
Please note:

In this file you will find a description of some VB Script file system controls which are
valid only for Windows CE systems and are different from those used for Windows-
based systems.

File System Controls
This control consists of two controls, the File control and the File System control, that work together to
provide basic file input and output functionality. The two controls also enable the manipulation of files
and directories. In addition, the FileSystem control provides access to the File object through the File
control and to the FileSystem object through the FileSystem control.

Library Name
FILECTLCtl

DLL Name
Mscefile.dll

The File control supports the following properties:
Attr Loc Seek

EOF LOF

The File control supports the following methods:
Close (File) InputFields Put

Get LineInputString WriteFields

Input LinePrint

InputB Open

The FileSystem control supports the following methods:
Dir GetAttr RmDir

FileCopy Kill SetAttr

FileDateTime MkDir

FileLen MoveFile

The Function:
CreateObject

Remarks
File System controls are unique to the Windows CE Toolkit for Visual Basic 6.0

CreateObject
This function creates a reference to an Automation object.

Syntax
CreateObject(object)

Parameters

object

A string containing the ProgID of the object to create.

Return Values
Returns a reference to an Automation object.

Remarks
Use CreateObject to create non-visible ActiveX controls at run time. You cannot use CreateObject to
create graphical objects such as a TreeView control or a ListView control. CreateObject produces
objects that cannot respond to events. To produce objects that can respond to events, use the
CreateObjectWithEvents function. The following table lists the ProgIDs for the ActiveX controls
without events.

Control ProgID
Microsoft CE File control 6.0 .file
Microsoft CE FileSystem control 6.0 .filesystem
Microsoft CE ImageList control 6.0 CEimageList.imagelistctrl

Dim f, fwModeAppend
Set f = CreateObject("FileCtl.File")
fwModeAppend=8
f.Open "\Storage Card\testfile.txt", fwModeAppend
f.Close

MoveFile
This method renames an existing file or a directory, including all its subdirectories.

Syntax
filesystem.MoveFile PathName, NewPathName

Parameters

filesystem

Reference to a FileSystem control.

PathName

String that contains the file name.

NewPathName

String that contains the file name to copy to.

Return Value
None.

Put
This method writes data from a variable to a disk file.

Syntax
file.Put data, [recnumber]

Parameters

data

Required. Variant variable that contains data to be written to disk.

recnumber

Optional. Variant (Long). Record number (Random mode files) or byte number (Binary mode files)
at which writing begins.

Return Value
None.

Remarks
Data written with Put usually is read from a file with Get.
The first record or byte in a file is at position 1, the second record or byte is at position 2, and so on. If
you omit recnumber, the next record or byte after the last Get or Put method or pointed to by the last
Seek function is written.

For files opened in Random mode, the following rules apply:
• If the length of the data being written is less than the length specified in the Len clause of the Open

method, Put writes subsequent records on record-length boundaries. The space between the end
of one record and the beginning of the next record is padded with the existing contents of the file
buffer. Because the amount of padding data cannot be determined with any certainty, it generally is
a good idea to have the record length match the length of the data being written. If the length of the
data being written is greater than the length specified in the Len clause of the Open method, an
error occurs.

• If the variable being written is a Variant of a numeric type, Put writes 2 bytes identifying the
VarType of the Variant and then writes the variable. For example, when writing a Variant of
VarType 3, Put writes 6 bytes: 2 bytes identifying the Variant as VarType 3 (Long) and 4 bytes
containing the Long data. The record length specified by the Len clause in the Open method must
be at least 2 bytes greater than the actual number of bytes required to store the variable.

You can use the Put method to write a Variant array to disk, but you cannot use Put to write a scalar
Variant containing an array to disk. You also cannot use Put to write objects to disk.
If the variable being written is a Variant of VarType 8 (String), Put writes 2 bytes identifying the
VarType and 2 bytes indicating the length of the string. It then writes the string data. The record length
specified by the Len clause in the Open method must be at least 4 bytes greater than the actual length
of the string.
If the variable being written is a dynamic array, Put writes a descriptor whose length equals 2 plus 8
times the number of dimensions, that is, 2 + 8 * NumberOfDimensions. The record length specified by
the Len clause in the Open method must be greater than or equal to the sum of all the bytes required
to write the array data and the array descriptor. For example, the following array declaration requires
118 bytes when the array is written to disk.
For files opened in Binary mode, the Len clause in the Open method has no effect. Put writes all
variables to disk contiguously; that is, with no padding between records.

LinePrint
This method writes a single line to an open sequential file.

Syntax
file.LinePrint output

Parameters

file

Reference to a File control.

output

String expression to write to a file.

Return Value
None.

Remarks
Data written with LinePrint is usually read from a file with LineInputString.
A carriage return/line feed (Chr(13) + Chr(10)) sequence is appended to the end of the string.

