. The
address ranges starting at 4096 are reserved for/occupied by integrated drives. However,
diagnostic addresses for modules can be assigned to the highest address range as
proposed by STEP 7. The address range between 4080 and 4097 is also assigned for the
NC, CP and HMI in rack 0 of the SIMATIC 300 station (for NCU 7x0.3).

14.6 Commissioning hardware configuration of the PLC CPU
The commissioning of the PLC CPU is described in detail in:

References
CNC Commissioning Manual: NC, PLC, Drive:

● Section: "Connect PG/PC to PLC"

● Section: "Commissioning PLC"

● Section: "Basics" > "PLC program"

● Section: "General tips" > "Separate NC and PLC general reset"

● Section: "General tips" > "Integrating PG/PC into the network (NetPro)"

14.7 Starting up the PLC program

14.7.1 Installation of the basic program
The installation of the basic program is described in detail in:

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 873

References
CNC Commissioning Manual: NC, PLC, Drive; Section: "Commissioning PLC" > "Creating a
PLC program"

Note
Installation/update

Before installing the toolbox for SINUMERIK 840D sl, SIMATIC STEP 7 must be installed.

It is recommended that the hardware expansions for STEP 7 be installed again from the toolbox
after an update of STEP 7.
Contents

The OB source programs, including standard parameterization, interface symbols and data-
block templates for the handheld unit and M decoding functions are included in the basic
program.

14.7.2 Application of the basic program
A new CPU program (e.g. "Turnma1") must be set up in a project by means of the STEP 7
software for each installation (machine).

Remark
The catalog structures of a project and the procedure for creating projects and user programs
are described in the relevant SIMATIC documentation.

Procedure
The basic program blocks are copied using the SIMATIC Manager and
"File" > "Open" > "Library".

The following components must be copied from the library:

● From the block container: FCs, FBs, DBs, OBs, SFC, SFB, UDT

● The source_files (from the source container): GPOB840D

● Possibly MDECLIST, HHU_DB and others

● The symbols table (from the symbols container)

Compatibility with STEP 7
There are no dependencies between the basic program and current STEP 7 versions.

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
874 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.7.3 Version codes

Basic program
The version of the basic program is displayed on the Version screen of the user interface along
with the control system type.

The control system type is encoded as follows:

Leftjustified decade of DB17.DBD0 (byte 0) Control system type
03 SINUMERIK 840D sl (NCU 7x0)

User program version identifications
Users can also display their own PLC version codes on the HMI version screen. For this
purpose, a data of type STRING containing a maximum of 54 characters must be defined in
any data block. The version, however, is not interpreted, but rather the entered string is
accepted. The parameterization on this string is done via a pointer on FB1. For this, the data
block must be defined symbolically. See the FB1 (Page 965) block description for more
information.

The version identification can be formatted in the string as follows:

● xx.yy

● xx.yy.zz

● ww.xx.yy.zz

● vv.ww.xx.yy.zzz

● x.y

● x.y.z

● w.x.y.z

● v.w.x.y.z

In addition to the version identification, a date can be entered in the string, which given the
appropriate formatting, is displayed in the HMI in the version screen. The date, however, is
not interpreted, but rather the entered string is accepted. A combination with version
identifications is possible. The following formats are currently supported:

● 00/00/0000

● 0000/00/00

● 00/00/00

Examples:
● "Test project version 01.02.03 01/01/2015"

● "1.2 2015/01/01 test project"

● "01/01/15 version 01.02 test project"

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 875

14.7.4 Machine program
The machine manufacturer creates the machine program using the library routines supplied
with the basic program. The machine program contains the logic operations and sequences
on the machine. The interface signals to the NC are also controlled in this program. More
complex communication functions with the NC, e.g. read/write NC data, tool-management
acknowledgments, etc., are activated and executed via the FCs and FBs blocks of the basic
program.

The machine program can be created in various STEP 7 creation languages, e.g. STL, LAD,
FBD, S7-HIGRAPH, S7GRAPH, SCL. The complete machine program must be generated and
compiled in the correct sequence.

This means that blocks that are called by other blocks must generally be compiled before
these blocks.

If blocks that are called by other blocks are subsequently modified in the interface
(VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR) as the program is developed, then the call
block and all blocks associated with it must be compiled again. This general procedure applies
analogously to instance data blocks for FBs. If this sequence of operations is not observed,
timestamp conflicts occur when the data is retranslated into STEP 7. As such, the
recompilability of the blocks is not ensured and with the function "Status of block" unnecessary
conflicts can also appear. It is, moreover, advisable to generate blocks in ASCII-STL by means
of the STEP 7 editor when they have been created in Ladder Diagram or in single statements
(incremental mode).

14.7.5 Data backup
The PLC-CPU does not save any symbolic names, but instead only the datatype descriptions
of the block parameters VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR and the datatypes
of the global data blocks.

Note

No sensible recompilation is possible without the related project for this machine. This
especially affects, for instance the function status of the block or the necessary changes done
in the PLC-CPU programs later. It is, therefore, necessary to keep a backup copy of the STEP
7 project located in the PLC CPU on the machine. This is a great help for the service case and
saves unnecessary consumption of time in restoring the original project.

If the STEP 7 project exists and has been created according to the instructions given above,
then symbols can be processed in the PLCCPU on this machine. It may also be advisable to
store the machine source programs as ".awl" files in case they are required for any future
upgrade.

The source programs of all organization blocks and all instance data blocks should always be
available.

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
876 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.7.6 PLC series startup, PLC archive
Once the blocks have been loaded to the PLC CPU, a series archive can be generated via the
HMI user interface to back up data on the machine. To ensure data consistency, this backup
must be created immediately after block loading when the PLC is in the Stop state. It does not
replace the SIMATIC project backup as the series archive saves binary data only. For instance,
no symbolic information is present here. In addition, no CPU DBs (SFC 22 DBs) or SDBs
generated in the CPU are saved.

Selection of the SINUMERIK archiving program
The PLC series archive can be generated directly from the SIMATIC project as an alternative.

1. In the SIMATIC Manager open dialog box "Settings": menu bar "Tools" > "Settings".

2. Open tab "Archiving".

3. In the "Preferred archiving program" drop-down list box, select the SINUMERIK archiving
program "SINUMERIK (*.arc)".

Start of the SINUMERIK archiving program
The SINUMERIK archiving program is started in the SIMATIC Manager via the menu command
"File" > "Archive".

After you have selected a project and assigned an archive name, the PLC archive is generated.
If a project contains several program paths, the S7 program for which the PLC archive will be
created can be selected in the dialog box. All blocks contained in folder "CPU ..." > ... > "Blocks"
at the selected program path are archived. Blocks in the folder "CP 840D sl" are not included
in the PLC archive:

Data blocks that were created with SFC22 (online) in the CPU are also excluded from the
archive.

The "Sdb archive" option can be activated or deactivated for the archiving program:

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 877

If "Sdb archive" is activated, a PLC archive is created that only contains the system data blocks
(SDB) of the selected program path.

Automation
The process of generating a series archive can be automated (comparable to the command
interface in STEP 7). In generating this series archive, the command interface is expanded.

The following functions are available for this expansion:

The functions (shown here in VB script) are not available until server instantiations and Magic
have been called:

Const S7BlockContainer = 1138689, S7PlanContainer = 17829889
Const S7SourceContainer = 1122308
set S7 = CreateObject("Simatic.Simatic.1")
rem Instantiate command interface of STEP 7
Set S7Ext = CreateObject("SimaticExt.S7ContainerExt")
Call S7Ext.Magic("")
Functions:

● Function Magic(bstrVal As String) As Long
● Function MakeSerienIB (FileName As String, Option As Long,

Container As S7Container) As Long

Description
Function Magic(bstrVal As String) As Long

The call provides access to certain functions. The function must be called once after server
instantiation. The value of bstrVal can be empty. This initiates a check of the correct STEP 7
version and path name in Autoexec. The functions are enabled with a return parameter of 0.

Return parameter (-1) = incorrect STEP 7 version

Return parameter (-2) = no entry in Autoexec.bat

Function MakeSerienIB(FileName As String, Option As Long, Container As S7Container) As
Long

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
878 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameter "Option":

0: Normal series startup file with general reset.
Bit 0 = 1: Series startup file without general reset. When project contains SDBs, this option is

inoperative.
A general reset is then always executed

Bit 1 = 1: Series startup file with PLC restart

Return value:

0 = OK
-1 = Function unavailable, call Magic function beforehand
-2 = File name cannot be generated
-4 = Container parameter invalid or container block empty
-5 = Internal error (memory request rejected by Windows)
-6 = Internal error (problem in STEP 7 project)
-7 = Write error when generating series startup files (e.g. diskette full)

Use in script

Program code
If S7Ext.Magic("") < 0 Then
 Wscript.Quit(1)
End If
 Set Proj1 = s7.Projects("new")
 set S7Prog = Nothing
 Set s7prog = Proj1.Programs.Item(1) 'if there is only one program'
For Each cont In s7prog.Next
 If (Cont.ConcreteType = S7BlockContainer) Then
 'Check block container
 Exit For
 End if
 Cont = Nothing
 Next
Error = S7Ext.MakeSerienIB("f:\dh\arc.dir\PLC.arc", 0, Cont)
'Now error analysis

The For Each ... Next block programmed above can be programmed in the Delphi
programming language as follows (The programming in the C, C++ programming languages
is similar):

Program code
Var
 EnumVar: IEnumVariant;
 rgvar: OleVariant;
 fetched: Cardinal;

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 879

Program code
//For Each Next
EnumVar := (S7Prog.Next._NewEnum) as IEnumVariant;
While (EnumVar.Next(1,rgvar,fetched) = S_OK) Do Begin
 Cont := IS7Container(IDispatch(rgvar)); // block container
 Check sources
 If (Cont.ConcreteType = S7BlockContainer) Then Break;
 Cont := NIL;
End;

14.7.7 Software upgrade
A general PLC reset should be performed to achieve a defined initial state before the PLC
software is upgraded. In this case, among other things, all user data (program and data blocks)
will be deleted. The PLC general reset is described in:

References:
Commissioning Manual CNC: NC, PLC, Drive, General Tips,
Section: PLC general reset

Generating a new SIMATIC S7 project
In normal cases, the new PLC basic program is to be linked-in for a new NCU software version.
The basic programs blocks must be loaded into the user project for this purpose. If the following
program and data blocks are already in the user project, then these should not be transferred
with the blocks of the basic PLC program: OB1, OB40, OB82, OB86, OB100, FC12 and DB4.
These have been possibly changed by the user, and should not be overwritten. The new basic
program must be linked with the user program. The following procedure must be taken into
account:

1. Generate the text or source file of all user blocks before copying the basic PLC program.

2. Copy the new basic program blocks into the SIMATIC S7 project (for a description, see
Section "Application of the basic program (Page 874)")

3. All user programs "*.awl" must be recompiled in the correct order! (See also "Machine
program (Page 876)")

4. This newly compiled SIMATIC S7 project should then be downloaded with STEP 7 into the
PLC.

However, it is normally sufficient to recompile the organization blocks (OBs) and the instance
data blocks of the S7 project. This means before upgrading, only the sources for the
organization blocks and the instance data blocks have to be generated.

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
880 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

NC variables
The latest NC VAR selector can be used for each NC software version (even earlier versions).
The variables can also be selected from the latest list for earlier NC software versions. The
data content in DB120 (default DB for variables) does not depend on the software status. This
means, variables selected in an older software version need not be reselected when the
software is upgraded.

14.7.8 I/O modules (FM, CP modules)
Additional packages for STEP 7 are generally required for more complex I/O modules (FM,
CP modules). Support blocks (FC/FB) are provided in these additional packets. The blocks
contain specific functions for operating the relevant module. These functions can be
parameterized and called in the user program.

Identical numbers
If handling and basic program blocks have identical numbers, the block numbers of the basic
program must remain unchanged. The block numbers of the handling blocks must be renamed
to free numbers via STEP 7.

P3: Basic PLC program for SINUMERIK 840D sl
14.7 Starting up the PLC program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 881

14.7.9 Troubleshooting
This section describes problems which may occur, their causes and remedies and should be
read carefully before hardware is replaced.

Errors, cause/description and remedy
Serial
no.
error in‐
forma‐
tion

Errors Cause/description To correct or avoid errors

1 No connec‐
tion via MPI to
PLC.

The MPI cable is not plugged in
or is defective. Possibly, the
STEP 7 software is also not cor‐
rectly configured for the MPI card.

Test: Create a link with the programmer
in the STEP 7 editor by means of con‐
nection "Direct_PLC". A number of
node addresses must be displayed
here. If they do not appear, the MPI ca‐
ble is defective/not plugged in.

2 PLC cannot
be accessed
in spite of PLC
general reset.

A system data block SDB 0 has
been loaded with a modified MPI
address. This has caused an MPI
bus conflict due to dual assign‐
ment of addresses.

Disconnect all MPI cables to other com‐
ponents. Create the link "Direct_PLC"
with the programmer. Correct the MPI
address.

3 All four LEDs
on the PLC
flash (DI dis‐
aster)

A system error has occurred in
the PLC.
Measures:
The diagnostic buffer on the PLC
must be read to analyze the sys‐
tem error in detail. To access the
buffer, the PLC must be stopped
(e.g. set "PLC" switch to position
2). A hardware reset must then be
performed. The diagnostic buffer
can then be read out with STEP
7. Relay the information from the
diagnostic buffer to the Hotline /
Development Service. A general
reset must be carried out if re‐
quested after the hardware RE‐
SET. The diagnostic buffer can
then be read with the PLC in the
Stop state.

Once the PLC program has been RE‐
SET or reloaded, the system may re‐
turn to normal operation. Even in this
case, the content of the diagnostic buf‐
fer should be sent to the Development
Office.

14.8 Coupling of the PLC CPU

14.8.1 General information
A CPU of the S7-300 automation system is used as PLC for the SINUMERIK 840D sl. The
PLC-CPU is integrated into the NCU component as a sub-module. A reference to the
performance data of the PLC CPU can be found in Section "Key data of the PLC CPU
(Page 871)".

P3: Basic PLC program for SINUMERIK 840D sl
14.8 Coupling of the PLC CPU

Basic Functions
882 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.8.2 Properties of the PLC CPU
The PLC integrated in the SINUMERIK 840D sl generally has the same functionality as the
corresponding SIMATIC S7-300 PLC.

For differences, see reference in Section "Key data of the PLC CPU (Page 871)".

Owing to differences in their memory system as compared to a SIMATIC S7-300 PLC, certain
functions are not available (e.g. save blocks on memory card, save project on memory card).

Note

As with the PLC integrated in SINUMERIK, there is no automatic start of the PLC after power
failure and recovery for a SIMATIC S7-300 PLC when a "PLC stop" is triggered by an operator
action on the programming device. For safety reasons, the PLC remains in the stop state with
an appropriate diagnostic entry. You can start the PLC only by an operator action on the
programming device, "Execute a restart", or via the mode selector "Stop" > "Run" (warm
restart).

14.8.3 Interface with integrated PLC

Physical interfaces
With the SINUMERIK 840D sl, the PLC integrated in the NCU offers the option of exchanging
signals between the NC and PLC directly via a dual-port RAM.

Data exchange with the operator panel
Data exchange with the operator panel (e.g. TCU/OP) can be performed via Ethernet or
PROFIBUS. With a connection via Ethernet, communication takes place via the integrated
communication processor (CP 840D sl).

Data exchange with the machine control panel (MCP) and handheld unit (HHU) can be
performed via MPI, PROFIBUS or Ethernet.

Programming devices should preferably be connected via Ethernet or via MPI (Multi-Point
Interface) directly to the PLC.

P3: Basic PLC program for SINUMERIK 840D sl
14.8 Coupling of the PLC CPU

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 883

Figure 14-1 NC-PLC coupling on SINUMERIK 840D sl (integrated PLC)

Interface: NC/PLC
The data exchange between NC and PLC is organized by the basic program on the PLC side.
The status information, such as "Program running", stored by the NC in the NC/PLC interface
is copied to data blocks by the basic program at the beginning of the cycle (OB1) and can then
be accessed in the user program (user interface). The control signals for the NC (e.g. NC start)
entered in the interface data block by the user are also written to the internal DPR and
transferred to the NC at the start of the cycle.

Workpiece-program-specific auxiliary functions transferred to the PLC are first evaluated by
the basic program (alarmdriven) and then transferred to the user interface at the start of OB1.
If the relevant NC block contains auxiliary functions that require that NC processing is
interrupted (e.g. M06 for tool change), the basic program stops the decoding of the NC block
initially for one PLC cycle. The user can then use the "read disable" interface signal to halt the
block execution until the tool change has been completed. If, on the other hand, the relevant
NC block only contains auxiliary functions, which do not require interruption of the decoding

P3: Basic PLC program for SINUMERIK 840D sl
14.8 Coupling of the PLC CPU

Basic Functions
884 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

(e.g. M08 for cooling medium on), the transfer of these "fast" auxiliary functions is directly
acknowledged in OB40, so that decoding is only insignificantly influenced by the transfer to
the PLC.

The evaluation and enabling of the G commands transferred from the NC are also alarm-driven
and acknowledged, however they are transferred directly to the user interface. If a G command
is evaluated at several points in the PLC program, differences in the information of the G
command within one PLC cycle may arise.

In the case of NC actions triggered and assigned with parameters by the PLC (e.g. traverse
concurrent axes), triggering and parameter assignment is performed using FCs and FBs, not
interface data blocks. The FCs and FBs belonging to the actions are supplied together with
the basic program. The FCs and FBs required must be loaded by the user and called in the
PLC program of the machine manufacturer (machine program). For an overview of FC, FB
and data blocks, sorted according to basic and extended functions, please refer to Section
"Start-up of PLC programs".

Interface: HMI/PLC
HMI/PLC data exchange is performed via the integrated CP, whereby the HMI is always the
active partner (client) and the PLC is always the passive partner (server). Data transferred or
requested by the HMI is read from and written to the HMI/PLC interface area by the PLC
operating system (timing: Cycle control point). From the viewpoint of the PLC application, the
data is identical to I/O signals.

Interface: MCP/PLC or HHU/PLC (connection: Ethernet)
MCP/PLC and HHU (HT 2) / PLC data is exchanged via the integrated CP. The CP transfers
the MCP/HHU signals to and fetches them from the PLC's internal DPR (Dual-Port RAM). On
the PLC side, the basic program handles communication with the user interface. The basic-
program parameters (FB1, DB7) define the operand areas (e.g. I/O areas) and the start
addresses.

Interface: MCP/PLC (connection: PROFIBUS)
MCP/PLC data exchange takes place via the PLC's PROFIBUS. The MCP's I/O addresses
are to be placed in the PLC's process image area and via HW configuration in STEP 7. The
MCP*In, MCP*Out pointer variables must be set to the same addresses. The selected DP
slave number must be entered in MCP*BusAdr.

Interface: HHU/PLC (connection: MPI)
The HHU/PLC data exchange is performed via the MPI interface on the PLC. The
"Communication with global data (GD)" service is used for this purpose (see also STEP 7 User
Manual). The PLC operating system handles the transfer of signals from and to the user
interface. The STEP 7 "Communication configuration" configuring tool is used to define both
GD parameters as well as operand areas (e.g. I/O areas) and their start addresses.

14.8.4 Diagnostic buffer on PLC
The diagnostic buffer of the PLC (readable using STEP 7) will enter diagnostic information on
the PLC operating system.

P3: Basic PLC program for SINUMERIK 840D sl
14.8 Coupling of the PLC CPU

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 885

14.9 Interface structure

Interface DBs
Mapping in interface DBs is necessary due to the large number of signals exchanged between
the NC and PLC. These are global DBs from the viewpoint of the PLC program. During system
start-up, the basic program creates these data blocks from current NC machine data (no. of
channels, axes, etc.). The advantage of this approach is that the minimum amount of PLC
RAM required for the current machine configuration is used.

14.9.1 PLC/NCK interface

General
The PLC/NC interface comprises a data interface on one side and a function interface on the
other. The data interface contains status and control signals, auxiliary and G commands, while
the function interface is used to transfer jobs from the PLC to the NC.

Data interface
The data interface is subdivided into the following groups:

● NC-specific signals

● Mode-group-specific signals

● Channel-specific signals

● Axis/spindle/drive-specific signals

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
886 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Function interface
The function interface is formed by FBs and FCs. The figure below illustrates the general
structure of the interface between the PLC and the NC.

Figure 14-2 PLC/NC user interface

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 887

Compile-cycle signals
In addition to the standard signals exchanged between the PLC and NC, an interface data
block for compile cycles is also generated if required (DB9). The associated signals, which are
dependent on the compile cycles, are transmitted cyclically at the start of OB1. The basic
program starts transmission at the lowest address and works up to the highest. First, signals
are transferred from the PLC to the NC, then from the NC to the PLC. The user must
synchronize the NC and PLC as necessary (e.g. using the semaphore technique). Signal
transmission is asynchronous between NC and PLC. This means, for example, that active NC
data transmission can be interrupted by the PLC. This can mean that data is not always
consistent.

PLC/NC signals
The group of signals from the PLC to NC includes:

● Signals for modifying the high-speed digital I/O signals of the NC

● Keyswitch and emergency stop signals

Figure 14-3 PLC/NC interface

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
888 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

NC/PLC signals
The group of signals from the NC to PLC includes:

● Actual values of the digital and analog I/O signals of the NC

● Ready and status signals of the NC

Also stored in this group are the HMI handwheel selection signals and the channel status
signals.

The signals for handwheel selection are decoded by the basic program and entered in the
machine/axis-specific interface.

Digital/analog inputs/outputs of the NC
The following must be noted with respect to the digital and analog inputs and outputs of the
NC:

Inputs:

● All input signals or input values of the NC are also transferred to the PLC.

● The transfer of signals to the NC part program can be suppressed by the PLC. Instead, a
signal or value can be specified by the PLC.

● The PLC can also transfer a signal or value to the NC even if there is no hardware for this
channel on the NC side.

Outputs:

● All signals or values to be output are also transferred to the PLC.

● The NC can also transfer signals or values to the PLC even if there is no hardware for this
channel on the NC side.

● The values transferred by the NC can be overwritten by the PLC.

● Signals and values from the PLC can also be output directly via the NC I/O.

Note

When implementing the digital and analog NC I/O, the information contained in the following
documentation must be taken into account:
References:
Function Manual Extended Functions; Digital and analog NC I/O (A4)

PLC / mode group signals
The operating mode signals set by the machine control panel or the HMI are transferred to the
operating mode group of the NC. These apply to all NC channels. Several mode groups can
be optionally defined in the NC.

The mode group reports its current status to the PLC.

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 889

Figure 14-4 PLC / mode group interface

PLC/NC signals
The signal groups below must be considered on the interface:

● Control/status signals

● Auxiliary commands / G commands

● Tool management signals

● NC functions

The control/status signals are transferred cyclically at the start of OB1. The signals entered in
the channel-specific interface by the HMI (HMI signals are entered by the PLC operating
system) are also transferred at this time if they have been defined on the HMI operator panel,
not on the MCP.

Auxiliary commands and G commands are entered in the interface data blocks in two ways.
First, they are entered with the change signals.

● The M signals M00 - M99 (they are transferred from the NC with extended address 0) are
also decoded and the associated interface bits set for the duration of one cycle.

● For G commands, only the groups selected via machine data are entered in the interface
data block.

● The S values are also entered together with the related M signals (M03, M04, M05) in the
spindle-specific interface. The axis-specific feedrates are also entered in the appropriate
axisspecific interface.

When the tool management (magazine management) function is activated in the NC, the
assignment of spindle or revolver and the loading/unloading points are entered in separate
interface DBs (DB71-73).

The triggering and parameter assignment of NC functions is performed by means of PLC
function calls.
The following function calls are available:

● Position a linear axis or rotary axis

● Position an indexing axis

● Start a prepared asynchronous subprogram (ASUP)

● Read/write NC variables

● Update magazine and tool motion

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
890 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Some of the above functions are described in their own function documentation.

Figure 14-5 PLC/NC channel interface

PLC/axis, spindle, drive signals
The axis-specific and spindle-specific signals are divided into the following groups:

● Shared axis/spindle signals

● Axis signals

● Spindle signals

● Drive signals

The signals are transferred cyclically at the start of OB1 with the following exceptions:

Exceptions include:

● axis-specific F value

● M value

● S value

An axis-specific F value is entered via the M, S, F distributor of the basic program if it is
transferred to the PLC during the NC program processing.

The M and S value are also entered via the M, S, F distributor of the basic program if one or
both values require processing.

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 891

Figure 14-6 Interface between PLC and axes/spindles/drives

14.9.2 Interface PLC/HMI

General
The following groups of functions are required for the PLC/HMI interface:

● Control signals

● Machine operation

● PLC messages

● PLC status display

Control signals
Some control signals are signal inputs, for example, via the machine control panel, which have
to be taken into account by the HMI. This group of signals includes, for example, display actual
values in MCS or WCS, key disable, etc. These are exchanged with the HMI via a separate
interface data block (DB19).

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
892 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Machine operation
All operator inputs, which lead to response actions on the machine, are monitored by the PLC.
Operator actions are usually performed on the machine control panel (MCP). However, it is
also possible to perform some operator actions on the HMI, e.g. mode selection.

The PLC operating system enters the operating signals sent by the HMI directly into the
interface data blocks. As standard, the basic program routes these operating signals in such
a way that, provided equivalent operator actions are available, these can be performed either
on the HMI or on the MCP. If required, the user can switch off operation via HMI using an FB1
parameter "MMCToIF".

PLC messages
The signaling functions are based on the system diagnostic functions integrated in the
operating system of the AS 300. These have the following characteristics:

● The PLC operating system enters all important system states and state transitions in a
diagnostics status list. Communication events and I/O module diagnostics data (for
modules with diagnostic functions) are also entered.

● Diagnostics events, which lead to a system stop, are also entered with a time stamp in a
diagnostic buffer (circular buffer) in the chronological order of their occurrence.

● The events entered in the diagnostic buffer are automatically transmitted to human machine
interface systems (OP or HMI) via the bus systems once these have issued a ready signal
(message service). "Transfer to the node ready" is a function of the PLC operating system.
Receipt and interpretation of the messages are executed by the HMI software.

● The PLC user program can also use SFCs (System Function Calls) to enter messages in
the diagnostic buffer or ALARM S/ALARM SQ buffer.

● The events are entered in the alarm buffer.
The associated message texts must be stored on the OP or HMI.

An FC (FC10) for message acquisition is prepared in conjunction with the basic program. This
FC records events, subdivides them into signal groups and reports them to the HMI via the
alarm buffer.

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 893

The message acquisition structure is shown in the figure "Acquisition and signaling of PLC
events". The features include:

● Bit fields for events related to the NC/PLC interface are combined in a single data block
(DB2) with bit fields for user messages.

● Bit fields are evaluated at several levels by FC10.

– Evaluation 1; acquisition of group signals
A group signal is generated for each group of signals if at least one bit signal is set to
"1". This signal is generally linked to the disable signal of the NC/PLC interface (on
modules with diagnostic functions). The group signals are acquired completely in cycles.

– Evaluation 2; acquisition of alarm messages
A fixed specification exists to define which signals in a group generate an alarm message
when they change from "0" to "1".

– Evaluation 3; acquisition of operating signals
A fixed specification exists to define which signals in a group generate an operational
message.

● The scope of the user bit fields (user area) is set by default to 10 areas with 8 bytes each,
but the number of areas can also be adjusted to suit the requirements of the machine
manufacturer via basic program parameters in FB1.

Acknowledgement concept
The following acknowledgement procedures are implemented for error and operational
messages:

Operating messages are intended for the display of normal operating states as information for
the user. Acknowledgement signals are, therefore, not required for this type of message. An
entry is made in the diagnostic status list for incoming and outgoing messages. The HMI
maintains an up-to-date log of existing operating messages using the identifiers "operating
message arrived" and "operating message gone".

Alarm messages display error states on the machine, which will usually lead to the machine
being stopped. Where several errors occur in rapid succession, it is important to be able to
distinguish their order of occurrence for troubleshooting purposes. This is indicated, on the
one hand, by the order in which they are entered in the diagnostic buffer and on the other, by
the time stamp, which is assigned to every entry.

If the cause of the error disappears, the associated alarm message is only deleted if the user
has acknowledged it (e.g. by pressing a key on the MCP). In response to this signal, the
"Message acquisition" FC examines which of the reported errors have disappeared and enters
these in the diagnostic buffer with the entry "Alarm gone". This enables the HMI to also maintain
an up-to-date log of pending alarm messages. The time of day indicating the time at which the
error occurred is maintained for messages, which are still pending (in contrast to a received
interrogation).

STEP 7
A tool can be started in the SIMATIC Manager via menu item "Target system" > "CPU
messages". Alarms and messages can be displayed by number using this tool. To do this,
acivate the "Alarm" tab and enter a check mark under "A" in the upper half of the screen.

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
894 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

User program
The user PLC program merely needs to call the basic program block FC10 with appropriate
parameter settings in the cyclic program section and set or reset the bit fields in DB2. All further
necessary measures are implemented by the basic program and HMI.

Figure 14-7 Acquisition and signaling of PLC events

Extensions of the PLC alarms via block FC10
The FB1 parameter "ExtendAlMsg" selects the PLC alarm mechanism.

If "ExtendAlMsg:= FALSE" the earlier process of the FC10 with the DB2 is active as bit array
data block. The known restrictions regarding the number of channels and axes are applicable.

On the other hand, in case of "ExtendAlMsg:= TRUE" the extension of the FC10 becomes
active. DB2 and DB3 are created just as before. The user must set or reset the bits in DB2.
The parameter setting via message and alarm and a parameter setting of the numeric value
of the 2nd decade of the user alarms are contained in DB5.

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 895

The extensions are:

● Support for 10 channels, 31 axes, 64 user areas (the number of user areas should be
entered in the FB1 parameter "MsgUser").

● Areas for feed stop, read-in disable, etc. are available without messages. The information
from this area is stored on the interface in DB21, DB31 depending on FC10 parameter
"ToUserIF" together with the related message bits as group signals. As such, the previous
cumbersome handling of the signals is omitted.

● The alarms / messages also get the 16-bit integer additional value (%Z parameter in the
alarm text) in addition to the alarm number for the user area 0. The user must write the 16-
bit integer values in the DB2 in the array variable ZInfo0 parallel to setting an alarm bit. An
integer value is available for each bit in the user area 0, see UDT1002 in the basic program.

● The user messages can be parameteized in the second decade of the message number
in the numerical range 0 to 9. The display value of the second decade must be written by
the user in the DB5 in the array variable UserDek2No. A number can be defined for each
user area, see DB5 in the basic program.
The value 0 is set by default for the second decade.

The structuring of the DB2 in UDT1002 can be recognized (basic program). In case of new
alarm functions, the UDT1002 must be assigned symbolically to the DB2.

At the start of DB2 there are bit arrays for signals without alarm generation. This is followed
by an array of size 64 integer values for additional info about the user area 0.

Thereafter follow the areas, which also trigger alams / messages (see List manual) These
areas are extended to 10 channels, 31 axes.

Simple implementation of a user program on the new alarms
The source container of the basic program contains the file "udt2_for_Convert.awl", which has
the following structural element from UDT1002:

● ChanA as array of 1 ... 8

● AxisA as array of 1 ... 18

● UserA as array of 0 ... 63

This UDT2 is to be compiled via the LAD/FBD/STL editor. The UDT2 must be assigned to the
DB2 in the symbol table.

Sources must be generated for components, which have assignments on DB2. Alternatively,
sources can naturally be created for all blocks too. The UDT1002 must now be assigned to
the DB2 in the symbol table. Thereafter, the sources must be recompiled.

Now all the alarm allocations are assigned to the new data areas in the DB2 and now only the
parameter "ExtendAlMsg" at FB1 must be set to True.

After a Power On RESET the alarm behavior is the same as earlier.

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
896 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.9.3 PLC/MCP/HHU interface

General
There are different connection options for the machine control panel (MCP) and the handheld
unit (HHU). This is in part due to the history of the MCP and HHU. This description focuses
primarily on the connection of the Ethernet components.

On the SINUMERIK 840D sl, the machine control panel (MCP) and handheld unit (HHU) are
connected via the Ethernet bus, which also links the TCU to the NCU. The advantage of this
is that only one bus cable is required to connect the operating unit.

Topology SINUMERIK 840D sl
On the 840 D, the machine control panel and the handheld unit are connected to the CP 840D
sl Ethernet bus (see Figure below). Where the connection of further keys and displays is
required for customized operator panels, an additional keyboard interface (machine control
panel without operating unit) can be used. For each keyboard interface, 64 pushbuttons,
switches, etc. and 64 display elements can be connected via ribbon cable.

The signals sent from the MCP are copied to the PLC's DPR (Dual-Port RAM) by the integrated
Ethernet CP-840D sl. The basic program of the PLC enters the incoming signals in the input
image configured at FB1. The NC-related signals are generally distributed by the basic
program to the NC/PLC interface. If required, the signals can be modified by the user.

The signals from the PLC to the MCP (displays) are transferred in the opposite direction.

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 897

Figure 14-8 Connection of the machine control panel on 840D sl

Bus addresses
On Ethernet components, MAC and IP addresses or logic names are determining factors in
respect of communication. The control system's system programs convert logic names into
MAC or IP addresses. On the PLC, the numeric component of the logic name is used for
communication. This numeric part is specified by the user to the FB1 using parameter
"MCPxBusAdr".

The logical name of an MCP or HHU always begins with "DIP". This is followed by a number
corresponding to the switch position of the MCP component (e.g. DIP192, DIP17).

MCP interface in the PLC
The signals from the machine control panel are routed by default via the I/O interface to the
PLC area. A distinction must be made between NC and machine-specific signals. NC-specific
key signals are distributed to the relevant mode-group-, NC-, axis- and spindle-specific
interface by FC19 (or FC24, FC25, FC26, depending on the type of MCP) by default. The
reverse applies to the associated status signals which are routed to the MCP interface. For
this purpose, FC19 or the other blocks mentioned above must be called in the user program.

Customized keys, which can be used to trigger a wide range of machine functions, must be
evaluated directly by the user program. The user program also routes the status signals to the
output area for the LEDs.

P3: Basic PLC program for SINUMERIK 840D sl
14.9 Interface structure

Basic Functions
898 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 14-9 Interface to and from machine control panel

14.10 Structure and functions of the basic program

General
The PLC program has a modular structure. The organization blocks (OB) form the interface
between the operating system and the basic and user programs.

● Restart (warm restart) with start-up and synchronization (OB100)

● Cyclic operation (OB1)

● Process alarms (OB40)

● Asynchronous errors: Diagnostics alarm (OB82), module failure (OB86)

The calls of the function blocks of the basic and user programs must be programmed by the
user in the organization blocks (OB).

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 899

Figure 14-10 Structure of the basic program (principle)

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
900 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.10.1 Startup and synchronization of NCK PLC

Loading the basic program
The basic program must be loaded with the S7 tool when the PLC is in the Stop state. This
ensures that all blocks in the basic program will be initiated correctly the next time they are
called. Otherwise, undefined states can occur in the PLC (e.g. blinking of all PLC LEDs).

Startup,
The synchronization of NC and PLC is performed during start-up. The system and user data
blocks are checked for integrity and the most important basic program parameters are verified
for plausibility. In cases of errors, the basic program produces an alarm (visible on HMI) and
switches the PLC to the Stop state.

A warm restart is not provided, i.e. following system initialization, the operating system runs
organization block OB100 and always commences cyclic execution at the start of OB1.

Synchronization
The PLC is synchronized with the HMI, NC and CP during power-up.

Sign-of-life
After a correct initial start and the first complete OB1 cycle (basic setting cycle) the PLC and
NC continuously exchange sign-of-life signals. If the sign of life from the NC fails to materialize,
the PLC/NC interface is initialized and the signal "NC CPU ready" in DB10 is set to FALSE.

14.10.2 Cyclic operation (OB1)

General
The NC/PLC interface is processed completely in cyclic mode. From a chronological viewpoint,
the basic program runs ahead of the user program. In order to minimize the execution time of
the basic program, only the control/status signals are transferred cyclically; transfer of the
auxiliary commands and G commands takes place only on request.

The following functions are performed in the cyclic part of the basic program:

● Transmission of the control/status signals

● Distribution of the auxiliary functions

● M decoding (M00 - M99),

● M, S, F distribution

● Transfer the MCP signals via NC

● Acquisition and conditioning of the user errors and operational messages.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 901

Control/status signals
A shared feature of the control and status signals is that they are bit fields. The basic program
updates them at the start of OB1.

The signals can be subdivided into the following groups:

● General signals

● Mode-group-specific signals (such as modes)

● Channel-specific signals (such as program and feed modifications)

● Axis- and spindle-specific signals (such as feed disable)

Auxiliary and G commands
The auxiliary and G commands have the following characteristics:

● Transfer to the PLC is block-synchronous (referred to a part program block)

● Transfer is acknowledge-driven.

● The acknowledgment times have an immediate effect on the execution time of NC blocks
containing auxiliary functions requiring acknowledgment.

The value range is presented in the table below:

Function Structure Value range Data type
 1st value 2nd value 1st value 2nd value 1st value 2nd value
G command G command 2551) Byte
M word M group M word 99 99.999.999 Word DWord
S word Spindle no. S word 6 Floating

point2)
Word DWord

T word Magazine
no.

T word 99 65535 Word Word

D word - D word 99 255 Byte Byte
H word H group H word 99 Floating

point
Word DWord

F word Axis no. F word 18 Floating
point

Word DWord

1) relative number, transferred for each G group
2) corresponding STEP 7 format (24-bit mantissa, 8-bit exponent)

The M, S, T, H, D and F values sent by the NC are output together with the accompanying
change signals to the CHANNEL DB interface via the auxiliary/G command distributor (see
List Manual). The two values of the auxiliary function are transferred to the appropriate data
word. The accompanying change signal is activated to 1 for one PLC cycle. When the change
signal is reset, the acknowledgment is passed to the NC. The acknowledgment of high-speed
auxiliary functions is performed when the basic program detects the auxiliary function.

In addition to distribution of the auxiliary and G commands, selected signals are processed as
described below.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
902 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

M decoder
M functions can be used to transfer switching commands and fixed-point values. Decoded
dynamic signals are output to the CHANNEL DB interface for standard M functions (range M00
- M99) (signal duration = 1 cycle time).

G group decoders
In the case of G commands sent by the NC, the related groups are decoded and the current
G number is entered in the corresponding interface byte of the CHANNEL DB, i.e. all active
G commands are entered in the channel DBs. The entered G commands are retained even
after the NC program has terminated or aborted.

Note

During system start-up, all G group bytes are initialized with the value "0".

M, S, F distributor
The M, S, F, distributor is used to enter spindle-specific M words M(1...6)=[3,4,5], S words and
F words for axial feeds in the appropriate spindle and axis data blocks. The criterion for
distribution is the extended address which is passed to the PLC for M words, S words and
axial F words.

MCP signal transmission
Depending on the bus connection, the MCP signals are either transferred directly to the PLC
or indirectly to the parameterized I/O areas via an internal procedure using the basic program.

User messages
The acquisition and processing of the user error messages and operational messages is
performed by an FC in the basic program.

14.10.3 Time-interrupt processing (OB35)
The user must program OB35 for time-interrupt processing. The default time base setting of
OB 35 is 100 ms. A different time base can be selected using the STEP7 "HW Config" tools.
However, the OB35 time setting must be at least 3 ms in order to avoid a PLC CPU stop. The
stop is caused by reading of the HMI system state list during powerup of the HMI. This reading
process blocks priority class control for approx. 2 ms. The OB35 with a time base set to a
rather lower value is then no longer processed correctly.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 903

14.10.4 Process-interrupt processing (OB 40)
A process interrupt OB40 (interrupt) can, for example, be triggered by appropriately configured
I/Os or by certain NC functions. Due to the different origin of the interrupt, the PLC user program
must first interpret the cause of the interrupt in OB40. The cause of the interrupt is contained
in the local data of OB40.

References:
SIMATIC STEP 7 Description or Online Help of STEP 7

14.10.5 Diagnostic alarm, module failure processing (OB82, OB86)

General
In the event of a diagnostic alarm or failure of an I/O module, basic program block OB82 or
OB86 is called. The basic program block FC5 "Diagnostic alarm and module failure"
(Page 1046) is called from these blocks.

Bus diagnostics
The status of the DP slave modules at PROFIBUS connections MPI/DP, DP1 - or the
PROFINET connection PN - is signaled to the user program by the basic program using the
"Slaves OK" group signal of the particular bus system:

● DB10.DBX92.0 == 1 (MPI/DP bus: Slaves OK)

● DB10.DBX92.1 == 1 (DP1 bus: Slaves OK)

● DB10.DBX92.2 == 1 (PN bus: Slaves OK)

The group signal is derived from the LED status of the respective bus system (system state
list SZL 0x174).

Alarm output
If an error or a failure of a slave is detected at the particular bus system, the following alarm
is displayed:

● Alarm 400551 (MPI/DP bus)

● Alarm 400552 (DP1 bus)

● Alarm 400553 (PN bus)

The alarm is automatically deleted again when the error is removed.

Suppression of the alarm output 400551, 400552, 400553
By setting one of the following signals, the alarm is suppressed for the particular bus system:

● DB10.DBX92.4 = 1 (suppress alarm 400551)

● DB10.DBX92.5 = 1 (suppress alarm 400552)

● DB10.DBX92.6 = 1 (suppress alarm 400553)

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
904 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The alarm is immediately suppressed as soon as the signal is set. Before the fault occurs or
while a fault is already active.

When the signal is reset, in the case of a fault, the corresponding alarm is displayed.

The signals are reset when the control system powers up.

Note

By setting the signal, the fault monitoring for the complete bus line is deactivated!

14.10.6 Response to NCK failure

General
During cyclic operation, the PLC continuously monitors NC availability by querying the sign-of-
life. If the NC is no longer reacting, the NC/PLC interface is initialized, and the NC-CPU
ready signal in the area of the signals from NC (DB 10.DBX 104.7) is reset. Furthermore, the
signals sent from the NC to the PLC and vice versa are set to an initial state.

The PLC itself remains active so that it can continue to control machine functions. However,
it remains the responsibility of the user program to set the machine to a safe state.

NC → PLC signals
The signals sent by the NC to the PLC are divided into the following groups:

● Status signals from the NC, channels, axes and spindles

● Modification signals of the auxiliary functions

● Values of the auxiliary functions

● Values of the G commands

Status signals:

The status signals from the NC, channels, axes, and spindles are reset.

Auxiliary function change signals:

Auxiliary function change signals are also reset.

Auxiliary function values:

Auxiliary function values are retained so that it is possible to trace the last functions triggered
by the NC.

G command values:

G command values are reset (i.e. each initialized with the value 0).

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 905

PLC → NC signals
The signals sent by the PLC to the NC are divided into control signals and tasks that are
transferred by FCs to the NC.

Control signals:

The control signals from the PLC to the NC are frozen; cyclic updating by the PLC basic
program is suspended.

Jobs from PLC to NC:

The FCs and FBs, which are used to pass jobs to the NC, must no longer be processed by
the PLC user program, as this could lead to incorrect checkback signals. During power-up of
the control, a job (e.g. read NC data) must not be activated in the user program until the NC-
CPU ready signal is set.

14.10.7 Functions of the basic program called from the user program

General
In addition to the modules of the basic program, which are called at the start of OB1, OB40
and OB100, functions are also provided which have to be called and supplied with parameters
at a suitable point in the user program.

These functions can be used, for example, to pass the following jobs from the PLC to the NC:

● Traversing concurrent axes (FC18)

● Start asynchronous subprograms (ASUPs) (FC9),

● Select NC programs (FB4)

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
906 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Control spindle (FC18),

● Read and write variables (FB2, FB3)

Note
Checking and diagnostics of a function call of the basic PLC program

To simplify the checking and diagnostics of a function call (FB or FC) of the basic PLC
program that is controlled via a trigger (e.g. via Req, Start parameters) and that provide an
execution acknowledgment as output parameter (e.g. via Done, NDR, Error parameters),
proceed as follows.

A variable compiled of other signals which produce the trigger for the function call should
be set. Start conditions may be reset only as a function of the states of parameters Done,
NDR and Error.

The appropriate control mechanism can be placed in front of or behind the function call. If
the mechanism is placed after the call, the output variables can be defined as local variables
(advantage: Reduction of global variables, markers, data variables and time-related
advantages over data variables).

The trigger parameter must be a global variable (e.g. marker, data variable).

Jobs that are still active must be reset from the user program in OB100 (Req, Start,
parameters,
etc. from TRUE ⇒ FALSE). A POWER OFF/ON could result in a state in which jobs are still
active.

Concurrent axes
The distinguishing features of concurrent axes are as follows:

● They must be defined as such via the NC machine data.

● They can be traversed either from the PLC or from the NC by means of the JOG keys.

● Starting from the PLC is possible in the NC operating modes MDI and AUTOMATIK via FC.

● The start is independent of NC block boundaries.

Function calls are available for positioning axes, indexing axes and spindles (FC18).

Figure 14-11 FC18 input/output parameters

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 907

Asynchronous subprograms (ASUPs)
The ASUP can be used to trigger any functions in the NC. Before an asynchronous subprogram
can be started from the PLC, it must be ensured that it is available and prepared by the NC
program or by FB4 PI services (ASUP).

Once prepared in this way, it can be started at any time from the PLC. The NC program running
in one of the parameterized channels of FC9 is interrupted by the asynchronous subprogram.
An ASUP is started by calling FC9 from the user program by setting the start parameter to 1.

Note

If an asynchronous subprogram has not been prepared by an NC program or by FB4 (ASUP)
(e.g. if no interrupt no. has been assigned), a start error is output (StartErr = TRUE).

Read/Write NC variables
NC variables can be read with FB GET while values can be entered in NC variables with FB
PUT. The NC variables are addressed via identifiers at inputs Addr1 to Addr8. The identifiers
(symbols) point to address data which must be stored in a global DB. To allow generation of
this DB, a PC software (NC-Var-Selector) is supplied with the basic program with which the
required variables can be selected from a table, which is also supplied. The selected variables
are first collected in a second, project-related list. Command Generate DB creates a "*.AWL"
file which must be linked to the program file for the machine concerned and compiled together
with the machine program.

1 to 8 values can be read or written with a read or write job. If necessary, the values are
converted [e.g. NC floating-point values (64-bit) are converted to PLC format (32-bit with 24-
bit mantissa and 8-bit exponent) and vice versa]. A loss of accuracy results from the conversion
from 64-bit to 32-bit REAL. The maximum precision of 32-bit REAL numbers is approximately
10 to the power of 7.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
908 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

AG_SEND/AG_RECV functions
The AG_SEND/AG_RECV functions correspond to the functions of the library
"SIMATIC_NET_CP" of the S7-300 CPU in STEP 7. Generally, the online help is valid for these
functions.
The AG_SEND/AG_RECV functions can be used for data exchange with another station via
the integrated "CP 840D sl". A description of the functions is provided in Section "Block
descriptions (Page 965)".

Note

Other communication blocks (e.g. BSEND, USEND) which possess a CP343-1 are not
supported in SINUMERIK 840D sl.

14.10.8 Symbolic programming of user program with interface DB

General

Note

The basic program library on the CD supplied with the Toolbox for the 840D contains files
NST_UDTB.AWL and TM_UDTB.AWL.

The compiled UDT blocks from these two files are stored in the CPU program of the basic
program.

A UDT is a data type defined by the user that can, for example, be assigned to a data block
generated in the CPU.

Symbolic names of virtually all the interface signals are defined in these UDT blocks.

The UDT numbers 2, 10, 11, 19, 21, 31, 71, 72, 73, 77, 1002, 1071, 1072, 1073 are used.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 909

The assignments have been made as follows:

UDT assignments
UDT number Assignment to interface DB Meaning
UDT2 DB2 Alarms/messages
UDT10 DB10 NCK signals
UDT11 DB11 Mode group signals
UDT19 DB19 HMI signals
UDT21 DB21 to DB30 Channel signal
UDT31 DB31 to 61 Axis/spindle signals
UDT71 DB71 Tool management: Load/unload locations
UDT72 DB72 Tool management: Change in spindle
UDT73 DB73 Tool management: Change in revolver
UDT77 DB77 MCP and HHU signals with standard SDB 210
UDT1002 DB2 Extended alarms / messages (FB1 parameter "Ex‐

tendAlMsg:=TRUE")
UDT 1071 DB 1071 Tool management: Loading/unloading points (mul‐

titool)
UDT 1072 DB 1072 Tool management: Change in spindle (multitool)
UDT 1073 DB 1073 Tool management: Change in turret (multitool)

To symbolically program the interface signals, the interface data blocks must first be
symbolically assigned using the symbol editor.

For example, symbol "AxisX" is assigned to operand DB31 with data type UDT31 in the symbol
file.

After this input, the STEP 7 program can be programmed in symbols for this interface.

Note

Programs generated with an earlier software version that utilize the interface DBs described
above can also be converted into symbol programs. A fully qualified command for data access
e.g. "U DB31.DBX60.0" (spindle / rotary axis) is necessary in the program previously created.
This command is converted upon activation of the symbolics in the editor "AxisX.E_SpKA".

Description
Abbreviated symbolic names of the interface signals are defined in the two STL files
NST_UDTB.AWL and TM_UDTB.AWL.

In order to create the reference to the names of the interface signals, the name is included in
the comment after each signal.

The names are based on the English language. The comments are in English.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
910 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The symbolic names, commands and absolute addresses can be viewed by means of a STEP
7 editor command when the UDT block is opened.

Note

Unused bits and bytes are listed, for example, with the designation "f56_3".
● "56": Byte address of the relevant data block
● "3": Bit number in this byte

14.10.9 M decoding acc. to list

Function description
Up to 256 M functions with extended address can be decoded from the basic program using
the "M decoding according to list" function. The function is activated using FB1 parameter
"ListMDecGrp" (number of M groups for decoding). The assignment of the M function with
extended address and a signal in the signal list is defined in the decoding list. The signals are
also grouped for this purpose.

Decoding list (DB75)
The source file for the decoding list (MDECLIST.AWL) is supplied with the basic program. Data
block DB75 is created when the STL source is compiled. Before the function is activated, the
decoding list (DB75) must be transferred to the PLC followed by a restart.

An M function is decoded if it is in the decoding list. When decoding the M function, the
corresponding signal is set in the signal list as a function of the specific group. When setting
a signal in the signal list, the interface signal "Read in inhibit" is set by the basic program in
the associated channel of the NC. The interface signal is reset again for the channel as soon
as the user resets all of the signals output from this channel in the signal list; i.e. after they
have been acknowledged.

Signal list (DB76)
When activating the function in data block DB76, the basic program creates the signal list.
From then, for each M signal decoded according to the list, a signal is set in the signal list
(DB76) in the corresponding group. At the same time, the "Readin inhibit" interface signal is
set in the channel in which the M function has been output. The interface signal is reset again
for the channel as soon as the user resets all of the signals output from this channel in the
signal list; i.e. after they have been acknowledged.

Highspeed auxiliary functions
When an M function contained in the decoding list is output as "fast help function", no read-in
inhibit is set for the corresponding channel of the NC.

The figure below shows the structure of the M decoding according to list:

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 911

Figure 14-12 M decoding acc. to list

Activation
M decoding is activated using FB1 parameter "ListMDecGrp"

The number of M groups to the evaluated and/or decoded is specified using the appropriate
parameter. The function is active for a parameter value = 1 ... 16.

● Basic program, OB100, FB1 parameter ListMDecGrp = <number of M groups> (also see
" FB1: RUN_UP - basic program, start section (Page 965) ").

Properties and structure of the decoding list (DB75)
Properties of the decoding list (DB75):

● There is only one decoding list independent of the channel.

● The decoding list can include a maximum of 16 groups.

● A group has a maximum of 16 signals

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
912 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● There must be an entry in the decoding list for every group of M functions to be decoded.

● The assignment between the M function with extended address and the signal to be set in
the signal list is specified in the decoding list using the first and last M function of the
associated group.

– First M function: Parameter: "MFirstAdr" ≙ signal or bit 0

– Last M function: Parameter: "MLastAdr" ≙ dependent on the difference to the first M
function maximum signal or bit 15

Structure of the decoding list (DB75):

An entry in the decoding lists consists of 3 parameters, each of which is assigned to a group.

Group Extended M address First M address of the group Last M address of the group
1 MSigGrp[1].MExtAdr MSigGrp[1].MFirstAdr MSigGrp[1].MLastAdr
2 MSigGrp[2].MExtAdr MSigGrp[2].MFirstAdr MSigGrp[2].MLastAdr
...
16 MSigGrp[16].MExtAdr MSigGrp[16].MFirstAdr MSigGrp[16].MLastAdr

Type and value range of the signals:

Signal Type Value range Meaning
MExtAdr INT 0 ... 99 Extended M address
MFirstAdr DINT 0 to 99.999.999 First M address in group
MLastAdr DINT 0 to 99.999.999 Last M address in group

Properties of the signal list (DB76)
The signal list (DB76) has the following properties:

● There is only one signal list independent of the channel.

● The signal list can include a maximum of 16 signals for each M group.

Example
3 groups of M functions are to be decoded:

● Group 1: M2 = 1 to M2 = 5

● Group 2: M3 = 12 to M3 = 23

● Group 3: M40 = 55

Structure of the decoding and signal list

Group Decoding list (DB75) Signal list (DB76)
Extended
M address

First M address
of the group

Last M address of
the group

1 2 1 5 DB76.DBX0.0 ... DBX0.4
2 3 12 23 DB76.DBX2.0 ... DBX3.3
3 40 55 55 DB76.DBX4.0

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 913

Program code
DATA_BLOCK DB 75
TITLE =
VERSION : 0.0
 STRUCT
 MSigGrp : ARRAY [1 .. 16] OF STRUCT
 MExtAdr : INT;
 MFirstAdr : DINT;
 MLastAdr : DINT;
 END_STRUCT ;
BEGIN
 MSigGrp[1].MExtAdr := 2; extended M address of the 1st group
 MSigGrp[1].MFirstAdr := L#1; first M address of the group
 MSigGrp[1].MLastAdr := L#5; last M address of the group
 MSigGrp[2].MExtAdr := 3; extended M address of the 2nd group
 MSigGrp[2].MFirstAdr := L#12; first M address of the group
 MSigGrp[2].MLastAdr := L#23; last M address of the group
 MSigGrp[3].MExtAdr := 40; extended M address of the 3rd group
 MSigGrp[3].MFirstAdr := L#55; first M address of the group
 MSigGrp[3].MLastAdr := L#55; last M address of the group
END_DATA_BLOCK

Structure of FB1 in OB100
To activate the function, insert the parameter for the number of M groups to be decoded
"ListMDecGrp".

Call FB 1, DB 7(
 ...
 ListMDecGrp := 3; //M decoding of three groups
 ...
);

Description
A restart must be performed after the entry has been made in OB100 and the decoding list
(DB75) has been transferred to the PLC. The basic program creates the signal list (DB76)
when it restarts.

An NC program is then started, for instance in the 1st channel. An extended M function is
included in this (M3=17). When decoding the M function (M3 ≙ group 2), the associated signal
(DBW1.5) is set in the signal list (DB76) and the interface signal "Read-inhibit" in the 1st
channel. The execution of the NC program is stopped. Further, the "Extended address M
function" and the "M function number" are displayed in the channel DB of the 1st channel.

The "Read-in inhibit" signal in the 1st channel is reset once the user has reset all of the signals
output from this channel in the signal list (DB76), and has therefore acknowledged them.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
914 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.10.10 PLC machine data

General
The user has the option of storing PLC-specific machine data in the NC. These machine data
can then be processed during power-up of the PLC (OB100). This enables, for example, user
options, machine expansion levels, machine configurations, etc., to be implemented.

The interface to read this data is in DB20. However, DB20 is only created by the basic program
during power-up when user machine data is used, i.e. sum of GP parameters "UDInt", "UDHex"
and "UDReal" is greater than ZERO.

Size of the data areas
The sizes of the individual areas, and thus the total length of the DB20, is set by the following
PLC machine data:

● MD14504 $MN_MAXNUM_USER_DATA_INT

● MD14506 $MN_MAXNUM_USER_DATA_HEX

● MD14508 $MN_MAXNUM_USER_DATA_FLOAT

User-relevant basic PLC program parameters
The machine data settings are provided to the user via the following basic PLC program
parameters:

● "UDInt"

● "UDHex"

● "UDReal"

Data storage
The data is seamlessly stored in the DB20 by the basic PLC program in the following sequence:

1. INT values

2. HEX values (bit arrays)

3. FLOAT values

INT and FLOAT values are saved in S7 format.

The hexadecimal values are stored in DB20 in the order in which they are input (use as bit
arrays).

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 915

Figure 14-13 User data in DB20

Note

If the number of PLC machine data used is increased later, then DB20 must be deleted
beforehand. To prevent such extensions in use having any effect on the existing user program,
the data in DB20 should be accessed in symbolic form wherever possible, e.g. by means of a
structure definition in the UDT.

Example
For the project in the example, four INT values, two HEX values for bit information, and one
FLOAT value are needed.

Machine data:

MD14510 $MN_USER_DATA_INT[0] = 123
MD14510 $MN_USER_DATA_INT[1] = 456
MD14510 $MN_USER_DATA_INT[2] = 789
MD14510 $MN_USER_DATA_INT[3] = 1011
...
MD14512 $MN_USER_DATA_HEX[0] = 12
MD14512 $MN_USER_DATA_HEX[1] = AC
...
MD14514 $MN_USER_DATA_FLOAT[0]
=

123.456

Basic PLC program parameters (OB100):
CALL FB1, DB7(

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
916 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 MCPNum := 1,
 MCP1In := P#E0.0,
 MCP1Out := P#A0.0,
 MCP1StatSend := P#A8.0,
 MCP1StatRec := P#A12.0,
 MCP1BusAdr := 6,
 MCP1Timeout := S5T#700MS,
 MCP1Cycl := S5T#200MS,
 NCCyclTimeout := S5T#200MS,
 NCRunupTimeout := S5T#50S;

Basic PLC program parameters (scan at
runtime):

 l gp_par.UDInt; //=4,
 l gp_par.UDHex; //=2,
 l gp_par.UDReal; //=1)
During PLC power-up, DB20 was generated with a length of 28 bytes:

DB20
Address Data
0.0 123
2.0 456
4.0 789
6.0 1011
8.0 b#16#12
9.0 b#16#AC
10.0 1.234560e+02

The structure of the machine data used is specified in a UDT:

TYPE UDT20
 STRUCT
 UDInt : ARRAY [0 .. 3] OF INT;
 UDHex0 : ARRAY [0 .. 15]OF BOOL;
 UDReal : ARRAY [0 .. 0] OF REAL; //Description as field, for

later expansions
 END_STRUCT;
END_TYPE

Note

ARRAY OF BOOL are always sent to even-numbered addresses. For this reason, an array
range of 0 to 15 must generally be selected in the UDT definition or all Boolean variables
specified individually.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 917

Although only a REAL value is used initially in the example, a field (with one element) has
been created for the variable. This ensures that extensions can be made easily in the future
without the symbolic address being modified.

Symbolic accesses
An entry is made in the symbol table to allow data access in symbolic form:

Symbol Operand Data type
UData DB20 UDT20

Access operations in user program (list includes only symbolic read access):

...
 L "UData".UDInt[0];
 L "UData".UDInt[1];
 L "UData".UDInt[2];
 L "UData".UDInt[3];

 U "UData".UDHex0[0];
 U "UData".UDHex0[1];
 U "UData".UDHex0[2];
 U "UData".UDHex0[3];
 U "UData".UDHex0[4];
 U "UData".UDHex0[5];
 U "UData".UDHex0[6];
 U "UData".UDHex0[7];

 U "UData".UDHex0[15];

 L "UData".UDReal[0];
...

14.10.11 Configuration machine control panel, handheld unit, direct keys

General
Up to two machine control panels and one handheld unit can be in operation at the same time.
There are various connection options (Ethernet/PROFINET, PROFIBUS) for the machine
control panel (MCP) and handheld unit (HHU). It is possible to connect two MCPs to different
bus systems (mixed operation is only possible on Ethernet and PROFIBUS). This can be
achieved using FC1 parameter "MCPBusType". In this parameter, the right-hand decade (units
position) is responsible for the first MCP and the left-hand decade (tens position) for the second
MCP.

Parameterization of components is always performed by calling the basic program block FC1
in OB100. FC1 saves its parameters in the associated instance data block (DB7, symbolic

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
918 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

"LBP_ConfigData"). Separate parameter sets are provided for each machine control panel and
the handheld unit. The input/output addresses of the user must be defined in these parameter
sets. These input and output addresses are also used in FC19, FC24, FC25, FC26 and FC13.
Further, the addresses for status information, PROFIBUS or Ethernet/PROFINET are also to
be defined. The default time settings for timeout and cyclic forced retriggering should not be
changed. Please refer to the Operator Components manual for further information on MCP
and HHU components.

Activation
Each component is activated either via the number of machine control panels ("MCPNum"
parameter) or, in the case of the handheld unit, via the "BHG" parameter. The MCP and HHU
connection settings are entered in FC1 parameters "MCPMPI", "MCPBusType" or "BHG",
"BHGMPI".

Handheld unit (HT 2)
In the handheld unit the addressing is done via a parameter of the GD parameter set. This
was necessary for reasons of compatibility of the parameter names.

Configuration
Essentially, there are various communication mechanisms for transferring data between the
MCP/HHU and PLC. These mechanisms are characterized by the bus connection of the MCP
and HHU. In one case (Ethernet), data is transported via the "CP 840D sl".

The parameterization is performed completely via the MCP/HHU parameters in FC1.

In the other case the transmission is via the PLC operating system through the PROFIBUS
configuration.

The parameterization is performed via STEP 7 in HW-Config. To enable the basic program to
access this data and failure monitoring of MCP/HHU, the addresses set in the FC1 parameters
must be made known to the basic program.

An overview of the various coupling mechanisms is shown below. Mixed operation can also
be configured.

If an error is detected due to a timeout, an entry is made in the alarm buffer of the PLC CPU
(alarms 400260 to 400262). In this case, the input signals from the MCP or from the handheld
unit (MCP1In/MCP2In or BHGIn) are reset to 0. If it is possible to resynchronize the PLC and
MCP/HHU, communication is resumed automatically and the error message deleted by the
GP.

Note

The abbreviation "(n.r.)" in the tables below means "not relevant".

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 919

Ethernet connection (MCPBusType = 5)
Without further configuration settings being made, communication takes place directly from
the PLC GP via the CP 840D sl. The FC1 parameters listed below are used for
parameterization.

The numeric part of the logical name of the component must be entered in "MCP1 BusAdr",
"MCP2 BusAdr" or "BHGRecGDNo" (corresponds to the bus address of the node). The logical
name is defined via switches on the MCP or terminal box.

Figure 14-14 Ethernet connection

Relevant parameters (FB1)
MCP HHU
MCPNum=1 or 2 (number of MCPs) HHU = 5 (via CP 840D sl)
MCP1In MCP2In BHGIn
MCP1Out MCP2Out BHGOut
MCP1StatSend MCP2StatSend BHGStatSend
MCP1StatRec (n.r.) MCP2StatRec (n.r.) BHGStatRec
MCP1BusAdr MCP2BusAdr BHGInLen (n.r.)
MCP1Timeout (n.r.) MCP2Timeout (n.r.) BHGOutLen (n.r.)
MCP1Cycl (n.r.) MCP2Cycl (n.r.) BHGTimeout (n.r.)
MCPMPI = FALSE BHGCycl (n.r.)
MCP1Stop MCP2Stop BHGRecGDNo
MCP1NotSend MCP2NotSend BHGRecGBZNo (n.r.)
 BHGRecObjNo (n.r.)
MCPBusType = b#16#55 (via CP 840D sl) BHGSendGDNo (n.r.)
 BHGSendGBZNo (n.r.)
MCPSDB210= FALSE BHGSendObjNo (n.r.)
MCPCopyDB77 = FALSE BHGMPI = FALSE
 BHGStop
 BHG NotSend

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
920 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

An error entry is also made in the PLC alarm buffer for timeouts. As a result, the following error
messages are output at the HMI:

● 400260: MCP 1 failure
or

● 400261: MCP 2 failure

● 400262: HHU failure

An MCP or HHU failure is detected immediately after a cold restart even if no data has yet
been exchanged between the MCP/HHU and PLC.
The monitoring function is activated as soon as all components have signaled "Ready" after
powerup.

Example: OP with direct keys
The direct keys of the OPs at the Ethernet bus should be transferred to the PLC. Previously,
the direct keys have been transferred to the PLC via the PROFIBUS or via a special cable
connection between OP and MCP.

For connecting the direct keys via the Ethernet, this concerns e.g. the "OP 08T", there is a
parameterization in the basic program for activating the data transport. The associated
parameters are in the instance DB of FC1 (OpKeyNum to OpKeyBusType, see data table).
The parameters are provided by the user in the startup OB100 by connecting the parameters
at the FC1 call. The bus address and Op1/2KeyStop can also be modified in the cyclic operation
by writing the FC1 instance DB DB7.

The transport of the user data of the direct keys runs in the same way as in the case of Ethernet
MCP. The data transport can also be stopped and restarted by writing the DB7-parameter
"Op1/2KeyStop". During the Stop phase the address of the direct key module (TCU-index or
the MCP-address) can also be changed.

After resetting the Stop signal, a connection to the new address is established.

The status of the respective direct-key interfaces can be read in the interface signal:

DB10.DBX104.3 (OP1Key ready)

or

DB10.DBX104.4 (OP2Key ready)

Address direct keys
For the parameter Op1/2KeyBusAdr, the TCU index is normally to be used. This affects the
OPs, such as OP 08T, OP 12T, which for the direct keys do not have special cable connection
to an Ethernet MCP.

If OPs with direct keys have a special cable connection and these are connected to an Ethernet-
MCP, then for the parameter Op1/2KeyBusAdr the address of the MCP (DIP-switch setting of
the MCP) is to be used. Only the data stream of the direct keys (2 bytes) is transferred via the
direct key interface.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 921

Alarm direct keys
An error entry is also made in the PLC alarm buffer for timeouts. As a result, the following error
messages are output at the HMI:

● 400274: Direct key 1 failed
or

● 400275: Direct key 2 failed

Control unit switching for direct keys
The user connects Op1/2KeyBusAdr with 0xFF and stop = TRUE in startup block OB100. The
direct key address of the M-to-N interface is connected to parameter "Op1KeyBusAdr" via the
M-to-N block FB9.

Relevant parameters (FC1)
Direct keys e.g. direct keys OP 08T
OpKeyNum = 1 or 2 (number of OPs with direct keys)
Op1KeyIn Op2KeyIn
Op1KeyOut Op2KeyOut
OpKey1BusAdr Op2KeyBusAdr Address: TCU index:
Op1KeyStop Op2KeyStop
Op1KeyNotSend Op2KeyNotSend

OpKeyBusType = b#16#55 (via CP 840D sl)

MCP identification
Via the identify interface in DB7 it is possible to query the type of the Ethernet component
(MCP, HT 2, HT 8 or direct keys) with the relevant parameters at the input/output in cyclic
operation:

● Relevant parameters at the input:
"IdentMcpBusAdr", "IdentMcpProfilNo", "IdentMcpBusType", "IdentMcpStrobe"

● Relevant parameters at the output:
"IdentMcpType", "IdentMcpLengthIn", "IdentMcpLengthOut"

Here the DIP device address or the TCU index at the parameter "IdentMcpBusAdr" is activated
by the user program together with setting of the Strobe signal.

The input parameter "IdentMcpProfilNo" is normally to be set to the value 0. This parameter
is to be set to the value 1 only in the identification of the direct keys. The parameter
"IdentMcpBusType" currently has no significance for a user program and is to be left in its
default value.

After resetting the Strobe signal by the basic program, valid output information becomes
available to the user. The resetting of the Strobe signals by the basic program can last for
several PLC cycles (up to two seconds).

The output parameters should show the user the size of the data areas for the addressed
device. Furthermore, it can be defined here whether an HT 2 or an HT 8 or no device is
connected to the terminal box. With this information, the MCP channel or the HHU channel

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
922 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

can be activated. During cyclic operation, the parameters can be written symbolically by the
user program and read via the symbol names of DB7 (LBP_ConfigData).

Relevant parameters (FB1)
MCP device identification Input parameters, e.g. OP 08T
Input Output Values in direct keys

IdentMcpBusAdr IdentMcpType IdentMcpBusAdr = TCU index
IdentMcpBusProfilNo IdentMcpLengthIn IdentMcpBusProfilNo = Value 1
IdentMcpBusType IdentMcpLengthOut IdentMcpBusType = Default value
IdentMcpStrobe

IdentMcpBusProfilNo Value
MCP, HHU, HT 8, HT 2 B#16#0
Direct keys such as e.g. OP 08T, OP 12T B#16#1

IdentMcpType (Mcp-Type)
no device connected 0
MCP 483C IE (Compact) B#16#80
MCP 483C IE B#16#81
MCP 310 B#16#82
MCP OEM B#16#83
MCP DMG B#16#84
HT 8 B#16#85
TCU_DT (direct keys) B#16#86
MCP_MPP B#16#87
HT 2 B#16#88
OP 08T (direct keys) B#16#89

PROFIBUS connection on the DP port (MCPBusType = 3)
In case of PROFIBUS connection of the MCP, this component must be considered in the
hardware configuration setting of STEP 7. The MCP is connected to the standard DP bus of
the PLC (not to MPI/DP). The addresses must be stored in the input and output mapping area.
These start addresses must also be stored in the pointer parameters of FC1. The FC1
parameters listed below are used for further parameterization.

There is no PROFIBUS variant of the HHU. For this reason, an Ethernet connection is shown
for the HHU in this figure. The PROFIBUS slave address must be stored in the parameters
"MCP1BusAdr" and "MCP2BusAdr". Enter the pointer to the configured diagnostic address
(e.g. P#A8190.0) in "MCPxStatRec".

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 923

Figure 14-15 PROFIBUS connection

Relevant parameters (FB1)
MCP HHU
MCPNum = 1 or 2 (number of MCPs) BHG = 5 (via CP 840D sl)
MCP1In MCP2In BHGIn
MCP1Out MCP2Out BHGOut
MCP1StatSend (n.r.) MCP2StatSend (n.r.) BHGStatSend
MCP1StatRec MCP2StatRec BHGStatRec
MCP1BusAdr MCP2BusAdr BHGInLen
MCP1Timeout MCP2Timeout BHGOutLen
MCP1Cycl (n.r.) MCP2Cycl (n.r.) BHGTimeout (n.r.)
MCPMPI = FALSE BHGCycl (n.r.)
MCP1Stop MCP2Stop BHGRecGDNo
MCPBusType = b#16#33 BHGRecGBZNo (n.r.)
 BHGRecObjNo (n.r.)
MCPSDB210= FALSE BHGSendGDNo (n.r.)
MCPCopyDB77 = FALSE BHGSendGBZNo (n.r.)
 BHGSendObjNo (n.r.)
 BHGMPI = FALSE
 BHGStop

MCP failure normally switches the PLC to the STOP state. If this is undesirable, OB 82, OB
86 can be used to avoid a stop. The basic program has, as standard, the OB82 and OB86 call.
FC5 is called in these OBs. This FC5 checks whether the failed slave is an MCP. If this is the
case, no PLC stop is triggered. Setting "MCPxStop" := TRUE causes the basic program to
deactivate the MCP as a slave via SFC12. If the PLC does not switch to the stop state following
the failure or fault of the MCP, an alarm message will be generated via the basic program. The
interrupt is deleted when the station recovers.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
924 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

PROFIBUS connection on the MPI/DP port (MCPBusType = 4)
With the PROFIBUS connection of the MCP, this component must be considered in the STEP
7 hardware configuration. The MCP is connected on the MPI/DP bus of the PLC.

The addresses must be stored in the input and output mapping area. These start addresses
must also be stored in the pointer parameters of FC1. The FC1 parameters listed below are
used for further parameterization. There is no PROFIBUS variant of the HHU. For this reason,
an Ethernet connection is shown for the HHU in this diagram. The PROFIBUS slave address
must be stored in the parameters MCP1BusAdr and MCP2BusAdr. Enter the pointer to the
configured diagnostic address (e.g. P#A8190.0) in MCPxStatRec.

Figure 14-16 PROFIBUS connection on the MPI/DP port

Relevant parameters (FB1)
MCP HHU
MCPNum = 1 or 2 (number of MCPs) HHU = 5 (via CP 840D sl)
MCP1In MCP2In BHGIn
MCP1Out MCP2Out BHGOut
MCP1StatSend (n.r.) MCP2StatSend (n.r.) BHGStatSend
MCP1StatRec MCP2StatRec BHGStatRec
MCP1BusAdr MCP2BusAdr BHGInLen
MCP1Timeout MCP2Timeout BHGOutLen
MCP1Cycl (n.r.) MCP2Cycl (n.r.) BHGTimeout (n.r.)
MCPMPI = FALSE BHGCycl (n.r.)
MCP1Stop MCP2Stop BHGRecGDNo
MCPBusType = b#16#44 BHGRecGBZNo (n.r.)
 BHGRecObjNo (n.r.)
MCPSDB210= FALSE BHGSendGDNo (n.r.)
MCPCopyDB77 = FALSE BHGSendGBZNo (n.r.)
 BHGSendObjNo (n.r.)
 BHGMPI = FALSE
 BHGStop

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 925

MCP failure normally switches the PLC to the STOP state. If this is undesirable, then OB82
and OB86 can be used to avoid a PLC stop. The basic program has, as standard, the OB82
and OB86 call. FC5 is called in these OBs. This FC5 checks whether the failed slave is an
MCP. If this is the case, no PLC stop is triggered. Setting MCPxStop:= TRUE causes the basic
program to deactivate the MCP as a slave via SFC12. If the PLC does not switch to the stop
state following the failure or fault of the MCP, an alarm message will be generated via the basic
program. The alarm is deleted when the station returns.

PROFINET connection (MCPBusType = 6)
In case of PROFINET connection of the MCP, this component must be parameterized in the
hardware configuration setting of STEP 7. The MCP is coupled with the PROFINET module
of the CPU.

When parameterizing the MCP in HW Config, the addresses should be placed in the input and
output mapping area. These start addresses must also be stored in the pointer parameters
(MCPxIn and MCPxOut) of FC1. This is because signals are transferred between the MCP
and basic program via these parameters. The MCP is also monitored using parameter MCPxIn.
This is the reason why parameter MCPxBusAdr is not relevant for this MCP variant.

Enter the pointer to the configured diagnostic address (e.g. P#A8190.0) in MCPxStatRec.

The PROFINET MCP has its own type which should be applied for parameter MCPBusType.

The FC1 parameters listed below are used for further parameterization. There is no PROFIBUS
variant of the HHU. An Ethernet port for the HHU is shown in the diagram.

Figure 14-17 PROFINET connection

Relevant parameters (FB1)
MCP HHU
MCPNum = 1 or 2 (number of MCPs) HHU = 5 (via CP 840D sl)
MCP1In MCP2In BHGIn
MCP1Out MCP2Out BHGOut
MCP1StatSend (n.r.) MCP2StatSend (n.r.) BHGStatSend

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
926 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Relevant parameters (FB1)
MCP HHU
MCP1StatRec MCP2StatRec BHGStatRec
MCP1BusAdr (n.r.) MCP2BusAdr (n.r.) BHGInLen
MCP1Timeout MCP2Timeout BHGOutLen
MCP1Cycl MCP2Cycl BHGTimeout (n.r.)
MCPMPI = FALSE BHGCycl (n.r.)
MCP1Stop MCP2Stop BHGRecGDNo
MCPBusType = b#16#36
(as in the figure as example)
 (6 = PROFINET for MCP1)
 (3 = PROFIBUS for MCP2)

BHGRecGBZNo (n.r.)

 BHGRecObjNo (n.r.)
MCPSDB210= FALSE BHGSendGDNo (n.r.)
MCPCopyDB77 = FALSE BHGSendGBZNo (n.r.)
 BHGSendObjNo (n.r.)
 BHGMPI = FALSE
 BHGStop

MCP failure normally switches the PLC to the STOP state. If this is undesirable, then OB82
and OB86 can be used to avoid a PLC stop. The basic program has, as standard, the OB82
and OB86 call. FC5 is called in these OBs. This FC5 checks whether the failed slave is an
MCP. If this is the case, no PLC stop is triggered. The input address at parameter MCPxIn is
of significance when monitoring for MCPxIn failure.

Setting MCPxStop:= TRUE causes the basic program to deactivate the MCP as a slave via
SFC12. If the PLC does not switch to the stop state following the failure or fault of the MCP,
an alarm message will be generated via the basic program. The alarm is deleted when the
station returns.

14.10.12 Switchover of machine control panel, handheld unit
Only Ethernet variants support switchover/deactivation of an operator component (MCP or
HHU) as standard.

PROFIBUS variant
With PROFIBUS variants, this functionality is only possible to a limited extent and with
additional user effort.

With the PROFIBUS variant of the MCP, the data area of the DB77 for specified MCP1, MCP2
or HHU can be used for the MCP pointer on FC1. The MCP slave bus address must be set
correctly at MCPxBusAdr as this is used as the basis for monitoring. A user program copy
routine must copy the signals of the active MCP from the I/O area configured in HW Config to
DB77. This enables a number of MCPs on the PROFIBUS to be switched via signals. Set the
MCPxStop parameter to TRUE for the switchover phase from one MCP to another.

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 927

Control signals
Parameters MCP1Stop, MCP2Stop and HTStop stop the communication with individual
components (parameter setting = 1). This stop or activation of communication can be applied
in the current cycle. However, the change in value must be implemented through the symbolic
notation of the parameters and not by means of another FC1 call.

Example: Stopping the transfer from the 1st machine control panel:

SET;
S LBP_ConfigData.MCP1Stop;

Setting parameters MCP1Stop, MCP2Stop, HTStop also results in a suppression or deletion
of alarms 400260 to 400262.

Switchover of the bus address
If an existing communication connection to an operator component (MCP or HHU) is to be
cancelled and a new communication connection established to a different component (MCP
or HHU) with a different communication address, proceed as follows:

1. Stop the communication of the operator component to be disconnected: Parameter
MCP1Stop, MCP2Stop or HTStop = 1

2. The communication is stopped when the following applies: DB10, DBX104.0, .1 or .2 == 0

3. Change the bus address:

– MCP: FC1 parameter MCP1BusAdr or MCP2BusAdr = <bus address of the new
operator component>

– HHU (Ethernet variant): FC1 parameter BHGRecGDNo = <bus address of the new
operator component>

4. Enable the communication (possible in the same PLC cycle as point 3): Parameter
MCP1Stop, MCP2Stop or HTStop = 0

5. The communication with the new component is active when the following applies: DB10,
DBX104.0, .1 or .2 == 1

Switching off the LED flashing of an Ethernet MCP
After a Power On, MCPs generally indicate the completion of the power-up and waiting for a
connection to be established by flashing LEDs. The flashing of the LEDs can be switched off
as described in the following. Presently, this behavior cannot be retentively stored on the MCP.

Requirement
MCP firmware as of V02.02.04

Setting for switching off the flashing
The Send status must be set in MCPxStop before the start of communication with the MCP.
Before the start of communication means either during power-up (OB100) or during cyclic
operation (OB1) before the setting of DB7 parameter MCPxStop = FALSE

Setting the Send status: FC1 parameter MCPxStatSend, bit 30 = 0 and bit 31 = 1

P3: Basic PLC program for SINUMERIK 840D sl
14.10 Structure and functions of the basic program

Basic Functions
928 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

There is no feedback of the current status.

Example
Extract from OB100: (based on the example for MCP1)

CALL "RUN_UP" , "LBP_ConfigData"
 ...
 MCP1StatSend := P#A 8.0
 ...
 // Deactivate MCP flashing
 SET
 R A 11.6
 S A 11.7
 ...

14.11 SPL for Safety Integrated
Rather than being a function of the basic program, SPL is a user function. The basic program
makes a data block (DB18) available for Safety SPL signals and runs a data comparison to
ensure the consistency of SPL program data in the NC.

References:
/FBSI/ Description of Functions Safety Integrated

14.12 Assignment overview

14.12.1 Assignment: NCK/PLC interface
The values of the NC/PLC interface for SINUMERK 840D sl are described in detail in:
References:
Lists sl (Buch2)

14.12.2 Assignment: FB/FC

Number Meaning
FB15 Basic program
FB1, FC2, FC3, FC5 Basic program
FC0 ... 29 Reserved for Siemens
FB0 ... 29 Reserved for Siemens
FC30 ... 999 1) Free for user assignment
FB30 ... 999 1) Free for user assignment

P3: Basic PLC program for SINUMERIK 840D sl
14.12 Assignment overview

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 929

Number Meaning
FC1000 ... 1023 Reserved for Siemens
FB1000 ... 1023 Reserved for Siemens
FC1024 ... upper limit Free for user assignment
FB1024 ... upper limit Free for user assignment

1) The actual upper limit of the block number (FB/FC) depends on the PLC CPU on which the selected
NCU is located.

Note

Values of FC, FB see " Memory requirements of the basic PLC program (Page 949)".

14.12.3 Assignment: DB

Note

Only as many data blocks as are required according to the NC machine data configuration are
set up.

Overview of the data blocks
DB no. Designation Name Pack‐

age
1 Reserved for Siemens GP
2 ... 5 PLC-MELD PLC messages GP
6 ... 8 Basic program
9 NC COMPILE Interface for NC compile cycles GP
10 NC INTERFACE Central NC interface GP
11 Mode group 1 Mode group interface GP
12 Computer link and transport system interface
13 ... 14 Reserved for basic program
15 Basic program
16 PI service definition
17 Version identifier
18 Reserved for basic program
19 HMI interface
20 PLC machine data
21 ... 30 CHANNEL 1 ... n Interface for NC channels GP
31 ... 61 AXIS 1 ... m Interfaces for axes/spindles

or free for user
GP

62 ... 70 Free for user
71 ... 74 Tool management GP

P3: Basic PLC program for SINUMERIK 840D sl
14.12 Assignment overview

Basic Functions
930 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Overview of the data blocks
DB no. Designation Name Pack‐

age
75 ... 76 M group decoding
77 DB for MCP signals
78 ... 80 Reserved for Siemens
81 ... 999 1) See below: ShopMill, ManualTurn
1000 ... 1099 Reserved for Siemens
1100 ... upper
limit

 Free for user

1) The actual upper limit of the block number (DB) depends on the PLC CPU on which the selected
NCU is located. Data blocks of channels, axes/spindles, and tool management functions that have
not been activated are available.

Note

The data blocks of channels, axes/spindles and tool management functions that are not
activated may be assigned as required by the user.

14.12.4 Assignment: Timers

Timer No. Significance
T 0 ... T 512 1) User area

1) The actual upper limit of the timer number (DB) depends on the PLC CPU on which the selected NCU
is located.

14.13 PLC functions for HMI (DB19)

14.13.1 Channel selection

Function
The channel displayed on the HMI, e.g. in the machine start screen, can be selected from the
PLC user program via the HMI/PLC interface.

Requirement
More than one channel is parameterized in the NC.

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 931

Job and acknowledgment interface

DB19 Meaning
DBX32.0 - .5 PLC → HMI Function number: 1 = channel selection
DBX32.6 PLC → HMI Function request
DBX32.7 HMI → PLC Status: 1 = "function being executed"
DBB33 PLC → HMI Channel number: 1, 2, 3, ... maximum number of channels

Next channel: FFH

DBB36 HMI → PLC Error identification:
● 0: No error
● 1: Invalid function number (DBX32.0 - .5)
● 2: Invalid parameter (DBB33 - DBB35)
● 3: Error when writing the HMI-internal variable
● 10: Channel not present (DBB33)

Functional sequence

PLC → HMI
The PLC user program must maintain the following execution sequence:

1. Check whether the interface is free for a new job:

– DB19.DBX32.6 == 0 (function request)

– DB19.DBX32.7 == 0 (status)

2. If the interface is free, the job data must be entered and the function request set:

– DB19.DBB33 = <channel number>
– DB19.DBX32.0 - .5 = 1 (function number)

– DB19.DBX32.6 = 1 (function request)

HMI → PLC
The HMI makes the following responses for error-free parameterization:

1. Once the HMI has recognized the function request for channel selection, the status is set
to "function being performed" and the function request reset:

– DB19.DBX32.7 = 1 (status)

– DB19.DBX32.6 = 0 (function request)

2. Once the channel selection has been performed, the status is reset again and value 0 is
set as error identification:

– DB19.DBX32.7 = 0 (status)

– DB19.DBX36 = 0 (error identification)

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
932 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The HMI makes the following responses for faulty parameterization:

● The function request is reset and the appropriate error identification is set:

– DB19.DBX32.6 = 0 (function request)

– DB19.DBX36 = <error identification>

14.13.2 Program selection

Function
Preselected programs/workpieces can be selected for machining by the NC via the PLC/HMI
interface.

The preselection is implemented by entering programs/workpiece in files (these are known as
PLC program lists (*.ppl).

Requirements
The following machine data must be set to allow the HMI to process tasks:

MD9106 $MM_SERVE_EXTCALL_PROGRAMS

In order to activate a sector-specific PLC program list, you must set the appropriate machine
data and at least the protection level password:

● Area User

– MD51041 $MN_ENABLE_PROGLIST_USER = 1

– Protective level password: 3 (users)

– Program list: /user/sinumerik/hmi/plc/programlist/plc_proglist_user.ppl

● Area Manufacturer (OEM)

– MD51043 $MN_ENABLE_PROGLIST_MANUFACT = 1

– Protective level password: 1 (manufacturer)

– Program list: /oem/sinumerik/hmi/plc/programlist/plc_proglist_manufacturer.ppl

Structure of a program list
A program list is a text file. Each line contains the following information:

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 933

<program number> <program path><program name> [CH=<channel number>]

● Program number
The program numbers which may be used in a program list depend on the sector:

– user: 1 - 100

– Manufacturer (OEM): 201 - 255

● Program path
The program path must be completely specified in absolute terms.
For specifying the program path, see:
References
Programming Manual, Work Planning, Section "File and Program Administration" >
"Program memory" > "Addressing the files of the program memory"

● Channel number
Specifying the channel number "CH=<channel number>" is optional. It is only required if
the NC has more than one channel.

The following excerpt as example shows the structure of the user program list:

Program list: plc_proglist_user.ppl
1 //DEV2:/MPFDir/PROG_01.MPF CH=1
2 //DEV2:/MPFDir/PROG_01.MPF CH=2

Generating entries in a program list
The entries in a program list (*.ppl) can be directly edited in the file or entered in screen forms
in the user interface.

● Via the user interface for the user area
Operating area "Program Manager" > "ETC key (">")" > "Prog. list"

● Via the user interface for the Manufacturer area
Operating area "Commissioning" > "System data" > "ETC key (">")" > "Prog. list"

Program selection: Job interface

Note

The PLC may only request a new job if the last job has been acknowledged by the HMI:
DB19.DBB26 == 0

Program list
DB19.DBB16 = <number of the program list>

Number Program list
129 /user/sinumerik/hmi/plc/programlist/plc_proglist_user.ppl
131 /oem/sinumerik/hmi/plc/programlist/plc_proglist_manufacturer.ppl

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
934 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program number
The program number refers to the programs contained in the selected program list.

DB19.DBB17 = <program number>

● user area: 1 - 100

● oem area: 201 - 255

Requesting program selection
DB19.DBX13.7 = 1

Program selection: Acknowledgment interface

Job acknowledgment
● DB19.DBX26.7 == 1 (selection identified)

● DB19.DBX26.3 == 1 (program is selected)

● DB19.DBX26.2 == 1 (error when selecting the program, see error ID DB19.DBB27)

● DB19.DBX26.1 == 1 ((job completed)

Error detection
DB19.DBB27 == <error ID>

Error detection
Value Meaning

0 No error
1 Invalid program list number (DB19.DBB16)
3 User specification Program list plc_proglist_main.ppl not found (only for DB19.DBB16 ≠

129, 131)
4 Invalid program number (DB19.DBB17)
5 Job list in the selected workpiece could not be opened.
6 Error in job list. (Job list Interpreter returns error)
7 Job list interpreter returns empty job list

Program selection: Job processing
A job to select a program is executed as follows:

1. Checking the acknowledgment byte: DB19.DBB26 == 0
If the acknowledgment byte is not 0, then the last job has still not been completed.

2. Specifying the program list: DB19.DBB16

3. Specifying the program number: DB19.DBB17

4. Setting the request to select a program: DB19.DBX13.7 = 1

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 935

5. Evaluating the acknowledgment and error interface: DB19.DBB26 and DBB27
The order is still not completed on the HMI side as long as: DB19.DBX26.3 == 1 (active)
The order has been completed on the HMI side if one of the two signals has been set:
- DB19.DBX26.1 == 1 (OK)
- DB19.DBX26.2 == 1 (error)

6. To complete the order, the program selection request must be reset: DB19.DBX13.7 = 0

7. The HMI signals that it is ready to accept a new order by resetting the acknowledgment
byte: DB19.DBB26 == 0

14.13.3 Activating the key lock
The operator panel keyboard and a keyboard directly connected to the HMI can be locked
using the following interface signal

● 1. HMI: DB19.DBX0.2 = <value>

● 2. HMI: DB19.DBX50.2 = <value>

Value Meaning
0 Key lock inactive
1 Key lock active

14.13.4 Operating area numbers

The number of the active operating area is normally displayed in: DB19.DBB21

If the HMI monitor is active, the number of the active operating area is no longer displayed in
DB19.DBB21, but instead in the user-specific configured area of the HMI monitor (Page 945).

Operating area Number
Machine 201
Parameters 205
Programming 203
Program Manager 202
Diagnostics 204
Commissioning 206

14.13.5 Screen numbers

The current screen number is normally displayed in: DB19.DBW24

If the HMI monitor is active, the current screen number is no longer displayed in DB19.DBW24,
but instead in the user-specific configured area of the HMI monitor (Page 945).

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
936 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Screen number ranges
The following screen number ranges are available:

● JOG, manual machine (Page 937)

● Reference point approach (Page 942)

● MDA (Page 942)

● AUTOMATIC (Page 942)

● Parameters operating area (Page 943)

● Program operating area (Page 944)

● Program manager operating area (Page 945)

● Diagnostics operating area (Page 945)

14.13.5.1 Screen numbers: JOG, manual machine

JOG mode

Screen Number
Turning technology

Cycle start screen for all screens that can be taken over 81
Milling technology

Cycle start screen for all screens that can be taken over 3
Turning/milling

Start screen 19
T,S,M 2
Set WO 21
Positioning 4
Face milling 18
Stock removal 80
Cycle start screen for all user screens 91
General settings 1
Multi-channel function settings 106
Collision avoidance settings 107
Measurement log settings 108
Swiveling 60
All G commands 100
Actual zoom value (MCS/WCS) 101
Thread synchronizing 102
Retract 103
Handwheel 104
Action synchronization 105

Turning technology: Workpiece zero
Workpiece zero (main menu) 30

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 937

Screen Number
User screen 31
User screen 34
User screen 35
User screen 36
User screen 37
User screen 38
User screen 40
Measure edge Z 5

Turning technology: Workpiece, measurement
Measure tool (main menu) 50
Manual X or user screen 51
Manual Y 71
Manual Z or user screen 52
Zoom or user screen 53
User screen 54
User screen 55
Probe calibration X or user screen 56
Probe calibration Z or user screen 57
Automatic length in Z 58
Automatic length in Y 73
Automatic length in X 59

Milling technology: Workpiece zero
Workpiece zero (main menu) 30
Measure edge X 5
Measure edge X 22
Measure edge Z 23
User screen 7
Align edge or user screen 31
Distance 2 edges or user screen 32
Right-angled corner 33
Any corner or user screen 8
Rectangular pocket 34
1 hole or user screen 9
2 holes 35
3 holes 36
4 holes 37
Rectangular spigot 38
1 circular spigot or user screen 10
2 circular spigots 39
3 circular spigots 40
4 circular spigots 41
Set up level 42
Probe length calibration or user screen 11

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
938 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Screen Number
Probe radius calibration 12

Milling technology: Workpiece, measurement
Measure tool (main menu) 50
Measure length, manual (with milling tool)
or measure length in X, manual (with turning tool)
or user screen

16

Measure length in Y, manual (with turning tool) 74
Measure length in Z, manual (with turning tool) 24
Measure diameter, manual or user screen 17
Measure length, automatic (with milling tool)
or measure length in X, automatic (with turning tool)
or user screen

13

Measure length in Y, automatic (with turning tool) 75
Measure length in Z, automatic (with turning tool) 25
Measure diameter, automatic or user screen 14
User screen 51
Probe calibration or user screen 15
Fixed point calibration or user screen 52

RunMyScreens (only for set JobShopIntegration)
User screen for the 1st horizontal softkey 96
User screen for the 2nd horizontal softkey 98
User screen for the 3rd horizontal softkey 99
User screen for the 4th horizontal softkey 94
User screen for the 5th horizontal softkey 95
User screen for the 6th horizontal softkey 92
User screen for the 7th horizontal softkey 97
User screen for the 8th horizontal softkey 90
User screen for the 9th horizontal softkey 83
User screen for the 10th horizontal softkey 82
User screen for the 11th horizontal softkey 93
User screen for the 12th horizontal softkey 84
User screen for the 13th horizontal softkey 85
User screen for the 14th horizontal softkey 86
User screen for the 15th horizontal softkey 87
User screen for the 16th horizontal softkey 88

JOG mode, manual machine

DB19.DBB24
Screen Screen number

Turning/milling
Taper turning 61
Angle milling 62

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 939

DB19.DBB24
Screen Screen number
Stop 63
Straight line 1300
Straight line all axes 1330
Straight line X alpha 1340
Straight line Z alpha 1350
Circle 1360
Drilling 1400
Center drilling 1410
Drilling, thread centered 1420
Drilling, centering 1433
Drilling, drilling 1434
Drilling, reaming 1435
Drilling, boring 1436
Drilling, deep hole drilling 1440
Drilling, deep hole drilling 2 1441
Drilling, tapping 1453
Drill thread milling 1455
Positions 1473
Position row 1474
Position grid 1477
Position frame 1478
Position circle 1475
Position pitch circle 1479
Obstacle 1476
Turning 1500
Turning, stock removal 1 1513
Turning, stock removal 2 1514
Turning, stock removal 3 1515
Turning, groove 1 1523
Turning, groove 2 1524
Turning, groove 3 1525
Turning, undercut form E 1533
Turning, undercut form F 1534
Turning, undercut thread DIN 1535
Turning, undercut thread 1536
Turning, thread, longitudinal 1543
Turning, thread, taper 1544
Turning, thread, facing 1545
Turning, thread, chain 1546
Turning, cut-off 1550
Milling 1600
Milling, face milling 1610

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
940 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB19.DBB24
Screen Screen number
Milling, rectangular pocket 1613
Milling, circular pocket 1614
Milling, rectangular spigot 1623
Milling, circular spigot 1624
Milling, longitudinal groove 1633
Milling, circumferential groove 1634
Milling, open groove 1635
Milling, multi-edge 1640
Milling, thread milling 1454
Milling, engraving 1670
Contour turning 1200
Contour turning, new contour / last contour 1210
Contour turning, stock removal along contour 1220
Contour turning, contour grooving 1230
Contour turning, contour plunge turning 1240
Contour milling 1100
Contour milling, new contour / last contour 1110
Contour milling, path milling 1120
Contour milling, centering 1130
Contour milling, rough drilling 1140
Contour milling, contour pocket 1150

Turning technology: Simulation
Side view 1740
Front view 1750
3D view 1760
2-window view 1770
Half section 1780

Turning technology: Simultaneous recording
Side view 1741
Front view 1751
3D view 1761
2-window view 1771
Machine space 1791
Half section 1781

Milling technology: Simulation
Top view 1742
3D view 1760
From the front 1744
From the rear 1746
From the Left 1748
From the right 1752
Half section 1780

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 941

DB19.DBB24
Screen Screen number
Turning view 1782

Milling technology: Simultaneous recording
Top view 1743
3D view 1761
From the front 1745
From the rear 1747
From the Left 1749
From the right 1753
Machine space 1791
Half section 1781
Turning view 1783

14.13.5.2 Screen numbers: Reference point approach

Screen Number
Actual zoom value MCS/WCS 101

14.13.5.3 Screen numbers: MDA

Screen Number
MDI 20
All G commands 100
Actual zoom value MCS/WCS 101
Handwheel 104
Action synchronization 105
Program control 210
Settings 250

14.13.5.4 Screen numbers: AUTOMATIC

Screen Number
Automatic 200
Overstore 202
Program control 210
Block search 220
General settings 250
Multi-channel function settings 106
Collision avoidance settings 107
All G commands 100

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
942 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Screen Number
Actual zoom value MCS/WCS 101
Handwheel 104
Action synchronization 105

Turning technology: Simultaneous recording
Side view 243
Front view 244
3D view 245
2-window view 246
Machine space 247
Half section 253

Milling technology: Simultaneous recording
Top view 242
3D view 244
From the front 248
From the rear 249
From the Left 251
From the right 252
Machine space 247
Half section 253
Turning view 254

14.13.5.5 Screen numbers: Parameters operating area

Screen Number
Tool list 600
Tool wear 610
User tool list 620
Magazine 630

Work offset
Work offset, active 642
Work offset, overview 643
Work offset, basic 644
Work offset, G54 - G509 645
Details of work offset, active, overview, basic or G54 - G509 647

User variable
R parameters 650
Global GUD 1 (SGUD) 660
Global GUD 2 (MGUD) 661
Global GUD 3 (UGUD) 662
Global GUD 4 663
Global GUD 5 664
Global GUD 6 665

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 943

Screen Number
Global GUD 7 666
Global GUD 8 667
Global GUD 9 668
Channel GUD 1 (SGUD) 690
Channel GUD 2 (MGUD) 691
Channel GUD 3 (UGUD) 692
Channel GUD 4 693
Channel GUD 5 694
Channel GUD 6 695
Channel GUD 7 696
Channel GUD 8 697
Channel GUD 9 698
Local LUD 681
Local LUD/PUD 684

Setting data
Working area limitation 671
Spindle data 670
Spindle chuck data 672

Ctrl-Energy
Ctrl-Energy, main menu 6170
Ctrl-Energy, analysis 6171
Ctrl-Energy, profiles 6172
Ctrl-Energy, analysis graphic 6176
Ctrl-Energy, analysis long-term measurement 6177
Ctrl-Energy, analysis details 6179
Ctrl-Energy, compare measurements 6178

14.13.5.6 Screen numbers: Program operating area

Screen Number
Turning technology: Simulation

Side view 413
Front view 414
3D view 415
2-window view 416
Half section 423

Milling technology: Simulation
Top view 412
3D view 414
From the front 418
From the rear 419
From the Left 421

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
944 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Screen Number
From the right 422
Half section 423
Turning view 424

14.13.5.7 Screen numbers: Program manager operating area

Screen Number
NC directory 300
Local drive 325
USB / configured drive1 330
Configured drive2 340
Configured drive3 350
Configured drive4 360
Configured drive5 383
Configured drive6 384
Configured drive7 385
Configured drive8 386

14.13.5.8 Screen numbers: Diagnostics operating area

Screen Number
Alarm list 500
Messages 501
Alarm log 502
NC/PLC variable 503

14.13.6 HMI monitor

Function
The HMI monitor is an 8-byte data area in a freely selectable data block, in which the HMI can
provide the following data for the PLC user program:

● Operating area numbers (Page 936)

● Screen numbers (Page 936)

Parameterization
The data area is configured using the following display machine data:

MD9032 $MM_HMI_MONITOR = "string"

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 945

with "string" = "DB<DB number>.DBB<byte address>"

Note
Even byte address

The data area must start at an even byte address.

Structure of the data area

Byte Meaning
EB n + 0 Active SINUMERIK operating area
EB n + 1 Reserved
EB n + 2 Current screen number
EB n + 3
EB n + 4 Reserved

... ...
EB n + 7 Reserved

Supplementary conditions
When the HMI monitoring is active, the following PLC/HMI interface signals are no longer
processed:

● DB19.DBB10 (PLC hardkeys)

● DB19.DBB21 (active SINUMERIK operating area)

● DB19.DBW24 (current screen number)

Example

Assumptions
● Current operating area: "Machine", number: 201

● Actual screen: "AUTOMATIC" start screen, number: 200

● PLC data area: DB60.DBB10

Parameterization
● MD9032 $MM_HMI_MONITOR = "DB60.DBB10"

Values in the data area
● DB60.DBB10: 201

● DB60.DBW12: 200

P3: Basic PLC program for SINUMERIK 840D sl
14.13 PLC functions for HMI (DB19)

Basic Functions
946 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.14 PLC functions for drive components on the integrated PROFIBUS

14.14.1 Overview
Using the function described below, input and output data from drive components on the
integrated PROFIBUS can be consistently, cyclically read and written from the PLC user
program of the hardware PLC. The following boundary conditions must be observed:

● For reading / writing input/output data, the system functions SFC14 / SFC15 must be used.

● The reading / writing of input/output data is always over the entire slot length.

● The function only supports cyclical, non-equidistant data transfer.

● An output slot may not already be occupied on the NC side; (e.g. output slots of drives).

14.14.2 Performing a start-up

Preconditions
Before the function is put into operation on the NC side, the following preconditions must be
satisfied:

● The drive components on the integrated PROFIBUS of the NCU must be fully configured
using SIMATIC STEP 7, HW Config.

● The configuration is loaded into the PLC.

NC machine data
The start addresses of the slots to be transferred cyclically are to be entered into the following
machine data:

● Input slots:
MD10520 $MN_PLCINTERN_LOGIC_ADDRESS_IN[<Index>] = <Slot address>

● Output slots:
MD10525 $MN_PLCINTERN_LOGIC_ADDRESS_OUT[<Index>] = <Slot address>

<Index>: 0, 1, 2, ... (Max no. of slots) – 1

<Slot address>: The slot address parameterized in HW Config

Note
Maximum quantity of data

The sum of all data to be cyclically transferred in inward and outward directions may not
currently exceed 2,048 bytes.

P3: Basic PLC program for SINUMERIK 840D sl
14.14 PLC functions for drive components on the integrated PROFIBUS

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 947

14.14.3 Example

Determining slot addresses
After selecting the DP Slave "SINAMICS_Integrated" on the integrated PROFIBUS
"PROFIBUS Integrated: DP master system (3)" in the station window of HW Config, its
PROFIdrive message frame and associated slot addresses are displayed in the detailed view.

● Message frame 136: Drive

● Message frame 391: Control Unit

● Message frame 370: Infeed

The infeed slot addresses required for parameterization in the NC machines are:

● Input slot: Slot 31, address 6514

● Output slot: Slot 32, address 6514

Figure 14-18 Infeed PROFIBUS message frames

Setting NC machine data
● Input slots:

MD10520 $MN_PLCINTERN_LOGIC_ADDRESS_IN[0] = 6514

● Output slots:
MD10525 $MN_PLCINTERN_LOGIC_ADDRESS_OUT[0] = 6514

Controlling the ALM using FB390 "ALM_Control"
The SINUMERIK hardware PLC is connected to the CU320 of SINAMICS S120 through the
internal PROFIBUS. The ALM is connected to the CU via DRIVE-CLiQ.

In SINAMICS S120, a control and status message frame can be defined for each module (the
CU, ALM, motor modules, etc.). If this is performed for an ALM, this can be switched on and
off from the PLC user program.

P3: Basic PLC program for SINUMERIK 840D sl
14.14 PLC functions for drive components on the integrated PROFIBUS

Basic Functions
948 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The SIMATIC S7 block FB390 "ALM_Control" checks the status of the ALM and enables the
user to switch it on or off.

A description of the block and an example project are available for download under the
following link to Industry Online Support:

http://support.automation.siemens.com/WW/view/de/49515414

14.15 Memory requirements of the basic PLC program
The basic program consists of basic and optional functions. The basic functions include cyclic
signal exchange between the NC and PLC. The Options include e.g. the FCs, which can be
used, if needed.

The table below lists the memory requirements for the basic functions and the options. The
data quoted represent guide values, the actual values depend on the current software version.

Memory requirements of blocks for SINUMERIK 840D sl
Block
Type, No.

Function Remark Block size (bytes)

 Working memory

Basic functions in basic program
FB1, FB15 Must be loaded /

on CompactFlash Card
 52182

FC2, 3, 5, 12 Must be loaded 470
DB4, 5, 7, 8 Must be loaded 1006
DB2, 3, 17 Are generated by the BP 632
OB1, 40, 100, 82, 86 Must be loaded 398
 Total 55698

PLC/NC, PLC/HMI interface
DB10 PLC/NC signals Must be loaded 262
DB11 PLC / mode group signals Is generated by BP 56
DB19 PLC/HMI signals Is generated by BP 434
DB21 to 30 PLC/channel signals Are generated by BP as a function of NCMD: for

each DB
 416

DB31 to 61 PLC / axis or spindle
signals

Are generated by BP as a function of NCMD: for
each DB

 148

Basic program options
 Machine control panel
FC19 Transfer of MCP signals,

M variant
Must be loaded when M variant of MCP is instal‐
led

 92

P3: Basic PLC program for SINUMERIK 840D sl
14.15 Memory requirements of the basic PLC program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 949

Basic program options
FC25 Transfer of MCP signals,

T variant
Must be loaded when T variant of MCP is installed 92

FC24 Transfer of MCP signals,
slim variant

Must be loaded when slim variant of MCP is in‐
stalled

 100

FC26 Transfer of MCP signals,
HT8 variant

Must be loaded for HT8 68

 Handheld unit
FC13 Display control HHU Can be loaded for handheld units 144
 Error/operating messages
FC10 Acquisition FM/BM Load when FM / BM is used 66
 ASUP
FC9 ASUP start Load when PLC ASUPs are used 128

Basic program options
 Star/delta changeover
FC17 Star/delta switchover of

MSD
Load for star/delta switchover 114

 Spindle control
FC18 Spindle control Load for spindle control from PLC 132
 PLC/NC communication
FB2 Read NC variable Load for Read NC variable 76
DBn Read NC variable One instance DB per FB2 call: 270
FB3 Write NC variable Load for Write NC variable 76
DBm Write NC variable One instance DB per FB3 call: 270
FB4 PI services Load for PI services 76
DBo PI services One instance DB per FB4 call: 130
DB16 PI services description Load for PI services 618
FB5 Read GUD variables Load for PI services 76
DBp Read GUD variables One instance DB per FB5 call: 166

DB15 General communication Global data block for communication 146
FB7 PI services 2 Load for PI services 76
DBo PI services 2 One instance DB per FB4 call: every 144
FC21 Transfer Load with dual-port RAM, ... 164
 M to N
FB9 Switchover M to N Load with M to N 58
 Safety Integrated
FB10 Safety relay Load with Safety option 74
FB11 Brake test Load with Safety option 76
DB18 Safety data DB for Safety 308
 Tool management

P3: Basic PLC program for SINUMERIK 840D sl
14.15 Memory requirements of the basic PLC program

Basic Functions
950 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Basic program options
FC7 Transfer function

turret
Load for tool management option 84

FC8 Transfer function Load for tool management option 132
FC22 Direction selection Load, when direction selection is needed 138
DB71 Loading locations Generated by BP as a function of NC MD 40+30*B
DB72 Spindles Generated by BP as a function of NC MD 40+48*Sp
DB73 Revolver Generated by BP as a function of NC MD 40+44*R
DB74 Basic function Generated by BP as a function of NC MD 100+(B+

Sp+R)*22
 Compile cycles
DB9 Interface

PLC compile cycles
Is generated by BP as a function of NC option 436

Example:
Based on the memory requirements in the table above, the memory requirements have been
determined for two sample configurations (see table below).

Block
Type, No.

Function Remark Block size (bytes)

 Working memory

Minimum configuration (1 spindle, 2 axes and T MCP)
see above Basic program, base 54688
 Interface DBs 1612
 MCP 92
 Total 56392

Block
Type, No.

Function Remark Block size (bytes)

 Working memory

Maximum configuration (2 channels, 4 spindles, 4 axes, T MCP)
see above Basic program, base 54688
see above Interface DBs 2768
see above MCP 92
see above Error/operating messages 66
see above ASUPs 1 ASUP initiation 128
see above Concurrent axis For 2 turrets 132
see above PLC/NC communication 1 x read variable and 1 x write variable 838
see above Tool management 2 turrets with one loading point each 674

P3: Basic PLC program for SINUMERIK 840D sl
14.15 Memory requirements of the basic PLC program

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 951

Maximum configuration (2 channels, 4 spindles, 4 axes, T MCP)
see above Compile cycles 436
 Total 59822

14.16 Basic conditions and NC VAR selector

14.16.1 Supplementary conditions

14.16.1.1 Programming and parameterizing tools

Hardware
For the PLCs used in SINUMERIK 840D sl, the following equipment is required for the
programming devices or PCs:

 Minimum Recommendation
Processor Pentium Pentium
RAM (MB) 256 512 or more
Hard disk,
free capacity (MB)

500 > 500

Interfaces MPI, Ethernet incl. cable
Memory card

Graphic SVGA (1024*768)
Mouse Yes
Operating system Windows 2000 /XP Professional, STEP 7 version 5.3 SP2 or

higher

The required version of STEP 7 can be installed on equipment meeting the above requirements
in cases where the package has not already been supplied with the programming device.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
952 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The following functions are possible with this package:

● Programming

– Editors and compilers for STL (complete scope of the language incl. SFB/SFC calls),
LAD, FBD

– Creation and editing of assignment lists (symbol editor)

– Data block editor

– Input and output of blocks ON/OFF line

– Insertion of modifications and additions ON and OFF line

– Transfer of blocks from programming device to the PLC and vice versa

● Parameterizing

– Parameterizing tool HW Config for CPU and I/O device parameterization

– NetPro parameterizing tool for setting the CPU communication parameters

– Output of system data such as hardware and software version, memory capacity, I/O
expansion/assignment

● Testing and diagnostics (ONLINE)

– Variable status/forcing (I/Os, flags, data block contents, etc.)

– Status of individual blocks

– Display of system states (ISTACK, BSTACK, system status list)

– Display of system messages

– Trigger PLC stop / restart / general reset from the PG

– Compress PLC

● Documentation

– Printout of individual or all blocks

– Allocation of symbolic names (also for variables in data blocks)

– Input and output of comments within each block

– Printout of test and diagnostics displays

– Hardcopy function

– Cross-reference list

– Program overview

– Assignment plan I/O/M/T/Z/D

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 953

● Archiving of utility routines

– Allocation of the output states of individual blocks

– Comparison of blocks

– Rewiring

– STEP 5 → STEP 7 converter

● Option packages

– Programming in S7-HIGRAPH, S7-GRAPH, SCL.
These packages can be ordered from the SIMATIC sales department.

– Additional packages for configuration modules (e.g. CP3425 → NCM package)

Note

More information about possible functions can be found in SIMATIC catalogs and STEP
7 documentation.

14.16.1.2 SIMATIC documentation required
ReferenceS:

● System description SIMATIC S7

● S7-300 instruction list

● Programming with STEP 7

● User Manual STEP 7

● Programming manual STEP 7; designing of user programs

● Reference manual STEP 7; Instructions list AWL

● Reference manual STEP 7; Ladder Diagram KOP

● Reference manual STEP 7; Default and system functions

● Manual STEP 7; Conversion of STEP 5 programs

● STEP 7 overall index

● Manual CPU 317-2DP

14.16.1.3 Relevant SINUMERIK documents
References:

● Commissioning Manual IBN CNC: NC, PLC, Drive

● Operator Components and Networking Manual

● Function Manual Basic Functions

● Function Manual, Extended Functions:

● Function Manual, Special Functions

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
954 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Lists sl (Book1)

● Lists sl (Book2)

14.16.2 NC VAR selector

14.16.2.1 Overview

General
The PC application "NC VAR selector" retrieves the addresses of required NC variables and
processes them for access in the PLC program (FB2/FB3). This enables the programmer to
select NC variables from the entire range of NC variables, to store this selection of variables,
to edit them by means of a code generator for the STEP 7 compiler and finally to store them
as an ASCII file (*.AWL) in the machine CPU program. This process is shown in the figure "NC
VAR selector".

For storing the files created by NC-VAR-selector a catalog is to be implemented via the
Windows Explorer with any catalog name. The selected data of the NC-VAR selector
(data.VAR and data.AWL files) must be stored in this catalog. Thereafter, the STL file is to be
transferred and compiled via the menu option "Code" → "in STEP 7 Project". The "data.AWL"
(STL data) file must then be inserted into the STEP 7 machine project via "Insert", "External
Source" in the STEP 7 Manager. The source container must be selected in the manager for
this purpose. This action stores this file in the project structure. Once the file has been
transferred, these AWL (STL) files must be compiled with STEP 7.

Note

The latest NC VAR selector can be used for each NC software version (even earlier versions).
For older NC software versions the variables can also be selected from the latest complete
list. The data content in DB120 (default DB for variables) does not depend on the software
status. This means, variables selected in an older software version need not be reselected
when the software is upgraded.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 955

Figure 14-19 NC VAR selector

After the "NC VAR selector" application has been started, select a list of variables of an NC
variant (hard disk → file Ncv.mdb) to display all the variables contained in this list in a window.

The following ncv*.mdb variable list is available:

Variables List
NC variables including machine and setting data: ncv_NcData.mdb
Parameters of the drive: ncv_SinamicsServo.mdb

The user can also transfer variables to a second list (separate window). This latter selection
of variables can then be stored in an ASCII file or edited as a STEP 7 source file (.awl) and
stored.

After generating a PLC data block by means of the STEP 7 compiler, the programmer is able
to read or write NC variables via the basic program function blocks "PUT" and "GET" using
the STEP 7 file.

The list of selected variables is also stored as an ASCII file (file extension .var).

The variable list supplied with the "NC VAR selector" tool is adapted to the current NC software
version. This list does not contain any variables (GUD variables) defined by the user. These
variables are processed by the function block FB5 in the basic program.

Note

The latest version of the "NC VAR selector" is capable of processing all previous NC software
versions. It is, therefore, not necessary to install different versions of the "NC VAR selector"
in parallel.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
956 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System features, supplementary conditions
The PC application "NC VAR selector" requires Windows 2000 or a higher operating system.

The assignment of names to variables is described in:
References:
/List sl (Book1); Section: Variables,
or in the variables help file (integrated in NC VAR selector).

14.16.2.2 Description of functions

Overview
The figure below illustrates how the NC VAR selector is used within the STEP 7 environment.

Figure 14-20 Application of NC VAR selector in the STEP 7 environment

The NC VAR selector is used to generate a list of selected variables from a list of variables
and then to generate an .awl file that can be compiled by the STEP 7 compiler.

● A *.awl file contains the names and alias names of the NC variables, as well as information
about their address parameters. Any data block generated from this file will only contain
the address parameters (10 bytes per parameter).

● The generated data blocks must always be stored in the machine-specific file storage
according to STEP 7 specifications.

● To ensure that the parameterization of the GET/PUT (FB2/3) blocks with respect to NC
addresses can be implemented with symbols, the freely assignable, symbolic name of the
generated data block must be included in the STEP 7 symbol table.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 957

Basic display / basic menu
After the NC VAR selector has been selected (started), the basic display with all input options
(upper menu bar) appears on the screen. All other displayed windows are placed within the
general window.

Figure 14-21 Basic display with basic menu

Project menu item
All operator actions associated with the project file (file of selected variables) are performed
under this menu item.

Terminating the application
The application can be terminated by selecting the "End" option under the "Project" menu item.

Creating a new project
A new project (new file for selected variables) can be set up under the "Project" menu item.

A window is displayed for the selected variables when "NEW" is selected. The file selection
for the NC variable list is then displayed after a prompt (applies only if the NC variable list is
not already open).

Figure 14-22 Window with selected variables for new project

The selected variables are displayed in a window.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
958 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Open an already existing project
Select "Open" under the "Project" menu item to open an existing project (variables already
selected). A file selection window is displayed allowing the appropriate project with extension
".var" to be selected.

Figure 14-23 Selection window for existing projects

If, after selection of the project, new variables are to be added, a complete list of NC variables
must be selected. No complete list need be called if the user only wishes to delete variables
from the project.

Storing a project
The variable list is stored using the "Project" > "Save" or "Save As...." menu items.

"Save" stores the variable list under a path, which is already specified. If the project path is
not known, then the procedure is as for "Save As....".

"Save As..." displays a window in which the path for the project to be stored can be specified.

Printing a project
The "Print" command under the "Project" menu item can be selected to print a project file. The
number of lines per page is selected under the "Print Setting" menu item. The default setting
is 77 lines.

Edit menu item
The following operator actions are examples of those, which can be carried out directly with
this menu item:

● Transfer variables

● Delete variables

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 959

● change alias names

● Find variables

These actions can also be canceled again under Edit.

Undoing actions
Operator actions relating to the creation of the project file (transfer variables, delete variables,
change alias names) can be undone in this menu.

NC variables menu item
The basic list of all variables is saved in NC Var Selector path Data\Swxy (xy stands for
software version no., e.g. SW 5.3:=xy=53). This list can be selected as an NC variables list.
In case of SINUMERIK 840D sl the basic lists are present in the path Data\Swxy_sl.

Selecting an NC variable list
A list of all the NC variables for an NC version can now be selected and displayed via the "NC
Variable List", "Select" menu item.

Figure 14-24 Window with selected Complete List

The field variables (e.g. axis area, T area data, etc.) are indicated by means of brackets ([.]).
Additional information must be specified here. When the variables are transferred to the project
list, the additional information required is requested.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
960 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Displaying subsets
Double-click on any table field (with the exception of variable fields) to display a window in
which filter criteria can be preset.

Figure 14-25 Window with filter criteria for displaying list of variables

There are three options:

● Display all data

● Input area, block and name (incl. combinations)

● Display MD/SE data number

The following wildcards can also be used:

* To extend the search criterion as required

Example search criteria

Name search criterion: CHAN* Found: CHAN_NAME
 chanAlarm
 chanStatus
 channelName
 chanAssignment

● Select variable
A variable is selected by means of a simple mouse click and transferred to the window of
selected variables by double-clicking. This action can also be undone under the "Edit" menu
item.

Alias name
The variable names provided can be up to 32 characters in length. To make variables clearly
identifiable in the data block to be generated, several ASCII characters are added to the
selected name. However, the STEP 7 compiler recognizes only 24 ASCII characters as an
unambiguous STEP 7 variable. Since it cannot be precluded that variable names can only be
differentiated by the last 8 character positions, ALIAS names are used for names, which are
too long. When a variable is selected, the length of the STEP 7 name to be used is, therefore,
checked. If the name is longer than 24 characters, the user must enter an additional name,
which is then used as the alias.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 961

In this case, the user must ensure that the alias name is unambiguous.

Alias input can always be activated by the user in the "Options" menu.
An alias name can then be entered every time a variable is transferred.

It is also possible to edit alias names at a later point in time by double-clicking on the S7 variable
name field. This action can also be undone under the "Edit" menu item.

Figure 14-26 Screen with complete list and selected variables

Scrolling
A scroll bar is displayed if it is not possible to display all variables in the window. The remaining
variables can be reached by scrolling (page up/down).

Variables in multi-dimensional structures
If variables are selected from multi-dimensional structures, then the column and/or line number
as well as the area number must be entered so that the variables can be addressed. The
required numbers can be found in the NC variables documentation.

References:
Lists sl (Book1); Variables

By entering a zero (0) as the block number or the line or column index, it is possible to use the
variable in the S7 PLC as a pointer to these data. When reading or writing these data via the
functions "PUT" and "GET", the optional parameters "UnitX", "ColumnX" and "LineX" must be
filled with the necessary information.

Figure 14-27 Entry field for line, column and block no.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
962 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Delete variables
Variables are deleted in the window of selected variables by selecting the appropriate variables
(single mouse click) and pressing the "Delete" key. No deletion action is taken with the double-
click function. It is possible to select several variables for deletion (see Section "Example of
search criteria > Selecting variables").

This action can also be undone under the "Edit" menu item.

Note

Deleting of variables results in a change of the absolute addresses of the pointer structures to
the variables. When changing the variable selection, it is, therefore, absolutely necessary to
generate one or several text files of all user blocksprior to the change. This is the only way to
ensure that the assignment of the variables in FB "GET" or FB "PUT" remains correct, even
after recompilation.

Storing a selected list
Once variables have been selected, they can be stored under a project name. The files are
stored on a project-specific basis.

A window is displayed for the file to be stored. The project path and name for the file must be
selected in the window.

Figure 14-28 Window for project path and name of file to be stored

Code generation
This menu item contains three selection options:

1. Settings (input of data block number to be generated) and other settings

2. Generate (create data block)

3. In the STEP 7 project (transferring the data block to a STEP 7 project)

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 963

Settings
Under this menu item, the DB number and the symbol for this DB number for which the code
is created is entered.

Under the "Mass System" tab, a selection is made to determine how the unit system variables
are calculated in the PLC.

Under the "Generate" tab, the project creation is defined for the relevant target system.

Generate
Under this menu item, the STEP 7 file from the selected variable list with extension ".awl" is
set.

A file is generated when "Select" is clicked:

An .awl file that can be used as an input for the STEP 7 compiler.

A window opens, in which path and name for the .awl file to be generated must be specified
for the file to be saved.

In STEP 7 project
The generated STL file is transferred to a selectable SIMATIC project (program path) and
compiled. Furthermore, the symbol can also be transferred. This function is available as of
STEP 7 Version 5.1. This process takes a longer time owing to the call of STEP 7. Before
transferring a new STL file the file window of the STL file is to be closed in the LAD/FBD/STL
editor.

Option menu item
The following can be selected under the "Option" menu item:

● The current language

● The mode for alias input (always / > 24 characters)

Help menu item
The information below can be viewed by selecting the corresponding submenu item:

● The Operating Manual

● The Description of Variables

The copyright and the version number can also be displayed.

14.16.2.3 Startup, installation
The Windows application "NC Var selector" is installed using the SETUP program supplied
with the package.

P3: Basic PLC program for SINUMERIK 840D sl
14.16 Basic conditions and NC VAR selector

Basic Functions
964 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.17 Block descriptions

14.17.1 FB1: RUN_UP - basic program, start section

Function
The synchronization of NC and PLC is performed during start-up. The data blocks for the NC/
PLC user interface are created based on the NC configuration defined via machine data and
the basic program parameters are verified for plausibility. In the event of an error, FB1 passes
an error identifier to the diagnostic buffer and switches the PLC to the stop state.

"Restart" start-up mode
The integrated PLC only supports the start-up mode "Restart". After the basic system
initialization, the organization block OB100 "Restart" is always run through first, followed by
OB1 "Cyclic mode".

Input parameters
For parameterizing the basic program, only the respective relevant parameters of the function
block FB1 must be written with user-specific values. The preset values in the instance data
block DB7 of the FB1 do not need to be assigned. The function block FB1 must only be called
in the organization block OB100.

Output parameters
The output parameters of function block FB1 can also be read from the cyclical part of the
basic program. Two options are available for this purpose:

1. Direct access to the instance data block DB7 of FB1 in symbolic form.
Example: "L gp_par.MaxChan", with "gp_par" as the symbolic name of DB7

2. A bit memory is assigned to an output parameter when FB1 is parameterized. The bit
memory is then read in the basic program in order to determine the value of the output
parameter.
Example: "MaxChan":= MW 20

Note

For assigning the FB1 parameters for MCP and BHG, see "Configuration machine control
panel, handheld unit, direct keys (Page 918) ".

Declaration of the function

FUNCTION_BLOCK FB1
VAR_INPUT
 MCPNum: INT:=1; // 0: No MCP

// 1: 1 MCP (default)
// 2: 2 MCPs

 MCP1In: POINTER; // Start addr. MCP1 input signals

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 965

 MCP1Out: POINTER; // Start addr. MCP1 output signals
 MCP1StatSend: POINTER; // Status DW for sending MCP1
 MCP1StatRec: POINTER; // Status DW for receiving MCP1
 MCP1BusAdr: INT:=6; // default
 MCP1Timeout: S5TIME:= S5T#700MS;
 MCP1Cycl: S5TIME:= S5T#200MS;
 MCP2In: POINTER; // Start addr. MCP2 input signals
 MCP2Out: POINTER; // Start addr. MCP2 output signals
 MCP2StatSend: POINTER; // Status DW for sending MCP2
 MCP2StatRec: POINTER; // Status DW for receiving MCP2
 MCP2BusAdr: INT;
 MCP2Timeout: S5TIME:= S5T#700MS;
 MCP2Cycl: S5TIME:= S5T#200MS;
 MCPMPI: BOOL:= FALSE;
 MCP1Stop: BOOL:= FALSE;
 MCP2Stop: BOOL:= FALSE;
 MCP1NotSend: BOOL:= FALSE;
 MCP2NotSend: BOOL:= FALSE;
 MCPSDB210: BOOL:= FALSE;
 MCPCopyDB77: BOOL:= FALSE;
 MCPBusType: BYTE=B#16#0;
 HHU: INT:=0; // Handheld unit interface
 // 0: No HHU
 // 1: HHU on MPI
 // 2: HHU on OPI
 BHGIn: POINTER; // Transmit data of the handheld

unit
 BHGOut: POINTER; // Receive data of the handheld

unit
 BHGStatSend: POINTER; // Status DW for sending HHU
 BHGStatRec: POINTER; // Status DW for receiving HHU
 BHGInLen: BYTE:= B#16#6; // Input 6 bytes
 BHGOutLen: BYTE:= B#16#14; // Output 20 bytes
 BHGTimeout: S5TIME:= S5T#700MS;
 BHGCycl: S5TIME:= S5T#100MS;
 BHGRecGDNo: INT:=2;
 BHGRecGBZNo: INT:=2;
 BHGRecObjNo: INT:=1;
 BHGSendGDNo: INT:=2;
 BHGSendGBZNo: INT:=1;
 BHGSendObjNo: INT:=1;
 BHGMPI: BOOL:= FALSE;
 BHGStop: BOOL:= FALSE;
 BHGNotSend: BOOL:= FALSE;
 NCCyclTimeout: S5TIME:= S5T#200MS;
 NCRunupTimeout: S5TIME:= S5T#50S;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
966 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 ListMDecGrp: INT:=0;
 NCKomm: BOOL:= FALSE;
 MMCToIF: BOOL:=TRUE;
 HWheelMMC: BOOL:=TRUE; // Handwheel selection via HMI
 ExtendAlMsg : BOOL;
 MCP_IF_TCS: BOOL;
 ExtendChanAxMsg: BOOL;
 MsgUser: INT:=10; // Number of user areas in DB 2
 UserIR: BOOL:= FALSE; // User programs in OB40,
 // Observe local data expansion!
 IRAuxfuT: BOOL:= FALSE; // Evaluate T function in OB40
 IRAuxfuH: BOOL:= FALSE; // Evaluate H function in OB40
 IRAuxfuE: BOOL:= FALSE; // Evaluate DL function in OB40
 UserVersion: POINTER; // Pointer to string variable,

which is displayed in the version
display of the user interface

 OpKeyNum : INT;
 Op1KeyIn POINTER;
 Op1KeyOut : POINTER;
 Op1KeyBusAdr : INT;
 Op2KeyIn : POINTER;
 Op2KeyOut : POINTER;
 Op2KeyBusAdr : INT;
 Op1KeyStop : BOOL;
 Op2KeyStop : BOOL;
 Op1KeyNotSend : BOOL;
 Op2KeyNotSend : BOOL;
 OpKeyBusType : BYTE ;
 IdentMcpBusAdr : INT;
 IdentMcpProfilNo :BYTE ;
 IdentMcpBusType : BYTE ;
 IdentMcpStrobe : BOOL;
END_VAR

VAR_OUTPUT
 MaxBAG: INT;
 MaxChan: INT;
 MaxAxis: INT;
 ActivChan: ARRAY[1..10] OF

BOOL;

 ActivAxis: ARRAY[1..31] OF
BOOL;

 UDInt : INT;
 UDHex: INT;
 UDReal : INT;
 IdentMcpType : BYTE ;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 967

 IdentMcpLengthIn :BYTE ;
 IdentMcpLengthOut

:
BYTE ;

END_VAR

Description of formal parameters

Signal Typ
e

Type Value range Meaning

MCPNum: I INT 0, 1, 2 Number of active MCPs
0: No MCPs available

MCP1In:
MCP2In:

I POINTER E0.0 ... E120.0
or

M0.0 ... M248.0
or

DBn DBX0.0 ... DBXm.0

Start address for the input signals of the
relevant machine control panel

MCP1Out:
MCP2Out:

I POINTER A0.0 ... A120.0
or

M0.0 ... M248.0
or

DBn DBX0.0 ... DBXm.0

Start address for the output signals of the
relevant machine control panel

MCP1StatSend:
MCP2StatSend:

I POINTER A0.0 ... A124.0
or

M0.0 ... M252.0
or

DBn DBX0.0 ... DBXm.0

Only for Ethernet MCP:
Switch off flashing (see Section "Switch‐
over of machine control panel, handheld
unit (Page 927)")

MCP1StatRec:
MCP2StatRec:

I POINTER A0.0 ... A124.0
or

M0.0 ... M252.0
or

DBn DBX0.0 ... DBXm.0

Currently no significance

MCP1BusAdr:
MCP2BusAdr:

I INT 1, 2, 3 ... 126 DP slave: PROFIBUS address
192, 193, 194 .. 223 Ethernet MCP: DIP setting

MCP1Timeout:
MCP2Timeout:

I S5time Recommendation: 700 ms Cyclic sign-of-life monitoring for machine
control panel

MCP1Cycl:
MCP2Cycl:

I S5time Recommendation: 200 ms Relevant only for PROFIBUS

MCPMPI: I BOOL FALSE Available owing to compatibility
MCP1Stop:
MCP2Stop:

I BOOL 0 (FALSE), 1 (TRUE) 0: Start transfer of machine control panel
signals
1: Stop transfer of machine control panel
signals
DP slave: Slave deactivated

MCP1NotSend :
MCP2NotSend:

I BOOL 0 (FALSE), 1 (TRUE) 0: Send and receive operation activated
1: Receive machine control panel signals
only

MCPSDB210: I BOOL false Available owing to compatibility
MCPCopyDB77: I BOOL false Available owing to compatibility

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
968 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Typ
e

Type Value range Meaning

MCPBusType: I BYTE 3, 4, 5, 6 b#16#yx:
● Bus type MCP1: lower nibble (x)
● Bus type MCP2: upper nibble (y)
3: PROFIBUS
4: PROFIBUS on the MPI/DP port
5: Ethernet
6: PROFINET
Mixed mode is possible (see Section "Con‐
figuration machine control panel, handheld
unit, direct keys (Page 918)")

HHU: I INT 0, 5 Handheld unit interface
0: No HHU
5: HHU on Ethernet

BHGIn: I POINTER E0.0 ... E124.0
or

M0.0 ... M252.0
or

DBn DBX0.0 ... DBXm.0

Start address PLC receive data from HHU

BHGOut: I POINTER A0.0 ... A124.0
or

M0.0 ... M252.0
or

DBn DBX0.0 ... DBXm.0

Start address PLC transmit data to HHU

BHGStatSend: I POINTER A0.0 ... A124.0
or

M0.0 ... M252.0
or

DBn DBX0.0 ... DBXm.0

Available owing to compatibility

BHGStatRec: I POINTER A0.0 ... A124.0
or

M0.0 ... M252.0
or

DBn DBX0.0 ... DBXm.0

Available owing to compatibility

BHGInLen: I BYTE HHU default:
B#16#6 (6 Byte)

Available owing to compatibility

BHGOutLen: I BYTE HHU default:
B#16#14 (20 Byte)

Available owing to compatibility

BHGTimeout: I S5time Recommendation: 700 ms Available owing to compatibility
BHGCycl: I S5time Recommendation: 100 ms Available owing to compatibility
BHGRecGDNo: I INT HHU default: 2 Ethernet DIP switch
BHGRecGBZNo: I INT HHU default: 2 Available owing to compatibility
BHGRecObjNo: I INT HHU default: 1 Available owing to compatibility
BHGSendGDNo: I INT HHU default: 2 Available owing to compatibility
BHGSendGBZNo: I Int HHU default: 1 Available owing to compatibility
BHGSendObjNo: I INT HHU default: 1 Available owing to compatibility
BHGMPI: I BOOL 0 (FALSE) Available owing to compatibility

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 969

Signal Typ
e

Type Value range Meaning

BHGStop: I BOOL 0 (FALSE), 1 (TRUE) 0: Start transmission of handheld unit sig‐
nals
1: Stop transmission of handheld unit sig‐
nals

BHGNotSend: I BOOL 0 (FALSE), 1 (TRUE) 0: Send and receive operation activated
1: Receive handheld unit signals only

NCCyclTimeout: I S5time Recommendation: 200 ms Cyclic sign-of-life monitoring NC
NCRunupTimeout: I S5time Recommendation: 50 s Power-up monitoring NC
ListMDecGrp: I INT 0, 1, 2 ... 16 Activation of expanded M group decoding

0: Not active
1 to 16: Number of M groups

NCKomm: I BOOL 0 (FALSE), 1 (TRUE) PLC NC communication services FB2, 3,
4, 5, 7
1: Active

MMCToIF: I BOOL 0 (FALSE), 1 (TRUE) Transmission of HMI signals to interface
(modes, program control, etc.)
1: Active

HWheelMMC: I BOOL 0 (FALSE), 1 (TRUE) 0: Handwheel selection via HMI
1: Handwheel selection via user program

ExtendAlMsg : I BOOL 0 (FALSE), 1 (TRUE) Activation of extensions, error and opera‐
tional messages of the FC10 (see Section
"Extensions of the PLC alarms via block
FC10" in Section "Interface PLC/HMI
(Page 892)")

MCP_IF_TCS I BOOL 0 (FALSE), 1 (TRUE) FC19: Evaluation R11 key
0: No evaluation
1: R11 key acts as manual traversing in
tool orientation (see Section "Cartesian
manual travel" in Section "FC19:
MCP_IFM - transfer of MCP signals to in‐
terface (Page 1081)")

ExtendChanAxMsg I BOOL 0 (FALSE), 1 (TRUE) Activation of all areas for error- and opera‐
tional messages of the FC10 (see Section
"FC10: AL_MSG - error and operating mes‐
sages (Page 1061)")

MsgUser: I INT 0, 1, 2 ... 64 Number of user areas (DB2) – depends on
parameter "ExtendAIMsg"

UserIR: I BOOL 0 (FALSE), 1 (TRUE) Local data extension OB40 required for
processing of signals from the user

IRAuxfuT: I BOOL 0 (FALSE), 1 (TRUE) Evaluate T function in OB40
IRAuxfuH: I BOOL 0 (FALSE), 1 (TRUE) Evaluate H function in OB40
IRAuxfuE: I BOOL 0 (FALSE), 1 (TRUE) Evaluate DL function in OB40

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
970 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Typ
e

Type Value range Meaning

UserVersion: I POINTER P#DBn.DBXx.0 Pointer to string variable, which is dis‐
played in the version display of the user
interface
The string variable has the following nota‐
tion (max. 41 characters):
"<Name> <version xx.xx.xx> <date yy/mm/
dd>"
Example: "Test version 07.06.02 13/06/04"

OpKeyNum : I INT 0, 1, 2 Number of active direct control key mod‐
ules
0: No Ethernet direct control keys available

Op1KeyIn:
Op2KeyIn:

I POINTER P#Ex.0
or

P#Mx.0
or

P#DBn.DBXx.0.

Start address for the input signals of the
affected direct control key modules

Op1KeyOut :
Op2KeyOut :

I POINTER P#Ax.0
or

P#Mx.0
or

P#DBn.DBXx.0.

Start address for the output signals of the
affected direct control key modules

Op1KeyBusAdr :
Op2KeyBusAdr :

I INT 1, 2, 3 ... 191 Direct control keys via Ethernet: TCU in‐
dex:

Op1KeyStop :
Op2KeyStop :

I BOOL 0 (FALSE), 1 (TRUE) 0: Start transmission of direct control key
signals
1: Stop transmission of direct control key
signals

Op1KeyNotSend :
Op2KeyNotSend :

I BOOL 0 (FALSE), 1 (TRUE) 0: Send and receive operation activated
1: Receive direct control key signals only

OpKeyBusType : I BYTE b#16#55 Ethernet
IdentMcpBusAdr : I INT 1, 2, 3 ... 254 only IE devices
IdentMcpProfilNo : I BYTE 0, 1 Profile of a device

0: Complete device
1: Only direct control keys

IdentMcpBusType : I BYTE b#16#5 only IE devices
IdentMcpStrobe : I BOOL 0 (FALSE), 1 (TRUE) 1: Activate query
MaxBAG: O INT 1, 2, 3 ... 10 Number of mode groups
MaxChan: O INT 1, 2, 3 ... 10 Number of channels
MaxAxis: O INT 1, 2, 3 ... 31 Number of axes
ActivChan: O ARRAY[1...10]

OF BOOL
0 (FALSE), 1 (TRUE) Bit string for active channels

ActivAxis: O ARRAY [1..31]
OF BOOL

0 (FALSE), 1 (TRUE) Bit string for active axes

UDInt : O INT 0, Quantity of INTEGER machine data in
DB20

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 971

Signal Typ
e

Type Value range Meaning

UDHex: O INT --- Quantity of hexadecimal machine data in
DB20

UDReal : O INT --- Quantity of REAL machine data in DB20
IdentMcpType : O BYTE 0, B#16#80, B#16#81,

B#16#82 ... B#16#89
MCP type

IdentMcpLengthIn : O BYTE --- Length of MCP input data (MCP → PLC)
IdentMcpLengthOut : O BYTE --- Length of MCP output data (PLC → MCP)

If an error occurs during communication with a machine control panel (MCP) or handheld unit
(HHU), the following alarms are displayed on the HMI and the input signals (MCP1In, MCP2In
or BHGIn) are set to the value zero:

Error case: MCP/HHU
● Alarm 400260: "MCP 1 failure"

● Alarm 400261: "MCP 2 failure"

● Alarm 400262: "HHU failure"

If resynchronization is possible between PLC and MCP/HHU, communication is resumed, the
error message on the HMI is deleted by the basic program, and process values are transferred
to the input signals (MCP1In, MCP2In or BHGIn) again.

Example: FB1 call in the OB100

ORGANIZATION_BLOCK OB100
VAR_TEMP
 OB100_EV_CLASS : BYTE ;
 OB100_STRTUP : BYTE ;
 OB100_PRIORITY : BYTE ;
 OB100_OB_NUMBR : BYTE ;
 OB100_RESERVED_1 : BYTE ;
 OB100_RESERVED_2 : BYTE ;
 OB100_STOP : WORD;
 OB100_RESERVED_3 : WORD;
 OB100_RESERVED_4 : WORD;
 OB100_DATE_TIME : DATE_AND_TIME;
END_VAR
BEGIN
 CALL FB1, DB7(// FB1 call, instance DB: DB7
 MCPNum := 1,
 MCP1In := P#E0.0,
 MCP1Out := P#A0.0,
 MCP1StatSend := P#A8.0,
 MCP1StatRec := P#A12.0,
 MCP1BusAdr := 6,

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
972 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 MCP1Timeout := S5T#700MS,
 MCP1Cycl := S5T#200MS,
 NC-CyclTimeout := S5T#200MS,
 NC-RunupTimeout := S5T#50S);
// INSERT USER PROGRAM HERE
END_ORGANIZATION_BLOCK

14.17.2 FB2: GET - read NC variable

Function
The FB2 "GET" function block is used to read variables from the NC area.

In order to reference the NC variables, they are first selected with the "NC VAR selector" tool
and generated as STL source in a data block. A name must then be assigned to this data block
in the S7 symbol table. When calling FB2, the variable addresses are transferred in the
following form: Parameter "Addr1" to "Addr8" = "<DB name>.<S7 name>"

Request for reading NC variables
Call of FB2 with positive edge change, parameter "Req" = 0 → 1

S7 names of the NC variables: Parameter "Addr1" to "Addr8" = "NCVAR".<S7 name>"

Pointer for writing the variable values: Parameters "RD1" to "RD8" = "P#<Address>"

Completion of the read request
Read request successfully completed: Parameter "Done" == 1.

Read request completed with error:"Parameter "Error" == 1, error cause in parameter "State"

Prerequisites
● Release of the NC/PLC communication by OB100, FB1 parameter "NCKomm" = 1

● For the data block DB120 (data interface), the S7 Symbol Editor must be used to assign a
symbol (default: NCVAR) in the S7 symbol table of the S7 project. Using this symbol, the
NC variable is then specified in the FB2 parameters "Addr<x>", e.g. "ADDR1": =
"NCVAR".<NC variable>"

General conditions
● FB2 has multi-instance capability.

● Every call of FB2 must be assigned a separate instance DB from the user area.

● When channel-specific variables are read, only variables from exactly one channel may be
addressed via "Addr1" to "Addr8" if FB2 is called.

● When drive-specific variables are read, only variables from exactly one SERVO drive object
may be addressed via "Addr1" to "Addr8" if FB2 is called. The SERVO drive object must
be assigned to a machine axis of the NC. The line index corresponds to the logical drive
number.

● In a read job, only variables from the same area, channel, or drive object can be read.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 973

Note

Error case
When reading variables from different channels or drive objects, or simultaneously from a
channel and a drive object, an error message is output:
● "Error" == TRUE
● "State" == W#16#02

Variable addressing
For some NC variables, it is necessary to select "Area no." and/or "Line" or "Column" from the
NC VAR selector. It is possible to select a basic type, i.e. "Area no.", "Line" and "Column" are
preassigned "0". The values of the "Area no.", "Line" and "Column" specified by the NC VAR
selector are checked for a "0" in FB2. If an NC-VAR selector value == "0", the corresponding
value of the FB2 parameter is adopted. To do this, the FB2 parameters "Unit<x>", "Column<x>"
and "Line<x>", with <x> = 1 - 8, must be written before FB2 is called.

Table 14-1 Parameter match

FB2 parameter NC VAR selector
Unit Area no.

Column Column
Line Line

Variables within one group can be combined in a job:

Group Area
1 C[1] N B O T
2 C[2] N B O T
3 V[.] H[.] --- --- ---

The same rules apply for channels 3 to 10 as for group 1 and group 2 shown in the example.

Note

The number of usable variables can be less than eight when simultaneously reading several
variables of the "String" type.

Declaration of the function

FUNCTION_BLOCK FB2
VAR_INPUT

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
974 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 Req : BOOL;
NumVar : INT;
Addr1 : ANY;
Unit1 : BYTE ;
Column1 : WORD;
Line1 : WORD;
Addr2 : ANY;
Unit2 : BYTE ;
Column2 : WORD;
Line2 : WORD;
Addr3 : ANY;
Unit3 : BYTE ;
Column3 : WORD;
Line3 : WORD;
Addr4 : ANY;
Unit4 : BYTE ;
Column4 : WORD;
Line4 : WORD;
Addr5 : ANY;
Unit5 : BYTE ;
Column5 : WORD;
Line5 : WORD;
Addr6 : ANY;
Unit6 : BYTE ;
Column6 : WORD;
Line6 : WORD;
Addr7 : ANY;
Unit7 : BYTE ;
Column7 : WORD;
Line7 : WORD;
Addr8 : ANY;
Unit8 : BYTE ;
Column8 : WORD;
Line8 : WORD;

END_VAR
VAR_OUTPUT
 Error : BOOL;

NDR : BOOL;
State : WORD;

END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 975

VAR_IN_OUT
 RD1 : ANY;

RD2 : ANY;
RD3 : ANY;
RD4 : ANY;
RD5 : ANY;
RD6 : ANY;
RD7 : ANY;
RD8 : ANY;

END_VAR

Description of formal parameters

Parameter Typ
e

Type Value range Description

Req: I BOOL --- Job start with positive signal edge
NumVar: I INT 1 ... 8 Number of variables to be read:

"Addr1" - "Addr8"
Addr1 - Addr8: I ANY "DBName".<VarName> Variable identifiers from NC Var

selector
Unit1 - Unit8: I BYTE --- Area address, optional for variable

addressing
Column1 -
Column8:

I WORD --- Column address, optional for vari‐
able addressing

Line1 - Line8: I WORD --- Line address, optional for variable
addressing

Error: O BOOL 0 (FALSE), 1 (TRUE) 1: Negative acknowledgement of
job or execution of job impossible

NDR : O BOOL 0 (FALSE), 1 (TRUE) 1: Job successfully executed Data
is available

State: O WORD --- See paragraph "Error identifiers"
RD1 - RD8: I/O ANY P#Mm.n BYTE x ...

P#DBnr.dbxm.n BYTE x
Target area for read data

Error identifiers

NC variables

State Description

Note
High byte

1)
Low byte

1 - 8 1 Access error ---
0 2 Error in job Incorrect compilation of variables in a job

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
976 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

State Description

Note
High byte

1)
Low byte

0 3 Negative acknowledgement,
job not executable

Internal error, possible remedy:
● Check job data
● NC reset

1 - 8 4 Insufficient local user memo‐
ry available

Data type of the read variable is greater than
specified in "RD1" - "RD8"

0 5 Format conversion error Error on conversion of var. type double: Vari‐
able is not within the S7 REAL area

0 6 FIFO full Job must be repeated since queue is full
0 7 Option not set FB1 parameter "NCKomm" is not set

1 - 8 8 Incorrect target area (RD) "RD1" - "RD8" must not be local data
0 9 Transmission occupied Job must be repeated

1 - 8 10 Error in variable addressing "Unit" or "Column"/"Line" contains value 0
0 11 Address of variable invalid Check "Addr" (or variable name), "Area", "Unit"
0 12 NumVar == 0 Check parameter "NumVar"

1 - 8 13 ANY data reference incorrect Requested "NcVar" data has not been para‐
meterized

1) High byte > 0 ⇒ Number of the variable in which the error occurred

Drive-specific variables
If an error occurs while reading/writing a drive-specific variable (DB1200.DBX3000.1 == 1),
an error number is displayed in the access result which is based on the error numbers defined
in the PROFIdrive profile.

State Description
x <Error number of PROFIdrive profile> + 20H or 36D

Determining the significance of the access result:

1. Calculation of the error number of the PROFIdrive profile
<Error number of PROFIdrive profile> = result of access - 20H or 36D.

2. Determining the significance of the error number of the PROFIdrive profile
The error numbers of the PROFIdrive profile are described in:
References
SINAMICS S120 Drive Functions Function Manual; Chapter "Communication" >
"Communication according to PROFIdrive" > "Acyclic communication" > "Structure of
orders and responses" > paragraph "Error values in parameter responses"

Configuration steps
Proceed as follows to read NC variables:

● Select variables with the NC VAR selector.

● Save selected variables in a *.VAR file.

● Generate a STEP 7 *.STL source file.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 977

● Generate a DB with the associated address data.

● Enter the symbol for the generated DB in the symbol table so that it is possible to access
the address parameters symbolically in the user program.

● Parameterizing the FB2

Pulse diagram

① User: Set request, Req = 0 → 1
② FB2 successfully completed, NDR = 1

User: Reset request, IF NDR == 1 THEN Req = 0
③ User: IF NDR == 1 THEN reset request: 1 → 0
④ FB2 reset job confirmation, NDR = 0
⑤ User: IF NDR == 0 AND Error == 0 THEN reset request Req = 1 → 0 not permissible
⑥ FB2 completed with errors, Error = 1

User: Reset request, IF NDR == 1 OR Error == 1 THEN Req = 0, possible further error handling

Call example
Reading three channel-specific machine data from channel 1, whose address specifications
are stored in DB120.

Specification of data
The data is selected with the NC VAR selector and saved in the DB120.VAR file. Then the
DB120.AWL file is created from this.

S7 (ALIAS) names are selected.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
978 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

To adopt the channel designation into the variable name and to delete the characters "[" and
"]", which are not permitted in a STEP 7 symbol, new S7 names are selected:

Area Block Name Type No. Byte S7 Name
C[1] M MD20070 $MC_AXCONF_MA‐

CHAX_USED[1]
CHAR 20070 1 C1AxConfMachAxUsed1

C[1] M MD20070 $MC_AXCONF_MA‐
CHAX_USED[2]

CHAR 20070 1 C1AxConfMachAxUsed2

C[1] M MD20090 $MC_SPIND_DEF_MAS‐
TER_SPIND

INT 20090 1 C1SpindDefMasterSpind

S7 symbol table
"NCVAR" is entered in the S7 symbol table as a symbolic name for the data block DB120:

Symbol Operand Data type
NCVAR DB120 DB120

File DB120.AWL must be compiled and transferred to the PLC.

Parameterization of FB2 with instance DB110:

DATA_BLOCK DB110 // Unassigned user DB, as instance for FB2
FB2
BEGIN
END_DATA_BLOCK
Function FC "VariablenCall" : VOID
 U I 7.7; // Unassigned machine control panel key

S M 100.0; // Activate req.
U M 100.1; // NDR completed message
R M 100.0; // Terminate job
U I 7.6; // Manual error acknowledgment
U M 102.0; // Error pending
R M 100.0; // Terminate job
CALL FB2, DB110(
 Req := M 100.0,

NumVar := 3, // Read three variables
Addr1 := "NCVAR".C1AxConfMachAxUsed1,
Addr2 := "NCVAR".C1AxConfMachAxUsed2,
Addr3 := "NCVAR".C1SpindDefMasterSpind,
Error := M102.0,
NDR := M100.1,
State := MW104,
RD1 := P#DB99.DBX0.0 BYTE 1,
RD2 := P#DB99.DBX1.0 BYTE 1,
RD3 := P#M110.0 INT 1);

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 979

Example: Variable addressing
Reading two R parameters from channel 1, whose address specifications are stored in DB120
as the basic type. The R parameter number is parameterized via parameter "Line<x>".

DATA_BLOCK DB120
VERSION : 0.0
STRUCT
 C1_RP_rpa0_0:

STRUCT
SYNTAX_ID : BYTE := B#16#82;
area_and_unit : BYTE := B#16#41;
column : WORD := W#16#1;
line : WORD := W#16#0;
block type : BYTE := B#16#15;
NO. OF LINES : BYTE := B#16#1;
type : BYTE := B#16#F;
length : BYTE := B#16#8;
END_STRUCT;

END_STRUCT;
BEGIN
END_DATA_BLOCK
CALL FB2, DB110(
 Req := M 0.0,

NumVar := 2,
Addr1 := "NCVAR".C1_RP_rpa0_0,
Line1 := W#16#1,
Addr2 := "NCVAR".C1_RP_rpa0_0,
Line2 := W#16#2,
Error := M 1.0,
NDR := M 1.1,
State := MW 2,
RD1 := P#M 4.0 REAL 1,
RD2 := P#M 24.0 REAL 1);

Classification of data types

Table 14-2 Classification of data types

NC-internal or BTSS data type S7 data type
DOUBLE REAL
DOUBLE REAL2

REAL REAL
LONG DINT

INTEGER DINT
UINT_32 DWORD

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
980 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

NC-internal or BTSS data type S7 data type
INT_16 INT

UINT_16 WORD
UNSIGNED WORD

CHAR CHAR or BYTE
STRING STRING
BOOL BOOL

DATETIME DATE_AND_TIME

Example
For example, to be able to read an NC variable of the type DOUBLE without adapting the
format, an ANY pointer with REAL2 type must be specified in the destination area "RDx" (e.g.:
P#M100.0 REAL2). If the basic program recognizes REAL2 as the target type when reading
a variable of the DOUBLE type, the data is transferred to the PLC data area as a 64-bit floating-
point number.

14.17.3 FB3: PUT - write NC variables

Function
The FB3 "PUT" function block is used to write variables from the NC area.

In order to reference the NC variables, they are first selected with the "NC VAR selector" tool
and generated as STL source in a data block. A name must then be assigned to this data block
in the S7 symbol table. When calling FB3, the variable addresses are transferred in the
following form: Parameter "Addr1" to "Addr8" = "<DB name>".<S7 name>

Request for writing NC variables
Call of FB3 with positive edge change, parameter "Req" = 0 → 1

S7 names of the NC variables: Parameter "Addr1" to "Addr8" = "NCVAR".<S7 name>"

Pointer for writing the variable values: Parameters "RD1" to "RD8" = "P#<Address>"

Completion of the write request
Write request successfully completed: Parameter "Done" == 1.

Write request terminated with error: Parameter "Error" == 1, error cause in parameter "State"

Prerequisites
● Release of the NC/PLC communication by OB100, FB1 parameter "NCKomm" = 1

● For the data block DB120 (data interface), the S7 Symbol Editor must be used to assign a
symbol (default: NCVAR) in the S7 symbol table of the S7 project. Via this symbol, the NC
variable is then specified in the FB3 parameters "Addr<x>", e.g. "ADDR1":= "NCVAR".<NC-
Variable>"

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 981

General conditions
● FB3 has multi-instance capability.

● Every call of FB3 must be assigned a separate instance DB from the user area.

● In order to define machine data and GUD without a password, the protection level of the
data you want to access must be redefined to the lowest level.
References:

– Commissioning Manual; Section: "Protection levels concept"

– Programming Manual, Job Planning; Section: "Define protection levels for user data"

● When channel-specific variables are written, only variables from exactly one channel may
be addressed via "Addr1" to "Addr8" if FB2 is called.

● When drive-specific variables are written, only variables from exactly one SERVO drive
object may be addressed via "Addr1" to "Addr8" if FB2 is called. The SERVO drive object
must be assigned to a machine axis of the NC. The line index corresponds to the logical
drive number.

● In a write job, only variables from the same area, channel, or drive object can be written.

Note

Error case
When writing variables from different channels or drive objects, or simultaneously from a
channel and a drive object, an error message is output:
● "Error" == TRUE
● "State" == W#16#02

Variable addressing
For some NC variables, it is necessary to select "Area no." and/or "Line" or "Column" from the
NC VAR selector. It is possible to select a basic type, i.e. "Area no.", "Line" and "Column" are
preassigned "0". The values of the "Area no.", "Line" and "Column" specified by the NC VAR
selector are checked for a "0" in FB2. If an NC-VAR selector value == "0", the corresponding
value of the FB3 parameter is adopted. To do this, the FB3 parameters "Unit<x>", "Column<x>"
and "Line<x>", with <x> = 1 - 8, must be written before FB3 is called.

FB3 parameter NC VAR selector
Unit<x> Area no.

Column<x> Column
Line<x> Line

NC variables within one group can be combined in a job:

Group Area
1 C[1] N B O T
2 C[2] N B O T
3 V[.] H[.] --- --- ---

The same rules apply for channels 3 to 10 as for group 1 and group 2 shown in the example.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
982 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

The number of usable variables can be less than eight when simultaneously writing several
variables of the "String" type.

Declaration of the function

FUNCTION_BLOCK FB3
VAR_INPUT
 Req : BOOL;

NumVar : INT;
Addr1 : ANY;
Unit1 : BYTE ;
Column1 : WORD;
Line1 : WORD;
Addr2 : ANY;
Unit2 : BYTE ;
Column2 : WORD;
Line2 : WORD;
Addr3 : ANY;
Unit3 : BYTE ;
Column3 : WORD;
Line3 : WORD;
Addr4 : ANY;
Unit4 : BYTE ;
Column4 : WORD;
Line4 : WORD;
Addr5 : ANY;
Unit5 : BYTE ;
Column5 : WORD;
Line5 : WORD;
Addr6 : ANY;
Unit6 : BYTE ;
Column6 : WORD;
Line6 : WORD;
Addr7 : ANY;
Unit7 : BYTE ;
Column7 : WORD;
Line7 : WORD;
Addr8 : ANY;
Unit8 : BYTE ;
Column8 : WORD;
Line8 : WORD;

END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 983

VAR_OUTPUT
 Error : BOOL;

Done : BOOL;
State : WORD;

END_VAR
VAR_IN_OUT
 SD1 : ANY;

SD2 : ANY;
SD3 : ANY;
SD4 : ANY;
SD5 : ANY;
SD6 : ANY;
SD7 : ANY;
SD8 : ANY;

END_VAR

Description of formal parameters

Signal Typ
e

Type Value range Meaning

Req: I BOOL - Job start with positive signal edge
NumVar: I INT 1 ... 8 Number of variables to be written:

"Addr1" - "Addr8"
Addr1 - Addr8: I ANY "DBName".<VarName> Variable identifiers from NC Var

selector
Unit1 - Unit8: I BYTE - Area address, optional for variable

addressing
Column1 - Column8: I WORD - Column address, optional for vari‐

able addressing
Line1 - Line8: I WORD - Line address, optional for variable

addressing
Error: O BOOL 0 (FALSE), 1 (TRUE) Negative acknowledgment of job

or execution of job impossible
Done: O BOOL 0 (FALSE), 1 (TRUE) Job successfully executed
State: O WORD - See paragraph "Error identifiers"
SD1 - SD8: I/O ANY P#Mm.n BYTE x...

P#DBnr.dbxm.n BYTE x
Data to be written

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
984 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Error identifiers

NC variables

State Meaning

Note
 High byte

1)
Low byte

1 - 8 1 Access error ---
0 2 Error in job Incorrect compilation of variables in a job
0 3 Negative acknowledgment,

job not executable
Internal error, try:
● Check job
● NC reset

1 - 8 4 Data areas or data types do
not match or string is empty

Check data in "SD1" - "SD8"

0 6 FIFO full Job must be repeated since queue is full
0 7 Option not set FB1 parameter "NCKomm" is not set

1 - 8 8 Incorrect target area (SD) "SD1" - "SD8" must not be local data
0 9 Transmission occupied Job must be repeated

1 - 8 10 Error in variable addressing "Unit" or "Column"/"Line" contains value 0
0 11 Variable address invalid or

variable is read-only
Check "Addr" (or variable name), "Area", "Unit"

0 12 NumVar == 0 Check parameter "NumVar"
1 - 8 13 ANY data reference incorrect Requested "NcVar" data has not been para‐

meterized
1 - 8 15 User data too long Remedy: Write fewer variables per job or use

shorter string variables
1) High byte > 0 ⇒ Number of the variable in which the error occurred

Drive-specific variables
If an error occurs while reading/writing a drive-specific variable (DB1200.DBX3000.1 == 1),
an error number is displayed in the access result which is based on the error numbers defined
in the PROFIdrive profile.

State Meaning
x <Error number of PROFIdrive profile> + 20H or 36D

Determining the significance of the access result:

1. Calculation of the error number of the PROFIdrive profile
<Error number of PROFIdrive profile> = result of access - 20H or 36D.

2. Determining the significance of the error number of the PROFIdrive profile
The error numbers of the PROFIdrive profile are described in:
References
SINAMICS S120 Drive Functions Function Manual; Chapter "Communication" >
"Communication according to PROFIdrive" > "Acyclic communication" > "Structure of
orders and responses" > paragraph "Error values in parameter responses"

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 985

Configuration steps
To write NC variables, the same configuration steps are required as for reading NC variables.
It is useful to store the address data of all NC variables to be read or written in a DB.

Pulse diagram

① User: Set request, Req = 0 → 1
② FB3 successfully completed, Done = 1

User: Reset request, IF Done == 1 THEN Req = 0
③ User: IF Done == 1 THEN reset request: 1 → 0
④ FB3 reset job confirmation, Done = 0
⑤ User: IF Done == 0 AND Error == 0 THEN reset request Req = 1 → 0 not permissible
⑥ FB3 completed with errors, Error = 1

User: Reset request, IF Done == 1 OR Error == 1 THEN Req = 0, possible further error handling

Call example
Writing of three channel-specific machine data items of channel 1:

Selection of the three data items with NC VAR selector and storage in file DB120.VAR
S7 (ALIAS) names are selected in order to adopt the block designation into the name and to
remove the characters [], which are not permitted in a STEP 7 symbol.

Area Block Name Type Byte S7 Name
C[1] RP rpa[5] DOUBLE 4 rpa_5C1RP
C[1] RP rpa[11] DOUBLE 4 rpa_11C1RP
C[1] RP rpa[14) DOUBLE 4 rpa_14C1RP

Entry NCVAR for DB120 with the S7 SYMBOL Editor

Symbol Operand Data type
NCVAR DB120 DB120

File DB120.AWL must be compiled and transferred to the PLC.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
986 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Calling and parameterizing the FB3 with instance DB111

DATA_BLOCK DB111 // Unassigned user DB, as instance for FB3
FB3
BEGIN
Function FC "VariablenCall" : VOID
END_DATA_BLOCK
 U I 7.7; // Unassigned machine control panel key

S M 100.0; // Activate req.
U M 100.1; // Done completed message
R M 100.0; // Terminate job
U I 7.6; // Manual error acknowledgment
U M 102.0; // Error pending
R M 100.0; // Terminate job
CALL FB3, DB111(
 Req := M 100.0,

NumVar := 3, // Write three variables
Addr1 := "NCVAR".rpa_5C1RP,
Addr2 := "NCVAR".rpa_11C1RP,
Addr3 := "NCVAR".rpa_14C1RP,
Error := M102.0,
Done := M100.1,
State := MW104,
SD1 := P#DB99.DBX0.0 REAL 1,
SD2 := P#DB99.DBX4.0 REAL 1,
SD3 := P#M110.0 REAL 1);

Example: Variable addressing
Writing two R parameters from channel 1, whose address specifications are stored in DB120
as the basic type. The R parameter number is parameterized via parameter LineX.

DATA_BLOCK DB120
VERSION : 0.0
STRUCT
 C1_RP_rpa0_0:

STRUCT
SYNTAX_ID : BYTE := B#16#82;
area_and_unit : BYTE := B#16#41;
column : WORD := W#16#1;
line : WORD := W#16#0;
block type : BYTE := B#16#15;
NO. OF LINES : BYTE := B#16#1;
type : BYTE := B#16#F;
length : BYTE := B#16#8;
END_STRUCT;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 987

END_STRUCT;
BEGIN
END_DATA_BLOCK
CALL FB3, DB122(
 Req := M 10.0,

NumVar := 2,
Addr1 := "NCVAR".C1_RP_rpa0_0,
Line1 := W#16#1,
Addr2 := "NCVAR".C1_RP_rpa0_0,
Line3 := W#16#2
Error := M 11.0,
Done := M 11.1,
State := MW 12,
SD1 := P#M 4.0 REAL 1,
SD2 := P#M 24.0 REAL 1);

Classification of data types
See table "Assignment of the data types" in Chapter "FB2: GET - read NC variable
(Page 973)"

14.17.4 FB4: PI_SERV - request PI service

Function
The function block FB4 "PI_SERV" is used to start PI services.

The available PI services are described in the following chapters with their specific parameters.
An overview of the available PI services can be found in: List of available Pl services
(Page 992)

Note

Due to the large number of "WVar" parameters, it is recommended that you use the function
block FB7 instead of FB4. See Chapter "FB7: PI_SERV2 - request PI service (Page 1025)".

Start of a PI service
Request to start a PI service: Call of FB4 with positive edge change, parameter "Req" = 0 → 1

Completion of a PI service
Job or PI service successfully completed: Parameter "Done" == 1.

Job or PI service completed with error:"Parameter "Error" == 1, error cause in parameter "State"

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
988 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Prerequisites
● Release of the NC/PLC communication by OB100, FB1 parameter "NCKomm" = 1

● For the data block DB16 (data interface of the PI services), the S7 Symbol Editor must be
used to assign a symbol (default: PI) in the S7 symbol table of the S7 project. The requested
PI service is then specified via this symbol in the FB4 parameter "PIService", e.g.
"PIService:= "PI".<PI service>"

General conditions
● Every call of FB4 must be assigned a separate instance DB from the user area.

● The start of a PI service (FB4 call with "Req" = 1) is only permitted in the cyclic part of the
PLC basic program (OB1).
If the PI service is not started (FB4 call with "Req" = 0), the parameters can also be written
in the start-up part of the PLC basic program (OB100). The PI service can then be started
using the already written parameters in the cyclic part of the PLC basic program (OB1) by
calling FB4 with "Req" = 1.

● The execution of the PI service generally extends over several PLC cycles.

Declaration of the function

FUNCTION_BLOCK FB4
VAR_INPUT
w Req : BOOL;

PIService : ANY;
Unit : INT;
Addr1 : ANY;
Addr2 : ANY;
Addr3 : ANY;
Addr4 : ANY;
WVar1 : WORD;
WVar2 : WORD;
WVar3 : WORD;
WVar4 : WORD;
WVar5 : WORD;
WVar6 : WORD;
WVar7 : WORD;
WVar8 : WORD;
WVar9 : WORD;
WVar10 : WORD;

END_VAR
VAR_OUTPUT
 Error : BOOL;

Done : BOOL;
State : WORD;

END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 989

Description of formal parameters

Signal Ty
pe

Type Value range Description

Req: I BOOL 0 (FALSE), 1 (TRUE) Job request
PIService: I ANY "<DBName>".<PI serv‐

ice>
Requested PI service
● <DBName>: symbol name for

DB16, default: "PI"
● <PI service>: List of available Pl

services (Page 992)
Unit: I INT 1, 2, 3 ... Area number
Addr1 to Addr4: I ANY "<DBName>".<Var‐

Name>
Reference to a string
Significance depending on selected PI
service

WVar1 to WVar10: I WORD -32768 ... 32767
8000H - 7FFFH

INTEGER or WORD variable
Significance depending on selected PI
service

Error: O BOOL 0 (FALSE), 1 (TRUE) Error status
1: Negative acknowledgment of job or
execution of job impossible

Done: O BOOL 0 (FALSE), 1 (TRUE) Job status
1: Job successfully executed

State: O WORD 1) Error detection
Only relevant if "Error" == 1

1) State Description Note
3 Negative acknowledgement, job not ex‐

ecutable
Internal error, possible remedy through
an NC RESET

6 FIFO full Repeat the command
7 Option not set FB1 parameter "NCKomm" is not set
9 Transmission occupied Repeat the command
13 Addr1.. Adddr4: Reference invalid Specify missing string
14 PI service is unknown The PI service specified in the "PISer‐

vice" parameter is unknown. → check
the notation/spelling

15 Addr1.. Adddr4: String too long Check string lengths

Call example

Function: Program selection in channel 1 (main program and workpiece program)
Entry of PI service for DB16 and STR for DB124 using the S7 SYMBOL editor:

Parameterization
Symbol Operand Data type

PI DB16 DB16
STR DB124 DB124

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
990 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DATA_BLOCK DB126 // Instance for FB4, unassigned user DB
FB4
BEGIN
END_DATA_BLOCK
// --
DATA_BLOCK DB124
 STRUCT
 PName: string[32]:= '_N_TEST_MPF

';
// Main program

 Path: string[32]:= '/
_N_MPF_DIR/';

// Main program path

 PName_WST: string[32]:= '_N_ABC_MPF'; // Workpiece program
 Path_WST: string[32]:= '/_N_WCS_DIR/

_N_ZYL_WPD';
// Workpiece program path

 END_STRUCT
BEGIN
END_DATA_BLOCK
// ---
Function FC "PICall" : VOID
 U I 7.7; // Unassigned machine control panel key
 S M 0.0; // Activate req.
 U M 1.1; // Done completed message
 R M 0.0; // Terminate job
 U I 7.6; // Manual error acknowledgment
 U M 1.0; // Error pending
 R M 0.0; // Terminate job

 CALL FB4, DB126 (
 Req:= M0.0,
 PIService:= "PI".SELECT, // PI service: SELECT
 Unit:= 1, // Channel 1
 Addr1:= "STR".Path, // Main program: Path
 Addr2:= "STR".PName, // Main program: Program
 // Addr1:= "STR".Path_WST, // Workpiece: Path
 // Addr2:= "STR".PName_WST, // Workpiece: Program
 Error:= M1.0,
 Done:= M1.1,
 State:= MW2
);

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 991

Flow diagram

① User: Set request, Req = 0 → 1
② FB4: PI service successfully completed, Done = 1

User: Reset request, IF Done == 1 THEN Req = 0
③ User: IF Done == 1 THEN reset request: 1 → 0
④ FB4: Reset job confirmation, Done = 0
⑤ User: IF Done == 0 AND Error == 0 THEN reset request Req = 1 → 0 not permissible
⑥ FB4: PI service completed with errors, Error = 1

User: Reset request, IF Done == 1 OR Error == 1 THEN Req = 0, possible further error handling

14.17.4.1 List of available Pl services

General PI services

PI service Function
ASUP (Page 993) Assign interrupt
CANCEL (Page 994) Execute cancel
CONFIG (Page 994) Reconfiguration of tagged machine data
DIGION (Page 995) Digitizing on
DIGIOF (Page 995) Digitizing off
FINDBL (Page 995) Activate block search
LOGIN (Page 996) Activate password
LOGOUT (Page 996) Reset password
NCRES (Page 996) Trigger NC-RESET
SELECT (Page 997) Select program for processing for one channel
SETUDT (Page 997) Sets the current user data to active
SETUFR (Page 998) Activate user frame
RETRAC (Page 998) Retraction of the tool in the tool direction

PI services of tool management

PI service Function
CRCEDN (Page 999) Create a tool cutting edge with specification of the T number
CREACE (Page 1000) Create a tool cutting edge with the next higher/free D number

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
992 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

PI service Function
CREATO (Page 1000) Create a tool with specification of a T number.
DELECE (Page 1000) Delete a tool cutting edge
DELETO (Page 1001) Delete tool
MMCSEM (Page 1001) Semaphores for various PI services
TMCRTO (Page 1002) Create a tool with specification of a name, a duplo number
TMFDPL (Page 1004) Empty location search for loading
TMFPBP (Page 1005) Empty location search
TMGETT (Page 1006) T number for the specified tool name with duplo number
TMMVTL (Page 1007) Prepare magazine location for loading, unload tool
TMPOSM (Page 1008) Position magazine location or tool
TMPCIT (Page 1009) Set increment value for workpiece counter
TMRASS (Page 1010) Reset active status
TRESMO (Page 1010) Reset monitoring values
TSEARC (Page 1011) Complex search using search screen forms
TMCRMT (Page 1014) Create multitool
TMDLMT (Page 1015) Delete multitool
POSMT (Page 1015) Position multitool
FDPLMT (Page 1016) Search/check an empty location within the multitool

14.17.4.2 PI service: ASUP

Function: Assign interrupt
An interrupt number is assigned in the specified channel to a part program that is present in
the control and is identified by path and program name.

The PI service ASUB has the same effect as the program instruction SETINT (or CLRINT if
the PI service was called without specifying the path name).

Unlike SETINT (or CLRINT), the PI service ASUB remains active even after the end of the
program (M30 or channel reset). An assignment activated by the PI service ASUB is not cleared
until after a warm restart.

For detailed information about program management, path and file names, see:

References:
Programming Manual, Job Planning; Chapter: "File and Program Management" > "Program
Memory".

Description of formal parameters

Signal Type Value range Meaning
PIService: ANY "PI".ASUP Assign interrupt
Unit: INT 1, 2, 3, ... 10 Channel number
Addr1: STRING Path name,

e.g. "/_N_MPF_DIR/"
Addr2 STRING Program name,

e.g. "_N_TST_FC9ASUP_MPF"

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 993

Signal Type Value range Meaning
WVar1: WORD 1, 2, 3, ... 8 Interrupt number
WVar2: WORD 1, 2, 3, ... 8 Priority
WVar3: WORD 0, 1 LIFTFAST 1) Fast retraction from the con‐

tour
WVar4: WORD 0, 1 BLSYNC 2) Processing of interrupt rou‐

tine is only to start with the next block
change

1) References:
Programming Manual, Job Planning; Chapter: "Flexible NC programming" > "Interrupt routine (ASUB)"
> "Fast retraction from the contour (SETINT, LIFTFAST, ALF)"
2) References:
Programming Manual, Job Planning; Chapter: "Flexible NC programming" > "Interrupt routine (ASUB)"
> "Assign and start interrupt routine (SETINT, PRIO, BLSYNC)"

Note

The ASUB PI service may only be executed when the specified channel is in the reset state.
An ASUB prepared with FB7 can be subsequently initiated with FC9.

References:
Programming Manual, Job Planning; Chapter: "Flexible NC Programming" > "Interrupt routine
(ASUB)"

14.17.4.3 PI service: CANCEL

Function: Execute cancel
Triggers the "Cancel" function equivalent to the corresponding "Cancel alarm" button on the
user interface (operator panel front).

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".CANCEL Cancel

14.17.4.4 PI service: CONFIG

Function: Reconfiguration
The reconfiguration command activates machine data which has been entered sequentially
by the operator or the PLC, almost in parallel.

The command can only be activated when the controller is in RESET state or the program is
interrupted (NC stop at block limit). An FB4 error checkback signal is output if this condition is
not fulfilled (state = 3).

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
994 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".CONFIG Reconfiguration
Unit: INT 1
WVar1: INT 1 Classification

14.17.4.5 PI service: DIGION

Function: Digitizing on
Selecting digitizing in the parameterized channel.

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".DIGION Digitizing on
Unit: INT 1, 2, 3 ... 10 Channel

14.17.4.6 PI service: DIGIOF

Function: Digitizing off
Deactivating digitizing in the parameterized channel.

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".DIGIOF Digitizing off
Unit: INT 1, 2, 3 ... 10 Channel

14.17.4.7 PI service: FINDBL

Function: Activate block search
A channel is switched to block search mode and the appropriate acknowledgment then
transmitted. The block search is then executed immediately by the NC. The block search
pointer must already be in the NC at this point in time. The block search can be interrupted at
any time by an NC RESET. Once the block search is successfully completed, the normal
processing mode is reactivated automatically. NC start then takes effect from the located
search target.

It is the sole responsibility of the operator to ensure a collision-free approach path.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 995

Description of formal parameters

Signal Type Value range Meaning
PIService: ANY "PI".FINDBL Block search
Unit: INT 1 to 10 Channel
WVar1: WORD 1, 2, 3 Preprocessing mode

1: Without calculation
2: With calculation
3: With main block consideration

14.17.4.8 PI service: LOGIN

Function: Create password
Transfers the parameterized password to the NC. The passwords generally consist of
8 characters. For shorter passwords, the string can be supplemented with empty spaces to
attain 8 characters

Example
Password: STRING[8] := 'SUNRISE';

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".LOGIN Create password
Unit: INT 1 NC
Addr1: STRING 8 characters Password

14.17.4.9 PI service: LOGOUT

Function: Reset password
The password last transferred to the NC is reset.

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".LOGOUT Reset password
Unit: INT 1 NC

14.17.4.10 PI service: NCRES

Function: Trigger NC-RESET
Triggers an NC-RESET. Parameters "Unit" and "WVar1" must always be set to 0.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
996 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".NCRES Trigger NC-RESET
Unit: INT 0 -
WVar1: WORD 0 -

14.17.4.11 PI service: SELECT

Function: Select processing for a channel
A program stored on the NC is selected for one channel for execution. The program must be
executable. The path and program name must be stated in full.

For detailed information, please refer to:

References
Programming Manual, Job Planning; Section: "File and Program Management" > "Program
Memory".

Possible block types

Block types
Workpiece directory WPD
Main program MPF
Subprogram SPF
Cycles CYC
Asynchronous subprograms ASP
Binary files BIN

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".SELECT Program selection
Unit: INT 1, 2, 3 ... 10 Channel
Addr1: STRING - Path name
Addr2: STRING - Program name

14.17.4.12 PI service: SETUDT

Function: Set current user data active
The current user data, such as tool offsets, basic frames and settable frames are set to active
in the next NC block (only in stop state).

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 997

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".SETUDT Activate user data
Unit: INT 1, 2, 3 ... 10 Channel
WVar1: WORD 1, 2, 3, 4, 5 User Data Type

1: Active tool offset
2: Active basic frame
3: Active settable frame
4: Active global basic frame
5: Active global settable frame

WVar2: WORD 0 Reserved
Wvar3: WORD 0 Reserved

14.17.4.13 PI service: SETUFR

Function: Activate user frames
User frames are loaded to the NC. All necessary frame values must be transferred to the NC
first with FB3 "Write variables".

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".SETUFR Activate user frames
Unit: INT 1, 2, 3 ... 10 Channel

14.17.4.14 PI service: RETRAC

Function: Select JOG retract
Selects the JOG retract mode. The retraction axis, i.e. the geometry axis, with which the
retraction is executed can be determined by the NC automatically or specified explicitly.

The mode remains active until it is ended with RESET.

Note

The RETRAC PI service can only be activated in JOG mode in the "Reset" state.

Automatic determination
For automatic determination, the geometric axis is selected as a retraction axis, which is
perpendicular (orthogonal) to the currently selected working plane:

● G17: Retraction axis ⇒ 3rd geometry axis (Z)

● G18: Retraction axis ⇒ 2nd geometry axis (Y)

● G19: Retraction axis ⇒ 1st Geometry axis (X)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
998 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note
OPI variable retractState

The active retraction axis can be read via the OPI variable retractState.Bit 2/3.

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".RETRAC Select JOG retract mode
Unit: INT 1, 2, 3 ... 10 Channel
WVar1: WORD 0, 1, 2, 3 Retraction axis

0: Automatic determination of the retrac‐
tion axis by the NC.
1: Retraction axis is the 1st geometry ax‐
is of the WCS
2: Retraction axis is the 2nd geometry
axis of the WCS
3: Retraction axis is the 3rd geometry ax‐
is of the WCS

WVar2: WORD 0 Reserved. The value must be pre-as‐
signed with 0.

14.17.4.15 PI service: CRCEDN

Function: Creates new cutting edge
If the T number of an existing tool is entered in parameter "T Number" the PI service, then a
tool edge for the existing tool is created. In this case, the parameter "D number", the number
of the edge to be created, has a value range of from 1 to 9.

If a positive T number is specified as a parameter and the tool for the T number entered does
not exist, the PI service is aborted.

If a value of 0 is entered as the T number (model of absolute D numbers), the D number values
can range from 1 to 31999. The new cutting edge is set up with the specified D number.

If the specified cutting edge already exists, the PI service is aborted in both cases.

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".CRCEDN Create new cutting edge
Unit: INT 1 … 10 TOA
WVar1: INT T number of tool for which cutting edge

must be created. A setting of 00000
states that the cutting edge should not
refer to any particular tool (absolute D
number).

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 999

Signal Type Value range Description
WVar2: INT 1 ... 9 Edge number of tool cutting edge

1 ... 31999

14.17.4.16 PI service: CREACE

Function: Create tool cutting edge
Creation of the cutting edge with the next higher / next unassigned D number for the tool with
the transferred T number in TO, TS (if present). The cutting edge for the OEM cutting edge
data is set up simultaneously in the TUE block (if one is present).

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".CREACE Create tool cutting edge
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT T number

14.17.4.17 PI service: CREATO

Function: Create tool
Create a tool with specification of a T number. The tool is entered as existing in the tool directory
area (TV). The first "cutting edge" D1 (with zero contents) is created for tool offsets in the TO
block. D1 (with zero contents) is also created for the OEM "cutting edge" data in the TUE block
- if one is present. If a TU block exists, it will contain the data set for the tool.

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".CREATO Create tool
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT T number

14.17.4.18 PI service: DELECE

Function: Delete a tool cutting edge
If the T number of an existing tool is entered in parameter "T Number" the PI service, then a
tool edge for the existing tool is deleted. In this case, the parameter "D number", the number
of the edge to be created, has a value range of from 00001 to 00009. If a positive T number
is specified as a parameter and the tool for the T number entered does not exist, then the PI
service is aborted. If a value of 00000 is entered as the T number (model of absolute D
numbers), then the D number values can range from 00001 - 31999. If the specified cutting
edge does not exist, then the PI service is aborted in both cases.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1000 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".DELECE Delete cutting edge
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT T number of tool for which cutting edge

must be created. A setting of 00000
states that the cutting edge should not
refer to any particular tool (absolute D
number).

WVar2: INT 1 - 9 D number of cutting edge that must be
deleted1 - 31999

14.17.4.19 PI service: DELETO

Function: Delete tool
Deletes the tool assigned to the transferred T number with all cutting edges (in TO, in some
cases TU, TUE and TG (type 4xx), TD and TS blocks).

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".DELETO Delete tool
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT T number

14.17.4.20 PI service: MMCSEM

Function
The PI service is used for testing, setting and resetting of channel-specific semaphores from
HMI through the PLC. 10 semaphores are available per channel for protecting critical data
areas.

Functions (PI services) are assigned to semaphores 1 to 6. The semaphores 7 to 10 can be
freely used.

FB4 return values
● "Done" == TRUE

The semaphore was set, the critical function can be called.

● "Error" == TRUE AND "State" == 3
The semaphore was already set, currently the critical function cannot be called.

Schematic sequence for free semaphore
Testing and setting the semaphore
IF semaphore == FREE
THEN
 Writing/reading of critical data
 Resetting the semaphore

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1001

ELSE // Semaphore is blocked
...
ENDIF

NOTICE

Resetting the semaphore

After blocking the critical data area by setting the semaphore and subsequent reading or
writing of the data, the critical data area must be enabled once again by resetting the
semaphore, otherwise subsequent blocking will not be possible.

Schematic sequence for blocked semaphore
Testing and setting the semaphore
IF semaphore == FREE
THEN
 ...
ELSE // Semaphore is blocked
 Set bit memory for "Function could not be executed, repeat
necessary"
ENDIF

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".MMCSEM Edit semaphore
Unit: INT 1, 2, 3 ... 10 Channel
WVar1: INT 1) PI service-specific number of the semaphore
WVar2: WORD 0, 1 Job type

0: Reset semaphore
1: Test and set semaphore

1) Number PI service
1 TMCRTO (create tool)
2 TMFDPL (search for empty location for loading)
3 TMMVTL (prepare magazine location for loading, unload tool)
4 TMFPBP (search for location)
5 TMGETT (search for tool number)
6 TSEARC (search for tool)

7 ... 10 Freely usable

14.17.4.21 PI service: TMCRTO

Function: Create tool
Creation of a tool by specifying a name, a duplo number, e.g. with $TC_TP1[y] = Duplo number
or $TC_TP2[y] = "<Tool name>". Or optionally using a T number, e.g. with y = <T number>.

The tool is entered in the TV area (tool directory) as available.

The first cutting edge D1 (with zero content) is created in the TO block for corrections.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1002 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The first cutting edge D1 (with zero content) is created in the TS block for monitoring data.

In the TUE block, if it is available, the cutting edge D1 is created for the OEM cutting edge
data.

The TD block contains identifiers, duplo numbers, and the number of cutting edges (=1) for
the T number that is optionally specified or assigned by the NC.

If a TU block exists, it will contain the data block for the tool.

After execution of the PI service, the T number of the tool created is available in the TV block
under TnumWZV.

Note

Before and after this PI service, the PI service MMCSEM with parameter "WVar1" must be
called with function number 1 for TMCRTO. See Section "PI service: MMCSEM (Page 1001)".

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMCRTO Create tool
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT >0 → the T number is speci‐

fied
-1 → the NC assigns the T
number

T number

WVar2: INT Duplo number
Addr1: STRING Max. 32 characters Tool name

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1003

14.17.4.22 PI service: TMFDPL

Function
Search for empty location for loading, depending on the parameter assignment:

● LocationNumber_To = -1 AND MagazineNumber_To = -1
Searches all magazines in the specified area (= channel) for an empty location for the tool
specified with a T number. After execution of the PI service, the magazine and locations
numbers found during the search are listed in the configuration block of the channel
(component magCMCmdPar1 (magazine number) and magCMCmdPar2 (location
number)). LocationNumber_ID and MagazineNumber_ID can be set as search criteria or
not (= -1). The PI service is positively or negatively acknowledged depending on the search
result.

● LocationNumber_To = -1 AND MagazineNumber_To = magazine number
An empty location for the tool specified with a T number is searched for in the specified
magazine. Location number (reference) and MagazineNumber_Ref can be allocated as
search criteria or with -1. The PI service is positively or negatively acknowledged depending
on the search result.

● LocationNumber_To = location number AND MagazineNumber_To = magazine number
The specified location is checked to ensure that it is free for loading of the tool.
LocationNumber_ID and MagazineNumber_ID can be set as search criteria or -1. The PI
service is acknowledged positively or negatively depending on the search result.

The parameters "WVar1" and "WVar2" are located at the source.

Loading: If the source is an internal loading magazine, then the parameters are located
at the target (a real magazine).

Unloading: Source is always a real magazine.

Note

Before and after this PI service, the PI service MMCSEM with parameter "WVar1" must be
called with function number 2 for TMFDPL.
See Chapter "PI service: MMCSEM (Page 1001)".

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMFDPL Empty location for loading
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT T number
WVar2: INT LocationNumber_To (target)
WVar3: INT MagazineNumber_To (target)
WVar4: INT LocationNumber_Ref (reference)
WVar5: INT MagazineNumber_Ref (reference)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1004 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.17.4.23 PI service: TMFPBP

Function: Empty location search
The PI service searches the specified magazine(s) for an empty location which meets the
specified criteria such as tool size and location type.

If the search is successful, the result can be read from the following OPI variables:

● magCMCmdPar1 (magazine number)

● magCMCmdPar2 (location number)

Note

The PI service can only be requested using FB7. See Chapter "FB7: PI_SERV2 - request
PI service (Page 1025)".

Note

Before and after this PI service, the PI service MMCSEM with parameter "WVar1" must be
called with function number 4 for TMFPBP. See Chapter "PI service: MMCSEM
(Page 1001)".

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMFPBP Empty location search
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT Magazine number of the magazine from which the

search is to be performed
WVar2: INT Location number of the location in the magazine

from "WVar1"
WVar3: INT Magazine number of the magazine up to which the

search is to be performed
WVar4: INT Location number of the location in the magazine

from "WVar3"
WVar5: INT Magazine number reference
WVar6: INT Location number reference
WVar7: INT 0, 1, 2 ... 7 Number of required half locations to left
WVar8: INT 0, 1, 2 ... 7 Number of required half locations to right
WVar9: INT 0, 1, 2 ... 7 Number of required half locations in upward direc‐

tion
WVar10: INT 0, 1, 2 ... 7 Number of required half locations in downward di‐

rection
WVar11: INT Number of required location type
WVar12: INT 0, 1, 2, 3, 4 Specifies the required search direction

0: Search strategy as set in $TC_MAMP2
1: Forward
2: Backward
3: Symmetrical

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1005

Examples: Setting the search range

From Lo‐
ca‐
tion

To Lo‐
ca‐
tion

Description

WVa
r1

WVa
r2

WVa
r3

WVa
r4

#M1 #P1 #M1 #P1 Only location #P1 in magazine #M1 is checked
#M1 #P1 #M2 #P2 Locations starting at magazine #M1, location #P1 up to magazine #M2,

location #P2 are searched
#M1 -1 #M1 -1 All locations in magazine #M1 - and no others - are searched
#M1 -1 -1 -1 All locations starting at magazine #M1 are searched
#M1 #P1 -1 -1 All locations starting at magazine #M1 and location #P1 are searched
#M1 #P1 #M1 -1 Locations in magazine #M1 starting at magazine #M1 and location #P1

in this magazine are searched
#M1 #P1 #M2 -1 Locations starting at magazine #M1, location #P1 up to magazine #M2

are searched
#M1 -1 #M2 #P2 Locations starting at magazine #M1 up to magazine #M2, location #P2

are searched
#M1 -1 #M2 -1 Locations starting at magazine #M1 up to and including magazine #M2

are searched
-1 -1 -1 -1 All magazine locations are searched

14.17.4.24 PI service: TMGETT

Function: Determine T number for the specified tool name with duplo number
The PI service is used to determine the T number of a tool via the tool name and duplo number.

The result is written in BTSS variables in the TF block (parameterization, return parameters
from TMGETT, TSEARC):

● resultNrOfTools

– resultNrOfTools == 0: The specified tool was not found

– resultNrOfTools == 1: The specified tool was found

● resultToolNr: T number of the specified tool with "resultNrOfTools" == 1

Note

Before and after this PI service, the PI service MMCSEM with parameter "WVar1" must be
called with function number 5 for TMGETT. See Section "PI service: MMCSEM (Page 1001)".

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMGETT Determining the T number
Unit: INT 1, 2, 3 ... 10 TOA

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1006 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Type Value range Description
Addr1: STRING Max. 32 characters Tool name
WVar1: INT Duplo number

14.17.4.25 PI service: TMMVTL

Function: Prepare magazine location for loading, unload tool
The PI service is used to load, unload, and relocate tools:

1. Loading and unloading: loading point ↔ magazine

2. Loading and unloading: loading point ↔ buffer storage, e.g. spindle

3. Relocation within a magazine

4. Relocation between different magazines

5. Relocation between magazine and buffer storage

6. Relocation within buffer storage

Case 1, 3, 4 and 5: The following BTSS variables of the block TM (magazine data: general
data) are written:

● magCmd (area no. = TO unit, line = magazine number)

● magCmdState ← "acknowledgment"

Case 2 and 6: The following BTSS variables of the block TMC (magazine data: configuration
data) are written:

● magCBCmd (area no. = TO unit)

● magCBCmdState ← "acknowledgment"

Loading
● "WVar2" LocationNumber_From, "WVar3" MagazineNumber_From

The tool location of the magazine is moved to the loading station/location for loading and
the tool is loaded.

● "WVar4" LocationNumber_To== -1
First, an empty location for the tool is searched for in the magazine. Then the empty location
of the magazine is moved to the loading station/location for loading and the tool is loaded.
After the PI service is carried out, the empty location number that is found is located in
"magCMCmdPar2" (BTSS block TM), real magazine of the channel.

● "WVar4" LocationNumber_To == -2
The tool is loaded into the current tool location of the magazine. After the PI service is
carried out, the location number is located in "magCMCmdPar2" (BTSS block TM), real
magazine of the channel.

Unloading
● "WVar4" LocationNumber_To, "WVar5" MagazineNumber_To

● The tool location of the magazine is moved to the loading station for loading and the tool
is unloaded.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1007

In the BTSS block TP (magazine data: location data), the magazine location of the removed
tool is designated as free.

Addressing the tool
The tool can be addressed either using a T number or by means of the location and magazine
numbers. The value -1 is to be assigned to unused parameters.

Note

Before and after this PI service, the PI service MMCSEM with parameter "WVar1" must be
called with function number 3 for TMMVTL. See Chapter "PI service: MMCSEM (Page 1001)".

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMMVTL Make magazine location ready for load‐

ing, unloading tool
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT T number
WVar2: INT LocationNumber_From (source)
WVar3: INT MagazineNumber_From (source)
WVar4: INT LocationNumber_To (target)
WVar5: INT MagazineNumber_To (target)

14.17.4.26 PI service: TMPOSM

Function: Position magazine location or tool, depending on the parameter assignment
This PI service can traverse a magazine to position a magazine location at a specified position
(e.g. at a loading position). The magazine location can be specified directly or via a tool at the
location.

The destination, e.g. the loading location, is specified in the parameters:

● "WVar5" LocationNumber_Ref

● "WVar6" MagazineNumber_Ref

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1008 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The magazine location to be positioned is specified in the following parameters, depending on
the respective specification:

● "WVar1" T number of the tool
The following parameters are irrelevant here:

– "Addr1" Tool name = ""

– "WVar2" duplo number = -1

– "WVar3" LocationNumber_From = -1

– "WVar4" MagazineNumber_From = -1

● "Addr1" tool name, "WVar2" duplo number
The following parameters are irrelevant here:

– "WVar1" T number of the tool = -1

– "WVar3" LocationNumber_From = -1

– "WVar4" MagazineNumber_From = -1

● "WVar3" LocationNumber_From, "WVar4" MagazineNumber_From
The following parameters are irrelevant here:

– "Addr1" Tool name = ""

– "WVar1" T number of the tool = -1

– "WVar2" duplo number = -1

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMPOSM Position magazine location or tool
Unit: INT 1, 2, 3 ... 10 TOA
Addr1: STRING Max. 32 characters Tool name
WVar1: INT T number of the tool
WVar2: INT Duplo number
WVar3: INT LocationNumber_From (source)
WVar4: INT MagazineNumber_From (source)
WVar5: INT LocationNumber_Ref
WVar6: INT MagazineNumber_Ref

14.17.4.27 PI service: TMPCIT

Function: Set increment value for workpiece counter
Incrementing the workpiece counter of the spindle tool

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1009

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMPCIT Set increment value for workpiece coun‐

ter
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: WORD 0, 1, 2, ... max. Spindle number; corresponds to the type

index in the location data with "Spindle"
location type of the buffer magazine in
channel.
0: Main spindle

WVar2: WORD 0 ... max. Increment value; indicates the number of
spindle revolutions after which the work‐
piece counter is incremented

14.17.4.28 PI service: TMRASS

Function: Resetting the tool status "active"
The PI service sets the status to "inactive" for all of the tools with a tool status "active" or
"blocked".

The following events are sensible times for resetting the tool status:

● a negative edge of the NC/PLC interface signal "tool disable ineffective"

● End of program

● Channel reset.

The PI service is intended for the PLC, since it is known here when the disabled tool is finally
no longer to be used.

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI". TMRASS Reset active status
Unit: INT 1, 2, 3 ... 10 TO area

14.17.4.29 PI service: TRESMO

Function: Reset monitoring values
This PI service resets the monitoring values of the designated edges of the designated tools
to their setpoints (initial values).
This is only performed for tools with active monitoring.

See also the RESETMON command.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1010 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TRESMO Reset monitoring values
Unit: INT 1, 2, 3 ... 10 TO area
WVar1: WORD - max ... max Tool number

0: Process all tools
> 0:process specified tool
< 0: Process all sister tools

WVar2: WORD 0, 1, 2, ... max. D number
< 0: Reset of the monitoring of the speci‐
fied cutting edge
0: Reset of monitoring of all cutting edges

Wvar3: WORD Monitoring mode that is to be reset (all
combinations are possible):
Bit 0 = 1: Tool-life monitoring
Bit 1 = 1: Quantity monitoring
Bit 2 = 1: Wear monitoring
Bit 3 = 1: Sum-offset monitoring
0: Reset all active tool-monitoring func‐
tions ($TC_TP9).

14.17.4.30 PI service: TSEARC

Function: Complex search using search screen form, depending on the parameter assignment
The PI service is used to search for tools with specific properties within a search range in one
or more magazines, beginning with a specific location, up to a specific location.

Note
Active tool management

The PI service is only available if tool management is activated.

Specification options
● Search direction

● Search for next tool with the specified property

● Search for all tools with the specified property

Result
As a result, a list with the internal T-numbers of the tools that are found is created.

Logic operations
For filtering properties, only one AND link is available as a linking option. An OR link must be
achieved by the user via several calls of the PI service and subsequent evaluation of the
individual results.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1011

Parameterization of the tool properties
The properties of the searched for tools are set in the BTSS block TF (parameterization, return
parameters from TMGETT, TSEARC) via the following variables:

● "parMask<X>" parameterization mask

● "parData<X>" comparison values

With <X> = TAD, TAO, TAS, TD

Result list
After completion of the PI service without errors, the search result is located in the BTSS block
TF (parameterization, return parameter from TMGETT, TSEARC) in the following variables:

● "resultCuttingEdgeNrUsed" D numbers of cutting edges used since last quantity count

● "resultNrOfCutEdgesUsed" Number of cutting edges since last quantity count

● "resultNrOfTools" Number of found tools

● "resultToolNr" T numbers of found tools

● "resultToolNrUsed" T numbers of cutting edges used since last quantity count

If no tool was found, the number of found tools is zero ("resultNrOfTools" == 0).

Search range specifications

From mag.
number
WVar1

From loca‐
tion number
WVar2

To mag.
number
WVar3

To location
number
WVar4

Description
The following magazine locations are
searched:

#M<a> #L #M<x> #L<y> From: Magazine #M<a>, location #L
to: Magazine #M<x>, location #L<y>

#M<a> -1 #M<a> -1 From: Magazine #M<a>, first location
to: Magazine #M<a>, last location

#M<a> -1 -1 -1 From: Magazine #M<a>, first location
to: Last magazine, last location

#M<a> #L -1 -1 From: Magazine #M<a>, location #L
to: Last magazine, last location

#M<a> #L #M<a> -1 From: Magazine #M<a>, location #L
to: Magazine #M<a>, last location

#M<a> #L #M<x> -1 From: Magazine #M<a>, location #L
to: Magazine #M, last location

#M<a> -1 #M<x> #L<y> From: Magazine #M<a>, first location
to: Magazine #M, location #L<y>

#M<a> -1 #M<x> -1 From: Magazine #M<a>, first location
to: Magazine #M, last location

-1 -1 -1 -1 From: First magazine, first location
to: Last magazine, last location

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1012 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Symmetrical search
A symmetrical search, relative to a magazine location, can only be performed if the following
conditions have been met:

● The search range must encompass only one magazine: "WVar1" (from: Magazine number)
== "WVar3" (to: magazine number)

● Specification of a reference location, i.e. a magazine location for which a symmetrical
search is to be performed: "WVar5" (number of the reference magazine) and "WVar6"
(number of the reference location)

● For the reference location, a multiple assignment to the magazine to be searched must
have been configured in the TPM block.

● "WVar7" (search direction) = 3

The reference location is a buffer location, i.e. a tool location from the buffer magazine or from
the internal loading magazine, e.g. swapping station, gripper, loading station. The symmetrical
search is made in relation to the magazine location in front of the reference location.

If the magazine location is upstream of the reference location outside of the search range, the
PI service will respond as if no suitable location had been found.

Note

Before and after this PI service, the MMCSEM PI service must be called up with the associated
parameter WVar1 for this PI service. See Chapter "PI service: MMCSEM (Page 1001)".

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TSEARC Complex search using search screen forms
Unit: INT 1, 2, 3 ... 10 TOA
WVar1: INT -1, 1, … From: Magazine number
WVar2: INT -1, 1, … From: Location number
WVar3: INT -1, 1, … to: Magazine number
WVar4: INT -1, 1, … to: Location number
WVar5: INT -1, 1, … Number of the reference magazine

(only relevant for symmetrical search:
Search direction ==3)

WVar6: INT -1, 1, … Number of the reference location
(only relevant for symmetrical search:
Search direction ==3)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1013

Signal Type Value range Description
WVar7: INT 1, 2, 3 Search direction:

1: Forwards from the first location of the
search domain
2: Backwards from the last location of the
search domain
3: Symmetrical to the real magazine location,
which is located upstream of the location
specified under "WVar5" (number of the ref‐
erence magazine) and "WVar6" (number of
the reference location)

WVar8: INT 0, 1, 2, 3 Properties of the tools:
0: all tools, cutting edge-specific
1: first tool, cutting edge-specific
2: all tools, via all cutting edges
3: first tool, via all cutting edges

14.17.4.31 PI service: TMCRMT

Function: Create multitool
The PI service is used to create a new multitool with a defined identifier, an optionally
specifiable multitool number, the number of tool locations, and the type of distance coding.

Note

Before and after this PI service, the PI service MMCSEM with parameter "WVar1" =1
(TMCRTO) must be called. See Chapter: "PI service: MMCSEM (Page 1001)".

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMCRMT Create multitool
Unit: INT 1, 2, 3 ... 10 TOA
Addr1: STRING Multitool designator (max. 32 characters)
WVar1: INT 0 Reserved
WVar2: INT -1, 1, 2, ... 32000 Multitool number

-1: Automatic assignment of the multitool
number by NC
1, 2, 3 ... 32000: Multitool number,
note: The multitool number must be
unique

WVar3: INT 2, 3, 4, ... MAX

Number of tool locations
MAX = Parameterized number in
MD17504
$MN_MAX_TOOLS_PER_MULTITOOL

WVar4: INT 1, 2, 3 Type of distance coding

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1014 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.17.4.32 PI service: TMDLMT

Function: Delete multitool
The PI service is used to delete a multitool in all of the data blocks in which it is saved. Tools
equipped in multitool are not subsequently equipped or loaded, however, continue to be
defined if they are not also to be deleted.

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".TMDLMT Delete multitool
Unit: INT 1, 2, 3 ... 10 TOA
Addr1: STRING Multitool designator (max. 32 characters)
WVar1: INT 0 Reserved, always 0
WVar2: INT -1, 1, 2, ... 32000 Multitool number

-1: Delete the multitool with the name
specified in "Addr1"
1 ,2, 3 ... 32000: Delete the multitool with
the specified multitool number;
note: Parameter "Addr1" is not evaluated

WVar3: INT 0, 1 Tools contained in the multitool:
0: Do not delete
1: Delete

14.17.4.33 PI service: POSMT

Function: Position multitool
The PI service is used for positioning a multitool at the programmed location or alternatively
at the programmed tool, which is located in one of the locations of the multitool. The tool itself
can either be specified using its T number or with its name and duplo number. A multitool can
only be positioned if it is at a tool carrier (e.g. spindle) and if no tool offset with regard to this
tool carrier is active.

Position specification
Position specification can be specified as one of three variants:

No
.

Addr1 WVar1 WVar2 WVar3 WVar4

1 Empty string Number of the
toolholder

Tool number -1

2 Tool name Number of the
toolholder

-1 Duplo number

3 Empty string Number of the
toolholder

-1 -1 Multitool location
number

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1015

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".POSMT Position multitool
Unit: INT 1, 2, 3 ... 10 TOA
Addr1: STRING Tool name of the tool to be positioned in

the multitool (max. 32 characters)
WVar1: INT 1, 2, 3, ... 999 Number of the toolholder
WVar2: INT -1, 1, 2, 3 ... 32000 Tool number (T number) of the tool to be

positioned in the multitool
1, 2, 3, ... 32000: Tool number
-1: "Addr1" (tool name) and "WVar3" (du‐
plo number) are used

WVar3: INT -1, 1, 2, 3 ... 32000 Duplo number of the tool to be positioned
in the multitool
1, 2, 3, ... 32000: Duplo number
-1: "WVar2" (T number) is used

WVar4: INT 1, 2, 3 ... 999 Multitool location number of the toolhold‐
er location to which the system should be
positioned

14.17.4.34 PI service: FDPLMT

Function: Searching for or checking an empty location within the multitool
The PI service is used to search for a free tool location in a multitool to accommodate the
specified tool or for checking whether the specified tool location in the multitool for
accommodating the specified tool is free. The tool can be specified using the T number or the
identifier and the duplo number.

Note

Before and after this PI service, the PI service MMCSEM with parameter "WVar1" =x
(FDPLMT) must be called. See Chapter "PI service: MMCSEM (Page 1001)".

Position specification
The tool to be positioned in the multitool can be specified as one of three variants:

● "Addr1" = <Empty string>, "WVar1" = <Tool number> and "WVar2" = <Duplo number>

● "Addr1" = <Tool name>, "WVar1" = -1 and "WVar2" = <Duplo number>

● "Addr1" = <Empty string>, "WVar1" = <Tool number> and "WVar2" = -1

The position specification can be assigned via:

● "WVar4" = <Multitool location number>

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1016 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Description of formal parameters

Signal Type Value range Description
PIService: ANY "PI".FDPLMT Search/check an empty tool location

within a multitool
Unit: INT 1, 2, 3 ... 10 TOA
Addr1: STRING Tool name of the tool to be positioned in

the multitool (max. 32 characters)
WVar1: INT -1, 1, 2, 3, ... 32000 Tool number (T number) of the tool to be

positioned in the multitool
-1: "Addr1" (tool name) and "WVar2" (du‐
plo number) are used.
1, 2, 3 ... 32000: Tool number

WVar2: INT -1, 1, 2, 3, ... 32000 Duplo number of the tool to be positioned
in the multitool
1, 2, 3, ... 32000: Duplo number
-1: "WVar1" (T number) is used

WVar3: INT -1, 1, 2, 3, ... 32000 Number of the multitool
1, 2, 3, ... 32000: Number of the multitool
-1: Search of all multitools for an empty
location or check of all multitools to see
whether the specified tool location is free
in one of them for accommodating the
tool.

WVar4: INT -1, 1, 2, 3, ... 999 Multitool location number of the tool lo‐
cation to which the system should be
positioned
>0: Multitool location number
-1: Search for any empty tool location
within the multitool

14.17.5 FB5: GETGUD - read GUD variable

Function
The function block FB5 "GETGUD" is used for reading global user data (GUD) in the NC or
channel area.

Request for reading NC variables
Call of FB5 with positive edge change, parameter "Req" = 0 → 1

Parameter "Addr": The pointer to the name of the GUD variables, symbolically with "<Data
block>".<Variable name>

Parameters "Area", "Unit", "Index1", and "Index2": Additional information for addressing the
variables

When the parameter "CnvtToken" is activated, the user receives a token (variable pointer) for
the GUD variable to be read. Using this, the GUD variables can then be read or written via

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1017

FB2 and FB3 with parameter "Addr1" ... "Addr8" = "<Token>". Addressing by means of a token
is mandatory for writing GUD variables. If the token is used to address GUD variable arrays,
the parameter "Line1" ... "Line8" = "<array index>" of the FB2/FB3 must also be provided with
values.

To read a GUD variable of the DOUBLE type without adapting the format, an ANY pointer of
the REAL2 type must be specified in the target area. E.g. P#M100.0 REAL 2. The value of the
GUD variables of the DOUBLE type is then adopted in the PLC data area as a 64-bit floating
point number.

Completion of the read request
Read request successfully completed: Parameter "Done" == 1.

Read request completed with error:"Parameter "Error" == 1, error cause in parameter "State"

Prerequisites
● Release of the NC/PLC communication by OB100, FB1 parameter "NCKomm" = 1

● For the data block that will contain the string with the name of the GUD variable, the S7
Symbol Editor must be used to assign a symbol in the S7 symbol table of the S7 project
(cf. call example 1 below: DB_GUDVAR). In the data block, a string of suitable length must
be created to contain the name of the GUD variable (cf. call example 1 below:
"DB_GUDVAR".GUDVar1). This symbol is then passed on to parameter "Addr" of FB5, e.g.
Addr := "DB_GUDVAR".GUDVar1. If the token for the GUD variable is required for the
following calls of the FB2/FB3, the 10-byte token structure must be created in a DB, e.g.
the same DB (cf. call example 1 below: "DB_GUDVAR".GUDVar1Token). This structure is
specified in parameter VarToken of the FB5, cf. call example 1 below: FB5, VarToken :=
"DB_GUDVAR".GUDVar1Token. This token is then specified in parameters "Addr1" …
"Addr8" when FB2/FB3 is called, cf. call example 1 below: FB3, Addr1 := "GUDVar1Token".

General conditions
● FB5 has multi-instance capability.

● Every call of FB5 must be assigned a separate instance DB from the user area.

● Reading of a GUD variable (FB5 call with Req = 1) is only permitted in the cyclic part of the
PLC basic program (OB1). If the job is not started (FB5 call with Req = 0), the parameters
can also be written in the start-up part of the PLC basic program (OB100). The job can then
be executed using the already written parameters in the cyclic part of the PLC basic program
(OB1) by calling FB5 with Req = 1.

● Only capital letters may be used for the names of GUD variables.

● Reading of a GUD variable generally extends over several PLC cycles.

Note

Error case
When variables from different channels are read, the following feedback message is output:
● "Error" == TRUE
● "State" == W#16#02

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1018 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

To read a variable of the DOUBLE type from NC without adapting the format, an ANY pointer
of the REAL2 type must be specified in the target area (e.g.: P#M100.0 REAL 2). If the basic
program recognizes REAL 2 as the target type when reading a variable of the DOUBLE type,
the data is applied to the PLC data area as a 64-bit floating-point number.

Declaration of the function

FUNCTION_BLOCK FB5 //Server name
 KNOW_HOW_PROTECT
 VERSION : 3.0
VAR_INPUT
 Req : BOOL;
 Addr: ANY; // Variable name
 Area BYTE ; //Area: NCK = 0, channel = 2
 Unit : BYTE ;
 Index1: INT; // Array index 1
 Index2: INT; // Array index 2
 CnvtToken: BOOL; // Conversion into 10-byte token
 VarToken ANY; // Struct with 10 bytes for the variable token
END_VAR

VAR_OUTPUT
 Error : BOOL;
 Done : BOOL;
 State : WORD;
END_VAR

VAR_IN_OUT
 RD: ANY;
END_VAR

BEGIN
END_FUNCTION_BLOCK

Description of formal parameters

Signal Typ
e

Type Value range Description

Req: I BOOL Job start with positive signal edge
Addr: I ANY "<DBName>".<Var‐

Name>
Variable name in a variable of the type
STRING

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1019

Signal Typ
e

Type Value range Description

Area: I BYTE 0, 2 Range:
0: NC
2: Channel

Unit: I BYTE 1, 2, 3 ... 10 Area == NC: Unit:=1
Area == Channel: Channel number

Index1: I INT 0, 1, 2, ... < max. Array in‐
dex>

Array index 1
For variables without array index: In‐
dex1 = 0

Index2: I INT 0, 1, 2, ... < max. Array in‐
dex>

Array index 2
For variables without 2nd array index:
Index2 = 0

CnvtToken: I BOOL 0 (FALSE), 1 (TRUE) Activate generation of a 10 byte varia‐
ble token

VarToken: I ANY "<DBName>".<Var‐
Name>

Address of a 10byte token (see exam‐
ple)

Error: O BOOL 0 (FALSE), 1 (TRUE) Negative acknowledgement of job or
execution of job impossible

Done: O BOOL 0 (FALSE), 1 (TRUE) Job successfully executed
State: O WORD --- See paragraph "Error identifiers"
RD: I/O ANY P#Mm.n BYTE x ...

P#DBnr.dbxm.n BYTE x
Target area for read data

Error identifiers

State Description Note
WORD H

1)
WORD L

0 1 Access error
0 2 Error in job Incorrect compilation of Var. in a job
0 3 Negative acknowledgement,

job not executable
Internal error, try:
NC RESET

0 4 Data areas or data types do
not tally

Check data to be
read in RD

1 4 Insufficient local user memo‐
ry available

read variable is longer than specified in RD

0 6 FIFO full Job must be repeated,
since queue is full

0 7 Option not set BP parameter "NCKomm" is not set
0 8 Incorrect target area (SD) RD may not be local data
0 9 Transmission occupied Job must be repeated
0 10 Error in addressing Unit contains value 0
0 11 Address of variable invalid Check addr (or variable name), area, unit

1 - 8 13 ANY data reference incorrect String/NcVar data required has not been par‐
ameterized

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1020 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

State Description Note
WORD H

1)
WORD L

0 15 String more than 32 charac‐
ters

GUD variable name too long

1) High byte > 0 ⇒ Number of the variable in which the error occurred

Configuration steps
To be able to read a GUD variable, its name must be stored in a string variable. The data block
with this string variable must be defined in the symbol table so that the "Addr" parameter can
be assigned symbolically for FB GETGUD. A structure variable can be defined optionally in
any data area of the PLC to receive the variable pointer (see specification in following example).

Pulse diagram

① User: Set request, Req = 0 → 1
② FB5 successfully completed, Done = 1

User: Reset request, IF Done == 1 THEN Req = 0
③ User: IF Done == 1 THEN reset request: 1 → 0
④ FB5 reset job confirmation, Done = 0
⑤ User: IF Done == 0 AND Error == 0 THEN reset request Req = 1 → 0 not permissible
⑥ FB5 completed with errors, Error = 1

User: Reset request, IF Done == 1 OR Error == 1 THEN Req = 0, possible further error handling

Call example 1
Read a GUD variable from channel 1:

● Name "GUDVAR1"

● Type: INTEGER

Conversion to a 10 byte variable pointer. See table "Assignment of the data types" in Chapter
"FB2: GET - read NC variable (Page 973)"

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1021

Reading the GUD variables: FB5 with instance DB111

// Data block for GUD variable
DATA_BLOCK DB_GUDVAR // Assignment in symbol table

STRUCT
 GUDVar1 : STRING[32] := 'GUDVAR1'; // Name is defined by

user
 GUDVar1Token :
 STRUCT
 SYNTAX_ID : BYTE ;
 area_and_unit : BYTE ;
 column : WORD;
 line : WORD;
 block type : BYTE ;
 NO. OF LINES : BYTE ;
 type : BYTE ;
 length : BYTE ;
 END_STRUCT;
END_STRUCT;

BEGIN
END_DATA_BLOCK

// Unassigned user DB, as instance for FB5
DATA_BLOCK DB111

 FB5
BEGIN
END_DATA_BLOCK

// Unassigned user DB, as instance for FB3
DATE_BLOCK DB112

 FB3
BEGIN
END_DATA_BLOCK

// Reading of a channel-specific GUD variable from channel 1, with conversion
to a variable pointer
Function FC "VariablenCall" : VOID
U I 7.7; // Unassigned machine control panel key
S M 100.0; // Activate req.
U M 100.1; // Done completed message
R M 100.0; // Terminate job
U I 7.6; // Manual error acknowledgment

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1022 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

U M 102.0; // Error pending
R M 100.0; // Terminate job
CALL FB5, DB111(
 Req := M 100.0, // Starting edge for reading
 Addr := "DB_GUDVAR".GUDVar1, // Name of the GUD
 Area := B#16#2, // Channel variable
 Unit := B#16#1, // Channel 1
 Index1 := 0, // No array index 1
 Index2 := 0, // No array index 2
 CnvtToken := TRUE, // Request: Conversion into

10-byte token
 VarToken := "DB_GUDVAR".GUDVar1Token, // Address of the token
 Error := M 102.0,
 Done := M 100.1,
 State := MW 104
 RD := P#DB99.DBX0.0 DINT 1 // free memory area
);

Writing the GUD variables: FB3 with instance DB112
GUD variable token from FB5, parameter: "VarToken" for writing with FB3, parameter "Addr1"

CALL FB3, DB112(
 Req := M 200.0,
 NumVar := 1, // one GUD variable
 Addr1 :=

"DB_GUDVAR".GUDVar1Token,
// Token

 Error := M 102.0,
 Done := M 100.1,
 State := MW 104
 SD1 := P#DB99.DBX0.0 DINT 1
);

Call example 2
Read a GUD variable from channel 1:

● Name "GUD_STRING"

● Type: STRING[32]

Conversion to a 10 byte variable pointer.

Reading the GUD variables: FB5 with instance DB111

// Data block for GUD variable
DATA_BLOCK DB_GUDVAR // Assignment in symbol table

STRUCT
 GUDVarS : STRING[32] := 'GUD_STRING'; // Name defined by user

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1023

 GUDVarSToken :
 STRUCT
 SYNTAX_ID : BYTE ;
 area_and_unit : BYTE ;
 column : WORD;
 line : WORD;
 block type : BYTE ;
 NO. OF LINES : BYTE ;
 type : BYTE ;
 length : BYTE ;
 END_STRUCT;

 string_of_GUD : STRING[30]; // must at least be so long as
 // the definition of 'GUD_STRING'!
 new_name : STRING[30] := 'GUD_123';
END_STRUCT;

BEGIN
END_DATA_BLOCK

// Unassigned user DB, as instance for FB5
DATA_BLOCK DB111

 FB5
BEGIN
END_DATA_BLOCK

// Unassigned user DB, as instance for FB3
DATE_BLOCK DB112

 FB3
BEGIN
END_DATA_BLOCK

// Reading of a channel-specific GUD variable from channel 1, with conversion
to a variable pointer
Function FC "VariablenCall" : VOID
U I 7.7; // Unassigned machine control panel key
S M 100.0; // Activate req.
U M 100.1; // Done completed message
R M 100.0; // Terminate job
U I 7.6; // Manual error acknowledgment
U M 102.0; // Error pending
R M 100.0; // Terminate job
CALL FB5, DB111(

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1024 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 Req := M 100.0, // Starting edge for reading
 Addr := "DB_GUDVAR".GUDVarS,
 Area := B#16#2, // Channel variable
 Unit := B#16#1, // Channel 1
 Index1 := 0, // No array index
 Index2 := 0, // No array index
 CnvtToken := TRUE, // Request: Conversion into 10-byte

token
 VarToken := "DB_GUDVAR".GUDVarSToken, // Address of the token
 Error := M 102.0,
 Done := M 100.1,
 State := MW 104
 RD := "DB_GUDVAR".string_of_GUD
);

Writing the GUD variables: FB3 with instance DB112
GUD variable token from FB5, parameter: "VarToken" for writing with FB3, parameter "Addr1"

CALL FB3, DB112(
 Req := M 200.0,
 NumVar := 1, // one GUD variable
 Addr1 := "DB_GUDVAR".GUDVarSToken, // Token
 Error := M 102.0,
 Done := M 100.1
 State := MW 104
 SD1 := "DB_GUDVAR".new_name
);

Classification of data types
See table "Assignment of the data types" in Chapter "FB2: GET - read NC variable
(Page 973)"

14.17.6 FB7: PI_SERV2 - request PI service

Function
With the exception of a higher number of "WVar" parameters ("WVar11" - "WVar16"), function
block FB7 has the same functionality as function block FB4. It is recommended that function
block FB7 be used instead of function block FB4.

For a detailed description, refer to Chapter "FB4: PI_SERV - request PI service (Page 988)".

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1025

Declaration of the function

FUNCTION_BLOCK FB7
Var_INPUT
 Req: BOOL;
 PIService: ANY;
 Unit: INT;
 Addr1: ANY;
 Addr2: ANY;
 Addr3: ANY;
 Addr4: ANY;
 WVar1: WORD;
 WVar2: WORD;
 WVar3: WORD;
 WVar4: WORD;
 WVar5: WORD;
 WVar6: WORD;
 WVar7: WORD;
 WVar8: WORD;
 WVar9: WORD;
 WVar10: WORD;
 WVar11: WORD;
 WVar12: WORD;
 WVar13: WORD;
 WVar14: WORD;
 WVar15: WORD;
 WVar16: WORD;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 Done : BOOL;
 State : WORD;
END_VAR

14.17.7 FB9: MtoN - operator panel switchover

Function
The function block FB9 "MzuN" is used for switching over operating components (MCP/OP),
which are connected via a bus system to one or more NCU control modules.

The interface between the individual operating units (operator panels) and the NCU (PLC) is
the M : N interface in data block DB19. FB9 uses the signals of these interfaces.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1026 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Apart from initialization, sign-of-life monitoring and error routines, the following basic functions
are also performed by the block for control unit switchover:

Tabulated overview of functions:
Basic function Description
HMI queuing HMI wants to go online with an NCU
HMI coming HMI is connecting to an NCU
HMI going HMI is disconnecting from an NCU
Forced break HMI must break connection with an NCU
Operating focus changeover to serv‐
er mode

Change operating focus from one NCU to the other

Active/passive operating mode: Operator control and monitoring/monitoring only
MCP switchover As an option, MCP can be switched over with the HMI

Note

The block must be called by the user program. The user must provide an instance DB with
any number for this purpose. The call is multi-instance-capable.

Brief description of a few important functions
Active/passive operating mode:

An online HMI can operate in two different modes:

Active mode: Operator can control and monitor
Passive mode: Operator can monitor (HMI header only)

After switchover to an NCU, this initially requests active operating mode in the PLC of the
online NCU. If two control units are linked online simultaneously to an NCU, one of the two is
always in active mode and the other in passive mode. The operator can request active mode
on the passive HMI at the press of a button.

MCP switchover
As an option, an MCP assigned to the HMI can be switched over at the same time. To achieve
this, the MCP address must be entered in the "mstt_adress" parameter of the NETNAMES.INI
configuration file on the HMI and "MCPEnable" must be set to TRUE. The MCP of the passive
HMI is deactivated so that there is only ever one active MCP on an NCU at one time.

Boot condition
In order to prevent, that for an NCU restart, the previously selected MCP is activated, when
calling FB1 in OB100, input parameter "MCP1BusAdr" must be set = 255 (address 1st MCP)
and "MCP1Stop" must be set = TRUE (switch off 1st MCP).

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1027

Approvals
When one MCP is switched over to another, any active feed or axis enables will be retained.

Note

Keys actuated at the moment of switchover remain operative until the new MCP is activated
(by the HMI, which is subsequently activated). The override settings for feedrate and spindle
also remain valid. To deactivate actuated keys, the input image of the machine control signals
must be switched to nonactuated signal level on a falling edge of DB10.DBX104.0 (MCP 1
ready). The override settings should remain unchanged. Measures for deactivating keys must
be implemented in the PLC user program (see example "Override Changeover").

The call is permitted only in cyclic program OB1.

Declaration of the function

FUNCTION_BLOCK FB9
VAR_INPUT
 Ackn: BOOL; // Acknowledge interrupts
 OPMixedMode: BOOL:= FALSE; // Mixed operation with non-M-to-N-

enabled OP // deactivated
 ActivEnable: BOOL:=TRUE; // Not supported
 MCPEnable: BOOL:=TRUE; // Activate MCP switchover
END_VAR
VAR_OUTPUT
 Alarm1: BOOL; // Interrupt: Error in HMI bus address,

bus type!
 Alarm2: BOOL; // Interrupt: No confirmation HMI 1

offline!
 Alarm3 : BOOL; // Interrupt: HMI 1 is not going offline!
 Alarm4 : BOOL; // Interrupt: No confirmation HMI 2

offline!
 Alarm5 : BOOL; // Interrupt: HMI 2 is not going offline!
 Alarm6 : BOOL; // Interrupt: Queuing HMI is not going

online!
 Report : BOOL; // Message: Signoflife monitoring
 ErrorMMC : BOOL; // Error detection HMI
END_VAR

Description of formal parameters

Signal Typ
e

Type Value range Description

Ackn: I BOOL 0 (FALSE), 1 (TRUE) Acknowledge interrupts
OPMixedMode: I BOOL 0 (FALSE), 1 (TRUE) Mixed operation deactivated for OP

without M:N capability

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1028 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Typ
e

Type Value range Description

ActivEnable: I BOOL 0 (FALSE), 1 (TRUE) Function is not supported. Operator
panel switchover Interlocking using
MMCx_SHIFT_LOCK in DB19

MCPEnable: I BOOL 0 (FALSE), 1 (TRUE) Activate MCP switchover
1: MCP is switched over with operator
panel.
0: MCP is not switched over with oper‐
ator panel. This can be used to perma‐
nently link an MCP. See also
MMCx_MSTT_SHIFT_LOCK in DB19.

Alarm1: O BOOL 0 (FALSE), 1 (TRUE) Interrupt: Error in HMI bus address,
bus type!

Alarm2: O BOOL 0 (FALSE), 1 (TRUE) Interrupt: No confirmation HMI 1 off‐
line!

Alarm3 : O BOOL 0 (FALSE), 1 (TRUE) Interrupt: HMI 1 is not going offline!
Alarm4 : O BOOL 0 (FALSE), 1 (TRUE) Interrupt: No confirmation HMI 2 off‐

line!
Alarm5 : O BOOL 0 (FALSE), 1 (TRUE) Interrupt: HMI 2 is not going offline!
Alarm6 : O BOOL 0 (FALSE), 1 (TRUE) Interrupt: Queuing HMI is not going

online!
Report : O BOOL 0 (FALSE), 1 (TRUE) Message: Sign-of-life monitoring HMI
ErrorMMC : O BOOL 0 (FALSE), 1 (TRUE) Error detection HMI

Example of calling FB9

 CALL FB9, DB109(
 Ackn := Error_ack, //e.g., MCP RESET
 OPMixedMode := FALSE,
 ActivEnable := TRUE,
 MCPEnable := TRUE); // Enable for MCP switchover

Note

Input parameter “MCPEnable” must be set to TRUE to enable the MCP switchover. The default
value of these parameters is set in this way and need not be specially assigned when the
function is called.

Interrupts, errors
The output parameters "Alarm1" to "Alarm6" and "Report" exist as information in the PLC and
are output in the event of M:N errors visualized on the HMI by the appearance of alarms 410900
- 410906.

If execution of an HMI function has failed (and an appropriate error message cannot be
displayed), status parameter "ErrorMMC" is set to 'logical 1' (e.g., booting error, when no
connection is made).

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1029

Example of a call for FB (call in the OB100)

CALL "RUN_UP", "gp_par" (
 MCPNum := 1,
 MCP1In := P#I 0.0,
 MCP1Out := P#Q 0.0,
 MCP1StatSend := P#Q 8.0,
 MCP1StatRec := P#Q 12.0,
 MCP1BusAdr := 255, // address 1st MCP
 MCP1Timeout := S5T#700MS,
 MCP1Cycl := S5T#200MS,
 MCP1Stop := TRUE, // MCP switched off
 NCCyclTimeout := S5T#200MS,
 NCRunupTimeout := S5T#50S);

Example: Override switchover

// Auxiliary flags used M100.0, M100.1, M100.2, M100.3
//Edge positive of MCP1Ready must check the override
//and measures for activation
// Initiate MCP block
//This example applies to the feedrate override;
//The interface and input bytes must be exchanged for spindle override.
U DB10.DBX104.0; //MCP1Ready
EN M 100.0; // Edge memory bit 1
JCN smth1;
S M 100.2; // Set auxiliary memory bit 1
R M 100.3; //Reset auxiliary flag 2

// Save override
 L DB21.DBB4; //Feed override interface
 T EB28; //Buffer storage (freely input

// or flag byte)

wei1:
U M 100.2; //Switchover takes place
O DB10.DBX104.0; //MCP1Ready
JCN smth2;
U DB10.DBX104.0; //MCP1Ready
FP M 100.1; // Edge memory bit 2
JC smth2;
U M 100.2; //Switchover takes place
R M 100.2; //Reset auxiliary flag 1
JC smth2;
U M 100.3; //Comparison has taken place

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1030 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

SPB MCP; //Call MCP program
// Route the stored override to the interface of the switched MCP
// until the override values match
 L EB28; //Buffer storage open
 T DB21.DBB4; //Route override interface
 L EB3; //Override input byte for feed
 <>i; //Match?
JC smth2; //No, jump
S M 100.3; //Yes, set auxiliary flag 2
// When override values match, call the MCP program again
MCP: CALL "MCP_IFM"(//FC19
 BAGNo := B#16#1,
 ChanNo := B#16#1,
 SpindleIFNo := B#16#0,
 FeedHold := M 101.0,
 SpindleHold := M 101.1);
wei2: NOP 0:

14.17.8 FB10: Safety relay (SI relay)

Function
The SPL function block FB10 "Safety relay" for "Safety Integrated" is the PLC equivalent of
the NC function of the same name. The standard SPL "Safety relay" block is designed to
support the implementation of an emergency stop function with safe programmable logic.
However, it can also be used to implement other similar safety functions, e.g., control of a
protective door.

The function contains 3 input parameters ("In1", "In2", "In3"). On switchover of one of these
parameters to the value 0, the output "Out0" is deactivated without delay and outputs "Out1",
"Out2", and "Out3" are deactivated via the parameterized timer values (parameters
"TimeValue1", "TimeValue2", "TimeValue3"). The outputs are activated again without delay if
inputs "In1" to "In3" take on value 1 and a positive edge change is detected at one of the
acknowledgment inputs "Ack1", "Ack2".

Call bit memory
To bring the outputs to their basic setting (values = 0) after booting, the parameter "FirstRun"
must be configured as follows. The parameter "FirstRun" must be switched to the value TRUE
via a retentive data (memory bit, bit in data block) on the 1st run after control booting. This
data can be preset, e.g., in OB100. The parameter "FirstRun" is reset to FALSE when FB10
is executed for the first time. Separate data must be used for parameter "FirstRun" for each
call with its own instance.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1031

General conditions
● FB10 has multi-instance capability

● After the start of the SPL program, FB10 is called once per SI relay in the cyclic part of the
PLC basic program (OB1).

● Every call of FB10 must be assigned a separate instance DB from the user area.

Simplified block diagram in CSF
The figure below shows only one acknowledgment input "Ack1" and one delayed deactivation
output "Out1". The circuit for "Ack2" and the other delayed outputs are identical. The parameter
"FirstRun" is also missing in the function diagram. The mode of operation is described above.

Declaration of the function

FUNCTION_BLOCK FB10
VAR_INPUT
 In1 : BOOL;
 In2 : BOOL;
 In3 : BOOL;
 Ackn1 : BOOL;
 Ackn2 : BOOL;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1032 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 TimeValue1 : TIME;
 TimeValue2 : TIME;
 TimeValue3 : TIME;
END_VAR
VAR_OUTPUT
 Out0 : BOOL;
 Out1 : BOOL;
 Out2 : BOOL;
 Out3 : BOOL;
END_VAR
VAR_INOUT
 FirstRun: BOOL;
END_VAR

Description of formal parameters

Parameter Typ
e

Type Value range Description

In1: I BOOL 0 (FALSE), 1 (TRUE) Input 1
In2: I BOOL 0 (FALSE), 1 (TRUE) Input 2
In3: I BOOL 0 (FALSE), 1 (TRUE) Input 3
Ackn1 : I BOOL 0 (FALSE), 1 (TRUE) Acknowledgment input 1
Ackn2 : I BOOL 0 (FALSE), 1 (TRUE) Acknowledgment input 2
TimeValue1 : I S5TIME Time value 1 for OFF delay
TimeValue2 : I S5TIME Time value 2 for OFF delay
TimeValue3 : I S5TIME Time value 3 for OFF delay
Out0 : O BOOL 0 (FALSE), 1 (TRUE) Output, instantaneous (no delay)
Out1 : O BOOL 0 (FALSE), 1 (TRUE) Output, delayed by TimeValue1
Out2 : O BOOL 0 (FALSE), 1 (TRUE) Output, delayed by TimeValue2
Out3 : O BOOL 0 (FALSE), 1 (TRUE) Output, delayed by TimeValue3
FirstRun: I/O BOOL 0 (FALSE), 1 (TRUE) Call bit memory

14.17.9 FB11: Brake test

Function
The braking operation check should be used for all axes, which must be prevented from moving
in an uncontrolled manner by a holding brake. "Vertical axes" are the main application.

The machine manufacturer can use the PLC user program to regularly close the brake at a
suitable instant (e.g. every 8 hours) and have the drive exert torque/force in addition to the
weight of the axis. In errorfree operation, the brake can produce the necessary braking torque/
braking force. The axis will hardly move during this.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1033

When an error occurs, the actual position value exits the parameterizable monitoring window.
The position controller prevents sagging of the axis. The function test of the brake mechanical
system is negatively acknowledged.

References
A detailed description of the parameterization of the NC and drive within the framework of the
"Safety Integrated" function can be found in:

Function Manual for Safety Integrated

Starts the brake test
The brake test must always be started when the axis is at a standstill. For the entire duration
of the brake test, the enable signals of the parameterized axis must be set to enable (e.g.
controller inhibit, feed enable). Furthermore, the signal at the axis/spindle DB31,DBX28.7
(PLC-controlled axis) is to be set to status 1 by the user program for the complete duration of
the test.

Before activating the NC/PLC interfaces DB31,DBX28.7 (PLC-controlled axis), the axis is
to be switched as "neutral axis", e.g. DB31,DBX8.0 - 8.3 (assign NC axis to channel) is to
be set to channel 0, as well as DB31,DBX8.4 (activation signal when changing this byte)
is to be set.

The return message:

● about the current status can be queried in DB31, ... DBB68.

● the Nc via the signal DB31,DBX63.1 (PLC controls axis) is to be awaited before the
block is started. The direction in which the drive must produce its torque/force is specified
by the PLC in the form of a "traversing motion" (e.g., via FC18).

The axis must be able to reach the destination of this movement without risk of collision if the
brake is unable to produce the necessary torque/force.

Note
Note on FC18

If FC18 is called over the further course of the user program for the same axis, the calls must
be mutually interlocked. For example, this can be achieved via a common call of this function
with an interlocked common data interface for the FC18 parameters. A second option is to call
the FC18 repeatedly, in which case the inactive FC18 will not be processed by the program.
A multiple-use interlock must be provided.

Structure of a brake test

Step Expected feedback Monitoring time value
1 Start brake test DBX71.0 = 1 TV_BTactiv
2 Close brake Bclosed = 1 TV_Bclose
3 Output traversing command DBX64.6 OR DBX64.7 TV_FeedCommand
4 Issue test travel command DBX62.5 = 1 TV_FXSreached
5 Wait for the holding time DBX62.5 = 1 TV_FXShold
6 Deselect brake test / open brake DBX71.0 = 0 TV_BTactiv
7 Output test ok --- ---

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1034 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

General conditions
● FB2 has multi-instance capability.

● Every call of FB11 must be assigned a separate instance DB from the user area.

Declaration of the function

Function_BLOCK FB11
VAR_INPUT
 Start BOOL;
 Ackn : BOOL;
 Bclosed : BOOL;
 Axis : INT;
 TimerNo : TIMER ;
 TV_BTactiv : S5TIME ;
 TV_Bclose : S5TIM;
 TV_FeedCommand : S5TIME ;
 TV_FXSreached : S5TIME ;
 TV_FXShold : S5TIME ;
END_VAR
VAR_OUTPUT
 CloseBrake : BOOL;
 MoveAxis : BOOL;
 Done : BOOL;
 Error : BOOL;
 State : : BYTE ;
END_VAR

Description of formal parameters

Signal Type Type Description
Start I BOOL Starts the brake test
Ackn I BOOL Acknowledge fault
Bclosed I BOOL Checkback input whether Close Brake is activated

(singlechannel - PLC)
Axis I INT Axis number of axis to be tested
TimerNo I TIMER Timer from user program
TV_BTactiv I S5TIME Monitoring time value → brake test active, check of

axis signal DBX71.0
TV_Bclose I S5TIME Monitoring time value → close brake Check of input

signal Bclosed after output CloseBrake has been set.
TV_FeedCommand I S5TIME Monitoring time value → Travel command given

Check travel command after MoveAxis has been set
TV_FXSreched I S5TIME Monitoring time value → fixed stop reached

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1035

Signal Type Type Description
TV_FXShold I S5TIME Monitoring time value → test brake
CloseBrake O BOOL Request, close brake
MoveAxis O BOOL Request, initiate traversing motion
Done O BOOL Test successfully completed
Error O BOOL An error occurred
State O BYTE See paragraph "Error identifiers"

Fault IDs

State Description
0 No error
1 Start conditions not fulfilled, e.g. the axis is not in closed-loop control / brake closed / axis

inhibited
2 No NC checkback in "Brake test active" signal on selection of brake test
3 No "Brake applied" checkback by input signal Bclosed
4 No travel command output (e.g., axis motion has not been started)
5 Fixed end stop will not be reached → axis RESET was initiated.
6 Traversing inhibit/Approach too slow → fixed stop cannot be reached. TV FXSreached mon‐

itoring timeout
7 Brake is not holding at all (the end position is reached)/approach speed is too high
8 Brake opens during the holding time
9 Error when deselecting the brake test
10 Internal error
11 "PLC-controlled axis" signal not enabled in the user program

Example of calling FB11:

 UN M 111.1; //Request to close brake, Z axis of FB
 = O 85.0; //Brake control, Z axis
 AUF Axis3"; //Brake test, Z axis
 O I 73.0; //Brake test trigger, Z axis
 O M 110.7; //Brake test running
 FP M 110.0;
 UN M 111.4; //Error has occurred
 S M 110.7; //Brake test running
 S M 110.6; //Next step
 JCN m001
 L DBB 68;
 AW W#16#F;
 T MB 115; //flag channel state
 L B#16#10
 T DBB 8; //Request neutral axis

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1036 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

m001: U DBX 68.6; //Checkback signal, axis is neutral
 U M 110.6;
 FP M 110.1;
 R M 110.6;
 S M 110.5; //Next step
 S DBX 28.7; //Request PLC-monitored axis

 U DBX 63.1; //Checkback signal, axis monitored by PLC
 U M 110.5;
 FP M 110.2;
 R M 110.5;
 S M 111.0; //Start brake test for FB

 CALL FB11, DB211 (//brake test block
 Start :=M 111.0, //Start brake test
 Ackn := I 3.7, //Acknowledge error with RESET

key
 Bclosed := I 54.0, //Return message close brakes

//controlled
 Axis := 3, //Axis number of axis to be

tested
//Z axis

 TimerNo := T 110, //Timer number
 TV_BTactiv := S5T#200MS, //Monitoring time value:

//Brake test active DBX71.0
 TV_Bclose := S5T#1S, //Monitoring time value:

//Brake closed
 TV_FeedCommand := S5T#1S, //Monitoring time value:

//Traversing command output
 TV_FXSreache := S5T#1S, //Monitoring time value:

//Fixed stop reached
 TV_FXShold := S5T#2S, //Monitoring time value:

//Brake test time
 CloseBrake :=M 111.1, //Request to close brake
 MoveAxis :=M 111.2, Initiate //Request traversing

motion //
 Done :=M 111.3, //Test successfully completed
 Error :=M 111.4, //Error has occurred
 State := MB 112); //Error status

 AUF "Axis3"; //Brake test, Z axis

 U M 111.2; //Moveaxis
 FP M 111.5; //FC18 Start
 S M 111.7; //Start FC18

 O M 111.3; //Test successfully completed

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1037

 O M 111.4; //Error has occurred
 FP M 110.3;
 R DBX 28.7; //Request, PLC-monitored axis

 UN DBX 63.1; //Checkback signal, axis monitored by PLC
 U M 111.0; //Start brake test for FB
 U M 110.7; //Brake test running
 FP M 110.4;
 R M 111.0; //Start brake test for FB
 R M 110.7; //Brake test running

//optional begin
 JCN m002:
 L MB 115; //old channel status
 OW W#16#10;
 T DBB 8; //Request channel axis
m002: NOP 0;
//optional end

 CALL "SpinCtrl" (//Traverse Z axis
 Start :=M 111.2, //Start traversing motion
 Stop := FALSE,
 Funct := B#16#5, //Mode: Axis mode
 Mode := B#16#1, //Procedure: Incremental
 AxisNo := 3, //Axis number of axis to be

traversed
//axis Z-axis

 Pos := -5.000000e+000, //Traversing distance: Minus 5 mm
 FRate := 1.000000e+003, //Feedrate: 1000 mm/min
 InPos :=M 113.0, //Position reached
 Error :=M 113.1, //Error has occurred
 State := MB 114); //Error status

 AUF "Axis3"; //Brake test, Z axis
 U M 113.0; //Position reached
 O M 113.1; //Error has occurred
 FP M 113.2;
 R M 111.7; //Start FC18

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1038 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.17.10 FB29: Signal recorder and data trigger diagnostics

Function

Signal recorder
FB29 "Diagnostics" allows various diagnostic routines to be performed on the PLC user
program. A diagnostic routine logs signal states and signal changes. In this diagnostic routine,
function number 1 is assigned to the "Func" parameter. Up to 8 signals of the parameters
"Signal_1" to "Signal_8" are recorded in a ring buffer each time one of the signals changes.
The current information of parameters "Var1" as BYTE value, and "Var2" and "Var3" as
INTEGER values are also stored in the ring buffer.

The number of past OB1 cycles is also stored in the buffer as additional information. This
information enables the graphical evaluation of signals and values in OB1 cycle grid.

Call rule
First call of FB29 in OB1 cycle: Parameter "NewCycle" = 1

All other calls of FB29 in the same OB1 cycle: Parameter "NewCycle" = 0

Ring buffer
The ring buffer, which must be defined by the user, must have an ARRAY structure specified
as in the source code. The array can have any number of elements. A size of 250 elements
is recommended. The "ClearBuf" parameter is used to clear the ring buffer and set the
"BufAddr" pointer to the start. The instance DB related to the FB29 is a DB from the user area
and is to be transferred to the FB Diagnostics with the parameter "BufDB".

Data trigger
The data trigger function is intended to allow triggering on specific values (or bits) at any
permissible memory cell. The cell to be triggered is "rounded" with a bit mask ("AndMask"
parameter) before the "TestVal" parameter is compared in the diagnostic block.

Note

The source code for the function is available in the source container of the basic-program
library under the name "Diagnose.awl". The instance DB and the ring buffer DB are also defined
in this source block. The function call is also described in the function. The DB numbers and
the call must be modified.

Declaration of the function

FUNCTION_BLOCK FB29
VAR_INPUT
Func : INT;
 Signal_1 : BOOL;
 Signal_2 : BOOL;
 Signal_3 : BOOL;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1039

 Signal_4 : BOOL;
 Signal_5 : BOOL;
 Signal_6 : BOOL;
 Signal_7 : BOOL;
 Signal_8 : BOOL;
 NewCycle : BOOL;
 Var1 : BYTE ;
 Var2 : INT;
 Var3 : INT;
 BufDB : INT;
 ClearBuf : BOOL;
 DataAdr : POINTER;
 TestVal : WORD;
 AndMask : WORD;
END_VAR
VAR_OUTPUT
 TestIsTrue : BOOL;
END_VAR
VAR_IN_OUT
 BufAddr : INT;
END_VAR

Structure of the ring buffer

TITLE =
 //Ring buffer DB for FB29
VERSION : 1.0

STRUCT
 Field: ARRAY [0 .. 249] OF

STRUCT
//can be any size of this struct

 Cycle : INT; //Delta cycle to last storage in buffer
 Signal_1 : BOOL; //Signal names same as FB29
 Signal_2 : BOOL;
 Signal_3 : BOOL;
 Signal_4 : BOOL;
 Signal_5 : BOOL;
 Signal_6 : BOOL;
 Signal_7 : BOOL;
 Signal_8 : BOOL;
 Var1 : BYTE ;
 Var2 : WORD;
 Var3 : WORD;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1040 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 END_STRUCT;
END_STRUCT;
BEGIN
END_DATA_BLOCK

Description of formal parameters

Signal Type Type Value range Description
Func: I INT 0, 1, 2 Function

0: Switch off
1: Signal recorder
2: Data trigger

Parameters for function 1
Signal_1 ...
Signal_8:

I BOOL 0 (FALSE), 1
(TRUE)

Bit signals checked for change

NewCycle: I BOOL 0 (FALSE), 1
(TRUE)

See paragraph "Function" above

Var1 : I BYTE Additional value
Var2 : I INT Additional value
Var3 : I INT Additional value
BufDB: I INT Ring buffer DB no.
ClearBuf: I BOOL 0 (FALSE), 1

(TRUE)
Delete ring buffer DB and reset pointer Bu‐
fAddr

BufAddr: I/O INT Target area for read data
Parameters for function 2
DataAdr: I POINTER Pointer to word to be tested
TestVal: I WORD Comparison value
AndMask: I WORD See paragraph "Function" above
TestIsTrue: O BOOL 0 (FALSE), 1

(TRUE)
Result of comparison

Configuration steps
● Select function of diagnostics block.

● Define suitable data for the recording as signal recorder or data triggering.

● Find a suitable point or points in the user program for calling the diagnostics FB.

● Create a data block for the ring buffer, see call example.

● Call the diagnostics FB with parameters in the user program.

In function 1, it is advisable to clear the ring buffer with the "ClearBuf" parameter. When the
recording phase with function 1 is completed, read out the ring buffer DB in STEP7 with the
function "opening the data block in the data view". The content of the ring buffer DB can now
be analyzed.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1041

Call example

FUNCTION FC99: VOID
TITLE =
VERSION : 0.0

BEGIN
NETWORK
TITLE = NETWORK

CALL FB29, DB80(
Func := 1,
 Signal_1 :=M 100.0,
 Signal_2 :=M 100.1,
 Signal_3 :=M 100.2,
 Signal_4 :=M 100.3,
 Signal_5 :=M 10.4,
 Signal_6 :=M 100.5,
 Signal_7 :=M 100.6,
 Signal_8 :=M 100.7,
 NewCycle := TRUE,
 Var1 := MB 100,
 BufDB := 81,
 ClearBuf :=M 50.0);
END_FUNCTION

14.17.11 FC2 : GP_HP - basic program, cyclic section

Function
The NC/PLC interface is processed by the basic program in cyclic mode (OB1). To keep the
runtime to a minimum, only the control and state signals are cyclically transferred. The transfer
of auxiliary and G commands is processed only on request from the NC.

Furthermore, the data for handwheel selection, modes, and other operating signals are
transferred from the operator panel (HMI) to the NC/PLC interface so that the modes support
the selection from the MCP or HMI as required.

The transfer of HMI signals to the NC/PLC interface can be deactivated by setting the value
of the parameter "MMCToIF" to "FALSE" in FB1 (DB7).

Handwheel selection signals
Requirement: FB1, parameter "HWheelMMC == "TRUE"

The handwheel selection signals from the HMI are decoded and activated in the respective
machine or geometry axis of the respective handwheel.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1042 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Declaration

FUNCTION FC2: VOID
// No parameters

Call example
As far as the time is concerned, the basic program must be executed before the user program.
It is, therefore, called first in OB1.

The following example contains the standard declarations for OB1 and the calls for the basic
program (FC2), the transfer of the MCP signals (FC19), and the acquisition of error and
operational messages (FC10).

ORGANIZATION_BLOCK OB1
VAR_TEMP
 OB1_EV_CLASS : BYTE ;
 OB1_SCAN_1 : BYTE ;
 OB1_PRIORITY : BYTE ;
 OB1_OB_NUMBR : BYTE ;
 OB1_RESERVED_1 : BYTE ;
 OB1_RESERVED_2 : BYTE ;
 OB1_PREV_CYCLE : INT;
 OB1_MIN_CYCLE : INT;
 OB1_MAX_CYCLE : INT;
 OB1_DATE_TIME : DATE_AND_TIME;
END_VAR
BEGIN
CALL FC2; // Call basic program as 1st FC
//INSERT USER PROGRAM HERE
CALL FC19(//MCP signals to interface
BAGNo := B#16#1, // Mode group no. 1
ChanNo := B#16#1, // Channel no. 1
SpindleIFNo := B#16#4, //Spindle interface number = 4

// (Number of the associated machine
axis)

FeedHold := m22.0, //Feed stop signal
 //Modal
SpindleHold := db2.dbx151.0); //Spindle stop modal
 //in message DB
CALL FC10(// Error and operational messages
 ToUserIF := TRUE, //Signals transferred from DB2

//to interface
 Ackn := I6.1); //Acknowledgment of error messages

//via I6.1
END_ORGANIZATION_BLOCK

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1043

14.17.12 FC3: GP_PRAL - basic program, interruptdriven section

Function
Block-synchronized transfers from the NC to the PLC (auxiliary and G commands) are
processed in the alarm-driven part of the basic program. Auxiliary functions are subdivided
into normal and highspeed auxiliary functions.

The highspeed functions of an NC block are buffered and the transfer acknowledged to the
NC. These are transferred to the application interface at the start of the next OB1 cycle.

Highspeed auxiliary functions programmed immediately one after the other, are not lost for the
user program. This is ensured by a mechanism in the basic program.

Normal auxiliary functions are acknowledged to the NC only after one completed cycle
duration. This allows the application to issue a read disable to the NC.

The G commands are evaluated immediately and passed to the application interface.

NC process alarms
If the interrupt is triggered by the NC (possible in each IPO cycle), a bit in the local data of
OB40 ("GP_IRFromNCK") is set by the basic program, only when the FB1 parameter "UserIR"
is TRUE. This data is not set on other events (process alarms through I/Os). This information
makes it possible to branch into the associated interrupt routine in the user program in order
to initiate the necessary action.

To be able to implement highspeed, jobdriven processing of the user program for the machine,
the following NC functions are available in the interrupt processing routine (OB40 program
section) for the PLC user program:

● Selected auxiliary functions

● Tool-change function for tool-management option

● Position reached for positioning axes, indexing axes and spindles with activation via PLC

The functions listed above can or must be evaluated by the user program in OB40 in order to
initiate reactions on the machine. As an example, the revolver switching mechanism can be
activated when a T command is programmed on a turning machine.

For further details on programming process alarms (time delay, interruptibility, etc.) refer to
the corresponding SIMATIC documentation.

Auxiliary functions
Generally, high-speed or acknowledging auxiliary functions are processed with or without
interrupt control independently of any assignment.

Basic-program parameters in FB1 can be set to define which auxiliary functions (T, H, DL)
must be processed solely on an interruptdriven basis by the user program.

Functions which are not assigned via interrupts are only made available by the cyclic basic
program as in earlier versions. The change signals of these functions are available in a PLC
cycle.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1044 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Even if the selection for the auxiliary function groups (T, H, DL) is made using interrupt control,
only one interrupt can be processed by the user program for the selected functions.

A bit is set for a specific channel in the local data "GP_AuxFunction" for the user program (if
"GP_AuxFunction[1]" is set, an auxiliary function is available for the 1st channel).

In the related channel-DB the change signal and the function value are available for the user.
The request signal of this interrupt-driven function is reset to zero in the cyclic basic program
section after the execution of at least one full OB1 cycle (max. approx. two OB1 cycles).

Tool change
With the tool-management option, the tool-change command for revolver and the tool change
in the spindle is supported by an interrupt. The local data bit "GP_TM" in OB40 is set for this
purpose. The PLC user program can thus check the tool management DB (DB72 or DB73) for
the tool change function and initiate the tool change operation.

Position reached
In the bit structure, "GP_InPosition" of the local data of OB40 is specific to the machine axis
(each bit corresponds to an axis/spindle, e.g. GP_InPosition[5] corresponds to the 5th axis).

If a function has been activated via FC18 (spindle control, positioning axis, indexing axis) for
an axis or spindle, the associated "GP_InPosition" bit can be used to implement instantaneous
evaluation of the "InPos" signal of the FCs listed above. This feature can be used, for example,
to obtain immediate activation of clamps for an indexing axis.

Declaration

FUNCTION FC3: VOID
// No parameters

Call example
As far as the time is concerned, the basic program must be executed before other alarm-driven
user programs. It is, therefore, called first in OB40.

The following example contains the standard declarations for OB40 and the call for the basic
program.

ORGANIZATION_BLOCK OB40
VAR_TEMP
 OB40_EV_CLASS : BYTE ;
 OB40_STRT_INF : BYTE ;
 OB40_PRIORITY : BYTE ;
 OB40_OB_NUMBR : BYTE ;
 OB40_RESERVED_1 : BYTE ;
 OB40_MDL_ID : BYTE ;
 OB40_MDL_ADDR : INT;
 OB40_POINT_ADDR : DWORD;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1045

 OB40_DATE_TIME : DATE_AND_TIME;

//Assigned to basic program
GP_IRFromNCK : BOOL; //Interrupt by NC for user
GP_TM : BOOL; //Tool management
GP_InPosition : ARRAY [1..3] OF BOOL; //Axis-oriented for positioning,

//Indexing axes, spindles
GP_AuxFunction : ARRAY [1..10] OF BOOL; //Channel-oriented for auxiliary

functions
GP_FMBlock : ARRAY [1..10] OF BOOL; //Currently not used
//Further local user data may be defined from this point onwards
END_VAR
BEGIN
 CALL FC3;
 //INSERT USER PROGRAM HERE
END_ORGANIZATION_BLOCK

14.17.13 FC5: GP_DIAG - basic program, diagnostic alarm and module failure

Function
The block FC5 "GP_DIAG" is used to record assembly disruptions and failures.

A PLC stop can be triggered via the parameter "PlcStop". The PLC stop is only triggered for
incoming events. The MCPs connected to the parameterized PROFIBUS (DP1) at FB1 are
excluded from this.

Declaration

FUNCTION FC5: VOID
 VAR_INPUT
 PlcStop: BOOL:= TRUE;
 END_VAR

Call example
The basic program should be run through after processing of the user programs. This is
recommended because a PLC stop can be triggered by the FC5.

The example contains the standard declaration for OB82 and OB86 and the call of the FC5.

ORGANIZATION_BLOCK OB82
VAR_TEMP
 OB82_EV_CLASS : BYTE ;
 OB82_FLT_ID : BYTE ;
 OB82_PRIORITY : BYTE ;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1046 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 OB82_OB_NUMBR : BYTE ;
 OB82_RESERVED_1 : BYTE ;
 OB82_IO_FLAG : BYTE ;
 OB82_MDL_ADDR : INT ;
 OB82_MDL_DEFECT : BOOL;
 OB82_INT_FAULT : BOOL;
 OB82_EXT_FAULT : BOOL;
 OB82_PNT_INFO : BOOL;
 OB82_EXT_VOLTAGE : BOOL;
 OB82_FLD_CONNCTR : BOOL;
 OB82_NO_CONFIG : BOOL;
 OB82_CONFIG_ERR : BOOL;
 OB82_MDL_TYPE : BYTE ;
 OB82_SUB_NDL_ERR : BOOL;
 OB82_COMM_FAULT : BOOL;
 OB82_MDL_STOP : BOOL;
 OB82_WTCH_DOG_FLT : BOOL;
 OB82_INT_PS_FLT : BOOL;
 OB82_PRIM_BATT_FLT : BOOL;
 OB82_BCKUP_BATT_FLT : BOOL;
 OB82_RESERVED_2 : BOOL;
 OB82_RACK_FLT : BOOL;
 OB82_PROC_FLT : BOOL;
 OB82_EPROM_FLT : BOOL;
 OB82_RAM_FLT : BOOL;
 OB82_ADU_FLT : BOOL;
 OB82_FUSE_FLT : BOOL;
 OB82_HW_INTR_FLT : BOOL;
 OB82_RESERVED_3 : BOOL;
 OB82_DATE_TIME : DATE_AND_TIME;
END_VAR
 BEGIN
 CALL FC5
 (PlcStop := FALSE) ;
END_ORGANIZATION_BLOCK

ORGANIZATION_BLOCK OB86
VAR_TEMP
 OB86_EV_CLASS : BYTE ;
 OB86_FLT_ID : BYTE ;
 OB86_PRIORITY : BYTE ;
 OB86_OB_NUMBR : BYTE ;
 OB86_RESERVED_1 : BYTE ;
 OB86_RESERVED_2 : BYTE ;
 OB86_MDL_ADDR : WORD;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1047

 OB86_RACKS_FLTD : ARRAY [0 .. 31]OF BOOL;
 OB86_DATE_TIME : DATE_AND_TIME;
END_VAR
 BEGIN
 CALL FC5
 (PlcStop := TRUE) ;
END_ORGANIZATION_BLOCK

14.17.14 FC6: TM_TRANS2 - transfer block for tool management and multitool

Function
The block FC6 "TM_TRANS2" is used for position changes of the tools, state changes, and
multitool.

The FC6 block has the same functionality as the FC8 block, plus the multitool functionality.

The description of FC6 only contains the multitool functionality.

The functionality of FC8 is described in "FC8: TM_TRANS - transfer block for tool
management (Page 1052)".

Declaration of the function

FUNCTION FC6: VOID
VAR_INPUT
 Start: BOOL;
 TaskIdent: BYTE ;
 TaskIdentNo: BYTE ;
 NewToolMag: INT;
 NewToolLoc: INT;
 OldToolMag: INT;
 OldToolLoc: INT;
 Status: INT;
 MtoolPlaceNum: INT;
END_VAR
VAR_OUTPUT
 Ready: BOOL;
 Error: INT;
END_VAR
BEGIN
END_FUNCTION

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1048 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Description of formal parameters

Signal Type Type Value range Description
Start: I BOOL 0 (FALSE), 1

(TRUE)
See block description FC8

TaskIdent: I BYTE See block description FC8
TaskIdentNo: I BYTE See block description FC8
NewToolMag: I INT See block description FC8
NewToolLoc: I INT See block description FC8
OldToolMag: I INT See block description FC8
OldToolLoc: I INT See block description FC8
Status: I INT See block description FC8
MtoolPlaceNum: I INT Multitool location No.
Ready: O BOOL 0 (FALSE), 1

(TRUE)
See block description FC8

Error: O INT See block description FC8

14.17.15 FC7: TM_REV - transfer block for tool change with revolver

Function
After a revolver has been changed, the user calls block FC7 "TM_REV". The revolver number
corresponding to interface number in DB73 must be specified in parameter "ChgdRevNo" for
this purpose. As this block is called, the associated "Interface active" bit in data block
DB73.DBW0 of FC7 is reset after parameter "Ready" == TRUE is returned.

Job executed correctly
If the job was executed correctly, then "Ready" == 1. The user must then set the parameter
"Start" = 0 or no longer call FC7.

Job executed with errors
If the job was executed with errors, then parameter "Ready" == 0 and parameter "Error" == 1.
The job must be repeated in the next PLC cycle. Since the parameter "Start" does not need a
positive edge for a subsequent job, "Start" = 1 remains, because the job has not yet been
completed. See "Call example" and "Pulse diagram" below.

General conditions
● Block FC7 may only be started with parameter "Start" = 1 if an activation signal for the

associated interface (DB73.DBW0) for this transfer has been supplied by the tool
management function.

● A cancellation of a transfer, e.g. by a channel reset, is not permitted.

● Parameter "Start" = 1, until parameter "Ready" == 1 or "Error" == 1

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1049

References
● For detailed information about tool management, refer to the Function Manual Tool

Manager.

● PI services for tool management, see:

– FB4: PI_SERV - request PI service (Page 988)

– FC8: TM_TRANS - transfer block for tool management (Page 1052)

– FC22: TM_DIR - direction selection for tool management (Page 1095)

Manual revolver switching
If the revolver is rotated in manual operation, neither a tool change nor an offset selection is
associated with this operation. The first step is the removal of the tool from the toolholder back
to its location in the revolver. An asynchronous transfer must be performed with FC8
(alternative: FC6). The associated parameter settings are shown below:

TaskIdent = 4
TaskIdentNo = Channel no.
NewToolMag = Magazine no. of the revolver
NewToolLoc = Original location of the tool
OldToolMag = Magazine no. of the buffer storage (spindle) = 9998
OldToolLoc = Buffer storage no. of the spindle
Status = 1

If the revolver is now turned to an arbitrary position at which a tool is located, this tool must be
activated. This is done easiest by the new T programming in the part program. However, if this
should take place, for example, at the end of revolver switching from the PLC user program,
an ASUP must be started for this purpose. The current revolver position must be transferred
to the ASUP. In this way, the tool at this location is determined in the ASUP and is selected
(see Jobshop example in the toolbox).

Declaration of the function

FUNCTION FC7: VOID
//NAME :TM_REV
VAR_INPUT
 Start : BOOL;
 ChgdRevNo : BYTE ;
END_VAR
VAR_OUTPUT
 Ready BOOL;
 Error : INT;
END_VAR
BEGIN
END_FUNCTION

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1050 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Description of formal parameters

Signal Typ
e

Type Value range Description

Start: I BOOL 0 (FALSE), 1
(TRUE)

1 = start transfer

ChgdRevNo: I BYTE 1, 2, 3, ... Number of revolver interface
Ready: O BOOL 0 (FALSE), 1

(TRUE)
1 = Transfer complete

Error: O INT 0, 1 , 2, 3 Error checkback
0: No error has occurred
1: No revolver present
2: Illegal revolver number in parameter "ChgdRev‐
No"
3: Illegal job ("interface active" signal for selected
revolver = "FALSE")

Pulse diagram

① User: Set request, Start = 0 → 1
② FB4: PI service successfully completed, Ready = 1

User: Reset request, IF Ready == 1 THEN Start = 0
③ User: IF Ready == 1 THEN reset request: 1 → 0
④ FB4: Reset job confirmation, Ready = 0
⑤ User: IF Ready == 0 AND Error == 0 THEN reset request Start = 1 → 0 not permissible
⑥ FB4: PI service completed with errors, Error = 1

User: Reset request, IF Ready == 1 OR Error == 1 THEN Start = 0, possible further error handling

Call example

CALL
FC7(

// Tool management: Transfer block for revolver

 Start := m 20.5, // Start := "1 " => initiate the
transfer

 ChgdRevNo := DB61.DBB1,

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1051

 Ready := m 20.6,
 Error := DB61.DBW12
};
u m 20.6; // Poll ready
r m 20.5; // Reset start
spb m001; // Jump, if everything OK
l db61.dbw 12; // Error information
ow w#16#0; // Evaluate error
spn error: // Jump to troubleshooting, if <> 0
m001: // Start of another program
error:
r m 20.5; // Start reset, if an error has

occurred

14.17.16 FC8: TM_TRANS - transfer block for tool management

Function
The user calls this block FC TM-TRANS when the position of the tool or the status of the
transfer operation changes. The parameter "TaskIdent" specifies the transfer job for the block
FC8 at the tool management interface:

● For loading/unloading positions

● For spindle change positions

● For revolver change positions as transfer identifier

● Asynchronous transfer

● Asynchronous transfer with location reservation

The interface number is indicated in parameter "TaskIdentNo".

Example for loading point 5:

Parameter "TaskIdent":= 1 and "TaskIdentNo":= 5.

Furthermore, the current tool positions and status data (list of "Status" parameter in the
following text) are also transferred for this transfer function.

Note

FC8 informs the NC of the current positions of the old tool.

The NC knows where the old and the new tool were located until the position change.

In the case of a transfer without a socalled "old tool" (e.g. on loading), the value 0 is assigned
to parameters "OldToolMag", "OldToolLoc".

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1052 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Block FC TM_TRANS may be started only with "Start" parameter = "TRUE" if an activation
signal for the appropriate interface (DB71, DB72, DB73 in word 0) for this transfer has been
supplied by the tool management function.

When this job is executed correctly, the output parameter "Ready" contains the value TRUE.

The user must then set the"Start" parameter to FALSE or not call the block again.

If the "Ready" parameter = FALSE, the error code in the "Error" parameter must be interpreted
(see Call example FC8 and pulse diagram).

If the error code = 0, then this job must be repeated in the next PLC cycle (e.g. "Start" remains
set to "TRUE"). This means that the transfer operation has not yet been completed.

If the user assigns a value of less than 100 to the "Status" parameter, then the associated
interface in data block DB71 or DB72 or DB73, word 0 is deactivated (process completed).
The appropriate bit for the interface is set to 0 by FC8.

The "Start" parameter does not need a signal edge for a subsequent job. This means that new
parameters can be assigned with "Start = TRUE" immediately when "Ready = TRUE" is
received.

Asynchronous transfer
To ensure that changes in the position of a tool are automatically signaled from the PLC to the
tool management (e.g. power failure during an active command or independent changes in
the position by the PLC), FC8 is called with "TaskIdent" = 4 or 5. This call does not require
interface activation by the tool management.

If parameter "TaskIdent" = 5, the tool management reserves the location in addition to changing
the position. The location is only reserved if the tool has been transported from a real magazine
to a buffer storage.

A relevant NC channel must be parameterized in the "TaskIdentNo" parameter.

The previous location of the tool is specified in the parameters "OldToolMag" and "OldToolLoc".
The current location of the tool is specified in the parameters "NewToolMag", "NewToolLoc".
"Status" = 1 must be specified.

With "Status" = 5, the specified tool remains at location "OldToolMag", "OldToolLoc". This
location must be a buffer (e.g. spindle). The real magazine and location must be specified in
the parameters "NewToolMag", "NewToolLoc"; the location is at the position of the buffer. This
procedure must always be used if the tool management is to be informed of the position of a
specific magazine location. This procedure is used for alignment in search strategies.

Supplementary conditions
● A cancellation of a transfer, e.g. by a channel reset, is not permitted.

● Parameter "Start" = 1, until parameter "Ready" == 1 or "Error" == 1

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1053

References
● For detailed information about tool management, refer to

the Function Manual Tool Management.

● PI services for tool management

– FB4: PI_SERV - request PI service (Page 988)

– FC7: TM_REV - transfer block for tool change with revolver (Page 1049)

– FC22: TM_DIR - direction selection for tool management (Page 1095)

Declaration of the function

FUNCTION FC8: VOID
//NAME :TM_TRANS
VAR_INPUT
 Start : BOOL;
 TaskIdent: BYTE ;
 TaskIdentNo: BYTE ;
 NewToolMag: INT;
 NewToolLoc: INT;
 OldToolMag: INT;
 OldToolLoc: INT;
 Status: INT;
END_VAR
VAR_OUTPUT
 Ready BOOL;
 Error : INT;
END_VAR
BEGIN
END_FUNCTION

Description of formal parameters

Signal Type Type Value range Meaning
Start: I BOOL 0 (FALSE), 1

(TRUE)
1: Start transfer

TaskIdent: I BYTE 1, 2, 3, 4, 5 Interface or task identifier
1: Loading/unloading location
2: Spindle change position
3: Revolver change position
4: Asynchronous transfer
5: Asynchronous transfer with location reserva‐
tion

TaskIdentNo: I BYTE 1, 2, 3 ... 10 Number of the associated interface or channel
number.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1054 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Type Type Value range Meaning
NewToolMag: I INT -1, 0, 1, 2 ... Current magazine number of tool to be replaced

-1: Tool remains at its location
NewToolLoc = any value
Only permissible if TaskIdent = 2

NewToolLoc: I INT 0, 1, 2 … max.
location no.

Current location number of new tool

OldToolMag: I INT -1, 0 ... Current magazine number of tool to be replaced
-1: The tool remains at its location. "OldToolLoc"
= <any value>. Only permissible if "TaskIdent" =
2.

OldToolLoc: I INT Max. location
number

Current location number of tool to be replaced

Status: I INT 1, 2, 3 ... 7, 103,
104, 105

Status information about transfer operation

Ready: O BOOL 0 (FALSE), 1
(TRUE)

1: Transfer completed

Error: O INT 0 ... 65535 Error checkback
0: No error has occurred
1: Unknown "TaskIdent"
2: Unknown "TaskIdentNo"
3: Impermissible job, ("Interface active" signal for
selected revolver == 0)
Other value: The number corresponds to the er‐
ror message of the tool management function in
the NC caused by this transfer.

Pulse diagram

① Activation of function by means of a positive edge
② Positive acknowledgment: Tool management has been transferred
③ Reset function activation after receipt of acknowledgment
④ Signal change using FC
⑤ This signal chart is not permissible. The job must generally be terminated since the new tool

positions must be conveyed to the tool management in the NC.
⑥ Negative acknowledgment: Error occured, error code in the output parameter Error

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1055

Status

Status Description
1 The tool management job has been completed.

The parameters "NewToolMag", "NewToolLoc", "OldToolMag", "OldToolLoc" of the FC8 block
should be parameterized to the actual positions of the tools involved. Except in the case of
preparing the change, they are normally the specified target positions of the tools of the asso‐
ciated tool management interface, see also "Explanations of the formal parameters".
1. In the case of loading/unloading/reloading, the tool has arrived at the required target

address. If the bit in the interface in DB 71.DBX (n+0).3 "position at loading point" is enabled,
status 1 cannot be used for the function termination. Status 5 must be used for correct
termination.

2. In the case of "Prepare change", the new tool is now available. The tool may, for example,
be positioned in a buffer (gripper). In some cases, the target (magazine, location) of the
old tool has been moved to the toolchange position after placement of the new tool in a
buffer. However, the old tool still remains in the spindle. The preparations for a tool change
are thus complete. After this acknowledgment, the "Change" command can be received.
The positions in parameters "NewToolMag", "NewToolLoc", "OldToolMag" and
"OldToolLoc" correspond to the current tool positions.

3. In the case of "Change" (spindle or revolver), the tools addressed in the interface have now
reached the required target addresses.
The tool change operation is thus completed.

2 The "new" tool cannot be made available
This status is only admissible in conjunction with the "Change tool" command. When this status
is applied, the PLC must be prevented from making a change with the proposed tool. The
proposed (new) tool is disabled by the tool management function in the NC. A new command
is then output by the tool management with a duplo tool. The positions in parameters "New‐
ToolMag", "NewToolLoc", "OldToolMag", and "OldToolLoc" correspond to the original tool po‐
sitions.

3 An error has occurred
The tool positions must not have been changed. Any changes to the magazine positions of the
tool that have taken place in the meantime must be notified beforehand, for example, with
status = 105 via FC8 transfer block. Only then will the tool positions be taken into account by
the tool management function.

4 It would be better to position the "old" tool in the magazine position specified in parameters
"OldToolMag" and "OldToolLoc"
This status is permissible only in conjunction with preparation for tool change (change into
spindle). The magazine location specified for the "old" tool must be free. Once this status has
been passed to the tool management in the NC, a new preparation command is generated
(Status_4 = final acknowledgment) and output to the DB72, for which the requested magazine
position of the old tool is considered.
No new tool search is performed explicitly, the positions for "NewToolMag" and "NewToolLoc"
are taken from the original preparation command. But this is done only when this position is
free. Parameters "NewToolMag" and "NewToolLoc" are not taken into account.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1056 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Status Description
5 The operation is complete

The "new" tool is in the position specified in parameters "NewToolMag", "NewToolLoc". In this
case, the specified tool is not really in this position, but is still in the same magazine location.
However, this magazine location has been moved to the position set in the parameters (e.g.
tool change position). This status may be used only for revolvers, chain-type magazines and
disk magazines. The status enables the tool management function to adjust the current position
of a magazine and to improve the search strategy for subsequent commands. This status is
permissible only in conjunction with loading, unloading, and reloading operations and with
preparations for a tool change. The "OldToolMag" and "OldToolLoc" parameters must be par‐
ameterized with the data of a buffer.
● Loading, reloading:

On loading or reloading, a location for the tool is already reserved in the NC. The machine
operator must then insert the tool at the target location. Notice: The location reservation is
canceled when the control system is switched on again.

● Tool-change preparation:
Tool motions still to be executed are not carried out until after the tool has been changed.

● Positioning to the loading point:
If the bit in the interface in DB 71.DBX (n+0).3 "position at loading point" is enabled, then
only status 5 be used for the function termination (not status 1).

6 The tool management job has been completed
This status has the same function as status 1, but, in addition, a reservation of the source
location is carried out. This status is only permitted when reloading. The command is ended
and the source location of the tool is reserved if the target location is in a buffer magazine.

7 Initiate repetition of the command "Prepare Tool"
This status is only admissible in conjunction with the "Change tool" command. This status is
intended for use when the "new" tool has changed its position (e.g. via an asynchronous com‐
mand of the "new" tool). After "Ready = 1" has been provided by FC8, the "Prepare Change"
command is repeated automatically with the same tool. For the automatic repetition, a new
tool search is carried out. The positions in parameters "NewToolMag", "NewToolLoc", "Old‐
ToolMag", and "OldToolLoc" correspond to the original tool positions.

103 The "new" tool can be inserted
This status is permitted only in the tool change preparation, when the PLC may reject the new
tool (e.g. in case of MD20310 $MC_TOOL_MANAGEMENT_MASK, bit 4=1 for the possibility,
request changed parameter from PLC once again). The tool positions have remained un‐
changed. This status is therefore necessary, when the processing is to be continued in the NC
without an unnecessary stop.

104 The "new" tool is in the position specified in parameters "NewToolMag", "NewToolLoc"
This status is only permissible if the tool is still in the magazine in the same location. The "old"
tool is in the position (buffer) specified in parameters "OldToolMag", "OldToolLoc". In this case,
however, the new tool is not really in this position, but is still in the same magazine location.
However, this magazine location has been moved to the position set in the parameters (e.g.
tool change position). This status may be used only in conjunction with revolvers, chaintype
magazines and disk magazines for the "Tool change preparation" phase. The status enables
the tool management to adjust the current position of a magazine and to improve the search
strategy for subsequent commands.

105 The specified buffer location has been reached by all tools involved
Standard case if the operation has not yet been completed.
The tools are in the specified tool positions (parameters "NewToolMag", "NewToolLoc", "Old‐
ToolMag", "OldToolLoc").

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1057

Status definition
A general rule for the acknowledgment status is that the status information 1 to 7 leads to the
termination of the command. If FC8 receives a status information, the "Interface active bit" of
the interface specified in FC8 is reset to "0" (see also interface lists DB 71 to DB 73), thus
completing the operation. The behavior is different in the case of status information 103 to 105.
When the FC8 receives a status information, the "Interface active bit" of this interface remains
at "1". Further processing is required by the user program in the PLC (e.g. continuation of
magazine positioning). This status information is generally used to transfer changes in position
of one or both tools while the operation is still in progress.

Call example

CALL FC8(//Tool management transfer block
 Start := m 20.5, // Start := "1 " => initiate the transfer
 TaskIdent := DB61.DBB0,
 TaskIdentNo := DB61.DBB1,
 NewToolMag := DB61.DBW2, // Current position of new tool
 NewToolLoc := DB61.DBW4,
 OldToolMag := DB61.DBW6, // Current position of old tool
 OldToolLoc := DB61.DBW8,
 Status := DB61.DBW10, // Status
 Ready := m 20.6,
 Error := DB61.DBW12);
u m 20.6; // Poll ready
r m 20.5; // Reset start
spb m001; // Jump if everything OK
l DB61.dbw12; // Error information
ow w#16#0; // Evaluate error
JC error; // Jump to troubleshooting

m001: // Normal branch

error: //Troubleshooting
r m 20.5: // Reset start

14.17.17 FC9: ASUP - start of asynchronous subprograms

Function
The block FC9 "ASUP" can be used to trigger any functions in the NC. Before an ASUP can
be started from the PLC, it must have been selected and parameterized by an NC program or
by FB4 (PI service ASUP). In this case, the channel and the interrupt numbers must match
the parameters in FC9.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1058 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Once prepared in this way, it can be started at any time from the PLC. The NC program running
on the channel in question is interrupted by the asynchronous subprogram.

Only one ASUP can be started in the same channel at a time. If several ASUPs are started in
one PLC cycle, the ASUPs are started in this order in the NC.

Parameter "Start" = 0 must be set by the user if the ASUP has been terminated ("Done" == 1)
or an error has occurred ("Error" == 1).

For processing jobs, each FC9 needs its own parameter "Ref" from the global user area. This
parameter is for internal use only and must not be changed by the user. The parameter "Ref"
is initialized with the value 0 in the first OB1 cycle and, for this reason, every FC9 must be
called absolutely. Alternatively, the user can initialize parameter "Ref" with a value of 0 during
startup. This option makes conditional calls possible. A conditional call requires parameter
"Start" = 1 during activation of FC9 until a negative edge change has occurred at parameter
"Done" (1 → 0).

General conditions
● The function block FB4 must be terminated before the block FC9 is started.

● The block FC9 cannot be started if DB10, DBX56.1 == 1 (emergency stop).

● Block FC9 must not be started if channel reset is active in the channel in which the ASUP
is to be started.

Declaration of the function

FUNCTION FC9: VOID
//NAME :ASUP
VAR_INPUT
 Start : BOOL;
 ChanNo: INT;
 IntNo: INT;
END_VAR
VAR_OUTPUT
 Active: BOOL;
 Done : BOOL;
 Error : BOOL;
 StartErr: BOOL;
END_VAR
VAR_IN_OUT
 Ref: WORD;
END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1059

Description of formal parameters
The table below lists all formal parameters of the ASUP function.

Signal Typ
e

Type Value range Description

Start: I BOOL 0 (FALSE), 1
(TRUE)

Job start with positive signal edge

ChanNo: I INT 1, 2, 3 ... 10 Channel number
IntNo: I INT 1, 2, 3 ... 8 Interrupt number
Active: O BOOL 0 (FALSE), 1

(TRUE)
1: active

Done: O BOOL 0 (FALSE), 1
(TRUE)

1: ASUP completed

Error: O BOOL 0 (FALSE), 1
(TRUE)

1: Interrupt switched off

StartErr: O BOOL 0 (FALSE), 1
(TRUE)

1: Interrupt number not assigned or de‐
leted

Ref: I/O WORD Global variable
(MW, DBW,..)

1 word per FC9 (for internal use)

Pulse diagram

(1) Activation of function
(2) ASUP is active
(3) Positive acknowledgment: ASUP completed
(4) Reset function activation after receipt of acknowledgment
(5) Signal change using FC
(6) Not permitted If function activation is reset prior to receipt of acknowledgement, the output signals

are not updated without the operational sequence of the activated function being affected.
(7) Negative acknowledgement: An error occurred

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1060 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Call example

CALL FC9(//Start an asynchronous subprogram
//in channel 1 interrupt number 1

 Start := I 45.7,
 ChanNo := 1,
 IntNo := 1,
 Active := M 204.0,
 Done := M204.1,
 Error := M 204.4,
 StartErr := M 204.5,
 Ref := MW 200);

14.17.18 FC10: AL_MSG - error and operating messages

Function
With block FC10 "AL_MSG", the signals entered in DB2 are evaluated and displayed as
incoming or outgoing error messages and operational messages on the user interface.

The incoming signals (positive edge) are displayed immediately in the case of both error and
operational messages.

Outgoing signals (negative edge) are deleted immediately only for operational messages. In
the event of error messages, the messages that are no longer pending are only deleted with
the parameter "Quit", i.e. errors remain displayed on the user interface until they have been
acknowledged by the user even if the signals are no longer pending.

The "ToUserIF" parameter can be used to transfer the group signals for the feed, read and NC
start disabling signals and feed stop signal to the existing axis, spindle and channel interfaces.
The group signals are transferred to the user interface directly from the status information in
DB2 irrespective of an alarm acknowledgment.

1. If parameter "ToUserIF" = 0, there is no transfer of the signals to the user interface. In this
case, the user must take measures in his PLC program to ensure that these signals are
influenced in the interface. The FB1 parameter "ExtendChanAxMsg" is evaluated and so
avoids the limitation of the usable message ranges by configuring the NCK machine data.

2. If parameter "ToUserIF" = 1, all signals listed above are sent to the user interface as a group
signal in each case. The user PLC program can, therefore, influence these signals only via
DB2 in conjunction with a message or alarm output. The appropriate information is
overwritten in the user interface.

Alternatively to the response described in paragraph 2, the disable and hold signals can be
influenced without a message being output by influencing the interface signals with a disable
or stop signal state after FC10 is called.

The following program illustrates this method:

CALL FC10(
 ToUserIF := TRUE,

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1061

 Ackn := I 6.1);

u m 50.0; // Feed disable for channel 1
to DB 21;
s dbx 6.0; // Setting the blocking condition

// Resetting is done via FC AL_MSG
// if M 50.0 outputs the signal "0".

FB1 parameter "ExtendAlMsg"
With FB1 parameter "ExtendAlMsg" = TRUE, the new DB2 structure becomes effective (see
"Interface PLC/HMI (Page 892)"). For the activation, bit fields for the lock and stop signals are
available for 10 channels, 31 axes and maximum 64 user areas (the number of user areas is
entered in the FB1 parameter "MsgUser"). The associated functionality is obtained
automatically by simply setting/resetting signals in DB2.

The error and operational messages in data block DB2 must be provided in a user-specific
way.

FB1 parameter "ExtendChanAxMsg"
With the activation of this parameter, a channel- or axis-number independent acquisition of
alarms and messages acts. All DB2 areas are available for users Group signals cannot be
transferred to the user interface. The parameter is evaluated only when the FC10 parameter
"ToUserIF" is deactivated.

Display on HMI
In DB2, a "1" signal must be present for several OB1 cycles to ensure that a message can
also be displayed on the HMI.

There is an upper limit for the number of alarms and messages that can be pending at the
same time. This upper limit is dependent on the PLC CPU. On PLC 317-2DP, the upper limit
for messages pending simultaneously is 60.

References:
List Manual for NC variables and interface signals, Section "PLC user interface" > "PLC alarms/
messages"

Declaration of the function

FUNCTION FC10: VOID
 // NAME: AL_MSG
VAR_INPUT
 ToUserIF : BOOL;
 Ackn : BOOL;
END_VAR
END_FUNCTION

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1062 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Description of formal parameters

Signal Type Type Value range Meaning
ToUserIF : I BOOL 0 (FALSE), 1

(TRUE)
1: Transfer of the signals to the user inter‐
face in each cycle

Ackn: I BOOL 0 (FALSE), 1
(TRUE)

1: Acknowledgment of error messages

Call example

CALL FC10(// Error and operational messages
 ToUserIF := TRUE, // Signals from DB2 are transferred to interface
 Ackn := E6.1 // Acknowledgment of error message via input I6.1
);

14.17.19 FC12: AUXFU - call interface for user with auxiliary functions

Function
The block FC12 "AUXFU" is called on an eventdriven basis in the basic program if the channel
transferred in the input parameter contains new auxiliary functions. The PLC user can extend
FC AUXFU with program instructions for processing his auxiliary function to avoid cyclic polling
of the channel DBs. This mechanism permits auxiliary functions to be processed on a jobdriven
basis. FC AUXFU is supplied as a compiled empty block in the basic program. In this case,
the basic program supplies parameter "Chan" with the channel number. The PLC user knows
which channel has new auxiliary functions available. The new auxiliary functions can be
determined by the auxiliary-function change signals in the channel concerned.

Declaration of the function

FUNCTION FC12: VOID // Event control of auxiliary functions
VAR_INPUT
 Chan: BYTE ;
END_VAR
BEGIN
 BE;
END_FUNCTION

Explanation of formal parameters

Signal Type Type Value range Description
Chan: I BYTE 0, 1, 2 ... 9 Index of the channel = channel number -1

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1063

Example

FUNCTION FC12: VOID // Event control of auxiliary functions
VAR_INPUT
 Chan: BYTE ; // Parameter is supplied by basic program
END_VAR
VAR_TEMP
 ChanDB: INT;
END_VAR

BEGIN
L Chan; // Channel index
+ 21; // Channel DB offset
T ChanDB; // Save channel DB no.
TO DB[ChanDB]; // Channel DB is opened indirectly
// Auxiliary-function change signals are now scanned, etc.
 BE;
END_FUNCTION

14.17.20 FC13: BHGDisp - display control for handheld unit

Function
Block FC13 "BHGDisp" handles the display control for the handheld unit (HHU or HT 2). The
information that is to appear on the display must be saved to a string variable. The pointer to
the string is specified in the parameter "ChrArray". To do this, a fixed text assignment of 32
characters (HHU) or 64 characters (HT 2) is needed when the data block for this string is
created.

16 characters are sent to the HHU per job. The assignment of the characters in the "ChrArray"
for the respective line is unambiguous. For line 1, characters 1 to 16 and for line 2, characters
17 to 32 of the string data ChrArray are transferred. In addition, for HT 2 line 3 with characters
33 to 48 is displayed and line 4 with characters 49 to 64. A job takes several OB1 cycles.

Display
Block FC13 checks whether the necessary minimum length of the "ChrArray" exists for
operating the handheld unit. If fewer characters exist in the string variables than should be
displayed, the line is filled with blank spaces. If several variables are to be entered in the string
in one or more PLC cycles without a display output, the display output can be suppressed by
parameter "Row" = 0. The transfer of the characters to the rows takes several OB1 cycles. If
several rows are to be updated "simultaneously" (parameter "Row" > 1), the rows are updated
successively with 16 characters per row.

Variable portions
Variable components within the string can be inserted using the optional number converter
functionality with the parameter "Convert" = 1. The variable to be displayed is referenced via
the parameter "Addr". The format of the variables is described in the parameter "DataType".

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1064 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The number of bytes of the variable is linked to the format description. The address justified
to the right within the string is specified by parameter "StringAddr". The number of written
characters is shown in the parameter table.

High display resolution
If, for example, the axis value is to be displayed with a higher resolution, the following must
be observed:

● The variables are read as before with FB2 or FB5. Instead of anypointer BYTE 8 as criterion
for output as 64-bit floating point number, REAL 2 is used (e.g.: P#M100.0 REAL 2).

● When specifying the 64-bit floating point number on the HHU/HT 2, you can select the
output format with up to 14 places, distributed freely before and after the decimal point,
instead of fixed, specified formats.

HHU output signals
Byte 1 is used by the HHU output signals and the character specifications are used by the
block FC13. These may not be written by the PLC user program.

Relevant FB1 parameters

Handheld unit HHU
In OB100, the FB1 parameters must be set for the input and output data of the handheld unit:

● Parameter "BHGIn" corresponds to the input data of the PLC from the handheld unit (data
received by PLC)

● Parameter "BHGOut" corresponds to the output data of the PLC to the handheld unit (data
transmitted by PLC).

The two pointers must be set to the starting point of the relevant data area, which is also
parameterized in SDB 210 with an MPI link.

The FB1 parameter "HHU" = 2 must be set for operating an HHU.

HT 2 handheld terminal
If HT 2 is used, FB1 parameter "HHU" = 5 must be set. The parameters of the input and output
data must be set, as described in the above paragraph "Handheld Unit HHU".

The value that was configured at S2 of the DIP-Fix switch (rotary coding switch) of the
connecting module of the HT 2 must be assigned to the parameters "BHGRecGDNo" and
"BHGRecGBZNo".

Declaration of the function

DATA_BLOCK "strdat"
 STRUCT
 disp: STRING [32]:= 'character_line1 character_line2';
 END_STRUCT;
BEGIN
END_DATA_BLOCK

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1065

FUNCTION FC13: VOID
 VAR INPUT
 Row : BYTE ;
 ChrArray : STRING ;
 Convert : BOOL;
 Addr: POINTER;
 DataType : BYTE ;
 StringAddr : INT;
 Digits : BYTE ;
END VAR
VAR OUTPUT
 Error : BOOL;
END VAR

Description of formal parameters

Signal Type Type Value range Description
Row : I BYTE 0, 1, 2, ... 8

B#16#F
Display line "binary" evaluation
0: no display output
1: Line 1
2: Line 2
3: Line 1 and line 2 to be changed
4: Line 3
5: Line 1 and line 3 to be changed
8: Line 4
B#16#F automatic change of all 4 lines

ChrArray : I STRING "DBName".<VarName> Display content as pointer to string
string[32]: not HT 2
string[64]: HT 2

Convert : I BOOL 0 (FALSE), 1 (TRUE) Activation of numerical conversion
Addr: I Pointer Pointer to the variable to be converted

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1066 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Type Type Value range Description
DataType: I BYTE 1, 2, 3 ... 8,

B#16#13,
B#16#30

Data type of the tag
1: BOOL, 1 character
2: BYTE, 3 characters
3: CHAR, 1 character
4: WORD, 5 characters
5: INT, 6 characters
6: DWORD, 7 characters
7: DINT, 8 characters
8: REAL, 9 characters
(7 digits plus a sign and a decimal point;
for places after the decimal point, refer
to the Digits Parameter)
B#16#13: String, up to 32/64 charac‐
ters, "Addr" must be a pointer to a
STRING.
B#16#30: REAL64,
(12 characters: 10 digits plus a sign and
a decimal point; for places after the dec‐
imal point, refer to the Digits Parameter)

StringAddr : I INT 1 ... 32 / 64 Right-justified address within variable
from "ChrArray"

Digits : I BYTE 1, 2, 3 ... 9 Number of places after the decimal
point:
1 ... 4: DataType REAL
1 ... 9: DataType REAL64

Error: O BOOL 0 (FALSE), 1 (TRUE) Error
1: An error occurred

Ranges of values

Ranges of values of data types
Data type Representable numerical range

BOOL 0, 1
BYTE 0 ... 255
WORD 0 ... 65535

INT - 32768 ... 32767
DWORD 0 ... 9999999

DINT -9999999 ... 9999999
REAL (Digits := 1) -999999.9 ... 999999.9
REAL (Digits := 2) -99999.99 ... 99999.99
REAL (Digits := 3) -9999.999 ... 9999.999

... ...
REAL (Digits := 9) -0.9999999 ... 0.9999999

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1067

Call example
// DB with name strdat in the simple table, data element disp is declared as String[32] (for HT 2:
// String[64]) and completely assigned with characters

CALL FC13(
 Row := MB 26,
 ChrArray := "strdat".disp,
 Convert := M 90.1,
 Addr := P#M 20.0, // Number to be converted
 DataType := MB 28, // Data type of the variables
 StringAddr := MW 30,
 Digits := B#16#3, // 3 decimal places
 Error := M 90.2);

14.17.21 FC17: YDelta - star-delta switchover

Function
Block FC17 is used for star-delta changeover for digital main spindle drives. The changeover
can be made in both directions (star > delta or delta > star).

Prerequisite
The prerequisite is two isolated contactors. The contactors are controlled via the peripheral
output signals configured at the FC17 outputs: "Y" or "Delta".

Internal sequence
The internal sequence when changing over between star and delta after switching over the
FC17 control signal is described in the following: "YDelta" displayed.

1. DB31,DBX21.5 = 0 (reset feedback signal "motor selected")
DB31,DBX21.x = 1 (set request "2nd motor data set" corresponding to the interface
parameterization DB31,DBX130.0 - 4 (Page 74))

2. DB31,DBX93.7 == 0 (feedback signal "pulses enabled" was reset) ⇒

– Start FC17 timer

– FC17: "Y" = 0 (reset output for star contactor)

3. After the FC17 timer elapses (FC17: "TimeVal") ⇒

– FC17: "Y" = 1 (set output for delta contactor)

4. After the FC17 timer elapses again (FC17: "TimeVal") ⇒

– The pulses are again internally set

– DB31,DBX93.7 == 1 (feedback signal "pulses enabled" was set) ⇒

– DB31,DBX21.5 = 0 (feedback signal "motor selected" was set)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1068 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal flow

① FC17 input: Signal for star-delta changeover
② - Changeover: Star > delta
③ - Changeover: Delta > star
④ FC17 input: Parameterizable changeover time ""TimeVal"
⑤ - Wait time until the control of the output signal: "Y" or "delta"
⑥ - Wait time until pulse enable
⑦ FC17 output: Signals for contactor control

References

For additional explanations of motor speed adjustments, see:

● Function Manual, Basic Functions; Spindles (S1); Chapter "Configurable gear adaptation"

● Functions Manual, Basic Functions; Velocities, Setpoint/Actual-Value Systems, Closed-
Loop Control (G2)

Note
Drive parameters

The following drive parameters must be considered for a star-delta changeover:
● p833 (dataset changeover configuration)

– Bit 0 = 1 (contactor switchover via application)
– Bit 1 = 0 (pulse cancellation by drive)

● p826 (motor changeover motor number)
● p827 (motor changeover status word bit number)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1069

General conditions
● Block FC17 must be called absolutely and separately for each spindle.

● The drive pulses are deactivated during a star-delta changeover. The feedback signal to
the PLC is realized using:

– DB31,DBX93.7 == 0 (pulses enabled)

– DB31,DBX61.7 == 0 (current controller active)

– DB31,DBX61.6 == 0 (speed controller active)

● For a spindle which is located in an axis mode such as M70 or SPOS, a start-delta
changeover is not carried out.

● For a closed-loop position controlled spindle (DB31,DBX61.5 == 1 (position control
active)), while the spindle is moving it is not permissible to carry out a star-delta changeover.
In the case of a fault, Alarm 25050 "Contour monitoring" is displayed, and the star-delta
changeover is not executed.

● Once the star-delta changeover has been initiated using FC17, it cannot be delayed by the
user, e.g. by waiting until the star-delta contactors change over during the course of
operation. A delay such as this must be implemented by the user in the PLC user program.

Declaration of the function

VAR_INPUT
 YDelta: BOOL;
 SpindleIFNo: INT;
 TimeVal: S5TIME ;
 TimerNo : INT;
END_VAR
VAR_OUTPUT
 Y: BOOL;
 Delta: BOOL;
END_VAR
VAR_IN_OUT
 Ref: WORD;
END_VAR

Description of formal parameters

Signal Type Type Value range Description
YDelta: I BOOL 0 (FALSE), 1

(TRUE)
Input signal for star-delta changeover
The changeover is initiated by a signal
change:
● 0 (FALSE): Star
● 1 (TRUE): Delta

SpindleIFNo: I INT 1 ... Number of the spindle interface (number of
the associated machine axis)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1070 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Type Type Value range Description
TimeVal: I S5time 0, 50 ms ... Switchover time

Configured Internally effective
0 100

< 50 50
TimerNo: I INT 10 ... Number of the timer being used
Y: O BOOL 0 (FALSE), 1

(TRUE)
Peripheral output for controlling the star
contactor

Delta: O BOOL 0 (FALSE), 1
(TRUE)

Peripheral output for controlling the delta
contactor

Ref: I/O WORD Instance for status information Internal use

Call example

CALL FC17 (
 YDelta := I 45.7, // Accept star/delta changeover from

input 45.7
 SpindleIFNo := 4, // Spindle interface number: 4

// (Number of the associated machine
axis)

 TimeVal := S5T#150ms, // Changeover time: 150 ms
 TimerNo := 10, // Timer: 10
 Y := O 52.3, // Control of the star contactor:

Output 52.3
 Delta := O 52.4, // Control of the delta contactor:

Output 52.4
 Ref := MW 50 // Bit memory word 50
};

14.17.22 FC18: SpinCtrl - spindle control

Function
Block FC18 "SpinCtrl" can be used to control spindles and axes from the PLC. The block
supports the following functions:

● Position spindle

● Rotate spindle

● Oscillate spindle

● Traverse indexing axis

● Traverse positioning axis

Each function is activated by the positive edge of the appropriate initiation signal (start, stop).
This signal must remain at a logical "1" until the function has been acknowledged positively or

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1071

negatively by InPos="1" or Error = "1". The output parameters are deleted when the relevant
trigger signal is reset and the function has been completed.

To be able to control an axis or spindle via the PLC, it must be activated for the PLC. This can,
for example, be achieved by calling the block with activation of the "Start" or "Stop" parameter.
When you do this, the block requests control of the spindle/axis from the NC.

The NC signals the status of the spindle/axis in the associated axis-specific interface DB31, ...
DBX68.4 - 7. Once the axis/spindle is operating under PLC control, the travel command for
the active status can be evaluated via the relevant axis-specific interface.

Upon completion ("InPos" is True, "Start" changes to zero), the axis/spindle check function is
switched to a neutral status using block FC18.

Alternatively, the PLC user program can also request control for the PLC before calling FC18.

By calling this function several times in succession, a better response by the spindle/axis can
be obtained as the changeover process in the FC can be omitted.

Activation through the PLC user program is executed in the corresponding spindle interface
in byte 8.

After return of the check, the spindle can again be programmed by the NC program.

References
● Function Manual, Basic Functions; Spindles (S1)

● Function Manual, Extended Functions; Positioning Axes (P2)

● Function Manual Expanded Functions; Indexing Axes (T1)

WARNING

Changed response behavior of the axis/spindle

If several block calls (FC18) have been programmed for the same axis/spindle in the PLC
user program, then the functions concerned must be interlocked by conditional calls in the
user program. The conditional call of a started block (parameter Start or Stop = TRUE) must
be called cyclically until the signal state of output parameter "Active" or "InPos" changes from
1 to 0.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1072 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note
Call note

FC18 must be called cyclically until signal "InPos" or, in the case of an error "Error", produces
an edge transition of 1 to 0. An additional "Start" or "Stop" is only possible for this spindle/axis
when the "InPos"/"Error" signal has supplied a value of 0. (the system must wait for at least
one PLC cycle with the next "Start" or "Stop"). This also applies when the assignment in data
byte 8 on the axial interface has been changed.
Abort

The function cannot be aborted by means of parameter "Start" or "Stop", but only by means
of the axial interface signals (e.g. delete distance-to-go). The axial interface also returns status
signals of the axis that may need to be evaluated (e.g. exact stop, traverse command).
Simultaneity

Several axes can be traversed simultaneously or subject to a delay by FC18 blocks. The upper
limit is only limited by the maximum number of axes of the NC.
Axis disable

For a set axis inhibit (DB31,DBX1.4 == 1), the axis controlled via FC18 does not move.
Only a simulated actual value is generated. Same behavior as when traversing the axis for an
axis inhibit by the NC.

Functions

Function 1: Position spindle

Parameter Meaning
Start : 0 → 1: Start the function
Funct : 1: Function number for "Position spindle"
Mode : Positioning modes 1, 2, 3, 4 (refer to the paragraph below, "Explanation of

the formal parameters"
AxisNo : Number of machine axis
Pos : Position
FRate : FRate ≠ 0: Positioning velocity

FRate = 0: Velocity corresponding to MD35300 $MA_SPIND_POSCTRL_VE‐
LO

InPos : 1: Position reached with "Exact stop fine"
Error : 1: Positioning error
State : Error code

Function 2: Rotate spindle

Parameter Meaning
Start : 0 → 1: Start the function
Stop : 0 → 1: Stop the function
Funct : 2: Function number for "Rotate spindle"

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1073

Parameter Meaning
Mode : Mode = 5: direction of rotation M4

Mode ≠ 5: direction of rotation M3
AxisNo : Number of machine axis
FRate : Spindle speed
InPos : 1: Setpoint speed is output, also see DB31, ... DBX83.5 (spindle in the set‐

point range)
Error : 1: Positioning error
State : Error code

Function 3: Oscillate spindle

Parameter Meaning
Start : 0 → 1: Start the function
Stop : 0 → 1: Stop the function
Funct : 3: Function number for "Oscillate spindle"
AxisNo : Number of machine axis
Pos : Setpoint gear stage
InPos : 1: Setpoint speed is output, also see DB31, ... DBX83.5 (spindle in the set‐

point range)
Error : 1: Positioning error
State : Error code

Parameterized oscillation speed: MD35400 $MA_SPIND_OSCILL_DES_VELO

The function of the parameter "Pos" depends on the setting in MD35010
$MA_GEAR_STEP_CHANGE_ENABLE = <value>

<Value> Pos Function
0 0, 1, 2, ... 5 Oscillation
1 0 Oscillation with gear stage change M40

1 Oscillation with gear stage change M41
2 Oscillation with gear stage change M42
3 Oscillation with gear stage change M43
4 Oscillation with gear stage change M44
5 Oscillation with gear stage change M45

Function 4: Traverse indexing axes

Note

The modulo conversion can be compared with approaching the indexing position via POS[AX]
= CIC (value) in the part program.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1074 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameter Meaning
Start : 0 → 1: Start the function
Funct : 4: Function number for "Indexing axis"
Mode : Positioning mode 0, 1, 2, 3, 4
AxisNo : Number of machine axis
Pos : Indexing position
FRate : FRate ≠ 0: Positioning velocity

FRate = 0: Velocity corresponding to MD32060 $MA_POS_AX_VEL
InPos : 1: Position reached with "Exact stop fine"
Error : 1: Positioning error
State : Error code

Function 5, 6, 7, 8: Position axes

Parameter Meaning
Start : 0 → 1: Start the function
Funct : 5, 6, 7, 8: Function number for "Position axes"
Mode : Positioning mode 0, 1, 2, 3, 4
AxisNo : Number of machine axis
Pos : Position
FRate : FRate ≠ 0: Positioning velocity

FRate = 0: Velocity corresponding to MD32060 $MA_POS_AX_VELO
InPos : 1: Position reached with "Exact stop fine"
Error : 1: Positioning error
State : Error code

Function 9: Rotate spindle with automatic gear stage selection:

Parameter Meaning
Start : 0 → 1: Start the function
Stop : 0 → 1: Stop the function
Funct : 9: Function number for "Rotate spindle with gear stage selection"
Mode : Mode = 5: direction of rotation M4

Mode ≠ 5: direction of rotation M3
AxisNo : Number of machine axis
FRate : Spindle speed
InPos : 1: Setpoint speed is output
Error : 1: Positioning error
State : Error code

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1075

Function 10, 11: Rotate spindle with constant cutting rate
The "Constant cutting rate" function (G96) must be active in the NC.

Parameter Meaning
Start : 0 → 1: Start the function
Stop : 0 → 1: Stop the function
Funct : 10: Function number for "Constant cutting rate (m/min)"

11: Function number for "Constant cutting rate (feet/min)"
Mode : Mode = 5: direction of rotation M4

Mode ≠ 5: direction of rotation M3
AxisNo : Number of machine axis
FRate : Cutting rate
InPos : 1: Setpoint speed is output
Error : 1: Positioning error
State : Error code

Declaration of the function

FUNCTION FC18: VOID //SpinCtrl
VAR_INPUT
 Start : BOOL;
 Stop : BOOL;
 Funct : BYTE ;
 Mode : BYTE ;
 AxisNo : INT;
 Pos : REAL;
 FRate : REAL;
END_VAR
VAR_OUTPUT
 InPos : BOOL;
 Error : BOOL;
 State : BYTE ;
END_VAR

Description of formal parameters

Signal Typ
e

Type Value range Meaning

Start: I BOOL 0 (FALSE), 1
(TRUE)

0 → 1: Start the function

Stop: I BOOL 0 (FALSE), 1
(TRUE)

0 → 1: Stop the function

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1076 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Typ
e

Type Value range Meaning

Funct: I BYTE 1, 2, 3, ... 11 1: Position spindle
2: Rotate spindle
3: Oscillate spindle
4: Indexing axis
5: Positioning axis metric
6: Positioning axis inch
7: PosAxis metric with handwheel override
8: PosAxis inch with handwheel override
9: Rotate spindle with automatic gear stage selec‐
tion
10: Rotate spindle with constant cutting rate (m/
min)
11: Rotate spindle with constant cutting rate (feet/
min)

Mode: I BYTE 0, 1, 2, ... 5 0: Positioning to absolute position
1: Positioning incremental
2: Positioning along the shortest path
3: Positioning absolute, positive approach direc‐
tion
4: Positioning absolute, negative approach direc‐
tion
5: Direction of rotation as for M4

AxisNo: I INT 1, 2, 3, ... 31 Number of the axis/spindle to be traversed
Pos: I REAL ∓ 0.1469368 I -38 to

∓ 0.1701412 I +39
Rotary axis: Degrees
Indexing axis: Indexing position
Linear axis: mm or inches

FRate: I REAL ∓ 0.1469368 I -38 to
∓ 0.1701412 I +39

Rotary axis and spindle: [rev/min]
Linear axes: [m/min] or [ft/min]

InPos: O BOOL 0 (FALSE), 1
(TRUE)

1: Position reached or function executed

Error: O BOOL 0 (FALSE), 1
(TRUE)

1: Error

State: O BYTE 0, 1, 2, ... 255 Error detection

Error identifiers
An error is active, if: Parameter "Error" == 1 (TRUE)

The cause of the error is displayed in: Parameter "State"

State Meaning
Cause of the error on the PLC side:

1 Several functions of the axis/spindle were activated simultaneously
20 A function was started without the position being reached
30 The axis/spindle was transferred to the NC while still in motion

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1077

State Meaning
40 The axis is programmed by the NC program, NC internal error
50 Permanently assigned PLC axis. Traverses (JOG) or references
60 Permanently assigned PLC axis. Channel status does not permit a start

Cause of the error on the NC side
100 Incorrect position programmed for axis/spindle (corresponds to alarm 16830)
101 Programmed speed is too high
102 Incorrect value range for constant cutting rate (corresponds to alarm 14840)
104 Following spindle: Illegal programming (corresponds to alarm 22030)
105 No measuring system available (corresponds to alarm 16770)
106 Axis positioning still active (corresponds to alarm 22052)
107 Reference mark not found (corresponds to alarm 22051)
108 No transition from speed control to position control (corresponds to alarm 22050)
109 Reference mark not found (corresponds to alarm 22051)
110 Velocity/speed is negative
111 Setpoint speed == zero
112 Invalid gear stage
115 Programmed position has not been reached
117 G96/G961 is not active in the NC
118 G96/G961 is still active in the NC
120 Axis is not an indexing axis (corresponds to alarm 20072)
121 Indexing position error (corresponds to alarm 17510)
125 DC (shortest distance) not possible (corresponds to alarm 16800)
126 Absolute value minus not possible (corresponds to alarm 16820)
127 Absolute value plus not possible (corresponds to alarm 16810)
128 No transverse axis available for diameter programming (corresponds to alarm 16510)
130 Software limit switch plus (corresponds to alarm 20070)
131 Software limit switch minus (corresponds to alarm 20070)
132 Working area limit plus (corresponds to alarm 20071)
133 Working area limit minus (corresponds to alarm 20071)
134 Frame not permitted for indexing axis
135 Indexing axis with "Hirth joint" is active (corresponds to alarm 17501)
136 Indexing axis with "Hirth joint" is active and axis not referenced (corresponds to alarm 17503)
137 Spindle operation not possible for transformed spindle/axis (corresponds to alarm 22290)
138 Axis: Coordinate system-specific working area plus violated (corresponds to alarm 20082)
139 Axis: Coordinate system-specific working area minus violated (corresponds to alarm 20082)

System error
200 corresponds to alarm 450007

Alarm numbers: References Diagnostics Manual

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1078 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal sequence: Normal case

① PLC user program: Function start using a positive edge: 0 → 1
② NC: Positive acknowledgment, function executed / position reached
③ PLC user program: Reset after detecting the positive acknowledgment
④ FC18: Reset of the positive acknowledgment

Signal sequence: Error case

① PLC user program: Function start using a positive edge: 0 → 1
② NC: Negative acknowledgment, error occurred
③ PLC user program: Reset after detecting the negative acknowledgment
④ FC18: Reset of the negative acknowledgment

Call examples

Example 1: Position spindle:

//Positive acknowledgment resets Start:
U M112.0; //InPos

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1079

R M 100.0; //Start
//Negative acknowledgment, after error evaluation (state: MB114) reset with T12 start
U M113.0; // Error
U E 6.4; //Key T12
R M 100.0; //Start
//Start with T13
U E 6.3; //Key T13
UN M 112.0; //Restart only when InPos or Error = 0
UN M 113.0;
S M 100.0;

CALL FC18(
 Start := M100.0,
 Stop := FALSE,
 Funct := B#16#1, //Position spindle
 Mode := B#16#2, //Shortest path
 AxisNo := 5,
 Pos := MD104,
 FRate := MD108,
 InPos := M112.0,
 Error := M113.0,
 State := MB114);

Example 2: Start spindle rotation:

CALL FC18(
 Start := M100.0,
 Stop := FALSE,
 Funct := B#16#2, //Rotate spindle
 Mode := B#16#5, //Direction of rotation as for M4
 AxisNo := 5,
 Pos := 0.0,
 FRate := MD108,
 InPos := M112.0,
 Error := M113.0,
 State := MB114);

Example 3: Start spindle oscillation

CALL FC18(
 Start := M100.0,
 Stop := FALSE,
 Funct := B#16#3, //Oscillate spindle
 Mode := B#16#0,
 AxisNo := 5,
 Pos := 0.0,

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1080 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 FRate := MD108,
 InPos := M112.0,
 Error := M113.0,
 State := MB114);

Example 4: Traverse indexing axis

CALL FC18(
 Start := M100.0,
 Stop := FALSE, //Not used
 Funct := B#16#4, //Traverse indexing axis
 Mode := B#16#0, //Absolute positioning
 AxisNo := 4,
 Pos := MD104, //Default setting in REAL: 1.0;2.0;..
 FRate := MD108,
 InPos := M112.0,
 Error := M113.0,
 State := MB114);

Example 5: Position axes

CALL FC18(
 Start := M100.0,
 Stop := FALSE, //Not used
 Funct := B#16#5, //Position axes
 Mode := B#16#1, //Position incrementally
 AxisNo := 6,
 Pos := MD104,
 FRate := MD108,
 InPos := M112.0,
 Error := M113.0,
 State := MB114);

14.17.23 FC19: MCP_IFM - transfer of MCP signals to interface

Function
Block FC19 "MCP_IFM" (M version e.g. MCP 483) is used to transfer data from the machine
control panel to the NC/PLC interface:

● Modes

● Axis selections

● WCS/MCS switchover

● Traversing keys

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1081

● Overrides

● Keyswitch

The following specifications apply to the feedrate override, axis travel keys and INC keys
depending on the active mode or on the coordinate system selected:

● Feedrate override

– The feedrate override is transferred to the interface of the selected channel and to the
interface of the axes.

– The feedrate override signals are transferred to the NC channel in addition to the "Rapid
traverse override" (DBB5) interface byte if the "Feedrate override for rapid traverse
effective" HMI signal is set (exception: Switch setting "Zero"). "Rapid traverse override
effective" is also set with this HMI signal.

● Machine functions INC and axis travel keys

– When the MCS is selected, the signals are transferred to the interface of the selected
machine axis.

– When the WCS is selected, the signals are transferred to the geometry axis interface
of the parameterized channel.

– When the system is switched between MCS and WCS, the active axes are generally
deselected.

The LEDs on the machine control panel derived from the selections in the feedback.

Feedrate and spindle Start/Stop are not transferred to the interface, but output modally as a
"FeedHold" or "SpindleHold" signal. The user can link these signals to other signals leading
to a feed or spindle stop (this can be implemented, e.g. using the appropriate input signals in
FC10: AL_MSG). The associated LEDs are activated at the same time.

If the machine control panel fails, the signals it outputs are preset to zero; this also applies to
"FeedHold" and "SpindleHold" output signals.

FC19 or also FC24, FC25, FC26 can be called a multiple number of times in a single PLC
cycle. In this case, the first call in the cycle drives the LED displays. Furthermore, all actions
of the parameterized block are carried out in the first call. In the following calls, only a reduced
level of processing of the channel and mode group interface takes place. The geometry axes
are supplied with directional data only in the first block call in the cycle.

Single block processing can be selected/deselected only in the first call in the cycle.

The second machine control panel can be processed if parameter "ModeGroupNo" has been
increased by B#16#10. When parameterizing, the mode group number is contained in the
lower nibble.

"BAGNo" = 0 or B#16#10 ⇒ mode group signals are not processed.

"ChanNo" = 0 ⇒ no processing of the channel signals.

The INC selections are transferred to the mode group interface. The activation for this
specification is done via the DB10.DBX57.0 (INC inputs in BAG area active) through this block
once after power up.

Furthermore, two machine control panels can still be handled in parallel by the FC19 block.
Whereby, the call of the block for the 2nd machine control panel in OB1 cycle must be set after
the call for the 1st machine control panel. Support of two machine control panels exists to a

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1082 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

limited extent in the machine control panel blocks. Mutual locking of the axis selections for
equally assigned axes for two machine control panels is not supported.

Cartesian manual traversing
The R11 direction key on the machine control panel (at the left next to WCS/MCS) makes the
"Manual traversing in tool orientation" function available. This requires activation via the FB1
input parameter "MCP_IF_TCS" in DB7.

For "MCP_IF_TCS" = TRUE, the R11 key switches to "Manual traversing in tool orientation".
Whereby, the Z key (R3) is permanently selected with FC19. The direction keys act on the
3rd geometry axis of the associated channel.

Flexible axis configuration
It is possible to be flexible in the assignment of axis selections or direction keys for machine
axis numbers.

Better support is now provided by the MCP blocks for the use of two MCPs, which are to run
in parallel, in particular for an application using two channels and two mode groups. Note that
the axis-numbers are also specified in the parameterized mode group number of the MCP
block in the axis tables of the relevant MCP.

To provide this flexibility, tables for axis numbers are stored in DB10.

For the first machine control panel the table starts at byte 8 (symbolic name:
MCP1AxisTbl[1..22]) and for the second machine control panel starting at byte 32 (symbolic
name: MCP2AxisTbl[1..22]). The machine axis numbers must be entered byte-wise here.

It is permissible to enter a value of 0 in the axis table. Checks are not made to find illegal axis
numbers, meaning that false entries can lead to a PLC Stop.

For FC19, the maximum possible number of axis selections can also be restricted. This upper
limit is set for the first machine control panel in DB10.DBW30 (symbolic name: MCP1MaxAxis)
or for the second machine control panel in DB10.DBW54 (symbolic name: MCP2MaxAxis).

The default setting is 0, corresponding to the maximum number of configured axes. The axis
numbers and the limit can also be adapted dynamically. Afterwards, a new axis must be
selected for FC19. Axis numbers may not be switched over while the axes are traversing the
relevant direction keys.
The compatibility mode is preset with axis numbers 1 to 9 for both MCPs and restricted to the
configured number of axes.

Example
More than nine axes are to be controlled with FC19 using a special application. We recommend
that you proceed as follows:

● Reserve free key on MCP.

● Evaluate this key as a flip-flop.

● Evaluate the flip-flop output as positive and negative edge.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1083

● For a positive edge write one set of axis numbers in the axis table (DB10) and switch on
LED via this key

● For a negative edge write a different set of axis numbers in the axis table (DB10) and switch
off LED via this key.

Declaration of the function

FUNCTION FC19: VOID //Symbolic name: MCP_IFM

 VAR_INPUT
 BAGNo : BYTE ;
 ChanNo: BYTE ;
 SpindleIFNo: BYTE ;
 END_VAR

 VAR_OUTPUT
 FeedHold : BOOL;
 SpindleHold : BOOL;
 END_VAR

BEGIN
END_FUNCTION

Description of formal parameters

Signal Type Type Value range Meaning
BAGNo : I BYTE B#16#00 -

B#16#0A
1st MCP: Number of mode group to which the mode
signals are transferred

B#16#10 -
B#16#1A

2nd MCP: Number of mode group to which the
mode signals are transferred

ChanNo: I BYTE B#16#00 -
B#16#0A

Number of the channel to which the channel signals
are transferred

SpindleIFNo: I BYTE 0 - 31
(B#16#1F)

Number of the axis/spindle to which the spindle da‐
ta is transferred (number of the associated machine
axis)

FeedHold : O BOOL 0 (FALSE), 1
(TRUE)

Feed stop from MCP, modal

SpindleHold : O BOOL 0 (FALSE), 1
(TRUE)

Spindle stop from MCP, modal

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1084 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MCP selection signals to the user interface

Table 14-3 Keyswitch

Source:
MCP - Switch

Target:
Interface DB

Position 0 DB10.DBX56.4
Position 1 DB10.DBX56.5
Position 2 DB10.DBX56.6
Position 3 DB10.DBX56.7

Table 14-4 Operating modes and machine functions

Source:
MCP - Key

Target:
Interface DB (parameter BAGNo)
Display for BAG 1

AUTOMATIC DB11.DBX0.0
MDI DB11.DBX0.1
JOG DB11.DBX0.2
REPOS DB11.DBX1.1
REF DB11.DBX1.2
TEACH IN DB11.DBX1.0
INC 1 ... 10 000, INC Var. DB11.DBX2.0 - 2.5

Table 14-5 Direction keys rapid traverse override

Source:
MCP - Key

Target:
Interface DB (parameter ChanNo)

Direction key + DB21,DBX12.7
Direction key - DB21,DBX12.6
Rapid traverse override DB21,DBX12.5
Direction key + DB21,DBX16.7
Direction key - DB21,DBX16.6
Rapid traverse override DB21,DBX16.5
Direction key + DB21,DBX20.7
Direction key - DB21,DBX20.6
Rapid traverse override DB21,DBX20.5

Source:
MCP - Key

Target:
Interface DB (all axis DBs)

Direction key + DB31,DBX4.7
Direction key - DB31,DBX4.6
Rapid traverse override DB31,DBX4.5

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1085

The transfer is dependent upon the selected axis. The associated interface bits are deleted
for axes which are not selected.

Table 14-6 Override

Source:
MCP - Switch

Target:
Interface DB (parameter ChanNo)

Feedrate override DB21,DBB4

Source:
MCP - Switch

Target:
Interface DB (all axis DBs)

Feedrate override DB31,DBB0 (selected axis number) The fee‐
drate override of the 1st MCP is applied to all axes.

Spindle override DB31,DBB19 (parameter SpindleIFNo)

Table 14-7 Channel signals

Source:
MCP keys

Target:
Interface DB (parameter ChanNo)

NC start DB21,DBX7.1
NC stop DB21,DBX7.3
RESET DB21,DBX7.7
Single block DB21,DBX0.4

Table 14-8 Feedrate, spindle signals

Source:
MCP keys

Target:
FC output parameters

Feed stop
Feed enable

Parameter: "FeedHold" linked with memory, LEDs
are controlled

Spindle stop
Spindle enable

Parameter: "SpindleHold" linked with memory,
LEDs are controlled

Table 14-9 Cartesian manual traversing

Source:
MCP keys

Target:
Interface DB (parameter ChanNo)

R11 direction key DB21,DBB392
Direction key + DB21,DBX20.7
Direction key - DB21,DBX20.6

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1086 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Checkback signals from user interface for controlling displays

Table 14-10 Operating modes and machine functions

Target:
MCP - LED

Source:
Interface DB (parameter BAGNo)
Display for BAG 1

AUTOMATIC DB11.DBX6.0
MDI DB11.DBX6.1
JOG DB11.DBX6.2
REPOS DB11.DBX7.1
REF DB11.DBX7.2
TEACH IN DB11.DBX7.0

Target:
MCP - LED

Source:
Interface DB (parameter BAGNo)
Display for BAG 1

INC 1 ... 10 000, INC Var. DB11.DBX8.0 - 8.5

Table 14-11 Channel signals

Target:
MCP - LED

Source:
Interface DB (parameter ChanNo)

NC start DB21,DBX35.0
NC stop DB21,DBX35.2 or DB21,DBX35.3
Single block DB21,DBX0.4

Note

Direction key LEDs are controlled by operating the direction keys.

Axis selection and WCS/MCS LEDs are controlled by operating the relevant key.

Call example

CALL FC19(//Machine control panel M variants Signals to interface
 BAGNo := B#16#1, // Mode group no. 1
 ChanNo := B#16#1, // Channel no. 1
 SpindleIFNo := B#16#4, // Spindle Interface Number = 4
 FeedHold := m22.0, // Feed stop signal modal
 SpindleHold := db2.dbx151.0); //Spindle stop modal in
 //message DB

With this parameterization, the signals are sent to the 1st mode group, the 1st channel and all
axes. In addition, the spindle override is transferred to the 4th axis/spindle interface. The feed

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1087

hold signal is passed to bit memory 22.0 and the spindle stop signal to data block DB2, data
bit 151.0.

Reconnecting the axis selections
To ensure a flexible assignment of the axis selection keys to the appropriate axis or spindle,
FC19 needs not be modified or reprogrammed. The axis number simply has to be entered in
axis table DB10.DBB8 and followed as required: The axis number simply has to be entered in
axis table DB10.DBB8 and followed as required:

Example
The spindle is defined as the 4th machine axis and should be selected via axis key 9.

Solution:
The value 4 must be entered in DB10 byte (8+(9-1)) for the 4th axis.

CALL FC19(// Signals to interface
 BAGNo := B#16#1, // Mode group no. 1
 ChanNo := B#16#1, // Channel no. 1
 SpindleIFNo := B#16#4, // Spindle Interface Number = 4

 FeedHold := m30.0, // Feed stop signal modal
 SpindleHold := m30.1); //Spindle stop modal

14.17.24 FC21: Transfer - data exchange NC/PLC

14.17.24.1 Function
Block FC21 is used to exchange data between the PLC and NC. The data are immediately
transferred when FC21 is called – not waiting until the next basic PLC program cycle starts.

The data transfer is activated by calling the block FC21 with parameter "Enable" =1

Functions
The block provides the following functions:

● Synchronized action signals: PLC → NC channel

● Synchronized action signals: NC channel → PLC

● Fast data exchange PLC-NC (read function in NC)

● Fast data exchange PLC-NC (write function in NC)

● Update signals to the NC channel

● Update signals to axes (data byte 2 of the user interface)

● Update signals to axes (data byte 4 of the user interface)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1088 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.17.24.2 Declaration of the function

Declaration of the function

VAR_INPUT
 Enable : BOOL;
 Funct : BYTE ;
 S7Var : ANY ;
 IVar1 : INT ;
 IVar2 : INT ;
END_VAR

VAR_OUTPUT
 Error : BOOL;
 ErrCode : INT ;
END_VAR

14.17.24.3 Explanation of formal parameters

Explanation of formal parameters

Signal Typ
e

Type Value range Description

Enable: I BOOL 0 (FALSE), 1 (TRUE) 1: Transferring data
Funct: I BYTE 1, 2, 3, ... 7 1: Synchronized actions at chan‐

nel
2: Synchronized actions from

channel
3: Read data
4: Write data
5: Control signals to channel
6: Control signals to axis
7: Control signals to axis

S7Var : I ANY S7 data storage area Depends on "Funct"
IVAR1: I INT --- Depends on "Funct"
IVAR2: I INT --- Depends on "Funct"
Error: O BOOL 0 (FALSE), 1 (TRUE) 1: An error is active
ErrCode: O INT --- Depends on "Funct"

14.17.24.4 Function 1, 2: Signals synchronized actions to / from Channel
Synchronized actions can be disabled or enabled by the PLC.

The data area is stored on the user interface in DB21,DBB300 ...307 (to channel) and
DB21,DBB308 ...315 (from channel). The parameter "S7Var" is not evaluated for this

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1089

function, but must be assigned an actual parameter (see call example). The data are
transferred to/from the NC as soon as FC21 is processed.

Signal Type Type Value range Description
Enable: I BOOL 0 (FALSE), 1 (TRUE) 1: Transferring data
Funct: I BYTE 1, 2 1:

2:
to channel
from channel

S7Var : I ANY S7 data storage area Not used
IVAR1: I INT 1, 2, ... max. channel number Channel number
Error: O BOOL 0 (FALSE), 1 (TRUE) 1: An error is active
ErrCode: O INT 1, 10 1:

10:
"Funct" invalid
Channel number invalid

Call example:

FUNCTION FC100: VOID
VAR_TEMP
 myAny: ANY ;
END_VAR

BEGIN
NETWORK

//Deactivate synchronized actions with ID3, ID10 and ID31 in NC channel 1 :
SYAK: AUF DB21;
 SET;
 S DBX300.

2;
//ID3

 S DBX301.
1;

//ID10

 S DBX303.
6;

//ID31

 L B#16#1;
 T MB11;
 SPA TRAN;

//Synchronized actions from NCK channel 1:
SYVK: L B#16#2;
 T MB11;
TRAN: CALL FC21 (
 Enable := M 10.0, //if TRUE, FC 21 active
 Funct := MB 11,
 S7Var := #myAny, //Not used
 IVAR1 := 1, //Channel no.
 IVAR2 := 0,
 Error := M 10.1,
 ErrCode := MW 12);

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1090 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

END_FUNCTION

14.17.24.5 Function 3, 4: Fast data exchange PLC-NC

General
A separate, internal data area is provided as interface to allow the fast exchange of data
between the NC and the PLC. The interface encompasses 4096 bytes. PLC access operations
(reading/writing) are realized via FC21. The internal structure of the interface is solely defined
by the user, and must have precisely the same definition on the NC and PLC sides.

This data can be accessed by the NC program using commands $A_DBB[x], $A_DBW[x],
$A_DBD[x], $A_DBR[x] (References: List Manual, System Variables).

The concrete address in the data array is specified by a byte offset (0 to 4095) in parameter
"IVAR1". In this case, the alignment must be selected according to the data format, i.e. a
DWORD starts at a 4byte limit and a WORD at a 2byte limit. Bytes can be located at any offset
within the data field. Individual bits cannot be accessed. FC21 converts them over to a byte
access. Data type information and quantity of data are taken from the ANY parameter,
transferred via S7Var.

Without additional programming-related measures, data consistency is only ensured for 1 and
2 byte access operations - both from the NCU and from the PLC. For 2-byte consistency this
is true only for the data type WORD or INT, but not for the data type BYTE.

In the case of longer data types or transfer of arrays which should be transferred consistently,
the semaphore byte must be used in parameter "IVAR2", which can be used by FC21 to
determine the validity or consistency of a block. This handling must be supported by the NC,
i.e. in the NC program, by writing or deleting the semaphore byte. The semaphore byte is
stored in the same data field as the user data.

The semaphore byte is identified by a value between 0 and 4095 in "IVAR2".

The PLC reads and writes to the semaphore byte via FC21 in the same call, in which the user
data should be transferred. The PLC programmer only has to define the semaphore variable
in the interface. For access from the NC via the NC program, the semaphore mechanism must
be programmed using individual instructions according to the flow chart shown below. The
sequence is different for reading and writing variables.

Only individual variables or arrays (fields) can be supported directly using the semaphore
technique. Transferring structures must be split up into individual jobs. Here, the user must
ensure data consistency of this structure by programming the appropriate semaphore
mechanism.

If "IVAR2" = -1 is set, data are transferred without a semaphore.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1091

Data exchange with semaphore in PLC (schematic of FC21)

Basic structure in the NC:

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1092 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Variable value ranges

Signal Typ
e

Type Value range Description

Enable: I BOOL 0 (FALSE), 1 (TRUE) 1: Transferring data
Funct: I BYTE 3, 4 3: Read data

4: Write data
S7Var : I ANY S7 data area, except lo‐

cal data
Source/destination data storage area

IVAR1: I INT 0 ... 4095 Position offset
IVAR2: I INT -1 ... 4095 Semaphor byte

Transfer without semaphore: -1
Error: O BOOL 0 (FALSE), 1 (TRUE) 1: An error is active
ErrCode: O INT 20, 21, 22, 23, 24, 25 20: Alignment error

21: illegal position offset
22: Illegal semaphore byte
23: No new data to be read
24: Cannot write data
25: Local data parameterized for

S7Var

Example 1: Reading a DWORD from position offset 4 using a semaphore in byte 0 - and saving in
memory double word 100

● Data type Dword (4 bytes)

● Position offset 4

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1093

PLC programming

CALL FC21(
 Enable := M 10.0, // if TRUE, FC 21 is active
 Funct := B#16#3, //Read data
 S7Var := P#M 100.0 DWORD 1,
 IVAR1 := 4,
 IVAR2 := 0,
 Error := M 10.1,
 ErrCode := MW12);
UN M10.1; //Enable while 1, until value is read
R M10.0;

Programming the NC with synchronized actions
● Writing the data to the PLC - byte 0 serves as semaphore:

ID=1 WHENEVER $A_DBB[0] == 0 DO $A_DBR[4] = $AA_IM[X] $A_DBB[0] = 1

● Reading the data from the PLC - byte 1 serves as semaphore:
ID=2 WHENEVER $A_DBB[1] == 1 DO $R1 = $A_DBR[12] $A_DBB[1] = 0

Example 2: Reading a WORD from position offset 8 without semaphore, and saving in memory word
104

CALL FC21(
 Enable :=M 10.0, // if TRUE, FC 21 is active
 Funct :=B#16#3, //Read data
 S7Var :=P#M 104.0 WORD 1,
 IVAR1 :=8,
 IVAR2 :=-1,
 Error :=M 10.1,
 ErrCode :=MW12);

14.17.24.6 Function 5: Update control signals to channel
The purpose of this function is to transmit important control signals at high speed in between
cyclic data transfers. Data bytes 6 and 7 of user interfaces DB21, ... are transferred to the NC.
The channel is specified in parameter "IVAR1". This enable, for example, the feed disable,
read-in disable to be transferred outside of the PLC cycle.

Signal Typ
e

Type Value range Description

Enable: I BOOL 0 (FALSE), 1 (TRUE) 1: Transferring data
Funct: I BYTE 5 5: Control signals to channel
S7Var : I ANY S7 data storage area Not used
IVAR1: I INT 1. Maxchannel Channel number
Error: O BOOL 0 (FALSE), 1 (TRUE) 1: An error is active

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1094 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Typ
e

Type Value range Description

ErrCode: O INT 1, 10 1: "Funct" invalid
10: Channel no. invalid

14.17.24.7 Function 6: Update control signals to axes
The purpose of function 6 is to transmit important control signals at high speed in between
cyclic data transfers. The data byte 2 of application interface DB31, ... is transferred to the NC.
The transfer is performed for all activated axes. This allows the controller enable to be
transferred outside the PLC cycle, for example.

Signal Typ
e

Type Value range Description

Enable: I BOOL 0 (FALSE), 1 (TRUE) 1: Transferring data
Funct: I BYTE 6 6: Control signals to axes
S7Var : I ANY S7 data storage area Not used
IVAR1: I INT 0
Error: O BOOL 0 (FALSE), 1 (TRUE) 1: An error is active
ErrCode: O INT 1 1: "Funct" invalid

14.17.24.8 Function 7: Update control signals to axes
The purpose of function 7 is to transmit important control signals at high speed in between
cyclic data transfers. The data byte 4 of application interface DB31, ... is transferred to the NC.
The transfer is performed for all activated axes. This enables, for example, the feed stop to be
transferred outside the PLC cycle.

Signal Typ
e

Type Value range Description

Enable: I BOOL 0 (FALSE), 1 (TRUE)
Funct: I BYTE 7 7: Control signals to axes
S7Var : I ANY S7 data storage area Not used
IVAR1: I INT 0
Error: O BOOL 0 (FALSE), 1 (TRUE) 1: An error is active
ErrCode: O INT 1 1: "Funct" invalid

14.17.25 FC22: TM_DIR - direction selection for tool management

NOTICE

Use

Block FC22 "TM_DIR" may only be used in conjunction with the tool management.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1095

Function
Referred to the location numbers, e.g. a tool magazine or revolver (indexing axis) block FC22
"TM_DIR" supplies the shortest path and direction of motion for positioning, based on the target
and current position.

Outputs
● Input FC22: "Start" = 1 ⇒ the outputs are cyclically updated.

● Input FC22: "Start" = 0 ⇒ the outputs are undefined.

Special positioning
For direction selection with special positioning (input FC22: "Offset" > 0) a new target position
is calculated from the target position, the offset for special positioning as well as the number
of magazines locations:

New_target position = (target position - (special position -1)) neg. MODULO
number_of_magazine locations

The new target position corresponds to the location number at which the magazine must be
positioned so that the target position requested by the user corresponds to the location number
of the special position.

The directional optimization is active both with and without special positioning.

Call
The block must be called once with the appropriate parameter settings for each magazine.