Get
This method reads data from an open disk file into a variable.

Syntax
file.Get Data, [Recnumber]

Parameters

file

Reference to a File control.

Data

Required. Variant variable into which data is read.

Recnumber

Optional. Variant. Record number at which reading begins. For files opened in binary mode,
Recnumber specifies the byte position.

Return Value
None.

Remarks
Data read with the Get method usually is written to a file with the Put method.
The first record or byte in a file is at position 1, the second record or byte is at position 2, and so on. If
you omit Recnumber, the next record or byte following the last Get or Put method (or pointed to by the
last Seek function) is read.

For files opened in Random mode, the following rules apply:
• If the length of the data being read is less than the length specified in the Len clause of the Open

method, Get reads subsequent records on record-length boundaries. The space between the end
of one record and the beginning of the next record is padded with the existing contents of the file
buffer. Because the amount of padding data cannot be determined with any certainty, it is generally
advisable to match the record length with the length of the data being read.

• If Data is a Variant of numeric type, Get reads 2 bytes identifying the VarType of the Variant and
then reads the data that goes into the variable. For example, when reading a Variant of VarType 3,
Get reads 6 bytes: 2 bytes identifying the Variant as VarType 3 (Long) and 4 bytes containing the
Long data. The record length specified by the Len clause in the Open method must be at least 2
bytes greater than the actual number of bytes required to store the variable.

• You can use the Get method to read a Variant array from a disk, but you cannot use Get to read a
scalar Variant containing an array. You also cannot use Get to read objects from a disk.

• If the variable being read into is a Variant of VarType 8 (String), Get reads 2 bytes identifying the
VarType and 2 bytes indicating the length of the string. Then it reads the string data. The record
length specified by the Len clause in the Open method must be at least 4 bytes greater than the
actual length of the string.

• If the variable being read into is a dynamic array, Get reads a descriptor whose length equals 2 plus
8 times the number of dimensions, that is, 2 + 8 * NumberOfDimensions. The record length
specified by the Len clause in the Open method must be greater than or equal to the sum of all the
bytes required to read the array data and the array descriptor.

For files opened in Binary mode, the Len clause in the Open method has no effect. Get reads all
variables from a disk contiguously; that is, with no padding between records.

LineInputString
This method reads a single line from an open sequential file and assigns it to a string variable.

Syntax
file.LineInputString

Parameters

file

Reference to a File control.

Return Value
None.

Remarks
Data read with LineInputString usually is written from a file with LinePrint.
The LineInputString method reads from a file one character at a time until it encounters a carriage
return (Chr(13)) or carriage return/line feed (Chr(13) + Chr(10)) sequence. Carriage return/line feed
sequences are skipped rather than appended to the character string.

FileCopy
This method copies an existing file to a new file.

Syntax
filesystem.FileCopy PathName, NewPathName

Parameters

filesystem

Reference to a FileSystem object.

PathName

String that contains the path and file name.

NewPathName

String that contains the file name and path of the new file.

Return Value
None.

Remarks
FileCopy returns an error if the new file does not exist.

Kill
This method deletes files from a disk.

Syntax
filesystem.Kill pathname

Parameters

filesystem

Reference to a FileSystem control.

pathname

Required. String expression that specifies one or more file names to be deleted. The pathname
can include the directory or folder.

Return Value
None.

Remarks
The Kill method supports the use of multiple-character (*) and single-character (?) wildcards to specify
multiple files.
An error occurs if you try to use Kill to delete an open file.

MkDir
This method creates a new directory.

Syntax
filesystem.MkDir PathName

Parameters

filesystem

Reference to a FileSystem control.

Pathname

String expression that contains the directory name.

Return Value
None.

Remarks
MkDir generates an error if the directory already exists.

Open
This method opens a file in either the Input (1), Output (2), Random (4), Append (8), or Binary mode
(32).

Syntax
file.Open pathname, mode, [access], [lock], [reclength]

Parameters

file

Reference to a File control.

pathname

String expression that specifies a file name.

mode

Specifies the file mode: Input (1), Output (2), Random (4) , Append (8), or Binary (32).

access

Operation permitted on the open file: Read, Write, or ReadWrite [Default]. (1, 2, 3)

lock

Operations permitted on the open file by other processes: Shared, LockRead, LockWrite [Default],
and LockReadWrite. (1, 2, 3, 0)

reclength

Number, in bytes, that is less than 32,767. For files opened for random access, this value is the
record length. For sequential files, this value is the number of characters buffered.

Return Value
None.

Remarks
The reclength parameter is ignored if the mode is Binary. When opening a file in Random mode, you
must specifiy a record size of greater than zero or an error will occur.

Attr
This property of the File control returns a number indicating the file mode that was used to open the
file.

Syntax
file.Attr

Parameters

file

Reference to a File control.