References
● Further PI services for tool management:

– FB4: PI_SERV - request PI service (Page 988)

– FC7: TM_REV - transfer block for tool change with revolver (Page 1049)

– FC8: TM_TRANS - transfer block for tool management (Page 1052)

● Function Manual, Tool Management

Declaration of the function

FUNCTION FC22: VOID
// NAME: TM_DIR
VAR_INPUT
 MagNo: INT;
 ReqPos: INT;
 ActPos: INT;
 Offset: BYTE ;
 Start : BOOL;
END_VAR

VAR_OUTPUT
 Cw: BOOL;

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1096 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 Ccw: BOOL;
 InPos : BOOL;
 Diff: INT;
 Error : BOOL;
END_VAR
BEGIN
END_FUNCTION

Description of formal parameters

Signal Typ
e

Type Value range Description

MagNo: I INT 1, 2, 3, ... Magazine number
ReqPos: I INT 1, 2, 3, ... Target position (magazine location

number)
ActPos: I INT 1, 2, 3, ... Actual position (magazine location

number)
Offset: I BYTE 0, 1, 2, ... Offset for special positioning
Start: I BOOL 0 (FALSE), 1 (TRUE) 1 = start of calculation
Cw: O BOOL 0 (FALSE), 1 (TRUE) 1 = Move magazine clockwise
Ccw: O BOOL 0 (FALSE), 1 (TRUE) 1 = Move magazine

counterclockwise
InPos: O BOOL 0 (FALSE), 1 (TRUE) 1 = In position
Diff: O INT 0, 1, 2, ... Absolute value of the differential

path
(shortest path)

Error: O BOOL 0 (FALSE), 1 (TRUE) 1 = error

Call example

CALL FC22(// Tool management direction selection
 // Inputs
 MagNo := 2, // Magazine number
 ReqPos := mw 20, //Target position
 ActPos := mw 22, // Current position
 Offset := b#16#0, // Offset for special positioning
 Start := m 30.4, // Start trigger
 // Outputs
 Cw := m 30.0, // Move magazine clockwise
 Ccw := m 30.1, // Move magazine counterclockwise
 InPos := m 30.2, // Magazine in position
 Diff := mw 32, // Differential path
 Error := m30.3 // Error has occurred
);

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1097

14.17.26 FC24: MCP_IFM2 - transferring MCP signals to the interface

Function
Block FC24 "MCP_IFM2" (M variant, e.g. MCP 310) is used for transferring data from the
machine control panel to the NC/PLC interface:

● Modes

● Axis selections

● WCS/MCS switchover

● Traversing keys

● Overrides or override simulation signals

● Key-operated switch position

The following specifications apply to the feedrate override, axis travel keys and INC keys
depending on the active mode or on the coordinate system selected:

● Feedrate override:

– The feedrate override is transferred to the interface of the selected channel and to the
interface of the axes.

– The feedrate override signals are transferred to the NC channel in addition to the "Rapid
traverse override" (DBB 5) interface byte if the "Feedrate override for rapid traverse
effective" HMI signal is set (exception: Switch setting "Zero"). "Rapid traverse override
effective" is also set with this HMI signal.

● Machine functions for INC and axis travel keys:

– When the MCS is selected, the signals are transferred to the interface of the selected
machine axis.

– When the WCS is selected, the signals are transferred to the geometry axis interface
of the parameterized channel.

– When the system is switched between MCS and WCS, the active axes are generally
deselected.

The associated LEDs on the machine control panel are derived from the acknowledgments
from the relevant selections.

Feedrate and spindle Start/Stop are not transferred to the interface, but output modally as a
"FeedHold" or "SpindleHold" signal. The user can link these signals to other signals leading
to a feed or spindle stop (this can be implemented, e.g. using the appropriate input signals in
FC10: AL_MSG). The associated LEDs are activated at the same time.

The spindle direction (+, -) is not switched directly either, but made available as output
parameter "SpindleDir" permitting, for example, FC18 to be parameterized. A spindle enable
signal is also switched via parameter "SpindleHold". One possible method of moving a spindle
directly is to preselect it as an axis so that it can be traversed via (axis) direction keys.

If the machine control panel fails, the signals it outputs are preset to zero; this also applies to
"FeedHold" and "SpindleHold" output signals.

FC24 or also FC19, FC25, FC26 can be called a multiple number of times in a single PLC
cycle. In this case, the first call in the cycle drives the LED displays. Furthermore, all actions

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1098 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

of the parameterized block are carried out in the first call. In the following calls, only a reduced
level of processing of the channel and mode group interface takes place. The geometry axes
are supplied with directional data only in the first block call in the cycle.

Single block processing can be selected/deselected only in the first call in the cycle.

The second machine control panel can be processed if parameter "ModeGroupNo" has been
increased by B#16#10. When parameterizing, the HHU number is contained in the lower nibble
(lower 4 bits).

"BAGNo" = 0 or B#16#10 ⇒ mode group signals are not processed.

"ChanNo" = 0 ⇒ no processing of the channel signals.

The INC selections are transferred to the mode group interface. The activation for this
specification is done via the DB10.DBX57.0 (INC inputs in BAG area active) through this block
once after power up.

Furthermore, two machine control panels can be handled in parallel by this block. Whereby,
the call of the block for the 2nd machine control panel in OB1 cycle must be set after the call
for the 1st MCP. Support for two MCPs is provided in the control panel blocks up to certain
limits (support is not provided as standard for mutual interlocking of axis selections with
identical assignments on two MCPs).

Key-operated switch position
As of software version 4.5 SP2, the key-operated switch signals in the FC24 are also
transferred to the user interface (DBX56.5 to 7). This transfer is made independent of whether
a keyswitch is mounted on the MCP.

Note

For further information see "FC19: MCP_IFM - transfer of MCP signals to interface
(Page 1081) ".

Flexible axis configuration
It is possible to be flexible in the assignment of axis selections or direction keys for machine
axis numbers.

Better support is now provided by the MCP blocks for the use of two MCPs, which are to run
in parallel, in particular for an application using two channels and two mode groups. Note that
the axis-numbers are also specified in the parameterized mode group number of the MCP
block in the axis tables of the relevant MCP.

To provide this flexibility, tables for axis numbers are stored in DB10.
For the 1st machine control panel (MCP), the table starts from byte 8 (symbolic name:
MCP1AxisTbl[1..22]) and for the 2nd machine control panel (MCP), the table starts from byte
32 (symbolic name: MCP2AxisTbl[1..22]). The machine axis numbers must be entered byte
by byte here. It is permissible to enter a value of 0 in the axis table. Checks are not made to
find illegal axis numbers, meaning that false entries can lead to a PLC Stop.

For FC24, the maximum possible number of axis selections can also be restricted.
This upper limit is set for the 1st machine control panel in DB10.DBW30 (symbolic name:
MCP1MaxAxis) or for the 2nd machine control panel in DB10.DBW54 (symbolic name:
MCP2MaxAxis) for the respective MCP.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1099

The default setting is 0, corresponding to the maximum number of configured axes. The axis
numbers and the limit can also be adapted dynamically. Afterwards, a new axis must be
selected for FC24. Axis numbers may not be switched over while the axes are traversing the
relevant direction keys. The compatibility mode is preset with axis numbers 1 to 6 for both
MCPs and restricted to the configured number of axes.

Declaration of the function

FUNCTION FC24: VOID
// NAME: MCP_IFM2

VAR_INPUT
 BAGNo : BYTE ;
 ChanNo: BYTE ;
 SpindleIFNo: BYTE ;
END_VAR

VAR_OUTPUT
 FeedHold : BOOL;
 SpindleHold : BOOL;
 SpindleDir: BOOL;
END_VAR

BEGIN
END_FUNCTION

Description of formal parameters

Signal Typ
e

Type Value range Meaning

BAGNo : I BYTE B#16#00 - B#16#0A 1st MCP: Number of mode group to which the
mode signals are transferred

B#16#10 - B#16#1A 2nd MCP: Number of mode group to which the
mode signals are transferred

ChanNo: I BYTE B#16#00 - B#16#0A Number of the channel to which the channel
signals are transferred

SpindleIFNo: I BYTE 0 - 31
(B#16#1F)

Number of the axis/spindle to which the spin‐
dle data is transferred (number of the associ‐
ated machine axis)

FeedHold : O BOOL 0 (FALSE), 1 (TRUE) Feed stop from MCP, modal
SpindleHold : O BOOL 0 (FALSE), 1 (TRUE) Spindle stop from MCP, modal
SpindleDir: O BOOL 0 (FALSE), 1 (TRUE) Direction of spindle rotation

0: Direction of rotation + (left)
1: Direction of rotation - (right)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1100 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Call example

CALL FC24(// Slimline machine control panel M variant
 // Signals to interface
 BAGNo := B#16#1, // Mode group no. 1
 ChanNo := B#16#1, // Channel no. 1
 SpindleIFNo :=B#16#4, // Spindle Interface Number = 4
 FeedHold := m22.0, // Feed stop signal modal
 SpindleHold :=db2.dbx151.0, // Spindle stop modal in message data block
 SpindleDir:= m22.1); // Spindle direction return

With this parameterization, the signals are sent to the 1st mode group, the 1st channel and all
axes. In addition, the spindle override is transferred to the 4th axis/spindle interface. The feed
hold signal is passed to bit memory 22.0 and the spindle stop signal to data block DB2, data
bit 151.0. The spindle direction feedback signal supplied via parameter "SpindleDir" can be
used as a direction input for an additional FC18 call.

14.17.27 FC25: MCP_IFT - transfer of MCP/OP signals to interface

Function
Block FC25 "MCP_IFT" (T variant, e.g. MCP 483) is used for transferring data from the machine
control panel to the NC/PLC interface:

● Modes

● Direction keys of four axes

● WCS/MCS switchover

● Overrides

● Keyswitch

The following specifications apply to the feedrate override, axis travel keys and INC keys
depending on the active mode or on the coordinate system selected:

● Feedrate override:

– The feedrate override is transferred to the interface of the selected channel and to the
interface of the axes.

– The feedrate override signals are transferred to the NC channel in addition to the "Rapid
traverse override" (DBB 5) interface byte if the "Feedrate override for rapid traverse
effective" HMI signal is set (exception: Switch setting "Zero"). "Rapid traverse override
effective" is also set with this HMI signal.

● Machine functions for INC and axis travel keys:

– When the MCS is selected, the signals are transferred to the interface of the selected
machine axis.

– When the WCS is selected, the signals are transferred to the geometry axis interface
of the parameterized channel.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1101

The associated LEDs on the machine control panel derived from the acknowledgments of the
relevant selections.

Feedrate and spindle Start/Stop are not transferred to the interface, but output modally as a
"FeedHold" or "SpindleHold" signal. The user can link these signals to other signals leading
to a feed or spindle stop (this can be implemented, e.g. using the appropriate input signals in
FC10: AL_MSG). The associated LEDs are activated at the same time.

If the machine control panel fails, the signals it outputs are preset to zero; this also applies to
"FeedHold" and "SpindleHold" output signals.

FC25 or also FC19, FC24, FC26 can be called a multiple number of times in a single PLC
cycle. In this case, the first call in the cycle drives the LED displays. Furthermore, all actions
of the parameterized block are carried out in the first call. In the following calls, only a reduced
level of processing of the channel and mode group interface takes place. The geometry axes
are supplied with directional data only in the first block call in the cycle.

Single block processing can be selected/deselected only in the first cycle.

The second machine control panel can be processed if parameter "ModeGroupNo" has been
increased by B#16#10. When parameterizing, the HHU number is contained in the lower nibble
(lower 4 bits).

"BAGNo" = 0 or B#16#10 ⇒ mode group signals are not processed.

"ChanNo" = 0 ⇒ no processing of the channel signals.

Flexible axis configuration
It is possible to be flexible in the assignment of axis selections or direction keys for machine
axis numbers.

Support is now provided by the MCP blocks for the use of two MCPs, which are operated
simultaneously, in particular for an application using two channels and two mode groups. The
block call for the second machine control panel in OB1 cycle must be set after the call of the
1st MCP. Note that the axis numbers are also specified in the parameterized mode group
number of the MCP block in the axis tables of the relevant MCP.

To provide this flexibility, tables for axis numbers are stored in DB10.
For the 1st machine control panel (MCP), the table starts at byte 8 (symbolic name:
MCP1AxisTbl[1..22]) and for the 2nd machine control panel (MCP), from byte 32 (symbolic
name: MCP2AxisTbl[1..22]). The machine axis numbers are entered here byte-by-byte. It is
permissible to enter a value of 0 in the axis table. Checks are not made to find illegal axis
numbers, meaning that false entries can lead to a PLC Stop.

The restriction of the possible number of axes at FC25 is realized using the 0-values in the
axis table. The axis numbers can also be adapted dynamically. During the manual traversing
of axes using the direction keys, the axis numbers must not be switched over. The compatibility
mode is preset with axis numbers 1 to 4 for both MCPs and restricted to the configured number
of axes.

Note

For further information see "FC19: MCP_IFM - transfer of MCP signals to interface
(Page 1081) ".

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1102 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Declaration of the function

FUNCTION FC25: VOID
// NAME: MCP_IFT

VAR_INPUT
 BAGNo : BYTE ;
 ChanNo: BYTE ;
 SpindleIFNo: BYTE ;
END_VAR

VAR_OUTPUT
 FeedHold : BOOL;
 SpindleHold : BOOL;
END_VAR

BEGIN
END_FUNCTION

Description of formal parameters

Signal Typ
e

Type Value range Meaning

BAGNo : I BYTE B#16#00 - B#16#0A 1st MCP: Number of mode group to which the
mode signals are transferred

B#16#10 - B#16#1A 2nd MCP: Number of mode group to which
the mode signals are transferred

ChanNo: I BYTE B#16#00 - B#16#0A Number of the channel to which the channel
signals are sent

SpindleIFNo: I BYTE B#16#00 - B#16#1F Number of the axis/spindle to which the spin‐
dle data is transferred (number of the associ‐
ated machine axis)

FeedHold : O BOOL 0 (FALSE), 1 (TRUE) Feed stop from MCP, modal
SpindleHold : O BOOL 0 (FALSE), 1 (TRUE) Spindle stop from MCP, modal

Call example
With this parameter assignment example, the signals are sent to the 1st mode group, the
1st channel and all axes. The spindle override is transferred to the 4th axis/spindle. Feed stop
is sent to bit memory 22.0 and spindle stop is sent to the data block DB2, DBX151.0.

CALL FC25(//Machine control panel T variants
 // Signals to interface
 BAGNo := B#16#1, // Mode group no. 1
 ChanNo := B#16#1, // Channel no. 1
 SpindleIFNo := B#16#4, // Spindle Interface Number = 4

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1103

 FeedHold := m22.0, // Feed stop signal modal
 SpindleHold := db2.dbx151.0); // Spindle stop modal in message data block

14.17.28 FC26: HPU_MCP - transfer of HT 8 signals to the interface

Declaration of the function

FUNCTION FC26: VOID
// NAME: HPU_MCP

VAR_INPUT
 BAGNo : BYTE ;

ChanNo: BYTE ;
END_VAR

BEGIN
END_FUNCTION

Description of formal parameters

Signal Ty
pe

Type Value range Meaning

BAGNo : I BYTE B#16#00 - B#16#0A 1st MCP: Number of mode group to which the
mode signals are transferred

B#16#10 - B#16#1A 2nd MCP: Number of mode group to which the
mode signals are transferred

ChanNo: I BYTE B#16#00 - B#16#0A Number of the channel to which the channel sig‐
nals are transferred

Call examples
Calling FC26 for the first MCP, the first mode group and the first channel of the NC.

CALL FC26(//Machine control panel of the HT 8
 BAGNo := B#16#01, //1.MCP, 1.BAG
 ChanNo := B#16#01); //Channel 1

Calling FC26 for the second MCP, the second mode group and the third channel of the NC.

CALL FC26(//Machine control panel of the HT 8
 BAGNo := B#16#12, //2.MCP, 2.BAG
 ChanNo := B#16#03); //Channel 3

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1104 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

General description of functions
The function FC26 "HPU_MCP (machine control panel signals of the handheld unit HT 8)"
transfers the HT 8-specific signals of the following functions between the HT 8-input/output
data areas parameterized in function block FB1 (Parameter: MCPxIn and MCPxOut) and the
NC/PLC-interface:

● Modes

● Machine function INC

● Coordinate system WCS or MCS

● Axial traverse key

● Axis selection

● Feedrate override

● Rapid traverse override

● Keyswitch information

Note
Mode switchover through HT 8 and/or HMI

The function FC2 "GP_HP Basic program, cyclic part" transfers the signals of the mode
switchover in such a way that an alternative selection from MCP of HT 8 and of the HMI is
possible. The transfer of the HMI signals to the NC/PLC interface can also be deactivated
in the function block FB1 with the parameter "MMCToIF" = FALSE .
Active axes

Using HT 8 a maximum of 6 axes can be addressed at the same time. The selection of the
axes is to be realized by the user/machine manufacturer in the PLC user program.

Flexible axis configuration
The function FC26 enables a flexible assignment of the machine axes to the traversing keys
or to the axis selection. 2 tables are available in DB10 for this purpose:

● Machine axis table, 1st MCP: DB10.DBB8 to DBB13 (Table of the machine axis number)
Symbolic name: MCP1AxisTbl[1..22]

● Machine axis table, 2nd MCP: DB10.DBB32 to DBB37 (Table of the machine axis number)
Symbolic name: MCP2AxisTbl[1..22]

In the tables the axis numbers n (with n = 1, 2, ...) of the active machine axis are to be entered
byte-wise. The value 0 must be entered in the unused table locations.

The table length can be specified to the FC26:

● 1st MCP: DB10.DBB30 (upper limit of the machine axis table)

● 2nd MCP: DB10.DBB54 (upper limit of the machine axis table)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1105

A value of 4, for example, means that FC26 takes into account only the first 4 table entries or
machine axes. The maximum value for the FC26 is 6. For a value of 0 or values greater than
6 the maximum value is taken implicitly.

Note

Please note the following constraints:
● A check of the permissible machine axis numbers is not done. Invalid machine axis numbers

can lead to a PLC stop.
● The machine axis numbers can be changed dynamically. The table may not be written, if

currently a machine axis is being moved via a traversing key.

Transfer of the traversing key signals depending upon the active coordinate system
The traversing key signals for 6 axes lie in the HT 8 input data area below:

● EB n + 2, Bit 0 - Bit 5 (positive traversing direction)

● EB n + 3, Bit 0 - Bit 5 (negative traversing direction)

The switchover of the coordinate system is done via the input signal:

● EB n + 0, Bit 0 (MCS/WCS)

The input signal is evaluated in FC26 with the help of the edge trigger flag. The active
coordinate system is shown in the following output signal:

● AB n + 0, Bit 0 (MCS/WCKS) with 0 = MCS, 1 = WCS

In case of active MCS the traversing key signals of the axes 1 - 6 are transferred in the axis-
specific interfaces (DB31,DBX4.6 and DBX4.7 (traversing key +/-)) of the axes specified
in the machine axis tables (DB10.DBB8 to DBB13 or DBB32 to DBB37).

In case of active WCS it is assumed that the axes 1 - 3 of the machine axis table are geometric
axes. For this reason the traversing key signals:

● Of the axes 1 - 3 (EB n + 2 / 3, Bit 0 - Bit 2) are transferred in the interface of the geometric
axes in DB21,DBB12 + (n * 4), with n = 0, 1, 2), bit 6 and bit 7 (traversing keys +/-) of
the channel specified with the parameter "ChanNo" .
The assignment of the traversing key signals of axes 1, 2 and 3 to the geometric axes 1, 2
and 3 of the channel is permanent and may not be changed.

● Of the axes 4 - 6 (EB n + 2 / 3, Bit 3 - Bit 5) are transferred in the axis-specific interface
(DB31,DBX4.6 and DBX4.7 (traversing keys +/-)) of the axes 4 - 6 entered in the
machine axis table (DB10.DBB11 to DBB13 or DBB35 to DBB37).

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1106 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

No traversing of machine axes in WCS
In case of active WCS (AB n + 0, Bit 0 = 1) the traversing of the machine axes can be locked.
For this, the following output signals are to be set in the PLC user program:

● AB n + 3, Bit 7 = 1 (For WCS: no machine axes)
Requirement to the FC26, not to transfer any traversing key signals for the machine axes.
The traversing key signals for the axes 1 - 3 of the machine axis table are transferred to
the geometric axes 1 - 3 of the specified channel. The traversing key signals for the axes
4 - 6 of the machine axis table are not transferred.

● AB n + 2, Bit 6 (axes 7 - n selected)
Requirement to the FC26 not to transfer any traversing key signals, since the axes 1 - 6 of
the machine axis table are switched over. The axes 1 - 3 are thus not geometric axes, but
instead also machine axes.

Feedrate override
The value of the HT 8 override switch is transferred as feedrate override in the channel-specific
interface DB21,DBB4 (feedrate override) of the programmed channel (parameter:
"ChanNo") and in the axis-specific interfaces DB31,DBB0 (feedrate override) of the axes
programmed in the table DB10.DBB8 to DBB13 (machine axis number).

Rapid traverse override
If for the programmed channel (parameter: "ChanNo") the signal DB21,DBX25.3 = 1
(feedrate override for rapid traverse) is set, the value of the HT 8 override switch is sent as a
rapid traverse override to its channel-specific interface in DB21,DBB5 (rapid traverse
override) and the signal DB21,DBX6.6 = 1 (rapid traverse override active) is also set.

Machine function INC
The HT 8 signals of the machine function INC are transferred differently depending upon the
active coordinate system MCS or WCS:

● Active coordinate system: MCS
The selected machine function INC is transferred for all 6 axes in the axis-specific interfaces
in DB31,DBX5.0 to DBX5.5 (machine function) of the axes programmed in the table in
DB10.DBB8 to DBB13 (machine axis numbers) .

● Active coordinate system: WCS
For the axes 1 to 3 the signals of the machine function INC are transferred in the channel-
specific. Interface in DB21,DBX13.0 to DBX13.5 (machine function) of the programmed
channel (Parameter: "ChanNo").
For the axes 4 to 6 the signals of the machine function INC are transferred in the channel-
specific. interfaces in DB31,DBX5.0 to DBX5.5 (machine function) of the axes
programmed in the table in DB10.DBB11 to DBB13 (machine axis numbers).

The selection signals of the INC machine functions are transferred in the mode group-specific
interface DB11.DBB 2 + (n * 20), bit 0 to bit 5 (with n = 0, 1, 2, ...). The FC26 informs the NC
about the activation of the mode group interface for the INC machine functions once after
power-up with DB10.DBX57.0 (INC inputs active in the mode group area).

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1107

Handwheel selection
The hand-wheel selection signals are evaluated by HMI and transferred to the corresponding
NC/PLC interface signals of the machine or geometric axes:

● Geometry axes: DB21, ... DBB 12 + (n * 4), bit 0 to bit 2 (with n = 0, 1, 2)

● Machine axes: DB31,DBX4.0 to DBX4.2

Requirement: FB1 parameters: "HWheelMMC" = TRUE

Multiple call in one PLC cycle
FC26 can be called a multiple number of times in a single PLC cycle. Upon the first call in the
PLC cycle:

● All actions of the parameterized blocks are executed

● The LED signals are written in the output area

● In case of selected WCS, the traversing key signals of the geometric axes are written

● The signals for the selection and deselection of the individual block are processed

When FC26 is called more often, then the channel and mode group interface are processed
at a reduced rate.

Processing of two MCP
If the function FC26 is called twice for two MCP in the cyclic sequence of the PLC program
(organization block OB1), the call for the second MCP must be made after the call for the first
MCP.

Note

If an axis can be traversed from two MCP, then the implementation of a mutual interlocking is
the responsibility of the user (machine manufacturer).

Failure of the MCP of the HT 8
In case of failure of the MCP of the HT 8 all the input signals are set to the value 0.

14.17.28.1 Overview of the NC/PLC interface signals of HT 8

Operating modes and machine functions

Source: MCP Destination: Programmed mode group (Parameter BAGNo)
Display for BAG 1

AUTOMATIC DB11.DBX0.0
MDI DB11.DBX0.1
JOG DB11.DBX0.2

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1108 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Source: MCP Destination: Programmed mode group (Parameter BAGNo)
Display for BAG 1

REPOS DB11.DBX1.1
REF DB11.DBX1.2
TEACH IN DB11.DBX1.0
INC 1 ... 10 000, INC Var. DB11.DBX2.0 - DBX 2.5

Traversing keys and rapid traverse override

Source: MCP Destination: Geometry axis of the prog. channel (Parameter: Chan‐
No)

Traversing key + DB21,DBX12.7
Traversing key - DB21,DBX12.6
Rapid traverse override DB21,DBX12.5
Traversing key + DB21,DBX16.7
Traversing key - DB21,DBX16.6
Rapid traverse override DB21,DBX16.5
Traversing key + DB21,DBX20.7
Traversing key - DB21,DBX20.6
Rapid traverse override DB21,DBX20.5

Source: MCP Destination: Prog. axes corresponding to the table in DB10,
DBB8 - 13 (1. MCP) or DBB32 - 37 (2. MCP)

Traversing key + DB31,DBX4.7
Traversing key - DB31,DBX4.6
Rapid traverse override DB31,DBX4.5

Override

Source: MCP Destination: Programmed channel (Parameter: ChanNo)
Feed override DB21,DBB4

Source: MCP Destination: Prog. axes corresponding to the table in DB10,
DBB8 - 13 (1. MCP) or DBB32 - 37 (2. MCP)

Feed override DB31,DBB0

Channel signals

Source: MCP Destination: Programmed channel (Parameter: ChanNo)
NC start DB21,DBX7.1
NC stop DB21,DBX7.3

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1109

Source: MCP Destination: Programmed channel (Parameter: ChanNo)
RESET DB21,DBX7.7
Single BLock DB21,DBX0.4

14.17.28.2 Overview of the NC/PLC interface signals of HT 8

Operating modes and machine functions

Destination: MCP Source: Interface-DB (parameter BAGNo)
Display for BAG 1

AUTOMATIC DB11.DBX6.0
MDI DB11.DBX6.1
JOG DB11.DBX6.2
REPOS DB11.DBX7.1
REF DB11.DBX7.2
TEACH IN DB11.DBX7.0

14.17.29 FC1005: AG_SEND - transfers data to Ethernet CP

Function
The AG_SEND function block transfers the data to be transferred via a configured connection
to the Ethernet CP. Together with the AG_RECV function block, data exchange can be
established with another station via the integrated "CP 840D sl." This station must be
configured in STEP 7, "NetPro."

In the basic program, this function is available as a function block FC1005. This is roughly
equivalent to function block FC5 in the "SIMATIC_NET_CP" library.

The TCP, UDP, and ISO-on-TCP protocols are supported.

Note
Smaller volume of transmittable data with SINUMERIK CP and UDP or ISO-on-TCP protocol

For SINUMERIK CP, only 240 bytes can be transmitted when function block FC1005 and the
UDP or ISO-on-TCP protocol are used.

Description of formal parameters

Signal Typ
e

Type Value range Description

ACT: I BOOL 0 (FALSE), 1 (TRUE) Job initiation 1)

ID: I INT 1, 2, 3 ...16 Connection ID
LADDR: I WORD - Module start address 2)

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
1110 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal Typ
e

Type Value range Description

SEND: I ANY - Specifies the address and length.
The address of the data area alter‐
natively refers to:
● Bit memory address area
● Data block area

LEN: I INT TCP: 1, 2, ... 8192
UDP: 1, 2, ... 240

ISO-on-TCP: 1, 2. ... 240

Number of bytes that are transmitted

DONE: O BOOL 0 (FALSE), 1 (TRUE) 0: Job running
1: Job executed

ERROR: O BOOL 0 (FALSE), 1 (TRUE) 0: No error
1: An error is active

STATUS: O WORD - Status display
1) Parameter ACT must be TRUE long enough until the following applies: (DONE == 1) OR (ERROR
== 1)
2) For SINUMERIK 840D sl: Parameter LADDR := W#16#8110

Documentation
A detailed module description can be found in:

● SINUMERIK user interfaces: Online help

● SIMATIC Programming Manual: Program blocks for SIMATIC NET S7-CPs
Chapter: "Program blocks for Industrial Ethernet" > "Program blocks for open
communication services (SEND/RECEIVE interface)" > "AG_SEND / AG_LSEND /
AG_SSEND"

14.17.30 FC1006: AG_RECV - receives data from the Ethernet CP

Function
The function block AG_RECV receives data transferred via a configured connection from the
Ethernet CP. Together with the AG_SEND function block, data exchange can be established
with another station via the integrated "CP 840D sl." This station must be configured in STEP 7,
"NetPro."

In the basic program, this function is available as a function block FC1006. This is roughly
equivalent to function block FC6 in the "SIMATIC_NET_CP" library.

The TCP, UDP, and ISO-on-TCP protocols are supported.

Note
Smaller volume of transmittable data with SINUMERIK CP and UDP or ISO-on-TCP protocol

For SINUMERIK CP, only 240 bytes can be transmitted when function block FC1006 and the
UDP or ISO-on-TCP protocol are used.

P3: Basic PLC program for SINUMERIK 840D sl
14.17 Block descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1111

Formal parameters

Signal Typ
e

Type Value range Description

ID: I INT 1, 2 ...16 Connection ID
LADDR: I WORD - Module start address 1)

RECV: I ANY - Specifies the address and length.
The address of the data area alter‐
natively refers to:
● Bit memory address area
● Data block area

NDR : O BOOL 0 (FALSE), 1 (TRUE) 0: Job running
1: New data accepted

ERROR: O BOOL 0 (FALSE), 1 (TRUE) 0: No error
1: An error is active

STATUS: O WORD - Status display
LEN: O INT TCP: 1, 2, ... 8192

UDP: 1, 2, ... 240
ISO-on-TCP: 1, 2. ... 240

Number of bytes that are transmitted

1) For SINUMERIK 840D sl: Parameter LADDR := W#16#8110.

Documentation
A detailed module description can be found in:

● SINUMERIK user interfaces: Online help

● SIMATIC Programming Manual: Program blocks for SIMATIC NET S7-CPs
Chapter: "Program blocks for Industrial Ethernet" > "Program blocks for open
communication services (SEND/RECEIVE interface)" > "AG_RECV / AG_LRECV /
AG_SRECV"

14.18 Signal/data descriptions

14.18.1 Interface signals NCK/PLC, HMI/PLC, MCP/PLC

References
A complete overview of all interface signals can be found in:

"NC Variables and Interface Signals" List Manual

The NC interface signals that are evaluated by the basic PLC program and transferred in
conditioned form to the user interface are presented in the following sections.

P3: Basic PLC program for SINUMERIK 840D sl
14.18 Signal/data descriptions

Basic Functions
1112 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.18.2 Decoded M signals
The M functions programmed in the part program, ASUP or synchronized actions are channel
specifically transferred from the NC to the PLC:

● M functions from channel 1: DB21

● M functions from channel 2: DB22

● ...

DB21, ... Meaning
DBX194.0 ... 7 M functions M0 ... M7
DBX195.0 ... 7 M functions M8 ... M15
DBX196.0 ... 7 M functions M16 ... M23
DBX197.0 ... 7 M functions M24 ... M31
DBX198.0 ... 7 M functions M32 ... M39
DBX199.0 ... 7 M functions M40 ... M47
DBX200.0 ... 7 M functions M48 ... M55
DBX201.0 ... 7 M functions M56 ... M63
DBX202.0 ... 7 M functions M64 ... M71
DBX203.0 ... 7 M functions M72 ... M79
DBX204.0 ... 7 M functions M80 ... M87
DBX205.0 ... 7 M functions M88 ... M95
DBX206.0 ... 3 M functions M96 ... M99

The signal for the associated M function remains pending for at least one PLC cycle in the NC/
PLC interface.

Note

The following spindle-specific M functions are not transferred to the NC/PLC interface: M3,
M4, M5 and M70.

M02/M30 part program end
The output of the M02/M30 M functions does not inform reliably that the part program has
completed. The output of the M02/M30 M functions could arise from an asynchronous
subprogram (ASUP) or a synchronized action that has nothing to do with the real end of the
part program in this case. To detect reliably the end of a part program in the channel, the
following interface signal must be evaluated:

DB21,DBX35.7 (channel state: Reset)

P3: Basic PLC program for SINUMERIK 840D sl
14.18 Signal/data descriptions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1113

14.18.3 G commands
The G commands programmed in the part program, ASUP or synchronized actions are
transferred channel-specific from the NC to the PLC:

● G commands from channel 1: DB21

● G commands from channel 2: DB22

● ...

DB21, ... Meaning
DBB208 Active G command of G group 1
DBB209 Active G command of G group 2
DBB210 Active G command of G group 3
... ...
DBB271 Active G command of G group 64

The associated G command remains pending for at least one PLC cycle in the NC/PLC
interface.

Address in DB21, ...
The DBBx address of a G group in DB21, ... is calculated as:

Byte number = 208 + "number of G groups" - 1

Basic setting after Power On
After Power On, the value zero, i.e. active G group undefined, is transferred for all G groups.

Part program end or abort
After part program end or abort, the last active G command is retained.

NC START
After NC START the values of the eight G groups specified in the following machine data are
overwritten in accordance with the default setting set via the machine data as well as the values
programmed in the part program:
MD22510 $MC_GCODE_GROUPS_TO_PLC

References
An overview of all G commands can be found in:

Programming Manual, Fundamentals; Section: "Tables" > "G commands"

14.18.4 Message signals in DB 2
DB2 allows the messages for individual signals to be output on the operator panel front. The
signals are subdivided into predefined groups. When a message occurs, disappears or is
acknowledged, the number entered in the message number column is transferred to the HMI.
Text can be stored in the HMI for each message number.

P3: Basic PLC program for SINUMERIK 840D sl
14.18 Signal/data descriptions

Basic Functions
1114 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

References:

● List Manual, "NC Variable and Interface Signals"; Section "Interface signals - Overview" >
"PLC alarms/messages"

● Commissioning Manual; Chapter "Alarm and message texts"

Note

The number of user areas can be parameterized using FB1.

After the configuration has been modified (FB1: MsgUser) DB2/DB3 must be deleted.

14.19 Notes on programming in STEP 7
In the following chapters, instructions are given for simplifying the programming of complex
processes and functions in STEP 7:

● Copying data (Page 1115)

● Data types ANY and POINTER (Page 1116)

● Multi-instance DB (Page 1121)

● Strings (Page 1122)

● Determination of offset addresses on data block structures (Page 1123)

● FB calls (Page 1123)

References
You will find basic information on the structure of data types ANY and POINTER in:

SIMATIC STEP 7 Manual; Chapter: "Designing user programs" > "Register of CPU and saving
of data"

14.19.1 Copying data

Copying variants
For the high-speed copying of data from one DB into another it is recommended

● for larger data quantities to use the system function SFC BLKMOV or SFC FILL, because
here a high-speed copying takes place.

● the routine given below is for smaller data quantities, because the supply of ANY parameter
to the SFCs consumes additional time.

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1115

Example

 // DB xx.[AR1] is the source
 // DI yy.[AR2] is the destination
 AUF DB 100; //Source DB
 LAR1 P#20.0; //Source start address on data byte 20
 AUF DI 101; //Destination DB
 LAR2 P#50.0; //Destination start address on data byte 50
 //AR1, AR2, DB, DI loaded beforehand
 L 4; //Transfer 8 bytes
 M001:
 L DBW [AR1,P#0.0]; //Copy word-oriented
 T DIW [AR2,P#0.0];
 +AR1 P#2.0;
 +AR2 P#2.0;
 TAK;
 LOOP M001;

14.19.2 ANY and POINTER

The following programming examples show the programming mechanism. They demonstrate
how input/output and transit variables (VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT) are
accessed by data types "POINTER" or "ANY" within an FC or FB. The access operations are
described in such a way that a part symbolic method of programming can be used.

14.19.2.1 Use of POINTER and ANY in FC

Function
FC99 has input parameters that are defined as POINTER or ANY.

The example shows a body program via which the subcomponents of the POINTER or ANY
can be accessed. In this case, the DB parameterized with POINTER or ANY is opened and
the address offset stored as a crossarea pointer in address register AR1, Thus allowing access
to data elements of variables (generally structures and arrays) that are addressed via the
POINTER, ANY.

This access operation is described at the end of the relevant program sequence in the example.
With data type ANY, it is also possible to execute a check or branch when the variable is
accessed based on the data type and the number of elements involved.

Example

FUNCTION FC99: VOID
VAR_INPUT
 Row : BYTE ;

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
1116 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 Convert : BOOL; //Activate numerical conversion
 Addr: POINTER; //Points to variable
 Addr1 : ANY ;
END_VAR
VAR_TEMP
 dbchr : WORD ;
 Number: WORD ;
 type : BYTE ;
END_VAR
BEGIN
NETWORK
TITLE =
 //POINTER
 L P##Addr;
 LAR1 ; //Retrieve pointer
 L W [AR1,P#0.0]; //Retrieve DB number
 T #dbchr;
 L D [AR1,P#2.0]; //Offset part of pointer
LAR1 ;
AUF DB [#dbchr]; //Open DB of variables
L B [AR1,P#40.0]; //Retrieve byte value using pointer with
 //address offset 40
 //ANY
 L P##Addr1;
 LAR1 ; //Retrieve ANY
 L B [AR1,P#1.0]; //Retrieve type
 T #typ;
 L W [AR1,P#2.0]; //Retrieve amount
 T #Amount;
 L W [AR1,P#4.0]; //Retrieve DB number
 T #dbchr;
 L D [AR1,P#6.0]; //Offset part of pointer
LAR1 ;
 AUF DB [#dbchr]; //Open DB of variables
 L B [AR1,P#0.0]; //Retrieve byte value using ANY

14.19.2.2 Use of POINTER and ANY in FB

Function
FB99 has input parameters that are defined as POINTER or ANY.

The example shows a body program via which the subcomponents of the POINTER or ANY
can be accessed. In this case, the DB parameterized with POINTER or ANY is opened and
the address offset stored as a crossarea pointer in address register AR1, thus allowing access

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1117

to data elements of variables (generally structures and arrays) that are addressed via the
POINTER, ANY.

This access operation is described at the end of the relevant program sequence in the example.
With data type ANY, it is also possible to execute a check or branch when the variable is
accessed based on the data type and the number of elements involved.

Example

FUNCTIONBLOCK FB99
VAR_INPUT
 Row : BYTE ;
 Convert : BOOL; //Activate numerical conversion
 Addr: POINTER; //Points to variable
 Addr1 : ANY ;
END_VAR
VAR_TEMP
 dbchr : WORD ;
 Number: WORD ;
 type : BYTE ;
END_VAR
BEGIN
NETWORK
TITLE =
 //POINTER
 L P##Addr;
 LAR1 ; //Retrieve pointer from instance DB
 L DIW [AR1,P#0.0]; //Retrieve DB number
 T #dbchr;
 L DID [AR1,P#2.0]; //Offset part of pointer
 LAR1 ;
 AUF DB [#dbchr]; //Open DB of variables
 L B [AR1,P#40.0]; //Retrieve byte value using

pointer with
 //address offset 40
 //ANY
 L P##Addr1;
 LAR1 ; //Retrieve ANY from instance DB
 L DIB [AR1,P#1.0]; //Retrieve type
 T #typ;
 L DIW [AR1,P#2.0]; //Retrieve amount
 T #Amount;
 L DIW [AR1,P#4.0]; //Retrieve DB number
 T #dbchr;
 L DID [AR1,P#6.0]; //Offset part of pointer
 LAR1 ;

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
1118 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

 AUF DB [#dbchr]; //Open DB of variables
 L B [AR1,P#0.0]; //Retrieve byte value using ANY

14.19.2.3 POINTER or ANY variable for transfer to FC or FB

POINTER or ANY variable
With version 1 or later of STEP 7 it is possible to define a pointer or ANY in VAR_TEMP.

The following two examples show how an ANY can be supplied.

Example 1: Transfer ANY parameter via a selection list to another FB (FC)
Several ANY parameters are defined in an FB (FC). A specific ANY parameter must now be
chosen from a selection list for transfer to another FB (FC). This can only be done by means
of an ANY in VAR_TEMP. 1 to 4 can be set in parameter "WhichAny" in order to select Addr1
to Addr4.

Note

Address register AR2 is used in the block. However, this address register AR2 is also used
for multiinstance DBs. For this reason, this FB should not be declared as multi-instance DB.

FUNCTIONBLOCK FB100
CODE_VERSION1 //starting from STEP 7 Version 2 for

deactivating the
//multi-instance DB

VAR_INPUT
WhichAny : INT;
 Addr1 : ANY ; //Observe predetermined order
 Addr2 : ANY ;
 Addr3 : ANY ;
 Addr4 : ANY ;
END_VAR
VAR_TEMP
 dbchr : WORD ;
 Number: WORD ;
 type : BYTE ;
 Temp_addr : ANY ;
END_VAR
BEGIN
NETWORK
TITLE =
L WhichAny;
DEC 1;
L P#10.0; //10 bytes per ANY

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1119

*I;
LAR2;
L P##Addr1;
+AR2; //Add ANY start addresses
L P##Temp_addr;
LAR1 ; //Retrieve pointer from VAR_TEMP
L DID [AR2,P#0.0]; //Transfer pointer value to VAR_TEM
T LD [AR1,P#0.0];
L DID [AR2,P#4.0];
T LD [AR1,P#4.0];
L DIW [AR2,P#8.0];
T LW [AR1,P#8.0];

CALL FB101, DB100
 (ANYPAR := #Temp_addr); //ANYPAR is data type ANY

Example 2: Transfer an ANY parameter constructed earlier to another FB (FC)
An ANY parameter that has already been compiled must be transferred to another FB (FC).
This can be done only by means of an ANY stored in VAR_TEMP.

FUNCTIONBLOCK FB100
VAR_INPUT
 DBNumber: INT;
 DBOffset : INT;
 Data type: INT;
 Number: INT;
END_VAR
VAR_TEMP
 dbchr : WORD ;
 Temp_addr : ANY ;
END_VAR
BEGIN
NETWORK
TITLE =
L P##Temp_addr;
LAR1 ; //Retrieve pointer from VAR_TEMP
L B#16#10; //ANY identifier
T LB [AR1,P#0.0];
L Data type;
T LB [AR1,P#1.0];
L Amount;
T LW [AR1,P#2.0];
L DBNumber;
T LW [AR1,P#4.0];
L DBOffset;

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
1120 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

SLD 3; //Offset is a bit offset
T LD [AR1,P#6.0];
CALL FB101, DB100
 (ANYPAR := #Temp_addr); //ANYPAR is data type ANY

14.19.3 Multiinstance DB

Function
From Version 2 in STEP 7, you can provide multi-instance enabled FBs, i.e. with multi-instance
DBs. The primary characteristic of multiinstance DBs is that a data module can be used for
various instances of FBs (see STEP 7 documentation), The quantity structure of the DBs can
be optimized this way.

Multi-instance DBs should be activated only when they are actually going to be used since
they increase the runtime and code size of the FBs.

Note

When complex programs are implemented in multiinstance enabled FBs that use a pointer
and address register, it is important for the programmer to observe certain rules.

With multiinstance DBs, the start address of the variable (VAR_INPUT, VAR_OUTPUT,
VAR_IN_OUT, VAR) is transferred with the DI data block register and address register AR2.
When variables are accessed within the multiinstance enabled FB, the compiler independently
controls the access operation via address register AR2. However, when complex program
sections also have to work with address registers in the same FB (e.g. to copy data), then the
old contents of AR2 must be saved before the register is changed. The contents of AR2 must
be restored to their original state before an instance variable (VAR_INPUT, VAR_OUTPUT,
VAR_IN_OUT, VAR) is accessed. The AR2 register of the instance is to be saved most usefully
in a local variable (VAR_TEMP).

The command "Load pointer to an instance variable" returns a pointer value from the start of
the instance data. To be able to access this variable via a pointer, the offset stored in AR2
must be added.

Example

FUNCTION_BLOCK FB99
VAR_INPUT
 varin: INT;
END_VAR
VAR
 variable1: ARRAY[[0..9]

of INT;

 variable2: INT;
END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1121

BEGIN
L P##variable1; //Pointer at start of ARRAY
 //The value 8500 0010 is now in the accumulator
 //and a cross-area pointer is in the AR2

//Pointer. If one is to work across areas
//then, during the addition of these
//two pointers, an area is to be disabled.

AD DW#16#00FF_FFFF, //Skipping of an area
LAR1 //Load into AR1
TAR2;
+AR1 AR2; //AR2 instance offset to be added
 //You can now indirectly access the ARRAY

//of variable 1 via AR1.
L DIW [AR1, P#0.0];//E.g. access to the first element
END_FUNCTION_BLOCK

14.19.4 Strings
The STRING data type is required by certain services of the basic program. For this reason,
some additional facts about the string structure and general handling procedures for parameter
assignments are given below.

Structure of strings
A data of type STRING is generally stored (defined) in a data block. There are two methods
of defining a string:

1. Only the data type STRING is assigned to a variable. The STEP7 compiler automatically
generates a length of 254 characters.

2. Data type STRING is assigned to a variable together with a string length in square
parenthesis (e.g. [32]). With this method, the STEP7 compiler generates a string length
corresponding to the input.

Two bytes more than prescribed by the definition are always stored for variables of the STRING
data type. The STEP 7 compiler stores the maximum possible number of characters in the 1st
byte. The 2nd byte contains the number of characters actually used. Normally, the useful length
of the assigned strings is stored by the STEP 7 compiler. The characters (1 byte per character)
are then stored from the 3rd byte onwards.

String parameters are generally assigned to blocks of the basic program by means of a
POINTER or ANY. Such assignments must generally by made using symbolic programming
methods. The data block, which contains the parameterizing string, must be stored in the
symbol list. The assignment to the basic program block is then made by means of the symbolic
data block name followed by a full stop and the symbolic name of the string variable.

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
1122 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.19.5 Determining offset addresses for data block structures

Function
Another task, which occurs frequently, is symbolic determination of an offset address within a
structured DB, e.g. an ARRAY or STRUCTURE is stored somewhere within the DB. After
loading the address register symbolically with the start address, you might like to access the
individual elements of the ARRAY or STRUCTURE via an address register. One way of loading
the address register symbolically is to use an FC whose input parameter is a pointer. The
address of the ARRAY or STRUCTURE is then assigned symbolically to the input parameter
of this FC in the program. The program code in the FC now determines the offset address from
the input parameter, and passes the offset address in the address register (AR1) to the calling
function. Symbolic addressing is thus possible even with indirect access.

Example

FUNCTION FC99: VOID
VAR_INPUT
 Addr: POINTER; //Points to variable
END_VAR
BEGIN
NETWORK
TITLE =
L P##Addr;
LAR1 ; //Retrieve pointer from Addr
L D [AR1,P#2.0]; //Offset part of pointer of variable
LAR1 ;
END_FUNCTION

14.19.6 FB calls

Function
For optimizing the execution speeds, it is useful to call all function block calls with many static
parameters, such as the blocks FB2, 3, 4, 5, and 7 provided by the basic program when starting
with the related instance parameters. When starting (OB100), the preassignment of the
parameters must be done, which can then no longer be changed in the cyclic part (OB1). These
fixed parameter values are no longer parameterized in the cyclic call, because they have
already been written in the Instance DB.

Example: Parameterizing the FB2 with instance DB110
The following example shows how a sensible distribution in OB100 and OB1 component can
be implemented.

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1123

First, the usual call in the cyclic program is displayed.

 CALL FB2, DB110(
 Req := M 100.0,
 NumVar := 2, //Read 2 variables
 Addr1 := NCVAR.C1_RP_rpa0_0
 Line1 : W#16#1
 Addr2 := NCVAR.C1_RP_rpa0_0
 Line2 . W#16#2
 Error := M1.0,
 NDR := M1.1,
 State := MW 2,
 RD1 := P#M 4.0 REAL 1,
 RD2 := P#M 24.0 REAL 1,
The modified version of the program call starts from here.
Here the call in OB100 is displayed:

 CALL FB2, DB110(
 Req := FALSE,
 NumVar := 2, //Read 2 variables
 Addr1 := NCVAR.C1_RP_rpa0_0
 Line1 : W#16#1
 Addr2 := NCVAR.C1_RP_rpa0_0
 Line2 . W#16#2
 RD1 := P#M 4.0 REAL 1,
 RD2 := P#M 24.0 REAL 1,
Here, the call still remaining in OB1 is displayed:

 CALL FB2, DB110(
 Req := M0.0,
 Error := M1.0,
 NDR := M1.1,
 State := MW 2,

Note

Owing to this measure, a shorter cycle time is achieved in OB1, because the static parameter
values need not be copied in the instance DB in each OB1 cycle.

The savings of this variant:

The cyclic copying effort of 3 integer values and 4 ANY parameters with respect to the instance
DB, which results from 3 time loading of a constant with a 3-time transfer in the instance data
block. In case of each ANY transfer, constants are loaded in the data block 4 times with
subsequent transfer.

P3: Basic PLC program for SINUMERIK 840D sl
14.19 Notes on programming in STEP 7

Basic Functions
1124 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

14.20 Data lists

14.20.1 Machine data

14.20.1.1 Display machine data

Number Identifier: $MM_ Description
9032 HMI_MONITOR Determining the PLC data for HMI monitor information

14.20.1.2 NC-specific machine data

Number Identifier: $MN_ Description
10100 PLC_CYCLIC_TIMEOUT Cyclic PLC monitoring time
14504 MAXNUM_USER_DATA_INT Number of user data (INT)
14506 MAXNUM_USER_DATA_HEX Number of user data (HEX)
14508 MAXNUM_USER_DATA_FLOAT Number of user data (FLOAT)
14510 USER_DATA_INT User data (INT)
14512 USER_DATA_HEX User data (HEX)
14514 USER_DATA_FLOAT[n] User data (FLOAT)

Note

Machine data in integer/hex format is operated in the NC as DWORD. A machine data in
floating point format is managed in the NC as FLOAT (8-byte IEEE). They are stored only in
the NC/PLC interface and can be read by the PLC user program from DB20 even when the
PLC boots.

14.20.1.3 Channelspecific machine data

Number Identifier: $MC_ Description
28150 MM_NUM_VDIVAR_ELEMENTS Number of elements for writing PLC variables

P3: Basic PLC program for SINUMERIK 840D sl
14.20 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1125

14.20.2 Signals

14.20.2.1 Signals from operator panel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Active SINUMERIK operating area DB19.DB21 DB1900.DBB1
Current screen number DB19.DBW24 DB1900.DBW4

P3: Basic PLC program for SINUMERIK 840D sl
14.20 Data lists

Basic Functions
1126 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

P4: PLC for SINUMERIK 828D 15
15.1 Overview

15.1.1 PLC firmware
The PLC of the SINUMERIK 828D is an integrated PLC based on the SIMATIC S7-200
command set.

The PLC user program is essentially programmed using a Windows PC with the "PLC
Programming Tool". In addition, the PLC can be diagnosed and edited via the operator
interface of the control. A "Ladder-Add-On-Tool" is available in the control for this purpose.

Note the following special features:

● The PLC user program is completely programmed in ladder logic (LAD).

● A subset of the programming language of the S7-200 is supported.

● When loading to the CPU, in addition to the code for execution, the complete project data
(including symbols and comments) is loaded into the control. This means that the control
always has the project that matches the currently running PLC user program.

● When loading from the CPU, the complete project data (including symbols and comments)
is loaded into the PLC Programming Tool and can be processed/edited using this.

● The user must manage the data and process information according to type. The declared
data type must be used consistently each time that the data is accessed.

15.1.2 PLC user interface

The user interface is set up by the PLC firmware, which also organizes the exchange of all
signals and data between the PLC on one side and the NC and HMI on the other side.

The user interface comprises the parts:

● Data interface with cyclic exchange (see "Data interface (Page 1136)")

● Function interface with function- or task-related data exchange (see "Function interface
(Page 1154)").

The structured data of these interfaces (retentive and non-retentive) are made available to the
user by the firmware by assigning to data blocks: The NC (NC, tool management, NC channel,
axes, spindles, …) and the HMI are "Communication partners" of the PLC user program.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1127

Figure 15-1 Overview of the user interface of the PLC 828D

P4: PLC for SINUMERIK 828D
15.1 Overview

Basic Functions
1128 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.1.2.1 Data that are cyclically exchanged
Data is exchanged between the PLC and NC on one side as well as between the PLC and
HMI on the other side.

Data to the PLC is provided by the firmware at the cyclic start of the user program. This ensures,
for example, that the signals from the NC remain constant throughout a cycle.

The firmware transfers data from the PLC to the NC or HMI at the cycle end of the user program.

PLC ↔ NC interface
The cyclic data includes status signals ("program running", "program interrupted") and control
signals (start, stop), and auxiliary and G commands.

Data is structured in signals for:

● Modes

● Channels

● Axes/spindles

● General NC signals

Interface PLC ↔ HMI
These are signals for:

● Program selection via lists

● Messenger control command

● General signals from/to HMI

● Signals from/to the maintenance planner

● Signals from operator panel (retentive area)

● General selection/status signals from/to HMI (retentive area)

15.1.2.2 Alarms and messages
The user interface in DB1600 offers the option of displaying fault and operating messages on
the HMI.

The firmware evaluates the signals that have been entered and sends these as coming and
going alarms and messages to the HMI where they are displayed. The HMI manages the fault
texts.

Note

A maximum of eight PLC alarms is displayed on the HMI.

P4: PLC for SINUMERIK 828D
15.1 Overview

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1129

15.1.2.3 Retentive data
For the retentive data there are the user data blocks DB9000 - DB9063 and the data area
DB1400.DBW0 - DBW127. There the user can store all data that should remain valid after
POWER OFF/ON. The retentive data is stored in the non-volatile memory, however, not for
data backup.

15.1.2.4 Non-retentive data
Non-retentive data (e.g. bit memories, timers and counters) are deleted every time the control
is booted.

15.1.2.5 PLC machine data
The PLC machine data is in the NC machine data area. At POWER ON, this data is transferred
by the PLC firmware into DB4500 of the PLC user interface where it can be evaluated by the
PLC user program.

References
SINUMERIK 828D Parameter Manual

15.1.3 PLC key data
The integrated PLC has a program memory of 24000 PLC statements which are completely
executed in one fixed PLC cycle.

A maximum of 500 statements can be executed in the INT0 interrupt program that can be
optionally used. It is executed servo-synchronous and allows the fastest possible reaction to
process events. This is the reason why interrupt-capable PLC I/O modules are not required.

Data Number Special features
Main program (MAIN) 1
Subprograms (SBRx) 256
Interrupts 2
Time-driven interrupt 1 Servo-synchronous interrupt program
Alarms/messages 1248 A maximum of 8 alarms is displayed.
Bit memory 4096 Non-retentive.
Counters 64 Non-retentive.
Timers,
of which:

128 Non-retentive.

 10 ms increment interval 112
100 ms increment interval 16

User data block each with a max. of
512 bytes

64 Address range DB9000 to DB9063

NC ↔ PLC data transmission Via fixed parameterizable interface.

P4: PLC for SINUMERIK 828D
15.1 Overview

Basic Functions
1130 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.1.4 PLC I/O, fast onboard inputs/outputs
For information on the properties of the rapid onboard inputs/outputs and their response times,
see Section "Fast on-board inputs and outputs (Page 1131)".

For information on the I/O modules, the machine control panels as well as the assignment of
the onboard inputs/outputs to the PLC, see:
References:
Manual PPU SINUMERIK 828D

15.1.5 PLC Toolbox

15.1.5.1 Star/delta changeover
For star/delta changeover, the following block is provided in the PLC Toolbox:

● StarDelta

Note

This block can be used to perform a star/delta changeover - also for 1PH8 spindle motors
with SMI connected to a SINAMICS S120.

15.2 Fast on-board inputs and outputs
For digital input and output signals that must be especially quickly processed by the control
system, the PPU module has several interfaces that can be used to directly connect signals:

● Connector X242:4 input signals, 4 output signals

● Connector X252:4 input signals, 2 output signals

Interface I/O signals Addressing
X242 Inputs: DIN1 ... DIN4 I256.0 ... I256.3

Outputs: DOUT1 ... DOU
T4

Q256.0 ... Q256.3

X252 Inputs: DIN9 ... DIN12 I256.4 ... I256.7
Outputs: DOUT9 ... DOU

T10
Q256.4 ... Q256.5

P4: PLC for SINUMERIK 828D
15.2 Fast on-board inputs and outputs

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1131

Response times
This results in the following response times depending on the position control cycle, place of
execution and digital inputs/outputs that are used:

Position control cycle clock 1.5 ms 3 ms
 Processing via: Response time 1)

● Subprogram SBRx in cyclic operation (MAIN, OB1)
● Digital inputs/outputs: I/O module PP 72/48

12.5 ms 14 ms

● Interrupt program INT0 (servo synchronous)
● Digital inputs/outputs: Onboard inputs/outputs of the PPU

3 ms 4.5 ms

1) Signal at the input terminal → processing in the PLC program → signal at the output terminal

Read/write access operations
Input/output signals are directly read and written at the module input/outputs. For the fastest
possible access (servo-synchronous), use of the direct operation commands in the interrupt
program INT0 is recommended:

Command Symbol
Direct NO contact -| I |-
Direct NC contact -| /I |-
Directly set bit value -(SI)-
Directly reset bit value -(RI)-
Directly assign bit value -(I)-

Parameterization
Using machine data, the input/output signals can be exclusively allocated to the NC or the PLC:

● MD10366 $MN_HW_ASSIGN_DIG_FASTIN[<n>]

● MD10368 $MN_HW_ASSIGN_DIG_FASTOUT[<n>]

with <n>: Index to address the input/output byte (0 = 1. byte, 1 = 2. byte, ...)

I/O signals Assignment
NC PLC

Inputs: DIN1 ... DIN4 MD10366[0] = 00 01 01 01H MD10366[0] = 00 01 00 01H

Outputs: DOUT1 ... DOUT4 MD10368[0] = 00 01 01 01H MD10368[0] = 00 01 00 01H

Inputs: DIN9 ... DIN12 MD10366[1] = 00 01 01 01H MD10366[1] = 00 01 00 01H

Outputs: DOUT9 ... DOUT10 MD10368[1] = 00 01 01 01H MD10368[1] = 00 01 00 01H

References
A detailed specification of the interfaces is provided in:

SINUMERIK 828D PPU Manual

P4: PLC for SINUMERIK 828D
15.2 Fast on-board inputs and outputs

Basic Functions
1132 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.3 Ladder Viewer, Ladder editor, and Ladder add-on tool

15.3.1 Overview

Ladder Viewer
In the Ladder Viewer, the logic operations of contacts and relays in the PLC user program are
displayed as a ladder diagram (LAD).

Ladder editor
The blocks and networks of a PLC project can be edited in the Ladder editor. All the operations
supported by the PLC type are available for editing.

References:
A detailed description of the functions and operation of the Ladder editor is provided in the
SINUMERIK Operating Manual.

Ladder add-on tool
The Ladder add-on tool allows limited editing of interrupt routines INT100 and INT101 when
the Ladder editor is disabled. This may be useful, for example, when reassigning inputs and
outputs for service or final commissioning tasks when adapting the machine to the actual
conditions at the end customer.

P4: PLC for SINUMERIK 828D
15.3 Ladder Viewer, Ladder editor, and Ladder add-on tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1133

Restrictions
The following restrictions apply when editing with the Ladder add-on tool:

● Only empty networks can be edited. Networks, that already include statements, can only
be deleted.

● A simple, single line can be edited for each network.

● You can create a maximum of 3 columns per network:

Column Operation
Column 1 ● NO contact

● NC contact
-| |-
-|/|-

Column 2
(optional)

NOT
Rising edge
Falling edge

Assign
Set
Reset

-|NOT|-
-|P|-
-|N|-

-()
-(S)
-(R)

Column 3
(only possible if no assign, set or reset op‐
erations were specified in the second col‐
umn)

Assign
Set
Reset

-()
-(S)
-(R)

Note

Logical AND (serial contact) and logical OR (parallel contact) are not possible.

The bit combinations comprise one or more logical operations and the assignment to an output /
bit memory.

If the cursor is moved further to the left with the arrow key, the type of assignment or a logic
operation can be selected. A further logic operation cannot be placed to the right of an
assignment. A network must always be terminated with an assignment.

15.3.2 Parameterization

Display of addresses
Using NC-specific machine data, the display of addresses in the ladder Viewer can be
configured according to SIMATIC S7 300 notation:

MD51230 $MN_ENABLE_LADDER_DB_ADDRESSES = <value>

<value> Meaning
0 Address display in SIMATIC S7 200 notation (e.g. Vxxxxx)
1 (default) Address display in SIMATIC S7 300 notation (e.g. DBxx.DBBxxxx)

P4: PLC for SINUMERIK 828D
15.3 Ladder Viewer, Ladder editor, and Ladder add-on tool

Basic Functions
1134 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Enabling / locking editing
Editing of the PLC project can be enabled or disabled in the following machine data:

MD51231 $MN_ENABLE_LADDER_EDITOR (PLC Ladder add-on tool activated for
INT100/101)

MD51232 $MN_ENABLE_LADDER_EDITOR_ADV (PLC Ladder editor activated for the entire
PLC project)

In the default setting, both functions are enabled.

15.4 PLC Programming Tool
The "PLC Programming Tool" is a tool for writing PLC user programs in a user-friendly fashion.
This is a Windows program and must be installed on a Windows PC. For online access to the
control, the PC must be connected to the control via one of the Industrial Ethernet ports, X130
(factory network) or X127 (service interface).

When the "PLC Programming Tool" is called, without specifying an existing project, a new
project is created with the default name "Project1." This project can be immediately used to
generate the PLC user program, saved under any name, and loaded into the control. Existing
projects can be opened in the usual Windows manner.

The online help for the "PLC Programming Tool" can also be called with the "F1" function key,
just like in Windows.

References
● SINUMERIK 828D Commissioning Manual, turning and milling

Section: "Scope of delivery and preconditions" > "Communication with the controller" >
"This is how you communicate with the controller via the programming tool"

● Online help for the PLC Programming Tool

P4: PLC for SINUMERIK 828D
15.4 PLC Programming Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1135

15.5 Data interface
Data is cyclically exchanged on the one hand between the PLC and NC and and on the other
hand between the PLC and HMI. This especially means that the data received from HMI and
destined for the NC must be marshaled by the user program in order that these become
effective.

Data to the PLC is provided by the firmware at the start of the user program cycle. This ensures,
for example, that the signals from the NC remain constant throughout a cycle.

Data from the PLC is transferred by the firmware to the NC or HMI at the end of the user
program cycle.

All data of this interface are listed in the manual for SINUMERIK 828D, PPU.

15.5.1 PLC-NC interface

This cyclic data includes status signals ("program running", "program interrupted"), control
signals (start, stop), and auxiliary and G commands.

Data is structured in signals for:

● Mode signals

● NC channel signals

● Axis and spindle signals

● General NC signals

● PLC-NC fast data exchange

15.5.1.1 Mode signals

DB3000, 3100
The mode signals specified by the machine control panel or the HMI are transferred to the NC.

Their actual states are signaled to the PLC from the NC.

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1136 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1137

15.5.1.2 NC channel signals

DB250x, 320x, 330x, 350x
The signals are structured as follows:

● Control/status signals with normal cyclic transfer, see "Mode signals (Page 1136) ".

● Auxiliary and G commands
These are entered in the interface DBs in two ways.
First, they are entered with the change signals.
The M signals M0 to M99 are additionally decoded and the associated interface bits are
set for one cycle.
For G commands, only the groups selected via machine data are entered in the interface
data block.
The S values are also entered together with the related M signals (M03, M04, M05) in the
spindlespecific interface. The axisspecific feedrates are also entered in the appropriate axis‐
specific interface.

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1138 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.5.1.3 Axis and spindle signals

DB370x, 380x, 390x
The axis-specific and spindle-specific signals are divided into the following groups:

● Shared axis/spindle signals

● Axis signals

● Spindle signals

● Drive signals

The signals are transferred cyclically with the following exceptions. The exceptions include
axial F value, M and S value.

An axial F value is entered via the M, S, F distributor if it is transferred to the PLC during the
NC machining process.

The M and S values are also entered via the M, S, F distributor if one or both values requires
processing.

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1139

15.5.1.4 General NC signals

DB2600, 2700, 2800, 2900, 4500, 5300
● Setpoints to digital and analog inputs/outputs of the NC

● Actual values from the digital and analog inputs/outputs of the NC

● Keyswitch and Emergency Stop signals

● Ready and status signals of the NC

15.5.1.5 PLC-NC fast data exchange

DB4900
Data block DB4900 with a size of 1024 bytes is used for fast information exchange between
the PLC and NC.

The assignment of the area (structure) must be identically negotiated in the NC part program
and PLC user user program.

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1140 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

This data can be accessed from the NC part program using the commands $A_DBB[x],
$A_DBW[x], $A_DBD[x] and $A_DBR[x]; 0 ≤ x ≤ 1023 (see Parameter Manual, System
variables).

In this case, the alignment of the data must be selected corresponding to its format, i.e. a
Dword starts at a 4byte limit and a word at a 2byte limit. Bytes can be located at any offset
within the data field.

Data consistency is guaranteed for byte, word and Dword accesses. When transferring several
data, the consistency must be guaranteed on the user-side using semaphores, which can be
used to detect the validity or consistency of a block.

15.5.2 PLC-HMI interface

DB1700, 1800, 1900
These signals have already been specified in the figures of Section PLC-NC interface
(Page 1136).

A reference is again made to what has been stated at Data interface (Page 1136):

Data received from the HMI and destined for the NC are not automatically entered into the NC
interface range. In fact, these signals and data must be marshaled by the user program.

It involves the following signals:

● Program selection via lists

● Messenger control command

● General signals from/to HMI

● Signals from/to the maintenance planner

● Signals from operator panel (retentive area)

● General selection/status signals from/to HMI (retentive area)

15.5.2.1 Program selection

Function
Preselected programs/workpieces can be selected for machining by the NC via the PLC/HMI
interface.

The presetting is done by entering programs/workpiece in files, called PLC program lists (*.ppl).

Requirements
The following machine data must be set to allow the HMI to process tasks:

MD9106 $MM_SERVE_EXTCALL_PROGRAMS

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1141

In order to activate a sector-specific PLC program list, you must set the appropriate machine
data and at least the protection level password:

● Area User

– MD51041 $MN_ENABLE_PROGLIST_USER = 1

– Protective level password: 3 (users)

– Program list: /user/sinumerik/hmi/plc/programlist/plc_proglist_user.ppl

● Area Manufacturer (OEM)

– MD51043 $MN_ENABLE_PROGLIST_MANUFACT = 1

– Protective level password: 1 (manufacturer)

– Program list: /oem/sinumerik/hmi/plc/programlist/plc_proglist_manufacturer.ppl

Structure of a program list
A program list is a text file. Each line contains the following information:

<program number> <program path><program name> [CH=<channel number>]

● Program number
The program numbers which may be used in a program list depend on the sector:

– user: 1 - 100

– Individual (oem_i): 101 - 200

– Manufacturer (OEM): 201 - 255

● Program path
The program path must be completely specified in absolute terms.
For specifying the program path, see:
References
Programming Manual, Work Planning, Section "File and Program Administration" >
"Program memory" > "Addressing the files of the program memory"

● Channel number
Specifying the channel number "CH=<channel number>" is optional. It is only required if
the NC has more than one channel.

The following excerpt as example shows the structure of the user program list:

Program list: plc_proglist_user.ppl
1 //DEV2:/MPFDir/PROG_01.MPF CH=1
2 //DEV2:/MPFDir/PROG_01.MPF CH=2

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1142 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Generating entries in a program list
The entries in a program list (*.ppl) can be directly edited in the file or entered in screen forms
in the user interface.

● Via the user interface for the user area
Operating area "Program Manager" > "ETC key (">")" > "Prog. list"

● Via the user interface for the Manufacturer area
Operating area "Commissioning" > "System data" > "ETC key (">")" > "Prog. list"

Program selection: Job interface

Note

The PLC may only request a new job if the last job has been acknowledged by the HMI:
DB1700.DBB2000 == 0

Program list
DB1700.DBB1001 = <number of the program list>

Number Program list
129 /user/sinumerik/hmi/plc/programlist/plc_proglist_user.ppl
130 /oem_i/sinumerik/hmi/plc/programlist/plc_proglist_individual.ppl
131 /oem/sinumerik/hmi/plc/programlist/plc_proglist_manufacturer.ppl

Program number
The program number refers to the programs contained in the selected program list.

DB1700.DBB1002 = <program number>

● user area: 1 - 100

● individual area: 101 - 200

● oem area: 201 - 255

Requesting program selection
DB1700.DBX1000.7 = 1

Program selection: Acknowledgment interface

Job acknowledgment
● DB1700.DBX2000.7 == 1 (selection identified)

● DB1700.DBX2000.3 == 1 (program is selected)

● DB1700.DBX2000.2 == 1 (error when selecting the program, see error ID
DB1700.DBB2001)

● DB1700.DBX2000.1 == 1 (job completed)

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1143

Error detection
DB1700.DBB2001 == <error ID>

Error detection
Value Meaning

0 No error.
1 Invalid program list number (DB1700.DBB1001).
3 User-specific program list plc_proglist_main.ppl not found (only for DB1700.DBB1001 ≠

129, 130, 131).
4 Invalid program number (DB1700.DBB1002).
5 Job list in the selected workpiece could not be opened.
6 Error in job list (job list interpreter returns error).
7 Job list interpreter returns empty job list.

Program selection: Job processing
A job to select a program is executed as follows:

1. Checking the acknowledgment byte: DB1700.DBB2000 == 0
If the acknowledgment byte is not 0, then the last job has still not been completed.

2. Specifying the program list: DB1700.DBB1001

3. Specifying the program number: DB1700.DBB1002

4. Setting the request to select a program: DB1700.DBX1000.7 = 1

5. Evaluating the acknowledgment and error interface: DB1700.DBB2000 and DBB2001
The order is still not completed on the HMI side as long as: DB1700.DBX2000.3 == 1 (active)
The order has been completed on the HMI side if one of the two signals has been set:
- DB1700.DBX2000.1 == 1 == 1 (job completed)
- DB1700.DBX2000.2 == 1 (error)

6. To complete the order, the program selection request must be reset: DB1700.DBX1000.7
= 0

7. The HMI signals that it is ready to accept a new order by resetting the acknowledgment
byte: DB1700.DBB2000 == 0

15.5.2.2 Operating area numbers

The number of the active operating area is displayed in: DB1900.DBB1

Operating area numbers

Operating area Number
Machine 201
Parameters 205
Programming 203
Program Manager 202

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1144 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Operating area Number
Diagnostics 204
Commissioning 206

15.5.2.3 Screen numbers

The current screen number is displayed in: DB1900.DBW4

Screen number ranges
The following screen number ranges are available:

● JOG, manual machine (Page 1145)

● Reference point approach (Page 1150)

● MDA (Page 1150)

● AUTOMATIC (Page 1150)

● Parameters operating area (Page 1151)

● Program operating area (Page 1152)

● Program manager operating area (Page 1153)

● Diagnostics operating area (Page 1153)

Screen numbers: JOG, manual machine

JOG mode

Screen Number
Turning technology

Cycle start screen for all screens that can be taken over 81
Milling technology

Cycle start screen for all screens that can be taken over 3
Turning/milling

Start screen 19
T,S,M 2
Set WO 21
Positioning 4
Face milling 18
Stock removal 80
Cycle start screen for all user screens 91
General settings 1
Multi-channel function settings 106
Collision avoidance settings 107
Measurement log settings 108
Swiveling 60

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1145

Screen Number
All G commands 100
Actual zoom value (MCS/WCS) 101
Thread synchronizing 102
Retract 103
Handwheel 104
Action synchronization 105

Turning technology: Workpiece zero
Workpiece zero (main menu) 30
User screen 31
User screen 34
User screen 35
User screen 36
User screen 37
User screen 38
User screen 40
Measure edge Z 5

Turning technology: Workpiece, measurement
Measure tool (main menu) 50
Manual X or user screen 51
Manual Y 71
Manual Z or user screen 52
Zoom or user screen 53
User screen 54
User screen 55
Probe calibration X or user screen 56
Probe calibration Z or user screen 57
Automatic length in Z 58
Automatic length in Y 73
Automatic length in X 59

Milling technology: Workpiece zero
Workpiece zero (main menu) 30
Measure edge X 5
Measure edge X 22
Measure edge Z 23
User screen 7
Align edge or user screen 31
Distance 2 edges or user screen 32
Right-angled corner 33
Any corner or user screen 8
Rectangular pocket 34
1 hole or user screen 9
2 holes 35
3 holes 36

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1146 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Screen Number
4 holes 37
Rectangular spigot 38
1 circular spigot or user screen 10
2 circular spigots 39
3 circular spigots 40
4 circular spigots 41
Set up level 42
Probe length calibration or user screen 11
Probe radius calibration 12

Milling technology: Workpiece, measurement
Measure tool (main menu) 50
Measure length, manual (with milling tool)
or measure length in X, manual (with turning tool)
or user screen

16

Measure length in Y, manual (with turning tool) 74
Measure length in Z, manual (with turning tool) 24
Measure diameter, manual or user screen 17
Measure length, automatic (with milling tool)
or measure length in X, automatic (with turning tool)
or user screen

13

Measure length in Y, automatic (with turning tool) 75
Measure length in Z, automatic (with turning tool) 25
Measure diameter, automatic or user screen 14
User screen 51
Probe calibration or user screen 15
Fixed point calibration or user screen 52

RunMyScreens (only for set JobShopIntegration)
User screen for the 1st horizontal softkey 96
User screen for the 2nd horizontal softkey 98
User screen for the 3rd horizontal softkey 99
User screen for the 4th horizontal softkey 94
User screen for the 5th horizontal softkey 95
User screen for the 6th horizontal softkey 92
User screen for the 7th horizontal softkey 97
User screen for the 8th horizontal softkey 90
User screen for the 9th horizontal softkey 83
User screen for the 10th horizontal softkey 82
User screen for the 11th horizontal softkey 93
User screen for the 12th horizontal softkey 84
User screen for the 13th horizontal softkey 85
User screen for the 14th horizontal softkey 86
User screen for the 15th horizontal softkey 87
User screen for the 16th horizontal softkey 88

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1147

JOG mode, manual machine

DB19.DBB24
Screen Screen number

Turning/milling
Taper turning 61
Angle milling 62
Stop 63
Straight line 1300
Straight line all axes 1330
Straight line X alpha 1340
Straight line Z alpha 1350
Circle 1360
Drilling 1400
Center drilling 1410
Drilling, thread centered 1420
Drilling, centering 1433
Drilling, drilling 1434
Drilling, reaming 1435
Drilling, boring 1436
Drilling, deep hole drilling 1440
Drilling, deep hole drilling 2 1441
Drilling, tapping 1453
Drill thread milling 1455
Positions 1473
Position row 1474
Position grid 1477
Position frame 1478
Position circle 1475
Position pitch circle 1479
Obstacle 1476
Turning 1500
Turning, stock removal 1 1513
Turning, stock removal 2 1514
Turning, stock removal 3 1515
Turning, groove 1 1523
Turning, groove 2 1524
Turning, groove 3 1525
Turning, undercut form E 1533
Turning, undercut form F 1534
Turning, undercut thread DIN 1535
Turning, undercut thread 1536
Turning, thread, longitudinal 1543
Turning, thread, taper 1544

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1148 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB19.DBB24
Screen Screen number
Turning, thread, facing 1545
Turning, thread, chain 1546
Turning, cut-off 1550
Milling 1600
Milling, face milling 1610
Milling, rectangular pocket 1613
Milling, circular pocket 1614
Milling, rectangular spigot 1623
Milling, circular spigot 1624
Milling, longitudinal groove 1633
Milling, circumferential groove 1634
Milling, open groove 1635
Milling, multi-edge 1640
Milling, thread milling 1454
Milling, engraving 1670
Contour turning 1200
Contour turning, new contour / last contour 1210
Contour turning, stock removal along contour 1220
Contour turning, contour grooving 1230
Contour turning, contour plunge turning 1240
Contour milling 1100
Contour milling, new contour / last contour 1110
Contour milling, path milling 1120
Contour milling, centering 1130
Contour milling, rough drilling 1140
Contour milling, contour pocket 1150

Turning technology: Simulation
Side view 1740
Front view 1750
3D view 1760
2-window view 1770
Half section 1780

Turning technology: Simultaneous recording
Side view 1741
Front view 1751
3D view 1761
2-window view 1771
Machine space 1791
Half section 1781

Milling technology: Simulation
Top view 1742
3D view 1760

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1149

DB19.DBB24
Screen Screen number
From the front 1744
From the rear 1746
From the Left 1748
From the right 1752
Half section 1780
Turning view 1782

Milling technology: Simultaneous recording
Top view 1743
3D view 1761
From the front 1745
From the rear 1747
From the Left 1749
From the right 1753
Machine space 1791
Half section 1781
Turning view 1783

Screen numbers: Reference point approach

Screen Number
Actual zoom value MCS/WCS 101

Screen numbers: MDA

Screen Number
MDI 20
All G commands 100
Actual zoom value MCS/WCS 101
Handwheel 104
Action synchronization 105
Program control 210
Settings 250

Screen numbers: AUTOMATIC

Screen Number
Automatic 200
Overstore 202
Program control 210
Block search 220
General settings 250

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1150 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Screen Number
Multi-channel function settings 106
Collision avoidance settings 107
All G commands 100
Actual zoom value MCS/WCS 101
Handwheel 104
Action synchronization 105

Turning technology: Simultaneous recording
Side view 243
Front view 244
3D view 245
2-window view 246
Machine space 247
Half section 253

Milling technology: Simultaneous recording
Top view 242
3D view 244
From the front 248
From the rear 249
From the Left 251
From the right 252
Machine space 247
Half section 253
Turning view 254

Screen numbers: Parameters operating area

Screen Number
Tool list 600
Tool wear 610
User tool list 620
Magazine 630

Work offset
Work offset, active 642
Work offset, overview 643
Work offset, basic 644
Work offset, G54 - G509 645
Details of work offset, active, overview, basic or G54 - G509 647

User variable
R parameters 650
Global GUD 1 (SGUD) 660
Global GUD 2 (MGUD) 661
Global GUD 3 (UGUD) 662

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1151

Screen Number
Global GUD 4 663
Global GUD 5 664
Global GUD 6 665
Global GUD 7 666
Global GUD 8 667
Global GUD 9 668
Channel GUD 1 (SGUD) 690
Channel GUD 2 (MGUD) 691
Channel GUD 3 (UGUD) 692
Channel GUD 4 693
Channel GUD 5 694
Channel GUD 6 695
Channel GUD 7 696
Channel GUD 8 697
Channel GUD 9 698
Local LUD 681
Local LUD/PUD 684

Setting data
Working area limitation 671
Spindle data 670
Spindle chuck data 672

Ctrl-Energy
Ctrl-Energy, main menu 6170
Ctrl-Energy, analysis 6171
Ctrl-Energy, profiles 6172
Ctrl-Energy, analysis graphic 6176
Ctrl-Energy, analysis long-term measurement 6177
Ctrl-Energy, analysis details 6179
Ctrl-Energy, compare measurements 6178

Screen numbers: Program operating area

Screen Number
Turning technology: Simulation

Side view 413
Front view 414
3D view 415
2-window view 416
Half section 423

Milling technology: Simulation
Top view 412
3D view 414

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
1152 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Screen Number
From the front 418
From the rear 419
From the Left 421
From the right 422
Half section 423
Turning view 424

Screen numbers: Program manager operating area

Screen Number
NC directory 300
Local drive 325
USB / configured drive1 330
Configured drive2 340
Configured drive3 350
Configured drive4 360
Configured drive5 383
Configured drive6 384
Configured drive7 385
Configured drive8 386

Screen numbers: Diagnostics operating area

Screen Number
Alarm list 500
Messages 501
Alarm log 502
NC/PLC variable 503

15.5.2.4 HMI monitor

Function
The HMI monitor is an 8-byte data area in a freely selectable data block, in which the HMI
provides the following data for the PLC user program:

● Operating area numbers (Page 1144)

● Screen numbers (Page 1145)

Parameterization
The data area is configured using the following display machine data:

MD9032 $MM_HMI_MONITOR = "string"

P4: PLC for SINUMERIK 828D
15.5 Data interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1153

with "string" = "DB<DB number>.DBB<byte address>"

Note
Even byte address

The data area must start at an even byte address.

Structure of the data area

Byte Meaning
EB n + 0 Active SINUMERIK operating area
EB n + 1 Reserved
EB n + 2 Current screen number
EB n + 3
EB n + 4 Reserved

... ...
EB n + 7 Reserved

Supplementary conditions
When the HMI monitoring is active, the following PLC/HMI interface signals are no longer
processed:

● DB1900.DBB5003 (PLC hardkeys)

● DB1900.DBB0001 (active SINUMERIK operating area)

● DB1900.DBW0004 (current screen number)

15.6 Function interface

15.6.1 Read/write NC variables

15.6.1.1 User interface
The PLC user program can read or write a maximum of eight NC variables simultaneously via
the NC/PLC interface "Read/write NC variable".

The following steps must be performed as part of a job (read/write):

1. Job specification (Page 1155)

2. Job management: Start job (Page 1156)

3. Job management: Waiting for end of job (Page 1157)

4. Job management: Job completion (Page 1157)

5. Job evaluation (Page 1158)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1154 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Flow diagram of a job: See "Job management: Flow diagram (Page 1158)"

15.6.1.2 Job specification

Variable-specific job interface
Each variable that is to be processed in a job, must be specified in the variable-specific job
interface via its parameters. The general identifiers are discussed in more detail later for each
variable that can be accessed from the interface.

DB120x 1) Read/write NC data (PLC → NC)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB1000 Variable index
DBB1001 Area number
DBW1002 Line index, NC variable x
DBW1004 Column index, NC variable x
DBW1006 ---
DBD1008 Write: Data to NC variable x (data type of the variables: 1…4 bytes)2)

DBD1012 ---
DBD1016 Write: Data to NC variable x (REAL) 3)

DBD1020 Write: Data to NC variable x (DWORD/DINT) 3)

DBW1024 Write: Data to NC variable x (WORD/INT) 3)

DBB1026 Write: Data to NC variable x (BYTE) 3)

DBB1027 --- --- --- --- --- --- --- Write:
Data to

NC varia‐
ble x 3)

1) DB120x, with x = 0 ... 7 corresponds to variable 1 ... 8.
2) Only for predefined variables of the "Read/write NC variable" user interface
3) Only for variables from DB9910 NC_DATA

Note
Channel-specific variables

When reading/writing channel-specific variables, only the variables of exactly one channel may
be addressed in a job.
Drive-specific variables

When reading/writing drive-specific variables, only the variables of exactly one SERVO drive
object may be addressed in a job. The SERVO drive object must be assigned to a machine
axis of the NC. The line index corresponds to the logical drive number.
Error case

In the event of an error, reading/writing variables from different drive objects, or simultaneously
from a channel and a drive object, an error message is output:

DB1200.DBX3000.1 == 1 (error occurred)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1155

Example: Reading a variable of the "Location type" as the fourth variable
DB1203.DBB1000: 7
DB1203.DBB1001: -
DB1203.DBW1002: <Location number>
DB1203.DBW1004: <Magazine number>
DB1203.DBW1006: -
DB1203.DBD1008: -

Example: Writing a variable as the fourth variable
To write a data item to the NC, the value must be entered into the double word DBD1008:
DB1203.DBB1000: <Variable index>
DB1203.DBB1001: <Area number>
DB1203.DBW1002: <Column index>
DB1203.DBW1004: <Line index>
DB1203.DBW1006: -
DB1203.DBD1008: <Value>

15.6.1.3 Job management: Start job
The following data must be written by the user to the global job interface:

DB120x 1) Read/write NC data (PLC → NC)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB0 Job type Job: Start
DBB1 Number of variables to be processed in the job
1) DB120x, with x = 0 ... 7 corresponds to variable 1 ... 8.

Job type
● Read variable: DB1200.DBX0.1 = 0

● Write variable: DB1200.DBX0.1 = 1

Start job
The start signal must be set to start the job via a specified number of variables:

DB1200.DBX0.0 = 1

Note

A new job can only be started if the previous job was completed. See Section "Job
management: Waiting for end of job (Page 1157)".

The execution of a job may take several PLC cycles and vary depending on the utilization.
Therefore, the time for this function cannot be defined.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1156 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.6.1.4 Job management: Waiting for end of job
The end of the job is always signaled back by the NC for the whole job in the global result
interface. The signals can only be read by the PLC user.

DB120x 1) Read/write NC data (NC → PLC)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB2000 Error in job Job com‐

pleted
1) DB120x, with x = 0 ... 7 corresponds to variable 1 ... 8.

Job status
● End of job without error

DB1200.DBX2000.0 == 1 AND DB1200.DBX2000.1 == 0

● End of job with error
DB1200.DBX2000.0 == 1 AND DB1200.DBX2000.1 == 1

Possible error causes
● Number of variables (DB1200.DBB1) out of the valid range

● Variable index (DB1200.DBB1000) out of the valid range

● Simultaneous reading/writing of NC data from different servo drive objects

15.6.1.5 Job management: Job completion

Requirement
In order to complete the job, the start signal of the job must be reset from the PLC user program
after detection of the end of the job:

DB1200.DBX0.0 = 0

Feedback signal
As feedback, the NC resets the status signals:

● DB1200.DBX2000.0 == 0

● DB1200.DBX2000.1 == 0

The job is now completed.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1157

15.6.1.6 Job management: Flow diagram

① Start job:
DB1200.DBX0.0 (start) = 1

② Waiting for end of job:
DB1200.DBX2000.0 (job completed) == 1 AND
DB1200.DBX2000.1 (error in job) == 0
⇒ Reset job request:
DB1200.DBX0.0 = 0 (start)

③ With DB1200.DBX0 0 == 0 (start), the job is completed by the basic PLC program:
DB1200.DBX2000.0 (job completed) = 0

④ Waiting for end of job:
DB1200.DBX2000.0 (job completed) == 0 AND
DB1200.DBX2000.1 (error in job) == 1
⇒ Perform error handling
⇒ Reset job request:
DB1200.DBX0.0 (start) = 0

⑤ With DB1200.DBX0.0 == 0 (start), the job is completed by the basic PLC program:
DB1200.DBX2000.1 (error in job) = 0

⑥ If DB1200.DBX0.0 (start) is reset before the end of job is signaled by the basic PLC program,
the job is executed without further feedback.

15.6.1.7 Job evaluation
The variable-specific result interface must be evaluated for each variable processed in the job.

DB120x 1) NC services (NC → PLC)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB3000 Error has oc‐

curred
Variable val‐

id
DBB3001 Access result (see "Access result" below)
DBW3002 ---
DBD3004 Read: Data from NC variable x (data type of the variables: 1…4 bytes)2)

DBD3008 ---
DBD3012 ---
DBD3016 Read: Data from NC variable x (REAL)3

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1158 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB120x 1) NC services (NC → PLC)
DBD3020 Read: Data from NC variable x (DWORD / DINT)3)

DBW3024 Read: Data from NCK variable x (WORD / INT)3)

DBB3026 Read: Data from NCK variable x (BYTE)3)

DBB3027 --- --- --- --- --- --- --- Read:
Data from

NC variable
x 3)

1) DB120x, with x = 0 ... 7 corresponds to variable 1 ... 8.
2) Only for predefined variables of the "Read/write NC variable" user interface
3) Only for variables from DB9910 NC_DATA

Note
Channel-specific variables

When reading/writing channel-specific variables, only the variables of exactly one channel may
be addressed in a job.
Drive-specific variables

When reading/writing drive-specific variables, only the variables of exactly one SERVO drive
object may be addressed in a job. The SERVO drive object must be assigned to a machine
axis of the NC. The line index corresponds to the logical drive number.
Error case

In the event of an error, reading/writing variables from different drive objects, or simultaneously
from a channel and a drive object, an error message is output:

DB1200.DBX3000.1 == 1 (error occurred)

Access result

NC variables

DBB3001
Value Meaning

0 No error
3 Access to object is not permitted
5 Invalid address
10 Object does not exist

Drive-specific variables
If an error occurs while reading/writing a drive-specific variable (DB1200.DBX3000.1 == 1),
an error number is displayed in the access result which is based on the error numbers defined
in the PROFIdrive profile.

DBB3001
Value Meaning

x <error number of the PROFIdrive profile> + 20H or 36D

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1159

Determining the meaning of the access result:

1. Calculate the error number of the PROFIdrive profile
<error number of the PROFIdrive profile> = access result - 20H or 36D.

2. Determine the meaning of the error number of the PROFIdrive profile
The error numbers of the PROFIdrive profile are described in:
References
Function Manual, SINAMICS S120 Drive Functions; Section "Communication" >
"Communication according to PROFIdrive" > "Acyclic communication" > "Structure of the
requests and responses" > Subsection "Error values in parameter responses"

Examples: Job status

Job without error
● DB1200.DBX3000.0 == 1 (variable valid) AND

● DB1200.DBX3000.1 == 0 (no error occurred)

Result:

● DB1200.DBB3001 == 0 (access result: "No error")

● DB1200.DBD3004 == <read value>

Job with error
● DB1200.DBX3000.0 == 0 (variable not valid) AND

● DB1200.DBX3000.1 == 1 (error occurred)

Result:

● DB1200.DBB3001: For possible error causes, see "Access result" above

15.6.1.8 Operable variables

The following variables are available:

Variable Meaning
cuttEdgeParam (Page 1161) Compensation value parameters and cutting edge list with D num‐

bers for a tool
numCuttEdgeParams (Page 1161) Number of P elements of a cutting edge
linShift (Page 1161) Translation of a settable zero-point offset
numMachAxes (Page 1162) Number of the highest existing channel axis
rpa (Page 1162) R parameters
actLineNumber (Page 1163) Line number of the current NC block
$TC_MPPx (Page 1163) Magazine location data
r0078[1] (Page 1164) Current actual value, torque-generating
r0079[1] (Page 1165) Torque setpoint at the output of the speed controller
r0081 (Page 1165) Torque utilization in percent

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1160 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Variable Meaning
r0082[1] (Page 1165) Active power actual value
TEMP_COMP_x (Page 1166) Temperature compensation data

Variable "cuttEdgeParam"

Compensation value parameters and cutting edge list with D numbers for a tool
The meanings of the individual parameters depend on the type of the tool in question. Currently,
25 parameters are reserved for each tool edge (but only a part of them is loaded with values).
To be able to remain flexible for future extensions, it is not recommended to use a fixed value
of 25 parameters for calculation, but the variable value 'numCuttEdgeParams' (variable index
2).

For a detailed description of tool parameters, see Section W1: Tool offset (Page 1451).

Address Value / meaning
DB120x.DBB1000 1
DB120x.DBB1001 -
DB120x.DBW1002 (Cutting edge No. - 1) * numCuttEdgeParams + ParameterNr (WORD)
DB120x.DBW1004 T number (1...32000) (WORD)
DB120x.DBD1008 Write: Data to NC variable x (data type: REAL)
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

Variable "numCuttEdgeParams"

Number of P elements of a cutting edge

Address Value / meaning
DB120x.DBB1000 2
DB120x.DBB1001 -
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Reading: Data from NCK variable x (data type: WORD)

Variable "linShift"

Translation of a settable work offset (channel-specific settable frames)
The variable only exists if MD18601 MM_NUM_GLOBAL_USER_FRAMES > 0.

The following frame indices are available:

Index Meaning
0 ACTFRAME = actual resulting work offset
1 IFRAME = actual settable work offset
2 PFRAME = actual programmable work offset

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1161

Index Meaning
3 EXTFRAME = actual external work offset
4 TOTFRAME = actual total work offset = total of ACTFRAME and EXTFRAME
5 ACTBFRAME = actual total base frame
6 SETFRAME = current 1st system frame (PRESET, scratching)
7 EXTFRAME = current 2nd system frame (PRESET, scratching)
8 PARTFRAME = current 3rd system frame (TCARR and PAROT with an orientable tool‐

holder)
9 TOOLFRAME = current 4th system frame (TOROT and TOFRAME)
10 MEASFRAME = result frame for the workpiece and tool measuring
11 WPFRAME = current 5th system frame (workpiece reference points)
12 CYCFRAME = current 6th system frame (cycles)

Address Value / meaning
DB120x.DBB1000 3
DB120x.DBB1001 -
DB120x.DBW1002 Frame index * numMachAxes (Page 1162) + axis number
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

Variable "numMachAxes"

Number of the highest existing channel axis
If there are no channel axis gaps, the value of the variables is also the number of available
axes in the channel.

Address Value / meaning
DB120x.DBB1000 4
DB120x.DBB1001 -
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NC variable x (data type: WORD)

Variable "rpa"

R parameters

Address Value / meaning
DB120x.DBB1000 5
DB120x.DBB1001 -
DB120x.DBW1002 R number + 1

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1162 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Address Value / meaning
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NC variable x (data type: REAL)
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

Variable "actLineNumber"

Line number of the current NC block

No. Meaning
≥ 1 Line number of the current NC block
0 No line number available because the program has not started
-1 No line number available: Error
-2 No line number available: Suppression of block display with DISPLOF is active

Address Value / meaning
DB120x.DBB1000 6
DB120x.DBB1001 -
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NC variable x (data type: INT)

Tool management: Magazine location data

Location type ($TC_MPP2)

Address Value / meaning
DB120x.DBB1000 7
DB120x.DBB1001 -
DB120x.DBW1002 Location number (1 … 31999)
DB120x.DBW1004 Magazine number (1 … 9999)
DB120x.DBD1008 -
DB120x.DBW3004 Read: Value of the NC variable (data type: WORD)

 Value Meaning
> 0 Location type for virtual location
0 "match all" (buffer)

9999 undefined (no virtual location)

Location status ($TC_MPP4)

Address Value / meaning
DB120x.DBB1000 8
DB120x.DBB1001 -

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1163

Address Value / meaning
DB120x.DBW1002 Location number (1 … 31999)
DB120x.DBW1004 Magazine number (1 … 9999)
DB120x.DBD1008 -
DB120x.DBW3004 Read: Value of the NC variable (data type: WORD)

 Value Meaning
1 Blocked
2 free (<> occupied)
4 reserved for tool in buffer
8 reserved for tool to be loaded
16 occupied in left half location
32 occupied in right half location
64 occupied in upper half location

128 occupied in lower half location

T No. of tool at this location ($TC_MPP6)

Address Value / meaning
DB120x.DBB1000 9
DB120x.DBB1001 -
DB120x.DBW1002 Location number (1 … 31999)
DB120x.DBW1004 Magazine number (1 … 9999)
DB120x.DBD1008 -
DB120x.DBW3004 Read: T number of the tool at this location (data type: WORD)

Variable r0078[1]
● Drive object: SERVO, SERVO_AC, SERVO_I_AC

● CO: Current actual value, torque-generating [Arms]

● Index [1]: smoothed with p0045

Address Value / meaning
DB120x.DBB1000 10
DB120x.DBB1001 Number of the drive module
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1164 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Variable r0079[1]
● Drive object: SERVO, SERVO_AC, SERVO_I_AC

● CO: Torque setpoint at the output of the speed controller (before clock cycle interpolation)
[Nm]

● Index [1]: smoothed with p0045

Address Value / meaning
DB120x.DBB1000 11
DB120x.DBB1001 Number of the drive module
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

Variable r0081
● Drive object: SERVO, SERVO_AC, SERVO_I_AC

● CO: Torque utilization in percent

Address Value / meaning
DB120x.DBB1000 12
DB120x.DBB1001 Number of the drive module
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

Variable r0082[1]
● Drive object: SERVO, SERVO_AC, SERVO_I_AC

● CO: Active power actual value [kW]

● Index [1]: smoothed with p0045

Address Value / meaning
DB120x.DBB1000 13
DB120x.DBB1001 Number of the drive module
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1165

Temperature compensation

Variable "TEMP_COMP_ABS_VALUE" (SD43900)
Position-independent temperature compensation value

Address Value / meaning
DB120x.DBB1000 14
DB120x.DBB1001 No. of the axis (1, 2, ...)
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NC variable x (data type: REAL)
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

Variable "TEMP_COMP_SLOPE" (SD43910)
Gradient for position-dependent temperature compensation

Address Value / meaning
DB120x.DBB1000 15
DB120x.DBB1001 No. of the axis (1, 2, ...)
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NC variable x (data type: REAL)
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

Variable "TEMP_COMP_REF_POSITION" (SD43920)
Reference position for position-dependent temperature compensation

Address Value / meaning
DB120x.DBB1000 16
DB120x.DBB1001 No. of the axis (1, 2, ...)
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NC variable x (data type: REAL)
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

Variable "TOOL_TEMP_COMP" (SD42960[...])
Temperature compensation referred to the tool

Address Value / meaning
DB120x.DBB1000 17
DB120x.DBB1001 -
DB120x.DBW1002 Index + 1 (1, 2, 3)
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NC variable x (data type: REAL)
DB120x.DBW3004 Read: Data from NC variable x (data type: REAL)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1166 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.6.1.9 Specifying selected NC variables
The selected NC variables are specified via the DB9910 data block (selected NC variable).
The length of the data block depends on the number of NC variables selected in the variables
list. The variables list can contain maximum 42 selected NC variables. The DB9910 data block
contains the data for variable addressing and data type conversion for each NC variable.

DB9910 Selected NC variable, read (PLC → NC)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB0 Variable index Variable 1
DBB1 Syntax ID
DBB2 Area
DBB3 Unit
DBW4 Column index
DBW6 Line index
DBB8 Block
DBB9 Number of lines
DBB10 Type
DBB11 Length
....
DBB492 Variable index Variable 42
DBB493 Syntax ID
DBB494 Area
DBB495 Unit
DBW496 Column index
DBW498 Line index
DBB500 Block
DBB501 Number of lines
DBB502 Type
DBB503 Length

Variable index
The variable index refers to the name of the NC variable. The variable index consists of a start
value 100 and the offset of the NC variable in the list (0 to 41).

The variable index is entered as DBB1000 A_VarIdx in the DB120x RW_NCDx user interface.

The comment contains the following data record with space as separator:

● Area

● Block

● VariablenName

● VarType

● Column

● VarAnzByte

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1167

Extended user interface
The data test in data blocks means the value of a variable can be written to an address in the
data block that has the same type, e.g. a REAL value can be written only to a REAL address
(e.g. with MOV_R). The "Read/write NC variable " user interface contains currently only one
address of the DWORD type for the value to be written (DBD1008). This means a REAL value
can be written only via a temporary variable, flag or accumulator. The same is also true for
reading (DBD3004). For this reason, the "Read/write NC variable" user interface is extended.
For reading and writing, one address for each type is added: REAL, DWORD/DINT, WORD/
INT, BYTE and BOOL (DBD1016 … DBB1027 or DBD3016 … DBB3027). These new
addresses are used by the PLC firmware only for those variables selected with the NC variables
editor – and entered into DB9910 NC_DATA when compiled (variable index ≥ 100). The NC
variables currently defined in the "Read/write NC variable" user interface continue to use the
old addresses (DBD1008 or DBD3004).

15.6.2 Program instance services (PI services)

15.6.2.1 Job specification
PI services are specified via the job interface (DB1200 from offset 4000).

DB1200 PI service [r/w]
 PLC → NC interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 4000 - - - - - - - Start 1)

DBB 4001 PI index 2)

DBB 4002 -
DBB 4003 -
DBW 4004 PI parameter 1 3)

DBW 4006 PI parameter 2
DBW 4008 PI parameter 3
DBW 4010 PI parameter 4
DBW 4012 PI parameter 5
DBW 4014 PI parameter 6
DBW 4016 PI parameter 7
DBW 4018 PI parameter 8
DBW 4020 PI parameter 9
DBW 4022 PI parameter 10
1) DB1200.DBX4000.1, start: DBX4000.1 = 1 ⇒ start of the PI service; DBX4000.1 = 0 ⇒ PI service completed
2) DB1200.DBB4001, PI index: Specifies the specific PI service
3) DB1200.DBW4004 ..., PI parameters: PI-specific parameters

Overview of the Pl services:
● PI service ASUB (Page 1169)

● PI service LOGOUT (Page 1171)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1168 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● PI service DATA_SAVE (Page 1171)

● PI service TMMVTL (Page 1172)

15.6.2.2 Job feedback
The PLC provides feedback as to whether the started PI service was successful or not
successful in the result interface (DB1200 from offset 5000).

The job end is signaled using the following signals:

● DB1200.DBX5000.0

● DB1200.DBX5000.1

The signals are written by the PLC; therefore, they can only be read by the user.

A job has been completed as soon as the user resets the "Start" signal (DB1200.DBX4000.1).
Status signals DB1200.DBX5000.0 and .1 are then set to zero.

DB1200 PI service [r]
 NCK → PLC interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 5000 - - - - - - Error in the

job 2)
Job com‐
pleted 1)

DBB 5001 -
DBB 5002 -
1) DB1200.DBX5000.0, job status: DBX5000.0 == 1 ⇒ job completed
2) DB1200.DBX5000.1, error status: DBX5000.1 == 0 ⇒ no error; DBX5000.1 == 1 ⇒ error

Possible error causes
● The index of the parameterized PI service (DB1200.DBB4001) is outside the valid range

● Parameter error

15.6.2.3 PI service ASUB

Interrupts

Note
Relationship between channels and interrupts

For control systems with maximum one channel, two interrupts are available; for control
systems with maximum two channels, four interrupts are available.

Every interrupt number can be assigned an interrupt program (ASUB) with the "ASUB" PI
service from the PLC. The interrupt program is then executed on the NC when the associated

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1169

interrupt is issued. The associated interrupt programs must be present in the NC in the machine
manufacturer directory (_N_CMA_DIR) with the following program names:

Interrupt Program name
1 PLCASUP1_SPF
2 PLCASUP2_SPF
3 PLCASUP3_SPF
4 PLCASUP4_SPF

If the interrupt programs are not available, they must be created. An NC Reset (Power On)
must then be issued on the NC.

The PI service "ASUP" must only be executed once per interrupt assignment after the control
powers up. The assignment of the interrupt to the interrupt program is retained until the control
powers up again.

Job specification

PI service: ASUP
Address Meaning Valid values
DB1200.DBW4001 PI index 1) 1, 2, 13, 14
DB1200.DBW4004 Parameter 1: LIFTFAST 2) 0 (FALSE), 1 (TRUE)
DB1200.DBW4006 Parameter 2: BLSYNC 3) 0 (FALSE), 1 (TRUE)
DB1200.DBW4008 Parameter 3: Channel index 4) 0, 1
DB1200.DBW4010 Parameter 4: Interrupt priority 5) 0, 1, 2, 3, 4
1)
● PI index = 1: Interrupt 1 ⇒ _N_CMA_DIR / PLCASUP1_SPF, interrupt priority set as default: 1
● PI index = 2: Interrupt 2 ⇒ _N_CMA_DIR / PLCASUP2_SPF, interrupt priority set as default: 2
● PI index = 13: Interrupt 3 ⇒ _N_CMA_DIR / PLCASUP3_SPF, interrupt priority set as default: 3
● PI index = 14: Interrupt 4 ⇒ _N_CMA_DIR / PLCASUP4_SPF, interrupt priority set as default: 4
2) After the interrupt has been initiated, LIFTFAST first results in a fast retraction (fast lift). Only then
is the interrupt routine executed.
References
Function Manual, Special Functions; Section "R3: Extended standstill and retract " > "Control-managed
ESR" > "Retract"
3) BLSYNC ensures that after the interrupt has been initiated, the system first waits until the actual
block has been executed. Only then is the interrupt routine executed.
4) 0 → channel 1, 1 → channel 2
5) When using default interrupt priorities, the parameter should be set to a value of 0.

Machine data
● Lowest interrupt priority

In the following machine data, the lowest interrupt priority for the NC is defined, whose
associated interrupt is processed. Interrupts with a lower priority than that specified in the
machine data are not processed in the control system:
MD11604 $MN_ASUP_START_PRIO_LEVEL

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1170 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Supplementary conditions

Channel status
The PI service "ASUB" may only be executed when the channel in which it is requested is in
the "reset" state.

ProgEvent "Power up"
If, for an event-driven program call (ProgEvent), "power up" is configured as initiating event
(MD20108 $MC_PROG_EVENT_MASK), then the PI service "ASUP" may only be started after
the ProgEvent program has been completed (PROG_EVENT_SPF or MD11620
$MN_PROG_EVENT_NAME = <user_prog_event_SPF>).

See also
Job specification (Page 1168)

Job feedback (Page 1169)

15.6.2.4 PI service LOGOUT

Function
The password last transferred to the NC is reset.

Job specification

PI service: LOGOUT
Address Description Valid values
DB1200.DBW4001 PI index 3 (reset password)

15.6.2.5 PI service DATA_SAVE

Function
Save the current NC state to the system CompactFlash card.

Note
Powering up

The next time that the control powers up, in the "Start up menu" via "Reload saved user data",
the saved state can be loaded to the NC.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1171

Job specification

PI service: DATA_SAVE
Address Description Valid values
DB1200.DBW4001 PI index 4

References
SINUMERIK 828D Commissioning Manual; Section "CNC commissioning" > "Scope of
delivery and requirements" > "Control run-up"

15.6.2.6 PI service TMMVTL

Function
Using the PI service TMMVTL, it is possible to request a job from the PLC to relocate a tool.
As a result of the PI service, the tool manager carries out an empty location search in the target
magazine for the tool specified in the PI service (tool number or source location number/source
magazine number) The PLC then receives a job to relocate the tool via DB41xx.DBB0.

Job specification

Address Description Valid values
DB1200.DBW4001 PI index 5
DB1200.DBW4004 Parameter 1: Tool number 1) -1, 1 … 31999
DB1200.DBW4006 Parameter 2: Source location

number 1)
-1, 1 … 31999

DB1200.DBW4008 Parameter 3: Source magazine
number 1)

-1, 1 … 9999

DB1200.DBW4010 Parameter 4: Target location
number 2)

-1, 1 … 31999

DB1200.DBW4012 Parameter 5: Target magazine
number 3)

-1, 1 … 9999

1) The tool can be optionally specified using:
● Tool number (T number)
● Source location and source magazine number
For the unused parameters of the other version, a value of -1 must be entered.
2) With the target location number = -1, a search is made in the complete magazine for an empty
location for the tool according to the search strategy that has been selected. If a target location is
specified, then a check is made as to whether the location with the specified target location number is
free and suitable for the particular tool.
3) For a target magazine number = -1, a search is made in a buffer for the tool corresponding to the
assignment obtained from $TC_MDP2.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1172 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Application examples
● When using buffers to return the tool (for example Toolboy and/or shifter), an explicit empty

location search in the magazine may be needed during the asynchronous return transport.
In this case, the PLC does not have to note the original location, the PI service TMMVTL
searches for a suitable location.

● A tool is to be moved from a background magazine to the front magazine.

15.6.2.7 PI services: Cycle diagram

① User sets the signal "Start", job execution starts.
② After the PLC firmware signals "Job completed", the user resets the signal "Start".
③ By resetting the signal "Start", the PLC firmware resets the signal "Job completed".
④ After the PLC firmware signals "Error in job", the user resets the signal "Start".
⑤ By resetting the signal "Start", the PLC firmware resets the signal "Error in job".
⑥ If the user accidentally resets the signal "Start" before one of the signals "Job completed" or "Error

in job" is received, then the result signals for this job are not updated. However, the job is executed.

15.6.3 PLC user alarms

15.6.3.1 User interface

Note

Although the designation user "alarms" is used in the following, it defines only whether a
message or an alarm is involved when entering the associated cancel criterion (see
"Configuring user alarms (Page 1176)").

The user interface in DB1600 offers the option of displaying error and operational messages
on the HMI.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1173

This includes the following deliverables:

● Activation of the user alarms 700000 to 700247 and the extended user alarms 701000 to
701999.

Note

The use of the extended PLC user alarms 701000 to 701999 is subject to the following
preconditions:
● Compatibility mode must be deactivated.
● The data block DB9913 must be contained in the PLC project (i.e. DB9913 was selected

in the PLC Programming Tool under "Libraries" > "Special data blocks" and transferred
with Copy & Paste / double-click to the PLC project).

● The user alarms 700000 to 700247 and 701000 to 701247 can be given an additional
numeric parameter.

● Deactivation and acknowledgment of the user alarms.

● Evaluation of the system responses initiated by the user alarms.

The firmware evaluates the signals that have been entered and sends these as coming and
going alarms and messages to the HMI where they are displayed. The HMI manages the error
texts.

15.6.3.2 Activation interface of the user alarms
Each user alarm is activated using its assigned activation bit. These bits are set in the activation
interface.

A new user alarm is activated with a 0/1 edge of the particular bit.

Activation interface for alarms 700000 to 700247

DB1600 Alarm activation [r/w] (PLC → HMI)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 Activation of alarm no.
DBB0 700007 700006 700005 700004 700003 700002 700001 700000
 Activation of alarm no.
DBB1 700015 700014 700013 700012 700011 700010 700009 700008
 Activation of alarm no.
DBB2 700023 700022 700021 700020 700019 700018 700017 700016
 Activation of alarm no.
DBB3 700031 700030 700029 700028 700027 700026 700025 700024
 Activation of alarm no.
DBB4 700039 700038 700037 700036 700035 700034 700033 700032
 Activation of alarm no.
DBB5 700047 700046 700045 700044 700043 700042 700041 700040
... ….

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1174 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB1600 Alarm activation [r/w] (PLC → HMI)
 Activation of alarm no.
DBB30 700247 700246 700245 700244 700243 700242 700241 700240

Activation interface for alarms 701000 to 701999

DB1600 Alarm activation [r/w] (PLC → HMI)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 Activation of alarm no.
DBB4000 701007 701006 701005 701004 701003 701002 701001 701000
 Activation of alarm no.
DBB4001 701015 701014 701013 701012 701011 701010 701009 701008
 Activation of alarm no.
DBB4002 701023 701022 701021 701020 701019 701018 701017 701016
 Activation of alarm no.
DBB4003 701031 701030 701029 701028 701027 701026 701025 701024
 Activation of alarm no.
DBB4004 701039 701038 701037 701036 701035 701034 701033 701032
 Activation of alarm no.
DBB4005 701047 701046 701045 701044 701043 701042 701041 701040
... ….
 Activation of alarm no.
DBB4124 701999 701998 701997 701996 701005 701994 701993 701992

15.6.3.3 Variables interface of the user alarms
The user alarms 700000 to 700247 and 701000 to 701247 can be given a variable as
parameter. A double word is reserved for each in the variable interface. As a consequence,
valid offsets must be divisible by 4.

Variable interface for alarms 700000 to 700247

DB1600 Variable for alarm [r32/w32] (PLC → HMI)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBD1000 Variable for alarm 700000
DBD1004 Variable for alarm 700001
DBD1008 Variable for alarm 700002
 ...
DBD1980 Variable for alarm 700245
DBD1984 Variable for alarm 700246
DBD1988 Variable for alarm 700247

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1175

Variable interface for alarms 701000 to 701247

DB1600 Variable for alarm [r32/w32] (PLC → HMI)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBD5000 Variable for alarm 701000
DBD5004 Variable for alarm 701001
DBD5008 Variable for alarm 701002
 ...
DBD5980 Variable for alarm 701245
DBD5984 Variable for alarm 701246
DBD5988 Variable for alarm 701247

15.6.3.4 Configuring user alarms
The following attributes can be specified for each alarm:

● Alarm response: How the control system responds when an error occurs.

● Cancel criterion: What must be done to cancel the alarm again or acknowledge it. The
cancel criterion simultaneously defines the alarm type and priority.

● Channel assignment The channel to which the alarm is assigned.

User alarms 700000 to 700247
User alarms 700000 to 700247 are configured via machine data.

Alarm response and cancel criterion
The specification of the alarm reactions and the cancel criterion are coded as bits in the
machine data:

MD14516 $MN_USER_DATA_PLC_ALARM [x] = <Alarm response and cancel criterion>

with x = user alarm number - 700000; value range: 0 ≤ x ≤ 247

<Alarm response and cancel criterion>
Bit Meaning

Alarm responses
0 NC Start disable
1 Read-in disable
2 Feed disable for all axes
3 Emergency stop
4 PLC STOP
5 Alarm log

Cancel criteria
6 Interrupt with DB1600 DBX3000.0
7 Power On

Bit x = 1: Activating the functionality
Bit x = 0: Deselecting the functionality

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1176 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Channel assignment
The channel is assigned as bit coding in the machine data:

MD14518 $MN_USER_DATA_PLC_ALARM_ASSIGN [x] = <channel assignment>

with x = user alarm number - 700000; value range: 0 ≤ x ≤ 247

<Channel assignment>
Bit Meaning
0 Scope NC-channel 1
1 Scope NC-channel 2

Bit x = 1: Channel selected
Bit x = 0: Channel deselected

User alarms 701000 to 701999
User alarms 701000 to 701999 are configured in data block DB9913 (ALARM_INI). Each alarm
requires two bytes of configuration data. One byte for selecting the alarm reactions and cancel
criteria, and one byte for the channel assignment. These two bytes are grouped as one word.

DB9913 Configuring user alarms 701000 to 701999 [r]
DBW0 Alarm 701000
DBW2 Alarm 701001
DBW4 Alarm 701002
 ...
DBW1998 Alarm 701999

Bit Meaning
Alarm response

0 NC Start disable
1 Read-in disable
2 Feed disable for all axes
3 Emergency stop
4 PLC STOP
5 Alarm log

Cancel criterion
6 Interrupt with DB1600 DBX3000.0
7 Power On

Channel assignment
8 PLC user alarm for NC-channel 1
9 PLC user alarm for NC-channel 2
10 Reserved
11 Reserved
12 Reserved
13 Reserved

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1177

Bit Meaning
14 Reserved
15 Reserved

Cancel criterion and priority
The cancel criterion and therefore implicitly also the type and priority of a user alarm is set
using bits 6 and 7:

Bit 7 Bit 6 Cancel criterion: Type Priority
0 0 Resetting of the activation bit Message Low
0 1 Acknowledgment in DB1600.DBX3000.0 (see "Ac‐

knowledgement interface of the user alarms
(Page 1179)")

Alarm Medium

1 0 Power On Alarm High
1 1 Reserved (internally evaluated as: Bit 7 = 1, bit 6 = 0) - -

Display message
If an alarm response is not activated (machine data bits 0 to 4 = 0) for one of the user alarms
listed above, then this defines that it involves what is known as a "Display message" without
having any effect on the system. This especially indicates that also the cancel criterion
(machine data bits 6 and 7) of the corresponding machine data is not evaluated.

15.6.3.5 Export active alarm responses and cancel criteria
The present active alarm responses (i.e. the actual responses), theactive cancel criteria and
the active channel assignment can be exported globally from the interface.

DB1600 Active alarm response [r]
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB2000 Power On Interrupt

with
DB1600

DBX3000.0

 PLC STOP Emergen‐
cy stop

Channel 1
Feedrate

disable for
all axes

Read-in
disable

NC start
disable

DBB2001

 Channel 2
Feed disa‐
ble for all

axes

Read-in
disable

NC Start
disable

One bit is set if for at least one active alarm the corresponding response or the corresponding
cancel criterion is configured. It is canceled if this response/cancel criterion is no longer
configured for any of the pending alarms.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1178 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.6.3.6 Acknowledgement interface of the user alarms
Requirement to acknowledge a user alarm is that the corresponding activation bit is reset.

● Messages with cancel criterion {0,0} then disappear automatically from the display.

● Alarms with cancel criterion {0,1} are canceled by the acknowledgment bit Ack.

● Alarms with cancel criterion {1,0} are not influenced when the acknowledgment bit is set
and can only be canceled by a Power On.

DB1600 Alarm acknowledgment [r/w]

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB3000 Ack
DBB3001
DBB3002
DBB3003

15.6.3.7 Interface to HMI.
The PLC can transfer eight messages or alarms for display on the HMI, which are displayed
in the sequence that they occur.

When additional messages/alarms occur, the first seven are kept in the HMI, and the latest
message or the latest alarm is displaced from one that has just occurred according to the
following rules:

● System message/alarm displaces user message/alarm.

● Messages/alarms with a higher priority displace those of a lower priority.

The first seven messages/alarms are kept in the display because it is very probable that these
define the cause of the problem and the following are just of a secondary nature. However, if
one or several messages/alarms are acknowledged and therefore cleared, then a
corresponding number of alarms/messages that have been received move up in the HMI.

15.6.4 PLC axis control

15.6.4.1 General information
The PLC can control axes/spindles via data blocks of the user interface; the axis/spindle is
specified by its DB number:

● DB380x PLC → NC interface (to axis/spindle)

● DB390x NC → PLC interface (from axis/spindle)

with axis index x: 0 ≤ x ≤ max. axis index; axis index = axis number - 1

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1179

The following functions are supported:

● Positioning axes

● Position spindle

● Rotate spindle

● Oscillate spindle

● Indexing axes

References
● Function Manual, Extended Functions; Positioning Axes (P2) and Indexing axes (T1)

● Function Manual, Basic Functions; Spindles (S1)

Requirement
The axis to be controlled must be assigned to the PLC (PLC axis). An axis can be interchanged
between NC and PLC using the user interface "Axis interchange" (DB3800.DBB8/
DB3900.DBB8).

Function start
Each function is activated by the positive edge of the corresponding "Start" signal. This signal
must remain a logical "1" until the function has been positively or negatively acknowledged
(e.g. using Position reached = "1" or Error = "1"). The signal "Positioning axis active" = "1"
indicates that the function is active and that the output signals are valid.

Abort
It is not possible to interrupt the function by resetting the start signal, but only via other interface
signals (using the axis-specific signal Delete distance to go/spindle reset, DB380x DBX2.2).

The axis interface returns axis status signals that may need to be evaluated (e.g. exact stop,
travel command, → DB390x).

If the axis/spindle is being traversed via the NC program when the PLC axis control is called
(travel command present), then the function is only started after this traversing motion has
ended. No error code is output in this situation.

Axis disable
With the axis disable set, an axis controlled via PLC axis control will not move. Only a simulated
actual value is generated. (Behavior as with NC programming).

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1180 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.6.4.2 User interface: Preparing the NC axis as PLC axis

Request signals to axis/spindle (excerpt)
Firstly, the axis/spindle must be requested from the PLC:

DB380x Signals to the axis/spindle (PLC → NC) [r/w]
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB8 Request

PLC axis/
spindle

 Activation
signal

when this
byte is

changed

 Assign NC axis/spindle
channel

B A

A change of a request signal (DB380x.DBX8.7 or 8.0) must be notified to the NC via a 0→1
edge of the activation signal (DB380x.DBX8.4). After a PLC cycle, the activation signal must
be reset again.

Status signals from an axis/spindle (excerpt)

DB390x Signals from the axis/spindle (NC → PLC) [r]
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB8 PLC axis/

spindle
Neutral ax‐

is/
spindle

Axis inter‐
change
possible

New type
requested
from PLC

 Current assignment of the
NC axis/spindle in chan‐

nel
B A

Note
Simulation

To activate the interface signals, the machine data MD30350 $MA_SIMU_AX_VDI_OUTPUT
must be set for each required axis during the simulation.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1181

Request and relinquish PLC axis

15.6.4.3 User interface: Functionality
The two tables provide an overview of the available interface signals. The precise description
of the signals and the explanation of what signals are relevant for the individual functions are
explained in the following.

Signals to PLC axis

DB380x Signals to the PLC axis (PLC → NC) [r/w]
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB3000 Start posi‐

tioning axis
Start spin‐
dle posi‐
tioning

Start spin‐
dle rotation

Start spin‐
dle oscilla‐

tion

- - - -

DBB3001 - - Stop spin‐
dle rotation

Stop spin‐
dle oscilla‐

tion

- - - -

DBB3002 Automatic
gear selec‐

tion

Constant
cutting rate

Direction of
rotation as

for M4

- Handwheel
override

Traversing
dimension,
inches (not

metric)

Distance
condition,
shortest
distance

(DC)

Distance
condition,
incremen‐

tal (IC)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1182 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB380x Signals to the PLC axis (PLC → NC) [r/w]
DBB3003 Indexing

position
- - - - - Distance

condition,
abs. pos. di‐

rection
(ACP)

Distance
condition,

abs. neg. di‐
rection
(ACN)

DBD3004 Position (REAL, with indexing axis: DINT)
DBD3008 Feedrate velocity (REAL), if < 0, the value is taken from machine data POS_AX_VELO

The bits of the distance conditions and the direction of rotation definition define the particular
positioning or traversing mode, only one of the bits must be set:

Meaning Distance condition to be set
Positioning absolute No mode bit set
Positioning incremental DBB3002.0 = 1
Positioning shortest distance DBB3002.1 = 1
Positioning absolute, positive approach direction DBB3003.1 = 1
Positioning absolute, negative approach direction DBB3003.0 = 1
Direction of rotation as for M4 DBB3002.5 = 1

The remaining bits are used to specify and start the particular function, these function bits as
well as position and velocity are explained in more detail for the individual functions.

Signals from PLC axis

DB390x Signals from the PLC axis (NC → PLC) [r]
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB3000 Positioning

axes active
Position
reached

 - - - Error while
traversing

Axis cannot
be started

DBB3001 - - - - - - - -
DBB3002 - - - - - - -
DBB3003 Error number

The following requirements must be satisfied in order to use the functions listed below:

● The axis or spindle is correctly assigned to the PLC.

● Controller and pulse enable are set.

● After setting all of the control signals, only one of the start signals is set in DB380x.DBB3000.

15.6.4.4 Spindle positioning

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing Only one of the four signals may be set concurrently.

All signals 0: Absolute positioningDBX3002.1 Traverse along the shortest path
DBX3003.0 Absolute, negative direction
DBX3003.1 Absolute, positive direction

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1183

DB380x PLC → NC control signals Remark
DBD3004 Position setpoint / distance setpoint Distance setpoint if DBX3002.0 == 1
DBD3008 Feedrate 0: Traverse with the value from MD35300

$MA_SPIND_POSCTRL_VELO
DBX3000.6 Start Note Reset of the signal does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset Interrupt signal, exits the function

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active Also 1 when override = 0 or position setpoint reached

when start = 1
DBX3000.6 Position reached 1: Position setpoint reached with "Exact stop fine"
DBX3000.0 Spindle cannot be started
DBX3000.1 Error while traversing 1: Error during traversing, evaluate error number in

DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary 1: if n < nmin

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1184 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

① Function activated by user with a positive edge of Start.
② Positioning axis active message shows that the function is active and that the output signals are

valid, Position reached and Axis stationary may be withdrawn. For path specification = 0, the
signals are not canceled.

③ When the position is reached this is signaled (Position reached), Spindle stationary is set.
④ The user then withdraws Start.
⑤ The Positioning axis active signal is then reset.
⑥ The user immediately resets the Start signal with receipt of the Positioning axis active signal.
⑦ Positioning is aborted by setting Spindle reset. This signal must be present for at least one PLC

cycle.
⑧ The spindle comes to a standstill (Spindle stationary), the Error signal is set. (In this case, error

number 115 is output.)

15.6.4.5 Rotate spindle

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing -
DBX3002.1 Traverse along the shortest path -
DBX3002.5 Direction of rotation as for M4 1: Direction of rotation specified by M4

0: Direction of rotation specified by M3
DBX3003.0 Absolute, negative direction -
DBX3003.1 Absolute, positive direction -
DBD3008 Feedrate Spindle speed
DBX3000.5 Start spindle rotation -
DBX3001.5 Stop spindle rotation -

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1185

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active 1: For start or stop == 1
DBX3000.6 Position reached 1: Function was started without an error
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -
DBX1.4 Axis/spindle stationary -

① Function activated by user with a positive edge of Start.
② Messages Positioning axis active and Position reached are signaled back, Position reached is

in this case irrelevant.
③ The user stops spindle rotation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1186 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.6.4.6 Oscillate spindle

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental It is not permissible that any of the bits are set.
DBX3002.1 Shortest path
DBX3002.5 Direction of rotation as for M4
DBX3003.0 Absolute, negative direction
DBX3003.1 Absolute, positive direction
DBD3004 Setpoint gear stage MD35010 $MA_GEAR_STEP_CHANGE_ENABLE =

0
0 - 5: Oscillation
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE =
1
0: Oscillation
1: Oscillation with gear stage change M41
2: Oscillation with gear stage change M42
3: Oscillation with gear stage change M43
4: Oscillation with gear stage change M44
5: Oscillation with gear stage change M45

DBD3008 Feedrate When oscillating, no significance! The oscillation
speed is taken from machine data MD35400,
$MA_SPIND_OSCILL_DES_VELO.

DBX3000.5 Start spindle oscillation It is not permissible that the start directly follows a stop.
Stop must first be reset (both 0).DBX3001.5 Stop spindle oscillation

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active 1: For start or stop == 1
DBX3000.6 Position reached 1: after start
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBX3000.0 Axis cannot be started 1: Error when starting, evaluate error number in

DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1187

① Function activated by user with a positive edge of Start.
Note: This is possible only when the Positioning axis active signal is reset!

② Messages Positioning axis active and Position reached are signaled back, Position reached is
in this case irrelevant and is therefore not shown.

③ The user stops spindle oscillation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.
⑦ Stop is reset in the user program and Start is again set, incorrectly, in the same PLC cycle. This

means that Positioning axis active is not reset, but...
⑧ ...the Axis cannot be started signal is set (error number 106).

15.6.4.7 Indexing axis

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing Only one of the signals may be set concurrently.

All signals 0: Absolute positioningDBX3002.1 Traverse along the shortest path
DBX3002.5 Direction of rotation as for M4
DBX3003.0 Absolute, negative direction
DBX3003.1 Absolute, positive direction
DBX3003.7 Indexing position Indexing axis ON
DBD3004 Position setpoint / distance setpoint Distance setpoint if DBX3002.0 == 1
DBD3008 Feedrate 0: Traverse with the value from MD32060

$MA_POS_AX_VELO

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1188 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB380x PLC → NC control signals Remark
DBX3000.7 Start positioning axis Note Reset of the signal does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset Interrupt signal, exits the function

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active Also 1, if override = 0 or position setpoint reached.
DBX3000.6 Position reached 1: Position setpoint reached with "Exact stop fine".
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -
DBX1.4 Axis/spindle stationary -

① Function activated by user with a positive edge of Start.
Note: This is possible only when the Positioning axis active signal is reset!

② Messages Positioning axis active and Position reached are signaled back, Position reached is
in this case irrelevant.

③ The user stops spindle oscillation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1189

15.6.4.8 Positioning axis metric

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing Only one of the signals may be set concurrently.

All signals 0: Absolute positioningDBX3002.1 Traverse along the shortest path
DBX3002.5 Direction of rotation as for M4
DBX3003.0 Absolute, negative direction
DBX3003.1 Absolute, positive direction
DBD3002.2 Traversing dimension inch 0: Traversing dimension, metric
DBX3002.3 Handwheel override 0: Override OFF
DBD3004 Position setpoint / distance setpoint Distance setpoint if DBX3002.0 == 1
DBD3008 Feedrate 0: Traverse with the value from MD32060

$MA_POS_AX_VELO
DBX3000.7 Start positioning axis Note Reset of the signal does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset Interrupt signal, exits the function

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active Also 1, if override = 0 or position setpoint reached.
DBX3000.6 Position reached 1: Axis has reached the position setpoint.
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1190 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

① First function activation using positive edge of Start.
② Positioning axis active = 1 shows that the function is active and that the output signals are valid,

Position reached and Axis stationary are possibly withdrawn.
③ Positive acknowledgment Position reached = 1 and Positioning axis active = 1
④ Reset function activation after receipt of acknowledgment
⑤ Signal change via function
⑥ Positioning is aborted by delete distance-to-go, signal duration min. 1 PLC cycle.
⑦ The signals Position reached and Error are set, the Error number can be read (in this case, 30).

15.6.4.9 Positioning axis inch

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing Only one of the signals may be set concurrently.

All signals 0: Absolute positioningDBX3002.1 Traverse along the shortest path
DBX3002.5 Direction of rotation as for M4
DBX3003.0 Absolute, negative direction
DBX3003.1 Absolute, positive direction
DBX3002.2 Traversing dimension inch 0: Traversing dimension, metric
DBX3002.3 Handwheel override 0: Override OFF
DBD3004 Position setpoint / distance setpoint Distance setpoint if DBX3002.0 == 1
DBD3008 Feedrate 0: Traverse with the value from MD32060

$MA_POS_AX_VELO
DBX3000.7 Start positioning axis Note Reset of the signal does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset Interrupt signal, exits the function

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1191

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active Also 1, if override = 0 or position setpoint reached.
DBX3000.6 Position reached 1: Axis has reached the position setpoint.
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -

① First function activation using positive edge of Start.
② Positioning axis active = 1 shows that the function is active and that the output signals are valid,

Position reached and Axis stationary are possibly withdrawn.
③ Positive acknowledgment Position reached = 1 and Positioning axis active = 1
④ Reset function activation after receipt of acknowledgment
⑤ Signal change via function
⑥ Positioning is aborted by delete distance-to-go, signal duration min. 1 PLC cycle.
⑦ The signals Position reached and Error are set, the Error number can be read (in this case, 30).

15.6.4.10 Positioning axis metric with handwheel override

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing Only one of the signals may be set concurrently.

All signals 0: Absolute positioningDBX3002.1 Traverse along the shortest path
DBX3002.5 Direction of rotation as for M4
DBX3003.0 Absolute, negative direction
DBX3003.1 Absolute, positive direction

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1192 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB380x PLC → NC control signals Remark
DBX3002.2 Traversing dimension inch 0: Traversing dimension, metric
DBX3002.3 Handwheel override 0: Override OFF
DBD3004 Position setpoint / distance setpoint Distance setpoint if DBX3002.0 == 1
DBD3008 Feedrate 0: Traverse with the value from MD32060

$MA_POS_AX_VELO
DBX3000.7 Start positioning axis Note Reset of the signal does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset Interrupt signal, exits the function

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active Also 1, if override = 0 or position setpoint reached.
DBX3000.6 Position reached 1: Axis has reached the position setpoint.
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -

① First function activation using positive edge of Start.
② Positioning axis active = 1 shows that the function is active and that the output signals are valid,

Position reached and Axis stationary are possibly withdrawn.
③ Positive acknowledgment Position reached = 1 and Positioning axis active = 1
④ Reset function activation after receipt of acknowledgment
⑤ Signal change via function
⑥ Positioning is aborted by delete distance-to-go, signal duration min. 1 PLC cycle.
⑦ The signals Position reached and Error are set, the Error number can be read (in this case, 30).

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1193

15.6.4.11 Positioning axis inch with handwheel override

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing Only one of the signals may be set concurrently.

All signals 0: Absolute positioningDBX3002.1 Traverse along the shortest path
DBX3002.5 Direction of rotation as for M4
DBX3003.0 Absolute, negative direction
DBX3003.1 Absolute, positive direction
DBX3002.2 Traversing dimension inch 0: Traversing dimension, metric
DBX3002.3 Handwheel override 0: Override OFF
DBD3004 Position setpoint / distance setpoint Distance setpoint if DBX3002.0 == 1
DBD3008 Feedrate 0: Traverse with the value from MD32060

$MA_POS_AX_VELO
DBX3000.7 Start positioning axis Note Reset of the signal does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset Interrupt signal, exits the function

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active Also 1, if override = 0 or position setpoint reached.
DBX3000.6 Position reached 1: Axis has reached the position setpoint.
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1194 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

① First function activation using positive edge of Start.
② Positioning axis active = 1 shows that the function is active and that the output signals are valid,

Position reached and Axis stationary are possibly withdrawn.
③ Positive acknowledgment Position reached = 1 and Positioning axis active = 1
④ Reset function activation after receipt of acknowledgment
⑤ Signal change via function
⑥ Positioning is aborted by delete distance-to-go, signal duration min. 1 PLC cycle.
⑦ The signals Position reached and Error are set, the Error number can be read (in this case, 30).

15.6.4.12 Rotate spindle with automatic gear stage selection

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing -
DBX3002.1 Traverse along the shortest path -
DBX3002.5 Direction of rotation as for M4 1: Direction of rotation specified by M4

0: Direction of rotation specified by M3
DBX3003.0 Absolute, negative direction -
DBX3003.1 Absolute, positive direction -
DBX3002.7 Automatic gear stage selection 1: Automatic gear stage selection ON
DBD3008 Feedrate Spindle speed
DBX3000.5 Start spindle rotation -
DBX3001.5 Stop spindle rotation -

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1195

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active 1: For start or stop == 1
DBX3000.6 Position reached 1: Setpoint speed is output
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -
DBX1.4 Axis/spindle stationary -

① Function activated by user with a positive edge of Start.
② Messages Positioning axis active and Position reached are signaled back, Position reached is

in this case irrelevant.
③ The user stops spindle rotation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

15.6.4.13 Rotate spindle with constant cutting rate [m/min]

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing -
DBX3002.1 Traverse along the shortest path -
DBX3002.5 Direction of rotation as for M4 1: Direction of rotation specified by M4

0: Direction of rotation specified by M3

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1196 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB380x PLC → NC control signals Remark
DBX3003.0 Absolute, negative direction -
DBX3003.1 Absolute, positive direction -
DBX3002.2 Traversing dimension inch 0: Traversing dimension, metric
DBX3002.6 Const. Cutting rate 1: Constant cutting speed ON
DBD3008 Feedrate Spindle speed
DBX3000.5 Start spindle rotation -
DBX3001.5 Stop spindle rotation -

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active 1: For start or stop == 1
DBX3000.6 Position reached 1: Setpoint speed is output
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -
DBX1.4 Axis/spindle stationary -

① Function activated by user with a positive edge of Start.
② Messages Positioning axis active and Position reached are signaled back, Position reached is

in this case irrelevant.
③ The user stops spindle rotation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1197

15.6.4.14 Rotate spindle with constant cutting rate [feet/min]

DB380x PLC → NC control signals Remark
DBX3002.0 Incremental traversing -
DBX3002.1 Traverse along the shortest path -
DBX3002.5 Direction of rotation as for M4 1: Direction of rotation specified by M4

0: Direction of rotation specified by M3
DBX3003.0 Absolute, negative direction -
DBX3003.1 Absolute, positive direction -
DBX3002.2 Traversing dimension inch 1: Traversing dimension inch
DBX3002.6 Const. Cutting rate 1: Constant cutting speed ON
DBD3008 Feedrate Spindle speed
DBX3000.5 Start spindle rotation -
DBX3001.5 Stop spindle rotation -

DB390x NC → PLC status signals Remark
DBX3000.7 Positioning axis active 1: For start or stop == 1
DBX3000.6 Position reached 1: Setpoint speed is output
DBX3000.1 Error 1: Error when traversing, evaluate error number in

DBB3003!
DBB3003 Error number -
DBX1.4 Axis/spindle stationary -

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1198 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

① Function activated by user with a positive edge of Start.
② Messages Positioning axis active and Position reached are signaled back, Position reached is

in this case irrelevant.
③ The user stops spindle rotation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

15.6.4.15 Error messages
If a function could not be executed, the following signals are set depending on the error:

● DB390x .DBX3000.0 == 1 (axis cannot be started)

● DB390x.DBX3000.1 == 1 (error during travel)

The exact error cause is indicated as:

● DB390x.DBB3003 (error number)

Error number Meaning
Decimal Hex

1 01 Several functions of the axis/spindle were activated simultaneously
20 14 A function was started without the position being reached
30 1E The axis/spindle was transferred to the NC while still in motion
40 28 The axis is programmed by the NC program, NC internal error
50 32 Permanently assigned PLC axis: Traverses (JOG) or references

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1199

Error number Meaning
Decimal Hex

60 3C Permanently assigned PLC axis: Channel status does not permit a start
100 64 False position programmed for axis/spindle (alarm number1) 16830)
101 65 Programmed speed is too high
102 66 Incorrect value range for constant cutting rate (alarm number1) 14840)
104 68 Following spindle: Illegal programming (alarm number1) 22030)
105 69 No measuring system available (alarm number1) 16770)
106 6A Positioning process of the axis still active (alarm number1) 22052)
107 6B Reference mark not found (alarm number1) 22051)
108 6C No transition from speed control to position control (alarm number1) 22050)
109 6D Reference mark not found (alarm number1) 22051)
110 6E Velocity/speed is negative
111 6F Speed setpoint is zero
112 70 Invalid gear stage
115 73 Programmed position has not been reached
117 75 G96/G961 is not active in the NC
118 76 G96/G961 is still active in the NC
120 78 Axis is not an indexing axis (alarm number1) 20072)
121 79 Indexing position error (alarm number1) 17510)
125 7D DC (shortest distance) not possible (alarm number1) 16800)
126 7E Absolute value minus not possible (alarm number1) 16820)
127 7F Absolute value plus not possible (alarm number1) 16810)
128 80 No transverse axis available for diameter programming (alarm number1) 16510)
130 82 Software limit switch plus (alarm number1) 20070)
131 83 Software limit switch minus (alarm number1) 20070)
132 84 Working area limitation plus (alarm number1) 20071)
133 85 Working area limitation minus (alarm number1) 20071)
134 85 Frame not permitted for indexing axis
135 87 Indexing axis with "Hirth joint" is active (alarm number1) 17501)
136 88 Indexing axis with "Hirth joint" is active and axis not referenced (alarm number1) 17503)
137 89 Spindle operation not possible for transformed spindle/axis (alarm number1) 22290)
138 8A The corresponding effective coordinate-system-specific working area limit plus violated for the axis

(alarm number1) 20082)
139 8B The corresponding effective coordinate-system-specific working area limit minus violated for the axis

(alarm number1) 20082)
200 C8 System alarm number1) 450007

1) The detailed alarm description is contained in: Alarms diagnostics manual; SINUMERIK 828D, SINAMICS S120

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1200 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.6.5 Start ASUB

15.6.5.1 Job start

DB340x ASUP: Job [r/w] (PLC → NC)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB0 - - - - - - - Start INT1
DBB1 - - - - - - - Start INT2
DBB2 - - - - - - - Start INT3
DBB3 - - - - - - - Start INT4

Interrupts
"Start INT1":

● DBX0.0 = 1: Request to start the interrupt program (ASUP) assigned to INT1.

● DBX0.0 = 0: Reset the ASUP request after acknowledgment in the result interface
DB340x.DBB1000.0 - 3.

"Start INT2":

● DBX1.0 = 1: Request to start the interrupt program (ASUP) assigned to INT2.

● DBX1.0 = 0: Reset the ASUP request after acknowledgment in the result interface
DB340x.DBB1001.0 - 3.

"Start INT3":

● DBX2.0 = 1: Request to start the interrupt program (ASUP) assigned to INT3.

● DBX2.0 = 0: Reset the ASUP request after acknowledgment in the result interface
DB340x.DBB1002.0 - 3.

"Start INT4":

● DBX3.0 = 1: Request to start the interrupt program (ASUP) assigned to INT4.

● DBX3.0 = 0: Reset the ASUP request after acknowledgment in the result interface
DB340x.DBB1003.0 - 3.

15.6.5.2 Job result

DB340x ASUP: Result [r] (NC → PLC)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB1000 Signals to start INT1 (DB340x.DBX0.0)

 ASUP can‐
not be exe‐

cuted 1)

Interrupt
no. not as‐
signed 2)

ASUP is be‐
ing execu‐

ted

ASUP com‐
pleted 3)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1201

DB340x ASUP: Result [r] (NC → PLC)
DBB1001 Signals to start INT2 (DB340x.DBX1.0)

 ASUP can‐
not be exe‐

cuted 1)

Interrupt
no. not as‐
signed 2)

ASUP is be‐
ing execu‐

ted

ASUP com‐
pleted 3)

DBB1002 Signals to start INT3 (DB340x.DBX2.0)
 ASUP can‐

not be exe‐
cuted 1)

Interrupt
no. not as‐
signed 2)

ASUP is be‐
ing execu‐

ted

ASUP com‐
pleted 3)

DBB1003 Signals to start INT4 (DB340x.DBX3.0)
 ASUP can‐

not be exe‐
cuted 1)

Interrupt
no. not as‐
signed 2)

ASUP is be‐
ing execu‐

ted

ASUP com‐
pleted 3)

1) Negative acknowledgment: E.g. for emergency stop or channel reset request.
2) Negative acknowledgment: Number has not been assigned yet. Remedy: Execute PI service "ASUP".
3) Positive acknowledgment: ASUP successfully completed. Reset start signal: DB340x.:DBXn.0 = 0, with n = 0, 1, 2, 3

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1202 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

15.6.5.3 Signal flow

Signal flow

① Function activated by user with a positive edge of Start.
② ASUP is being executed is signaled back.
③ The acknowledgement ASUP completed indicates the successful execution, ASUP is being exe‐

cuted is withdrawn.
④ The signal to initiate the function is reset after receiving the acknowledgement from the user.
⑤ Signal change by the firmware.
⑥ Not permitted! If function activation is reset prior to receipt of acknowledgement, the output sig‐

nals are not updated – without the operational sequence of the activated function being affected.
⑦ ASUP cannot be executed: Negative acknowledgement, error occurred.

Figure 15-2 Example: Signal flow

15.6.6 Channel selection on the HMI

Function
The channel displayed on the HMI, e.g. in the machine start screen, can be selected from the
PLC user program via the HMI/PLC interface.

Requirement
More than one channel is parameterized in the NC.

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1203

Job and acknowledgment interface

DB1900 Channel selection [r/w] (PLC ↔ HMI)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB5011 Error identification (see subsection below)

(HMI → PLC)
... ...
DBB5021 Status

(HMI →
PLC)

Require‐
ment

(PLC ↔
HMI)

Function number
(PLC → HMI)

DBB5022 Channel number (see subsection below)
(PLC → HMI)

Channel number
● Channel number: 1, 2, ... max. number of channels

● Next channel: FFH

Error identification
● 0: No error

● 1: Invalid function number (DBX32.0 - .5)

● 2: Invalid parameter (DBB33 - DBB35)

● 3: Error when writing to HMI-internal variable

● 10: Channel not present (DBB33)

Functional sequence

PLC → HMI
The PLC user program must maintain the following execution sequence:

1. Check whether the interface is free for a new job:

– DB1900.DBX5021.6 == 0 (function request)

– DB1900.DBX5021.7 == 0 (status)

2. If the interface is free, the job data must be entered and the function request set:

– DB1900.DBB5022 = <channel number>
– DB1900.DBX5021.0 - .5 = 1 (function number: channel selection)

– DB1900.DBX5021.6 = 1 (function request)

P4: PLC for SINUMERIK 828D
15.6 Function interface

Basic Functions
1204 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

HMI → PLC
The HMI makes the following responses for error-free parameterization:

1. Once the HMI has recognized the function request for channel selection, the status is set
to "function being performed" and the function request reset:

– DB1900.DBX5021.7 = 1 (status)

– DB1900.DBX5021.6 = 0 (function request)

2. Once the channel selection has been performed, the status is reset again and value 0 is
set as error identification:

– DB1900.DBX5021.7 = 0 (status)

– DB1900.DBX5011 = 0 (error identification)

The HMI makes the following responses for faulty parameterization:

● The function request is reset and the appropriate error identification is set:

– DB1900.DBX5021.6 = 0 (function request)

– DB1900.DBX5021.7 = 0 (status)

– DB1900.DBX5011 = <error identification>

15.7 CNC lock function (option)

15.7.1 Function

Note

The "CNC lock function" is a licensed option (article number: 6FC5800-0AP76-0YB0).

The use of the CNC lock function requires purchase of the appropriate license from SIEMENS.
The use of the lock function with a trial license is not possible.

NOTICE

License certificate

The company that created the CNC lock function (machine manufacturer or dealer) must
retain the license certificate for this option (CoL)!

This certificate can be used as legitimation for SIEMENS should the PIN be forgotten. The
owner of the certificate (CoL) can have the machine unlocked.

The machine manufacturer can use the "CNC lock function" and the encrypted file that created
with SINUMERIK Access MyMachine (AMM) Integrate application to activate a lock date in
the control system. This allows the use of the machine to be limited to the time until the lock
date is reached. The NC Start function of the control system is locked when the lock date is
exceeded.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1205

The CNC lock function can be lengthened or deactivated with an additional encrypted file. The
machine manufacturer sends this file to the end user if the user has fulfilled the agreed
obligations.

15.7.2 Requirements
The following preconditions must be met for using the "CNC lock function":

● The "CNC lock function" option must be set.

● A PLC project of CPU type "828D Step 2 x.yy" must be used.
Compatibility mode must be deactivated.

● The SINUMERIK Integrate Access MyMachine/ P2P (PC) application must be installed.

15.7.3 Restrictions
The CNC lock function supports the business model with time-limited use. This protects against
unauthorized use beyond the set interval. The direct access to the CNC, however, makes it
possible to circumvent the function. The CNC lock function does not offer an absolute
protection against manipulation. Unauthorized use of the machine is precluded by locking the
automatic mode of the CNC. Because a running automatic program cannot be interrupted, this
can extend the runtime beyond the lock date. All other functions of the SINUMERIK control
system remain available.

To permit the CNC lock function to act, support of the machine manufacturer is required.
Consequently, the following note and supplementary conditions must be observed when the
CNC lock function is used!

Note

The CNC lock function is based on a connection of the PLC project to the associated
SINUMERIK control system. The SINUMERIK control system consists of a combination of
Panel Processing Unit (PPU) and CF card with system software.

Supplementary conditions
● Manipulation attempts and/or inconsistencies can lead to the CNC lock function causing a

machine standstill.

● The use of the CNC lock function may require additional service calls of the machine
manufacturer or dealer at the customer site.

● The PLC project should never be given to the customer without saved OEM PIN. The use
of a "free" PLC project allows circumvention of the CNC lock function!

● A reimplementation of the PLC project of the associated machine tool allows circumvention
of the CNC lock function!

● The protection of the program organization units in the PLC of the SINUMERIK must be
used. Activation in the PLC Programming Tool is possible. The coding of the PLC project
must be kept secret.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1206 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● To provide better protection, each machine must be given its own OEM PIN.

● Before setting up the lock function for the first time (see Chapter "Initial creation of the CNC
lock function (Page 1207)"), the setting up engineer must correctly set the date and the
time in the SINUMERIK control. If the date lies in the past, then the operating time of the
machine extends corresponding to the difference to the real date.

● The CNC lock function is built on the real-time clock of the SINUMERIK 828D. The
maintenance-free design of the SINUMERIK 828D can cause the time of day to be lost.
The CNC lock function performs a computerized numerical plausibility check of the time of
day. This check can be impaired by power loss to the real-time clock. In this case, the time
without power supply is ignored.

● The company that created the CNC lock function retains the associated license certificate
(CoL). This certificate serves as proof as authorized function creator to SIEMENS and so
implicitly as authorized user of the machine.

● A software malfunction can cause unintentional locking of the control system.

15.7.4 Protection from manipulation
The CNC lock function as part of the currently expected use and misuse of the CNC serves
to permit use only within the set time period. Despite the available protective mechanisms
against an impermissible manipulation of the CNC lock function, a residual risk that the
protective mechanisms can be circumvented remains. The CNC lock function cyclically checks
the installed combination of PPU, CF card and PLC project. The lock function is not applicable
when replacing all three components. To protect against manipulation, it is absolutely essential
that the secondary conditions listed in Chapter "Restrictions (Page 1206)" are carefully
complied with.

Note

The CNC lock function uses a cryptographic technique. When first marketed, the technique
used corresponds to state-of-the-art technology. As time goes by, the probability that this
technique will be able to be bypassed (manipulated) increases.

15.7.5 Initial creation of the CNC lock function
The initial creation of the CNC lock function couples the control system hardware, the Panel
Processing Unit (PPU), together with the system software on the CF card and the PLC project
that belongs to the machine. An initial lock date is also set at the same time.

To create the lock function, an encrypted lockset file (lockset.clc) appropriate for the hardware
must be generated. The file is created with the SINUMERIK Integrate Access MyMachine
(AMM) application.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1207

Generating the lockset file
The following data is required to generate the lockset file:

● Serial number of the CF card

● Serial number of the control system (Panel Processing Unit, PPU)

● OEM PIN

● Lock date

Note

The serial number of the CF card and of the control system (PPU) can be found on the
SINUMERIK Operate user interface in the "Diagnostics" > "Version" > "Hardware" > "NCU/
PLC" > "ncu1" operating area:
● CF card: "CF card" > "SerialNo." area
● PPU: "SINUMERIK 828D PPU" > "SerialNo." area

Note

The OEM PIN increases the protection against manipulation of the CNC lock function.

The OEM PIN is stored by the system when activating the CNC lock function in the PLC user
program. The OEM PIN cannot be viewed, changed or deleted by the user in the PLC user
program.

The data is entered via Access MyMachine in the "CNC lock function" dialog window (called
from the main menu: "Tools" > "CNC lock function"). The "Activate" button must be selected:

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1208 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

After entering all of the data required, the lockset file to activate is generated using the "Creating
lockset file...".

Transferring the lockset file
The lockset file must then be transferred to the control system either directly via an Ethernet
connection or alternatively via a storage medium, e.g. USB flash drive.

The file is located at: /System-CF-Card/User/sinumerik/data/license.

Reading in the lockset file
Before the lockset file is imported into the control system, the machine manufacturer must set
the time of day of the control system correctly, because the time of day at the point in time of
activating the CNC lock function is saved as the start value for monitoring. The import can then
be started from the user interface: "Commissioning" > "Licenses" > "Import license key"
operating area.

No access level is required for the import.

If no error occurs when importing the lockset file, the CNC lock function is active in the control
system.

Note

If an error occurs when importing the lockset file, an error-specific alarm will be issued. The
state of the CNC lock function remains unchanged.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1209

Note

We recommend that the machine manufacturer after commissioning the machine and
activating the CNC lock function creates a complete commissioning archive over all control
system components. This ensures data consistency for the CNC lock function. If necessary,
this commissioning archive can be used to recommission the control system without requiring
a service call to reactivate the CNC lock function.

Checking the lock date
The activation of the CNC lock function is apparent with the lock date entered in the lockset
file being displayed on the user interface:

SINUMERIK Operate user interface: "Commissioning" > "Licenses" operating area

Setting the prewarning time
The prewarning time is the time range before reaching the lock date above which alarm 8063
is displayed once daily. The alarm indicates that the lock date has initially been reached and
NC Start is locked for the control system. The prewarning time is set via the machine data:

MD17300 $MN_CNC_LOCK_WARNING_TIME

Important notes
The following information must be heeded for the correct and reliable functioning of the CNC
lock function!

Note

Before activating the CNC lock function, the time of day must be set correctly on the control
system.

Note

The PLC user program should always be given the POU password protection. This prevents
users from copying the machine-specific know-how and using it in their own PLC user program,
and then replacing the PLC user program with the PLC user program of the machine
manufacturer that contains the PLC key of the CNC lock function.

Note

The commissioning archive for the end user may be exported only after activation of the CNC
lock function.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1210 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

After deactivation of the CNC lock function (see "Deactivating the CNC lock function
(Page 1213)"), a new commissioning archive must be exported and replaced with the original
archive. Only this guarantees that no inadvertent reactivation of the CNC lock function occurs.
This would cause an alarm and disable of the NC Start. To revoke this, the lock set file for
deactivating the CNC lock function must be reimported.

Note

The machine manufacturer has sole responsibility for the correct and reliable functioning of
the CNC lock function.

15.7.6 Extending the CNC lock function
To extend the CNC lock function, the machine manufacturer must use Access MyMachine
(AMM) to create a new lockset file (lockset.clc) with new lock date for the CNC lock function.

Generating the lockset file
The following data is required to generate the lockset file:

● Serial number of the CF card

● Serial number of the control system (Panel Processing Unit, PPU)

● OEM PIN

● New lock date

Note

The serial number of the CF card and the control system (Panel Processing unit, PPU) as well
as the OEM PIN must match the values used when the CNC lock functions was activated
initially.

Note

The serial number of the CF card and of the control system (PPU) can be found on the
SINUMERIK Operate user interface in the "Diagnostics" > "Version" > "Hardware" > "NCU/
PLC" > "ncu1" operating area:
● CF card: "CF card" > "SerialNo." area
● PPU: "SINUMERIK 828D PPU" > "SerialNo." area

The data is entered via Access MyMachine in the "CNC lock function" dialog window (called
from the main menu: "Tools" > "CNC lock function"). The "Extend" button must be selected:

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1211

After entering all of the data required, the lockset file to extend is generated using the "Creating
lockset file...".

Transferring the lockset file
The new lockset file must be transferred to the control system. The transfer can be made by
the machine manufacturer directly via an Ethernet connection to the control system.

The file is located at: /System-CF-Card/User/sinumerik/data/license.

Or the machine manufacturer sends the new lockset file to the end user who transfers the file
to the control system.

Reading in the lockset file
The lockset file import is started from the user interface: "Commissioning" > "Licenses" >
"Import license key" operating area.

No access level is required for the import.

If no error occurs when importing the lockset file, the CNC lock function with the new lock date
is active in the control system.

Note

If an error occurs when importing the lockset file, an error-specific alarm will be issued. The
state of the CNC lock function remains unchanged.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1212 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Checking the changed lock date
The successful change of the lock date in the control system can be checked on the user
interface:

SINUMERIK Operate user interface: "Commissioning" > "Licenses" operating area

15.7.7 Deactivating the CNC lock function
To deactivate the CNC lock function, the machine manufacturer must use Access MyMachine
(AMM) to create a lockset file (lockset.clc) without lock date.

Generating the lockset file
The following data is required to generate the lockset file:

● Serial number of the CF card

● Serial number of the control system (Panel Processing Unit, PPU)

● OEM PIN

Note

The serial number of the CF card and of the control system (Panel Processing unit, PPU) as
well as the OEM PIN must match the values used when the CNC lock function was activated
initially.

Note

The serial number of the CF card and of the control system (PPU) can be found on the
SINUMERIK Operate user interface in the "Diagnostics" > "Version" > "Hardware" > "NCU/
PLC" > "ncu1" operating area:
● CF card: "CF card" > "SerialNo." area
● PPU: "SINUMERIK 828D PPU" > "SerialNo." area

The data is entered via Access MyMachine in the "CNC lock function" dialog window (called
from the main menu: "Tools" > "CNC lock function"). The "Deactivate" button must be selected:

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1213

After entering all of the data required, the lockset file to deactivate is generated using the
"Creating lockset file...".

Transferring the lockset file
The new lockset file must be transferred to the control system. The transfer can be made by
the machine manufacturer directly via an Ethernet connection to the control system.

The file is located at: /System-CF-Card/User/sinumerik/data/license.

Or the machine manufacturer sends the new lockset file to the end user who transfers the file
to the control system.

Reading in the lockset file
The lockset file import is started from the user interface: "Commissioning" > "Licenses" >
"Import license key" operating area.

No access level is required for the import.

If no error occurs when importing the lockset file, the CNC lock function is deactivated.

Note

If an error occurs when importing the lockset file, an error-specific alarm will be issued. The
state of the CNC lock function remains unchanged.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1214 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

We recommend that the end user after deactivating the lock date creates a complete
commissioning archive over all control system components. If necessary, this commissioning
archive can be used to recommission the control system without reactivating the CNC lock
function.

Check
The successful deactivation of the lock date in the control system can be checked by the lock
date no longer being displayed on the user interface:

SINUMERIK Operate user interface: "Commissioning" > "Licenses" operating area

15.7.8 Replacing a defective control system hardware (PPU)
During the replacement of a defective control system hardware (PPU), the system CF card
must remain in the machine so it can be deployed in the new control system hardware.

After the initial power up of the control system with the new hardware, an existing
commissioning archive created with the previous control system hardware must be imported.
After the next power up of the control system, alarm 8062: "CNC lock function: The execution
of the function failed: Cause 2" (the hardware has been replaced) is displayed and NC Start
disabled. The cause of the alarm is the new serial number of the new control system hardware.

Requesting a new lockset file
To unlock the control system again, the end user must request a new lockset file (lockset.clc)
appropriate for the control system from the company that created the CNC lock function
(machine manufacturer or dealer).

Generating the lockset file
The following data is required to generate the lockset file:

● Serial number of the CF card remaining with the machine

● Serial number of the new control system (PPU)

● The original assigned OEM PIN

● Last lock date or new lock date

Note

The original assigned OEM PIN must be known to the company that created the CNC lock
function for the replacement of defective control system hardware (PPU)!

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1215

Note

The serial number of the CF card and of the control system (PPU) can be found on the
SINUMERIK Operate user interface in the "Diagnostics" > "Version" > "Hardware" > "NCU/
PLC" > "ncu1" operating area:
● CF card: "CF card" > "SerialNo." area
● PPU: "SINUMERIK 828D PPU" > "SerialNo." area

The data is entered via Access MyMachine in the "CNC lock function" dialog window (called
from the main menu: "Tools" > "CNC lock function"). The "Activate" button must be selected:

After entering all of the data required, the lockset file to unlock is generated using the "Create
lockset file... button".

Transferring the lockset file
The new lockset file must be transferred to the control system. The transfer can be made by
the machine manufacturer directly via an Ethernet connection to the control system.

The file is located at: /System-CF-Card/User/sinumerik/data/license.

Or the machine manufacturer sends the new lockset file to the end user who transfers the file
to the control system.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1216 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Reading in the lockset file

Note

Before the lockset file is imported, the time of day of the new control system hardware must
be set correctly, because the time of day at the time of the activation of the CNC lock function
is saved as the start value for monitoring. The company that created the CNC lock function
can protect the action by the replacement and the setting of the time of day being made by the
service personnel.

The lockset file import is started from the user interface: "Commissioning" > "Licenses" >
"Import license key" operating area.

No access level is required for the import.

If no error occurs when importing the lockset file, the CNC lock function is active in the new
control system.

15.7.9 Replacing a defective CF card
After replacing a defective system CF card, it must be sent to SIEMENS. In return, SIEMENS
supplies a new CF card.

After the initial power up of the control system with the new CF CF card, an existing
commissioning archive created with the previous control system hardware must be imported.
After the next power up of the control system, alarm 8062: "CNC lock function: The execution
of the function failed: Cause 1" (the CF card has been replaced) is displayed and the NC Start
locked. The cause of the alarm is the new serial number of the new CF card.

Requesting a new lockset file
To unlock the control system again, the end user must request a new lockset file (lockset.clc)
appropriate for the control system from the company that created the CNC lock function
(machine manufacturer or dealer).

Generating the lockset file
The following data is required to generate the lockset file:

● Serial number of the new CF card

● Serial number of the control system (PPU)

● The original assigned OEM PIN

● The lock date in accordance with the status of the CNC lock function (last lock date, new
lock date, no lock date)

Note

The original assigned OEM PIN must be known to the company that created the CNC lock
function for the replacement of defective CF card!

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1217

Note

The serial number of the CF card and of the control system (PPU) can be found on the
SINUMERIK Operate user interface in the "Diagnostics" > "Version" > "Hardware" > "NCU/
PLC" > "ncu1" operating area:
● CF card: "CF card" > "SerialNo." area
● PPU: "SINUMERIK 828D PPU" > "SerialNo." area

The data is entered via Access MyMachine in the "CNC lock function" dialog window (called
from the main menu: "Tools" > "CNC lock function"). The "Extend" or "Deactivate" button must
be selected:

Figure 15-3 Update CNC lock function

After entering all of the data required, the lockset file to unlock is generated using the "Create
lockset file... button".

Transferring the lockset file
The new lockset file must be transferred to the control system. The transfer can be made by
the machine manufacturer directly via an Ethernet connection to the control system.

The file is located at: /System-CF-Card/User/sinumerik/data/license.

Or the machine manufacturer sends the new lockset file to the end user who transfers the file
to the control system.

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1218 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Reading in the lockset file

Note

Before the lockset file is imported, the time of day of the new control system hardware must
be set correctly, because the time of day at the time of the activation of the CNC lock function
is saved as the start value for monitoring. The company that created the CNC lock function
can protect the action by the replacement and the setting of the time of day being made by the
service personnel.

The lockset file import is started from the user interface: "Commissioning" > "Licenses" >
"Import license key" operating area.

No access level is required for the import.

If no error occurs when importing the lockset file, the CNC lock function is active in the new
control system.

15.7.10 OEM PIN forgotten
The company that created the CNC lock function (machine manufacturer or dealer) has
forgotten the OEM PIN that was assigned during the initial creation and so can no longer create
a valid lockset file for the associated control system.

Unlocking the machine
To allow the company that created the CNC lock function to operate the machine, the
technician must contact the SIEMENS Hotline and provide the following information:

● License certificate (CoL) for the "CNC lock function" option

● Serial number of the CF card

● Serial number of the control system (PPU)

● Software version of the CNC software

Note

The serial number of the CF card and of the control system (PPU) can be found on the
SINUMERIK Operate user interface in the "Diagnostics" > "Version" > "Hardware" > "NCU/
PLC" > "ncu1" operating area:
● CF card: "CF card" > "SerialNo." area
● PPU: "SINUMERIK 828D PPU" > "SerialNo." area

The software version of the CNC software can be found on the SINUMERIK Operate user
interface in the "Diagnostics" > "Version" > "Actual version" operating area.

The original license certificate (CoL) must be sent to SIEMENS. Unlocking by SIEMENS
involves a fee.

The company that created the CNC lock function receives from the Hotline the lockset file to
unlock the machine. The unlocking acts, however, only on the hardware of the control system

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1219

(PPU). The PLC project is not unlocked. For this reason, the original PLC project appropriate
for the machine must be available.

The unlocking of the machine requires the on-site presence of a service technician of the
creator of the CNC lock function and the end user (operating company) of the machine.

Further information concerning the procedure can be obtained from the SIEMENS Hotline.

15.7.11 Other information

Project file

Note

The machine manufacturer is responsible for documenting the assignments of the serial
numbers and OEM PINs.

Access MyMachine can be used to create an unencrypted project file ("ucls" for "User-CNC-
Lock-Set file") that contains the following data:

● Serial number of the CF card

● Serial number of the control system (PPU)

● OEM PIN

● Creation date

● Lock date

This function is called using the "Save data..." button in the "CNC lock function" dialog window.

Clicking the "Load data..." button reimports the unencrypted data stored in the project file.

Faulty settings for date or time of day
If incorrect settings for date or time of day are determined for activated CNC lock function, then
the following actions are initiated:

● Alarm 8065 is output: "CNC lock function: Please correctly set the date/time of day!"

● Blocking an NC start

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1220 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The incorrect settings must be corrected before switching off the control in order to withdraw
the lock.

NOTICE

Permanent lock

The incorrect date or time of day setting must be corrected before switching off the control.
Otherwise there is a risk of a permanent lock through alarm 8064: "CNC lock function: The
lock date has been reached, the NC cannot be started!"

Remedy: Correctly set the date/time of day before switching off the control.

If, with the CNC lock function activated, a future date is set, then the following alarm is output:

Alarm 8066 "CNC lock function: Changing the date would reduce the remaining runtime!"

The date can still be corrected as long as the control system was not switched off.

NOTICE

Shorter service life

After switching off the control system, a date set in the future is considered as being an actual
date and can no longer be reset. This reduces the service life until the lock date.

Remedy: Correctly set the date before switching off the control.

Further information
See:

● Online help for SINUMERIK Integrate Access MyMachine / P2P (PC)

● Online help for the PLC Programming Tool

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1221

P4: PLC for SINUMERIK 828D
15.7 CNC lock function (option)

Basic Functions
1222 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

R1: Referencing 16
16.1 Brief Description

Function
When referencing a machine axis, the coordinate system of the machine axis is synchronized
with the coordinate system of the machine. The machine axis is traversed to the machine zero
and then the actual position of the machine axis is set to zero.

If the machine zero cannot be directly approached as a result of the machine design, then a
reference point is defined in the traversing range of the machine axis, which then used to
synchronize the machine axis. Its position with reference to the machine zero must be known.
When referencing, the actual machine axis position is set to this value

Measuring systems and referencing methods
When referencing, machine axes can be synchronized with the following measuring systems
and referencing types:

● Measuring systems

– Incremental rotary measuring system with at least one zero mark

– Incremental linear measuring system

– Rotary measuring system with distancecoded reference marks (supplied by Heidenhain)

– Linear measuring system with distancecoded reference marks (supplied by Heidenhain)

– Absolute rotary measuring system

– Absolute linear measuring system

● Referencing methods

– Referencing with incremental measuring systems with proximity switch and one-edge
and two-edge detection

– Referencing with incremental measuring systems with replacement of homing cam with
proximity switch

– Referencing with incremental measuring systems with proximity switch with configured
approach velocity for spindle applications

– Referencing with measuring systems with distancecoded reference marks by
overtravelling 2 or 4 zero marks

– Referencing of passive measuring systems using measuring system adjustment

– Referencing in follow-up mode

– Referencing with cam switch at the drive

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1223

Start
Referencing the machine axis can be manually started, or from the part program:

● Manual: Operation mode JOG and MDI, machine function REF

● Part program: Command G74

16.2 Axisspecific referencing
For axis-specific referencing using the reference point approach, the operation must be
individually started for each machine axis to be referenced.

Selecting mode and machine function
Before starting reference point approach of the machine axes, you must first place the relevant
mode group in JOG or MDI mode:

DB11, ... DBX0.2 (active JOG mode)

DB11, ... DBX0.1 (active MDI mode)

Then machine function REF (reference point approach) must be selected:

DB11, ... DBX1.2 (REF machine function)

Start of reference point approach
In axis-specific reference point approach, each machine axis must be started individually.

Reference point approach is started with the axis-specific traversing keys:

DB31, ... DBX4.6 (Traversing key minus)

DB31, ... DBX4.7 (Traversing key minus)

Direction enable
To avoid operator errors, the direction release must be parameterized. The direction enable
specifies which traversing key starts the reference point approach:

MD34010 $MA_REFP_CAM_DIR_IS_MINUS = <value>

<Value> Meaning
0 Reference point approach in plus direction
1 Reference point approach in minus direction

Jog mode
The following machine data element can be used to specify whether reference point approach
is completed when the direction key is pressed once or whether the operator is required to
keep the direction key pressed (jogging) for safety reasons:

MD11300 $MN_JOG_INC_MODE_LEVELTRIGGRD (INC and REF in jog mode)

R1: Referencing
16.2 Axisspecific referencing

Basic Functions
1224 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

If the machine operator releases the direction key, the machine axis is decelerated to zero
speed. Reference point approach is not aborted. Reference point approach is continued the
next time the direction key is pressed.

Referencing status
The referencing status of the machine axis is reset with the start of the reference point
approach:

DB31, ... DBX60.4 (referenced/synchronized 1)

DB31, ... DBX60.5 (referenced/synchronized 2)

DB21, ... DBX36.2 (all axes with obligatory reference point are referenced)

Distance-coded measuring systems
In distance-coded measuring systems, reference point approach can be started with any
traversing key.

Sequence
The machine operator or machine manufacturer (via the PLC user program) is responsible for
ensuring that the machine axes are referenced in the proper order.

● Machine operator
The machine axes must be started by the machine operator in the specified order.

● Machine manufacturer
The PLC user program of the machine manufacturer allows machine axes to be started
only in the proper order.

Simultaneous reference point approach of several machine axes
Several machine axes can be referenced simultaneously, depending on the control:

Completion of reference point approach
Acknowledgment that reference point approach of a machine axis has been successfully
completed is given by setting the referencing status:

DB31, ... DBX60.4 (referenced/synchronized 1)

DB31, ... DBX60.5 (referenced/synchronized 2)

Cancellation of reference point approach
In axis-specific reference point approach, the machine axis is traversed in the channel that
was assigned as the master channel of the machine axis.

MD30550 $MA_ AXCONF_ASSIGN_MASTER_CHAN

For aborting the reference point approach, either mode group reset or channel reset for the
master channel of the machine axis must be activated:

R1: Referencing
16.2 Axisspecific referencing

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1225

DB11, ... DBX0.7 (mode group reset)

DB21, ... DBX7.7 (channel reset)

All machine axes that have not yet successfully completed reference point approach when the
action is cancelled remain in status "Not referenced":

DB31, ... DBX60.4 (referenced/synchronized 1)

DB31, ... DBX60.5 (referenced/synchronized 2)

16.3 Channelspecific referencing
For channel-specific referencing, all machine axes of the channel are referenced in the
parameterized sequence when reference point approach is initiated.

Selecting mode and machine function
Before starting the reference point approach of the machine axes, the associated mode group
must be switched into the JOG or MDI operating mode:

DB11, ... DBX0.2 (active JOG mode)

DB11, ... DBX0.1 (active MDI mode)

Then machine function REF (reference point approach) must be selected:

DB11, ... DBX1.2 (REF machine function)

Parameterizing the axis sequence
The following machine data element is used to specify the sequence in which the machine
axes of the channel are referenced:

MD34110 $MA_REFP_CYCLE_NR = <number>

<number> Meaning
-1 The machine axis does not have to be referenced for NC START in the channel.
0 The machine axis does not participate in channel-specific reference point approach.

1 - 15 Sequence number in channel-specific reference point approach.

The machine axes are referenced in ascending order of numbers.

Machine axes with the same number will be referenced simultaneously.

Simultaneous reference point approach of several machine axes
Several machine axes can be referenced simultaneously, depending on the control:

Start of reference point approach
Channel-specific reference point approach is started with:

DB21, ... DBX1.0 (activate referencing)

R1: Referencing
16.3 Channelspecific referencing

Basic Functions
1226 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The status of channel-specific reference point approach is indicated by the channel with:

DB21, ... DBX33.0 (referencing active)

Referencing status
The referencing status of the machine axis is reset with the start of the reference point
approach:

DB31, ... DBX60.4 (referenced/synchronized 1)

DB31, ... DBX60.5 (referenced/synchronized 2)

Completion of reference point approach
As soon as channel-specific reference approach has been successfully completed for all
machine axes involved, this is acknowleged with:

DB21, ... DBX36.2 (all axes with obligatory reference point are referenced)

Cancellation of reference point approach
In channel-specific reference point approach the machine axis is traversed in the channel to
which that axis is currently assigned as channel axis.

For aborting the reference point approach either mode group reset or channel reset for the
corresponding channel must be activated:

DB11, ... DBX0.7 (mode group reset)

DB21, ... DBX7.7 (channel reset)

All machine axes for which the reference point approach is not yet successfully completed
when the action is cancelled remain in status "Not referenced":

DB31, ... DBX60.4 (referenced/synchronized 1)

DB31, ... DBX60.5 (referenced/synchronized 2)

16.4 Reference point appraoch from part program (G74)

Function
With command G74, machine axes can be referenced from a part program or synchronized
action either for the first time or again.

Referencing must be repeated, for example, after:

● Actual value offset PRESETON
References: Programming Guide Advanced, section "Coordinate transformations
(Frames)" > "Preset offset with PRESETON"

● Parking a machine axis (Page 125)

● Exceeding the encoder limit frequency of the position measuring system

R1: Referencing
16.4 Reference point appraoch from part program (G74)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1227

Programming

Syntax
G74 <machine axis> {<machine axis>}

Meaning

G74: Command for referencing machine axes
Alone in the
block:

Yes

Effective‐
ness:

Non-modal

<machine
axis>:

The name of a machine axis must be specified (MD10000 $MN_AXCONF_MA‐
CHAX_NAME_TAB).
The machine axis must be a channel axis of the channel in which the part program
or the synchronized action is executed.

Reset response
Mode group reset or channel reset aborts the reference point approach for all programmed
machine axes:

● DB11, ... DBX0.7 (mode group reset)

● DB21, ... DBX7.7 (channel reset)

All machine axes for which the reference point approach is not yet successfully completed
when the action is canceled remain in status "Not referenced":

● DB31, ... DBX60.4 (referenced/synchronized 1) == 0

● DB31, ... DBX60.5 (referenced/synchronized 2) == 0

16.5 Referencing with incremental measurement systems

16.5.1 Hardware signals
Depending on the machine design and the properties of the incremental measuring system
used, different hardware signals must be connected.

Reference cam
● Connection

The reference cam signal can be connected to a digital input of an external PLC I/O module
or to a fast input on the NCU X142 interface.

● NC/PLC interface signal
The reference cam signal must be transferred from the PLC user program to the axial NC/
PLC interface:
DB31, ... DBX12.7 (deceleration of reference point approach)

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
1228 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Zero mark selection
If during the reference point approach of the axis or spindle several zero marks of the
measuring system are detected (e.g. measuring gear between the motor and encoder), then
the specific zero mark must be selected with an additional proximity switch signal.

● Connection
The proximity switch must be connected to a fast digital input on the NCU X122 or X132
interface.

● Activation
In order that the proximity switch signal is evaluated, the digital input to which the proximity
switch is connected must be selected in drive parameter p0493 for the axis/spindle.

Equivalent zero mark
If the used measuring system does not provide a zero mark signal, an equivalent zero mark
can be created via a proximity switch signal.

● Connection
The proximity switch must be connected to a fast digital input on the NCU X122 or X132
interface.

● Activation
In order that the proximity switch signal is evaluated, the digital input to which the proximity
switch is connected must be selected in the p0494 or p0495 drive parameter for the axis/
spindle.

Overview

Signal Connection: Digital input via Set
Reference cam Ext. PLC I/O module or NCU:

X142
PLC user program:
DB31, ... DBX12.7

Zero mark selection NCU: X122 or X132 Drive parameter: p0493
External zero mark or equivalent
zero mark

NCU: X122 or X132 Drive parameter: p0494 or p0495

References
● NCU interfaces: SINUMERIK 840D sl Manual, NCU7x0.3 PN,

Section "Connecting" > "Digital I/Os"

● Drive parameter: SINAMICS S120/S150 List Manual

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1229

16.5.2 Zero mark selection

Function
Referencing of incremental measuring systems is based on the unique position of the encoder
zero mark relative to the overall traversing range of the machine axis. If because of machine-
specific conditions, several encoder zero marks are detected in the traversing range of the
machine axis (for examples, see figure below), a proximity switch must be mounted on the
machine for clear determination of the reference point. The position of the reference point is
then derived from the combination of contact-less proximity switch signal and encoder zero
mark.

BER
O

Contact-less proximity switch

Figure 16-1 Measuring gear between the motor and encoder or reduction gear between the motor
and spindle

Parameterization

NC: Referencing mode
"Referencing of incremental, rotary or linear measuring systems: Zero pulse on the encoder
track" should be parameterized as referencing mode:

MD34200 $MA_ENC_REFP_MODE[<axis>] = 1

Drive: Zero mark selection
The digital input on the NCU interface to which the proximity switch is connected must be set
in parameter p0493.

Note
Zero mark selection

The processing of the contact-less proximity switch signal is performed exclusively in the drive.
Connection and parameterization, see Section "Hardware signals (Page 1228)".

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
1230 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

16.5.3 Time sequence
Reference point approach with incremental measuring systems can be divided into three
phases:

● Phase 1: "Phase 1: Traversing to the reference cam (Page 1232)"

● Phase 2: "Phase 2: Synchronization with the zero mark (Page 1234)"

● Phase 3: "Phase 3: Traversing to the reference point (Page 1239)"

Figure 16-2 Time sequence when referencing with incremental measuring systems (example)

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1231

16.5.4 Phase 1: Traversing to the reference cam

Phase 1: Graphic representation

Figure 16-3 Phase 1: Traversing to the reference cam

Phase 1: Start
To start the reference point approach, see Sections "Axisspecific referencing (Page 1224)"
and "Axisspecific referencing (Page 1224)".

Phase 1: Sequence
In Phase 1, depending on the position of the machine axis with reference to the reference cam,
we distinguish between three cases:

1. The machine axis is positioned before the reference cam

2. The machine axis is positioned on the reference cam

3. The machine axis has no reference cam

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
1232 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Case 1: The machine axis is positioned before the reference cam
After the start of reference point approach, the machine axis is accelerated in the
parameterized direction and to the parameterized reference point approach velocity :

● MD34010 $MA_REFP_CAM_DIR_IS_MINUS (reference point approach in minus
direction)

● MD34020 $MA_REFP_VELO_SEARCH_CAM (reference point approach velocity)

The reaching of the reference cam must detected by querying a digital input in the PLC user
program and communicated to the NC via the following interface signal:

DB31, ... DBX12.7 = 1 (reference point approach deceleration)

With detection of the NC/PLC interface signal, the machine axis is decelerated to zero speed.
Whereby at least the distance smin is traversed. This ensures that the machine axis leaves the
reference cam in Phase 2 with the parameterized reference point creep velocity.

Phase 1 is now complete. Reference point approach is continued with Phase 2.

Figure 16-4 Minimum distance for deceleration

Case 2: The machine axis is positioned on the reference cam
The machine axis remains at its starting position.
Phase 1 is now complete. Reference point approach is continued with Phase 2.

Case 3: The machine axis has no reference cam
Machine axes without reference cams remain at their starting position.

These include, for example:

● Machine axes that only have one zero mark along their entire traversing range

● Rotary axes that only have one zero mark per revolution

Zero must be entered in the following machine data for machine axes without a reference cam:

MD34000 $MA_REFP_CAM_IS_ACTIVE = 0 (axis with reference cam)

Phase 1 is now complete. Reference point approach is continued with Phase 2.

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1233

Phase 1: Properties
● Feedrate override is active.

● Feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are active.

● The machine axis is stopped if the reference cam is not reached within the parameterized
maximum distance:
MD34030 $MA_REFP_MAX_CAM_DIST (max. distance to the reference cam)

See also
Channelspecific referencing (Page 1226)

16.5.5 Phase 2: Synchronization with the zero mark

Phase 2: Graphic representation

Figure 16-5 Phase 2: Synchronization with the zero mark

Phase 2: Start
Phase 2 is automatically started when Phase 1 has been completed without an alarm.

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
1234 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Initial situation:
The machine axis is positioned on the reference cam.

Zero mark search direction:
The direction of the zero mark search results from the settings in the machine data:

● MD34010 $MA_REFP_CAM_DIR_IS_MINUS (reference point approach in minus direction)

● MD34050 $MA_REFP_SEARCH_MARKER_REVERSE (direction reversal on reference
cam)

Phase 2: Sequence
The synchronization in Phase 2 can be performed via the falling or rising edge of the reference
cam. The parameterization is performed via:

MD34050 $MA_REFP_SEARCH_MARKER_REVERSE[<axis>] = <value>

Value Meaning
0 Synchronization with falling reference cam edge
1 Synchronization with rising reference cam edge

Note

If the actual velocity of the machine axis at approach of the reference cam has not yet reached
the target velocity of Phase 2 within the parameterized tolerance limits, Phase 1 will be
restarted. This will be the case, for example, if the machine axis is positioned on the reference
cam when reference point approach is started.

MD35150 $MA_SPIND_DES_VELO_TOL (spindle speed tolerance)

Case 1: Synchronization with falling reference cam edge
During synchronization with falling reference cam edge, the machine axis accelerates to the
parameterized reference point creep velocity opposite to the parameterized reference point
approach direction (traversing direction of Phase 1)

After leaving the reference cam, the machine axis waits for the next encoder zero mark:
DB31, ... DBX12.7 == 0

As soon as the encoder zero mark is detected, Phase 2 comes to an end. The machine axis
continues at constant velocity and reference point approach is continued with Phase 3.

● MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1235

Figure 16-6 Synchronization with falling reference cam edge

Case 2: Synchronization with rising reference cam edge
During synchronization with rising reference cam signal edge, the machine axis accelerates
to the parameterized reference point approach velocity against the parameterized reference
point approach direction (traversing direction of the Phase 1):

● MD34020 $MA_REFP_VELO_SEARCH_CAM (reference point approach velocity)

● MD34010 $MA_REFP_CAM_DIR_IS_MINUS (reference point approach in minus direction)

After leaving the reference cam, the machine axis decelerated to standstill:
DB31, ... DBX12.7 == 0

The machine axis then travels back to the reference cam at the parameterized reference point
creep velocity:

MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

After reaching the reference cam (DB31, ... DBX12.7 = 1), the machine axis waits for the next
encoder zero mark.

As soon as the encoder zero mark is detected, Phase 2 comes to an end. The machine axis
continues at constant velocity and reference point approach is continued with Phase 3.

Figure 16-7 Synchronization with rising reference cam edge

Electronic reference cam shift
The electronic reference cam shift is used to compensate for expansions of the reference cam
caused by temperature so that synchronization is always to the same encoder zero mark:

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
1236 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD34092 $MA_ REFP_CAM_SHIFT (electronic reference cam shift for incremental measuring
systems with equidistant zero marks)

With the electronic reference cam shift, synchronization is not performed immediately to the
next encoder zero mark after detection of the reference cam edge, but only after the
parameterized offset distance has been traversed.

Due to the determination of the distance traversed in the interpolator clock cycle since the
detection of the reference cam edge, the effective shift distance is sshift:

sshift_min = MD34092 $MA_ REFP_CAM_SHIFT
sshift_max = MD34092 $MA_ REFP_CAM_SHIFT +

MD34040 $MA_REFP_VELO_SEARCH_MARKER * interpolator clock cycle

The electronic reference cam shift acts in the direction of zero mark search.

① Reference cam shift
Figure 16-8 Electronic reference cam shift

Requirement
The electronic reference cam shift is only active for machine axes with reference cam:

MD34000 $MA_REFP_CAM_IS_ACTIVE == 1

Reference cam adjustment

Encoder with equidistant zero marks
Always ensure that the reference cam of encoders that supply zero marks at equidistances is
accurately adjusted so that the correct zero mark is always detected during reference point
approach.

Dynamic response
The following factors influence the dynamic response from the arrival of the reference cam to
the machine up to the detection of reference cam signals transferred from the PLC user
program to the NC:

● Switching accuracy of the reference cam switch

● Delay of the reference cam switch (NC contact)

● Delay at the PLC input

● PLC cycle time

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1237

● Cycle time for updating the NC/PLC interface

● Interpolator clock cycle

● Position control cycle

Notes on setting
● Reference cam

Aligning the signal edge of the reference cam directly between two zero marks has proven
to be the most practical method.

● Electronic reference cam shift

WARNING

Risk of collision

If the reference cam adjustment is faulty or inaccurate, an incorrect zero mark can be
evaluated. The controller then calculates an incorrect machine zero. As a result, the
machine axis will approach the wrong positions. Software limit switches, protected areas
and working area limitations act on incorrect positions and are therefore incapable of
protecting the machine. The path difference is +/- of the path covered by the machine axis
between two zero marks.

Information needed for parameterizing the electronic reference cam shift is to be found in
the read-only machine data:
MD34093 $MA_REFP_CAM_MARKER_DIST (distance between reference cam/reference
mark)
The indicated value is equivalent to the distance between departure from the reference
cam and detection of the reference mark. If the values are too small, there is a risk that the
determination of the reference point will be non-deterministic, due to temperature effects
or fluctuations in the operating time of the cam signal.

Phase 2: Properties
● Feedrate override is not active.

Traversing is performed internally with feedrate override = 100%.
If a feedrate override of 0% is specified, an abort occurs.

● Feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are not active.

● If the machine axis does not arrive at Phase 2 within the parameterized distance of the
reference mark (encoder zero mark), the machine axis will be stopped:
MD34060 $MA_REFP_MAX_ MARKER_DIST (max. distance to the reference mark)

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
1238 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

16.5.6 Phase 3: Traversing to the reference point

Phase 3: Graphic representation

Figure 16-9 Phase 3: Traversing to the reference point

Phase 3: Start
At the end of Phase 2 the machine axis travels at reference point creep velocity. Therefore,
as soon as Phase 2 is completed successfully without an alarm, Phase 3 is started without
interruption.

Initial situation
The encoder zero mark has been detected.

Phase 3: Sequence
The machine axis moves at the assigned reference point positioning velocity:
MD34070 $MA_REFP_VELO_POS (reference point positioning velocity)
from the encoder zero mark detected in Phase 2 to the reference point.

The path sref to be covered is calculated from the sum of the reference point distance plus
reference point offset:

MD34080 $MA_REFP_MOVE_DIST (reference point distance)

MD34090 $MA_REFP_MOVE_DIST_CORR (reference point offset)

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1239

Figure 16-10 Reference point position

When the reference point is reached, the machine axis is stopped and the actual-value system
is synchronized with the reference point value n specified by the NC/PLC interface.

MD34100 $MA_ REFP_SET_POS[<n>] (reference point value)

The selection of the reference point value is performed via the NC/PLC interface:

DB31, ... DBX2.4 ... 7 (reference point value 1 ... 4)

The actual-value system is synchronized to the reference point value that was selected at the
time the reference cam was reached in Phase 1 (DB31, ... DBX12.7 == 1).

The machine axis is now referenced. The interface signal is set as feedback to the PLC user
program, depending on the active measuring system:

DB31, ... DBX60.4/5 (referenced/synchronized 1/2) = 1

Features of Phase 3
● Feedrate override is active.

● Feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are active.

R1: Referencing
16.5 Referencing with incremental measurement systems

Basic Functions
1240 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Special feature of Phase 3
In the following cases, the machine axis stops first after detection of the zero mark and then
traverses back to the reference point:

● Because of the reference point positioning velocity, the sum of reference point distance
and reference point offset is less than the required braking distance:
MD34080 + MD34090 < "required braking distance due to MD34070"

● The reference point is located, opposite to the current travel direction, "behind" the
reference cam.

Figure 16-11 Reference point distance plus reference point offset less than braking distance

16.6 Referencing with distance-coded reference marks

16.6.1 General overview

Distancecoded reference marks
Measuring systems with distance-coded reference marks consist of two parallel scale tracks:

● Incremental grating

● Reference mark track

The distance between any two consecutive reference marks is defined. This makes it possible
to determine the absolute position of the machine axis when two consecutive reference marks
are crossed. For example, if the distance between the reference marks is approx. 10 mm, a
traverse path of approx. 20 mm is all that is required to reference the machine axis.

Referencing can be performed from any axis position in the positive or negative direction
(exception: end of travel range).

R1: Referencing
16.6 Referencing with distance-coded reference marks

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1241

16.6.2 Basic parameter assignment

Linear measuring systems.

Figure 16-12 Glass measuring scale with distance-coded reference marks, grid spacing: 20 mm

The following data must be set to parameterize linear measuring systems:

● The absolute offset between the machine zero point and the position of the first reference
mark of the linear measuring system:
MD34090 $MA_REFP_MOVE_DIST_CORR (reference point/absolute offset)
See also below: Determining the absolute offset

● Orientation of the length measuring system (equidirectional or inverse) relative to the
machine system coordinate system:
MD34320 $MA_ENC_INVERS (length measuring system inverse to the machine system)

Rotary measuring system
For rotary measuring systems, the same applies as for linear measuring systems (see above).

Determining the absolute offset
The following procedure is recommended for the determination of the absolute offset between
the machine zero point and the position of the first reference mark of a machine axis:

1. Enter the value zero for the absolute offset:
MD34090 $MA_REFP_MOVE_DIST_CORR = 0

2. Perform reference point approach.
Note: The reference point should be approached at a point in the machine where the exact
position of the machine axis relative to machine zero can be determined easily (using a
laser interferometer, for example).

3. Read the displayed actual position of the machine axis in the machine coordinate system
MCS from the user interface, e.g. SINUMERIK Integrate.

R1: Referencing
16.6 Referencing with distance-coded reference marks

Basic Functions
1242 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

4. Measure the actual position of the machine axes referred to the machine zero point.

5. Calculate the absolute offset and enter in MD34090.
The absolute offset is calculated with respect to the machine coordinate system and
depending on the orientation of the measuring system as:

Orientation of the measuring system Absolute offset
Equidirectional (Measured position) + (displayed actual position)

Opposite direction (Measured position) - (displayed actual position)

WARNING

Reference point deviation

After determining the absolute offset and the entry in MD34090, the reference point traversing
for the machine axis must be carried out once more.

Referencing methods
Referencing with distance-coded reference marks can be performed in one of two ways:

● Evaluation of two consecutive reference marks:
MD34200 $MA_ENC_REFP_MODE = 3
Advantage:

– Short travel path

● Evaluation of four consecutive reference marks:
MD34200 $MA_ENC_REFP_MODE = 8
Advantage:

– Plausibility check by NC is possible

– Increase in reliability of referencing result

R1: Referencing
16.6 Referencing with distance-coded reference marks

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1243

16.6.3 Time sequence

Time sequence
Referencing with distance-coded reference marks can be divided into two phases:

● Phase 1: Travel across the reference marks with synchronization

● Phase 2: Travel to a fixed destination point

Figure 16-13 Distance-coded reference marks

16.6.4 Phase 1: Travel across the reference marks with synchronization

Phase 1: Start
To start the reference point approach, see Sections "Axisspecific referencing (Page 1224)"
and "Channelspecific referencing (Page 1226)".

Reference cam
In measuring systems with distance-coded reference marks, reference cams are not required
for the actual referencing action. For functional reasons, however, a reference cam is required
for channel-specific reference point approach and reference point approach from the part
program (G74) before the traversing range end of the machine axis.

R1: Referencing
16.6 Referencing with distance-coded reference marks

Basic Functions
1244 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Phase 1: Sequence
Sequence without contact witha reference cam

Once the reference point approaching process is started, the machine axis accelerates to the
reference point shutdown speed set by means of parameter assignment:

MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

Once the number of reference marks set by means of parameter assignment has been
crossed, the machine axis is stopped again and the actual value system of the machine axis
is synchronized to the absolute position calculated by the NC.

Sequence when starting from the reference cam

If the machine axis is at the reference cam at the start of the reference point traversing, it
accelerates to the parameterized reference point creep velocity against the parameterized
reference point approach direction:

MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

MD34010 $MA_CAM_DIR_IS_MINUS (reference point approach in minus direction)

That ensures that the machine axis does not reach the travel range limit before it has crossed
the parameterized number of reference marks.

Once the number of reference marks set by means of parameter assignment has been
crossed, the machine axis is stopped again and the actual value system of the machine axis
is synchronized to the absolute position calculated by the NC.

Sequence when contact is made with reference cam during referencing

Once the reference point approaching process is started, the machine axis accelerates to the
reference point shutdown speed set by means of parameter assignment:

MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

Before the machine axis travels over the parameterized number of reference marks, it makes
contact with the reference cam. It is then reversed and reference mark search is restarted in
the opposite direction.

Once the number of reference marks set by means of parameter assignment has been
crossed, the machine axis is stopped again and the actual value system of the machine axis
is synchronized to the absolute position calculated by the NC.

Plausiblity check of the reference mark distance
An error occurs if, during reference point traversing for two subsequent reference marks, the
NC determines a distance greater than twice the parameterized reference mark distance.

MD34300 $MA_ENC_REFP_MARKER_DIST (reference mark distance)

The machine axis will then traverse in opposite direction at half the parameterized reference
point creep velocity (MD34040) and the search for reference mark is restarted.

If a faulty reference mark distance is detected again, the machine axis is stopped and the
reference point traversing is aborted (alarm 20003 "fault in the measuring system").

R1: Referencing
16.6 Referencing with distance-coded reference marks

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1245

Abort criterion
If the parameterized number of reference marks is not detected within the parameterized
distance, the machine axis is stopped and reference point traversing is aborted.

MD34060 $MA_REFP_MAX_ MARKER_DIST (max. distance to the reference mark)

Features of Phase 1
After Phase 1 is successfully completed, the actual value system of the machine axis is
synchronized.

16.6.5 Phase 2: Traversing to the target point

Phase 2: Start
Phase 2 is automatically started when Phase 1 has been completed without an alarm.

Initial situation:
● The machine axis is positioned directly behind the last of the parameterized number of

reference marks.

● The actual value system of the machine axis is synchronized.

Phase 2: Sequence
In Phase 2, the machine axis completes reference point approach by traversing to a defined
target position (reference point). This action can be suppressed in order to shorten the
reference point approach:

MD34330 $MA_STOP_AT_ABS_MARKER = <value>

Value Meaning
0 Travel to target position
1 No travel to target position

Travel to target position (normal case)
The machine axis accelerates to the parameterized reference point position velocity and
travels to the parameterized target point (reference point):

MD34070 $MA_REFP_VELO_POS (reference point positioning velocity)

MD34100 $MA_REFP_SET_POS (reference point value)

The machine axis is referenced. To identify this, the NC sets an interface signal for the
measuring system that is currently active:

DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2) = 1

R1: Referencing
16.6 Referencing with distance-coded reference marks

Basic Functions
1246 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

No travel to target position
The machine axis is now referenced. To identify this, the NC sets an interface signal for the
measuring system that is currently active:

DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2) = 1

Features of Phase 2
Phase 2 will display different characteristics, depending on whether a reference cam is
parameterized for the machine axis.

Machine axis without reference cam
MD34000 $MA_REFP_CAM_IS_ACTIVE (axis with reference cam) = 0

Properties:

● Feedrate override is active.

● The feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are active.

Machine axis with reference cam
MD34000 $MA_REFP_CAM_IS_ACTIVE (axis with reference cam) = 1

Properties:

● Feedrate override is not active.
Traversing is performed internally with feedrate override = 100%.
If a feedrate override of 0% is specified, an abort occurs.

● The feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are not active.

● If the parameterized number of reference marks is not detected within the parameterized
distance after the exit of the reference cam, the machine axis will be stopped.
MD34060 $MA_REFP_MAX_ MARKER_DIST (max. distance to the reference mark)

Special features of rotary measuring systems
On rotary distance-coded measuring systems, the absolute position can only be determined
uniquely within one revolution. Depending on the mechanical mounting of the encoder, the
overtravel of the absolute position in the hardware does not always coincide with the traversing
range of the rotary axis.

Special features of modulo rotary axes
With module rotary axes, the reference point position is mapped on the parameterized modulo
range:

MD30330 $MA_MODULO_RANGE (size of the modulo range)

R1: Referencing
16.6 Referencing with distance-coded reference marks

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1247

MD30340 $MA_MODULO_RANGE_START (start position of the modulo range)

Note

The reference point position is mapped on the parameterized (fictive) modulo range even with
axis function "Determination of reference point position rotary, distance-coded encoder within
the configured modulo range":

MD30455 $MA_MISC_FUNCTION_MASK (axis functions), BIT1 = 1

16.7 Referencing by means of actual value adjustment

16.7.1 Actual value adjustment to the referencing measurement system

Function
When actual value adjustment to the referencing measuring system is performed, the resulting
absolute actual position after successful referencing of the measuring system of a machine
axis is transferred directly to all other measuring systems of the machine axis, and the machine
axis is designated as referenced:

DB31, ... DBB60.4 / 60.5 (referenced/synchronized 1/2) = 1

Advantage

When the machine axis switches from an explicitly referenced measuring system to the
measuring system referenced by actual value adjustment, continuous servo control is assured
(servo enable active) because the matched actual position prevents a sudden change in actual
value.

Note

In order to improve positioning precision by determining the measuring-system-specific
encoder fine information, we recommend explicitly re-referencing the measuring system
previously referenced by actual value adjustment after switching over.

Activation
The activation of the actual value adjustment to the referencing measuring system is machine-
specifically carried out via:

MD34102 $MA_REFP_SYNC_ENCS = 1

R1: Referencing
16.7 Referencing by means of actual value adjustment

Basic Functions
1248 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

16.7.2 Actual value adjustment for measuring systems with distance-coded reference
marks

Function
In order to improve positioning precision by determining the measuring-system-specific
encoder fine information, we recommend explicitly re-referencing the measuring system
previously referenced by actual value adjustment after switching over the measuring system.

If an encoder with distance-coded reference marks is used for the passive measuring system,
referencing can be avoided under the following conditions:

1. Active measuring system: Indirect measuring system (motor measuring system) with
absolute encoder, for example

2. Passive measuring system: Direct measuring system with distance-coded reference marks

3. Traversing motion of the machine axis with the referenced indirect measuring system before
measuring system switchover in which the number of reference marks required for
referencing are crossed. Whereby, the passive direct measuring system is referenced
automatically.

Parameterization
In addition to the specific machine data required to reference the individual measuring systems,
the following machine data must be set:

● Enable the actual value adjustment:
MD34102 $MA_REFP_SYNC_ENCS = 1

● Direct measuring system with distance-coded reference marks:

– MD34200 $MA_ENC_REFP_MODE[measuring system] = 3
Distance-coded reference marks

– MD30242 $MA_ENC_IS_INDEPENDENT[measuring system] = 2
In the actual value adjustment, the passive direct measuring system is aligned to the
actual position of the active indirect measuring system, but not marked as referenced.
After the parameterized number of reference marks is crossed, the passive direct
measuring system is referenced automatically. Referencing is performed in every
operating mode.

R1: Referencing
16.7 Referencing by means of actual value adjustment

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1249

Sequence
1. Initial situation: Both measuring systems are not referenced:

DB31, ... DBX60.4 = 0 (referenced/synchronized 1)
DB31, ... DBX60.5 = 0 (referenced/synchronized 2)

2. Referencing of the indirect measuring system according to the measuring system type:
DB31, ... DBX60.4 = 1 (referenced/synchronized 1)
DB31, ... DBX60.5 = 0 (referenced/synchronized 2)

3. Traversing of the machine axis across the parameterized number of reference marks.
This automatically references the direct measuring system:
DB31, ... DBX60.4 = 1 (referenced/synchronized 1)
DB31, ... DBX60.5 = 1 (referenced/synchronized 2)

16.8 Referencing in follow-up mode

Function
Incremental measuring systems and measuring systems with distance-coded reference marks
can be referenced even when the machine axis is in follow-up mode. Prerequisite for this is
the correct parameterization of the reference point approach according to the used measuring
system (see Section "Referencing with incremental measurement systems (Page 1228)" and
"Referencing with distance-coded reference marks (Page 1241)").

When referencing in follow-up mode the machine axis is moved not by the NC but by means
of an external travel motion over the encoder zero mark and the parameterized number of
distance-coded reference marks. The measuring system is referenced when the encoder zero
mark or parameterized number of distance-coded reference marks are detected.

Note
Reproducibility of the referencing result

In NC-guided reference point approach, reproducibility of the referencing result is ensured
through adherence to the assigned traverse velocities during the referencing operation. During
referencing in follow-up mode, responsibility for achieving reproducibility of the referencing
results lies with the machine manufacturer / user.

Unique zero mark
Referencing of an incremental measuring system is based on the explicit position of the
encoder zero mark relative to the overall traversing range of the machine axis.

Because the reference cam signal is not evaluated by the NC during referencing in follow-up
mode, unique identification of the reference point when referencing in follow-up mode will only
result with:

● Only one encoder zero mark in the traversing range of the machine axis.

● Linear measuring systems with distance-coded reference marks.

● Modulo rotary axes (absolute position within one revolution).

R1: Referencing
16.8 Referencing in follow-up mode

Basic Functions
1250 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Zero mark selection when several zero mark signals occur
If several encoder zero marks are detected in the traversing range of the machine axis due to
machine-specific factors, e.g. reduction gear between encoder and load, a proximity switch
must be mounted on the machine and connected via a digital input of the NCU interface in
order to clearly determine the reference point.

Note
Contact-less proximity switch signal: Zero mark selection

The processing of the proximity switch signal is performed exclusively in the drive. Connection
and parameterization, see Section "Hardware signals (Page 1228)".

Enable
The "Referencing in follow-up mode" function is enabled with:

MD34104 $MA_REFP_PERMITTED_IN_FOLLOWUP = TRUE

Starting the referencing operation
If the machine axis is in follow-up mode (DB31, ... DBX61.3 == TRUE) at the start of reference
point approach, the measuring system is referenced in follow-up mode.

If the machine axis is not operating in the follow-up mode at the start of reference point
traversing, the "normal" from the NC-controlled reference point travels is carried out.

Referencing in follow-up mode can be started in the following modes:

● JOG-REF: Traversing keys

● AUTOMATIC: Part program command G74

Sequence of the referencing operation (JOG-REF mode)
1. Activate follow-up mode of machine axis:

DB31, ... DBX1.4 (follow-up mode) = 1
DB31, ... DBX2.1 (controller enable) = 0

2. Wait for activation of follow-up mode:
DB31, ... DBX61.3 (follow-up active) == 1

3. Switch to JOG mode, REF machine function

4. External motion of machine axis across encoder zero mark or parameterized number of
distance-coded reference marks. The referencing operation is started internally in the NC
as soon as the machine axis is moved: The following NC/PLC interface signal is reset as
feedback:
DB31, ... DBX61.4 (axis/spindle stationary) == 0

5. The measuring system is referenced after the encoder zero mark or the assigned number
of distance-coded reference marks have been successfully detected: The following NC/
PLC interface signal is set as feedback:
DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2) == 1

R1: Referencing
16.8 Referencing in follow-up mode

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1251

Aborting the reference operation

An active referencing operation can be aborted by:

● Deselecting follow-up mode

● NC reset

Response when measuring systems are already referenced

A measuring system that has already been referenced can only be re-referenced in
AUTOMATIC mode using part program command G74.

Sequence of referencing operation (AUTOMATIC mode)
1. Switch to AUTOMATIC mode.

2. Start the part program.

3. Activate follow-up mode of machine axis:
DB31, ... DBX1.4 (follow-up mode) = 1
DB31, ... DBX2.1 (controller enable) = 0

4. Wait for activation of follow-up mode:
DB31, ... DBX61.3 (follow-up active) == 1

5. The referencing operation is started internally in the NC as soon as G74 command has
been processed.

6. External motion of machine axis across encoder zero mark or parameterized number of
distance-coded reference marks.

7. The measuring system is referenced after the encoder zero mark or the assigned number
of distance-coded reference marks have been successfully detected: The following NC/
PLC interface signal is set as feedback:
DB31, ... DBX60.4 / 60.5 (referenced/synchronized 1/2) == 1

8. The block change occurs after the referencing operation has been successfully completed.

Aborting the reference operation

An active referencing operation can be aborted by:

● Deselecting follow-up mode

● NC reset

Response when measuring systems are already referenced

A measuring system that you have already referenced can be re-referenced.

R1: Referencing
16.8 Referencing in follow-up mode

Basic Functions
1252 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

16.9 Referencing with absolute encoders

16.9.1 Information about the adjustment

Machine axes with absolute encoder
The advantage of machine axes with absolute encoder is that after a one time adjustment
procedure, the necessary reference point traversing with incremental measuring systems (e.g.
build-up of control, de-selection of "Parking" of machine axes etc.) can be skipped and the
actual value system of the machine axis can be immediately synchronized to the determined
absolute position.

Adjustment
Adjustment of an absolute encoder involves matching the actual value of the encoder with the
machine zero once and then setting it to valid.

The current adjustment status of an absolute encoder is displayed in the following axis-specific
machine data of the machine axis, to which it is connected:

MD34210 $MA_ENC_REFP_STATE (status of absolute encoder)

Value Meaning
0 Encoder not calibrated
1 Encoder adjustment enabled
2 Encoder is calibrated

Adjustment methods
The following adjustment methods are supported:

● Adjustment by entering a reference point offset

● Adjustment by entering a reference point value

● Automatic adjustment with probe

● Adjustment by means of the proximity switch

Readjustment
Readjustment of the absolute encoder is required after:

● Gear change between load and absolute encoder

● Removal/installation of the absolute encoder

● Removal/installation of the motor with the absolute encoder

● Data loss in the static NC memory

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1253

● Battery failure

● Set actual value (PRESETON)

WARNING

Data backup

During the back-up of machine data of a machine A, the encoder status of the machine
axis (MD34210) is also backed up.

During loading of this data record into a machine B of the same type, e.g. in the context
of a serial start-up or after a case of maintenance, the referenced machine axes will be
automatically regarded as adjusted / referenced by the NC. It is the special responsibility
of the machine manufacturer / user to undertake a readjustment in such cases.

See also explanations regarding machine data:

MD30250 $MA_ACT_POS_ABS (absolute encoder position at the time of switch-off)

Note

The controller can detect a required readjustment of the absolute encoder only during the
following events:
● Gear change with change of gear ratio
● Addressing the zero-mark monitoring
● New encoder serial number after change of the absolute encoder

The controller then sets the status of the absolute encoder to "0":

MD34210 $MA_ENC_REFP_STATE = 0 (encoder not adjusted)

The following alarm is displayed:
Alarm 25022 "Axis <axis name> encoder <number> warning 0"
If the zero-mark monitoring responds, the following alarm is also displayed:
Alarm 25020 "Axis <axis name> zero-mark monitoring of active encoder"

In all other cases (e.g. PRESETON) it is the sole responsibility of the user to display the
misalignment of the absolute encoder by manually setting the status to "0" and to carry out
a readjustment.

16.9.2 Calibration by entering a reference point offset

Function
During adjustment by entering the reference point offset, the difference between the position
displayed on the operator interface and the true actual position in the machine is determined
and made known to the NC as reference point offset.

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
1254 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Procedure
1. Determining the position of the machine axis with reference to the machine zero point via

e.g.:

– position measurement (e.g. laser interferometer)

– Moving the machine axis to a known position (e.g., fixed stop)

2. Reading the displayed actual position of the machine axis on the operator interface.

3. Calculating the reference point offset (difference between the actual positions determined
under point 1 and 2) and entering in machine data:
MD34090 $MA_REFP_MOVE_DIST_CORR (reference point offset)

4. Marking the absolute value encoder as adjusted:
MD34210 $MA_ENC_REFP_STATE = 2

Note

The encoder adjustment does not become active until the next time the encoder is activated
(e.g., when the controller is powered up).

5. Initiate POWER ON reset.

6. Controlling the position of the machine axis displayed on the operator interface.

Note

Backlash compensation

If backlash compensation is parameterized for a measuring system with absolute value
encoder, the following must be observed:

No backlash is permitted during machine axis travel to the adjusted machine position.

Activate reference point offset permanently

The entered reference point offset (MD34090) will be permanently active only after initial
POWER ON - Reset. If the machine axis is moved after the absolute encoder adjustment
without an interim POWER ON - Reset, the reference point offset entered in the machine
data can be overwritten, for example, as part of internal overrun offset.

Checking the actual position

Following adjustment of the absolute encoder, we recommend that you verify the actual
position of the machine axis the next time you power up the controller (POWER ON).

16.9.3 Adjustment by entering a reference point value

Function
During adjustment by entering the reference point value, the absolute position of the machine
axis with reference to the machine zero point is determined by e.g.:

● Position measurement (e.g. laser interferometer)

● Moving the machine axis to a known position (e.g. fixed stop)

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1255

This determined position value will be made known to the NC as the reference point value.
The NC then calculates the reference point offset from the difference between the encoder
absolute value and the reference point value.

Procedure
1. Check whether the referencing mode is set to "Assume the reference point value":

MD34200 $MA_ENC_REFP_MODE == 0
If not, enter the value 0 in the machine and trigger a Power On reset.

2. Traverse the machine axis in JOG mode to the position to be measured (e.g. with a laser
interferometer) or to a known position (e.g. fixed stop).

Note

The machine axis can only be traversed in the direction enabled for referencing with the
travel keys:

MD34010 $MA_REFP_CAM_DIR_IS_MINUS (approach reference point in minus direction)

To avoid an invalid position because of backlash in the drive train, the known position must
be approached at low velocity.

3. Enter the position of the machine axis relative to machine zero as the reference point value
in the machine data:
MD34100 $MA_REFP_SET_POS = Position

4. Enable encoder adjustment:
MD34210 $MA_ENC_REFP_STATE = 1

5. Trigger a Power On reset for acceptance of the entered machine data values.

6. Switch to JOG-REF mode.

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
1256 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

7. Operate the travel key used for referencing in step 2.
The machine axis does not move when the traversing key is actuated!
The NC calculates the reference point offset from the entered reference point value and
that given by the absolute encoder. The result is entered into the machine data:
MD34090 $MA_REFP_MOVE_DIST_CORR (reference point offset)
The status of the absolute encoder is set to "Encoder is adjusted":
MD34210 $MA_ ENC_REFP_STATE = 2
The actual value system of the machine axis is synchronized.
The machine axis is now referenced. As identification, the NC sets the appropriate interface
signal based on which measuring system is currently active:
DB31, ... DBB60.4 / 60.5 (referenced/synchronized 1 / 2) = 1

8. Initiate Power On reset.

Note

Activate reference point offset permanently

The entered reference point offset (MD34090) will only be permanently active after Power
On reset.

If the machine axis is moved after the absolute encoder adjustment without an interim
Power On reset, the reference point offset entered in the machine data can be overwritten,
for example, within internal overrun corrections.

Checking the actual position

Following adjustment of the absolute encoder, we recommend that you verify the actual
position of the machine axis the next time you power up the controller (Power On).

16.9.4 Automatic calibration with probe

Function
In automatic adjustment with a probe, a known position in the machine is approached with the
machine axis from a part program. The position value is stored in the NC as a reference point
value. The position is reached when the probe switches, and the NC then calculates the
reference point offset from the difference between the encoder value and reference point value.

Note

Part program for automatic adjustment

The part program for automatic adjustment using a probe must be created by the machine
manufacturer / user for the specific requirements of the machine.

Freedom from collision

Because actual-value-related monitoring is not active for the machine axes being referenced,
the machine operator must take special care to ensure that collisions do not occur in the
machine while the machine axes are being moved!

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1257

Part program
The part program for automatic adjustment of absolute encoders with probe must perform the
points listed below for each axis in the order indicated:

1. Approach the adjustment position of machine axis, which is detected from the probe
response.
The position must be approached several times from the same direction, but at a velocity
which is gradually reduced on each approach, to ensure that the measured value obtained
is as accurate as possible. The measured value is stored in system variable $AA_IM.

2. Calculating and writing the reference point offset:

3. Set the absolute encoder status to "Encoder is adjusted":
MD34210 $MA_ ENC_REFP_STATE = 2

Sequence
Proceed as follows for automatic adjustment with probe:

1. Enable part program start even for non-referenced machine axes:
MD20700 $MC_REFP_NC_START_LOCK = 0

2. Enter the machine axis position relative to machine zero when probe is switched as the
reference point value for all relevant machine axes:
MD34100 $MA_REFP_SET_POS = reference point value

3. Activate NCK-Reset for the acceptance of the entered machine data values.

4. Start part program.

5. After completion of the part program, re-secure the partial program start for machine axes
which are not referenced:
MD20700 $MC_REFP_NC_START_LOCK = 1

6. Initiate POWER ON - Reset so that the reference point offset written by the part program
is permanently active:
MD34090 $MA_REFP_MOVE_DIST_CORR (reference point offset)

Note

Activate reference point offset permanently

The entered reference point offset (MD34090) will only be permanently active after
POWER ON - Reset.

If the machine axis is moved after the absolute encoder adjustment without an interim
POWER ON - Reset, the reference point offset entered in the machine data can be
overwritten, for example, as part of internal overrun offset.

Checking the actual position

Following adjustment of the absolute encoder, we recommend that you verify the actual
position of the machine axis the next time you power up the controller (POWER ON).

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
1258 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

16.9.5 Adjustment with BERO

Function
For adjustment using proximity switch, a reference point approach to a defined machine
position is performed the same as for incremental measuring systems. In this case, the
proximity switch replaces the encoder zero mark that the absolute encoder does not have.
After successful completion of reference point approach, the NC automatically calculates the
reference point offset from the difference between the encoder absolute value and the
parameterized reference point value.

Parameterization

NC: Referencing mode
The referencing mode should be set to "Referencing of incremental, rotary or linear measuring
systems: Zero pulse on the encoder track":

MD34200 $MA_ENC_REFP_MODE[<axis>] = 1

NC: Reference point value
The reference point value is parameterized via:

MD34100 $MA_REFP_SET_POS[<axis>] = <reference point value>

Drive: Equivalent zero mark
The digital input on the NCU interface to which the proximity switch is connected must be set
in parameter p0494 or p0495.

Execution
Reference point approach can be started manually in JOG-REF mode or in AUTOMATIC or
MDI mode via a part program (G74).

After successful completion of the reference point approach, the absolute encoder is adjusted
and the actual-value system of the machine axis is synchronized.

As feedback for the PLC user program, the NC sets the NC/PLC interface signal for the
machine axis, depending on the active measuring system:

DB31, ... DBB60.4/60.5 (referenced/synchronized 1/2) = 1

Note

If the proximity switch is removed after adjustment of the absolute encoder, the referencing
mode must be re-parameterized to "Referencing with absolute encoder".

MD34200 $MA_ENC_REFP_MODE[<axis>] = 0

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1259

16.9.6 Reference point approach with absolute encoders

Parameter assignment

Traversing movement release
If for a machine axis with adjusted absolute value encoder as active measuring system,
reference point traversing is activated (manually in the JOG-REF mode or automatically via
the part program instruction G74), the machine axis travels depending on the parameterized
traversing movement release.

MD34330 $MA_REFP_STOP_AT_ABS_MARKER = <value>

Value Meaning
0 Traversing is enabled.

When reference point approach is initiated, the machine axis moves to the reference point
position. When reaching the reference point position, the reference point approach is comple‐
ted.

1 Traversing is not enabled.
After the activation of the reference point travel, the machine axis does not travel and the
reference point travel is immediately completed.

16.9.7 Reference point approach for rotary absolute encoders with equivalent zero mark

Function
To ensure that the reference point approach via zero mark (see Section "Referencing with
incremental measurement systems (Page 1228)") can also be used with absolute encoders,
the zero mark, which is not provided in the hardware of absolute encoders, is simulated. For
this, the controller generates the signal for the equivalent zero mark once per encoder
revolution, always at the same position within the revolution.

Difference compared to referencing with incremental encoders
An absolute encoder with replacement zero mark should not be considerd as a complete
equivalent of an incremental encoder. All the properties of the absolute encoder are retained.
The following table lists the different properties of incremental and absolute encoders:

Table 16-1 Properties of incremental and absolute encoders

Property Incremental encoder Absolute encoder
Encoder type MD30240 $MA_ENC_TYPE =

1 4
Internal encoder position MD30250 $MA_ACT_POS_ABS =

Value is updated only in MD34210 ≥ 1 Value is updated only in MD30270 = 0
Traversing range extension MD30270 $MA_ENC_ABS_BUFFERING =

No effect = 0 (default): Active

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
1260 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Property Incremental encoder Absolute encoder
Reference point offset MD34090 $MA_REFP_MOVE_DIST_CORR =

Value input allowed Value is updated exclusively via control
Supported referencing types MD34200 $MA_ENC_REFP_MODE =

1, 3, 4, 8 0, 1
Adjustment status MD34210 $MA_ENC_REFP_STATE = 0, 1, 2

Automatic encoder misalignment during
shut down while in motion.

Automatic encoder misalignment during pa‐
rameter set change with position jump or dur‐

ing serial number change.
Absolute position modulo range MD34220 $MA_ENC_ABS_TURNS_MODULO =

0 1 - 4096
Encoder serial no. MD34230 $MA_ENC_SERIAL_NUMBER =

0 The value must be updated from the PLC
during each encoder change, otherwise loss

of adjustment plus alarm.
Transfer of series startup files Without any restrictions. Due to encoder characteristics (MD30250,

MD30270, MD34090, MD34210, MD34220,
MD34230) only possible with certain restric‐

tions.
Activation time 0 seconds several seconds
Zero mark 1 per encoder revolution None
Zero mark monitoring Hardware Software
Position after POWER ON without
actual value buffering

0.0 Last position within MD34220.
MD34210 = 0 MD30270 = 1

Position after POWER ON with ac‐
tual value buffering

Last standstill position before deactiva‐
tion.

Last position including small movements dur‐
ing POWER OFF.

MD34210 = 1 MD30270 = 0
Referenced after POWER ON depends on adjustment status

Requirement
The function can be used only with rotary absolute encoders:

● MD31000 $MA_ENC_IS_LINEAR == 0

● MD30240 $MA_ENC_TYPE == 4

Parameterization
Reference point approach with equivalent zero mark:

MD34200 $MA_ENC_REFP_MODE = 1

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1261

Supplementary conditions
● A reference point offset (MD34090 $MA_REFP_MOVE_DIST_CORR) may not be

parameterized.
This MD describes, in connection with absolute encoders, the offset between machine and
absolute encoder zero, and it therefore has a different meaning.

● The load-side zero mark search rate (MD34040 $MA_REFP_VELO_SEARCH_MARKER)
should not exceed the limiting frequency of the absolute trace of the encoder
(MD36302 $MA_ENC_FREQ_LIMIT_LOW)
. If the speed is too high, absolute information cannot be read any more, and thus, no
equivalent zero marks are generated.

● If no zero mark is found within the parameterized path (MD34060
$MA_REFP_MAX_MARKER_DIST), an alarm is output:

● The following MD must be set if the absolute encoder retains even the referenced status
through POWER OFF, besides the last position:
MD34210 $MA_ENC_REFP_STATE = 2

Data backup and standard commissioning
Some properties of an absolute encoder restrict the transfer of a commissioning archive to
other machines. The following machine data must be checked and possibly corrected after
loading a commissioning archive to the controller:

● MD30250 $MA_ACT_POS_ABS (internal encoder position)

● MD30270 $MA_ENC_ABS_BUFFERING (traversing range extension)

● MD34090 $MA_REFP_MOVE_DIST_CORR (absolute offset)

● MD34210 $MA_ENC_REFP_STATE (adjustment status)

● MD34220 $MA_ENC_ABS_TURNS_MODULO (modulo range)

● MD34230 $MA_ENC_SERIAL_NUMBER (encoder serial number)

16.9.8 Enabling the measurement system
The measuring system of a machine axis is activated in the following cases:

● Power up of the control (POWER ON)

● Activation of the measuring system via interface signal (deselection of "parking"):
DB31, ... DBB1.5 / 1.6 (position measuring system 1/2)
DB31, ... DBB2.1 (servo enable)

● Violation of the assigned encoder limit frequency (spindles):
MD36300 $MA_ENC_FREQ_LIMIT

When the measuring system is activated, the NC synchronizes the actual value system of the
machine axis with the current absolute value. Traversing is disabled during synchronization
for axes but not for spindles.

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
1262 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Parameterizing the encoder limit frequency (spindles)
The EQN 1325 absolute encoder made by Heidenhain has an incremental track and an
absolute track.

If a spindle is driven at a speed above the encoder limit frequency of the incremental track,
the substantially lower limit frequency of absolute track must be parameterized as the encoder
limit frequency.

MD36300 $MA_ENC_FREQ_LIMIT

Otherwise an incorrect absolute position would be read because the parameterized encoder
limit frequency is not reached when the measuring system is activated. This would cause a
position offset in the actual value system of the machine axis.

Determining the encoder limit frequency
The encoder limit frequency to be parameterized is derived from the smaller of the two following
limit speeds:

● Encoder
The limit speed or encoder limit frequency is listed in the data sheet of the encoder (e.g.,
limit speed = 2000 [rpm])

● NC
Due to the NC-internal evaluation process, the maximum limit speed for which error-free
calculation of the absolute value by the NC is possible is 4 encoder revolutions per
interpolator clock cycle.
For an interpolator clock cycle of, for example, 12 ms: Limit speed = 4 / 12 ms = 20,000
rpm
The limiting frequency corresponding to the limiting speed is calculated to be:

MD31020 $MA_ENC_RESOL (encoder pulses per revolution)
MD10050 $MN_SYSCLOCK_CYCLE_TIME (basic system clock cycle)
MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO (factor for the interpolation cycle)

Note

The position control switching speed relevant for spindles is set according to the encoder
limiting frequency of the absolute value encoder of the spindle:

MD35300 $MA_SPIND_POSCTRL_VELO (position control switching speed)

MD36300 $MA_ENC_FREQ_LIMIT (Encoder limit frequency)

R1: Referencing
16.9 Referencing with absolute encoders

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1263

16.9.9 Referencing variants not supported
The following referencing variants are not supported when used with absolute encoders:

● Referencing/calibrating with encoder zero mark

● Distance-coded reference marks

● Proximity switch with two-edge evaluation

16.10 Automatic restoration of the machine reference
Without a defined machine reference when traversing machine axes, no position-dependent
functions such as transformations or tool frames can be executed. In various machine
situations, these functions must be available immediately with the encoder activation, e.g. after
the control is switched on or after terminating "Parking a machine axis (Page 125)" to traverse
the axes. However, the machine axes should not or cannot be traversed again for referencing.

Absolute encoders
For measuring systems with adjusted absolute encoders, the machine reference is restored
immediately without any additional measures when the encoder value is read.

Incremental encoders
With incremental measuring systems, the machine reference can be restored without
traversing the axes through "Automatic referencing" or "Restoration of the actual position".

Supplementary conditions

WARNING

Incorrect synchronization of the position measuring system caused by offset of the actual
machine axis position

During the time in which the measuring system of the machine axis is switched off, it is not
permissible that the axis is mechanically moved. Otherwise this results in an offset between
the last buffered actual position and the real actual position of the machine axis. This would
lead to an incorrect synchronization of the measuring system resulting in danger to personnel
and machine.

The machine manufacturer must provide such measures as holding brakes, etc. on the
machine so that the actual position is not changed, and this must be ensured by the user.
The responsibility for this rests exclusively with the machine manufacturer / user.

If axis motion cannot be prevented mechanically in the shutdown state, either an absolute
encoder must be used or the axis must be referenced again with reference point approach
after switching on.

R1: Referencing
16.10 Automatic restoration of the machine reference

Basic Functions
1264 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note
SMExx sensor modules

Automatic referencing or restoration of the actual position to the last buffered position after
restarting the control is only possible in conjunction with SMExx (externally mounted) sensor
modules. When using SMCxx (cabinet) or SMIxx (integrated) sensor modules, the actual
position cannot be restored after restarting the control (power on). The measuring system of
the machine axis must be referenced again.

16.10.1 Automatic referencing

Function
During automatic referencing, the actual position of the active measuring system of the
machine axis is set to the last buffered position and "referenced" set as encoder state after
switching on the control. This makes it possible to start programs in the AUTOMATIC and MDI
modes directly after run-up of the control.

Requirements
● The active measuring systems when the control is switched on must already have been

referenced once before switching off.

● At the time the control is switched off, the machine axis must be at standstill with "Exact
stop fine" (DB31, ... DBX60.7 == 1) are located.

Note

If the machine axis is not at standstill with "Exact stop fine" when switching off, the actual
position will be initialized with " 0" when switching on. "Not referenced" is displayed as the
encoder state.

Parameterization
The automatic referencing is enabled by setting the encoder state to "Automatic referencing
is enabled, but the encoder has not been referenced":

MD34210 $MA_ENC_REFP_STATE[<encoder>] = 1

After the measuring system has been referenced, the encoder state displays that automatic
referencing will be executed the next time the encoder is activated:

MD34210 $MA_ENC_REFP_STATE[<encoder>] == 2

NC/PLC interface signals
After automatic referencing, the encoder state "Referenced" is displayed for the active
measuring system:

DB31, ... DBX60.4/.5 == 1 (referenced/synchronized 1/2)

R1: Referencing
16.10 Automatic restoration of the machine reference

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1265

Supplementary conditions

Encoder activation with MD34210 $MA_ENC_REFP_STATE[<encoder>] == 1
An encoder state equal to "1" at the time of the encoder activation means that "Automatic
referencing" has been enabled. However, the measuring system has either not been
referenced yet or the machine axis was not switched off at standstill in the "Exact stop fine"
state. The following is set for the machine axis or the active measuring system:

● Actual position = 0

● Active measuring system, encoder state = "Not referenced":
DB31, ... DBX60.4 / .5 = 0 (referenced/synchronized 1/2)

References
Description of Functions, Basic functions, Section "R1 Referencing" > "Referencing with
incremental measurement systems (Page 1228)" > ""

16.10.2 Restoration of the actual position

Function
When restoring the actual position to the last buffered position, the encoder state of the active
measuring system is set to "Restored". The axis can only be traversed manually.

AUTOMATIC mode
To enable NC start for the automatic execution of programs in the AUTOMATIC mode, the
measuring system of the machine axis must be re-referenced.

MDI mode and overstore
In the MDI mode and for the overstore function, machining can also be performed, without
referencing the axes, with restored positions. To do this, NC start with restored positions must
be enabled explicitly for a specific channel:

MD20700 $MC_REFP_NC_START_LOCK = 2

Requirement
The measuring system that is active when the control is switched on must already have been
referenced once before switching off.

Parameterization

Release: Restoration of the actual position
The enable to restore the actual position is performed by setting the encoder state to "The last
buffered axis position before switching off will be restored, no automatic referencing":

MD34210 $MA_ENC_REFP_STATE[<encoder>] = 3

R1: Referencing
16.10 Automatic restoration of the machine reference

Basic Functions
1266 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Release: NC START for "MDI" and "Overstore" modes
The enable of NC START for execution of part programs or part program blocks in the "MDI"
and "Overstore" modes with the state "Position restored" is performed via:

MD34110 $MA_REFP_CYCLE_NR ≠ -1 (axis sequence for channel-specific referencing)

MD20700 $MC_REFP_NC_START_LOCK = 2 (NC START lock without reference point)

NC/PLC interface signals
The restored actual position is not considered to be equivalent to an actual position after
reference point approach. Therefore, the state "Position restored" and not "Referenced/
synchronized" is displayed for the measuring system of the machine axis.

Actual position restored:
● DB31, ... DBX60.4/.5 = 0 (referenced/synchronized 1/2)

● DB31, ... DBX71.4/.5 = 1 (position restored, encoder 1/2)

Measuring system referenced:
● DB31, ... DBX60.4/.5 = 0 → 1 (referenced/synchronized 1/2)

● DB31, ... DBX71.4/.5 = 1 → 0 (position restored, encoder 1/2)

Note

The monitoring of the traversing range limits (software limit switches, working area
limitation, etc.) is already active in the "Position restored" state.

Supplementary conditions

Spindles
If the encoder limit frequency is exceeded, a spindle is reset to the "Not referenced/
synchronized" state:

● DB31, ... DBX60.4/.5 = 1 → 0 (referenced/synchronized 1/2)

● DB31, ... DBX71.4/.5 = 1 → 0 (position restored, encoder 1/2)

References
Description of Functions, Basic functions, Section "R1 Referencing" > "Referencing with
incremental measurement systems (Page 1228)" > ""

R1: Referencing
16.10 Automatic restoration of the machine reference

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1267

16.11 Supplementary conditions

16.11.1 Large traverse range

Linear axes with a traversing range > 4096 encoder revolutions, rotatory absolute encoder
EQN 1325 and a parameterized absolute encoder range of
MD34220 $MA_ENC_ABS_TURNS_MODULO = 4096:
The maximum possible travel range corresponds to that of incremental encoders.

Endlessly turning rotary axes with absolute encoders:
● Any number of integer transmission ratios are permitted.

● We recommend that you parameterize endlessly turning rotary axes with absolute encoders
as modulo rotary axes (traversing range 0...360 degrees):
MD30310 $MA_ROT_IS_MODULO = 1
Otherwise, the rotary axis may require a very large traversing path to reach absolute zero
when the measuring system is activated.

Machine axes with absolute encoders:
In order that the controller correctly determines the current actual position after the restart of
the measuring system, the machine axis may only be moved less than half the absolute
encoder range when the measuring system is switched off:

MD34220 $MA_ENC_ABS_TURNS_MODULO

Notes on uniqueness of encoder positions

Note
Linear absolute encoders

The absolute value of linear position encoders, e.g. Heidenhain LC181, is always unique for
the scale lengths available.
Rotary absolute encoders

The absolute value of rotary absolute encoders is only unique within the range of the specific
maximum encoder revolutions.

For example, the EQN 1325 rotary absolute encoder by Heidenhain supplies a unique absolute
value in the range of 0 to 4,096 encoder revolutions.

Depending on how the encoder is connected that will result in:
● Rotary axis with encoder on load: 4096 load revolutions
● Rotary axis with encoder on motor: 4096 motor revolutions
● Linear axis with encoder on motor: 4096 motor revolutions

Example:
An EQN 1325 rotary absolute encoder is mounted on the motor of a linear axis. For an effective
leadscrew pitch of 10 mm this will result in a unique absolute value within the travel range
-20.48 to +20.48 m.

R1: Referencing
16.11 Supplementary conditions

Basic Functions
1268 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

16.12 Data lists

16.12.1 Machine data

16.12.1.1 NC-specific machine data

Number Identifier: $MN_ Description
11300 JOG_INC_MODE_LEVELTRIGGRD INC/REF in jog/continuous mode

16.12.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20700 REFP_NC_START_LOCK NC start disable without reference point

16.12.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30200 NUM_ENCS Number of encoders
30240 ENC_TYP Actual value encoder type
30242 ENC_IS_INDEPENDENT Encoder is independent
30250 ACT_POS_ABS Absolute encoder position at time of deactivation
30270 ENC_ABS_BUFFERING Absolute encoder: Traversing range extension
30300 IS_ROT_AX Rotary axis / spindle
30310 ROT_IS_MODULO Modulo conversion for rotary axis / spindle
30330 MODULO_RANGE Size of the modulo range
30340 MODULO_RANGE_START Starting position of modulo range
30355 MISC_FUNCTION_MASK Axis functions
31122 BERO_DELAY_TIME_PLUS BERO delay time in plus direction
31123 BERO_DELAY_TIME_MINUS BERO delay time in minus direction
34000 REFP_CAM_IS_ACTIVE Axis with reference cam
34010 REFP_CAM_DIR_IS_MINUS Reference point approach in minus direction
34020 REFP_VELO_SEARCH_CAM Reference point approach velocity
34030 REFP_MAX_CAM_DIST Maximum distance to reference cam
34040 REFP_VELO_SEARCH_MARKER Reference point creep velocity
34050 REFP_SEARCH_MARKER_REVERSE Direction reversal on reference cam
34060 REFP_MAX_MARKER_DIST Maximum distance to reference mark;

maximum distance to two reference marks with dis‐
tance-coded scales

34070 REFP_VELO_POS Reference point positioning velocity

R1: Referencing
16.12 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1269

Number Identifier: $MA_ Description
34080 REFP_MOVE_DIST Reference point distance / destination point for dis‐

tance-coded system
34090 REFP_MOVE_DIST_CORR Reference point offset / absolute offset, distance-coded
34092 REFP_CAM_SHIFT Electronic reference cam shift for incremental measur‐

ing systems with equidistant zero marks
34093 REFP_CAM_MARKER_DIST Reference cam / reference mark distance
34100 REFP_SET_POS Reference point value
34102 REFP_SYNC_ENCS Actual value adjustment to the referencing measure‐

ment system
34104 REFP_PERMITTED_IN_FOLLOWUP Enable referencing in follow-up mode
34110 REFP_CYCLE_NR Axis sequence for channel-specific referencing
34120 REFP_BERO_LOW_ACTIVE Polarity change of the BERO cam
34200 ENC_REFP_MODE Referencing mode
34210 ENC_REFP_STATE Status of absolute encoder
34220 ENC_ABS_TURNS_MODULO Absolute encoder range for rotary encoders
34230 ENC_SERIAL_NUMBER Encoder serial number
34232 EVERY_ENC_SERIAL_NUMBER Range of the encoder serial number
34300 ENC_REFP_MARKER_DIST Basic reference mark distance for distance-coded en‐

coders
34310 ENC_MARKER_INC Interval between two reference marks with distance-co‐

ded scales
34320 ENC_INVERS Linear measuring system inverse to machine system
34330 REFP_STOP_AT_ABS_MARKER Distance-coded linear measuring system without des‐

tination point
35150 SPIND_DES_VELO_TOL Spindle speed tolerance
36302 ENC_FREQ_LIMIT_LOW Encoder limit frequency resynchronization
36310 ENC_ZERO_MONITORING Zero mark monitoring

16.12.2 Signals

16.12.2.1 Signals to BAG

Signal name SINUMERIK 840D sl SINUMERIK 828D
Mode group RESET DB11.DBX0.7 DB3000.DBX0.7
Machine function REF DB11.DBX1.2 DB3000.DBX1.2

16.12.2.2 Signals from BAG

Signal name SINUMERIK 840D sl SINUMERIK 828D
Active machine function REF DB11.DBX5.2 DB3100.DBX1.2

R1: Referencing
16.12 Data lists

Basic Functions
1270 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

16.12.2.3 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate referencing DB21,DBX1.0 DB320x.DBX1.0
OEM channel signal (HMI → PLC) REF DB21,DBX28.7 -

16.12.2.4 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Referencing active DB21,DBX33.0 DB330x.DBX1.0
Reset DB21,DBX35.7 DB330x.DBX3.7
All axes referenced DB21,DBX36.2 DB330x.DBX4.2

16.12.2.5 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Follow-up mode (request) DB31,DBX1.4 DB380x.DBX1.4
Position measuring system 1 / position measuring system 2 DB31,DBX1.5-6 DB380x.DBX1.5-6
Reference point value 1 to 4 DB31,DBX2.4-7 DB380x.DBX2.4-7
Traversing keys minus/plus DB31,DBX4.6-7 DB380x.DBX4.6-7
Deceleration of reference point approach DB31,DBX12.7 DB380x.DBX1000.7

16.12.2.6 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Referenced, synchronized 1/2 DB31,DBX60.4-5 DB390x.DBX0.4-5
Follow up active DB31,DBX61.3 DB390x.DBX1.3
Traversing command minus/plus DB31,DBX64.6-7 DB390x.DBX4.6-7
Restored 1/2 DB31,DBX71.4-5 DB390x.DBX11.4-5

R1: Referencing
16.12 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1271

R1: Referencing
16.12 Data lists

Basic Functions
1272 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

S1: Spindles 17
17.1 Brief Description

The primary function of a spindle is to set a tool or workpiece in rotary motion in order to facilitate
machining.

Depending on the type of machine, the spindle must support the following functions in order
to achieve this:

● Input of a direction of rotation for the spindle (M3, M4)

● Input of a spindle speed (S, SVC)

● Spindle stop, without orientation (M5)

● Spindle stop with orientation / Spindle positioning
(SPOS, M19 and SPOSA)

● Gear change (M40 to M45)

● Spindleaxis functionality (spindle becomes rotary axis and vice versa)

● Thread cutting (G33, G34, G35)

● Tapping without compensating chuck (G331, G332)

● Tapping with compensating chuck (G63)

● Revolutional feedrate (G95)

● Constant cutting rate (G96, G961, G97, G971)

● Programmable spindle speed limits (G25, G26, LIMS=)

● Position encoder assembly on the spindle or on the spindle motor

● Spindle monitoring for min. and max. speed as well as
max. encoder limit frequency and end point monitoring of spindle

● Switching the position control (SPCON, SPCOF, M70) on/off

● Programming of spindle functions:

– From the part program

– Via synchronized actions

– Via PLC with FC18 or via special spindle interfaces for simple spindle activation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1273

17.2 Modes

17.2.1 Overview
A spindle is an endlessly rotating axis, which can be operated in either the closed-loop position
control or closed-loop speed control modes.

Operating modes
● Control operation (closed-loop speed control)

● Oscillating operation (closed-loop speed control)

● Positioning operation (closed-loop position control)

● Synchronous mode
References:
Function Manual Extension Functions, Synchronous Spindle (S3)

● Tapping without compensating chuck (G331, G332)
References:
Programming Manual, Fundamentals, Chapter: "Position commands" > "Tapping" >
"Tapping without compensating check (G331 / G332)"

● Axis mode (closed-loop position control)

Note
Switchover, axis/spindle mode

A spindle can be switched over between the axis and spindle mode if the same motor is used
for axis and spindle operation.

S1: Spindles
17.2 Modes

Basic Functions
1274 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.2.2 Mode change
Switching between spindle and axis operation can be done as follows:

● Control mode → Oscillation mode
The spindle changes to oscillation mode if a new gear stage has been specified using
automatic gear step selection (M40) in conjunction with a new S value or by M41 to M45.
The spindle only changes to oscillation mode if the new gear step is not equal to the current
actual gear step.

● Oscillation mode → Control mode
When the new gear is engaged, the interface signal:
DB31, ... DBX84.6 (Oscillation mode)
is reset and the interface signal:
DB31, ... DBX16.3 (Gear changed)
is used to go to control mode.
The last programmed spindle speed (S value) is reactivated.

● Control mode → Positioning mode
To stop the spindle from rotation (M3 or M4) with orientation or to reorient it from standstill
(M5), SPOS, M19 or SPOSA are used to switch to positioning mode.

● Positioning mode → Control mode
M3, M4 or M5 are used to change to control mode if the orientation of the spindle is to be
terminated. The last programmed spindle speed (S value) is reactivated.

● Positioning mode → Oscillation mode
If the orientation of the spindle is to be terminated, M41 to M45 can be used to change to
oscillation mode. When the gear change is complete, the last programmed spindle speed
(S value) and M5 (control mode) are reactivated.

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1275

● Positioning mode → Axis mode
If a spindle was stopped with orientation, the assigned axis name is used to program a
change to axis mode. The gear step is retained.

● Control mode → Axis mode
Switching from control mode to axis mode can be also achieved by the programming of
M70. In this case, a rotating spindle is decelerated in the same way as for M5, position
control activated and the zero parameter set selected.

● Axis mode → Control mode
To terminate axis mode, M3, M4 or M5 can be used to change to control mode. The last
programmed spindle speed (S value) is reactivated.

● Axis mode → Oscillation mode
To terminate axis mode, M41 to M45 can be used to change to oscillation mode (only if the
programmed gear step is not the same as the actual gear step). When the gear change is
complete, the last programmed spindle speed (S value) and M5 (control mode) are
reactivated.

17.2.3 Control mode

When open-loop control mode?
The spindle is in open-loop control mode with the following functions:

● Constant spindle speed:

– S... M3/M4/M5 and G93, G94, G95, G97, G971

– S... M3/M4/M5 and G33, G34, G35

– S... M3/M4/M5 and G63

● Constant cutting speed:

– G96/G961 S... M3/M4/M5

The spindle need not be synchronized.

Requirements
A spindle position actual value encoder is absolutely essential for M3/M4/M5 in connection
with:

● Revolutional feedrate (G95)

● Constant cutting speed (G96, G961, G97, G971)

● Thread cutting (G33, G34, G35)

● Tapping without compensating chuck (G331, G332)

● Activate position control (SPCON, M70)

S1: Spindles
17.2 Modes

Basic Functions
1276 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

A spindle position actual value encoder is not required for M3/M4/M5 in connection with:

● Inverse-time feedrate coding (G93)

● Feedrate in mm/min or inch/min (G94)

● Tapping with compensating chuck (G63)

Speed control mode
Speed control mode is particularly suitable if a constant spindle speed is required, but the
position of the spindle is not important (e.g. constant milling speed for even appearance of the
workpiece surface).

● Speed control mode is activated in the part program with M3, M4, M5 or with SPCOF.

● The following NC/PLC interface signal is set:
DB31, ... DBX84.7 (control mode)

● NC/PLC IS:
DB31, ... DBX61.5 (position controller active)
is reset if position control is not used.

● Acceleration in speed control mode is defined independently of the gear stage in the
machine data:
MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL
The value should reflect the physical circumstances, if possible.

Position control mode
Position control is particularly suitable if the position of the spindle needs to be tracked over a
longer period or if synchronous spindle setpoint value linkage is to be activated.

● Position control mode is switched on in the part program with: SPCON(<spindle
number>)

● The following NC/PLC interface signal is set:
DB31, ... DBX61.5 (position controller active)

● Acceleration in position control mode is defined independent of the gear stage in the
machine data:
MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

Independent spindle reset
The spindle response after a reset or the end of the program (M2, M30) is set with the machine
data:

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1277

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET (individual spindle reset)

Value Meaning
0 When the spindle is reset or at the end of the program, the spindle immediately decelerates

to a stop at the active acceleration rate. The last programmed spindle speed and direction of
rotation are deleted.

1 Upon reset or at the end of the program, the last programmed spindle speed (S-value) and
the last programmed direction of spindle rotation (M3, M4, M5) are retained. The spindle is
not braked.

If prior to reset or end of program the constant cutting speed (G96, G961) is active, the current
spindle speed (in relation to 100% spindle override) is internally accepted as the spindle speed
last programmed.

The spindle can only be stopped with the NC/PLC interface signal:

DB31, ... DBX2.2 (delete distance-to-go / spindle reset)

The direction of rotation is deleted in the event of all alarms generating a spindle quick stop.
The last programmed spindle speed (S value) is retained. Once the source of the alarm has
been eliminated, the spindle must be restarted.

Spindle actual speed display and spindle behavior with G96, G961
DB31, ... DBX61.4 (axis/spindle stationary)

The speed at which the spindle is deemed to be "stationary" is set with the machine data:

MD36060 $MA_STANDSTILL_VELO_TOL

The value should be measured in such a way that the following NC/PLC interface signal is
reliably present at a standstill:

DB31,... DBX61.4 (axis/spindle stationary)

If DB31,... DBX61.4 (axis/spindle stationary) is signaled and there is no closed-loop position
control active for the spindle, an actual speed of zero is displayed at the operator interface,
and zero is read with the system variable $AA_S[<n>].

Spindle response at constant cutting speed G96, G961

● At the start of machining (transition from G0 to Gx) and after NC stop, G60 (exact stop,
modal) and G9 (exact stop, non-modal) the system waits until the actual speed has reached
the speed setpoint tolerance range before starting the path.
DB31, ... DBX83.5 (nact = nset)

● The NC/PLC IS:
DB31, ... DBX83.5 (nact = nset)
and
DB31, ... DBX83.1 (setpoint speed limited) are also set to defined values
even if significant speed changes are specified (transverse axis travels towards position
0).

S1: Spindles
17.2 Modes

Basic Functions
1278 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● If the speed drops below the minimum speed
or when NC/PLC IS:
DB31, ... DBX61.4 (axis/spindle stationary)
is detected, NC/PLC IS:
DB31, ... DBX83.5 (nact = nset)
 is reset (e.g. for an emergency machine strategy).

● A path operation which has started (G64, rounding), is not interrupted.

In addition, the spindle response is influenced by the following machine data:

MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START (feed enable with spindle in setpoint
range).

Spindle behavior at the end of gear stage change

● NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
informs the NC that the new gear stage
(NC/PLC IS DB31, ... DBX16.0-16.2 (actual gear stage A to C))
applies and oscillation mode is terminated.
In this case, it does not matter whether NC/PLC IS:
DB31, ... DBX18.5 (oscillation mode)
is still set.
The actual gear stage should correspond to the set gear stage.
The actual gear stage signaled is relevant for selection of the parameter set.

● Once the gear stage change (GSW) has been acknowledged via the PLC (DB31, ...
DBX16.3), the spindle is in speed control mode (DB31, ... DBX84.7 = 1).
If a direction of rotation (M3, M4, M5 or FC18: "Start spindle rotation") or a spindle speed
(S value) was programmed before the gear stage change, then the last speed and direction
of rotation will be reactivated after the gear stage change.

17.2.4 Oscillation mode
Oscillation mode is activated for the spindle during the gear step change.

The mode of operation is described in detail in the topic "Gear step change with oscillation
mode (Page 1334)".

17.2.5 Positioning mode

17.2.5.1 General functionality

When is positioning mode used?
The spindle positioning mode stops the spindle at the defined position and activates the
position control, which remains active until it is de-activated.

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1279

For the following functions the spindle is in positioning mode:

● SPOS[<n>]=...

● SPOS[<n>]=ACP(...)

● SPOS[<n>]=ACN(...)

● SPOS[<n>]=AC(...)

● SPOS[<n>]=IC(...)

● SPOS[<n>]=DC(...)

● SPOSA[<n>]=ACP(...)

● SPOSA[<n>]=ACN(...)

● SPOSA[<n>]=AC(...)

● SPOSA[<n>]=IC(...)

● SPOSA[<n>]=DC(...) equal to SPOSA[<n>]=...

● M19 or M[<n>]=19

The address extension [<n>] with <n> = spindle number may not apply for the main spindle.

SPOS[<n>]=AC(...)
Spindle positioning to an absolute position (0 to 359.999 degrees). The positioning direction
is determined either by the current direction of spindle rotation (spindle rotating) or the distance-
to-go.

SPOS[<n>]=IC(...)
Spindle positioning to an incremental position (+/- 999999.99 degrees) in relation to the last
programmed position. The positioning direction is defined by the sign of the path to be
traversed.

SPOS[<n>]=DC(...)
Spindle positioning across the shortest path to an absolute position (0 to 359.999 degrees).
The positioning direction is determined either by the current direction of spindle rotation
(spindle rotating) or automatically by the control (spindle stationary).

SPOS[<n>]=...
Same functional sequence as SPOS [<n>]=DC(...).

SPOS[<n>]=ACP(...)
Approaches the position from the positive direction.

When positioning from a negative direction of rotation, the speed is decelerated to zero and
accelerated in the opposite direction to execute the positive approach.

S1: Spindles
17.2 Modes

Basic Functions
1280 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

SPOS[<n>]=ACN(...)
Approaches the position from the negative direction.

When positioning from a positive direction of rotation, the speed is decelerated to zero and
accelerated in the opposite direction to execute the negative approach.

M19 (DIN 66025)
M19 can be used to position the spindle. The position and the position approach mode are
read here from the following setting data:

SD43240 $SA_M19_SPOS[<n>] (spindle position for spindle positioning with M19)

SD43250 $SA_M19_SPOSMODE[<n>] (spindle position for spindle positioning with M19)

The positioning options of M19 are identical to those of:

SPOS = <approach mode> <position/path>

M19 is output as an auxiliary function to the NC/PLC interface as an alternative to M3, M4,
M5, and M70. The M19 block remains active in the interpolator for the duration of positioning
(like SPOS).

Part programs using M19 as a macro (e.g. DEFINE M19 AS SPOS = 0) or as a subprogram,
continue to remain executable. For the sake of compatibility with previous controls, the internal
processing of M19 (NC positions the spindle) can be disabled as shown in the following
example:

MD22000 $MC_AUXFU_ASSIGN_GROUP[0] = 4 ; Auxiliary function group: 4
MD22010 $MC_AUXFU_ASSIGN_TYPE[0] = "M" ; Auxiliary function type: "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[0] = 0 ; Auxiliary functions Extension: 0
MD22030 $MC_AUXFU_ASSIGN_VALUE[0] = 19 ; Auxiliary function value: 19

Implicitly generated auxiliary function M19
To achieve uniformity in terms of how M19 and SPOS or SPOSA behave at the NC/PLC
interface, auxiliary function M19 can be output to the NC/PLC interface in the event of SPOS
and SPOSA.

The two following options are available for activating this function:

● Channel-specific activation for all the spindles in the channel via the machine data:
MD20850 $MC_SPOS_TO_VDI (Output of M19 to the PLC with SPOS/SPOSA)

 Bit Value Meaning
0 0 If bit 19 is also set to "0" in the MD35035 $MA_SPIND_FUNC‐

TION_MASK, no auxiliary function M19 is generated in SPOS and
SPOSA. This therefore eliminates the acknowledgment time for the
auxiliary function.

1 The auxiliary function M19 is generated and output to the PLC dur‐
ing the programming of SPOS and SPOSA in the part program. The
address extension corresponds to the spindle number.

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1281

● Spindle-specific and cross-channel activation via the machine data:
MD35035 $MA_SPIND_FUNCTION_MASK (spindle functions)

 Bit Value Meaning
19 0 If bit 0 is also set to "0" in the MD20850 $MC_SPOS_TO_VDI, no

auxiliary function M19 is generated in SPOS and SPOSA. This
therefore eliminates the acknowledgment time for the auxiliary func‐
tion.

1 The implicit auxiliary function M19 is generated and output to the
PLC during the programming of SPOS and SPOSA. The address
extension corresponds to the spindle number.

Note

Activation via MD35035 should be preferred when using a spindle in multiple channels (axis/
spindle exchange).

The auxiliary function M19 is implicitly generated if either of the MD configurations = 1.

After activation, the minimum duration of an SPOS/SPOSA block is increased to the time for
output and acknowledgment of the auxiliary functions by the PLC.

The properties of the implicitly generated auxiliary function output M19 are "Quick" and "Output
during motion". These properties are fixed settings and are independent of the M19
configuration in the auxiliary function-specific machine data (MD..._$M..._AUXFU_...).

There is no auxiliary function M19 implicitly generated in the case of spindle positioning
commands via FC 18.

End of positioning
The positioning can be programmed with:

FINEA[S<n>]: End of motion on reaching "Exact stop fine" (DB31, ... DBX60.7)
COARSEA[S<n>]: End of motion on reaching "Exact stop coarse" (DB31, ...

DBX60.6)
IPOENDA[S<n>]: End of motion on reaching "IPO stop"

In addition, an end-of-motion criterion for block changes can be set in the braking ramp
(100-0%) with IPOBRKA for single-axis interpolation.

References:
Function Manual, Extended Functions; Positioning Axes (P2)

Block change
The program advances to the next block if the end-of-motion criteria for all spindles or axes
programmed in the current block, plus the block change criterion for path interpolation, are
fulfilled. This applies to both part-program and technology-cycle blocks.

S1: Spindles
17.2 Modes

Basic Functions
1282 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

SPOS, M19 and SPOSA have the same functionality but differ in their block change behavior:

● SPOS and M19
The block change is carried out if all functions programmed in the block have reached their
end-of-block criterion (e.g. all auxiliary functions acknowledged by the PLC, all axes have
reached their end points) and the spindle has completed its positioning motion.

● SPOSA
The program moves to the next block if all the functions (except for spindle) programmed
in the current block have reached their end-of-block criterion. If SPOSA is the only entry in
the block, block change is performed immediately. The spindle positioning operation may
be programmed over several blocks (see WAITS).

Coordination
A coordination of the sequence of motions can be achieved with:

● PLC

● MD configuration

● Programming in the part program

PLC

If the NC/PLC interface signal:
DB31, ... DBX83.5 (spindle in the setpoint range)
is not available, then the channel-specific NC/PLC interface signal:
DB21, ... DBX 6.1 (read-in inhibit)
can be set in order to wait for a spindle to reach a certain position.

MD configuration

Setting:
MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START = 1
is used to perform path interpolation taking the tolerance:
MD35150 $MA_SPIND_DES_VELO_TOL
into account only if the spindle has rotated up to the preselected speed.

The setting
MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START = 2
is used to stop traveling path axes before the start of machining at the last G0.

Machining continues:

● With the next traversing command.

● If the spindle speed is reached.

● When MD35510 $MA_SPIND_STOPPED_AT_IPO_START = 1
(path feed enable, if spindle stationary).

Programming in the part program

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1283

Coordination actions in the part program have the following advantages:

● The part program author can decide at what point in the program the spindle needs to be
up to speed, e.g. in order to start machining a workpiece.

● This avoids unnecessary delays.

Coordination in the part program involves programming the WAITS command:

WAITS: for main spindle (master spindle)
WAITS[<n>]: for spindles with number <n>
WAITS[<n>,<m>,...]: for several spindles up to the maximum number of spindles

CAUTION

Coordination error

The part program author must ensure that one of the following maintenance conditions occurs
for WAITS.
● Position reached
● Spindle stationary
● Spindle up to programmed speed

In cases where one spindle is used in several channels, the part program author must ensure
that WAITS starts at the earliest in the phase in which the spindle from another channel has
already started to accelerate or decelerate towards the required new speed or direction of
rotation.

The control waits before executing subsequent blocks until:

● Position(s) programmed with SPOSA are reached.

● Spindle standstill is reached with M5:
DB31, ..., DBX 61.4 (spindle stationary)
taking into account the tolerance:
MD36060 $MA_STANDSTILL_VELO_TOL
WAITS is terminated and the next block loaded when the first occurrence of the signal is
detected.

● In M3/M4 (speed control mode), the speed in the setpoint range is:
DB31, ..., DBX83.5 (spindle in setpoint range)
taking into account the tolerance:
MD35150 $MA_SPIND_DES_VELO_TOL
WAITS is terminated and the next block loaded when the first occurrence of the signal is
detected.
This WAITS function applies in the programmed channel.
WAITS can be used to wait for all spindles known to this channel, although spindles may
also have been started in other channels.

S1: Spindles
17.2 Modes

Basic Functions
1284 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Special cases
● Tolerance for spindle speed:

If the machine data setting is:
MD35150 $MA_SPIND_DES_VELO_TOL = 0
the NC/PLC interface signal:
DB31, ... DBX83.5 (spindle in setpoint range)
is always set to 1.
WAITS is terminated as soon as the spindle has reached the setpoint-side target after a
change in speed or direction (M3/M4).

● Missing enable signals:
If the WAITS function waits for the "Spindle in setpoint range" signal in speed control mode
and the spindle stops or fails to rotate because an enable signal (axial feed enable,
controller, pulse enable, etc.) is missing, the block is not terminated until the "Spindle in
setpoint range" signal is active, once enable signals are being received again.

● Response to NC and mode-group stop:
If an NC or mode-group stop is triggered during WAITS, the wait operation is resumed after
the NC start with all the above conditions.

Note

In particular when using spindles across different channels, care should be taken when
programming not to start WAITS too early in one channel, i.e. at a time when the spindle
in the other channel is still rotating at its "old" speed.
In such cases, the "Spindle in setpoint range" signal is activated and WAITS is stopped too
soon.
To prevent this happening, it is strongly recommended to set a WAITM before WAITS.

Feedrate
The positioning speed is configured in the machine data:

MD35300 $MA_SPIND_POSCTRL_VELO (position control switching speed)

The configured positioning speed can be modified by programming or by synchronized actions:
FA[S<n>]=<value>

where: <n>: Spindle number
 <value>: Positioning speed in degrees/min

With FA[S<n>]=0, the configured speed takes effect.

Acceleration
The accelerations are configured in the machine data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode)

MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL (acceleration in the speed control mode)

The configured dynamic response during positioning can be modified by programming or by
synchronized actions:
ACC[S<n>]=<value>

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1285

where: <n>: Spindle number
 <value>: Acceleration as a percentage of the configured acceleration

With ACC[S<n>]=0, the configured acceleration takes effect.

Aborting the positioning process
The positioning action is aborted:

● By the NC/PLC interface signal:
DB31, ... DBX2.2 (delete distance-to-go / spindle reset).

● With every reset (e.g. operator panel front reset).

● Through NC stop.

The abort response in independent of the machine data:

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET (individual spindle reset)

Special features
The spindle override switch is valid.

17.2.5.2 Positioning from rotation

Initial situation
The spindle can be in speed control mode or in position control mode when positioning starts
(SPOS, M19 or SPOSA command in the program).

One must distinguish between the following cases:

Case 1: Spindle in speed control mode, encoder limit frequency exceeded
Case 2: Spindle in speed control mode, encoder limit frequency not exceeded
Case 3: Spindle in position control mode
Case 4: Spindle speed ‹ Position-control activation speed

S1: Spindles
17.2 Modes

Basic Functions
1286 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Procedure

Figure 17-1 Positioning from rotation

Note

The speed arising from the configuration of the encoder limit frequency for the
resynchronization of the encoder (MD36302 $MA_ENC_FREQ_LOW) must be greater than
the position-control activation speed (MD35300 $MA_SPIND_POSCTRL_VELO).

Phase 1
Positioning from phase 1a:

The spindle is rotating at a higher speed than the encoder limit frequency. The spindle is not
synchronized.

Positioning from phase 1b:

The spindle is rotating at a lower speed than the encoder limit frequency. The spindle is
synchronized.

Note

If the position control is active, the speed can only amount to 90% of the maximum speed of
the spindle or the encoder limit frequency (10% control reserve required).

Positioning from phase 1c:

The spindle rotates at the programmed spindle speed whereby the speed is lower than the
configured position-control activation speed:

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1287

MD35300 $MA_SPIND_POSCTRL_VELO

The spindle is synchronized.

Phase 2
Spindle speed > Position-control activation speed

When the SPOS, M19 or SPOSA command is activated, the spindle begins to slow down to the
position-control activation speed with the configured acceleration:

MD35200 $MA_GEAR_STEP_SPEEDCTL_ACCEL

The spindle is synchronized once the encoder limit frequency threshold is crossed.

Spindle speed < Position-control activation speed

SPOS, M19 or SPOSA are programmed to switch the spindle to position control mode (if it is not
already in that mode).

The configured acceleration in position control mode is activated:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

The travel path to the target point is calculated.

The spindle travels to the programmed end point optimally in terms of time. This means that
the end point is approached at the highest possible speed (maximum MD35300
$MA_SPIND_POSCTRL_VELO). Depending on the appropriate secondary conditions, phases
2 - 3 - 4 - 5 or 4a - 5a are executed.

Phase 3
Spindle speed > Position-control activation speed

When the configured position-control activation speed
(MD35300 $MA_SPIND_POSCTRL_VELO) is reached:

● Position control is activated (if not already active).

● The distancetogo (to the target point) is calculated.

● There is a switch to the configured configured acceleration in position control mode (or this
acceleration is retained):
MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

Spindle speed < Position-control activation speed

The spindle was accelerated up to the configured position-control activation speed (MD35300
$MA_SPIND_POSCTRL_VELO) to reach the end point. This is not exceeded.

The braking start point calculation detects when the programmed spindle position can be
approached accurately at the acceleration configured in position control mode (MD35210
$MA_GEAR_STEP_POSCTRL_ACCEL).

Phase 4
Spindle speed > Position-control activation speed

S1: Spindles
17.2 Modes

Basic Functions
1288 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The spindle brakes from the calculated "braking point" with machine data:
MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL
to the target position.

Spindle speed < Position-control activation speed

At the time identified by the braking start point calculation in phase 3, the spindle brakes to a
standstill with the acceleration configured in position control mode (MD35210
$MA_GEAR_STEP_POSCTRL_ACCEL).

Phase 4a:

When the SPOS command is activated the proximity of the end point is such that the spindle
can no longer be accelerated to the configured position-control activation speed (MD35300
$MA_SPIND_POSCTRL_VELO).

The spindle brakes to a standstill with the acceleration configured in position control mode
(MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL).

Phase 5
Spindle speed > Position-control activation speed

Position control remains active and holds the spindle in the programmed position.

Note

The maximum encoder limit frequency of the spindle position actual-value encoder is
monitored by the control (it may be exceeded); in position control mode, the setpoint speed is
reduced to 90% of the measuring system limit speed.

The following NC/PLC interface signal is set:

DB31, ... DBX83.1 (programmed speed too high)

If "MS limit frequency exceeded" is still pending following a reduction in the setpoint speed, an
alarm is output.

Spindle speed < Position-control activation speed (Phase 5, 5a)

The spindle is stationary and it has reached the position. The position control is active and
stops the spindle in the programmed position.

If the distance between the spindle actual position and the programmed position (spindle
setpoint position) is less than the configured exact stop fine and coarse limits, the following
NC/PLC interface signals are set:

DB31, ... DBX60.7 (Position reached with coarse exact stop)

DB31, ... DBX60.7 (Position reached with fine exact stop)

The exact stop limits are defined with the machine data:

MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1289

MD36000 $MA_STOP_LIMIT_COARSE (exact stop coarse)

Note

The positioning procedure is considered complete when the end-of-positioning criterion is
reached and signaled.

The condition is "Exact stop fine". This applies to SPOS, M19 or SPOSA from the part program,
synchronized actions and spindle positioning by the PLC using FC 18.

S1: Spindles
17.2 Modes

Basic Functions
1290 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.2.5.3 Positioning from standstill

Procedure
A distinction is made between two cases with regard to positioning from standstill:

● Case 1: The spindle is not synchronized.
This is the case if the spindle is to be positioned after switching on the control and drive or
after a gear step change (e.g. for a tool change).
MD31040 $MA_ENC_IS_DIRECT = 0

● Case 2: The spindle is synchronized.
This is the case if, after switching on the control and drive, the spindle is to be rotated
through a minimum of one revolution with M3 or M4 and then stopped with M5
(synchronization with the zero mark) before the first positioning action.

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1291

Figure 17-2 Positioning with stationary spindle

Phase 1
Case 1: Spindle not synchronized

With the programming of SPOS, M19 or SPOSA the spindle accelerates with the acceleration
from the machine data:

MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL (Acceleration in the speed control
mode)

This direction of rotation is defined by the machine data:

S1: Spindles
17.2 Modes

Basic Functions
1292 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD35350 $MA_SPIND_POSITIONING_DIR (Direction of rotation while positioning to
standstill)

Exception:

If ACN, ACP, IC is used for positioning, the programmed direction of travel is activated.

The spindle is synchronized at the next zero mark of the spindle position actual-value encoder
and switches to the position control mode.

Whether the zero mark is found in the traversed path (except for IC), is monitored:

MD34060 $MA_REFP_MAX_MARKER_DIST (maximum distance to the reference mark)

If the speed defined in machine data:
MD35300 $MA_SPIND_POSCTRL_VELO (Positioning speed)
is reached before the spindle is synchronized, the spindle will continue to rotate at the
positioning activation speed (it is not accelerated further).

Case 2: Spindle synchronized

SPOS, M19 or SPOSA will switch the spindle to position control mode.

The acceleration from the following machine data is active:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode)

The direction of rotation is defined by the programmed motion (ACP, ACN, IC, DC) or via the
pending distance-to-go.

The speed entered in
MD35300 $MA_SPIND_POSCTRL_VELO (position control activation speed)
is not exceeded in the machine data.

The travel path to the end position is calculated.

The spindle travels to the programmed end point optimally in terms of time. This means that
the end point is approached at the highest possible speed (maximum MD35300
$MA_SPIND_POSCTRL_VELO). Depending on the appropriate secondary conditions, the
phases 1 - 2 - 3 - 4 or 1- 3a - 4a are executed.

Phase 2
Case 1: Spindle not synchronized

When the spindle is synchronized, position control is activated.

The spindle rotates at the maximum speed stored in machine data:
MD35300 $MA_SPIND_POSCTRL_VELO
until the braking start point calculation identifies the point at which the programmed spindle
position can be approached accurately with the defined acceleration.

Case 2: Spindle synchronized

To reach the end point, the spindle is accelerated up to the speed defined in machine data:
MD35300 $MA_SPIND_POSCTRL_VELO.

This is not exceeded.

The braking start point calculation identifies when the programmed spindle position can be
approached accurately at the acceleration defined in machine data:

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1293

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL.

At the point, which is determined by the braking start point calculation in Phase 1, the spindle
decelerates to a standstill with the acceleration given in the following machine data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

Phase 3
At the point, which is determined by the braking start point calculation in Phase 2, the spindle
decelerates to a standstill with the acceleration given in the following machine data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

Phase 3a:

When the SPOS command is activated the proximity of the end point is such that the spindle
can no longer be accelerated up to machine data:
MD35300 $MA_SPIND_POSCTRL_VELO.

The spindle is braked to a standstill with the acceleration given in the following machine data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

Phase 4, 4a
The spindle is stationary and it has reached the position. The position control is active and
stops the spindle in the programmed position.

NC/PLC IS:
DB31, ... DBX60.6 (Position reached with exact stop coarse)
and
DB31, ... DBX60.7 (Position reached with exact stop fine)
are set if the distance between the spindle actual position and the programmed position
(spindle setpoint position) is less than the settings for the exact stop fine and coarse limits.

This is defined in the machine data:

MD36010 $MA_STOP_LIMIT_FINE

MD36000 $MA_STOP_LIMIT_COARSE

Phase 3:

At the point, which is determined by the braking start point calculation in Phase 2, the spindle
decelerates to a standstill with the acceleration given in the following machine data:

MD35210 $MA_GEAR_STEP_ POSCTRL_ACCEL

Phase 4:

The spindle is stationary and it has reached the position. The position control is active and
stops the spindle in the programmed position.

NC/PLC IS:
DB31, ... DBX60.6 (Position reached with exact stop coarse)
and
DB31, ... DBX60.7 (Position reached with exact stop fine)

S1: Spindles
17.2 Modes

Basic Functions
1294 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

are set if the distance between the spindle actual position and the programmed position
(spindle setpoint position) is less than the settings for the exact stop fine and coarse limits.

This is defined in the machine data:

MD36010 $MA_STOP_LIMIT_FINE

MD36000 $MA_STOP_LIMIT_COARSE

17.2.5.4 "Spindle in position" signal for tool change

Function
The motion sequence for a tool change, especially for milling machines, mainly comprises
positioning the spindle and then the subsequent (for optimization runs, also at the same time)
approach to the tool change position with the path axes. In this case, the mandatory
requirement is that the spindle is reached before approaching the tool change position.

If the tool change cycle is interrupted by the machine operator (e.g. with an NC stop, NC stop
axes plus spindles, mode group stop, etc.), then it must be completely ruled out that the spindle
moves into the tool changer at an incorrect position.

This is the reason that for spindle positioning, when the last programmed spindle position is
reached with "Exact stop fine" the following NC/PLC interface signal is output to check the
position:

DB31, ... DBX85.5 (spindle in position)

Note

The signal is only output for the "Spindle positioning" function.

This includes:
● SPOS, SPOSA and M19 in the part program
● SPOS and M19 in synchronized actions
● Spindle positioning, using FC18
● Spindle positioning via PLC interface (DB31, ... DBX30.4)

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1295

Setting the signal
Requirements for output of signal DB31, ... DBX85.5 (spindle in position) are as follows:

● The referenced state of the spindle:
DB31, ... DBX60.4/5 (referenced/synchronized 1/2) = 1

Note

When positioning the spindle, the zero mark is automatically searched for. This is the reason
that for an error-free sequence, the referenced signal is always available at the end of
positioning movement.

● "Exact stop fine" must have been reached:
DB31, ... DBX60.7 (exact stop fine) = 1
Additionally, the last programmed spindle position must have been reached on the setpoint
side.

Deleting the signal
When signal DB31, ... DBX60.7 is withdrawn (exact stop fine), then signal DB31, ... DBX85.5
(spindle in position) is also always reset.

Additional properties
● If the spindle is already at the programmed position after a positioning, then the NC/PLC

interface signal DB31, ... DBX85.5 (spindle in position) remains set.

● If, after a positioning ("Spindle in position" signal was output) the spindle is traversed, e.g.
in the JOG mode, then the NC/PLC interface signal DB31, ... DBX85.5 (spindle in position)
is deleted.
If the spindle is returned to its original position in this mode, then the NC/PLC interface
signal DB31, ... DBX85.5 (spindle in position) is set again. The last position selection is
kept.

17.2.6 Axis mode

17.2.6.1 General functionality

Functionality
If for certain machining tasks, e.g. on lathes with end-face machining, it is not sufficient to
traverse the spindle exclusively under speed control via M3, M4, M5 or to position with SPOS,
M19 or SPOSA, the spindle can be switched to position-controlled axis mode and traversed as
a rotary axis.

Examples of rotary axis functions:

● Programming with axis name

● Zero offsets (G54, G55, TRANS, etc.)

S1: Spindles
17.2 Modes

Basic Functions
1296 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● G90, G91, IC, AC, DC, ACP, ACN
● Kinematic transformations (e.g. TRANSMIT)

● Path interpolation

● Traversing as positioning axis

References:
Function Manual, Extended Functions; Section "Rotary axes (R2)"

Requirements
● The same spindle motor is used for spindle mode and axis mode.

● The same position measurement system or separate position measurement systems can
be used for spindle mode and axis mode.

● An actual position value encoder is a mandatory requirement for axis mode.

● The spindle must be referenced for use of the axis mode, e.g. referenced with G74.
Example:

Program code Comment
M70 ; Switch spindle over to axis mode
G74 C1=0 Z100 ; Reference axis
G0 C180 X50 ; Traverse axis position-controlled

Configurable M function
The M function used to switch the spindle to axis mode can be configured channel-specifically
via the following machine data:

MD20094 $MC_SPIND_RIGID_TAPPING_M_NR

Note

The control detects the transition to axis mode automatically from the program sequence (see
"Implicit transition to axis mode (Page 1299)"). The explicit programming of the configured M
function for switching the spindle to axis mode in the part program is therefore not necessary.
However, the M function can continue to be programmed, e.g. to increase the readability of
the part program.

Special features
● The feedrate override switch is valid.

● The NC/PLC interface signal does not terminate the axis mode per default:
DB21, ... DBX7.7 (reset).

● The NC/PLC interface signals:
DB31, ... DBB16 to DBB19 and DBB82 to DBB91
are not important if:
DB31, ... DBX60.0 == 0 (spindle / rotary axis)

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1297

● Axis mode can be activated in all gear stages.
If the actual position value encoder is installed on the motor (indirect measuring system),
the positioning and contouring accuracy can vary for the different gear stages.

● The gear stage cannot be changed when the axis mode is active. For this purpose, the
spindle must first be switched to control mode with M41 ... M45 or M5, SPCOF.

● In axis mode, the first parameter set is effective (machine data index = zero).
References
Function Manual, Basic Functions; Chapter "Velocities, setpoint / actual value systems,
closed-loop control (G2)" > "Closed-loop control" > "Parameter sets of the position
controller"

Dynamic response
The dynamic limits of the axis apply in axis mode. For example:

● MD32000 $MA_MAX_AX_VELO[<axis>] (maximum axis velocity)

● MD32300 $MA_MAX_AX_ACCEL[<axis>] (maximum axis acceleration)

● MD32431 $MA_MAX_AX_JERK[<axis>] (maximum axial jerk for path motion)

Feedforward control
The feedforward control mode active for the axis is retained.

A detailed description of the "Dynamic feedforward control" function can be found in:

References
Function Manual, Extended Functions; Section "Compensations (K3)" > "Dynamic feedforward
control (following error compensation)"

Example: Resolution switchover for analog actuator

Switching to axis mode

Programming Comment
SPOS=...
M5 ; Control enable off (from PLC)

→ is output on PLC
M70 ; Switch actuator (from PLC on account of M70)

Control enable on (from PLC)
C=... ; NC traverses with axis parameter set

Switching to spindle mode

Programming Comment
C=...
M71 ; → is output to PLC

Closed-loop controller enable off (from PLC)
Switch actuator (from PLC)
Switched to spindle parameter set (1-5) internally in the
NC, controller enable on (from PLC)

S1: Spindles
17.2 Modes

Basic Functions
1298 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Programming Comment
M3/4/5 or SPOS=... ; NC traverses with spindle parameter set

Change to spindle mode
The parameter set 1 ... 5 is selected for the active gear stage.

The feedforward control is activated, except for tapping with compensating chuck, if the
following applies:

MD32620 $MA_FFW_MODE (feedforward control mode) ≠ 0

Parameter set Axis mode Spindle mode
1 Valid -
2 - Valid
3 - Valid
4 - Valid
5 - Valid
6 - Valid

Spindle mode: Parameter set according to the gear stage

17.2.6.2 Implicit transition to axis mode

Function
The control detects the transition to axis mode automatically from the program sequence and
generates the requisite M70 sequence in the control. The situation will dictate which steps are
performed. At most, these will include:

1. Stopping the spindle

2. Switching on of the position control, treatment of feedforward control and parameter block
changeover

3. Position synchronization of the block preparation (internal preprocessing stop, if necessary)

This function is always active. Explicit programming of M70 in the part program is therefore
basically not necessary.

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1299

Sequence
Sequence of the implicit transition to axis mode (M70 is not programmed in the part program):

● Transition from speed control mode (M3, M4, M5, SPCOF, ...) to axis mode:
The transition is detected internally by the control, and an intermediate block is inserted in
front of the block which requests the axis mode. The block created contains the M70
functionality. The execution duration for this block is more or less the same as the time
required to execute a programmed M70 block. Differences may arise in the event of short
switchovers when the spindle is stationary (no braking time) if the implicit generation and
output of the auxiliary function M70 to the PLC is dispensed with (see MD35035).

● Transition from positioning mode (M19, SPOS, SPOSA) to axis mode:
The transition is executed immediately and without the generation of an intermediate block.
Configured accordingly (see MD35035), the auxiliary function M70, which is generated
implicitly, is output to the PLC when the block in which the spindle has its axis mode is
loaded.

Output of auxiliary functions to PLC
The implicit transition to axis mode can be notified to the PLC in the form of an auxiliary function
output.

Activation/deactivation

The activation/deactivation of this functionality is performed via the machine data:

MD35035 $MA_SPIND_FUNCTION_MASK (spindle functions)

Bit Value Meaning
20 0 No auxiliary function output to the PLC in the case of M70 functionality which is

generated in the control.
1 In the case of M70 functionality which is generated inside the control, the auxiliary

function M70 is generated and output to the PLC. The address extension corre‐
sponds to the spindle number.

Note

An auxiliary function M70 which is programmed in the part program is always output to the
PLC.

Properties

The properties of the implicitly generated auxiliary function output M70 are "Quick" and "Output
during motion". These properties are fixed settings and are independent of the M70
configuration in the auxiliary-function-specific machine data (MD..._$M..._AUXFU_...).

M70 is only generated once during transition to axis mode. No further M70 auxiliary functions
are generated and output in adjacent blocks in which the spindle is operated as an axis. M70
is not implicitly generated and output again until axis mode is exited via, for example, SPOS,
M3, M4, M5, SPCOF, etc. and following a renewed transition to axis mode.

Supplementary conditions
Synchronized actions

S1: Spindles
17.2 Modes

Basic Functions
1300 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

When the spindle is programmed as an axis in synchronized actions, it is essential to continue
making provisions in the application to ensure there are criteria for the transition to axis mode.

If the spindle is in speed control mode, the instruction M70 or SPOS must be programmed prior
to programming as an axis. Otherwise alarm signals occur during axis programming.

FC 18

As with synchronized actions, transition to axis mode must also be performed on the application
side in FC 18, e.g. through a preparatory positioning instruction. Otherwise, the FC 18 call is
acknowledged with an error bit in the FC 18 status word.

No auxiliary function M70 is implicitly generated in the event of transition to axis mode through
programming via FC 18.

Examples
Example 1:

Part program: Transition from rotating spindle to axis mode

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment
N05 M3 S1000
N10 ...
N15 POS[C]=77 : Before loading N15, an M70 intermediate block is generated

in which the spindle is stopped, and M70 is output to the PLC.
…

Example 2:

Part program: Transition from positioning mode to axis mode

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment
N05 SPOS=0
N10 ...
N15 C77 ; Output of the implicit M70 to the PLC, no intermediate

block.
…

Example 3:

Synchronized actions: Transition from spindle positioning mode to axis mode

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment
WHEN COND1==TRUE DO SPOS=180
WHEN COND2==TRUE DO POS[C]=270 ; Output of the implicit M70 to the PLC.

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1301

Example 4:

Synchronized actions: Transition from speed control mode to axis mode with M70

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment
WHEN COND11==TRUE DO M3 S1000
WHEN COND12==TRUE DO M70 ; Output of M70 to the PLC.
WHEN COND13==TRUE DO POS[C]=270 ; No generation of an implicit M70 because

axis mode already exists.

Example 5:

Synchronized actions: Invalid transition from speed control mode to axis mode

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment
WHEN COND21==TRUE DO M3 S1000
WHEN COND22==TRUE DO POS[C]=270 ; Alarm 20141!

17.2.7 Initial spindle state

Spindle basic setting
The following machine data is used to specify a spindle mode as basic setting:

MD35020 $MA_SPIND_DEFAULT_MODE

Value Spindle basic setting
0 Speed control mode, position control deselected
1 Speed control mode, position control activated
2 Positioning mode
3 Axis mode

Time when the spindle basic setting takes effect
The time when the spindle basic setting takes effect is set in the machine data:

MD35030 $MA_SPIND_DEFAULT_ACT_MASK

Value Effective time
0 POWER ON
1 POWER ON and program start
2 POWER ON and RESET (M2 / M30)

S1: Spindles
17.2 Modes

Basic Functions
1302 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.2.8 Tapping without compensating chuck

17.2.8.1 Function
For tapping without compensating chuck, the traversing motion of the linear axis and the
spindle are interpolated, closed-loop position controlled. This requires a position-controlled
spindle with position measuring system.

① Thread pitch
② Thread depth

Thread direction of rotation
The thread direction of rotation (right or left-handed thread) is defined by the sign of the pitch:

● Positive pitch → right-handed thread (direction of rotation corresponding to M3)

● Negative pitch → left-handed thread (direction of rotation corresponding to M4)

Defined spindle start position
When tapping without compensating chuck, a defined spindle start position (SPOS) must be
programmed in the following cases:

● Threads produced using multiple machining operations

● Threads, for which a defined thread start position is specified

SPOS = <start position>
G331 ...

17.2.8.2 Programming
For tapping without compensating chuck, using the G331 and G332commands, the following
traversing motion is executed:

● G331: Tapping in the tapping direction up to the end of thread point

● G332: Retraction motion up to the tapping block G331 with automatic spindle direction of
rotation reversal

Syntax
G331 <axis> <thread pitch>
G331 <axis> <thread pitch> S...

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1303

G332 <axis> <thread pitch>

Meaning

G331: Tapping
The tapped hole is defined by the traversing motion of the axis (drilling depth)
and the thread pitch.
Effective: Modal

G332: Retraction motion when tapping
Retraction motion must have the same pitch as when tapping (G331). The
direction of rotation of the spindle is reversed automatically.
Effective: Modal

<Axis>: Traversing distance/position of the geometry axis (X, Y or Z) at the end of
the thread, e.g. Z50

<Thread pitch>:

Thread pitch I (X), J (Y) or K (Z):
● Positive pitch: Right-handed thread, e.g. K1.25
● Negative pitch: Left-handed thread, e.g. K-1.25
Value range: ±0.001 to ±2000.00 mm/revolution

S...: Spindle speed
The last active spindle speed is used if a spindle speed is not specified.

Note
Second gear-stage data block

To achieve effective adaptation of spindle speed and motor torque and be able to accelerate
faster, a second gear-stage data block for two further configurable switching thresholds
(maximum speed and minimum speed) can be preset in axis-specific machine data deviating
from the first gear step data block and also independent of these speed switching thresholds.
The specifications of the machine manufacturer must be observed.

References:
Function Manual, Basic Functions; Spindles (S1), Section: " Configurable gear adaptation"

Examples
● Example: Tapping with G331 / G332 (Page 1305)

● Example: Output the programmed drilling speed in the current gear stage (Page 1305)

● Example: Application of the second gear-stage data block (Page 1306)

● Example: Speed is not programmed, the gearbox stage is monitored (Page 1306)

● Example: Gearbox stage cannot be changed, gearbox stage monitoring (Page 1306)

● Example: Programming without SPOS (Page 1307)

S1: Spindles
17.2 Modes

Basic Functions
1304 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.2.8.3 Example: Tapping with G331 / G332

Program code Comment
N10 SPOS[n]=0 ; Spindle: Position control mode

; Start position 0 degrees
N20 G0 X0 Y0 Z2 ; Axes: Approach starting position
N30 G331 Z-50 K-4 S200 ; Tapping in Z,

; Pitch K-4 negative =>
; Direction of spindle rotation: CCW
rotation,
; Spindle speed 200 rpm

N40 G332 Z3 K-4 ; Retraction motion in Z,
; Pitch K-4 negative (counterclock-
wise),
; autom. direction of rotation reversal
=>
; Clockwise spindle direction of rota-
tion

N50 G1 F1000 X100 Y100 Z100 S300 M3 ; Spindle in spindle operation

17.2.8.4 Example: Output the programmed drilling speed in the current gear stage

Program code Comment
N05 M40 S500 ; Programmed spindle speed: 500 rpm =>

; Gearbox stage 1 (20 to 1028 rpm)
...
N55 SPOS=0 ; Position the spindle
N60 G331 Z-10 K5 S800 ; Tapping

; Spindle speed 800 rpm => gearbox stage 1

The appropriate gear stage for the programmed spindle speed S500 with M40 is determined
on the basis of the first gear-stage data block. The programmed drilling speed S800 is output
in the current gear stage and, if necessary, is limited to the maximum speed of the gear stage.
No automatic gear-stage change is possible following an SPOS operation. In order for an
automatic change in gear stage to be performed, the spindle must be in speed-control mode.

Note

If gearbox stage 2 is selected at a spindle speed of 800 rpm, then the switching thresholds for
the maximum and minimum speed must be configured in the relevant machine data of the
second gear-stage data block (see the examples below).

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1305

17.2.8.5 Example: Application of the second gear-stage data block
The switching thresholds of the second gear-stage data block for the maximum and minimum
speed are evaluated for G331/G332 and when programming an S value for the active master
spindle. Automatic M40 gear-stage change must be active. The gear stage as determined in
the manner described above is compared with the active gear stage. If they are found to be
different, then the gearbox stage is changed.

Program code Comment
N05 M40 S500 ; Programmed spindle speed: 500 rpm
...
N50 G331 S800 ; Master spindle: Gearbox stage 2 is selected
N55 SPOS=0 ; Position the spindle
N60 G331 Z-10 K5 ; Tapping

; Spindle acceleration from second gearbox stage data block 2

17.2.8.6 Example: Speed is not programmed, the gearbox stage is monitored
If no speed is programmed when using the second gearbox stage data block with G331, then
the last speed programmed will be used to produce the thread. The gear stage does not
change. However, monitoring is performed in this case to check that the last speed
programmed is within the preset speed range (defined by the maximum and minimum speed
thresholds) for the active gear stage. Otherwise, alarm 16748 is output.

Program code Comment
N05 M40 S800 ; Programmed spindle speed: 800 rpm
...
N55 SPOS=0 ; Position the spindle
N60 G331 Z-10 K5 ; Tapping

; Monitoring the spindle speed, 800 rpm
; Gearbox stage 1 is active
; Gearbox stage 2 should be active => Alarm 16748

17.2.8.7 Example: Gearbox stage cannot be changed, gearbox stage monitoring
If the spindle speed is programmed in addition to the geometry in the G331 block when using
the second gear-stage data block, if the speed is not within the preset speed range (defined
by the maximum and minimum speed thresholds) of the active gear stage, it will not be possible
to change gear stages, because the path motion of the spindle and the infeed axis (axes) would
not be retained.

As in the example above, the speed and gearbox stage are monitored in the G331 block and
alarm 16748 is signaled if necessary.

Program code Comment
N05 M40 S500 ; Programmed spindle speed: 500 rpm =>

; Gearbox stage 1
...
N55 SPOS=0 ; Position the spindle

S1: Spindles
17.2 Modes

Basic Functions
1306 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N60 G331 Z-10 K5 S800 ; Tapping

; Gearbox stage cannot be changed,
; Monitoring the spindle speed, 800 rpm
; with gearbox stage data set 1: Gearbox stage 2
; should be active => Alarm 16748

17.2.8.8 Example: Programming without SPOS

Program code Comment
N05 M40 S500 ; Programmed spindle speed: 500 rpm =>

; Gearbox stage 1 (20 to 1028 rpm)
...
N50 G331 S800 ; Master spindle: Gearbox stage 2 is selected
N60 G331 Z-10 K5 ; Tapping

; Spindle acceleration from second gearbox stage data block 2

Thread interpolation for the spindle starts from the current position, which is determined by the
previously processed section of the part program, e.g. if the gear stage was changed.
Therefore, it might not be possible to remachine the thread.

Note

Please note that when machining with multiple spindles, the drill spindle also has to be the
master spindle. SETMS(<spindle number>) can be programmed to set the drill spindle as
the master spindle.

17.2.8.9 Special case: Direction of rotation reversal via NC/PLC interface signal in the NC program
Normally, a request to invert the direction of rotation of the spindle via the NC/PLC interface
signal "Invert M3 / M4" (DB31, ... DBX17.6) is realized by the PLC user program before the
NC program is started. Only when starting does the NC automatically evaluate the status of
the interface signal, and if necessary, change the spindle direction of rotation.

If, while the program is being executed, the spindle direction of rotation must again be changed
as a result of the NC/PLC interface signal "Invert M3 / M4" (DB31, ... DBX17.6), then within
an NC program, this can only be achieved using the subsequently described principle
sequence:

N110 SPCOF or M5 Stop the spindle and switch into the closed-loop speed controlled
mode

N111 Mxx or Hxx Output a user-specific help function to initiate the following actions
in the PLC user program:
● Set the read-in inhibit in the channel: DB21, ... DBX6.1 = 1
● Invert the interface signal "Invert M3/M4" of the spindle:

DB31, ... DBX17.6
● Reset the read-in inhibit in the channel: DB21, ... DBX6.1 = 0

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1307

N112 STOPRE Preprocessing stop
N113 SPOS=IC(0.001) Incrementally traverse the spindle in the closed-loop position con‐

trolled mode.
By incrementally traversing the spindle in the closed-loop position
controlled mode, the NC again evaluates interface signal DB31, ...
DBX17.6 (invert M3/M4).
From this block onward, when traversing the spindle, the direction
of reversal based on the interface signal is active.

N114 SPOS=0 Optional: Position the spindle if, technologically, a defined output
position is required, e.g. 0°

Example

Program code Comment
N010 G0 X0 Z0 ; Initial position of the axes
N020 G1 G94 F1000 Z10 ; Traverse the Z axis to the initial position
N030 M3 S100 ; Traverse the spindle in the closed-loop speed controlled

mode
; 100 rpm with the spindle direction of rotation that was
determined
; at the start of the program

... ; Any arbitrary machining
N040 M5 ; Stop the spindle and switch into the closed-loop speed

controlled mode
N050 H10 ; Auxiliary function output: H0=10

; In the PLC user program:
; - set the read-in inhibit: DB21, ... DBX6.1=1
; - invert the direction of rotation: DB31, ... DBX17.6
; - reset the read-in inhibit: DB21, ... DBX6.1=0

N060 STOPRE ; Preprocessing stop
N070 SPOS=IC(0.001) ; Incrementally traverse the spindle in the closed-loop po-

sition controlled mode.
N080 SPOS=0 ; Position the spindle
N090 G331 Z-10 K1 S500 ; Tapping without compensating chuck
N100 G332 Z2 K1 ; Tapping without compensating chuck Retraction movement
N110 G1 G94 F1000 Z10 ; Retract to the initial position of the Z axis
N120 SPCOF ; Switch the spindle into the closed-loop speed controlled

mode
N130 H10 ; See above
N140 STOPRE ; Preprocessing stop
N150 SPOS=IC(.001) ; Incrementally traverse the spindle in the closed-loop po-

sition controlled mode.
N160 SPOS=0 ; Position the spindle
N170 G331 Z-10 K1 S500 ; Tapping without compensating chuck
N180 G332 Z2 K1 ; Tapping without compensating chuck Retraction movement
N190 G1 G94 F1000 Z10 ; Traverse the Z axis to the initial position

S1: Spindles
17.2 Modes

Basic Functions
1308 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
...

17.2.9 Tapping with compensating chuck

17.2.9.1 Function
When tapping with compensating chuck (G63) the spindle is not interpolated with the linear
axis, but is operated in the closed-loop speed controlled mode. The feedrate of the linear axis
dependent on the spindle speed and the thread pitch must be calculated and explicitly
programmed. As the spindle and linear axis are not interpolated together, to compensate
spindle speed fluctuations for example, a tapping drill in a length-compensating chuck is
required.

Retraction movement

The retraction motion is also programmed with G63 - but with the opposite spindle direction of
rotation.

Axis and spindle override value
While the "Tapping with compensating chuck" function is selected, 100% is active as axis and
spindle override value.

Feedrate
Feedrate F of the linear axis to be programmed is obtained from the product of the spindle
speed and the thread pitch of the tapping drill:

F [mm/min] = spindle speed S [rpm] *thread pitch [mm/U]

17.2.9.2 Programming
For tapping with compensating chuck, using the G63 command, the following traversing motion
is executed:

● G63: Tapping in the tapping direction up to the end of thread point

● G63: Retraction motion with programmed spindle direction of rotation reversal

S1: Spindles
17.2 Modes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1309

Note

After a G63block, the last effective interpolation type G0, G1, G2 is active.

Syntax
G63 <axis> <direction of rotation> <speed <feedrate>

Meaning

G63: Tapping with compensating chuck
Effective: Non-modal

<Axis>: Traversing distance/position of the geometry axis (X, Y or Z) at the end of
the thread, e.g. Z50

<Direction of
rotation>:

Direction of spindle rotation:
● M3: Clockwise rotation, right-hand thread
● M4: Counterclockwise rotation, left-hand thread

<Speed>: Maximum permissible spindle speed while tapping, e.g. S100
<Feedrate>: Feedrate of the tapping axis F, with F = spindle speed * thread pitch

Example
Tapping an M5 thread:

● Spindle pitch according to the standard: 0.8 mm/rev

● Spindle speed S: 200 rpm

● Feedrate F = 200 rpm * 0.8 mm/rev = 160 mm/min.

Program code Comment
N10 G1 X0 Y0 Z2 F1000 S200 M3 ; Approach starting point

; Spindle clockwise direction of rotation, 200
rpm

N20 G63 Z-50 F160 ; Tapping with compensating chuck
; Drilling depth: absolute Z=50mm
; Feedrate: 160 mm/min

N30 G63 Z3 M4 ; Retraction movement: absolute Z=3mm
; Direction of rotation reversal
; Spindle with counterclockwise direction of
rotation, 200 rpm

S1: Spindles
17.2 Modes

Basic Functions
1310 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.3 Reference / synchronize

Why synchronize?
In order to ensure that the controller detects the exact position of the spindle when it is switched
on, the controller must be synchronized with the position measuring system of the spindle.

The following functions are possible only with a synchronized spindle:

● Thread cutting

● Tapping without compensating chuck

● Axis programming

For further information about synchronizing the spindle, see Section "R1: Referencing
(Page 1223)".

Why reference?
In order to ensure that the controller detects the exact machine zero when it is switched on,
the controller must be synchronized with the position measurement system of the rotary axis.
This process is known as referencing. The sequence of operations required to reference an
axis is known as search for reference.

Only a referenced axis can approach a programmed position accurately on the machine.

For further information about referencing the rotary axis, see Section "R1: Referencing
(Page 1223)".

Installation position of the position measurement system
The position measurement systems can be installed as follows:

● directly at the motor in combination with a contactless proximity switch on the spindle as a
zero mark encoder

● at the motor using a measuring gearbox in combination with a contactless proximity switch
on the spindle as a zero mark encoder

● Directly on the spindle

● on the spindle via a measuring gearbox in combination with a contactless proximity switch
on the spindle as a zero mark encoder (only with ratios not equal to 1:1)

Where two position measuring systems are provided, they can be installed either in the same
location or separately.

S1: Spindles
17.3 Reference / synchronize

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1311

Synchronization procedure
When the spindle is switched on, it can be synchronized as follows:

● The spindle is started with a spindle speed (S value) and a spindle rotation (M3 or M4) and
synchronized with the next zero mark of the position measurement system or with the next
signal from the contactless proximity switch.

● The spindle is to be positioned from standstill using SPOS, M19 or SPOSA. The spindle
synchronizes with the next zero mark of the position measurement system or with the next
proximity switch signal. It is then positioned to the programmed position.

● The spindle can be synchronized from the motion (after M3 or M4) using SPOS, M19 or
SPOSA.
The responses are as follows:

– With SPOS=<Pos>, SPOS=DC(<Pos>) and SPOS=AC(<Pos>), the direction of motion
is retained and the position is approached.

– With SPOS = ACN(<Pos>) or SPOS = ACP(<Pos>), the position is always
approached with a negative or positive direction of motion. If necessary, the direction
of motion is inverted prior to positioning.

● Crossing the zero mark in JOG mode by means of direction keys in speed control mode.

Note

It does not make any difference whether the synchronization procedure is initiated from the
part program, FC 18 or synchronized actions.

Note

During synchronization of the spindle, all four possible reference point values are effective
depending on the measuring system selected. The measurement system offset has the
same effect.

The following machine data must be observed:
● MD34080 $MA_REFP_MOVE_DIST

(Reference point distance / destination point for a distance-coded system)
● MD34090 $MA_REFP_MOVE_DIST_CORR

(Reference point offset / absolute offset, distance-coded)
● MD34100 $MA_REFP_SET_POS

(Reference point value, with distance-coded system without any significance)

If a non-referenced spindle with SPOS=IC(...) and a path < 360 degrees is positioned,
it may be the case that the zero mark is not crossed and the spindle position is still not
synchronized with the zero mark. This can happen:
● After POWER ON
● By setting the axial NC/PLC interface signals:

DB31, ... DBX17.5 (resynchronize spindle when positioning 2)
DB31, ... DBX17.4 (resynchronize spindle when positioning 1)

Special features when synchronizing using a contactless proximity switch
The position error caused by the signal delay when using a contactless proximity switch can
be corrected internally in the NC by entering a signal runtime compensation.

S1: Spindles
17.3 Reference / synchronize

Basic Functions
1312 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The signal runtime compensation is set by means of the machine data:

● MD31122 $MA_BERO_DELAY_TIME_PLUS
(delay time of the contactless proximity switch, positive motion direction)

● MD31123 $MA_BERO_DELAY_TIME_MINUS
(delay time of the contactless proximity switch, negative motion direction)

The effect depends on the selected referencing mode:

MD34200 $MA_ENC_REFP_MODE = <value>

<Value> Meaning
2 The position is synchronized without entering a specific starting velocity/speed.
7 As starting velocity to synchronize the position, the velocity from the following machine data

is used:
MD34040 $MA_REFP_VELO_SEARCH_MARKER (reduced velocity)
The zero mark is not automatically looked for, it has to be requested explicitly with the 0/1
edge of the NC/PLC interface signal:
DB31, ... DBX16.4 / 5 (resynchronize spindle, measuring system 1 / 2)

Note

Generally, no change is required as signal runtimes and signal runtime compensation are
preset when the system is delivered.

Referencing sequence
If the spindle is to be programmed in axis mode directly after controller power-up, it must be
ensured that the axis is referenced.

When the controller is switched on, the spindle can be referenced (condition is one zero mark
per revolution).

For information about the referencing sequence, see Section "R1: Referencing (Page 1223)".

The rotary axis is referenced at the same time as the spindle is synchronized (see section
"Synchronization procedure") if the position measuring system used for the spindle is also
used for the rotary axis.

Position measurement systems, spindle
The spindle can be switched from spindle mode to axis mode (rotary axis) if a single motor is
used for spindle mode and axis mode.

The spindle (spindle mode and axis mode) can be equipped with one or two position
measurement systems. With two position measurement systems, it is possible to assign one
position measurement system to the spindle and the other to the rotary axis, or to assign two
position measurement systems to the spindle. Where two position measurement systems are
provided, both are updated by the controller, but only one can be active.

The active position measuring system is selected with the NC/PLC interface signal:

DB31, ... DBX1.5 / 6 (position measuring system 1 / 2)

S1: Spindles
17.3 Reference / synchronize

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1313

The active position measurement system is required for the following functions:

● Position control of the spindle (SPCON)

● Spindle positioning (SPOS, M19 and SPOSA)

● Thread cutting (G33, G34, G35)

● Tapping without compensating chuck (G331, G332)

● Revolutional feedrate (G95)

● Constant cutting rate (G96, G961, G97, G971)

● Spindle actual speed display

● Axis mode

● Synchronous spindle setpoint coupling

Resynchronizing the position measuring system for the spindle
In the following cases, the spindle position measurement system must be resynchronized:

● The position encoder is on the motor, a contactless proximity switch is mounted on the
spindle and the gear stage is changed. Synchronization is triggered internally once the
spindle is rotating in the new gear stage (see Synchronization procedure).

● The machine has a selector switch for a vertical and horizontal spindle. Two different
position encoders are used (one for the vertical spindle and one for the horizontal spindle),
but only one actual value input is used on the controller. When the system switches from
the vertical to the horizontal spindle, the spindle must be resynchronized.
This synchronization is initiated with the NC/PLC interface signal:
DB31, ... DBX16.4 (resynchronize spindle 1)
 or
 DB31, ... DBX16.5 (resynchronize spindle 2)
The spindle must be in open-loop control mode.

Restoring the position after a warm restart
For spindles with incremental position measuring systems, it is possible to buffer the actual
values after a POWER OFF and after POWER ON, to restore the position last buffered before
switching-off, in order that position-dependent functions, e.g. transformations can be restored
(see Section "Automatic restoration of the machine reference (Page 1264)"). One application
is, e.g. tool retraction after a warm restart when machining with tool orientation (see Section
"Tool withdrawal after POWER ON with orientation transformation (Page 656)").

The following NC/PLC interface signals display the state of the position measuring system
after the position has been restored:

DB31, ... DBX71.4 ("Restored 1") for position measuring system 1

DB31, ... DBX71.5 ("Restored 2") for position measuring system 2

S1: Spindles
17.3 Reference / synchronize

Basic Functions
1314 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Once the tool has been retracted in JOG mode, axes whose positions have been restored are
referenced. As a consequence, signals DB31, ... DBX71.4/5 ("Restored 1/2") are deleted and
signals DB31, ... DBX60.4/5 ("Referenced/synchronized 1/2") are set.

Note

If machine data MD20700 $MC_REFP_NC_START_LOCK is set to a value of "2", then an NC
start is also possible with "restored" axis positions (in the MDI mode or when overstoring).

17.4 Configurable gear adaptation

17.4.1 Gear stages for spindles and gear change change

Why do we need gear stages?
Gear stages are used on spindles to step down the speed of the motor in order to generate a
high torque at low spindle speeds or to step up in order to maintain a high speed.

No. of gear stages
Five gear stages can be configured for each spindle.

The number of used gear stages is defined in machine data:

MD35090 $MA_NUM_GEAR_STEPS

Parameterization of the gear stages
The gear stages 1 to 5 can be parameterized via the following machine data:

Machine data Meaning
MD35012 $MA_GEAR_STEP_CHANGE_POSITION[<n>] Gear stage change position
MD35110 $MA_GEAR_STEP_MAX_VELO[<n>] Maximum speed for automatic

gear stage change
MD35120 $MA_GEAR_STEP_MIN_VELO[<n>] Minimum speed for automatic

gear stage change
MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[<n>] Maximum speed of gear stage
MD35135 $MA_GEAR_STEP_PC_MAX_VELO_LIMIT[<n>] Maximum speed of gear stage in

position control
MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT[<n>] Minimum speed of gear stage
MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL[<n>] Acceleration in speed control

mode
MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL[<n>] Acceleration in position control

mode
MD35300 $MA_SPIND_POSCTRL_VELO[<n>] Position control activation speed

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1315

Machine data Meaning
MD35310 $MA_SPIND_POSIT_DELAY_TIME[<n>] Positioning delay time
MD35550 $MA_DRILL_VELO_LIMIT[<n>] Maximum speed for tapping with‐

out compensating chuck

Type of gear stage change
The type of gear stage change is set in machine data:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE

Bit Value Meaning
0 0 The spindle motor is attached to the spindle directly (1:1) or with a non-variable trans‐

mission ratio (basic setting).
The machine data of the first gear stage is effective.

1 Spindle motor with up to five gear stages.
The gear stage change takes place:
● In oscillation mode
● At indefinite change position

1 0 Meaning as in Bit 0 = 0.
1 Meaning as in Bit 0 = 1, however, the gear stage change takes place at the configured

spindle position.
The change position is set in machine data:
MD35012 $MA_GEAR_STEP_CHANGE_POSITION
The position is approached in the current gear stage before the gear stage change.
If Bit 1 is set, then Bit 0 is ignored!

3 1 The gear stage change dialog between NC and PLC is simulated.
5 1 The second gear stage data set is used while tapping with G331/G332 (see the following

paragraph "Second gear stage data set"). The bit must be set for the master spindle
used during the tapping.

Requirement for a gear stage change
In principle, the gear stage change is only performed if the requested gear stage is not the
same as the active gear stage.

Parameter set selection during gear stage change
The servo parameter set is also changed over with the gear stage if:

MD35590 $MA_PARAMSET_CHANGE_ENABLE = 0 or 1

For further information, see Section "Parameter set selection during gear step change
(Page 1329)".

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1316 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Request gear stage change
A gear stage change can be requested:

● In the part program using:

– M40 S...
Automatic gear stage selection to the programmed speed S...

– M41 ... M45
Direct selection of gear stages 1 ... 5

– M70
For MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE = 1 ... 5
(see "Configurable gear step in M70 (Page 1345)")

– G331 S...
For MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, Bit 5 = 1

● In synchronized actions using:

– DO M40 S...
Automatic gear stage selection to the programmed speed S...

– DO M41... M45
Direct selection of gear stages 1 ... 5

– DO M70
For MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE = 1 ... 5

● Through the PLC using the FC18 function block

● In the reset state through description of NC/PLC interface:
DB31, ... DBX16.0-16.2 (actual gear stage A to C)
The mechanically active gear stage can be communicated to the NC especially after a
POWER ON.

Note

If the spindle motor is attached to the spindle directly (1:1) or with a non-variable
transmission ratio (MD35010 = 0), then the M40 and M41 ... M45 auxiliary functions are
not relevant to this spindle.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1317

Gear stage change
Gear stage selection between two gear stages with specification of a maximum spindle speed
is shown in the example below:

Figure 17-3 Gear stage change with selection between two gear stages

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1318 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Process sequence of the gear stage change
If the new gear stage is preselected, the following sequence is implemented:

1. Changeover sequence
The two following NC/PLC interface signals are set:
DB31, ... DBX82.0-82.2 (setpoint gear stage A to C)
DB31, ... DBX82.3 (change over gear stage)
In accordance with the point at which NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed)
is set, the spindle decelerates to a standstill at the acceleration for oscillation or at the
acceleration for speed control / position control.
Oscillation can be activated at the latest when the spindle reaches a standstill:
DB31, ... DBX61.4 (axis/spindle stationary)
with NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed).

In principle, the new gear stage can also be engaged without oscillation
When the new gear stage is engaged, the following NC/PLC interface signals are set by
the PLC program:
DB31, ... DBX16.0-16.2 (actual gear stage A to C)
DB31, ... DBX16.3 (gear is changed)

2. End of gear stage change
The gear stage change is treated as completed (spindle operation type "oscillation mode"
is deselected), if the following NC/PLC interface signal is set:
DB31, ... DBX16.3 (gear is changed)
The new actual gear stage is changed to the servo and interpolation parameter set when
the motor is stationary.
With NC/PLC interface signal:
DB31, ... DBX16.3 (gear is changed)
is used to communicate to the NC that the new gear stage is valid and the oscillation mode
can be completed.
The NC/PLC interface signal:
DB31, ... DBX82.3 (change gear)
is reset by the NC,
which causes the PLC program to reset NC/PLC IS:
DB31, ... DBX16.3 (gear changed).

In this case, it does not matter whether NC/PLC IS:
DB31, ... DBX18.5 (oscillation mode)
is still set.
The actual gear stage, which should correspond to the set gear stage, is relevant
for selecting the parameter set.
If this is not the case, then Alarm 22010 :
MD11410 $MN_SUPPRESS_ALARM_MASK, Bit 3 = 0
is output.
Following acknowledgment of gear stage change via the PLC
with NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
the spindle is in speed control mode (DB31, ... DBX84.7).
For further information on the signal exchange between PLC and NC, see Section "A2:
Various NC/PLC interface signals and functions (Page 41)".

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1319

Second gear stage data set
The automatic gear stage change M40 can be extended by a second configurable gear stage
data set.

The second gear stage data set is used exclusively in connection with tapping without
compensation chuck (G331, G332) so that an effective adjustment of spindle speed and motor
torque can be achieved.

The activation is undertaken by setting the following bit for the master spindle:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, Bit 5 = 1

The number of used gear stages of the second gear stage data set is defined with the machine
data:

MD35092 $MA_NUM_GEAR_STEPS2

The second gear stage block data set is deactivated if:

MD35092 $MA_NUM_GEAR_STEPS2 = 0 (basic setting)

The first gear stage data set then selects the gear stage when M40 is active.

Note

The number of gear stages in the second data set can vary from the first. If no appropriate
gear stage is found for a programmed speed for M40, then no gear stage change is carried
out (exceptions, see "M40: Automatic gear stage selection for speeds outside the configured
switching thresholds (Page 1375)").

For more information about a typical program sequence in thread cutting without compensating
chuck G331/G332 see:
References:
Programming Manual - Fundamentals; Motion Commands

The gear stages 1 to 5 of the second gear stage data set can be parameterized via the following
machine data:

Machine data Meaning
MD35112 $MA_GEAR_STEP_MAX_VELO2[n] Maximum speed for automatic gear stage

change
MD35122 $MA_GEAR_STEP_MIN_VELO2[n] Minimum speed for automatic gear stage

change
MD35212 $MA_GEAR_STEP_POSCTRL_ACCEL2[n] Acceleration in position control mode

Note

The number of servo parameter sets concerning the mechanical factors remain unchanged.
Furthermore, five mechanical gear stages for the spindle and one for the axis operation can
be configured.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1320 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The speed limitations are configured only once for each gear stage with the following machine
data, independently of the different switching thresholds:

Machine data Meaning
MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[n] Maximum speed of gear stage
MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT[n] Minimum speed of gear stage

For tapping without compensating chuck (G331, G332) the speed can be limited to the linear
acceleration range of the motor additionally. For this, the maximum speed of the linear motor
characteristics range is specified in the following machine data as a function of the gear stage:

MD35550 $MA_DRILL_VELO_LIMIT[n]

Specify gear stage in the part program
Automatic selection with active M40

The gear stage is automatically selected by the control. The gear stage in which the
programmed spindle speed (S...) is possible is checked in this context. If a gear stage results
from this that is not equal to the current (actual) gear stage, then the following NC/PLC interface
signals are set:

DB31, ... DBX82.3 (change over gear stage)

DB31, ... DBX82.0-82.2 (setpoint gear stage A to C)

While the appropriate gear stage is being determined, a gear stage change is only requested
if the new speed is not within the permissible speed range of the active gear stage.

The speed is limited to the maximum speed of the current gear stage or raised to the minimum
speed of the current gear stage and the appropriate NC/PLC interface signal is set:

DB31, ... DBX83.1 (speed setpoint limited)

DB31, ... DBX83.2 (speed setpoint increased)

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1321

Figure 17-4 Example for two gear stages with overlapping speed ranges for automatic gear stage
change (M40)

Note

In the case of M40, the spindle must be in open-loop control mode for automatic gear stage
selection with an S word. Otherwise the gear stage change is rejected and the following alarm
is set:

Alarm 22000 "gear stage change is not possible"

Note

An active reduction gear is not considered in the selection for the automatic gear stage change.

Permanently defining the gear stage with M41 to M45

The gear stage can be permanently defined in the part program with M41 to M45.

If a gear stage is specified via M41 to M45 that is not equal to the current (actual) gear stage,
then the following NC/PLC interface signals are set:

DB31, ... DBX82.3 (change over gear stage)

DB31, ... DBX82.0-82.2 (setpoint gear stage A to C)

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1322 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The programmed spindle speed (S...) then refers to this permanently defined gear stage:

● If a spindle speed is programmed and it is higher than the maximum speed of the
permanently defined gear stage (MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT), then
the speed is decreased to this limit and the following NC/PLC interface signal is set:
DB31, ... DBX83.1 (speed setpoint limited)

● If a spindle speed is programmed and it is lower than the minimum speed of the permanently
defined gear stage (MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT), then the speed is
increased to this minimum and the following NC/PLC interface signal is set:
DB31, ... DBX83.2 (speed setpoint increased)

Block change

When programming the gear stage change in the part program, the gear stage change set
remains active until it is aborted by PLC.

This corresponds to the effect as if the following NC/PLC interface signal were set:

DB21, ... DBX6.1 (read-in disable)

Specification of gear stage via PLC with FC18
The gear stage change can also be performed by function block FC18 during a part program,
in the reset state or in all operating modes.

If the speed and direction of rotation is specified with FC18, the NC can be requested to select
the gear stage as appropriate for the speed. This corresponds to an automatic gear stage
change with M40.

The gear stage is not changed if:

● The spindle is positioned via FC18.

● The spindle is traversed in the axis mode.

For further information on the FC18 function block, see Section "P3: Basic PLC program for
SINUMERIK 840D sl (Page 869)".

Specification of a gear stage in synchronized actions
The gear stage change can be requested by synchronized actions using:

● DO M40 S...
Automatic gear stage selection to the programmed speed S...

● DO M41... M45
Direct selection of gear stages 1 ... 5

● DO M70
For MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE = 1 ... 5
(see "Configurable gear step in M70 (Page 1345)")

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1323

The gear stage is not changed if:

● The spindle is positioned via synchronized actions.

● The spindle is traversed in the axis mode.

Note

For further details, please refer to the section "Specification of a gear stage in part program".

Exception:

The block change is not affected by the specification of a gear stage in synchronized actions.

Manual specification of a gear stage
Outside a part program that is running, the gear stage can also be changed without a request
from the NC or the machine. This is the case, for example, when a gear stage is changed
manually.

To select the appropriate parameter set, the NC must be informed of the current gear stage.
To enable this, the control or the part program must be in the reset state.

Supplementary conditions

Transfer of the gear stage to the NC is initiated when
NC/PLC IS:
DB31, ... DBX16.0-16.2 (actual gear stage A to C) changes.

These three bits must be set continuously during operation.

Successful transfer is acknowledged with NC/PLC IS:
DB31, ... DBX82.0-82.2 (set gear stage A to C)
to the PLC.

NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
must not be set.

If position control is active when a new gear stage is specified by the PLC with
DB31, ... DBX16.0-16.2, then it is switched off for the duration of this changeover sequence.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1324 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

NC stop during gear stage change
The spindle cannot be stopped with NC/PLC IS:
DB21, ... DBX7.4 (NC stop)
if:

● The spindle is not yet in oscillation mode for the gear stage change.

● NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
is not set.

Note

Options for aborting:

DB31, ... DBX2.2 (delete distance-to-go / spindle reset)
or
DB31, ... DBX16.3 (gear changed)
with corresponding acknowledgment from actual gear stage:
DB31, ... DBX16.0-16.2 (actual gear stage).

Spindle response after a gear stage change
How the spindle behaves once the gear stage has been changed depends on the following
initial conditions:

● If the spindle was in the stop state before the gear stage change (M5, FC18: "Stop rotate
spindle"), in positioning or axis mode, M5 (spindle stop) is active after completion of the
gear stage change.

● If a direction of rotation
(M3, M4, FC18: "Start spindle rotation"), then the last speed and direction of rotation will
become active again after the gear stage change. In the new gear stage, the spindle
accelerates to the last spindle speed programmed (S...).

● If position control was active before the gear stage change (SPCON), then it is reactivated
after the gear stage change.
The next block in the part program can be executed.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1325

Special features
The following points must be observed on gear stage change:

● The gear stage change is not terminated by selecting
NC/PLC IS:
DB31, ... DBX20.1 (run-up switchover to V/f mode).

Setpoint 0 is output.
The gear stage change is acknowledged as usual
via the NC/PLC interface signal:
DB31, ... DBX16.3 (gear is changed)

● The "Ramp-function generator rapid stop" signal must be reset by the PLC before the gear
stage change is completed by the PLC.

● The process sequence of the gear stage change is ended during NC reset without any
alarm output.
The gear stage output with NC/PLC IS:
DB31, ... DBX16.0-16.2 (actual gear stage A to C)
is applied by the NC.

Star/delta switchover with FC17
Digital main spindle drives can be switched in both directions between star and delta using
FC17, even when the spindle is running. This automatic switchover is controlled by a defined
logic circuit in FC17 which provides the user with a configurable switchover time for the relevant
spindle.

For further information on the FC17 function block, see Section "P3: Basic PLC program for
SINUMERIK 840D sl (Page 869)".

17.4.2 Spindle gear stage 0

Technical background
For machine's where the spindle load gear can be changed over, situations can occur where
the gear train between the motor and load (workpiece/tool) is interrupted. This state can occur,
e.g. when pressing Reset or Emergency Stop while performing a gear stage change or when
the machine is commissioned for the first time while it is being installed. The control must
identify this state where the gear train is open and the next gear stage change request must
be unconditionally executed.

Function
When the gear is disengaged, the binary-coded value "0" (≙ gear stage 0) is transferred to the
NC from the PLC using the interface signal bits DB31, ... DBX16.0-2 (actual gear stage A to
C):

DB31, ... DBX16.0-2 = 0

The value is used by the control to identify the state where the gear train is open.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1326 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Effects on the gear stage change
Gear stage change in the part program

The actual gear stage signaled from the PLC is read by the NC when starting a part program.
If, at this instant in time, a value of "0" is read for the actual gear stage, then the next gear
stage change is executed and the gear stage change dialog is performed by the PLC. If a value
greater than "0" is read, then already in the program a comparison is made between the
requested and active gear stage. If both gear stages are the same, the gear stage is not
changed and a possibly programmed path motion is not interrupted.

Gear stage change in synchronized actions, FC18 and DBB30

The actual gear stage signaled from the PLC is always evaluated by the NC when the gear
stage is changed. The gear stage is always changed if a value of "0" is read from the NC.
When reading a value greater than "0", a comparison is made between the requested and
active gear stage. The gear stage is only changed with the PLC if the two values are not equal
and the NC/PLC interface signal DB31, ... DBX82.3 (change over gear) is then output.

Boundary conditions
● Output of DB31, ... DBX16.0-2 = 0

When the gear is disengaged, the PLC must enter gear stage 0 in the NC/PLC interface
DB31, ... DBX16.0-2 (actual gear stage A to C).

● Enabling the gear stage change
The precondition for a gear stage change after reaching gear stage 0 is the general enable
of the gear stage change via via machine data:
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE (assign parameters to the gear stage
change)
MD35090 $MA_NUM_GEAR_STEPS (number of gear stages set up)
MD35092 $MA_NUM_GEAR_STEPS2 (2nd gear stage data set: Number of gear stages
that have been created) if MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, bit 5 = 1
(tapping without compensating chuck)

● PLC user program/ POWER ON ASUB
The PLC user program or POWER ON ASUB should ensure that when the gear is
disengaged (gear stage 0) before spindle motion, a gear stage change request is
programmed. For instance, this can be realized with M41 in the ASUB. Spindle motion such
as e.g. in JOG or in axis operation does not generate any gear stage change itself.

Example
Example for the sequence to select the first gear stage after POWER ON

1. POWER ON.

2. The PLC user program determines, in the mechanical environment, the "Gear is
disengaged" state.

3. The PLC transfers the "Gear is disengaged" state to the NC by setting:
DB31, ... DBX16.0-2 = 0

4. Part program start or POWER ON ASUB.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1327

5. N05 (part program, refer below) is executed:
The gear stage is changed to gear stage 1.
From the NC:

– the following NC/PLC-interface signal is set:
DB31, ... DBX82.3 (change over gear stage)

– the setpoint gear stage 1 is signaled to the PLC:
DB31, ... DBX82.0 = 1
DB31, ... DBX82.1 = 0
DB31, ... DBX82.2 = 0

6. Mechanical gear stage change, acknowledgement
If the gear stage is selected, then from the PLC:

– the following NC/PLC-interface signal is set:
DB31, ... DBX16.3 (gear is changed)

– Actual gear stage 1 signaled to the NC:
DB31, ... DBX16.0 = 1
DB31, ... DBX16.1 = 0
DB31, ... DBX16.2 = 0

7. N80 is executed:
Due to the optimization of the gear stage change frequency in the part program, the gear
stage is not changed.

Part program:

Program code Comment
N05 M41 ; Select 1st gear stage
...
N80 M41 ; No gear stage change, if the 1st gear stage is selected.

Configuring data for spindle 1 (AX5):

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE[AX5] = 1 (enable gear stage change)

17.4.3 Determining the spindle gear stage
The actual stage of a spindle can be read using system variables:

● For the display in the user interface, in synchronized actions or with a preprocessing stop
in the part program via the system variables:

$VC_SGEAR[<n>] Currently selected spindle gear stage
$VC_SGEAR reads the actual gear stage signaled from the
PLC.
Value range: 0 ... 5

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1328 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

$AC_SGEAR[<n>] Active spindle gear stage
$AC_SGEAR reads the setpoint gear stage in the main run.
Value range: 1 ... 5
The data set for the spindle is activated corresponding to this
gear stage.

Note

For a block search, the actual gear stage ($VC_SGEAR[<n>]) can differ from the setpoint gear
stage ($AC_SGEAR[<n>]) as, during the block search, no gear stage change takes place.
Therefore, using $VC_SGEAR[<n>] and $AC_SGEAR[<n>], it can be interrogated whether a
gear stage change should be made after a block search.

● Without preprocessing stop in the part program via system variables:

$P_SGEAR[<n>] Setpoint gear stage
$P_SGEAR reads the gear stage programmed in the part pro‐
gram (M41 ... M45), for M40 selected, or for M70, the configured
gear stage.

$P_SEARCH_SGEAR[<n>] Block search: Gear-specific M function
$P_SEARCH_SGEAR contains the last programmed gear
stage M function collected with the block search.

17.4.4 Parameter set selection during gear step change

Servo parameter sets
The servo parameter sets 1 to 6 adapt the position controller to the changed properties of the
machine during a gear change of the spindle.

Parameter set selection during gear stage change
The gear stage parameter set (interpolation parameters) and, depending on the setting in the
following machine data, the servo parameter set are also modified during gear stage change.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1329

MD35590 $MA_PARAMSET_CHANGE_ENABLE (parameter set change possible)

Value Meaning
0 In-system parameter set selection

The parameter sets of the servo are assigned permanently.
The following applies:
● For axes and spindles in the axis mode, the first parameter set is active in principle.

Exception:
For G33, G34, G35, G331 and G332, for the axes involved, the parameter set with the
following number is activated:
Master spindle gear stage + 1 (corresponds to parameter set No. 2 ... 6)

● For spindles in the spindle mode, the parameter set is set matching the gear stage.
1 Besides the in-system parameter set selection, there is also the option of an "external" pa‐

rameter set selection.
● By the PLC (DB31, ... DBX 9.0 - 9.2)
● Via programming of SCPARA in the part program or in synchronized actions
However, the in-system parameter set selection has priority.
Note: Value 1 is relevant only to axes.

2 The servo parameter set is specified exclusively by the PLC (DB31, ... DBX 9.0 - 9.2) or through
the programming of SCPARA in the part program or in synchronized actions (for axes and
spindles).
The 1st parameter set is selected after POWER ON.

Spindle mode
MD35590 $MA_PARAMSET_CHANGE_ENABLE = 0 or 1

The parameter set is selected according to the gear stage + 1.

The active gear stage is located in:

DB31, ... DBX16.0-16.2 (actual gear stage A to C)

The active parameter set is output in:

DB31, ... DBX69.0-69.2 (controller parameter set A to C)

One set of parameters, with the following assignment, is provided by the NC for each of the
five gear stages:

Data set for ... NC/PLC interface
DBX 69.2 / 69.1 / 69.0

Parameter set
Number

Parameter set
Index [n]

Axis mode Last active gear stage 1 0
Gear stage 1 001 2 1
Gear stage 2 010 3 2
Gear stage 3 011 4 3
Gear stage 4 100 5 4
Gear stage 5 101

110
111

6 5

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1330 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Spindle in axis mode
If the spindle is in axis mode, the parameter set index "0" is selected in the servo (note
MD35590 $MA_PARAMSET_CHANGE_ENABLE!).

The gear stage change behavior depends on the setting in the machine data:

MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE (gear stage for axis mode in M70)

If there is no gear stage configured for axis mode (MD35014 = 0), no implicit gear stage change
takes place in M70 (default setting!). The last gear stage is saved internally and is reactivated
with the associated parameter set during the next spindle programming.

If, however, a gear stage is configured for axis mode (MD35014 = 1 ... 5), a gear stage change
to gears 1 ... 5 takes place during the execution of M70. When changing from axis mode to
spindle mode, the gear stage loaded with M70 remains activated. The gear stage which is
activated in spindle mode prior to M70 is not automatically loaded again.

See also "Configurable gear step in M70 (Page 1345)."

Load gearbox transmission ratio
It is possible to configure positive or negative load gearbox factors for each gear stage and in
axis mode.

The setting is undertaken separately for numerator and denominator via the machine data:

MD31050 $MA_DRIVE_AX_RATIO_DENOM[n] (load gearbox denominator)

MD31060 $MA_DRIVE_AX_RATIO_DENOM[n] (load gearbox numerator)

The setting range is the same size for positive and negative load gearbox factors.

It is not possible to enter the value "0".

Note

If an indirect encoder is configured, and the load gearbox transmission ratio changes, then the
reference is lost and the NC/PLC interface signal:
DB31, ... DBX60.4/60.5 (referenced/synchronized 1 or 2)
is reset for the relevant measuring system.

References
For further information about control and servo parameter set, please refer to:

● Functions Manual - Basic Functions; Velocities, Setpoint-Actual Value Systems, Closed-
Loop Control (G2)

● Programming Manual, Job Planning; Section: Programmable servo parameter set

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1331

17.4.5 Intermediate gear

Application and functions
A configured intermediate gear can be used to adapt a variety of rotating tools. The
intermediate gear on the tool side has a multiplicative effect on the motor/load gearbox.

It is set via machine data:

MD31066 $MA_DRIVE_AX_RATIO2_NUMERA (intermediate gear numerator)

MD31064 $MA_DRIVE_AX_RATIO2_DENOM (intermediate gear denominator)

An encoder on the tool for the intermediate gear
is configured with machine data:
MD31044 $MA_ENC_IS_DIRECT2 (encoder on intermediate gear)
.

A changed parameterization of this machine data can be activated with the "Activate machine
data" function either with the aid of the SinuCOM-NC commissioning software or via a softkey
on the operator panel (HMI). The existing motor/load gearboxes, on the other hand, are active
after POWER ON.

Tool change
If the intermediate gear is changed at the same time as the tool, the user must also reconfigure
the transmission ratio of the numerator and denominator via the machine data of the
intermediate gear.

Example:

CAUTION

Engineering error

It remains the task of the user to stop within the appropriate period in order to make changes
to the machine data when required and then activate the "Activate machine data" function.

In the case of an installed tool with a transmission ratio of 2:1, a suitable intermediate gear is
configured and is activated immediately in the part program with the command NEWCONF.

Program code
N05 $MA_DRIVE_AX_RATIO2-NUMERA[AX5] = 2
M10 $MA_DRIVE_AX_RATIO2-DENOM[AX5] = 1
N15 NEWCONF

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1332 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Changeover
Changeover to a new transmission ratio is performed immediately with the aid of the "Activate
machine data" function. From a technological viewpoint, the associated mechanical
changeover process takes some time, since, in mechanical terms, a different intermediate gear
with rotating tool is being installed.

Note

At zero speed, changeover is jerk-free. The user is therefore responsible for taking appropriate
precautions.

Applications in which changeover takes place during motion and which require smoothed or
soft speed transition can be handled using existing setpoint speed filters.

For further explanations regarding control engineering dependencies, see Section "G2:
Velocities, setpoint / actual value systems, closed-loop control (Page 343)".

17.4.6 Nonacknowledged gear step change

Mode change
A gear stage change that has not been acknowledged cannot be interrupted by a change in
operating mode (e.g. switchover to JOG).

The switchover is delayed by the maximum period entered in machine data:
MD10192 $MN_GEAR_CHANGE_WAIT_TIME
.

If the gear stage change is not acknowledged within this time, the NC will output an alarm:

Further events
Events that initiate reorganization will also wait until a gear stage change is completed.

The time entered in machine data:
MD10192 $MN_GEAR_CHANGE_WAIT_TIME
determines how long the control waits before executing the gear stage change.
If this time elapses without the gear stage change being completed, the NC responds with an
alarm.

The following events have an analog response:

● User ASUP

● Mode change

● Delete distance-to-go

● Axis replacement

● Activate PI user data

● Enable PI service machine data

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1333

● Switch over skip block, switch over Dry Run

● Editing in the modes

● Compensation block alarms

● Overstore

● Rapid retraction with G33, G34, G35
● Subprogram level abort, subprogram abort

Response after POWER ON
The active gear stage on the machine can be specified by the PLC after POWER ON and in
the RESET state of the NC.

The NC will then select the appropriate parameter set
and check back the NC/PLC interface signals:
DB31, ... DBX82.0-82.2 (set gear stage A to C)
to the PLC.

17.4.7 Gear step change with oscillation mode
The spindle is in the oscillation mode if a new gear stage was defined using M40 (automatic
gear stage selection) - or M41 to M45.

When oscillating, the direction of rotation of the spindle motor is continually reversed in short
intervals. The oscillating motion of the motor helps to engage a new gear stage, for example.
In principle, a new gear stage can also be engaged without oscillation.

The following oscillation types are possible:

● Oscillation controlled by the NC

● Oscillation via PLC

● Oscillation with FC 18
References:
Function Manual, Basic Functions; PLC Basic Program (P3)

Commissioning: Machine data
● MD35010 $MA_GEAR_STEP_CHANGE_ENABLE (assign parameters to the gear step

change).

● MD35410 $MA_SPIND_OSCILL_ACCEL (acceleration when oscillating)

● MD35430 $MA_SPIND_OSCILL_START_DIR (start direction when oscillating)

● MD35400 $MA_SPIND_OSCILL_DES_VELO (oscillation speed)

● MD35450 $MA_SPIND_OSCILL_TIME_CCW (oscillation time for the M4 direction)

● MD35440 $MA_SPIND_OSCILL_TIME_CW (oscillation time for the M3 direction)

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1334 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Commissioning: NC/PLC interface signals
● DB31, ... DBX16.0 - 2 (actual gear stage)

● DB31, ... DBX16.3 (gear stage has been changed)

● DB31, ... DBX18.4 (oscillation controlled by the PLC)

● DB31, ... DBX18.5 (oscillation enable)

● DB31, ... DBX18.6 (setpoint direction of rotation, clockwise)

● DB31, ... DBX18.7 (setpoint direction of rotation, counterclockwise)

● DB31, ... DBX61.4 (spindle stationary)

● DB31, ... DBX82.0 - 2 (set gear stage)

● DB31, ... DBX82.3 (change over gear stage)

● DB31, ... DBX83.5 (spindle in setpoint range)

● DB31, ... DBX84.6 (active spindle mode: oscillating mode)

Description of the sequence: Gear stage change
Parameterization: MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, bit 0 = 1

Sequence:

● Deceleration of the spindle.
The braking action corresponds to an M5 movement.

● NC/PLC interface signals NC → PLC:

– DB31, ... DBX84.6 == 1 (oscillation mode)

– DB31, ... DBX82.3 == 1 (changeover gear stage)

– DB31, ... DBX82.0 - 2 == <set gear stage>

– DB31, ... DBX61.5 == 0 (position controller active)

● The load gear can now "disengage".

● Oscillation can now be executed from the NC or the PLC (refer below).

● Program execution continues after the feedback signal from the PLC to the NC that the
gear stage has been switched over and the new gear stage is active:

● DB31, ... DBX16.3 = 1 (gear stage has been switched over)

● DB31, ... DBX16.0 - 2 (actual gear stage)

● For measuring systems with indirect encoder (motor encoder) the referencing status is
deleted:
DB31, ... DBX60.4 / 5 = 0

Oscillation controlled by the NC

Requirement
● DB31, ... DBX18.5 = 1 (oscillation enable)

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1335

Status feedback signals
● DB31, ... DBX84.6 == 1 (oscillation mode)

● DB31, ... DBX82.3 == 1 (changeover gear stage)

● DB31, ... DBX82.0 - 2 == <set gear stage>

● DB31, ... DBX61.5 == 0 (position controller active)

The load gear can now "disengage".

Start oscillation
The PLC user program can now set the oscillation enable signal.

● DB31, ... DBX18.5 = 1 (oscillation enable)

The motor accelerates with the oscillation acceleration to the oscillation speed in the start
direction for the direction of rotation dependent oscillation time:

● MD35410 $MA_SPIND_OSCILL_ACCEL (acceleration when oscillating)

● MD35430 $MA_SPIND_OSCILL_START_DIR (start direction when oscillating)

● MD35400 $MA_SPIND_OSCILL_DES_VELO (oscillation speed)

● MD35450 $MA_SPIND_OSCILL_TIME_CCW (oscillation time for the M4 direction)

● MD35440 $MA_SPIND_OSCILL_TIME_CW (oscillation time for the M3 direction)

Reversing the direction of rotation
After the direction-dependent oscillation time has expired, the motor is braked with the
oscillation deceleration and is accelerated in the opposite direction of rotation to the oscillation
speed for the other oscillation time.

Oscillation controlled by the PLC

Requirement
● DB31, ... DBX18.4 = 1 (oscillation controlled by the PLC)

● DB31, ... DBX18.5 = 1 (oscillation enable)

Status feedback signals
● DB31, ... DBX84.6 == 1 (oscillation mode)

● DB31, ... DBX82.3 == 1 (changeover gear stage)

● DB31, ... DBX82.0 - 2 == <set gear stage>

● DB31, ... DBX61.5 == 0 (position controller active)

The load gear can now "disengage".

Start oscillation
The PLC user program can now set the oscillation enable signal.

● DB31, ... DBX18.7 = 1 (setpoint direction of rotation, counterclockwise) or DB31, ...
DBX18.6 = 1 (setpoint direction of rotation, clockwise)

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1336 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The motor accelerates with the oscillation acceleration to the oscillation speed in the specified
setpoint direction of rotation:

● MD35410 $MA_SPIND_OSCILL_ACCEL (acceleration when oscillating)

● MD35400 $MA_SPIND_OSCILL_DES_VELO (oscillation speed)

Reversing the direction of rotation
The oscillation times and switching over the direction of rotation must be realized in the PLC
user program.

End of oscillation mode
On termination of oscillation mode, the spindle returns to the open-loop control mode and
automatically changes to the mode defined by SPCON or SPCOF.

All gear-specific limit values (min./max. speed, etc.) correspond to the parameterized values
of the actual gear stage.

Block change
Processing of the active NC program is stopped if the spindle was switched into the oscillation
mode (DB31, ... DBX82.3 = 1 (switchover gear stage)).