Return Values
The return values listed in the following table indicate the file access mode. If the return value is 0, the
file is closed.

Constant Value

None 0
fsModeInput 1
fsModeOutput 2
fsModeRandom 4
fsModeAppend 8
fsModeBinary 32

Remarks
The Attr property is read-only. Use the Open method of the File control to set the file mode.

EOF
This property returns True when the end of a file opened for random or sequential input is reached.

Syntax
file.EOF

Parameters

file

Reference to a File control.

Remarks
Use the EOF property to avoid the error generated by attempting to read past the end of a file.
The EOF property returns False until the end of the file has been reached. For files opened with a
fsModeRandom or fsModeBinary file mode, EOF returns False until the last executed Get statement
is unable to read an entire record.
For files opened with a fsModeBinary file mode, an attempt to read through the file using the Input
function until EOF returns True generates an error. Use the LOF and LOC properties instead of EOF
when reading binary files with Input, or use Get when using the EOF property. For files opened with a
fsModeOutput file mode, EOF always returns True.

Loc
This property returns a number specifying the current read/write position.

Syntax
file.Loc

Parameters

file

Reference to a File control.

Remarks
For files opened with the fsModeRandom file mode, Loc returns the number of the last record read or
written. For files opened with all other modes, Loc returns the position of the last byte read or written.

LOF
This property returns a number representing the size, in bytes, of a file.

Syntax
file.LOF

Parameters

file

Reference to a File control.

Remarks
The LOF property can be used with the Loc property to guarantee that a read operation does not
continue past the end of a file.

Seek
This property returns and sets the next position in a file that will be read or written.

Syntax
file.Seek [= position]

Parameters

file

Reference to a File control.

position

Numeric expression that specifies a position within a file.

Remarks
The Seek property specifies the next file position, whereas the Loc property specifies the current
position. Seek always will be one more than Loc, except when a file is first opened and Seek and Loc
are both 1.
Negative Seek or 0 causes an error.

Close (File)
This method closes an open File control.

Syntax
file.Close

Parameters

file

Name of a File control.

Return Value
None.

Remarks
Use the Open method to open a file.

Input
This method returns a string containing characters from a file opened in Input or Binary mode.

Syntax
file.Input(number)

Parameters

file

Reference to a File control.

number

Any valid numeric expression that specifies the number of characters to return.

Return Value
String containing characters read from file.

Remarks
Data read with the Input method usually is written to a file with the LinePrint or Put functions. Use this
method only with files opened in Input or Binary mode.

Unlike the LineInputString method, the Input method returns all the characters it reads, including
commas, carriage returns, line feeds, quotation marks, and leading spaces.

With files opened for Binary access, an attempt to read through the file using the Input method until
the EOF function returns True generates an error. To avoid an error, use the LOF and Loc functions
instead of EOF when reading binary files with the Input method or use Get when using the EOF
function.

InputB
This method returns bytes from a file opened in Input or Binary mode.

Syntax
file.InputB(number)

Parameters

file

Reference to a File control.

number

Any valid numeric expression that specifies the number of bytes to return.

Return Value
Array containing bytes read from file.

Remarks
Data read with the InputB method usually is written to a file with the LinePrint or Put functions. Use
this method only with files opened in Input or Binary mode.

InputFields
This method reads data from an open sequential file and returns a single dimension Variant array.

Syntax
file.InputFields(number)

Parameters

file

Reference to a File control.

number

Number of comma-delimited fields to read from the file.

Return Value
Array containing the fields read from the file.

Remarks
Data read with the InputFields method usually is written to a file with WriteFields. Use this method
only with files opened in Input or Binary mode.
InputFields reads standard string or numeric data without modification. The following table shows how
InputFields reads other input data.

Data Value Assigned to Variable

Delimiting comma or blank line Empty
#NULL# Null
#TRUE# or #FALSE# True or False
#yyyy-mm-dd hh:mm:ss# The date and/or time represented by the expression

Double quotation marks ("") within input data are discarded.
If you reach the end of the file while you are inputting a data item, the input is terminated and an error
occurs.

To correctly read data from a file into variables using InputFields, use the WriteFields method instead
of the LinePrint method to write the data to the files. Using WriteFields ensures each separate data
field is properly delimited.

WriteFields
This method writes data to a sequential file.

Syntax
file.WriteFields [data]

Parameters

file

Reference to a File control.

data

Variant or Variant array of numeric or string expressions to write to a file.

Return Value
None.

Remarks
Data written with WriteFields is usually read from a file with InputFields.
If you omit data, a blank line is printed to the file.