Processing of the NC program is continued if the gear stage has been switched over (DB31, ...
DBX16.3 == 1 (gear stage has been switched over).

Figure 17-5 Block change following oscillation mode

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1337

Example of the signal flow

t1: As a result of the newly programmed S value S1300 in the NC program, the NC identifies the
necessity to switch over the gear stage (1st → 2nd gear stage), and requests the enable from the
PLC:
● NC → PLC: DB31, ... DBX82.3 = 1 (switchover gear stage)
The NC locks program processing (internal feed rate disable *)

t2: The NC signals spindle speed == 0 to the PLC:
● DB31, ... DBX61.4 = 1 (spindle stationary)
The PLC user program enables the oscillation mode.
● PLC → NC: DB31, ... DBX18.5 = 1 (oscillation enable)

Note
The oscillation enable must be set at the latest at time t2.

The NC starts to oscillate.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1338 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

t3: The gear stage at the machine was switched over.
The PLC user program signals the switchover to the NC and deletes the oscillation mode enable:
● PLC → NC: DB31, ... DBX16.0 - 2 = 2 (actual gear stage)
● PLC → NC: DB31, ... DBX16.3 = 1 (gear stage has been switched over)
● PLC → NC: DB31, ... DBX18.5 = 0 (oscillation enable)

t4: The NC exits the gear stage switchover by resetting the request to the PLC and the oscillation
by switching over the spindle mode from oscillation mode to control mode:
● NC → PLC: DB31, ... DBX82.3 = 0 (switchover gear stage)
● DB31, ... DBX84.6 = 0 (active spindle mode: oscillating mode)
● DB31, ... DBX84.7 = 1 (active spindle mode: control mode)
The NC enables the next block for machining, and accelerates the spindle to the new S value
S1300.

*: The internal feed disable is set if:
● Gear stage switchover as a result of programming the S value in the NC program AND
● A machiningblock is active (not rapid traverse G0)
Note
The internal feed disable is not set during a gear stage change from synchronized actions or in
the case of specifications via the PLC with FC 18.

Figure 17-6 Gear stage change with stationary spindle

Supplementary conditions
● The NC/PLC interface signal does not have to be set in order to brake the spindle:

DB31, ... DBX4.3 (spindle stop)
The spindle is brought to a standstill in the control system when a gear stage switchover
is requested.

● The gear stage switchover must always be exited by setting the NC/PLC interface signal:
DB31, ... DBX16.3 = 1 (gear stage has been switched over)

● Oscillation motion in the NC is stopped when the NC/PLC interface signal is reset.
DB31, ... DBX18.5 (oscillation enable)
However, the spindle remains in the "Oscillation mode" mode.

● Spindle synchronization is lost for gear stage switchover and indirect measuring system
(MD31050 $MA_ENC_IS_DIRECT = 0 motor encoder).
Gear stage switchover ⇒ DB31, ... DBX60.4 / 5 = 0 (referenced/synchronized)
The spindle is again automatically synchronized when the zero mark is passed the next
time after a gear stage switchover.

17.4.8 Gear stage change at fixed position

Application and advantages
Machine tools increasingly use standardized spindle drives, firstly to save technological dead
time on a gear stage change and secondly to gain the cost benefits of using standardized
components.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1339

The "Gear stage change at fixed position" function supports the "directed gear stage change"
of load gearboxes that need to be activated in a different way than the NC. The gear stage
change can in this case only be performed at a defined spindle position. An oscillation
movement as required by conventional load gearboxes is thus no longer necessary.

Sequence for gear stage change at fixed position
The gear stage change at fixed position

Machine data configuration:
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 2
runs the following sequence:

● Positioning of the spindle from standstill or movement to the position configured in machine
data:
MD35012 $MA_GEAR_STEP_CHANGE_POSITION.
If the gear stage change is performed out of a movement, then the current direction of
rotation is maintained. The spindle is in positioning mode during the positioning action.
NC/PLC IS:
DB31, ... DBX84.5 (positioning mode)
is output.
If no reference is available:
DB31, ... DBX60.4/5 = 0
or NC/PLC IS:
DB31, ... DBX17.4/5 (resynchronize on positioning MS 1/2)
is set, the positioning action is extended by the time it takes to find the zero mark.

● After reaching the gear stage change position configured in machine data:
MD35012$MA_GEAR_STEP_CHANGE_POSITION
the machine waits for the time in machine data:
MD35310 $MA_SPIND_POSIT_DELAY_TIME
before switching to oscillation mode,
and the known gear stage change dialog starts.

● Output of NC/PLC interface signals:
DB31, ... DBX84.6 (oscillation mode)
DB31, ... DBX82.3 (change gear)
DB31, ... DBX82.0-82.2 (set gear stage A to C).

● Position control is not disabled when an active measuring system with indirect encoder
(motor encoder) is used:
MD31040 $MA_ENC_IS_DIRECT = 0
If a measuring system with a direct encoder (load encoder) is active, position control is
deactivated:
DB31, ... DBX61.5 = 0,
because the induction flux to the load is interrupted and closed-loop position control is no
longer possible.

● If position-controlled operation is not possible, it can be disabled by
resetting "Controller enable":
DB31, ... DBX2.1 = 0
.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1340 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● Mechanical switchover of the gear stage on the machine.
No oscillation movement is required from the drive.
NC/PLC IS:
DB31, ... DBX18.5 (oscillation enable)
and
DB31, ... DBX18.4 (oscillation via PLC)
should not be set.
In principle, oscillation movement is still possible at this point.

● Writing of NC/PLC IS:
DB31, ... DBX16.0-16.2 (actual gear stage A to C)
by the PLC.

● After signal:
DB31, ... DBX16.3 (gear stage changed),
the last movement to be active is continued, if available.
For indirect encoders (motor encoders), the referencing status is cleared:
DB31, ... DBX60.4/5 = 0.
The spindle is in speed control mode and NC/PLC IS:
DB31, ... DBX84.7 (open-loop control mode)
is output.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1341

GSC at fixed position
Typical time sequence for the gear stage change at fixed position:

t1: With the programming of S1300, NC detects a new gear stage (second gear stage), sets IS
DB31, ... DBX84.5 (positioning mode) and blocks processing for the next part program block (=
internal feed disable*).

t2: The spindle is stationary, and exact stop is signaled.
t3: Gear stage change - wait time

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1342 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

t4: The new gear stage is engaged. The PLC user transfers the new (actual) gear stage to the NC
and sets IS DB31, ... DBX16.3 (gear is changed).

t5: The NC then retracts IS DB31, ... DBX82.3 (change gear), releases the next part program block
for processing, and accelerates the spindle to the new S value (S1300).

* : The internal feed disable is set if:
● The spindle gear stage change has been programmed via the part program and
● A processing block is activated (i.e. G0 is not active)
The internal feed disable is not set during a gear stage change from synchronized actions or in
the case of specifications via the PLC with FC 18.

Figure 17-7 Gear stage change with stationary spindle

gear stage change position MD35012
The gear stage change position is defined in machine data:
MD35012 $MA_GEAR_STEP_CHANGE_POSITION
for each gear stage.

Gear stage change wait time MD35310
After the positioning action the machine waits for the time configured in machine data:
MD35310 $MA_SPIND_POSIT_DELAY_TIME
until gear change request:
DB31, ... DBX84.6 (oscillation mode)
DB31, ... DBX82.3 (change gear)
and
DB31, ... DBX82.0-82.2 (set gear stage A to C)
are output.

Position identifiers / position
The position is always approached via the shortest path (corresponds to DC).

If no reference is available and the spindle is in standstill
(e.g. after Power On), then the direction of travel is determined by the following machine data:
MD35350 $MA_SPIND_POSITIONING_DIR

If an adjustable gear stage change position is required, then this can be achieved by writing
the machine data and by a subsequent "Activate machine data".
The change of the MD value can be achieved by the part program or HMI.

If the system is unable to reach the preset position, then alarm 22020 is signaled and the gear
stage change dialog between NC and PLC does not take place in order not to destroy the
gears. As this alarm is serious, the part program cannot continue and the cause must be
eliminated under all circumstances. Experience has shown that the abortion of positioning is
usually due to incorrect MD settings or incompatible PLC signals.

Velocity
The positioning velocity is taken from the machine data which is configured depending on the
gear stage:

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1343

MD35300 $MA_SPIND_POSCTRL_VELO

The NC/PLC interface signals "Spindle override"/"Feedrate override" at
DB31, ... DBX17.0=0: DB31, ... DBB19)
as well as:
DB31, ... DBX17.0=1: DB31, ... DBB0
are effective as normal for positioning.
The positioning speed can be changed proportionally through the program statement
OVRA[Sn].

Note

OVRA[Sn] is valid modally. After the gear stage change, a value appropriate for the machining
should be reset.

The part program statement FA[Sn] does not change the positioning speed during gear stage
change.

Acceleration
The acceleration values are determined by the machine data which is configured depending
on the gear stage:

MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL

and

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

The acceleration can be changed proportionally by programming ACC[Sn].

Note

ACC[Sn] is valid modally. After the gear stage change, a value appropriate for the machining
should be reset.

Speed-dependent acceleration
The "knee-shaped acceleration characteristic" is effective as in positioning with SPOS or FC18.

Jerk
It is currently not possible to limit the change in acceleration.

End of positioning
The transition between the end of the positioning action (DB31, ... DBX84.5)
and the start of oscillation mode (DB31, ... DBX84.6) is defined on
reaching "Exact stop fine" (DB31, ... DB60.7) and the time value entered in machine data:
MD3510 $MA_SPIND_POSIT_DELAY_TIME
.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1344 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The determination of the transition condition has an effect firstly on the gear stage change time
and secondly on the accuracy of the approach to the preset gear stage change position.

Block change
The block change is stopped and the machining blocks are not started until the gear stage has
been changed by the PLC (DB31, ... DBX16.3).

End of gear stage change
Once the gear stage change has been completed, the spindle returns to open-loop control
mode and will automatically change to the closed-loop control mode defined by SPCON or
SPCOF.

All gear-specific limit values (min./max. speed of gear stage, etc.) correspond to the check-
back values of the actual gear stage.

Supplementary conditions
● The spindle must have at least one measuring system.

● Position-controlled operation must be possible and must have been activated.

● Generally, it must be possible to execute SPOS from the part program, from a synchronized
action or via FC18: "Start spindle positioning" without errors.

Unless all requirements can be met, the function described cannot be used successfully.

Activation
The function of gear stage change at fixed position
is activated by the configuration:
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 2

17.4.9 Configurable gear step in M70

Technical background
In some machines the spindle needs to be in a particular gear stage during axis mode.

Possible reasons:

● Only one optimization (KV, feedforward control, filter) to suit a gear stage can be found in
the servo parameter set for axis mode (index 0). The machine data for this parameter set
should not be rewritten.

● There is only one mechanical transmission ratio which, unlike the others, possesses little
or no backlash compensation. The spindle can only follow a path motion or transformations
(e.g. TRANSMIT) together with other axes in this gear stage.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1345

Function
If the function is activated, a predefined gear stage is loaded automatically during transition to
axis mode.

The gear stage change is integrated into the M70 process and occurs after spindle deceleration
and before the loading of the servo parameter set with index 0 (note
MD35590 $MA_PARAMSET_CHANGE_ENABLE!).

The typical dialog between NC and PLC which occurs during gear stage changes is executed
in a similar way to programmed gear stage changes (M41 ... M45) performed.

Requirements
Gear stage changes during transition to axis mode require general enabling of the gear stage
change via the machine data:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE (assign parameters to the gear stage
change).

MD35090 $MA_NUM_GEAR_STEPS (number of gear stages set up)

Activation/deactivation
The function is activated/deactivated via the machine data:

MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE (gear stage for axis mode in M70)

Value Meaning
0 No implicit gear stage change occurs in M70. The current gear stage is retained (default

setting!).
1 ... 5 A gear stage change to gear stage 1 ... 5 occurs during the processing of M70.

Supplementary conditions
Gear stage change at fixed position (MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 2)

The "gear stage change at fixed position" function is supported. The sequence in M70 is then
extended by the time it takes to position the spindle. The position is approached at the current
gear stage.

Transition to axis mode without programming M70

The control system detects the transition to axis mode automatically from the program
sequence (see "Implicit transition to axis mode (Page 1299)") and generates the requisite M70
sequence, including the gear stage change, within the control system.

Transition to axis mode with FC 18

Implicit gear stage change is not supported in transition to axis mode with the FC 18 ("Start
axis"). This requires the right gear stage to be engaged by the PLC application before switching
to axis mode. The gear stage change is also possible with the FC 18 ("Start gear stage
change").

Change from axis mode to spindle mode

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1346 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

When changing from axis mode to spindle mode, the gear stage loaded with M70 remains
activated. The gear stage which is activated in spindle mode prior to M70 is not automatically
loaded again. The servo parameter set is changed from parameter set 1 (index 0) to parameter
sets 2 ... 6 (index 1 ... 5) to suit the gear stage (with
MD35590 $MA_PARAMSET_CHANGE_ENABLE < 2).

Example
Gear stage 4 should be loaded in the case of spindle transition to axis mode.

Configuration: MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE[<spindle name>] = 4

Program code Comment
N05 M3 S1000

N10 G1 X100 F1000

N15 M70 ; Gear stage 4 is loaded.
N20 POS[C]=77

N25 ...

Note

MD35014 can be changed by the "Activate machine data" function. Thus, the gear stage being
loaded can still be changed in the part program before transition to axis mode, if necessary.

17.4.10 Suppression of the gear stage change for DryRun, program test and SERUPRO

Function
For test feed rate (DryRun), program test and SERUPRO, normally, a gear stage change is
not required. This is the reason that it can be suppressed for these functions. The
corresponding configuration is realized with bits 0 ... 2 in machine data:

MD35035 $MA_SPIND_FUNCTION_MASK

Dry run feedrate (DryRun)
Bit 0 = 0 When the DryRun function is active - for part program blocks - gear stages are changed

with M40, M41 to M45, or programming via FC18 and synchronized actions.
Bit 0 = 1 When the DryRun function is active - for part program blocks - a gear stage change is

suppressed with M40, M41 to M45, programming via FC18 and synchronized actions.

Program test and SERUPRO
Bit 1 = 0 For active program test / SERUPRO function - for part program blocks - gear stages are

selected with M40, M41 to M45, programming via FC18 and synchronized actions.

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1347

Bit 1 = 1 For active program test / SERUPRO function - for part program blocks - a gear stage
change is suppressed with M40, M41 to M45, programming via FC18 and synchronized
actions.

DryRun, program testing and SERUPRO
Bit 2 = 0 Gear stage change for programmed gear stage is not performed subsequently on REPOS

after deselection of functions DryRun, Program Test and SERUPRO.
Bit 2 = 1 Gear stage change for programmed gear stage is performed after deselection of functions

DryRun and SERUPRO if possible.

Sequence
If a gear stage change is suppressed, if necessary, the interpolator will limit the programmed
spindle speed to the permissible speed range of the active gear stage.

NC/PLC interface signals DB31, ... DBX83.2 (setpoint speed increased) and DB31, ... DBX83.1
(setpoint speed limited) generated as a result of this limit are suppressed.

Monitoring by the PLC program is not necessary during DryRun and in dry run feedrate.

When the gear stage change is suppressed, no new gear stage setpoint
(DB31,... DBX82.0-82.2) is output to the PLC.

The gear stage change request DB31, ... DBX82.3 (change gear) is also suppressed.

This ensures that no gear stage change information has to be processed by the PLC program.

Determining the last active gear stage
System variable $P_GEAR returns the gear stage programmed in the part program (which
may not have been output to the PLC).

System variable $AC_SGEAR can be used to read the last active gear stage from the part
program, synchronized actions and at the user interface.

Behavior after deselection
The DryRun function can be deselected within a running part program. Once it has been
deselected, the correct gear stage requested by the part program must be identified and
selected.

It cannot be assured that the remainder of the part program will run without errors until the
correct gear stage has been activated. Any necessary gear stage change is performed in the
system REPOS started on deselection if the spindle is in speed control mode. A complete gear
stage change dialog takes place with the PLC and the last programmed gear stage is activated.

If, for REPOS, there is a mismatch between the gear stage programmed in the part program
and the actual gear stage supplied via the NC/PLC interface, then no gear stage change takes
place.

The same applies to the SERUPRO function.

Further explanations regarding the block search function SERUPRO, see:
References:

S1: Spindles
17.4 Configurable gear adaptation

Basic Functions
1348 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Function Manual, Basic Functions; Mode Group, Channel, Program Mode, Reset Response
(K1)

Supplementary conditions
If the gear stage change is suppressed, the output spindle speed moves within the speed
range specified by the current gear stage.

The following restrictions apply to the subsequent activation of a gear stage change with
REPOS:

● The gear stage change is not activated subsequently if the spindle in the deselection or
target block is a command spindle (synchronized action) or PLC spindle (FC18).

● If the gear stage cannot be activated because the spindle is in position or axis mode or a
link is active, alarm 22011"Channel%1 block%3 spindle2% Change to programmed gear
stage not possible" is signaled.

Example
Gear stage change in DryRun

; Activate 1st gear stage for output state
N00 M3 S1000 M41 ; 1st gear stage is selected
M0 ; Part program stop

; PI service: Activate dry run feedrate (DryRun)
 ; (Configuration)
N10 M42 ; 2nd gear stage requested, no gear stage change

takes place
N11 G0 X0 Y0 Z0 ; Position axes
N12 M0 ; Part program stop

; PI service: Deactivate dry run feedrate (DryRun)
 ; REORG and REPOS are performed
 ; now the gear stage change to the 2nd gear

stage takes place
N20 G1 Z100 F1000
...
N99 M30 ; Part program end

17.5 Additional adaptations to the spindle functionality that can be
configured

The following spindle functions can be activated using the machine data:

S1: Spindles
17.5 Additional adaptations to the spindle functionality that can be configured

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1349

MD35035 $MA_SPIND_FUNCTION_MASK, <bit> = <value>

<Bit> <Val‐
ue>

Meaning

0 ... 2 1 Activation: Gear stage change behavior for test feedrate (DryRun), program test and
SERUPRO
See "Suppression of the gear stage change for DryRun, program test and SERU‐
PRO (Page 1347)".

4 1 Spindle speed S..., programmed in the NC program, is taken after
SD43200 $SA_SPIND_S. This also applies to speed setpoint signals via the PLC
user program with FC18 and synchronized actions.
See "Function (Page 1360)".

5 0 When traversing the spindle in the JOG mode, the currently valid speed setpoint
applies.
See SD41200 $SN_JOGSPIND_SET_VELO

1 When traversing the spindle in the JOG mode, the speed parameterized in
SD43200 $SA_SPIND_S is effective.

8 1 Cutting velocity S..., programmed in the NC program is taken after
SD43202 $SA_SPIND_CONSTCUT_S.
This also applies to cutting velocity setpoint signals via the PLC user program with
FC18.
See "Function (Page 1360)".

10 0 SD 43206 $SA_SPIND_SPEED_TYPE is not changed by the NC program or chan‐
nel settings.

1 If the spindle is a master spindle, then the feedrate type (active value of the 15th G
group) is taken after SD43206 $SA_SPIND_SPEED_TYPE.
If the spindle is not a master spindle, then SD43206 $SA_SPIND_SPEED_TYPE
remains unchanged.
See "Function (Page 1360)".

12 Effectiveness of the spindle override for a zero mark search, M19, SPOS, SPOSA = 0:
0 The spindle override isnot active.
1 The spindle override is active.

19 Response regarding an implicit auxiliary function output M19:
0 AND MD20850 $MC_SPOS_TO_VDI == 0:

For SPOS and SPOSA, auxiliary function M19 is not output to the PLC.
1 For SPOS and SPOSA, auxiliary function M19 is output to the PLC.

The address extension corresponds to the spindle number.
See "Positioning mode (Page 1279)"

20 Response regarding an implicit auxiliary function output M70:
0 An implicit auxiliary function M70 is not output to the PLC.

Note: A programmed auxiliary function M70 is always output to the PLC.
1 When transitioning from spindle to axis operation, auxiliary function M70 is output

to the PLC.
The address extension corresponds to the spindle number.
See "Implicit transition to axis mode (Page 1299)".

S1: Spindles
17.5 Additional adaptations to the spindle functionality that can be configured

Basic Functions
1350 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<Bit> <Val‐
ue>

Meaning

22 Deactivating the axis-specific NC/PLC interface signal DB31, ... DBX17.6 (invert M3/M4) to
reverse the direction of rotation of the spindle for tapping without compensating check
(G331, G332).

0 Interface signal DB31, ... DBX17.6 active.
Note
● Standard case: The value of the interface signal is determined when the NC

program starts. When the interface signal subsequently changes, this has no
effect within the NC program.

● Special case: If a change to the interface signal must be taken into account while
the NC program is being executed, then this must be implemented as part of the
application engineering. See Chapter "Special case: Direction of rotation
reversal via NC/PLC interface signal in the NC program (Page 1307)".

1 Interface signal DB31, ... DBX17.6 not active.

17.6 Selectable spindles

Function
Regarding channel spindles, the "Switchable spindles" function allows general NC programs
to be written, which can be used in different channels. The logical spindle number used in the
NC program is converted to the physical spindle number using a spindle number converter.
This means for the same spindle number programmed in the NC program, different physical
spindles (machine axes) can be traversed in different channels.

The physical spindles loaded or unloaded by "axis replacement" no longer have to be specified
explicitly in the part program.

Machine data

Physical spindle number
Each spindle must be assigned to a machine axes using a unique configurable number, the
physical spindle number:

MD35000 $MA_SPIND_ASSIGN_TO_MACHAX[<machine axis>] = <physical spindle
number>

Activation of the spindle number converter
The spindle number converter is activated on a channel-for-channel basis using machine data:

MD20092 $MC_SPIND_ASSIGN_TAB_ENABLE = TRUE

S1: Spindles
17.6 Selectable spindles

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1351

Setting data

Spindle number converter
To parameterize the channel-specific spindle number converter, each logical spindle number
or programmed address extension - with which a spindle (channel spindle) is addressed in the
NC program - is assigned a physical spindle number (machine axis).

SD42800 $SC_SPIND_ASSIGN_TAB[<logical spindle number>] = <physical spindle number>

Additional information:

● The logical spindle number of the current master spindle can be read from SD42800
$SC_SPIND_ASSIGN_TAB[0] It is not permissible to write to this data. The data is updated
when programming SETMS.
Unused spindles are assigned the value 0 in SD42800.

● When an auxiliary function is output, the physical spindle number is output as address
extension.

● The spindle number converter is active when programming spindles in NC programs and
synchronized actions.

● The spindle number converter is not active when spindles are entered at the NC/PLC
interface using function block FC18, as in this case the physical spindles are directly
addressed.

● System variables affected by the spindle conversion are: $P_S, $P_SDIR, $P_SMODE,
$P_GWPS, $AC_SDIR, §AC_SMODE, $AC_MSNUM, $AA_S.

Supplementary conditions
● Switchable channel spindles are not a substitute for the Axis replacement function.

● Spindle conversion can be modified by writing to setting data (SD42800
$SC_SPIND_ASSIGN_TAB) via the NC program, PLC user program or PI service. The
change takes effect immediately.

● In the spindle number converter, only physical spindles can be used that are assigned to
the channel (MD20070 $MC_AXCONF_MACHAX_USED).
If physical spindles are specified in the spindle number converter, which are presently active
in another channel, then depending on the setting in MD30552 $MA_AUTO_GET_TYPE,
either the physical spindle is requested for the channel, or alarm Alarm 16105 "Assigned
spindle does not exist" is displayed.

● If SD42800 $SC_SPIND_ASSIGN_TAB[<n>] is specified by the PLC or from HMI, then the
channel whose table is changed should be in Reset status or the spindle to be changed
should not be used in the running part program.
A synchronized response can be achieved by means of a STOPRE preprocessor stop.

● Converting a logical to several physical spindles is not locked. However, with the display
of the logical spindle in the user interface, there are ambiguities corresponding to the
conversion table.

S1: Spindles
17.6 Selectable spindles

Basic Functions
1352 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example

Assignment, spindle number and machine axis:

MD35000 $MA_SPIND_ASSIGN_TO_MACHAX [AX4] = 1
MD35000 $MA_SPIND_ASSIGN_TO_MACHAX [AX5] = 2
MD35000 $MA_SPIND_ASSIGN_TO_MACHAX [AX6] = 3
MD35000 $MA_SPIND_ASSIGN_TO_MACHAX [AX7] = 5

Accepting a machine axis in a channel:

MD20070 $MC_AXCONF_MACHAX_USED[0] = 4
MD20070 $MC_AXCONF_MACHAX_USED[1] = 5
MD20070 $MC_AXCONF_MACHAX_USED[2] = 6
MD20070 $MC_AXCONF_MACHAX_USED[3] = 7

Specifying the master spindle:

MD20090 $MC_SPIND_DEF_MASTER_SPIND = 1

Spindle number converter

MD20092 $MC_SPIND_ASSIGN_TAB_EN-
ABLE=1

; Activate spindle number converter

SD42800 $SC_SPIND_AS-
SIGN_TAB[0]=1

; Master spindle as configured

SD42800 $SC_SPIND_AS-
SIGN_TAB[1]=1

; Basic setting of the table

SD42800 $SC_SPIND_AS-
SIGN_TAB[2]=2

SD42800 $SC_SPIND_AS-
SIGN_TAB[3]=3

SD42800 $SC_SPIND_AS-
SIGN_TAB[4]=0

; Logical spindle not assigned

; Address extension is 1 output: M1=3 S1=1000
; Spindle 1 (physical master spindle) rotates
M3 S1000
...
; Assignment of logical spindle 1 to physical spindle 5
SD42800 $SC_SPIND_AS-
SIGN_TAB[1]=5

; Assignment of logical spindle 2 to physical spindle 3
SD42800 $SC_SPIND_AS-
SIGN_TAB[2]=3

S1: Spindles
17.6 Selectable spindles

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1353

; Notice: physical spindle 3 has now been assigned twice.
; When programming logical spindles 2 and 3, physical spindle 3
; is always addressed.
; In the basic machine displays, both spindles rotate.

SETMS(2) ; SD42800 $SC_SPIND_ASSIGN_TAB[0] = 2
; Master spindle = address extension = 2, converted spindle number M3 = 5 is output
; The physical spindle configured with number "3" stops.
M5
GET(S4) ; Alarm 16105: logical spindle 4

; cannot be converted
RELEASE(S1) ; Channel spindle 1 = physical spindle 5

; is released.

S1: Spindles
17.6 Selectable spindles

Basic Functions
1354 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.7 Programming

17.7.1 Programming from the part program

Programming statements

Statement Description
SETMS: Master spindle is the spindle specified in the following machine data:

MD20090 $MC_SPIND_DEF_MASTER_SPIND (position of deletion of the master spin‐
dle in the channel)

SETMS(<n>): The spindle with the number <n> is the master spindle
(may differ from the initial setting:
MD20090 $MC_SPIND_DEF_MASTER_SPIND).
The master spindle must be defined for the following functions:
● G95: Revolutional feedrate
● G96 S.../G961

S...:
Constant cutting rate in m/min or feet/min

● G97/G971: Cancel G96/G961 and freeze last spindle speed
● G63: Tapping with compensating chuck
● G33/G34/G35: Thread cutting
● G331/G332: Tapping without compensating chuck
● G4 S...: Dwell time in spindle revolutions
● Programming M3, M4, M5, S, SVC, SPOS, M19, SPOSA, M40, M41 to M45, and WAITS

without entering the spindle number
The current master spindle setting can be retained via RESET / part program end and
part program start. The setting is done via the machine data:
● MD20110 $MC_RESET_MODE_MASK
● MD20112 $MC_START_MODE_MASK

M3:
M<n>=3:

Clockwise spindle rotation for the master spindle
Clockwise spindle rotation for spindle number <n>

M4:
M<n>=4:

Counter-clockwise spindle rotation for the master spindle
Counter-clockwise spindle rotation for spindle number <n>

M5:
M<n>=5:

Spindle stop without orientation for the master spindle
Spindle stop without orientation for spindle number <n>

S...:
S<n>=...:

Spindle speed in rpm for the master spindle
Spindle speed in rpm for spindle number <n>

SVC=...:
SVC[<n>]=...:

Cutting rate in m/min or feet/min for the master spindle
Cutting rate in m/min or feet/min for the spindle <n>

SPOS=...:
SPOS[<n>]=...:

Spindle positioning for the master spindle
Spindle positioning for spindle number <n>
The block change is only performed when the spindle is in position.

S1: Spindles
17.7 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1355

Statement Description
SPOSA=...:
SPOSA[<n>]=...:

Spindle positioning for the master spindle
Spindle positioning for spindle number <n>
The block change is executed immediately. Spindle positioning continues, regardless of
further part program processing, until the spindle has reached its position.

SPOS=DC(...):
SPOS[<n>]=DC(...):
SPOSA=DC(...):
SPOSA[<n>]=DC(...):

The direction of motion is retained for positioning while in motion and the position ap‐
proached. When positioning from standstill, the position is approached via the shortest
path.

SPOS=ACN(...):
SPOS[<n>]=ACN(...):
SPOSA=ACN(...):
SPOSA[<n>]=ACN(...):

The position is always approached with negative direction of motion. If necessary, the
direction of motion is inverted prior to positioning.

SPOS=ACP(...):
SPOS[<n>]=ACP(...):
SPOSA=ACP(...):
SPOSA[<n>]=ACP(...):

The position is always approached with positive direction of motion.
If necessary, the direction of motion is inverted prior to positioning.

SPOS=IC(...):
SPOS[<n>]=IC(...):
SPOSA=IC(...):
SPOSA[<n>]=IC(...):

The travel path is specified. The direction of travel is determined from the sign in front of
the travel path. If the spindle is in motion, the direction of travel is inverted as necessary
to allow traversing in the programmed direction.
If the zero mark is crossed during traversing, the spindle is automatically synchronized
with the zero mark if no reference is available or if a new one has been requested via an
interface signal.

M19:
M[<n>]=19:

Positioning the master spindle to the position in SD43240
Positioning spindle number <n> to the position in SD43240
The block change is only performed when the spindle is in position.

M70:
M<n>=70:

Bring spindle to standstill and activate position control, select zero parameter set, activate
axis mode
for the master spindle
for spindle number <n>

SPCON:
SPCON(<n>):
SPCON(<n>,<m>):

Spindle position control ON
for the master spindle
for spindle number <n>
for spindle numbers <n> and <m>

PCOF:
SPCOF(<n>):
SPCOF(<n>,<m>):

Spindle position control OFF, activate speed control mode
for the master spindle
for spindle number <n>
for spindle numbers <n> and <m>

FPRAON(S<n>): Revolutional feedrate for spindle <n> ON, derived from the master spindle
FPRAON(S<n>,S<m>): Revolutional feedrate for spindle <n> ON, derived from spindle <m>

The revolutional feedrate value must be specified with FA[S<m>].
FPRAOF(S<n>): Revolutional feedrate for spindle <n> OFF
C30 G90 G1 F3600 Rotary axis C (spindle in axis mode) travels to the position 30 degrees at a speed of 3600

degrees/min = 10 rpm

S1: Spindles
17.7 Programming

Basic Functions
1356 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Statement Description

G25 S...:
G25 S<n>:

Programmable minimum spindle speed limitation
for the master spindle
for spindle number <n>

G26 S...:
G26 S<n>:

Programmable maximum spindle speed limitation
for the master spindle
for spindle number <n>

LIMS=...:
LIMS[<n>]=...:

Programmable maximum spindle speed limitation with G96, G961, G97
for the master spindle
for spindle number <n>

VELOLIM[<spindle>]=...: Programmable limiting of the configured gear stage dependent maximum speed
Using machine data (MD30455 $MA_MISC_FUNCTION_MASK, bit 6), when program‐
ming in the part program, it can be set as to whether VELOLIM is effective independent
of whether used as spindle or axis (bit 6 = 1) - or is able to be programmed separately
for each operating mode (bit 6 = 0). If they are to be separately effective, then the selection
is made using the name when programming:
● Spindle name S<n> for spindle operating modes
● Axis name, e.g. "C", for axis operation
The correction value refers to:
● Spindles in axis operation (if MD30455 Bit 6 = 0):

To the configured maximum axis velocity (MD32000 $MA_MAX_AX_VELO).
● Spindles in spindle or axis operation (if MD30455 bit 6 = 1):

To the maximum speed of the active gear unit stage
(MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[<n>])

For further explanations about the programming of VELOIM, see:
References:
Programming Manual, Work Preparation

WAITS: Synchronization command for master spindle
The subsequent blocks are not processed until the spindle programmed in a previous NC
block with SPOSA has reached its position (with exact stop fine).
WAITS after M5: Wait until the spindle is stationary.
WAITS after M3/M4: Wait until the spindle reaches its setpoint speed.

WAITS(<n>):
WAITS(<n>,<m>):

Synchronization command for spindle number <n>
Synchronization command for spindle numbers <n> and <m>

FA[S<n>]: Programming of positioning speed (axial feed) for spindle <n> in [deg/min]
With FA[S<n>]=0, the configured value takes effect once more:
MD35300 $MA_SPIND_POSCTRL_VELO

OVRA[S<n>]: Programming of the axial override value for spindle <n> in [%]
ACC[S<n>]: Programming of the axial acceleration capacity for spindle <n> in [%]

S1: Spindles
17.7 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1357

Statement Description
SPI(<n>): With SPI(<n>) a spindle number is converted into the data type AXIS according to

machine data
MD35000 $MA_SPIND_ASSIGN_TO_MACHAX[]
.
SPI is used if axis functions are to be programmed with the spindle.
The following commands are possible with SPI:
● Frame commands:

– CTRANS()
– CFINE()
– CMIRROR()
– CSCALE()

● Velocity and acceleration values for following spindles:
– FA[SPI(<n>)]
– ACC[SPI(<n>)]
– OVRA[SPI(<n>)]

● System variables:
– $P_PFRAME[SPI(<n>),TR]=<value>
– $P_PFRAME=

CTRANS(X,<axis value>,Y,<axis value>,SPI(<n>),<axis value>)
– $P_PFRAME=

CSCALE(X,<scale>,Y,<scale>,SPI(<n>),<scale>)
– $P_PFRAME=CMIRROR(S<n>,Y,Z)
– $P_UBFR=CTRANS(A,10) : CFINE (19,0.1)

For further explanations about the programming of SPI, see:
References:
Programming Manual, Work Preparation.

M40:
M<n>=40:

Automatic gear stage selection for the master spindle
Automatic gear stage selection for spindle number <n>

M41 to M45:
M<n>=41 to M<n>=45:

Select gear stage 1 to 5 for the master spindle
Select gear stage 1 to 5 for spindle number <n>.

Note

M functions M3, M4, M5, and M70 are not output in DB21, ... DBB194 and DBB202 if a spindle
is configured in a channel. These M functions are offered as extended M functions in DB21, ...
DBB68 ff. and in the relevant axis DBs, DB31, ... DBB86 ff.

References
More detailed explanations for programming the spindle can be found in:

● Programming Manual, Fundamentals

S1: Spindles
17.7 Programming

Basic Functions
1358 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.7.2 Programming via synchronized actions
M functions M40 to M45 can also be programmed in synchronized actions.

Please note:

● The programming of M40 ... M45 in the part program has no effect on the current status of
the automatic gear step change of synchronized actions, and vice versa.

● When programming S values with M40, automatic gear step change is effective separately
for synchronized actions and the part program.

● M40 is deactivated after POWER ON.
The gear step is not adjusted if an S value is specified from a synchronized action.

● An M40 command programmed using synchronized actions always remains active for
synchronized actions (modal) and is not reset on reset.

● M41 ... M45 selects first to fifth gear steps in accordance with the programming in the part
program.
An axis replacement is necessary in order to run the function.
Once the gear step change has been performed, the spindle status is neutral (same
response to M3, M4, M5 programming).

References
For further explanations regarding the programming of the spindle as well as spindle
movements from synchronized actions, refer to:

● Programming Manual, Job Planning

● Function Manual, Synchronized Actions

17.7.3 Programming spindle controls via PLC with FC18 - only 840D sl
When the PLC specifies the direction of rotation and speed using FC18, the NC can determine
and select a gear stage to match the speed. This is equivalent to the M40 functionality when
programming via the part program.

The correct start code must be set when FC18 is called in a PLC user program, in order to
activate gear stage selection.

References
More detailed explanations regarding the programming of spindle controls by PLC with FC18
can be found in:

● Function Manual, Basic Functions, Basic PLC Program (P3)

S1: Spindles
17.7 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1359

17.7.4 Programming using NC/PLC interface signals

17.7.4.1 Function

Note

The function is only available when using SINUMERIK Operate!

The following jobs/tasks can be issued to a spindle from the PLC user program using the job
interface DB31, … DBX30.0 - 4:

● Spindle stop

● Spindle start, clockwise rotation

● Spindle start, counter-clockwise rotation

● Select gear stage

● Spindle-start positioning

Job ID
At the NC side, a spindle job is identified as a result of a positive edge change of the appropriate
interface signal (0 → 1).

Requirements
At the instant of the spindle job, the following preconditions must be satisfied regarding the
channel, program and spindle states.

● Channel state:

– DB21, ... DBX35.6 == 1 (channel state "interrupted") OR

– DB21, … DBX35.7 == 1 (channel state "reset")

● Program state:

– DB21, ... DBX35.3 = 1 (program state "interrupted") OR

– DB21, ... DBX35.4 = 1 (program state "interrupted")

● Spindle state

– ("Channel axis" OR "Neutral axis") AND NO

– (positioning motion using FC18 OR synchronized action)

Note
Response in the event of an error

In the event of an error, i.e. if a job signal is set during an invalid state, then the corresponding
job is ignored without any feedback signal.

S1: Spindles
17.7 Programming

Basic Functions
1360 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Channel assignment
A spindle job is processed in that particular channel, which is assigned to the spindle at the
instant of the job.

The channel, which is assigned to the spindle, can be determined using the following NC/PLC
interface signal:

DB31, ... DBX68.0 - 3 (channel assignment of the NC axis/spindle)

Mode change
The definitions made within the context of the spindle jobs are kept beyond any mode change.

Program start
When an NC program starts in the channel, which is assigned to the spindle, then the actual
spindle definitions are kept. Spindle definitions can be changed using NC program commands
or using synchronized actions.

See also
M40: Automatic gear stage selection for speeds outside the configured switching thresholds
(Page 1375)

G2: Velocities, setpoint / actual value systems, closed-loop control (Page 343)

17.7.4.2 Commissioning: Machine data

Automatically accepting spindle definitions in setting data
Using the following machine data settings, spindle definitions are transferred from NC
programs, synchronized actions and the spindle control by the PLC (FC18) into the
corresponding setting data:
MD35035 $MA_SPIND_FUNCTION_MASK, bit x = <value>

Bit Value Meaning
4 1 A speed setpoint is entered via NC program, synchronized actions or FC18 is

transferred into the following spindle-specific setting data:
SD43200 $SA_SPIND_S[<spindle>]
Note
S values that are not programmed speed values are not transferred. e.g.:
● S value at constant cutting speed (G96, G961)
● S value for rotation-related dwell time (G4)

0 No speed setpoints are transferred into the setting data.

S1: Spindles
17.7 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1361

Bit Value Meaning
8 1 A cutting rate is entered as setpoint in the following spindle-specific setting data

via the NC program, synchronized actions or FC18 if the "Constant cutting rate"
function is active (G96, G961, G962):
SD43202 $SA_SPIND_CONSTCUT_S[<spindle>]
Note
S values that are not programmed cutting rate values are not transferred. e.g.:
● S value for rotation-related dwell time (G4)

0 No cutting rate setpoints are transferred into the setting data.
10 1 For the master spindle the feedrate type is transferred into the following setting

data:
SD43206 $SA_SPIND_SPEED_TYPE[<spindle>]

0 No feedrate type definitions for the master spindle are transferred into the setting
data.

With the spindle definitions transferred into the setting data, the spindle is traversed to execute
the spindle jobs.

17.7.4.3 Commissioning: NC/PLC interface signals

Job interface
● DB31, … DBX30.0 (spindle stop)

● DB31, … DBX30.1 (spindle start, clockwise)

● DB31, … DBX30.2 (spindle start, counter-clockwise)

● DB31, ... DBX30.3 (select gear stage)

● DB31, … DBX30.4 (spindle positioning start)

Relevant state signals
● DB21, ... DBX35.3 (program state "interrupted")

● DB21, ... DBX35.4 (program state "canceled")

● DB21, ... DBX35.7 (channel state "reset")

● DB21, ... DBX35.6 (channel state "interrupted")

● DB31, ... DBX68.0 - 3 (channel assignment of the NC axis/spindle)

● DB31, ... DBX 84.0 (constant cutting rate)

References:
A detailed description of the NC/PLC interface signals can be found in the NC Variables and
Interface Signals List Manual.

17.7.4.4 Speed setpoint (SD43200)
When starting a spindle using a spindle job, then the spindle-specific value entered in the
setting data becomes active as spindle speed:

S1: Spindles
17.7 Programming

Basic Functions
1362 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

SD43200 $SA_SPIND_S[<spindle>] (speed when the spindle is started via the PLC job
interface)

Writing a new speed value
In the following situations, a new speed value is written to the setting data:

● A speed setpoint is entered via NC program, synchronized action or FC18
Supplementary conditions:

– MD35035 $MA_SPIND_FUNCTION_MASK (Page 1361), bit 4 == 1

– DB31, ... DBX84.0 == 0 (constant cutting rate)

● Writing the setting data to the NC program or synchronized action

● Writing the setting data via HMI (OPI) @@@

Supplementary conditions
Gear stage change

A gear stage change is not initiated if the setpoint speed is out of the speed range of the actual
gear stage.

Exceptions, see Chapter "M40: Automatic gear stage selection for speeds outside the
configured switching thresholds (Page 1375)".

17.7.4.5 Entering a constant cutting rate (SD43202)
When starting a master spindle using a spindle job - and the "Constant cutting rate" spindle
speed type is active, then the spindle-specific value entered in the setting data becomes active
as constant cutting rate:

SD43202 $SA_SPIND_CONSTCUT_S[<spindle>] (cutting rate when the spindle starts via the
PLC job interface)

Writing a new cutting rate of value
In the following situations, a new constant cutting rate of the master spindle is written to the
spindle-specific setting data:

● A constant cutting rate is entered via NC program, synchronized action or FC18
Supplementary conditions:

– MD35035 $MA_SPIND_FUNCTION_MASK (Page 1361), bit 8 == 1

– DB31, ... DBX84.0 == 1 (constant cutting rate active)

● Writing the setting data to the NC program or synchronized action

● Writing the setting data via HMI (OPI) @@@

S1: Spindles
17.7 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1363

System of units
When writing the setting data, the value is interpreted corresponding to the following secondary
conditions:

● Writing via NC program or synchronized action:

– G700 active: feet/min

– G710 active: m/min

– G70, G71 active: Depending on the setting in MD10240
$MN_SCALING_SYSTEM_IS_METRIC

● Writing via SINUMERIK Operate:

– Depending on the setting in MD10240 $MN_SCALING_SYSTEM_IS_METRIC

● Writing via FC18:

– Function number 10: "constant cutting rate (m/min)"

– Function number 11: "constant cutting rate (feet/min)"

Reading via system or OPI variable

In the NC program, synchronized action or HMI, the currently entered setpoint for the constant
cutting rate can be read using the following system data:

System variable OPI variable Meaning
$P_CONSTCUT_S --- Last programmed cutting rate
$AC_CONSTCUT_S acConstCutS Actual constant cutting rate

17.7.4.6 Entering the spindle speed type for the master spindle (SD43206)
Definition of the spindle speed type for the master spindle from part program, FC18 or
synchronized actions are written to the following setting data from all the usual sources:

SD43206 $SA_SPIND_SPEED_TYPE (spindle speed type for spindle start via PLC interface)

The value range and functionality correspond to the 15th G group (feedrate type).

Permissible values are G values: 93, 94, 95, 96, 961, 97 and 971.

Depending on the setting, for DB31, … DBX30.1/2 (spindle start, clockwise/counter-clockwise)
either the speed from SD43200 $SA_SPIND_S or the cutting speed from
SD43202 $SA_SPIND_CONSTCUT_S is active:

93, 94, 95, 97 and 971: The master spindle is started with the speed from SD43200.
96 and 961: The speed of the master spindle is obtained from the specified

cutting rate (SD43202) and the radius of the transverse axis.

S1: Spindles
17.7 Programming

Basic Functions
1364 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.7.5 External programming (PLC, HMI)

SD43300 and SD42600
The revolutional feedrate behaviour can be selected externally via the axial setting data:
SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE (Rotational feedrate for spindles)
in JOG operating mode using the channel-specific setting data
SD42600 $SC_JOG_FEED_PER_REV_SOURCE (Revolutional fedrate control in JOG mode)
.

The following settings can be made via the setting data:

>0: The machine axis number of the rotary axis/spindle from which the revolutional feedrate shall
be derived.

-1: The revolutional feedrate is derived from the master spindle of the channel in which the axis/
spindle is active in each case.

0: Function is deselected.

FPRAON (S2)
Revolutional feedrate for spindle S2 ON, derived from the master spindle

FPRAON (S2, A)
Revolutional feedrate for spindle S2 ON, derived from axis A.
The revolutional feedrate value must be specified with FA[Sn].

FPRAOF (S2)
Revolutional feedrate for spindle S2 OFF.

SPI(n)
It is also possible to program SPI(n) instead of SPI(Sn).

S1: Spindles
17.7 Programming

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1365

17.8 Spindle monitoring

17.8.1 Permissible speed ranges
The permissible speed range of a spindle results from the parameterized or programmed
speed limit values and the active spindle function (G94, G95, G96, G961, G97, G971, G33,
G34, G35, G331, G332, etc.).

Figure 17-8 Ranges of spindle monitoring functions / speeds

S1: Spindles
17.8 Spindle monitoring

Basic Functions
1366 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

17.8.2 Axis/spindle stationary
Functions such as tool change, open machine doors, path feedrate enable, etc. are only
possible at the machine when the spindle is stationary.

Function
The "axis/spindle stationary" state is reached if a setpoint is no longer generated and the
spindle actual speed falls below the configured threshold value for "axis/spindle stationary":

MD36060 $MA_STANDSTILL_VELO_TOL (max. velocity/speed for "axis/spindle stationary")

If the spindle has come to a standstill, the following NC/PLC interface signal is set:

DB31, ... DBX61.4 (axis/spindle stationary)

Effectiveness
Monitoring for spindle stop is effective in all spindle modes and in axis mode.

Deactivate path feed
If a spindle is stopped in the open-loop control mode (M5), then path feed is deactivated if the
following machine data is set:

MD35510 $MA_SPIND_STOPPED_AT_IPO_START (feedrate enable for spindle stopped)

The path feed is re-enabled if the spindle comes to a standstill.

17.8.3 Spindle in setpoint range

Function
"Spindle in setpoint range" spindle monitoring checks whether:

● The programmed spindle speed is reached.

● The spindle is at a standstill:
DB31, ... DBX61.4 (axis/spindle stationary) = 1

● The spindle is still in the acceleration or deceleration phase.

In the spindle mode, open-loop control mode, the setpoint speed is compared with the actual
speed. If the actual speed deviates by more than the spindle tolerance that can be entered via
MD (refer below) then:

● The following axial NC/PLC interface signal is set to "0":
DB31, ... DBX83.5 (spindle in setpoint range) = 0

● The next machining block is not enabled (depending on the setting in
MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START, see "Axis/spindle stationary
(Page 1367)").

S1: Spindles
17.8 Spindle monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1367

Spindle setpoint speed
The spindle speed setpoint is derived from the programmed speed taking into account the
spindle override and the active limits.

If the programmed speed is limited or increased, this is displayed using DB31, ... DBX83.1
(speed setpoint limited) or DB31, ... DBX83.2 (speed setpoint increased) (see also "Minimum /
maximum speed of the gear stage (Page 1368)"). The means that reaching the tolerance range
of the setpoint speed is not prevented.

Tolerance range for setpoint speed
The tolerance range of the setpoint speed is defined by the spindle speed tolerance factor:

MD35150 $MA_SPIND_DES_VELO_TOL

Example:

MD35150 $MA_SPIND_DES_VELO_TOL = 0.1

⇒ The spindle actual speed may deviate ±10% from the setpoint speed.

The following NC/PLC interface signal is set to "1" if the spindle actual speed lies within the
tolerance range:

DB31, ... DBX83.5 (spindle in setpoint range) = 1

Special case:

If the spindle speed tolerance is set to "0", then DB31, ... DBX83.5 (spindle in the setpoint
range) is permanently set to "1" and no path control is performed.

Speed change
Path control only takes place at the start of the traverse block and only if a speed change has
been programmed. If the speed tolerance range is exited, e.g. due to an overload, the path
movement is not automatically brought to a standstill.

17.8.4 Minimum / maximum speed of the gear stage

Minimum speed
The minimum speed of the gear stage of a spindle is configured in the machine data:

MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT[<n>]

The speed setpoints, generated taking into account the override, do not fall below the minimum
speed.

If an S value is programmed, which is less than the minimum speed, the setpoint speed is
increased to the minimum speed and the following NC/PLC interface signal is set:

DB31, ... DBX83.2 (speed setpoint increased)

S1: Spindles
17.8 Spindle monitoring

Basic Functions
1368 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The minimum gear stage speed is effective only in speed mode and can only be undershot by:

● Spindle override 0%

● M5

● S0

● DB31, ... DBX4.3 (spindle stop)

● DB31, ... DBX2.1 (withdraw controller enable)

● DB21, ... DBX7.7 (reset)

● DB31, ... DBX2.2 (delete distance-to-go / spindle reset)

● DB31, ... DBX18.5 (oscillation speed)

● DB21, ... DBX7.4 (NC stop axes plus spindles)

● DB31, ... DBX1.3 (axis/spindle disable)

● DB31, ... DBX16.7 (delete S value)

Maximum speed
The maximum speed of the gear stage of a spindle is configured in machine data:

MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[<n>]

The speed setpoints, generated taking into account the override, are limited to this speed.

The following NC/PLC interface signal is set in the case that the speed is limited:

DB31, ... DBX83.1 (speed setpoint limited)

17.8.5 Diagnosis of spindle speed limitation

System variables
The effective/limiting spindle parameters can be read via the following system variables: The
system variables must be indexed with the spindle number and they return values only relevant
in the speed control and spindle position modes.

System variable Meaning
$AC_SMAXVELO[<n>] Maximum possible spindle speed [RPM].
$AC_SMAXVELO_INFO[<n>] Identifier for the speed-limiting data element.
$AC_SMINVELO[<n>] Minimum possible spindle speed [RPM].
$AC_SMINVELO_INFO[<n>] Identifier for the speed-increasing data element.
$AC_SMAXACC[<n>] Maximum possible spindle acceleration [rev/s2].
$AC_SMAXACC_INFO[<n>] Identifier for the acceleration-limiting data element.
$AC_SPIND_STATE[<n>] Spindle status in speed-control mode.
<n>: 0, 1, 2, ... maximum spindle number (0: current master spindle of the channel)

S1: Spindles
17.8 Spindle monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1369

References
The detailed description of the system variables can be found in:

List Manual, System Variables

NC/PLC interface signals
The limit or increase of the spindle speed is signaled with the following NC/PLC interface
signals:

● DB31, ... DBX83.1 (speed setpoint limited)

● DB31, ... DBX83.2 (speed setpoint increased)

Boundary conditions

Spindle mode
The values delivered by the system variables depend on the spindle mode:

● Speed control mode:
All system variables deliver current values.

● Positioning mode:
The system variables $AC_SMAXVELO, $AC_SMAXACC and $AC_SPIND_STATE
deliver valid values. The system variables $AC_SMINVELO and $AC_SMINVELO_INFO
deliver the data that becomes effective on changing to the speed control mode.

● Axis mode (e.g. if the spindle is used by a transformation TRANSMIT, TRACYL,... or follows
a path motion as a special axis):
The system variable $AC_SPIND_STATE can also be used in the axis mode. Separate
system variables are available in the axis mode for dynamic data:
$AA_VMAXM, $AA_VMAXB and $AA_VLFCT.

SERUPRO block search
The following control response is obtained for a SERUPRO block search:

● The system variable $AC_SMAXVELO / $AC_SMAXACC delivers the maximum
representable speed / acceleration.

● $AC_SMAXVELO_INFO and $AC_SMAXACC_INFO deliver the VALUE "0" (no limitation
active).

● $AC_SMINVELO and $AC_SMINVELO_INFO deliver data as for normal part program
processing.

● $AC_SPIND_STATE returns the states as set for SERUPRO.

Example
The effective/limiting spindle parameters for spindle 1 are written cyclically in the R parameter
and displayed as R parameter in the "Parameters" > "User variable" operating area on the HMI.

Program code
N05 IDS=1 WHENEVER TRUE DO $R10=$AC_SMAXVELO[1]

S1: Spindles
17.8 Spindle monitoring

Basic Functions
1370 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code
N10 IDS=2 WHENEVER TRUE DO $R11=$AC_SMAXVELO_INFO[1]
N15 IDS=3 WHENEVER TRUE DO $R12=$AC_SMINVELO[1]
N20 IDS=4 WHENEVER TRUE DO $R13=$AC_SMINVELO_INFO[1]
N25 IDS=5 WHENEVER TRUE DO $R14=$AC_SPIND_STATE[1]

See also
Spindle in setpoint range (Page 1367)

17.8.6 Maximum spindle speed

Maximum spindle speed: parameterizable, machine-dependent limit value
The maximum machine-dependent spindle speed – for protecting the spindle chuck or the tool,
for example – is parameterized using the following machine data:

MD35100 $MA_SPIND_VELO_LIMIT (maximum spindle speed)

The spindle speed is monitored by the NC in the actual values, i.e. taking into account the
current gear stage.

Note
Machine manufacturer

It is recommended that changes to the maximum spindle speed in machine data MD35100
only be made when the spindle is stationary. This is particularly important for spindles that are
active after NC reset (see also MD35040 SPIND_ACTIVE_AFTER_RESET). Otherwise alarm
22100 may be output.

References
● Manufacturer documentation: List Manual, "Detailed Machine Data Description"
● User documentation: Diagnostics Manual

Responses to violation
If the actual speed of a spindle exceeds the parameterized maximum spindle speed by more
than the tolerance value,

"Actual spindle speed" > MD35100 $MA_SPIND_VELO_LIMIT (maximum
spindle speed) +
MD35150 $MA_SPIND_DES_VELO_TOL (spindle speed tolerance value)
the following effects can be seen on the NC side.

● DB31, ... DBX83.0 = 1 (speed limit exceeded)

● Alarm 22100 "Chuck speed exceeded" is displayed

● All axes and spindles of the channel are stopped

S1: Spindles
17.8 Spindle monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1371

Note
Rotary axis / spindle

If a spindle is also temporarily operated as a rotary axis, alarm 22100 "Chuck speed exceeded"
is displayed if:

"Actual speed of the rotary axis" > MD35100 $MA_SPIND_VELO_LIMIT
(maximum spindle speed) +
MD35150 $MA_SPIND_DES_VELO_TOL (spindle speed tolerance value)
Remedy: Adjust the maximum spindle speed to the maximum rotary axis speed during rotary
operation:

MD35100 $MA_SPIND_VELO_LIMIT = MD32000 $MA_MAX_AX_VELO (maximum
speed of the rotary axis)
For the change to take effect a reset must be triggered.

Maximum spindle speed: Configurable process-dependent limit value
The maximum process-related spindle speed is configured through the following setting data:

SD43235 $SA_SPIND_USER_VELO_LIMIT (maximum spindle speed)

Changes can be made by writing the setting data through:

● Programming in an NC program

● Manually through the user interface by the machine operator

Changes become effective immediately.

Limitation of the speed setpoint
Where appropriate, the controller limits programmed spindle speed setpoints to the values
specified in the setting data. The limitation is then displayed through the following system
variables:

$AC_SMAXVELO_INFO[<Spindle number>] == 21

17.8.7 Maximum encoder limit frequency

CAUTION

Limit violation

The maximum encoder frequency limit of the actual spindle position encoder is monitored by
the control (the limit can be exceeded). It is the responsibility of the machine tool manufacturer
to ensure that the configuration of the spindle motor, gearbox, measuring gearbox, encoder
and machine data prevents the maximum speed of the actual spindle position encoder being
exceeded.

S1: Spindles
17.8 Spindle monitoring

Basic Functions
1372 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Maximum encoder frequency exceeded.
If the spindle speed reaches a speed (large S value programmed), which exceeds the
maximum encoder limit frequency (the maximum mechanical speed limit of the encoder must
not be exceeded), the synchronization is lost. The spindle continues to rotate, but with reduced
functionality.

With the following functions, the spindle speed is reduced until the active measurement system
is operating below the encoder limit frequency again:

● Thread cutting (G33, G34, G35)

● Tapping without compensating chuck (G331, G332)

● Revolutional feedrate (G95)

● Constant cutting rate (G96, G961, G97, G971)

● SPCON (position-controlled spindle operation)

When the encoder limit frequency is exceeded
NC/PLC IS:
DB31, ... DBX60.4 (referenced/synchronized 1)
or
DB31, ... DBX60.5 (referenced/synchronized 2)
are reset for the measurement system in question and NC/PLC IS:
DB31, ... DBX60.2 (encoder limit frequency 1 exceeded)
or
DB31, ... DBX60.3 (encoder limit frequency 2 exceeded)
are set.

If the spindle is in axis mode, the maximum encoder limit frequency must not be exceeded.
The maximum velocity (MD32000 $MA_MAX_AX_VELO) must lie below the maximum
encoder limit frequency; otherwise, alarm 21610 is output and the axis is brought to a standstill.

Maximum encoder limit frequency undershot
If the maximum encoder frequency limit has been exceeded and the speed subsequently falls
below the maximum encoder limit frequency (smaller S value programmed, spindle override
switch changed, etc.), the spindle is automatically synchronized with the next zero mark or the
next proximity switch signal. The new synchronization will always be carried out for the active
position measuring system that has lost its synchronization and whose maximum encoder limit
frequency is currently undershot.

Special features
If the following functions are active, the maximum encoder frequency cannot be exceeded:

● Spindle positioning mode, axis mode

● Thread cutting (G33, G34, G35)

● Tapping without compensating chuck G331, G332 (does not apply to G63)

● Revolutional feedrate (G95)

● Constant cutting rate (G96, G961, G97, G971)

● SPCON

S1: Spindles
17.8 Spindle monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1373

17.8.8 End point monitoring

End point monitoring
During positioning (the spindle is in positioning mode), the system monitors the distance from
the spindle (with reference to the actual position) to the programmed spindle position setpoint
(end point).

For this to work, in machine data:
MD36000 $MA_STOP_LIMIT_COARSE (Exact stop limit coarse)
and
MD36010 $MA_STOP_LIMIT_FINE (Exact stop limit fine)
two limit values can be defined as an incremental path starting from the spindle position
setpoint.

Regardless of the two limit values, the positioning of the spindle is always as accurate as
defined by the connected spindle measurement encoder, the backlash, the transmission ratio,
etc.

Exact stop window dependent on parameter set
Various parameter-set-dependent exact stop windows can be configured.
This makes it possible to work to different levels of accuracy in axis mode and spindle
positioning. The exact stop window can be configured separately for each gear step for spindle
positioning.

Figure 17-9 Exact stop zones of a spindle

S1: Spindles
17.8 Spindle monitoring

Basic Functions
1374 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DB31, ... DBX60.7 and DB31, ... DBX60.6 (position reached with exact stop coarse / fine)
The two limit values defined by machine data:
MD36000 $MA_STOP_LIMIT_COARSE (Exact stop limit coarse)
and
MD36010 $MA_STOP_LIMIT_FINE (Exact stop limit fine)
are output to the PLC using NC/PLC IS:
DB31, ... DBX60.7 (Position reached with exact stop coarse)
and
DB31, ... DBX60.6 (Position reached with exact stop fine).

Block change for SPOS and M19
When positioning the spindle with SPOS or M19 the block is changed
dependent on end point monitoring with NC/PLC IS:
DB31, ... DBX60.6 (Position reached with exact stop fine).

All other functions programmed in the block must have achieved their end criterion (e.g., all
auxiliary functions acknowledged by the PLC).

With SPOSA, the block change does not depend on the monitoring of the end point.

17.8.9 M40: Automatic gear stage selection for speeds outside the configured switching
thresholds

Function
When M40 is active, an automatic gear stage selection is also made if the programmed spindle
speed S… lies outside the configured switching thresholds.

S1: Spindles
17.8 Spindle monitoring

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1375

In this case, a distinction is made between the following cases:

● Programmed speed too high
The programmed speed is higher than the configured maximum speed of the numerically
largest gear stage:
S... > MD35110 $MA_GEAR_STEP_MAX_VELO[<n>]
In this case, the highest gear stage is selected (according to MD35090
$MA_NUM_GEAR_STEPS).

● Programmed speed too low
The programmed spindle speed is less than the configured minimum speed of the first gear
stage:
S... < MD35120 $MA_GEAR_STEP_MIN_VELO[1]
In this case, the first gear stage is selected.

● Programmed speed = 0
When programming speed 0 (S0) the behavior depends on the configuration of the
minimum speed of the first gear stage MD35120 $MA_GEAR_STEP_MIN_VELO[1]:

– If MD35120 $MA_GEAR_STEP_MIN_VELO[1] = 0 is configured, then when
programming S0, the first gear stage is selected.

– If MD35120 $MA_GEAR_STEP_MIN_VELO[1] > 0 is configured, when programming
S0 no gear stage change is performed and the last gear stage remains active. This
means that it remains possible to stop the spindle with S0 (instead of M5) without initiating
a gear stage change.

Effectiveness
Selecting the highest gear stage or the first gear stage for automatic gear stage selection (M40)
is active when programming spindle speeds S… using the part program, in synchronized actions
or when entering via PLC FC18.

For speed programming from the part program for tapping with G331, the behavior is also
supported for the second data set to select the gear stage (precondition:
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, bit 5 = 1).

Supplementary conditions
Enabling the gear stage change

The precondition for the function is that the gear stage change is generally enabled via machine
data:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE (assign parameters to the gear stage
change).

MD35090 $MA_NUM_GEAR_STEPS (number of gear stages set up)

Example
Automatic gear stage selection M40 is the basic setting after NC reset.

S1: Spindles
17.8 Spindle monitoring

Basic Functions
1376 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Part program:

Program code Comment
...
N15 S3500 M3 ; S3500 is greater than MD35110 of the 2nd gear stage. The

2nd gear stage is selected.
...
N50 S0 M3 ; Spindle is stopped, S0 does not request a gear stage

change (special handling, S0).
...
N95 S5 M3 ; S5 is less than MD35120 of the 1st gear stage. The 1st

gear stage is selected.
...

Configuring data for spindle 1 (AX5):

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE[AX5] = 1 ; Enable gear stage change
MD35090 $MA_NUM_GEAR_STEPS[AX5] = 2 ; Number of existing gear

stages
MD35110 $MA_GEAR_STEP_MAX_VELO[1,AX5] = 500 ; Upper switching threshold

for gear stage 1
MD35120 $MA_GEAR_STEP_MIN_VELO[1,AX5] = 10 ; Lower switching threshold

for gear stage 1
MD35110 $MA_GEAR_STEP_MAX_VELO[2,AX5] = 2000 ; Upper switching threshold

for gear stage 2
MD35120 $MA_GEAR_STEP_MIN_VELO[2,AX5] = 500 ; Lower switching threshold

for gear stage 2

17.9 Spindle with SMI 24 (Weiss spindle)

17.9.1 General Information
In order to be able to process the sensor data of the spindle in the control, the sensors must
first be connected to I/O modules and transferred to the PLC via fieldbus (PROFIBUS DP or
PROFINET I/O).

For a spindle with SMI 24 (Weiss spindle), the sensor data are transferred to the drive using
DRIVE-CLiQ and are available there in drive parameters. When using cyclic drive telegram
139, sensor data from the drive are transferred to the control. They are then available there in
the following system data:

● System variable

● OPI variables

● NC/PLC interface signals

S1: Spindles
17.9 Spindle with SMI 24 (Weiss spindle)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1377

Requirement
● The spindle is connected to the drive via Sensor Module SMI 24 using DRIVE-CLiQ.

● Drive telegram 139 is configured for the spindle.

Note
Drive telegram 139

In principle, a spindle with Sensor Module SMI 24 can also be operated with another drive
telegram. However, sensor data is only transferred to the control using drive telegram 139.

17.9.2 Sensor data

Sensors in the spindle motor
The spindle sensors provide information about the clamping device and the angular position
of the motor shaft:

● Analog sensor S1: Clamped state
Voltage value in the range from 0 - 10 V depending on the position of the draw bar.

● Digital sensor S4: Piston end position

– 0 = piston not in position

– 1 = piston is in position, i.e. piston is free to move

● Digital sensor S5: Angular position of the motor shaft

– 0 = motor shaft not aligned

– 1 = motor shaft is in position (requirement: The spindle is stationary)

Note
Spindle with sensor module SMI 24 and axis container

A spindle with sensor module SMI 24 and drive telegram 139 for the transmission of sensor
data to the control must not be part of an axis container whose axes are distributed over several
NCUs via an NCU link.

Transmission of sensor data
Sensor data is transferred to the control from sensor module SMI 24 in cyclic drive telegram
139 as process data 11 - 14. Drive telegram 139 is based on drive telegram 136, where sensor
data is transferred instead of the data of the 2nd encoder. A detailed description of drive
telegram 139 can be found in:

References:
SINAMICS S120/S150 List Manual; Function Diagrams, Section: PROFIdrive

S1: Spindles
17.9 Spindle with SMI 24 (Weiss spindle)

Basic Functions
1378 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System data: Sensor data
Sensor data can be read into the control via the following system data:

Meaning System variable
$VA_

NC/PLC inter‐
face

DB31, ...

OPI variables Drive param‐
eters

Sensor configuration MOT_SENSOR_CONF[<axis>] DBB132,
DBB133

vaMotSensorConf r5000

Clamped state 1) MOT_CLAMPING_STATE[<axis>] DBW134 vaMotClampingState r5001
Measured value ana‐
log sensor S1 1) 2)

MOT_SENSOR_ANA[<axis>] DBW136 vaMotSensorAna r5002

Status digital sensors MOT_SENSOR_DIGI[<axis>] DBB138,
DBB139

vaMotSensorDigi r5003

<axis>: Machine axis name: AX1 ... AXn or spindle name: S1 ... Sm

1) See Section "Clamped state (Page 1380)"
2) Sensor S1: 0 - 10 V

Analog actual value: 10000 increments, resolution 1 mV
Example:
SIMATIC S7 input module: 27648 increments, resolution 0.36 mV
Adaptation factor if you change to a spindle with SMI 24: (10000 incr. * 1 mV) / (27648 incr.
* 0.36 mV) = 1.00469393

Detailed system data description

NC/PLC interface signals NC Variables and Interface Signals List Manual
System variable: List Manual, System Variables
OPI variables: List Manual 2; Variables
Drive parameter: SINAMICS S120/S150 List Manual

S1: Spindles
17.9 Spindle with SMI 24 (Weiss spindle)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1379

17.9.3 Clamped state
Sensor S1 supplies an analog voltage value 0 V - 10 V depending on the position of the
clamping device. The voltage value is available in the system data for evaluation of the clamped
state on the user side.

Note

The subsequently described evaluation of sensor S1 to generate the state value for the
clamped state and limiting the spindle speed are only realized if the following state values are
displayed in drive parameter r5000:
● r5000.0 == 1: Sensors available
● r5000.1 == 1: Sensor S1 (clamped state) available
● r5000.10 == 1: State values are generated, speed limits p5043 active

See also Section "Sensor data (Page 1378)", paragraph: "System data: sensor data"

State value
To simplify the evaluation, the clamped state in the system data is also available as state value
0 - 11.

A voltage range corresponds to a certain clamped state. The voltage ranges can be set using
drive parameter p5041[0...5].

A voltage tolerance can also be set for the voltage ranges using drive parameter p5040.

Note

The voltage range ± voltage tolerance must not overlap.

Speed limits
For the clamped states with state values 3 - 10, speed limit values can be specified using drive
parameter p5043[0...6]. In the other clamped states (state values 1, 2 and 11), a limit value of
0 [rpm] permanently applies.

In the various clamped states, the controller limits the spindle speed to the applicable limit.

Note
Changing the speed limits

A change of the speed limits in drive parameter p5043[0...6] is only effective in the controller
(limitation of the spindle speed to the new speed limit) after:
● Power-on reset or when the controller is switched-off/switched-on
● Deselection of the "Parking" state for the spindle (see Section "Parking a machine axis

(Page 125)")

S1: Spindles
17.9 Spindle with SMI 24 (Weiss spindle)

Basic Functions
1380 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Context: State value, voltage range and speed limit

State value 1) Clamped state Voltage range 2) Speed limit
Upper limit Lower limit

0 Sensor S1 not available or state values inac‐
tive

--- --- ---

1 State initialization running --- --- 3)

2 Released with signal (error state) --- p5041[0] + p5040 3)

3 Released p5041[0] p5041[1] p5043[0]
4 Clamping with tool --- --- p5043[1]
5 Releasing with tool --- --- p5043[2]
6 Releasing without tool --- --- p5043[3]
7 Clamped with tool AND S4 == 0 p5041[2] p5041[3] p5043[4]
8 Clamped with tool AND S4 == 1 p5043[4]
9 Clamping without tool --- --- p5043[5]
10 Clamped without tool p5041[4] p5041[5] p5043[6]
11 Clamped with signal (error state) p5041[5] - p5040 --- 3)

1) The state value can be read into the controller using the following system data:
● System variable: $VA_MOT_CLAMPING_STATE[<axis>]
● NC/PLC interface: DB31, ... DBW134
● OPI variables: vaMotClampingState
● Drive parameters: r5001

2) p5041[0...5]: Voltage threshold values, p5040: Voltage threshold values tolerance
3) Speed limit permanently set: 0 [rpm]

17.9.4 Additional drive parameters

P5042:Transition time
The following times can be set in drive parameter p5042 for the clamped state identification:

● p5042[0]: Stabilization time for "clamped with tool"
The clamped state "clamped with tool" must be present in the spindle motor for at least the
set stabilization time before the state is signaled to the controller.

● p5042[1]: Maximum time for clamping
The transition from the "released" state to the "clamped with tool" or "clamped without tool"
state may take – as a maximum – the set time.

r5044: Speed limitation from the clamping cycle
The speed limit from p5043[6] which is active in the clamped state "clamped without tool" is
displayed in drive parameter r5044.

A value of 65535 means that the speed limit is not active.

S1: Spindles
17.9 Spindle with SMI 24 (Weiss spindle)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1381

17.10 Supplementary conditions

17.10.1 Changing control parameters
For spindles that are not in position-controlled mode, machine data changes also take effect
when the spindle is not stationary with the NEWCONF command.

In the case of changes to control parameters, speed setpoint jumps may occur when the new
values take effect. Control parameters are, for example:

● MD32200 $MA_POSCTRL_GAIN (servo gain factor)

● MD32210 $MA_POSCTRL_INTEGR_TIME (position controller integral time)

● MD32410 $MA_AX_JERK_TIME (time constant for the axial jerk filter)

17.11 Examples

17.11.1 Automatic gear step selection (M40)

Example
To illustrate the contents of the new block search variables:
Assumptions about automatic gear step selection (M40):

S0...500 1. Gear step
S501..1000 2. Gear step
S1001..2000 3. Gear step

Content of system variables:
$P_SEARCH_S ; Collected S value
$P_SEARCH_DIR ; Collected direction of rotation
$P_SEARCH_GEAR ; Collected gear step

Collected S value: Direction of rota‐
tion:

Gear step:

 ; 0/last speed -5 40/last GS
N05 G94 M40 M3 S1000 ; 1000 3 40
N10 G96 S222 : 222 3 40
N20 G97 ; f (PlanAxPosPCS)* 3 40
N30 S1500 ; 1500 3 40
N40 SPOS=0** ; 1500 -19 40

S1: Spindles
17.11 Examples

Basic Functions
1382 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N50 M19** ; 1500 -19 40
N60 G94 G331 Z10 S300 ; 300 -19 40
N70 M42 ; 300 -19 42
N80 M4 ; 300 4 42
N90 M70 ; 300 70 42
N100 M3 M40 ; 300 3 40
N999 M30

* f (PlanAxPosPCS): The speed depends on the current position of the transverse axis in the
workpiece coordinate system.

** ($P_SEARCH_SPOS and $P_SEARCH_SPOSMODE are programmed)

17.12 Data lists

17.12.1 Machine data

17.12.1.1 NC-specific machine data

Number Identifier: $MN_ Description
10192 GEAR_CHANGE_WAIT_TIME Wait time for acknowledgment of a gear stage change

during reorganization
10714 M_NO_FCT_EOP M function for spindle active after RESET
12060 OVR_SPIND_IS_GRAY_CODE Spindle override Gray-coded
12070 OVR_FACTOR_SPIND_SPEED Evaluation of the spindle override switch
12080 OVR_REFERENCE_IS_PROG_FEED Override reference velocity
12082 OVR_REFERENCE_IS_MIN_FEED Defines the reference of the path override
12090 OVR_FUNCTION_MASK Selection of override specifications

17.12.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20090 SPIND_DEF_MASTER_SPIND Initial setting for master spindle on channel
20092 SPIND_ASSIGN_TAB_ENABLE Enabling/disabling of spindle converter
20850 SPOS_TO_VDI Output of M19 to the PLC with SPOS/SPOSA
22400 S_VALUES_ACTIVE_AFTER_RESET S function active after RESET

S1: Spindles
17.12 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1383

17.12.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30300 IS_ROT_AX Rotary axis
30310 ROT_IS_MODULO Modulo conversion
31044 ENC_IS_DIRECT2 Encoder on intermediate gear
31050 DRIVE_AX_RATIO_DENOM Load gear denominator
31060 DRIVE_AX_RATIO_NUMERA Load gear numerator
31064 DRIVE_AX_RATIO2_DENOM Intermediate gear denominator
31066 DRIVE_AX_RATIO2_NUMERA Intermediate gear numerator
31070 DRIVE_ENC_RATIO_DENOM Measuring gear denominator
31080 DRIVE_ENC_RATIO_NUMERA Measuring gear numerator
31122 BERO_DELAY_TIME_PLUS BERO delay time in plus direction
31123 BERO_DELAY_TIME_MINUS BERO delay time in minus direction
32200 POSCTRL_GAIN KV factor
32800 EQUIV_CURRCTRL_TIME Equivalent time constant of the current control loop for

feedforward control
32810 EQUIV_SPEEDCTRL_TIME Equivalent time constant of the speed control loop for

feedforward control
32910 DYN_MATCH_TIME Time constant for dynamic response adaptation
34040 REFP_VELO_SEARCH_MARKER Reference point creep velocity
34060 REFP_MAX_MARKER_DIST Monitoring of zero mark distance
34080 REFP_MOVE_DIST Reference point distance / destination point for dis‐

tance-coded system
34090 REFP_MOVE_DIST_CORR Reference point offset / absolute offset, distance-coded
34100 REFP_SET_POS Reference point value
34200 ENC_REFP_MODE Referencing mode
35000 SPIND_ASSIGN_TO_MACHAX Assignment of spindle to machine axis
35010 GEAR_STEP_CHANGE_ENABLE Type of gear stage change
35012 GEAR_STEP_CHANGE_POSITION Gear stage change position
35014 GEAR_STEP_USED_IN_AXISMODE Gear stage for axis mode with M70
35020 SPIND_DEFAULT_MODE Basic spindle setting
35030 SPIND_DEFAULT_ACT_MASK Activate basic spindle setting
35035 SPIND_FUNCTION_MASK Setting of spindle-specific functions
35040 SPIND_ACTIVE_AFTER_RESET Spindle active after reset
35090 NUM_GEAR_STEPS Number of set gear stages
35092 NUM_GEAR_STEPS2 2nd gear stage data set: Number of set gear stages
35100 SPIND_VELO_LIMIT Maximum spindle speed
35110 GEAR_STEP_MAX_VELO[n] Maximum speed for automatic gear stage change
35112 GEAR_STEP_MAX_VELO2[n] 2nd gear stage data set: Maximum speed for automatic

gear stage change
35120 GEAR_STEP_MIN_VELO[n] Minimum speed for automatic gear stage change

S1: Spindles
17.12 Data lists

Basic Functions
1384 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Number Identifier: $MA_ Description
35122 GEAR_STEP_MIN_VELO2[n] 2nd gear stage data set: Minimum speed for automatic

gear stage change
35130 GEAR_STEP_MAX_VELO_LIMIT[n] Maximum speed of gear stage
35135 GEAR_STEP_PC_MAX_VELO_LIMIT[n] Maximum speed of gear stage in position control
35140 GEAR_STEP_MIN_VELO_LIMIT[n] Minimum speed of gear stage
35150 SPIND_DES_VELO_TOL Spindle speed tolerance
35160 SPIND_EXTERN_VELO_LIMIT Spindle speed limitation from PLC
35200 GEAR_STEP_SPEEDCTRL_ACCEL[n] Acceleration in speed control mode
35210 GEAR_STEP_POSCTRL_ACCEL[n] Acceleration in position control mode
35212 GEAR_STEP_POSCTRL_ACCEL2[n] 2nd gear stage data set: Acceleration in position control

mode
35220 ACCEL_REDUCTION_SPEED_POINT Speed limit for reduced acceleration
35230 ACCEL_REDUCTION_FACTOR Reduced acceleration
35300 SPIND_POSCTRL_VELO Position control activation speed
35350 SPIND_POSITIONING_DIR Positioning direction of rotation for a non-synchronized

spindle
35400 SPIND_OSCILL_DES_VELO Oscillation speed
35410 SPIND_OSCILL_ACCEL Oscillation acceleration
35430 SPIND_OSCILL_START_DIR Oscillation start direction
35440 SPIND_OSCILL_TIME_CW Oscillation time for M3 direction
35450 SPIND_OSCILL_TIME_CCW Oscillation time for M4 direction
35500 SPIND_ON_SPEED_AT_IPO_START Feed enable with spindle in setpoint range
35510 SPIND_STOPPED_AT_IPO_START Feed enable with stationary spindle
35550 DRILL_VELO_LIMIT[n] Maximum speeds for tapping
35590 PARAMSET_CHANGE_ENABLE Parameter set specification possible from PLC
36060 STANDSTILL_VELO_TOL Threshold velocity "Axis/spindle stationary"
36200 AX_VELO_LIMIT Threshold value for velocity monitoring.

17.12.2 Setting data

17.12.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42600 JOG_FEED_PER_REF_SOURCE Revolutional feedrate control in JOG mode
42800 SPIND_ASSIGN_TAB Spindle number converter
42900 MIRROR_TOOL_LENGTH Mirror tool length offset
42910 MIRROR_TOOL_WEAR Mirror wear values of tool length compensation
42920 WEAR_SIGN_CUTPOS Mirror wear values of machining plane

S1: Spindles
17.12 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1385

Number Identifier: $SC_ Description
42930 WEAR_SIGN Invert sign of all wear values
42940 TOOL_LENGTH_CONST Retain the assignment of tool length components when

changing the machining plane (G17 to G19)

17.12.2.2 Axis/spindle-specific setting data

Number Identifier: $SA_ Description
43200 SPIND_S Speed for spindle start via PLC interface
43202 SPIND_CONSTCUT_S Cutting rate for spindle start via PLC interface
43206 SPIND_SPEED_TYPE For spindle start via PLC interface
43210 SPIND_MIN_VELO_G25 Progr. Spindle speed limiting G25
43220 SPIND_MAX_VELO_G26 Progr. Spindle speed limiting G26
43230 SPIND_MAX_VELO_LIMS Progr. spindle speed limiting G96/G961
43235 SPIND_USER_VELO_LIMIT Maximum spindle speed
43240 M19_SPOS Spindle position for spindle positioning with M19
43250 M19_SPOSMODE Spindle positioning approach mode for spindle posi‐

tioning with M19
43300 ASSIGN_FEED_PER_REF_SOURCE Rotational feedrate for positioning axes/spindles

17.12.3 signals

17.12.3.1 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Feedrate override A to H DB31,DBX0.0-7 DB380x.DBX0.0-7
Axis/spindle disable DB31,DBX1.3 DB380x.DBX1.3
Follow-up mode DB31,DBX1.4 DB380x.DBX1.4
Position measuring system 1 DB31,DBX1.5 DB380x.DBX1.5
Position measuring system 2 DB31,DBX1.6 DB380x.DBX1.6
Override active DB31,DBX1.7 DB380x.DBX1.7
Controller enable DB31,DBX2.1 DB380x.DBX2.1
Spindle reset/delete distancetogo DB31,DBX2.2 DB380x.DBX2.2
Velocity/spindle speed limitation DB31,DBX3.6 DB380x.DBX3.6
Program test Axis/Spindle Enable DB31,DBX3.7 DB380x.DBX3.7
Actual gear stage A to C DB31,DBX16.0-2 DB380x.DBX2000.0-2
Gear is changed over DB31,DBX16.3 DB380x.DBX2000.3
Resynchronize spindle 1 DB31,DBX16.4 DB380x.DBX2000.4
Resynchronize spindle 2 DB31,DBX16.5 DB380x.DBX2000.5
no n-monitoring with gear change DB31,DBX16.6 DB380x.DBX2000.6

S1: Spindles
17.12 Data lists

Basic Functions
1386 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Signal name SINUMERIK 840D sl SINUMERIK 828D
Delete S value DB31,DBX16.7 DB380x.DBX2000.7
Feedrate override for spindle valid DB31,DBX17.0 DB380x.DBX2001.0
Resynchronize spindle during positioning 1 DB31,DBX17.4 DB380x.DBX2001.4
Resynchronize spindle during positioning 2 DB31,DBX17.5 DB380x.DBX2001.5
Invert M3/M4 DB31,DBX17.6 DB380x.DBX2001.6
Oscillation controlled by the PLC DB31,DBX18.4 DB380x.DBX2002.4
Oscillation enable (oscillation speed) DB31,DBX18.5 DB380x.DBX2002.5
Oscillation rotation direction clockwise (Set rotation direc‐
tion clockwise)

DB31,DBX18.6 DB380x.DBX2002.6

Oscillation rotation direction counterclockwise (Set rotation
direction counterclockwise)

DB31,DBX18.7 DB380x.DBX2002.7

Spindle override A to H DB31,DBX19.0-7 DB380x.DBX2003.0-7

17.12.3.2 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Spindle / rotary axis DB31,DBX60.0 DB390x.DBX0.0
Encoder limit frequency exceeded 1 DB31,DBX60.2 DB390x.DBX0.2
Encoder limit frequency exceeded 2 DB31,DBX60.3 -
Referenced/synchronized 1 DB31,DBX60.4 DB390x.DBX0.4
Referenced/synchronized 2 DB31,DBX60.5 DB390x.DBX0.5
Position reached with exact stop coarse DB31,DBX60.6 DB390x.DBX0.6
Position reached with exact stop fine DB31,DBX60.7 DB390x.DBX0.7
Axis/spindle stationary (n < nmin) DB31,DBX61.4 DB390x.DBX1.4
Position controller active DB31,DBX61.5 DB390x.DBX1.5
Speed controller active DB31,DBX61.6 DB390x.DBX1.6
Current controller active DB31,DBX61.7 DB390x.DBX1.7
Restored 1 DB31,DBX71.4 DB390x.DBX11.4
Restored 2 DB31,DBX71.5 DB390x.DBX11.5
Setpoint gear stage A to C DB31,DBX82.0-2 DB390x.DBX2000.0-2
Change gear DB31,DBX82.3 DB390x.DBX2000.3
Speed limit exceeded DB31,DBX83.0 DB390x.DBX2001.0
Setpoint speed limited DB31,DBX83.1 DB390x.DBX2001.1
Setpoint speed increased DB31,DBX83.2 DB390x.DBX2001.2
Spindle in setpoint range DB31,DBX83.5 DB390x.DBX2001.5
Actual direction of rotation clockwise DB31,DBX83.7 DB390x.DBX2001.7
Rigid tapping active DB31,DBX84.3 DB390x.DBX2002.3
active spindle mode synchronous mode DB31,DBX84.4 DB390x.DBX2002.4
Active spindle positioning mode DB31,DBX84.5 DB390x.DBX2002.5
Active spindle mode oscillation mode DB31,DBX84.6 DB390x.DBX2002.6
Active spindle control mode DB31,DBX84.7 DB390x.DBX2002.7

S1: Spindles
17.12 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1387

Signal name SINUMERIK 840D sl SINUMERIK 828D
Spindle actually reached in position DB31,DBX85.5 DB390x.DBX2003.5
M function for spindle DB31,DBB86-87 DB370x.DBD0000
S function for spindle DB31,DBB88-91 DB370x.DBD0004
Sensors available DB31,DBX132.0 DB390x.DBX7000.0
Sensor S1 available (clamped state) DB31,DBX132.1 DB390x.DBX7000.1
Sensor S4 available (piston end position) DB31,DBX132.4 DB390x.DBX7000.4
Sensor S5 available (angular position of the motor shaft) DB31,DBX132.5 DB390x.DBX7000.5
State value is generated, speed limitation p5043 is active DB31,DBX133.2 DB390x.DBX7001.2
Clamped state DB31,DBW134 DB390x.DBW7002
Analog value: Clamped state DB31,DBW136 DB390x.DBW7004
Sensor S4 (piston end position) DB31,DBX138.4 DB390x.DBX7006.4
Sensor S5 (angular position of the motor shaft) DB31,DBX138.5 DB390x.DBX7006.5

S1: Spindles
17.12 Data lists

Basic Functions
1388 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

V1: Feedrates 18
18.1 Brief description

Types of feedrate
The feedrate determines the machining speed (axis or path velocity) and is observed in every
type of interpolation, even where allowance is made for tool offsets on the contour or on the
tool center point path (depending on G commands).

The following types of feedrate allow optimum adaptation to the various technological
applications (turning, milling, drilling, etc.):

● Rapid traverse feedrate (G0)

● Inverse-time feedrate (G93)

● Linear feedrate (G94)

● Revolutional feedrate (G95)

● Constant cutting speed (G96, G961)

● Constant speed (G97, G971)

● Feedrate for thread cutting (G33, G34, G35)

● Feedrate for tapping without compensating chuck (G331, G332)

● Feedrate for tapping with compensating chuck (G63)

● Feedrate for chamfer/rounding FRC, FRCM

● Non-modal feedrate FB

Axis assignment of the feedrates
Feedrates can be assigned to the axes variably to adjust to the different technological
requirements.

The following variants are possible:

● Separate feedrates for the working plane and the infeed axis

● Variable axis assignment for path feedrate

● Feedrate for positioning axes

Feedrate control
The programmed feedrate can be changed during the machining or for test purposes to enable
adjustment to the changed technological conditions.

● Via the machine control panel

● Via the operator panel front

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1389

● Via the PLC

● Per program command

18.2 Path feedrate F

Path feedrate F
The path feedrate represents the geometrical total of the speed components in the participating
axes. It is therefore generated from the individual motions of the interpolating axes.

The default uses the axial speeds of the geometry axes which have been programmed. The
FGROUP command can be used to include other geometry and/or synchronized axes in the
calculation of the path feedrate.

The path feedrate F determines the machining speed and is observed in every type of
interpolation even where allowance is made for tool offsets. The value programmed under the
address F remains in a program until a new F value or a new type of feedrate is programmed.

Range of values for path feedrate F
See Description of Functions G2: "Speeds, Setpoint / Actual Value Systems, Closed-Loop
Control", Section: "Velocities (Page 343)".

F value at PLC interface
The F value of the current path feedrate is always entered in the channel-specific PLC interface
for auxiliary functions (DB21, ... DBB158 to 193).

For explanations about the associated interface signals (change signal, F value), see
Description of Functions "H2: Auxiliary function outputs to PLC (Page 401)".

Feedrate with transition circle
References:
Programming Manual, Fundamentals

Feedrate for internal radius and external radius path sections
For circular blocks or spline blocks with curvature in the same direction and tool radius offset
activated (G41/G42), the programmed feedrate can act on the center point path or on the
contour (depending on the internal radius or external radius path sections).

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1390 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

A group of G commands is provided for this purpose:

● CFTCP
Programmed feedrate acting on the center point path.

● CFC
Programmed feedrate acting on the contour.

● CFCIN
Programmed feedrate acting only on the contour with a concave spline.

References:
Programming Manual, Fundamentals

Maximum tool path velocity
The maximum path velocity results from the maximum velocities of the linear or rotary axes
involved (MD32000 $MA_MAX_AX_VELO), i.e. the axis with the lowest maximum velocity
determines the maximum path velocity. This cannot be exceeded.

If G0 is programmed, traversing is at the path velocity resulting from the MD32000
$MA_MAX_AX_VELO limitation.

Limit velocity for path axes
In addition, the FL[<axis>] statement can be used to program a limit velocity for path axes
(geometry and synchronized axes).

This enables separate feedrates to be programmed for the working plane and infeed axis. This
means that a feedrate is specified for the path-related interpolation and for the infeed axis. The
axis perpendicular to the selected machining plane is designated as the infeed axis. The infeed
axis-specific feedrate can be programmed to limit the axis velocity and therefore the path
velocity. No coordinate rotations through frames should be included, i.e. the infeed axis must
be an axis of the standard coordinate system. This function can be used to compensate for
the fact that a cutter has a lower cutting performance on the face side than across the cutter
circumference.

Programming example:

Program code Comment
... G94 ... ; Selection of feedrate type (mm/min)
X30 Y20 F200 ; Path feedrate = 200 mm/s
FL[Z]=50 Z-30 ; Max. feedrate for Z axis: 50 mm/s

Low-resolution encoders
When using low-resolution encoders, more continuous path or axis motions can be achieved
with smoothed actual values. The larger the time constant, the better the smoothing of the
actual values, and the longer the overtravel.

MD34990 $MA_ENC_ACTVAL_SMOOTH_TIME[<axis>] (smoothing time constant for actual
values)

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1391

Smoothed actual values are used for:

● Thread cutting (G33, G34, G35)

● Feedrate per revolution ((G95, G96, G97, FPRAON)

● Display of speed, actual position and velocity

18.2.1 Feedrate type G93, G94, G95

Effectiveness
The feedrate types G93, G94, G95 are active for the G commands of group 1 (except G0) in
the automatic modes.

G94 or G95 can be used for traversing in JOG mode.

References:
Function Manual, Extended Functions; Manual traversing and manual handwheel traversing
(H1)

Inverse-time feedrate (G93)
The inverse-time feedrate is used when it is easier to program the duration, rather than the
feedrate, for retraction of a block.

The inverse-time feedrate is calculated from the following formula:

F = v / s

with F: Inverse-time feedrate in rpm
v: Required path velocity in mm/min or inch/min
s: Path length in mm/inch

Programming example

Program code Comment
N10 G1 G93 X100 Y200 F2 ; The programmed path is traversed in 0.5 min.
...

Note

G93 may not be used when G41 / G42 is active. If the block length varies greatly from block to
block, a new F value should be programmed in each block for G93.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1392 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Linear feedrate (G94)
The linear feedrate is programmed in the following units relative to a linear or rotary axis:

● [mm/min, degrees/min] on standard metric systems

● [inch/min, degrees/min] on standard imperial systems

Revolutional feedrate (G95)
The revolutional feedrate is programmed in the following units relative to a master spindle:

● [mm/rev] on standard metric systems

● [inch/rev] on standard imperial systems

● [degrees/rev] on a rotary axis

The path velocity is calculated from the actual speed of the spindle according to the following
formula:

V = n * F

with V: Path velocity in mm/min or inch/min
n: Speed of the master spindle in rpm
F: Programmed revolutional feedrate in mm/rev or inch/rev

Note

The programmed F value is deleted when the system switches between the feedrate types
G93, G94 and G95.

Tooth feedrate
Primarily for milling operations, the tooth feedrate FZ... (feed distance per tooth), which is
more commonly used in practice, can be programmed instead of the revolutional feedrate
F...:

The control system uses the $TC_DPNT (number of teeth per revolution) tool parameter
associated with the active tool offset data record to calculate the effective revolutional feedrate
for each traversing block from the programmed tooth feedrate.

F = FZ * $TC_DPNT

with F: Revolutional feedrate in mm/rev or inch/rev
FZ: Tooth feedrate in mm/tooth or inch/tooth
$TC_DP
NT:

Tool parameter: Number of teeth/rev

Example: Milling cutter with 5 teeth ($TC_DPNE = 5)

Program code Comment
N10 G0 X100 Y50
N20 G1 G95 FZ=0.02 ; Tooth feedrate 0.02 mm/tooth
N30 T3 D1 ; Load tool and activate tool offset data block.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1393

Program code Comment
M40 M3 S200 ; Spindle speed 200 rpm
N50 X20 ; Milling with FZ = 0.02 mm/tooth

; effective revolutional feedrate:
; F = 0.02 mm/tooth * 5 teeth/rev = 0.1 mm/rev
; or:
; F = 0.1 mm/rev * 200 rpm = 20 mm/min

...

Setting data
Revolutional feedrate in JOG mode

The behavior of an axis in terms of its revolutional feedrate relative to the master spindle of
the channel to which the axis is currently assigned in JOG mode depends on the settings in
the NC-specific setting data:

SD41100 $SN_JOG_REV_IS_ACTIVE, Bit <x>

Bit Value Meaning
0 0 The behavior depends on further setting data, depending on the function of the axis:

● Axis / spindle SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE
● Geometry axis on which a frame with rotation acts: SD42600

$SC_JOG_FEED_PER_REV_SOURCE
● Orientation axis: SD42600 $SC_JOG_FEED_PER_REV_SOURCE

1 The axis is traversed with the revolutional feedrate.
Supplementary condition
Traversing is performed without the revolutional feedrate if the following applies:
● Axis / spindle The master spindle is stationary AND SD43300

$SA_ASSIGN_FEED_PER_REV_SOURCE == -3
● Geometry axis on which a frame with rotation acts: The master spindle is

stationary AND SD42600 $SC_JOG_FEED_PER_REV_SOURCE == -3
● Orientation axis: The master spindle is stationary AND SD42600

$SC_JOG_FEED_PER_REV_SOURCE == -3
1 0 In rapid traverse, traversing is performed with the revolutional feedrate.

1 In rapid traverse, traversing is performed without the revolutional feedrate.
2 1) 0 In handwheel jogging, traversing is performed with the revolutional feedrate.

1 In handwheel jogging, traversing is performed without the revolutional feedrate.
3 1) 0 In DRF handwheel traversing, traversing is performed with the revolutional feedrate.

1 In DRF handwheel traversing, traversing is performed without the revolutional fee‐
drate.

1) The function is active in addition to the setting in bit 1.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1394 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

NC/PLC interface signals
● Revolutional feedrate active (channel-specific)

The interface signal indicates that axes are traversed with revolutional feedrate in the
channel:

– AUTOMATIC mode: Path or synchronized axes

– JOG mode: Geometry axes

DB31, ... DBX62.2 == 1 (revolutional feedrate active)

● Revolutional feedrate active (axis-specific)
The interface signal indicates that the axis is traversed with revolutional feedrate:
DB31, ... DBX33.2 == 1 (revolutional feedrate active)

18.2.2 Type of feedrate G96, G961, G962, G97, G971

Constant cutting rate (G96, G961)
The constant cutting rate is used on turning machines to keep the cutting conditions constant,
independently of the work diameter of the workpiece. This allows the tool to be operated in the
optimum cutting performance range and therefore increases its service life.

Selection of G96, G961:
When programming G96, G961, the corresponding S value is interpreted as the cutting rate
in m/min or ft/min along the transverse axis. If the workpiece diameter decreases during
machining, the speed is increased until the constant cutting speed is reached.

When G96, G961 is first selected in the part program, a constant cutting rate must be entered
in mm/min or ft/min.

With G96, the control system will automatically switch to revolutional feedrate (as with G95),
i.e. the programmed feedrate F is interpreted in mm/rev or inch/rev.

When programming G961, linear feedrate is selected automatically (as with G94). A
programmed feedrate F is interpreted in mm/min or inch/min.

Determining the spindle speed
Based on the programmed cutting rate (either SG96 or SG961) and the actual cartesian position
of the transverse axis (radius), the control system calculates the spindle speed at the TCP
using the following formula:

n: Spindle speed
SSpeed: Programmed cutting rate
π Circle constant
r: Radius (distance, center of rotation to TCP)

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1395

The following is assumed when determining the radius:

● The transverse axis position 0 in the WCS represents the center of rotation.

● Position offsets (such as online tool offset, external zero offset, $AA_OFF, DRF offset and
compile cycles) and position components through couplings (e.g. following axis for TRAIL)
are not taken into account when determining the radius.

Frames (e.g. programmable frames such as SCALE, TRANS or ROT) are taken into account
in the calculation of the spindle speed and can bring about a change in speed, if the effective
diameter at the TCP changes.

Diameter programming and reference axis for several transverse axes in one channel:
One or more transverse axes are permitted and can be activated simultaneously or separately:

● Programming and displaying in the user interface in the diameter

● Assignment of the specified reference axis with SCC[<axis>] for a constant cutting rate
G96, G961, G962

For more information, see Description of Functions "P1: Transverse axes (Page 859)".

Example
SG96 = 230 m/min

● Where r = 0.2 m → n = 183.12 rpm

● Where r = 0.1 m → n = 366.24 rpm

⇒ The smaller the workpiece diameter, the higher the speed.

For G96, G961 or G962, a geometry axis must be defined as the transverse axis.

The transverse axis, whose position affects the speed of the mater spindle, is defined using
channel-specific machine data:

MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function)

The function G96, G961 or G962 requires that the machine zero and the workpiece zero of
the transverse axis are in the turning center of the spindle.

Constant speed (G97, G971)
G97, G971 deactivates the "Constant cutting rate function" (G96, G961) and saves the last
calculated spindle speed. With G97, the feedrate is interpreted as a revolutional feedrate (as
with G95). When programming G971, linear feedrate is selected (as with G94). The feedrate
F is interpreted in mm/min or inch/min.

When G97, G971 is active, an S value can be reprogrammed to define a new spindle speed.
This will not modify the cutting rate programmed in G96, G961.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1396 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

G97, G971 can be used to avoid speed variations in motions along the transverse axis without
machining (e.g. cutting tool).

Note

G96, G961 is only active during workpiece machining (G1, G2, G3, spline interpolation, etc.,
where feedrate F is active).

The response of the spindle speed for active G96, G961 and G0 blocks can be defined in the
channel-specific machine data:

MD20750 ALLOW_G0_IN_G96 (G0 logic for G96, G961)

When constant cutting rate G96, G961 is selected, no gear stage change can take place.

The spindle override switch acts on the calculated spindle speed.

A DRF offset in the transverse axis does not affect the spindle speed setpoint calculation.

At the start of machining (after G0) and after NC stop, G60, G09, ... the path start waits for
"nAct= nSet".

The interface signals "nAct = nSet" and "Set speed limited" are not modified by internal speed
settings.

When the speed falls below the minimum speed or if the signal "Axis/spindle stationary" is
recognized, "nAct =nSet" is reset.

A path operation which has started (G64, rounding), is not interrupted.

Spindle speed limitation with G96, G961
A maximum spindle speed can be specified for the "Constant cutting rate" function:

● In the setting data:
SD43230 $SA_SPIND_MAX_VELO_LIMS (spindle speed limitation for G96/G961)

● In the part program (for the master spindle) with the programming command LIMS

The most recently changed value (LIMS or SD) is active.

LIMS is effective with G96, G961, G97 and can be specified on up to four speed limitations in
the part program in one block. Spindle number <Sn> = 1, 2, 3, or 4 of the master spindle that
is possible in the particular instance can be programmed in part program command LM[<Sn>].

When the block is loaded in the main run, all programmed values are transferred to the setting
data SD43230 $SA_SPIND_MAX_VELO_LIMS.

Depending on the machine data:
MD10710 PROG_SD_RESET_SAVE_TAB[n] (setting data to be updated),
the speed limit set with LIMS remains stored after the control is switched off.
When G96, G961, G97 are reactivated, this speed limitation is also activated.

The maximum permissible spindle speed defined via G26 or via the setting data:
SD43220 $SA_SPIND_MAX_VELO_G26 (maximum spindle speed)
cannot be exceeded.

In the event of incorrect programming that would cause one of the speed limits (G26 or
SD43220 $SA_SPIND_MAX_VELO_G26) to be exceeded, the following interface signal is set.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1397

DB31, ... DBX83.1 (programmed speed too high)

In order to ensure smooth rotation with large part diameters, the spindle speed is not permitted
to fall below a minimum level.
This speed can be set via the setting data:
SD43210 $SA_SPIND_MIN_VELO_G25 (minimum spindle speed)
and, depending on the gear stage, with the machine data:
MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT (minimum speed of the gear stage)
.

The minimum spindle speed can be changed in the part program with G25. In the event of
incorrect programming that would cause one of the speed limits (G25 or SD43210
$SA_SPIND_MIN_VELO_G25) to be undershot, the following interface signal is set.

DB31, ... DBX83.2 (speed setpoint too low)

For more information on the spindle-speed limitations, see function description S1: "Spindles",
Section: "Spindle monitoring (Page 1366)".

Note

The speed limits changed with G25/G26/LIMS in the part program are taken into the setting
data and therefore remain saved after the end of program.

However, if the speed limits changed with G25/G26/LIMS are no longer to apply after the end
of program, the following definitions must be inserted in the GUD block of the machine
manufacturer:

REDEF $SA_SPIND_MIN_VELO_G25 PRLOC

REDEF $SA_SPIND_MAX_VELO_G26 PRLOC

REDEF $SA_SPIND_MAX_VELO_LIMS PRLOC

Master spindle changeover with G96, G961
If the master spindle is switched over when G96, G961 are active, the speed of the former
master spindle is retained. This corresponds to a transition from G96 to G97. The master
spindle newly defined with SETMS executes the "Constant cutting rate" function generated in
this way.

Alarms
Constant cutting rate G96, G961, G962

● If no F value is programmed, alarm 10860 "No feedrate programmed" is output. The alarm
is not generated with G0 blocks.

● Alarm 14800 "Programmed path velocity smaller than or equal to zero" is output while
programming a negative path velocity.

● If, with an active G96, G961 or G962, no transverse axis is defined in the machine data:
MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function),
alarm 10870 "No transverse axis defined" is output.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1398 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● If a negative maximum spindle speed is programmed with the LIMS program command
when G96, G961 are active, alarm 14820 "Negative maximum spindle speed programmed
for G96, G961" is output.

● If no constant cutting rate is programmed when G96, G961 is selected for the first time,
alarm 10900 "No S value programmed for constant cutting rate" is output.

18.2.3 Feedrate for thread cutting (G33, G34, G35, G335, G336)

18.2.3.1 Feedrate with G33

G33
The function G33 can be used to machine threads with constant pitch of the following type:

Speed S, feedrate F, thread pitch
A revolutional feedrate [mm/revolution] is used for G33 threads. The revolutional feedrate is
defined by programming the thread pitch [mm/revolution].

The speed of the axes for the thread length is calculated from the programmed spindle speed
S and the thread pitch.

Feedrate F [mm/min] = speed S [rev/min] * pitch [mm/rev]

At the end of the acceleration ramp, the position coupling between the spindle actual value
(spindle setpoint with SPCON on master spindle) and the axis setpoint is established. At this
moment, the position of the axis in relation to the zero mark of the spindle (including zero mark
offsets) is as if the axis had accelerated abruptly at the start of the block when the thread start
position (zero mark plus SF) was crossed. Compensation is made for the following error of the
axis.

Minimum spindle speed
In order to ensure smooth rotation at low speeds, the spindle speed is not permitted to fall
below a minimum level.

This speed can be set:

● With the setting data:
SD43210 $SA_SPIND_MIN_VELO_G25 (minimum spindle speed)

● For each gear stage with the machine data:
MD35140 $MA_GEAR _STEP_MIN_VELO_LIMIT (minimum speed for gear stage
change)

The minimum spindle speed can be changed in the part program with G25.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1399

NC stop, single block
NC stop and single block (even at the block boundary) are only active after completion of thread
chaining. All successive G33 blocks and the first following non-G33 block are traversed as a
block.

Premature abortion without destruction
Thread cutting can be aborted without destruction before the end point is reached. This can
be done by activating a retraction motion.

Thread cutting with ROT frame
With ROT frame and G33, G34, G35, alarm 10607 "Thread with frame not executable" is
activated if the rotation causes a change in the thread length and thus the pitch. Rotation
around the thread axis is permissible.

Alarm 10607 "Thread with frame not executable" can be suppressed by setting bit 12 in
machine data MD11410 $MN_SUPPRESS_ALARM_MASK, if the ROT instruction is used
intentionally in the application.

All other frames are accepted by the NC without alarm. Attention is drawn to the pitch-changing
effect of SCALE.

18.2.3.2 Linear increasing/decreasing thread pitch change with G34 and G35

Function
The thread pitch increase (G34) defines the numerical increase in the pitch value. A larger
pitch results in a larger distance between the threads on the workpieces. The velocity of the
thread axis therefore increases with assumed constant spindle speed.

The opposite therefore applies for the decrease in thread pitch (G35).

The following definitions are made for the thread pitch change:

● G34: Increase in thread pitch corresponds to progressive change

● G35: Decrease in thread pitch corresponds to degressive change

Both G34 and G35 functions imply the functionality of G33 and also provide the option of
programming an absolute pitch change value for the thread under F. If the start and end pitch
of a thread is known, the thread pitch change can be determined using the following equation:

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1400 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The meaning is as follows:
F: The thread pitch change to be programmed [mm/rev2]
ke: Thread pitch of axis target point coordinate, thread axis [mm/rev]
ka: Initial thread pitch (programmed under I, J or K) [mm/rev]
lG: Thread length [mm]

The absolute value of F must be applied to G34 or G35 depending on the required pitch
increase of decrease.

When the thread length lG, pitch change F and initial pitch ka are known, the pitch increase at
the end of block ke can be determined as follows by modifying the formula:

● For G34 (increasing pitch):

● For G35 (decreasing pitch):

Note

If the formula results in a negative root expression, the thread cannot be machined!

In this case, the NC signals alarm 10605 or alarm 22275.

Application
The G34 and G35 functions can be used to produce self-shearing threads.

Example
Thread cutting G33 with decreasing thread pitch G35

Program code Comment
N1608 M3 S10 ; Spindle speed
N1609 G0 G64 Z40 X216 ; Approach starting point
N1610 G33 Z0 K100 SF=R14 ; Thread with constant pitch 100 mm/rev
N1611 G35 Z-220 K100 F17.045455 ; Thread pitch decrease 17.045455 mm/rev2
 ; Thread pitch at end of block 50 mm/rev
N1612 G33 Z-240 K50 ; Traverse thread block without jerk
N1613 G0 X218

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1401

Program code Comment
N1614 G0 Z40
N1616 M17

Monitoring during the block preparation
Any pitch changes that would overload the thread axis when G34 is active or would result in
an axis standstill when G35 is active, are detected in advance during block preparation. Alarm
10604 "Thread pitch increase too high" or 10605 "Thread pitch decrease too high" is signaled.

During thread cutting, certain practical applications require a correction of the spindle speed.
In this case, the operator will base his correction on the permissible velocity of the thread axis.

To do this, it is possible to suppress the output of alarms 10604 and 10605 as follows:

MD11410 $MN_SUPPRESS_ALARM_MASK bit 10 = 1

Block preparation is then continued normally.

Monitoring during the execution
The following situations are monitored cyclically when the thread is machined (interpolation):

● Exceeding of maximum velocity of thread axis

● Reaching of axis standstill with G35

The following alarm is signaled when the monitoring function responds:

● Alarm 22269 "Maximum velocity of thread axis reached" or

● Alarm 22275 "Zero velocity of thread axis reached"

18.2.3.3 Acceleration behavior of the axis for G33, G34 and G35
The acceleration behavior of the feed axis when thread cutting/tapping with G33, G34 or G35
can be set via the channel-specific setting data:

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1402 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

SD42010 $SC_THREAD_RAMP_DISP[<n>] = <Value>

<n> Meaning <Value> Meaning
0 Acceleration behavior at the

thread run-in:
< 0
(Default: -1)

The acceleration of the thread axis when run‐
ning-in the thread is as programmed in
BRISK/SOFT

= 0 The acceleration of the thread axis when run‐
ning-in the thread is sudden (step function)
(≙ BRISK).

> 0 The maximum thread run-in distance is speci‐
fied.
Specifying the maximum run-in thread path
can also be specified via address DITS also
in the part program (see "Programmed run-in
and run-out path for G33, G34 and G35
(DITS, DITE) (Page 1404)"). When a block is
inserted in the main run, the programmed run-
in path is transferred into the setting data.
Note
Too short a distance can result in the axis
being overloaded when accelerating.

1 Acceleration behavior at
thread run-out:

< 0
(Default: -1)

The braking of the thread axis when running-
ou the thread is as programmed in BRISK/
SOFT

= 0 The braking of the thread axis when running-
out the thread is sudden (step function) (≙
BRISK).

> 0 The maximum thread run-out distance is
specified.
Specifying the maximum run-out thread path
can also be specified via address DITE also
in the part program (see "Programmed run-in
and run-out path for G33, G34 and G35
(DITS, DITE) (Page 1404)"). When a block is
inserted in the main run, the programmed run-
out path is transferred into the setting data.
Note
Too short a distance can result in an acceler‐
ation overload of the axis.

2 Acceleration behavior for
thread transitions within a
thread chain

= -1 (default) Permits smoothing corners between two
thread blocks in order to maintain dynamic
response limits.
Rounding using smoothing is not carried out
if the dynamic performance of the machine
allows a hard transition, e.g. as a result of the
effectiveness of the overload factor for axial
velocity step/jumps (MD32310
$MA_MAX_ACCEL_OVL_FACTOR).

= 0 Corners between two thread blocks are exe‐
cuted precisely without rounding - the axes
follow the control loop commands.

> 0 Reserved

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1403

18.2.3.4 Programmed run-in and run-out path for G33, G34 and G35 (DITS, DITE)
The run-in and run-out path of the thread can be specified in the part program with the DITS
and DITE addresses.

The thread axis is accelerated or braked along the specified path.

① Run-in/run-out path, depending on the machining direction

Short run-in path
Due to the collar on the thread runin, little room is left for the tool start ramp.
This must therefore be specified shorter via DITS.

Short run-out path
Because of the shoulder at the thread run-out, there is not much room for the tool braking
ramp, introducing a risk of collision between the workpiece and the tool cutting edge. The
deceleration ramp can be specified shorter using DITE. Due to the inertia of the mechanical
system, however, a collision can still occur.

Remedy: Program a shorter thread, reduce the spindle speed.

Note

DITE acts at the end of the thread as a rounding clearance. This achieves a smooth change
in the axis motion.

Effects
The programmed run-in and run-out path only increases the rate of acceleration on the path.
If one of the two paths is set larger than the thread axis needs with active acceleration, the
thread axis is accelerated or decelerated with maximum acceleration.

Syntax
DITS=<Value> DITE=<Value>

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1404 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Meaning

DITS: Define thread run-in path
DITE: Define thread run-out path
<value>: Only paths, and not positions, are programmed with DITS and DITE.

The programmed run-in/run-out path is handled according to the current dimension
setting (inches, metric).

Example

Program code Comment
...
N40 G90 G0 Z100 X10 SOFT M3 S500
N50 G33 Z50 K5 SF=180 DITS=1 DITE=3 ; Start of smoothing with Z=53.
N60 G0 X20

Further information

SD42010 $SC_THREAD_RAMP_DISP
When a block containing DITS and/or DITE is inserted in the main run, the programmed run-
in/run-out path is transferred into the setting data SD42010 $SC_THREAD_RAMP_DISP:

● SD42010 $SC_THREAD_RAMP_DISP[0] = programmed value of DITS
● SD42010 $SC_THREAD_RAMP_DISP[1] = programmed value of DITE
If no run-in/run-out path is programmed before or in the first thread block, the current value of
the setting data is used.

Behavior following channel / mode group / program end reset
SD 42010 values which have been overwritten by DITS and/or DITE remain active even
following a channel / mode group / program end reset.

Behavior following warm start
In case of a warm start, the setting data is reset to the values which were active before
overwriting by DITS and/or DITE (standard behavior).

If, however, the values programmed with DITS and DITE shall also be active following a warm
restart, the setting data SD42010 $SC_THREAD_RAMP_DISP must be listed in the machine
data MD10710 $MN_PROG_SD_RESET_SAVE_TAB:

MD10710 $MN_PROG_SD_RESET_SAVE_TAB[<n>] = 42010

Behavior if the run-in and/or run-out path is very short
If the run-in and/or run-out path is very short, the acceleration of the thread axis is higher than
the configured value. This causes an acceleration overload on the axis.

Alarm 22280 "Programmed run-in path too short" is then issued for the thread run-in (with the
appropriate configuration in MD11411 $MN_ENABLE_ALARM_MASK). The alarm is purely
for information and has no effect on part program execution.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1405

See also
Acceleration behavior of the axis for G33, G34 and G35 (Page 1402)

18.2.3.5 Fast retraction during thread cutting

Function
The "Rapid retraction during thread cutting" function can be used to interrupt thread cutting
without causing irreparable damage in the following circumstances:

● NC stop (NC/PLC interface signal)

● Alarms that implicitly trigger NC stop

● Switching of a rapid input
References
Programming Manual, Job Planning; Section "Fast retraction from the contour"

The retraction motion can be programmed via:

● Retraction path and retraction direction (relative)

● Retraction position (absolute)

Note
Tapping

The "Fast retraction" function cannot be used with tapping (G331/G332).

Programming

Syntax
Enable fast retraction, retraction motion via retraction path and retraction direction:
G33 ... LFON DILF=<Value> LFTXT/LFWP ALF=<Value>
Enable fast retraction, retraction motion via retraction position:

POLF[<Axis name>]=<Value> LFPOS
POLFMASK/POLFMLIN(<Axis 1 name>,<Axis 2 name>, etc.)
G33 ... LFON
Disable fast retraction for thread cutting:
LFOF

Meaning

LFON: Enable fast retraction for thread cutting (G33).
LFOF: Disable fast retraction for thread cutting (G33).

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1406 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DILF= : Define length of retraction path.
The value preset during MD configuration (MD21200 $MC_LIFTFAST_DIST)
can be modified in the part program by programming DILF.
Note:
The configured MD value is always active following NC-RESET.

LFTXT
LFWP:

The retraction direction is controlled in conjunction with ALF with G commands
LFTXT and LFWP.
LFTXT: The plane in which the retraction motion is executed is calculated

from the path tangent and the tool direction (default setting).
LFWP: The plane in which the retraction motion is executed is the active

working plane.
ALF= : The direction is programmed in discrete degree increments with ALF in the

plane of the retraction motion.
With LFTXT, retraction in the tool direction is defined for ALF=1.
With LFWP, the direction in the working plane is derived from the following
assignment:
● G17 (X/Y plane)

ALF=1 ; Retraction in the X direction
ALF=3 ; Retraction in the Y direction

● G18 (Z/X plane)
ALF=1 ; Retraction in the Z direction
ALF=3 ; Retraction in the X direction

● G19 (Y/Z plane)
ALF=1 ; Retraction in the Y direction

ALF=3 ; Retraction in the Z direction
References:
Programming options with ALF are also described in "Traverse direction for
fast retraction from the contour" in the Programming Manual, Job Planning.

LFPOS: Retraction of the axis declared with POLFMASK or POLFMLIN to the absolute
axis position programmed with POLF.

POLFMASK: Release of axes (<Axis 1 name>,<Axis 1 name>, etc.) for inde‐
pendent retraction to absolute position.

POLFMLIN: Release of axes for retraction to absolute position in linear relation
Note:
Depending on the dynamic response of all the axes involved, the linear relation
cannot always be established before the lift position is reached.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1407

POLF[]: Define absolute retraction position for the geometry axis or machine axis in
the index
Effectiveness: Modal
=<Value>: In the case of geometry axes, the assigned value is interpre‐

ted as a position in the workpiece coordinate system. In the
case of machine axes, it is interpreted as a position in the
machine coordinate system.
The values assigned can also be programmed as incremen‐
tal dimensions:
=IC<Value>

<Axis name>: Name of a geometry axis or machine axis

Note

LFON or LFOF can always be programmed, but the evaluation is performed exclusively during
thread cutting (G33).

Note

POLF with POLFMASK/POLFMLIN are not restricted to thread cutting applications.

Figure 18-1 Interruption of G33 through retraction motion

Dynamic response of the retraction motion
The retraction motion is executed with maximum axis dynamic response:

● MD32000 $MA_MAX_AX_VELO[<Axis>] (velocity)

● MD32300 $MA_MAX_AX_ACCEL[<Axis>] (acceleration)

● MD32431 $MA_MAX_AX_JERK[<Axis>] (jerk)

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1408 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example

Program code Comment
N55 M3 S500 G90 G18 ; Set active machining plane.
...
N65 MSG ("thread cutting")
MM_THREAD:
N67 $AC_LIFTFAST=0 ; Reset before starting the thread.
N68 G0 Z5
N69 X10
N70 G33 Z30 K5 LFON DILF=10 LFWP
ALF=7

; Enable fast retraction for thread
cutting.

 ; Retraction path = 10 mm
 ; Retraction plane Z/X (because of G18).
 ; Retraction direction -X (with ALF=3;

retraction direction +X).
N71 G33 Z55 X15
N72 G1 ; Deselect thread cutting.
N69 IF $AC_LIFTFAST GOTOB MM_THREAD ; If thread cutting has been interrupted.
N90 MSG ("")
...
N70 M30
N55 M3 S500 G90 G0 X0 Z0
...
N87 MSG ("tapping")
N88 LFOF ; Deactivate fast retraction before

tapping.
N89 CYCLE... ; Tapping cycle with G33.
N90 MSG ("")
...
N99 M30

Behavior at power on and reset
After power on and reset, the following settings are activated:

● Initial settings for the retraction motion (LFON /LFOF) and retraction direction (LFTXT/
LFWP): MD20150 $MC_GCODE_RESET_VALUES

● Retraction path: MD21200 $MC_LIFTFAST_DIST

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1409

18.2.3.6 Convex thread (G335, G336)

Function
The G commands G335 and G336 can be used to turn convex threads (= differing to the
cylindrical form). Application is the machining of extremely large components that sag in the
machine because of their self-weight. Paraxial thread would result in the thread being too small
in the middle of the component. This can be compensated with convex threads.

Figure 18-2 Turning a convex thread

Programming
The turning of a convex thread is programmed with G335 or G336:

G335: Turning of a convex thread on a circular tool path in a clockwise direction
G336: Turning of a convex thread on a circular tool path in a counter-clockwise direction

The programming is performed first as for a linear thread by specifying the axial block end
points and the pitch via parameters I, J and K.

An arc is also specified. As for G2/G3, this can be programmed via the center point, radius,
opening angle or intermediate point specification. When programming the convex thread with
center point programming, the following must be taken into account: Since I, J and K are used
for the pitch in thread cutting, the circle parameters in the center point programming must be
programmed with IR=..., JR=... and KR=....

IR=...: Cartesian coordinate for the circle center point in the X direction
JR=...: Cartesian coordinate for the circle center point in the Y direction
KR=...: Cartesian coordinate for the circle center point in the Z direction

Note

IR, JR and KR are the default values of the interpolation parameter names for a convex thread
that can be set via machine data MD10651 $MN_IPO_PARAM_THREAD_NAME_TAB.

Optionally, a starting point offset SF can also be specified.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1410 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Syntax
The syntax for the programming of a convex thread therefore has the following general form:
G335/G336 <axis target point coordinate(s)> <pitch> <arc> [<starting
point offset>]

Permissible arc areas
The arc programmed at G335/G336 must be in an area in which the specified thread main axis
(I, J or K) has the main axis share on the arc over the entire arc:

Permissible areas for the Z axis (pitch programmed
with K)

Permissible areas for the X axis (pitch programmed
with I)

A change of the thread main axis as shown in the following figure is not permitted:

Figure 18-3 Convex thread: Area that is not permissible

Boundary conditions

Frames
G335 and G336 are also possible with active frames. However, you must ensure that the
permissible arc areas are maintained in the basic coordinate system (BCS).

Response for …
The G335/G336 response for:

● Power On / Power Off

● Mode change

● NCK / mode group / channel / part program end reset

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1411

● Block search / REPOS / ASUP

● Alarms / emergency stop / malfuncations

corresponds to the behavior for G33/G34/G35.
There are no specific restrictions.

Examples

Example 1: Convex thread in the clockwise direction with end and center point programming

Program code Comment
N5 G0 G18 X50 Z50 ; Approach starting point.
N10 G335 Z100 K=3.5 KR=25 IR=-20 SF=90 ; Turn convex thread in the clock-

wise direction.

Figure 18-4 Convex thread in the clockwise direction with end and center point programming

Example 2: Convex thread in the counter-clockwise direction with end and center point
programming

Program code Comment
N5 G0 G18 X50 Z50 ; Approach starting point.
N10 G336 Z100 K=3.5 KR=25 IR=20 SF=90 ; Turn convex thread in the coun-

ter-clockwise direction.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1412 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 18-5 Convex thread in the counter-clockwise direction with end and center point programming

Example 3: Convex thread in the clockwise direction with end point and radius programming

Program code
N5 G0 G18 X50 Z50
N10 G335 Z100 K=3.5 CR=32 SF=90

Figure 18-6 Convex thread in the clockwise direction with end point and radius programming

Example 4: Convex thread in the clockwise direction with end point and opening angle
programming

Program code
N5 G0 G18 X50 Z50
N10 G335 Z100 K=3.5 AR=102.75 SF=90

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1413

Figure 18-7 Convex thread in the clockwise direction with end point and opening angle programming

Example 5: Convex thread in the clockwise direction with center point and opening angle
programming

Program code
N5 G0 G18 X50 Z50
N10 G335 K=3.5 KR=25 IR=-20 AR=102.75 SF=90

Figure 18-8 Convex thread in the clockwise direction with center point and opening angle programming

Example 6: Convex thread in the clockwise direction with end and intermediate point
programming

Program code
N5 G0 G18 X50 Z50
N10 G335 Z100 K=3.5 I1=60 K1=64

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1414 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 18-9 Convex thread in the clockwise direction with end and intermediate point programming

18.2.4 Feedrate for tapping without compensating chuck (G331, G332)

Function
A thread can be tapped by rigid tapping with the functions G331 (tapping) and G332 (tapping
retraction).

Path feedrate
With G331 / G332, the path feedrate F for the axes involved in tapping is derived from the
effective spindle speed S and the programmed pitch:

F [mm/min] = S [rpm] * thread pitch [mm/U]

Requirement
The requirement for rigid tapping is a position-controlled spindle with position measuring
system.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1415

Machine data
● Preventing stop events

In the machine data, the stopping response when G331 / G332 is active is defined:
MD11550 $MN_STOP_MODE_MASK, Bit <x> = <value>

Bit Value Meaning
0 0 When G331 / G332 is active, stopping is not performed during a path motion or

dwell time (G4).
1 When G331 / G332 is active, stopping is performed during interruption of path

control mode, for example, by G60 or G4.
If you always want to prevent stopping the traverse movement when G331 / G332 is active,
this area must be declared a stop delay area with the commands DELAYFSTON and
DELAYFSTOF.
References:
Function Manual, Basic Functions, Section "Influencing the stop events by stop delay
areas (Page 581)"

Note
Single block

If the single block is activated in the stop delay area, the NC stops at the end of the first
block outside the stop delay area. If the single block is already selected before the stop
delay area, the NC stops at each block limit, i.e. also in the stop delay area! This deselects
the stop delay area.
Override changes

If the override is changed before a stop delay area, the override takes effect in the stop
delay area.

If the override is changed in the stop delay area, the change takes effect after the stop
delay area.

● Override
Which override is active during rigid tapping is set in:
MD12090 $MN_OVR_FUNCTION_MASK, Bit <x> = <value>

Bit Value Meaning
0 0 The spindle override is active for G331/G332

Depending on the setting in the following machine data, the override is related
either to the programmed spindle speed or to the configured spindle speed limita‐
tion:
MD12080 $MN_OVR_REFERENCE_IS_PROG_FEED

1 The path override is active for G331/G332
Depending on the setting in the following machine data, the override is related
either to the programmed path feedrate or to the configured path feedrate limitation.
MD12082 $MN_OVR_REFERENCE_IS_MIN_FEED
Note
This only applies if the limitation value is lower than the programmed path feedrate.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1416 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Supplementary conditions

Further overrides
The following overrides are inactive during rigid tapping

● Programmable path feedrate override OVR
● Rapid traverse override

18.2.5 Feedrate for tapping with compensating chuck (G63)

Function
G63 is a subfunction for tapping threads using a tap with compensating chuck. An encoder
(position encoder) is not required.

Speed S, feedrate F, thread pitch
With G63, a speed S must be programmed for the spindle and a feedrate F for the infeed axis
(axis for thread length).

The feedrate F must be calculated by the programmer on the basis of the speed S and the
thread pitch.

Feedrate F [mm/min] = speed S [rev/min] * pitch [mm/rev]

References
For more information on G63, see Programming Manual Fundamentals.

18.2.6 FGROUP and FGREF

Programming
It should be possible to program the effective machining feedrate in the usual way as a path
feedrate via the F value in processing procedures where the tool, the workpiece or both are
moved by a rotary axis (e.g. laser machining of rotating tubes).

In order to achieve this, it is necessary to specify an effective radius (reference radius) for each
of the rotary axes involved. You can do this by programming the modal NC address:
FGREF[<rotary axis>]=<reference radius>
The unit of the reference radius depends on the G70/G71/G700/G710 setting.

In order to include the axes in the calculation of the path feedrate, they must all be specified
in the FGROUP command.

In order to ensure compatibility with the behavior with no FGREF programming, the evaluation
1 degree = 1 mm is activated on system powerup and RESET.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1417

This corresponds to a reference radius of:

FGREF = 360 mm / (2π) = 57.296 mm

This default is independent of the active basic system
(MD10240 $MN_SCALING_SYSTEM_IS_METRIC) and the currently active G70/G71/G700/
G710 setting.

Special features of the feedrate weighting for rotary axes in FGROUP:

Program code
N100 FGROUP(X,Y,Z,A)
N110 G1 G91 A10 F100
N120 G1 G91 A10 X0.0001 F100

The programmed F value in block N110 is evaluated as a rotary axis feedrate in degrees/min,
while the feedrate weighting in block N120 is either 100 inch/min or 100 mm/min, depending
on the current inch/metric setting.

NOTICE

Different systems of units

The FGREF factor also works if only rotary axes are programmed in the block. The normal F
value interpretation as degree/min applies in this case only if the radius reference corresponds
to the FGREF default:
● For G71/G710: FGREF[A]=57.296
● For G70/G700: FGREF[A]=57.296/25.4

Example

The following example is intended to demonstrate the effect of FGROUP on the path and path
feedrate. The variable $AC_TIME contains the time of the block start in seconds. It can only
be used in synchronized actions.

Program code Comment
N100 G0 X0 A0
N110 FGROUP(X,A)
N120 G91 G1 G710 F100 ; Feedrate = 100 mm/min or 100 degrees/min
N130 DO $R1=$AC_TIME
N140 X10 ; Feedrate = 100 mm/min, path = 10 mm, R1 = approx. 6

s
N150 DO $R2=$AC_TIME
N160 X10 A10 ; Feedrate = 100 mm/min, path = 14.14 mm, R2 = approx.

8 s
N170 DO $R3=$AC_TIME
N180 A10 ; Feedrate = 100 degrees/min, path = 10 degrees, R3

= approx. 6 s
N190 DO $R4=$AC_TIME
N200 X0.001 A10 ; Feedrate = 100 mm/min, path = 10 mm, R4 = approx. 6

s
N210 G700 F100 ; Feedrate = 2540 mm/min or 100 degrees/min

V1: Feedrates
18.2 Path feedrate F

Basic Functions
1418 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N220 DO $R5=$AC_TIME
N230 X10 ; Feedrate = 2540 mm/min, path = 254 mm, R5 = approx.

6 s
N240 DO $R6=$AC_TIME
N250 X10 A10 ; Feedrate = 2540 mm/min, path = 254.2 mm, R6 = approx.

6 s
N260 DO $R7=$AC_TIME
N270 A10 ; Feedrate = 100 degrees/min, path = 10 degrees, R7

= approx. 6 s
N280 DO $R8=$AC_TIME
N290 X0.001 A10 ; Feedrate = 2540 mm/min, path = 10 mm, R8 = approx.

0.288 s
N300 FGREF[A]=360/(2*$PI) ; Set 1 degree = 1 inch via the effective radius
N310 DO $R9=$AC_TIME
N320 X0.001 A10 ; Feedrate = 2540 mm/min, path = 254 mm, R9 = approx.

6 s
N330 M30

Diagnostics
Read reference radius

The value of the reference radius of a rotary axis can be read using system variables:

● For the display in the user interface, in synchronized actions or with a preprocessing stop
in the part program via the system variable:

 $AA_FGREF[<axis>] Current main run value

● Without preprocessing stop in the part program via the system variable:

 $PA_FGREF[<axis>] Programmed value

If no values are programmed, the default 360 mm / (2π) = 57.296 mm (corresponding to 1 mm
per degree) will be read in both variables.

For linear axes, the value in both variables is always 1 mm.

Read path axes affecting velocity

The axes involved in path interpolation can be read using system variables:

● For the display in the user interface, in synchronized actions or with a preprocessing stop
in the part program via the system variables:

 $AA_FGROUP[<axis>] Returns the value "1" if the specified axis affects the path
velocity in the current main run record by means of the
basic setting or through FGROUP programming. Otherwise,
the variable returns the value "0".

 $AC_FGROUP_MASK Returns a bit key of the channel axes programmed with
FGROUP which are to affect the path velocity.

V1: Feedrates
18.2 Path feedrate F

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1419

● Without preprocessing stop in the part program via system variables:

 $PA_FGROUP[<axis>] Returns the value "1" if the specified axis affects the path
velocity by means of the basic setting or through FGROUP
programming. Otherwise, the variable returns the value "0".

 $P_FGROUP_MASK Returns a bit key of the channel axes programmed with
FGROUP which are to affect the path velocity.

18.3 Feedrate for positioning axes (FA)

Function
The velocity of a positioning axis is programmed with axis-specific feedrate FA.

FA is modal.

The feedrate is always G94.

Note

The maximum axis velocity (MD32000 $MA_MAX_AX_VELO) is not exceeded.

Programming
No more than five axis-specific feedrates can be programmed in each part program block.

Syntax:
FA[<positioning axis>] = <feedrate value>

<positioning axis>: Name of the channel axis
(MD20080 $MC_AXCONF_CHANAX_NAME_TAB)

<feedrate value>: Feedrate
 Value range: 0.001…999 999.999 mm/min, deg/min

or
0.001…39 999.9999 inch/min

Default setting
If no axial feedrate FA is programmed, the axial default setting is applied:

MD32060 $MA_POS_AX_VELO (initial setting for positioning axis velocity)

V1: Feedrates
18.3 Feedrate for positioning axes (FA)

Basic Functions
1420 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Output to PLC
The feedrate value can be output to the the PLC:

● To the channel-specific NC/PLC interface via:
DB21, ... DBB158 - DBB193

● To the axis-specific NC/PLC interface via:
DB31, ... DBB78 - DBB81

The output time is specified with the machine data:

MD22240 $MC_AUXFU_F_SYNC_TYPE (output time of F functions)

The output is suppressed in the default setting (MD22240 = 3), because drops in velocity can
occur through the output of F functions to the NC/PLC interface in continuous-path mode.

For more information, see Description of Functions "H2: Auxiliary function outputs to PLC
(Page 401)".

Reset behavior
The behavior after the end of program or NC reset is specified by the machine data:

MD22410 $MC_F_VALUES_ACTIVE_AFTER_RESET (F function is active even after reset)

Value Meaning
0 The default values are effective after NC reset.
1 The last programmed FA values are effective after NC reset.

18.4 Feedrate control

18.4.1 Feedrate disable and feedrate/spindle stop

Function
The "Feed disable" or "Feed/spindle stop" brings the axes to a standstill with adherence to the
braking characteristics With the exception for thread cutting G33, the programmed contour is
maintained.

Channel-specific feedrate disable
All axes (geometry and special axes) of a channel are stopped in all modes using the channel-
specific NC/PLC interface signal:

DB21, ... DBX6.0 (feedrate disable)

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1421

Channel-specific "Feed stop" for geometry axes in the JOG mode
The traversing motion of a specific geometry axis of the channel is stopped using the channel-
specific NC/PLC interface signals:

● DB21, ... DBX12.3 (feedrate stop, geometry axis 1)

● DB21, ... DBX16.3 (feedrate stop, geometry axis 2)

● DB21, ... DBX20.3 (feedrate stop, geometry axis 3)

The interface signals are only active in the JOG mode.

Axis-specific "Feedrate stop/spindle stop" for machine axes
Traversing motion of the machine axis is stopped using the axis-specific NC/PLC interface
signal:

DB31, ... DBX4.3 (feedrate stop / spindle stop)

AUTOMATIC and MDI modes
The following applies in the AUTOMATIC and MDI modes:

● If the "Feed stop" is performed for a path axis, all the axes traversed in the current block
and all axes participating in the axis group are stopped.

● If the "Feed stop" is performed for a positioning axis, only this axis is stopped.

Thread cutting

Thread cutting Effectiveness
G33, G34, G35 Effective

Notice
Contour deviation

G331, G332 Effective
G63 Axis: Effective

Spindle: Not effective

Axis-specific axis/spindle disable for machine axes
Traversing motion of the machine axis is stopped using the axis-specific NC/PLC interface
signal:

DB31, ... DBX1.3 (axis/spindle disable)

V1: Feedrates
18.4 Feedrate control

Basic Functions
1422 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

18.4.2 Feedrate override via machine control panel

Function
With the "Feedrate override via machine control panel", the operator can locally increase or
decrease the path feedrate at the machine as a percentage with immediate effect. To achieve
this, the programmed feedrates are multiplied with the override values available at the NC/PLC
interface.

The feedrate can be changed axis-specifically for positioning axes.

The "Spindle override" can be used to change the spindle speed and the cutting rate (G96,
G961).

With a feedrate change, the axial acceleration and velocity limits are maintained. There are
no contour errors along the path.

The feedrate override can be changed separately for path and position axes.

The overrides influence the programmed values or the limits (e.g. G26, LIMS for spindle speed).

Channel-specific feedrate and rapid traverse override
For feedrate and rapid traverse override, dedicated enable signals and correction/offset factors
are available in the NC/PLC interface:

DB21, ... DBX6.7 (feedrate override active)

DB21, ... DBB4 (feedrate override)

DB21, ... DBX6.6 (rapid traverse override active)

DB21, ... DBB5 (rapid traverse override)

The override factors can be specified from the PLC either in the binary or Gray-coded format.
The format is communicated to the NC via the following machine data:

MD12020 $MN_OVR_FEED_IS_GRAY_CODE (path feedrate override switch Gray-coded)

MD12040 $MN_OVR_RAPID_IS_GRAY_CODE (rapid traverse override switch Gray-coded)

The following permanent assignment applies to binary code:

Binary code Decimal Override factor
00000000 0 0.00 ≙ 0%
00000001 1 0.01 ≙ 1%
00000010 2 0.02 ≙ 2%
00000011 3 0.03 ≙ 3%
00000100 4 0.04 ≙ 4%

...
01100100 100 1.00 ≙ 100%

...
11001000 200 2.00 ≙ 200%

With Gray coding, the override factors corresponding to the switch position must be entered
in the following machine data:

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1423

MD12030 $MN_OVR_FACTOR_FEEDRATE [<n>] (evaluation of the path feedrate override
switch)

MD12050 $MN_OVR_FACTOR_RAPID_TRA [<n>] (evaluation of the rapid traverse override
switch)

An active feedrate override acts on all path axes that are assigned to the current channel. An
active rapid traverse override has an effect on all the axes that are traversed with rapid traverse
and that are assigned to the current channel.

No rapid traverse override switch available
If there is no dedicated rapid traverse override switch, you can switch between rapid traverse
override and feedrate override. The override to be active can be selected via the PLC or
operator panel front. When rapid traverse override is active, the feedrate override values are
limited to 100%.

● When the rapid traverse override is activated via the operator panel front, the basic PLC
program:

– Transfers the selection of the feedrate override for rapid traverse on the activation signal
for the rapid traverse override:
DB21, ... DBX6.6 = DB21, ... DBX25.3

– Transfers the feedrate override value in the rapid traverse value
DB21, ... DBB5 = DB21, ... DBB4

● When the rapid traverse override is selected via the PLC, the PLC user program:

– Must set the activation signal for the rapid traverse override:
DB21, ... DBX6.6 = 1

– Must transfer the feedrate override value in the rapid traverse override value:
DB21, ... DBB5 = DB21, ... DBB4

Effectiveness of the channel-specific feedrate and rapid traverse override:
● With active G33, G34, G35: Not effective
● With active G63: Not effective
● With active G331, G332: Not effective

Reference velocity for path feedrate override
The reference velocity for the "Path feedrate override via machine control panel" can be set
differently to the standard feedrate (= programmed feedrate).

MD12082 $MN_OVR_REFERENCE_IS_MIN_FEED

Axis-specific feedrate override
An enable signal and a byte for the feedrate override factor are available in the NC/PLC
interface for each positioning axis:

DB31, ... DBX1.7 (override effective)

DB31, ... DBB0 (feedrate override)

V1: Feedrates
18.4 Feedrate control

Basic Functions
1424 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The override factor can be specified from the PLC either in the binary or Gray-coded format.
The format is communicated to the NC via the following machine data:

MD12000 $MN_OVR_AX_IS_GRAY_CODE (axis feedrate override switch Gray-coded)

The following permanent assignment applies to binary code:

Binary code Decimal Override factor
00000000 0 0.00 ≙ 0%
00000001 1 0.01 ≙ 1%
00000010 2 0.02 ≙ 2%
00000011 3 0.03 ≙ 3%
00000100 4 0.04 ≙ 4%

...
01100100 100 1.00 ≙ 100%

...
11001000 200 2.00 ≙ 200%

With Gray coding, the override factors corresponding to the switch position must be entered
in the following machine data:

MD12010 $MN_OVR_ FACTOR_AX_ SPEED [<n>] (evaluation of the axis feedrate override
switch)

Effectiveness of the axis-specific feedrate override:
● With active G33, G34, G35: Not effective
● With active G63: Not effective

(the override is set in the NC permanently to 100%)
● With active G331, G332: Not effective

(the override is set in the NC permanently to 100%)

Spindle override
An enable signal and a byte for the spindle override factor are available in the NC/PLC interface
for each spindle:

DB31, ... DBX1.7 (override effective)

DB31, ... DBB19 (spindle override)

The override factor can be specified from the PLC either in the binary or Gray-coded format.
The format is communicated to the NC via the following machine data:

MD12060 $MN_OVR_SPIND_IS_GRAY_CODE (spindle override switch Gray-coded)

The following permanent assignment applies to binary code:

Binary code Decimal Override factor
00000000 0 0.00 ≙ 0%
00000001 1 0.01 ≙ 1%
00000010 2 0.02 ≙ 2%
00000011 3 0.03 ≙ 3%

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1425

Binary code Decimal Override factor
00000100 4 0.04 ≙ 4%

...
01100100 100 1.00 ≙ 100%

...
11001000 200 2.00 ≙ 200%

With Gray coding, the override factors corresponding to the switch position must be entered
in the following machine data:

MD12070 $MN_OVR_FACTOR_SPIND_SPEED [<n>] (evaluation of the spindle override
switch)

Effectiveness of the "spindle override":
● With active G33, G34, G35: Effective
● With active G63: Not effective
● With active G331, G332: Effective

Reference of the spindle override
The spindle override can refer to the speed or the programmed speed limited by the machine
or setting data. The setting is realized via:

MD12080 $MN_OVR_REFERENCE_IS_PROG_FEED (override reference velocity)

Limiting the override factor
For binary-coded override factors, the maximum possible overrides for path feedrate, axis
feedrate and spindle speed can be limited:

MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary coded override switch)

Override active
For overrides that have been enabled, the specified override values entered via the machine
control panel become immediately active in all operating modes and machine functions.

Override inactive
An override factor of 100% is internally effective if an override is not activated. The override
factor at the NC/PLC interface is not evaluated.

An exception is the zero setting for a binary interface and the 1st switch setting for a Gray-
coded interface. In these cases, the override factors entered at the NC/PLC interface are
evaluated. For a binary interface, the override factor is always 0%. For a Gray-coded interface,
the value entered in machine data for the 1st switch position value is output as override value.
It should be assigned the value "0".

V1: Feedrates
18.4 Feedrate control

Basic Functions
1426 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

18.4.3 Programmable feedrate override

Function
The "Programmable feedrate override" function can be used to change the velocity level of
path and positioning axes via the part program.

Programming

Syntax Meaning
OVR=<value> Feedrate change for path feedrate F
OVRA[<axis>=<value> Feedrate change for positioning feedrate FA

The programmable range is between 0 and 200%.

Default setting: 100%

Effectiveness
The NC/PLC interface signals DB21, ... DBB6 (rapid traverse or feedrate override active) and
DB31, ... DBX1.7 (axis-specific override active) do not refer to the programmable feedrate
override. The programmable feedrate override remains active when these signals are
deactivated.

The effective override is calculated from the product of the "Programmable feedrate override"
and the "Feedrate override via machine control panel (Page 1423)".

The default setting for the "Programmable feedrate override" is 100%.

The default setting is effective:

● If no feedrate override is programmed or

● After reset if the machine data:
MD22410 $MC_F_VALUES_ACTIVE_AFTER_RESET (F function is active even after reset)
is not set.

Note

OVR is not effective with G33, G34, G35.

18.4.4 Dry run feedrate

Function
The dry run feedrate is used when testing part programs without machining the workpiece in
order to allow the program or program sections to execute with an increased path feedrate,
for example.

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1427

Activation
The dry run feedrate can be selected in the automatic modes and activated from the PLC or
the operator panel front.

When activated from the operator panel front, the interface signal:
DB21, ... DBX24.6 (dry run feedrate selected)
is set and transferred from the basic PLC program to the interface signal:
DB21, ... DBX0.6 (activate dry run feedrate).

When selected on the PLC, the interface signal DB21, ... DBX0.6 (activate dry run feedrate)
must be set from the PLC user program.

Effectiveness
As long as the "Activate dry run feedrate" interface signal is set, instead of the programmed
feedrate, the feedrate value set via SD42100 DRY_RUN_FEED is effective in the way specified
via SD42101 $SC_DRY_RUN_FEED_MODE (see parameterization):

The dry run feedrate is always interpreted as linear feedrate (G94).

Parameterization

Activation of dry run feedrate
The time of activation depends on the setting in the machine data:

MD10704 $MN_DRYRUN_MASK (activation of dry run feedrate)

Value Meaning
0 The dry run feedrate may only be switched on and off at the end of the block (default setting).
1 The dry run feedrate can also be activated during the program processing (in the part pro‐

gram block).
Notice:
Activation during processing triggers an internal reorganization operation on the controller
which causes the axes to be stopped for a short time. This can affect the surface finish of
the workpiece being machined.

2 The dry run feedrate can be activated/deactivated at any time without the axes being stop‐
ped. The function only takes effect with a block "later" in the program run.

Changing the dry run feedrate
The feedrate for the dry run is entered in the setting data:

SD42100 $SC_DRY_RUN_FEED (dry run feedrate)

The setting data can be changed via the operator panel front in the "Parameters" operating
area.

If the selection has been accepted by the NC, the following NC/PLC interface signal is set:

DB21, ... DBX318.6 (dry run feedrate active)

V1: Feedrates
18.4 Feedrate control

Basic Functions
1428 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

"DRY" is displayed in the operator panel front status bar to indicate an active dry run feedrate
if:

● Selection took place during the program stop at the end of a block or

● The machine data MD10704 $MN_DRYRUN_MASK was set to "1" during the program
execution

Mode of operation of the dry run feedrate
The mode of operation of the dry run feedrate entered in SD42100 can be set via the setting
data:

SD42101 $SC_DRY_RUN_FEED_MODE

Value Meaning
0 The programmed feedrate is compared to the dry run feedrate in SD42100 and then tra‐

versing is performed with the higher of the two feedrates (default setting).
1 The programmed feedrate is compared to the dry run feedrate in SD42100 and then tra‐

versing is performed with the lower of the two feedrates.
2 The dry run feedrate entered in SD42100 takes effect directly, irrespective of the program‐

med velocity.
3 - 9 Reserved
10 As for configuration 0, except for thread cutting (G33, G34, G35) and tapping (G331, G332,

G63). These functions are executed as programmed.
11 As for configuration 1, except for thread cutting (G33, G34, G35) and tapping (G331, G332,

G63). These functions are executed as programmed.
12 As for configuration 2, except for thread cutting (G33, G34, G35) and tapping (G331, G332,

G63). These functions are executed as programmed.

18.4.5 Multiple feedrate values in one block

Function
The function "Multiple feedrate values in one block" can be used to activate six different
feedrate values of an NC block, a dwell time or a retraction motion-synchronously, depending
on the external digital and/or analog inputs.

When the input for the sparking out time or retraction path is activated, the distance-to-go for
the path axes or the particular single axis is deleted and the dwell time or retraction is started.

The retraction is started within an IPO cycle.

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1429

Signals
The input signals are combined in one input byte for the function. A fixed functional assignment
applies within the byte.

Table 18-1 Input byte for the "Multiple feedrates in one block" function

 Bit
7 6 5 4 3 2 1 0

Input no. I7 I6 I5 I4 I3 I2 I1 I0
Feedrate address F7 F6 F5 F4 F3 F2 ST SR

I7 to I2: Activation of feedrates F7 to F2
E1: Activation of the dwell time ST/STA (in seconds)
I0: Activation of the retraction motion SR/SRA

Priority of the signals
The signals are scanned in ascending order starting at I0. Therefore, the retraction motion
(SR) has the highest priority and the feedrate F7 the lowest priority.

SR and ST end the feedrate motions that were activated with F2 to F7.
SR also ends ST, i.e. the complete function.

The signal with the highest priority determines the current feedrate.

The response to loss of the respective highest-priority input (F2 - F7) can be defined with the
machine data:

MD21230 $MC_MULTFEED_STORE_MASK (storage behavior for the "Multiple feedrate
values in one block" function)

Bit Value Meaning
2 ... 7 0 With the loss of the respective highest-priority input, the associated feedrate is not

retained (default setting).
1 Set bit 2 to 7 ensures that the associated feedrate (F2 to F7) that was selected by

the respective highest-priority input signal is also retained when there is a loss of
the input signal and a lower-priority input is active.

The end-of-block criterion is satisfied when:

● The programmed end position is reached

● The retraction motion ends (SR)

● The dwell time elapses (ST)

Hardware assignment
The input byte for the "Multiple feedrate values in one block" function can be assigned a
maximum of two digital input bytes or comparator input bytes of the NC I/O:

MD21220 $MC_MULTFEED_ASSIGN_FASTIN (assignment of the input bytes of the NC I/O
for "Multiple feedrate values in one block"), bits 0 ... 15

The input bits can also be inverted:

V1: Feedrates
18.4 Feedrate control

Basic Functions
1430 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD21220 $MC_MULTFEED_ASSIGN_FASTIN, bit 16 ... 31

Figure 18-10 Signal assignment for the "Multiple feedrate values in one block" function

The assignment of the digital input bytes and parameterization of the comparators are
described in:
References:
Function Manual, Extended Functions; Digital and analog NC I/O (A4)

Programming

Path motion
The path feedrate is programmed under the address F and remains valid until an input signal
is present. This value acts modally.

F2=... to F7=... can be used in addition to the path feedrate to program up to six further
feedrates in the block. The numerical expansion indicates the bit number of the input that
activates the feedrate when changed:

Example:

F7=1000 ;7 corresponds to input bit 7

The programmed values act non-modally. The path feedrate programmed under F applies in
the next block.

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1431

Dwell (sparking out time) and retraction path are programmed under separate addresses in
the block:

ST=... Dwell time (for grinding sparking out time)
SR=... Retraction path

These addresses apply non-modally.

Axial motion
The axial feedrates are programmed under address FA and remain valid until an input signal
is present. They act modally.

FMA[2,<axis>]=... to FMA[7,<axis>]=... can be used to program up to six further
feedrates per axis in the block.

The first expression in square brackets indicates the bit number of the input that activates the
feedrate when changed. The second expression indicates the axis to which the feedrate
applies.

Example:

FMA[3,Y]=1000 ; Axial feedrate for Y axis, corresponds to input bit 3

The values programmed under FMA act non-modally. The feedrate programmed under FA
applies to the next block.

Dwell (sparking out time) and retraction path can also be defined for a single axis:

STA[<axis>]=... Axial dwell time (sparking out time)
SRA[<axis>]=... Axial retraction path

The expression in square brackets indicates the axis for which the sparking out time and
retraction path apply.

Examples:

STA[X]=2.5 ; The sparking out time for the X axis is 2.5 seconds.
SRA[X]=3.5 ; The retraction path for the X axis is 3.5 (unit e.g. mm).

These addresses apply non-modally.

Note
Retraction path

The unit for the retraction path refers to the current valid unit of measurement (mm or inch).

The reverse stroke is always made in the opposite direction to the current motion. SR/SRA
always programs the value for the reverse stroke. No sign is programmed.

V1: Feedrates
18.4 Feedrate control

Basic Functions
1432 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note
POS instead of POSA

If feedrates, sparking out time (dwell time) or return path are programmed for an axis on
account of an external input, this axis must not be programmed as POSA axis (positioning axis
over multiple blocks) in this block.

Note
Status query

It is also possible to poll the status of an input for synchronous commands of various axes.

Note
LookAhead

Look Ahead is also active for multiple feedrates in one block. In this way, the current feedrate
can be restricted by the Look Ahead value.

Application
The "Multiple feedrate values in one block" function is used primarily for grinding, but is not
restricted to it.

Typical applications are, for example:

● Analog or digital calipers
Depending on whether the external inputs are analog or digital, various feedrate values, a
dwell time and a retraction path can be activated. The limit values are defined via the setting
data.

● Switching from infeed to working feedrate via proximity switch

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1433

Example
Internal grinding of a conical ring, where the actual diameter is determined using calipers and,
depending on the limits, the feedrate value required for roughing, finishing or fine finishing is
activated. The position of the calipers also provides the end position. Thus, the block end
criterion is determined not only by the programmed axis position of the infeed axis but also by
the calipers.

Restrictions for the function with SINUMERIK 828D

MD21220
=

1H 1st byte (4 bits on X242 and 4 bits via interface)

 2H 2nd byte (4 bits on X252 and 4 bits via interface)
 102H 8 bits via interface only

With the SINUMERIK 828D, a whole byte cannot be addressed because of the limited
hardware input terminals. This therefore means the following:

● Only 4 different feedrates can be programmed on the hardware (4 bits on X242 or 4 bits
on X252 on the PPU)

● The remaining 4 bits are implemented via the interface.

● "Only" the interface is used, not hardware inputs. Therefore, the feedrates no longer run in
one IPO cycle.

V1: Feedrates
18.4 Feedrate control

Basic Functions
1434 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Table for the assignment of the feedrate address to an input or interface:

Feedrate ad‐
dress

1st byte $A_IN[x] Interface 2nd byte $A_IN[x] Interface

SR 0 1 DB2800.DBX1.0 0 9 DB2800.DBX1001.0
ST 1 2 DB2800.DBX1.1 1 10 DB2800.DBX1001.1
F2 2 3 DB2800.DBX1.2 2 11 DB2800.DBX1001.2
F3 3 4 DB2800.DBX1.3 3 12 DB2800.DBX1001.3
F4 4 5 DB2800.DBX1.4 4 13 DB2800.DBX1001.4
F5 5 6 DB2800.DBX1.5 5 14 DB2800.DBX1001.5
F6 6 7 DB2800.DBX1.6 6 15 DB2800.DBX1001.6
F7 7 8 DB2800.DBX1.7 7 16 DB2800.DBX1001.7

Example:
G90 G0 X600

POS[X]=700 FA[X]=1000

POS[X]=700 FA[3,X]=2000 -> (if $A_IN[4]=1 -> then the feedrate value is 2000, otherwise the
value 1000 applies for the feedrate.)

Commissioning:
4 feedrate addresses through the hardware terminals and 4 through the interface

● -X242 = wire IN1 to IN4 (PIN 3 – 6) -> SR, ST, F2, F3

● Interface: DB2800.DBX1.4 – 1.7 = IN5 – IN8 -> F4, F5, F6, F7

● MD21220 =1H

18.4.6 Fixed feedrate values

Function
The "Fixed feedrate values" function can be used to activate fixed feedrates (max. four) defined
via the machine data instead of the programmed feedrate or the configured JOG velocities.

The function is available in AUTOMATIC and JOG mode.

Behavior in AUTOMATIC mode
The contour travels at the activated fixed feedrate, instead of using the programmed feedrate.

Behavior in JOG mode
The axis is traversed with the activated fixed feedrate instead of the configured JOG velocity /
JOG rapid traverse velocity. The travel direction is specified via the interface signal.

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1435

Parameterization
The setting of the fixed feedrates is performed:

● For linear axes with the machine data:
MD12202 $MN_PERMANENT_FEED[<n>]

● For rotary axes with the machine data:
MD12204 $MN_PERMANENT_ROT_AX_FEED[<n>]

where <n> = 0, 1, 2, 3 (for fixed feedrate 1, 2, 3, 4)

Note

The fixed feedrates are always linear feedrate values. Switchover to linear feedrate is
conducted internally even in case of revolutional feedrate.

Activation
The fixed feedrates are activated via NC/PLC interface signals:

● In AUTOMATIC mode for path/geometry axes using the channel-specific interface signals:
DB21, ... DBX29.0 (activate fixed feedrate 1)
DB21, ... DBX29.1 (activate fixed feedrate 2)
DB21, ... DBX29.2 (activate fixed feedrate 3)
DB21, ... DBX29.3 (activate fixed feedrate 4)

● In JOG mode for machine axes using the axis-specific interface signals:
DB31, ... DBX3.2 (activate fixed feedrate 1)
DB31, ... DBX3.3 (activate fixed feedrate 2)
DB31, ... DBX3.4 (activate fixed feedrate 3)
DB31, ... DBX3.5 (activate fixed feedrate 4)

Supplementary conditions

Effectiveness
The function "Fixed feedrate values" is not active:

● For spindles

● For positioning axes

● When tapping

Override = 0
The traversing behavior for override = 0 depends on the setting in machine data:

MD12200 $MN_RUN_OVERRIDE_0

DRF offset
The DRF offset cannot be activated for a selected fixed feedrate.

V1: Feedrates
18.4 Feedrate control

Basic Functions
1436 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

18.4.7 Programmable feedrate characteristics

Function
To permit flexible definition of the feedrate characteristic, the feedrate programming according
to DIN 66025 has been extended by linear and cubic characteristics.

The cubic profiles can be programmed directly or as an interpolating spline.

Programming
You can program the following feedrate profiles:

● FNORM
Behavior in accordance with DIN 66025 (default setting).
An F-value programmed in the block is applied over the entire path of the block, and is
subsequently regarded as a fixed modal value.

● FLIN
An F value programmed in the block is traversed linearly over the path from the current
value at the beginning of the block to the end of the block, and is subsequently regarded
as modal value.

● FCUB
The non-modal programmed F values (relative to the end of the block) are connected by a
spline. The spline starts and ends tangentially to the previous or following feedrate setting.
If the F address is missing in one block, then the last programmed F value is used.

● FPO
The F address [syntax: F=FPO(...,...,...)] designates the characteristic of the
feedrate via a polynomial from the current value to the end of the block in which it was
programmed. The end value is treated as modal from there onwards.

Parameterization
If FLIN and FCUB are used in connection with compression COMPON, a tolerance can be
defined for the path feedrate:

MD20172 $MC_COMPRESS_VELO_TOL (max. permissible deviation of the path feedrate
with compression)

Supplementary conditions

FLIN/FCUB
The path velocity profile programmed with FLIN or FCUB is not active together with revolutional
feedrate for G95 as well as with constant cutting rate with G96/G961 and G97/G971.

References
For further information on the programmable feedrate characteristics, see Programming
Manual, Job Planning.

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1437

18.4.8 Feedrate for chamfer/rounding FRC, FRCM
The machining conditions can change significantly during surface transitions to chamfer/
rounding. Hence, the chamfer/rounding contour elements require dedicated, optimized
feedrate values to achieve the desired surface quality.

Function
The feedrate for chamfer/rounding can be programmed via NC addresses.

Programming

Syntax:
... FRC/FRCM=<value>

Meaning:

FRC: Non-modal feedrate for chamfer/rounding
FRCM: Modal feedrate for chamfer/rounding
<value>: The feedrate is interpreted according to the active feedrate type:
 ● G94, G961, G971: Feedrate in mm/min or inch/min or o/min
 ● G95, G96, G97: Revolutional feedrate in mm/rev or inch/rev

Note

FRC is only effective if a chamfer/rounding is programmed in the block or if RNDM has been
activated.

FRC overwrites the F or FRCM value in the current block.

The feedrate programmed under FRC must be greater than zero.

FRCM=0 activates the feedrate programmed under F for chamfering/rounding.

Parameterization

Assignment of the chamfer/rounding to the previous or following block
The feedrate type (G94, G95, G96, G961 ...) and therefore the conversion to the internal
format must be consistent within the block for F and FRC/FRCM. In this context, the following
machine data must be taken into account:

MD20201 $MC_CHFRND_MODE_MASK (chamfer/rounding behavior)

Bit Value Meaning
0 0 The technology of the chamfer/rounding (feedrate, feedrate type, M commands, etc.)

is determined by the following block (default setting).
1 The technology of the chamfer/rounding is determined by the previous block (recom‐

mended setting).

V1: Feedrates
18.4 Feedrate control

Basic Functions
1438 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Maximum number of empty blocks
The number of blocks without traversing information in the compensation plane (empty blocks)
permitted between two blocks with traversing information during active chamfer/rounding, is
limited. The maximum number is specified in the machine data:

MD20200 $MC_CHFRND_MAXNUM_DUMMY_BLOCKS (empty blocks for chamfer/radii)

Supplementary conditions

FLIN/FCUB
Feedrate interpolation FLIN and FCUB is not possible for chamfer/rounding.

G0
FRC/FRCM is not active when a chamfer is traversed with G0. The programming is possible
in accordance with the F value without error message.

Change G94 ↔ G95
If FRCM is programmed, the FRCM value will need to be reprogrammed like F on change
G94 ↔ G95, etc. If only F is reprogrammed and if the feedrate type FRCM > 0 before the
change, an error message will be output.

Example

Example 1: MD20201 bit 0 = 0; take feedrate from following block (default setting!)

Program code Comment
N10 G0 X0 Y0 G17 F100 G94
N20 G1 X10 CHF=2 ; Chamfer N20-N30 with F=100 mm/min
N30 Y10 CHF=4 ; Chamfer N30-N40 with FRC=200 mm/min
N40 X20 CHF=3 FRC=200 ; Chamfer N40-N60 with FRCM=50 mm/min
N50 RNDM=2 FRCM=50
N60 Y20 ; Modal rounding N60-N70 with FRCM=50 mm/min
N70 X30 ; Modal rounding N70-N80 with FRCM=50 mm/min
N80 Y30 CHF=3 FRC=100 ; Chamfer N80-N90 with FRC=100 mm/min
N90 X40 ; Modal rounding N90-N100 with F=100 mm/min (dese-

lection of FRCM)
N100 Y40 FRCM=0 ; Modal rounding N100-N120 with G95 FRC=1 mm/rev
N110 S1000 M3
N120 X50 G95 F3 FRC=1
...
M02

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1439

Example 2: MD20201 bit 0 = 1; take feedrate from previous block (recommended setting!)

Program code Comment
N10 G0 X0 Y0 G17 F100 G94
N20 G1 X10 CHF=2 ; Chamfer N20-N30 with F=100 mm/min
N30 Y10 CHF=4 FRC=120 ; Chamfer N30-N40 with FRC=120 mm/min
N40 X20 CHF=3 FRC=200 ; Chamfer N40-N60 with FRC=200 mm/min
N50 RNDM=2 FRCM=50
N60 Y20 ; Modal rounding N60-N70 with FRCM=50 mm/min
N70 X30 ; Modal rounding N70-N80 with FRCM=50 mm/min
N80 Y30 CHF=3 FRC=100 ; Chamfer N80-N90 with FRC=100 mm/min
N90 X40 ; Modal rounding N90-N100 with FRCM=50 mm/min
N100 Y40 FRCM=0 ; Modal rounding N100-N120 with F=100 mm/min
N110 S1000 M3
N120 X50 CHF=4 G95 F3 FRC=1 ; Chamfer N120-N130 with G95 FRC=1 mm/rev
N130 Y50 ; Modal rounding N130-N140 with F=3 mm/rev
N140 X60
...
M02

18.4.9 Non-modal feedrate FB

Function
The "Non-modal feedrate" function can be used to define a separate feedrate for a single part
program block. After this block, the previous modal path feedrate is active again.

Programming

Syntax:
... FB=<value>

Meaning:

FB: Separate feedrate for the current block
<value>: The feedrate is interpreted according to the active feedrate type:
 ● G94, G961, G971: Feedrate in mm/min or inch/min or o/min
 ● G95, G96, G97: Revolutional feedrate in mm/rev or inch/rev

V1: Feedrates
18.4 Feedrate control

Basic Functions
1440 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

The feedrate programmed under FB must be greater than zero.

If no traversing motion is programmed in the block (e.g. computation block), the FB has no
effect.

If no explicit feed for chamfering/rounding is programmed, then the value of FB also applies
for any contour element chamfering/rounding in this block.

Simultaneous programming of FB and FD (manual handwheel traversing with feedrate
override) or F (modal path feedrate) is not possible.

18.4.10 Influencing the single axis dynamic response

Single axes
Single axes can be programmed in the part program, in synchronized actions and via the PLC:

● Part program: POS[<axis>]=...
POSA[<axis>]=...
SPOS[<axis>]=...
SPOSA[<axis>]=...
OS[<axis>]=...
OSCILL[<axis>]=...

● Synchronized actions: EVERY ... DO
POS[<axis>]=...
SPOS[<spindle>]=...
MOV[<axis>]=...

● PLC: FC18

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1441

Dynamic response
The dynamic response of an axis is influenced by:

● MD32060 $MA_POS_AX_VELO (positioning axis velocity)
The effective positioning axis velocity can be changed:

– Part program / synchronized action: Axial feedrate FA or percentage feedrate override
OVRA

– PLC: Specification of FRate or overwriting the axial override

● MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)
The effective maximum axis acceleration can be changed:

– Part program indirectly: Writes the machine data with subsequent "Activate machine
data"

– Part program directly: Percentage acceleration override ACC

– Synchronized actions indirectly: Writes the machine data and triggers an ASUP for the
activation of "Activate machine data" function

– Synchronized actions directly: Percentage acceleration override ACC (cannot be preset
by the PLC).

Via the PLC, the same options apply as in synchronized actions.

● Part program commands: BRISKA, SOFTA, DRIVEA, JERKA
Cannot be programmed in synchronized actions (only indirectly via ASUP).
Cannot be specified by the PLC (only indirectly via ASUP).

● Active servo parameter set
The active parameter set can be changed:

– Part program / synchronized action: SCPARA

– PLC: DB31, … DBX9.0-2 (controller parameter set)

For detailed information on the servo parameter sets, see "Parameter sets of the position
controller (Page 385)".

Note
Dynamic response changes

Dynamic response changes made in the part program do not affect command or PLC axis
motion. Dynamic response changes made in synchronized actions have no effect on traversing
motion programmed in the part program.
Feedforward control

The type of feedforward control and the path axes that should be traversed with feedforward
control can be directly programmed in the part program using FFWON/FFWOF. In
synchronized actions and from the PLC, programming is only possible indirectly via an ASUP.

V1: Feedrates
18.4 Feedrate control

Basic Functions
1442 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Percentage acceleration override (ACC)
In a part program or synchronized action, the acceleration specified in machine data:
MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)
 can be changed in a range from 0% – 200% using the ACC command.

Syntax:
ACC[<axis>]=<value>

Meaning:

ACC: Keyword for the programming of the percentage acceleration override
<axis>: Name of the channel axis or spindle
<value>: Acceleration change in percent relative to MD32300
 Value range: 0 ... 200

The actual axial acceleration value can be read via the system variable $AA_ACC. It is
determined by:

$AA_ACC[<axis>] = (MD32300 $MA_MAX_AX_ACCEL[<axis>]) * ACC[<axis>] / 100

MD32320 $MA_DYN_LIMIT_RESET_MASK can be used to specify the basic setting of the
value programmed with ACC for a channel reset or end of part program M30.

Note

The acceleration override programmed with ACC can be read using the system variable
$AA_ACC. However, $AA_ACC is read in the part program at a different time than when
reading in a synchronized action.

The system variables $AA_ACC only contain the value programmed in the part program with
ACC if, in the meantime, the acceleration override was not changed by programming ACC in
a synchronized action. The same applies for the reverse situation.

Percentage acceleration override and main run axes
Depending on whether the system variable $AA_ACC is read in the part program or
synchronized action, the value for the acceleration override programmed with ACC is output
for the NC axes or main run axes (command axes, PLC axes, asynchronous oscillating axes,
etc.).

For correct results, system variable $AA_ACC must therefore always be read at the same
location (part program or synchronized action) from where the acceleration override was
programmed with ACC.

Examples:

Writing ACC in a part program:
N80 G01 POS[X]=100 FA[X]=1000 ACC[X]=90 IPOENDA[X]

Writing ACC in a synchronized action:
N100 EVERY $A_IN[1] DO POS[X]=50 FA[X]=2000 ACC[X]=140 IPOENDA[X]

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1443

Writing ACC and reading $AA_ACC in a part program:
ACC[X]=50 ; writing
RO=$AA_ACC[X] ; reading

IF (RO <> $MA_MAX_AX_ACCEL[X] * 0.5) ; checking
 SETAL(61000)
ENDIF

Writing ACC and reading $AA_ACC in a synchronized action:
WHEN TRUE DO ACC[X]=25 R0=$AA_ACC[X] ; writing and reading
G4 F1

IF (RO <> $MA_ MAX_AX_ACCEL[X] * 0.25) ; checking
 SETAL(61001)
ENDIF

end-of-motion criterion for single axes
Similar to the block change criterion for path interpolation (G601, G602, G603) the end-of-
motion criterion for traversing motion of individual axes can be programmed in part programs /
synchronized actions:

Program command End-of-motion criterion
FINEA[<axis>] "Exact stop fine"
COARSEA[<axis>] "Exact stop coarse"
IPOENDA[<axis>] "Interpolator stop" (IPO stop)

The most recently programmed value is kept after the end of program or NC reset.

The effective end-of-motion criterion can be read using the axis-specific system variable
$AA_MOTEND.

Note

Depending on whether the system variable $AA_MOTEND is read in the part program or
synchronized action, it contains the value for the NC axes or the main run axes.

Example:

Part program:
N80 G01 POS[X]=100 FA[X]=1000 ACC[X]=90 COARSEA[X]

Synchronized action:
N100 EVERY $A_IN[1] DO POS[X]=50 FA[X]=2000 ACC[X]=140 IPOEN-
DA[X]

V1: Feedrates
18.4 Feedrate control

Basic Functions
1444 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

References:
For further information on block changes and end-of-motion criteria for FINEA, COARSEA and
IPOENDA, see:
Function Manual, Extended Functions; Positioning Axes (P2), Section: Block change

Programmable servo parameter set (SCPARA)
In the part program / synchronized action, the servo parameter set can be specified using
SCPARA.

Syntax
SCPARA[<axis>] = <parameter set number>

Meaning

SCPARA: Keyword for the activation of the specified servo parameter
set

<axis>: Name of the channel axis
<parameter set number>: Number of the servo parameter set to be activated

Note

The activation of the parameter set specified using SCPARA can be suppressed from the PLC
user program:

DB31,… DBX9.3 = 1 (parameter set specification disabled by SCPARA)

In this case, no message is displayed.

The number of the active parameter set can be read using the system variable $AA_SCPAR.

Supplementary conditions

Different end-of-motion criteria
Different end-of-motion criteria will affect how quickly or slowly part program blocks are
completed. This can have side effects for technology cycles and PLC user parts.

Parameter set change
The PLC user program must be expanded if the servo parameter set is to be changed both
inside a part program or synchronized action and the PLC.

Power On
After POWER ON, the following basic settings are made:

● Percentage acceleration override for all single-axis interpolations: 100%

● End-of-motion criterion for all single-axis interpolations: FINEA

● Servo parameter set: 1

V1: Feedrates
18.4 Feedrate control

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1445

Mode change
When the operating mode is changed from AUTOMATIC to JOG, the programmed dynamic
response changes remain valid.

Reset
With reset, the last programmed value remains for the part program specifications. The settings
for main-run interpolations do not change.

Block search
The last end-of-motion criterion programmed for an axis is collected and output in an action
block. The last block with a programmed end-of-motion criterion that was processed in the
block search run serves as a container for all programmed end-of-motion criteria for all axes.

18.5 Supplementary conditions

Unit of measurement
The valid unit of measurement of the feedrates depends on the set measuring system and the
entered axis type:

MD10240 $MN_SCALING_SYSTEM_IS_METRIC (basic system of the control metric/inch)

MD30300 $MA_IS_ROT_AX (rotary or linear axis)

Initial setting for the feedrate type
The initial setting for the feedrate type is specified in the machine data:

MD20150 $MC_GCODE_RESET_VALUES (initial setting of the G groups)

The default setting is G94.

The initial setting of the feedrate type is only displayed when a part program is started.

Effectiveness after reset
Whether the last programmed F, FA, OVR, OVRA values are also active after reset depends
on the setting in the machine data:

MD22410 $MC_F_VALUES_ACTIVE_AFTER_RESET (F function is active even after reset)

Spindle positioning
With active G95, G96, G961, G97, G971, G33, G34, G35 spindle positioning should not be
performed, because the derived path feedrate following spindle positioning = 0. If the
programmed axis position has not then been reached, the block cannot be completed.

V1: Feedrates
18.5 Supplementary conditions

Basic Functions
1446 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

18.6 Data lists

18.6.1 Machine data

18.6.1.1 NC-specific machine data

Number Identifier: $MN_ Description
10651 IPO_PARAM_THREAD_NAME_TAB Name of the interpolation parameters for convex

threads
10704 DRYRUN_MASK Activation of dry run feedrate
10710 PROG_SD_RESET_SAVE_TAB Setting data to be updated
11410 SUPPRESS_ALARM_MASK Mask for suppressing special alarms
11550 STOP_MODE_MASK Defines the stop behavior
12000 OVR_AX_IS_GRAY_CODE Axis feedrate override switch, Gray-coded
12010 OVR_FACTOR_AX_SPEED Evaluation of the axis feedrate override switch
12020 OVR_FEED_IS_GRAY_CODE Path feedrate override switch, Gray-coded
12030 OVR_FACTOR_FEEDRATE Evaluation of the path feedrate override switch
12040 OVR_RAPID_IS_GRAY_CODE Rapid traverse override switch, Gray-coded
12050 OVR_FACTOR_RAPID_TRA Evaluation of the rapid traverse override switch
12060 OVR_SPIND_IS_GRAY_CODE Spindle override switch, Gray-coded
12070 OVR_FACTOR_SPIND_SPEED Evaluation of the spindle override switch
12080 OVR_REFERENCE_IS_PROG_FEED Override reference velocity
12082 OVR_REFERENCE_IS_MIN_FEED Defines the reference of the path override
12090 OVR_FUNCTION_MASK Selection of override specifications
12100 OVR_FACTOR_LIMIT_BIN Limit for binary-coded override switch
12200 RUN_OVERRIDE_0 Traversing with override 0
12202 PERMANENT_FEED Fixed feedrates for linear axes
12204 PERMANENT_ROT_AX_FEED Fixed feedrates for rotary axes

18.6.1.2 Channel-specific machine data

Number Identifier: $MC_ Description
20100 DIAMETER_AX_DEF Geometry axes with transverse axis functions
20150 GCODE_RESET_VALUES Basic setting of the G groups
20172 COMPRESS_VELO_TOL Maximum permissible deviation from path feed for com‐

pression
20200 CHFRND_MAXNUM_DUMMY_BLOCKS Empty blocks with phase/radii
20201 CHFRND_MODE_MASK Behavior for chamfer/rounding
20750 ALLOW_GO_IN_G96 G0 logic for G96, G961
21200 LIFTFAST_DIST Traversing path for fast retraction from the contour

V1: Feedrates
18.6 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1447

Number Identifier: $MC_ Description
21220 MULTFEED_ASSIGN_FASTIN Assignment of input bytes of NC I/O for "Multiple fee‐

drate values in one block"
21230 MULTFEED_STORE_MASK Storage behavior for the "Multiple feedrate values in

one block" function
22240 AUXFU_F_SYNC_TYPE Output timing of F functions
22410 F_VALUES_ACTIVE_AFTER_RESET F function active after reset

18.6.1.3 Axis/Spindle-specific machine data

Number Identifier: $MA_ Description
30300 IS_ROT_AX Rotary axis/spindle
32000 MAX_AX_VELO Maximum axis velocity
32060 POS_AX_VELO Initial setting for positioning axis velocity
32300 MAX_AX_ACCEL Axis acceleration
32320 DYN_LIMIT_RESET_MASK Reset behavior of dynamic limits
34990 ENC_ACTIVAL_SMOOTH_TIME Smoothing time constant for actual values
35100 SPIND_VELO_LIMIT Maximum spindle speed
35130 GEAR_STEP_MAX_VELO_LIMIT Maximum speed of gear stage
35140 GEAR_STEP_MIN_VELO_LIMIT Minimum speed of gear stage
35160 SPIND_EXTERN_VELO_LIMIT Spindle-speed limitation via PLC

18.6.2 Setting data

18.6.2.1 Channel-specific setting data

Number Identifier: $SC_ Description
42000 THREAD_START_ANGLE Start angle for thread
42010 THREAD_RAMP_DISP Acceleration behavior of axis when thread cutting
42100 DRY_RUN_FEED Dry run feedrate
42101 DRY_RUN_FEED_MODE Dry run feed mode
42110 DEFAULT_FEED Default value for path feed
42600 JOG_FEED_PER_REV_SOURCE Revolutional feedrate control in the JOG mode
43300 ASSIGN_FEED_PER_RES_SOURCE Revolutional feedrate for positioning axes/spindles

V1: Feedrates
18.6 Data lists

Basic Functions
1448 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

18.6.2.2 Axis/spindle-specific setting data

Number Identifier: $SA_ Description
43210 SPIND_MIN_VELO_G25 Programmed spindle speed limiting G25
43220 SPIND_MAX_VELO_G26 Programmed spindle speed limiting G26
43230 SPIND_MAX_VELO_LIMS Spindle speed limiting with G96

18.6.3 Signals

18.6.3.1 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate dry run feedrate DB21,DBX0.6 DB320x.DBX0.6
Feedrate override DB21,DBB4 DB320x.DBB4
Rapid traverse override DB21,DBB5 DB320x.DBB5
Feed disable DB21,DBX6.0 DB320x.DBX6.0
Rapid traverse override active DB21,DBX6.6 DB320x.DBX6.6
Feedrate override active DB21,DBX6.7 DB320x.DBX6.7
Feed stop, geometry axis 1 DB21,DBX12.3 DB320x.DBX1000.3
Feed stop, geometry axis 2 DB21,DBX16.3 DB320x.DBX1004.3
Feed stop, geometry axis 3 DB21,DBX20.3 DB320x.DBX1008.3

18.6.3.2 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Dry run feedrate selected DB21,DBX24.6 DB170x.DBX0.6
Feedrate override selected for rapid traverse DB21,DBX25.3 DB170x.DBX1.3
Activate fixed feedrate 1 for path/geometry axes DB21,DBX29.0 DB320x.DBX13.0
Activate fixed feedrate 2 for path/geometry axes DB21,DBX29.1 DB320x.DBX13.1
Activate fixed feedrate 3 for path/geometry axes DB21,DBX29.2 DB320x.DBX13.2
Activate fixed feedrate 4 for path/geometry axes DB21,DBX29.3 DB320x.DBX13.3
Dry run feedrate active DB21,DBX318.6 DB330x.DBX4002.6

18.6.3.3 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Feedrate override / spindle override DB31,DBB0 DB380x.DBB0
Override active DB31,DBX1.7 DB380x.DBX1.7

V1: Feedrates
18.6 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1449

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate fixed feedrate 1 for machine axis DB31,DBX3.2 DB380x.DBX3.2
Activate fixed feedrate 2 for machine axis DB31,DBX3.3 DB380x.DBX3.3
Activate fixed feedrate 3 for machine axis DB31,DBX3.4 DB380x.DBX3.4
Activate fixed feedrate 4 for machine axis DB31,DBX3.5 DB380x.DBX3.5
Feed stop/spindle stop DB31,DBX4.3 DB380x.DBX4.3

18.6.3.4 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Revolutional feedrate active DB31,DBX62.2 DB390x.DBX2.2
F function for positioning axis DB31,DBB81 -
Programmed speed too high DB31,DBX83.1 DB390x.DBX2001.1

V1: Feedrates
18.6 Data lists

Basic Functions
1450 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

W1: Tool offset 19
19.1 Brief description

Calculating tool compensation data
The SINUMERIK 840D sl controller can be used to calculate the following tool compensation
data:

● Length compensation

● Radius compensation

● Storage of tool data in a flexible tool offset memory:

– Tool identification with T numbers from 0 to 32000

– Definition of a tool with a maximum of 9 cutting edges

– Cutting edge described by up to 25 tool parameters

● Tool selection selectable: Immediate or via selectable M function

● Tool radius compensation:

– Selection and deselection strategy configurable: Normal or contour-related

– Compensation active for all interpolation types:
Linear
Circle
Helical
Spline
Polynomial
Involute

– Compensation at outer corners selectable:
Transition circle/ellipse (G450) or equidistant intersection (G451)

– Parameter-driven adaptation of G450/G451 functions to the contour

– Free traversing on outer corners with G450 and DISC parameter

– Number of dummy blocks without axis motion selectable in the compensation plane

– Collision detection selectable:
Possible contour violations are detected predictively, if:
- Path is shorter than tool radius
- Width of an inside corner is shorter than the tool diameter

– Keep tool radius compensation constant

– Intersection procedure for polynomials

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1451

Toolholder with orientation capability
This function permits the machining of inclined surfaces with allowance for tool length
compensation, provided that the kinematics of the toolholder (without NC axes) permits a static
orientation of the tool. The more complex 5-axis transformation is not required for this case.

Reference:
Function Manual, Special Functions; Multi-Axis Transformations (F2)

Appropriate selection of the tool data and toolholder data describes the kinematics for the
controller such that it can make allowance for the tool length compensation. The controller can
take some of the description data direct from the current frame.

Note

Please refer to the following documentation for further information on tools and tool
compensations and a full technical description of the general and specific programming
features for tool compensation (TLC and TRC):

References:
Programming Manual, Fundamentals

Flat/unique D number structure
Compensations can be selected via unique D numbers with management function.

Special handling of tool compensations
The evaluation of signs can be controlled for tool length and wear by the setting data:

SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

SD42960 $SC_TOOL_TEMP_COMP (temperature compens. regarding tool).

The same applies to the response of the wear components when mirroring geometry axes or
changing the machining plane via setting data.

References:
Programming Manual, Fundamentals, Tool Offsets

W1: Tool offset
19.1 Brief description

Basic Functions
1452 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

G461/G462
In order to enable the solid machining of inside corners in certain situations with the activation
and deactivation of tool radius compensation, commands G461 und G462 have been
introduced and the approach/retraction strategy has thus been extended for tool radius
compensation.

● G461
If no intersection is possible between the last TRC block and a previous block, the controller
calculates an intersection by extending the offset curve of this block with a circle whose
center point coincides with the end point of the noncorrected block, and whose radius is
equal to the tool radius.

● G462
If no intersection is possible between the last TRC block and a previous block, the controller
calculates an intersection by inserting a straight line at the end point of the last block with
tool radius compensation (the block is extended by its end tangent).

Changing from G40 to G41/42
The change from G40 to G41/G42 and vice versa is no longer treated as a tool change for
tools with relevant tool point direction (turning and grinding tools).

Tool compensation environments
Functions which enable the following actions in relation to the current states of tool data are
available in SW 7.1:

● Save

● Delete

● Read

● Modify

Some of the functions were previously implemented in measuring cycles. They are now
universally available.

A further function can be used to determine information about the assignment of the tool lengths
of the active tool to the abscissa, ordinate and applicate.

19.2 Tool

19.2.1 General information

Select tool
A tool is selected in the program with the T function.

W1: Tool offset
19.2 Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1453

Whether the new tool will be loaded immediately by means of the T function depends on the
setting in the machine data:

MD22550 $MC_TOOL_CHANGE_MODE (new tool compensation with M function)

Change tool immediately
MD22550 $MC_TOOL_CHANGE_MODE = 0 (new tool compensation with M function).

The new tool is changed immediately with the T function.

This setting is used mainly for turning machines with tool revolver.

Change tool with M06
MD22550 $MC_TOOL_CHANGE_MODE = 1 (new tool compensation with M function).

The new tool is prepared for changing with the T function.

This setting is used mainly on milling machines with a tool magazine, in order to bring the new
tool into the tool change position without interrupting the machining process.

The old tool is removed from the spindle and the new tool is loaded into the spindle with the
entered M function in the machine data:

● MD22560 $MC_TOOL_CHANGE_M_CODE (M function for tool change)

This tool change must be programmed with the M function M06, in accordance with DIN 66025.

The next tool is preselected with the machine data:

● MD20121 $MC_TOOL_PRESEL_RESET_VALUE (Preselected tool at RESET)

Its tool length compensation values must be considered at RESET and powerup according to
machine data:

● MD20110 $MC_RESET_MODE_MASK (Determination of control default settings after
RESET/TP end).

Value range of the T function or the tool number
The T function or the tool number can assume the following integer numbers:

● Minimum value: T0 (no tool)

● Maximum value: T32000 (tool with number 32000)

W1: Tool offset
19.2 Tool

Basic Functions
1454 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Tool cutting edge D
A tool Tx can be assigned various tool cutting edges D1 ... Dn.

Figure 19-1 Example of a tool Tx with 9 cutting edges (D1 to D9)

Maximum number of tool cutting edges per tool
The maximum number of tool cutting edges (D numbers) that can be defined for each tool, is
specified using the following machine data:

● MD18106 $MN_MM_MAX_CUTTING_EDGE_PERTOOL

D function
The selection of the tool cutting edge 1 ... n required for machining is realized by programming
the appropriate D function, e.g. in the part program with D1 ... Dn. The selected tool cutting
edge always refers to the currently active tool. A tool cutting edge without active tool (actual
T number is T0 ⇒ no tool selected), is not effective.

All tool offsets of the active tool Tx are deselected using D0.

Selecting the cutting edge when changing tool
When selecting a new tool using a new T number,and loading this tool, the following options
are available to select the cutting edge:

● The cutting edge number Dx is programmed.

● The cutting edge number is defined by the machine data:
MD20270 $MC_CUTTING_EDGE_DEFAULT =<value> (basic position of the tool cutting
edge without programming)

Value Meaning
= 0 No automatic cutting edge selection in accordance with M06
≠ 0 Number of the cutting edge, which is selected in accordance with M06
= -1 The cutting edge number of the old tool is retained and is also selected for the new tool, in

accordance with M06.

W1: Tool offset
19.2 Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1455

Activating the tool offset
D1 to Dn activate the tool compensation for a cutting edge on the active tool. Tool length
compensation and tool radius compensation can be activated at different times:

● Tool length compensation (TLC) is performed on the first traversing motion of the axis, on
which the TLC is to act.
This traversing motion must be a linear interpolation (G0,G1, POS,POSA) or polynomial
interpolation (POLY). If the POS/POSA axis is one of the active geometry axes, the tool
length compensation is applied with the first axis motion in which the WLK is supposed to
act.

● Tool radius compensation (TRC) becomes active when G41/G42 is programmed in the
active plane (G17, G18 or G19).
In the NC block in which the tool radius correction is activated with G41/G42, G0 (rapid
traverse) or G1 (linear interpolation) must be active and at least one geometry axis of the
active working plane must be programmed.
If only one geometry axis is specified when switching on, the last position of the second
geometry axis is automatically supplemented and then traversed in both axes.
If the axes are not geometry axes, then they must be transformed into geometry axes using
GEOAX programming.
The selection of tool radius compensation with G41/G42 is only permitted in a program
block with G0 (rapid traverse) or G1 (linear interpolation).

19.2.2 Compensation memory structure

Tool offset memory size
Each channel can have a dedicated tool offset memory (TO unit).

Which tool offset memory exists for the relevant channel is set with the machine data:

MD28085 $MC_MM_LINK_TOA_UNIT (assignment of TO unit to a channel)

The maximum number of tool cutting edges for all tools managed by the NC is set with the
machine data:

MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA (number of tool cutting edges in NC)

Tools
The tool offset memory consists of tools numbered T1 to T32000.

Each tool can be set up via TOA files or individually, using the "New tool" softkey. Offset values
not required must be assigned the value zero. This is the default setting when the offset
memory is created. The individual values in the offset memory (tool parameters) can be read
and written from the program using system variables.

Note

The tools (T1 to T32000) do not have to be stored in ascending order or contiguously in the
tool offset memory, and the first tool does not have to be assigned number T1.

W1: Tool offset
19.2 Tool

Basic Functions
1456 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Tool cutting edges
Each tool can have up to nine cutting edges (D1 to D9). The first cutting edge (D1) is set up
automatically when a new tool is loaded to the tool offset memory. Other cutting edges (max.
eight) are set up consecutively and contiguously using the "New cutting edge" softkey. A
different number of tool cutting edges can assigned to each tool in this way.

Figure 19-2 Example of a tool offset memory structure for two channels

19.2.3 Calculating the tool compensation

D No.
The D no. is sufficient for calculating the tool compensations (can be set via MD).

W1: Tool offset
19.2 Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1457

Programming
The above compensation block is to be calculated in the NC.

Part program call:

...
Dn

19.2.4 Address extension for NC addresses T and M

MD20096
Whether the address extension of T and M is also to be interpreted as spindle number when
the tool management is not activated, can be set via the machine data:

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO (spindle number as address extension)

The same rules then apply to the relationship between the D number and T number as when
the "Tool management" function is active.

Effect on the D number
An offset data set is determined by the D number.

The D address cannot be programmed with an address extension.

The evaluation of the D address always refers to the currently active tool.

The programmed D address refers to the active tool in relation to the master spindle (same as
for tool management function), when machine data is set:

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO = TRUE (spindle number as address
extension).

Effect on the T number
If the "Tool management" function is active, the values programmed with reference to the
master spindle (or master toolholder) are displayed as programmed/active T numbers.

If tool management is not active, all programmed T values are displayed as programmed/
active, regardless of the programmed address extension.

Only the T value programmed in relation to the master spindle is shown as programmed/active,
when:

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO = TRUE (spindle number as address
extension).

Example
The following example below shows the effect of MD20096.

W1: Tool offset
19.2 Tool

Basic Functions
1458 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Two spindles are considered. Spindle 1 is the master spindle. M6 was defined as the tool
change signal.

T1 = 5
M1 = 6
T2 = 50
M2 = 6
D4

● If tool management is active, D4 refers to tool "5".
T2=50 defines the tool for the secondary spindle, whose tool does not influence the path
compensation. The path is determined exclusively by the tool programmed for the master
spindle.

● D4 refers to tool "50" without active tool management and with the machine data:
MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO = FALSE (significance of address
extension for T, M tool change).
The address extensions of neither T nor M are evaluated in the NC.
Each tool change command defines a new path compensation.

● D4 refers to tool "5" (as when tool management is active) without active tool management
and with the machine data:
MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO = TRUE.
Address extension 1 (T1= ..., M1= ...) addresses the master spindle.

Note

Previously, when tool management was not activated, each tool change command
(programmed with T or M) caused the tool offset to be recalculated in the path. The address
extension is not defined further by this operation. The significance of the extension is
defined by the user (in the PLC user program).

19.2.5 Free assignment of D numbers

"Relative" D numbers
In the NC it is possible to manage the D numbers as "relative" D numbers for the tool
compensation data sets. The corresponding D numbers are assigned to each T number.

W1: Tool offset
19.2 Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1459

Functions
Expansions to functions when assigning D numbers:

● The maximum permitted D numbers are defined via the machine data:
MD18105 $MN_MM_MAX_CUTTING_EDGE_NO (max. value of the D numbers (DRAM))
The default value is 9, in order to maintain compatibility with existing applications.

● The number of cuts (or the offset data sets) for each tool can be defined via the machine
data:
MD18106 $MN_MM_MAX_CUTTING_EDGE_PERTOOL (max. number of the D numbers
per tool (DRAM))
This allows you to customize the number of cutting edges to be configured for each tool to
the actual number of real cutting edges for monitoring purposes.

● It is also possible to rename D numbers in the NC and thus to allocate arbitrary D numbers
to the cutting edges.

Note

In addition to relative D number allocation, the D numbers can also be assigned as "flat"
or "absolute" D numbers (1-32000) without a reference to a T number (within the "Flat D
number structure" function).

Cutting edge number CE
When you rename D numbers, the information in the tool Catalog detailing the numbers defined
for these cutting edges is lost. It is, therefore, impossible to determine, following renaming,
which cutting edge of the Catalog is being referenced.

Since this information is required for retooling procedures, a cutting edge number CE has been
introduced for each cutting edge. This number remains stored when the D number is renamed.

The D number identifies the cutting edge compensation in the part program. This compensation
number D is administered separately from the cutting edge number CE (the number in the tool
Catalog). Any number can be used. The number is used to identify a compensation in the part
program and on the display.

The CE number identifies the actual physical cutting edge during retooling. The cutting edge
number CE is not evaluated by the NC on compensation selection during a tool change (only
available via the OPI).

The cutting edge number CE is defined with system variable $TC_DPCE[t,d]:

● t stands for the internal T number.

● d stands for the D number.

Write accesses are monitored for collisions, i.e. all cutting edge numbers of a tool must be
different. The variable $TC_DPCE is a component of the cutting edge parameter data set
$TC_DP1 to $TC_DP25.

It is only practical to parameterize $TC_DPCE if the maximum cutting edge number (MD18105)
is greater than the maximum number of cutting edges per tool (MD18106).

In this case, the default cutting edge number is the same as the classification number of the
cutting edge. Compensations of a tool are created starting at number 1 and are incremented
up to the maximum number of cutting edges per tool (MD18106).

W1: Tool offset
19.2 Tool

Basic Functions
1460 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The cutting edge number CE is the same as the D number (in compatibility with the behavior
till now) if:

MD18105 ≤ MD18106.

A read operation returns CE=D. A write operation is ignored without an alarm message.

Note

The compensation values $TC_DP1 to $TC_DP25 of the active tool compensation can be read
with system variable $P_AD[n], where n=1 to 25. The CE cutting edge number of the active
compensation is returned with n=26.

Commands
If the maximum cutting edge number is higher than the maximum number of cutting edges for
each tool, then the commands listed in the following table, are available

● (MD18105 $MN_MM_MAX_CUTTING_EDGE_NO) > (MD18106
$MN_MM_MAX_CUTTING_EDGE_PERTOOL)

Command Meaning
CHKDNO Checks the uniqueness of the available D numbers.

The D numbers of all tools defined within a TO unit may not occur more than once.
No allowance is made for replacement tools.

GETDNO Determines the D number for the cutting edge of a tool.
If no D number matching the input parameters exists, d=0.
If the D number is invalid, a value greater than 32000 is returned.

SETDNO Sets or changes the D number of the CE cutting edge of tool T.
If there is no data block for the specified parameter, the value FALSE is returned.
Syntax errors generate an alarm. The D number cannot be set explicitly to 0.

GETACTTD Determines the associated T number for an absolute D number.
There is not check for uniqueness. If several D numbers within a TO unit are the
same, the T number of the first tool found in the search is returned.
This command is not suitable for use with "flat" D numbers, because the value 1 is
always returned in this case (no T numbers in database).

DZERO Marks all D numbers of the TO unit as invalid.
This command is used for support during retooling.
Compensation data sets tagged with this command are no longer verified by the
CHKDNO language command. These data sets can be accessed again by setting the
D number once more with SETDNO.

W1: Tool offset
19.2 Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1461

Note

If the maximum cutting edge number is less than the maximum number of cutting edges for
each tool, then the commands listed in the table are ineffective. This default setting is in the
system for reasons of compatibility.

The individual commands are described in detail in:

References:
Programming Manual Fundamentals

Activation
In order to work with unique D numbers and, therefore, with the defined language commands,
it must be possible to name D numbers freely for the tools.

The following conditions must be fulfilled for this purpose:

● MD18105 > MD18106

● The 'flat D number' function is not activated.
MD18102 $MN_MM_TYPE_OF_CUTTING_EDGE (type of D number programming
(SRAM)).

Examples

MD18105 $MN_MM_MAX_CUTTING_EDGE_NO = 1 (max. value of the D numbers)
A maximum of one compensation can be defined per tool (with D number = 1).

Note

When the "Flat D numbers" function is active, only one D compensation can be defined in the
TO unit.

MD18105 $MN_MM_MAX_CUTTING_EDGE_NO = 9999
Tools can be assigned unique D numbers.

W1: Tool offset
19.2 Tool

Basic Functions
1462 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example: Assigning D (cutting edges) to T numbers (tools) and listing options for checking
uniqueness:

● Assignment:

– T No. 1 ⇒ assignment of D numbers 1, 2, 3

– T No. 2 ⇒ assignment of D numbers 10, 20, 30, 40, 50

– T No. 3 ⇒ assignment of D numbers 100, 200, 30 (error: 30 was entered instead of 300)

● Check for uniqueness:
The D numbers of all tools defined within a TO unit must be unique.
The check is made using the CHKDNO command. When no parameters are specified, all D
numbers of all tools are checked with respect to one another. In this particular case, the
return value == FALSE, as D30 is available in tool T2 and T3.

Command Test Test result
CHKDNO All D numbers of all tools are

checked against all other tools
Return value == FALSE, as D=30 is duplica‐
ted.

CHKDNO (2, 3,
30)

D number 30 in tools 2 and 3 Return value == FALSE, as D=30 is duplica‐
ted.

CHKDNO (1, 3) All D numbers of tools 1 and
3

Return value == TRUE although there is a
collision between the D=30 of the third tool
and D=30 of the second tool.

Note
Cutting edges per tool

If tools with n cutting edges are used, then the value of the machine data should be set to
n. This prevents inadmissible cutting edges to be defined for a tool.

MD18106 $MN_MM_MAX_CUTTING_EDGE_PERTOOL = n

Programming examples
Renaming a D number

The D number of cutting edge CE = 3 is to be renamed from 2 to 17. The following specifications
apply:

● $TC_DPx[<tool Tn>, <cutting edge Dm>]
● Internal T number Tn = 1

● D number Dm = 2

● Tool with one cutting edge with:

Program code Comment
$TC_DP2[1, 2] = 120 Tool length = 120
$TC_DP3[1, 2] = 5.5 Tool radius = 5.5
$TC_DPCE[1, 2] = 3 Cutting edge number CE = 3

● MD18105 $MN_MM_MAX_CUTTING_EDGE_NO = 20 (max. value of the D numbers)

Within the part program, this compensation is programmed as standard with T1,D2.

W1: Tool offset
19.2 Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1463

You assign the current D number of cutting edge 3 to a variable (DNoOld) and define the
variable DNoNew for the new D number:

Program code
def int DNoOld, DNoNew = 17
DNoOld = GETDNO(1, 3)
SETDNO(1, 3, DNoNew)

The new D value 17 is then assigned to cutting edge CE=3.

Now the data for the cutting edge are addressed via D number 17, both via the system variable
and in programming with the NC address D.

This compensation is now programmed in the part program with T1,D17 and the data
is addressed as follows:

Program code Comment
$TC_DP2[1, 17] = 120
$TC_DP3[1, 17] = 5.5
$TC_DPCE[1, 17] = 3 ; Cutting edge number CE

Note

If the tool has defined a further cutting edge, e.g. $TC_DPCE[1, 2] = 1 ; = CE, D number 2
of cutting edge 1 cannot have the same name as the D number of the cutting edge 3, i.e.
SETDNO(1, 1, 17) returns the status = FALSE as return value.

DZERO - Invalidate D numbers

The activation of this command invalidates all D numbers of the tools in the TO unit. It is no
longer possible to activate a compensation until valid D numbers are again available in the
NC. The D numbers must be reassigned using the SETDNO command.

The following tools must be defined (all with cutting edge number 1):

T1, D1 D no. of cutting edge CE=1
T2, D10 D no. of cutting edge CE=1
T3, D100 D no. of cutting edge CE=1

The following command is then programmed:

Program code
DZERO

If one of the compensations is now activated (e.g. with T3 D100), an alarm is generated,
because D100 is not currently defined.

The D numbers are redefined with:

Program code Comment
SETDNO(1, 1, 100) ; T=1, cutting edge 1 is assigned the (new) D number 100
SETDNO(2, 1, 10) ; T=2, cutting edge 1 is assigned the (old) D number 10
SETDNO(3, 1, 1) ; T=3, cutting edge 1 is assigned the (new) D number 1

W1: Tool offset
19.2 Tool

Basic Functions
1464 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

In the event of a power failure, the DZERO command can leave the NC in an undefined state
with reference to the D numbers. If this happens, repeat the DZERO command when the power
is restored.

Operating principle of a retooling program

Let us assume you want to ensure that the required tools and cutting edges are available. The
status of the tool-holding magazine of the NC is arbitrary. The D numbers in the part programs
for the new machining operation generally do not match the D numbers of the actual cutting
edges. The retooling program can have the following appearance:

Program code Comment
DZERO ; All D numbers of the TO unit are tagged as invalid.
.... ; One or more loops over the locations of the magazine to check

the tools and their cutting edge numbers.
; If a tool is found, which is still enabled ($TC_TP8) and has
the required cutting edge number CE (GETDNO), the new D number
is allocated to the cutting edge (SETDNO).

.... ; Loading and unloading operations are performed.
; It is possible to work with the tool status 'to be unloaded'
and 'to be loaded'.

CHKDNO ; Loading/unloading and the operation for renaming D numbers are
complete.
; Individual tools and/or D numbers can be checked, and colli-
sions can be handled automatically according to the return value.

19.2.6 Compensation block in case of error during tool change

MD22550
If a tool preparation has been programmed in the part program and the NC detects an error
(e.g. the data set for the programmed T number does not exist in the NC), the user can assess
the error situation and perform appropriate tasks, in order to subsequently resume machining.

The tool change may be programmed independently, depending on the machine data:

MD22550 $MC_TOOL_CHANGE_MODE (new tool offset for M function)

MD22550 $MC_TOOL_CHANGE_MODE = 0

T= 'T no.' ; Tool preparation + tool change in one NC block,
; i.e. when T is programmed a new D compensation becomes
; active in the NC. See machine data:
; MD20270 $MC_CUTTING_EDGE_DEFAULT (basic position of the tool cut-
ting edge without programming)

W1: Tool offset
19.2 Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1465

MD22550 $MC_TOOL_CHANGE_MODE = 1

T= 'T no.' ; Tool preparation
M06 ; Tool change

; (the number of the tool-change M code can be set),
; i.e. when M06 is programmed, a new D compensation becomes
; active in the NC (see
; machine data MD20270 $MC_CUTTING_EDGE_DEFAULT)

If the tool management is not active, the following problems can be detected:

● D compensation data set missing

● Error in the part program

Note

The "tool is not in the magazine" problem cannot be detected since the NC did not have
access to any magazine information for the tool offset.

D compensation data set missing
Program execution is interrupted at the block containing the invalid D value (regardless of the
value of machine data MD22550). The operator must either correct the program or reload the
missing data set.

The D number and otherwise also the T number are required for the flat D number function.
These parameters are transferred when the alarm is triggered.

Error in the part program
The options for intervention in the event of an error depend on how the tool change was
programmed, defined via the machine data:

MD22550 $MC_TOOL_CHANGE_MODE (new tool offset for M function)

Tool change with T programming (MD22550 = 0)

In this case, the "Compensation block" function available in the NC is used. The NC program
stops at the NC block in which an error was detected for the programmed T value. The
"Compensation block" is executed again when the program is resumed.

The operator can perform the following:

● Correct the part program.

● Reload the missing cutting edge compensation data from the HMI.

● Include the missing cutting edge compensation data in the NC using "Overstore".

Following operator intervention, the START key is pressed and the block, which caused the
error, is executed again. If the error was corrected, the program is resumed. Otherwise, an
alarm is output again.

Tool change with T and M06 programming (MD22550 = 1)

W1: Tool offset
19.2 Tool

Basic Functions
1466 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

In this case, an error is detected in the NC block of the tool preparation (programming of T),
which however is to be ignored at first. Execution is continued until the tool change request
(usually M06) is executed in the NC program. The program is to stop at this point.

The programmed T address can be any number of program lines before the M06 command,
or the two instructions can be in different (sub)programs. For this reason, it is not usually
possible to modify a block which has already been executed via the compensation block.

The operator has the same options for intervention as with = 0.

Reloading of missing data is possible. In this case, however, T must be programmed with
"Overstore".

If a program error has occurred, the line with the error cannot be corrected (Txx); only the line
at which the program stopped and which generated the alarm can be edited. Only when
machine data:

MD22562 $MC_TOOL_CHANGE_ERROR_MODE bit 0 = 1 (response to errors during tool
change)

This results in the following sequence:

Txx ; Error! Data set with xx does not exist
; Note state; note xx;
; continue in program

....
M06 ; Detect bit memory "xx missing" → output alarm,

; stop program
; Correct block with, e.g. Tyy M06, start,
; block Tyy M06 is interpreted and is OK.
; Execution continues.

Renewed execution of the program points results in the following:

Txx ; Error! Data set with xx does not exist,
; Note state; note xx;
; continue in program

....
Tyy M06 ; Detect bit memory "xx missing" → reject without further response,

; as Tyy M06 is correct → program does not stop (correct).

If required, the original point of the T call can be corrected at the end of the program. If the tool
change logic on the machine cannot process this, the program must be aborted and the point
of the error corrected.

If only one data set is missing, it is transferred to the NC, Txx is programmed in "Overstore"
and the program is subsequently resumed.

W1: Tool offset
19.2 Tool

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1467

As in the case of "missing D number", the required parameter (T number) can be accessed
by the user for "missing T number" via the appropriate alarm (17191).

Note

In order to enable program correction, it stops immediately at the faulty Txx block.

The program test mode is also stopped when machine data:

MD22562 $MC_TOOL_CHANGE_ERROR_MODE bit 0=1 (response to errors during tool
change).

19.2.7 Definition of the effect of the tool parameters

MD20360
The effect of the tool parameters on the transverse axis in connection with diameter
programming can be controlled selectively with the machine data:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

Details are described with the mentioned MD

DRF manual handwheel traversing with half distance
During DRF handwheel traversal, it is possible to move a transverse axis through only half the
distance of the specified increment as follows:

Specify the distance with handwheel via the machine data:

MD11346 $MN_HANDWHEEL_TRUE_DISTANCE = 1 (handwheel path or speed
specification)

Define the DRF offset in the transverse axis as a diameter offset with the machine data:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK bit 9 = 1 (definition of tool parameters)

Deselecting an axial DRF compensation (DRFOF) also deletes an existing tool compensation
(handwheel override in tool direction).

Note

For further information about superimposed movements with the handwheel, please refer to:

References:
Function Manual, Extended Functions; Manual traversing and manual handwheel traversing
(H1)

Programming Manual, Fundamentals

(The Programming Manual describes the complete technical program options in order to
deselect the DRF offset axis-specifically.)

W1: Tool offset
19.2 Tool

Basic Functions
1468 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.3 Flat D number structure

19.3.1 General information
For lathes, simple tool management is possible using flat D numbers structure () exclusively
via D numbers.

As a result, the following boundary conditions apply:

● Only available for not activated general tool management

● No replacement tools can be defined

● No magazine can be defined

● No grinding tools can be defined

Activation
The type of D number management that is effective is parameterized using:

MD18102 $MN_MM_TYPE_OF_CUTTING_EDGE = <value>

Value Meaning
0 No flat D number management active
1 Flat D number structure with absolute direct D programming active

19.3.2 Creating a new D number (compensation block)

Programming
Tool offsets can be programmed with system variables $TC_DP1 to $TC_DP25. The content
has the same meaning as previously.

The notation changes: A T number is no longer specified.

● "Flat D number" function active:
$TC_DPx[d] = value; where x = parameter no., d = D number
This means that data with this syntax can only be loaded to the NC when the "Flat D number"
function is activated.

● "Flat D number" function inactive:
$TC_DPx[t][d] = value; where t = T number, d = D number

A D number can only be assigned once for each tool, i.e. each D number stands for exactly
one compensation data block.

A new data block is stored in the NC memory when a D number that does not exist is created
for the first time.

The maximum number of D or offset data blocks (max. 600) is set via the machine data:

MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA (tool offsets in TO area)

W1: Tool offset
19.3 Flat D number structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1469

Data backup
The data backup is in the same format; i.e. a backup file that is created with the "Flat D number"
function cannot be loaded to the NC of a control that has not activated the function.

This also applies in reverse for a transfer.

D number range
1 - 99 999 999

19.3.3 D number programming

MD18102 = 1
If MD18102 $MN_MM_TYPE_OF_CUTTING_EDGE = 1, then D compensation is activated
without reference to a certain tool.

D0 still contains the previous significance, "Deselection of active compensation in NC".

Address extension of D
It is not possible to extend the address of D. Only one active compensation data block is
possible for the tool path at a given time.

Programming
Programming in the part program is carried out as before. Only the value range of the
programmed D number is increased.

Example 1:

MD parameterization Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 0 Tool change with programming of T.
MD18102 $MN_MM_TYPE_OF_CUTTING_EDGE = 1 D number programming without refer‐

ence to a certain tool.
MD20270 $MC_CUTTING_EDGE_DEFAULT = -1 D compensation remains unchanged

if tool is changed.

Program code Comment
...
D92
X0 ; Traverse with compensations from D92.
T17 ; Outputs T=17 to the PLC
X1 ; Traverse with compensations from D92.
D16
X2 ; Traverse with compensations from D16.

W1: Tool offset
19.3 Flat D number structure

Basic Functions
1470 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
D32000
X3 ; Traverse with compensations from D32000.
T29000 ; Outputs T=29000 to the PLC.
X4 ; Traverse with compensations from D32000.
D1
X5 ; Traverse with compensations from D1.
...

Example 2:

MD22550 = 0

Program code Comment
T1
T2
T3
D777 ; No waiting, D777 is activated, T3= programmed and ac-

tive tool in the display, D777= programmed and active
compensation.

Note

The tool change and the assignment of a D compensation to an actual tool are the responsibility
of the NC program and of the PLC program, if applicable.

Delete D no. via part program
● With flat D number:

$TC_DP1[d] = 0
Compensation data block with the number D in the TO unit is deleted.
The memory is then free for the definition of another D number.

● Without flat D number:
$TC_DP1[t][d] = 0
Cutting edge d of tool t is deleted.

● $TC_DP1[0] = 0
All D compensations of the TO unit are deleted.

Active compensation data blocks (D numbers) cannot be deleted. This means, that it may be
necessary to program D0 before deleting.

W1: Tool offset
19.3 Flat D number structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1471

Tool MDs
The following machine data affect the way tools and cutting edges (D numbers) work in the
NC:

Machine data Meaning
MD20270 $MC_CUTTING_EDGE_DEFAULT Standard tool cutting edge after tool

change
MD20130 $MC_CUTTING_EDGE_RESET_VALUE Tool cutting edge - length compensation

during power-up (RESET / TP end)
MD20120 $MC_TOOL_RESET_VALUE Tool - length compensation during power-

up (RESET / TP end)
MD20121 $MC_TOOL_PRESEL_RESET_VALUE Preselected tool at RESET
MD22550 $MC_TOOL_CHANGE_MODE Tool change with M function instead of T

function
MD22560 $MC_TOOL_CHANGE_M_CODE M function for tool change
MD20110 $MC_RESET_MODE_MASK Definition of basic control setting after

RESET / TP end
MD20112 $MC_START_MODE_MASK Definition of basic control setting at NC

start

19.3.4 Programming the T number
When the "Flat D number structure" function is active, NC address T continues to be evaluated,
i.e., the programmed T number and the active T number are displayed. However, the NC
determines the D number without reference to the programmed T value.

The NC detects 1 master spindle per channel (via the spindle number, which can be set using
MD). Compensations and the M6 command (tool change) are only calculated in reference to
the master spindle.

An address extension T is interpreted as a spindle number (e.g., T2 = 1; tool 1 to be selected
on spindle 2); a tool change is only detected if spindle 2 is the master spindle.

19.3.5 Programming M6

MD22550 and MD22560
The NC detects 1 master spindle per channel (via the spindle number, which can be set using
MD). Compensations and the M6 command (tool change) are only calculated in reference to
the master spindle.

Whether the tool change command is performed with an M function is defined via the machine
data:

MD22550 $MC_TOOL_CHANGE_MODE (new tool offset for M function)

T is used as the tool preparation command.

The name of the M function for the tool change is defined via the machine data:

W1: Tool offset
19.3 Flat D number structure

Basic Functions
1472 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD22560 $MC_TOOL_CHANGE_M_CODE (M function for tool change)

The default is M6. An address extension of M6 is identified as a spindle number.

Example
Two spindles are defined, spindle 1 and spindle 2, and the following applies:

MD20090 = 2 ; Spindle no. 2 is the master spindle.
M6 ; Tool change required, command refers implicitly to the master

spindle
M1 = 6 ; No tool change, since spindle no. 2 is the master spindle
M2 = 6 ; Tool is changed, since spindle no. 2 is the master spindle

19.3.6 Program test

MD20110
To have the active tool and the tool compensation included as follows, can be defined via the
machine data:

MD20110 $MC_RESET_MODE_MASK, Bit 3 (Definition of control default settings after
RESET/TP end).

Value Significance
Bit 3 = 1 From the last test program to finish in test mode
 = 0 From the last program to finish before activation of the program test

Prerequisite
The bits 0 and 6 must be set by the machine data:

MD20110 $MC_RESET_MODE_MASK, Bit 3 (Definition of control default settings after
RESET/TP end).

W1: Tool offset
19.3 Flat D number structure

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1473

19.3.7 Tool management or "Flat D number structure"

Features

Tool management
The active NC tool management works on the basis of the following assumptions:

1. Tools are managed in magazines.

2. Cutting edges are monitored, that means limits reached cause the tool to be disabled.

3. Replacement tools: Tools are programmed for selection only on the basis of their name.
The NC selects the specific tool.

Note

For SINUMERIK 828D, this function is only available as an option!

This means that it only makes sense to use the tool management when specific tools have
been defined which are managed by the NC.

Flat D number structure
The use of a flat D number structure means that the tool management is performed outside
the NC (PLC) and no reference is made to the T numbers.

Tool management OR flat D number structure
The simultaneous use of tool management (NC) and flat D number structure (PLC) makes no
sense because the main argument for the use of the tool management is the time factor. This
is only ensured if the management tasks are performed by the NC. This is not the case for the
flat D number structure, however.

Note

If tool management AND the flat D number structure are activated at the same time, the tool
management takes priority.

W1: Tool offset
19.3 Flat D number structure

Basic Functions
1474 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.4 Tool cutting edge

19.4.1 General information

Tool cutting edge
The following data are used to describe a tool cutting edge uniquely:

● Tool type (end mill, drill, etc.)

● Geometrical description

● Technological description

Tool parameter
The geometrical description, the technological description and the tool type are mapped to tool
parameters for each tool cutting edge.

The following tool parameters are available for the relevant tool types:

Tool parameter Meaning Remark
1 Tool type
2 Cutting edge position For turning tools or for milling/grinding tools

with 2D TRC with contour tools.

Geometry - tool lengths
3 Length 1
4 Length 2
5 Length 3

Geometry - tool shape
6 Radius 1 With 2D TRC.

Turning: Rounding radius of cutting edge
3D face milling: Shank radius
Slotting saw: Diameter

7 Radius 2 3D face milling: Corner radius
Slotting saw: Slot width

8 Length 4 Slotting saw: Projection
9 Length 5 3D face milling: Upper bevel cutter diameter

(of spherical tools)
10 Angle 1 Turning: Holder angle

2D TRC with contour tools: Minimum limit
angle

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1475

Tool parameter Meaning Remark
11 Angle 2 Turning: Cutting direction

2D TRC with contour tools: Maximum limit
angle
3D face milling: Angle between side line and
tool longitudinal axis (of conical tools)

Wear - tool lengths
12 Wear length 1
13 Wear length 2
14 Wear length 3

Wear - tool shape
15 Wear radius 1
16 Wear radius 2
17 Wear length 4
18 Wear length 5
19 Wear angle 1
20 Wear angle 2

Tool base dimension / adapter dimension
21 Basic length 1
22 Basic length 2
23 Basic length 3

Technology
24 Undercut angle Only for turning tools.
25 Reserved*

* "Reserved" means that this tool parameter is not used and is reserved for expansions.

3D face milling
Milling cutter types 111, 120, 121, 130, 155, 156 and 157 are given special treatment for 3D-
face milling by evaluating tool parameters (1-23).

References
For more information about various tool types, see:

● Function Manual, Basic Functions; Tool Offset (W1), Chapter: "Tool type (tool parameters)"

● Programming Manual, Fundamentals; Chapter: "Tool compensations" > "List of tool types"

● Functions Manual - Special Functions; 3D tool radius compensation (W5)

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
1476 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.4.2 Tool parameter 1: Tool type

Description
The tool type (3digit number) defines the tool in question. The selection of this tool type
determines further components such as geometry, wear and tool base dimensions in advance.

Conditions
The following is applicable to the "Tool type" parameter:

● The tool type must be specified for each tool cutting edge.

● Only the values specified can be used for the tool type.

● Tool type "0" (zero) means that no valid tool has been defined.

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1477

Tool types and tool parameters
Different tool types and the most important tool parameters are listed in the following table.
The tool parameters available for a certain tool type are designated with "x".

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
1478 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

The tool type has no significance in the turning tool groups.

Nonlisted numbers are also permitted, in particular with grinding tools (400-499).

Tool offset data
Tool offset data (TOA data) is stored in the system variables.

Example Slotting saw tool type (Type 700)

 Geometry Wear Base Einheit
Length compensation
Length 1 $TC_DP3 $TC_DP12 $TC_DP21 mm
Length 2 $TC_DP4 $TC_DP13 $TC_DP22 mm
Length 3 $TC_DP5 $TC_DP14 $TC_DP23 mm
Saw blade compensation
Diameter d $TC_DP6 $TC_DP15 mm
Slot width b $TC_DP7 $TC_DP16 mm
Projection k $TC_DP8 $TC_DP17 mm

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1479

Figure 19-3 Geometry of slotting saw (analogous to angle head cutter)

The width of the saw blade is accounted for with tool radius compensation (G40 to G42 as
follows:

Com‐
mand

Significance

G40 No saw blade compensation
G41 Saw blade compensation left
G42 Saw blade compensation right

19.4.3 Tool parameter 2: Cutting edge position

Description
The cutting edge position describes the position of the tool tip P in relation to the cutting edge
center point S. It is entered in tool parameter 2.

The cutting edge position is required together with the cutting edge radius (tool parameter 8)
for the calculation of the tool radius compensation for turning tools (tool type 5xx).

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
1480 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-4 Dimensions for turning tools: Turning tool

Cutting edge position parameter values

Figure 19-5 Tool parameter 2 (P2): Machining behind the turning center

Figure 19-6 Tool parameter 2 (P2): Machining in front of the turning center

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1481

Figure 19-7 Tool parameter 2 (P2): Cutting edge position for vertical boring and turning mills

Special points to be noted
● If the cutting edge center point S is used instead of point P as a reference point to calculate

the tool length compensation, the identifier 9 must be entered for the cutting edge position.

● The identifier 0 (zero) is not permitted as a cutting edge position.

19.4.4 Tool parameters 3 - 5: Geometry - tool lengths

Description
The lengths of the tools are required for the geometry tool length compensation. They are input
as tool lengths 1 to 3 in the tool parameters 3 to 5. The following length specifications must
be entered as a minimum for each tool type:

Tool type Required tool lengths
Tool type 12x, 140, 145, 150: Tool length 1
Tool type 13x: Tool length 1 to 3 (depending on plane G17-G19)
Tool type 2xx: Tool length 1
Tool type 5xx: Tool length 1 to 3

Example Twist drill (tool type 200) with tool length (tool parameter 3)

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
1482 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

All three tool parameters 3 to 5 (tool length 1 to 3) are always calculated in the three geometry
axes, irrespective of the tool type.

If more tool lengths are input in the tool parameters 3 to 5 for a tool type than is required as
the minimum, then these extra tool lengths are settled in the geometry axes without any alarm.

Special points to be noted
The active size of the tool is only defined when the geometry tool length compensation (tool
parameters 3 to 5) and the wear tool length compensation (tool parameters 12 to 14) are added
together. The base-dimension/adapter-dimension tool length compensation is also added in
order to calculate the total tool length compensation in the geometry axes.

References
For information about entering tool dimensions (lengths) in tool parameters 3 to 5 (tool lengths
1 to 3) and how these are calculated in the three geometry axes, please refer to → Operating
Manual.

19.4.5 Tool parameters 6 - 11: Geometry - tool shape

Meaning
The shape of the tool is defined using the tool parameters 6 to 11. The data is required for the
geometry tool radius compensation.

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1483

In most cases, only tool parameter 6 (tool radius 1) is used.

Tool parameter Meaning Use
6 Tool radius 1 The tool radius must be specified for the following tool types:

1xx Milling tools
5xx Turning tools

Tool parameter 2: Cutting edge position
(Page 1480) must also be specified for turn‐
ing tools.

Note
Tool type 2xx: A tool radius does not have to be specified for
drilling tools.

7 Tool radius 2 Not used
8 Tool length 4 Not used
9 Tool length 5 Not used

10 Tool angle 1 Not used
11 Tool angle 2 Not used

2D TRC with contour tools
For the definition of contour tools with multiple tool cutting edges, the minimum and maximum
limit angle can be entered. Both limit angles each relate to the vector of the cutting edge center
point to the cutting edge reference point and are counted clockwise.

Tool angle 1 Minimum limit angle per tool cutting edge
Tool angle 2 Maximum limit angle per tool cutting edge

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
1484 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3D face milling
The tool parameters relevant to the tool description in 3D face milling are dependent on the
tool type used. So, for example, for a ball end mill, only tool parameter 6, or for a bevel cutter
with corner radius, additionally tool parameters 7 and 11 are relevant.

R Tool parameter 6: Shank radius
r Tool parameter 7: Corner radius
a Tool parameter 11: Angle between side line and tool longitudinal axis (of conical tools)

Figure 19-8 Tool description for 3D face milling using the example of a bevel cutter with corner rounding

References
Please refer to the following documentation for information about entering tool shapes (radius
for tool radius compensation) in tool parameters 6 to 11 and how these are calculated by
geometry tool radius compensation in the three geometry axes:

● Programming Manual, Fundamentals; Chapter: "Tool compensations" > "2½ D tool
compensation"

● Function Manual, Special Functions; Chapter "W5: 3D tool radius compensation"

For 3D face milling, please refer to:

● Function Manual, Special Functions; Chapter "W5: 3D tool radius compensation"

19.4.6 Tool parameters 12 - 14: Wear - tool lengths

Description
While geometry tool length compensation (tool parameters 3 to 5) is used to define the size
of the tool, wear tool length compensation can be used to correct the change in the active tool
size.

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1485

The active tool dimensions can change due to:

● Differences between the tool fixture on the tool measurement machine and the tool fixture
on the machine tool

● Tool wear caused during service life by machining

● Definition of the finishing allowances

Active tool size
The geometry tool compensation (tool parameters 3 to 5) and the wear tool length
compensation (tool parameters 12 to 14) are added together (geometry tool length 1 is added
to wear tool length 1, etc.) to arrive at the size of the active tool.

19.4.7 Tool parameters 15 - 20: Wear - tool shape

Description
While geometry tool radius compensation (tool parameters 6 to 11) is used to define the shape
of the tool, wear tool radius compensation can be used to correct the change in the active tool
shape.

The active tool dimensions can change due to:

● Tool wear caused during service life by machining

● Definition of the finishing allowances

Active tool shape
The geometry tool radius compensation (tool parameters 6 to 11) and the wear tool radius
compensation (tool parameters 15 to 20) are added together (geometry tool radius 1 is added
to wear tool radius 1, etc.) to arrive at the shape of the active tool.

19.4.8 Tool parameters 21 - 23: Tool base dimension/adapter dimension

Description
Tool base dimension/adapter dimension can be used when the reference point of the toolholder
(tool size) differs from the reference point of the toolholder.

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
1486 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

This is the case when:

● The tool and the tool adapter are measured separately but are installed on the machine in
one unit (the tool size and adapter size are entered separately in a cutting edge).

● The tool is used in a second tool fixture located in another position (e.g. vertical and
horizontal spindle).

● The tool fixtures of a tool turret are located at different positions.

Figure 19-9 Application examples for base-dimension/adapter-dimension TLC

Tool basic length 1 to 3 (tool parameters 21 to 23)
In order that the discrepancy between the toolholder reference point F and the toolholder
reference point F' can be corrected on the three geometry axes (three dimensional), all 3 basic
lengths are active irrespective of the tool type. In other words, a twist drill (tool type 200) with
a tool length compensation (length 1) can also have a tool base dimension/adapter dimension
in 3 axes.

References
Please refer to the following documentation for more information about base-dimension/
adapter-dimension tool length compensation:

● Programming Manual, Fundamentals

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1487

19.4.9 Tool parameter 24: Undercut angle

Meaning
Certain turning cycles, in which traversing motions with tool clearance are generated, monitor
the tool clearance angle of the active tool for possible contour violations.

Value range
The angle (0 to 90° with no leading sign) is entered in tool parameter 24 as the tool clearance
angle.

Figure 19-10 Tool clearance angle of the turning tool during relief cutting

Machining type, longitudinal or transverse
The tool clearance angle is entered in different ways according to the type of machining
(longitudinal or face). If a tool is to be used for both longitudinal and face machining, two cutting
edges must be entered for different tool clearance angles.

Figure 19-11 Tool clearance angle for longitudinal and face machining

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
1488 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Note

If a tool clearance angle (tool parameter 24) of zero is entered, relief cutting is not monitored
in the turning cycles.

References
Please refer to the following documentation for a detailed description of the tool clearance
angle:

● Programming Manual Cycles

19.4.10 Tools with a relevant tool point direction
The following must be observed for tools with relevant cutting edge position:

● The straight line between the tool edge center points at the block start and block end is
used to calculate intersection points with the approach and retraction block. The difference
between the tool edge reference point and the tool edge center point is superimposed on
this movement.
For approach and/or retraction with KONT, the movement is superimposed in the linear
subblock of the approach or retraction movement. Therefore, the geometric conditions for
tools with or without relevant cutting edge position are identical.

● In circle blocks and in motion blocks containing rational polynomials with a denominator
degree > 4, it is not permitted to change a tool with active tool radius compensation in cases
where the distance between the tool edge center point and the tool edge reference point
changes. With other types of interpolation, it is now possible to change when a
transformation is active (e.g. TRANSMIT).

● For tool radius compensation with variable tool orientation, the transformation from the tool
edge reference point to the tool edge center point can no longer be performed by means
of a simple zero offset. Tools with a relevant cutting edge position are therefore not
permitted for 3D peripheral milling (an alarm is output).

Note

The subject is irrelevant with respect to face milling as only defined tool types without
relevant cutting edge position are permitted for this operation anyway. (A tool with a type,
which has not been explicitly approved, is treated as a ball end mill with the specified radius.
A cutting edge position parameter is ignored).

W1: Tool offset
19.4 Tool cutting edge

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1489

19.5 2D tool radius compensation (2D-WRK)

19.5.1 General information

Note

For tool radius compensation (TRC) see:
References:
Programming Manual Fundamentals

Only the Programming Guide contains a complete technical description of the tool radius
compensation (TRC) and its special aspects.

Why TRC?
The contour (geometry) of the workpiece programmed in the part program should be
independent of the tools used in production. This makes it necessary to draw the values for
the tool length and tool radius from a current offset memory. Tool radius compensation can
be used to calculate the equidistant path to the programmed contour from the current tool
radius.

Figure 19-12 Workpiece contour (geometry) with equidistant path

TRC on the plane
TRC is active on the current plane (G17 to G19) for the following types of interpolation:

● Linear interpolation ... G0, G1
● Circular interpolation ... G2, G3, CIP
● Helical interpolation ... G2, G3
● Spline interpolation ... ASPLINE, BSPLINE, CSPLINE
● Polynomial interpolation ... POLY

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1490 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.5.2 Selecting the TRC (G41/G42)

Direction of compensation
TRC calculates a path, which is equidistant to the programmed contour. Compensation can
be performed on the left- or righthand side of the programmed contour in the direction of motion.

Command Significance
G41 TRC on the lefthand side of the contour in the direction of motion
G42 TRC on the righthand side of the contour in the direction of motion
G40 Deselection of TRC

Intermediate blocks
In general, only program blocks with positions on geometry axes in the current plane are
programmed when TRC is active. However, dummy blocks can still also be programmed with
active TRC. Dummy blocks are program blocks, which do not contain any positions on a
geometry axis in the current plane:

● Positions on the infeed axis

● Auxiliary functions,

● etc.

The maximum number of dummy blocks can be defined in the machine data:

MD20250 $MC_CUTCOM_MAXNUM_DUMMY_BLOCKS (Max no. of dummy blocks with no
traversing movements for TRC).

Special points to be noted
● TRC can only be selected in a program block with G0 (rapid traverse) or G1 (linear

interpolation).

● A tool must be loaded (T function) and the tool cutting edge (tool compensation) (D1 to
D9) activated no later than in the program block with the tool radius compensation selection.

● Tool radius compensation is not selected with a tool cutting edge/tool compensation of D0.

● If only one geometry axis is programmed on the plane when tool radius compensation is
selected, the second axis is automatically added on the plane (last programmed position).

● If no geometry axis is programmed for the current plane in the block with the tool radius
compensation selection, no selection takes place.

● If tool radius compensation is deselected (G40) in the block following tool radius
compensation selection, no selection takes place.

● If tool radius compensation is selected, the approach behavior is determined by the NORM/
KONT instructions.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1491

19.5.3 Approach and retraction behavior (NORM/KONT/KONTC/KONTT)

NORM and KONT
The NORM and KONT instructions can be used to control approach behavior (selection of tool
radius compensation with G41/42) and retraction behavior (deselection of tool radius
compensation with G40):

Command Meaning
NORM Normal setting at start point / end point (basic setting)
KONT Travel around contour at start point / end point
KONTC Approach/retraction with constant curvature
KONTT Approach/retraction with constant tangent

Special features
● KONT only differs from NORM when the tool start position is behind the contour.

Figure 19-13 Example for selecting TRC with KONT or NORM in front of and behind the contour

● KONT and G450/G451 (corner behavior at outer corners) has a general effect and
determines the approach and retraction behavior with TRC.

● When tool radius compensation is deselected, the retraction behavior is determined by the
NORM/KONT instructions.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1492 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Supplementary conditions
The approach and retraction blocks are polynomials in the following two variants. Therefore,
they are only available for control variants, which support polynomial interpolation:

● KONTT
With KONTT, approach and retraction to/from the contour is with a constant tangent. The
curvature at the block transition is not usually constant.

● KONTC
With KONTC, not only the tangent but also the curvature is constant at the transition, with
the result that a jump in acceleration can no longer occur on activation/deactivation.

Although KONTC includes the KONTT property, the constant tangent version KONTT is available
on its own, because the constant curvature required by KONTC can produce undesired
contours.

Axes
The continuity condition is observed in all three axes. It is thus possible to program a
simultaneous path component perpendicular to the compensation plane for approach/
retraction.

Only linear blocks are permitted for the original approach and retraction blocks with KONTT/
KONTC. These programmed linear blocks are replaced in the control by the corresponding
polynomial curves.

Exception
KONTT and KONTC are not available in 3D variants of tool radius compensation (CUT3DC,
CUT3DCC, CUT3DF).

If they are programmed, the control switches internally to NORM without an error message.

Example of KONTC
The two figures below show a typical application for approach and retraction with constant
curvature:

The full circle is approached beginning at the circle center point. The direction and curvature
radius of the approach circle at the block end point are identical to the values of the next circle.
Infeed takes place in the Z direction in both approach/retraction blocks simultaneously.

The associated NC program segment is as follows:

$TC_DP1[1,1]=121 Milling tool
$TC_DP6[1,1]=10 Radius 10 mm
N10 G1 X0 Y0 Z60 G64 T1 D1 F10000
N20 G41 KONTC X70 Y0 Z0
N30 G2 I-70 Full circle
N40 G40 G1 X0 Y0 Z60
N50 M30

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1493

Explanation:

In this example, a full circle with a radius of 70 mm is machined in the X/Y plane. Since the
tool has a radius of 10 mm, the resulting tool center point path describes a circle with a radius
of 60 mm. The start/end points are at X0 Y0 Z60, with the result that a movement takes place
in the Z direction at the same time as the approach/retraction movement in the compensation
plane.

Figure 19-14 Approach and retraction with constant curvature during inside machining of a full circle:
Projection in the X-Y plane.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1494 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-15 Approach and retraction with constant curvature during inside machining of a full circle:
3D representation.

KONTT and KONTC compared
The figure below shows the differences in approach/retraction behavior between KONTT and
KONTC. A circle with a radius of 20 mm about the center point at X0 Y-40 is compensated with
a tool with an external radius of 20 mm. The tool center point therefore moves along a circular
path with radius 40 mm. The end point of the approach block is at X40 Y30. The transition
between the circular block and the retraction block is at the zero point. Due to the extended
continuity of curvature associated with KONTC, the retraction block first executes a movement
with a negative Y component. This will often be undesired. This response does not occur with
the KONTT retraction block. However, with this block, an acceleration step change occurs at
the block transition.

If the KONTT or KONTC block is the approach block rather than the retraction block, the contour
is exactly the same, but is simply machined in the opposite direction, i.e. the approach and
retraction behavior are symmetrical.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1495

Figure 19-16 Differences between KONTT and KONTC

Note

The figure shows that a straight line bordering on the contour quadrant, e.g. to X20 Y-20, would
be violated with KONTC on retraction/approach to X0, Y0.

19.5.4 Smooth approach and retraction

19.5.4.1 Function

Description
The SAR (Smooth Approach and Retraction) function is used to achieve a tangential approach
to the start point of a contour, regardless of the position of the start point.

The approach behavior can be varied and adapted to special needs using a range of additional
parameters.

The two functions, smooth approach and smooth retraction, are largely symmetrical. The
following section is, therefore, restricted to a detailed description of approach; special
reference is made to differences affecting retraction.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1496 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Sub-movements
There are maximum 4 sub-movements in case of soft retraction and approach with the
following positions:

● Start point of the movement P0

● Intermediate points P1, P2 and P3

● End point P4

Points P0, P3 and P4 are always defined. Intermediate points P1 and P2 can be omitted, according
to the parameters defined and the geometrical conditions.

On retraction, the points are traversed in the reverse direction, i.e. starting at P4 and ending
at P0.

19.5.4.2 Parameters
The response of the smooth approach and retraction function is determined by up to 9
parameters:

Non-modal G command for defining the approach and retraction contour
This G command cannot be omitted.

● G147: Approach with a straight line

● G148: Retraction with a straight line

● G247: Approach with a quadrant

● G248: Retraction with a quadrant

● G347: Approach with a semicircle

● G348: Retraction with a semicircle

Figure 19-17 Approach behavior depending on G147 to G347 and DISR (with simultaneous activation
of tool radius compensation)

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1497

Modal G command for defining the approach and retraction contour
This G command is only relevant if the approach contour is a quadrant or semicircle. The
approach and retraction direction can be determined as follows:

● G140:
Defining the approach and retraction direction using active tool radius compensation.
(G140 is the basic setting value.)
With positive tool radius:

– G41 active → approach from left

– G42 active → approach from right
If no tool radius compensation is active (G40), the response is identical to G143. In this
case, an alarm is not output. If the radius of the active tool is 0, the approach and
retraction side is determined as if the tool radius were positive.

● G141:
Approach contour from left, or retract to the left.

● G142:
Approach contour from right, or retract to the right.

● G143:
Automatic determination of the approach direction, i.e. the contour is approached from the
side where the start point is located, relative to the tangent at the start point of the following
block (P4).

Note

The tangent at the end point of the preceding block is used accordingly on retraction. If the
end point is not programmed explicitly on retraction, i.e. if it is to be determined implicitly,
G143 is not permitted on retraction, since there is a mutual dependency between the
approach side and the position of the end point. If G143 is programmed in this case, an
alarm is output. The same applies if, when G140 is active, an automatic switchover to
G143 takes place as a result of an inactive tool radius compensation.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1498 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Modal G command (G340, G341), which defines the subdivision of the movement into individual blocks
from the start point to the end point

G34
0:

The approach characteristic from P0 to P4 is shown in the figure.
If G247 or G347 is active (quadrant or semicircle) and start point P3 is outside the machining
plane defined by the end point P4, a helix is inserted instead of a circle. Point P2 is not defined
or coincides with P3.
The circle plane or the helix axis is determined by the plane, which is active in the SAR block
(G17 - G19), i.e. the projection of the start tangent is used by the following block, instead of the
tangent itself, to define the circle.
The movement from point P0 to point P3 takes place along two straight lines at the velocity valid
before the SAR block.

G34
1:

The approach characteristic from P0 to P4 is shown in the figure.
P3 and P4 are located within the machining plane, with the result that a circle is always inserted
instead of a helix with G247 or G347.

Figure 19-18 Sequence of the approach movement depending on G340/G341

Note

Active, rotating frames are included in all cases where the position of the active plane G17 -
G19 (circle plane, helix axis, infeed movements perpendicular to the active plane) is relevant.

DISR
DISRSpecifies the length of a straight approach line or the radius of an approach arc.

Retraction/approach with straight lines

On approach/retraction along a straight line, DISR specifies the distance from the cutter edge
to the start point of the contour, i.e. the length of the straight line with active TRC is calculated
as the total of the tool radius and the programmed value of DISR.

An alarm is displayed:

● If DISR is negative and the amount is greater than the tool radius (the length of the resulting
approach line is less than or equal to zero).

Retraction/approach with circles

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1499

Approach/retraction with circles
DISR indicates always the radius of the tool center point path. If tool radius compensation is
activated, a circle is generated internally, the radius of which is dimensioned such that the tool
center path is derived, in this case also, from the programmed radius.

An alarm is output on approach and retraction with circles:

● If the radius of the circle generated internally is zero or negative

● If DISR is not programmed

● If the radius value ≤ 0.

DISCL
DISCLspecifies the distance from point P2 from the machining plane.

If the position of point P2 is to be specified by an absolute reference on the axis perpendicular
to the circle plane, the value must be programmed in the form DISCL = AC(....).

If DISCL is not programmed, points P1, P2 and P3 are identical with G340 and the approach
contour is mapped from P1 to P4.

The system checks that the point defined by DISCL lies between P1 and P3, i.e. in all
movements, which have a component perpendicular to the machining plane (e.g. infeed
movements, approach movements from P3 to P4), this component must have the same leading
sign. It is not permitted to change direction. An alarm is output if this condition is violated.

On detection of a direction reversal, a tolerance is permitted that is defined by the machine
data:

MD20204 $MC_WAB_CLEARANCE_TOLERANCE (direction reversal on SAR).

However, if P2 is outside the range defined by P1 and P3 and the deviation is less than or equal
to this tolerance, it is assumed that P2 is in the plane defined by P1 and/or P3.

Example:

An approach is made with G17 starting at position Z=20 of point P1. The SAR plane defined
by P3 is at Z=0. The point defined by DISCL must, therefore, lie between these two points.
MD20204=0.010. If P2 is between 20.000 and 20.010 or between 0 and -0.010, it is assumed
that the value 20.0 or 0.0 is programmed. The alarm is output if the Z position of P2 is greater
than 20.010 or less than -0.010.

Depending on the relative position of start point P0 and end point P4 with reference to the
machining plane, the infeed movements are performed in the negative (normal for approach)
or positive (normal for retraction) direction, i.e. with G17 it is possible for the Z component of
end point P4 to be greater than that of start point P0.

Programming the end point P4 (or P0 for retraction) generally with X... Y... Z...
Possible ways of programming the end point P4for approach

End point P4 can be programmed in the actual SAR block.

P4 can be determined by the end point of the next traversing block.

Further blocks (dummy blocks) can be inserted between the SAR block and the next traversing
block without moving the geometry axes.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1500 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The end point is deemed to have been programmed in the actual SAR block for approach if
at least one geometry axis is programmed on the machining plane (X or Y with G17). If only
the position of the axis perpendicular to the machining plane (Z with G17) is programmed in
the SAR block, this component is taken from the SAR block, but the position in the plane is
taken from the following block. In this case, an alarm is output if the axis perpendicular to the
machining plane is also programmed in the following block.

Example:

Program code Comment
$TC_DP1[1,1]=120 ; Milling tool T1/D1
$TC_DP6[1,1]=7 ; Tool with 7mm radius

N10 G90 G0 X0 Y0 Z30 D1 T1
N20 X10
N30 G41 G147 DISCL=3 DISR=13 Z=0 F1000
N40 G1 X40 Y-10
N50 G1 X50
...
...

N30/N40 can be replaced by:
 N30 G41 G147 DISCL=3 DISR=13 X40 Y-10 Z0 F1000
or:
 N30 G41 G147 DISCL=3 DISR=13 F1000
 N40 G1 X40 Y-10 Z0
Possible ways of programming the end point P0for retraction

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1501

The end position is always taken from the SAR block, no matter how many axes have been
programmed. We distinguish between the following situations:

1. No geometry axis is programmed in the SAR block.
In this case, the contour ends at point P2 (or at point P1, if P1 and P2 coincide). The position
in the axes, which describe the machining plane, is determined by the retraction contour
(end point of the straight line or arc). The axis component perpendicular to this is defined
by DISCL. If, in this case, DISCL = 0, the movement takes place completely within the
plane.

2. Only the axis perpendicular to the machining plane is programmed in the SAR block.
In this case, the contour ends at point P1. The position of the two other axes is determined
in the same way as in 1.

Retraction with SAR with simultaneous deactivation of TRC
If the SAR retraction block is also used to deactivate tool radius compensation, in the case
of 1. and 2., an additional path from P1 to P0 is inserted such that no movement is produced
when tool radius compensation is deactivated at the end of the retraction contour, i.e. this
point defines the tool center point and not a position on a contour to be corrected.

3. At least one axis of the machining plane is programmed.
The second axis of the machining plane can be determined modally from its last position
in the preceding block. The position of the axis perpendicular to the machining plane is
generated as described in 1. or 2., depending on whether this axis is programmed or not.
The position generated in this way defines the end point P0.
No special measures are required for deselection of tool radius compensation, because
the programmed point P0 already directly defines the position of the tool center point at the
end of the complete contour.
The start and end points of the SAR contour (P0 and P4) can coincide on approach and
retraction.

Velocity of the preceding block (typically G0).
All movements from point P0 to point P2 are performed at this velocity, i.e. the movement parallel
to the machining plane and the part of the infeed movement up to the safety clearance.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1502 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Programming the feedrate with FAD

FAD programmed with ...
G340 Feedrate from P2 or P3 to P4.
G341 Feedrate of the infeed movement perpendicular to the machining

plane from P2 to P3.

If FAD is not programmed, this part of the contour is traversed at the velocity, which is active
modally from the preceding block, in the event that no F command defining the velocity is
programmed in the SAR block.

Programmed response:

FAD=0 or negative → Alarm Output
FAD=... → Programmed value acts in accordance with the active G com‐

mand of group 15 (feed type; G93, G94, etc.)
FAD=PM(...) → Programmed value is interpreted as linear feed (like G94), irre‐

spective of the active G command of group 15
FAD=PR(...) → Programmed value is interpreted as revolutional feed (like G95),

irrespective of the active G command of group 15

Example:

Program code Comment
$TC_DP1[1,1]=120 ; Milling tool T1/D1
$TC_DP6[1,1]=7 ; Tool with 7mm radius

N10 G90 G0 X0 Y0 Z20 D1 T1
N20 G41 G341 G247 DISCL=AC(5) DISR=13FAD 500 X40 Y-10 Z=0 F2000
N30 X50
N40 X60

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1503

Program code Comment
...

Programming feed F
This feed value is effective from point P3 (or from point P2, if FAD is not programmed). If no F
command is programmed in the SAR block, the speed of the preceding block is valid. The
velocity defined by FAD is not used for following blocks.

19.5.4.3 Velocities

Velocities at approach
In both approach diagrams below, it is assumed that no new velocity is programmed in the
block following the SAR block. If this is not the case, the new velocity comes into effect after
point P4.

Figure 19-19 Velocities in the SAR subblocks on approach with G340

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1504 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-20 Velocities in the SAR subblocks on approach with G341

Velocities at retraction
During retraction, the rolls of the modally active feedrate from the previous block and the
programmed feedrate value in the SAR block are interchanged, i.e., the actual retraction
contour (straight line, circle, helix) is traversed with the old feedrate value and a new velocity
programmed with the F word applies from point P2 up to P0.

If even retraction is active and FAD is programmed, the path from P3 to P2 is traversed with
FAD, otherwise it is traversed with the old velocity. The last F command programmed in a
preceding block always applies for the path from P4 to P2. G0 has no effect in these blocks.

Traversing from P2 to P0 takes place with the F command programmed in the SAR block or, if
no F command is programmed, with the modal F command from a preceding block. This
applies on the condition that G0 is not active.

If rapid traverse is to be used on retraction in the blocks from P2 to P0, G0 must be activated
before the SAR block or in the SAR block itself. If an additional F command is programmed in
the actual SAR blocks, it is then ineffective. However, it remains modally active for following
blocks.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1505

Figure 19-21 Velocities in the SAR subblocks on retraction

19.5.4.4 System variables
Points P3 and P4 can be read in the WCS as system variables during approach.

$P_APR: Read P3 (start point) in WCS
$P_AEP: Read P4 (contour start point) in WCS
$P_APDV =1 If the content of $P_APR and $P_AEP is valid, i.e., if these contain the position

values belonging to the last SAR approach block programmed.
=0 The positions of an older SAR approach block are read.

Changing the WCS between the SAR block and the read operation has no effect on the position
values.

19.5.4.5 Supplementary conditions

Supplementary conditions
● Any further NC commands (e.g. auxiliary function outputs, synchronous axis movements,

positioning axis movements, etc.) can be programmed in an SAR block.
These are executed in the first subblock on approach and in the last subblock on retraction.

● If the end point P4 is not taken from the SAR block but from a subsequent traversing block,
the actual SAR contour (straight line, quadrant or semicircle) is traversed in this block.
The last subblock of the original SAR block does not then contain traversing information
for geometry axes. It is always output, however, because further actions (e.g. single axes)
may have to be executed in this block.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1506 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● At least two blocks must always be taken into consideration:

– The SAR block itself

– The block, which defines the approach or retraction direction

Further blocks can be programmed between these two blocks.
The number of possible dummy blocks is limited with the machine data:
MD20202 $MC_WAB_MAXNUM_DUMMY_BLOCKS (maximum number of blocks with no
traversing motions with SAR).

● If tool radius compensation is activated simultaneously in an approach block the first linear
block of the SAR contour is the block in which activation takes place.
The complete contour generated by the SAR function is treated by tool radius compensation
as if it has been programmed explicitly (collision detection, calculation of intersection,
approach behavior NORM/KONT).

● The direction of the infeed motion and the position of the circle plane or the helix axis are
defined exclusively by the active plane (G17 - G19) - rotated with an active frame where
appropriate.

● On approach, a preprocessor stop must not be inserted between the SAR block and the
following block which defines the direction of the tangent.
Whether programmed explicitly or inserted automatically by the control, a preprocessor
stop results, in this case, in an alarm.

Behavior with REPOS
If an SAR cycle is interrupted and repositioned, it resumes at the point of interruption on
RMIBL. With RMEBL, the contact point is the end point of the last SAR block; with RMBBL, it is
the start point of the first SAR block.

If RMIBL is programmed together with DISPR (reapproach at distance DISPR in front of
interruption point), the reapproach point can appear in a subblock of the SAR cycle before the
interruption subblock.

19.5.4.6 Examples

Example 1
The following conditions must be true:

● Smooth approach is activated in block N20
● X=40 (end point); Y=0; Z=0

● Approach movement performed with quadrant (G247)

● Approach direction not programmed, G140 is valid, i.e. because TRC is active (G42) and
compensation value is positive (10), the contour is approached from the right

● Approach circle generated internally (SAR contour) has radius 20, so that the radius of the
tool center path is equal to the programmed value DISR=10

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1507

● Because of G341, the approach movement takes place with a circle in the plane, resulting
in a start point at (20, -20, 0)

● Because DISCL=5, point P2 is at position (20, -20, 5) and, because of Z30, point P1 is in
N10 at (20, -20, 30)

Figure 19-22 Contour example 1

Part program:

Program code Comment
$TC_DP1[1,1]=120 ; Tool definition T1/D1
$TC_DP6[1,1]=10 ; Radius
N10 G0 X0 Y0 Z30
N20 G247 G341 G42 NORM D1 T1 Z0 FAD=1000 F=2000 DISCL=5 DISR=10
N30 X40
N40 X100
N50 Y-30
...

Example 2
The following conditions must be true for approach:

● Smooth approach is activated in block N20
● Approach movement performed with quadrant (G247)

● Approach direction not programmed, G140 is valid, i.e. because TRC is active (G41), the
contour is approached from the left

● Contour offset OFFN=5 (N10)

● Current tool radius=10, and so the effective compensation radius for TRC=15; the radius
of the SAR contour is thus equal to 25, with the result that the radius of the tool center path
is equal to DISR=10

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1508 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

● The end point of the circle is obtained from N30, since only the Z position is programmed
in N20

● Infeed movement

– From Z20 to Z7 (DISCL=AC(7)) with rapid traverse

– Then on to Z0 with FAD=200
– Approach circle in X-Y-plane and following blocks with F1500

(In order that this velocity becomes effective in the following blocks, the active G-code
G0 in N30 must be overwritten with G1. Otherwise, the contour would continue to be
machined with G0.)

The following conditions must be true for retraction:

● Smooth retraction is activated in block N60
● Retraction movement performed with quadrant (G248) and helix (G340)

● FAD not programmed, since irrelevant for G340
● Z=2 in the start point; Z=8 in the end point, since DISCL=6
● When DISR=5, the radius of SAR contour=20; that of the tool center point path=5

● After the circle block, the retraction movement leads from Z8 to Z20 and the movement is
parallel to the XY plane up to the end point at X70 Y0

Figure 19-23 Contour example 2

Part program:

Program code Comment
$TC_DP1[1,1]=120
$TC_DP6[1,1]=10

; Tool definition T1/D1
; Radius

N10 G0 X0 Y0 Z20 G64 D1 T1 OFFN = 5
N20 G41 G247 G341 Z0 DISCL = AC(7) DISR = 10 F1500 FAD=200
N30 G1 X30 Y-10

; (P0app)
; (P3app)
; (P4app)

N40 X40 Z2
N50 X50
N60 G248 G340 X70 Y0 Z20 DISCL = 6 DISR = 5 G40 F10000
N70 X80 Y0

; (P4ret)
; (P3ret)
; (P0ret)

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1509

Program code Comment
N80 M 30

Note

The contour generated in this way is modified by tool radius compensation, which is activated
in the SAR approach block and deactivated in the SAR retraction block.

The tool radius compensation allows for an effective radius of 15, which is the sum of the tool
radius (10) and the contour offset (5). The resulting radius of the tool center path in the
approach block is therefore 10, and 5 in the retraction block.

19.5.5 Deselecting the TRC (G40)

G40 instruction
TRC is deselected with the G40 instruction.

Special points to be noted
● TRC can only be deselected in a program block with G0 (rapid traverse) or G1 (linear

interpolation).

● If D0 is programmed when tool radius compensation is active, compensation is not
deselected and error message 10750 is output.

● If a geometry axis is programmed in the block with the tool radius compensation
deselection, then the compensation is deselected even if it is not on the current plane.

19.5.6 Compensation at outside corners

G450/G451
The G commands G450/G451 can be used to control the response for discontinuous block
transitions at outside corners:

Command Meaning
G450 Discontinuous block transitions with transition circle
G451 Discontinuous block transitions with intersection of equidistant paths

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1510 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-24 Example of a 90 degree outside corner with G450 and G451

G450 (transition circle)
With the active G command G450, on outside corners, the center point of the tool travels a
circular path along the tool radius. The circular path starts with the normal position
(perpendicular to the path tangent) at the end point of the previous path section (program
block) and ends in normal position at the start point of the new path section (program block).

Where outside corners are very flat, the response with G450 (transition circle) and G451
(intersection) becomes increasingly similar (see "Very flat outside corners").

If pointed outside corners are desired, the tool must be retracted from the contour (see Section
"DISC").

DISC
The G450 transition circle does not produce sharp outside contour corners because the path
of the tool center point through the transition circle is controlled so that the cutting edge stops
at the outside corner (programmed position). When sharp outside corners are to be machined
with G450, the DISC statement can be used to program an overshoot. Thus, the transition
circle becomes a conic and the tool cutting edge retracts from the outside corner.

The range of values of the DISC statement is 0 to 100, in increments of 1.

Value Meaning
DISC = 0 Overshoot disabled, transition circle active
DISC = 100 Overshoot large enough to theoretically produce a response similar to intersec‐

tion (G451).

The programmable maximum value for DISC can be set via the machine data:

MD20220 $MC_CUTCOM_MAX_DISC (max. value for DISC).

Values greater than 50 are generally not advisable with DISC.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1511

Figure 19-25 Example: Overshoot with DISC= 25

Figure 19-26 Overshoot with DISC depending on contour angle

G451 (intersection)
If the G451 G command is active, the position (intersection) resulting from the path lines
(straight line, circle or helix only) located at a distance of the tool radius to the programmed
contour (center-point path of the tool) is approached. Splines and polynomials are never
extended.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1512 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Very pointed outside corners
Where outside corners are very pointed, G451 can result in excessive idle paths. Therefore,
the system switches automatically from G451 (intersection) to G450 (transition circle, with
DISC where appropriate) when outside corners are very pointed.

The threshold angle (contour angle) for this automatic switchover (intersection point →
transition circle) can be specified in the machine data:

MD20210 $MC_CUTCOM_CORNER_LIMIT (Max. angle for compensation blocks with tool
radius compensation).

Figure 19-27 Example of automatic switchover to transition circle

Very flat outside corners
Where outside corners are very flat, the response with G450 (transition circle) and G451
(intersection) becomes increasingly similar. In this case, it is no longer advisable to insert a
transition circle. One reason why it is not permitted to insert a transition circle at these outside
corners with 5-axis machining is that this would impose restrictions on speed in contouring
mode (G64). Therefore, the system switches automatically from G450 (transition circle, with
DISC where appropriate) to G451 (intersection) when outside corners are very flat.

The threshold angle (contour angle) for this automatic switchover (transition circle →
intersection point) can be specified in the machine data:

MD20230 $MC_CUTCOM_CURVE_INSERT_LIMIT (Max. angle for intersection calculation
with tool radius compensation).

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1513

Figure 19-28 Example of automatic switchover to intersection

19.5.7 Compensation and inner corners

Point of intersection
If two consecutive blocks form an inside corner, an attempt is made to find a point at which
the two equidistant paths intersect. If an intersection is found, the programmed contour is
shortened to the intersection:

S: Point of intersection
① First block shortened at end.
② Second block shortened at beginning

Figure 19-29 Programmed contour is shortened

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1514 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

No intersection
For inside corners, it is possible that no intersection is found between two consecutive blocks.
In this case, the control automatically checks the next block and attempts to find an intersection
with the equidistant paths of this block:

S: Point of intersection
Figure 19-30 Predictive contour calculation

This automatic check of the next blocks, predictive contour calculation, is always performed
until a number of blocks defined via machine data has been reached.

MD20240 $MC_CUTCOM_MAXNUM_CHECK_BLOCKS (blocks for predictive contour
calculation for TRC)

If no intersection is found within the number of blocks defined for the looking ahead, program
execution is interrupted and an alarm is output.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1515

Multiple intersections
With inside corners it is also possible that predictive contour calculation finds multiple
intersections of the equidistant paths in several consecutive blocks. In this case, the last
intersection is always used as the valid intersection. The previous intersection points are not
approached:

Figure 19-31 In this example, the pocket is machined only as much as is possible without causing a
contour violation.

For further information, see also Chapter "Collision monitoring ("bottleneck detection")
(Page 1516)".

Special features
Where multiple intersections with the next block are found, the intersection nearest the start
of the next block applies.

19.5.8 Collision monitoring ("bottleneck detection")

19.5.8.1 Function
If tool radius compensation is active, collision monitoring ("bottleneck detection") checks by
predictive contour calculation whether the equidistant paths of non-consecutive blocks
intersect. This look-ahead function allows possible collisions to be detected in advance and
permits the control to actively avoid them.

The maximum number of blocks that are looked at in advance can be set by channel-specific
machine data (see "Parameterization (Page 1517)").

If an intersection is detected, the motions programmed between these blocks on the
compensation plane are not executed. Alarm 10763 is displayed:

"The path component of the block in the compensation plane will become zero."

The NC program is not interrupted. The bottleneck is bypassed. All other motions and
executable instructions (M commands, traversal of positioning axes, etc.) contained in the
omitted blocks are executed at the position of the last intersection found in the sequence in
which they are programmed in the NC program.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1516 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-32 Bypassing a bottleneck during active collision monitoring (looking 8 blocks ahead)

Activation / deactivation
The function is activated / deactivated in the NC program with commands of G Group 23.

See "Programming (Page 1517)."

19.5.8.2 Parameterization

Maximum number of blocks for predictive contour calculation
The maximum number of blocks to be predictively checked is set in:

MD20240 $MC_CUTCOM_MAXNUM_CHECK_BLOCKS (blocks for predictive contour
calculation for TRC)

Suppress alarm 10763
Alarm 10763 (Page 1516) can be suppressed by the following setting:

MD11410 $MN_SUPPRES_ALARM_MASK (mask supporting special alarm outputs), bit 1 = 1

19.5.8.3 Programming
The collision detection ("bottleneck detection") with active TRC is activated or deactivated in
the NC program with the commands of G group 23.

Syntax

G41/G42 CDON
...
CDOF/CDOF2

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1517

Meaning

CDON: Activating collision detection ("bottleneck detection")
CDON performs a check over an adjustable (MD20240 (Page 1517)) number of blocks
as to whether the tool paths of non-adjacent blocks intersect. This look-ahead function
allows possible collisions to be detected in advance and permits the control to actively
avoid them.

CDOF: Deactivating collision detection ("bottleneck detection")
With CDOF, a search is made in the previous traversing block (at inside corners) for a
common intersection for the current block; if necessary the search is extended to even
earlier blocks. If an intersection is found, no further blocks are examined. With outside
corners, an intersection is always found between two consecutive blocks.
Note:
CDOF can be used to avoid the faulty detection of bottlenecks which may occur due to a
lack of information in the NC program, for example.

CDOF2: Deactivating collision detection for 3D circumferential milling
The tool offset direction is determined from adjacent block parts with CDOF2. CDOF2 is
only effective for 3D circumferential milling and has the same meaning as CDOF for all
other types of machining (e.g. 3D face milling).

19.5.8.4 Supplementary conditions

Program test
To avoid program stops, the tool with the largest radius from the range of used tools should
always be used during the program test.

"Bottleneck detection" due to overhangs at outside corners
When the intersections of non-consecutive blocks are checked, not the programmed original
contours are examined, but the associated calculated equidistant paths. This can result in a
"bottleneck" being falsely detected at outside corners. The reason for this is that the calculated
tool path does not run equidistant to the programmed original contour when DISC > 0.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1518 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.5.8.5 Example

Effect of collision detection using an example
The NC program describes the center point path of a standard tool. The contour for a tool that
is actually used results in undersize, which is shown unrealistically large to demonstrate the
geometric relationships in the following figure.

The control also only has an overview of three blocks in the example:

MD20240 $MC_CUTCOM_MAXNUM_CHECK_BLOCKS = 3

Since an intersection exists only between the offset curves of the two blocks N10 and N40,
the two blocks N20 and N30 would have to be omitted. In the example, the control does not
know in block N40 if N10 has to be completely processed. Only a single block can therefore
be omitted.

With active CDOF2, the compensation motion shown in the figure is executed and not stopped.
In this situation, an active CDOF or CDON would result in an alarm.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1519

19.5.9 Slot shape recognition (option) - 840D sl only
If tool radius correction is active and collision monitoring (Page 1516) is switched on, a
programmed slot with a width smaller than the tool diameter is detected as a possible contour
violation and it is omitted from machining. In certain technology-dependent application cases
(e.g. manufacturing deflection lines with a laser cutting machine), however, it is necessary to
machine the slots when the radius of the tool (laser beam) is somewhat larger than the
programmed width of the slot would allow. To give the user this option, the tool radius correction
has been expanded to include the function "slot shape recognition".

Note

The "slot shape recognition" function is an option for SINUMERIK 840D sl that requires a
license.

Article number: 6FC5800-0AS18-0YB0

Function
If the "slot shape recognition" function is active, slots that have a predefined shape are
automatically identified and their machining is ensured.

The following are detected:

● I-slot

● T-slot

If the slot width is greater than or equal to the tool diameter, the slot will be traversed as
programmed. If the slot width is smaller than the tool diameter, the equidistant path is calculated
in such a way that the tool traverses along the center of the programmed slot:

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1520 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The following conditions must be met:

● The radius of a new tool (R2) must not exceed the radius of the original tool (R1) by the
factor 2:
R2 < 2 * R1

● The slot must have an odd number of blocks.

● The central block must comprise a straight line.

● The radius of the rounding at the start of the slot or the length of the block preceding the
slot must not be less than the difference R2 - R1.

Activation
To activate the function "slot shape recognition", the following channel-specific setting data
must be set to "1":

SD42977 $SC_SLOT_FORM_RECOGN = 1

Parameterization

Number of blocks for predictive feature recognition
The slot shape recognition is only active if the following channel-specific machine data is set
to a value greater than zero:

MD28620 $MC_MM_NUM_FEATURE_BLOCKS > 0

With MD28620, the minimum number of blocks is defined that are considered at any one time
in order to detect the slot shape.

Recommended value: 15 (This corresponds to the number of contour elements for a T-slot
with an arc between the straight lines.)

Example
In the following part program section, a deflection line is programmed that will be cut with a
laser beam.

Program code Comment
N1 G01 G90 G71 F10000
N2 $TC_DP1[1,1] = 120
N3 $TC_DP3[1,1] = 0.0
N4 $TC_DP6[1,1] = 0.2 ; Tool radius = 0.2 mm
N6 G91 G41 G01 T=1 D=1 ; Activate TRC.
N7 X100.00
N8 Y-24.500
N9 G02 X-0.200 Y-0.200 I-0.200 ; Rounding at the start of the deflec-

tion line contour.
N10 G01 X-49.700
N11 G03 X-0.100 Y-0.100 J-0.100
N12 G01 Y-0.100

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1521

Program code Comment
N13 G03 X0.100 Y-0.100 I0.100
N14 G01 X49.700
N15 G02 X0.200 Y-0.200 J-0.200 ; Rounding at the end of the deflec-

tion line contour
N16 G01 Y-24.500

If slot shape recognition is inactive (SD42977 $SC_SLOT_FORM_RECOGN = 0), the tool
radius correction will detect and omit the programmed deflection line as an impermissible
contour for the tool used (laser beam) because the slot width is 0.3 mm but the tool has radius
0.2 mm. On the other hand, if the slot shape recognition is active (SD42977
$SC_SLOT_FORM_RECOGN = 1), the tool radius correction will detect the programmed
deflection line as an I-slot and the laser beam will cut the deflection line along the center of
the programmed slot.

Because, in this example, the slot comprises seven contour elements (4 arcs, 3 straight lines),
the following minimum value must be set in MD28620 $MC_MM_NUM_FEATURE_BLOCK:

MD28620 $MC_MM_NUM_FEATURE_BLOCK ≥ 7

19.5.10 Blocks with variable compensation value

Supplementary conditions
A variable compensation value is permissible for all types of interpolation (including circular
and spine interpolation).

It is also permitted to change the sign (and, therefore, the compensation side).

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1522 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-33 Tool radius compensation with variable compensation value

Calculation of intersection
When the intersections in blocks with variable compensation value are calculated, the
intersection of the offset curves (tool paths) is always calculated based on the assumption that
the compensation value is constant.

If the block with the variable compensation value is the first of the two blocks to be examined
in the direction of travel, then the compensation value at the block end is used for the
calculation; the compensation value at the block start is used otherwise.

Figure 19-34 Intersection calculation with variable compensation value

Restrictions
If during machining on the inside of the circle the compensation radius becomes geater than
the programmed circle radius, then the machining is rejected with the following alarm:

Alarm 10758 "Curvature radius with variable compensation value too small"

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1523

Maintain stability of closed contour
If a radius of two circles is increased slightly, a third block may be necessary in order to maintain
the stability of the closed contour. This is the case if two adjacent blocks, which represent two
possible intersection points for a closed contour, are skipped due to the compensation.

A stable closed contour can be achieved by choosing the first intersection point instead of the
second.

SD42496 $SC_CUTCOM_CLSD_CONT ≠ 0 (response of TRC for closed contour).

In that case, the second intersection point is always reached, even if the block is skipped. A
third block is then not required.

19.5.11 Alarm behavior

Alarm during preprocessing
If a tool radius compensation alarm is output during preprocessing, main-run machining stops
at the next block end reached, i.e. usually at the end of the block currently being interpolated
(if Look Ahead is active, once the axes have come to a stop).

Alarms for preprocessing stop and active tool radius compensation
Tool radius compensation generally requires at least one of the following traversing blocks
(even more for bottlenecks) to determine the end point of a block. Since the preprocessing
stop of such a block is not available, traversing continues to the offset point in the last block.
Correspondingly, the offset point in the start point is approached in the first block after a
preprocessing stop.

The contour obtained may deviate considerably from the one that would result without
preprocessing stop. Contour violations in particular are possible. Therefore the following
setting data was introduced:

SD42480 $MC_STOP_CUTCOM_STOPRE (alarm response for TRC and preprocessing
stop).

The response of the tool radius compensation remains unchanged compared to the previous
status, and/or an alarm is output for preprocessing stop during active tool radius compensation
and the program is halted, depending on the value.

The user can acknowledge this alarm and continue the NC program with NC start or abort it
with RESET.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1524 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.5.12 Intersection procedure for polynomials

Function
If two curves with active tool radius compensation form an outside corner, depending on the
G command of the 18th group (corner behavior with tool compensation; G450/G451) and
regardless of the type of curves involved (straight lines, circles, polynomials):

● Either a conic is inserted to bypass the corner
or

● The curves involved are extrapolated to form an intersection.

If no intersection is found with G451 activated, or if the angle formed by the two curves is too
steep, switchover to insert mode is automatic.

The intersection procedure for polynomials is released with the machine data:

MD20256 $MC_CUTCOM_INTERS_POLY_ENABLE (intersection process possible for
polynomials)

Note

If this machine data is set to inactive, a block (can be very short) is always inserted (even if
transitions are almost tangential). These short blocks always produce unwanted drops in speed
during G64 operation.

19.5.13 G461/G462 Approach/retract strategy expansion

Function
In certain special geometrical situations, extended approach and retraction strategies,
compared with the previous implementation, are required in order to activate or deactivate tool
radius compensation (see figure below).

Note

The following example describes only the situation for deactivation of tool radius
compensation: The response for approach is virtually identical.

Example

G42 D1 T1 ; Tool radius 20 mm
...
G1 X110 Y0
N10 X0
N20 Y10
N30 G40 X50 Y50

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1525

Figure 19-35 Retraction behavior with G460
The last block with active tool radius compensation (N20) is so short that an intersection no
longer exists between the offset curve and the preceding block (or a previous block) for the
current tool radius. An intersection between the offset curves of the following and preceding
blocks is therefore sought, i.e. between N10 and N30 in this example. The curve used for the
retraction block is not a real offset curve, but a straight line from the offset point at the end of
block N20 to the programmed end point of N30. The intersection is approached if one is found.
The colored area in the figure is not machined, although the tool used would be capable of
this.

G460
With G460, the approach/retraction strategy is the same as before.

G461
If no intersection is possible between the last TRC block and a preceding block, the offset
curve of this block is extended with a circle whose center point lies at the end point of the
uncorrected block and whose radius is equal to the tool radius.

Figure 19-36 Retraction behavior with G461

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1526 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The control attempts to cut this circle with one of the preceding blocks. If CDOF is active, the
search is terminated when an intersection is found, i.e. the system does not check for more
intersections with even earlier blocks.

If CDON is active, the search for more intersections continues after the first intersection is found.

An intersection point, which is found in this way, is the new end point of a preceding block and
the start point of the deactivation block. The inserted circle is used exclusively to calculate the
intersection and does not produce a traversing movement.

Note

If no intersection is found, the following alarm is output:

Alarm "10751 Collision danger"

G462
If no intersection is possible between the last TRC block and a preceding block, a straight line
is inserted, on retraction with G462 (basic setting), at the end point of the last block with tool
radius compensation (the block is extended by its end tangent).

Figure 19-37 Retraction behavior with G462
The search for the intersection is then identical to the procedure for G461.

With G462, the corner generated by N10 and N20 in the sample program is not machined to
the full extent actually possible with the tool used. However, this behavior may be necessary
if the part contour (as distinct from the programmed contour), to the left of N20 in the example,
is not permitted to be violated even with y values greater than 10 mm.

If KONT is active (travel round contour at start or end point), behavior will differ according to
whether the end point is in front of or behind the contour.

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1527

End point in front of contour
If the end point is located in front of the contour, the retraction behavior is the same as for
NORM. This feature does not change, even if the last contour block with G451 is extended with
a straight line or a circle. Additional circumnavigation strategies to avoid a contour violation in
the vicinity of the contour end point are therefore not required.

End point behind contour
If the end point is behind the contour, a circle or straight line is always inserted depending on
G450/G451. In this case, G460-G462 has no effect.

If, in this situation, the last traversing block has no intersection with a preceding block, an
intersection with the inserted contour element or with the linear section from the end point of
the circumnavigation circle to the programmed end point can result.

If the inserted contour element is a circle (G450), and it intersects with the preceding block,
this is the same as the intersection, which would be produced with NORM and G461. In general,
however, a remaining section of the circle still has to be traversed. An intersection calculation
is no longer required for the linear section of the retraction block.

In the second case (if no intersection is found between the inserted contour element and the
preceding blocks), the intersection between the retraction straight line and a preceding block
is approached.

Therefore, when G461 or G462 is active, behavior deviating from G460 can only arise if
NORM is active or if behavior with KONT is identical to NORM due to the geometrical conditions.

Note

The approach behavior is symmetrical to the retraction behavior.

The approach/retraction behavior is determined by the state of the G command in the approach/
retraction block. The approach behavior can therefore be set independently of the retraction
behavior.

Example:

Program for using G461 during approach:

N10 $TC_DP1[1,1]=120 ; Milling tool type
N20 $TC_DP6[1,1]=10 ; Radius
N30 X0 Y0 F10000 T1 D1
N40 Y20
N50 G42 X50 Y5 G461
N60 Y0 F600
N70 X30
N80 X20 Y-5
N90 X0 Y0 G40
N100 M30

W1: Tool offset
19.5 2D tool radius compensation (2D-WRK)

Basic Functions
1528 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.6 Keep tool radius compensation constant

Meaning
The "Keep tool radius compensation constant" function is used to suppress tool radius
compensation for a number of blocks, whereby a difference between the programmed and the
actual traveled tool center path established by tool radius compensation in the previous blocks
is retained as the offset.

It can be an advantage to use this method when several traversing blocks are required during
line milling in the reversal points, but the contours produced by the tool radius compensation
(bypass strategies) are not wanted.

Activation
The "Keep tool radius compensation constant" function is activated with the G command
CUTCONON (CUTter compensation CONstant ON) and deactivated with the G command
CUTCONOF (CUTter compensation CONstant OFF).

CUTCONON and CUTCONOF form a modal G group.

The basic setting is CUTCONOF.

The function can be used independently of the type of tool radius compensation (21/2D, 3D
face milling, 3D circumferential milling).

Normal case
Tool radius compensation is normally active before the compensation suppression and is still
active when the compensation suppression is deactivated again.

In the last traversing block before CUTCONON, the offset point in the block end point is
approached. All following blocks, in which compensation suppression is active, are traversed
without compensation. However, they are offset by the vector from the end point of the last
offset block to its offset point. These blocks can have any type of interpolation (linear, circular,
polynomial).

The deactivation block of the compensation suppression, i.e. the block that contains
CUTCONOF, is compensated normally. It starts in the offset point of the start point. One linear
block is inserted between the end point of the previous block, i.e. the last programmed
traversing block with active CUTCONON, and this point.

Circular blocks, for which the circle plane is perpendicular to the compensation plane (vertical
circles), are treated as though they had CUTCONON programmed. This implicit activation of
compensation suppression is automatically canceled in the first traversing block that contains
a traversing motion in the compensation plane and is not such a circle. Vertical circle in this
sense can only occur during circumferential milling.

Example:

N10 ; Definition of tool d1
N20 $TC_DP1[1,1]= 110 ; Type
N30 $TC_DP6[1,1]= ; Radius

W1: Tool offset
19.6 Keep tool radius compensation constant

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1529

N40

N50 X0 Y0 Z0 G1 G17 T1 D1 F10000

N60

N70 X20 G42 NORM

N80 X30

N90 Y20

N100 X10 CUTCONON ; Activation of the compensation suppression
N110 Y30 KONT ; On deactivation of contour suppression,

insert bypass circle, if necessary
N120 X-10 CUTCONOF

N130 Y20 NORM ; No bypass circle when deactivating the TRC
N140 X0 Y0 G40
N150 M30

Figure 19-38 Sample program for contour suppression

W1: Tool offset
19.6 Keep tool radius compensation constant

Basic Functions
1530 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Special cases
● If tool radius compensation is not active (G40), CUTCONON has no effect. No alarm is

produced. The G command remains active, however.
This is significant if tool radius compensation is to be activated in a later block with G41 or
G42.

● It is permissible to change the G command in the 7th G group (tool radius compensation;
G40 / G41 / G42) with CUTCONON active. A change to G40 is active immediately.
The offset used for traversing the previous blocks is traveled.

● If CUTCONON or CUTCONOF is programmed in a block without traversing in the active
compensation plane, activation is delayed until the next block that has such a traversing
motion.

● If CUTCONON is programmed with active tool radius compensation and not canceled before
the end of the program, the traversing blocks are traversed with the last valid offset.
The same applies for reprogramming of G41 or G42 in the last traversing block of a program.

● If tool radius compensation is activated with G41 or G42 and CUTCONON is also already
active, activation of compensation is delayed until the next traversing block with
CUTCONOF.

● When repositioning the contour with CUTCONOF, the 17th G group (approach and retraction
behavior with tool compensation; NORM / KONT) is evaluated, i.e. a bypass circle is inserted
if necessary for KONT. A bypass circle is inserted under the same conditions as for activation
of tool radius compensation with G41 or G42.

● The number of blocks with suppressed tool radius compensation is restricted:
MD20252 $MC_CUTCOM_MAXNUM_SUPPR_BLOCKS (Maximum number of blocks with
compensation suppression).
If it is exceeded, machining is aborted and an error message issued.
The restriction is necessary because the internal block processing in the last block before
CUTCONON must be resumed when repositioning.

● The response after reprogramming G41 or G42 when tool radius compensation is already
active is similar to compensation suppression.
The following deviations apply:

– Only linear blocks are permissible

– A single traversing block that contains G41 or G42 is modified so that it ends at the offset
point of the start point in the following block. Thus it is not necessary to insert an
intermediate block. The same applies to the last block in a sequence of traversing blocks
where each contains G41 or G42.

– The contour is always reapproached with NORM, independent of the G command of the
17th group (approach and retraction behavior with tool compensation; NORM/KONT).

● If G41 / G42 is programmed several times in consecutive traversing blocks, all blocks are
machined as for CUTCONON, except for the last one.

W1: Tool offset
19.6 Keep tool radius compensation constant

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1531

● The type of contour suppression is evaluated only in the first traversing block of a sequence
of consecutive traversing blocks.
If both CUTCONON and G41 or G42 are programmed in the first block, the response to
deactivating contour suppression is determined by CUTCONON.
Changing from G41 to G42 or vice versa makes sense in this case as a means of changing
the compensation side (left or right of the contour) when restarting.
A change of compensation side (G41/G42) can also be programmed in a later block, even
if contour suppression is active.

● Collision monitoring and bottleneck detection is deactivated for all blocks with active contour
suppression.

19.7 Toolholder with orientation capability

19.7.1 General information

Introduction
The orientation of the tool can vary (e.g. due to retooling) for one single class of machine tools.
When the machine is operating, the orientation that has been set is permanent, however, and
cannot be changed during traversing. For this reason, kinematic orientation transformation (3-,
4- or 5axis transformations, TRAORI) is neither necessary nor does it make sense for such
machines. However, it is necessary to take account of the changes in the tool length
components caused by changing the orientation, without having to trouble the user with
mathematics involved. The control performs these calculations.

Availability
For SINUMERIK 828D, the "toolholder with orientation capability" function is only available for
the milling versions.

Required data
The following requirements must be met if the control is to take tool compensations into account
for toolholders with orientation capability:

● Tool data (geometry, wear, etc.)

● Toolholder data (data for the geometry of the toolholder with orientation capability)

Toolholder selection
A toolholder defined in the control must be specified for the "Toolholder with orientation
capability" function. The NC program command below is used for this purpose:

TCARR = m
m: Number of the toolholder

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1532 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The toolholder has an associated toolholder data block that describes its geometry.

Activating the toolholder and its block has an immediate effect, i.e. from the next traversing
block onwards.

Assignment tool/toolholder
The tool that was active previously is assigned to the new toolholder.

From the point of view of the control, toolholder number m and tool number T can be combined
freely. In the real application, however, certain combinations can be ruled out for machining
or mechanical reasons. The control does not check whether the combinations make sense.

Description of the kinematics of the toolholder
The kinematics of the toolholder with orientation capability is described with a total of 33
parameter sets.

The data of the data block can be edited by the user.

Toolholder with orientation capability
Example: Cardan toolholder with two axes for the tool orientation

Figure 19-39 Cardan toolholder with two axes

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1533

Processing toolholder data blocks
Two options are available:

● Explicit entry in the toolholder data block from the part program

● Automatic acceptance of certain values (angles) from a frame
A requirement for this is that TCOFR (Tool Carrier Orientation FRame) is also specified when
the toolholder is selected.
The tool orientation used to calculate the tool length is determined again from the frame
active at this time when a toolholder is changed.

Orientation in Z direction
The G command TOFRAME defines a frame such that the Z direction in this frame is the same
as the current tool orientation.

If no toolholder or a toolholder without change in orientation is active, then the Z direction is
in the new frame:

● The same as the old Z direction with G17.

● The same as the old Y direction with G18.

● The same as the old X direction with G19.

TCOABS for active frame
The absolute toolholder orientation is set using:

TCOABS (Tool Carrier Orientation ABSolute)

The orientation taken into account for the tool length compensation is independent of the
orientation of the active frame.

Only one of the commands TCOABS or TCOFR can be valid.

Frame change
The user can change the frame following selection of the tool. This does not have any effect
on the tool length compensation components.

Angles in the toolholder data:

The programmed angles of rotation stored in the toolholder data is not affected by the angle
of rotation defined by the frames. When changing from TCOFR to TCOABS, the original
(programmed) angles of rotation in the toolholder data is reactivated.

Tool compensation types
TRC (tool radius compensation) takes account of the current tool orientation when CUT2D or
CUT3DFS is active.

All other tool compensation types

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1534 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

These are all the compensation types of G group 22, with the exception of CUT3DC and
CUT3DF. The response remains the same with respect to the plane used for compensation.
This is determined independent of the tool orientation from the active frame.

For CUT2DF and CUT3DFF, the compensation plane used for TRC is determined from the
frame independently of the current tool orientation. The active plane (G17/G18/G19) is
considered.

CUT3DC and CUT3DF

3D tool compensation for circumferential milling

3D tool compensations for face milling with active 5-axis transformation are not affected by
the "Toolholder with orientation capability" function.

The orientation information is determined by the active kinematic 5-axis transformation.

Limited toolholder orientation
An alarm is output if an orientation that cannot be reached with the defined toolholder kinematic
is specified by the frame.

The following kinematics cannot achieve any orientation:

● If the two rotary axes which are necessary to define the kinematics are not perpendicular
to each other and if the tool axis which defines the tool direction is not perpendicular to the
second rotary axis
or

● Less than two axes have been defined

Non-rotary toolholders

The tool orientation used internally is dependent only on the basic orientation of the tool and
the active plane (G17 - G19).

Ambiguities
With two axes, a particular tool orientation defined by the frame can generally be set with two
different rotary angle pairs. Of these two, the control selects the setting with which the rotary
angle is as close as possible to the programmed rotary angle.

Storing angles in the toolholder data

In virtually any case where ambiguities may arise, it is necessary to store the approximate
angle expected from the frame in the toolholder data.

Parameter sets
A complete parameter set for a toolholder with orientation capability consists of 33 values.

The following system variables are available:

● $TC_CARR1 to $TC_CARR33

● In addition, $TC_CARR34 to $TC_CARR65 are freely available for the user and for fine
offsets.

The significance of the individual parameters is distinguished as follows:

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1535

Machine kinematics:

$TC_CARR1 to $TC_CARR20 and $TC_CARR23

$TC_CARR18 to $TC_CARR20 define a further vector l4, which is needed to describe the
machine with extended kinematics (both tool and workpiece can be rotated).

$TC_CARR21 and $TC_CARR22 contain the channel-axis names of the rotary axes, the
positions of which can be used to determine the orientation of the toolholder with orientation
capability, if necessary.

Kinematic type:

$TC_CARR23 using letter T, P or M

The following three options are available for the kinematic type, for which both upper and lower
case text are permissible:

T: Only the (Tool) can be rotated (basic value).
P: Only the workpiece (Part) can be rotated.
M: Both tool and workpiece can be rotated (Mixed mode).

Any character other than the three mentioned here will result in an alarm if it is tried to activate
the toolholder with orientation capability:

Alarm "14153 Channel %1 block %2 unknown toolholder type: %3"

Rotary axis parameters:

$TC_CARR24 to $TC_CARR33

The system variables in $TC_CARR24 to $TC_CARR33 can be used to define offsets, angle
compensations, Hirth tooth system and axis limits.

Note

The system variables are available with and without active tool management.

Components and presetting of the chain/data block
The values $TC_CARR1 to $TC_CARR20 and $TC_CARR24 to $TC_CARR33 in the
toolholder data block are of NC language format type REAL..

The values $TC_CARR21 and $TC_CARR22 for the axis name of the first rotary axis (v1) and
the second rotary axis (v2) are of NC language format type AXIS. They are all preset to zero.

The value $TC_CARR23 is initialized with the uppercase letter "T" (only tool can be rotated).

$TC_CARRn[m]

$TC_CARR[0]= 0 has a special significance

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1536 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variables for toolholders with orientation capability
$TC_CARRn[m]

 n: Parameters 1...33
 m: Number of the toolholder 1 that can be oriented...Value of the machine data:

MD18088 $MN_MM_NUM_TOOL_CARRIER (maximum number of definable tool‐
holders)

Description NC variable Language
format

Default setting

x component of offset vector l1 $TC_CARR1 REAL 0
y component of offset vector l1 $TC_CARR2 REAL 0
z component of offset vector l1 $TC_CARR3 REAL 0
x component of offset vector l2 $TC_CARR4 REAL 0
y component of offset vector l2 $TC_CARR5 REAL 0
z component of offset vector l2 $TC_CARR6 REAL 0
x component of rotary axis v1 $TC_CARR7 REAL 0
y component of rotary axis v1 $TC_CARR8 REAL 0
z component of rotary axis v1 $TC_CARR9 REAL 0
x component of rotary axis v2 $TC_CARR10 REAL 0
y component of rotary axis v2 $TC_CARR11 REAL 0
z component of rotary axis v2 $TC_CARR12 REAL 0
Angle of rotation α1 (in degrees) $TC_CARR13 REAL 0
Angle of rotation α2 (in degrees) $TC_CARR14 REAL 0
x component of offset vector l3 $TC_CARR15 REAL 0
y component of offset vector l3 $TC_CARR16 REAL 0
z component of offset vector l3 $TC_CARR17 REAL 0
x component of offset vector l4 $TC_CARR18 REAL 0
y component of offset vector l4 $TC_CARR19 REAL 0
z component of offset vector l4 $TC_CARR20 REAL 0
Axis name of the rotary axis v1 $TC_CARR21 AXIS 0
Axis name of the rotary axis v2 $TC_CARR22 AXIS 0
Kinematic type $TC_CARR23 CHAR T
Offset of rotary axis v1 $TC_CARR24 REAL 0
Offset of rotary axis v2 $TC_CARR25 REAL 0
Angle offset of rotary axis v1 (Hirth tooth) $TC_CARR26 REAL 0
Angle offset of rotary axis v2 (Hirth tooth) $TC_CARR27 REAL 0
Angle increment of rotary axis v1 (Hirth tooth) $TC_CARR28 REAL 0
Angle increment of rotary axis v2 (Hirth tooth) $TC_CARR29 REAL 0
Minimum position of rotary axis v1 (SW limit) $TC_CARR30 REAL 0
Minimum position of rotary axis v2 (SW limit) $TC_CARR31 REAL 0
Maximum position of rotary axis v1 (SW limit) $TC_CARR32 REAL 0
Maximum position of rotary axis v2 (SW limit) $TC_CARR33 REAL 0

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1537

System variables for the user and for fine offsets

● $TC_CARR34 to $TC_CARR40
Contain parameters, which are freely available to the user.

● $TC_CARR41 to $TC_CARR65
Contain fine offset parameters that can be added to the values in the basic parameters.
The fine offset value assigned to a basic parameter is obtained when the value 40 is added
to the parameter number.

● $TC_CARR47 to $TC_CARR54 and $TC_CARR61 to $TC_CARR63
Not defined and produce an alarm if read or write access is attempted.

Description NC variable Language
format

Default setting

Toolholder name $TC_CARR34 String[32] ""
Axis name 1 $TC_CARR35 *) String[32] ""
Axis name 2 $TC_CARR36 *) String[32] ""
Identifier $TC_CARR37 *) INT 0
Position component X $TC_CARR38 *) REAL 0
Position component Y $TC_CARR39 *) REAL 0
Position component Z $TC_CARR40 *) REAL 0
x comp. fine offset of offset vector l1 $TC_CARR41 REAL 0
y comp. fine offset of offset vector l1 $TC_CARR42 REAL 0
z comp. fine offset of offset vector l1 $TC_CARR43 REAL 0
x comp. fine offset of offset vector l2 $TC_CARR44 REAL 0
y comp. fine offset of offset vector l2 $TC_CARR45 REAL 0
z comp. fine offset of offset vector l2 $TC_CARR46 REAL 0
x comp. fine offset of offset vector l3 $TC_CARR55 REAL 0
y comp. fine offset of offset vector l3 $TC_CARR56 REAL 0
z comp. fine offset of offset vector l3 $TC_CARR57 REAL 0
x comp. fine offset of offset vector l4 $TC_CARR58 REAL 0
y comp. fine offset of offset vector l4 $TC_CARR59 REAL 0
z comp. fine offset of offset vector l4 $TC_CARR60 REAL 0
Offset of fine offset of rotary axis v1 $TC_CARR64 REAL 0
Offset of fine offset of rotary axis v2 $TC_CARR65 REAL 0
Remarks:
*) The system variables $TC_CARR35 to $TC_CARR40 are used in the measuring cycles as well

as ShopMill and ShopTurn.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1538 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.7.2 Kinematic interaction and machine design

Representation of the kinematic chain
The concept of the kinematic chain is used to describe the kinematic interaction between a
reference point and the tool tip.

The chain specifies all the data required for the toolholder data block in a schematic. To
describe the concrete case with a particular kinematic, the relevant components of the chain
must be assigned real vectors, lengths and angles. The chain represents the maximum
constellation. In simpler applications, individual components can be zero (e.g. kinematics with
one or no rotary axis).

The machine does not have to have axes that rotate the tool and/or workpiece table. The
function can be used even if the orientations are set manually by handwheels or reconfiguration.

The machine design is described by the following parameters:

● Two rotary axes (v1 and v2), each with one angle of rotation (α1 or α2), which counts positively
for clockwise rotation facing the direction of the rotation vector.

● Up to four offset vectors (l1 to l4) for relevant machine dimensions (axis distances, distances
to machine or tool reference points).

Zero vectors
Vectors v1 and v2 can be zero. The associated angle of rotation (explicitly programmed or
calculated from the active frame) must then also be zero, since the direction of the rotating
axis is not defined. If this condition is not satisfied, an alarm is produced when the toolholder
is activated.

Less than two rotating axes
The option not to define a rotating axis makes sense when the toolholder to be described can
only rotate the tool in one plane. A sensible minimum data block may, therefore, contain only
one single entry not equal to 0 in the toolholder data; namely, a value in one of the components
of v1 or v2 for describing a rotating axis parallel to the axis where the angle of rotation α1 or α2
is determined from one frame.

Further special cases
Vectors v1 and v2 can be colinear. However, the degree of freedom for orientation is lost, i.e.
this type of kinematic is the same as one where only one rotary axis is defined. All possible
orientations lie on one cone sheath. The conical sheath deforms to a straight line if tool
orientation t and v1 or v2 become colinear. Change of orientation is, therefore, not possible in
this special case. The cone sheath deforms to a circular surface (i.e. all orientations are
possible in one plane), if tool orientation t and v1 or v2 are perpendicular to each other.

It is permissible for the two vectors v1 and v2 to be zero. A change in orientation is then no
longer possible. In this special case, any lengths l1 and l2, which are not equal to zero, act as
additional tool length compensations, in which the components in the individual axes are not
affected by changing the plane (G17 - G19).

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1539

Kinematics data expansions
● Possibility of direct access to existing machine axes in order to define the toolholder setting

via the rotary axis positions.

● Extension of the kinematics with rotary workpiece and on kinematics with rotary tool and
rotary workpiece.

● Possibility to permit only discrete values in a grid for the rotary axis positions (Hirth tooth
system).

The extensions are compatible with earlier software versions and encompass the kinematic
data blocks from $TC_CARR18 to $TC_CARR23.

Machine with rotary tool
On machines with rotary tool there is no change in the definition of the kinematics compared
to older software versions. The newly introduced vector l4, in particular, has no significance.
Should the contents of l4 not be zero, this is ignored.

The term "Toolholder with orientation capability" is actually no longer really appropriate for the
new kinematic types, with which the table can also be rotated, either alone or additionally to
the tool. However, it has been kept for reasons of compatibility.

The kinematic chains used to describe the machine with rotary tool (general case) are shown
in the figure below:

Figure 19-40 Kinematic chain to describe a tool with orientation

Vectors, which describe offsets in the rotary head, are positive in the direction from the tool tip
to the reference point of the toolholder.

The following kinematic type is defined for machines with a rotary tool:

$TC_CARR23 using letter T

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1540 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Machine with rotary workpiece
On machines with rotary workpiece, the vector l1 has no significance. If it contains a value other
than zero, this is ignored.

The kinematic chain for machines with rotary workpiece is shown in the figure below.

Figure 19-41 Kinematic chain to describe a rotary table

Vectors, which describe offsets in the rotary table, are positive in the direction from the machine
reference point to the table.

The following kinematic type is defined for machines with a rotary workpiece:

$TC_CARR23 using letter P

Note

On machines with rotary workpiece it is generally useful if the selected machine reference
point and the reference point of the table are identical. Selecting the reference points in this
way has the advantage that the position of the workpiece zero in the initial state (i.e. with rotary
axes not turned) does not change when the rotary table is activated. The (open) kinematic
chain (see figure) is then closed.

In this special case, therefore, the following formula applies: l2 = - (l3 + l4)

Machines with extended kinematics
On machines with extended kinematics (both tool and workpiece are rotary), it is only possible
to turn each of the components with one axis.

The kinematic of the rotary tool is described with the first rotary axis (v1) and the two vectors
l1 and l2, that of the rotary table with the second rotary axis (v2) and the two vectors l3 and l4.
The two kinematic chain components for machines with rotary tool and rotary workpiece are
shown in the figure below.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1541

Figure 19-42 Kinematic sequence with extended kinematics

The following kinematic type is defined for machines with a rotary tool and rotary workpiece:

$TC_CARR23 using letter M (extended kinematics)

Note

On machines with extended kinematics it is generally useful, as with machines where only the
table can be rotated, for the machine reference point and the reference point of the table to
be identical. The (open) chain component to describe the table (see figure) is then closed.

In this special case, the following formula applies: l3 = - l4

Rotary tool types T and M
For machine kinematics with a rotary tool (types T and M), the toolholder component with
orientation capability, which describes the tool or head component (as opposed to the table
component), acts, in conjunction with the active tool, as a new overall tool.

Fine offset
The offset vectors l1 to l4 and the offsets of the rotary axes v1 and v2 can be represented as the
sum of a basic value and a fine offset. The fine offset parameters assigned to the basic values
are achieved by adding a value of 40 to the index of the basic value.

Example:

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1542 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The parameter $TC_CARR5 is assigned to the fine offset $TC_CARR45.

Note

For the significance of the system variables $TC_CARR41 to $TC_CARR65 available for the
fine offset see:

References:
Programming Manual, Job Planning; Tool Offsets:

Activation

The following setting adds the fine offset values to the basic values:

SD42974 $SC_TOCARR_FINE_CORRECTION = 1 (fine offset TCARR on/off)

Supplementary conditions

The amount is limited to the permissible fine offset.

The maximum permissible value is defined:

For: With machine data:
● The components of vectors l1 to l4: MD20188 $MC_TOCARR_FINE_LIM_LIN
● The offsets of the two rotary axes v1 and v2: MD20190 $MC_TOCARR_FINE_LIM_ROT

An illegal fine offset value is only detected when:

● A toolholder with orientation capability, which contains such a value, is activated
and

● at the same time the following setting data is set:
SD42974 $SC_TOCARR_FINE_CORRECTION

Description of a rotation
A data block for describing a rotation comprises one vector v1 /v2 to describe the direction of
rotation of the rotary axis in its initial state and an angle α1/α2. The angle of rotation is counted
positively for clockwise rotation facing the direction of the rotation vector.

The two toolholder angles α1 and α2 are determined using a frame, independent of the active
plane currently selected (G17 - G19).

The tool orientation in the initial state (both angles α1 and α2 are zero) is (as in the default
case):

● G17: Parallel to Z.

● G18: Parallel to Y.

● G19: Parallel to Z

Assigning data to the toolholder
Example of a machine with rotary toolholder

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1543

The following settings are obtained at the mill head shown for a machine with toolholder with
orientation capability of kinematic type T:

Component of the offset vector l1 = (-200, 0, 0)
Component of the offset vector l2 = (0, 0, 0)
Component of the offset vector l3 = (-100, 0, 0)
Component of rotary axis v1 = (1, 0, 0)
Component of rotary axis v2 = (-1, 0, 1)
Tool base dimension of tool reference
point

(0, 0, 250)

Note

The tool reference point for the tool base dimension is defined by the reference point at the
machine.

For further information about the reference points in the working area, see Section "K2: Axis
Types, Coordinate Systems, Frames (Page 705)".

Figure 19-43 Assignment of the toolholder data

Suitable assumptions were made for the following values in the data block:

● The two rotary axes intersect at one point.
All components of l2 are therefore zero.

● The first rotary axis lies in the x/z plane, the second rotary axis is parallel to the x axis.
These conditions define the directions of v1 and v2 (the lengths are irrelevant, provided that
they are not equal to zero).

● The reference point of the toolholder lies 200 mm in the negative x direction viewed from
the intersection of the two rotary axes.
This condition defines l1 .

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1544 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Specify associated data block values
The following associated data block values are specified for the toolholder shown on a machine
with rotary toolholder:

Description NC variable Value
x component of offset vector l1 $TC_CARR1 -200
y component of offset vector l1 $TC_CARR2 0
z component of offset vector l1 $TC_CARR3 0
x component of offset vector l2 $TC_CARR4 0
y component of offset vector l2 $TC_CARR5 0
z component of offset vector l2 $TC_CARR6 0
x component of rotary axis v1 $TC_CARR7 1
y component of rotary axis v1 $TC_CARR8 0
z component of rotary axis v1 $TC_CARR9 0
x component of rotary axis v2 $TC_CARR10 -1
y component of rotary axis v2 $TC_CARR11 0
z component of rotary axis v2 $TC_CARR12 1
Angle of rotation α1 (in degrees) $TC_CARR13 0
Angle of rotation α2 (in degrees) $TC_CARR14 0
x component of offset vector l3 $TC_CARR15 -100
y component of offset vector l3 $TC_CARR16 0
z component of offset vector l3 $TC_CARR17 0

Explanations
The toolholder kinematic chosen in the example is such that the two rotary axes form an angle
of 45 degrees, which means that the orientation cannot take just any value. In concrete terms,
this example does not permit the display of orientations with negative X components.

x component of the tool base dimension: 0
y component of the tool base dimension: 0
z component of the tool base dimension: 250

Note

The required data cannot be determined unequivocally from the geometry of the toolholder,
i.e. the user is free to a certain extent to decide the data to be stored. Thus, for the example,
it is possible to specify only one z component for the tool base dimension up to the second
axis. In this case, l2 would no longer be zero, but would contain the components of the distance
between this point on the second axis and a further point on the first axis. The point on the first
axis can also be selected freely. Depending on the point selected, l1 must be selected such
that the reference point (which can also be selected freely) is reached.

In general: Vector components that are not changed by rotation of an axis can be distributed
over any vectors "before" and "after" rotation.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1545

19.7.3 Tool carrier with kinematic chains

Modeling tool carriers with kinematic chains
On machines whose structures are defined with kinematic chains, machine parts that act as
tool carriers can also be described using kinematic chains. Identical geometry data for
kinematic chains and tool carriers can be managed jointly.

Two kinematic chains are required to define the machine kinematics.

● One chain points from machine zero (zero point of world coordination system) to the
workpiece reference point (workpiece part).

● The other chain points from machine zero to the tool carrier reference point (tool part).

● You will find information about kinematic chains in the Function Manual "Special functions"
under "K7: Kinematic chain".

Three different kinematic types are available for tool carriers, which are parametrized via
$TC_CARR23.

The following graphics show an example of the kinematics of a machine with rotatable tool
(type T) and rotatable workpiece (type P) and the resolved kinematics (type M). The resolved
kinematics (type M) is a combination of both types.

Example for a rotatable tool

Orange: Kinematic chain of the tool carrier
Blue: Kinematic chain of the machine

Figure 19-44 Tool carrier with rotatable tool

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1546 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Example of a rotatable workpiece

Orange: Kinematic chain of the tool carrier
Blue: Kinematic chain of the machine

Figure 19-45 Tool carrier with rotatable workpiece

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1547

Example of mixed kinematics

I1 and I2 Offset of the tool chain of the tool holder
v1 Rotary axis of the tool chain
I3 and I4 Offset of the workpiece chain of the tool holder
v2 Rotary axis of the tool chain

Figure 19-46 Mixed kinematics

The kinematics of the tool carrier is defined together with the machine kinematics.

Definition of the tool carrier:
● Definition of the characteristics of tool carrier with $TC_CARR_KIN_CNTRL:

– Close tool carrier via kinematic chain, tool chain, and table chain of the tool carrier.

● The starting point of the kinematic chain of the tool carrier is set via system variables
$TC_CARR_KIN_TOOL_START and $TC_CARR_KIN_PART_START (chain element
name).

● Definition of the rotary axes of the tool carrier with $TC_CARR21 (Page 1532) and
$TC_CARR22

● Definition of the tool carrier type with $TC_CARR23 (T, P, or M)

Definition of the kinematics of the tool carrier:
The workpiece part of a kinematic chain for a tool carrier can be structured as follows (example):

Define the linear axes of the kinematic chain (geometric axes X, Y, and Z).

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1548 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Define a kinematic element of type "OFFSET" (=I2) in the X, Y, and Z direction. Corresponds
to $TC_CARR4 - $TC_CARR6.

Define a kinematic element of type "AXIS_ROT" (=v1) in the X, Y, and Z direction. Corresponds
to $TC_CARR7 - $TC_CARR9.

Define an element of type "OFFSET" (=I3) in the X, Y, and Z direction. Corresponds to
$TC_CARR15 - $TC_CARR17.

Define an element of type "AXIS_ROT" (=v2) in the X, Y, and Z direction. Corresponds to
$TC_CARR10 - $TC_CARR12.

Define an element of type "OFFSET" (=I4) in the X, Y, and Z direction. Corresponds to
$TC_CARR18 - $TC_CARR20.

If required, definition of a rotary axis offset for axes v1 and v2. The offset is entered in the
system variable $NK_A_OFF, which is assigned to the "AXIS_ROT"-type chain element.
Corresponds to $TC_CARR24 – TC_CARR25.

At least one rotary axis must be defined.

Note
Sign for rotary axis offset

A positive value for the rotary axis offset for the rotary axes in $TC_CARR24 or $TC_CARR25
is entered in the kinematic chain as a negative value.

Selecting the tool carrier:
The tool carrier is selected with the NC program command in the part program:

TCARR = <name>

Note
Starting point of the kinematic chain

If a starting point for the kinematic chain of the tool carrier (workpiece or tool) has not been
defined via TC_CARR_KIN_PART_START or TC_CARR_KIN_TOOL_START, the ROOT
element (world coordinate system) is automatically defined as the starting point of the chains.

$TC_CARR_KIN_CNTRL
$TC_CARR_KIN_CNTRL specifies whether the geometry data of a tool carrier are read from
kinematic chain elements or from conventional tool carrier data ($TC_CARRxx). The system
variable is bit-coded.

Syntax Description
$TC_CARR_KIN_CNTRL
[n]

Controls transfer of the geometry data of a machine model defined with kinematic chains to
parameterize a tool carrier. If Bit0 = 1, the data from $TC_CARRxx are ignored but data are taken
from the kinematic chains. It may furthermore be set how the kinematic chain is closed.
Data type: INT

n Index of the tool carrier; the maximum number of tool carriers can be defined in machine data
MM_NUM_TOOL_CARRIER.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1549

Syntax Description
Bit0=1 The tool carrier is parameterized from the kinematic chain elements. The following data of the

tool carrier, including the fine offset, are replaced with geometry data from the kinematic chain
elements:
Conventional tool carrier Kinematic chain
$TC_CARR1 – TC_CARR3 (offset vector l1) X, Y, and Z component of the offset vector I1
$TC_CARR4 – TC_CARR6 (offset vector l2) X, Y, and Z component of the offset vector I2
$TC_CARR7 – TC_CARR9 (rotary axis direc‐
tion v1)

X, Y, and Z component of the rotary axis v1

$TC_CARR10 – TC_CARR12 (rotary axis di‐
rection v2)

X, Y, and Z component of the rotary axis v2

$TC_CARR15 – TC_CARR17 (offset vector l3); X, Y, and Z component of the offset vector I3
$TC_CARR18 – TC_CARR20 (offset vector l4) X, Y, and Z component of the offset vector I4
$TC_CARR24 – TC_CARR25 (rotary axis off‐
sets)

Bit0=0 The tool carrier parameters are assigned with the data from $TC_CARRxx.
Bit1=1 The content of offset vector I1 is changed in such a way that the end point of the tool chain

coincides with the zero point of the world coordinate system (chain is closed).
Bit2=1 The content of offset vector I4 is changed in such a way that the end point of the workpiece chain

coincides with the zero point of the world coordinate system (chain is closed).

$TC_CARR_KIN_TOOL_START and $TC_CARR_KIN_PART_START
System variables $TC_CARR_KIN_TOOL_START and $TC_CARR_KIN_PART_START
define the starting points of the kinematic chains that are used to parameterize the tool or
workpiece part of a tool carrier. If the system variables are empty, the starting point of each
kinematic chain is the root element of the kinematic description.

The option of parameterizing only part of the kinematic chain that does not start with the root
element makes particular sense and indeed is necessary if the tool carrier is to be deployed
in its original function as a "tool extension" and not for the static modeling of the complete
transformation kinematics of a machine tool.

Syntax Description
$TC_CARR_KIN_TOOL_START[n]
= <name>
$TC_CARR_KIN_PART_START[n]
= <name>

Defines the name of the starting elements of the tool or workpiece chain.
Data type: STRING

n Index of the tool carrier; the maximum number of tool carriers can be defined in ma‐
chine data MM_NUM_TOOL_CARRIER.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1550 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

$TC_CARR_KIN_TOOL_END and $TC_CARR_KIN_PART_END
System variables $TC_CARR_KIN_TOOL_END and $TC_CARR_KIN_PART_END define the
end points of the kinematic chains that are used to parameterize the tool or workpiece part of
a tool carrier. At least one of these two names must be not equal to the null string.

Syntax Description
$TC_CARR_KIN_TOOL_END[n] =
<name>
$TC_CARR_KIN_PART_END[n] =
<name>

Defines the name of the end elements of the tool or workpiece chain.
Data type: STRING

n Index of the tool carrier; the maximum number of tool carriers can be defined in ma‐
chine data MM_NUM_TOOL_CARRIER.

Supplementary conditions and notes
● If the system data of the tool carrier (TC_CARRxx) are replaced with data from kinematic

chain elements, the content of system variable $TC_CARRxx is not changed.

● Tool carriers and transformations that were defined with kinematic chains can be active at
the same time. It does not matter how the tool carrier is paramerized (directly from the
system data TC_CARR… or from kinematic chains).

● It must be possible to map the kinematic chains that will be used to parameterize a tool
carrier onto a tool carrier configuration. If this condition is not met, alarm 14149 is triggered.

Measuring tool carriers from kinematic chains.
When measuring the kinematics of a tool carrier and the subsequent offset, the effective offset
vectors have to be modified. Because such an offset vector can in principle be formed from
any number of partial vectors of the kinematic chain supplying the parameter settings, the
chain element to be corrected is not automatically identifiable.

Syntax Description
$TC_CARR_CORR_ELEM[n, m] = <string> Name of the next element in the kinematic chain from which the tool carrier

data are to be read. The element is used as the correction element for the
offset vector with index m.
Data type: STRING

n Index of the tool carrier; the maximum number of tool carriers can be defined
in machine data MM_NUM_TOOL_CARRIER.

m Index of the correction vector (value range 0...3)

These chain elements can be uniquely identified with system variable
$TC_CARR_CORR_ELEM[m, n]. where m is the index of the tool carrier data set and n is the
index of the correction vector (n = 0...3]).

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1551

Read out length and direction of the vectors of TCARR.
The currently active offset vectors, rotary axis vectors, and rotary axis offsets can be read out
via system variables $PC_TCARR_OFFSET, $PC_TCARR_AX_VECT, and
$PC_TCARR_AX_OFFSET. For more detailed information about offset vectors, see General
information (Page 1532).

Syntax Description
$PC_TCARR_OFFSET[m,n] = <value> Current value of the n-th vector component of offset Im of an active tool

carrier. Maximum 4 offset vectors (l1 to l4) are defined for an active tool
carrier. Vector components can be read out with this system variable.
Data type: DOUBLE

m Offset vector[m] (where m = 1...4) of the active tool carrier.
n Vector component n (where 0 ≤ n ≤ 2) of the vector that was selected with

field index m.

Syntax Description
$PC_TCARR_AX_VECT[m,n] = <value> Current value of the n-th vector component of rotary axis vm of an active

tool carrier. A maximum of 2 rotary axes (v1 to v2) are defined for an active
tool carrier. Vector components can be read out with this system variable.
Data type: DOUBLE

m Rotary axis direction v1, v2, where m = 1...2 of the active tool carrier.
n Vector component n (where 0 ≤ n ≤ 3) of the vector that was selected with

m.

Syntax Description
$PC_TCARR_AX_OFFSET[m] = <value> Current value of the rotational offset of rotary axes 1 and 2. Maximum 2

rotary axes are defined for an active tool carrier. The positions of the rotary
axes in their initial state can be read out with this system variable.
Data type: DOUBLE

m Rotary offset where m = 1...2 of the active tool carrier.

Tool carrier with more than two rotary axes
For tool carriers that are defined with more than two rotary axes, the third axis is ignored. It
describes a constant angle (knee) between the two rotary axes. Axis v2 in the example is not
taken into account. Instead, offset I2 is formed.

The relevant rotary axes are defined with the system variable
$TC_CARR_KIN_ROTAX_NAME in the sequence in which they occur in the chain. Up to two
rotary axes may be defined.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1552 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-47 Tool carriers with orientation capability with 3 rotary axes.

The rotary axes are not orientation axes, as used for the 5-axis-transformation.

Defining rotation axes (more than two rotary axes)
If a tool carrier comprises more than two rotation axes, this is defined via the relevant axes
using the system variable $TC_CARR_KIN_ROTAX_NAME. The name of the chain element
is entered in the system variable in this regard. The maximum two rotary axes are defined in
the sequence in which they are defined in the kinematic chain. The entries must begin with
the index "0".

Syntax Description
$TC_CARR_KIN_ROTAX_NAME[n,
m] = <String>

Name of the element in the kinematic chain which is to be
defined as the rotary axis.
Data type: STRING

n Index of the tool carrier; the maximum number of tool carriers
can be defined in machine data MM_NUM_TOOL_CARRIER.

m Index of rotary axes (value range 0...1)

Example
You will find a part program for a tool carrier via a kinematic chain under: Example: Tool carrier
with orientation capability via kinematic chain (Page 1571).

19.7.4 Inclined surface machining with 3 + 2 axes

Description of function
Inclined machining with 3 + 2 axes describes an extension of the concept of toolholders with
orientation capability and applies this concept to machines with a rotary table, on which the
orientation of tool and table can be changed simultaneously.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1553

The "Inclined machining with 3 + 2 axes" function is used to machine surfaces with any rotation
with reference to the main planes X/Y (G17), Z/X (G18) and Y/Z (G19).

It is possible to produce any orientation of the tool relative to the workpiece by rotating either
the tool, the workpiece or both the tool and the workpiece.

The software automatically calculates the necessary compensating movements resulting from
the tool lengths, lever arms and the angle of the rotary axis. It is always assumed that the
required orientation is set first and not modified during a machining process such as pocket
milling on an inclined plane.

Furthermore, the following 3 functions are described, which are required for oblique machining:

● Position programming in the direction of the tool orientation independent of an active frame

● Definition of a frame rotation by specifying the solid angle

● Definition of the component of rotation in tool direction in the programmed frame while
maintaining the remaining frame components

Demarcation to 5-axis transformation
If the required functionality specifies that the TCP (Tool Center Point) does not vary in the
event of reorientation with reference to the workpiece, even during interpolation, the 5axis
software is required.

For more explanations on 5-axis transformations, see:

References:
Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

Specification of the toolholder with orientation capability
The toolholder with orientation capability is represented by a general 5axis kinematic sequence
described by a data block in the tool compensation memory with a total of 33 REAL values.
For toolholders that have two rotary axes for setting the orientation (e.g. a millhead), 31 of
these values are constant.

In the current SW version, a data block in the tool compensation memory is described with a
total of 47 REAL values. For toolholders that have two rotary axes for setting the orientation,
45 of these values are constant.

The remaining two values are variable and are used to specify the orientation. The constant
values describe offsets and directions and setting options for the rotary axes; the variable
values describe the angles of the rotary axes.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1554 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.7.5 Machine with rotary work table

System variables
To date, the angles stored in $TC_CARR13 and $TC_CARR14 were used for the calculation
of the active tool length with TCOABS. This still applies if $TC_CARR21 and $TC_CARR22 do
not refer to rotary axes. If $TC_CARR21 or $TC_CARR22 contains a reference to a rotary axis
in the channel, the axis position of the relevant axis at the start of the current block is used as
the angle, rather than the entry in $TC_CARR13 or $TC_CARR14.

A mixed operating mode is permissible, i.e. the angles can be determined from the entry in
the system variables $TC_CARR13 or $TC_CARR14 for one axis, and from the position of a
channel axis for the other.

This makes it possible for machines, on which the axes used to set the toolholder with
orientation capability are known within the NC, to access their position directly, whereas it was
previously necessary, for example, to read system variable $AA_IM[axis] and write the result
of the read operation to $TC_CARR13/14. In particular, this removes the implicit preprocessing
stop when reading the axis positions.

MD20180
The rotary axis position is used with its programmed or calculated value, when the machine
data:

MD20180 $MC_TOCARR_ROT_ANGLE_INCR[i] = 0 (rotary axis increment of the tool carrier
that can be oriented)

If the machine data is not zero however, the position used is the nearest grid point obtained
for a suitable integer value n from the equation:

φ = $MC_TOCARR_ROT_ANGLE_OFFSET[i] + n * $MC_TOCARR_ROT_ANGLE_INCR[i]

This functionality is required if the rotary axes need to be indexed and cannot, therefore,
assume freely-defined positions (e.g. with Hirth tooth systems). System variable $P_TCANG[i]
delivers the approximated valued and system variable $P_TCDIFF[i] the difference between
the exact and the approximated value.

Frame orientation TCOFR
With TCOFR (determination of the angle from the orientation defined by an active frame), the
increments are scaled after determination of the angle from the active frame rotation. If the
requested orientation is not possible due to the machine kinematic, the machining is aborted
with an alarm. This also applies if the target orientation is very close to an achievable
orientation. In particular the alarm in such situations cannot be prevented through the angle
approximation.

TCARR frame offset
A frame offset as a result of a toolholder change becomes effective immediately on selection
of TCARR=.... A change in the tool length, on the other hand, only becomes effective
immediately if a tool is active.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1555

TCOFR/TCOABS frame rotation
A frame rotation does not take place on activation and a rotation which is already active is not
changed. As in case T (only the tool can be rotated), the position of the rotary axes used for
the calculation is dependent on the G command TCOFR/TCOABS and determined from the
rotation component of an active frame or from the entries $TC_CARRn.

Activation of a frame changes the position in the workpiece coordinate system accordingly,
without compensating motion by the machine itself. The ratios are shown in the figure below:

Figure 19-48 Zero offset on activation of a rotary table with TCARR

Example
On the machine in the figure, the rotary axis of the table is pointing in the positive Y direction.
The table is rotated by +45 degrees. PAROT defines a frame, which similarly describes a
rotation of 45 degrees about the Y axis. The coordinate system is not rotated relative to the
actual environment (marked in the figure with "Position of the coordinate system after TCARR"),
but is rotated by -45 degrees relative to the defined coordinate system (position after PAROT).
If this coordinate system is defined with ROT Y-45, for example, and if the toolholder is then
selected with active TCOFR, an angle of +45 degrees will be determined for the rotary axis of
the toolholder.

Rotary table
With rotary tables (kinematic types P and M), activation with TCARR similarly does not lead to
an immediate rotation of the coordinate system (see figure), i.e. even though the zero point of
the coordinate system is offset relative to the machine, while remaining fixed relative to the
zero point of the workpiece, the orientation remains unchanged in space.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1556 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Activation of kinematic types P and M
With kinematics of type P and M the selection of a toolholder activates an additive frame (table
offset of the toolholder with orientation capability), which takes into account the zero point
offset as a result of the rotation of the table.

The zero offset can be written to a dedicated system frame $P_PARTFR. For this, the bit 2
must be set in the machine data:

MD28082 $MC_MM_SYSTEM_FRAME_MASK (system frames (SRAM))

The basic frame identified by following machine data is then no longer required for the zero
offset:

MD20184 $MC_TOCARR_BASE_FRAME_NUMBER (number of the basic frames for taking
the table offset)

Activation of kinematic type M
With kinematics of type M (tool and table are each rotary around one axis), the activation of a
toolholder with TCARR simultaneously produces a corresponding change in the effective tool
length (if a tool is active) and the work offset.

Rotations
Depending on the machining task, it is necessary to take into account not only a work offset
(whether as frame or as tool length) when using a rotary toolholder or table, but also a rotation.
However, the activation of an orientable toolholder never leads directly to a rotation of the
coordinate system.

TOROT
If only the tool can be rotated, a frame whose Z axis points in the direction of the tool can be
defined with TOFRAME or TOROT.

PAROT
If the coordinate system needs to be fixed relative to the workpiece, i.e. not only offset relative
to the original position but also rotated according to the rotation of the table, then PAROT can
be used to activate such a rotation in a similar manner to the situation with a rotary tool.

With PAROT, the translations, scalings and mirrorings in the active frame are retained, but the
rotation component is rotated by the rotation component of a toolholder with orientation
capability corresponding to the table.

PAROT and TOROT take into account the overall change in orientation in cases where the table
or the tool are oriented with two rotary axes. With mixed kinematics, only the corresponding
component caused by a rotary axis is considered. It is thus possible, for example, when using
TOROT, to rotate a workpiece such that an oblique plane lies parallel to the XY plane fixed in
space, whereby rotation of the tool must be taken into account in machining where any holes
to be drilled, for example, are not perpendicular to this plane.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1557

Language command PAROT is not rejected if no orientable toolholder is active. This causes
no changes in the programmed frame.

Note

For further information about the TCARR and TOROT as well as PAROT functions with regard
to channel-specific system frames, see Section "K2: Axis Types, Coordinate Systems,
Frames (Page 705)".

19.7.6 Procedure when using toolholders with orientation capability

Creating a tool carrier

Setting the number of available tool carrier data sets
The number of available tool carrier data sets in the control system is defined with machine
data:

MD18088 $MN_MM_NUM_TOOL_CARRIER (maximum number of definable tool carriers)

The number must be set according to the following rule:

MD18088 $MN_NUM_TOOL_CARRIER =
 <highest number of tool carriers required in one channel> *
 <number of parameterized channels>

The number of tool carriers parameterized in the machine data is then distributed equally
across the parameterized channels and TO units.

<available number of tool carriers per channel or TO unit> =
 MD18088 $MN_NUM_TOOL_CARRIER /
 <number of parameterized channels>

Note

For further explanations on definition and assignment of a TO unit to a channel with machine
data MD28085 by machine data $MC_MM_LINK_TOA_UNIT, see:

References:
Function Manual, Extended Functions; Memory Configurations (S7)

Zero setting of tool carrier data:
You can use the command $TC_CARR1[0] = 0 to zero all values of all data sets.

Individual tool carrier data sets can be deleted selectively with the NC command DELTC or the
PI service _N_DELTCAR.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1558 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Accessing the data of a tool carrier:
● Part program

– Write: $TC_CARR<n>[<m>] = <value>
Value <value> is written to parameter <n> of tool carrier <m> .

– Read: <value> = $TC_CARR<n>[<m>]
Parameter <n> of tool carrier <m> is read. If the referenced tool carrier is not defined,
an alarm is displayed.

● OPI interface
The parameters of a tool carrier with orientation capability can be read and written with the
system variables $P_TCANG[<n>].

Data backup
The system variables specified above are saved as part of the general NC data backup.

Selecting the tool carrier
A tool carrier with number <m> is selected with the TCARR = <m> NC program command
(TCARRTool Carrier).

TCARR = 0 deselects an active tool carrier.

New tool or new tool carrier

When a new tool is activated, it is always treated as if it was mounted on the active tool carrier.

A new tool carrier is activated immediately when it is programmed. It is not necessary to change
tools or reprogram the active tool. The tool carrier (number) and tool (number) are independent
and can be used in any combination.

Tool carrier from G command of group 42
Absolute tool orientation TCOABS (Tool Carrier Orientation ABSolute):

Tool orientation is determined explicitly if the corresponding values are entered in system
variable $TC_CARR13 or $TC_CARR14 and G command TCOABS is activated in G group 42.

Frame tool orientation TCOFR (Tool Carrier Orientation FRame):

Tool orientation can also be determined automatically from the current orientation of an active
frame when selecting a tool, if one of the following G commands is active in G group 42 when
the tool carrier is selected:

● TCOFR or TCOFRZ
The tool carrier with orientation capability is set so that the tool points in the Z direction.

● TCOFRX
The tool carrier with orientation capability is set so that the tool points in the X direction.

● TCOFRY
The tool carrier with orientation capability is set so that the tool points in the Y direction.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1559

The effect of TCOFR is such that, when machining on an inclined surface, tool compensations
are considered implicitly as if the tool were standing vertically on the surface.

Note

The tool orientation is not bound strictly to the frame orientation. When a frame is active and
G command TCOABS is active, you can select a tool, whereby the orientation of the tool is
independent of the orientation of the active frame.

Following tool selection, you can change the frame, which does not affect the components of
tool length compensation. It is then no longer certain that the tool is positioned perpendicular
to the machining plane. You should therefore first check that the intended tool orientation is
maintained on an inclined surface.

When TCOFR, etc., is active, the tool orientation used in the tool length calculation is always
determined from the active frame each time the tool carrier is changed.

Tool carrier from G command of group 53
The G commands of group 53 (TOFRAME, TOROT, etc.) can be used to define a frame such
that an axis direction (Z, Y or X) in this frame is equal to the current tool orientation.

The G command of group 6 (G17 - G19), which is active at the time TOFRAME is called,
determines the tool orientation.

If no tool carrier is active, or if a tool carrier is active but does not cause the tool orientation to
change, the Z direction in the new frame is:

● The same as the old Z direction with G17.

● The same as the old Y direction with G18.

● The same as the old X direction with G19.

These directions are modified accordingly for rotating tool carriers. The same applies to the
new X and Y directions.

Instead of TOFRAME or TOROT, one of the G commands TOFRAMEX, TOFRAMEY, TOROTX, or
TOROTY can be used. The meanings of the axes are interchanged accordingly.

Group change
Changing the G command from group 42 (TCOABS, TCOFR, etc.) causes recalculation of the
tool length components.

The (programmed) angles of rotation stored in the tool carrier data is not affected, with the
result that the angles originally stored in the tool carrier data is reactivated on a change from
TCOFR to TCOABS.

Read rotary angle (α1 or α2):

The angles currently used to calculate the orientation can be read via system variable
$P_TCANG[n] where n = 1 or n = 2.

If two permissible solutions (i.e. a second valid pair of angles) are available for a particular
orientation, the values can be accessed with $P_TCANG[3] or $P_TCANG[4]. The number of
valid solutions 0 to 2 can be read with $P_TCSOL.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1560 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Tool radius compensation with CUT2D or CUT3DFS:

The current tool orientation is included in the tool radius compensation if either CUT2D or
CUT3DFS is active in G group 22 (tool compensation type).

For nonrotating tool carriers, the behavior depends solely on the active plane of the G
command of group 6 (G17 - G19) and is, therefore, identical to the previous behavior.

All other tool compensation types:

The behavior for all other tool compensation types is unchanged.

For CUT2DF and CUT3DFF in particular, the compensation plane used for TRC is determined
from the active frame, independent of the current tool orientation. Allowance is made for the
active plane (G17 - G19) and the behavior is, therefore, the same as before.

The two remaining G commands of group 22, CUT3DC and CUT3DF, are not affected by the
tool carrier functionality because the tool orientation information in these cases is made
available by the active kinematic transformation.

Two rotary axes
Two general solutions exist for two rotary axes. The control itself chooses these two solution
pairs such that the orientation angles resulting from the frame are as close as possible to the
specified angles.

The two following options are available for specifying the angles:

1. If $TC_CARR21 or $TC_CARR22 contains a reference to a rotary axis, the position of this
axis at the start of the block in which the tool carrier is activated is used to specify the angle.

2. If $TC_CARR21 or $TC_CARR22 does not contain a reference to a rotary axis, the values
contained in $TC_CARR13 or $TC_CARR14 are used.

Example
The control first calculates an angle of 10 degrees for one axis. The specified angle is 750
degrees. 720 degrees (= 2 * 360 degrees) are then added to the initial angle, resulting in a
final angle of 730 degrees.

Rotary axis offset
Rotary axis offsets can be specified with system variables $TC_CARR24 and $TC_CARR25.
A value not equal to zero in one of these parameters means that the initial state of the
associated rotary axis is the position specified by the parameter (and not position zero). All
angle specifications then refer to the coordinate system displaced by this value.

When the machining plane is changed (G17 - G19), only the tool length components of the
active tool are interchanged. The components of the tool carrier are not interchanged. The
resulting tool length vector is then rotated in accordance with the current tool carrier and, if
necessary, modified by the offsets belonging to the tool carrier.

The two tool carrier angles α1 and α2 are determined using a frame, independent of the active
plane currently selected (G17 - G19).

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1561

Limit values
Limit angles (software limits) can be specified for each rotary axis in the system variable set
($TC_CARR30 to $TC_CARR33) used to describe the tool carrier with orientation capability.
These limits are not evaluated if both the minimum and maximum value is zero.

If at least one of the two limits is not equal to zero, the system checks whether the previously
calculated solution is within the permissible limits. If this is not the case, an initial attempt is
made to reach a valid setting by adding or subtracting multiples of 360 degrees to or from the
invalid axis position. If this is impossible and two different solutions exist, the first solution is
discarded and the second solution is used. The second solution is treated the same as the
first with reference to the axis limits.

If the first solution is discarded and the second used instead, the contents of $P_TCANG[1/2]
and $P_TCANG[3/4] are swapped, hence the solution actually used is also stored in
$P_TCANG[1/2] in this case.

The axis limits are monitored even if the axis angle is specified instead of being calculated.
This is the case if TCOABS is active when a tool carrier with orientation capability is activated.

19.7.7 Programming

Selecting the toolholder
A toolholder is selected with the number m of the toolholder with:

TCARR = m

Access to toolholder data blocks
The following access is possible from the part program:

The current value of the parameter n for the tool holder m is written with the new "value" with::

$TC_CARRn[m] = value
The parameters of a tool holder m can, as far as the toolholder data set is already defined,
read with:

value = $TC_CARRn[m] (Value must be a REAL variable)

The toolholder data set number must lie in the range, which is defined by the machine data:

MD18088 $MN_MM_NUM_TOOL_CARRIER (Total number of toolholder data sets that can
be defined)

This number of toolholder data sets, divided by the number of active channels, can be defined
for a channel.

Exception:

If settings, which deviate from the standard, are selected via the machine data:

MD28085 $MC_MM_LINK_TOA_UNIT (Assignment of TO unit to a channel).

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1562 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Canceling all toolholder data blocks
All values of all toolholder data sets can be deleted from within the part program using one
command.

$TC_CARR1[0] = 0

Values not set by the user are preset to 0.

Activation
A toolholder becomes active when both a toolholder and a tool have been activated. The
selection of the toolholder alone has no effect. The effect of selecting a toolholder depends on
the G command TCOABS / TCOFR (modal G group for toolholders).

Changing the G command in the TCOABS / TCOFR group causes recalculation of the tool length
components when the toolholder is active. With TCOABS, the values stored in the toolholder
data for both angles of rotation α1 and α2 are used to determine the tool orientation.

With TCOFR, the two angles are determined from the current frame. The values stored in the
toolholder data are not changed, however. These are also used to resolve the ambiguity that
can result when the angle of rotation is calculated from one frame. Here, the angle that deviates
least from the programmed angle is selected from the various possible angles.

Note

For more explanations on the programming of tool compensations with toolholder kinematic
and for the system variables see:

References:
Programming Manual, Job Planning

19.7.8 Supplementary conditions and control system response for orientation

Full orientation
For a given data set that describes a certain kinematic, all the conceivable special orientations
can only be displayed when the following conditions are satisfied:

● The two vectors v1 and v2 that describe the rotary axes must also be defined (i.e. both
vectors must not be equal to zero).

● The two vectors v1 and v2 must be perpendicular to each other.

● The tool orientation must be perpendicular to the second rotary axis.

Non-defined orientation
If these conditions are not satisfied and an orientation that cannot be achieved by an active
frame is requested with TCOFR, an alarm is output.

Vector/angle of rotation dependencies

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1563

If vector v1 or v2, which describes the direction of a rotary axis, is set to zero, the associated
angle of rotation α1 or α2 must also be set to zero. Otherwise, an alarm is produced. The alarm
is not output until the toolholder is activated, i.e. when the toolholder is changed.

Tool fine compensation combined with orientation

Tool fine compensations and toolholders cannot be combined. The activation of tool fine
compensation when a toolholder is active, and vice versa the activation of the toolholder when
tool fine compensation is active, produces an alarm.

Automatic toolholder selection, RESET
For RESET or at program start, a toolholder can be selected automatically via the machine
data:

MD20126 $MC_TOOL_CARRIER_RESET_VALUE (Active toolholder at RESET)

It is handled similar to the controlled selection of a tool via the machine data:

MD20120 $MC_TOOL_RESET_VALUE (Tool length compensation Power up (RESET/TP-
End))

The behavior at RESET or at program start is controlled as in the case of tool selection via the
same bit 6 in the machine data:

MD20110 $MC_RESET_MODE_MASK (definition of initial control settings after RESET/TP-
End)

Or:

MD20112 $MC_START_MODE_MASK (definition of initial control system settings at NC-
START)

For further information, see Section "K1: Mode group, channel, program operation, reset
response (Page 479)".

SW 6.3 and higher

If TCOABS was active for the last selection before reset, the behavior is unchanged compared
to previous versions. A different active G code causes the toolholder with orientation capability
to be activated with the frame that was active before the last reset. Modified toolholder data
($TC_CARR...) are also considered. If these data are unchanged, the toolholder is activated
in exactly the same state as before reset. If the toolholder data were changed after the
toolholder selection before reset, selection corresponding to the last frame is not always
possible. In this case, the toolholder with orientation capability is selected according to the G-
Code (group 42) values valid at this time and the active frame.

MD22530 output of auxiliary functions to PLC
That, optionally, a constant or an M code is output when the toolholder is selected, whose
number of the code is derived from the toolholder number. Can be set with the machine data:

MD22530 $MC_TOCARR_CHANGE_M_CODE (M code at toolholder change)

For further information, see Section "K1: Mode group, channel, program operation, reset
response (Page 479)".

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1564 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Toolholder kinematics
The following supplementary conditions must be met for toolholder kinematics:

● Tool orientation in initial state, both angles α1 and α2 zero, as per default setting, even if:

– G17 parallel to Z

– G18 Parallel to Y

– G19 parallel to Z

● A permissible position in terms of the axis limits must be achievable.

● For any possible orientation to be set, the two rotary axes must be perpendicular to each
other.
For machines, on which the table is rotated by both axes, the tool orientation must also be
perpendicular to the first rotary axis.
For machines with mixed kinematics, the tool orientation must be perpendicular to the axis
which rotates the tool, i.e. also the first rotary axis.

The following applies to orientations specified in a frame:

● The orientation specified in a frame must be achievable with the defined toolholder
kinematics, otherwise an alarm is output.
This situation can occur if the two rotary axes required to define the kinematics are not
perpendicular to each other.
This applies if fewer than two rotary axes are defined and is the case:

– With kinematic type T with rotary tool, if the tool axis, which defines the tool direction,
is not perpendicular to the second axis.

– With kinematic types M and P with rotary workpiece, if the tool axis, which defines the
tool direction, is not perpendicular to the first axis.

● Rotary axes, which require a frame with a defined tool orientation in order to reach a specific
position, are only determined unambiguously in the case of one rotary axis. Two general
solutions exist for two rotary axes.

● In all cases where ambiguities may arise, it is particularly important that the approximate
angles expected from the frame are stored in the tool data, and that the rotary axes are in
the vicinity of the expected positions.

Response with ASUP, REPOS
The toolholder can be changed in an asynchronous subprogram (ASUB). When the interrupted
program is resumed with REPOS, the approach motion of the new toolholder is taken into
account and the program continues with this motion. The treatment here is analogous to tool
change in an ASUB.

For further information, see Section "K1: Mode group, channel, program operation, reset
response (Page 479)".

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1565

19.7.9 Examples

19.7.9.1 Example: Toolholder with orientation capability

Requirement
The following example uses a toolholder, which is described fully by a rotation about the Y
axis. It is therefore sufficient to enter only one value to define the rotary axis (block N20).