When WriteFields is used to write data to a file, several universal assumptions are followed so that the
data can always be read and correctly interpreted using InputFields, regardless of locale:
• Numeric data is always written using the period as the decimal separator.
• For Boolean data, either #TRUE# or #FALSE# is printed. The True and False keywords are not

translated, regardless of locale.
• Date data is written to the file using the universal date format. When either the date or the time

component is missing or is zero, only the component provided gets written to the file.
• Nothing is written to the file if Data is Empty. However, for Null data, #NULL# is written.
• If data is Null, #NULL# is written to the file.

The WriteFields method inserts commas between items and quotation marks around strings as they
are written to the file. You do not have to put explicit delimiters in the list. WriteFields inserts a newline
character—that is, a carriage return/line feed (Chr(13) + Chr(10))—after it has written the final
character in data to the file.

Dir
This method returns the name of a file, directory, or folder that matches a specified pattern or file
attribute.

Syntax
file.Dir(pathname,[attributes])

Parameters

file

Reference to a FileSystem control.

pathname

Optional. String expression that specifies a file name or path.

attributes

Optional. Numeric expression whose sum specifies file attributes.
If omitted, all files that match pathname are returned.

The following table describes the parameter settings of attributes.

Constant Value Description

fsAttrNormal 0 Normal
fsAttrReadOnly 1 Read-only
fsAttrHidden 2 Hidden
fsAttrSystem 4 System file
fsAttrVolume 8 Volume label. If specified, all other attributes are ignored.
fsAttrDirectory 16 Directory or folder
fsAttrArchive 32 Archive

Return Value
String. File name that matches pathname and attributes. Dir returns a zero-length string ("") if
pathname is not found.

Remarks
Dir supports the use of multiple-character (*) and single-character (?) wildcards to specify multiple
files. You must specify pathname the first time you call the Dir method. In addition, if you specify file
attributes you must include pathname.
The Dir method returns the first file name that matches pathname. To get any additional file names
that match pathname, call Dir again with no parameters. When no more file names match, Dir returns
a zero-length string (" "). Once a zero-length string is returned, you must specify pathname in
subsequent calls.

FileDateTime
This method returns a variant (Date) that indicates the date and time when a file was created or last
modified.

Syntax
filesystem.FileDateTime(pathname)

Parameters

filesystem

Reference to a FileSystem control.

pathname

Required. String expression that specifies a file name. The pathname can include a directory or
folder.

Return Value
Returns the date the file was last modified.

Remarks
FileDateTime returns an error if the new file does not exist.

FileLen
This method returns a value specifying the length, in bytes, of a file.

Syntax
filesystem.FileLen(pathname)

Parameters

filesystem

Reference to a FileSystem control.

pathname

Required. String expression that specifies a file. The pathname can include a directory or folder.

Return Value
Returns the number of bytes in a file.

Remarks
If the specified file is open when the FileLen method is called, the value returned represents the size of
the file immediately before it was opened.

GetAttr
This method returns a number representing the attributes of a file, directory, or folder.

Syntax
filesystem.GetAttr(pathname)

Parameters

filesystem

Reference to a FileSystem control.

pathname

Required. String expression that specifies a file name or directory or a folder name. The pathname
can include the directory or folder.

Return Value
Sum of attribute values. The following table shows the sums that can be returned.

Constant Value Description

vbNormal 0 Normal
VbReadOnly 1 Read-only
VbHidden 2 Hidden
VbSystem 4 System
VbDirectory 16 Directory or folder
VbArchive 32 File has changed since last backup

Remarks
To determine which attributes are set, use the And operator to perform a bitwise comparison of the
value returned by the GetAttr method and the value of the individual file attribute you want. If the result
is not zero, that attribute is set for the named file.

RmDir
This method deletes an existing empty directory.

Syntax
filesystem.RmDir PathName

Parameters

filesystem

Reference to a FileSystem control.

PathName

String that contains the directory name.

Return Value
None.

Remarks
The directory must be empty before it can be removed. You must specify a complete file path.

SetAttr
This method sets attribute data for a file.

Syntax
filesystem.SetAttr pathname, attributes

Parameters

filesystem

Reference to a FileSystem control.

pathname

Required. String expression that specifies a file name. The file name can include a path.

attributes

Required. Numeric expression whose sum specifies file attributes. The following table shows the
parameter settings of attributes.

Constant Value Description

vbNormal 0 Normal (default)
vbReadOnly 1 Read-only
vbHidden 2 Hidden
VbSystem 4 System file
VbArchive 32 File has changed since last backup

Return Value
None.

Remarks
A run-time error occurs if you try to set the attributes of an open file.

	File System Controls
	Attr
	EOF
	Loc
	LOF
	Seek
	Close (File)
	Get
	Input
	InputB
	InputFields
	LineInputString
	LinePrint
	Open
	Put
	WriteFields
	Dir
	FileCopy
	FileDateTime
	FileLen
	GetAttr
	Kill
	MkDir
	MoveFile
	RmDir
	SetAttr
	CreateObject