Blocks N50 to N70 describe an end mill with radius 5 mm and length 20 mm.

Block N90 defines a rotation of 37 degrees about the Y axis.

Block N120 activates the tool radius compensation and all settings are made to describe the
compensation in the following blocks with a rotation of 37 degrees about the Y axis.

N10 ; Definition of toolholder 1
N20 $TC_CARR8[1] = 1 ; Component of first rotary axis in Y di-

rection
N30
N40 ; Definition of tool offset memory T1/D1
N50 $TC_DP1[1,1] = 120 ; End mill
N60 $TC_DP3[1,1] = 20 ; Length 1
N70 $TC_DP6[1,1] = 5 ; Radius
N80
N90 ROT Y37 ; 37-degree rotation about y axis
N100
N110 X0 Y0 Z0 F10000
N120 G42 CUT2DF TCOFR TCARR = 1 T1 D1 X10
N130 X40
N140 Y40
N150 X0
N160 Y0
N170 M30

19.7.9.2 Example of toolholder with orientation capability with rotary table

Use of the MOVT command
For use of the MOVT command it is assumed that the program is running on a 5axis machine,
on which the tool rotates about the Y axis in case of a rotation of the B axis:

N10 TRAORI()
N20 X0 X0 Z0 B45 F2000 ; Setting the tool orientation
N30 MOVT=-10 ; Infeed movement 10 mm in tool direc-

tion
; (under 45 degrees in the Y-Z plane)

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1566 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

N40 MOVT=AC(20) ; Retraction in tool direction at dis-
tance of
; 20 mm from the zero point

Machine with rotary table
Complete definition for the use of a toolholder with orientation capability with rotary table:

N10 $TC_DP1[1,1]= 120
N20 $TC_DP3[1,1]= 13 ; Tool length 13 mm

; Definition of toolholder 1:

N30 $TC_CARR1[1] = 0 ; X component of 1st offset vector
N40 $TC_CARR2[1] = 0 ; Y component of 1st offset vector
N50 $TC_CARR3[1] = 0 ; Z component of 1st offset vector

N60 $TC_CARR4[1] = 0 ; X component of 2nd offset vector
N70 $TC_CARR5[1] = 0 ; Y component of 2nd offset vector
N80 $TC_CARR6[1] = -15 ; Z component of 2nd offset vector

N90 $TC_CARR7[1] = 1 ; X components of 1st axis
N100 $TC_CARR8[1] = 0 ; Y components of 1st axis
N110 $TC_CARR9[1] = 0 ; Z components of 1st axis

N120 $TC_CARR10[1] = 0 ; X components of 2nd axis
N130 $TC_CARR11[1] = 1 ; Y components of 2nd axis
N140 $TC_CARR12[1] = 0 ; Z components of 2nd axis

N150 $TC_CARR13[1] = 30 ; Angle of rotation of 1st axis
N160 $TC_CARR14[1] =-30 ; Angle of rotation of 2nd axis

N170 $TC_CARR15[1] = 0 ; X components of 3rd offset vector
N180 $TC_CARR16[1] = 0 ; Y component of 3rd offset vector
N190 $TC_CARR17[1] = 0 ; Z component of 3rd offset vector

N200 $TC_CARR18[1] = 0 ; X component of 4th offset vector
N210 $TC_CARR19[1] = 0 ; Y component of 4th offset vector
N220 $TC_CARR20[1] = 15 ; Z component of 4th offset vector

N230 $TC_CARR21[1] = A ; Reference for 1st axis
N240 $TC_CARR22[1] = B ; Reference for 2nd axis
N250 $TC_CARR23[1] = "P" ; Toolholder type

N260 X0 Y0 Z0 A0 B45 F2000
N270 TCARR=1 X0 Y10 Z0 T1 TCOABS

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1567

N280 PAROT
N290 X0 Y0 Z0
N300 G18 MOVT=AC(20)
N310 G17 X10 Y0 Z0
N320 MOVT=-10
N330 PAROTOF
N340 TCOFR
N350 X10 Y10 Z-13 A0 B0
N360 ROTS X-45 Y45
N370 X20 Y0 Z0 D0
N380 Y20
N390 X0 Y0 Z20
N400 M30

The definition of the toolholder with orientation capability is given in full. The components which
contain the value 0 need not actually be given, as they are preset to zero in any case.

The toolholder is activated in N270.

As $TC_CARR21 and $TC_CARR22 refer to the machine axes A and B and TCOABS is active,
the values in $TC_CARR13 and $TC_CARR14 are ignored, i.e. the axis position A0 B45 is
used for the rotation.

The rotation of the 4th offset vector (length 15 mm in Z direction) around the B axis causes an
offsetting of the zero point by X10.607 [= 15 * sin(45)] and Z-4.393 [= -15 * (1. - cos(45))]. This
zero offset is taken into account by an automatically written basic or system frame so that the
position X10.607 Y10.000 Z8.607 is approached. In the Z direction the tool selection leads to
an additional offset of 13 mm; the Y component is not affected by the table rotation.

N280 defines a rotation in accordance with the rotation of the table of the toolholder with
orientation capability. The new X direction thus points in the direction of the bisecting line in
the 4th quadrant, the new Z axis in the direction of the bisecting line in the 1st quadrant.

The zero point is approached in N290, i.e. the machine position X10.607 Y0 Z-4.393, since
the position of the zero point is not changed by the rotation.

N300 traverses in Y to the position Y33.000, since G18 is active and the Y component is not
affected by the active frame. The X and Z positions remain unchanged.

The position X17.678 Y0 Z1.536 is approached in N310.

N320 changes only the Z position to the value -8.464 as a result of the MOVT command. As
only the table can be rotated, the tool orientation remains unchanged parallel to the machine
Z direction, even if the Z direction of the active frame is rotated by 45 degrees.

N330 deletes the basic or system frame; thus the frame definition from N280 is undone.

In N340, TCOFR specifies that the toolholder with orientation capability is to be aligned
according to the active frame. Since a rotation is no longer active in N330 due to the
PAROTOF command, the default setting is applied. The frame offset becomes 0.

N350 thus approaches the position X10 X10 Z0 (= Z-13 + tool length). Notice: Through the
simultaneous programming of both rotary axes A and B the actual position of the toolholder
with orientation capability is made to match that used in N340. The position approached by
the three linear axes is dependent on this position, however.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1568 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

In N360, solid angles are used to define a plane whose intersecting lines in the XZ and in the
YZ plane each form an angle of +45 degrees or -45 degrees with the X or Y axis. The plane
defined in such a way therefore has the following position: The surface normal points towards
the solid diagonals.

N370 traverses to the position X20 Y0 Z0 in the new coordinate system. Since the tool is
deselected with D0 at the same time, there is no longer an additional offset in Z. Since the new
X axis lies in the old X-Z plane, this block reaches the machine position X14.142 Y0 Z-14.142.

N380 only traverses on the Y axis in the rotated coordinate system. This leads to a motion of
all three machine axes. The machine position is X5.977 Y16.330 Z-22.307.

N390 approaches a point on the new Z axis. Relative to the machine axes this is thus on the
solid diagonal. All three axes thus reach the position 11.547.

19.7.9.3 Calculation of compensation values on a location-specific and workpiece-specific basis

Tool with adapter
A tool with adapter and tool carrier with orientation capability is defined in the following program
example. To simplify the overview, only length L1 is different from zero for the additive and
insert offsets and for the adapter in case of the tool itself. The offset vectors of the tool carrier
with orientation capability are all zero.

Program code Comment
N10 $TC_TP2[1]="MillingTool" ; Name of identifier
N20 $TC_TP7[1]=9 ; Location type
N30 $TC_TP8[1]=2 ; Status: Enabled and not

blocked

; D corr. D=1

N40 $TC_DP1[1,1]=120 ; Tool type - milling
N50 $TC_DP3[1,1]= ; Length offset vector
N60 $TC_DP12[1,1]= ; Wear
N70 $TC_SCP13[1,1]=0.1 ; Sum offset DL=1
N80 $TC_ECP13[1,1]=0.01 ; Insert offset DL=1
N90 $TC_ADPTT[1]=5 ; Adapter transformation
N100 $TC_ADPT1[1]=0.001 ; Adapter dimension

; Magazine data
N110 $TC_MAP1[1]=3 ; Magazine type: Turret
N120 $TC_MAP2[1]="Turret" ; Name of a magazine
N130 $TC_MAP3[1]=17 ; Status of magazine
N140 $TC_MAP6[1]=1 ; Dimension - line
N150 $TC_MAP7[1]=2 ; Dimension - column -> 2

positions
N160 $TC_MPP1[1,1]=1 ; Location type

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1569

Program code Comment
N170 $TC_MPP2[1,1]=9 ; Location type
N180 $TC_MPP4[1,1]=2 ; Location status
N190 $TC_MPP7[1,1]=1 ; Bring adapter into position
N200 $TC_MPP6[1,1]=1 ; T number "MillingTool"
N210 $TC_MAP1[9999]= 7 ; Magazine type: Buffer
N220 $TC_MAP2[9999]="Buffer" ; Name of a magazine
N230 $TC_MAP3[9999]=17 ; Status of magazine
N240 $TC_MAP6[9999]=1 ; Dimension - line
N250 $TC_MAP7[9999]=1 ; Dimension - column -> 1

position
N260 $TC_MPP1[9999,1]=2 ; Location type
N270 $TC_MPP2[9999,1]=9 ; Location type
N280 $TC_MPP4[9999,1]=2 ; Location status
N290 $TC_MPP5[9999,1]=1 ; Spindle no. 1
N300 $TC_MDP2[1,1]=0 ; Distance from spindle to mag.

1

; Definition of tool carrier 1
N310 $TC_CARR10[1]=1 ; Component 2. Axis of rotation

in the X direction
N320 $TC_CARR14[1]=45 ; Angle of rotation of 2nd axis
N330 $TC_CARR23[1]="T" ; Tool mode
N340 Stopre
N350 $SC_WEAR_TRANSFORM='B101'
N360 T0 D0 DL=0
N370 ROT X30
N380 G90 G1 G17 F10000 X0 Y0 Z0
N390 T="MillingTool" X0 Y0 Z0 TOWSTD ; X 0.000 Y11.110 Z 0.001
N400 T="MillingTool" X0 Y0 Z0 TOWMCS ; X 0.000 Y10.100 Z 1.011
N410 T="MillingTool" X0 Y0 Z0 TOWWCS ; X 0.000 Y 9.595 Z 0.876
N420 TCARR=1 X0 Y0 Z0 ; X 0.000 Y 6.636 Z 8.017
N430 G18 X0 Y0 Z0 ; X10.100 Y-0.504 Z 0.876
N440 M30

Explanations regarding the example above
Starting at block N390, various methods are used to approach position X0 Y0 Z0. The
machine positions reached are specified in the blocks in comments. After the program a
description is given of how the positions were reached.

N390: The adapter transformation 5 (block N90) transforms length L1 into length L2. Only the
actual adapter dimension is not subject to this transformation. The Y value (L2 with G17) results
from the sum of the tool length (10), tool wear (1), sum offset (0.1), and insert offset (0.01).
The adapter dimension (0.001) is in Z (L1).

N400: In block N350, bits 0 and 2 are enabled in setting data:

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1570 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

SD42935 $SC_WEAR_TRANSFORM (transformations for tool components)

This means that the tool wear and the insert offset are not subject to the adapter transformation
because of TOWMCS in block N400. The sum of these two compensations is 1.01. The Z position
is, therefore, increased by this amount and the Y position is reduced by this amount compared
with block N390.

TOWWCS is active in N410. The sum of the tool wear and the insert offset is thus effective in
the active workpiece coordinate system. In block N370, a rotation through 30 degrees is
activated around the X axis. The original compensation value of 1.01 in the Z direction thus
yields a new Z component of 0.875 (= 1.01 * cos(30)) and a new Y component of -0.505 (=
1.01 * sin(30)). This yields the dimension specified in the program comment when added to
the sum of the tool length, sum offset and adapter dimension produced in block N390.

In addition, a tool carrier with orientation capability is activated in block N420. This executes
a rotation through 45 degrees about the X axis (see N310 - N330). Since all offset vectors of
the tool carrier are zero, there is no additional work offset. The tool carrier with orientation
capability acts on the sum of the tool length, sum offset and adapter dimension. The resulting
vector component is X0 Y7.141 Z7.142. To this, as in block N410, the sum of tool wear
and insert offset evaluated in WCS is added.

G18 is activated in N430. The components of the tool length sum, sum offset and adapter
dimension are interchanged accordingly. The tool carrier with orientation capability continues
to act on this new vector (rotation through 45 degrees about X axis). The resulting vector
component thereby is X10.100 Y0.0071 Z0.0071. The vector formed from tool wear and
insert offset (X0 Y-0.505 Z0.875) is not affected by the change of plane. The sum of the
two vectors yields the dimension specified in the comment in N430.

19.7.9.4 Example: Tool carrier with orientation capability via kinematic chain

Example of a tool carrier with mixed kinematics (rotatable tool and table)
The example shows a tool carrier that is defined via a kinematic chain. The chain is
automatically closed at the endpoints of the two separate chains (tool and table).

Program code Comment
 ; Definition tool carrier 1
N1070 _MIXED_1_S:
N1080 IF (DELOBJ("KIN_CHAIN_ELEM") <> 0)
N1080 IF (DELOBJ("KIN_CHAIN_ELEM") <> 0)
N1090 SETAL(62000)
N1100 ENDIF
N1110 _KIE_CNT = 0
N1120 _CARR_CNT = 1
N1130 TCARR=0 ; Deactivate current tool carrier.
N1140 $TC_CARR1[0] = 0 ; Delete all tool carrier data.
N1150 $TC_CARR_KIN_CNTRL[_CARR_CNT]=7 ; Tool carrier via kinematic chain
 ; + Close tool and part chain.
N1160 $TC_CARR_KIN_TOOL_START[_CARR_CNT]="Y_AXIS" ; Start element of the tool chain.
N1170 $TC_CARR_KIN_TOOL_END[_CARR_CNT]="B_OFFSET_CORR" ; End element of the tool chain.

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1571

Program code Comment
N1180 $TC_CARR_KIN_PART_START[_CARR_CNT]="X_AXIS" ; Start element of the part chain.
N1190 $TC_CARR_KIN_PART_END[_CARR_CNT]="END_PART_CHAIN" ; End element of the part chain.
N1200 $TC_CARR21[_CARR_CNT]=B
N1210 $TC_CARR22[_CARR_CNT]=C
N1220 $TC_CARR23[_CARR_CNT]="M"
N1230 $NK_NAME[_KIE_CNT] = "ROOT"
N1240 $NK_PARALLEL[_KIE_CNT]="X_AXIS"
N1250 $NK_TYPE[_KIE_CNT] = "OFFSET"
N1260 $NK_NEXT[_KIE_CNT] = "Y_AXIS"
N1270 _KIE_CNT=_KIE_CNT+1
 ;***** Start tool chain *****
N1280 $NK_NAME[_KIE_CNT] = "Y_AXIS"
N1290 $NK_TYPE[_KIE_CNT] = "AXIS_LIN"
N1300 $NK_OFF_DIR[_KIE_CNT,1] = 1
N1310 $NK_AXIS[_KIE_CNT] = "Y1"
N1320 $NK_NEXT[_KIE_CNT] = "Z_AXIS"
N1330 _KIE_CNT=_KIE_CNT+1
N1340 $NK_NAME[_KIE_CNT] = "Z_AXIS"
N1350 $NK_TYPE[_KIE_CNT] = "AXIS_LIN"
N1360 $NK_OFF_DIR[_KIE_CNT,2] = 1
N1370 $NK_AXIS[_KIE_CNT] = "Z1"
N1380 $NK_NEXT[_KIE_CNT] = "CLOSE_HEAD"
N1390 _KIE_CNT=_KIE_CNT+1
N1400 $NK_NAME[_KIE_CNT] = "CLOSE_HEAD"
N1410 $NK_TYPE[_KIE_CNT] = "OFFSET"
N1420 $NK_OFF_DIR[_KIE_CNT,0] = 0
N1430 $NK_OFF_DIR[_KIE_CNT,1] = 0
N1440 $NK_OFF_DIR[_KIE_CNT,2] = 0
N1450 $NK_NEXT[_KIE_CNT] = "B_AXIS"
N1460 _KIE_CNT=_KIE_CNT+1
N1470 $NK_NAME[_KIE_CNT] = "B_AXIS"
N1480 $NK_TYPE[_KIE_CNT] = "AXIS_ROT"
N1490 $NK_OFF_DIR[_KIE_CNT,1] = 1
N1500 $NK_OFF_DIR[_KIE_CNT,2] = 1
N1520 $NK_A_OFF[_KIE_CNT] = -27
N1540 $NK_AXIS[_KIE_CNT] = "B1"
N1550 $NK_NEXT[_KIE_CNT] = "B_OFFSET"
N1560 _KIE_CNT=_KIE_CNT+1
N1570 $NK_NAME[_KIE_CNT] = "B_OFFSET"
N1580 $NK_TYPE[_KIE_CNT] = "OFFSET"
N1590 $NK_OFF_DIR[_KIE_CNT,2] = -30.6
N1600 $NK_NEXT[_KIE_CNT] = "B_OFFSET_CORR"
N1610 _KIE_CNT=_KIE_CNT+1
N1620 $NK_NAME[_KIE_CNT] = "B_OFFSET_CORR"

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
1572 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N1630 $NK_TYPE[_KIE_CNT] = "OFFSET"
N1640 $NK_NEXT[_KIE_CNT] = ""
N1650 _KIE_CNT=_KIE_CNT+1
 ;***** End tool chain *****
 ;***** Start part chain *****
N1660 $NK_NAME[_KIE_CNT] = "X_AXIS"
N1670 $NK_TYPE[_KIE_CNT] = "AXIS_LIN"
N1680 $NK_OFF_DIR[_KIE_CNT,0] = 1
N1690 $NK_AXIS[_KIE_CNT] = "X1"
N1700 $NK_NEXT[_KIE_CNT] = "C_OFFSET"
N1710 _KIE_CNT=_KIE_CNT+1
N1720 $NK_NAME[_KIE_CNT] = "C_OFFSET"
N1730 $NK_TYPE[_KIE_CNT] = "OFFSET"
N1740 $NK_OFF_DIR[_KIE_CNT,0] = 300
N1750 $NK_OFF_DIR[_KIE_CNT,1] = 150
N1760 $NK_NEXT[_KIE_CNT] = "C_OFFSET_CORR"
N1770 _KIE_CNT=_KIE_CNT+1N1780 $NK_NAME[_KIE_CNT] = "C_OFF-
SET_CORR"

N1790 $NK_TYPE[_KIE_CNT] = "OFFSET"
N1800 $NK_OFF_DIR[_KIE_CNT,0] = 0
N1810 $NK_OFF_DIR[_KIE_CNT,1] = 0
N1820 $NK_OFF_DIR[_KIE_CNT,2] = 0
N1830 $NK_NEXT[_KIE_CNT] = "C_AXIS"
N1840 _KIE_CNT=_KIE_CNT+1
N1850 $NK_NAME[_KIE_CNT] = "C_AXIS"
N1860 $NK_TYPE[_KIE_CNT] = "AXIS_ROT"
N1870 $NK_OFF_DIR[_KIE_CNT,2] = -1
N1890 $NK_A_OFF[_KIE_CNT] = -58
N1910 $NK_AXIS[_KIE_CNT] = "C1"
N1920 $NK_NEXT[_KIE_CNT] = "CLOSE_PART"
N1930 _KIE_CNT=_KIE_CNT+1
N1940 $NK_NAME[_KIE_CNT] = "CLOSE_PART"
N1950 $NK_TYPE[_KIE_CNT] = "OFFSET"
N1960 $NK_OFF_DIR[_KIE_CNT,0] = 0
N1970 $NK_OFF_DIR[_KIE_CNT,1] = 0
N1980 $NK_OFF_DIR[_KIE_CNT,2] = 0
N1990 $NK_NEXT[_KIE_CNT] = "END_PART_CHAIN"
N2000 _KIE_CNT=_KIE_CNT+1
N2010 $NK_NAME[_KIE_CNT] = "END_PART_CHAIN"
N2020 $NK_TYPE[_KIE_CNT] = "OFFSET"
 ;***** End part chain *****

W1: Tool offset
19.7 Toolholder with orientation capability

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1573

19.8 Modification of the offset data for rotatable tools

19.8.1 Introduction

Function
With function "Modification of the offset data for rotatable tools", the modified geometrical
relationships that result when a tool is rotated (predominantly turning tools, but also drilling
and milling tools) relative to the workpiece being machined can be taken into account.

The actual tool rotation is always determined from a currently active tool carrier with orientation
capability (see Chapter "Toolholder with orientation capability (Page 1532)") or from an
orientation transformation defined with kinematic chains (see Function Manual Special
Functions; Chapter "Transformation definition with kinematic chains").

The angle of rotation of the tool carrier with orientation capability is normally (but not
necessarily) defined with the TCOFR command from an active frame. This method can be
used to define the tool orientation independently of the actual kinematics with which the tool
is rotated, identically in each case with the help of two angles.

In an active kinematic transformation, the required angles can be determined with the function
ORISOLH (see "Calculating orientations (ORISOLH) (Page 1586)").

The two machine-independent orientation angles β (Beta) and γ (Gamma) are used to define
the tool rotation. β is the angle of rotation and the applicate (typically a B axis in G18) and γ a
rotation around the abscissa (Typically a C axis in G18). The rotation is first executed around
Y, finally around β. I.e., the γ axis is rotated by the β axis:

① Rotation around the abscissa
② Rotation around the applicate

Figure 19-49 Tool rotation

Commissioning
The function is commissioned using the machine and setting data.

See Section "Commissioning (Page 1583)".

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1574 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Activation
Modification of the offset data for rotatable tools is activated in the NC program with the
language commands CUTMOD (in combination with tool carriers with orientation capability)
or CUTMODK (for orientation transformations that were defined with kinematic chains).

See Section "Activating the modification of the offset data for rotatable tools (CUTMOD,
CUTMODK) (Page 1594)".

Results
When the function and tool rotation are active, the modified data are made available in system
variables and OPI variables.

See Section "Activating the modification of the offset data for rotatable tools (CUTMOD,
CUTMODK) (Page 1594)".

19.8.2 Rotating turning tools

19.8.2.1 Cutting edge position, cut direction, and angle for turning tools

Turning tools
Turning tools means the following tools whose tool type ($TC_DP1) has values in the range
of 500 to 599. Grinding tools (tool types 400 to 499) are equivalent to turning tools.

Tools are treated independently of tool type such as turning tools if:

SD42950 $SC_TOOL_LENGTH_TYPE = 2

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1575

Cutting edge position and cut direction
Turning tools are limited by their main and secondary cutting edges. The cutting edge position
is defined via the position of the primary and secondary cutting edges relative to the coordinate
axes. Two different cutting directions can be assigned to each cutting edge position.

① Cutting edge position (1 - 8)
② Cutting directions (1 - 4) assigned to the cutting edge position

Figure 19-50 Cutting edge position and cut direction

Cutting edge position
For cutting edge position 1 - 4, the primary and secondary cutting edge are in the same
quadrant.

For a cutting edge position of 5 - 8, the primary and secondary cutting edge are in adjacent
quadrants or there is a coordinate axis between the two cutting edges.

The cutting edge position is stored in the tool parameter $TC_DP2.

Cut direction
The cut directions 1 - 4 denote a positive or negative direction of the coordinate axes:

● 1: Ordinate -

● 2: Ordinate +

● 3: Abscissa -

● 4: Abscissa +

The cut direction is stored in the tool parameter $TC_DP11.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1576 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Holder angle and clearance angle
The following figure shows the holder angle and clearance angle for a rotary tool with cutting
edge position 3. The machining plane is G18 (Z/X). The cut direction is 3 (negative Z or
abscissa direction).

① Holder angle
② Wedge or plate angle = 180° - holder angle - clearance angle
③ Clearance angle
④ Cut direction

Figure 19-51 Angle and cut direction for a turning tool

Cut direction
The cut direction specifies the reference direction of the holder angle. The clearance angle is
the angle measured between the inverse cut direction and the adjacent cutting edge (positive).

Holder angle and clearance angle are stored in the tool parameters $TC_DP10 or $TC_DP24.

Note

Cut direction and tool angle are relevant only in the cutting edge positions 1 - 8.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1577

19.8.2.2 Modifications during the rotation of turning tools

Description of tool orientation
Unlike milling tools, turning tools are not rotation-symmetric. This means that normally 3
degrees of freedom or three rotary axes are required to describe the tool orientation. The
concrete kinematics therefore, is independent of the machine only to the extent the desired
orientation can be set. If necessary, the third degree of freedom can be substituted by a rotation
of the tool coordinate system.

Note

The division of the orientation into one component created by the tool carrier with orientation
capability and a second component achieved via a rotation of the coordinate system is the
responsibility of the application. The control does not provide any further functionality in this
regard.

If the tool is oriented using a kinematic transformation, the user can use function ORISOLH to
calculate the orientation. (see Chapter "Calculating orientations (ORISOLH) (Page 1586)").

Angle between tool insert and machining plane
If a turning tool turns by an angle against the machining plane (i.e. around an axis in the
machining plane, typically a C axis) that is not a multiple of 180°, then the configuration of the
(circular) tool cutting edge in the machining plane becomes an ellipse. It is assumed that the
deviations from the circular form arising on account of such rotations is so insignificant that
they can be ignored (tilt angle < 5°). i.e. the control always ignores the tool orientation and
assumes a circular cutting edge.

This also means that with reference to the active plane, the control accepts only a rotation by
180° as a setting deviating from the initial position. This limitation is valid for the shape of cutting
edge only. The tool lengths are always considered correctly in random spatial rotations.

A rotation by 180° around an axis in the machining plane means that while using the tool at
the same position, the spindle rotation direction with reference to the use of the unturned tool
must be inverted.

A maximum value allowed for the angle between the tool insert and the machining plane can
be specified in setting data SD42998 $SC_CUTMOD_PLANE_TOL (see also Chapter
"Parameter assignment (Page 1583)").

Cutting edge position, cutting direction, and tool angle
Cutting edge position and cut direction are also not modified like the cutting edge reference
point (see below) if the tool is rotated from the plane by ± 90° (with a tolerance of app. 1°)
because then the configuration of the cutting edge is not defined in the current plane.

If a transformation is active, the active complete frame is always included in the calculation of
the actual tool rotation relative to the workpiece. If a tool carrier with orientation capability is
active, the frame is only included in the calculation if bit 21 is set in machine data MD20360
$MC_TOOL_PARAMETER_DEF_MASK (Page 1583). In this case, any table component of

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1578 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

the tool carrier is no longer treated separately because it must be assumed that this frame
component is already included in the complete frame (system frame PAROT).

When orientation transformation is active, bit 17 of machine data MD20360
$MC_TOOL_PARAMETER_DEF_MASK can be used, should the cutting edge no longer be
in the active machining plane, either to project the cutting edge into the machine plane
(bit 17 = 0) or alternatively to rotate the cutting edge into the machining plane (bit 17 = 1) in
order to calculate the modified cutting data.

Note
MD20360, bit 17

If this bit is set, it is the responsibility of the user to ensure, using an additional frame or by
changing the orientation, to ensure that the geometric conditions during machining match those
that exist during calculation.

If bit 20 of machine data MD20360 $MC_TOOL_PARAMETER_DEF_MASK is set to value "0",
standard values that deviate from zero can be used to calculate the modified cutting edge
position and the modified cutting direction for when the cutting edge parameters for the holder
angle and cutting direction ($TC_DP10 or $TC_DP24) have value 0. The following rules apply:

● A holder angle of 0° has the same effect as an angle of 112.5° on cutting edge positions 1
to 4.

● A holder angle of 0° has the same effect as an angle of 67.5° on cutting edge positions 5
to 8.

● A clearance angle of 0° has the same effect as an angle of 22.5° on cutting edge positions
1 to 4.

● A clearance angle of 0° has the same effect as an angle of 67.5° on cutting edge positions
5 to 8.

The holder angle and clearance angle might only be temporarily mapped onto the standard
values specified above to be able to calculate the modified cutting edge position and modified
cutting direction. I.e., reading system variables $TC_DP10 or $TC_DP24 still returns value "0".

If the tool rotates in the plane (rotation around an axis vertical to the machining place or around
the Y axis for G18), the cutting edge position is determined from the resulting angle for the
clearance and holder angles. If these two angles are not specified for the tool (i.e. $TC_DP10
and $TC_DP24 are both zero), the new cutting edge position is determined just from the turning
angle. A special feature here is that the cutting edge position only changes in steps of 90°. I.e.
the cutting edge position remains independent of the initial state either in the value range 1 to
4 or 5 to 8. The new cutting edge position is then determined exclusively from the angle of
rotation if the specified values for holder angle and clearance angle are impermissible (negative
values, resulting tool insert angle negative or greater than 90°). Impermissible angles can be
set to output an alarm (see MD20125 $MC_CUTMOD_ERR (Page 1583)). Clearance angle
and holder angle are not modified in all these cases.

Depending on the rotation, the cut direction is modified in such a way that the resulting
clearance angle remains less than 90°. If the original cut direction and the original cutting edge
position do not match, then the cut direction is not modified during rotation of the tool. This
situation can be set to output an alarm (see MD20125 $MC_CUTMOD_ERR).

The angle of rotation in the plane, as it was determined from the tool carrier with orientation
capability or from the active kinematic transformation, is provided in the OPI variables

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1579

pTCutMod or ptCut- ModS and in system variables $P_CUTMOD_ANG or
$AC_CUTMOD_ANG. This angle is the original angle without any final rounding to multiples
of 45° or 90°.

Limit cases

If, for a turning tool, the cutting edge position, cut direction, clearance and holder angles have
valid values so that all cutting edge positions (1 to 8) are possible through suitable rotations
in the plane, then the cutting edge positions 1 to 4 are preferred to cutting edge positions 5 to
8 in the cases in which one of the cutting edges (main or secondary cutting edge) is away from
the coordinate axis by less than half the input increment (0.0005° for an input specification of
3 decimal digits).

The following is applicable in all other cases (milling tools or turning tools without valid cutting
edge parameters) in which rotation is possible only in 90° steps: If the amount of the rotation
angle is smaller than 45° + 0.5 input increments (corresponds to 45.0005° for an input
specification of 3 decimal places), the cutting edge position and cut direction are not changed.
I.e. these cases are treated as rotations that are smaller than 45°. Rotations, the amount of
which deviates from 180° by less than 45° + 0.5 input increments are treated identically as
rotations in the range of 135° to 225°.

Cutting edge reference point
The cutting edge center point and the cutting edge reference point are defined for turning tools.
The position of these two points relative to each other is defined by the cutting edge position.

The distance of the two points for cutting edge positions 1 to 4 is equal to √2 times the cutting
edge radius; for cutting edge positions 5 to 8 it is equal to 1 times the cutting edge radius. In
the first case, the cutting edge reference point relative to the cutting edge center point lies in
the machining plane on a bisecting line, while in the second case it lies on a coordinate axis.

If your rotate the tool by a random angle around an axis vertical to the machining plane, the
the cutting edge reference point would also rotate if it had a fixed position relative to the tool.
The above-mentioned condition (position on an axis or a bisecting axis) is not fulfilled in most
cases. This is not desirable. Instead, the cutting edge reference point should always be
modified in such a way that the distance vector between cutting edge reference point and
cutting edge center point has one of the mentioned 8 directions. The cutting edge position
must be modified for this if necessary.

The ratios are shown with examples in the figure below:

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1580 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

S: Cutting edge center point
P: Cutting edge reference point
SL: Cutting edge position
① Tool with cutting edge position 3, clearance angle 22.5°, and holder angle 112.5°
② For rotations of the tool up to 22.5°, the cutting edge position is maintained, the position of the

cutting edge reference point relative to the tool however, is compensated in such a way that the
relative position of both points is maintained in the machining plane.

③ For bigger tool rotations (up to 67.5°), the cutting edge position changes to value 8.
Figure 19-52 Cutting edge reference point and cutting edge position for tool rotation

Note

As the cutting edge reference point is defined by the tool length vector, modifying the cutting
edge reference point changes the effective tool length.

Tool rotation
The rotation of the tool tip and the tool adapter is described by tool parameter $TC_DPROT.
This parameter (angle) is only practical for tools that do not rotate symmetrically (e.g. turning
tools, boring bars). Rotation is performed around the direction that is defined by the vector
product of tool normal vector and tool orientation vector. For an active tool, this vector can be
read with system variable $P_TOOLBIN. For standard turning tools, this vector points toward
the Z axis for G18. I.e. it turns around the axis around which angle γ also turns.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1581

19.8.3 Rotation of milling and drilling tools

19.8.3.1 Cutting edge position for milling and tapping tools

Milling and drilling tools
Milling and drilling tools means the following tools whose tool type ($TC_DP1) has values in
the range of 100 to 299.

Tools are treated independently of tool type such as milling and tapping tools if:

SD42950 $SC_TOOL_LENGTH_TYPE = 1

Cutting edge position
A cutting edge position which is modified accordingly has also been introduced for the milling
and tapping tools defined as specified above (see Chapter "Modifications during rotation of
milling and tapping tools (Page 1583)").

Note

A cutting edge position that is declared for tools that are not milling or tapping tools, or turning
tools according to the definitions stated above, is not evaluated.

The cutting edge position of the tapping and milling tools is stored in tool parameter $TC_DP2
as in the case of turning tools. Based on the definition of the cutting edge position for turning
tools, this parameter can assume the values 5 to 8. Here, the cutting edge position specifies
the orientation (the direction of the rotation axis) of the tool:

Cutting edge position Direction of rotation axis of tool
5 Abscissa +
6 Ordinate +
7 Abscissa -
8 Ordinate -

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1582 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-53 Cutting edge position 5 - 8 of a milling tool

19.8.3.2 Modifications during rotation of milling and tapping tools
The cutting edge position is recalculated appropriately during a rotation of a milling or tapping
tool. Cut direction and tool angle (clearance angle or holder angle) are not defined for milling
and tapping tools so that the change in cutting edge position is derived exclusively from the
rotation. Thus, for milling and tapping tools, the cutting edge position always changes when
the amount of rotation with reference to the zero setting is more than 45°.

19.8.4 Commissioning

19.8.4.1 Parameter assignment

Response in the event of an error
Different fault conditions can occur during the activation of the function "Modification of the
offset data for rotatable tools" (by an explicit call in the part program or by tool selection). For
errors with error numbers < 100 (see Diagnostics Manual), it is possible to define whether the
error will trigger output of an alarm and, if so, whether such an alarm will only be displayed or
will also trigger program stop. The setting is made in the following machine data:

MD20125 $MC_CUTMOD_ERR

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1583

Two bits of the machine data are assigned to each fault condition:

Fault status Bit Meaning
No valid cutting direction is defined for the active tool. 0 Alarm output

1 Program stop
The cutting edge angle (clearance angle and holder angle) of the
active tool are both zero.

2 Alarm output
3 Program stop

The clearance angle of the active tool has an impermissible value
(< 0° or > 180°).

4 Alarm output
5 Program stop

The holder angle of the active tool has an impermissible value
(< 0° or > 90°).

6 Alarm output
7 Program stop

The tool insert angle of the active tool has an impermissible value
(< 0° or > 90°).

8 Alarm output
9 Program stop

The cutting edge position - holder angle combination of the active
tool is not permitted. (The holder angle must be ≤ 90° for cutting edge
position 1 to 4; for cutting edge positions 5 to 8 it must be ≥ 90°.)

10 Alarm output
11 Program stop

The tool insert is not in the machining plane and angle γ between the
tool insert and the machining plane exceeds the upper limit specified
with setting data SD42998 $SC_CUTMOD_PLANE_TOL.

12 Alarm output
13 Program stop

The tool insert is not in the machining plane. The magnitude of angle
α is greater than 1°. Angle α is the angle of rotation around the coor‐
dinate axis, which is perpendicular both to the axis of rotation of angle
β and to the axis of rotation of angle γ (in the case of G18, the X axis).

14 Alarm output
15 Program stop

Note

The 2nd bit (program stop) is only effective if the corresponding 1st bit (alarm output) is set.

Note

Errors with error numbers ≥ 100 always result in an alarm being output and program stop.

Initialization value for CUTMOD
The function that can be programmed with NC command CUTMOD (Page 1586) is
automatically initialized with the following value after a warm restart:

MD20127 $MC_CUTMOD_INIT = <initialization value for CUTMOD>

Default value: 0

If MD20127 = -2, the value from the following machine data becomes the initialization value:

MD20126 $MC_TOOL_CARRIER_RESET_VALUE (active tool carrier on reset)

Function-specific tool settings
The following machine data is a bit string with which various functions relating to tools can be
controlled:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1584 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The following bits are relevant for function "Modification of the offset data for rotatable tools".

Bit Meaning
17 Bit 17 is used to set whether, on modification of the offset data for turning and grinding tools,

the cutting edge plane for calculating the offset values will be projected into the machining plane
or rotated.
= 0 The cutting edge plane is projected into the machining plane.
= 1 The cutting edge plane is rotated into the machining plane.
Note:
Bit 17 is only evaluated if the function is active in combination with a kinematic orientation
transformation.

18 Bit 18 is used to determine how the plane is defined for modification of offset data for turning
and grinding tools.
= 0 Priority is given to defining the plane with setting data SD42940

$SC_TOOL_LENGTH_CONST over defining the plane with the G commands of G
Group 6 (plane selection G17 - G19).

= 1 The active plane (G17 - G19) is always used.
20 If tool parameters $TC_DP10 (holder angle) and/or $TC_DP24 (clearance angle) have the

value "0", default values deviating from "0" can be used to calculate the modified cutting edge
position and the modified cutting direction.
= 0 The following default values are used:

● Holder angle 112.5° for cutting edge positions 1 - 4
● Holder angle 67.5° for cutting edge positions 5 - 8
● Clearance angle 22.5° for cutting edge positions 1 - 4
● Clearance angle 67.5° for cutting edge positions 5 - 8

= 1 An alarm is output.
Note:
Bit 20 is used to establish compatibility with older software versions.

21 Bit 21 is used to set whether the active total frame will be taken into account in the modification
of the offset data when tool carrier with orientation capability is active.
= 0 Rotation of the table component of the tool carrier is taken into account. Frames are

ignored.
= 1 Instead of the table component of the tool carrier, the active total frame is used. The

total frame can also contain a table component of the tool carrier.

Difference between tool tip plane and machining plane for CUTMOD or CUTMODK
The maximum permissible angle through which the tool insert can be turned away from the
machining plane (standard G18) when function CUTMOD or CUTMODK (Page 1594) is called
(≙ maximum permissible deviation of γ from one of the two standard positions 0° or 180°) is
set in the setting data:

SD42998 $SC_CUTMOD_PLANE_TOL

Example:

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1585

SD42998 = 5.0 ⇒ The tool insert must not be turned by more than 5° away from the machining
plane.

Note
SD42998 = 0

If SD42998 $SC_CUTMOD_PLANE_TOL is set to "0", variations of up to 89° are permissible!

Difference between tool tip plane and machining plane for ORISOLH
The maximum permissible angle through which the tool insert can be turned away from the
machining plane when function ORISOLH (Page 1594) is called is set in the setting data:

SD42999 $SC_ORISOLH_INCLINE_TOL

19.8.5 Programming

19.8.5.1 Calculating orientations (ORISOLH)
The predefined ORISOLH function helps the user to set the rotary axis positions of a machine
so that a turning tool can be brought into a defined, kinematic-independent position relative to
the workpiece. Prerequisite is that a 6-axis transformation is active that has been
parameterized with kinematic chains.

Two basic functions are available:

● Tool alignment
The β and γ angles are specified. The function calculates the angles of the three orientation
axes required for this.

● Direct tool alignment
The angles of the second and third orientation axes are specified. The function calculates
the associated β and γ angles as well as that of the missing first orientation axis.

Note
Order of the orientation axes

If you run through the kinematic chain that describes the structure of the machine, from the
workpiece to the tool, then the following specifications apply for the order of the three
orientation axes of a 6-axis transformation:
● The orientation axis that is closest to the workpiece is the first orientation axis.
● The orientation axis that is closest to the tool is the third orientation axis.

Generally, the first orientation axis is a spindle and the corresponding rotation is therefore
implemented in these cases through a rotating frame.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1586 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Syntax
<RetVal> = ORISOLH(<Cntrl>,<W1>,<W2>)

Meaning

ORISOLH: Function call
<RetVal>: Function return value

Data type: INT
Range of val‐
ues:

0, -2, -3, ..., -17

Values: 0 Function has ended without an error.
-2 No valid transformation (6-axis orientation transformation) is

active.
-3 The first parameter (<Cntrl>) is negative.
-4 The unit position of the first parameter (<Cntrl>) is invalid.

Only the values 0 and 1 are permissible.
-5 The tens position of the first parameter (<Cntrl>) is invalid.

Only the values 0 to 3 are permissible.
-6 The hundreds position of the first parameter (<Cntrl>) is in‐

valid.
Only the values 0 and 1 are permissible.

-7 The thousands position of the first parameter (<Cntrl>) is in‐
valid.
Only the values 0 to 3 are permissible.

-8 Angle γ is too large for the "Direct tool alignment" function.
-9 At least one of the specified axis positions violates an axis

limit for the "Direct tool alignment" function.
-10 No tool is active.
-11 The requested orientation cannot be set.
-12 The adaptation of the free axis angle for the Hirth joint is not

possible for the first or only solution.
-13 The adaptation of the free axis angle for the Hirth joint is not

possible for the second solution.
-14 The adaptation of the free axis angle for the Hirth joint is not

possible for either of the two solutions.
-15 The first orientation axis is parameterized as Hirth axis.
-16 The second as well as the third rotary axis has been para‐

meterized as Hirth axis. Only one of the two axes can be the
Hirth axis.

-17 At least one of the specified axis positions is not compatible
with the associated Hirth joint for the "Swivel directly" func‐
tion.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1587

<Cntrl>: Controls the behavior of the function
Data type: INT
The <Cntrl> parameter is decimal coded (unit to thousands position):
Unit position: The unit position controls the response to errors.

xxx0 In the event of an error (return value < 0), alarm 14106 is
output and program processing is aborted.
Note:
The alarm is also output irrespective of the value of the unit
position when the <Cntrl> parameter is negative.

xxx1 In the event of an error (return value < 0) no alarm is output.
The user can react suitably in the program.

Tens position: Controls the behavior when an orientation axis with Hirth joint is
present.
Note:
This parameter is only evaluated for the "Tool alignment" function
(i.e. when the hundreds position has the value "0").

xx0x The axis position is rounded off to the nearest position.
xx1x The axis positions are rounded off so that the difference of

the β angle to its programmed value is minimal.
xx2x The axis positions are rounded off so that the β angle is equal

to the highest possible value which is less than the program‐
med value (β is rounded down).

xx3x The axis positions are rounded off so that the β angle is equal
to the lowest possible value which is greater than the pro‐
grammed value (β is rounded up).

Hundreds posi‐
tion:

Specifies which function is to be executed or the significance of the
two following parameters <W1> and <W2>.

x0xx "Tool alignment" function
Parameters <W1> and <W2> have the following meaning:
● <W1> = β
● <W2> = γ
The associated angles of the orientation axes are calculated.

x1xx "Direct tool alignment" function
<W1> is the position specification for the second orientation
axis, <W2> is the position specification for the third orienta‐
tion axis of a 6-axis transformation. The position of the first
orientation axis and the β and γ angles are defined which are
compatible with the two position specifications.
If no error occurs, two solutions are always output in the
$P_ORI_POS[<n>, <m>] system variables. The first index
<n> (0 or 1) refers to the solution and the second index <m>
(0 ... 2) to the orientation axis:
● $P_ORI_POS[0/1, 0]: Position of the first orientation axis
● $P_ORI_POS[0/1, 1]: Angle β
● $P_ORI_POS[0/1, 2]: Angle γ
A check is made as to whether the position specifications
<W1> and <W2> are compatible with any Hirth joints or active
software limits. If this is not the case, a corresponding error
number is returned (see <RetVal> parameter).

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1588 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

If the angles <W1> and <W2> are selected arbitrarily, the
cutting edge of the tool is generally not in the machining
plane. The angle γ through which the cutting edge is rotated
out of the machining plane, must not be greater than the limit
value which is defined by the setting data SD42999 $SC_OR‐
ISOLH_INCLINE_TOL.

Thousands po‐
sition:

Specifies which positions of the solutions may be modified when the
hundreds position has the value "0", i.e. for the "Tool alignment"
function.

0xxx The calculated axis positions should be as close as possible
to the current machine axis positions.

1xxx The calculated axis positions for modulo axes should be as
close as possible to the middle of the modulo range, for other
axes as close as possible to 0. For non-modulo axes, this
means that the axis positions are reduced to the range
-180° … +180°.

2xxx The calculated axis positions should be reduced to the range
-180° … +180° irrespective of the axis type.

<W1>: First angle
The meaning results from the hundreds position of the <Cntrl> paramter.
Data type: REAL

<W1>: Second angle
The meaning results from the hundreds position of the <Cntrl> paramter.
Data type: REAL

Note

Parameters that have not been programmed have the default value "0".

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1589

19.8.5.2 Calculating orientations (ORISOLH): Further information

Further information
The number of solutions found together with further status information when executing the
ORISOLH function, can be read via the following system variables:

System variable Meaning
$P_ORI_POS
[<n>, <m>]

Returns the angles of the orientation axes that result from the orientation program‐
ming.
<n>: Index of the solution

Range of values: 0, 1
<m>: Index of the orientation axis

Range of values: 0 ... 2
The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

When the ORISOLH function is called in the "Direct tool alignment" mode, the
$P_ORI_POS[0/1, 1] and P_ORI_POS[0/1, 2] variables contain the values of the
two angles β and γ belonging to the two solutions.
The first solution entered in $P_ORI_POS[<n>, <m>], i.e. with the index <n> = 0, is
always the solution that is selected by the control when the requested orientation
is approached directly. The second index <m> refers to the orientation axis, i.e. on
$NT_ROT_AX_NAME.
The axis positions entered in $P_ORI_POS[<n>, <m>] take into account the offsets
entered in $NK_OFF and $NK_OFF_FINE, i.e. these axis angles can be used in the
following blocks to set the required orientation without any further modification.
If a rotary axis is a Hirth axis, the solution positions are rounded off to the nearest
position of rest of the Hirth joint. For Hirth jointed rotary axes, you can read the
differences between the axis positions for the exact solutions and those of the sol‐
utions adapted to the Hirth incrementing in the $P_ORI_DIFF system variable.

$P_ORI_DIFF
[<n>, <m>]

Returns the difference between the exact positions of the orientation axes and those
provided in $P_ORI_POS that result from the orientation programming.
<n>: Index of the solution

Range of values: 0, 1
<m>: Index of the orientation axis

Range of values: 0 ... 2
The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

The content can only be not equal to zero when the positions are incremented (Hirth
joint), i.e. when the system data $NT_HIRTH_INCR of the relevant axis is not equal
to zero and when this axis is a manual rotary axis.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1590 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable Meaning
$P_ORI_SOL If for an orientation transformation with more than one orientation axis, the axis

angles are calculated that should result in a specified orientation, there is generally
more than one solution. The $P_ORI_SOL system variables contain the number of
valid solutions together with additional status information.
The content of $P_ORI_SOL is coded as follows:
Values < 0 General error states

-1 No solutions have been calculated yet for the active transfor‐
mation (missing call of ORISOLH).

-2 A transformation is not active, or the active transformation is
not an orientation transformation (6-axis transformation) that
can provide positions for a specified orientation programming.

-4 The desired orientation cannot be set with the present kine‐
matics.

-5 No solution was found when the ORISOLH function was called
in the "Direct tool alignment" mode.

-6 Angle γ is too large when the ORISOLH function was called
in the "Direct tool alignment" mode.

-7 An angle was specified when the ORISOLH function was
called in the "Direct tool alignment" mode that cannot be set
because of the Hirth joint.

-8 The first orientation axis (frame axis) must not be parameter‐
ized as Hirth axis.

-9 The second as well as the third rotary axis has been parame‐
terized as Hirth axis. Only one of the two axes can be the Hirth
axis.

-10 No adaptation of the solution(s) to the Hirth joint has been
found.

Values > 0
Unit position

Number of mathematically possible solutions without consideration
of axis limits and any error conditions.

0 There is no solution, i.e. the requested orientation cannot be
set.
There can be three different causes for this case:
● In principle, the requested orientation cannot be achieved

because of the machine kinematics (orientation axes not
arranged at right angles) even with an arbitrary traversing
range of the orientation axes. In this case, the tens and
hundreds positions of $P_ORI_SOL are both zero, the
$P_ORI_STAT status variables assigned to the orientation
axis have the value "-4".

● The calculated solutions cannot be achieved because they
would violate the axis limits. The positions of the
orientation axes that would result without the axis limits,
can be read in $P_ORI_POS.

● Axis positions were specified when the ORISOLH function
was called in the "Direct tool alignment" mode which would
result in either the orientation vector or the orientation
normal vector of the tool being aligned parallel to the first
orientation axis, whose position is to be calculated. The
position of this axis is not defined in these cases.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1591

System variable Meaning
1 There is a solution.

There can be three different causes for this case:
● Based on the specified orientation and the machine

kinematics, there is only one solution (from the
mathematical point of view, two coinciding solutions) even
without consideration of the axis limits. This case occurs
at the edge of the orientation range for kinematics that are
not at right angles. $P_ORI_POS contains both (identical)
solutions.

● There is only one solution because a second solution is
invalid due to the violated axis limits. The valid solution is
always the first solution in $P_ORI_POS. The second
solution which would result when the axis limits are not
taken into account, can also be read in $P_ORI_POS.

● This is the normal case when the ORISOLH function is
called in the "Direct tool alignment" mode. For the specified
axis positions of two orientation axes, there is generally
only one valid position for the missing orientation axis to
be calculated.

2 There are two solutions.
8 There are an infinite number of solutions, i.e. the position of

an orientation axis (the polar axis) is arbitrary. However, from
the two possible positions of the other axes, one is excludes
because of the violated axis limits.

9 There are an infinite number of solutions, i.e. the position of
an orientation axis (the polar axis) is indefinite. The indefinite
axis can be determined from the hundreds position or from the
$P_ORI_STAT system variable.

Values > 0
Tens posi‐
tion

Bit-coded display for violated axis limits. The precise cause of the
error can be determined from the $P_ORI_STAT system variable.
Bit 0 (value 10): For at least one solution, at least one axis limit

of the first orientation axis is violated.
Bit 1 (value 20): For at least one solution, at least one axis limit

of the second orientation axis is violated.
Bit 2 (value 40): For at least one solution, at least one axis limit

of the third orientation axis is violated.
Values > 0
Hundreds
position

Bit-coded display for non-defined axis positions (can only occur when
there is an infinite number of solutions, i.e. when the unit position is
equal to "9").
Bit 0 (value 100): The position of the first orientation axis is not de‐

fined.
Bit 1 (value 200): The position of the second orientation axis is not

defined.
Bit 2 (value 400): The position of the third orientation axis is not

defined.
The designations first, second and third orientation axis refer to the definition of the
axes in $NT_ROT_AX_NAME.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1592 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

System variable Meaning
$P_ORI_STAT
[<n>]

Returns the status for each of the maximum three orientation axes after ORISOLH
has been called.
<n>: Index of the orientation axis

(correspnds to the index of the relevant orientation axis in
$NT_ROT_AX_NAME)
Range of values: 0 ... 2

The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

The content of $P_ORI_STAT is coded as follows:
Values < 0 General error states

-1 The status is not defined (missing call of ORISOLH).
-2 A transformation is not active, or the active transformation is

not an orientation transformation (6-axis transformation) that
can provide positions for a specified orientation programming.

-3 The axis is not included in the active transformation.
-4 The position of the axis cannot be calculated because the re‐

quested orientation cannot be achieved with the present kin‐
ematics even with an arbitrary assumed traversing range of
the axis.

-5 Axis positions were specified when the ORISOLH function
was called in the "Direct tool alignment" mode which would
result in either the orientation vector or the orientation normal
vector of the tool being aligned parallel to the first orientation
axis, whose position is to be calculated. The position of this
axis is not defined in these cases.

-6 Angle γ is too large when the ORISOLH function was called
in the "Direct tool alignment" mode.

-7 An angle was specified when the ORISOLH function was
called in the "Direct tool alignment" mode that cannot be set
because of the Hirth joint.

-8 The first orientation axis (frame axis) must not be parameter‐
ized as Hirth axis.

-9 The second as well as the third rotary axis has been parame‐
terized as Hirth axis. Only one of the two axes can be the Hirth
axis.

-10 No adaptation of the solution(s) to the Hirth joint has been
found.

Values > 0
Unit position

Bit-coded display for violated axis limits of the first solution.
Bit 0 (value 1): The first solution violates the lower axis limit.
Bit 1 (value 2): The first solution violates the upper axis limit.

Values > 0
Tens posi‐
tion

Bit-coded display for violated axis limits of the second solution.
Bit 0 (value 10): The second solution violates the lower axis limit.
Bit 1 (value 20): The second solution violates the upper axis limit.

Values > 0
Hundreds
position

Display of a non-defined axis position.
Bit 0 (value 100): The position of the orientation axis is not defined,

i.e. the requested orientation is achieved with
each arbitrary setting of the rotary axis (polar po‐

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1593

System variable Meaning
sition). This information is also contained in the
$P_ORI_SOL system variable.

Of the error numbers that indicate a violation of the axis limits, several can occur
simultaneously. When an axis limit is violated, an attempt is made to reach a position
within the permissible axis limits by adding or subtracting multiples of 360°. If this
is not possible, it is not clearly defined whether the lower or the upper axis limit has
been violated.
If there is no solution for the requested orientation ($P_ORI_SOL = 0), the status of
the orientation axes in the transformation is "0".

Note
$NT_ROT_AX_NAME

This system variable refers to a maximum of three axes used for setting the orientation. It
contains the names of the chain elements ($NK_NAME) that define the machine axes (rotary
axes) that must perform the orientation movements resulting from a kinematic transformation.
The order in which the maximum three rotary axes are contained in this system variable is
irrelevant for the machine kinematics because this is derived from the structure of the kinematic
chains. However, as it defines the order in which other variables access the rotary axes, the
order of the orientation axes in $NT_ROT_AX_NAME must match the kinematic description.

Note
Status information

The status information that shows, for example, that an orientation cannot be achieved or can
only be achieved when relevant axis limits are violated, does not trigger an NC alarm. It is the
responsibility of the user to react suitably to the specified conditions.

19.8.5.3 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK)
The modification of the offset data for rotatable tools is activated in the NC program via the
CUTMOD (in combination with orientable tool carriers) or CUTMODK language command (for
orientation transformations that were defined by means of kinematic chains).

Note

As the orientable tool carriers and orientation transformations that were defined by means of
kinematic chains cannot be active at the same time, there are no conflicts between the two
variants.

Syntax
CUTMOD = <Value>

or

CUTMODK = <Command>

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1594 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Meaning

CUTMOD: Function call in combination with orientable tool carriers
<Value>: Assigned value

Data type: INT
Value: 0 The function is deactivated.

The values supplied from system variables $P_AD... are the same
as the corresponding tool parameters.

> 0 The function is activated if an orientable tool carrier with the speci‐
fied number is active, i.e. the activation is linked to a specific ori‐
entable tool carrier.
The values supplied from system variables $P_AD... may be modi‐
fied with respect to the corresponding tool parameters depending
on the active rotation.
The deactivation of the designated orientable tool carrier tempo‐
rarily deactivates the function; the activation of another orientable
tool carrier permanently deactivates it. This is the reason why in
the first case, the function is re-activated when again selecting the
same orientable tool carrier; in the second case, a new selection
is required - even if at a subsequent time, the orientable tool carrier
is re-activated with the specified number.
The function is not influenced by a reset.

-1 The function is always activated if an orientable tool carrier is ac‐
tive.
When changing the tool carrier or when de-selecting it and a sub‐
sequent new selection, CUTMOD does not have to be set again.

-2 The function is always activated if an orientable tool carrier is ac‐
tive whose number is the same as the currently active orientable
tool carrier.
If an orientable tool carrier is not active, then this has the same
significance as CUTMOD=0.
If an orientable tool carrier is active, then this has the same signif‐
icance as when directly specifying the actual tool carrier number.

< -2 Values less than 2 are ignored, i.e. this case is treated as if CUT‐
MOD was not programmed.
Note:
This value range should not be used as it is reserved for possible
subsequent expansions.

CUTMODK: Function call in combination with orientation transformations that have been defined by
means of kinematic chains

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1595

<Command>: Assigned Command
Data type: STRING
Value: "NEW" The states of an active transformation defined with kinematic

chains relevant for the "Modification of the offset data", the
name of the transformation and the current contour frame
are saved.
Note:
This command is only permissible when a suitable transfor‐
mation (TRAORI_DYN, TRAORI_STAT or TRAANG_K) is
active.

"OFF" Switches the active "Modification of the offset data" off. The
data previously stored with "NEW" is retained.
Note:
This command is also permissible when CUTMODK is not
active. It then remains without effect. Any data set present
for the "Modification of the offset data" is retained.

"ON" With this command, the "Modification of the offset data" is
re-activated with a data set previously stored with the "NEW"
command.
If a transformation with the name of the stored data set is
active when this command is executed, the "Modification of
the offset data" takes effect immediately. Otherwise, the ac‐
tivation is delayed until an active transformation is activated.

"CLEAR" As with the "OFF" command, switches the "Modification of
the offset data" off and also deletes the stored data set.
Note:
This command is also permissible when CUTMODK is not
active.

Note
SD42984 $SC_CUTDIRMOD

The CUTMOD or CUTMODK command replaces the function that can be activated using the
setting data SD42984 $SC_CUTDIRMOD. However, this function remains available
unchanged. However, as it doesn't make sense to use both functions in parallel, it can only be
activated if CUTMOD is equal to zero and CUTMODK is the zero string.

19.8.5.4 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK):
Further information

Further information

Reading modified offset data
The modified offset data is provided in the following system variables and OPI variables:

Meaning System variable OPI variable
Cutting edge position $P_AD[2] cuttEdgeParam2
Holder angle $P_AD[10] cuttEdgeParam10

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1596 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Meaning System variable OPI variable
Cut direction $P_AD[11] cuttEdgeParam11
Clearance angle $P_AD[24] cuttEdgeParam24

The data is always modified with respect to the corresponding tool parameters
($TC_DP2[..., ...] etc.) when the "Modification of the offset data for rotatable tools" function
was activated with the CUTMOD or CUTMODK command and the tool was rotated by an orientable
tool carrier or a suitable orientation transformation.

Further function-relevant system variables

System variable Meaning
$P_CUTMOD_ANG /
$AC_CUTMOD_ANG

Returns the angle through which a tool was rotated in the active machining
plane and the modified cutting edge data available for the CUTMOD and
CUTMODK functions.

$P_CUTMOD /
$AC_CUTMOD

Reads the currently valid value that was last programmed with the CUTMOD
command (number of the tool carrier for which the modification of the offset
data should be activated).
If the last programmed value was CUTMOD = -2 (activation with the currently
active orientable tool carrier), then the value "-2" is not returned in the system
variable, but rather the number of the orientable tool carrier active at the time
of programming.

$P_CUTMODK /
$AC_CUTMODK

Reads the name of the transformation under which the currently valid data set
for the "Modification of the offset data" was created.

$P_CUT_INV /
$AC_CUT_INV

Supplies the value TRUE if the tool is rotated so that the spindle direction of
rotation must be inverted. To do this, the following four conditions must be
fulfilled in the block to which the read operations refer:
1. If a turning or grinding tool is active

(tool types 400 to 599 and / or SD42950 $SC_TOOL_LENGTH_TYPE = 2).
2. The modification of the offset data was activated with the CUTMOD or

CUTMODK command.
3. An orientable tool carrier or an orientation transformation defined with

kinematic chains is active, which was selected with the CUTMOD or
CUTMODK command.

4. The tool is rotated by the orientable tool carrier or the kinematic orientation
transformation so that the resulting normal of the tool cutting edge is
rotated with respect to the initial position by more than 90° (typically 180°).

If at least one of the specified four conditions is not fulfilled, the variable returns
the value FALSE. For tools whose cutting edge position is not defined, the
value of the variable is always FALSE.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1597

System variable Meaning
$P_CUTMOD_ERR Error state after the last call of the CUTMOD function

The CUTMOD function can also be called implicitly for a tool change. At a
reset, the variable is reset to zero. It is reset at every tool change and, if
required, rewritten.
The variable is bit-coded. The bits have the following meanings:
Bit 0: No valid cut direction is defined for the active tool.
Bit 1: The cutting edge angle (clearance angle and holder angle) of the

active tool are both zero.
Bit 2: The clearance angle of the active tool has an impermissible value (<

0° or > 180°).
Bit 3: The holder angle of the active tool has an impermissible value (< 0°

or > 90°).
Bit 4: The plate angle of the active tool has an impermissible value (< 0° or

> 90°).
Bit 5: The cutting edge position - holder angle combination of the active tool

is not permitted (the holder angle must be ≤ 90° for cutting edge po‐
sition 1 to 4; for cutting edge positions 5 to 8 it must be ≥ 90°).

Bit 6: Illegal rotation of the active tool.
The tool was rotated out of the active machining plane by ± 90° (with
a tolerance of about 1°). The cutting edge position is therefore no
longer defined in the machining plane.

Bit 7: The cutting plate is not in the machining plane and the angle between
the cutting plate and the machining plane exceeds the upper limit
specified with the setting data SD42998 $SC_CUT‐
MOD_PLANE_TOL.

Bit 8: The cutting plate is not in the machining plane. Angle α is greater than
1°. Angle α is the angle of rotation around the coordinate axis which
is perpendicular to the axis of rotation of angle β as well as to the axis
of rotation of angle γ (the X axis for G18).

$P_...: Preprocessing variables
$AC_...: Main run variables

All main run variables can be read in synchronized actions. A read access operation from the
preprocessing generates a preprocessing stop.

Plane change
To determine the modified cutting edge position, cutting direction and holder or clearance
angle, the evaluation of the cutting edge in the active plane (G17 - G19) is decisive.

However, if setting data SD42940 $SC_TOOL_LENGTH_CONST (change of the tool length
component when selecting the plane) has a valid non-zero value (plus or minus 17, 18 or 19),
its contents define the plane in which the relevant quantities are evaluated.

This priority rule of the setting data over the G code can be deactivated by setting bit 18 of the
machine data $MC_TOOL_PARAMETER_DEF_MASK. This means that when this bit is set,
the plane defined with the G command of group 6 is still valid.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1598 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Effectiveness of the modified cutting data
The modified cutting edge position and the modified cutting edge reference point are
immediately effective when programming, even for a tool that is already active. A tool does
not have to be re-selected for this purpose.

19.8.6 Example

S: Cutting edge center point
P: Cutting edge reference point
SL: Cutting edge position

Figure 19-54 Tool with cutting edge position 3 and an orientable tool carrier that can rotate the tool
around the B axis.

Program code Comment
N10 $TC_DP1[1,1]=500
N20 $TC_DP2[1,1]=3 ;Cutting edge position
N30 $TC_DP3[1,1]=12
N40 $TC_DP4[1,1]=1
N50 $TC_DP6[1,1]=6
N60 $TC_DP10[1,1]=110 ; Holder angle
N70 $TC_DP11[1,1]=3 ; Cut direction
N80 $TC_DP24[1,1]=25 ; Clearance angle

N90 $TC_CARR7[2]=0 $TC_CARR8[2]=1 $TC_CARR9[2]=0 ; B axis
N100 $TC_CARR10[2]=0 $TC_CARR11[2]=0
$TC_CARR12[2]=1

; C axis

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1599

Program code Comment
N110 $TC_CARR13[2]=0
N120 $TC_CARR14[2]=0
N130 $TC_CARR21[2]=X
N140 $TC_CARR22[2]=X
N150 $TC_CARR23[2]="M"

N160 TCOABS CUTMOD=0
N170 G18 T1 D1 TCARR=2 ; X Y Z
N180 X0 Y0 Z0 F10000 ; 12.000 0.000 1.000

N190 $TC_CARR13[2]=30
N200 TCARR=2
N210 X0 Y0 Z0 ; 10.892 0.000 -5.134
N220 G42 Z–10 ; 8.696 0.000 –17.330
N230 Z–20 ; 8.696 0.000 –21.330
N240 X10 ; 12.696 0.000 –21.330
N250 G40 X20 Z0 ; 30.892 0.000 –5.134

N260 CUTMOD=2 X0 Y0 Z0 ; 8.696 0.000 –7.330
N270 G42 Z–10 ; 8.696 0.000 –17.330
N280 Z–20 ; 8.696 0.000 –21.330
N290 X10 ; 12.696 0.000 –21.330
N300 G40 X20 Z0 ; 28.696 0.000 –7.330

N310 M30

The numerical values in the comments specify the end of block positions in the machine coordinates
(MCS) in the sequence X → Y → Z.

Explanations
In block N180, initially the tool is selected for CUTMOD=0 and non-rotated tool holders that can
be orientated. As all offset vectors of the tool holder that can be orientated are 0, the position
that corresponds to the tool lengths specified in $TC_DP3[1,1] and $TC_DP4[1,1] is
approached.

The tool holder that can be orientated with a rotation of 30° around the B axis is activated in
block N200. As the cutting edge position is not modified due to CUTMOD=0, the old cutting edge
reference point is decisive just as before. This is the reason why in block N210 the position is
approached, which keeps the old tool nose reference point at the zero (i.e. the vector (1, 12)
is rotated through 30° in the Z/X plane).

In block N260, contrary to block N200, CUTMOD=2 is effective. As a result of the tool holder
rotation that can be orientated, the modified cutting edge position becomes 8. Deviating axis
positions also result from this.

The tool radius compensation (TRC) is activated in blocks N220 and/or N270. The different
cutting edge position in both program sections has no effect on the end positions of the blocks
in which the TRC is active; the corresponding positions are therefore identical. The different
cutting edge positions only become effective again in the deselect blocks N260 and/or N300.

W1: Tool offset
19.8 Modification of the offset data for rotatable tools

Basic Functions
1600 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.9 Incrementally programmed compensation values

19.9.1 G91 extension

Requirements
Incremental programming with G91 is defined such that the compensation value is traversed
additively to the incrementally programmed value when a tool compensation is selected.

Applications
For applications such as scratching, it is necessary only to traverse the path programmed in
the incremental coordinates. The activated tool compensation is not traversed.

Sequence
Selection of a tool compensation with incremental programming

● Scratch workpiece with tool tip.

● Save the actual position in the basic frame (set actual value) after reducing it by the tool
compensation.

● Traverse incrementally from the zero position.

Activation
It is possible to set whether a changed tool length is traversed with FRAME and incremental
programming of an axis, or whether only the programmed path is traversed with the setting
data:

SD42442 $SC_TOOL_OFFSET_INCR_PROG (tool length compensations)

Zero offset / frames G91
It is possible to set whether a zero offset is traversed as standard with value = 1 with FRAME
and incremental programming of an axis, or whether only the programmed path is traversed
with value = 0 with the setting data:

SD42440 $SC_FRAME_OFFSET_INCR_PROG (zero offset in frames)

For further information, see Section "K2: Axis Types, Coordinate Systems, Frames
(Page 705)".

W1: Tool offset
19.9 Incrementally programmed compensation values

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1601

Supplementary condition
If the behavior is set such that the offset remains active even after the end of the program and
RESET
MD20110 $MC_RESET_MODE_MASK, bit6=1 (specification of the controller initial setting
after reset / TP end)
and if an incremental path is programmed in the first part program block, the compensation is
always traversed additively to the programmed path.

Note

With this configuration, part programs must always begin with absolute programming.

19.9.2 Traversing in the direction of tool orientation (MOVT)

Typical application
On machines with toolholders with orientation capability, traversing should take place in the
tool direction (typically, when drilling) without activating a frame (e.g., using TOFRAME or
TOROT), on which one of the axes points in the direction of the tool.

This is also true of machines on which a frame defining the oblique plane is active during
oblique machining operations, but the tool cannot be set exactly perpendicular because an
indexed toolholder (Hirth tooth system) is restricting the setting of the tool orientation.

In these cases it is then necessary - contrary to the motion actually requested perpendicular
to the plane - to drill in the tool direction, as the drill would otherwise not be guided in the
direction of its longitudinal axis, which, among other things, would lead to breaking of the drill.

MOVT
The end point of such a motion is programmed with MOVT= The programmed value is
effective incrementally in the tool direction as standard. The positive direction is defined from
the tool tip to the toolholder. The content of MOVT is thus generally negative for the infeed
motion (when drilling), and positive for the retraction motion. This corresponds to the situation
with normal paraxial machining, e.g., with G91Z

If the motion is programmed in the form MOVT=AC(...), MOVT functions absolutely. In this
case a plane is defined, which runs through the current zero point, and whose surface normal
vector is parallel to the tool orientation. MOVT then gives the position relative to this plane:

W1: Tool offset
19.9 Incrementally programmed compensation values

Basic Functions
1602 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Figure 19-55 Definition of the position for absolute programming of a motion in tool direction

The reference to this auxiliary plane serves only to calculate the end position. Active frames
are not affected by this internal calculation.

Instead of MOVT= ... it is also possible to write MOVT=IC(...) if it is to be plainly visible
that MOVT is to function incrementally. There is no functional difference between the two forms.

Supplementary conditions
The following supplementary conditions apply to programming with MOVT:

● It is independent of the existence of a toolholder with orientation capability. The direction
of the motion is dependent on the active plane. It runs in the direction of the vertical axes,
i.e., with G17 in Z direction, with G18 in Y direction and with G19 in X direction. This applies
both where no toolholder with orientation capability is active and for the case of a toolholder
with orientation capability without rotary tool or with a rotary tool in its basic setting.

● MOVT acts similarly for active orientation transformation (345axis transformation).

● If in a block with MOVT the tool orientation is changed simultaneously (e.g., active 5axis
transformation by means of simultaneous interpolation of the rotary axes), the orientation
at the start of the block is decisive for the direction of movement of MOVT. The path of the
tool tip (TCP - Tool Center Point) is not affected by the change in orientation.

● Linear or spline interpolation (G0, G1, ASPLINE, BSPLINE, CSPLINE) must be active.
Otherwise, an alarm is produced. If a spline interpolation is active, the resultant path is
generally not a straight line, since the end point determined by MOVT is treated as if it had
been programmed explicitly with X, Y, Z.

● A block with MOVT must not contain any programming of geometry axes (alarm 14157).

W1: Tool offset
19.9 Incrementally programmed compensation values

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1603

19.10 Assignment of tool length components to geometry axes

19.10.1 Assignment according to tool type and working plane.
The values of the tool parameters length 1 ... 3 are stored in the system variables
$TC_DP3 ... $TC_DP5 (see Chapter "Tool cutting edge (Page 1475)"). The assignment to the
geometry axes and therefore the resultant cutting direction of the tool length components
depends on the tool type ($TC_DP1) and the active machining plane (G17/G18/G19).

Table 19-1 Turning/grinding tools ($TC_DP1 = 400 … 599)

Working plane Length 1 Length 2 Length 3
G17 (X/Y) Y X Z
G18 (Z/X) X Z Y
G19 (Y/Z) Z Y X

Table 19-2 Milling tools / special tools ($TC_DP1 <> 400 … 599)

Working plane Length 1 Length 2 Length 3
G17 (X/Y) Z Y X
G18 (Z/X) Y X Z
G19 (Y/Z) X Z Y

19.10.2 Assignment when changing plane
The assignment of tool length components (length, wear, and tool base dimension) to the
geometry axes does not change when the machining plane is changed if the following setting
data is set to not equal to zero:

SD42940 $SC_TOOL_LENGTH_CONST <> 0

The assignment of the tool length components to the geometry axes is then derived from the
ones and tens position of the setting data as shown in the following tables

Table 19-3 Turning / grinding tools ($TC_DP1 = 400 … 599)

SD42940 Assignment of tool length components to geometry axes
Length L1 Length L2 Length L3

= x17 Y X Z
= x18 X Z Y
= x19 Z Y X
= -x17 X Y Z
= -x18 Z X Y
= -x19 Y Z X

W1: Tool offset
19.10 Assignment of tool length components to geometry axes

Basic Functions
1604 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Table 19-4 Milling / special tools ($TC_DP1 <> 400 … 599)

SD42940 Assignment of tool length components to geometry axes
Length L1 Length L2 Length L3

= x17 Z Y X
= x18 Y X Z
= x19 X Z Y
= -x17 Z X Y
= -x18 Y Z X
= -x19 X Y Z

Each value not equal to 0 and not equal to one of the six listed values is evaluated as value
"17" (for milling/special tools) or "18" (for turning/grinding tools)..

Note
Assignment of tool orientation components

The assignment of the tool orientation components is not influenced by SD42940
$SC_TOOL_LENGTH_CONST.

If necessary, the following setting data must be adapted:
● SD42954 $SC_TOOL_ORI_CONST_M
● SD42956 $SC_TOOL_ORI_CONST_T

See Chapter "Tool orientation for plane change (Page 1606)".

19.10.3 Assignment independent of tool type
With the following setting data, the assignment of the tool length components (length, wear
and tool base dimension) to the geometry axes that is independent of the actual tool type
($TC_DP1) can be defined:

SD42950 $SC_TOOL_LENGTH_TYPE = <value>

<value> Assignment of the tool length components
0 (default value) In accordance with the specification in the system variable $TC_DP1[...].

A distinction is made between the following tool types:
● $TC_DP1[...] == 400 ... 599 ⇒ turning/grinding tools
● $TC_DP1[...] <> 400 ... 599 ⇒ milling/special tools

1 Always as for milling/special tools.
2 Always as for turning/grinding tools.

W1: Tool offset
19.10 Assignment of tool length components to geometry axes

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1605

<value> Assignment of the tool length components
3 Activates setting data SD42942 $SC_TOOL_LENGTH_CONST_T.

With this setting, it is possible to define the assignment of the tool length compo‐
nents that is effective on a machining plane change (Page 1604) separately for
milling/special tools and turning/grinding tools:
SD42940
$SC_TOOL_LENGTH_CONST

Assignment for milling/special tools

SD42942
$SC_TOOL_LENGTH_CONST_T

Assignment for turning/grinding tools

Example:
SD42940 $SC_TOOL_LENGTH_CONST = 17
SD42942 $SC_TOOL_LENGTH_CONST_T = 18
Tool length compensations for milling/special tools take effect in plane G17; length
compensations for turning/grinding tools take effect in plane G18.

> 3 As for SD42950 = 0.

19.11 Paraxial tool orientation

19.11.1 Basic tool orientation
The basic tool orientation results from the active machining plane:

Working plane Tool orientation (basic setting)
G17 (X/Y) Parallel to Z
G18 (Z/X) Parallel to Y
G19 (Y/Z) Parallel to X

19.11.2 Tool orientation for plane change
A setting in the setting data determines how the tool orientation changes when the machining
plane is changed.

● SD42954 $SC_TOOL_ORI_CONST_M (for milling/special tools)

● SD42956 $SC_TOOL_ORI_CONST_T (for turning/grinding tools)

W1: Tool offset
19.11 Paraxial tool orientation

Basic Functions
1606 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Standard behavior
With the default setting (SD42954 and SD42956 = 0), the tool orientation changes with a plane
change as follows:

Plane change Change in tool orientation
G17 → G18 1. Rotation by -90° about the Z coordinate

2. Rotation by -90° about the X coordinateG18 → G19
G19 → G17
G18 → G17 1. Rotation by 90° about the X coordinate

2. Rotation by 90° about the Z coordinateG19 → G18
G17 → G19

Constant tool orientation for a plane change
If SD42954 or SD42956 are not equal to zero, a right-handed orthogonal tool coordinate
system is defined, which remains unchanged if the machining plane is changed (G17-G19).
The orientation coordinate system is determined by the orientation vector and an orientation
normal vector perpendicular to it. The basic orientation is defined by the ones and tens position
of the setting data:

Table 19-5 Milling / special tools ($TC_DP1 <> 400 … 599)

SD42954 Coordinate system of the tool orientation
Orientation vector Orientation normal vector

= xx17 (0, 0, 1) (0, 1, 0)
= xx18 (0, 1, 0) (1, 0, 0)
= xx19 (1, 0, 0) (0, 0, 1)

Table 19-6 Turning / grinding tools ($TC_DP1 = 400 … 599)

SD42956 Coordinate system of the tool orientation
Orientation vector Orientation normal vector

= xx17 (0, 0, 1) (0, 1, 0)
= xx18 (0, 1, 0) (1, 0, 0)
= xx19 (1, 0, 0) (0, 0, 1)

Each value not equal to 0 and not equal to one of the three listed values is evaluated as value
"17" (for milling/special tools) or "18" (for turning/grinding tools).

References:
A detailed description of SD42954 and SD42956 is given in the System variables List Manual.

Note

In the case of tools whose orientation is defined by cutting edge data ($TC_DPV…), SD42954
or SD42956 is usually ignored (see Chapter "Parameterizable basic tool orientation
(Page 1608)").

W1: Tool offset
19.11 Paraxial tool orientation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1607

19.12 Parameterizable basic tool orientation

19.12.1 Function

Note
Tool T and cutting edge D

In the following, the syntax [...] represents [<t>, <d>] in relation to the system variables of the
basic tool orientation. In this regard, <t> designates the number of the tool T=<t> and <d> the
number of the tool cutting edge D=<d>.

The "Parameterizable basic tool orientation" function allows each tool cutting edge to be
assigned an individual initial orientation with the following system variables:

● Selection of a predefined orientation vector

– $TC_DPV[...]: Orientation vector (values 1 ... 6)

● Definition of an orientation vector.

– $TC_DPV3[...]: L1 component of the orientation vector

– $TC_DPV4[...]: L2 component of the orientation vector

– $TC_DPV5[...]: L3 component of the orientation vector

● Definition of a normal vector for the orientation vector

– $TC_DPVN3[...]: L1 component of the normal vector

– $TC_DPVN4[...]: L2 component of the normal vector

– $TC_DPVN5[...]: L3 component of the normal vector

If the system variable $TC_DPV[...] is equal to zero, the three system variables $TC_DPV3 -
5[...] define the direction vector of the basic tool orientation. Additionally, the three system
variables $TC_DPVN3 - 5[...] can define the orientation of the tool in the plane perpendicular
to the orientation vector. The magnitudes of the orientation vectors are immaterial.

19.12.2 Commissioning

19.12.2.1 Activation
The "Parameterizable basic tool orientation" is activated via the following machine data:

W1: Tool offset
19.12 Parameterizable basic tool orientation

Basic Functions
1608 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD18114 $MN_MM_ENABLE_TOOL_ORIENTATION = <value>

<value> Meaning
0 The function "Parameterizable basic tool orientation" is not active.
1 Activation of system variables:

● Function selection: $TC_DPV[...]
With the system variable $TC_DPV[...] = 1, 2, ... 6, one of six predefined basic tool orienta‐
tions can be assigned for each tool cutting edge D=<d> of a tool T=<t>.

2 Activation of system variables:
● Function selection: $TC_DPV[...]
● Orientation vector: $TC_DPV3[...], $TC_DPV4[...] and $TC_DPV5[...]
With the system variables $TC_DPV[...] = 0 and $TC_DPV3[...], $TC_DPV4[...] and
$TC_DPV5[...], any orientation vector can be assigned for each tool cutting edge D=<d> of
a tool T=<t>.

3 Activation of system variables:
● Function selection: $TC_DPV[...]
● Orientation vector: $TC_DPV3[...], $TC_DPV4[...] and $TC_DPV5[...]
● Normal vector for the orientation vector: $TC_DPVN3[...], $TC_DPVN4[...] and

$TC_DPVN5[...]
With the setting $TC_DPV[...] = 0, any orientation vector can be assigned for each tool cutting
edge D=<d> of a tool T=<t> with the system variables $TC_DPV3[...], $TC_DPV4[...] and
$TC_DPV5[...]. Additionally, a normal vector can be defined for the orientation vector with
the system variables $TC_DPVN3[...], $TC_DPVN4[...] and $TC_DPVN5[...].

19.12.2.2 Parameterization

Assignment of the system variables $TC_DPVx[...]
A differentiation is made between the following tool types in accordance with the specification
in system variable $TC_DP1[...]:

● $TC_DP1[...] == 400 ... 599 ⇒ turning/grinding tools

● $TC_DP1[...] <> 400 ... 599 ⇒ milling/special tools

The basic tool orientation programmed in $TC_DPVx[...] is assigned to the coordinate axes
depending on the tool type.

The tool type may be changed over by the setting in setting data SD42950
$SC_TOOL_LENGTH_TYPE (as described in Chapter "Assignment independent of tool type
(Page 1605)" for tool length components).

If no other orientation is defined in setting data SD42954 $SC_TOOL_ORI_CONST_M and
SD42956 $SC_TOOL_ORI_CONST_T (Page 1606), the standard case (G17 for milling/special
tools, G18 for turning/grinding tools) applies for assignment of the system variables
$TC_DPVx[...]:

Tool type TC_DPV3[…] TC_DPV4[…] TC_DPV5[…]
Turning/grinding tools X Z Y
Milling/special tools Z Y X

W1: Tool offset
19.12 Parameterizable basic tool orientation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1609

Note
SD42954 / SD42956

The assignment of the system variables $TC_DPVx[...] can only be changed with SD42954
$SC_TOOL_ORI_CONST_M and SD42956 $SC_TOOL_ORI_CONST_T if the 1000s position
is equal to "1"

Irrespective of the value of setting data SD42950 $SC_TOOL_LENGTH_TYPE, SD42954 is
only effective for a tool for which parameter $TC_DP1[...] defines a milling tool. Analogously,
SD42956 is only effective for a tool for which parameter $TC_DP1[...] defines a turning/grinding
tool.

19.12.3 Programming
Using system variables $TC_DPV3 - 5[...] or $TC_DPV[...], a separate basic orientation can
be assigned to every tool cutting edge.

Setting options
Basically, the following setting options are available

● $TC_DPV[...] == 0 AND $TC_DPV3 - 5[...] == 0
The vector for the basic tool orientation results from the active machining plane:

– G17: Z coordinate

– G18: Y coordinate

– G19: X coordinate

See also "Paraxial tool orientation (Page 1606)".

● $TC_DPV[...] == 0 AND $TC_DPV3 - 5[...] <> 0
The vector for the basic tool orientation is prescribed by $TC_DPV3 - 5[...]:

– $TC_DPV3[...] = <value in L1 direction>

– $TC_DPV4[...] = <value in L2 direction>

– $TC_DPV5[...] = <value in L3 direction>

Example:
Basic tool orientation points in the direction of the bisectors in the L1-L3 plane, i.e. for a
milling tool and active plane G17, in the direction of the bisectors in the ZX plane.
$TC_DPV[1,1] = 0
$TC_DPV3[1,1] = 1.0
$TC_DPV4[1,1] = 0.0
$TC_DPV5[1,1] = 1.0

● $TC_DPV[...] == 1, 2, ... 6
The vector for the basic tool orientation is prescribed by $TC_DPV[...].
The following tables show which basic tool orientations are predefined and can be selected
via $TC_DPV[...].

W1: Tool offset
19.12 Parameterizable basic tool orientation

Basic Functions
1610 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Selection of a predefined orientation vector
$TC_DPV[...] = <value>

Table 19-7 Turning / grinding tools ($TC_DP1 = 400 … 599)

<value> Meaning
0 $TC_DPV3[...] $TC_DPV5[...] $TC_DPV4[...]
1 0 1 0
2 1 0 0
3 0 0 1
4 0 -1 0
5 -1 0 0
6 0 0 -1

Table 19-8 Milling / special tools ($TC_DP1 <> 400 … 599)

<value> Meaning
0 $TC_DPV5[...] $TC_DPV4[...] $TC_DPV3[...]
1 0 0 1
2 0 1 0
3 1 0 0
4 0 0 -1
5 0 -1 0
6 -1 0 0

Examples

Turning/grinding tools:
$TC_DPV[...] = 2 Corresponds

to
$TC_DPV3[...] = 1
$TC_DPV4[...] = 0
$TC_DPV5[...] = 0

Milling/special tools:
$TC_DPV[...] = 3 Corresponds

to
$TC_DPV3[...] = 0
$TC_DPV4[...] = 0
$TC_DPV5[...] = 1

19.12.4 Examples
A milling tool is defined with length L1=10 whose basic tool orientation is in the bisector of the
X-Z plane.

W1: Tool offset
19.12 Parameterizable basic tool orientation

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1611

Example 1

Program code Comment
$SC_TOOL_LENGTH_TYPE=2 ; assignment to the coordinate axes as for turning/

grinding tools.
$SC_TOOL_ORI_CONST_M=1019 ; Working plane G19
N10 $TC_DP1[1,1]=120 ; Tool type: Milling tool
N20 $TC_DP3[1,1]=10 ; Length compensation vector: L1=10
N30 $TC_DPV[1,1]=0 ; Basic tool orientation via $TC_DPV3-5
N40 $TC_DPV3[1,1]=1 ; Z coordinate
N50 $TC_DPV4[1,1]=0 ; Y coordinate
N60 $TC_DPV5[1,1]=1 ; X coordinate
N70 TRAFOON(...) ; Activating a transformation.
N80 G17 F1000 X0 Y0 Z0 T1 D1 ; Activate tool and approach zero position.
 ; Plane selection G18 in block N80 is only rele-

vant for length compensations.
...

Example 2

Program code Comment
N10 $TC_DP1[1,1]=120 ; Tool type: Milling tool
N20 $TC_DP3[1,1]=10 ; Length compensation vector: L1=10
N30 $TC_DPV[1,1]=0 ; Basic tool orientation via $TC_DPV3-5
N40 $TC_DPV3[1,1]=1 ; Z coordinate
N50 $TC_DPV4[1,1]=0 ; Y coordinate
N60 $TC_DPV5[1,1]=1 ; X coordinate
N70 TRAFOON(...) ; Activating a transformation.
N80 G17 F1000 X0 Y0 Z0 T1 D1 ; Activate tool and approach zero position.

; Due to tool length L1=10 =>
; Machine positions: X=0, Y=0, Z=10

N90 MOVT=10 ; Incr. Traversing movement in the tool direction.
; Resulting axis positions: X=7.071 Y=0 Z=17.071

N100 M30

W1: Tool offset
19.12 Parameterizable basic tool orientation

Basic Functions
1612 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.13 Special handling of tool compensations

19.13.1 Relevant setting data

SD42900- 42960
Setting data SD42900 - SD42940 can be used to make the following settings with reference
to tool compensation:

● Sign of the tool length

● Sign of the wear

● Behavior of the wear components when mirroring geometry axes

● Behavior of the wear components when changing the machining plane via setting data

● Allocation of the tool length components independent of actual tool type

● Transformation of wear components into a suitable coordinate system for controlling the
effective tool length

Note

In the following description, the wear includes the total values of the following components:
● Wear values: $TC_DP12 bis $TC_DP20
● Sum offset, consisting of:

– Wear values: $SCPX3 to $SCPX11
– Setup values: $ECPX3 to $ECPX11

You will find detailed information about sum and tool offsets in:

References:
Function Manual Tool Management

Programming Manual. Fundamentals; Tool Offsets

Required setting data
● SD42900 $SC_MIRROR_TOOL_LENGTH (mirroring of tool length components and

components of the tool base dimension) (Page 1614)

● SD42910 $SC_MIRROR_TOOL_WEAR (mirroring of wear values of tool length
components) (Page 1614)

● SD42920 $SC_WEAR_SIGN_CUTPOS (sign evaluation of the wear components)
(Page 1615)

● SD42930 $SC_WEAR_SIGN (inverts the sign of the wear dimensions) (Page 1615)

● SD42935 $SC_WEAR_TRANSFORM (transformation of wear values) (Page 1632)

● SD42940 $SC_TOOL_LENGTH_CONST (allocation of the tool length components to the
geometry axes) (Page 1604)

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1613

● SD42950 $SC_TOOL_LENGTH_TYPE (allocation of the tool length components
independent of tool type) (Page 1605)

● SD42960 $SC_TOOL_TEMP_COMP (tool length offsets) (Page 1617)

19.13.2 Mirroring tool lengths

Activation
Tool length mirroring is activated via the setting data:

SD42900 $SC_MIRROR_TOOL_LENGTH <> 0 (TRUE) (Sign change tool length when
mirroring)

Function
The following components are mirrored by inverting the sign:

● Tool lengths: $TC_DP3, $TC_DP4, $TC_DP5

● Tool base dimensions: $TC_DP21, $TC_DP22, $TC_DP23

Mirroring is performed for all tool base dimensions whose associated axes are mirrored. Wear
values are not mirrored.

Mirror wear values
The following setting data should be set in order to mirror the wear values:

SD42910 $SC_MIRROR_TOOL_WEAR <> 0 (Sign change tool wear when mirroring)

Inverting the sign mirrors the wear values of the tool length components whose associated
axes are mirrored.

Figure 19-56 Application example: Double-spindle turning machine

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
1614 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.13.3 Mirroring wear lengths

Activation
Wear length mirroring is activated by:

SD42920 $SC_WEAR_SIGN_CUTPOS <> 0 (TRUE) (Sign of wear for tools with cutting edge
systems)

Function

Length of cutting edge Length 1 Length 2
1 --- ---
2 --- Inverted
3 Inverted Inverted
4 Inverted ---
5 --- ---
6 --- ---
7 --- Inverted
8 Inverted ---
9 --- ---

In the case of tool types without a relevant cutting edge position, the wear length is not mirrored.

Note

The mirroring (sign inversion) in one or more components can cancel itself through a
simultaneous activation of the functions:

Tool length-mirroring (SD42900 <> 0)

And:

Tool length-mirroring (SD42920 <> 0)

SD42930 $SC_WEAR_SIGN
Setting data not equal to zero:

Inverts the sign of all wear dimensions. This affects both the tool length and other variables
such as tool radius, rounding radius, etc.

Entering a positive wear dimension makes the tool "shorter" and "thinner".

Activation of modified setting data
When the setting data described above are modified, the tool components are not reevaluated
until the next time a tool edge is selected. If a tool is already active and the data of this tool
are to be reevaluated, the tool must be selected again.

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1615

Example:

N10 $SC_WEAR_SIGN = 0 ; No sign inversion of the wear values
N20 $TC_DP1[1,1] = 120 ; End mill
N30 $TC_DP6[1,1] = 100 ; Tool radius 100 mm
N40 $TC_DP15[1,1] = 1 ; Wear dimension of tool radius 1 mm, resulting

tool radius 101 mm
N100 T1 D1 G41 X150 Y20
....
N150 G40 X300N10
....
N200 $SC_WEAR_SIGN = 1 ; Sign inversion for all wear values; the new ra-

dius of 99 mm is activated on a new selection
(D1). Without D1, the radius would continue to
be 101 mm.

N300 D1 G41 X350 Y-20
N310

The same applies in the event that the resulting tool length is modified due to a change in the
mirroring status of an axis. The tool must be selected again after the mirror command, in order
to activate the modified tool-length components.

19.13.4 Tool lengths in the WCS, allowing for the orientation

Change tool or working plane
The values displayed for the tool correspond to the expansion in the WCS. If a toolholder with
an inclined clamping position is to be used, you should make sure that the transformation used
supports the toolholder. If this is not the case, incorrect tool dimensions will be displayed. When
changing the working plane from G17 to G18 or G19, you should ensure that the transformation
can also be used for these working planes. If the transformation is only available for G17
machining, the dimensions continue to be displayed for a tool in the Z direction after the plane
change.

When transformation is deactivated, the basic tool is displayed in the x, y or z direction,
according to the working plane. Allowance is made for a programmed toolholder. These tool
dimensions are not altered when traversing without a transformation.

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
1616 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.13.5 Tool length offsets in tool direction

Temperature compensation in real time
On 5-axis machines with a moving tool, temperature fluctuations can occur in the machining
heads. These can result directly in expansion fluctuations which are transmitted to the tool
spindle in the form of linear expansion. A typical case on 5-axis heads, for example, is thermal
expansion in the direction of the longitudinal spindle axis.

It is possible to compensate this thermal expansion even when the tool is orientated by
assigning the temperature compensation values to the tool rather than to the machine axes.
In this way, linear expansion fluctuations can be compensated even when the tool orientation
changes.

Using the orientation transformation whose direction is determined by the current tool
orientation, it is possible to overlay motions in real time and rotate them simultaneously. At the
same time, the compensation values are adjusted continuously in the tool coordinate system.

The temperature compensation only becomes effective if the axis to be compensated is really
referenced.

Activation
The temperature compensation in the tool direction is activated by setting the following
machine data to a value not equal to zero.

MD20390 $MC_TOOL_TEMP_COMP_ON (activation of temperature compensation for tool
length)

In addition, bit 2 must be set for each affected channel axis in the machine data:

MD32750 $MA_TEMP_COMP_TYPE [<axis index>] (temperature compensation type)

This can be more than three axes in cases where more than three channel axes in succession
can be temporarily assigned to geometry axes as a result of geometry axis replacement of
transformation switchover. If this bit is not set for a particular channel axis, the compensation
value cannot be applied in the axis. This does not have any effect on other axes. In this case,
an alarm is not output.

Applicability
The temperature compensation in the tool direction is only effective with generic 5-axis
transformations with:

● Transformation type 24
Two axes rotate the tool

● Transformation type 56
One axis rotates the tool, the other axis rotates the workpiece without temperature
compensation

In generic 5-axis transformation with:

● Transformation type 40
The tool orientation is constant with a rotary workpiece, which means that the motion of the
rotary axes on the machine does not affect the temperature compensation direction.

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1617

Temperature compensation in the tool direction also works in conjunction with orientation
transformations (not generic 5-axis transformations) with:

● Transformation type 64 to 69
Rotating linear axis

Note

Temperature compensation can be activated with all other types of transformation. It is not
affected by a change in tool orientation. The axes move as if no orientation transformation
with temperature compensation were active.

Limit values
The compensation values are restricted to the maximum values by the machine data:

MD20392 $MC_TOOL_TEMP_COMP_LIMIT[0...2] (maximum temperature compensation for
tool length)

The limit value default setting is 1 mm. If a temperature compensation value higher than this
limit is specified, it will be limited without an alarm.

SD42960
The three temperature compensation values together form a compensation vector and are
contained in setting data:

SD42960 $SC_TOOL_TEMP_COMP[0...2] (temperature compensation with reference to
tools)

The setting data is user-defined, e.g. using synchronized actions or from the PLC. The
compensation values can, therefore, also be used for other compensation purposes.

In the initial state or when orientation transformation is deactivated, all three compensation
values apply in the direction of the three geometry axes (in the typical order X, Y, Z). The
assignment of components to geometry axes is independent of the tool type (turning, milling
or grinding tools) and the selected machining plane G17 to G19. Changes to the setting data
values take effect immediately.

Toolholder with orientation capability
If a toolholder with orientation capability is active, the temperature compensation vector is
rotated simultaneously to any change in orientation. This applies independently of any active
orientation transformation.

If a toolholder with orientation capability is active in conjunction with a generic 5-axis
transformation or a transformation with rotating linear axis, the temperature compensation
vector is subjected to both rotations.

Note

While transformations with rotating linear axes take changes in the tool vector (length) into
account, they ignore its change in orientation, which can be effected by a toolholder with
orientation capability.

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
1618 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Temperature compensation values immediately follow any applied change in orientation. This
applies in particular when an orientation transformation is activated or deactivated.

The same is true when the assignment between geometry axes and channel axes is changed.
The temperature compensation value for an axis is reduced to zero (interpolatively), for
example, when it ceases to be a geometry axis after a transformation change. Conversely,
any temperature compensation value for an axis which changes over to geometry axis status
is applied immediately.

Examples

Temperature compensation in tool direction
Example of a 5-axis machine with rotating tool on which the tool can be rotated around the C
and B axes.

In its initial state, the tool is parallel to the Z axis. If the B axis is rotated through 90 degrees,
the tool points in the X direction.

Therefore, a temperature compensation value in the following setting data is also effective in
the direction of the machine X axis if transformation is active:

SD42960 $SC_TOOL_TEMP_COMP[2] (temperature compensation with reference to tools)

If the transformation is deactivated with the tool in this direction, the tool orientation is, by
definition, parallel again to the Z axis and thus different to its actual orientation. The
temperature offset in the X axis direction is therefore reduced to zero and reapplied
simultaneously in the Z direction.

Example of a 5-axis machine with rotating tool (transformation type 24). The relevant machine
data is listed below:

● The first rotary axis rotates around Z, C-axis

● The second rotary axis rotates around Y, B-axis

The essential machine data is shown in the table below:

Machine data Value Remark
MD20390 $MC_TOOL_TEMP_COMP_ON = TRUE Temperature compensation active
MD32750 $MA_TEMP_COMP_TYPE[AX1] = 4 Compensation in tool direction
MD32750 $MA_TEMP_COMP_TYPE[AX2] = 4 Compensation in tool direction
MD32750 $MA_TEMP_COMP_TYPE[AX3] = 4 Compensation in tool direction

 Assignment of transformation type

24
MD24100 $MC_TRAFO_TYPE_1 = 24 Transformer type 24 in 1st channel
MD24110 $MC_TRAFO_AXES_IN_1[0] = 1 First axis of the transformation
MD24110 $MC_TRAFO_AXES_IN_1[1] = 2 Second axis of the transformation
MD24110 $MC_TRAFO_AXES_IN_1[2] = 3 Third axis of the transformation
MD24110 $MC_TRAFO_AXES_IN_1[3] = 5 Fifth axis of the transformation
MD24110 $MC_TRAFO_AXES_IN_1[4] = 4 Fourth axis of the transformation

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1619

Machine data Value Remark
MD24120 $MC_TRAFO_GEOAX_AS‐
SIGN_TAB_1[0]

= 1 Geometry axis for channel axis 1

MD24120 $MC_TRAFO_GEOAX_AS‐
SIGN_TAB_1[1]

= 2 Geometry axis for channel axis 2

MD24120 $MC_TRAFO_GEOAX_AS‐
SIGN_TAB_1[2]

= 3 Geometry axis for channel axis 3

MD24570 $MC_TRAFO5_AXIS1_1[0] = 0.0
MD24570 $MC_TRAFO5_AXIS1_1[1] = 0.0 Direction
MD24570 $MC_TRAFO5_AXIS1_1[2] = 1.0 First rotary axis is parallel to Z

MD24572 $MC_TRAFO5_AXIS1_2[0] = 0.0 Direction
MD24572 $MC_TRAFO5_AXIS1_2[1] = 1.0 Second rotary axis is parallel to Y
MD24572 $MC_TRAFO5_AXIS1_2[2] = 0.0

MD25574 $MC_TRAFO5_BASE_ORIENT_1[0] = 0.0
MD25574 $MC_TRAFO5_BASE_ORIENT_1[1] = 0.0 Basic tool orientation
MD25574 $MC_TRAFO5_BASE_ORIENT_1[2] = 1.0 In Z direction

Temperature compensation values in the NC program
The compensation values assigned to axes X and Z are not zero and are applied for
temperature compensation with respect to tool length. The machine axis positions reached in
each case are specified as comments in the program lines.

Program code Comment
$SC_TOOL_TEMP_COMP[0] = -0.3 ; Compensation value in X
$SC_TOOL_TEMP_COMP[1] = 0.0
$SC_TOOL_TEMP_COMP[2] = -1.0 ; Compensation value in Z
 ; Position setpoints of the machine

axes
N10 G74 X0 Y0 Z0 A0 B0 ; X Y Z
N20 X20 Y20 Z20 F10000 ; 20.30 20.00 21.00
N30 TRAORI() ; 20.30 20.00 21.00
N40 X10 Y10 Z10 B90 ; 11.00 10.00 9.70
N50 TRAFOOF ; 10.30 10.00 11.00
N60 X0 Y0 Z0 B0 C0 ; 0.30 0.00 1.00
N70 M30

With the exception of block N40, temperature compensation always acts in the original
directions, as the tool is pointing in the basic orientation direction. This applies particularly in
block N50. The tool is actually still pointing in the direction of the X axis because the B axis is

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
1620 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

still at 90 degrees. However, because the transformation is already deactivated, the applied
orientation is parallel to the Z axis again.

Machine data Value Remark
MD20390 $MC_TOOL_TEMP_COMP_ON = TRUE Temperature compensation active
MD32750 $MA_TEMP_COMP_TYPE[AX1] = 4 Compensation in tool direction
MD32750 $MA_TEMP_COMP_TYPE[AX2] = 4 Compensation in tool direction
MD32750 $MA_TEMP_COMP_TYPE[AX3] = 4 Compensation in tool direction

Additional references
For more details on "Temperature compensation" see:

References:
Function Manual Extended Functions; Compensations (K3)

For information on "Generic 5-axis transformations" see:

References:
Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

19.13.6 Special characteristics of orientable tool carriers

Setting data SD42900 - SD42950
Setting data SD42900 - SD42950 have no effect on the components of an active tool carrier
with orientation capability. The calculation with a tool carrier with orientation capability always
allows for a tool with its total resulting length (tool length + wear + tool base dimension). The
calculation of the resulting total length allows for all modifications caused by the setting data.

Note

When tool carriers with orientation capability are used, it is common to define all tools for a
non-mirrored basic system, even those, which are only used for mirrored machining. When
machining with mirrored axes, the tool carrier is then rotated such that the actual position of
the tool is described correctly. All tool-length components then automatically act in the correct
direction, dispensing with the need for control of individual component evaluation via setting
data, depending on the mirroring status of individual axes.

The use of tool carriers with orientation capability is also practical if the physical characteristics
of the machine type prevents tools, which are permanently installed with different orientations,
from being rotated. Tool dimensioning can then be performed uniformly in a basic orientation,
where the dimensions relevant for machining are calculated according to the rotations of a
virtual tool carrier.

W1: Tool offset
19.13 Special handling of tool compensations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1621

19.14 Sum offsets and setup offsets

19.14.1 General information

Sum offsets
Sum offsets can be treated as programmable process compensations during machining and
are composed of all the error sizes (including the wear), which cause the workpiece to deviate
from the specified dimensions.

Sum offsets are a generalized type of wear. They are part of the cutting edge data. The
parameters of the sum offset refer to the geometrical data of a cutting edge.

The compensation data of a sum offset is addressed by a DL number (DL: Location-dependent;
offsets regarding the location of use).

In contrast, the wear values of a D number describe the physical wear of the cutting edge, i.e.
in special situations, the sum offset can match the wear of the cutting edge.

Sum offsets are intended for general use, i.e. with active or inactive tool management or with
the flat D number function.

Machine data is used to classify the sum offsets into:

● Sum offset fine

● Sum offset coarse (setup offset)

Setup offset
The setup offset is the compensation to be entered by the setup engineer before machining.
These values are stored separately in the NC. The operator subsequently only has access to
the "sum offset fine" via HMI.

The "sum offset fine" and "sum offset coarse" are added internally in the NC. This value is
referred to below as the sum offset.

Note

The function is enabled via the machine data setting:

MD18080 $MN_MM_TOOL_MANAGEMENT_MASK, Bit 8=1 (step-by-step memory
reservation for tool management).

If kinematic transformations (e.g. 5-axis transformations) are active, the tool length is
calculated first after allowing for the various wear components. The total tool length is then
used in the transformation. Unlike the case of a toolholder with orientation capability, the wear
values are thus always included in the transformation irrespective of the G command of group
56.

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1622 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.14.2 Description of function

Sum offsets
Several sum offsets (DL numbers) can be defined per D number. In this way, for example,
workpiece location-dependent offset values can be determined and assigned to a cutting edge.
Sum offsets have the same effect as wear, i.e. they are added to the offset values of the D
number. The data is permanently assigned to a D number.

Settings
You can define the following settings via machine data:

● Activate sum offset

● Define maximum number of DL data sets to be created in NC

● Define maximum number of DL numbers to be assigned to a D number

● Define whether the sum offsets (fine/coarse) are to be saved during data backup

● Define the sum offset to be activated, if:

– A new cutting edge compensation is activated

– An operator panel RESET is performed

– An operator panel START is performed

– The end of the program has been reached

The name is oriented to the logic of the corresponding machine data for tools and cutting edges.

The "setup offset" and "sum offset fine" can be read and written via system variables and
corresponding OPI services.

Note

When tool management is active, a machine data item can be used to define whether the sum
offset of a tool activated during a programmed tool change remains unchanged or is set to
zero.

Summary of compensation parameters $TC_DPx

The following general system variables were previously defined for describing a cutting edge:

$TC_DP1 Tool type
$TC_DP2 Cutting edge position

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1623

Parameters for geometry and wear
Tool geometry compensations are assigned to system variables $TC_DP3 to $TC_DP11.
System variables $TC_DP12 to $TC_DP20 allow you to name a wear for each of these
parameters:

Geometry Wear Compensations

Length compensations
$TC_DP3 $TC_DP12 Length 1
$TC_DP4 $TC_DP13 Length 2
$TC_DP5 $TC_DP14 Length 3

Radius compensation
$TC_DP6 $TC_DP15 Radius 1
$TC_DP7 $TC_DP16 Radius 2

Other compensations
$TC_DP8 $TC_DP17 Length 4
$TC_DP9 $TC_DP18 Length 5
$TC_DP10 $TC_DP19 Angle 1
$TC_DP11 $TC_DP20 Angle 2

Tool base dimension or adapter dimension

$TC_DP21 Adapter length 1
$TC_DP22 Adapter length 2
$TC_DP23 Adapter length 3

Technology

System variable Clearance angle
$TC_DP24 The clearance angle is stored here for ManualTurn; tool type 5xx. Same

significance as in standard cycles for turning tools.
The tip angle of the drill is stored here for ShopMill; tool type 2xx.
Used in standard cycles for turning tools; tool type 5xx. This is the angle at
the secondary cutting edge for these tools.

$TC_DP25 The value for the cutting rate is stored here for ManualTurn.
A bit-coded value for various states of tool types 1xx and 2xx is stored here
for ShopMill.

Parameters of the sum and setup offsets ($TC_SCPxy, $TC_ECPxy)
The numbering of the parameters is oriented to the numbering of system variables $TC_DP3
to $TC_DP11.

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1624 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The effect of the parameters is similar to the wear (additive to the tool geometry). Up to six
sum/setup parameters can be defined per cutting edge parameter.

Tool geometry parame‐
ters
(to which the compensa‐
tion is added)

Sum / setup parameters Tool wear param‐
eter

Length compensations
$TC_DP3 Length 1

$TC_SCP13, $TC_SCP23,$TC_SCP33,
$TC_SCP43,$TC_SCP53,$TC_SCP63
$TC_ECP13, $TC_ECP23,$TC_ECP33,
$TC_ECP43,$TC_ECP53,$TC_ECP63
The numbers in bold, 1, 2, ... 6, designate the parame‐
ters of a maximum of six (location-dependent or similar)
compensations that can be programmed with DL =1 to
6 for the parameter specified in column one.

$TC_DP12

$TC_DP4 Length 2
$TC_SCP14, $TC_SCP24,$TC_SCP34,
$TC_SCP44,$TC_SCP54,$TC_SCP64
$TC_ECP14, $TC_ECP24,$TC_ECP34,
$TC_ECP44,$TC_ECP54,$TC_ECP64

$TC_DP13

$TC_DP5 Length 3
etc. ...

$TC_DP14

Radius compensation
$TC_DP6 Radius $TC_DP15
$TC_DP7 Corner radius $TC_DP16

Other compensations
$TC_DP8 Length 4 $TC_DP17
$TC_DP9 Length 5 $TC_DP18
$TC_DP10 Angle 1

...etc.
$TC_DP19

$TC_DP11 Angle 2
$TC_SCP21, $TC_SCP31,$TC_SCP41,
$TC_SCP51,$TC_SCP61,$TC_SCP71
$TC_ECP21, $TC_ECP31,$TC_ECP41,
$TC_ECP51,$TC_ECP61,$TC_ECP71
The numbers in bold, 2, 3, ... 7, designate the parame‐
ters of a maximum of six (location-dependent or similar)
compensations that can be programmed with DL =1 to
6 for the parameter specified in column one.

$TC_DP20

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1625

Supplementary conditions
The maximum number of DL data sets of a cutting edge and the total number of sum offsets
in the NC are defined via machine data. The default value is zero, i.e. no sum offsets can be
programmed.

Activate the "monitoring function" to monitor a tool for wear or for "sum offset".

The additional sum/setup data sets use additional buffered memory. 8 bytes are required per
parameter.

A sum offset data set requires: 8 bytes * 9 parameters = 72 bytes

A setup data set requires an equal amount of memory. A certain number of bytes is also
required for internal management data.

19.14.3 Activation

Function
The function must be activated via the machine data:

MD18108 $MN_MM_NUM_SUMCORR (sum offsets in TO area).

System variables $TC_ECPx and $TC_SCPx and setup and sum offsets ("fine") defined via
the OPI interface can be activated in the part program.

This is done by programming the language command DL="number".

When a new D number is activated, either a new DL number is programmed, or the DL number
defined via the following machine data becomes active:

MD20272 $MC_SUMCORR_DEFAULT (basic setting of the sum offset without a program)

DL programming
The sum offset is always programmed relative to the active D number with the command:

DL = "n"

The sum offset "n" is added to the wear of the active D number.

Note

If you use "setup offset" and "sum offset fine", both compensations are combined and added
to the tool wear.

The sum offset is deselected with the command:

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1626 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DL = 0

Note

DL0 is not permitted. If compensation is deselected (D0 and T0), the sum offset also becomes
ineffective.

Programming a sum offset that does not exist triggers an alarm, similar to programming a D
compensation that does not exist.

Thus, only the defined wear remains part of the compensation (defined in system variables
$TC_DP12 to $TC_DP20).

Programming a sum offset when a D compensation is active (also applies to deselection) has
the same effect on the path as programming a D command. An active radius compensation
will, therefore, lose its reference to adjacent blocks.

Configuration
MD18112 $MN_MM_KIND_OF_SUMCORR, bit 4=0: (Properties of sum offset in the TO area)
default setting:

Only one set of sum offsets exists per DL number.

We refer in general to the sum offset.

This describes the data represented by $TC_SCPx.

Figure 19-57 MD18112 $MN_MM_KIND_OF_SUMCORR, bit 4 = 0

The tool with T = t is active. With the data in the figure, the following is programmed:

D2 ; Cutting edge compensations, i.e. $TC_DP3 to $TC_DP11 + wear
($TC_DP12 to $TC_DP20) + adapter dimension

...
DL=1 ; Sum offset 1 is added to the previous D2 compensations, i.e. $TC_SCP13

to $TC_SCP21.

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1627

...
DL=2 ; Sum offset 2 is added to the D2 compensation instead of sum offset 1, i.e.

$TC_SCP23 to $TC_SCP31.
...
DL=0 ; Deselection of sum offset;

only the data of D2 remains active.

MD18112 $MN_MM_KIND_OF_SUMCORR, bit 4=1: Setup offsets are available

The sum offset is now composed of the "sum offset fine" (represented by $TC_SCPx) and the
setup offset (represented by $TC_ECPx). Two data sets therefore exist for one DL number.
The sum offset is calculated by adding the corresponding components ($TC_ECPx +
$TC_SCPx).

Figure 19-58 MD18112 $MN_MM_KIND_OF_SUMCORR, bit 4 = 1 "setup offsets" + "sum offsets fine"

The tool with T = t is active. With the data in the figure, the following is programmed:

D2 ; Cutting edge compensations, i.e. $TC_DP3 to $TC_DP11 + wear
($TC_DP12 to $TC_DP20) + adapter dimension

...
DL=1 ; Sum offset 1 is added to the previous D2 compensations, i.e. $TC_ECP13

+ $TC_SCP13 to $TC_ECP21 + $TC_SCP21.
...
DL=2 ; Sum offset 2 is added to the D2 compensation instead of sum offset 1; i.e.

$TC_ECP23 + $TC_SCP23,...$TC_ECP31 + $TC_SCP31
...
DL=0 ; Deselection of sum offset. Only the data of D2 remains active.

Reading/writing in the part program
The individual sets of sum offset parameters are differentiated according to the number ranges
of system variable $TC_SCP.

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1628 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The significance of the individual variables is similar to geometry variables $TC_DP3 to
$TC_DP11. Only length 1, length 2 and length 3 are enabled for the basic functionality
(variables $TC_SCP13 to $TC_SCP15 for the first sum offset of the cutting edge).

R5 = $TC_SCP13[t, d] ; Sets the value of the R parameter to the value of the first
component of sum offset 1 for cutting edge (d)
 on tool (t).

R6 = $TC_SCP21[t, d] ; Sets the value of the R parameter to the value of the last
component of sum offset 1 for cutting edge (d) on tool (t).

R50 = $TC_SCP23[t, d] ; Sets the value of the R parameter to the value of the first
component of sum offset 2 for cutting edge (d) on tool (t).

$TC_SCP43[t, d] = 1.234 ; Sets the value of the first component of sum offset 4 for
cutting edge (d) on tool (t) to the value 1.234.

The above statements also apply to the setup offsets (if the NCK is configured with this option),
i.e.

R5 = $TC_ECP13[t, d] ; Sets the value of the R parameter to the value of the first
component of setup offset 1 for cutting edge (d) on tool (t).

R6 = $TC_ECP21[t, d] ; Sets the value of the R parameter to the value of the last
component of setup offset 1 for cutting edge (d) on tool (t).

etc.

When working with setup offsets, "sum offsets fine" are written with the $TC_SCPx system
variables.

Creating a new sum offset
If the compensation data set (x) does not yet exist, it is created on the first write operation to
one of its parameters (y).

$TC_SCPxy[t, d] = r.r ; The value "r.r" is assigned to parameter y of sum offset x.
The other parameters of x have the value zero.

When working with setup offsets, "sum offsets fine" are written with the $TC_SCPx system
variables.

Note

When working with setup offsets, the data set for the setup offset is created when a data set
is created for "sum offset fine", if a data set did not already exist for [t, d].

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1629

Creating a new setup offset
If the compensation data set (x) does not yet exist, it is created on the first write operation to
one of its parameters (y).

$TC_ECPxy[t, d] = r.r ; The value "r.r" is assigned to parameter y of setup offset
x. The other parameters of x have the value zero.

Note

When working with setup offsets, the data set for the "sum offset fine" is created when a data
set is created for setup offsets, if a data set did not already exist for [t, d].

DELDL - Delete sum offset
Sum offsets are generally only relevant when machining with a cutting edge at a certain time
at a certain location of the workpiece. You can use the NC language command DELDL to
delete sum offsets from cutting edges (in order to release memory).

status = DELDL(t, d) ; Deletes all sum offsets of cutting edge d on tool t.
; t, d are optional parameters.

If d is not specified, all sum offsets of all cutting edges on tool t are deleted.

If d and t are not specified, all sum offsets for the cutting edges on all tools of the TO unit are
deleted (for the channel, in which the command is programmed).

When working with setup offsets, the DELDL command deletes both the setup offset and the
"sum offsets fine" of the specified cutting edge(s).

Note

The memory used for the data sets is released after deletion.

The deleted sum offsets can subsequently no longer be activated or programmed.

Sum offsets and setup offsets on active tools cannot be deleted (similar to the deletion of D
compensations or tool data).

The "status" return value indicates the result of the deletion command:

0: Deletion was successful
-1: Deletion was not (one cutting edge) or not completely (several cutting edges) successful

Data backup
The data is saved during a general tool data backup (as a component of the D number data
sets).

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1630 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

It is advisable to save the sum offsets, in order to allow the current status to be restored in the
event of an acute problem. Machine data settings can be made to exclude sum offsets from
a data backup (settings can be made separately for "setup offsets" and "sum offsets fine").

Note

Sum offsets behave in the same way as D compensations with reference to block search and
REPOS. The behavior on Reset and Power On can be defined by machine data.

If the setting of the following machine data indicates that the last active tool compensation
number (D) is to be activated after Power On, the last active DL number is then no longer
active:

MD20110 $MC_RESET_MODE_MASK (definition of control default settings after reset / part
program end)

19.14.4 Examples

Example 1
That no compensation and no sum offset will come into effect must be defined during tool
change via the machine data:

● MD20270 $MC_CUTTING_EDGE_DEFAULT=0 (Basic setting of tool cutting edge without
programming)

● MD20272 $MC_SUMCORR_DEFAULT=0 (default setting sum offset without program).

T5 M06 ; Tool number 5 is loaded - no compensation active.
D1 DL=3 ; Compensation D1 + sum offset 3 of D1 are activated.
X10
DL=2 ; Compensation D1 + sum offset 2 are activated.
X20
DL=0 ; Sum offset deselection, only compensation D1 is now active.
D2 ; Compensation D2 is activated - the sum offset is not included

in the compensation.
X1
DL=1 ; Compensation D2 + sum offset 1 are activated.
X2
D0 ; Compensation deselection
X3
DL=2 ; No effect - DL2 of D0 is zero (same as programming T0 D2).

Example 2
During tool change it has to be defined that offset D2 and sum offset DL=1 are activated via
the machine data:

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1631

MD20270 $MC_CUTTING_EDGE_DEFAULT=2 (Basic setting of tool cutting edge without
programming)

MD20272 $MC_SUMCORR_DEFAULT=1 (default setting sum offset without program)

T5 M06 ; Tool number 5 is loaded - D2 + DL=1 are active (= values of
machine data)

D1 DL=3 ; Compensation D1 + sum offset 3 of D1 are activated.
X10
DL=2 ; Compensation D1 + sum offset 2 are activated.
X20
DL=0 ; Sum offset deselection, only compensation D1 is now active.
D2 ; Compensation D2 is activated - sum offset DL=1 is activated.
X1
DL=2 ; Compensation D2 + sum offset 2 are activated.
D1 ; Compensation D1 + sum offset 1 are activated.

19.14.5 Upgrades for Tool Length Determination

19.14.5.1 Calculation of compensation values on a location-specific and workpiece-specific basis

Composition of the effective tool length
For a tool compensation without active kinematic transformation, the effective tool length
consists of up to 8 vectors:

● Tool length (geometry) ($TC_DP3 - $TC_DP5)
● Wear ($TC_DP12 - $TC_DP14)
● Tool base dimension (see note) ($TC_DP21 - $TC_DP23)
● Adapter dimension (see note) ($TC_ADPT1 - $TC_ADPT3)
● Total offsets fine ($TC_SCPx3 - $TC_SCPx5)
● Sum offsets coarse or setup offsets ($TC_ECPx3 - $TC_ECPx5)
● Offset vector l1 of toolholder with orientation capability ($TC_CARR1 - $TC_CARR3)
● Offset vector l2 of toolholder with orientation capability ($TC_CARR4 - $TC_CARR6)
● Offset vector l3 of toolholder with orientation capability ($TC_CARR15 - $TC_CARR17)

Note

The tool base dimension and adapter dimension can only be applied as alternatives.

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1632 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Type of action of the individual vectors
The type of action of the individual vectors or groups of vectors depends on the following further
quantities:

Influencing quantity Operating principle
G commands Active machining plane
Tool type Milling tool or turning/grinding tools
Machine data Tool management active/not active, toolholder with orien‐

tation capability available/not available
Setting data Behavior of tool length components when mirroring or

when changing the plane
Toolholder with orientation capability Set values of toolholder with orientation capability
Adapter transformations Transformed tool compensation values

Distribution over the geometry-axis components
How the three vector components of partial totals of the vectors involved are distributed over
the three geometry-axis components is determined by the following quantities:

Influencing quantity Dependencies
Active processing level:
G17 X/Y direction
G18 Z/X direction
G19 Y/Z direction

Infeed plane:
Z
Y
X

Tool type:
Milling tools, drilling tools, grinding tools, turning tools

See Section "Tool parameter 1: Tool type
(Page 1477)", Table "Minimum number of
required tool parameters"

SD42900 $SC_MIRROR_TOOL_LENGTH
SD42910 $SC_MIRROR_TOOL_WEAR
SD42920 $SC_WEAR_SIGN_CUTPOS
SD42930 $SC_WEAR_SIGN
SD42940 $SC_TOOL_LENGTH_CONST
SD42950 $SC_TOOL_LENGTH_TYPE

See Section "Special handling of tool com‐
pensations (Page 1613)" and Section "Set‐
ting data (Page 1668)".

Adapter transformations References:
Function Manual Tool Management

The resulting tool orientation always remains parallel to one of the three axis directions X, Y
or Z and exclusively depends on the active machining plane G17-G19, since it has not yet
been possible to assign the tool an orientation.

Stepless variation of the tool orientation
The toolholder with orientation capability also enables the tool orientation to be varied
steplessly, in addition to providing further offsets or linear expansion fluctuations with the aid
of offset vectors l1 - l3 .

For further explanations, see Section "Toolholder with orientation capability (Page 1532)".

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1633

Minor operator compensations
Minor compensations, however, must also be modified during the normal production mode.

The reasons for this are, for example:

● Tool wear

● Clamping errors

● Temperature sensitivity of the machine:

These compensations are defined as follows:

Definition Wear components
Wear $TC_DP12 - $TC_DP14,
Total offsets fine $TC_SCPx3 - $TC_SCPx5,
Sum offsets coarse or setup offsets $TC_ECPx3 - $TC_ECPx5

In particular, compensations, which affect the tool length calculation, should be entered in the
coordinates used for measurement.

These workpiece-specific compensations can be achieved more simply using the G group 56
with the three values TOWSTD, TOWMCS and TOWWCS and the setting data:

SD42935 $SC_WEAR_TRANSFORM (transformation of tool components)

SD42935
Which of the wear components:

● Wear ($TC_DP12 - $TC_DP14)

● Setup offsets or sum offsets coarse ($TC_ECPx3 - $TC_ECPx5)

● Sum offsets fine ($TC_SCPx3 - $TC_SCPx5)

are to be transformed in the transformations:

● Adapter transformation

● Toolholder with orientation capability

are to be or not to be transformed, can be defined via the setting data:

SD42935 $SC_WEAR_TRANSFORM (transformation of wear values)

With the setting data in its initial state, all wear values are transformed.

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1634 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The setting data is considered in the following functions:

● Wear values in the machine coordinate system
Part program instruction: TOWMCS

● Wear values in the workpiece coordinate system
Part program instruction: TOWWCS

Figure 19-59 Transformation of wear data dependent on SD42935

Programming
G-code group 56 can be used to define the following values:

Syntax Corrections
TOWSTD Basic setting value for offsets in tool length
TOWMCS Wear values in the machine coordinate system (MCS)
TOWWCS Wear values in the workpiece coordinate system (WCS)
TOWBCS Wear values in the basic coordinate system (BCS)
TOWTCS Wear values in the TCS (Tool Coordinate System) at the toolholder (tool carrier ref‐

erence point T)
TOWKCS Wear values in tool coordinate system for kinematic transformation (KCS) of tool head

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1635

Coordinate systems for offsets in tool length
G commands TOWMCS, TOWWCS, TOWBCS, TOWTCS and TOWKCS can be used, e.g. to measure
the wear tool length component in five different coordinate systems.

1. Machine coordinate system MCS
1. Basic coordinate system BCS
1. Workpiece coordinate system WCS
1. Tool coordinate system of kinematic transformation KCS
1. Tool coordinate system TCS

The calculated tool length or a tool length component can be represented and read out using
the predefined GETTCOR (Page 1644) function in one of these coordinate systems.

Figure 19-60 Coordinate system for the evaluation of tool lengths

19.14.5.2 Functionality of the individual wear values

TOWSTD
Basic setting (default behavior):

● The wear values are added to the other tool length components.
The resulting total tool length is then used in further calculations.

In the case of an active tool carrier with orientation capability:

● The wear values are subjected to the appropriate rotation.

TOWMCS
Wear data in the MCS (machine coordinate system):

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1636 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

In the case of an active rotation by means of a tool carrier with orientation capability:

● The tool carrier only rotates the vector of the resultant tool length. Wear is ignored.
Then the tool length vector rotated in this way and the wear are added. The wear is not
subjected to the rotation.

If no tool carrier with orientation capability is active or this does not result in a rotation,
TOWMCS and TOWSTD are identical.

Linear transformation

The tool length can be uniquely defined in the MCS only if the MCS is generated by linear
transformation from the BCS.

This would also be the case under one of the following conditions:

● No kinematic transformation active.

● Orientation transformations (3-axis, 4-axis, and 5-axis transformations) are active.

TOWWCS
Wear values in WCS (workpiece coordinate system):

● If a tool carrier with orientation capability is active, the tool vector is calculated as for
TOWMCS, without taking the wear into account.

● The wear data is interpreted in the workpiece coordinate system.

The wear vector in the workpiece coordinate system is converted to the machine coordinate
system and added to the tool vector.

TOWBCS
Wear values in BCS (basic coordinate system):

● If a tool carrier with orientation capability is active, the tool vector is calculated as for
TOWMCS, without taking the wear into account.

● The wear data is interpreted in the workpiece coordinate system.

The wear vector in the basic coordinate system is converted to the workpiece coordinate
system and added to the tool vector.

Non-linear transformation

If a non-linear transformation is active, e.g. with TRANSMIT, and the MCS is specified as the
desired coordinate system, the BCS is automatically used instead of the MCS.

Tool carrier with orientation capability

A table component of the tool carrier with orientation capability, if available, is not applied
directly to the coordinate systems, unlike a table (or part) component of the kinematic
transformation. A rotation described by such a component is represented in a basic frame or
system frame and is thus included in the transition from WCS to BCS.

Kinematic transformation

The table (or part) component of the kinematic transformation is described by the transition
from BCS to MCS.

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1637

TOWTCS
Wear values in TCS (tool coordinate system):

● If a tool carrier with orientation capability is active, the tool vector is calculated as for
TOWMCS, without taking the wear into account.

● The wear data is interpreted in the tool coordinate system.

The wear vector in the TCS (Tool Coordinate System) is converted to the machine coordinate
system by way of the tool coordinate system of the kinematic transformation (KCS) and added
to the tool vector.

TOWKCS
The wear value specifications for the kinematic transformation are interpreted in the associated
TCS (Tool Coordinate System).

The wear vector is converted to the machine coordinate system by way of the tool coordinate
system of the kinematic transformation and added to the tool vector.

G command change when a tool is active
Changing the G command in the group TOWSTD, TOWMCS, TOWWCS, TOWBCS,
TOWTCS, and TOWKCS does not affect an already active tool, and does not become effective
until the next tool is selected.

A new G command of this group will also come into effect if it is programmed in the same block,
in which a tool is selected.

Evaluation of individual wear components
Evaluation of individual wear components (assignment to geometry axes, sign evaluation) is
influenced by:

● The active plane

● The adapter transformation

● The five setting data shown in the table below

Setting data Wear components
SD42910 $SC_MIRROR_TOOL_WEAR TOWSTD TOWMCS TOWWCS
SD42920 $SC_WEAR_SIGN_CUTPOS X X —
SD42930 $SC_WEAR_SIGN X — —
SD42940 $SC_TOOL_LENGTH_CONST X X X
SD42950 $SC_TOOL_LENGTH_TYPE X X X

Note

Wear components which are subjected to an active rotation by an adapter transformation or
a tool carrier with orientation capability are referred to as non-transformed wear components.

W1: Tool offset
19.14 Sum offsets and setup offsets

Basic Functions
1638 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Special features
If TOWMCS or TOWWCS is active, the following setting data does not affect the non-
transformed wear components:

SD42920 $SC_WEAR_SIGN_CUTPOS (Sign of wear for tools with cutting edge systems)

The following setting data also does not affect the non-transformed wear components in case
of TOWWCS:

SD42910 $SC_MIRROR_TOOL_WEAR (Sign change tool wear when mirroring)

In this case, a possibly active mirroring is already contained in the frame, which is referred to
for evaluating the wear components.

On a plane change, the assignment between the non-transformed wear components and the
geometry axes is retained, i.e. these are not interchanged as with other length components.
The assignment of components depends on the active plane for tool selection.

Example
Let's assume a milling tool is used where only the wear value $TC_DP12 assigned to length
L1 is not equal to zero.

If G17 is active, this length is effective in the direction of the z axis.

This measure always acts in the Z-direction also upon a plane change after the tool selection,
when TOWMCS or TOWWCS are active and the bit 1 is set in the setting data:

SD42935 $SC_WEAR_TRANSFORM (transformations for tool components)

If, for example, G18 is active on tool selection, the component is always effective in the Y
direction instead.

19.15 Working with tool environments

Overview of functions
● Save tool environment (TOOLENV) (Page 1640)

● Delete tool environment (DELTOOLENV) (Page 1642)

● Read T, D and DL number (GETTENV) (Page 1643)

● Read tool lengths and/or tool length components (GETTCOR) (Page 1644)

● Change tool components (SETTCOR) (Page 1650)

System variables overview
● Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)

(Page 1644)

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1639

19.15.1 Save tool environment (TOOLENV)
The TOOLENV function is used to save any current states needed for the evaluation of tool
data stored in the memory.

The individual data are as follows:

● The active G command of group:

– 6 (G17, G18, G19)

– 56 (TOWSTD, TOWMCS, TOWWCS, TOWBCS, TOWTCS, TOWKCS)

● The active transverse axis

● Machine data:

– MD18112 $MN_MM_KIND_OF_SUMCORR (properties of the summed offsets in the
TO area)

– MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

● Setting data:

– SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

– SD42910 $SC_MIRROR_TOOL_WEAR (sign change tool wear when mirroring)

– SD42920 $SC_WEAR_SIGN_CUTPOS (sign of the tool wear with cutting edge systems)

– SD42930 $SC_WEAR_SIGN (sign of wear)

– SD42935 $SC_WEAR_TRANSFORM (transformations for tool components)

– SD42940 $SC_LENGTH_CONST (change of the tool length components for a plane
change)

– SD42942 $SC_TOOL_LENGTH_CONST_T (change of tool length components for
turning tools at change of plane)

– SD42950 $SC_TOOL_LENGTH_TYPE (allocation of the tool length components
independent of tool type)

– SD42954 $SC_TOOL_ORI_CONST_M (change of tool orientation components for
milling tools at change of plane)

– SD42956 $SC_TOOL_ORI_CONST_T (change of tool orientation components for
turning tools at change of plane)

● The orientation component of the current complete frame (rotation and mirroring, no work
offsets or scaling)

● The orientation component and the resulting length of the active toolholder with orientation
capability

● The orientation component and the resulting length of an active transformation

In addition to the data describing the environment of the tool, the T number, D number and DL
number of the active tool are also stored, so that the tool can be accessed later in the same
environment as the TOOLENV call, without having to name the tool again.

Syntax
<Status> = TOOLENV(<name>)

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1640 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Meaning

TOOLENV(...): Predefined function to save a tool environment
Alone in the
block:

Yes

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 No more free memory locations for tool environments available.
-3 Null string illegal as name of a tool environment.
-4 No parameter (<name>) specified.

Parameters
1 <name>: Name, under which the current data set should be saved.

If a data set of the same name already exists, then it is overwritten. In this case,
the status is "0".
Data type: STRING

Additional information

Base dimension/adapter dimension – tool length compensation
When the tool magazine management is active (only available with the "Tool management"
option!), the value of the following machine data defines whether the adapter length or the tool
base dimension (cutting edge-specific parameters $TC_DP21, $TC_DP22 and $TC_DP23) is
incorporated in the calculation of the tool length:

MD18104 $MN_MM_NUM_TOOL_ADAPTER (tool adapter in TO area).

Since a change to this machine data only takes effect after the control system has powered
up, it is not saved in the tool environment.

Resulting length of toolholders with orientation capability and transformations:

Note

Both toolholders with orientation capability and transformations can use system variables or
machine data, which act as additional tool length components, and which can be subjected
partially or completely to the rotations performed. The resulting additional tool length
components must also be saved when TOOLENV is called, because they represent part of
the environment, in which the tool is used.

Adapter transformation
The adapter transformation is a property of the tool adapter and thus of the complete tool. It
is, therefore, not part of a tool environment, which can be applied to another tool.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1641

By saving the complete data necessary to determine the overall tool length, it is possible to
calculate the effective length of the tool at a later point in time, even if the tool is no longer
active or if the conditions of the environment (e.g. G codes or setting data) have changed.
Similarly, the effective length of a different tool can be calculated assuming that it would be
used under the same conditions as the tool, for which the status was saved.

Maximum number of data sets for tool environments
Machine data MD18116 $MN_MM_NUM_TOOL_ENV is used to define the maximum number
of data sets that can be saved to describe the tool environments. The data are in the TOA
area. They are kept even when the control system is switched off.

Data cannot be backed up. This means that this data cannot be transferred between the
different control systems.

19.15.2 Delete tool environment (DELTOOLENV)
The DELTOOLENV function is used to delete the data sets that are used to describe tool
environments. Deletion means that the set of data stored under a particular name can no longer
be accessed (an access attempt triggers an alarm).

Note

Data sets can only be deleted using the DELTOOLENV function, by an INITIAL.INI download
or by a cold start (NC power up with default machine data). There are no additional automatic
deletion operations.

Syntax
<Status> = DELTOOLENV(<name>)
<Status> = DELTOOLENV()

Meaning

DELTOOLENV(...): Predefined function to delete a tool environment
Alone in the
block:

Yes

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the specified name does not exist.
Parameters
1 <name>: Name of data set to be deleted

Data type: STRING

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1642 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DELTOOLENV(): DELTOOLENV() deletes data sets describing tool environments without spec‐

ifying a name

19.15.3 Read T, D and DL number (GETTENV)
The GETTENV function is used to read the T, D and DL numbers stored in a tool environment.

Syntax
<Status> = GETTENV(<name>, <TDDL>)

Meaning

GETTENV(...): Predefined function to read T, D and DL numbers in a data set to describe a tool
environment
Alone in the
block:

Yes

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the specified name does not exist.
Parameters
1 <name>: Name of the data set from which the T, D and DL numbers are to be read

Data type: STRING
2 <TDDL>: The field of this result parameter contains the T, D and DL numbers of the tool,

whose tool environment is saved in the specified data set:
● <TDDL> [0]: T number
● <TDDL> [1]: D number
● <TDDL> [2]: DL number
Data type: INT[3]

GETTENV(,<TDDL>),
GETTENV("",<TDDL>):

When calling function GETTENV, it is permissible to omit the first pa‐
rameter – or to transfer the null string as first parameter. In these two
special cases, in <TDDL>, the T, D and DL numbers of theactive tool
are returned.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1643

19.15.4 Read information about the saved tool environments ($P_TOOLENVN,
($P_TOOLENV)

Information regarding the saved tool environments can be read using the following system
variables:

$P_TOOLENVN: Supplies the number of data sets (which have still not been deleted) – defined
using TOOLENV – to describe tool environments
Syntax: <n> = $P_TOOLENVN
Meaning: <n>: Number of defined data sets

Data type: INT
Value range: 0 ... MD18116

$MN_MM_NUM_TOOL_ENV
This system variable can be accessed even if no tool environments are possible
(MD18116 = 0). In this case, the return value is "0".

$P_TOOLENV: Supplies the name of the <i>th data set to describe a tool environment
Syntax: <Name> = $P_TOOLENV[<i>]
Meaning: <name>: Name of the data set with number <i>

Data type: STRING
<i>: Number of the data set

Data type: INT
Value range: 1 ... $P_TOOLENVN

The assignment of numbers to data sets is not fixed, but can be changed as a
result of deleting or creating data sets. The data sets are numbered internally.
If <i> refers to a data set that has not been defined, then the null string is returned.
If index <i> is not valid, i.e. <i> is less than 1 or higher than that the maximum
number of data sets for tool environments (MD18116 $MN_MM_NUM_TOO‐
LENV), then the following alarm is output:
Alarm 17020 "inadmissible array index 1"

19.15.5 Read tool lengths and/or tool length components (GETTCOR)
The GETTCOR function is used to read out tool lengths or tool length components.

The parameters can be used to specify which components are considered and the conditions
under which the tool is used.

Syntax
<Status> = GETTCOR(<Len>[, <Comp>, <Stat>, <T>, <D>, <DL>])

Meaning

GETTCOR(...): Predefined function to read tool lengths or to read tool length components
Alone in the
block:

Yes

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1644 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value:

0 Function OK
-1 No memory reserved for tool environments:

MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the name specified under <Stat> does
not exist.

-3 Invalid string in parameter <Comp>.
Causes of this error can be invalid characters or characters pro‐
grammed twice.

-4 Invalid T number
-5 Invalid D number
-6 Invalid DL number
-7 Attempt to access a non-existent memory module.
-8 Attempt to access a non-existent option (programmable tool

orientation, tool management).
-9 The <Comp> string contains a colon (identifier for the specifi‐

cation of a coordinate system), but it is not followed by a valid
character denoting the coordinate system.

Parameters
1 <Len>: Result vector

Data type: REAL[11]
The vector components are arranged in the following order:
● <Len> [0]: Tool type
● <Len> [1]: Cutting edge position
● <Len> [2]: Abscissa
● <Len> [3]: Ordinate
● <Len> [4]: Applicate
● <Len> [5]: Tool radius
The coordinate system defined in <Comp> and <Stat> is used as the reference
coordinate system for the length components. If a coordinate system is not defined
in <Comp>, then tool lengths are displayed in the machine coordinate system.
The assignment of the abscissa, ordinate and applicate to the geometry axes
depends on the active plane used in the tool environment. This means, for G17,
the abscissa is parallel to X, with G18 it is parallel to Z, etc.
Components <Len>[6] to <Len>[10] contain the additional parameters, which can
be used to specify the geometry description of a tool (e.g. $TC_DP7 to $TC_DP11
for the geometry and the corresponding components for wear or sum and setup
offsets).
These 5 additional elements and the tool radius are only defined for components
E, G, S, and W. Their evaluation does not depend on <Stat>. The corresponding
values in <Len>[6] to <Len>[10] can thus only be not equal to zero if at least one
of the four specified components is involved in the tool length calculation. The
remaining components do not influence the result. The dimensions refer to the
control's basic system (inch or metric).

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1645

2 <Comp>: Tool length components (optional)
Data type: STRING
The character string consists of two substrings, which are separated from one
another by a colon.
General form: "<SubStr_1> [: <SubStr_2]"
<SubStr_1>: The first substring designates the tool length components to be

taken into account when calculating the tool length.
The order of the characters in the substrings, and their notation
(upper or lower case), is arbitrary. Any number of blanks or
white spaces can be inserted between the characters.
Note:
It is not permissible that the characters in the substring are pro‐
grammed twice.
Charac‐
ters:

-

Minus symbol (only allowed as first character)
The complete tool length is calculated, minus
the components specified in the next string.

C Adapter or tool base dimension (whichever of
the two alternative components is active for the
tool in use)

E Setup offsets
G Geometry
K Kinematic transformation (is only evaluated for

generic 3, 4 and 5-axis transformation)
S Summed offsets
T Toolholder with orientation capability
W Wear

If the first substring is empty (except for white spaces), the com‐
plete tool length is calculated allowing for all components. This
applies even if the <Comp> parameter is not specified.

<Substr_2>: The optional second substring identifies the coordinate system,
in which the tool length is to be output.
The second substring only comprises one single relevant char‐
acter.
Charac‐
ters:

A Adjustable coordinate system (ACS)
B Basic coordinate system (BCS)
K Tool coordinate system of kinematic transfor‐

mation (KCS)
M Machine coordinate system (MCS)
T Tool coordinate system (TCS)
W Workpiece coordinate system (WCS)

If no coordinate system is specified, the evaluation is performed
in the MCS (machine coordinate system). If any rotations are
to be taken into account, they are specified in the tool environ‐
ment defined in <Stat>.

3 <_Stat>: Name of the data set for describing a tool environment (optional)
Data type: STRING
If the value of this parameter is the null string (""), or is not specified, then the
current status is used. The current tool is used if a tool is not specified.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1646 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

4 <T>: Internal T number of the tool (optional).
Data type: INT
If this parameter is not specified or if its value is "0", then the tool stored in <Stat>
is used.
If the value of this parameter is "-1", then the T number of the active tool is used.
It is also possible to explicitly specify the number of the active tool.
Note:
If <Stat> is not specified, the actual status is used as the tool environment. Since
<T> = 0 refers to the T number saved in the tool environment, the active tool is
used in this environment, i.e. parameters <T> = 0 and <T> = -1 have the same
meaning in this special case.

5 <D>: Cutting edge of the tool (optional).
Data type: INT
If this parameter is not specified, or if its value is "0", then the D number used is
based on the source of the T number. If the T number from the tool environment
is used, then the D number of the tool environment is also read, otherwise the D
number of the currently active tool is read.

6 <DL>: Number of the offset dependent on the location (optional).
Data type: INT
If this parameter is not specified, then the DL number used is based on the source
of the T number. If the T number from the tool environment is used, then the D
number of the tool environment is also read, otherwise the D number of the cur‐
rently active tool is read.

Examples

GETTCOR(_LEN) Calculates the tool length of the currently active
tool in the machine coordinate system allowing for
all components.

GETTCOR(_LEN,"CGW:W") Calculates the tool length for the active tool, con‐
sisting of the adapter or tool base dimension, ge‐
ometry and wear. Further components, such as
toolholder with orientation capability or kinematic
transformation, are not considered. Output in the
workpiece coordinate system.

GETTCOR (_LEN,"-K:B") Calculates the complete tool length of the active
tool without allowing for the length components of
a possibly active kinematic transformation. Output
in the basic coordinate system.

GETTCOR (_LEN,":M","Testenv1",,3) Calculates the complete tool length in the machine
coordinate system for the tool stored in the tool
environment named "Testenv1". However, the cal‐
culation is performed for cutting edge number D3,
regardless of the cutting edge number stored.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1647

Additional information

Adapter transformation/toolholder with orientation capability/kinematic transformation
Any rotations and component exchanges initiated by the adapter transformation, toolholder
with orientation capability and kinematic transformation, are part of the tool environment. They
are thus always performed, even if the corresponding length component is not supposed to
be included. If this is undesirable, tool environments must be defined, in which the
corresponding transformations are not active. In many cases (i.e. any time a transformation
or toolholder with orientation capability is not used on a machine), the data sets stored for the
tool environments automatically fulfill these conditions, with the result that the user does not
need to make special provision.

Turning and grinding tools: Calculating the tool length depending on MD20360
$MC_TOOL_PARAMETER_DEF_MASK
The following machine data defines how the wear and tool length are to be evaluated if a
diameter axis is used for turning and grinding tools.

MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

Bit Value
0

For turning and grinding tools, the wear parameter of the transverse axis is taken into account
as the diameter value:
= 0 (default) No
= 1 Yes

1 For turning and grinding tools, the tool length component of the transverse axis is taken into
account as the diameter value:
= 0 (default) No
= 1 Yes

If the bits involved are set, the associated entry is weighted with a factor of 0.5. This weighting
is reflected in the tool length returned by GETTCOR.

Example:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK = 3

MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function) = "X"

X is diameter axis (standard turning machine configuration)

Program code Comment
N30 $TC_DP1[1,1]=500
N40 $TC_DP2[1,1]=2
N50 $TC_DP3[1,1]=3.0 ; geometry L1
N60 $TC_DP4[1,1]=4.0
N70 $TC_DP5[1,1]=5.0
N80 $TC_DP12[1,1]=12.0 ; wear L1
N90 $TC_DP13[1,1]=13.0
N100 $TC_DP14[1,1]=14.0
N110 T1 D1 G18
N120 R1=GETTCOR(_LEN,"GW")
N130 R3=_LEN[2] ; 17.0 (= 4.0 + 13.0)

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1648 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N140 R4=_LEN[3] ; 7.5 (= 0.5 * 3.0 + 0.5 * 12.0)
N150 R5=_LEN[4] ; 19.0 (= 5.0 + 14.0)
N160 M30

Length components of the kinematic transformation and toolholder with orientation capability
If a toolholder with orientation capability is taken account of during the tool length calculation,
the following vectors are included in that calculation:

Type Vectors
M l1 and l2
T l1, l2 and l3
P The tool length is not influenced by the toolholder with orientation capability.

In generic 5-axis transformation, the following machine data are included in the tool length
calculation for transformer types 24 and 56:

Transforma‐
tion type

Machine data

24 MD24550/24650 $MC_TRAFO5_BASE_TOOL_1/2
MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2
MD24558/24658 $MC_TRAFO5_PART_OFFSET_1/2

56 MD24550/24650 $MC_TRAFO5_BASE_TOOL_1/2
MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2

Transformation type 56 (moving tool and moving workpiece) corresponds to type M for
toolholders with orientation capability.

For this 5-axis transformation, in the previous software releases, vector MD24560/24660
$MC_TRAFO5_JOINT_OFFSET_1/2 (vector of kinematic offset of the 1st/2nd 5-axis
transformation in the channel) corresponds to the sum of the two vectors l1 and l3 for a type
M tool carrier with orientation capability.

Only the sum is relevant for the transformation in both cases. The way, in which the two
individual components are composed, is insignificant. However, when calculating the tool
length, it is relevant which component is assigned to the tool and which is assigned to the tool
table. This is the reason that machine data MD24558/24658
$MC_TRAFO5_JOINT_OFFSET_PART_1/2 (vector kinematic offset in table) was introduced.
It corresponds to vector l3. Machine data:MD24560/24660
$MC_TRAFO5_JOINT_OFFSET_1/2 no longer corresponds to the sum of l1 and l3, but only
to vector l1. If machine data MD24558/24658 $MC_TRAFO5_JOINT_OFFSET_PART_1/2 is
equal to zero, the behavior is the same as before.

Compatibility
The GETTCOR function is used in conjunction with the TOOLENV and SETTCOR functions
to replace parts of the functionality, which were previously implemented externally in the
measuring cycles.

Only some of the parameters, which actually determine the effective tool length, were
implemented in the measuring cycles. The functions mentioned above can be configured to
reproduce the behavior of the measuring cycles in relation to the tool length calculation.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1649

19.15.6 Change tool components (SETTCOR)
The SETTCOR function is used to change tool components taking into account all general
conditions that can be involved when evaluating the individual components.

Note

Regarding the terminology: If in the following, in conjunction with the tool length, tool
components are involved, then the components considered from a vectorial perspective are
meant, which make up the complete tool length (e.g. geometry or wear). Such a component
comprises three individual values (L1, L2, L3), which are called coordinate values in the
following.

The tool component "geometry" therefore comprises three coordinate values $TC_DP3 to
$TC_DP5.

Syntax
<Status> = SETTCOR(<CorVal>, <Comp>, [<CorComp>, <CorMode>, <GeoAx>,
<Stat>, <T>, <D>, <DL>])

Meaning

SETTCOR(...): Predefined function to change tool components
Alone in the
block:

Yes

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1650 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the name specified under <Stat> does
not exist.

-3 Invalid string in parameter <Comp>.
Causes of this error can be invalid characters or characters pro‐
grammed twice.

-4 Invalid T number.
-5 Invalid D number.
-6 Invalid DL number.
-7 Attempt to access a non-existent memory module.
-8 Attempt to access a non-existent option (programmable tool

orientation, tool management).
-9 Illegal numerical value for parameter <CorComp>.

-10 Illegal numerical value for parameter <CorMode>.
-11 The contents of parameters <Comp> and <CorComp> are con‐

tradictory.
-12 The contents of parameters <Comp> and <CorMode> are con‐

tradictory.
-13 The content of the <GeoAx parameter does not designate a

geometry axis.
-14 Write attempt to a non-existent setup offset.

Parameters
1 <CorVal>: Correction vector

In the workpiece coordinate system (WCS) defined by <Stat>, the following as‐
signment applies:
● <CorVal> [0]: Abscissa
● <CorVal> [1]: Ordinate
● <CorVal> [2]: Applicate
If only one tool component is to be corrected (i.e. no vectorial correction, see
parameter <CorMode>), the correction value is always in <CorVal>[0], independ‐
ent of the axis on which it acts. The contents of the other two components are then
not evaluated.
If <CorVal> or a component of <CorVal> refers to the transverse axis, then the
data is evaluated as radius dimension. This means that a tool is, for example,
"longer" by the specified dimension; this correspondingly results in a change to
the workpiece diameter that is twice as large.
The dimensions refer to the basic system (inch or metric) of the control system.
Data type: REAL[3]

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1651

2 <Comp>: Tool component(s)
Data type: STRING
The character string consists of two substrings, which are separated from one
another by a colon.
General form: "<SubStr_1> [: <SubStr_2]"
<SubStr_1>: The first substring must always be available, and can either

comprise one or two characters. The first or only character for
the 1st component (Val1) and the second character for the 2nd
component (Val2), which are processed according to the sub‐
sequent parameters <CorComp> and <CorMode>.
Charac‐
ters:

C Adapter or tool base dimension (whichever
of the two alternative components is active
for the tool in use)

E Setup offsets
G Geometry
S Sum offsets
W Wear

<Substr_2>: The second substring is optional. Alternatively, it can comprise
(individual) letters "W" or "T".
Charac‐
ters:

W If the second substring is empty or contains
the letter "W", then the offset values are
taken into account as if they had been
measured in the workpiececoordinate sys‐
tem (WCS).

T If the second substring contains the letter
"T", then the offset values are taken into
account as if they had been measured in
the toolcoordinate system (Tool Coordinate
System, TCS).

The notation of the characters in the string (upper or lower case) is arbitrary. Any
number of spaces or tabs (white spaces) can be inserted.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1652 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

3 <CorComp>: Specifies the component(s) of the tool data sets that are to be described (optional).
Data type: INT
Value: 0 Offset value <CorVal>[0] refers to the geometry axis transferred

in parameter <GeoAx> in the workpiece coordinate system – or
in the tool coordinate system (also see a description of param‐
eter <Comp>). This means that the offset value must be calcu‐
lated in the designated tool components so that, taking account
all the parameters that can influence the tool length calculation,
a change of the total tool length by the specified value in the
specified axis direction is obtained.
This change should be achieved by correcting the component
specified in <Comp> and the symbolic algorithm specified in
<CorMode> (see the following parameters). The resulting cor‐
rection can therefore have an effect on all three axis compo‐
nents.

1 Like "0", however, vectorial. The content of vector <CorVal>
refers to abscissa, ordinate and applicate in the workpiece co‐
ordinate system or tool coordinate system (see the description
of parameter <Comp>).
Subsequent parameter <GeoAx> is not evaluated.

2 Vectorial offset, i.e. L1, L2 and L3 can change simultaneously.
In contrast to the versions from "0 and "1", the offset values
contained in <CorVal> refer to the coordinates of Val1 compo‐
nents (see following parameter <CorMode>) of the tool.
Any possible inclination of an existing tool compared with the
workpiece coordinate system has no influence on the offset.

3 - 5 Correction of tool lengths L1 to L3 ($TC_DP3 to $TC_DP5) or
the corresponding values for wear, setting up or additive offsets.
The offset value is contained in <CorVal>[0]. It is measured in
the coordinates of the Val1 component (see following parameter
<CorMode>) of the tool. Any possible inclination of an existing
tool compared with the workpiece coordinate system has no
influence on the offset.

6 Correction of the tool radius ($TC_DP6) or the corresponding
values for wear, setting up or additive offsets. Bits 10 and 11
(evaluation of the diameter and/or diameter wear data, either
specified as a radius or diameter) in machine data
MD20360 $MC_TOOL_PARAMETER_DEF_MASK are taken
into account.

7 –
11

Correction of $TC_DP7 to $TC_DP11 or the corresponding val‐
ues for wear, setting up or additive offsets. These parameters
are treated just like the tool radius.

If this parameter is not specified then its value is "0".

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1653

4 <CorMode>: Specifies the type of write operation to be executed (optional).
Data type: INT
Value: 0 Val1new = <CorVal>

1 Val1new = Val1old + <CorVal>
2 Val1new = <CorVal>

Val2new = 0
3 Val1new = Val1old + Val2old + <CorVal>

Val2new = 0
The notation Val1old + Val2old is symbolic. If the two components (due to the status
of <_Stat>) are evaluated in different ways, i.e. if a rotation is effective between
the two components, then Val2old is transformed prior to addition so that the result‐
ing tool length after deleting Val2new and prior to the addition of <CorVal> remains
unchanged.
<CorVal> always refers to Val1. <CorVal> is a value, which dependent on the
second part of parameter <Comp>, is measured in the workpiece coordinate sys‐
tem (WCS) or in the tool coordinate system (TCS). It is therefore already trans‐
formed with respect to the tool components, in which it should be calculated.
Therefore, it cannot be directly calculated together with the saved value, but must
be transformed back prior to adding to Val1 or Val2. This can mean that the offset
acts on an axis different than the one defined by <CorComp> – or that it acts on
several axes.
For the case <CorComp> = 0, i.e. when <CorVal> does not contain a vector, but
only an individual value, then the described operations are executed in the coor‐
dinates in which <CorVal> was measured (WCS/TCS). In particular, this also ap‐
plies to setting Val2new to zero in variants 2 and 3. This result is then transformed
back into the coordinates of the tool. This can mean that none of the coordinate
values to be set to zero (L1, L2, L3) become zero, or coordinate values, that were
previously zero, are now not equal to zero. However, if the corresponding opera‐
tions are successively executed for all three geometry axes, then it is guaranteed
that all three coordinate values of the components to be deleted are zero. If the
tool is not rotated with respect to the workpiece coordinate system or is rotated
so that all tool components remain parallel to the coordinate axes (axis exchange
operations), then this also ensures that only one tool coordinate changes.
The successive execution of the same operation (<CorMode>) with <Cor‐
Comp> = 0 for all three coordinate axes in any sequence is identical with the single
execution of the same operation with <CorComp>=1.
For parameter values "0" and "1", parameter <Comp> must contain one character,
and for parameter values "2" and "3", two characters.
Example:
<Comp> contains string "ES", <CorMode> the value "2"
⇒ Setup offsetnew = <CorVal>, summed offsetnew = 0
If parameter <CorMode> is not specified, then its value is "0".

5 <GeoAx>: Specifies the index of the geometry axis in which the offset value <CorVal>[0] was
read (optional)
Data type: INT
Value range: 0 ... 2
Indices 0 to 2 refer to abscissa, ordinate and applicate in the active plane (G17/
G18/G19) of the current tool environment.
The content of this parameter is only evaluated if parameter <CorComp> has a
value of "0".

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1654 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

6 <Stat>: Name of the data set for describing a tool environment (optional)
Data type: STRING
If the value of this parameter is the null string (""), or is not specified, then the
current status is used. The current tool is used if a tool is not specified.

7 <T>: Internal T number of the tool (optional).
Data type: INT
If this parameter is not specified or if its value is "0", then the tool stored in <Stat>
is used.
If the value of this parameter is "-1", then the T number of the active tool is used.
It is also possible to explicitly specify the number of the active tool.
Note:
If <Stat> is not specified, the actual status is used as the tool environment. Since
<T> = 0 refers to the T number saved in the tool environment, the active tool is
used in this environment, i.e. parameters <T> = 0 and <T> = -1 have the same
meaning in this special case.

8 <D>: Cutting edge of the tool (optional).
Data type: INT
If this parameter is not specified, or if its value is "0", then the D number used is
based on the source of the T number. If the T number from the tool environment
is used, the D number of the tool environment is also read, otherwise the D number
of the currently active tool is read.

9 <TL>: Number of the offset dependent on the location (optional).
Data type: INT
If this parameter is not specified, then the DL number used is based on the source
of the T number. If the T number from the tool environment is used, the D number
of the tool environment is also read, otherwise the D number of the currently active
tool is read. If T, D and DL specify a tool without location-dependent offsets, no
summed or setup offsets may be specified in parameter <Comp> (error code in
<Status>).

Note

Not all possible combinations of the three parameters <Comp>, <CorComp> and <CorMode>
make sense. For example, algorithm 3 in <CorComp> requires that two characters are
specified in <Comp>. If an invalid parameter combination is specified, then a corresponding
error code is returned in the <Status>.

Examples

Example 1

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1655

Program code Comment
N70 R1=SETTCOR(_CORVAL,"G",0,0,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z1.333
N90 M30

<CorComp> is "0", therefore, the coordinate value of the geometry component acting in the Z
direction must be replaced by the offset value 0.333.

The resulting total tool length is thus: L1 = 0.333 + 1.000 = 1.333

Example 2

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; milling tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"W",0,1,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z11.333
N90 M30

<CorComp> is "1", this means that the offset value of 0.333 – acting in the Z axis – is added
to the wear value of 1.0.

The resulting total tool length is thus: L1 = 10.0 + 1.333 = 11.333

Example 3

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; Wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,2,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z0.333
N90 M30

<CorComp> is "2", therefore, the offset effective in the Z axis is entered in the geometry
component (the old value is overwritten) and the wear value is deleted.

The resulting total tool length is thus: L1 = 0.333 + 0.0 = 0.333

Example 4

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1656 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Program code Comment
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,3,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z11.333
N90 M30

<CorComp> is "3", therefore, the wear value and compensation value are added to the
geometry component and the wear component is deleted.

The resulting total tool length is thus: L1 = 11.333 + 0.0 = 11.333

Example 5

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; Wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,3,0)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.333 Y0.000 Z11.000
N90 M30

<CorComp> is "3", as in the previous example, but the compensation is now effective on the
geometry axis with index "0" (X axis), which for a milling tool, is assigned to tool component
L3 due to G17. As a consequence, when calling SETTCOR, tool parameters $TC_DP3 and
$TC_DP12 are not influenced. Instead, the compensation value is entered in $TC_DP5.

Example 6

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=5.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",0,3,1)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500
N120 M30

The tool is a turning tool. A frame rotation is activated in N80, causing the basic coordinate
system (BCS) to be rotated in relation to the workpiece coordinate system (WCS). In the WCS,
the compensation value (N70) acts on the geometry axis with index 1, i.e. on the X axis because

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1657

G18 is active. Since <CorMode> = 3, the tool wear in the direction of the X axis of the WCS
must become zero once N100 has been executed.

The contents of the relevant tool parameters at the end of the program are thus:

$TC_DP3[1,1]: 21.830 ; geometry L1

$TC_DP4[1,1] : 21.830 ; geometry L2

$TC_DP12[1,1] : 2.500 ; wear L1

$TC_DP13[1,1] : -4.330 ; wear L2

The geometrical relationships are shown in the figure below: The total wear including
_CORVAL is mapped onto the X' direction in the WCS. This produces point P2. The
coordinates of this point (measured in X/Y coordinates) are entered in the geometry component
of the tool. The difference vector P2 - P1 remains in the wear. The wear thus no longer has a
component in the direction of _CORVAL.

If the program example is continued after N110 with the following instructions, then the
remaining wear is included completely in the geometry because the compensation is now
effective in the Z' axis (parameter <GeoAx> = 0):

N120 _CORVAL[0]=0.0
N130 R1=SETTCOR(_CORVAL,"GW",0,3,0)
N140 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500

Since the new compensation value is "0", the total tool length and thus the position approached
in N140 may not change. If _CORVAL were not equal to "0" in N120, a new total tool length
and thus a new position in N140 would result, however, the wear component of the tool length
would always be zero, i.e. the total tool length is subsequently always contained in the
geometry component of the tool.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1658 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

The same result as that achieved by calling the SETTCOR function with the <CorComp> = 0
parameter twice can also be reached by calling <CorComp> = 1 (vectorial compensation) just
once:

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=0.0
N71 _CORVAL[1]=5.0
N72 _CORVAL[2]=0.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",1,3,1)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500
N120 M30

In this case, all wear components of the tool are set to zero immediately after the first call of
SETTCOR in N100.

Example 7

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=5.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",3,3)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X25.000 Y0.000 Z15.000
N120 M30

When compared to example 6, parameter <CorComp> = 3, and so the <GeoAx> parameter
can be omitted. The value contained in _CORVAL[0] now acts immediately on the tool length
component L1, the rotation in N80 has no effect on the result, the wear components in
$TC_DP12 are included in the geometry component together with _CORVAL[0], with the result
that the total tool length is stored in the geometry component of the tool, due to $TC_DP13,
after the first SETTCOR call in N100.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1659

Example 8

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP5[1,1]=20.0 ; geometry L3
N60 $TC_DP12[1,1]=10.0 ; wear L1
N70 $TC_DP13[1,1]=0.0 ; wear L2
N80 $TC_DP14[1,1]=0.0 ; wear L3
N90 $SC_WEAR_SIGN=TRUE
N100 _CORVAL[0]=10.0
N110 _CORVAL[1]=15.0
N120 _CORVAL[2]=5.0
N130 ROT Y-30
N140 T1 D1 G18 G0
N150 R1=SETTCOR(_CORVAL,"W",1,1)
N160 T1 D1 X0 Y0 Z0 ; ==> MCS position X7.990 Y25.000 Z31.160
N170 M30

Setting data:SD42930 $SC_WEAR_SIGN is enabled in N90, i.e. the wear must be evaluated
with a negative sign. The compensation is vectorial (<CorComp> = 1), and the compensation
vector must be added to the wear (<CorMode> = 1). The geometrical relationships in the Z/X
plane are shown in the diagram below:

The geometry component of the tool remains unchanged due to <CorMode> = 1. The
compensation vector defined in the WCS (rotation around the y axis) must be included in the
wear component such that the total tool length in Fig. 3 refers to point P2. Therefore, the
resulting wear component of the tool is given by the distance of the two points P1 and P2.

W1: Tool offset
19.15 Working with tool environments

Basic Functions
1660 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

However, since the wear is evaluated negatively, due to setting data SD42930
$SC_WEAR_SIGN, the compensation determined in this way has to be entered in the
compensation memory with a negative sign. The contents of the relevant tool parameters at
the end of the program are thus:

$TC_DP3[1,1]: 10.000 ; geometry L1 (unchanged)

$TC_DP4[1,1] : 15.000 ; geometry L2 (unchanged)

$TC_DP5[1,1]: 10.000 ; geometry L3 (unchanged)

$TC_DP12[1,1] : 2.010 ; wear L1 (= 10 - 15 * cos(30) + 10 * sin(30))

$TC_DP13[1,1] : -16.160 ; wear L2 (= -15 * sin(30) - 10 * cos(30))

$TC_DP14[1,1] : -5.000 ; wear L3

The effect of setting data SD42930 $SC_WEAR_SIGN on the L3 component in the Y direction
can be recognized without the additional complication caused by the frame rotation.

Additional information

Turning/grinding tools: Calculating the tool length depending on MD20360
$MC_TOOL_PARAMETER_DEF_MASK
The following machine data defines how the wear and tool length are to be evaluated if a
diameter axis is used for turning/grinding tools:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK.<Bit> = <Value>

<Bit> <Value> Meaning
0

0 For turning/grinding tools, the wear parameter of the transverse axis is taken into
account in the radius value:

1 For turning/grinding tools, the wear parameter of the transverse axis is taken into
account as the diameter value:

1 0 For turning/grinding tools, the tool length component of the transverse axis is taken
into account as the radius value:

1 For turning/grinding tools, the tool length component of the transverse axis is taken
into account as the diameter value:

If the bits involved are set, the associated entry is weighted with a factor of 0.5. The correction
using SETTCOR is executed so that the total effective tool length change is equal to the value
transferred in <CorVal>. If, when calculating the length, a length is evaluated with a factor of
0.5 as a result of machine data MD20360 $MC_TOOL_PARAMETER_DEF_MASK, then the
compensation of this component must be realized with twice the value transferred.

Example
MD20360 $MC_TOOL_PARAMETER_DEF_MASK = 2 (tool length must be evaluated in the
diameter axis using a factor of 0.5)

Axis X is the diameter axis.

Program code Comment
N10 DEF REAL _LEN[11]
N20 DEF REAL _CORVAL[3]
N30 $TC_DP1[1,1]=500 ; Tool type

W1: Tool offset
19.15 Working with tool environments

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1661

Program code Comment
N40 $TC_DP2[1,1]=2 ; Cutting edge position
N50 $TC_DP3[1,1]=3. ; Geometry - length 1
N60 $TC_DP4[1,1]=4. ; Geometry - length 2
N70 $TC_DP5[1,1]=5. ; Geometry - length 3
N80 _CORVAL[0]=1.
N90 _CORVAL[1]=1.
N100 _CORVAL[2]=1.
N110 T1 D1 G18 G0 X0 Y0 Z0 ; ==> MCS position X1.5 Y5 Z4
N120 R1=SETTCOR(_CORVAL,"G",1,1)
N130 T1 D1 X0 Y0 Z0 ; ==> MCS position X2.5 Y6 Z5
N140 R3=$TC_DP3[1,1] ; = 5. = (3.000 + 2.*1.000)
N150 R4=$TC_DP4[1,1] ; = 5. = (4.000 + 1.000)
N160 R5=$TC_DP5[1,1] ; = 6. = (5.000 + 1.000)
N170 M30

In each axis, the tool length compensation should be 1 mm (N80 to N100). 1 mm is thus added
to the original length in lengths L2 and L3. Twice the compensation value (2 mm) is added to
the original tool length in L1, in order to change the total length by 1 mm as required. If the
positions approached in blocks N110 and N130 are compared, it can be seen that each axis
position has changed by 1 mm.

19.16 Read the assignment of the tool lengths L1, L2, L3 to the coordinate
axes (LENTOAX)

The LENTOAX function provides information about the assignment of tool lengths L1, L2 and
L3 of the active tool to the abscissa, ordinate and applicate. The assignment of abscissa,
ordinate and applicate to the geometry axes is affected by frames and the active plane (G17
- G19).

Only the geometry component of a tool ($TC_DP3[<t>,<d>] to $TC_DP5[<t>,<d>]) is
considered, i.e. a different axis assignment for other components (e.g. wear) has no effect on
the result.

Syntax
<Status> = LENTOAX(<AxInd>, <Matrix>[, <Coord>])

Principle

LENTOAX(...): Predefined function to read the assignment of tool lengths L1, L2 and L3 of the
active tool to the coordinate axes
Alone in the block: Yes

W1: Tool offset
19.16 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

Basic Functions
1662 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

Information provided in <AxInd> is sufficient for the descrip‐
tion (all tool length components are in parallel to the geom‐
etry axes).

1 Function is OK, however, the content of <Matrix> must be
evaluated for a correct description (the tool length compo‐
nents are not parallel to the geometry axes).

-1 Invalid string in parameter <Coord>.
-2 No tool active.

Parameters
1 <AxInd>: If the tool length components are parallel to the geometry axes, the axis indices

assigned to length components L1 to L3 are returned in the <AxInd> array.
● <AxInd> [0]: Abscissa
● <AxInd> [1]: Ordinate
● <AxInd> [2]: Applicate
Data type: INT[3]
Value: 0 No assignment exists (axis does not exist)

1 ... 3
or

-1 ... -3

Number of the length effective in the corresponding coordi‐
nate axis.
The sign is negative if the tool length component is pointing
in the negative coordinate direction.

If not all length components are parallel or antiparallel to the geometry axes, the
index of the axis, which contains the largest part of a tool length component, is
returned in <AxInd>. In this case (if the function does not return an error for a
different reason), then the return value is <Status> = 1. The mapping of tool length
components L1 to L3 to geometry axes 1 to 3 is then described completely by the
content of the 2nd parameter <Matrix>.

2 <Matrix>: Matrix which represents the vector of the tool lengths (L1=1, L2=1, L3=1) to the
vector of the coordinate axes (abscissa, ordinate, applicate), i.e. the tool length
components are assigned to the columns in the order L1, L2, L3 and the axes are
assigned to the lines in the order abscissa, ordinate, applicate.
Data type: REAL
All elements are always valid in the matrix, even if the geometry axis belonging
to the coordinate axis is not available, i.e. if the corresponding entry in <AxInd>
is 0.

W1: Tool offset
19.16 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1663

3 <Coord>: coordinate system applicable for the assignment (optional)
Data type: STRING
Charac‐
ters:

MCS
M

The tool length is represented in the machine coordinate
system.

BCS
B

The tool length is represented in the basic coordinate system.

WCS
W

The tool length is represented in the workpiece coordinate
system (default setting).

KCS
K

The tool length is represented in the tool coordinate system
of the kinematic transformation.

TCS
T

The tool length is represented in the tool coordinate system.

The notation of the characters in the string (upper or lower case) is arbitrary.
If the parameter <Coord> is not specified, then WCS is used (default setting).

Note

In the TCS, all tool length components are always parallel or antiparallel to the axes.

The components can only be antiparallel when mirroring is active and the following setting
data is activated:

SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

Example
Standard application, milling tool for G17.

L1 applies in Z (applicate), L2 applies in Y (ordinate), L3 applies in X (abscissa).

Function call in the form:
<Status>=LENTOAX(<AxInd>,<Matrix>,"WCS")
The result parameter <AxInd> then contains the values:

<AxInd>[0] = 3

<AxInd>[1] = 2

<AxInd>[2] = 1

Or, in short: (3, 2, 1)

In this case, the associated matrix (<Matrix>) is:

A change from G17 to G18 or G19 does not alter the result, because the assignment of the
length components to the geometry axes changes in the same way as the assignment of the
abscissa, ordinate and applicate.

A frame rotation of Z through 60 degrees is now programmed with G17 active, e.g.

W1: Tool offset
19.16 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

Basic Functions
1664 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

ROT Z60
The direction of the applicate (Z direction) remains unchanged; the main component of L2 now
lies in the direction of the new X axis; the main component of L1 now lies in the direction of
the negative Y axis. As a consequence, the return value (<Status>) is "1", <AxInd> contains
the values (2, -3, 1).

In this case, the associated matrix (<Matrix>) is:

19.17 Supplementary conditions

19.17.1 Flat D number structure

Block search
For a block search, you can parameterize when the help functions should be output to the PLC
using:

● MD22080 $MC_AUXFU_PREDEF_SPEC

● MD22035 $MC_AUXFU_ASSIGN_SPEC

● MD11110 $MN_AUXFU_GROUP_SPEC

19.17.2 SD42935 expansions

Transformation of wear values
Which wear components in conjunction with the instructions TOWMCS (wear values in the
machine coordinate system) and TOWWCS (wear values in the workpiece coordinate system)
are transformed or not transformed can be defined using:

SD42935 $SC_WEAR_TRANSFORM (transformation of wear values)

W1: Tool offset
19.17 Supplementary conditions

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1665

19.17.3 Scratching

Scratching
If the "Scratch" function is used in the reset state, then regarding the initial setting value, the
following must be taken into consideration:

● The wear components are evaluated depending on the initial settings of the G groups
TOWSTD, TOWMCS and TOWWCS.

● If a value other than the initial setting is needed to ensure correct calculation, scratching
may be performed only in the STOP state.

19.18 Data lists

19.18.1 Machine data

19.18.1.1 NC-specific machine data

Number Identifier: $MN_ Description
18082 MM_NUM_TOOL Number of tools that the NC can manage (SRAM)
18088 MM_NUM_TOOL_CARRIER Maximum number of the defined toolholders
18094 MM_NUM_CC_TDA_PARAM Number of tool data (SRAM)
18096 MM_NUM_CC_TOA_PARAM Number of data, per tool cutting edge for compile cycles

(SRAM)
18100 MM_NUM_CUTTING_EDGES_IN_TOA Tool offsets in the TOA area (SRAM)
18102 MM_TYPE_OF_CUTTING_EDGE Type of D number programming (SRAM)
18105 MM_MAX_CUTTING_EDGE_NO Maximum value of D number
18106 MM_MAX_CUTTING_EDGE_PERTOOL Maximum number of D numbers per tool
18108 MM_NUM_SUMCORR Number of all sum offsets in the NC
18110 MM_MAX_SUMCORR_PER_CUTTEDGE Number of sum offsets per cutting edge
18112 MM_KIND_OF_SUMCORR Properties of sum offsets in the TO area (SRAM)
18114 MM_ENABLE_TOOL_ORIENT Assign orientation to cutting edges
18116 MM_NUM_TOOL_ENV Tool environments in the TOA area (SRAM)

19.18.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20096 T_M_ADDRESS_EXT_IS_SPINO Meaning of the address extension with T, M tool change
20110 RESET_MODE_MASK Definition of initial control setting after RESET/part pro‐

gram end

W1: Tool offset
19.18 Data lists

Basic Functions
1666 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Number Identifier: $MC_ Description
20120 TOOL_RESET_VALUE Tool length compensation at power-up (Reset/TP end)
20121 TOOL_PRESEL_RESET_VALUE Preselect tool on Reset
20125 CUTMOD_ERR Fault handling for the function "Modification of the offset

data for rotatable tools"
20126 TOOL_CARRIER_RESET_VALUE Operative tool holder on Reset
20127 CUTMOD_INIT Initialization value for CUTMOD
20130 CUTTING_EDGE_RESET_VALUE Tool cutting edge length compensation at power-up

(Reset/TP end)
20132 SUMCORR_RESET_VALUE Additive offset effective on reset
20140 TRAFO_RESET_VALUE Transformation data record at power up (Reset/TP end)
20180 TOCARR_ROT_ANGLE_INCR[i] Rotary axis increment of the tool carrier with orientation

capability
20182 TOCARR_ROT_ANGLE_OFFSET[i] Rotary axis offset of tool carrier with orientation capa‐

bility
20184 TOCARR_BASE_FRAME_NUMBER Number of the basic frames to accept the table offset
20188 TOCARR_FINE_LIM_LIN Limit linear fine offset TCARR
20190 TOCARR_FINE_LIM_ROT Limit of the rotary fine offset TCARR
20202 WAB_MAXNUM_DUMMY_BLOCKS Maximum number of blocks with no traversing motions

with SAR
20204 WAB_CLEARANCE_TOLERANCE Direction reversal for WAB
20210 CUTCOM_CORNER_LIMIT Max. angle for intersection calculation with tool radius

compensation
20220 CUTCOM_MAX_DISC Maximum value for DISC
20230 CUTCOM_CURVE_INSERT_LIMIT Maximum value for intersection calculation with TRC
20240 CUTCOM_MAXNUM_CHECK_BLOCKS Blocks for predictive contour calculation with tool radius

compensation
20250 CUTCOM_MAXNUM_DUMMY_BLOCKS Maximum number of blocks without traversing motion

for TRC
20252 CUTCOM_MAXNUM_SUPPR_BLOCKS Maximum number of blocks with compensation sup‐

pression
20256 CUTCOM_INTERS_POLY_ENABLE Intersection process possible for polynomials
20270 CUTTING_EDGE_DEFAULT Basic setting of tool cutting edge without programming
20272 SUMCORR_DEFAULT Initial setting of additive offset without program
20360 TOOL_PARAMETER_DEF_MASK Definition of tool parameters
20390 TOOL_TEMP_COMP_ON Activation of temperature compensation for tool length
20392 TOOL_TEMP_COMP_LIMIT Maximum temperature compensation for tool length
20610 ADD_MOVE_ACCEL_RESERVE Acceleration reserve for overlaid movements
21080 CUTCOM_PARALLEL_ORI_LIMIT Minimum angle (path tangent and tool orientation) for

3D tool radius compensation
22530 TOCARR_CHANGE_M_CODE M code for change of tool carrier
22550 TOOL_CHANGE_MODE New tool compensations with M function
22560 TOOL_CHANGE_M_CODE M function for tool change
22562 TOOL_CHANGE_ERROR_MODE Response when errors occur at tool change
24558 TRAFO5_JOINT_OFFSET_PART_1 Vector of kinematic offset in table, transformation 1

W1: Tool offset
19.18 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1667

Number Identifier: $MC_ Description
24658 TRAFO5_JOINT_OFFSET_PART_2 Vector of kinematic offset in table, transformation 2
28085 MM_LINK_TOA_UNIT Assigning ´the TO unit to a channel (SRAM)

19.18.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
32750 TEMP_COMP_TYPE Temperature compensation type

19.18.2 Setting data

19.18.2.1 Channelspecific setting data

Number Identifier $SC_ Description
42442 TOOL_OFFSET_INCR_PROG Tool length compensation
42470 CRIT_SPLINE_ANGLE Core limit angle, for compressor
42480 STOP_CUTCOM_STOPRE Alarm response for tool radius compensation and pre‐

processing stop
42494 CUTCOM_ACT_DEACT_CTRL Approach and retraction behavior for tool radius com‐

pensation
42496 CUTCOM_CLSDT_CONT Behavior of the tool radius compensation for closed

contour
42900 MIRROR_TOOL_LENGTH Sign change, tool lengths when mirroring
42910 MIRROR_TOOL_WEAR Sign change, tool wear when mirroring
42920 WEAR_SIGN_CUTPOS Sign of wear for tools with cutting edge position
42930 WEAR_SIGN Sign of the wear
42935 WEAR_TRANSFORM Transformations for tool components
42940 TOOL_LENGTH_CONST Change of tool length components for change of plane
42950 TOOL_LENGTH_TYPE Assignment of the tool length offset independent of tool

type
42960 TOOL_TEMP_COMP Temperature compensation value in relation to tool
42974 TCARR_FINE_CORRECTION Fine offset TCARR on/off
42984 CUTDIRMOD Modification of $P_AD[2] or $P_AD[11]
42998 CUTMOD_PLANE_TOL Difference between tool tip plane and machining plane

for CUTMOD or CUTMODK
42999 ORISOLH_INCLINE_TOL Difference between tool tip plane and machining plane

for ORISOLH

W1: Tool offset
19.18 Data lists

Basic Functions
1668 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

19.18.3 Signals

19.18.3.1 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
T function 1 change DB21,DBX61.0 -
D function 1 change DB21,DBX62.0 -
T function 1 DB21,DBB116-119 DB250x.DBD2000
D function 1 DB21,DBB128-129 DB250x.DBD5000
Active G command of group 7 DB21,DBB214 DB350x.DBB6
Active G command of group 16 DB21,DBB223 DB350x.DBB15
Active G command of group 17 DB21,DBB224 DB350x.DBB16
Active G command of group 18 DB21,DBB225 DB350x.DBB17
Active G command of group 23 DB21,DBB230 DB350x.DBB22

W1: Tool offset
19.18 Data lists

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1669

W1: Tool offset
19.18 Data lists

Basic Functions
1670 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Z1: NC/PLC interface signals 20
From Edition 05/2017, a detailed description of the NC/PLC interface signals is provided in the
NC Variables and Interface Signals List Manual.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1671

Z1: NC/PLC interface signals

Basic Functions
1672 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Appendix A
A.1 List of abbreviations

A
O Output
ADI4 (Analog drive interface for 4 axes)
AC Adaptive Control
ALM Active Line Module
ARM Rotating induction motor
AS Automation system
ASCII American Standard Code for Information Interchange: American coding standard for

the exchange of information
ASIC Application-Specific Integrated Circuit: User switching circuit
ASUB Asynchronous subprogram
AUXFU Auxiliary function: Auxiliary function
STL Statement List
UP User Program

B
OP Operating Mode
BAG Mode group
BCD Binary Coded Decimals: Decimal numbers encoded in binary code
BERO Contact-less proximity switch
BI Binector Input
BICO Binector Connector
BIN BINary files: Binary files
BIOS Basic Input Output System
BCS Basic Coordinate System
BO Binector Output
OPI Operator Panel Interface

C
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CC Compile Cycle: Compile cycles
CEC Cross Error Compensation
CI Connector Input
CF Card Compact Flash Card

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1673

C
CNC Computerized Numerical Control: Computer-Supported Numerical Control
CO Connector Output
CoL Certificate of License
COM Communication
CPA Compiler Projecting Data: Configuring data of the compiler
CRT Cathode Ray Tube: picture tube
CSB Central Service Board: PLC module
CU Control Unit
CP Communication Processor
CPU Central Processing Unit: Central processing unit
CR Carriage Return
CTS Clear To Send: Ready to send signal for serial data interfaces
CUTCOM Cutter radius Compensation: Tool radius compensation

D
DAC Digital-to-Analog Converter
DB Data Block (PLC)
DBB Data Block Byte (PLC)
DBD Data Block Double word (PLC)
DBW Data Block Word (PLC)
DBX Data block bit (PLC)
DDE Dynamic Data Exchange
DDS Drive Data Set: Drive data set
DIN Deutsche Industrie Norm
DIO Data Input/Output: Data transfer display
DIR Directory: Directory
DLL Dynamic Link Library
DO Drive Object
DPM Dual Port Memory
DPR Dual Port RAM
DRAM Dynamic memory (non-buffered)
DRF Differential Resolver Function: Differential revolver function (handwheel)
DRIVE-CLiQ Drive Component Link with IQ
DRY Dry Run: Dry run feedrate
DSB Decoding Single Block: Decoding single block
DSC Dynamic Servo Control / Dynamic Stiffness Control
DW Data Word
DWORD Double Word (currently 32 bits)

Appendix
A.1 List of abbreviations

Basic Functions
1674 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

E
I Input
EES Execution from External Storage
I/O Input/Output
ENC Encoder: Actual value encoder
EFP Compact I/O module (PLC I/O module)
ESD Electrostatic Sensitive Devices
EMC ElectroMagnetic Compatibility
EN European standard
ENC Encoder: Actual value encoder
EnDat Encoder interface
EPROM Erasable Programmable Read Only Memory: Erasable, electrically programmable

read-only memory
ePS Network Services Services for Internet-based remote machine maintenance
EQN Designation for an absolute encoder with 2048 sine signals per revolution
ES Engineering System
ESR Extended Stop and Retract
ETC ETC key ">"; softkey bar extension in the same menu

F
FB Function Block (PLC)
FC Function Call: Function Block (PLC)
FEPROM Flash EPROM: Read and write memory
FIFO First In First Out: Memory that works without address specification and whose data is

read in the same order in which they was stored
FIPO Fine interpolator
FPU Floating Point Unit: Floating Point Unit
CRC Cutter Radius Compensation
FST Feed Stop: Feedrate stop
FBD Function Block Diagram (PLC programming method)
FW Firmware

G
GC Global Control (PROFIBUS: Broadcast telegram)
GDIR Global part program memory
GEO Geometry, e.g. geometry axis
GIA Gear Interpolation dAta: Gear interpolation data
GND Signal Ground
GP Basic program (PLC)
GS Gear Stage
GSD Device master file for describing a PROFIBUS slave

Appendix
A.1 List of abbreviations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1675

G
GSDML Generic Station Description Markup Language: XML-based description language for

creating a GSD file
GUD Global User Data: Global user data

H
HEX Abbreviation for hexadecimal number
AuxF Auxiliary function
HLA Hydraulic linear drive
HMI Human Machine Interface: SINUMERIK user interface
MSD Main Spindle Drive
HW Hardware

I
IBN Commissioning
ICA Interpolatory compensation
IM Interface Module: Interconnection module
IMR Interface Module Receive: Interface module for receiving data
IMS Interface Module Send: Interface module for sending data
INC Increment: Increment
INI Initializing Data: Initializing data
IPO Interpolator
ISA Industry Standard Architecture
ISO International Standardization Organization

J
JOG Jogging: Setup mode

K
KV Gain factor of control loop
Kp Proportional gain
KÜ Transformation ratio
LAD Ladder Diagram (PLC programming method)

L
LAI Logic Machine Axis Image: Logical machine axes image
LAN Local Area Network
LCD Liquid Crystal Display: Liquid crystal display
LED Light Emitting Diode: Light-emitting diode
LF Line Feed

Appendix
A.1 List of abbreviations

Basic Functions
1676 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

L
PMS Position Measuring System
LR Position controller
LSB Least Significant Bit: Least significant bit
LUD Local User Data: User data (local)

M
MAC Media Access Control
MAIN Main program: Main program (OB1, PLC)
MB Megabyte
MCI Motion Control Interface
MCIS Motion Control Information System
MCP Machine Control Panel: Machine control panel
MD Machine Data
MDA Manual Data Automatic: Manual input
MDS Motor Data Set: Motor data set
MSGW Message Word
MCS Machine Coordinate System
MM Motor Module
MPF Main Program File: Main program (NC)
MCP Machine control panel

N
NC Numerical Control: Numerical control with block preparation, traversing range, etc.
NCU Numerical Control Unit: NC hardware unit
NRK Name for the operating system of the NC
IS Interface Signal
NURBS Non-Uniform Rational B-Spline
WO Work Offset
NX Numerical Extension: Axis expansion board

O
OB Organization block in the PLC
OEM Original Equipment Manufacturer
OP Operator Panel: Operating equipment
OPI Operator Panel Interface: Interface for connection to the operator panel
OPT Options: Options
OLP Optical Link Plug: Fiber optic bus connector
OSI Open Systems Interconnection: Standard for computer communications

Appendix
A.1 List of abbreviations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1677

P
PIQ Process Image Output
PII Process Image Input
PC Personal Computer
PCIN Name of the SW for data exchange with the control
PCMCIA Personal Computer Memory Card International Association:

Plug-in memory card standardization
PCU PC Unit: PC box (computer unit)
PG Programming device
PKE Parameter identification: Part of a PIV
PIV Parameter identification: Value (parameterizing part of a PPO)
PLC Programmable Logic Control: Adaptation control
PN PROFINET
PNO PROFIBUS user organization
PO POWER ON
POU Program Organization Unit
POS Position/positioning
POSMO A Positioning Motor Actuator: Positioning motor
POSMO CA Positioning Motor Compact AC: Complete drive unit with integrated power and control

module as well as positioning unit and program memory; AC infeed
POSMO CD Positioning Motor Compact DC: Like CA but with DC infeed
POSMO SI Positioning Motor Servo Integrated: Positioning motor, DC infeed
PPO Parameter Process data Object: Cyclic data telegram for PROFIBUS DP transmission

and "Variable speed drives" profile
PPU Panel Processing Unit (central hardware for a panel-based CNC, e.g SINUMERIK

828D)
PROFIBUS Process Field Bus: Serial data bus
PRT Program Test
PSW Program control word
PTP Point-To-Point: Point-To-Point
PUD Program global User Data: Program-global user variables
PZD Process data: Process data part of a PPO

Q
QEC Quadrant Error Compensation

R
RAM Random Access Memory: Read/write memory
REF REFerence point approach function
REPOS REPOSition function
RISC Reduced Instruction Set Computer: Type of processor with small instruction set and

ability to process instructions at high speed
ROV Rapid Override: Input correction

Appendix
A.1 List of abbreviations

Basic Functions
1678 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

R
RP R Parameter, arithmetic parameter, predefined user variable
RPA R Parameter Active: Memory area in the NC for R parameter numbers
RPY Roll Pitch Yaw: Rotation type of a coordinate system
RTLI Rapid Traverse Linear Interpolation: Linear interpolation during rapid traverse motion
RTS Request To Send: Control signal of serial data interfaces
RTCP Real Time Control Protocol

S
SA Synchronized Action
SBC Safe Brake Control: Safe Brake Control
SBL Single Block: Single block
SBR Subroutine: Subprogram (PLC)
SD Setting Data
SDB System Data Block
SEA Setting Data Active: Identifier (file type) for setting data
SERUPRO SEarch RUn by PROgram test: Block search, program test
SFB System Function Block
SFC System Function Call
SGE Safety-related input
SGA Safety-related output
SH Safe standstill
SIM Single in Line Module
SK Softkey
SKP Skip: Function for skipping a part program block
SLM Synchronous Linear Motor
SM Stepper Motor
SMC Sensor Module Cabinet Mounted
SME Sensor Module Externally Mounted
SMI Sensor Module Integrated
SPF Sub Routine File: Subprogram (NC)
PLC Programmable Logic Controller
SRAM Static RAM (non-volatile)
TNRC Tool Nose Radius Compensation
SRM Synchronous Rotary Motor
LEC Leadscrew Error Compensation
SSI Serial Synchronous Interface: Synchronous serial interface
SSL Block search
STW Control word
GWPS Grinding Wheel Peripheral Speed
SW Software
SYF System Files: System files
SYNACT SYNchronized ACTion: Synchronized Action

Appendix
A.1 List of abbreviations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1679

T
TB Terminal Board (SINAMICS)
TCP Tool Center Point: Tool tip
TCP/IP Transport Control Protocol / Internet Protocol
TCU Thin Client Unit
TEA Testing Data Active: Identifier for machine data
TIA Totally Integrated Automation
TM Terminal Module (SINAMICS)
TO Tool Offset: Tool offset
TOA Tool Offset Active: Identifier (file type) for tool offsets
TRANSMIT Transform Milling Into Turning: Coordination transformation for milling operations on

a lathe
TTL Transistor-Transistor Logic (interface type)
TZ Technology cycle

U
UFR User Frame: Work offset
SR Subprogram
USB Universal Serial Bus
UPS Uninterruptible Power Supply

V
VDI Internal communication interface between NC and PLC
VDI Verein Deutscher Ingenieure [Association of German Engineers]
VDE Verband Deutscher Elektrotechniker [Association of German Electrical Engineers]
VI Voltage Input
VO Voltage Output
FDD Feed Drive

W
SAR Smooth Approach and Retraction
WCS Workpiece Coordinate System
T Tool
TLC Tool Length Compensation
WOP Workshop-Oriented Programming
WPD Workpiece Directory: Workpiece directory
TRC Tool Radius Compensation
T Tool
TO Tool Offset
TM Tool Management
TC Tool change

Appendix
A.1 List of abbreviations

Basic Functions
1680 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

X
XML Extensible Markup Language

Z
WOA Work Offset Active: Identifier for work offsets
ZSW Status word (of drive)

Appendix
A.1 List of abbreviations

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1681

A.2 Documentation overview

Appendix
A.2 Documentation overview

Basic Functions
1682 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Glossary

Absolute dimensions
A destination for an axis motion is defined by a dimension that refers to the origin of the currently
valid coordinate system. See → Incremental dimension

Acceleration with jerk limitation
In order to optimize the acceleration response of the machine whilst simultaneously protecting
the mechanical components, it is possible to switch over in the machining program between
abrupt acceleration and continuous (jerk-free) acceleration.

Address
An address is the identifier for a certain operand or operand range, e.g. input, output, etc.

Alarms
All → messages and alarms are displayed on the operator panel in plain text with date and time
and the corresponding symbol for the deletion criterion. Alarms and messages are displayed
separately.

1. Alarms and messages in the part program:
Alarms and messages can be displayed in plain text directly from the part program.

2. Alarms and messages from the PLC:
Alarms and messages for the machine can be displayed in plain text from the PLC program.
No additional function block packages are required for this purpose.

Archiving
Reading out of files and/or directories on an external memory device.

Asynchronous subprogram
Part program that can be started asynchronously to (independently of) the current program
status using an interrupt signal (e.g. "Rapid NC input" signal).

Automatic
Operating mode of the controller (block sequence operation according to DIN): Operating
mode for NC systems in which a → subprogram is selected and executed continuously.

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1683

Auxiliary functions
Auxiliary functions enable → part programs to transfer → parameters to the → PLC, which then
trigger reactions defined by the machine manufacturer.

Axes
In accordance with their functional scope, the CNC axes are subdivided into:

● Axes: Interpolating path axes

● Auxiliary axes: Non-interpolating feed and positioning axes with an axis-specific feedrate.
Auxiliary axes are not involved in actual machining, e.g. tool feeder, tool magazine.

Axis address
See → Axis name

Axis name
To ensure clear identification, all channel and → machine axes of the control system must be
designated with unique names in the channel and control system. The → geometry axes are
called X, Y, Z. The rotary axes rotating around the geometry axes → are called A, B, C.

Backlash compensation
Compensation for a mechanical machine backlash, e.g. backlash on reversal for ball screws.
Backlash compensation can be entered separately for each axis.

Backup battery
The backup battery ensures that the → user program in the → CPU is stored so that it is safe
from power failure and so that specified data areas and bit memory, timers and counters are
stored retentively.

Basic axis
Axis whose setpoint or actual value position forms the basis of the calculation of a
compensation value.

Basic Coordinate System
Cartesian coordinate system which is mapped by transformation onto the machine coordinate
system.

The programmer uses axis names of the basic coordinate system in the → part program. The
basic coordinate system exists parallel to the → machine coordinate system if no
→ transformation is active. The difference lies in the → axis names.

Glossary

Basic Functions
1684 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Baud rate
Rate of data transfer (bits/s).

Blank
Workpiece as it is before it is machined.

Block
"Block" is the term given to any files required for creating and processing programs.

Block search
For debugging purposes or following a program abort, the "Block search" function can be used
to select any location in the part program at which the program is to be started or resumed.

Booting
Loading the system program after power ON.

C axis
Axis around which the tool spindle describes a controlled rotational and positioning motion.

C spline
The C spline is the most well-known and widely used spline. The transitions at the interpolation
points are continuous, both tangentially and in terms of curvature. 3rd order polynomials are
used.

Channel
A channel is characterized by the fact that it can process a → part program independently of
other channels. A channel exclusively controls the axes and spindles assigned to it. Part
program runs of different channels can be coordinated through → synchronization.

Circular interpolation
The → tool moves on a circle between specified points on the contour at a given feedrate, and
the workpiece is thereby machined.

CNC
See → NC

Computerized Numerical Control: includes the components → NC, → PLC, HMI, → COM.

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1685

CNC
See → NC

Computerized Numerical Control: includes the components → NC, → PLC, HMI, → COM.

COM
Component of the NC for the implementation and coordination of communication.

Compensation axis
Axis with a setpoint or actual value modified by the compensation value

Compensation table
Table containing interpolation points. It provides the compensation values of the compensation
axis for selected positions on the basic axis.

Compensation value
Difference between the axis position measured by the encoder and the desired, programmed
axis position.

Continuous-path mode
The objective of continuous-path mode is to avoid substantial deceleration of the → path axes
at the part program block boundaries and to change to the next block at as close to the same
path velocity as possible.

Contour
Contour of the → workpiece

Contour monitoring
The following error is monitored within a definable tolerance band as a measure of contour
accuracy. An unacceptably high following error can cause the drive to become overloaded, for
example. In such cases, an alarm is output and the axes are stopped.

Coordinate system
See → Machine coordinate system, → Workpiece coordinate system

CPU
Central processing unit, see → PLC

Glossary

Basic Functions
1686 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

CU
Transformation ratio

Curvature
The curvature k of a contour is the inverse of radius r of the nestling circle in a contour point
(k = 1/r).

Cycles
Protected subprograms for execution of repetitive machining operations on the → workpiece.

Data block
1. Data unit of the → PLC that → HIGHSTEP programs can access.

2. Data unit of the → NC: Data blocks contain data definitions for global user data. This data
can be initialized directly when it is defined.

Data word
Two-byte data unit within a → data block.

Diagnostics
1. Operating area of the control.

2. The control has a self-diagnostics program as well as test functions for servicing purposes:
status, alarm, and service displays

Dimensions specification, metric and inches
Position and pitch values can be programmed in inches in the machining program. Irrespective
of the programmable dimensions (G70/G71), the control is set to a basic system.

DRF
Differential Resolver Function: NC function which generates an incremental work offset in
Automatic mode in conjunction with an electronic handwheel.

Drive
The drive is the unit of the CNC that performs the speed and torque control based on the
settings of the NC.

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1687

Dynamic feedforward control
Inaccuracies in the → contour due to following errors can be practically eliminated using
dynamic, acceleration-dependent feedforward control. This results in excellent machining
accuracy even at high → path velocities. Feedforward control can be selected and deselected
on an axis-specific basis via the → part program.

Editor
The editor makes it possible to create, edit, extend, join, and import programs / texts / program
blocks.

Exact stop
When an exact stop statement is programmed, the position specified in a block is approached
exactly and, if necessary, very slowly. To reduce the approach time, → exact stop limits are
defined for rapid traverse and feed.

Exact stop limit
When all path axes reach their exact stop limits, the control responds as if it had reached its
precise destination point. A block advance of the → part program occurs.

External work offset
Work offset specified by the → PLC.

Fast retraction from the contour
When an interrupt occurs, a motion can be initiated via the CNC machining program, enabling
the tool to be quickly retracted from the workpiece contour that is currently being machined.
The retraction angle and the distance retracted can also be parameterized. An interrupt routine
can also be executed following the fast retraction.

Feed override
The programmed velocity is overriden by the current velocity setting made via the → machine
control panel or from the → PLC (0 to 200%). The feedrate can also be corrected by a
programmable percentage factor (1 to 200%) in the machining program.

Finished-part contour
Contour of the finished workpiece. See → Raw part.

Fixed machine point
Point that is uniquely defined by the machine tool, e.g. machine reference point.

Glossary

Basic Functions
1688 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Fixed-point approach
Machine tools can approach fixed points such as a tool change point, loading point, pallet
change point, etc. in a defined way. The coordinates of these points are stored in the control.
The control moves the relevant axes in → rapid traverse, whenever possible.

Frame
A frame is an arithmetic rule that transforms one Cartesian coordinate system into another
Cartesian coordinate system. A frame contains the following components: → work offset,
→ rotation, → scaling, → mirroring.

Functionality
The path-jerk limitation can be activated/deactivated by programming the setting data.

Parameter: Value
● Value range: TRUE, FALSE

Application:

● Part program

● Static synchronized action

Geometry
Description of a → workpiece in the → workpiece coordinate system.

Geometry axis
The geometry axes form the 2 or 3-dimensional → workpiece coordinate system in which, in
→ part programs, the geometry of the workpiece is programmed.

Ground
Ground is taken as the total of all linked inactive parts of a device which will not become live
with a dangerous contact voltage even in the event of a malfunction.

Helical interpolation
The helical interpolation function is ideal for machining internal and external threads using form
milling cutters and for milling lubrication grooves.

The helix comprises two motions:

● Circular motion in one plane

● A linear motion perpendicular to this plane

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1689

High-level CNC language
The high-level language is used to write NC programs, → synchronized actions, and → cycles.
It provides: control structures → user-defined variables, → system variables, → macro
programming.

High-speed digital inputs/outputs
The digital inputs can be used for example to start fast CNC program routines (interrupt
routines). High-speed, program-driven switching functions can be initiated via the digital CNC
outputs

HIGHSTEP
Summary of programming options for → PLCs of the AS300/AS400 system.

HW Config
SIMATIC S7 tool for the configuration and parameterization of hardware components within
an S7 project

Identifier
In accordance with DIN 66025, words are supplemented using identifiers (names) for variables
(arithmetic variables, system variables, user variables), subprograms, key words, and words
with multiple address letters. These supplements have the same meaning as the words with
respect to block format. Identifiers must be unique. It is not permissible to use the same
identifier for different objects.

Inch measuring system
Measuring system which defines distances in inches and fractions of inches.

Inclined surface machining
Drilling and milling operations on workpiece surfaces that do not lie in the coordinate planes
of the machine can be performed easily using the function "inclined-surface machining".

Increment
Travel path length specification based on number of increments. The number of increments
can be stored as → setting data or be selected by means of a suitably labeled key (i.e. 10, 100,
1000, 10000).

Incremental dimension
Incremental dimension: A destination for axis traversal is defined by a distance to be covered
and a direction referenced to a point already reached. See → Absolute dimension.

Glossary

Basic Functions
1690 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Intermediate blocks
Motions with selected → tool offset (G41/G42) may be interrupted by a limited number of
intermediate blocks (blocks without axis motions in the offset plane), whereby the tool offset
can still be correctly compensated for. The permissible number of intermediate blocks which
the controller reads ahead can be set in system parameters.

Interpolator
Logic unit of the → NC that defines intermediate values for the motion to be carried out in
individual axes based on information on the end positions specified in the part program.

Interpolatory compensation
Mechanical deviations of the machine are compensated for by means of interpolatory
compensation functions, such as → leadscrew error, sag, angularity, and temperature
compensation.

Interrupt routine
Interrupt routines are special → subprograms that can be started by events (external signals)
in the machining process. A part program block which is currently being worked through is
interrupted and the position of the axes at the point of interruption is automatically saved.

Inverse-time feedrate
The time required for the path of a block to be traversed can also be programmed for the axis
motion instead of the feed velocity (G93).

JOG
Operating mode of the control (setup mode): The machine can be set up in JOG mode.
Individual axes and spindles can be traversed in JOG mode by means of the direction keys.
Additional functions in JOG mode include: → Reference point approach, → Repos, and → Preset
(set actual value).

Key switch
The key switch on the → machine control panel has four positions that are assigned functions
by the operating system of the controller. The key switch has three different colored keys that
can be removed in the specified positions.

Keywords
Words with specified notation that have a defined meaning in the programming language for
→ part programs.

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1691

KV
Servo gain factor, a control variable in a control loop.

Leading axis
The leading axis is the → gantry axis that exists from the point of view of the operator and
programmer and, thus, can be influenced like a standard NC axis.

Leadscrew error compensation
Compensation for the mechanical inaccuracies of a leadscrew participating in the feed. The
controller uses stored deviation values for the compensation.

Limit speed
Maximum/minimum (spindle) speed: The maximum speed of a spindle can be limited by
specifying machine data, the → PLC or → setting data.

Linear axis
In contrast to a rotary axis, a linear axis describes a straight line.

Linear interpolation
The tool travels along a straight line to the destination point while machining the workpiece.

Load memory
The load memory is the same as the → working memory for the CPU 314 of the → PLC.

Look Ahead
The Look Ahead function is used to achieve an optimal machining speed by looking ahead
over an assignable number of traversing blocks.

Machine axes
Physically existent axes on the machine tool.

Machine control panel
An operator panel on a machine tool with operating elements such as keys, rotary switches,
etc., and simple indicators such as LEDs. It is used to directly influence the machine tool via
the PLC.

Glossary

Basic Functions
1692 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Machine coordinate system
A coordinate system, which is related to the axes of the machine tool.

Machine zero
Fixed point of the machine tool to which all (derived) measuring systems can be traced back.

Machining channel
A channel structure can be used to shorten idle times by means of parallel motion sequences,
e.g. moving a loading gantry simultaneously with machining. Here, a CNC channel must be
regarded as a separate CNC control system with decoding, block preparation and interpolation.

Macro techniques
Grouping of a set of statements under a single identifier. The identifier represents the set of
consolidated statements in the program.

Main block
A block preceded with ":" that contains all information to start the operating sequence in a
→ part program.

Main program
The term "main program" has its origins during the time when part programs were split strictly
into main and → subprograms. This strict division no longer exists with today's SINUMERIK
NC language. In principle, any part program in the channel can be selected and started. It then
runs through in → program level 0 (main program level). Further part programs or → cycles as
subprograms can be called up in the main program.

MDI
Operating mode of the control: Manual Data Input. In the MDI mode, individual program blocks
or block sequences with no reference to a main program or subprogram can be input and
executed immediately afterwards through actuation of the NC start key.

Messages
All messages programmed in the part program and → alarms detected by the system are
displayed on the operator panel in plain text with date and time and the corresponding symbol
for the deletion criterion. Alarms and messages are displayed separately.

Metric measuring system
Standardized system of units: For length, e.g. mm (millimeters), m (meters).

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1693

Mirroring
Mirroring reverses the signs of the coordinate values of a contour, with respect to an axis. It
is possible to mirror with respect to more than one axis at a time.

Mode
An operating concept on a SINUMERIK control The following modes are defined: → Jog, → MDI,
→ Automatic.

Mode group
Axes and spindles that are technologically related can be combined into one mode group.
Axes/spindles of a mode group can be controlled by one or more → channels. The same
→ mode type is always assigned to the channels of the mode group.

NC
Numerical Control component of the → CNC that executes the → part programs and coordinates
the movements of the machine tool.

Network
A network is the connection of multiple S7-300 and other end devices, e.g. a programming
device via a → connecting cable. A data exchange takes place over the network between the
connected devices.

NRK
Numeric robotic kernel (operating system of → NC)

NURBS
The motion control and path interpolation that occurs within the control is performed based on
NURBS (Non Uniform Rational B-Splines). This provides a uniform procedure for all internal
interpolations.

OEM
The scope for implementing individual solutions (OEM applications) has been provided for
machine manufacturers, who wish to create their own user interface or integrate technology-
specific functions in the control.

Offset memory
Data range in the control, in which the tool offset data is stored.

Glossary

Basic Functions
1694 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Oriented spindle stop
Stops the workpiece spindle in a specified angular position, e.g. in order to perform additional
machining at a particular location.

Overall reset
In the event of an overall reset, the following memories of the → CPU are deleted:

● → Working memory

● Read/write area of → load memory

● → System memory

● → Backup memory

Override
Manual or programmable possibility of intervention that enables the user to override
programmed feedrates or speeds in order to adapt them to a specific workpiece or material.

Part program
Series of statements to the NC that act in concert to produce a particular → workpiece. Likewise,
this term applies to execution of a particular machining operation on a given → raw part.

Part program block
Part of a → part program that is demarcated by a line feed. There are two types: → main blocks
and → subblocks.

Part program management
Part program management can be organized by → workpieces. The size of the user memory
determines the number of programs and the amount of data that can be managed. Each file
(programs and data) can be given a name consisting of a maximum of 24 alphanumeric
characters.

Path axis
Path axes include all machining axes of the → channel that are controlled by the → interpolator
in such a way that they start, accelerate, stop, and reach their end point simultaneously.

Path feedrate
Path feedrate affects → path axes. It represents the geometric sum of the feedrates of the
→ geometry axes involved.

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1695

Path velocity
The maximum programmable path velocity depends on the input resolution. For example, with
a resolution of 0.1 mm the maximum programmable path velocity is 1000 m/min.

PCIN data transfer program
PCIN is a utility program for sending and receiving CNC user data (e.g. part programs, tool
offsets) via the serial interface. The PCIN program can run under MS-DOS on standard
industrial PCs.

Peripheral module
I/O modules represent the link between the CPU and the process.

I/O modules are:

● → Digital input/output modules

● → Analog input/output modules

● → Simulator modules

PLC
Programmable Logic Controller: → Programmable logic controller. Component of → NC:
Programmable control for processing the control logic of the machine tool.

PLC program memory
SINUMERIK 840D sl: The PLC user program, the user data and the basic PLC program are
stored together in the PLC user memory.

PLC programming
The PLC is programmed using the STEP 7 software. The STEP 7 programming software is
based on the WINDOWS standard operating system and contains the STEP 5 programming
functions with innovative enhancements.

Polar coordinates
A coordinate system which defines the position of a point on a plane in terms of its distance
from the origin and the angle formed by the radius vector with a defined axis.

Polynomial interpolation
Polynomial interpolation enables a wide variety of curve characteristics to be generated, such
as straight line, parabolic, exponential functions (SINUMERIK 840D sl).

Glossary

Basic Functions
1696 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Positioning axis
Axis that performs an auxiliary motion on a machine tool (e.g. tool magazine, pallet transport).
Positioning axes are axes that do not interpolate with → path axes.

Pre-coincidence
Block change occurs already when the path distance approaches an amount equal to a
specifiable delta of the end position.

Program block
Program blocks contain the main program and subprograms of → part programs.

Program level
A part program started in the channel runs as a → main program on program level 0 (main
program level). Any part program called up in the main program runs as a → subprogram on
a program level 1 ... n of its own.

Programmable frames
Programmable → frames enable dynamic definition of new coordinate system output points
while the part program is being executed. A distinction is made between absolute definition
using a new frame and additive definition with reference to an existing starting point.

Programmable logic controller
Programmable logic controllers (PLCs) are electronic controllers, the function of which is stored
as a program in the control unit. This means that the layout and wiring of the device do not
depend on the function of the controller. The programmable logic control has the same
structure as a computer; it consists of a CPU (central module) with memory, input/output
modules and an internal bus system. The peripherals and the programming language are
matched to the requirements of the control technology.

Programmable working area limitation
Limitation of the motion space of the tool to a space defined by programmed limitations.

Programming key
Characters and character strings that have a defined meaning in the programming language
for → part programs.

Protection zone
Three-dimensional zone within the → working area into which the tool tip must not pass.

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1697

Quadrant error compensation
Contour errors at quadrant transitions, which arise as a result of changing friction conditions
on the guideways, can be virtually entirely eliminated with the quadrant error compensation.
Parameterization of the quadrant error compensation is performed by means of a circuit test.

R parameters
Arithmetic parameter that can be set or queried by the programmer of the → part program for
any purpose in the program.

Rapid traverse
The highest traverse velocity of an axis. It is used, for example, when the tool approaches the
→ workpiece contour from a resting position or when the tool is retracted from the workpiece
contour. The rapid traverse velocity is set on a machine-specific basis using a machine data
item.

Reference point
Machine tool position that the measuring system of the → machine axes references.

Rotary axis
Rotary axes apply a workpiece or tool rotation to a defined angular position.

Rotation
Component of a → frame that defines a rotation of the coordinate system around a particular
angle.

Rounding axis
Rounding axes rotate a workpiece or tool to an angular position corresponding to an indexing
grid. When a grid index is reached, the rounding axis is "in position".

RS-232-C
Serial interface for data input/output. Machining programs as well as manufacturer and user
data can be loaded and saved via this interface.

Safety functions
The controller is equipped with permanently active monitoring functions that detect faults in
the → CNC, the → PLC, and the machine in a timely manner so that damage to the workpiece,
tool, or machine is largely prevented. In the event of a fault, the machining operation is
interrupted and the drives stopped. The cause of the malfunction is logged and output as an
alarm. At the same time, the PLC is notified that a CNC alarm has been triggered.

Glossary

Basic Functions
1698 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Scaling
Component of a → frame that implements axis-specific scale modifications.

Setting data
Data which communicates the properties of the machine tool to the NC as defined by the
system software.

Softkey
A key, whose name appears on an area of the screen. The choice of softkeys displayed is
dynamically adapted to the operating situation. The freely assignable function keys (softkeys)
are assigned defined functions in the software.

Software limit switch
Software limit switches limit the traversing range of an axis and prevent an abrupt stop of the
slide at the hardware limit switch. Two value pairs can be specified for each axis and activated
separately by means of the → PLC.

Spline interpolation
With spline interpolation, the controller can generate a smooth curve characteristic from only
a few specified interpolation points of a set contour.

Standard cycles
Standard cycles are provided for machining operations which are frequently repeated:

● For the drilling/milling technology

● For turning technology

The available cycles are listed in the "Cycle support" menu in the "Program" operating area.
Once the desired machining cycle has been selected, the parameters required for assigning
values are displayed in plain text.

Subblock
Block preceded by "N" containing information for a sequence, e.g. positional data.

Subprogram
The term "subprogram" has its origins during the time when part programs were split strictly
into →main and subprograms. This strict division no longer exists with today's SINUMERIK NC
language. In principle, any part program or any → cycle can be called up as a subprogram
within another part program. It then runs through in the next → program level (x+1) (subprogram
level (x+1)).

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1699

Synchronization
Statements in → part programs for coordination of sequences in different → channels at certain
machining points.

Synchronized actions
1. Auxiliary function output

During workpiece machining, technological functions (→ auxiliary functions) can be output
from the CNC program to the PLC. For example, these auxiliary functions are used to
control additional equipment for the machine tool, such as quills, grabbers, clamping
chucks, etc.

2. Fast auxiliary function output
For time-critical switching functions, the acknowledgement times for the → auxiliary
functions can be minimized and unnecessary hold points in the machining process can be
avoided.

Synchronized axes
Synchronized axes take the same time to traverse their path as the geometry axes take for
their path.

Synchronized axis
A synchronized axis is the → gantry axis whose set position is continuously derived from the
motion of the → leading axis and is, thus, moved synchronously with the leading axis. From
the point of view of the programmer and operator, the synchronized axis "does not exist".

Syntax
$SC_IS_SD_MAX_PATH_JERK = value

System memory
The system memory is a memory in the CPU in which the following data is stored:

● Data required by the operating system

● The operands timers, counters, markers

System variable
A variable that exists without any input from the programmer of a → part program. It is defined
by a data type and the variable name preceded by the character $. See → User-defined variable.

Tapping without compensating chuck
This function allows threads to be tapped without a compensating chuck. By using the
interpolating method of the spindle as a rotary axis and the drilling axis, threads can be cut to
a precise final drilling depth, e.g. for blind hole threads (requirement: spindles in axis operation).

Glossary

Basic Functions
1700 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Text editor
See → Editor

TOA area
The TOA area includes all tool and magazine data. By default, this area coincides with the
→ channel area with regard to the access of the data. However, machine data can be used to
specify that multiple channels share one → TOA unit so that common tool management data
is then available to these channels.

TOA unit
Each → TOA area can have more than one TOA unit. The number of possible TOA units is
limited by the maximum number of active → channels. A TOA unit includes exactly one tool
data block and one magazine data block. In addition, a TOA unit can also contain a toolholder
data block (optional).

Tool
Active part on the machine tool that implements machining (e.g. turning tool, milling tool, drill,
LASER beam, etc.).

Tool nose radius compensation
Contour programming assumes that the tool is pointed. Because this is not actually the case
in practice, the curvature radius of the tool used must be communicated to the controller which
then takes it into account. The curvature center is maintained equidistantly around the contour,
offset by the curvature radius.

Tool offset
Consideration of the tool dimensions in calculating the path.

Tool radius compensation
To directly program a desired → workpiece contour, the control must traverse an equistant path
to the programmed contour taking into account the radius of the tool that is being used (G41/
G42).

Transformation
Additive or absolute zero offset of an axis.

Travel range
The maximum permissible travel range for linear axes is ± 9 decades. The absolute value
depends on the selected input and position control resolution and the unit of measurement
(inch or metric).

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1701

User interface
The user interface (UI) is the display medium for a CNC in the form of a screen. It features
horizontal and vertical softkeys.

User memory
All programs and data, such as part programs, subprograms, comments, tool offsets, and work
offsets / frames, as well as channel and program user data, can be stored in the shared CNC
user memory.

User program
User programs for the S7-300 automation systems are created using the programming
language STEP 7. The user program has a modular layout and consists of individual blocks.

The basic block types are:

● Code blocks
These blocks contain the STEP 7 commands.

● Data blocks
These blocks contain constants and variables for the STEP 7 program.

User-defined variable
Users can declare their own variables for any purpose in the → part program or data block
(global user data). A definition contains a data type specification and the variable name. See
→ System variable.

Variable definition
A variable definition includes the specification of a data type and a variable name. The variable
names can be used to access the value of the variables.

Velocity control
In order to achieve an acceptable traverse rate in the case of very slight motions per block, an
anticipatory evaluation over several blocks (→ Look Ahead) can be specified.

WinSCP
WinSCP is a freely available open source program for Windows for the transfer of files.

Glossary

Basic Functions
1702 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Work offset
Specifies a new reference point for a coordinate system through reference to an existing zero
point and a → frame.

1. Settable
A configurable number of settable work offsets are available for each CNC axis. The offsets
- which are selected by means of G commands - take effect alternatively.

2. External
In addition to all the offsets which define the position of the workpiece zero, an external
work offset can be overridden by means of the handwheel (DRF offset) or from the PLC.

3. Programmable
Work offsets can be programmed for all path and positioning axes using the TRANS
statement.

Working area
Three-dimensional zone into which the tool tip can be moved on account of the physical design
of the machine tool. See → Protection zone.

Working area limitation
With the aid of the working area limitation, the traversing range of the axes can be further
restricted in addition to the limit switches. One value pair per axis may be used to describe the
protected working area.

Working memory
The working memory is a RAM in the → CPU that the processor accesses when processing
the application program.

Workpiece
Part to be made/machined by the machine tool.

Workpiece contour
Set contour of the → workpiece to be created or machined.

Workpiece coordinate system
The workpiece coordinate system has its starting point in the → workpiece zero-point. In
machining operations programmed in the workpiece coordinate system, the dimensions and
directions refer to this system.

Workpiece zero
The workpiece zero is the starting point for the → workpiece coordinate system. It is defined
in terms of distances to the → machine zero.

Glossary

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1703

Glossary

Basic Functions
1704 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Index

$
$AA_ACC, 1443
$AA_ATOL, 252
$AA_FGREF, 1419
$AA_FGROUP, 1419
$AA_G0MODE, 260
$AA_MOTEND, 1444
$AA_S, 1278
$AA_SCPAR, 1445
$AA_VLFCT, 1370
$AA_VMAXB, 1370
$AA_VMAXM, 1370
$AC_ACT_PROG_NET_TIME, 686
$AC_ACTUAL_PARTS, 692, 696
$AC_ASUP, 602
$AC_AUXFU_EXT, 464
$AC_AUXFU_M_EXT, 464
$AC_AUXFU_M_STATE, 465
$AC_AUXFU_M_TICK, 446
$AC_AUXFU_M_VALUE, 465
$AC_AUXFU_PREDEF_INDEX, 451, 464
$AC_AUXFU_SPEC, 462, 465
$AC_AUXFU_STATE, 465
$AC_AUXFU_TYPE, 464
$AC_AUXFU_VALUE, 465
$AC_CTOL, 252
$AC_CUT_INV, 1597
$AC_CUTMOD, 1597
$AC_CUTMOD_ANG, 1580, 1597
$AC_CUTMODK, 1597
$AC_CUTTING_TIME, 688
$AC_CYCLE_TIME, 688
$AC_DELAYFST, 586
$AC_FGROUP_MASK, 1419
$AC_OLD_PROG_NET_TIME, 686
$AC_OLD_PROG_NET_TIME_COUNT, 687
$AC_OPERATING_TIME, 688
$AC_OTOL, 252
$AC_PATHACC, 278, 290
$AC_PATHJERK, 289, 290
$AC_PROG_NET_TIME_TRIGGER, 687
$AC_REQUIRED_PARTS, 692, 696
$AC_SGEAR, 1329, 1348
$AC_SMAXACC, 1369
$AC_SMAXACC_INFO, 1369
$AC_SMAXVELO, 1369
$AC_SMAXVELO_INFO, 1369

$AC_SMINVELO, 1369
$AC_SMINVELO_INFO, 1369
$AC_SPECIAL_PARTS, 692, 696
$AC_SPIND_STATE, 1369
$AC_STOLF, 262
$AC_TOTAL_PARTS, 692, 696
$AN_AUXFU_LIST_ENDINDEX, 455
$AN_POWERON_TIME, 685
$AN_SETUP_TIME, 685
$C_AUX_EXT, 665
$C_AUX_IS_QUICK, 665
$C_AUX_VALUE, 665
$C_D, 666
$C_D_PROG, 666
$C_DL, 666
$C_DL_PROG, 666
$C_DUPLO, 666
$C_DUPLO_PROG, 666
$C_M, 665
$C_M_PROG, 665
$C_ME, 665
$C_MTL, 662, 666
$C_MTL_PROG, 662, 666
$C_T, 665
$C_T_PROG, 665
$C_TCA, 666
$C_TE, 666
$C_THNO, 666
$C_THNO_PROG, 666
$C_TS, 666
$C_TS_PROG, 666
$NT_ROT_AX_NAME, 1594
$P_AD, 1596
$P_CHANNO, 579
$P_CTOL, 252
$P_CUT_INV, 1597
$P_CUTMOD, 1597
$P_CUTMOD_ANG, 1580, 1597
$P_CUTMOD_ERR, 1598
$P_CUTMODK, 1597
$P_DELAYFST, 586
$P_FGROUP_MASK, 1420
$P_GEAR, 1348
$P_GFRNUM, 779
$P_IFRAME, 775
$P_ISTEST, 497
$P_ORI_DIFF, 1590
$P_ORI_POS, 1590
$P_ORI_SOL, 1591

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1705

$P_ORI_STAT, 1593
$P_OTOL, 252
$P_PROG_EVENT, 578
$P_REPINF, 597
$P_SEARCH_S, 448, 509
$P_SEARCH_SDIR, 448, 509
$P_SEARCH_SGEAR, 448, 509, 1329
$P_SEARCH_SMODE, 509
$P_SEARCH_SPOS, 448, 509
$P_SEARCH_SPOSMODE, 448, 509
$P_SGEAR, 1329
$P_SIM, 503
$P_STOLF, 262
$P_SUB_AUTOGEAR, 674
$P_SUB_AXFCT, 674
$P_SUB_CA, 674
$P_SUB_GEAR, 674
$P_SUB_LA, 674
$P_SUB_M19, 675
$P_SUB_SPOS, 674
$P_SUB_SPOSA, 675
$P_SUB_SPOSIT, 675
$P_SUB_SPOSMODE, 675
$P_SUB_STAT, 664, 666
$P_TOOLENV, 1644
$P_TOOLENVN, 1644
$P_TOOLR:, 1581
$P_UIFR, 775
$P_UIFRNUM, 775
$P_WORKAREA_CS_COORD_SYSTEM, 120
$PA_ATOL, 252
$PA_FGREF, 1419
$PA_FGROUP, 1420
$SC_IS_SD_MAX_PATH_ACCEL, 276
$SC_IS_SD_MAX_PATH_JERK, 288
$SC_PA_ACTIV_IMMED, 153, 164
$SC_PA_CENT_ABS, 154
$SC_PA_CENT_ORD, 154
$SC_PA_CONT_ABS, 154
$SC_PA_CONT_NUM, 153
$SC_PA_CONT_ORD, 154
$SC_PA_CONT_TYP, 154
$SC_PA_LIM_3DIM, 153
$SC_PA_MINUS_LIM, 153
$SC_PA_ORI, 153
$SC_PA_PLUS_LIM, 153
$SC_PA_T_W, 153
$SC_SD_MAX_PATH_ACCEL, 276
$SC_SD_MAX_PATH_JERK, 288
$SN_PA_ACTIV_IMMED, 153, 164
$SN_PA_CENT_ABS, 154
$SN_PA_CENT_ORD, 154

$SN_PA_CONT_ABS, 154
$SN_PA_CONT_NUM, 153
$SN_PA_CONT_ORD, 154
$SN_PA_CONT_TYP, 154
$SN_PA_LIM_3DIM, 153
$SN_PA_MINUS_LIM, 153
$SN_PA_ORI, 153
$SN_PA_PLUS_LIM, 153
$SN_PA_T_W, 153
$TC_DP1, 1575
$TC_DP10, 1577
$TC_DP11, 1576
$TC_DP2, 1576, 1582
$TC_DP24, 1577
$TC_DPCE[t,d], 1460
$TC_DPNT, 1393
$TC_DPROT, 1581
$VA_ABSOLUTE_ENC_DELTA_INIT, 111
$VA_ENC_ZERO_MON_ERR_CNT, 108, 111
$VA_TORQUE_AT_LIMIT, 337
$VC_SGEAR, 1328

_
_N_STRTLK, 495

3
3D face milling, 1485

A
ACC, 1357, 1443
Access authorization, 69
Access features, 70
Access MyMachine (AMM), 1205
Access security, 69
ACN, 1356
ACP, 1356
Action blocks, 506
Action single block, 498
Activation

from machine control panel, hand-held unit, 919
Actual value in WCS / MCS, 47
Actual value synchronization, 55
Actual-value acquisition, 362
Actual-value correction, 364
Actual-value processing, 370
Actual-value system

workpiecerelated, 835

Index

Basic Functions
1706 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

adaptation factor
dynamic path response, 228

Adapter dimension, 1486
Adapting the motor/load ratios, 368
ADDFRAME, 815
AG_SEND, AG_RECV, 909
Air temperature alarm, 44
Alarm for preprocessing stop, 1524
ALF, 598, 1406
Angle

Clearance, 1577
Holder, 1577

ANY, 1116
ANY in FB, 1117
ANY in FC, 1116
Applied position difference, 394
Assignment tool/toolholder, 1533
ASUP

Activation, 589
For user alarms, 603
Internal, 601
Priority, 598
Reorganization, 590
SERUPRO end, 455

ATOL, 249
ATRANS, 708
Autonomous singleaxis operations, 546
AUXFUDEL, 456
AUXFUDELG, 457
AUXFUMSEQ, 446
AUXFUSYNC, 456
Auxiliary function

Address extension, 423
Associated, 432
-counter, 452
Definition, 402
Output behavior, 424
Predefined, 401
Type, 423
User-defined, 401
Value, 424

Auxiliary function output, 550
Auxiliary functions

Pre-defined, 408
User-specific,

Axis configuration, 718
Axis disable, 49, 1422
Axis monitoring functions

Actual velocity, 103
Following error, 88
Speed setpoint, 102

Supplementary conditions, 145
Zero speed, 92

Axis/spindle stationary, 58

B
Basic block display

Activating, 624
Configuring, 623

Basic coordinate system (BCS), 707, 737
Basic display

Size of the display buffer, 624
Basic system, 351
Block

Hide, 620
Block search

Cascaded, 504
with calculation at block end point (type 4), 504
with calculation at the contour (type 2), 504
with calculation in program test mode, SERUPRO
(type 5), 504
without calculation (type 1), 504

Block search SERUPRO
Basic settings, 548
Conditions for axis functions, 545
Control REPOS with NC/PLC interface
signals, 525
Gear stage change, 546
Overlaid movements, 547
Path axes, 524
REPOS acknowledgments, 525
REPOS offset after an axis interchange, 528
REPOS offset in the range of validity, 527
REPOS offset with synchronous spindle
coupling, 528
Reposition positioning axes, 523
Set REPOS response, 521
Setpoint and actual value couplings, 542
Time sequence, 518

Block search with calculation
accumulated spindle functions, 509

Block-related limit (FOC), 337
BLSYNC, 598
Brighten screen, 46
BRISK, 271
BRISKA, 271

C
Cancel alarms, 47
Cascaded block search, 511

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1707

CDOF, 1517
CDOF2, 1517
CDON, 1517
CFC, 1391
CFCIN, 1391
CFINE, 708
CFTCP, 1391
Channel

Basic settings, 550
Configuration, 492
Current, 579
Properties, 491
states, 560
status display, 559

Channel axes, 713
Channel state

Channel active, 487
Channel interrupted, 487
Channel reset, 487

Channel-specific NC alarm pending, 44
Clearance angle, 1577
Closed-loop control, 382
CLRINT, 599
CNC lock function, 1205
Coarse offset, 708
Collision detection, 1517
Collision monitoring, 1516
COMPCAD, 242, 245
COMPCURV, 241, 245
COMPOF, 245
COMPON, 241, 245
COMPSURF, 242, 245
Computational resolution, 346
Concurrent axes, 907
Constant curvature, 1493
Constant cutting rate, 1395
Constant speed, 1396
Constant tangent, 1493
Continuous-path mode, 197

Implicit, 201
Contour

sampling factor, 239
sampling time, 239
tolerance, 248

Contour error, 87
Control direction, 370
Control system response

at the end of the part program, 652
at the start of the part program, 652
during run-up, 652
When resetting:, 652

Controller enable, 54

Controller parameter set switchover, 79
Convex thread, 1410
CORROF, 746
Counter pulse, 694
CPROT, 161
CPROTDEF, 158
CTOL, 249
CTRANS, 708
Current controller active, 58
Curvature, 237
Cut direction, 1576
CUTMOD, 1594
CUTMODK, 1594
Cutting edge number, 1460
Cutting edge position, 1480

relevant, 1489
Cutting edges

Center point, 1580
Position, 1576
-reference point, 1580

Cyclic operation, 901
Cyclic signal exchange, 42

D
D functions, 405, 1455
D number structure

- flat (without tool management), 1469
D numbers

Allocation of free ..., 1459
D/DL function replacement, 662
Darken screen, 46
Data channel, faster, 66
Data exchange

with operator panel, 883
Data interface, 886
DB 31, ...

DBX60.6, 1375
DBX60.7, 1375
DBX83.1, 1289

DB10
DBB4-7, 854
DBB71, 354
DBX103.0, 43
DBX104.3, 921
DBX104.4, 921
DBX104.7, 43, 905
DBX106.1, 853, 855, 856
DBX107.7, 354
DBX108.3, 43
DBX108.5, 43
DBX108.6, 43

Index

Basic Functions
1708 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DBX108.7, 43
DBX109.0, 44
DBX109.6, 44
DBX109.7, 44
DBX56.1, 54, 853, 854, 856
DBX56.2, 853, 855
DBX56.4, 73
DBX56.5, 73
DBX56.6, 73
DBX56.7, 73
DBX92.0, 904
DBX92.1, 904
DBX92.2, 904
DBX92.4, 904
DBX92.5, 904
DBX92.6, 904

DB11
DBX0.0, 486, 488
DBX0.1, 486, 1224, 1226
DBX0.2, 486, 1224, 1226
DBX0.4, 491
DBX0.5, 484
DBX0.6, 484
DBX0.7, 484, 558, 855, 1226, 1227, 1228
DBX1.0 - DBX1.2, 487
DBX1.2, 1224, 1226
DBX26.4, 489
DBX26.5, 489
DBX4.0 - DBX4.2, 486
DBX46.4, 489
DBX46.5, 489
DBX5.0 - DBX5.2, 487
DBX6.0, 487, 489
DBX6.1, 487
DBX6.2, 487
DBX6.3, 485, 853, 856
DBX6.4, 489
DBX6.5, 489
DBX6.7, 485
DBX7.0, 489
DBX7.0 - DBX7.2, 487

DB1600, 1129
DB19

DBB13, 47
DBB16, 47
DBB17, 47
DBB26, 48
DBB27, 48
DBB33, 932
DBB36, 932
DBX 0.3, 47
DBX 0.4, 47

DBX0.0, 46
DBX0.1, 46, 47
DBX0.2, 46, 47
DBX0.7, 47
DBX20.3, 47
DBX20.4, 47
DBX32.0 - .5, 932
DBX32.6, 932
DBX32.7, 932

DB1900
DBB5011, 1204
DBB5021, 1204
DBB5022, 1204
DBX5021.0-.5, 1204
DBX5021.6, 1204
DBX5021.7, 1204

DB21
DBX24.4, 433
DBX378.1, 596

DB21, ...
D35.0, 556
D35.5, 556
DBB116 - DBB136, 440
DBB140 - DBB190, 440
DBB194, 1358
DBB194 - DBB206, 440
DBB202, 1358
DBB376, 574
DBB4, 1423
DBB5, 1423
DBB58 - DBB67, 440
DBB68 - DBB112, 440
DBB68ff., 1358
DBX0.4, 498
DBX0.6, 500, 1428
DBX1.0, 1226
DBX1.1, 178
DBX1.6, 505, 508
DBX1.7, 496
DBX10.0 - DBX11.1, 155
DBX12.3, 1422
DBX16.3, 1422
DBX2.0, 502, 556, 583
DBX2.0 - 7, 621
DBX20.3, 1422
DBX24.6, 500, 1428
DBX25.7, 496
DBX26.0, 502
DBX272.0 - DBX273.1, 155
DBX274.0 - DBX275.1, 155
DBX276.0 - DBX277.1, 156, 176
DBX278.0 - DBX279.1, 156, 176

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1709

DBX29.0, 1436
DBX29.1, 1436
DBX29.2, 1436
DBX29.3, 1436
DBX30.5, 433
DBX31.0 - 2, 524
DBX31.0 - DBX31.2, 525
DBX31.0-31.2, 529
DBX31.4, 523, 524, 525
DBX31.6 - 7, 621
DBX317.1, 692, 696
DBX318.0, 591
DBX318.5, 433
DBX318.6, 1428
DBX319.0, 525
DBX319.1- DBX319.3, 524, 525, 526, 527
DBX319.5, 525, 528
DBX32.3, 505
DBX32.4, 505, 506
DBX32.6, 449, 505
DBX33.0, 1227
DBX33.4, 505
DBX33.7, 496
DBX35.0, 555, 559
DBX35.0 - DBX35.4, 596
DBX35.1, 559
DBX35.2, 559
DBX35.3, 498, 559
DBX35.4, 559
DBX35.5, 555, 560
DBX35.5 - DBX35.7, 596
DBX35.6, 560
DBX35.7, 558, 560
DBX36.2, 1225, 1227
DBX36.6, 44
DBX36.7, 44, 508
DBX384.0, 563
DBX39.0, 155
DBX39.1, 44
DBX4.3, 1422
DBX6.0, 1421
DBX6.1, 1283, 1323
DBX6.2, 48
DBX6.6, 1423
DBX6.7, 1423
DBX7.1, 496, 557
DBX7.2, 556, 583
DBX7.3, 556, 583
DBX7.4, 556, 583, 1325, 1369
DBX7.5, 494
DBX7.7, 558, 855, 1226, 1227, 1228
DBX8.0 - DBX9.1, 155

DB21, ... DB32.6, 508
DB21, ... DBB4, 98
DB21, ... DBX0.4, 506, 596
DB21, ... DBX36.6, 508
DB21, ... DBX6.1, 595
DB21, …

DBX378.0, 589
DB31

DBX84.0, 1363
DB31, ...

DBB0, 1424
DBB1.5, 1262
DBB1.6, 1262
DBB19, 1425
DBB2.1, 1262
DBB60.4, 1248, 1257, 1259
DBB60.5, 1248, 1257, 1259
DBB68ff., 1358
DBX1.0, 48, 58
DBX1.1, 325
DBX1.2, 321
DBX1.3, 49, 321, 1369
DBX1.4, 49, 52, 55, 101, 1251, 1252
DBX1.5, 53, 106, 125, 363, 1313
DBX1.6, 53, 106, 125, 363, 1313
DBX1.7, 1424, 1425
DBX10.0, 521, 524, 525, 526, 529
DBX102.5, 125, 128
DBX102.6, 125, 128
DBX12.0, 112
DBX12.1, 112
DBX12.2, 113
DBX12.3, 113
DBX12.7, 1233, 1235
DBX16.0 - 2, 1335
DBX16.0 - DBX16.2, 1279, 1319, 1324, 1325,
1326, 1330, 1341
DBX16.3, 1275, 1279, 1319, 1324, 1325, 1326,
1335, 1337, 1339, 1341, 1345
DBX16.4, 1314
DBX16.5, 1314
DBX16.7, 1369
DBX17.0, 1344
DBX17.4 - DBX17.5, 1340
DBX18.4, 1341
DBX18.5, 1279, 1319, 1341, 1369
DBX2.1, 49, 52, 54, 125, 126, 321, 1251, 1252,
1340
DBX2.2, 56, 522, 1278, 1286, 1325, 1369
DBX2.3, 101
DBX2.4 - DBX2.7, 1240
DBX20.1, 1326

Index

Basic Functions
1710 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

DBX21.0-4, 59, 60, 144
DBX21.5, 59, 144
DBX21.6, 59, 144
DBX21.7, 54, 59, 144, 325
DBX28.7, 494
DBX3.1, 320, 324, 325
DBX3.2, 1436
DBX3.3, 1436
DBX3.4, 1436
DBX3.5, 1436
DBX3.7, 545
DBX30.0, 1362
DBX30.1, 1362
DBX30.2, 1362
DBX30.3, 1362
DBX30.4, 1362
DBX39.0, 176, 179
DBX4.3, 1339, 1369
DBX4.6, 1224
DBX4.7, 1224
DBX60.2, 107, 1373
DBX60.3, 107, 1373
DBX60.4, 53, 125, 1225, 1226, 1227, 1228, 1240,
1246, 1247, 1250, 1251, 1252, 1373
DBX60.4 - DBX60.5, 1331, 1335, 1339, 1340,
1341
DBX60.5, 53, 125, 856, 1225, 1226, 1227, 1228,
1240, 1246, 1247, 1250, 1251, 1252, 1373
DBX60.6, 53, 92, 101, 1282, 1289, 1294, 1295
DBX60.7, 53, 92, 101, 1289, 1294, 1295, 1344
DBX61.0, 48, 57
DBX61.3, 49, 58, 1251, 1252
DBX61.4, 57, 58, 1251, 1278, 1279, 1284, 1319,
1367
DBX61.5, 54, 55, 58, 1277, 1335, 1336, 1340
DBX61.6, 55, 58
DBX61.7, 58
DBX62.4, 320, 324, 325
DBX62.5, 325, 328
DBX64.6, 92, 444
DBX64.7, 92, 444
DBX69.0, 58, 81
DBX69.0 - DBX69.2, 1330
DBX69.1, 58, 81
DBX69.2, 58, 81
DBX7.7, 1369
DBX70.0, 525, 527
DBX70.1, 525, 527
DBX70.2, 525, 526, 527
DBX71.4, 1314
DBX71.5, 1314
DBX72.0, 525

DBX76.0, 58
DBX76.4, 525, 528
DBX82.0 - DBX82.2, 1319, 1321, 1322, 1324,
1334, 1335, 1336, 1340, 1343
DBX82.3, 1319, 1321, 1322, 1335, 1336, 1337,
1340, 1343
DBX83.1, 1278, 1321, 1323, 1368, 1369
DBX83.2, 1321, 1323, 1368
DBX83.5, 1278, 1279, 1283, 1284, 1285, 1367
DBX84.5, 1340, 1344
DBX84.6, 1275, 1335, 1336, 1340, 1343, 1344
DBX84.7, 1277, 1319, 1341
DBX85.5, 1295
DBX9.0, 56, 58, 80
DBX9.1, 56, 58, 80
DBX9.2, 56, 58, 80
DBX9.3, 57
DBX92.1, 60
DBX93.5, 43, 54, 60
DBX93.6, 59, 60
DBX93.7, 60
DBX94.0, 60
DBX94.1, 61
DBX94.2, 61
DBX94.3, 61
DBX94.4, 61
DBX94.5, 62
DBX94.6, 62

DB31, ... DBX1.1, 321
DB31, ... DBX1.4, 101
DB31, ... DBX102.3, 93, 94, 95
DB31, ... DBX2.3, 93, 94
DB31, ... DBX61.3, 95
DB31, ... DBX62.5, 321
DB31, ... DBX64.6, 95, 97, 98
DB31, …

DBX9.3, 1445
DB4500, 1130
DB9000 - DB9063, 1130
DC, 1356
Debug mode for SBL2, 612
Decoding single block, 498
Default passwords, 72
DELAYFSTOF, 584
DELAYFSTON, 584
Delete distance-to-go, 48
DELTOOLENV, 1642
Description of a rotation, 1543
DIACYCOFA, 866
DIAM90, 865
DIAM90/DIAM90A[AX], 861
DIAM90A, 866

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1711

DIAMCHAN, 866
DIAMCHANA, 866
DIAMCYCOF, 865
DIAMCYCOF/DIACYCOFA[AX], 861
Diameter programming

Axis-specific, 866
Channel-specific, 865

DIAMOF, 865
DIAMOFA, 866
DIAMON, 865
DIAMON/DIAMONA[AX], 860
DIAMONA, 866
DILF, 1406
Direct keys

Address, 921
Alarms, 922
OPs at Ethernet bus, 921

DISABLE, 599
DISC, 1511
Display block, structure (DIN), 626
Display resolution, 346
DITE, 1404
DITS, 1404
DL functions, 406
DRIVE, 304
Drive ready, 43
Drive test travel enable, 48
Drive test travel request, 57
DRIVEA, 304
Drives in cyclic operation, 43
Dry run feedrate, 500, 1427
Dynamic response

adaptation, 227
Dynamic response adaptation, 383
DYNFINISH, 235
DYNNORM, 235
DYNPOS, 235
DYNROUGH, 235
DYNSEMIFIN, 235

E
EES, 634
Emergency stop

Acknowledgment, 855
Interface, 853
Sequence, 853

Emergency stop control elements, 852
ENABLE, 599
Encoder directly at the tool, 369
Encoder monitoring functions, 106

Encoder frequency, 106

ENDLABEL, 565
End-of-motion criterion

For single axes, 1444
Ethernet

connection, 920
Evaluation of individual wear components, 1638
Event-controlled program sequences, 570
Exact stop, 193

Implicit, 198
Exact stop conditions, 194, 195
Execute external subprogram, 630
EXTCLOSE, 647
External program memory, 630
External work offset, 743
EXTOPEN, 647

F
F functions, 406
FA, 1357, 1420
FA functions, 407
FB, 1440
FB1 RUN_UP (basic program, startup section), 965
FB10 Safety relay, 1031
FB11 Brake test, 1033
FB2 GET (Read NC Variable), 973
FB29 Signal recorder and data trigger
diagnostics, 1039
FB3 PUT (write NC variables), 981
FB4 PI_SERV (PI services), 988

Available PI services, 992
FB5 GETGUD (read GUD variable), 1017
FB7 PI_SERV2 (PI services), 1025
FB9 MzuN (operator panel switchover), 1026
FC10 AL_MSG, 1061
FC1005 AG_SEND, 1110
FC1006 AG_RECV, 1111
FC12 AUXFU, 1063
FC13 BHGDisp, 1064
FC17 YDelta, 1068
FC18 SpinCtrl, 1071
FC19 MCP_IFM, 1081
FC2 GP_HP (basic program, cyclic section), 1042
FC21 Transfer, 1088
FC22 TM_DIR, 1096
FC24 MCP_IFM2, 1098
FC25 MCP_IFT, 1101
FC26 HPU_MCP, 1104
FC3 GP_PRAL (basic program, alarmdriven
section), 1044
FC5 GP_DIAG (basic program, diagnostics), 1046
FC6 TM_TRANS2, 1048

Index

Basic Functions
1712 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

FC7 TM_REV, 1049
FC8 TM_TRANS, 1052
FC9 ASUP, 1058
FCUB, 1437
Feedrate

for chamfer/rounding, 1438
Inverse-time (G93), 1392
Linear (G94), 1393
-override, 1423
Path feedrate F, 1390
Revolutional (G95), 1393
Tooth, 1393
types, 1389
types (G93, G94, G95), 1392

Feedrate disable
Channel-specific, 1421

Feedrate override
Programmable, 1427

Feedrates
Dry run feedrate, 1427
Feedrate disable, 1421
Feedrate/spindle stop, 1421

FGROUP, 714, 717
FIFO Buffer, 630
Fine interpolation, 382
Fine offset, 708
Firmware, 1127
Fixed feedrates, 1435
FL, 1391
Flat D number structure, 1469
FLIN, 1437
FNORM, 1437
FOC, 318
FOCOF, 318
FOCON, 318
Follow up active, 58
FPO, 1437
FPRAOF, 1356
FPRAON, 1356
FRAME, 713
Frame change, 1534
Frame rotations, 710

in the direction of the tool, 824, 825
with solid angles, 821

FRC, 1438
FRCM, 1438
Free-form surfaces, 238

mode, 192, 238
Function interface, 887
FXS, 318
FXS-REPOS, 329
FXST, 318

FXSW, 318
FZ, 1393

G
G groups, 550
G0 tolerance factor, 256, 260
G25, 117, 1357
G26, 117, 1357
G33, 1399
G331, 1415
G332, 1415
G335, 1410
G336, 1410
G40, 1491
G41, 1491
G42, 1491
G450/G451, 1510
G451, 1512
G460, 1526
G461, 1453, 1526
G462, 1453, 1527
G58, 708
G59, 708
G60, 194
G601, 195
G602, 195
G603, 195
G63, 1309, 1417
G64, 201
G642, 206
G643, 206
G644, 209
G645, 212
G70, 358
G700, 358
G71, 358
G710, 358
G74, 1228
G9, 194
G91 extension, 1601

Zero point offset, 1602
G93, 1392
G94, 1393
G95, 1393
G96, 1395
G961, 1395
G97, 1396
G971, 1396
Gear stage

in M70, 1346

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1713

Manual entry, 1324
Specification by PLC, 1323

Gear stage change
Automatic, 1375

Gear stages, 1315
Geometry axes, 713, 737
GETTCOR, 1644
GETTENV, 1643
GFRAME0 ... GFRAME100, 779
Grouping together auxiliary functions, 423

H
H functions, 404
Hardware interrupt, 904
Hardware limit switch, 112
Helical interpolation, 717
Helix interpolation, 717
HHH"; "UUU, 94
High-speed data channel, 66
HMI monitor, 945, 1153
Holder angle, 1577

I
IC, 1356
ID check, 694
Implicit continuous-path mode, 201
Implicit exact stop, 198
Implicit preprocessing stop, 540
Incrementally programmed compensation
values, 1601
Input resolution, 346
Interface

MCP/PLC and HHU/PLC, 885
PLC/HMI, 885, 892
PLC/HMI messages, 893
PLC/MCP, 897
PLC/NCK, 886

Intermediate gear, 369, 1332
Interpolation

Linear, 254
Non-linear, 255
With G0, 254

Interpolator end, 195
Interpolatory axis grouping, 55
Interrupt

lock, 599
routine, 588
signal, 588

Interrupt routine
End, 590

Inverse-time feedrate (G93), 1392
IR, 1410

J
Jerk

-increase, velocity-dependent jerk, 292
Jerk limitation, 211
Jogging

in the mode type AUTOMATIC, 488
JR, 1410
Jump marker

For program section repetitions, 565

K
Key disable, 47, 936
Keyswitch, 73
Kinematic transformation, 737
Kinematic type, 1536
KONT, 1492
KONTC, 1492
KONTT, 1492
KR, 1410

L
Label, 565
Ladder add-on tool, 1133
Ladder editor, 1133
Ladder Viewer, 1133
LENTOAX, 1662
LFOF, 1406
LFON, 1406
LFPOS, 1406
LFTXT, 1406
LFWP, 1406
LIFTFAST, 598
Limit

velocity, for path axes, 1391
Limited toolholder orientation, 1535
Limit-switch monitoring, 112
LIMS, 1357
Linear feedrate (G94), 1393
Linear signal distortions, 87
Loader axes, 714
Lock date, 1205
Lockable data areas, 74

Index

Basic Functions
1714 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Lockset file
To activate the CNC lock function, 1207
To deactivate the CNC lock function, 1213
to extend the CNC lock function, 1211
To unlock the control system, 1215, 1217

LookAhead, 214
Selection and deselection, 215

Lubrication pulse, 58

M
M decoding acc. to list, 911
M function replacement, 660
M1, 467
M17, 467
M19, 1281, 1356
M2, 467
M3, 1355
M30, 467
M4, 1355
M40, 1358, 1375
M41, 1358
M42, 1358
M43, 1358
M44, 1358
M45, 1358
M5, 1355
M70, 1356
Machine axes, 712
Machine coordinate system (MCS), 707, 726
Machine kinematics, 1536
Machine tool axes, 714
Machine with rotary tool, 1540
Machine with rotary workpiece, 1541
Machine zero, 1223
Machine zero M, 721
Machines with extended kinematics, 1541
Machining in direction of tool orientation, 1602
Main axes, 715
Main run, 491

-axes, 1443
Master-slave changeover with G96, G961, 1398
MCP identification, 922
Md < Mdx, 61
MD10000, 706
MD10010, 482
MD10050, 1263
MD10070, 1263
MD10125, 641
MD10131, 62
MD10192, 1333
MD10200, 344, 345, 347, 357

MD10210, 344, 345, 347, 378, 380
MD10220, 349
MD10230, 349
MD10240, 351, 355, 360, 1446
MD10250, 355
MD10260, 356, 359
MD10270, 357
MD10290, 357
MD10292, 357
MD10366, 1132
MD10368, 1132
MD10600, 753, 823
MD10602, 788, 790, 798, 802
MD10610, 710, 784
MD10612, 784
MD10615, 829
MD10618, 157
MD10651, 1410
MD10680, 240
MD10682, 240
MD10700, 624
MD10702, 499, 506, 596, 612
MD10704, 1428
MD10707, 518
MD10708, 518
MD10710, 119, 1397, 1405
MD10712, 237, 683
MD10713, 441
MD10714, 419, 661
MD10715, 660
MD10716, 660
MD10719, 663
MD10735, 488
MD10804, 661
MD10806, 662
MD10814, 662
MD1103, 332
MD1104, 332
MD1105, 332
MD11100, 430
MD11110, 436, 1665
MD11220, 356
MD11300, 1224
MD11346, 1468
MD11410, 1319, 1400, 1517
MD11411, 494
MD11450, 448, 508, 510, 512, 520, 544
MD11470, 521, 522, 546
MD11550, 584, 1416
MD11600, 593
MD11602, 592, 594, 595
MD11604, 544, 592, 595

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1715

MD11610, 602
MD11620, 575
MD11625, 641
MD11626, 642
MD12000, 1425
MD12010, 1425
MD12020, 1423
MD12030, 216, 218, 1424
MD12040, 1423
MD12050, 1424
MD12060, 1425
MD12070, 1426
MD12080, 1426
MD12082, 1424
MD12090, 1416
MD12100, 216, 218, 1426
MD12200, 1436
MD12202, 1436
MD12204, 1436
MD1230/1231, 332
MD14504, 915
MD14506, 915
MD14508, 915
MD14516, 1176
MD14518, 1177
MD15700, 672
MD15702, 672
MD17200, 624
MD17300, 1210
MD18080, 1622
MD18088, 1537, 1558, 1562
MD18100, 1456, 1469
MD18102, 1462, 1469, 1470
MD18104, 1641
MD18105, 1460, 1461, 1462, 1463
MD18106, 1460, 1461
MD18108, 1626
MD18112, 1627
MD18114, 1609
MD18116, 1642
MD18150, 65
MD18190, 157
MD18360, 630
MD18362, 631
MD18600, 751
MD18602, 774, 777, 780, 781
MD18960, 270, 286
MD20000, 492
MD20050, 655, 706, 808
MD20060, 706
MD20070, 706
MD20080, 706, 717

MD20090, 466, 1355
MD20092, 1351
MD20094, 419, 662
MD20095, 419, 662
MD20096, 1458, 1459
MD20100, 862, 1396, 1398
MD20105, 544, 600
MD20106, 510, 576, 612
MD20107, 510, 576
MD20108, 574
MD20109, 575
MD20110, 353, 592, 829, 830, 832, 838, 865, 1454,
1472, 1473, 1564, 1602, 1631
MD20112, 519, 592, 655, 834, 838, 865, 1472, 1564
MD20115, 544, 595, 600
MD20116, 595
MD20117, 596, 612
MD20118, 655
MD20120, 655, 1472, 1564
MD20121, 655, 1454, 1472
MD20124, 466
MD20125, 1579, 1583
MD20126, 1564, 1584
MD20127, 1584
MD20130, 655, 1472
MD20140, 655
MD20144, 657
MD20150, 119, 262, 271, 286, 304, 357, 492, 550,
655, 766, 832, 833, 864, 1446
MD20152, 655, 832
MD20170, 243
MD20171, 243
MD20172, 243, 1437
MD20173, 243
MD20180, 1555
MD20184, 825, 1557
MD20188, 1543
MD20190, 1543
MD20191, 596
MD20192, 577
MD20193, 577
MD20194, 592, 604
MD20200, 1439
MD20201, 1438
MD20202, 1507
MD20204, 1500
MD20210, 1513
MD20220, 1511
MD20230, 1513
MD20240, 1515, 1517
MD20250, 1491
MD20252, 1531

Index

Basic Functions
1716 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD20256, 1525
MD20270, 405, 1455, 1470, 1472, 1631, 1632
MD20272, 406, 1626, 1631, 1632
MD20310, 532
MD20360, 863, 1468, 1579, 1584, 1648
MD20390, 1617, 1619, 1621
MD20392, 1618
MD20400, 216
MD20430, 218
MD20440, 218
MD20443, 221
MD20450, 219
MD20460, 224, 225
MD20462, 225
MD20465, 228, 229
MD20480, 207, 209, 248
MD20482, 243, 248
MD20484, 243
MD20485, 243
MD20486, 243
MD20487, 243
MD20488, 247
MD20490, 201
MD20500, 272, 273
MD20550, 196
MD20552, 197
MD20560, 257
MD20600, 285
MD20602, 281, 282
MD20606, 239
MD20610, 275
MD20624, 864
MD20700, 595, 1258
MD20730, 257
MD20750, 255, 1397
MD20800, 403, 467, 468
MD20850, 1281
MD21015, 63
MD21016, 64
MD21020, 116
MD21158, 307
MD21159, 307
MD21166, 306
MD21168, 307
MD21220, 1430
MD21230, 1430
MD21330, 655
MD22000, 430, 1281
MD22010, 431, 1281
MD22020, 431, 1281
MD22030, 431, 1281
MD22035, 432, 1665

MD22040, 422, 430
MD22050, 423
MD22060, 423
MD22070, 424
MD22080, 424, 673, 1665
MD22100, 441
MD22110, 404, 407
MD22200, 434
MD22210, 404, 434
MD22220, 405, 434
MD22230, 404, 434
MD22240, 406, 407, 434, 1421
MD22250, 406, 434
MD22252, 406, 434
MD22254, 419, 432, 662
MD22256, 419, 432, 662
MD22410, 1421, 1427, 1446
MD22510, 550, 1114
MD22530, 462, 1564
MD22532, 462
MD22534, 462
MD22550, 663, 1454, 1465, 1466, 1470, 1472
MD22560, 418, 466, 662, 1454, 1472, 1473
MD22562, 1467, 1468
MD22600, 530
MD22620, 548
MD24004, 829
MD24006, 745, 766, 831
MD24007, 833
MD24008, 745, 830
MD24010, 784
MD24020, 772
MD24040, 808
MD24100, 1619
MD24110, 1619
MD24120, 1620
MD24558, 1649
MD24570, 1620
MD24572, 1620
MD24658, 1649
MD24805, 797, 798
MD24855, 797, 798
MD24905, 791
MD24955, 791
MD25574, 1620
MD26008, 419, 662
MD26012, 662
MD27100, 625, 864
MD27800, 493
MD27850, 689
MD27860, 563, 689
MD27880, 563, 692

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1717

MD27882, 693
MD28060, 621, 624
MD28070, 247
MD28071, 244
MD28072, 244
MD28082, 766, 785, 817, 818, 825, 1557
MD28085, 1456, 1558, 1562
MD28150, 68
MD28200, 157
MD28210, 157
MD28212, 157
MD28400, 624
MD28402, 624
MD28530, 65, 208
MD28533, 220
MD28560, 834
MD28600, 120
MD28610, 238
MD28620, 1521
MD30100, 364
MD30110, 365
MD30120, 365
MD30130, 364, 365
MD30200, 362, 372
MD30210, 365, 373
MD30220, 365, 373
MD30230, 366, 373
MD30240, 363, 364, 366, 373
MD30242, 364, 367, 373, 1249
MD30244, 373
MD30250, 373, 1254
MD30260, 144, 373
MD30270, 145, 373
MD30300, 372, 374, 378, 380, 1446
MD30310, 114, 372
MD30320, 372
MD30330, 372, 1247
MD30340, 372, 1248
MD30350, 364, 1181
MD30455, 1248, 1357
MD30460, 862, 866
MD30550, 1225
MD31000, 374, 378, 380
MD31010, 374
MD31020, 144, 374, 378, 380, 1263
MD31025, 144, 378
MD31030, 145, 372, 374, 378
MD31040, 374, 378, 380, 394, 1291, 1340
MD31044, 369, 374, 1332
MD31046, 128
MD31050, 80, 145, 369, 374, 375, 378, 380, 1331,
1339

MD31060, 80, 145, 369, 374, 375, 378, 380, 1331
MD31064, 369, 372, 1332
MD31066, 369, 372, 1332
MD31070, 145, 374, 378, 380
MD31080, 145, 374, 378, 380
MD31090, 358
MD31122, 1313
MD31123, 1313
MD31200, 358
MD31700, 144
MD31710, 144
MD31720, 144
MD31730, 144
MD32000, 88, 257, 343, 372, 1373, 1391
MD32060, 546, 1442
MD32074, 830
MD32100, 371
MD32200, 57, 80, 88, 91, 383
MD32210, 396
MD32220, 396
MD32250, 145, 371
MD32260, 145
MD32300, 88, 95, 270, 279, 280, 281, 282, 306, 1442,
1443
MD32310, 200, 280, 281
MD32320, 1443
MD32400, 296, 390
MD32402, 297, 391
MD32410, 297, 391
MD32420, 255, 272, 286, 287, 306
MD32430, 255, 286, 306
MD32431, 285, 291
MD32432, 292
MD32433, 280
MD32434, 279, 280, 291
MD32435, 291
MD32439, 293
MD32440, 225, 228
MD32610, 88
MD32620, 387
MD32630, 387
MD32640, 389
MD32711, 358
MD32750, 1617, 1619, 1621
MD32800, 80, 88
MD32810, 80, 88, 145, 387
MD32890, 392, 393
MD32900, 383
MD32910, 80, 383, 389
MD32950, 394
MD33050, 58
MD33100, 207, 239, 243, 248

Index

Basic Functions
1718 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

MD33120, 212, 248
MD34000, 1237, 1247
MD34010, 1224, 1233, 1235, 1236, 1245, 1256
MD34020, 1233, 1236
MD34040, 1235, 1236, 1237, 1245, 1313
MD34050, 1235
MD34060, 1238, 1246, 1247, 1293
MD34070, 1239, 1246
MD34080, 1239
MD34090, 373, 1239, 1242, 1243, 1255, 1257, 1258
MD34092, 1237
MD34093, 1238
MD34100, 1240, 1246, 1256, 1258
MD34102, 1248, 1249
MD34104, 1251
MD34110, 1226
MD34200, 1243, 1249, 1251, 1256, 1259, 1313
MD34210, 1253, 1254, 1255, 1256, 1257, 1258
MD34300, 1245
MD34320, 373, 374, 1242
MD34330, 1260
MD34990, 1391
MD35000, 706, 761, 1351, 1358
MD35010, 1316, 1320, 1335, 1340, 1345
MD35012, 1315, 1340, 1343
MD35014, 1346
MD35020, 1302
MD35030, 1302
MD35035, 1282, 1347, 1350
MD35040, 1278
MD35090, 1315
MD35092, 1320
MD3510, 1344
MD35100, 343, 1371
MD35110, 1315, 1376
MD35112, 1320
MD35120, 1315, 1376
MD35122, 1320
MD35130, 80, 1315, 1321, 1323, 1369
MD35135, 1315
MD35140, 1315, 1321, 1323, 1368, 1398, 1399
MD35150, 1235, 1283, 1285, 1368, 1371
MD35200, 1277, 1285, 1288, 1292, 1315, 1344
MD35210, 1277, 1285, 1288, 1289, 1293, 1294,
1315, 1344
MD35212, 1320
MD35220, 298, 302
MD35230, 298, 302
MD35240, 209, 301
MD35242, 302
MD35300, 1263, 1285, 1287, 1288, 1293, 1294,
1315, 1344, 1357

MD35310, 1316, 1340, 1343
MD35350, 1293, 1343
MD35400, 1074, 1334, 1336, 1337
MD35410, 1334, 1336, 1337
MD35430, 1334, 1336
MD35500, 1279, 1283
MD35510, 1283, 1367
MD35550, 1316, 1321
MD35590, 57, 80, 1316, 1330
MD36000, 194, 1290, 1294, 1295, 1374, 1375
MD36010, 91, 194, 1289, 1294, 1295, 1374, 1375
MD36012, 93, 196
MD36020, 91
MD36030, 92, 93
MD36040, 92, 338
MD36042, 338
MD36050, 93, 101
MD36051, 93
MD36052, 94, 95, 96, 98, 100
MD36060, 57, 58, 1278, 1284, 1367
MD36100, 113
MD36110, 113
MD36120, 113
MD36130, 113
MD36200, 103
MD36210, 102, 371
MD36220, 103
MD36300, 106, 1262, 1263
MD36302, 1287
MD36310, 105, 107
MD36312, 108
MD36400, 88
MD36500, 363
MD36510, 363
MD36600, 112
MD36610, 55, 89, 91, 92, 95, 103, 104, 107, 109,
853
MD36620, 55, 854
MD37002, 325
MD37010, 320
MD37012, 325
MD37020, 322, 332
MD37030, 321
MD37040, 321
MD37060, 320, 324, 325
MD37080, 336
MD51029, 620
MD51041, 933, 1142
MD51043, 933, 1142
MD51074, 693
MD51230, 1134
MD51231, 1135

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1719

MD51232, 1135
MD9004, 347, 626
MD9006, 47
MD9010, 626
MD9011, 347, 626
MD9106, 933, 1141
MD9424, 626, 741
MD9440, 837
Measuring systems, 363, 1223
Memory requirements

of basic PLC program, 949
Message signals in DB2, 1114
Mirroring

Frames, 761
Modal activation (FOCON/FOCOF), 336
Mode

AUTOMATIC, 485
JOG, 486
JOG in AUTOMATIC, 485
MDI, 486

Mode change
from/to the AUTOMATIC, JOG, MDI modes, 491

Mode group, 481, 902
Modes

change, 485, 490
cross-mode synchronized actions, 486
of the mode group, 485
Priorities, 486

Motor/load gear, 369
MTL, 662
Multiinstance DB, 1121
Multitool, 1014

N
nact, 61
NC

failure, 905
language scope, 550
-Read/write variables, 908
start, 554

NC alarm pending, 44
NC alarm with machining stop is pending, 44
NC alarm with program stop, 44
NC battery alarm, 44
NC CPU ready, 43
NC Ready, 43
NC VAR selector, 955

Input options, 958
Startup, installation, 964

NC/PLC interface, 492
Negative address extension, 468

Nonacknowledged gear stage change, 1333
Non-linear signal distortions, 87
NORM, 1492
NPROT, 161
NPROTDEF, 158

O
Offset number, 1460
Operating modes

Interlocks, 490
monitoring functions, 490

Operating software ready, 43
Operating states, 487
Orientation

tolerance, 248
ORISOLH, 1586
OTOL, 249
Output

Behavior of an auxiliary function, 424
-counter, 452
Sequence, 452
to external device/file, 647

Overload factor, 200
OVR, 1427
OVRA, 1357, 1427

P
Package

-counter, 452
Parameter set

For axes, 386
Toolholder with orientation capability, 1535

Parking, 125, 1227
Part program

Selection, 554
Skipping of specific part program blocks, 501

Password, 71
Passwords, 72
Path

feedrate F, 1390
velocity, maximum, 1391

Path axes, 714
Path criterion, 204
Path feedrate, 344
PCOF, 1356
Phase filter, 392
Physical quantities, 348
PLC

- Read/write variable, 66

Index

Basic Functions
1720 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

-axes, 715
Basic program functions, 871
HMI monitor, 945, 1153
Key disable, 936
Program list, 931, 933, 1141, 1203
-Versions, 871

POINTER, 1116
POINTER in FB, 1117
POINTER in FC, 1116
POLF, 1406
POLFMASK, 1406
POLFMLIN, 1406
Polynomials, intersection process, 1525
POS, 714, 715
POSA, 714, 715
Position control loop, 382
Position controller active, 58
Position measuring system, 53
Position of coordinate systems and reference
points, 723
Positioning accuracy, 346
Positioning axes, 345, 714
Predictive contour calculation, 1515
Preprocessing, 491
PRESETON, 727, 1227
PRESETONS, 732
Process DataShare, 643, 647
Processing time, 688
PROFIBUS

connection, 923
PROFIBUS connection, 924
PROFIBUS diagnostics, 904
PROFINET

connection, 926
Program

action, 561
Program test, 495
Runtimes, 685
Select via PLC, 933, 1141
states, 559
status display, 558

Program control, interface signals, 619
Program display modes, 623
Program execution without setpoint outputs, 496
Program operation, 549
Program section

repetition, 565
Programming device

Hardware requirements, 952
Protection level

for user ASUP, 602

Protection levels, 69
programmable, 74

Protection zones, 151, 158
Restrictions, 179

R
Radius-related data, 861
Rapid traverse

Interpolation types, 254
-override, 1423

Reaching simulated target point for LEAD with
JOG, 543
Recall alarms, 47
Reference axis

for G96 / G961 / G962, 859
Reference point R, 721
Reference points, 721
Referencing

in rotary absolute encoders, 1260
with incremental measurement system, 1231

Referencing methods, 1223
Relevant standards, 851
Remote diagnostics, 43
REPEAT, 565
REPEATB, 565
Replacement subprogram, 659
replacement zero mark, 1260
REPOS offset, 328
Reset

behavior, 652
Command,

Residual time
For a workpiece, 687

Retraction
Direction for thread cutting, 1407

Revolutional feedrate (G95), 1393
Rotary axes, 714
Rotary axis parameters, 1536
Rotation component, 819
Rounding, 201
Runtimes

Program, 685
Run-up completed, 61

S
S functions, 404
S..., 1355
SAVE, 599
SBLOF, 613

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1721

SBLON, 613
SCC, 865
SCPARA, 1445
SD41100, 1394
SD42010, 1403, 1405
SD42100, 500, 1428
SD42101, 1429
SD42200, 612
SD42440, 710, 1601
SD42442, 1601
SD42444, 506
SD42465, 207, 248
SD42466, 207, 248
SD42470, 244
SD42471, 244
SD42472, 244
SD42473, 244
SD42475, 244
SD42476, 244
SD42477, 244
SD42480, 1524
SD42496, 1524
SD42500, 275, 276
SD42502, 276
SD42510, 287, 288
SD42512, 287, 288
SD42600, 1365, 1394
SD42676, 248
SD42678, 249
SD42700, 632
SD42750, 623
SD42800, 1352
SD42900, 1452, 1614, 1633
SD42910, 1614, 1633, 1638, 1639
SD42920, 1615, 1633, 1638, 1639
SD42930, 1615, 1633, 1638
SD42935, 1571, 1634, 1639, 1665
SD42940, 1604, 1633, 1638
SD42950, 1575, 1605, 1633, 1638
SD42954, 1606
SD42956, 1606
SD42960, 1452, 1618, 1619
SD42974, 1543
SD42977, 1521
SD42984, 1596
SD42990, 621
SD42998, 1578, 1585
SD42999, 1586
SD43200, 1361, 1363
SD43202, 1362, 1363
SD43206, 1362, 1364
SD43210, 1398, 1399

SD43220, 1397
SD43230, 1397
SD43235, 1372
SD43240, 1281, 1356
SD43250, 1281
SD43300, 1365, 1394
SD43400, 118
SD43410, 118
SD43420, 117
SD43430, 117
SD43500, 332
SD43510, 332
SD43520, 332
Secant error, 239
Selecting the cutting edge when changing tool, 1455
Self-acting SERUPRO, 534
SERUPRO

Automatic interrupt pointer, 537
-end ASUP, 455
Programmable interrupt pointer, 535

SERUPRO approach
control from the PLC, 525

SERUPRO ASUP, 328
Special features, 531

seruproMasterChan, 534
Servo gain factor (Kv), 383
SETINT, 588, 597
SETMS, 1355
Setpoint output, 362
Setpoint system, 362
SETTCOR, 1650
Several transverse axes

Axis replacement, 866
Signal distortions, 87
Signal exchange

Cyclic, 869
Event-controlled, 869

Signals
Alarm signals, 43
Axis/spindle-specific (DB31, ...), 42
Channel-specific (DB21, ...), 42
Compile cycles, 888
NCK/PLC, 889
PLC / mode group, 889
PLC/axes, spindles, 891
PLC/NCK, 888
PLC/NCK channels, 890

Simulation, 502
Simulation axes, 363
Single block

Program operation mode, 497
SBL1, 611

Index

Basic Functions
1722 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

SBL2, 611
SBL3, 611

Single-axis dynamic response, 1441
Single-block

suppression, 613
Skip levels, 620
Slotting saw, 1479
Smooth approach and retraction

Significance, 1496
Sub-movements, 1497

Smoothing
Path velocity, 224

SOFT, 285
SOFTA, 287
Software limit switch, 113
SPCOF, 1356
SPCON, 1356
Special axes, 713
Special points in the target block

STOPRRE block, 539
Specify gear stage, 1317
Speed

feedforward control, 386
Speed control loop, 382
Speed controller active, 58
Speed setpoint adjustment, 371
Speed setpoint output, 370
SPI, 1358
Spindle

-gear stage 0, 1326
-override, 1423, 1425
-setpoint speed, 1368
speed limits, 1369
-speed, maximum, 1369
-speed, minimum, 1368

Spindle disable, 49, 1422
Spindle functions using a PLC, 493
Spindle speed, 345
Spindle speed limitation with G96, G961, 1397
Spline, 193
SPOS, 1279, 1355
SPOSA, 1356
Star/delta switchover with FC17, 1326
Star-delta changeover, 1068
Startup and synchronization of NCK PLC, 901
STOLF, 260
Stop delay area, 581
Stop events, 581
Storing angles in the toolholder data, 1535
STRINGIS, 551
Strings, 1122
SVC, 1355

Switching over the encoder data set, 143
Symbolic programming, 909
Synchronized axes, 716
System of units, 351, 358

T
T function, 405, 1454
T function replacement, 662
Tapping

With compensating chuck, 1309
TCARR, 1555
TCOABS, 1556
TCOFR, 1555, 1556
TCP Tool Center Position, 721
TEACH IN, 486
Thread

cutting, 1406
Thread cutting G33, 1399
Tick, 452
TOA

-Data, 1479
-unit, 1456

Tolerance
-factor for spindle speed, 1368
With G0, 256

Tool, 1453
Change, 1454
Change tool with M06, 1454
cutting edge, 1475
DISC, 1511
-length, 1482
management, 481
-offset data, 1479
parameters, 1475
-retraction, 656
Select, 1453
shape, 1483
-shape, active, 1486
-size, active, 1486
T function, 1454
Tool base dimension/adapter dimension, 1486
Tool cutting edge, 1455
Tool radius compensation 2D (TRC), 1490
-type, 1477
-wear, 1485, 1486

Tool base dimension, 1486
Tool carrier with orientation capability

Create new, 1558
Tool carrier, with orientation capability

Create new, 1558

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1723

Tool change
D function, 1455
Offset memory, 1456

Tool length compensation
calculate tool-specifically, example, 1569
Geometry, 1482
Wear, 1485
Workpiece-specific calculation, 1632

Tool offset
Offset in the NC, 1457
Types, 1534

Tool point
direction, 1582

Tool radius compensation
keep constant, 1529
Wear, 1486

Tool radius compensation, 2D, 1490
Approach and retraction behavior, 1492
Compensation at outside corners, 1510
Deselection, 1510
Geometry, 1483
Modified alarm response, 1524
Point of intersection G451, 1512
Selection, 1491
Smooth approach and retraction, 1496
Transition circle, 1511
variable compensation value, 1522

Tool revolver axes, 714
TOOLENV, 1640
Toolholder reference point T, 721
Toolholder selection, 1532
Toolholder with orientation capability, 1452, 1532

Calculation of active tool length, 1555
Examples, 1566
Kinematic chain, 1539

Toolholder, with orientation capability, 1532
Control system response on Reset, program start,
REPOS, 1563
Inclined machining, 1553
Programming, 1562
Supplementary conditions, 1563
swiveling working table, 1555

Tooth feedrate, 1393
Torsion, 237
TOWBCS, 1637
TOWKCS, 1638
TOWMCS, 1636
TOWSTD, 1636
TOWTCS, 1638
TOWWCS, 1637
TRANS, 708
TRANSMIT, 737

Transverse axis, 859
Dimensions, 865

Travel to fixed stop, 317
Block search, 327
Contour monitoring, 331
Deselection, 325
Fixed stop is reached, 321
Function abort, 330
Monitoring window, 322
Positioning axes, 331
Selection, 320

Traversing movement release, 1260
Traversing ranges, 345

U
UDT assignments, 910
Undercut angle, 1488
User-defined ASUP

after SERUPRO operation, 519
UTD-blocks, 909

V
Velocities, 343
VELOLIM, 1357
Vertical axes, 331

W
WAITENC, 657
WAITS, 1357
WALCS0, 121
WALIMOF, 118
WALIMON, 118
Work offset

External work offset, 743
Working area limitation, 115

in BCS, 117
in WCS/SZS, 119

Working area limitation group, 119
Workpiece

-counter, 691, 695
-simulation, 502

Workpiece coordinate system (WCS), 707, 742
Workpiece zero W, 721

X
XE * MERGEFORMAT,

Index

Basic Functions
1724 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

Z
Zero mark diagnostics, 108
Zero points, 721
Zero vectors, 1539

Index

Basic Functions
Function Manual, 08/2018, 6FC5397-0BP40-6BA2 1725

Index

Basic Functions
1726 Function Manual, 08/2018, 6FC5397-0BP40-6BA2

	Basic Functions
	Legal information - Warning notice system
	Preface
	Table of contents
	1 Fundamental safety instructions
	1.1 General safety instructions
	1.2 Warranty and liability for application examples
	1.3 Industrial security

	2 A2: Various NC/PLC interface signals and functions
	2.1 Brief description
	2.2 NC/PLC interface signals
	2.2.1 General information
	2.2.2 Ready signal to PLC
	2.2.3 Status signals to PLC
	2.2.4 Signals to/from the operator panel front
	2.2.5 Signals to channel
	2.2.6 Signals to axis/spindle
	2.2.7 Signals from axis/spindle
	2.2.8 Signals to axis/spindle (digital drives)
	2.2.9 Signals from axis/spindle (digital drives)

	2.3 Functions
	2.3.1 Screen refresh behavior for overload - only 840D sl
	2.3.2 Settings for involute interpolation - only 840D sl
	2.3.3 Activate DEFAULT memory - only 840D sl
	2.3.4 Read and write PLC variable - only 840D sl
	2.3.5 Access protection via password and keyswitch
	2.3.5.1 Password
	2.3.5.2 Keyswitch positions (DB10, DBX56.4 to 7)
	2.3.5.3 Parameterizable protection levels

	2.3.6 Switching over motor/drive data sets
	2.3.6.1 General Information
	2.3.6.2 Formatting interfaces
	2.3.6.3 Request interface
	2.3.6.4 Display interface
	2.3.6.5 Example
	2.3.6.6 Overview of the interfaces
	2.3.6.7 Supplementary conditions

	2.4 Examples
	2.4.1 Parameter set changeover

	2.5 Data lists
	2.5.1 Machine data
	2.5.1.1 Display machine data
	2.5.1.2 NC-specific machine data
	2.5.1.3 Channelspecific machine data
	2.5.1.4 Axis/spindlespecific machine data

	2.5.2 System variables
	2.5.3 Signals
	2.5.3.1 Signals to NC
	2.5.3.2 Signals from NC
	2.5.3.3 Signals to operator panel front
	2.5.3.4 Signals from operator panel front
	2.5.3.5 Signals to channel
	2.5.3.6 Signals from channel
	2.5.3.7 Signals to axis/spindle
	2.5.3.8 Signals from axis/spindle

	3 A3: Axis monitoring functions
	3.1 Contour monitoring
	3.1.1 Contour error
	3.1.2 Following-error monitoring

	3.2 Positioning, zero speed and clamping monitoring
	3.2.1 Correlation between positioning, zero-speed and clamping monitoring
	3.2.2 Positioning monitoring
	3.2.3 Zero-speed monitoring
	3.2.4 Parameter set-dependent exact stop and standstill tolerance
	3.2.5 Clamping monitoring
	3.2.5.1 Function
	3.2.5.2 Machine data
	3.2.5.3 NC/PLC interface signals
	3.2.5.4 Fault responses
	3.2.5.5 "Automatic stop to release the clamping" clamping function
	3.2.5.6 "Time-optimized release of the clamping" clamping function
	3.2.5.7 "Automatic stop to set the clamping" clamping function
	3.2.5.8 Supplementary conditions

	3.3 Speed-setpoint monitoring
	3.4 Actual-velocity monitoring
	3.5 Measuring system monitoring
	3.5.1 Encoder-limit-frequency monitoring
	3.5.2 Plausibility check for absolute encoders
	3.5.3 Customized error reactions

	3.6 Limit-switch monitoring
	3.6.1 Hardware limit switch
	3.6.2 Software limit switch

	3.7 Working area limitation monitoring
	3.7.1 General
	3.7.2 Working area limitation in BCS
	3.7.3 Working area limitation in WCS/SZS
	3.7.4 Example: Working area limitation in WCS/SZS

	3.8 Parking a machine axis
	3.9 Parking the passive position measuring system
	3.9.1 Function
	3.9.2 Supplementary conditions
	3.9.3 Example: Changing an attachment head for a direct position measuring system
	3.9.4 Example: Changing an attachment head for two direct position measuring systems
	3.9.5 Example: Measuring system switchover when encoders are missing in certain parts of the range

	3.10 Switching over encoder data sets
	3.11 Data lists
	3.11.1 Machine data
	3.11.1.1 NC-specific machine data
	3.11.1.2 Channelspecific machine data
	3.11.1.3 Axis/spindlespecific machine data

	3.11.2 Setting data
	3.11.2.1 Axis/spindlespecific setting data

	3.11.3 Signals
	3.11.3.1 Signals to axis/spindle
	3.11.3.2 Signals from axis/spindle

	4 A5: Protection zones
	4.1 Function
	4.2 Commissioning
	4.2.1 Machine data

	4.3 Programming
	4.3.1 Defining protection zones (CPROTDEF, NPROTDEF)
	4.3.2 Activating/deactivating protection zones (CPROT, NPROT)
	4.3.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

	4.4 Special situations
	4.4.1 Temporary enabling of protection zones
	4.4.2 Behavior in the AUTOMATIC and MDA modes
	4.4.3 Behavior in JOG mode

	4.5 Boundary conditions
	4.6 Example
	4.6.1 Protection zone on a lathe
	4.6.2 Protection zone definition in the part program
	4.6.3 Protection zone definition with system variables
	4.6.4 Activating protection zones

	4.7 Data lists
	4.7.1 Machine data
	4.7.1.1 NC-specific machine data
	4.7.1.2 Channelspecific machine data

	4.7.2 Signals
	4.7.2.1 Signals to channel
	4.7.2.2 Signals from channel

	5 B1: Continuous-path mode, Exact stop, Look Ahead
	5.1 Brief Description
	5.2 Exact stop mode
	5.3 Continuous-path mode
	5.3.1 General functionality
	5.3.2 Velocity reduction according to overload factor
	5.3.3 Rounding
	5.3.3.1 Rounding according to a path criterion (G641)
	5.3.3.2 Rounding in compliance with defined tolerances (G642/G643)
	5.3.3.3 Rounding with maximum possible axial dynamic response (G644)
	5.3.3.4 Rounding of tangential block transitions (G645)
	5.3.3.5 Rounding and repositioning (REPOS)

	5.3.4 LookAhead
	5.3.4.1 Standard functionality
	5.3.4.2 Free-form surface mode: Extension function

	5.4 Dynamic adaptations
	5.4.1 Smoothing of the path velocity
	5.4.2 Adaptation of the dynamic path response
	5.4.3 Determination of the dynamic response limiting values
	5.4.4 Interaction between the "smoothing of the path velocity" and "adaptation of the path dynamic response" functions
	5.4.5 Dynamic response mode for path interpolation
	5.4.6 Free-form surface mode: Basic functions

	5.5 Compressor functions
	5.5.1 Compression of linear, circular and rapid traverse blocks
	5.5.1.1 Function
	5.5.1.2 Commissioning
	5.5.1.3 Programming
	5.5.1.4 Supplementary conditions

	5.5.2 Compression of short spline blocks

	5.6 Contour/Orientation tolerance
	5.6.1 Commissioning
	5.6.1.1 Parameter assignment

	5.6.2 Programming
	5.6.2.1 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)
	5.6.2.2 Programming contour/orientation tolerance (CTOL, OTOL, ATOL) Additional information

	5.7 Rapid traverse movements
	5.7.1 Function
	5.7.1.1 Rapid traverse
	5.7.1.2 Interpolation response of path axes for rapid traversing movements
	5.7.1.3 Tolerances for rapid traverse movements
	5.7.1.4 Rapid traverse override

	5.7.2 Commissioning
	5.7.2.1 Parameter assignment

	5.7.3 Programming
	5.7.3.1 Activating rapid traverse (G0)
	5.7.3.2 Switch on/off linear interpolation for rapid traverse movements (RTLION, RTLIOF)
	5.7.3.3 Adapt tolerance factor for rapid traverse movements (STOLF)

	5.8 RESET behavior
	5.9 Supplementary conditions
	5.9.1 Block change and positioning axes
	5.9.2 Block change delay

	5.10 Data lists
	5.10.1 Machine data
	5.10.1.1 General machine data
	5.10.1.2 Channelspecific machine data
	5.10.1.3 Axis/spindlespecific machine data

	5.10.2 Setting data
	5.10.2.1 Channelspecific setting data

	5.10.3 Signals
	5.10.3.1 Signals from channel
	5.10.3.2 Signals from axis/spindle

	6 B2: Acceleration
	6.1 Brief description
	6.1.1 General information
	6.1.2 Features

	6.2 Functions
	6.2.1 Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-specific)
	6.2.1.1 General Information
	6.2.1.2 Parameterization
	6.2.1.3 Programming

	6.2.2 Constant travel time (channel-specific)
	6.2.2.1 General Information
	6.2.2.2 Parameterization

	6.2.3 Acceleration matching (ACC) (axis-specific)
	6.2.3.1 General Information
	6.2.3.2 Programming

	6.2.4 Acceleration margin (channel-specific)
	6.2.4.1 General Information
	6.2.4.2 Parameterization

	6.2.5 Path-acceleration limitation (channel-specific)
	6.2.5.1 General Information
	6.2.5.2 Parameterization
	6.2.5.3 Programming

	6.2.6 Path acceleration for real-time events (channel-specific)
	6.2.6.1 General Information
	6.2.6.2 Programming

	6.2.7 Acceleration with programmed rapid traverse (G00) (axis-specific)
	6.2.7.1 General Information
	6.2.7.2 Parameterization

	6.2.8 Acceleration with active jerk limitation (SOFT/SOFTA) (axis-specific)
	6.2.8.1 General Information
	6.2.8.2 Parameterization

	6.2.9 Excessive acceleration for non-tangential block transitions (axis-specific)
	6.2.9.1 General Information
	6.2.9.2 Parameterization

	6.2.10 Acceleration margin for radial acceleration (channel-specific)
	6.2.10.1 General Information
	6.2.10.2 Parameterization

	6.2.11 Jerk limitation with path interpolation (SOFT) (channel-specific)
	6.2.11.1 General Information
	6.2.11.2 Parameterization
	6.2.11.3 Programming

	6.2.12 Jerk limitation with single-axis interpolation (SOFTA) (axis-specific)
	6.2.12.1 Parameterization
	6.2.12.2 Programming

	6.2.13 Path-jerk limitation (channel-specific)
	6.2.13.1 General Information
	6.2.13.2 Parameterization
	6.2.13.3 Programming

	6.2.14 Path jerk for real-time events (channel-specific)
	6.2.14.1 General Information
	6.2.14.2 Programming

	6.2.15 Jerk with programmed rapid traverse (G00) (axis-specific)
	6.2.15.1 General Information
	6.2.15.2 Parameterization

	6.2.16 Excessive jerk for block transitions without constant curvature (axis-specific)
	6.2.16.1 General Information
	6.2.16.2 Parameterization

	6.2.17 Velocity-dependent jerk adaptation (axis-specific)
	6.2.18 Jerk filter (axis-specific)
	6.2.18.1 General Information
	6.2.18.2 Parameterization

	6.2.19 Kneeshaped acceleration characteristic curve
	6.2.19.1 Function: Adaptation to the motor characteristic curve
	6.2.19.2 Function: Effects on the path acceleration
	6.2.19.3 Function: Substitute curve
	6.2.19.4 Parameterization
	6.2.19.5 Programming: Channel-specific activation (DRIVE)
	6.2.19.6 Programming: Axis-specific activation (DRIVEA)
	6.2.19.7 Boundary conditions

	6.2.20 Acceleration and jerk for JOG motions
	6.2.20.1 Parameterization
	6.2.20.2 Supplementary conditions

	6.3 Examples
	6.3.1 Acceleration
	6.3.1.1 Path velocity characteristic

	6.3.2 Jerk
	6.3.2.1 Path velocity characteristic

	6.3.3 Acceleration and jerk
	6.3.4 Knee-shaped acceleration characteristic curve
	6.3.4.1 Activation

	6.4 Data lists
	6.4.1 Machine data
	6.4.1.1 NC-specific machine data
	6.4.1.2 Channel-specific machine data
	6.4.1.3 Axis/spindlespecific machine data

	6.4.2 Setting data
	6.4.2.1 Channelspecific setting data

	6.4.3 System variables

	7 F1: Travel to fixed stop
	7.1 Brief description
	7.2 Detailed description
	7.2.1 Programming
	7.2.2 Functional sequence
	7.2.2.1 Selection
	7.2.2.2 Fixed stop is reached
	7.2.2.3 Fixed stop is not reached
	7.2.2.4 Deselection

	7.2.3 Behavior during block search
	7.2.4 Behavior for reset and function abort
	7.2.5 Behavior with regard to other functions
	7.2.6 Setting data
	7.2.7 System variables
	7.2.8 Alarms
	7.2.9 Travel with limited torque/force FOC

	7.3 Examples
	7.4 Data lists
	7.4.1 Machine data
	7.4.1.1 Axis/spindlespecific machine data

	7.4.2 Setting data
	7.4.2.1 Axis/spindle-specific setting data

	7.4.3 Signals
	7.4.3.1 Signals to axis/spindle
	7.4.3.2 Signals from axis/spindle

	8 G2: Velocities, setpoint / actual value systems, closed-loop control
	8.1 Brief description
	8.2 Velocities, traversing ranges, accuracies
	8.2.1 Velocities
	8.2.2 Traversing ranges
	8.2.3 Positioning accuracy of the control system
	8.2.4 Input/display resolution, computational resolution
	8.2.5 Scaling of physical quantities of machine and setting data

	8.3 System of units, metric/inch
	8.3.1 Function
	8.3.1.1 Parameterized and programmed system of units
	8.3.1.2 Extended system of units functionality
	8.3.1.3 System of units switchover at the user interface

	8.3.2 Commissioning
	8.3.3 Programming
	8.3.3.1 Switching over the system of units (G70/G71/G700/G710)

	8.4 Setpoint/actual-value system
	8.4.1 General information
	8.4.2 Setpoint and encoder assignment
	8.4.3 Adapting the motor/load ratios
	8.4.4 Speed setpoint output
	8.4.5 Machine data of the actual value system
	8.4.6 Actual-value resolution
	8.4.6.1 Machine data of the actual value resolution
	8.4.6.2 Example: Linear axis with linear scale
	8.4.6.3 Example: Linear axis with rotary encoder on motor
	8.4.6.4 Example: Linear axis with rotary encoder on the machine
	8.4.6.5 Example: Rotary axis with rotary encoder on motor
	8.4.6.6 Example: Rotary axis with rotary encoder on the machine
	8.4.6.7 Example: Intermediate gear with encoder on the tool

	8.5 Closed-loop control
	8.5.1 General information
	8.5.2 Parameter sets of the position controller

	8.6 Optimization of the control
	8.6.1 Position controller, position setpoint filter: Balancing filter
	8.6.2 Position controller, position setpoint filter: Jerk filter
	8.6.3 Position controller, position setpoint filter: Phase filter
	8.6.4 Position controller: injection of positional deviation
	8.6.5 Position control with proportional-plus-integral-action controller

	8.7 Data lists
	8.7.1 Machine data
	8.7.1.1 Displaying machine data
	8.7.1.2 NC-specific machine data
	8.7.1.3 Channelspecific machine data
	8.7.1.4 Axis/spindlespecific machine data

	8.7.2 Signals
	8.7.2.1 Signals from the NC
	8.7.2.2 Signals to NC

	9 H2: Auxiliary function outputs to PLC
	9.1 Brief description
	9.1.1 Function
	9.1.2 Definition of an auxiliary function
	9.1.3 Overview of the auxiliary functions

	9.2 Predefined auxiliary functions
	9.2.1 Overview: Predefined auxiliary functions
	9.2.2 Overview: Output behavior
	9.2.3 Parameterization
	9.2.3.1 Group assignment
	9.2.3.2 Type, address extension and value
	9.2.3.3 Output behavior

	9.3 Userdefined auxiliary functions
	9.3.1 Parameterization
	9.3.1.1 Maximum number of user-defined auxiliary functions
	9.3.1.2 Group assignment
	9.3.1.3 Type, address extension and value
	9.3.1.4 Output behavior

	9.4 Associated auxiliary functions
	9.5 Type-specific output behavior
	9.6 Priorities of the output behavior for which parameters have been assigned
	9.7 Programming an auxiliary function
	9.8 Programmable output duration
	9.9 Auxiliary function output to the PLC
	9.10 Auxiliary functions without block change delay
	9.11 M function with an implicit preprocessing stop
	9.12 Response to overstore
	9.13 Behavior during block search
	9.13.1 Auxiliary function output during type 1, 2, and 4 block searches
	9.13.2 Assignment of an auxiliary function to a number of groups
	9.13.3 Time stamp of the active M auxiliary function
	9.13.4 Determining the output sequence
	9.13.5 Output suppression of spindle-specific auxiliary functions
	9.13.6 Auxiliary function output with a type 5 block search (SERUPRO)
	9.13.7 ASUB at the end of the SERUPRO

	9.14 Implicitly output auxiliary functions
	9.15 Information options
	9.15.1 Group-specific modal M auxiliary function display
	9.15.2 Querying system variables

	9.16 Supplementary conditions
	9.16.1 General constraints
	9.16.2 Output behavior

	9.17 Examples
	9.17.1 Extension of predefined auxiliary functions
	9.17.2 Defining auxiliary functions

	9.18 Data lists
	9.18.1 Machine data
	9.18.1.1 NC-specific machine data
	9.18.1.2 Channelspecific machine data

	9.18.2 Signals
	9.18.2.1 Signals to channel
	9.18.2.2 Signals from channel
	9.18.2.3 Signals to axis/spindle
	9.18.2.4 Signals from axis/spindle

	10 K1: Mode group, channel, program operation, reset response
	10.1 Product brief
	10.2 Mode group
	10.2.1 Mode group stop
	10.2.2 Mode group reset

	10.3 Mode types and mode type change
	10.3.1 Monitoring functions and interlocks of the individual modes
	10.3.2 Mode change

	10.4 Channel
	10.4.1 Start inhibit, global and channel-specific

	10.5 Program test
	10.5.1 Program execution without setpoint outputs
	10.5.2 Program execution in single-block mode
	10.5.3 Program execution with dry run feedrate
	10.5.4 Skip part-program blocks

	10.6 Workpiece simulation
	10.7 Block search, types 1, 2, and 4:
	10.7.1 Description of the function
	10.7.2 Block search in connection with other NCK functions
	10.7.2.1 ASUB after and during block search
	10.7.2.2 PLC actions after block search
	10.7.2.3 Spindle functions after block search
	10.7.2.4 Reading system variables for a block search

	10.7.3 Automatic start of an ASUB after a block search
	10.7.4 Cascaded block search
	10.7.5 Examples for block search with calculation
	10.7.6 Supplementary conditions
	10.7.6.1 Compressor functions (COMPON, COMPCURV, COMPCAD)

	10.8 Block search Type 5 (SERUPRO)
	10.8.1 Description of the function
	10.8.2 Repositioning to the contour (REPOS)
	10.8.2.1 Repositioning with controlled REPOS

	10.8.3 Accelerate block search
	10.8.4 SERUPRO ASUB
	10.8.5 Selfacting SERUPRO
	10.8.6 Locking a program section for "Continue machining at the contour"
	10.8.7 Behavior during POWER ON, mode change and RESET
	10.8.8 Supplementary conditions
	10.8.8.1 STOPRE in the target block
	10.8.8.2 SPOS in target block
	10.8.8.3 Travel to fixed stop (FXS)
	10.8.8.4 Travel with limited torque/force (FOC)
	10.8.8.5 Synchronous spindle
	10.8.8.6 Couplings and master-slave
	10.8.8.7 Axis functions
	10.8.8.8 Gear stage change
	10.8.8.9 Superimposed motion
	10.8.8.10 NC/PLC interface signals
	10.8.8.11 Making the initial settings more flexible
	10.8.8.12 Compressor functions (COMPON, COMPCURV, COMPCAD)

	10.8.9 System variable

	10.9 Program operation
	10.9.1 Initial settings
	10.9.1.1 Machine data
	10.9.1.2 Programming

	10.9.2 Selection and start of an NC program
	10.9.3 Program interruption
	10.9.4 Channel reset
	10.9.5 Program status
	10.9.6 Channel status
	10.9.7 Responses to operator and program actions
	10.9.8 Example of a timing diagram for a program run
	10.9.9 Program jumps
	10.9.9.1 Return jump to the start of the program (GOTOS)

	10.9.10 Program section repetitions
	10.9.10.1 Programming

	10.9.11 Event-driven program call (PROG_EVENT)
	10.9.11.1 Function
	10.9.11.2 Parameterization
	10.9.11.3 Programming
	10.9.11.4 Boundary conditions
	10.9.11.5 Examples

	10.9.12 Influencing the stop events by stop delay areas
	10.9.12.1 Function
	10.9.12.2 Parameterization
	10.9.12.3 Programming
	10.9.12.4 Supplementary conditions

	10.10 Asynchronous subprograms (ASUPs)
	10.10.1 Function
	10.10.1.1 Execution sequence of an ASUP in program mode
	10.10.1.2 ASUP with REPOSA
	10.10.1.3 NC response

	10.10.2 Commissioning: Machine data
	10.10.2.1 NC-spec.: Mode-group-specific NC/PLC interface signals and operating mode switchover
	10.10.2.2 NC-spec.: ASUP start enable
	10.10.2.3 NC-spec.: Effectiveness of the parameterized start enables
	10.10.2.4 Channel-spec.: Start enable despite non-referenced axes
	10.10.2.5 Channel-spec.: Start enable despite read-in disable
	10.10.2.6 Channel-spec.: Continuous execution despite single block
	10.10.2.7 Channel-spec.: Refreshing the display

	10.10.3 Programming: System variables
	10.10.3.1 REPOS option ($P_REPINF)
	10.10.3.2 Activation event ($AC_ASUP)

	10.10.4 Programming (SETINT, PRIO)
	10.10.5 Restrictions
	10.10.6 Examples

	10.11 User-specific ASUB for RET and REPOS
	10.11.1 Function
	10.11.2 Parameter assignment
	10.11.3 Programming

	10.12 Perform ASUB start for user alarms
	10.12.1 Function
	10.12.2 Activation
	10.12.3 Examples
	10.12.3.1 User ASUB from reset - example 1
	10.12.3.2 User ASUB from reset - example 2
	10.12.3.3 User ASUB with M0
	10.12.3.4 User ASUB with stop
	10.12.3.5 User ASUB from stopped

	10.13 Single block
	10.13.1 Parameterization
	10.13.2 Programming
	10.13.2.1 Deactivating/activating single block machining (SBLOF, SBLON)
	10.13.2.2 Supplementary conditions
	10.13.2.3 Examples

	10.13.3 Mode group-specific single block type A / B
	10.13.4 Supplementary conditions
	10.13.4.1 SBL2 single block type and block-related synchronized actions
	10.13.4.2 Programmed stop (M0), single block and single block type switchover

	10.14 Program control
	10.14.1 Function selection from the user interface or PLC user program
	10.14.2 Activation of skip levels
	10.14.3 Adapting the size of the interpolation buffer
	10.14.4 Program display modes via an additional basic block display
	10.14.5 Basic block display for ShopMill/ShopTurn
	10.14.6 Structure for a DIN block
	10.14.7 Execution from external
	10.14.8 Executing external subprograms (EXTCALL)

	10.15 Execution from external storage (EES) (option)
	10.15.1 Function
	10.15.2 Commissioning
	10.15.2.1 Configuring the drives
	10.15.2.2 Global part program memory (GDIR)
	10.15.2.3 Settings for file handling in the part program for EES
	10.15.2.4 Memory configuration

	10.15.3 Supplementary conditions

	10.16 Process Datashare - output to an external device/file
	10.16.1 Function
	10.16.2 Commissioning
	10.16.3 Programming
	10.16.4 Supplementary conditions

	10.17 System settings for power-up, RESET / part program end and part program start
	10.17.1 Tool withdrawal after POWER ON with orientation transformation

	10.18 Replacing functions by subprograms
	10.18.1 Overview
	10.18.2 Replacement of M, T/TCA and D/DL functions
	10.18.2.1 Replacement of M functions
	10.18.2.2 Replacing T/TCA and D/DL functions
	10.18.2.3 System variable
	10.18.2.4 Example: Replacement of an M function
	10.18.2.5 Example: Replacement of a T and D function
	10.18.2.6 Behavior in the event of a conflict

	10.18.3 Replacement of spindle functions
	10.18.3.1 General information
	10.18.3.2 Replacement of M40 - M45 (gear stage change)
	10.18.3.3 Replacement of SPOS, SPOSA, M19 (spindle positioning)
	10.18.3.4 System variable
	10.18.3.5 Example: Gear stage change
	10.18.3.6 Example: Spindle positioning

	10.18.4 Properties of the subprograms
	10.18.5 Restrictions

	10.19 Renaming/locking NC commands
	10.20 Program runtime / part counter
	10.20.1 Program runtime
	10.20.1.1 Function
	10.20.1.2 Commissioning
	10.20.1.3 Supplementary conditions
	10.20.1.4 Examples

	10.20.2 Workpiece counter
	10.20.2.1 Function
	10.20.2.2 Commissioning
	10.20.2.3 Supplementary conditions
	10.20.2.4 Examples

	10.21 Data lists
	10.21.1 Function
	10.21.2 Machine data
	10.21.2.1 General machine data
	10.21.2.2 Channel-specific machine data
	10.21.2.3 Axis/spindlespecific machine data

	10.21.3 Setting data
	10.21.3.1 Channelspecific setting data

	10.21.4 Signals
	10.21.4.1 Signals to NC
	10.21.4.2 Signals to mode group
	10.21.4.3 Signals to NC
	10.21.4.4 Signals to channel
	10.21.4.5 Signals from channel
	10.21.4.6 Signals to NC
	10.21.4.7 Signals from axis/spindle

	11 K2: Axis Types, Coordinate Systems, Frames
	11.1 Brief description
	11.1.1 Axes
	11.1.2 Coordinate systems
	11.1.3 Frames

	11.2 Axes
	11.2.1 Overview
	11.2.2 Machine axes
	11.2.3 Channel axes
	11.2.4 Geometry axes
	11.2.5 Special axes
	11.2.6 Path axes
	11.2.7 Positioning axes
	11.2.8 Main axes
	11.2.9 Synchronized axes
	11.2.10 Axis configuration
	11.2.11 Link axes

	11.3 Zeros and reference points
	11.3.1 Reference points in working space
	11.3.2 Position of coordinate systems and reference points

	11.4 Coordinate systems
	11.4.1 Overview
	11.4.2 Machine coordinate system (MCS)
	11.4.2.1 Actual value setting with loss of the referencing status (PRESETON)
	11.4.2.2 Actual value setting without loss of the referencing status (PRESETONS)

	11.4.3 Basic coordinate system (BCS)
	11.4.4 Basic zero system (BZS)
	11.4.5 Settable zero system (SZS)
	11.4.6 Workpiece coordinate system (WCS)
	11.4.7 Additive offsets
	11.4.7.1 External work offsets
	11.4.7.2 DRF offset
	11.4.7.3 Reset behavior

	11.4.8 Axis-specific overlay ($AA_OFF)
	11.4.8.1 Function
	11.4.8.2 Commissioning
	11.4.8.3 Programming: Deselecting overlays axis-specifically (CORROF)

	11.5 Frames
	11.5.1 Frame types
	11.5.2 Frame components
	11.5.2.1 Translation
	11.5.2.2 Fine offset
	11.5.2.3 Rotation Overview (geometry axes only)
	11.5.2.4 Rotation with a Euler angles: ZY'X" convention (RPY angles)
	11.5.2.5 Rotation with a Euler angles: ZX'Z" convention
	11.5.2.6 Rotation in any plane
	11.5.2.7 Scaling
	11.5.2.8 Mirroring
	11.5.2.9 Chain operator
	11.5.2.10 Programmable axis name
	11.5.2.11 Coordinate transformation

	11.5.3 Data management frames and active frames
	11.5.3.1 Overview
	11.5.3.2 Activating data management frames
	11.5.3.3 NCU-global and channel-specific frames

	11.5.4 Frame chain and coordinate systems
	11.5.4.1 Overview
	11.5.4.2 Relative coordinate systems
	11.5.4.3 Selectable SZS
	11.5.4.4 Manual traversing of geometry axes either in the WCS or in the SZS ($AC_JOG_COORD)
	11.5.4.5 Suppression of frames

	11.5.5 Frames of the frame chain
	11.5.5.1 Overview
	11.5.5.2 Settable frames ($P_UIFR[<n>])
	11.5.5.3 Grinding frames $P_GFR[<n>]
	11.5.5.4 Channel-specific basic frames[<n>]
	11.5.5.5 NCU-global basic frames $P_NCBFR[<n>]
	11.5.5.6 Active complete basic frame $P_ACTBFRAME
	11.5.5.7 Programmable frame $P_PFRAME
	11.5.5.8 Channelspecific system frames

	11.5.6 Implicit frame changes
	11.5.6.1 Switching geometry axes
	11.5.6.2 Selecting and deselecting transformations: General
	11.5.6.3 Selecting and deselecting transformations: TRANSMIT
	11.5.6.4 Selecting and deselecting transformations: TRACYL
	11.5.6.5 Selecting and deselecting transformations: TRAANG
	11.5.6.6 Adapting active frames
	11.5.6.7 Mapped Frames

	11.5.7 Predefined frame functions
	11.5.7.1 Inverse frame
	11.5.7.2 Additive frame in frame chain

	11.5.8 Functions
	11.5.8.1 Setting zeros, workpiece measuring and tool measuring
	11.5.8.2 Axis-specific external work offset
	11.5.8.3 Toolholder

	11.5.9 Subprograms with SAVE attribute (SAVE)
	11.5.10 Data backup
	11.5.11 Positions in the coordinate system
	11.5.12 Control system response
	11.5.12.1 POWER ON
	11.5.12.2 Mode change
	11.5.12.3 Channel reset / part program end
	11.5.12.4 Part program start
	11.5.12.5 Block search
	11.5.12.6 REPOS

	11.6 Workpiece-related actual value system
	11.6.1 Overview
	11.6.2 Use of the workpiece-related actual value system
	11.6.3 Special reactions

	11.7 Restrictions
	11.8 Examples
	11.8.1 Axes
	11.8.2 Coordinate systems
	11.8.3 Frames

	11.9 Data lists
	11.9.1 Machine data
	11.9.1.1 Displaying machine data
	11.9.1.2 NC-specific machine data
	11.9.1.3 Channel-specific machine data
	11.9.1.4 Axis/spindlespecific machine data

	11.9.2 Setting data
	11.9.2.1 Channelspecific setting data

	11.9.3 System variables
	11.9.4 Signals
	11.9.4.1 Signals from channel
	11.9.4.2 Signals to axis/spindle
	11.9.4.3 Signals from axis/spindle

	12 N2: Emergency stop
	12.1 Brief Description
	12.2 Relevant standards
	12.3 Emergency stop control elements
	12.4 Emergency stop sequence
	12.5 Emergency stop acknowledgement
	12.6 Data lists
	12.6.1 Machine data
	12.6.1.1 Axis/spindlespecific machine data

	12.6.2 Signals
	12.6.2.1 Signals to NC
	12.6.2.2 Signals from NC
	12.6.2.3 Signals to BAG

	13 P1: Transverse axes
	13.1 Function
	13.2 Parameterization
	13.3 Programming
	13.4 Supplementary conditions
	13.5 Examples
	13.6 Data lists
	13.6.1 Machine data
	13.6.1.1 Channelspecific machine data
	13.6.1.2 Axis/spindlespecific machine data

	14 P3: Basic PLC program for SINUMERIK 840D sl
	14.1 Brief description
	14.2 Key data of the PLC CPU
	14.3 PLC operating system version
	14.4 PLC mode selector
	14.5 Reserve resources (timers, counters, FC, FB, DB, I/O)
	14.6 Commissioning hardware configuration of the PLC CPU
	14.7 Starting up the PLC program
	14.7.1 Installation of the basic program
	14.7.2 Application of the basic program
	14.7.3 Version codes
	14.7.4 Machine program
	14.7.5 Data backup
	14.7.6 PLC series startup, PLC archive
	14.7.7 Software upgrade
	14.7.8 I/O modules (FM, CP modules)
	14.7.9 Troubleshooting

	14.8 Coupling of the PLC CPU
	14.8.1 General information
	14.8.2 Properties of the PLC CPU
	14.8.3 Interface with integrated PLC
	14.8.4 Diagnostic buffer on PLC

	14.9 Interface structure
	14.9.1 PLC/NCK interface
	14.9.2 Interface PLC/HMI
	14.9.3 PLC/MCP/HHU interface

	14.10 Structure and functions of the basic program
	14.10.1 Startup and synchronization of NCK PLC
	14.10.2 Cyclic operation (OB1)
	14.10.3 Time-interrupt processing (OB35)
	14.10.4 Process-interrupt processing (OB 40)
	14.10.5 Diagnostic alarm, module failure processing (OB82, OB86)
	14.10.6 Response to NCK failure
	14.10.7 Functions of the basic program called from the user program
	14.10.8 Symbolic programming of user program with interface DB
	14.10.9 M decoding acc. to list
	14.10.10 PLC machine data
	14.10.11 Configuration machine control panel, handheld unit, direct keys
	14.10.12 Switchover of machine control panel, handheld unit

	14.11 SPL for Safety Integrated
	14.12 Assignment overview
	14.12.1 Assignment: NCK/PLC interface
	14.12.2 Assignment: FB/FC
	14.12.3 Assignment: DB
	14.12.4 Assignment: Timers

	14.13 PLC functions for HMI (DB19)
	14.13.1 Channel selection
	14.13.2 Program selection
	14.13.3 Activating the key lock
	14.13.4 Operating area numbers
	14.13.5 Screen numbers
	14.13.5.1 Screen numbers: JOG, manual machine
	14.13.5.2 Screen numbers: Reference point approach
	14.13.5.3 Screen numbers: MDA
	14.13.5.4 Screen numbers: AUTOMATIC
	14.13.5.5 Screen numbers: Parameters operating area
	14.13.5.6 Screen numbers: Program operating area
	14.13.5.7 Screen numbers: Program manager operating area
	14.13.5.8 Screen numbers: Diagnostics operating area

	14.13.6 HMI monitor

	14.14 PLC functions for drive components on the integrated PROFIBUS
	14.14.1 Overview
	14.14.2 Performing a start-up
	14.14.3 Example

	14.15 Memory requirements of the basic PLC program
	14.16 Basic conditions and NC VAR selector
	14.16.1 Supplementary conditions
	14.16.1.1 Programming and parameterizing tools
	14.16.1.2 SIMATIC documentation required
	14.16.1.3 Relevant SINUMERIK documents

	14.16.2 NC VAR selector
	14.16.2.1 Overview
	14.16.2.2 Description of functions
	14.16.2.3 Startup, installation

	14.17 Block descriptions
	14.17.1 FB1: RUN_UP - basic program, start section
	14.17.2 FB2: GET - read NC variable
	14.17.3 FB3: PUT - write NC variables
	14.17.4 FB4: PI_SERV - request PI service
	14.17.4.1 List of available Pl services
	14.17.4.2 PI service: ASUP
	14.17.4.3 PI service: CANCEL
	14.17.4.4 PI service: CONFIG
	14.17.4.5 PI service: DIGION
	14.17.4.6 PI service: DIGIOF
	14.17.4.7 PI service: FINDBL
	14.17.4.8 PI service: LOGIN
	14.17.4.9 PI service: LOGOUT
	14.17.4.10 PI service: NCRES
	14.17.4.11 PI service: SELECT
	14.17.4.12 PI service: SETUDT
	14.17.4.13 PI service: SETUFR
	14.17.4.14 PI service: RETRAC
	14.17.4.15 PI service: CRCEDN
	14.17.4.16 PI service: CREACE
	14.17.4.17 PI service: CREATO
	14.17.4.18 PI service: DELECE
	14.17.4.19 PI service: DELETO
	14.17.4.20 PI service: MMCSEM
	14.17.4.21 PI service: TMCRTO
	14.17.4.22 PI service: TMFDPL
	14.17.4.23 PI service: TMFPBP
	14.17.4.24 PI service: TMGETT
	14.17.4.25 PI service: TMMVTL
	14.17.4.26 PI service: TMPOSM
	14.17.4.27 PI service: TMPCIT
	14.17.4.28 PI service: TMRASS
	14.17.4.29 PI service: TRESMO
	14.17.4.30 PI service: TSEARC
	14.17.4.31 PI service: TMCRMT
	14.17.4.32 PI service: TMDLMT
	14.17.4.33 PI service: POSMT
	14.17.4.34 PI service: FDPLMT

	14.17.5 FB5: GETGUD - read GUD variable
	14.17.6 FB7: PI_SERV2 - request PI service
	14.17.7 FB9: MtoN - operator panel switchover
	14.17.8 FB10: Safety relay (SI relay)
	14.17.9 FB11: Brake test
	14.17.10 FB29: Signal recorder and data trigger diagnostics
	14.17.11 FC2 : GP_HP - basic program, cyclic section
	14.17.12 FC3: GP_PRAL - basic program, interruptdriven section
	14.17.13 FC5: GP_DIAG - basic program, diagnostic alarm and module failure
	14.17.14 FC6: TM_TRANS2 - transfer block for tool management and multitool
	14.17.15 FC7: TM_REV - transfer block for tool change with revolver
	14.17.16 FC8: TM_TRANS - transfer block for tool management
	14.17.17 FC9: ASUP - start of asynchronous subprograms
	14.17.18 FC10: AL_MSG - error and operating messages
	14.17.19 FC12: AUXFU - call interface for user with auxiliary functions
	14.17.20 FC13: BHGDisp - display control for handheld unit
	14.17.21 FC17: YDelta - star-delta switchover
	14.17.22 FC18: SpinCtrl - spindle control
	14.17.23 FC19: MCP_IFM - transfer of MCP signals to interface
	14.17.24 FC21: Transfer - data exchange NC/PLC
	14.17.24.1 Function
	14.17.24.2 Declaration of the function
	14.17.24.3 Explanation of formal parameters
	14.17.24.4 Function 1, 2: Signals synchronized actions to / from Channel
	14.17.24.5 Function 3, 4: Fast data exchange PLC-NC
	14.17.24.6 Function 5: Update control signals to channel
	14.17.24.7 Function 6: Update control signals to axes
	14.17.24.8 Function 7: Update control signals to axes

	14.17.25 FC22: TM_DIR - direction selection for tool management
	14.17.26 FC24: MCP_IFM2 - transferring MCP signals to the interface
	14.17.27 FC25: MCP_IFT - transfer of MCP/OP signals to interface
	14.17.28 FC26: HPU_MCP - transfer of HT 8 signals to the interface
	14.17.28.1 Overview of the NC/PLC interface signals of HT 8
	14.17.28.2 Overview of the NC/PLC interface signals of HT 8

	14.17.29 FC1005: AG_SEND - transfers data to Ethernet CP
	14.17.30 FC1006: AG_RECV - receives data from the Ethernet CP

	14.18 Signal/data descriptions
	14.18.1 Interface signals NCK/PLC, HMI/PLC, MCP/PLC
	14.18.2 Decoded M signals
	14.18.3 G commands
	14.18.4 Message signals in DB 2

	14.19 Notes on programming in STEP 7
	14.19.1 Copying data
	14.19.2 ANY and POINTER
	14.19.2.1 Use of POINTER and ANY in FC
	14.19.2.2 Use of POINTER and ANY in FB
	14.19.2.3 POINTER or ANY variable for transfer to FC or FB

	14.19.3 Multiinstance DB
	14.19.4 Strings
	14.19.5 Determining offset addresses for data block structures
	14.19.6 FB calls

	14.20 Data lists
	14.20.1 Machine data
	14.20.1.1 Display machine data
	14.20.1.2 NC-specific machine data
	14.20.1.3 Channelspecific machine data

	14.20.2 Signals
	14.20.2.1 Signals from operator panel

	15 P4: PLC for SINUMERIK 828D
	15.1 Overview
	15.1.1 PLC firmware
	15.1.2 PLC user interface
	15.1.2.1 Data that are cyclically exchanged
	15.1.2.2 Alarms and messages
	15.1.2.3 Retentive data
	15.1.2.4 Non-retentive data
	15.1.2.5 PLC machine data

	15.1.3 PLC key data
	15.1.4 PLC I/O, fast onboard inputs/outputs
	15.1.5 PLC Toolbox
	15.1.5.1 Star/delta changeover

	15.2 Fast on-board inputs and outputs
	15.3 Ladder Viewer, Ladder editor, and Ladder add-on tool
	15.3.1 Overview
	15.3.2 Parameterization

	15.4 PLC Programming Tool
	15.5 Data interface
	15.5.1 PLC-NC interface
	15.5.1.1 Mode signals
	15.5.1.2 NC channel signals
	15.5.1.3 Axis and spindle signals
	15.5.1.4 General NC signals
	15.5.1.5 PLC-NC fast data exchange

	15.5.2 PLC-HMI interface
	15.5.2.1 Program selection
	15.5.2.2 Operating area numbers
	15.5.2.3 Screen numbers
	15.5.2.4 HMI monitor

	15.6 Function interface
	15.6.1 Read/write NC variables
	15.6.1.1 User interface
	15.6.1.2 Job specification
	15.6.1.3 Job management: Start job
	15.6.1.4 Job management: Waiting for end of job
	15.6.1.5 Job management: Job completion
	15.6.1.6 Job management: Flow diagram
	15.6.1.7 Job evaluation
	15.6.1.8 Operable variables
	15.6.1.9 Specifying selected NC variables

	15.6.2 Program instance services (PI services)
	15.6.2.1 Job specification
	15.6.2.2 Job feedback
	15.6.2.3 PI service ASUB
	15.6.2.4 PI service LOGOUT
	15.6.2.5 PI service DATA_SAVE
	15.6.2.6 PI service TMMVTL
	15.6.2.7 PI services: Cycle diagram

	15.6.3 PLC user alarms
	15.6.3.1 User interface
	15.6.3.2 Activation interface of the user alarms
	15.6.3.3 Variables interface of the user alarms
	15.6.3.4 Configuring user alarms
	15.6.3.5 Export active alarm responses and cancel criteria
	15.6.3.6 Acknowledgement interface of the user alarms
	15.6.3.7 Interface to HMI.

	15.6.4 PLC axis control
	15.6.4.1 General information
	15.6.4.2 User interface: Preparing the NC axis as PLC axis
	15.6.4.3 User interface: Functionality
	15.6.4.4 Spindle positioning
	15.6.4.5 Rotate spindle
	15.6.4.6 Oscillate spindle
	15.6.4.7 Indexing axis
	15.6.4.8 Positioning axis metric
	15.6.4.9 Positioning axis inch
	15.6.4.10 Positioning axis metric with handwheel override
	15.6.4.11 Positioning axis inch with handwheel override
	15.6.4.12 Rotate spindle with automatic gear stage selection
	15.6.4.13 Rotate spindle with constant cutting rate [m/min]
	15.6.4.14 Rotate spindle with constant cutting rate [feet/min]
	15.6.4.15 Error messages

	15.6.5 Start ASUB
	15.6.5.1 Job start
	15.6.5.2 Job result
	15.6.5.3 Signal flow

	15.6.6 Channel selection on the HMI

	15.7 CNC lock function (option)
	15.7.1 Function
	15.7.2 Requirements
	15.7.3 Restrictions
	15.7.4 Protection from manipulation
	15.7.5 Initial creation of the CNC lock function
	15.7.6 Extending the CNC lock function
	15.7.7 Deactivating the CNC lock function
	15.7.8 Replacing a defective control system hardware (PPU)
	15.7.9 Replacing a defective CF card
	15.7.10 OEM PIN forgotten
	15.7.11 Other information

	16 R1: Referencing
	16.1 Brief Description
	16.2 Axisspecific referencing
	16.3 Channelspecific referencing
	16.4 Reference point appraoch from part program (G74)
	16.5 Referencing with incremental measurement systems
	16.5.1 Hardware signals
	16.5.2 Zero mark selection
	16.5.3 Time sequence
	16.5.4 Phase 1: Traversing to the reference cam
	16.5.5 Phase 2: Synchronization with the zero mark
	16.5.6 Phase 3: Traversing to the reference point

	16.6 Referencing with distance-coded reference marks
	16.6.1 General overview
	16.6.2 Basic parameter assignment
	16.6.3 Time sequence
	16.6.4 Phase 1: Travel across the reference marks with synchronization
	16.6.5 Phase 2: Traversing to the target point

	16.7 Referencing by means of actual value adjustment
	16.7.1 Actual value adjustment to the referencing measurement system
	16.7.2 Actual value adjustment for measuring systems with distance-coded reference marks

	16.8 Referencing in follow-up mode
	16.9 Referencing with absolute encoders
	16.9.1 Information about the adjustment
	16.9.2 Calibration by entering a reference point offset
	16.9.3 Adjustment by entering a reference point value
	16.9.4 Automatic calibration with probe
	16.9.5 Adjustment with BERO
	16.9.6 Reference point approach with absolute encoders
	16.9.7 Reference point approach for rotary absolute encoders with equivalent zero mark
	16.9.8 Enabling the measurement system
	16.9.9 Referencing variants not supported

	16.10 Automatic restoration of the machine reference
	16.10.1 Automatic referencing
	16.10.2 Restoration of the actual position

	16.11 Supplementary conditions
	16.11.1 Large traverse range

	16.12 Data lists
	16.12.1 Machine data
	16.12.1.1 NC-specific machine data
	16.12.1.2 Channelspecific machine data
	16.12.1.3 Axis/spindlespecific machine data

	16.12.2 Signals
	16.12.2.1 Signals to BAG
	16.12.2.2 Signals from BAG
	16.12.2.3 Signals to channel
	16.12.2.4 Signals from channel
	16.12.2.5 Signals to axis/spindle
	16.12.2.6 Signals from axis/spindle

	17 S1: Spindles
	17.1 Brief Description
	17.2 Modes
	17.2.1 Overview
	17.2.2 Mode change
	17.2.3 Control mode
	17.2.4 Oscillation mode
	17.2.5 Positioning mode
	17.2.5.1 General functionality
	17.2.5.2 Positioning from rotation
	17.2.5.3 Positioning from standstill
	17.2.5.4 "Spindle in position" signal for tool change

	17.2.6 Axis mode
	17.2.6.1 General functionality
	17.2.6.2 Implicit transition to axis mode

	17.2.7 Initial spindle state
	17.2.8 Tapping without compensating chuck
	17.2.8.1 Function
	17.2.8.2 Programming
	17.2.8.3 Example: Tapping with G331 / G332
	17.2.8.4 Example: Output the programmed drilling speed in the current gear stage
	17.2.8.5 Example: Application of the second gear-stage data block
	17.2.8.6 Example: Speed is not programmed, the gearbox stage is monitored
	17.2.8.7 Example: Gearbox stage cannot be changed, gearbox stage monitoring
	17.2.8.8 Example: Programming without SPOS
	17.2.8.9 Special case: Direction of rotation reversal via NC/PLC interface signal in the NC program

	17.2.9 Tapping with compensating chuck
	17.2.9.1 Function
	17.2.9.2 Programming

	17.3 Reference / synchronize
	17.4 Configurable gear adaptation
	17.4.1 Gear stages for spindles and gear change change
	17.4.2 Spindle gear stage 0
	17.4.3 Determining the spindle gear stage
	17.4.4 Parameter set selection during gear step change
	17.4.5 Intermediate gear
	17.4.6 Nonacknowledged gear step change
	17.4.7 Gear step change with oscillation mode
	17.4.8 Gear stage change at fixed position
	17.4.9 Configurable gear step in M70
	17.4.10 Suppression of the gear stage change for DryRun, program test and SERUPRO

	17.5 Additional adaptations to the spindle functionality that can be configured
	17.6 Selectable spindles
	17.7 Programming
	17.7.1 Programming from the part program
	17.7.2 Programming via synchronized actions
	17.7.3 Programming spindle controls via PLC with FC18 - only 840D sl
	17.7.4 Programming using NC/PLC interface signals
	17.7.4.1 Function
	17.7.4.2 Commissioning: Machine data
	17.7.4.3 Commissioning: NC/PLC interface signals
	17.7.4.4 Speed setpoint (SD43200)
	17.7.4.5 Entering a constant cutting rate (SD43202)
	17.7.4.6 Entering the spindle speed type for the master spindle (SD43206)

	17.7.5 External programming (PLC, HMI)

	17.8 Spindle monitoring
	17.8.1 Permissible speed ranges
	17.8.2 Axis/spindle stationary
	17.8.3 Spindle in setpoint range
	17.8.4 Minimum / maximum speed of the gear stage
	17.8.5 Diagnosis of spindle speed limitation
	17.8.6 Maximum spindle speed
	17.8.7 Maximum encoder limit frequency
	17.8.8 End point monitoring
	17.8.9 M40: Automatic gear stage selection for speeds outside the configured switching thresholds

	17.9 Spindle with SMI 24 (Weiss spindle)
	17.9.1 General Information
	17.9.2 Sensor data
	17.9.3 Clamped state
	17.9.4 Additional drive parameters

	17.10 Supplementary conditions
	17.10.1 Changing control parameters

	17.11 Examples
	17.11.1 Automatic gear step selection (M40)

	17.12 Data lists
	17.12.1 Machine data
	17.12.1.1 NC-specific machine data
	17.12.1.2 Channelspecific machine data
	17.12.1.3 Axis/spindlespecific machine data

	17.12.2 Setting data
	17.12.2.1 Channelspecific setting data
	17.12.2.2 Axis/spindle-specific setting data

	17.12.3 signals
	17.12.3.1 Signals to axis/spindle
	17.12.3.2 Signals from axis/spindle

	18 V1: Feedrates
	18.1 Brief description
	18.2 Path feedrate F
	18.2.1 Feedrate type G93, G94, G95
	18.2.2 Type of feedrate G96, G961, G962, G97, G971
	18.2.3 Feedrate for thread cutting (G33, G34, G35, G335, G336)
	18.2.3.1 Feedrate with G33
	18.2.3.2 Linear increasing/decreasing thread pitch change with G34 and G35
	18.2.3.3 Acceleration behavior of the axis for G33, G34 and G35
	18.2.3.4 Programmed run-in and run-out path for G33, G34 and G35 (DITS, DITE)
	18.2.3.5 Fast retraction during thread cutting
	18.2.3.6 Convex thread (G335, G336)

	18.2.4 Feedrate for tapping without compensating chuck (G331, G332)
	18.2.5 Feedrate for tapping with compensating chuck (G63)
	18.2.6 FGROUP and FGREF

	18.3 Feedrate for positioning axes (FA)
	18.4 Feedrate control
	18.4.1 Feedrate disable and feedrate/spindle stop
	18.4.2 Feedrate override via machine control panel
	18.4.3 Programmable feedrate override
	18.4.4 Dry run feedrate
	18.4.5 Multiple feedrate values in one block
	18.4.6 Fixed feedrate values
	18.4.7 Programmable feedrate characteristics
	18.4.8 Feedrate for chamfer/rounding FRC, FRCM
	18.4.9 Non-modal feedrate FB
	18.4.10 Influencing the single axis dynamic response

	18.5 Supplementary conditions
	18.6 Data lists
	18.6.1 Machine data
	18.6.1.1 NC-specific machine data
	18.6.1.2 Channel-specific machine data
	18.6.1.3 Axis/Spindle-specific machine data

	18.6.2 Setting data
	18.6.2.1 Channel-specific setting data
	18.6.2.2 Axis/spindle-specific setting data

	18.6.3 Signals
	18.6.3.1 Signals to channel
	18.6.3.2 Signals from channel
	18.6.3.3 Signals to axis/spindle
	18.6.3.4 Signals from axis/spindle

	19 W1: Tool offset
	19.1 Brief description
	19.2 Tool
	19.2.1 General information
	19.2.2 Compensation memory structure
	19.2.3 Calculating the tool compensation
	19.2.4 Address extension for NC addresses T and M
	19.2.5 Free assignment of D numbers
	19.2.6 Compensation block in case of error during tool change
	19.2.7 Definition of the effect of the tool parameters

	19.3 Flat D number structure
	19.3.1 General information
	19.3.2 Creating a new D number (compensation block)
	19.3.3 D number programming
	19.3.4 Programming the T number
	19.3.5 Programming M6
	19.3.6 Program test
	19.3.7 Tool management or "Flat D number structure"

	19.4 Tool cutting edge
	19.4.1 General information
	19.4.2 Tool parameter 1: Tool type
	19.4.3 Tool parameter 2: Cutting edge position
	19.4.4 Tool parameters 3 - 5: Geometry - tool lengths
	19.4.5 Tool parameters 6 - 11: Geometry - tool shape
	19.4.6 Tool parameters 12 - 14: Wear - tool lengths
	19.4.7 Tool parameters 15 - 20: Wear - tool shape
	19.4.8 Tool parameters 21 - 23: Tool base dimension/adapter dimension
	19.4.9 Tool parameter 24: Undercut angle
	19.4.10 Tools with a relevant tool point direction

	19.5 2D tool radius compensation (2D-WRK)
	19.5.1 General information
	19.5.2 Selecting the TRC (G41/G42)
	19.5.3 Approach and retraction behavior (NORM/KONT/KONTC/KONTT)
	19.5.4 Smooth approach and retraction
	19.5.4.1 Function
	19.5.4.2 Parameters
	19.5.4.3 Velocities
	19.5.4.4 System variables
	19.5.4.5 Supplementary conditions
	19.5.4.6 Examples

	19.5.5 Deselecting the TRC (G40)
	19.5.6 Compensation at outside corners
	19.5.7 Compensation and inner corners
	19.5.8 Collision monitoring ("bottleneck detection")
	19.5.8.1 Function
	19.5.8.2 Parameterization
	19.5.8.3 Programming
	19.5.8.4 Supplementary conditions
	19.5.8.5 Example

	19.5.9 Slot shape recognition (option) - 840D sl only
	19.5.10 Blocks with variable compensation value
	19.5.11 Alarm behavior
	19.5.12 Intersection procedure for polynomials
	19.5.13 G461/G462 Approach/retract strategy expansion

	19.6 Keep tool radius compensation constant
	19.7 Toolholder with orientation capability
	19.7.1 General information
	19.7.2 Kinematic interaction and machine design
	19.7.3 Tool carrier with kinematic chains
	19.7.4 Inclined surface machining with 3 + 2 axes
	19.7.5 Machine with rotary work table
	19.7.6 Procedure when using toolholders with orientation capability
	19.7.7 Programming
	19.7.8 Supplementary conditions and control system response for orientation
	19.7.9 Examples
	19.7.9.1 Example: Toolholder with orientation capability
	19.7.9.2 Example of toolholder with orientation capability with rotary table
	19.7.9.3 Calculation of compensation values on a location-specific and workpiece-specific basis
	19.7.9.4 Example: Tool carrier with orientation capability via kinematic chain

	19.8 Modification of the offset data for rotatable tools
	19.8.1 Introduction
	19.8.2 Rotating turning tools
	19.8.2.1 Cutting edge position, cut direction, and angle for turning tools
	19.8.2.2 Modifications during the rotation of turning tools

	19.8.3 Rotation of milling and drilling tools
	19.8.3.1 Cutting edge position for milling and tapping tools
	19.8.3.2 Modifications during rotation of milling and tapping tools

	19.8.4 Commissioning
	19.8.4.1 Parameter assignment

	19.8.5 Programming
	19.8.5.1 Calculating orientations (ORISOLH)
	19.8.5.2 Calculating orientations (ORISOLH): Further information
	19.8.5.3 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK)
	19.8.5.4 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK): Further information

	19.8.6 Example

	19.9 Incrementally programmed compensation values
	19.9.1 G91 extension
	19.9.2 Traversing in the direction of tool orientation (MOVT)

	19.10 Assignment of tool length components to geometry axes
	19.10.1 Assignment according to tool type and working plane.
	19.10.2 Assignment when changing plane
	19.10.3 Assignment independent of tool type

	19.11 Paraxial tool orientation
	19.11.1 Basic tool orientation
	19.11.2 Tool orientation for plane change

	19.12 Parameterizable basic tool orientation
	19.12.1 Function
	19.12.2 Commissioning
	19.12.2.1 Activation
	19.12.2.2 Parameterization

	19.12.3 Programming
	19.12.4 Examples

	19.13 Special handling of tool compensations
	19.13.1 Relevant setting data
	19.13.2 Mirroring tool lengths
	19.13.3 Mirroring wear lengths
	19.13.4 Tool lengths in the WCS, allowing for the orientation
	19.13.5 Tool length offsets in tool direction
	19.13.6 Special characteristics of orientable tool carriers

	19.14 Sum offsets and setup offsets
	19.14.1 General information
	19.14.2 Description of function
	19.14.3 Activation
	19.14.4 Examples
	19.14.5 Upgrades for Tool Length Determination
	19.14.5.1 Calculation of compensation values on a location-specific and workpiece-specific basis
	19.14.5.2 Functionality of the individual wear values

	19.15 Working with tool environments
	19.15.1 Save tool environment (TOOLENV)
	19.15.2 Delete tool environment (DELTOOLENV)
	19.15.3 Read T, D and DL number (GETTENV)
	19.15.4 Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)
	19.15.5 Read tool lengths and/or tool length components (GETTCOR)
	19.15.6 Change tool components (SETTCOR)

	19.16 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)
	19.17 Supplementary conditions
	19.17.1 Flat D number structure
	19.17.2 SD42935 expansions
	19.17.3 Scratching

	19.18 Data lists
	19.18.1 Machine data
	19.18.1.1 NC-specific machine data
	19.18.1.2 Channelspecific machine data
	19.18.1.3 Axis/spindlespecific machine data

	19.18.2 Setting data
	19.18.2.1 Channelspecific setting data

	19.18.3 Signals
	19.18.3.1 Signals from channel

	20 Z1: NC/PLC interface signals
	A Appendix
	A.1 List of abbreviations
	A.2 Documentation overview

	Glossary
	Index

